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Abstract

Hydrogen atom transfer (HAT) provides straightforward methods to generate open-shell radical
intermediates from C-H bonds and offers unique opportunities for green and sustainable synthesis.
Visible-light-induced C-H functionalization enabled by HAT is an emerging strategy for substrate
activation in photocatalyzed organic synthesis. In recent years, photoinduced HAT reactions have seen
substantial development of their versatility, efficiency, and selectivity. However, asymmetric
photocatalysis via hydrogen atom transfer has rarely been reported.

In the first section, a visible-light-induced asymmetric rearrangement of 3-(2-formylphenyl)-1-
pyrazol-1-yl-propenones to benzo-[d]cyclopropa[b]pyranones with up to > 99% ee is introduced, which
is catalyzed by a bis-cyclometalated chiral-at-metal rhodium complex (RhS). Mechanistic experiments
and DFT calculations support a mechanism whereby the photoexcited catalyst/substrate complex
generates triplet excited-state species through photoiduced intersystem crossing, which triggers an
intramolecular hydrogen atom transfer subsequent highly stereocontrolled hetero-Diels—Alder reaction.
In this reaction scheme, the rhodium catalyst fulfills multiple functions by 1) enabling visible-light
n—n* excitation of the catalyst-bound enone substrate, 2) facilitating the hydrogen atom transfer, and
3) providing the asymmetric induction for the hetero-Diels—Alder reaction.

In the second section, a visible light driven deracemization of ketones as a new type of
deprotonation and asymmetric protonation is demonstrated for the first time, which leads to the
formation of chiral carbonyl compounds in an efficient way with high yield (up to 97%) and high
enantioselectivity (up to 97%). This new photoinduced deprotonation process is achieved by single
electron transfer (SET) and subsequent hydrogen atom transfer. A bis-cyclometalated chiral-at-metal
rhodium complex (RhInd) is used as the photocatalyst to induce the redox process and is responsible
for the asymmetric induction, while the amine acts as the single electron reductant, HAT reagent and
proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation
with a stereocontrolled protonation serves as a blueprint for other deracemizations of ubiquitous

carbonyl compounds.
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Zusammenfassung

Wasserstoffatom-Transfer-Prozesse (HAT, hydrogen atom transfer) bieten niitzliche Methoden zur
Erzeugung offenschaliger Radikalintermediate aus C-H-Bindungen und erméglichen einzigartige Wege
fiir eine effiziente und nachhaltige Synthese. Die durch sichtbares Licht induzierte C-H-
Funktionalisierung, die durch HAT ermdglicht wird, ist eine neuartige Strategie zur Substrataktivierung
in der photokatalysierten, organischen Synthese. Obwohl die Vielseitigkeit, Effizienz und Selektivitét
von photoinduzierten HAT-Reaktionen in den letzten Jahren maB3geblich weiterentwickelt wurde, konnte
nur selten iiber asymmetrische Photokatalyse durch Wasseratom-Transfer berichtet werden.

Im ersten Abschnitt wird eine durch sichtbares Licht induzierte, asymmetrische Umlagerung von
3-(2-Formylphenyl)-1-pyrazol-1-yl-propenonen zu Benzo-[d]cyclopropa[b]pyranonen mit bis zu > 99%
ee eingefithrt, die durch einen bis-cyclometallierten, chiral-at-metal Rhodiumkomplex (RhS)
katalysiert wird. Mechanistische Experimente und DFT-Rechnungen unterstiitzen einen Mechanismus,
bei dem der angeregte Katalysator-/Substrat-Komplex durch photoinduziertes intersystem crossing eine
Spezies im angeregten Triplett-Zustand erzeugt, die einen intramolekularen Wasserstoffatomtransfer
und eine anschlieBende stereokontrollierte Hetero-Diels-Alder Reaktion auslost. In dieser Reaktion
erfiillt der Rhodium-Katalysator mehrere Funktionen: 1) Er ermoglicht die m-m*-Anregung des
Katalysator-gebundenen Enon-Substrates durch sichtbares Licht; 2) er erleichtert den Wasserstoffatom-
Transfer und 3) er sorgt fiir die asymmetrische Induktion der Hetero-Diels-Alder Reaktion.

Im zweiten Abschnitt wird erstmals eine durch sichtbares Licht induzierte Deracemisierung von
Ketonen iiber eine neue Art von Deprotonierung und anschliefender asymmetrischer Reprotonierung
gezeigt, die eine effiziente Synthese von chiralen Carbonyl-Verbindungen mit hoher Ausbeute (bis zu
97%) und hoher Enantioselektivitidt (bis zu 97%) ermdglicht. Dieser neuartige, photoinduzierte
Deprotonierungs-Prozess wird durch eine Ein-Elektron-Ubertragung (SET, single electron transfer) und
anschlieBenden Wasserstoffatom-Transfer erreicht. Ein bis-cyclometallierter chiral-at-metal
Rhodiumkomplex (RhInd) dient als Photokatalysator zur Induktion des Redoxprozesses und ist fiir die
asymmetrische Induktion verantwortlich, wahrend das Amin als Ein-Elektron-Reduktionsmittel, HAT-
Reagenz und Protonenquelle fungiert. Dieses simple licht-induzierte Konzept der Kombination einer
Photoredox-Deprotonierung mit einer stereokontrollierten Protonierung dient als Blaupause fiir andere

Deracemisierungen von allgegenwirtigen Carbonyl-Verbindungen.
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Chapter 1: Introduction

Chapter 1: Theoretical Part

1.1 Introduction

In the past few years, there has been a resurgence of interest in visible-light photocatalysis, owing
to its great potential for engineering chemical reactions under mild conditions. The visible-light-
absorbing species (photocatalysts) can selectively be excited by visible light irradiation undergo single
electron transfer or transfer their excited state energy to the substrate or reagent (Figurel, right). The
commonly employed photocatalysts are metal complexes or organic dyes that allow visible light as the
irradiation source, making this type of catalysis more advantageous than using a harmful high-intensity
light source to trigger the photoreaction reactants directly. After the photocatalyst is excited by visible
light, the lowest singlet excited state can undergo an intersystem crossing to the long-lived triplet state,
depending on the nature of the photocatalyst. These ground state compounds are poor oxidants and poor
reductants, but upon excitation, the photocatalysts become strong oxidants and strong reductants in their
excited state (Figure 1, left). As a result, this excited triplet-state photocatalyst can achieve single
electron transfer (SET) through reductive quenching or oxidative quenching pathways, resulting in
various radical ions or radicals. On the other hand, the excited triplet photocatalyst can also be quenched
through energy transfer events (ET), generating relatively unstable triplet state substrates. The
quenching pathway may vary for the same catalyst depending on the valence energies of the catalysts

and the reactants (Figure 1, right).!

Cn+1

Ox:datlve
quenching

Oxidative n+l

quenching 5 C
hv

ISC
> n E transf .
ﬁbﬁ :EEF E PC\:;Li{mZZZ - lz%“
t PC"
[PC] [PC]* [PC]*  Reductive ol S)
o) S) (T) quenching

Reductive

\ quenching
Cn-l

Figure 1. Photocatalysts possible quenching pathways. ISC = intersystem crossing.

Lk

It is well known that selective functionalization of the unactivated C—H bond is a continuous pursuit
of synthetic organic chemists. Visible-light-mediated C—H activation has recently emerged as a powerful
tool for the functionalization of C—H bonds. Hydrogen atom transfer (HAT) is a chemical transformation
consisting of the concerted transfer of a proton and an electron from one to another in a single kinetic
step.? Significantly, hydrogen atom transfer provides a versatile strategy for the activation of the
substrate in photocatalyzed organic synthesis. Visible-light-induced catalysis combined with hydrogen
atom transfer can serve as a unique tool for achieving new bond formation.? Several methods operating

via photoinduced intermolecular HAT?**° or intramolecular HAT?**¢ have been extensively reported
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Chapter 1: Introduction

over the past few years. In these reactions, an excited photocatalyst is responsible for activating the
reaction partners (leading to the formation of reactive intermediates) and then reverting to its original

form, ready to start a new cycle.
1.2 Photoinduced Intermolecular HAT Reactions

Upon absorption of light, the activation of C—H bonds through photoinduced intermolecular HAT
can occur according to four different kinds of reactivity. The first family of reactions is direct HAT
catalysis, in which the excited state of the photocatalyst (PC*) directly abstracts a hydrogen atom from
the R—H substrate. The second family of reactions involves indirect HAT catalysis, where PC* can be
utilized to generate thermal hydrogen atom abstractor by interaction with a purposely added co-catalyst
Y—W(H), by three different mechanisms. The first pathway is to take advantage of the intrinsic capability
of excited states to act as oxidants or reductants. Accordingly, PC* can promote a single-electron-
transfer step (SET), thus converting Y—W into the corresponding radical ion. On the one hand, the radical
cation Y-W"is formed in the case of reductive quenching of the photocatalyst. On the other hand, PC*
can undergo an oxidative quenching to produce the radical anion Y—W . This intermediate might
directly abstract a hydrogen atom from the substrate R—H or might undergo the loss of a charged moiety
(W*or W) to give a hydrogen abstractor species Y. An alternative option involves an energy-transfer
step (ET) between PC* and Y-W. The resulting excited species Y-—W?* then undergoes the homolytic
cleavage of a labile bond, again generating a thermal hydrogen abstractor (Y-) prone to activate R—H
through HAT. Finally, PC* can promote a PCET with an additive Y-H, also involving a suitable base
(B"). As a result, radical Y- is formed, and is in turn able to promote the desired HAT step (Figure 2).%

Direct Hydrogen Atom Transfer § Indirect Hydrogen Atom Transfer

7/ lR—H Single-Electron Transfer (SET)

: Y-W -
HAT i Y-W* L Y® ﬂ R®  Energy Transfer (ET)
B

\ R* § BH + Y R Electron-Transfer
(PCe)-H '

-WHW-

-H i Y*

Y-H R-H Proton-Coupled

\ /

[~
=
<
=
i+

‘,

=

=

PC = Photocatalyst, R—I;: Substrate, Y-W= Additive/Co-catalyst, B-H/B™= Conjugate acid/base couple
Figure 2. Substrate activation through photoinduced intermolecular HAT promoted through a direct or
indirect photocatalytic approach.

The following section will highlight representative examples on the activation of R-H bonds
through photoinduced intermolecular HAT. Some common HAT reagents were applied in these
photocatalytic HAT reactions. Figure 3 (left) shows some of the direct HAT photocatalysts used in direct
HAT catalysis, and Figure 3 (right) shows some of the indirect HAT reagents used in indirect HAT

catalysis.
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Figure 3. Representative direct HAT photocatalysts and representative indirect HAT reagents.

1.2.1 Direct Photoinduced HAT Catalysis

Upon excitation with light, carbonyl compounds can undergo rapid and efficient intersystem
crossing. As a result, carbonyl compounds are often used as photocatalysts for photoinduced direct HAT
chemistry. The capability of triplet aromatic ketones to abstract a hydrogen atom has been known since
the birth of photochemistry. In 2015, Inoue group reported an interesting enantioselective radical
alkynylation reaction carried out in the presence of benzophenone and and chiral ethynyl sulfoximine
under irradiation with a medium-pressure lamp. In this reaction, the C(sp*)—H bond in a protected amine
was alkynylated with good enantiomeric excess. The chirality in the sulfoximine was efficiently
transmitted to the alkyne products, while the chiral sulfonylimine acted as a traceless chiral auxiliary
group. The stereochemical output was interpreted based on the preferential formation of the transition
state, in which the hydrogen bonding between HN=S and HNBoc was stronger than that between O=S
and HNBoc, resulting in a favored transition state and gave the S configuration as the primary product

Figure 4).*
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Figure 4. Photoinduced enantioselective alkynylation of C(sp*)-H bonds, TBS = fert-butyldimethylsilyl.

In 2018, Martin and coworkers designed a catalytic platform that employs a synergistic
combination of nickel and diaryl ketone for the cross-coupling of unactivated C(sp*)-H bonds with aryl
or alkyl bromides under visible light irradiation, in which the triplet diaryl excited ketones act as both
direct HAT and SET catalysts. Mechanistically, the carbon radical would be generated upon HAT from
the triplet excited species along with the formation of a ketyl radical. Concurrently, oxidative addition
of low-valent Ni(0) into the aryl or alkyl halides would produce an electrophilic nickel(II) complex. The
Ni(II) complex captures the alkyl radical rapidly and might afford a discrete Ni(IlI) species, which would
deliver the targeted C—H functionalization product and the Ni(I) intermediate through reductive
elimination. Finally, the two catalytic cycles could be interfaced under basic conditions by a final SET
from the ketyl radical to the Ni(I) intermediate, thus recovering both the diaryl ketone and the Ni(0)
catalysts (Figure 5).°
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Figure 5. sp’> C—H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel
catalysts.

In 2019, Gong and coworkers demonstrated a photoinduced asymmetric C(sp®)-H
functionalization of benzylic, allylic hydrocarbons and unactivated alkanes by using the dual a direct
HAT photocatalyst (5,7,12,14-pentacenetetrone) with a tunable chiral catalyst of metal (BOX-M where
M = Cu or Co and BOX = chiral bisoxazoline) under blue-light irradiation (Figure 6).° The authors
proposed that the excited 5,7,12,14-pentacenetetrone abstracts a hydrogen atom from the unactivated
C(sp*)-H bond, generating the carbon radical and semiquinone-type radical. At the same time, the imine
substrate coordinates with the chiral metal catalyst to give the intermediate, followed by a SET with the
semiquinone-type radical to close the photocatalytic cycle and give the metal-stabilized carbon radical.
Subsequently, the intermediate complex was obtained by cross-coupling. Finally, protonation and ligand

substitution give the product with regeneration of the coordinated imine.
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Figure 6. Proposed mechanism for selective C(sp*)-H functionalization.

Eosin Y is a metal-free and readily available organic dye, which is a well-known organic
photocatalyst for visible-light-driven SET-based transformations. However, inspired by the structural
features of eosin Y, the groups of Wang’ and Wu® have recently made a breakthrough in discovering new
activation modes of photoexcited eosin Y in 2018. They found that excited neutral eosin Y can serve as
a direct hydrogen atom transfer (HAT) catalyst. After the excited neutral eosin Y abstracts a hydrogen
atom, the photocatalytic cycle subsequently proceeds through a reverse hydrogen atom transfer (RHAT)
to one of the intermediates generated in the reaction. In 2020, Wu and co-workers expanded their C—-H
functionalization protocol using neutral eosin Y as a direct HAT photocatalyst on radical Smiles
rearrangement. The final product was obtained by visible light direct HAT photocatalysis, 1,4-addition,
Smiles rearrangement, 5-endo-trig cyclization and reverse hydrogen atom transfer processes. (Figure

7).
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Figure 7. A radical Smiles rearrangement promoted by neutral eosin Y.

Organofluorine compounds are an important class of molecules that are widely used in various
fields. However, the formation of C—F bonds is commonly associated with large kinetic barriers. In 2016,
Sorensen and coworkers reported a novel photocatalytic system for C—H fluorination of the unactivated
alkanes, which employed UO>(NO;),-6H,O as a direct HAT photocatalyst to promote C(sp*)-H bond
fluorination reaction under visible light irradiation.’ Upon absorption of light, [UO,]*"* abstracted a
hydrogen atom to generate an alkyl radical, which then interaction with electrophilic fluorinating reagent
N-fluorobenzenesulfonimide (NFSI) to form the desired C—F bond. The radical of NFSI returns the
photoreduced HAT catalyst to regenerate the catalyst to undergo further reaction (Figure 8).
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Figure 8. The fluorination of unactivated C(sp*)-H by UO, ** and NFSIL.

In 2019, Li and co-workers reported an interesting metal-free photoinduced HAT Minisci reaction,
which is carried out simply by visible light irradiation of diacetyl in the presence of TFA (Figure 9)."
Diacetyl is a cheap, visible-light-sensitive ketone that absorbs in the 380—460 nm region. The authors
propose that diacetyl acts as a direct HAT photosensitizer, which is competent at performing HAT on
certain ethers possessing easily cleavable a-C—H bonds. A plausible mechanism was proposed in which
excited diacetyl abstracts a hydrogen atom from the ether to generate the alkyl radical, which
successfully coupled with the electron-deficient heteroarenes to give a neutral radical intermediate. Then
the neutral radical intermediate is oxidized by ketyl radical with an accompanied proton transfer, giving

the Minisci product together with acetoin as the byproduct.
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Figure 9. Diacetyl as a direct HAT photosensitizer in Minisci alkylation.

1.2.2 Indirect Photoinduced HAT Catalysis
1.2.2.1 N-Centered Abstractors

In recent years, a series of pioneering and groundbreaking discovery in photoredox C(sp®) —H HAT-
type functionalization were reported by MacMillan group. In 2015, Macmillan and co-workers were
successfully developed a strategy for the selective alkylation of a-hydroxy C—H bonds with Michael
acceptors (Figure 10).!! In this reaction, both a quinuclidine HAT catalyst and a phosphate hydrogen
bonding catalyst are required to achieve selective functionalization of o-hydroxy C—H bonds.
Interestingly, tetra-n-butylammonium phosphate act as a key additive to make the alcohol a-C—H more
hydridic, via formation of a hydrogen bond between the phosphate acceptor and the hydroxyl group of
the alcohol. As a result, the highly electrophilic nitrogen radical cation formed via single electron
oxidation of quinuclidine can readily abstract the activated a- alcohol C—H bond to form a carbon radical.
The resultant carbon radical is highly nucleophilic and is readily trapped by electron-deficient alkenes,

Subsequent single electron reduction and cyclization affords the lactone product.
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Figure 10. Photoinduced C-H alkylation of alcohols.
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The photoinduced indirect HAT process could also be merged with transition metal-catalyzed cross-
coupling reactions. In 2016, Macmillan and co-workers developed a unique coupling of a-amino, o-
ether, and benzylic C—H bonds with aryl halides using a combination of an Ir photocatalyst, 3-
acetoxyquinuclidine, and an Ni complex (Figure 11).'% In this catalytic system, a stoichiometric amount
of 3-acetoxyquinuclidine was utilized as the HAT catalyst to generate the carbon radicals. The
photoexcited *Ir(Ill) catalyst were quenched by 3-acetoxyquinuclidine to generate an amino radical
cation, which to accomplish hydrogen atom abstraction from a diverse range of substrates. Given the
reactive carbon-centered radicals, subsequently entered the nickel catalytic cycle and reacted with the
Ni(II) complexes, which were generated from oxidative addition of Ni(0) to the aryl bromide. After
reductive elimination provide the cross-coupled product. A final SET between Ni(I) and reduced

photocatalyst closes these two catalytic cycles.
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Figure 11. Photoinduced C—H arylation through photoredox, quinuclidine, and nickel catalysis.
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Amides and sulfonamides can serve as source of N-centred radicals for hydrogen atom transfer.
Typically, these compounds are conveniently deprotonated by weak bases and the resulting anions can
be oxidized by the excited photocatalysts. In 2016, the Knowles group'® demonstrated that the N-H
bond in amides can be activated through proton-coupled electron transfer mechanism involving an
excited photocatalyst and a base (tetrabutylammonium dibutyl phosphate) to give the corresponding
nitrogen-centered radical. The nitrogen-centered radical can act as a hydrogen abstractor to generate the
carbon-centered radicals in alkanes, ethers, and protected amines. and ensuing addition onto electron-
poor olefin. The authors propose a catalytic cycle wherein the phosphate base associate to the N—H bond
of N-ethyl-4-methoxybenz-amide via hydrogen bonding. Upon excitation with light, oxidation of this
hydrogen-bond complex by the excited photocatalyst would result in formal homolysis of the strong N—
H bond via concerted PCET to give a neutral amidyl radical. Amidyl radical was in turn able to abstract
a hydrogen atom from the substrates to give carbon-centered radicals and then trapping by an electron-
deficient olefin partner to furnish a new C—C bond and an a-carbonyl radical. The electron transfer from
the reduced Ir(Il) to this electrophilic radical will generate an enolate anion, which is subsequently
protonation by phosphoric acid to give the final product and return both catalysts to their active forms

(Figure 12).

11



Chapter 1: Introduction

[Ir(dF(CF3)ppy)2(4,4'-d(CF3)bpy)]PFg (2 mol%)
NBu4OP(O)(OBu), (5 mol%)

O/H N Ph\f N-ethyl-4-methoxybenzamide (1 eq) _ mCOzMe
CO,Me PhCF3 (0.1 M), blue LEDs, 60°C

69% yield

[Ir(dF(CF3)ppy)2(4,4'-d(CF3)bpy)IPFg (2 mol%)

NBu,OP(0)(OBu), (5 mol%) Q
D_H + A COPh N-ethyl-4-methoxybenzamide (1 eq) _ D_}‘ Ph

PhCF3 (0.1 M), blue LEDs, 60°C (0]
59% vyield
[Ir(dF(CF3)ppy)2(4,4'-d(CF3)bpy)]PFg (2 mol%) o
E[\?_H + N NBu,4OP(O)(OBu), (5 mol%) oh
é Z “COPh N-ethyl-4-methoxybenzamide (1 eq) _
oc - y
PhCF; (0.1 M), blue LEDs, 60°C i?zoc
60% yield

\X/\H / LU > ‘\X/I .

o}

'
B
|||
SET
||| B_Hu B
\X/'\/'\A > SN

Figure 12. C-H activation in alkanes through the action of photogenerated amidyl radical.

In 2018, Kanai and co-workers demonstrated that sulfonamides can function as novel HAT catalysts
applicable to allylic or benzylic C—H arylations (Figure 13).'* The authors propose that the deprotonated
sulfonamide could be readily oxidized by the excited photocatalyst to afford the sulfonamidyl radical
behaving as a hydrogen atom transfer (HAT) agent. The alkyl radical intermediate is then generated by
the HAT process, which reacted with the reduced radical anion of the starting 1,4-dicyanobenzene to

afford the desired C—H arylation product after the elimination of a cyanide ion.
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Figure 13. Arylation of C(sp*)-H bonds through the action of photogenerated sulfonamidyl radical.

In 2020, Lambert and coworkers reported a trisaminocyclopropenium cation (TAC) as an
electrophotocatalyst for oxidant-free coupling of ethers with isoquinolines, alkenes, alkynes, pyrazoles,
and purines selectively at the less-hindered o position (Figure 14)."° In this catalytic system, the
colorless TAC was converted by anodic oxidation at mild potential to generates radical dication, which
upon excitation with visible light, affords an extremely oxidizing excited state. Photoexcitation then
leads to intermediate bearing aminyl radical cation character. Hydrogen atom transfer from the ether
substrate generates the corresponding carbon radical along with the protonated TAC. The carbon radical
readily reacts with isoquinoline to produce an intermediate radical, and this was followed by a second
single electron oxidation and deprotonation furnish the product. Meanwhile, deprotonation of the

dication regenerates the catalyst.
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Figure 14. Electrophotocatalytic arylation of ether.

1.2.2.2 O-Centered Abstractors

It is well established that the direct oxidation of ethers is challenging due to their high oxidation
potentials and can be difficult to achieve using most photocatalysts. In 2014, MacMillan and coworkers
developed a new approach to the direct a-arylation of cyclic and acyclic ethers with heteroarenes via a
photoredox-mediated C—H functionalization pathway (Figure 15).'® The authors proposed that S>Og*"
was used as an oxidant via single electron reduction to generate a sulfate radical anion (SO4 ™), which
can abstract a hydrogen atom from the ether to afford the a-oxyalkyl radical. The high reactivity of
sulfate radical anion allowed for a range of cyclic and acyclic ethers to be used as radical precursors.
This a-oxyalkyl radical reacted with the protonated heteroarene and formed the amine radical cation,
which transformed into the o-amino radical via deprotonation. The radical intermediate on single
electron transfer to the PC (IV) regenerated the PC (III) and the product. In addition to the
functionalization of ethers, photogenerated sulfate radical anions have also been used to activate a-

amides and formyl and methylene C—H bonds.
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Figure 15. Photoinduced arylation of ethers using persulfate as an indirect HAT reagent.

In 2015, Koénig and coworkers demonstrated that nitrate radicals could be easily accessed from
nitrate anion by visible light photoredox catalysis using a purely organic dye as the catalyst and oxygen
as the terminal oxidant (Figure 16).!” Nitrate radical can oxidize substrates by hydrogen atom

abstraction, which was applied to the aerobic oxidation of alcohols.
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Figure 16. The nitrate radical induced oxidation of alkynes and alcohols.

In 2015, Wang and coworkers studied the combined effect of Ru(bpy);Cl, as photocatalyst, tert-
butyl hydroperoxide (TBHP) as oxidant, a HAT precursor and an oxygen source for single step oxidative
coupling of aldehydes and styrenes to yield a,B-epoxy ketones (Figure 17).'® The reaction mechanism
is depicted in Scheme and involved the activation of TBHP by the excited Ru(Il) transferring electron
to TBHP, forming tert-butoxyl radical, which in turn abstract the hydrogen atom from aldehyde to form
t-BuOH and benzoyl radical. The benzoyl radical gets trapped by alkenes to give radical intermediate,
which undergoes radical-radical cross coupling with tert-butyl peroxide radical to yield the target

product.
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Figure 17. The difunctionalization of simple alkenes for the synthesis of a,-epoxy ketones

In 2016, Glorius and coworkers reported a photoredox-mediated hydrogen atom transfer catalysis
for the selective activation of unactivated C(sp’)-H bonds, followed by their selective
trifluoromethylthiolation of several alkyl compounds, which can be accomplished with high selectivity
in good yields (Figure 18)."” Benzoate salts used as precursor of benzoyloxy radical (PhCOO-), which
acted as HAT reagent formed upon electron transfer with the excited Ir catalyst. The benzoyloxy radical
that formed was highly electrophilic and could abstract a hydrogen atom from the tertiary C—H bond,
while the alkyl radical reacts with the electrophilic trifluoromethylthiolating reagent Phth-SCF; gave
the desired product R-SCF3; along with a phthalimide radical (Phth-). Oxidation of the reduced
photoredoxcatalyst with Phth- via single-electron transfer would regenerate the photocatalyst and Phth™.

Finally, Phth™ deprotonates benzoic acid to regenerate the benzoate salt and completes the catalytic cycle.
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Figure 18. Photoinduced C(sp*)-H trifluoromethylthiolation using benzoate salt as an indirect HAT
catalyst.

The alkoxyl radical is an improtant reactive intermediate in organic synthesis and its highly reactive
character enables unactivated C—H bond functionalization with the hydrogen atom transfer (HAT)
reactivity. Abundant free alcohols are ideal precursors for alkoxy radicals, but direct generation of
alkoxy radicals from alcohols is a formidable challenge due to the high oxidation potential of alkoxides
and the high bond dissociation energy (BDE) of O—H bond of alcohols. In 2018, Zuo and co-workers

11T

reported the photocatalytic properties of Ce™ chloride complexes for C—C bond-cleavage and the

functionalization of methane, ethane, and higher alkanes via ligand-to-metal charge-transfer (LMCT)
generation of alkoxyl radicals (Figure 19).° The authors proposed mechanism that a Ce'V-alkoxy
complex, generated in situ from alcohol and a Ce! salt, undergoes photoinduced LMCT to generate the

11T

electrophilic alkoxy radical and a reduced Ce™ species. The alkoxy radical then abstracts a hydrogen

atom from the alkane to generate the carbon-center radical, which readily couples with the electron-
deficient azo compound to give the radical species. Single electron reduction of the resulting radical

111

intermediate by reduced Ce'" regenerates Ce'" and furnishes the target product after protonation.
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Figure 19. Photoinduced C(sp*)-H amination using alcohols as indirect HAT catalyst.

1.2.2.3 S-Centered Abstractors

Thiyl radicals are powerful HAT catalysts that can react with various C—H bonds via hydrogen atom
transfer, leading to the formation of carbon-centered radicals. The hydrogen atom abstracting reactivity
of thiyl radicals has been known for decades.?' The activation of the S—H bond by the photocatalyst
actually involves the formation of a thiyl radical by transferring one electron and a proton, which may
occur through a concerted proton-coupled electron transfer (PCET). A pioneering report was published
by MacMillan and co-workers in 2015, in which the triisopropylsilanethiol was used as the hydrogen
atom transfer catalyst (Figure 20).?> In the proposed reaction mechanism, the excited Ir(ppy)s could be
quenched by the electron-deficient arene to generate a persistent arene radical anion along with the
oxidized photocatalyst Ir'V. The thiol catalyst is subsequently through proton-coupled electron transfer
(PCET) in the presence of a base to generate the thiyl radical, which could abstract a hydrogen atom
from allylic C—H bonds and give the allylic radical. Finally, an intermolecular radical-radical coupling
furnishes the C-C coupled product, followed by the elimination of cyanide to obtain the desired arylated
product.
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By employing a photoredox HAT strategy, MacMillan and coworkers* developed a protocol for
the direct alkylation of heteroarenes using simple alcohols as the alkylating reagents (Figure 21). In this
reaction, thiyl radical, generated by SET from the thiol catalyst, can abstract a hydrogen atom from
alcohol to generate an a-hydroxy radical. The generated nucleophilic radical would then add to
protonated heteroarenes to afford the aminyl radical cation, and subsequent deprotonation gave an a-
amino radical. At this juncture, the intermediate is primed to undergo spin-center shift (SCS) to cleave
the C—O bond and eliminate one molecule of H>O and generate the benzylic radical. Finally, the benzylic

radical can be reduced by the excited photocatalyst and protonated to provide the alkylated heteroarene.
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Figure 21. Photoinduced C-H alkylation of heteroarenes with alcohols as the alkylating reagents.

1.2.2.4 Halogen-Centered Abstractors

Halogen radicals can be formed by photoexcitation of high-oxidation-state transition-metal halides
via dissociation from a charge-transfer excited state.”* The chlorine radical (Cl-) can abstracts a
hydrogen atom from a wide range of activated and unactivated aliphatic C—H bonds due to its
electrophilic nature and the relatively large BDE of HCI (103 kcal/mol). In 2016, Doyle and co-workers
reported the pioneering C(sp®)-H cross-coupling reactions based on the catalytic generation of chlorine
radicals through nickel and photoredox catalysis.”® The authors proposed that the arylation of ethers
could proceed via the mechanism shown in Figure 22. In which, oxidative addition of Ni(0) complex
into an aryl chloride would produce Ni(Il) aryl chloride intermediate. Concurrently, irradiation of Ir(I1I)
photocatalyst affords triplet excited state *Ir(I1I) photocatalyst, which could oxidize Ni(II) aryl chloride
intermediate to Ni(III) aryl chloride species. The Ni(IlI)-chlorine bond is then rendered sufficiently weak
that a photon of visible light can homolyze the bond (BDFE = 47 kcal/mol), resulting in Ni(I) aryl
species and a chlorine radical, which readily abstracts an hydrogen atom from the ether. Reaction of the
ether radical would produce the Ni(Ill) species. Subsequent reductive elimination from the Ni(IlI)
species would afford the desired C(sp®)-H cross-coupling product and Ni(I) intermediate. Finally,

single-electron-transfer reduction of the resulting Ni(I) intermediate by reduced Ir(I) photocatalyst
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regenerates both the Ni(0) and Ir(III) catalysts.
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Figure 22. C(sp’)—H cross-coupling enabled by the catalytic generation of chlorine radicals by nickel
and photoredox catalysis.

In 2018, Barriault and co-workers reported the photocatalytic generation of chlorine radical based
photoredox catalyst oxidized the chloride anion. The authors demonstrate that the chloride anion is
derived from the counterion of the Ir complex ([Ir(dF(CF3)ppy)2(dtbbpy)]Cl) (Figure 23).2° Upon
generation of the electrophilic chlorine radical, complexation to pyridine could attenuate the high
reactivity of the chlorine radical and thus improves the selectivity of HAT. Subsequently the chlorine
radical can undergo hydrogen atom transfer with a variety of substrates such as alkanes, alcohols, ethers,
ester, amides, aldehydes, and silanes, giving nucleophilic radicals. Finally, through Giese-type addition

to activated alkenes affords the target product.
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Figure 23. Hydrogen atom transfer reactions via photoredox catalyzed chlorine radical generation.

In 2016, Molander’s group demonstrated that arylation of C(sp®)-H bonds with aryl bromides
through nickel catalysis and photocatalysis (Figure 24).>” Detailed mechanistic studies revealed that a
triplet-triplet energy transfer from the excited state of Ir photocatalyst to the Ni"" aryl bromide complex.
Subsequently the excited-state Ni" aryl bromide complex offers the bromine radical upon Ni—Br bond
homolysis, which undergoes HAT with the substrates to form the carbon-centered radicals. The carbon-
centered radical recombination with the remaining Ni' complex affords a Ni" complex intermediate.

Finally, reductive elimination subsequently delivers the target product and regenerates nickel (0) species.
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Figure 24. C(sp®)—H cross-coupling enabled by the catalytic generation of bromine radical by nickel
and photoredox catalysis.

In 2020, Huo and co-workers reported a direct enantioselective acylation of o-amino C(sp®)-H
bonds for the synthesis of a-amino ketones based on the catalytic generation of bromine radicals through
nickel with the chiral ligands and photoredox catalysis (Figure 25).® The authors propose that the
reaction is initiated by oxidative addition of Ni(0) intermediate to acyl electrophile formed in situ to
provide Ni(Il) intermediate. Concurrently, single electron transfer from the bromide anion to excited-
state Ir(I11) produces a bromine radical that could abstracts a hydrogen atom from the a-amino C(sp* )-H
bond. At the same time, the chiral nickel catalyst could engage sequentially with the acyl electrophiles
formed in situ from carboxylic acids and a-amino radicals through oxidative addition and radical
trapping. The resulting diorgano nickel(IlI) adduct would then undergo reductive elimination to form

the enantioenriched a-amino ketones.
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Figure 25. Enantioselective a-amino C(sp*)-H acylation enabled by the catalytic generation of bromine
radical by nickel and photoredox catalysis.

1.2.2.5 C-Centered Abstractors

X3C- radicals, where X = Br, Cl, F, could be formed via single electron reduction of X;C-Y (Y =
Br, 1) by excited photocatalysts. In 2019, Studer and co-workers® disclosed the selective generation of
carbon radicals via intermolecular HAT from alkyl boron-ate complexes to CFsradical, leading to the a-
functionalization of boronated compounds (Figure 26). The authors proposed that the reactive CF3
radical, generated by oxidative quenching of the excited photocatalyst, has the ability to abstract a
hydrogen atom from the a-C(sp*)-H bond of the boron-ate complexes, forming the a-radical anion.
Subsequent oxidation of the resulting radical anion to afford the zwitterion species. A following 1,2-
alkyl/aryl migration furnishes the targeted o-functionalized boronic ester. Moreover, it is well

established that CFsl is an excellent terminal oxidant for the oxidation of the resulting radical anion.



Chapter 1: Introduction

OR! Ir(ppy)3 (1 mol%) QR
{Rr2 F3C-1 (1.5 eq) '
g 1 > R_ B« 1
Y~ OHR CH3CN/DMSO (10:1) Lo o8
H oL blue LED, 1h 29 7F;°/ ield
- 1eldas
R2=alkyl, aryl 55 exaon?mes
CF3-H
OR! \ ?R;{Z
R R_B< 1
- HAT Y~ OHR

R\‘/g\ow Ho*
CF-l )
\ *CF,
Ir'v :X
SET /

V§\0R1
R’ Ir'v g
|
R._B
\|/ “OR’ hv
R2

Figure 26. o-functionalization of boronate complexes via trifluoromethyl radicals.

1.3 Photoinduced Intramolecular HAT Reactions

In 2016, the groups of Knowles and Rovis independently reported photoredox-catalyzed remote
C(sp®)-H alkylation with electron-deficient alkenes (Figure 27).'3° This remote C-C bond formation
is realized an amidyl radical promoted intramolecular 1,5-HAT and intermolecular radical addition. The
authors propose the mechanism that the amidyl radical, generated from an N-alkyl amide by photoredox
catalyzed proton-coupled electron transfer (PCET) with an excited iridium photocatalyst, undergoes an
intramolecular 1,5-HAT to form the carbon radical. Subsequently, the resulting carbon radicals directed
remote C(sp*)-H alkylation with electron-deficient alkenes as radical acceptors to afford a new carbon
radical intermediate. Finally, reduction and then protonation of the new carbon radical intermediate give
the final product and regenerates the Ir (III) photocatalyst. In 2017, Meggers group developed a visible-
light-induced enantioselective alkylation of remote C(sp*)-H bonds of N-alkyl amides by the combination

of photoinduced PCET, 1,5-HAT, and chiral Lewis acid catalysis (Figure 27).3!
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Meggers's work: Enantioselecttive alkylation of remote C(Sp3)-H

Compared with amidyl radicals, the generation of an iminyl radical and its subsequent 1,5-HAT has
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Figure 27. Photoredox-catalyzed remote C(sp*)-H alkylation via an amidyl radical.
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been much less explored. In 2018, Studer and co-workers developed a photoredox-catalyzed iminyl
radical-based y-alkylation of a-imino-oxy acids using Michael acceptors as alkylating reagents (Figure
28).%% In this reaction, the readily accessible a-aminoxy propionic acid was used as an auxiliary to form
the iminyl radical. The iminyl radical is generated by visible light-induced single electron transfer of the
carboxyl anion and then fragmentation. Immediately following the 1,5-HAT from the distal C(sp*)-H
bond with the iminyl radical generating the y- carbon radical, which is trapped by the Michael acceptor

delivering the adduct radical. Finally, reduction and then protonation of the adduct radical give the final
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product and regenerates the Ir (III) photocatalyst.

0
Me
OH \ Ir(dF (CF3)ppy).(dtbbpy)PFg (1 mol%) o
N,o ;\ CsF (2 eq), CHCI; (0.1M) 11]\/\(\(,#
+ » R
RH'\/XH EWG blue LEDs, Ar, 26°C R2R® EWG
R2 R® then hydrolysis 31-84% yields
0 o)
Me\HI\O. Mej)l\OH Me
N,O base N,O H,NO™ “CH,0,H f H
-€ 1
1 I H 1 l H auxiliary R R2 R3
R2 R R2 R8 installation
\ Il o W
SET
T
R? R3
0
-CO, JWYW
-MeCHO R2R3 EW
ﬂ‘* Hzo
R 2 3
R R
SET N R4 OEWG
HAT & -
NH ¢ EWG R2 R®
L]
o _R3
R’ —>

R? R2 R3

Figure 28. Photocatalytic iminyl radical-mediated y-alkylation of a-iminoxy-acids.

The 1,5-hydrogen atom transfer of oxygen-centred radicals as exemplified by the Barton reaction
has played an important role in the C(sp*)~H bond functionalisation of alcohols. In 2015, Chen and co-
workers first reported the visible-light-induced allylation and alkenylation of remote C(sp®)-H bonds of
alcohols from N-alkoxyphthalimides with the Hantzsch ester (HE) as the reductant (Figure 29).>* The
key step in the reaction is selective 1,5-hydrogen atom abstraction by the alkoxyl radical. The authors
propose that the excited photocatalyst is reduced by single-electron transfer from HE to form the reduced
Ir(Il) with Hantzsch ester radical cation. The resulting Ir(Il) photocatalyst then reduces the N-
alkoxyphthalimide by single-electron transfer to yield the N-alkoxyphthalimide radical anion, which is
further protonated by the Hantzsch ester radical cation to facilitate the formation of the alkoxyl radical.
The alkoxyl radical undergoes a 1,5-HAT reaction and subsequent reaction with allyl sulfones or vinyl
sulfones to give the adduct radicals. Finally, the product is obtained by extruding the sulfone radical of
the resulting remote C—C bond coupling adduct. In 2016, Meggers and co-workers applied a similar

strategy to achieve asymmetric alkylation of the remote C(sp’)~H bound. In which N-
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alkoxyphthalimides is used as a redox-active radical precursor and N-acylpyrazoles as Lewis acid

activatable functional groups (Figure 29).%®
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Figure 29. Visible-light-induced allylation and alkylation of remote C(sp*)-H bonds of alcohols.

The bond dissociation energy (BDE) difference between an olefinic C(sp?)-H bond (ca. 110 kcal
mol™) and aliphatic C(sp*)-H bond (ca. 100 kcal mol!) promotes the hydrogen atom transfer from the
aliphatic C(sp®)-H bond to the alkenyl radical. In 2017, Zhu and coworkers developed a photoredox
catalyzed site-selective vinylation of remote C(sp?)-H bonds promoted by alkenyl radical mediated
intramolecular HAT and functional group migration process (Figure 30).3* Zhu’s group proposed that
the active alkenyl radical, generated by the addition of fluoroalkyl radical to the alkyne, undergoes
intramolecular 1,5-HAT to form the alkyl radical. Subsequently, the addition of the alkyl radicals to

intramolecular olefins leads to the production of a cyclopentanol intermediate through a 5-exo-trig
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cyclisation. Cleavage of the cyclic C-C bond of the cyclopentanol intermediate affords an a-hydroxy
radical. Finally, the resulting radical intermediate upon single atom transfer oxidation by Ir(IV) and

deprotonation would provide the product.
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Figure 30. Photoredox catalyzed C(sp?)-radical mediated remote C(sp*)-H vinylation.

In 2018, visible-light-induced 1,6-difunctionalizations of alkenes with electron-deficient alkyl
halides were developed by the Nevado group (Figure 31).*° The authors proposed that the alkyl radicals,
generated by the photoinduced reduction of the C—Br bonds, add to the double bond to form the alkyl
C(sp?)-radicals. Then a intramolecular 1,5-HAT was carried out between the resulting alkyl C(sp?)-
radicals and the benzyl C(sp®)-H bond to produce the benzyl radical intermediate, mainly because of
the higher stability of the benzyl carbon radical. DFT calculations indicate that 1,5-HAT is an exergonic
process with a lower energy barrier than the radical addition to the alkene. Once the radical center shifts
to the benzylic carbon, which undergoes an oxidative SET with the Ir'Y to form a cationic intermediate.
The resulting cationic intermediate thus subsequently quenched in the presence of either an O- or a C-
based nucleophile to produce the remote dicarbo- or oxocarbofunctionalization products observed in

these transformations.
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Figure 31. Photoredox catalyzed 1,6-carboalkylation of alkenes.
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Chapter 2: Results and Discussion

2.1 Asymmetric Photocatalysis by Intramolecular Hydrogen Atom Transfer in Photoexcited

Catalyst/Substrate Complex
2.1.1 Research Background and Reaction Design

Chiral transition metal complexes play an important role as catalysts for the asymmetric synthesis
of chiral nonracemic compounds. Meggers research group developed a series of chiral-at-metal
compounds for asymmetric photocatalysis. The former group members in Meggers group have
demonstrated that bis-cyclometalated iridium(IIl) and rhodium(II) complexes are exquisite catalysts
for realizing visible light activated asymmetric catalysis." Upon binding to a substrate and selective
visible light activation of the formed catalyst/substrate complexes, such photoexcited assemblies are
capable of undergoing stereo-controlled chemical transformations, either through an initial outer sphere
electron transfer or by engaging in direct stereocontrolled bond forming reactions. In 2017, Meggers
group proposes a highly stereoselective direct bonding of the directly visible-light-excited state.> The
authors proposed that the catalytic cycle begins with the association of the N-acylpyrazole substrate with
the chiral rhodium catalyst. The resulting reactant complex absorbs blue light to reach its singlet excited
state through n—n* transitions. After intersystem crossing (ISC) to form the triplet reactant complex,
which can directly react with radical acceptors in a highly stereocontrolled manner. Using this method,
a wide range of cyclobutanes were successfully constructed by [2+2] photocycloadditions with alkenes
and various 1-pyrrolines by [2+3] photocycloadditions with vinyl azides.

Upon excitation with light, the triplet excited aromatic ketone, generated by intersystem crossing
from the n—7* singlet to the triplet state, behaves as a 1,2-biradical, creating significant spin density on
the oxygen atom. The (n, 7t*) triplet excited state has intriguing electrophilic and radical-type properties
that make it particularly susceptible to hydrogen atom transfer (HAT).

Inspired by the hydrogen atom abstracting ability of triplet aromatic ketones and based on the
previous [2+2] and [2+3] photocycloadditions, we envisioned an unprecedented utilization of long-lived
triplet excited enones, which behave as biradical. The two resulting radicals have different electronic
characters, the a-radical is electrophilic and the B-radical is nucleophilic, in which the electrophilic -
radical could participate in hydrogen atom transfer (HAT) as a HAT agent. Based on the above research
background we speculate that such photoexcited catalyst-bound enones may instead be capable of
engaging in HAT reactions to generate catalyst-bound reactive intermediates followed by
stereocontrolled transformations. By reviewing the literature, we found that Xia and coworkers
employed (E)-ethyl 3-(2-formylphenyl)acrylate (1a), which underwent an interesting rearrangement
when photolysis with a 500 W high-pressure mercury lamp to form the cyclopropane 2a (Table 1, entry
1). This reaction was proposed to proceed through an intramolecular HAT from the aldehyde to the
n—n* excited state of the enone. As major drawbacks, the reaction required intense UV light and

provided the product as a racemic mixture. We hypothesized that by replacing the ester with an N-acyl
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pyrazole moiety to generate a binding site for the rhodium catalyst, the rearrangement process could be
rendered visible-light-activated and asymmetric. Based on previous studies and a rational design, we
demonstrated the first example of a visible light-activated catalyst/substrate complex involved in a
hydrogen atom transfer (HAT) reaction to generate a catalyst-bound reactive intermediate followed by

a highly stereocontrolled intramolecular heterodels-Alder reaction.

a) Previous work: Direct bond formations on photoexcited catalyst bound enones o R
alkenes N, __=Ar
> | 7
direct Sj,,,’/
[Rh] 1 (photoexcitation ) [[Rh] 1] Rh o
0 R "o R [Rhl Rt -
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Figure 32. Previous reports and this design for asymmetric photocatalysis by intramolecular hydrogen
atom transfer.

2.1.2 Initial Experiments and Reaction Development

Firstly, when we submitted N-acyl 3-(4-methoxyphenyl)pyrazole 1b to photolysis with blue LEDs
(Amax = 450 nm) in the presence of catalytic amounts (4 mol%) of the chiral-at-metal rhodium catalysts
A-RhS, the cyclopropane 2b was obtained in encouraging 60% yield but with just disappointing 33%
ee (entry 2). However, it turned out that this rearrangement is very sensitive to the nature of the pyrazole
substituent. Using instead the N-acyl 3,5-dimethylpyrazole 1¢ provided the cyclopropane in 74% yield
and 97% ee as a single diastereomer (entry 3). The best results were achieved with the N-acyl 3-
methylpyrazole 1d which provided the rearrangement product in 83% yield with 98% ee upon photolysis
in CH>Cl, at room temperature for 16 hours (entry 4). Reducing the catalyst loading four-fold to 1.0
mol% only gradually affected the yield and enantioselectivity (entries 5 and 6). Even at a catalyst loading
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of merely 0.5 mol%, 46% pyranone 4d with 95% ee were isolated after an elongated irradiation for 48
hours, thus demonstrating the efficiency of this asymmetric photorearrangement (entry 7). The reaction
can be performed in other solvents such as acetone with similar results (entry 8) but MeCN only
provided traces of the product (entry 9). Interestingly, the presence of air only slightly affects yield and
enantioselectivity, indicating that free radical chemistry is not operational in this photoreaction (entry
10). Finally, CFL as light source provided similar results (entry 11). Control experiments furthermore
confirmed that the reaction requires the rhodium catalyst and light for product formation (entries 12 and
13).

Table 1. Initial experiments and optimization of reaction conditions!?!

A-RhS
we g B e (i !
1a 1b Me){ P d E

Entry Substrate  Cat (mol%) light®! solvent  t(h) yield (%) ee (%)M
1 1a none UV light benzene 5 89 -
2 1b 4 blue LEDs CHCl, 16 60 38
3 1c 4 blue LEDs CH)CIl, 16 74 97
4 1d 4 blue LEDs CH.Cl, 16 83 98
5 1d 2 blue LEDs CHCl, 24 71 95
6 1d 1 blue LEDs CHXCl, 24 70 95
7 1d 0.5 blue LEDs CH,Cl, 48 46l 95
8 1d 4 blue LEDs acetone 16 72 97
9 1d 4 blue LEDs MeCN 16 trace -
100 1d 4 blue LEDs CHCl, 20 75 96
11 1d 4 CFL CH.Cl, 36 86 96
12 1d none blue LEDs CHXCl, 48 0 -
13 1d 4 dark CHXCl, 48 O —

[a] Standard conditions for entries 2-8: Substrates 1b-d (0.1 mmol) in the indicated solvent
(2.0 mL) with A-RhS (0.5 -4 mol%) photolyzed for the indicated time under an atmosphere
of N2. [b] 24 W blue LEDs with emission maximum at 450 nm or 23 W CFL. [c] Isolated
yields. [d] Enantioselectivities determined by HPLC on chiral stationary phase. [e] Taken
from ref. 8. Irradiation with a 500 W medium pressure mercury lamp in combination with a
Pyrex filter. [f] The conversion was 67%. [g] Under an atmosphere of air.

2.1.3 Substrate Scope

With optimized conditions in hand, we screened substrates for this reaction. Figure 33 reveals that

this asymmetric visible light activated photorearrangement tolerates methyl substituents at any position
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of the phenyl moiety (see cyclopropanes 2e-h), bulky substituents (2i, 2j), electron withdrawing
substituents (2k-q), electron donating substituents (2r-u), and a thioether (2v). For all these reactions,
yields of 50-93% and enantioselectivities of 87-99% ee were observed. Lower yields and lower
enantioselectivity were obtained with a benzothiophene derivative (cyclopropane 2w) but a methyl
group in the [-position of the o,B-unsaturated N-acyl pyrazole provided the corresponding
rearrangement product 2x containing an all-carbon quaternary center in 67% yield and excellent 99%
ee. For practical reasons, it is worth noting that this new asymmetric photoreaction can be upscaled. On
a scale of 4.5 mmol (1.08 g), the reaction 1d—2d afforded an improved yield of 90% with a slightly
increased enantiomeric excess of 99% and the rhodium catalyst was reisolated in 86% yield by capturing
with an auxiliary ligand in a procedure reported recently.’
R?Z O R?

_ o, z
R1_/ : X Aux A-RhS (4 moIAa)R1_/ | IAUX
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Figure 33. Substrate scope. Standard conditions (entry 4 of Table 1) were applied if not indicated

otherwise. Modified reaction conditions were used for obtaining products 2m, 2s, and 2u. Catalyst

loading of 8 mol% was used to increase the ee. ®’Reduced substrate concentration of 0.005 M was used

to improve the yield. IPhotolysis with weaker blue LEDs (3 W, 420 nm) for 10 h afforded an improved

yield. [911,2-Dichloroethane was used as the solvent which provided a higher ee.
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2.1.4 Mechanistic Study

The proposed mechanism is displayed in Figure 34. The catalytic cycle starts with the rhodium
catalyst binding to the N-acyl pyrazole substrate in a bidentate fashion (int. I). This catalyst/substrate
complex constitutes the photoactive species. Upon absorption of visible light, a photoexcited
catalyst/substrate complex II is formed. In previous work we demonstrated that such rhodium-bound
o,B-unsaturated N-acyl pyrazoles populate a ligand-centered T7—n* photoexcited state with the spin
density localized mainly at the olefinic double bond. The close vicinity of the aldehyde moiety now
permits a hydrogen atom transfer to the a-position to generate the diradical intermediate IIL%” An
intersystem crossing to the singlet-state ketene IV sets the stage for an intramolecular asymmetric
hetero-Diels-Alder reaction® to form the rhodium bound cyclopropane product VI. Product release and

recoordination of new substrate then initiates an new catalytic cycle.
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Figure 34. Proposed mechanism.

Several control experiments back up this mechanism. Absorption spectra shown in Figure 35a
reveal that the catalyst/substrate complex absorbs visible light significantly more efficiently compared
to the catalyst (RhS), whereas the free substrate does not absorb significantly in the visible light region.
Thus, under the reaction conditions, the catalyst/substrate complex is the main light absorbing species.
The HAT reaction from the photoexcited catalyst/substrate complex II was verified by a deuterium
isotope-labeling experiment. The reaction of substrate d-1d with a deuterated aldehydic position yielded
d-2d, in which the deuterium ended up in the expected position of the cyclopropane moiety (78%

deuteration) (Figure 35b). We propose that the reduced deuteration level is due to a keto-enol tautomery
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or rersible deprotonation of intermediate IV of the catalytic cycle (Figure 34).
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Figure 35. Mechanistic experiments. UV/Vis-absorption spectra measured in CH,Cl>(0.05 mm).

The Houk group cooperated with our research group on this project and performed a detailed
computational study, which was done by Dr. Shuming Chen. Density functional theory (DFT)
calculations were performed to evaluate the energetic feasibility of the proposed mechanistic pathway
(Figure 36a). The intramolecular HAT reaction of the Rh-bound substrate was found to have a free
energy barrier of 8.0 kcal/mol, compared to 9.7 kcal/mol for the free substrate. After intersystem
crossing back to the singlet state to furnish ketene IV, the intramolecular hetero-Diels-Alder reaction
leading to the major enantiomer proceeds through hDA-TS-1 with a barrier of 5.4 kcal/mol. In contrast,
hDA-TS-2, the hetero-Diels-Alder TS leading to the minor enantiomer, has a much higher barrier of
16.6 kcal/mol (Figure 36b). The 11.2 kcal/mol difference in free energy between hDA-TS-1 and hDA-
TS-2 can be attributed to (1) stabilization from a ©-7 stacking interaction between the aryl group on the
substrate and the ligand framework in hDA-TS-1, and (2) severe steric clashes between the substrate

and the tert-butyl group on the ligand in hDA-TS-2.
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Even though the direction of enantioselectivity predicted by our calculations is in good agreement
with the experimentally observed asymmetric induction, the calculated AAG* value of 11.2 kcal/mol far
exceeds the experimental value of 2.2-2.4 kcal/mol (corresponding to 98% ee). Further calculations
revealed that two possible triplet excited state structures exist for Rh-bound substrate complex II, one
with the substrate alkene carbons possessing most of the spin density (II-1 in Figure 36¢) and the other
with the majority of its spin density localized on Rh (II-2 in Figure 36c¢). Though the two triplet excited
species lie close in energy, II-2 is incapable of undergoing the intramolecular HAT reaction, and instead
serves as a triplet sensitizer® transferring its energy to free substrate 1d. The resultant background
reaction might account for the lower than computationally predicted experimental ee value. To
experimentally confirm that background sensitization is eroding enantioselectivity, rac-Rhbpy, a Rh
complex incapable of coordinating to the substrate was synthesized andsubjected to standard
experimental conditions with 1d (Figure 35c¢). And indeed, as aresult 2d was obtained in 30%yield after
photolysis for 36 hours. Despite this undesirable background sensitization, high enantioselectivities are
obtained because of extremely high levels of asymmetric induction in the Rh-mediated hetero-Diels—

Alder reaction.
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a) Calculated free energies
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Figure 36. Computational study. a) Computed free energy diagram of the photoinduced HAT/hetero-
Diels-Alder cascade reaction catalyzed by A-RhS. b) Calculated transition states for the intramolecular
hetero-Diels-Alder reaction leading to major and minor product enantiomers. Energies are in kcal/mol,
and interatomic distances are in angstroms. Hydrogen atoms are omitted for clarity. ¢) Two different
calculated triplet excited states, II-1 and II-2, for the Rh-bound substrate. Interatomic distances denoted
in angstroms. Hydrogens are omitted for clarity. Spin densities on atoms are shown with red italic
numbers.

2.1.5 Follow-up Chemistry

The pyrazole moiety in this case is both a directing group and a masked amination reagent. Mr. Chen-
Xi Ye, a current Ph.D. student in the Meggers group, successfully subjected the compound 2d to
reductive ozonolysis following the method of Daugulis and co-workers,' resulting in the conversion of
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the pyrazole group into a formamide in 58% yield, without affecting the enantiomeric excess (Figure

37).

H N _Me H
,,,N’\j 1) O3, acetone, -78 °C niINH
o = - O CHO
2) NiCl,*6H20 (0.5 eq)
e} NaBH4 (6 eq) O
2d (>99% ee) EtOH, 0 °C, 10 min 2d' (>99% ee)

58%

Figure 37. Subjected the compound 2d to reductive ozonolysis.

2.1.6 Conclusions

We here reported a unique example of a catalytic asymmetric photoreaction which closely
intertwines a hydrogen atom transfer from a photoexcited catalyst/substrate complex followed by a
highly stereocontrolled intramolecular oxo-Diels-Alder reaction. Rhodium catalyst binding to the
substrate does not only facilitate a visible-light-induced substrate-centered m—7n* excitation which
permits the intramolecular hydrogen atom transfer, but also enables a highly stereocontrolled
intramolecular oxo-Diels-Alder reaction through a very congested transition state. Further catalytic
schemes which exploit the unique reactivities of photoexcited catalyst/substrate complexes in the

context of asymmetric catalysis are ongoing in our laboratory.
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2.2 Catalytic oa-Deracemization of Ketones Enabled by Photoredox Deprotonation and

Enantioselective Protonation

2.2.1 Research Background and Reaction Design

Chiral resolution of racemic mixtures is one of the most important methodology to obtain chiral
products in an efficient way with practical value.! However, the biggest challenge is during the
separation process, the theoretical yield of the expected enantiomerically pure product couldn't exceed
a limit of 50%, which leads to a serious waste of chiral resources. Although dynamic kinetic resolution
can achieve complete conversion to a single enantiomer, the product is structurally modified.
Deracemization is an ideal method for asymmetric synthesis but challenging strategy for the conversion
of a racemic mixture to its single enantiomer, without any further structural modification.> The
deracemization strategy may provide an effective way to solve the shackles of the inefficiency of the
splitting process. Despite the conceptual simplicity and potential practicality, deracemization is a
thermodynamically disfavored process, which has limited its development, thus, to accomplish a
deracemization reaction is very challenging. Despite, significant progress has been made in enzymatic
deracemization.’ So far, there are only limited examples existing based on nonenzymatic deracemization,
especially deracemization enabled by visible light photocatalysis still remains underdeveloped. Only
few examples with insufficient enantioselectivities have been described by Bach and Knowles (Figure
38a). The Bach group reported several groundbreaking examples of visible light driven deracemizations
of allenes and cyclopropyl quinolones using a chiral photosensitizer that exhibits different energy-
transfer efficiencies for the two substrate enantiomers, resulting in get enantioenriched compounds.*
Instead of energy transfer, the Knowles group developed a conceptually novel approach for the
deracemization of ureas through PCET hydroamination process, using an iridium photocatalyst, together
with chiral base and chiral thiol catalyst.’

Carbonyl groups are one of the most important and abundant functional groups in organic chemistry.
Carbonyl compounds are often key intermediates for the synthesis of more complex molecules. A
prominent example is the C—H functionalization of carbonyl compounds at the a-position, which takes
advantage of the intrinsic acidity of the a-C—H bond. This transformation not only offers a
straightforward handle to introduce further functionality but often also generates a stereocenter (Figure
38b). The a-deracemization of carbonyl compounds is therefore an attractive strategy for generating
enantiomerically pure carbonyl compounds. Surprisingly, a-deracemizations of carbonyl compounds
are rare. Tsunoda®’ and Matsumoto® reported the o-deracemization of 2-alkylketones and 2-
hydroxyketones, respectively, utilizing host-guest chemistry with a chiral host, while Wu® developed an
a-deracemization via crystallization-induced dynamic resolution of corresponding chiral imines. In
these cases, equimolar amounts of a chiral reagent were needed.

Enantioselective protonation is a fundamental method for synthesizing enantioenriched a-tertiary

carbonyl compounds. In the past few decades, a number of enantioselective protonation reactions have

43



Chapter 2: Results and discussion

been reported. However, the reactions always suffer from adding stoichiometric complex and expensive
chiral hydrogen source or needed pre-synthesized enolate precursors and the leaving group always
required (Figure 38¢)."

a) Prior work: Light-driven deracemization of allenes via selective energy transfer (Bach group)
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Figure 38. Previous work on light-driven deracemization, most established strategy for a-
functionalization of carbonyls and the methods of synthesizing chiral a-tertiary carbonyl compounds by
catalytic asymmetric protonation.

No single-operation catalytic o-deracemizations of carbonyl compounds in the prominent o-
position have been reported. At first glance this is surprising, as a deracemization can be envisioned to
proceed through an enolate intermediate upon deprotonation, followed by an enantioselective

protonation (Figure 39a). In fact, the enantioselective protonation of enolates or enolate equivalents
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such as silyl enol ether is well established, including catalytic methods.'**” However, the principle of
microscopic reversibility prohibits a one-pot reaction sequence of base-induced a-deprotonation of a
carbonyl compound to its enolate followed by enantioselective protonation, as the equilibrium would
always result in the formation of the entropically favored racemate. To circumvent the restriction of
microscopic reversibility but still exploit well-established enolate chemistry, we envisioned that the
enolate formation could be split into two elementary steps, a photoinduced electron transfer®® (+electron)
to generate a ketyl intermediate, followed by a hydrogen atom transfer (-hydrogen), thus resulting in a
net deprotonation (Figure 39a). In this scenario, deprotonation and protonation would follow distinct
pathways, and the enrichment of one enantiomer would not violate the principle of microscopic
reversibility. Using photons as a driving force,**?°the conversion of a racemic carbonyl compounds into
its single enantiomer may then be feasible. Herein, we demonstrate how deracemization of ketones can
be accomplished by combining photoredox deprotonation with enantioselective protonation in a single
reaction (Figure 39b), in which the photocatalyst harvests the visible light, induces the redox process,
and is responsible for the asymmetric induction, while the amine serves as the single electron donor,
HAT reagent and proton source. This conceptually simple light-driven strategy of coupling a photoredox
deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a

blueprint for other deracemizations of ubiquitous carbonyl compounds.
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a Mechanistic plan: catalytic deracemization of ketones via metal enolate formation

enantioselective
protonation

M M M
0 Al e e S G
Rl Rl R| Rl Ll
racemic ketone chiral enolate non-racemic ketone
Challenge
Microscopic reversibility prohibits base-induced deprotonation for deracemization!
( Solution )
Two-step redox process (net deprotonation)
)k{R — > ).\(R — > R
& SET R’ HAT R’
| A
+ =
\ () )

b Realization (this work): light-driven deracemization of pyridylketones

,/<‘ }fBu—“PFE’
v/
N-N

L o]
0 Ph
N R chiral photocatalyst | N\ R

= R' blue LEDs, room temperature .
up to 97% ee & 97% yield

B Single catalyst for photochemistry & asymmetric induction
B Novel mechanistic concept for catalytic deracemization
B First example of catalytic deracemization via intermediate enolate

Figure 39. Catalytic deracemization of carbonyl compounds in a-position: motivation, mechanistic plan
and realization.

2.2.2 Initial Experiments and Reaction Development

We commenced our study with the racemic ketone 3a, which contains a tertiary stereogenic o.-
carbon. A pyridyl moiety is connected to the carbonyl group to generate a chelator for binding to
photoactive bis-cyclometalated iridium or rhodium complexes for which we have demonstrated versatile
asymmetric photocatalysis over the years.??> We envisioned that transition metal coordination, in
combination with the withdrawing nature of the pyridine moiety, would stabilize the ketyl intermediate

in the proposed SET/HAT sequence. Photolysis of rac-3a in the presence of the established chiral
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iridium photocatalyst A-IrS?® (4 mol%) in acetone together with DABCO (B1) or quinuclidine (B2)
(each 3.0 equivalents) as electron donors and HAT reagents’*?* provided rac-3a unchanged as a
complete racemate after 24 hours at room temperature (Table 2, entries 1 and 2). Replacing DABCO or
quinuclidine with Hiinig’s base (B3) did not alter the outcome (entry 3). However, when we replaced
the iridium photocatalyst A-IrS with the analogous bis-cyclometalated phenyl benzothiazole rhodium
catalyst A-RhS,* ketone 3a showed an enantiomeric excess (ee) of 26% (entry 4). Although this relates
to a ratio of R and S enantiomers of just 63:37, this result encouraged us to further optimize the reaction
conditions. Substituting Hiinig’s base with diisopropylbenzylamine (B4) saw the ee improve to 42%
(entry 5). More notable results were obtained with N-phenylpiperidine (B5, 81% ee) and N-
phenylazepane (B6, 84% ee) (entries 6 and 7). These results demonstrate that the efficiency of this light-
driven deracemization*® is strongly affected by the structure of the amine. Nonetheless, despite
significant screening efforts, we were not able not further improve the deracemization by modifying the
amine. Fortuitously, we found that the related rhodium catalyst A-RhInd,”” comprising of two
cyclometalated 6-tert-butyl-2-phenyl-2H-indazole ligands, in combination with the base B6, provided
an improved ee of 87% (entry 8). Combining A-RhInd with N-phenylpiperidine (BS) afforded (R)-1
with 92% ee (entry 9). Having identified the optimal photocatalyst/base pair, we proceeded to finetune
the reaction conditions. Other solvents or a reduced catalyst loading provided less satisfactory results
(entries 10-12). However, when we decreased the amount of N-phenylpiperidine from 3.0 to 2.0
equivalents, the ee rose to 94%. Finally, optimal results were obtained upon addition of CaSOy as a
drying agent. Blue light irradiation of rac-3a in the presence of A-RhInd (4.0 mol%), N-
phenylpiperidine (2.0 equivalents) and CaSO4 (5% m/v) in acetone for 24 hours provided the
deracemized ketone (R)-3a with 96% ee and 97% isolated yield. A "H-NMR yield of 99% also
demonstrated that under these reaction conditions no photochemical side reaction occurs. Control
experiments verified that both the amine and light are required for the reaction, while air must be
excluded (entries 15-17). However, catalytic amounts of amine are sufficient, although the obtained ee

of (R)-1 decreased somewhat (entry 18).
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Table 2. Initial experiments and optimization.®

............................

A-IFS (M = Ir) : A-Rhind
ARRS (M=Rh) ~ TTTTTTTTC oI
N iPr JPr O : O
CON GRS T Y
N N iPr Pr Ph ! Ph
B1 B2 B3 B4 i, B5 ! B6
N Q Ph photocatalyst & amine N Q Ph
l 7 Me blue LEDs | —Z Me
rac-3a (R)-3a

entry  catalyst amine solvent conditions yield (%)°  ee (%)°
1 A-IrS (4.0) B1 (3.0 acetone photolysis quant. 0
2 A-IrS (4.0) B2 (3.0) acetone photolysis quant. 0
3 A-IrS (4.0) B3 (3.0) acetone photolysis quant. 0
4 A-RhS (4.0) B3 (3.0) acetone photolysis 95 26
5 A-RhS (4.0) B4 (3.0) acetone photolysis 85 42
6 A-RhS (4.0) B5 (3.0) acetone photolysis 96 81
7 A-RhS (4.0) B6 (3.0) acetone photolysis 94 84
8 A-Rhind (4.0)  B6(3.0) acetone photolysis 87 87
9 A-Rhind (4.0) B5(3.0) acetone photolysis 94 92
10 A-Rhind (4.0) B5(3.0) MeCN photolysis 81 82
11 A-Rhind (4.0)  B5(3.0) THF photolysis 85 82
12 A-RhiInd (2.0)  B5(3.0) acetone photolysis 90 89
13 A-Rhind (4.0) B5(2.0) acetone photolysis 91 94
14 A-Rhind (4.0) B5(2.0) acetone photolysis, CaSO,* 99 (97)° 96
15 A-RhiInd (4.0) none acetone photolysis quant. 0
16 A-Rhind (4.0) B5(3.0) acetone dark quant. 0
17 A-Rhind (4.0) B5(3.0) acetone photolysis, air quant. 0
18 A-Rhind (4.0) B5(0.1) acetone photolysis, CaSO,* 99 90

aConditions: 3a (0.05 mmol) and amine (0.1-3.0 equiv) in acetone (0.5 mL) with Rh catalyst (2.0-
4.0 mol%) irradiated with blue LEDs (24 W) for 24 hours at room temperature under an
atmosphere of N, unless stated otherwise. *Determined by *H NMR of the crude products using
1,1,2,2-tetrachloroethane as internal standard. “Enantioselectivities determined by HPLC on
chiral stationary phase. 9CaSO4 (vacuum dried with heat gun) with 5% m/v. ®Isolated yields.

2.2.3 Substrate Scope

To explore the scope of this new method, we applied the optimal reaction conditions in hand (Table

2, entry 14), we evaluated the substrate scope of this ketone deracemization. First, we modified the
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phenyl moiety of pyridylketone 3a (Figure 40). A methyl group in the para-, meta-, or ortho-position
(3b-3d), as well as bulky tert-butyl (3e) or isobutyl (3f) groups in the para-position were well-tolerated
and provided the deracemized ketones with 92-96% ee (90-98% yield). The light-driven deracemization
permits electron-donating substituents in the phenyl moiety such as para-methoxy (3g) and 1,3-dioxole
(3h), as well as electron-withdrawing substituents such as para-bromo (3i), para- or ortho-chloro (3j,
3k), 3-fluoro-4-phenyl (3l), and 2,4-difluoro (3m) with 91-97% ee (87-95% vyield). Only a para-CF;
group provided a somewhat lower yield of 69% but with satisfactory 96% ee. An electron-rich and
metal-coordinating thioether was also compatible and afforded the deracemized ketone 30 with 97% ee
(95% vyield). Likewise, the double bond of an isobutenyl group was tolerated and provided the
deracemized ketone 3p with 91% ee (94% vyield). The phenyl moiety can also be benzannulated to
naphthalenes to efficiently provide deracemized ketones 3q (95% ee, 88% yield) and 3r (96% ee, 94%
yield). The thiophene 3s providing the deracemized ketone with a more moderate 86% ee (93% vyield),
while the dibenzofuran 3t afforded the deracemized ketone 3t with 95% ee (93% yield).
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Figure 40. Substrate scope with pyridylketones bearing an aryl group at the stereocenter. Py = 2-pyridyl.
Standard reaction conditions according to Table 2, entry 14. ®Deviation from standard reaction
conditions: 3.0 equivalents of N-phenylpiperidine (B5) instead. The absolute configuration of compound
(R)-3I was determined by X-ray crystallography (CCDC 2081804).

Figure 41 reveals that other parts of the structural scaffold are also tolerant of modifications.
Replacing the o-methyl group with an ethyl (3u) or isopropyl group (3v) or having an indane (3w)
functionality provided the deracemized ketones with 86-89% ee (78-83% yield). An ether functionality
in a-position afforded the deracemized ketone 3x in 75% yield and with only moderate 64% ee.
However, o.-amino groups are compatible with the deracemization and afforded the a-aminoketones 3y-
3aa with 85-92% ee (82-95% yield). Interestingly, even a fluorine can be incorporated at the stereogenic
carbon. The deracemized ketone 3ab was isolated with 72% ee (93% vyield), while the related aliphatic
ketone 3ac was isolated with only 40% ee (85% yield). Furthermore, examples 3ad-3ae demonstrate

that the pyridine moiety can be functionalized. A methyl (3af) or bromine (3ag) substituent in ortho-
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position of the pyridine provide satisfactory enantioselectivities of 90% and 94% ee, respectively, but
required an increased catalyst loading of 8.0 mol%, most likely due to a less efficient catalyst
coordination to the modified pyridine moieties. The pyridine can also be replaced with a quinoline
moiety to afford the deracemized ketone 3ai with 87% ee (92% vyield). Finally, ketone 3aj reveals that

a stereocenter that is connected to two aliphatic side chains provides only an inefficient deracemization.
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Figure 41. Expanded substrate scope. The combination of catalyst and base varied for optimal results.
“A-RhS (8.0 mol%) as catalyst and 3,5-(Bu),PhCH,N(iPr), (3.0 equiv) as base. ’A-RhS (4.0 mol%) as
catalyst and N-phenylpiperidine as base (3.0 equiv). ‘A-RhInd (4.0 mol%) as catalyst and N-
phenylazepane as base (3.0 equiv). “A-RhInd (4.0 mol%) as catalyst and N-phenylpiperidine (3.0 equiv)
as base. “A-RhInd (8.0 mol%) as catalyst and N-phenylpiperidine (3.0 equiv) as base. /A-RhInd (4.0
mol%) as catalyst and N,N-diisopropylethylamine (3.0 equiv) as base.

2.2.4 Mechanistic Study

The proposed mechanism for the observed visible-light-driven deracemization of stereocenters in
a-position of carbonyl groups within pyridylketones is shown in Figure 42. The catalytic cycle begins

with the bidentate coordination of the racemic pyridylketone to the enantiomerically pure rhodium
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catalyst to form complex I as a mixture of two diastereomers, (R)-!I and (S)-11. Photoexcitation to the
triplet state 31, followed by SET from the tertiary amine, furnishes the rhodium ketyl radical complex
2111718 Subsequent hydrogen atom transfer (HAT) from the a-position of the ketyl to the amine radical
cation generates rhodium enolate 11l and a protonated amine, which are primed to undergo a
diastereoselective proton transfer to provide the rhodium coordinated ketone I as a single stereoisomer.
Dissociation of the ketone then leads to a new catalytic cycle.

O o]
R'l 1
YN YT
R2 R2
non-racemic racemic

% RAI* *&
[;J):iﬁ l R?
"

(R)-1I/(S)-1I
single diastereomer mixture of diastereomers
O stereoselective

H*-transfer hv

® H* donor *
Ph [Rh]\o
[Rh]\O \ @ HAT acceptor Ny R?
R1 |
1||| HAT SET
[R”\O O
/ 2
|| @ EIectron donor

Figure 42. Proposed mechanism for the developed photoderacemization.

The independently synthesized and isolated catalyst/substrate complex *I displays a significantly
increased absorbance in the visible region compared to the initial acetonitrile coordinated complex. It
must therefore constitute the in situ generated main light absorbing species in this photocatalysis. Cyclic
voltammetry of catalyst/substrate complex I was used to determine a reduction potential Epc(*1/217) =
-0.90 V vs. Ag/AgCl. Together with an estimated triplet energy of 2.5 Ev? this leads to E1(C1/*17) =
ca. 1.6 V and demonstrates that the photoexcited complex 31 is capable of oxidizing aromatic amines
(ca. 0.7-1.0 V vs. SCE),? thereby generating an amine radical cation and the Rh ketyl radical 2I1.

The following experiments provide strong support for the proposed reaction sequence. When the
photoderacemization was performed with racemic ketone rac-4d in which the chiral center bears a
deuterium atom (97% deuteration), the deuterated product (R)-4d was obtained in 96% yield with 95%
ee and a remaining deuteration level of 40% (Figure 43a). The observed deuterium retention is a key
experiment which verifies that the a-hydrogen of the racemic substrate is identical to the a-hydrogen

of the deracemized product. This is consistent with our proposal that the amine radical cation serves
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both as the HAT agent® and subsequently as the protonating agent (2I1—-111—-11). The somewhat
reduced deuteration level can be attributed to the interference of residual water in the reaction mixture
through direct protonation of the enolate. When the deracemization of rac-3a was performed in the
presence of just one equivalent of D,O under otherwise standard conditions, deracemized (R)-4d was
isolated in 85% yield with 82% ee and a deuteration level of 30% (Figure 43b). This experiment
demonstrates that even trace water interferes with the mechanism and provides support for an enolate
protonation mechanism (*111—*1). A control experiment in which the photoderacemization was
conducted with o-deuterated tertiary amine and deuterated acetone did not lead to any deuterium
incorporation into the deracemized ketone, which excludes the alternative reaction pathway via a-
deprotonation of the intermediate amine radical cation as well as scenarios in which the solvent serves
as the hydrogen atom source (Figure 43c). The involvement of an a-deprotonation of the intermediate
amine radical cation, otherwise a preferred reaction pathway for amine radical cations,! can be excluded
based on another experiment in which N-phenylpiperidine is replaced with triphenylamine, which does
not possess any aliphatic a.-C—H bonds (Figure 43d). Triphenylamine can indeed serve as an alternative
base providing the deracemized ketone with 85% ee (93% yield).

Additional experiments shine further light on the role of the amine. Replacing the amine with a
Hantzsch ester resulted in efficient formation of the alcohol 5 (Figure 43e). This result can be
rationalized by reduction of the photoexcited catalyst/substrate complex I with the Hantzsch ester to
generate the ketyl intermediate 211,% followed by protonation and hydrogen donation from the Hantzsch
ester radical cation to generate the alcohol 5. Enolate 111 cannot be formed in this case because although
the Hantzsch ester can serve as an electron donor, it lacks the ability to act as a hydrogen atom acceptor
after its initial oxidation. Finally, we probed the stereocontrolled protonation step Il11—!l. The
following experiment was performed by Mr. Xin Nie, a Ph.D. student in the Meggers group. Starting
from the synthesized catalyst/substrate complex 6 from A-Rhind (intermediate I in Figure 42), the
strong base DBU (1.1 equiv) was used to generate the enolate complex 7 (intermediate 111 in Figure
42) (Figure 43f). Without any purification, the enolate 7 was protonated with the hydrochloride salt of
N-phenylpiperidine (5 equiv), followed by release of the coordinated compound 3a from the rhodium
center using 2,2'-bipyridine (10 equiv) as a competing ligand, to afford (S)-3a in 96% yield and with
50% ee. This result verifies the ability of enolate 111 to undergo a stereocontrolled protonation (*111—11
in Figure 42). These experiments further support the triple function of the amine as a single electron
donor, hydrogen atom acceptor and proton source in sequential fashion within the same catalytic cycle.
It is noteworthy that although stoichiometric and stepwise deprotonation/protonation allows for a partial
deracemization in this experiment, the rhodium catalyzed reaction in the presence of catalytic or
stoichiometric amounts of DBU only leads to racemization of (R)-3a, thus revealing that a base-
catalyzed deracemization in the absence of light is not feasible (Figure 43g, left reaction). However,

(R)-3a, which was synthesized from rac-3a using A-Rhind, can be readily converted by
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photoderacemization to (S)-3a by just using the mirror-imaged catalyst A-RhInd (Figure 43g, right

reaction).
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Figure 43. Supporting mechanistic experiments. bpy = 2,2'-bipyridine.

To provide further support to our proposed mechanism, Dr. Shuming Chen’s research group
cooperated with us and performed density functional theory (DFT) calculations (Figure 44). The
bidentate coordination of pyridylketone (S)-3a to A-RhlInd, with the displacement of two acetonitrile
ligands, leads to photoactive complex (S)-1I. Under visible light, (S)-!1 is excited to the triplet state (S)-
81 with a 52.5 kcal/mol increase in free energy. The SET between (S)-3I and N-phenylpiperidine is
exergonic by 13.5 kcal/mol. The resulting Rh ketyl complex (S)-?I1 undergoes HAT with the amine
radical cation with an activation free energy of 20.3 kcal/mol. Subsequent intersystem crossing (ISC)

generates closed-shell Rh enolate *111. Protonation of A-111 by the ammonium species at the pro-R face

54



Chapter 2: Results and discussion

gives rise to (R)-1, the diastereomeric counterpart of (S)-!I which is 2.9 kcal/mol higher in free energy.
As (R)-1 is less stable, ligand exchange readily occurs to replace (R)-1 with another molecule of (S)-1
at its coordination sites, commencing another iteration of the photoinduced SET/HAT/protonation
sequence. Over time, this leads to the enrichment of (R)-3a in the reaction mixture.

In conjunction with the control experiments (Figure 43), our computational results show that two
enantioselectivity filters work in tandem in this reaction to achieve high ee. Firstly, the stereoselectivity
of the enolate protonation step leads to the preferential formation of (R)-l. Secondly, the favorability
of (S)-!1 over (R)-*I ensures that product inhibition does not occur and the enrichment process of (R)-3a
does not arrest itself. The calculated structure of Rh enolate 111 provides insight on why the enolate
protonation is stereoselective. The -w stacking between the enolate phenyl substituent and the indazole
ligand is particularly strong in ‘111, with an Ar—Ar centroid distance of only 3.66 A. This n-r stacking
causes the pro-R face of the enolate to be much more exposed and accessible for protonation than the
pro-S face. Calculated geometries of (S)-!I and (R)-I also reveal the structural features underpinning
the favorability of (S)-I (Figure 44b). In (S)-!1, stronger nt-x stacking is observed between the a-phenyl
substituent of (S)-1 and the indazole ligand. The role of n-n stacking in energetically differentiating the
diastereomeric (S)-!1 and (R)-!I also explains the lower ee values when ketones with aliphatic a-
substituents are used. In addition, (R)-!I suffers from a steric clash (H...H distance 2.14 A) between the
a-methyl substituent of (R)-1 and the tert-butyl group on the ligand. Both of these features explain why
(S)-1 is 2.9 kcal/mol more stable than (R)-I.
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Figure 44. Computational study. (a) Calculated free energy diagram of the A-RhiInd-catalyzed
conversion of (S)-3a into (R)-3a at the ®B97X-D/def2-TZVPP-SDD(Rh), SMD (acetone)//B3LYP-
D3BJ/def2-SVP-LANL2DZ(Rh) level of theory. (b) Calculated geometries and relative free energies
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(kcal/mol) of intermediates. Interatomic distances are shown in &agstréms (A).

2.2.5 Follow-up chemistry

The transformations of the product (S)-3a are shown in Figure 45. By treating with sodium
borohydride, the carbonyl group of (S)-3a was hydrogenated to give chiral alcohol 8 with high
diastereoselectivity (dr = 32:1). Reductive deoxygenation of 8 gave chiral pyridine derivative 9 without
affecting the enantiomeric excess. By Wittig reaction, 8 was successfully converted to the corresponding
olefin 10 with full retention of the chiral center. On the other hand, my colleague Chen-Xi Ye also
explored some follow-up chemistry of ($)-3a. Chen-Xi Ye tried to use (S)-3a and Grignard reagent for
the reaction and finally obtained a chiral tertiary alcohol 11 with high ee and high dr. On the other hand,
Chen-Xi Ye used (S)-3a as the starting substrate to obtain the chiral 1-Phenylethanol 12 after the Baeyer-
Villiger-Oxidation and subsequent removal of the carbonyl pyridine group. Finally, Chen-Xi Ye
successfully obtained chiral triazole compound 13 by dearomatization of pyridine. Moreover, the
modification of pyridine group was demonstrated by nucleophilic addition of cyano group to the
pyridine nitrogen oxides in a two-step procedure to afford compound 14 with nearly full retention of the

enantiomeric excess.
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Figure 45. Follow-up chemistry. Conversions starting from compound (S)-3a.
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2.2.6 Conclusions

Deracemization is an ideal but challenging strategy for the conversion of racemic mixtures to a
single enantiomer. We here reported the first example of a photoderacemization of carbonyl compounds
bearing an a-stereogenic center. The visible light photolysis of racemic pyridylketones in the presence
of a single photocatalyst and a simple tertiary amine provides non-racemic carbonyl compounds with
up to 97% enantiomeric excess. Mechanistic experiments and DFT calculations support a novel
mechanism through a photoredox deprotonation to an intermediate enolate, followed by a
stereocontrolled protonation step. A combination of stereoselective protonation and an enrichment
process due to the different Rh-coordination preference of the two enantiomers results in an efficient
overall deracemization. While catalytic one-step deracemization through a simple
deprotonation/reprotonation sequence is prohibited by the principle of microscopic reversibility, we
demonstrate that this can be overcome by splitting the deprotonation step into a photoinduced SET/HAT
sequence. A chiral rhodium catalyst serves a dual function as the photoredox catalyst and chiral Lewis
acid catalyst, while a tertiary amine co-catalyst plays a triple role sequentially as the single electron
donor, hydrogen atom acceptor and proton source withing one catalytic cycle. Innumerable methods
exist for introducing substituents into the a-position of carbonyl compounds. This photochemical
deracemization will serve as a blueprint for other deracemizations of ubiquitous carbonyl compounds
and thus expand the synthetic toolbox for the synthesis of functionalized non-racemic carbonyl

compounds.
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3.1 Summary

1) Asymmetric photorearrangement to benzo-[d]cyclopropalb]pyranones involving
intramolecular hydrogen atom transfer

We demonstrated that a RhS catalyst/substrate complex irradiated by visible light behaved like a
diradical upon photoexcitation. Intramolecular HAT from the nearby aldehyde to the a-position radical
produces an acyl radical, followed by a highly stereocontrolled hetero-Diels-Alder reaction to give the
cyclopropane products. This work expands the reaction modes of photoexcited catalyst/substrate

complexes for applications in asymmetric catalysis.
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Figure 46. Asymmetric photorearrangement to benzo-[d]cyclopropa[b]pyranones involving intramo-
lecular hydrogen atom transfer.
2) Photoinduced deracemization of carbonyl compounds via photoredox deprotonation and
enantioselective protonation

The first example of a single-operation catalytic deracemization of ketones has been developed,
which lead to the formation of chiral carbonyl compounds in an efficient way with high yield (up to
97%) and high enantioselectivity (up to 97%). We achieved this with a novel mechanism by coupling a
deprotonation with an enantioselective protonation. In which, we proposed a strategy for photoredox
deprotonation through single electron transfer (SET) and subsequent intermolecular hydrogen atom
transfer (HAT). This unprecedented light-driven deracemization strategy will serve as a blueprint for

other deracemizations of ubiquitous carbonyl compounds.
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Figure 47. Photoinduced deracemization of carbonyl compounds via photoredox deprotonation and
enantioselective protonation.
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3.2 Outlook

Recent work by the Meggers group clearly demonstrates the versatility and powerful reactivity of
bis-cyclometalated chiral-at-metal rhodium(IIl) complexes as bifunctional photoredox catalysts in

photocatalysis. Therefore, it should be of high interest for further broad synthetic applications.

1) Expanding new substrate activation modes in enantioselective photoredox catalysis

These chiral-at-metal catalysis have the limitation of requiring substrates with bidentate N,O-based
metal-binding sites, such as 2-acyl imidazoles, 2-acyl pyridines, and N-acyl pyrazoles. The limitations
of the substrates seriously affect the generality and application of the product. Considering the bis-
cyclometalated chiral-at-metal rhodium(IIl) complexes as excellent Lewis acids, perhaps just using the
chiral-at-metal rhodium as Lewis acid and adding additional photocatalysts would extend the application

of the substrate.
2) Combining chiral-at-metal complexes with enzyme catalysis

Compared with traditional chemical synthesis, enzyme-catalyzed biosynthesis has been an
important area of research because of its advantages of mild reaction conditions, high selectivity and
green sustainability. However, the types of enzyme-catalyzed reactions are often limited to those
exclusively catalyzed by the enzyme itself, which greatly limits the variety of chemicals that can be
synthesized by biosynthetic methods. Photoenzymatic catalysis involves combining photocatalysis and
enzymatic catalysis in a single system to synthesize compounds that are difficult to obtain in one
catalytic domain alone. This novel organocatalytic approach shows great potential for economically and
ecologically more efficient synthesis. Combining chiral-at-metal complexes with enzymes (such as
oxidases, reductases, etc.) for photoenzymatic catalysis or synthesizing new biological enzymes by
modifying chiral-at-metal complexes into biological enzymes through click chemistry will expand the

scope of utilization of chiral metal complexes.
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4.1 Materials and Methods

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring unless indicated

otherwise. The catalytic reactions were performed in Schlenk tube.

Solvents and Reagents

The oxygen free and water free solvents were distilled under nitrogen from calcium hydride (CH,Cl»
and CH;CN) or sodium/benzophenone (Et,O and THF). Super-dry solvents, such as Acetone (max. 0.01%
water, purchased from AppliChem GmbH) were perchased from commercial available source and used
directly without further drying. All reagents were purchased from Acros, Alfa aesar, Sigma Aldrich, TCI,

ChemPur, Merck and Fluorochem were used without any further purification.

Chromatographic Methods

The course of the reactions and the column chromatographic elution were monitored by thin layer
chromatography (TLC) [Macherey-Nagel (ALUGRAM®Xtra Sil G/UV254)]. Flash column
chromatography was performed with silica gel from (particle size 0.040-0.063 mm)

Nuclear Magnetic Resonance Spectroscopy (NMR)

'H NMR, proton decoupled *C NMR, and proton coupled 'F NMR spectra were recorded on Bruker
Avance 300 system ('"H NMR: 300 MHz, *C NMR: 75 MHz, ’F NMR: 282 MHz) spectrometers and
Bruker Avance 250 system ('H NMR: 250 MHz, '"F NMR: 235 MHz) spectrometers at ambient
temperature. Chemical shifts are given in ppm on the J scale, and were determined after calibration to
the residual signals of the solvents, which were used as an internal standard. NMR standards were used
are as follows: 'H NMR spectroscopy: d = 7.26 ppm (CDCls), 6 = 5.32 ppm (CD2CL), 6 = 1.94 ppm
(CDsCN), 6 = 4.78, 3.31 ppm (CD;0D), 6 = 2.50 ppm ((CD3)SO); *C NMR spectroscopy: é = 77.16
ppm (CDCl3), 6 = 54.0 ppm (CD:Cl), 6 = 118.26, 1.32 ppm (CD3CN), 0 = 49.0 ppm (CD3;0OD), ¢ =
39.52 ppm ((CD3).S0). F NMR spectroscopy: 6 = 0 ppm (CFCl;). The characteristic signals were
specified from the low field to high field with the chemical shifts (6 in ppm). '"H NMR spectra peak
multiplicities indicated as singlet (s), doublet (d), doublet of doublet (dd), doublet of doublet of doublet
(ddd), doublet of doublet of doublet of doublet (dddd), triplet (t), doublet of triplet (dt), triplet of triplet
(tt), quartet (q), multiplet (m). The coupling constant J indicated in hertz (Hz).

NMR vyields were determined using 1,1,2,2-tetrachloroethane as internal standard.
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High-Performance Liquid Chromatography (HPLC)

Chiral HPLC was performed with an Agilent 1200 Series or Agilent 1260 Series HPLC System. All the
HPLC conditions were detailed in the individual procedures. The type of the columns, mobile phase and

the flow rate were specified in the individual procedures.

Infrared Spectroscopy (IR)

IR measurements were recorded on a Bruker Alpha-P FT-IR spectrometer. The absorption bands were

indicated a wave numbers v (cm™). All substances were measured as films or solids.

Mass Spectrometry (IMS)

High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument using
ESI or APCI or FD technique. lonic masses are given in units of m/z for the isotopes with the highest

natural abundance.

UV/Vis Analysis Spectroscopy and Stern-Volmer Quenching Experiments

UV/Vis measurements and quenching experiments were taken on a Spectra Max M5 microplate reader

in a 10.0 mm quartz cuvette.

Crystal Structure Analysis

Crystal X-ray measurements and the crystal structure analysis were carried out by Dr. Klaus Harms and
Dr. Sergei Ivlev (Chemistry Department, Philipps University of Marburg). X-ray data were collected
with an STOE STADIVARI diffractometer equipped with with CuK radiation, a graded multilayer
mirror monochromator (A = 1.54178 A) and a DECTRIS PILATUS 300K detector using an oil-coated
shock-cooled crystal at 100(2) K. Scaling and absorption correction was performed by using the SADABS
software package of Bruker. The structure was solved by direct methods by using the program XT
V2014/1 (Bruker AXS Inc., 2014) and refined by full matrix least squares procedures on F? using
SHELXL-2018/1 (Sheldrick, 2018). The Flack parameter is a factor used to estimate the absolute

configuration of the coumounds.

Optical Rotation Polarimeter

Optical rotations were measured on a Kriiss P8000-T or Perkin-Elmer 241 polarimeter with [o]p? values

reported in degrees with concentrations reported in g/100 mL.

Light Source
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A 24 W Blue LEDs (Hongchangzhaoming from Chinese Taobao, https://hongchang-led.taobao.com)

served as light sources. See Figure 48 for the emission spectrum.

Figure 48. Emisson spectrum of the 24 W blue LEDs lamp use in this study. Picture from Christian P.
Haas.

64



Chapter 4: Experimental Part

4.2 Asymmetric Photocatalysis by Intramolecular Hydrogen Atom Transfer in Photoexcited

Catalyst-Substrate Complex

4.2.1 Synthesis of the Substrates

0 Pd(OAc), (1.0 mol%) Q
o %\H/OH P(o-tol)s (2.0 mol%) H
Br 0O Et3N (3.0 equiv) Z OH
115 °C e}
S1b
T o T .
Za b Ll = N< Me:
_NH DMAP, Et;N ; N OMe
CH,Cl, : 0 :
' 1b

...................................

First step: 2-Formylcinnamic acid S1b was synthesized by a Heck reaction.! The 2-
bromobenzaldehyde (1.0 equiv) was dissolved in dimethylformamide (2.0 mL/mmol aldehyde). Then
Pd(OAc) (0.01 equiv), P(o-tol); (0.02 equiv), the acrylic acid (2.0 equiv) and Et;N (3.0 equiv) were
added. The mixture was degassed under nitrogen purge for 15 min and then the resulting mixture was
heated in an oil bath at 115 °C and magnetically stirred under nitrogen overnight. After the reaction was
completed, the mixture was cooled to room temperature. Then the mixture was acidified with 2 N HCI
at 0 °C. The white precipitate appeared and was collected by filtration and washed to neutrality with
water. The obtained solid was dried in vacuum to give the crude product which was directly used for the

next step without further purification.

Second step: o,f-Unsaturated N-acylpyrazole 1b was synthesized according to our recent published
procedure.? To a solution of pyrazole (1.0 equiv) and o, B-unsaturated carboxyl acid (1.5 equiv) in
CHCl: (0.2 M) at room temperature, 1-propanephosphonic acid cyclic anhydride (T3P, 50% solution in
EtOAc; 1.5 equiv) was added dropwise. After stirring for 1 hour at room temperature, the mixture was
cooled to 0 °C and then DMAP (0.2 equiv) and EtsN (3.0 equiv) were added dropwise. The reaction
mixture was then allowed to warm to room temperature with stirring. After complete conversion of
pyrazole was detected by TLC, the mixture was poured into hydrochloric acid solution (1 M) and
extracted with EtOAc for three times. The combined organic layers were washed with NaOH solution
(2 M), saturated NaHCOs solution and brine. After dried with anhydrous Na,SQOj, filtration and
concentration under reduced pressure, the crude residue was purified by flash chromatography on silica

gel (n-hexane/EtOAc = 30:1 to 3:1) to afford the substrate 1b as a white solid. Yield: 80%.

(E)-2-(3-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1b)

'"H NMR (300 MHz, CDCl3) 6 10.37 (s, 1H), 8.86 (d, J = 15.9 Hz, 1H), 8.40 (d, J= 2.9 Hz, 1H), 8.00-
7.81 (m, 5H), 7.64 (dtd, J=22.0, 7.4, 1.2 Hz, 2H), 7.02-6.93 (m, 2H), 6.77 (d, J=2.9 Hz, 1H), 3.85 (s,
3H).

13C NMR (75 MHz, CDCl;) § 191.6, 162.8, 160.5, 155.3, 143.5, 136.6, 134.2, 133.9, 132.2, 130.3,
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130.0, 128.4, 127.7, 124.4,121.0, 114.2, 107.7, 55.3.
HRMS (ESI, m/z) calcd for Co0H;6N2O3Na [M+Na]*: 355.1059, found: 355.1055.

..........................

o} o)

Pd(OAc), (1.0 mol%) T3P : Me ;
H /\H/OH P(o-tol); (2.0 mol%) H 3,5-Dimethylpyrazol 1 H h :
+ v ~_OH T NP Me:
Br 0] Et3N (3.0 equiv) DMAP, EtsN : N :
115 °C o} CH,Clp ; o ;

S1b ' 1c

According to the same procedure used as for the preparation of 1b, 2-bromobenzaldehyde as the starting
material provided 1c¢ as a white solid. Yield: 80%.
(E)-2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1c)

"H NMR (300 MHz, CDCl3) 6 10.36 (s, 1H), 8.73 (d, J= 15.9 Hz, 1H), 7.92-7.81 (m, 3H), 7.60 (dtd, J
=21.1,7.5, 1.3 Hz, 2H), 6.02 (s, 1H), 2.63 (s, 3H), 2.27 (s, 3H).

13C NMR (75 MHz, CDCl;) & 191.5, 164.6, 152.1, 144.5, 141.9, 136.9, 134.1, 133.8, 131.9, 130.0,
128.4,122.9,111.6, 14.6, 13.8.

HRMS (ESI, m/z) calcd for CisHi4sN>O>Na [M+Na]*: 277.0953, found: 277.0949.

2 Pd(OAc), (1.0 mol%) Q T3p i 0
@LH + /\H/OH P(o-tol); (2.0 mol%) - H 3-Methylpyrazol o H _
Br o Et3N (3.0 equiv) o A~ OH DMAP, Et;N N Me

115 °C S CH,Cl, I ;

S1b ; 1d :

According to the same procedure used as for the preparation of 1b, 2-bromobenzaldehyde as the starting
material provided 1d as pale yellow solid. Yield: 85%.
(E)-2-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1d)

A pale yellow solid. Yield: 85%.

"H NMR (300 MHz, CDCl;) 6 7.48-7.41 (m, 3H), 7.30-7.28 (m, 1H), 7.28-7.22 (m, 2H), 7.17-7.14 (m,
1H), 3.16 (dd, J; = 7.8 Hz, J, = 5.7 Hz, 1H), 1.73-1.38 (m, 9H), 1.33 (dd, J; = 5.7 Hz, J.=3.9 Hz, 1H),
1.28-1.12 (m, 1H), 0.96 (dd, J; = 7.5 Hz, J> = 3.9 Hz, 1H).

BC NMR (75 MHz, CDCl3) J 188.6, 144.4, 138.9, 129.4, 128.9, 128.6, 126.4, 125.9, 37.8, 36.5, 31.7,
28.0,26.2,26.1,25.9, 22.6.

HRMS (ESI, m/z) calcd for C14H;2N2O,Na [M+Na]*: 263.0796, found: 263.0791.

Q Pd(OAc), (1.0 mol%) Q T3P fq :

H 4\”,0H P(o-tol); (2.0 mol%) H 3-Methylpyrazol = 1 H @= :

+ i - > OH . = N7 Me |

Br (o] Et;N (3.0 equiv) DMAP, Et3N ~N :

Ve 3 CH,Cl, : :

115 °C Me

Ste : 1e

..........................

According to the same procedure used as for the preparation of 1b, 2-bromo-3-methylbenzaldehyde® as
the starting material provided 1e as a pale yellow solid. Yield: 85%.
(E)-3-Methyl-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1e)
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"H NMR (300 MHz, CDCl3) 6 10.65 (s, 1H), 8.58 (d, /= 15.8 Hz, 1H), 8.27 (d, J= 2.8 Hz, 1H), 7.70
(d,J=15.8 Hz, 1H), 7.59 (d, J= 7.7 Hz, 1H), 7.48 (t,J="7.7 Hz, 1H), 7.31 (d, J= 7.5 Hz, 1H), 6.29 (d,
J=2.8 Hz, 1H), 2.65 (s, 3H), 2.34 (s, 3H).

13C NMR (75 MHz, CDCl;) § 192.4, 162.6, 153.9, 145.3, 141.1, 137.5, 133.5, 133.0, 132.9, 129.4,
126.8, 120.5, 110.7, 20.0, 13.9.

HRMS (ESI, m/z) calcd for C;sH;sN2O, [M+H]": 255.1134, found: 255.1129.

..............................

Q Pd(OAc), (1.0 mol%) Q T3P e i
H %\n,OH P(o-tol); (2.0 mol%) H 3-Methylpyrazol ; H = :
+ V) ~_OH T I~ N7 Me!
Me Br 0 EtsN (3.0 equiv) e DMAP, Et3N IMe N '
115 °C 0 CHzCl : o E
S1f : 1

According to the same procedure used as for the preparation of 1b, 2-bromo-4-methylbenzaldehyde* as
the starting material provided 1f as a pale yellow solid. Yield: 79%.
(E)-4-Methyl-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1f)

'"H NMR (300 MHz, CDCl;) 5 10.29 (s, 1H), 8.82 (d, J = 15.9 Hz, 1H), 8.29 (d, /= 2.8 Hz, 1H), 7.81
(d,J=22Hz 1H), 7.77 (d, J=5.8 Hz, 1H), 7.63 (s, 1H), 7.39 (d, /= 7.8 Hz, 1H), 6.31 (d, /= 2.8 Hz,
1H), 2.48 (s, 3H), 2.37 (s, 3H).

3C NMR (75 MHz, CDCl;) § 191.2, 162.6, 154.0, 144.9, 143.6, 136.5, 132.4, 132.0, 131.1, 129.5,
128.9, 120.6, 110.8, 21.7, 14.0.

HRMS (ESI, m/z) calcd for C1sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0948.

e Q PA(OAC), (1.0 mol%) * T3P gMe *
@H n %\H/OH P(o-tol); (2.0 moIA:): H 3-Methylpyrazol g H — :
Br 0 EtsN (3.0 equiv) AN OH DMAP, Et;N : NN Me;
115 °C o CH,Cl, ; a E

$1g 19

According to the same procedure used as for the preparation of 1b, 2-bromo-5-methylbenzaldehyde’ as
the starting material provided 1g as a white solid. Yield: 87%.
(E)-5-Methyl-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1g)

'"H NMR (300 MHz, CDCl3) 6 10.33 (s, 1H), 8.79 (d, J = 15.9 Hz, 1H), 8.27 (d, J= 2.7 Hz, 1H), 7.81-
7.7.74 (m, 2H), 7.69 (s, 1H), 7.44 (d, J = 7.9 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 2.45 (s, 3H), 2.35 (s,
3H).

BC NMR (75 MHz, CDCls) § 191.6, 162.7, 153.9, 143.0, 141.0, 134.6, 134.0, 133.8, 132.5, 129.4,
128.3,120.0, 110.7, 21.2, 13.9.

HRMS (ESI, m/z) calcd for CisH1sN>O>Na [M+Na]": 277.0953, found: 277.0949.
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..........................

Me O T3p { Me O

Pd(OAc); (1.0 mol%) : :
@f‘\ /\[rOH P(o-tol); (2.0 mol%) H 3-Methylpyrazol ! H = ;
EtsN (3.0 equiv) AN COH DMAP, Et3N Z N‘N/ Mei
115 °C o CH,Cly : o} :
S1h | 1h

According to the same procedure used as for the preparation of 1b, 2-bromo-5-methylbenzaldehyde*®
as the starting material provided 1h as a yellow solid. Yield: 85%.
(E)-2-Methyl-6-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1h)

'"H NMR (300 MHz, CDCl3) $ 10.21 (s, 1H), 8.33-8.27 (m, 2H), 7.82 (dd, J= 7.5, 0.9 Hz, 1H), 7.50-
7.36 (m, 3H), 6.30 (d, J= 2.8 Hz, 1H), 2.43 (s, 3H), 2.30 (s, 3H).

3C NMR (75 MHz, CDCl;) § 191.6, 161.9, 154.2, 142.4, 138.0, 137.9, 135.5, 135.0, 129.4, 128.9,
127.1, 1259, 111.1, 77.4, 77.0, 76.6, 20.0, 13.9.

HRMS (ESI, m/z) calcd for CisH14N>O>Na [M+Na]": 277.0953, found: 277.09438.

o Q T3P : o

Pd(OAc), (1.0 mol%) ' '
OH P(o-tol); (2.0 mol%) H 3-Methylpyrazol ! H _ :
/QEL + /\rr = OH — > ' = N V. Me:
tBu Br EtsN (3.0 equiv) gy DMAP, Et3N | tBu N
115 °C o CH,Cl, ; o :

S1i : 1i

According to the same procedure used as for the preparation of 1b, 2-bromo-4-tert-
butylbenzaldehyde”®” as the starting material provided 1i as a yellow oli. Yield: 78%.
(E)-4-(tert-Butyl)-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1i)

'"H NMR (300 MHz, CDCl3) 6 10.30 (s, 1H), 8.82 (d, J = 15.9 Hz, 1H), 8.29 (d, J= 2.9 Hz, 1H), 7.85-
7.73(m, 3H), 7.63-7.59(m, 1H), 6.31 (d, J=2.8 Hz, 1H), 2.37 (s, 3H), 1.39 (s, 9H).

13C NMR (75 MHz, CDCl;) § 191.2, 162.7, 157.8, 154.0, 144.3, 136.5, 132.2, 131.9, 129.5, 127.5,
125.3, 120.6, 110.8, 35.4, 30.99, 13.96.

HRMS (ESI, m/z) calcd for C1sHz0N2O2Na [M+Na]*: 319.1422, found: 319.1428.

o}

Pd(OAc), (1.0 mol%) T3P : :
/@J\ /\n,OH P(o-tol); (2.0 mol%) H 3-Methylpyrazol i H — :
) - :
- ' 27—Me
Et:N (3.0 equiv)  pp N0 DMAP ELN ! pp 2% s
115 °C 5 CH,Cl, : 3 :
$1j ; 1]

According to the same procedure used as for the preparation of 1b, 3-bromo-[1,1'-biphenyl]-4-
carbaldehyde!” as the starting material provided 1j as a white solid. Yield: 80%.
(E)-3-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)-[1,1'-biphenyl]-4-carbaldehyde (1})

"H NMR (300 MHz, CDCls) § 10.45 (s, 1H), 8.86 (d, J= 15.9 Hz, 1H), 8.30 (d, J = 2.8 Hz, 1H), 8.13
(d, J=1.9 Hz, 1H), 7.99-7.84 (m, 3H), 7.67 (dd, J = 5.2, 3.3 Hz, 2H), 7.54-7.39 (m, 3H), 6.32 (d, J =
2.8 Hz, 1H), 2.37 (s, 3H).

13C NMR (75 MHz, CDCl;) 5 191.4, 162.6, 154.0, 143.3, 142.5, 138.8, 135.2, 134.5, 132.0, 130.4,
129.5,129.1, 128.9, 128.5, 127.0, 120.7, 110.9, 14.0.

68



Chapter 4: Experimental Part

HRMS (ESI, m/z) calcd for C20H;6N20,Na [M+Na]*: 339.1109, found: 339.1107.

Pd(OAC), (1.0 mol%) ; :

OH P(o-tol); (2.0 mol%) H 3-Methylpyrazol  ; H = :

/@L + /\"/ > ~_OH > NG Ve !
cl EtsN (3.0 equiv) g DMAP, EtsN Ll ~N ;

115 °C 3 CH,Cl, : o
Sk : 1k

According to the same procedure used as for the preparation of 1b, 2-bromo-4-chlorobenzaldehyde as
the starting material provided 1k as a white solid. Yield: 88%.
(E)-4-Chloro-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1K)

'"H NMR (300 MHz, CDCl3) 6 10.30 (s, 1H), 8.73 (d, J = 15.9 Hz, 1H), 8.27 (d, J= 2.6 Hz, 1H), 7.86-
7.78 (m, 3H), 7.54 (dd, /= 8.3, 1.6 Hz, 1H), 6.31 (d, J= 2.7 Hz, 1H), 2.36 (s, 3H).

13C NMR (75 MHz, CDCl;) 6 190.1, 162.2, 154.2, 141.5, 140.5, 138.2, 133.2, 132.4, 130.3, 129.5,
128.3,122.2, 111.1, 13.9.

HRMS (ESI, m/z) calcd for Ci4H11CIN,O>Na [M+Na]*: 297.0407, found: 297.0404.

Q o T3P : o

Pd(OAc), (1.0 mol%) : :
Cl OH _P(otol); (2.0 mol%) | Cl H 3-Methylpyrazol  :Cl H = :
"+ /\[r ~_OH ovmp Ein I~ NP Met
Br Et3N (3.0 equiv) DMAP, Et;N : N :
115 °C o CHCl : 0 :
sl ' 11

According to the same procedure used as for the preparation of 1b, 2-bromo-5-chlorobenzaldehyde as
the starting material provided 11 as a white solid. Yield: 86%.
(E)-5-Chloro-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (11)

'"H NMR (300 MHz, CDCl3) 6 10.33 (s, 1H), 8.71 (d, J = 15.9 Hz, 1H), 8.27 (d, J = 2.8 Hz, 1H), 7.91-
7.75 (m, 3H), 7.63-7.59(m, 1H), 6.31 (d, J=2.8 Hz, 1H), 2.35 (s, 3H).

3C NMR (75 MHz, CDCl;) § 189.9, 162.3, 154.2, 141.4, 136.8, 135.2, 134.9, 133.8, 131.3, 129.8,
129.5,121.6, 111.0, 13.9.

HRMS (ESI, m/z) calcd for Ci4H;1CIN,O,Na [M+Na]*: 297.0407, found: 297.0403.

.............................

2 Pd(OAC), (1.0 mol%) o T3P o ;
CI:@fL /\H/OH P(o-tol); (2.0 mol%) C! H 3-Methylpyrazol Y H _ :
Cl Br EtsN (3.0 equiv) ¢ ANOH  DMAP, Et;N ol N M-:-zE

115 °C 3 CH,Cl, E o
S1m ' 1m

According to the same procedure used as for the preparation of 1b, 2-bromo-4,5-dichlorobenzaldehyde!!
as the starting material provided 1m as a yellow solid. Yield: 82%.
(E)-4,5-Dichloro-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1m)

'"H NMR (300 MHz, CDCl;) 6 10.27 (s, 1H), 8.64 (d, J = 15.9 Hz, 1H), 8.26 (d, J= 2.8 Hz, 1H), 7.96
(s, IH), 7.91 (s, 1H), 7.80 (d, J= 15.9 Hz, 1H), 6.32 (d, /= 2.8 Hz, 1H), 2.36 (s, 3H).

13C NMR (75 MHz, CDCl;) 5 188.9, 162.0, 154.3, 140.1, 138.7, 135.9, 135.0, 133.2, 130.0, 129.5,
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122.4,111.2, 13.9.
HRMS (ESI, m/z) calcd for C14H;oCI:N,0O:Na [M+Na]*: 331.0017, found: 331.0014.

Q Pd(OAc), (1.0 mol%) Q T3P : Q E
/@\)LH 47 OH  P(o-tol); (2.0 mol%) - H 3-Methylpyrazol 5 H — :
’ o _ / \
F Br 0 EtsN (3.0 equiv) [ ANCPH DMAP EtN i N NN e :
115 °C o CHClp : 0 :

S1n : 1

.............................

According to the same procedure used as for the preparation of 1b, 2-bromo-4-fluorobenzaldehyde* as
the starting material provided 1n as a pale yellow solid. Yield: 84%.
(E)-4-Fluoro-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1n)

'"H NMR (300 MHz, CDCl;) 5 10.28 (s, 1H), 8.76 (d, J = 15.9 Hz, 1H), 8.26 (d, J= 2.8 Hz, 1H), 7.93
(dd, J= 8.6, 5.8 Hz, 1H), 7.80 (d, /= 15.9 Hz, 1H), 7.49 (dd, J = 9.5, 2.5 Hz, 1H), 7.30-7.19 (m, 1H),
6.31 (d,J=2.8 Hz, 1H), 2.34 (s, 3H).

13C NMR (75 MHz, CDCl) § 189.8, 167.3, 163.9, 162.2, 154.2, 141.6 (d, Jcr = 2.1 Hz), 139.6 (d, Jcr
=9.1 Hz), 134.8 (d, Jcr = 9.9 Hz), 130.7 (d, Jcr = 2.9 Hz), 129.4, 122.2, 117.4 (d, Jcr = 22.1 Hz), 115.2
(d, Jcr = 23.0 Hz), 111.1, 13.9.

HRMS (ESI, m/z) calcd for C14H; 1 FN,O;Na [M+Na]*: 281.0702, found: 281.0696.

. Q PA(OAC), (1.0 mol%) _ Q T3P . 0
3 \©\)J\H 7 OH  P(o-tol); (2.0 mol%L 3 H 3-Methylpyrazol ' 3 H — ;
Br o) Et,N (3.0 equiv) ANOH  DMAP EtN NN Ve
115 °C o} CHCl, o)

S1o ; 10

According to the same procedure used as for the preparation of 1d, 2-bromo-5-
(trifluoromethyl)benzaldehyde'? as the starting material provided 1o as a white solid. Yield: 77%.
(E)-2-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)-5-(trifluoromethyl)benzaldehyde (10)
"H NMR (300 MHz, CDCl3) 6 10.39 (s, 1H), 8.75 (d, J = 15.9 Hz, 1H), 8.27 (d, J= 2.8 Hz, 1H), 8.17
(s, 1H), 8.01-7.84 (m, 3H), 6.32 (d, J= 2.8 Hz, 1H), 2.35 (s, 3H).

BC NMR (75 MHz, CDCl3) 8 189.9, 162.1, 154.3, 141.2, 139.9, 134.3, 132.3 (q, J = 33.7 Hz), 130.1
(q,J=3.5Hz), 129.5, 129.2, 128.5 (q, /= 3.8 Hz), 125.0, 123.3, 121.4, 111.2, 13.9.

HRMS (ESI, m/z) calcd for CisH1F3N,O,Na [M+Na]": 331.0670, found: 331.0667.

9 Pd(OAc), (1.0 mol%) T3P P« B i

+ /\n,OH P(o-tol); (2.0 mol% 3- Methylpyrazol . " H

MeO. EtsN (3.0 equiv) OH DMAP, EGN EttN  iMeO P Me
o) 115 °C CHyCl, ; I I ;

: 1o :

According to the same procedure used as for the preparation of 1d, methyl 3-bromo-4-formylbenzoate!!
as the starting material provided 1p as a white solid. Yield: 78%.
Methyl (E)-4-formyl-3-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzoate (1p)
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"H NMR (300 MHz, CDCl3) 6 10.43 (s, 1H), 8.78 (d, /= 15.9 Hz, 1H), 8.48 (d, J= 1.2 Hz, 1H), 8.29
(d, J=2.7Hz, 1H), 8.22 (dd, J= 8.0, 1.5 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 15.9 Hz, 1H),
6.33 (d, J= 2.8 Hz, 1H), 4.00 (s, 3H), 2.38 (s, 3H).

13C NMR (75 MHz, CDCl;) § 190.9, 165.6, 162.4, 154.2, 142.0, 136.8, 136.7, 134.7, 131.8, 130.9,
129.6, 129.5, 122.2, 111.1, 52.8, 14.0.

HRMS (ESI, m/z) calcd for C¢H;4N2OsNa [M+Na]*: 321.0851, found: 321.0846.

o 0
Ho Pd(OAc (1.0 mol%) cn—ﬁ o\_ N oJ 0
P(o-tol); (2.0 moIA) [ ¥e)
H 4 /\n’ < - % H
EtsN (3.0 equiv) \|< EtsN, MeCN, rt ¢ N
115 °C overnight o) \|<

N, J o e N

O.L.0 EtsN \O e 3-Methylpyrazol ¢ 6.9 o
| > Oopr H — > P Ho=y

o) rt, 4 hours Io) _~_ _OH DMAP, Et;N e NN
CH,Cl, : :

S1q o ' 1q

The 2-bromo-5-hydroxybenzaldehyde (1.0 equiv) was dissolved in dimethylformamide (2.0 mL/mmol
aldehyde). Then Pd(OAc), (0.01 equiv), P(o-tol); (0.02 equiv), fert-butyl acrylate (2.0 equiv) and EtsN
(3.0 equiv) were added, The mixture was degassed under nitrogen purge for 15 min and then the resulting
mixture was heated in an oil bath at 115 °C and magnetically stirred under nitrogen. The reaction was
monitored by TLC. After the reaction was completed, the reaction was then cooled to room temperature,
diluted with H,O and extracted with CH>Cl,. After dried with anhydrous Na,SQs, filtration and
concentration under reduced pressure, the crude residue was purified by flash chromatography on silica
gel (n-hexane/EtOAc = 30:1 to 3:1) to afford the product.'

The above compound was dissolved in acetonitrile. Then the EtzN (1.1 equiv) and diethyl
chlorophosphite (1.1 equiv) were added. The mixture was stirred at room temperature for 12 hours. After
that, acetonitrile was removed by rotary evaporator and the crude mixture was purified by flash column
chromatography on a silica gel column (n-hexane/EtOAc = 20:1 to 3:1)."

To a solution of the above a,B-unsaturated tert-butyl ester in trifluroracetic acid and dichloromethane
(volume ratio: 1:1) was stirred at room temperature for 4 hours and the solvents were removed under
reduced pressure. The crude solid was triturated in hexane, filtered, and dried under vacuum to give the
S1q.

Last step: According to the same procedure used as for the preparation of 1d, the compound 1q was
obtained as a yellow oil. Yield: 70%.

Diethyl (3-formyl-4-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)phenyl) phosphate (1q)
(ZIE = 1:4)

'"H NMR (300 MHz, CDCl;) 5 10.30 (s, 1H), 8.69 (d, J = 15.9 Hz, 1H), 8.22 (d, J = 2.6 Hz, 1H), 7.82
(d, J=8.6 Hz, 1H), 7.75 (d, /= 15.8 Hz, 1H), 7.70 (dd, /= 2.5, 0.8 Hz, 1H), 7.49 (dd, J = 8.6, 2.5 Hz,
1H), 6.27 (d, J=2.7 Hz, 1H), 4.30-4.13 (m, 4H), 2.30 (s, 3H), 1.41-1.25 (m, 6H).

3C NMR (75 MHz, CDCl;5) § 190.1, 162.3, 154.0, 152.3 (d, J = 6.6 Hz), 141.6, 135.4, 133.1, 130.1,
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129.3,125.4 (d, J=4.9 Hz), 122.5 (d, /= 5.4 Hz), 120.9 (s), 110.9 (s), 65.0 (t, /= 5.9 Hz), 16.0(d, J =
6.5 Hz), 13.8 (s).
HRMS (ESI, m/z) calcd for C1sH21N2O¢PNa [M+Na]": 415.1035, found: 415.1030.

a Pd(OAC), (1.0 mol%) g T3P 2 :

OH  P(o-tol); (2.0 mol%) - H 3-Methylpyrazol H — :

/GEL + /\[r - ~_OH > Ny P M
PhO Br Et;N (3.0 equiv) PhO DMAP, Et3N 1PhO N :

115 °C o) CHCl, ; o) :
S1r L | A :

According to the same procedure used as for the preparation of 1d, methyl 3-bromo-4-

415 as the starting material provided 1r as a white solid. Yield: 80%.

formylbenzoate
(E)-2-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)-4-phenoxybenzaldehyde (1r)

'"H NMR (300 MHz, CDCl;) 5 10.24 (s, 1H), 8.78 (d, J = 15.9 Hz, 1H), 8.27 (d, J = 2.8 Hz, 1H), 7.85
(d, J=8.6 Hz, 1H), 7.73 (d, J = 15.9 Hz, 1H), 7.47-7.37 (m, 3H), 7.24 (ddd, J=7.0, 2.1, 1.1 Hz, 1H),
7.14-7.08 (m, 2H), 7.04 (dd, J = 8.6, 2.4 Hz, 1H), 6.30 (d, /=2.8 Hz, 1H), 2.34 (s, 3H).

13C NMR (75 MHz, CDCl;) § 190.0, 162.4, 162.3, 154.9, 154.0, 142.8, 139.2, 134.5, 130.2, 129.4,
129.1,125.1, 121.6, 120.2, 118.3, 117.1, 110.9, 13.9.

HRMS (ESI, m/z) calcd for C20H1sN2O3sNa [M+Na]": 355.1059, found: 355.1056.

Pd(OAc), (1.0 mol%) 9 T3P ; Q

\©\)L /\n/OH P(o tol); (2.0 mol%) H 3-Methylpyrazol EMeO H - :
> 7—Me

EtsN (3.0 equiv) ANOH DMAP, EtN : NN

115 °C o) CHCl, : o) :

Sis Ml (= g

According to the same procedure used as for the preparation of 1d, 2-bromo-5-methoxybenzaldehyde
as the starting material provided 1s as a white solid. Yield: 75%.
(E)-5-Methoxy-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1s)

'"H NMR (300 MHz, CDCl;) 5 10.41 (s, 1H), 8.74 (d, J = 15.8 Hz, 1H), 8.26 (d, J = 2.8 Hz, 1H), 7.83
(d, J=28.7 Hz, 1H), 7.75 (d, J = 15.8 Hz, 1H), 7.38 (d, J = 2.8 Hz, 1H), 7.16 (dd, J = 8.7, 2.8 Hz, 1H),
6.29 (d, J=2.8 Hz, 1H), 3.90 (s, 3H), 2.35 (s, 3H).

13C NMR (75 MHz, CDCl;) § 190.7, 162.8, 161.4, 153.8, 141.9, 135.5, 129.9, 129.4, 129.3, 120.7,
118.8,114.4,110.7, 55.7, 13.9.

HRMS (ESI, m/z) calcd for C1sH;4N2O3Na [M+Na]*: 293.0902, found: 293.0898.

Q Pd(OAC), (1.0 mol%) 9 T3P ; ? :
BnO\@L 4 /\n/OH P(o-tol)s (2.0 mol%) n H 3-Methylpyrazol ~ :BNO H = :
—_—— DM |

Br EtsN (3.0 equiv) NP7 DMAP EtN AN

115 OC O CH2C|2 H O H

S1t N it /

According to the same procedure used as for the preparation of 1d, 2-bromo-5-
phenylmethoxybenzaldehyde!'® as the starting material provided 1t as a white solid. Yield: 75%.
5-(Benzyloxy)-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1t)
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(ZIE = 1:3)

"H NMR (300 MHz, CDCls, Z/E mixture) & 10.41 (s, 1H), 8.76 (d, J = 15.8 Hz, 1H), 8.28 (d, J = 2.8
Hz, 1H), 7.84 (d,J=8.7 Hz, 1H), 7.77 (d, J=15.8 Hz, 1H), 7.49 (d, J= 2.8 Hz, 1H), 7.47-7.32 (m, 5H),
7.24 (dd, J=8.8, 2.9 Hz, 1H), 6.30 (d, /= 2.7 Hz, 1H), 5.17 (s, 2H), 2.36 (s, 3H).

3C NMR (75 MHz, CDCls, Z/E mixture) 8 190.7, 190.0, 162.8, 162.8, 162.5, 160.5, 153.9, 153.8, 143.3,
141.8, 138.9, 135.8, 135.6, 135.5, 134.7, 129.9, 129.5, 129.4, 128.8, 128.7, 128.4, 128.3, 128.0, 127.6,
127.5,121.3, 121.1, 118.9, 115.9, 115.5, 114.5, 110.9, 110.7, 70.5, 70.4, 13.9.

HRMS (ESI, m/z) calcd for C2;HisN2O3Na [M+Na]*: 369.1215, found: 369.1211.

Voo e Pd(OAc), (1.0 mol%) Q T3P ! 11eo " :
e H é\n,OH P(o-tol); (2.0 mol%) - H 3-Methylpyrazol H = '
+ - _ > OH > H > N, /—Me.
MeO Br O Et3N (3.0 equiv) MeO DMAP, EtzN E MeO N !
115 °C o) CH,Cl, : 5 ;

S1u i 1u

According to the same procedure used as for the preparation of 1d, 2-bromo-4,5-
dimethoxybenzaldehyde as the starting material provided 1u as a white solid. Yield: 80%.
(E)-4,5-Dimethoxy-2-(3-(3-methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)benzaldehyde (1u)

'"H NMR (300 MHz, CDCl;) 6 10.42 (s, 1H), 8.78 (d, J = 15.7 Hz, 1H), 8.30 (d, /= 2.8 Hz, 1H), 7.76
(d,J=15.7Hz, 1H), 7.44 (s, 1H), 7.24 (s, 1H), 6.32 (d, J= 2.8 Hz, 1H), 4.06 (s, 3H), 3.99 (s, 3H), 2.38
(s, 3H).

3C NMR (75 MHz, CDCl;) 5 188.9, 162.6, 154.0, 153.6, 151.1, 141.7, 131.5, 129.5, 128.3, 119.3,
111.0, 110.9, 109.3, 56.4, 56.2, 13.9.

HRMS (ESI, m/z) calcd for CisHi1sN2OsNa [M+Na]": 323.1008, found: 323.1004.

0 Pd(OAc); (1.0 mol%) Q T3P g o E
dH + é\n/OH P(o-tol); (2.0 mol%) H 3-Methylpyrazol H _—
Phs Br o] Et3N (3.0 equiv) Phyg ANOH  DMAP, EtN : éPh\S NN Ve 5
115 °C 5 CH,Cl, : I 5

S1v i 1v

According to the same procedure used as for the preparation of 1d, 2-bromo-4-
phenylthiobenzaldehyde'’ as the starting material provided 1v as a yellow solid. Yield: 85%.
(E)-2-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)-4-(phenylthio)benzaldehyde (1v)

"H NMR (300 MHz, CDCl3) 6 10.22 (s, 1H), 8.71 (d, J = 15.9 Hz, 1H), 8.25 (d, /= 2.8 Hz, 1H), 7.73-
7.66 (m, 2H), 7.59-7.38 (m, 6H), 7.18 (dd, J = 8.2, 1.8 Hz, 1H), 6.30 (d, J = 2.8 Hz, 1H), 2.36 (s, 3H).
BC NMR (75 MHz, CDCl3) 8 190.4, 162.3, 153.9, 146.9, 142.7, 137.1, 134.4, 132.5, 131.3, 130.8,
129.9, 129.4, 129.3, 128.0, 126.2, 121.5, 110.9, 13.9.

HRMS (ESI, m/z) calcd for C2H sN20,SNa [M+Na]": 371.0830, found: 371.0826.
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2 PA(OAC), (10 mol%) T3P : O :
S OH P(o-tol); (2.0 mol%) 3-Methylpyrazol ' S :
H 3 H H =
d + Y —> QM on > QO NPV
Br 0 Et;N (3.0 equiv) DMAP, Et;N : N ;
115 °C o] CHzCl, ; o)
stw 1T
w

According to the same procedure used as for the preparation of 1d, 3-bromothiophene-2-carbaldehyde!’
as the starting material provided 1w as a yellow solid. Yield: 80%.
(E)-3-(3-(3-Methyl-1H-pyrazol-1-yl)-3-oxoprop-1-en-1-yl)thiophene-2-carbaldehyde (1w)

'"H NMR (300 MHz, CDCl;) 5 10.30 (s, 1H), 8.44 (d, J = 15.8 Hz, 1H), 8.27 (d, J= 2.4 Hz, 1H), 7.87
(d, J=15.8 Hz, 1H), 7.73 (d, J = 5.0 Hz, 1H), 7.60 (d, J = 5.1 Hz, 1H), 6.32 (d, J = 2.5 Hz, 1H), 2.37
(s, 3H)

13C NMR (75 MHz, CDCl;) 5 181.6, 162.7, 154.2, 143.0, 142.3, 135.7, 134.4, 129.5, 127.6, 121.1,
111.1, 14.0.

HRMS (ESI, m/z) calcd for C12H;oN2O2Na [M+Na]*: 269.0361, found: 269.0356.

0 \
’> o Pd(OAc) (1.0mol%) OO O%H e o
o P(o-tol); (2.0 mol% e 4.0 M LiOH
+ Me/\)J\OMe fotoll, o8 S —_—> NS
Br

EtsN (3.0 equiv) OMe OH
(o]
115 °C S1x
Oy Hume o T3P : Q

~ 3-Methylpyrazol H _ :
OH > N P—Mei
DMAP, Et;N H z N '

CH,Cl, i Ve O

S1x 1x

2-(2-Bromophenyl)-1,3-dioxolane (1.0 equiv) was dissolved in dimethylformamide (2.0 mL/mmol
aldehyde). Pd(OAc),(0.01 equiv), then P(o-tol); (0.02 equiv), (E£)-2-butenoic acid ethyl ester (2.0 equiv)
and Et;N (3.0 equiv) were added, The mixture was degassed under nitrogen purge for 15 min and then
the vial content was heated in an oil bath at 115 °C and magnetically stirred under nitrogen over night.
After the reaction was completed, it was then cooled to room temperature, diluted with H,O and
extracted with EtOAc. After dried with anhydrous Na,SQs, filtration and concentration under reduced
pressure, the crude residue was purified by flash chromatography on silica gel (n-hexane/EtOAc = 30:1
to 3:1) to afford the substrate.'®

To a solution of the above a, B-unsaturated methyl ester in dioxane/H,O (volume ratio: 4:1) was treated
with 4 M LiOH for 6 hours at room temperature, then quenched with the addition of 1 M HCI, after
being stirred for 10 min, the product was extracted with EtOAc. After dried with anhydrous Na>SOs,
filtration and concentration under reduced pressure, the crude residue was purified by flash
chromatography on silica gel (n-hexane/EtOAc = 20:1 to 3:1) to afford the substrate.

Last step: According to the same procedure used as for the preparation of 1d, compound 1x was obtained
as a pale yellow solid. Yield: 79%.
(E)-2-(4-(3-Methyl-1H-pyrazol-1-yl)-4-oxobut-2-en-2-yl)benzaldehyde (1x)
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"H NMR (300 MHz, CDCl3) 5 10.16 (s, 1H), 8.25 (d, /= 2.8 Hz, 1H), 7.97 (dd, J= 7.7, 1.3 Hz, 1H),
7.62 (td, J=17.5, 1.4 Hz, 1H), 7.51 (t, /= 7.3 Hz, 1H), 7.37 (dd, J= 7.6, 0.9 Hz, 1H), 7.20 (d, /= 1.4
Hz, 1H), 6.26 (d, J=2.8 Hz, 1H), 2.68 (d, J = 1.4 Hz, 3H), 2.28 (s, 3H).

13C NMR (75 MHz, CDCl;) § 191.0, 162.1, 158.5, 153.6, 147.1, 133.8, 133.1, 129.3, 129.2, 128.6,
128.4,119.6, 110.5,22.7, 13.9.

HRMS (ESI, m/z) calcd for C;sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0947.

4.2.2 General Procedure

i “+PFg

(0] H N Me i Me\C\ T)\O
= A-RhS (4.0 mol% ( P Ny, |

Ny CH,Cl,, rt O PN
', C*
o blue LEDs 5 : N
1d |

A-RhS

An oven-dried 10 mL Schlenk tube was charged with compound 1d (24.0 mg, 0.10 mmol) and A-
RhS (3.5 mg, 4.0 mol%). Then, CH>Cl, (2.0 mL, 0.05 M) was added via syringe. The reaction mixture
was degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring for the indicated time (monitored
by TLC) under nitrogen atmosphere, the mixture was diluted with CH2Cl,. The combined organic
solutions were concentrated, reduced pressure and purified by flash chromatography on silica gel (n-
hexane/EtOAc) to afford the pure non-racemic product 2d. The enantiomeric excess was determined by
HPLC analysis on a chiral stationary phase. Racemic samples were obtained by carrying out the

reactions with rac-RhS.

4.2.3 Experimental and Characterization Data of New Products

OMe

" Ns
N
—
O

o)
2b
According to the general procedure, the reaction of 1b (24.0 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH»Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 20.0 mg (60% yield, pale yellow solid) of 2b as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee

= 38% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t. (major) = 27.5
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min, t; (minor) = 23.2 min). [a]p*? = -7.8° (¢ 1.0, CH.Cl,).

"H NMR (300 MHz, CDCl3)  8.22 (d, J= 7.7 Hz, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.73 (d, J = 8.8 Hz,
2H), 7.64 (td, J=7.6, 1.1 Hz, 1H), 7.53 (d, /= 7.3 Hz, 1H), 7.44 (t, J=7.6 Hz, 1H), 6.92 (d, /= 8.8 Hz,
2H), 6.59 (d, J= 2.5 Hz, 1H), 3.83 (s, 3H), 3.12 (dd, J = 10.6, 6.6 Hz, 1H), 2.30 (dd, J = 10.6, 6.5 Hz,
1H), 1.30 (t, J= 6.6 Hz, 1H).

13C NMR (75 MHz, CDCl;) § 160.6, 159.8, 153.2, 139.5, 134.5, 131.8, 131.4, 128.3, 127.8, 127.3,
125.6, 120.1, 114.0, 104.6, 75.4, 55.3,22.8, 21.5.

IR (film): v (cm™) 3107, 3011, 2961, 2925, 2842, 2039, 1991, 1712, 1607, 1507, 14817, 1447, 1415,
1364, 1284, 1247, 1214, 1176, 1119, 1084, 1056, 1028, 968, 937, 873, 841, 768, 736.7674, 688, 640,
610, 583, 528, 497, 447, 398

HRMS (ESI, m/z) calcd for CooHi6N2O3Na [M+Na]*: 355.1059, found: 355.1053.

H
2 N Me
N _
O
Me
(0]
2c

According to the general procedure, the reaction of 1¢ (25.4 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 18.8 mg (74% yield, pale yellow solid) of 2¢ as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 97% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, t; (major) = 22.2
min, t; (minor) = 28.6 min). [a]p** = -37.6° (¢ 1.0, CH:CL).

'H NMR (300 MHz, CDCls) § 8.19 (d, J= 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.2 Hz,
1H), 7.42 (t, J="1.5 Hz, 1H), 5.90 (s, 1H), 3.02 (dd, J = 10.6, 6.7 Hz, 1H), 2.37 (s, 3H), 2.25-2.08 (m,
4H), 1.29 (t,J = 6.5 Hz, 1H).

3C NMR (75 MHz, CDCl3) § 160.8, 149.9, 142.1, 139.5, 134.3, 131.3, 128.4, 127.8, 120.0, 107.6, 73.2,
23.1,21.1,13.5, 11.1.

IR (film): v (cm™) 3118, 3024, 2961, 2923, 2033, 1980, 1720, 1604, 1570, 1482, 1404, 1354, 1312,
1283, 1220.1394, 1159, 1108, 1080, 1030, 963, 930, 883, 805, 759, 716, 684, 645, 611, 579, 552, 525,
498, 454, 418.

HRMS (ESI, m/z) calcd for CsH;4sN2O,Na [M+Na]*: 277.0953, found: 277.0948.

H
] N Me
N _
O
o)
2d
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According to the general procedure, the reaction of 1d (24.0 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 19.8 mg (83% yield, pale yellow solid) of 2d as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee
= 98% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, t. (major) = 11.1
min, t; (minor) = 13.7 min). [a]Jp*? = -20° (¢ 1.0, CH2CL).

'H NMR (300 MHz, CDCls) 6 8.19 (d, J = 7.9 Hz, 1H), 7.69-7.56 (m, 2H), 7.51 (d, J = 7.4 Hz, 1H),
7.42 (t,J=7.6 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 3.04 (dd, J = 10.6, 6.6 Hz, 1H), 2.29 (s, 3H), 2.22 (dd,
J=10.6, 6.5 Hz, 1H), 1.26 (t, J = 6.5 Hz, 1H).

BC NMR (75 MHz, CDCls) 6 160.6, 151.0, 139.4, 134.4,131.4, 131.3, 128.3, 127.8, 120.0, 107.5, 74.9,
22.7,21.5, 13.6.

IR (film): v (cm™) 3100, 3027, 2292, 2113, 1988, 1718, 1606, 1533, 1481, 1446, 1415, 1363, 1320,
1283, 1210, 1114, 1082, 1027, 997, 967, 927, 884, 787, 766, 731, 682, 6356, 605.6925, 574, 549, 526,
496, 442, 399.

HRMS (ESI, m/z) calcd for Ci14Hi3N2O> [M+H]": 241.0977, found: 241.0972.

Me H,’ N Me
.”N\J
O
(0]
2e

According to the general procedure, the reaction of 1e (24.0 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 20.8 mg (82% yield, pale yellow solid) of 2e as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak I1G column, ee
=98% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 8.3 min,
t: (minor) = 9.4 min). [a]p? =—10.8° (¢ 1.0, CH:CL,).

'H NMR (300 MHz, CDCls) 6 8.05 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 2.3 Hz, 1H), 7.46 (d, J = 7.5 Hz,
1H), 7.31 (t, J = 7.7 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 2.97 (dd, J = 10.5, 6.8 Hz, 1H), 2.47 (s, 3H),
2.38-2.18 (m, 4H), 1.25 (t, J = 6.5 Hz, 1H).

BCNMR (75 MHz, CDCl3) 8 161.1,150.9, 137.9, 136.4, 135.5, 131.3, 128.9, 127.3, 120.2, 107.5, 74.8,
21.5,19.2,18.8, 13.6.

IR (film): v (cm™) 3104, 2960, 2922, 1953, 1747, 1714, 1596, 1531, 1480, 1450, 1411, 1361, 1288,
1260, 1206, 1117, 1083, 1024, 973, 926, 897, 855, 784, 735, 699, 669, 631, 585, 553, 498, 462, 399.
HRMS (ESI, m/z) calcd for C1sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0946.
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According to the general procedure, the reaction of 1f (25.4 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 23.6 mg (93% yield, pale yellow solid) of 2f as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 98% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t, (major) = 12.4
min, t; (minor) = 15.1 min). [a]p*?* = -36.8° (¢ 1.0, CH,Cl,).

'H NMR (300 MHz, CDCls) 6 8.06 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.30 (s, 1H), 7.21 (d,
J=8.0Hz, 1H), 6.14 (d, J = 2.2 Hz, 1H), 2.97 (dd, J = 10.6, 6.6 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H), 2.19
(dd, J=10.7, 6.6 Hz, 1H), 1.23 (t, J = 6.6 Hz, 1H).

BC NMR (75 MHz, CDCl3) 6 160.8, 150.9, 145.6, 139.4, 131.4,131.3, 128.8, 128.7, 117.4,107.5, 74.8,
22.5,21.7,21.5, 13.6.

IR (film): v (cm™) 3132, 2962, 2186, 2118, 1961, 1721, 1611, 1533, 1472, 1420, 1359, 1289, 1262,
1214, 1165, 1118, 1064, 1034, 970, 878, 788, 686, 623, 572, 525, 500, 433

HRMS (ESI, m/z) calcd for C1sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0946.

According to the general procedure, the reaction of 1g (25.4 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 22.3 mg (88% yield, pale yellow solid) of 2g as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=99% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 9.3 min,
t: (minor) = 11.3 min). [a]p?*> = —15.8° (¢ 1.0, CH:CL,).

'H NMR (300 MHz, CDCls) & 7.99 (s, 1H), 7.64 (d, J = 2.4 Hz, 1H), 7.44-7.36 (m, 2H), 6.14 (d, J =
2.4 Hz, 1H), 3.00 (dd, J = 10.6, 6.6 Hz, 1H), 2.39 (s, 3H), 2.28 (s, 3H4), 2.17 (dd, J = 10.6, 6.5 Hz, 1H),
1.20 (t, J= 6.5 Hz, 1H).

BC NMR (75 MHz, CDCl3) 6 160.9, 150.9, 137.8, 136.4, 135.3, 131.4, 131.4,128.1, 119.7, 107.5, 74.9,
22.5,21.2,21.0, 13.6.

IR (film): v (cm™) 3134, 3042, 2925, 2856, 2136, 2073, 2016, 1721, 1612, 1575, 1532, 1504, 1464,
1415, 1359, 1285, 1228, 1173, 1132, 1080, 1064, 1038, 971, 939, 908, 832, 787, 764, 697, 678, 630,
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591, 553, 528, 498, 432.
HRMS (ESI, m/z) calcd for C;sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0948.

Me O
2h

According to the general procedure, the reaction of 1h (25.4 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 21.0 mg (82% yield, white solid) of 2h as a single diastereomer.
Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 93% (HPLC:
254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, t; (major) = 18.1 min, t, (minor) =
20.7 min). [a]p?* = —2.4° (¢ 1.0, CH,CL).

'H NMR (300 MHz, CDCls) 8 7.65 (d, J = 2.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.4 Hz,
1H), 7.22 (d, J = 7.5 Hz, 1H), 6.14 (d, J = 2.4 Hz, 1H), 3.01 (dd, J = 10.7, 6.5 Hz, 1H), 2.70 (s, 3H),
2.29 (s, 3H), 2.16 (dd, J =10.7, 6.3 Hz, 1H), 1.24 (t, J = 6.4 Hz, 1H).

BC NMR (75 MHz, CDCl3) § 160.1, 150.9, 144.9, 140.6, 133.5, 131.5, 131.4, 126.6, 118.3,107.3, 74.2,
23.8,22.5, 22.0, 13.6.

IR (film): v (cm™) 3099, 2969, 2924, 2852, 2021, 1963, 1713, 1591, 1532, 1479, 1447, 1411, 1364,
1296, 1261, 1207, 1108, 1053, 1022, 970, 941, 916, 886, 852, 774, 738, 685, 627, 576, 532, 494, 462,
430.

HRMS (ESI, m/z) calcd for C1sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0946.

tBu

According to the general procedure, the reaction of 1i (29.6 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH»Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 22.3 mg (70% yield, pale yellow solid) of 2i as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=97% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 7.7 min,
t: (minor) = 8.8 min). [a]p*? = —46.0° (¢ 1.0, CH,CL).

'H NMR (300 MHz, CDCls) 6 8.10 (d, J = 8.3 Hz, 1H), 7.65 (d, J = 2.4 Hz, 1H), 7.52-7.38 (m, 2H),
6.15 (d, J = 2.3 Hz, 1H), 3.02 (dd, J = 10.6, 6.6 Hz, 1H), 2.29 (s, 3H), 2.20 (dd, J = 10.7, 6.5 Hz, 1H),
1.36 (s, 9H), 1.26 (t, J = 6.5 Hz, 1H).
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B3C NMR (75 MHz, CDCl3) 8 160.8, 158.548, 150.9, 139.1, 131.4, 131.2, 125.2, 125.2, 117.3, 107.5,
74.9, 35.3, 31.0, 22.6, 21.8, 13.6.

IR (film): v (cm™) 3114, 3052, 2957, 2867, 2249, 2137, 2006, 1943, 1721, 1607, 1534, 1419, 1366,
1290, 1263, 1212, 1139, 1121, 1057, 972, 911, 878, 845, 790, 764, 728, 694, 645, 620, 581, 532, 510,
475.

HRMS (ESI, m/z) calcd for C1sHy0N20,Na [M+Na]*: 319.1422, found: 319.1415.

According to the general procedure, the reaction of 1j (31.6 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 22.2 mg (70% yield, pale yellow solid) of 2i as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 87% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t, (major) = 13.3
min, t; (minor) = 15.8 min). [a]p?* = +37.2° (¢ 1.0, CH,CL,).

'H NMR (300 MHz, CDCls) & 8.44 (d, J = 1.7 Hz, 1H), 7.85 (dd, J = 8.0, 1.9 Hz, 1H), 7.73-7.56 (m,
4H), 7.49-7.36 (m, 3H), 6.16 (d, J = 2.3 Hz, 1H), 3.09 (dd, J = 10.5, 6.6 Hz, 1H), 2.39-2.19 (m, 4H),
1.31 (t, J=6.5 Hz, 1H).

3C NMR (75 MHz, CDCls) 8 160.7, 151.0, 141.0, 139.2, 138.1, 132.9, 131.4, 129.6, 129.0, 128.8,
128.0, 127.0, 120.4, 107.6, 75.0, 22.8, 21.3, 13.6.

IR (film): v (cm™) 3105, 3032, 2960, 2922, 2852, 2061, 2011, 1720, 1611, 1535, 1480, 1454, 1412,
1363, 1298, 1256, 1200, 1142, 1088, 1031, 967, 925, 895, 837, 752, 688, 637, 610, 577.9320, 528, 488,
453, 401.

HRMS (ESI, m/z) calcd for C20H16N2O>Na [M+Na]*: 339.1109, found: 339.1102.

According to the general procedure, the reaction of 1k (27.5 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH»Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 24.8 mg (90% yield, pale yellow solid) of 2k as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee

=99% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 9.8 min,
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t: (minor) = 11.5 min). [a]p?* = —43.6° (¢ 1.0, CHCL,).

'H NMR (300 MHz, CDCls) 6 8.12 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 1.9 Hz, 1H), 7.51 (s, 1H), 7.39 (d,
J=8.4 Hz, 1H), 6.15 (d, J = 1.9 Hz, 1H), 3.00 (dd, J = 10.6, 6.6 Hz, 1H), 2.38-2.14 (m, 4H), 1.29 (t, J
= 6.6 Hz, 1H).

¥C NMR (75 MHz, CDCl3) 6 159.8, 151.2, 141.0, 132.9, 131.4, 128.4, 128.3, 118.5, 107.7, 75.0, 22.9,
21.3,13.6.

IR (film): v (cm™) 3141, 3102, 3073, 2924, 2217, 2157, 2003, 1712, 1598, 1537, 1461, 1417, 1369,
1284, 1211, 1126, 1093, 1060, 1032, 970, 935, 900, 838, 806, 763, 685, 640, 611, 560, 532, 487, 448.
HRMS (ESI, m/z) calcd for C14H;1CIN2O,Na [M+Na]*: 297.0407, found: 297.0400.

According to the general procedure, the reaction of 11 (27.5 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue
LEDs at room temperature, affording 22.7 mg (83% yield, pale yellow solid) of 2l as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=99% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 9.0 min,
t: (minor) = 9.7 min). [a]p? = +14.4° (¢ 1.0, CH,Cl,).

'H NMR (300 MHz, CDCls) 6 8.16 (d, J = 2.2 Hz, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.58 (dd, J = 8.2, 2.2
Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 3.02 (dd, J = 10.6, 6.6 Hz, 1H), 2.28 (s, 3H),
2.23 (dd, J =10.6, 6.6 Hz, 1H), 1.25 (t, J = 6.6 Hz, 1H).

BC NMR (75 MHz, CDCl3) § 159.5,151.2,137.7,134.5,133.9, 131.5, 131.0, 129.8, 121.5, 107.7, 75.0,
22.8,21.0, 13.6.

IR (film): v (cm™) 3132, 3080, 2960, 2921, 2851, 2221, 2123, 1942, 1728, 1597, 1535, 1478, 1411,
1361, 1290, 1260, 1202, 1126, 1099, 1069, 1036, 968, 937, 887, 832, 789, 755, 690, 628, 587, 545, 467,
411

HRMS (ESI, m/z) calcd for C14H;1CIN2O,Na [M+Na]*: 297.0407, found: 297.0400.

2m

According to the general procedure, the reaction of 1m (30.9 mg, 0.10 mmol) and A-RhS (6.9 mg,
8mol%) in CH,Cl, (20.0 mL, 0.005 M) was stirred under nitrogen atmosphere for 48 hours with 24 W
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blue LEDs at room temperature, affording 16.0 mg (52% yield, pale yellow solid) of 2m as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak 1A column, ee
= 94% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, t. (major) = 11.9
min, t; (minor) = 15.4 min). [a]p* = -9° (¢ 1.0, CH,CL).

'H NMR (300 MHz, CDCls) 6 8.26 (s, 1H), 7.64 (d, J = 2.7 Hz, 2H), 6.16 (d, J = 2.4 Hz, 1H), 3.00 (dd,
J=10.6, 6.6 Hz, 1H), 2.31-2.22 (m, 4H), 1.29 (t, J = 6.7 Hz, 1H).

3C NMR (75 MHz, CDCl3) § 158.9, 151.3, 139.3, 138.8, 133.0, 132.6, 131.4, 130.2, 119.8, 107.9, 75.1,
23.0,20.8, 13.6.

IR (film): v (cm™) 3150, 2961, 2927, 2224, 2037, 1985, 1721, 1594, 1539, 1454, 1407, 1344, 1291,
1252, 1202, 1122, 1095, 1032, 971, 931, 881, 848, 795, 763, 697, 663, 627, 596, 569, 515, 469, 445,
410.

HRMS (ESI, m/z) calcd for Ci4H11CLN2O> [M+H]": 309.0198, found: 309.0193.

According to the general procedure, the reaction of 1n (25.8 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 20.6 mg (80% yield, pale yellow solid) of 2n as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=98% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 7.8 min,
t: (minor) = 9.3 min). [a]p*? =—11.8° (¢ 1.0, CH:CL).

'H NMR (300 MHz, CDCls) 6 8.21 (dd, J = 8.7, 5.7 Hz, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.20 (dd, J =
8.5,2.4 Hz, 1H), 7.10 (td, J = 8.5, 2.5 Hz, 1H), 6.15 (d, J = 2.3 Hz, 1H), 3.01 (dd, J = 10.6, 6.6 Hz, 1H),
2.42-2.13 (m, 4H), 1.30 (t, J = 6.6 Hz, 1H).

BBC NMR (75 MHz, CDCls) § 168.0, 164.5, 159.7, 151.1, 142.43 (d, Jce = 10.1 Hz), 134.53 (d, Jcr =
10.2 Hz), 131.4, 116.4 (d, Jcr = 2.7 HZz), 115.7 (d, Jcr = 22.3 Hz), 115.0 (d, Jcr = 22.8 Hz), 107.7, 75.0,
22.9, 21.54 (d, Jer = 2.1 Hz), 13.6.

IR (film): v (cm™) 3104, 2924, 2008, 1954, 1716, 1615, 1591, 1535, 1483, 1364, 1293, 1245, 1211,
1151, 1112, 1085, 1060, 1030, 1001, 971, 944, 916, 869, 836, 783, 760, 682, 634, 597, 567, 531, 502,
446, 397

HRMS (ESI, m/z) calcd for C1sH;1FN2O,Na [M+Na]*: 281.0702, found: 281.0696.
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According to the general procedure, the reaction of 1o (30.8 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CHCl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 48 hours with 24 W blue
LEDs at room temperature, affording 19.1 mg (62% yield, pale yellow solid) of 20 as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=98% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 30 °C, t; (major) = 7.9 min,
t: (minor) = 8.8 min). [a]Jp* = —5.4° (¢ 1.0, CH,CL).

'H NMR (300 MHz, CDCls) 6 8.47 (s, 1H), 7.85 (dd, J = 8.1, 1.3 Hz, 1H), 7.75-7.60 (m, 2H), 6.17 (d,
J=2.4Hz, 1H), 3.11 (dd, J = 10.7, 6.6 Hz, 1H), 2.38-2.21 (m, 4H), 1.33 (t, J = 6.6 Hz, 1H).

BC NMR (75 MHz, CDCls) & 159.4, 151.3, 143.1, 131.5, 130.7 (q), 129.2, 128.5(q), 125.0, 121.5,
120.8, 107.9, 75.1, 23.3, 21.4, 13.6.

IR (film): v (cm™) 3106, 2961, 2924, 1728, 1623, 1536, 1460, 1419, 1364, 1333, 1261, 1205, 1170,
1128, 1065, 1031, 970, 924, 893, 842, 811, 775, 719, 707, 620, 585, 544, 518, 459, 412.

HRMS (ESI, m/z) calcd for CisHi1F3sN>O>Na [M+Na]*: 331.0670, found: 331.0665.

According to the general procedure, the reaction of 1p (30.8 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue
LEDs at room temperature, affording 19.1 mg (62% yield, pale yellow solid) of 2p as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 95% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 12.9
min, t; (minor) = 15.5 min). [a]p* = -27.0° (¢ 1.0, CH:CL).

'H NMR (300 MHz, CDCls) & 8.26 (d, J = 8.0 Hz, 1H), 8.18 (s, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.65 (s,
1H), 6.16 (s, 1H), 3.97 (s, 3H), 3.10 (dd, J = 9.9, 6.9 Hz, 1H), 2.43-2.14 (m, 4H), 1.29 (t, J = 6.3 Hz,
1H).

B3C NMR (75 MHz, CDCls) & 165.6, 159.8, 151.2, 139.5, 135.2, 131.5, 131.5, 129.6, 128.5, 123.5,
107.7,75.0,52.7, 22.9, 21.4, 13.6.

IR (film): v (cm™) 3104, 2953, 2923, 2270, 2204, 2166, 2058, 1955, 1717, 1615, 1583, 1536, 1434,
1356, 1267, 1206, 1110, 1076, 1033, 1002, 970, 936, 862, 830, 774, 742, 678, 641, 616, 567, 486, 398.
HRMS (ESI, m/z) calcd for CisH1sN2OsNa [M+Na]*: 321.0851, found: 321.0846.
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H/ Me

Eto. PFEt =
P
o)

According to the general procedure, the reaction of 1q (39.2 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH>Cl (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 32.5 mg (83% yield, pale yellow solid) of 2q as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
=98% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) =17.8 min,
tr (minor) = 21.4 min). [a]p* = -8.4° (¢ 1.0, CH:CL,).

'H NMR (300 MHz, CDCls) § 7.95 (s, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.51 (d, J = 1.7 Hz, 1H), 7.49 (s,
1H), 6.14 (d, J = 2.3 Hz, 1H), 4.42-4.09 (m, 4H), 3.01 (dd, J = 10.6, 6.6 Hz, 1H), 2.27 (s, 3H), 2.20 (dd,
J=10.6, 6.6 Hz, 1H), 1.52-1.29 (m, 6H), 1.23 (t, J = 6.6 Hz, 1H).

3C NMR (75 MHz, CDCls) 6 159.8, 151.1, 150.2 (d, J = 6.8 Hz), 135.9, 131.4, 129.8, 126.64 (d, J =
4.3 Hz), 122.26 (d, J = 5.4 Hz), 121.4, 107.6, 74.9, 64.87 (d, J = 6.1 Hz), 22.6, 20.9, 16.0 (d, J = 6.5
Hz), 13.6.

IR (film): v (cm™) 3104, 2985, 2922, 2854, 1728, 1610, 1537, 1497, 1368, 1272, 1218, 1163, 1126,
1024, 950, 886, 808, 759, 684, 631, 598, 541, 505

HRMS (ESI, m/z) calcd for C1sH21N206PNa [M+Na]*: 415.1035, found: 415.1030.

PhO

According to the general procedure, the reaction of 1r (33.2 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH»Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 16 hours with 24 W blue
LEDs at room temperature, affording 29.5 mg (89% yield, pale yellow solid) of 2r as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column,
ee >99% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 30 °C, t. (major) =17.3
min, t, (minor) = 19.0 min). [a.]p** = -58.6° (¢ 1.0, CH.CL,).

'H NMR (300 MHz, CDCls) 6 8.13 (d, J = 9.5 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.48-7.38 (m, 2H),
7.27-7.21 (m, 1H), 7.14-7.06 (m, 2H), 7.01-6.92 (m, 2H), 6.13 (d, J = 2.4 Hz, 1H), 2.92 (dd, J = 10.7,
6.6 Hz, 1H), 2.28 (s, 3H), 2.18 (dd, J = 10.7, 6.5 Hz, 1H), 1.27 (t, J = 6.5 Hz, 1H).

3C NMR (75 MHz, CDCls) & 163.1, 160.3, 154.8, 150.9, 141.8, 133.8, 131.4, 130.2, 125.2, 120.6,
117.0, 115.7, 114.0, 107.5, 74.9, 22.6, 21.7, 13.6.

IR (film): v (cm™) 3099, 3062, 2957, 2921, 2063, 1713, 1615, 1583, 1534, 1484, 1449, 1371, 1288,
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1247, 1207, 1160, 1117, 1064, 1028, 1000, 971, 916, 857, 831, 765, 686, 633, 567, 512, 486, 451, 398.
HRMS (ESI, m/z) calcd for C20H;6N2O3Na [M+Na]*: 355.1059, found: 355.1051.

According to the general procedure, the reaction of 1s (27.0 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (20.0 mL, 0.005 M) was stirred under nitrogen atmosphere for 16 hours with 24 W
blue LEDs at room temperature, affording 23.2 mg (89% yield, pale yellow solid) of 2s as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 97% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t, (major) = 10.1
min, t; (minor) = 12.1 min). [a]p?* = —1.0° (¢ 1.0, CH:ClL,).

'H NMR (300 MHz, CDCls) 6 7.65 (t, J = 2.9 Hz, 2H), 7.40 (d, J = 8.5 Hz, 1H), 7.18 (dd, J = 8.5, 2.8
Hz, 1H), 6.14 (d, J = 2.3 Hz, 1H), 3.84 (s, 3H), 2.98 (dd, J = 10.4, 6.6 Hz, 1H), 2.28 (s, 3H), 2.15 (dd, J
=10.4, 6.4 Hz, 1H), 1.18 (t, J = 6.5 Hz, 1H).

BC NMR (75 MHz, CDCl3) § 160.8, 159.1,150.9, 131.7, 131.4, 129.4, 122.7,120.9, 113.5, 107.5, 74.9,
55.7, 22.3, 20.9, 13.6.

IR (film): v (cm™) 3127, 2960, 2925, 2844, 1724, 1615, 1577, 1535, 1503, 1462, 1423, 1364, 1333,
1283, 1233, 1202, 1130, 1071, 1028, 972, 908, 880, 827, 759, 700, 632, 597, 566, 521.9426, 410.
HRMS (ESI, m/z) calcd for C1sH;4N2O3Na [M+Na]*: 293.0902, found: 293.0895.

According to the general procedure, the reaction of 1t (34.6 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH»Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue
LEDs at room temperature, affording 30.0 mg (87% yield, pale yellow solid) of 2t as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 99% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 30 °C, t. (major) = 19.5
min, t; (minor) = 22.3 min). [a]p* = -58.6° (¢ 1.0, CH:CL).

'H NMR (300 MHz, CDCls)  7.68 (s, 1H), 7.57 (s, 1H), 7.50-6.83 (m, 7H), 6.07 (s, 1H), 5.03 (s, 2H),
2.94-2.86 (m, 1H), 2.21 (s, 3H), 2.14-2.00 (m, 1H), 1.21-1.09 (m, 1H).

B3C NMR (75 MHz, CDCls) & 163.5, 160.7, 158.2, 150.9, 136.1, 131.9, 131.4, 128.6, 128.2, 127.5,
123.3,120.9, 114.7, 107.5, 74.9, 70.3, 22.3, 20.9, 13.6.
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IR (film): v (cm™) 3104, 3036, 2961, 2924, 2863, 2147, 2085, 2021, 1719, 1608, 1535, 1501, 1461,
1372, 1330, 1280, 1230, 1125, 1074, 1021, 972, 922, 826, 759, 739, 694, 598, 565, 537, 457.
HRMS (ESI, m/z) calcd for C;Hi9N2O3 [M+H]*: 347.1396, found: 347.1392.

Me

2u

According to the general procedure, the reaction of 1u (30.0 mg, 0.10 mmol) and A-RhS (3.5 mg, 4.0
mol%) in CH,Cl, (20.0 mL, 0.005 M) was stirred under nitrogen atmosphere for 10 hours with 3W blue
LEDs at room temperature, affording 15.0 mg (50% yield, pale yellow solid) of 2u as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 93% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/ min, 30 °C, t. (major) = 18.2
min, t; (minor) = 16.5 min). [a]p*?* = —-34.4° (¢ 1.0, CH,Cl,).

'H NMR (300 MHz, CDCls) 8 7.65 (d, J = 2.3 Hz, 1H), 7.60 (s, 1H), 6.91 (s, 1H), 6.15 (d, J = 2.3 Hz,
1H), 3.98 (s, 3H), 3.92 (s, 3H), 2.95 (dd, J = 10.4, 6.5 Hz, 1H), 2.29 (s, 3H), 2.16 (dd, J = 10.4, 6.4 Hz,
1H), 1.21 (t, J = 6.5 Hz, 1H).

BC NMR (75 MHz, CDCls) 6 160.7, 154.5, 150.9, 148.8, 134.0, 131.4, 112.3, 109.8, 107.5, 74.83, 56.3,
56.2, 22.2, 21.3, 13.6.

IR (film): v (cm™) 3359, 3268, 3115, 2923, 2849, 1713, 1604, 1514, 1477, 1455, 1420, 1368, 1297,
1271, 1229, 1203, 1161, 1122, 1067, 1030, 969, 933, 877, 793, 761, 732, 693, 657, 618, 580, 544, 516,
491, 431.

HRMS (ESI, m/z) calcd for CisHi1sN2OsNa [M+Na]": 323.1008, found: 323.1004.

2v

According to the general procedure, the reaction of 1v (34.8 mg, 0.10 mmol) and A-RhS (3.5 mg, 4mol%)
in CH2Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 20 hours with 24 W blue LEDs

at room temperature, affording 30.0 mg (86% yield, pale yellow solid) of 2v as a single diastereomer.

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee =97% (HPLC:

254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 11.6 min, t. (minor) =

13.5 min). [a]p** = —87.0° (¢ 1.0, CHxCL,).

'H NMR (300 MHz, CDCls) 6 8.00 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 2.3 Hz, 1H), 7.56-7.43 (m, 5H),

7.20-7.05 (m, 2H), 6.12 (d, J = 2.3 Hz, 1H), 2.88 (dd, J = 10.6, 6.6 Hz, 1H), 2.27 (s, 3H), 2.15 (dd, J =
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10.6, 6.5 Hz, 1H), 1.24 (t, J = 6.5 Hz, 1H).

3C NMR (75 MHz, CDCls) & 160.3, 150.9, 147.7, 139.9, 134.7, 131.6, 131.4, 130.7, 129.9, 129.4,
126.0, 125.6, 116.8, 107.5, 74.8, 22.6, 21.4, 13.6.

IR (film): v (cm™) 3100, 3056, 2922, 1714, 1590, 1533, 1465, 1449, 1415, 1357, 1280, 1208, 1092,
1057, 1027, 997, 967, 930, 894, 827, 748, 681, 615, 565, 542, 507, 434, 412

HRMS (ESI, m/z) calcd for C20H;6N20,SNa [M+Na]": 371.0830, found: 371.0826.

H

] N Me
/ I lllN _
S O

2w

According to the general procedure, the reaction of 1w (24.6 mg, 0.10 mmol) and A-RhS (3.5 mg,
4mol%) in CH>Cl» (20.0 mL, 0.005 M) was stirred under nitrogen atmosphere for 36 hours with 24 W
blue LEDs at room temperature, affording 14.3 mg (58% yield, pale yellow solid) of 2w as a single
diastereomer. Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee
= 63% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, t; (major) = 29.3
min, t; (minor) = 37.6 min). [a]p** = —4.4° (¢ 1.0, CH:Cl).

'H NMR (300 MHz, CDCls) 8 7.74 (d, J = 5.0 Hz, 1H), 7.65 (d, J = 2.4 Hz, 1H), 7.21 (d, J = 5.0 Hz,
1H), 6.15 (d, J = 2.4 Hz, 1H), 3.06 (dd, J = 10.3, 6.5 Hz, 1H), 2.28 (s, 3H), 2.23 (dd, J = 10.3, 6.6 Hz,
1H), 1.28 (t, J = 6.5 Hz, 1H).

3C NMR (75 MHz, CDCls) 6 156.5, 151.0, 147.8, 135.9, 131.5, 127.2, 122.4, 107.6, 21.7, 20.3, 13.6.
IR (film): v (cm™) 3104, 2926, 1708, 1661, 1537, 1462., 1427, 1405, 1364, 1291, 1204, 1118, 1043,
959, 920, 851, 814, 753, 682, 638, 583, 530, 446.

HRMS (ESI, m/z) calcd for Ci2H1oN20>SNa [M+Na]*: 269.0361, found: 269.0356.

According to the general procedure, the reaction of 1x (25.4 mg, 0.10 mmol) and A-RhS (3.5 mg, 4mol%)
in CH2Cl, (2.0 mL, 0.05 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs
at room temperature, affording 17.0 mg (67% yield, pale yellow solid) of 2x as a single diastereomer.
Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC:
254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 30 °C, t; (major) = 8.4 min, t; (minor) = 9.1
min). [a]p?* = -25.2° (¢ 1.0, CH,CL).

'H NMR (300 MHz, CDCls) 6 8.23 (d, J = 7.8 Hz, 1H), 7.71-7.54 (m, 3H), 7.47-7.37 (m, 1H), 6.16 (d,
J=2.2Hz, 1H), 2.30 (s, 3H), 2.10 (d, J = 6.7 Hz, 1H), 1.43 (s, 3H), 1.32 (d, J = 6.7 Hz, 1H).
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BC NMR (75 MHz, CDCls) 6 160.6, 151.0, 143.2, 134.4,131.9, 131.2, 127.3, 125.8, 120.2, 107.3, 78.9,

27.4,25.2,17.73,13.7.

IR (film): v (cm™) 3130, 2971, 2929, 1718, 1604, 1532, 1467, 1443, 1413, 1357, 1296, 1250, 1220,
1113, 1030, 956, 882, 766, 732, 688, 614, 585, 549, 490, 458.

HRMS (ESI, m/z) calcd for C;sH;4N2O,Na [M+Na]*: 277.0953, found: 277.0948.

4.2.4 Mechanistic Experiments

1) Absorption Spectra

RhS-1d was prepared according to our previously developed well-documented method.!® As shown
in Figure 49, free substrate 1d, which has a maximum absorption at around 290 nm, can not be excited
by visible light. In contrast, strong absorption of RhS-1d appears at near UV and visible-light region.
These results support the role of RhS for the direct visible light excitation of catalyst bound substrate.
Otherwise to reach the excited state of the substrate needs a high energy UV-light.

Absorbance

v hd | J hd v L] v L}
250 300 350 400 450 500
A (nm)

Figure 49. UV/Vis absorption spectra of 1d (0.05 mM), RhS (0.05 mM) and RhS-1d (0.05 mM).
Recorded in CH>Cl,.

2) Deuteration Experiment

9,nPr
0 Pd(OAc), (1.0 mol%) Q nPr\,p\ /“Pf
@\)\ /\H,OH P(o-tol); (2.0 mol%) D ¢ o ,/>_
> M
Br Et;N (3.0 equiv) ANPH DmAR, EtN ©
115 °C O CH20|2

98% D
d-1d (98% D)

Substrate synthesis: According to the same procedure for the preparation of 1d, the compound d-1d (98%
D) was obtained as a white solid starting from 2-bromobenzaldehyde-formyl-d (98% D).
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O (d-1d)
A white solid. Yield: 88%.
IH NMR (300 MHz, CDCl5) & 8.81 (d, J = 15.9 Hz, 1H), 8.28 (d, J = 2.6 Hz, 1H), 7.98-7.75 (m, 3H),
7.71-7.52 (m, 2H), 6.30 (d, J = 2.7 Hz, 1H), 2.35 (s, 3H).
13C NMR (75 MHz, CDCIls) & 162.5, 154.0, 143.1, 136.6, 133.8, 132.0, 130.3, 129.4, 128.3, 121.0,
110.9, 13.9.
HRMS (ESI, m/z) calcd for C14H;1DN>O>Na [M+Na]*: 264.0859, found: 264.0855.

Photocyclization: An oven-dried 10 mL Schlenk tube was charged with compound d-1d (24.1 mg, 0.10
mmol) and rac-RhS (3.5 mg, 4.0 mol%). Then benzene (2.0 mL, 0.05 M) was added via syringe. The
reaction mixture was degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed
and placed approximately 10 cm away from the 24 W blue LEDs. After stirring for the indicated time
(monitored by TLC) under nitrogen atmosphere, the mixture was diluted with CH,Cl,. The combined
organic solutions were concentrated, reduced pressure and purified by flash chromatography on silica
gel (n-hexane/EtOAc) to afford 23.0 mg (96% yield) of d-2d as a pale yellow solid. Through 'H NMR

analysis it can be seen that the methylene group of the cyclopropane is 78% deuterated.

'H NMR (500 MHz, CDCl3) & 8.21-8.15 (m, 1H), 7.65 (d, J = 2.5 Hz, 1H), 7.61 (td, J = 7.6, 1.4 Hz,
1H), 7.51-7.48 (m, 1H), 7.41 (td, J = 7.7, 1.2 Hz, 1H), 6.14 (d, J = 2.5 Hz, 1H), 3.02 (d, J = 6.7 Hz, 1H),
2.28 (s, 3H), 2.20 (d, J = 10.6 Hz, 0.22H for 22% H and 78% D), 1.24 (d, J = 6.6 Hz, 1H).

13C NMR (75 MHz, CDCl3) 8 160.6, 151.0, 139.4, 134.4, 131.4, 131.3, 128.3, 127.8, 120.0, 107.5, 74.8,
22.36 (m), 21.4, 13.6.

HRMS (ESI, m/z) calcd for C14H;;DN,O;Na [M+Na]*: 264.0859, found: 264.0852.

3) Photosensitization with Unreactive Rhodium Complex
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“1+PFg —|+ PFe’
S/@—tBu
e, @i
| N N7 DCM | /N
Rh +
| . N“ rt, overnlght |
N Me X !
2%
rac-RhS rac-thpy

The racemic catalyst 7ac-RhS complex (34.5 mg, 1.0 equiv) was dissolved in CH»Cl, (0.1 M), and then
2,2'-bypiridine (6.9 mg, 1.1 equiv) was added. The mixture was stirred overnight at room temperature,
and then the solvent was evaporated. The solid was washed three times with diethyl ether to afford pure
rac-Rhbpy complex (35.8 mg, Yield: 92%.).

'"H NMR (300 MHz, CD>Cl) 6 8.45 (d, J= 8.1 Hz, 2H), 8.25 (d, J= 5.2 Hz, 2H), 8.14 (td, J=7.9, 1.6
Hz, 2H), 7.91-7.79 (m, 4H), 7.58-7.50 (m, 2H), 7.44 (dd, J = 8.6, 1.8 Hz, 2H), 7.19 (td, J=7.5, 0.9 Hz,
2H), 6.99 (td, J=17.6, 1.4 Hz, 2H), 6.62 (d, J = 1.5 Hz, 2H), 6.43 (d, J= 7.8 Hz, 2H), 0.91 (s, 18H).
3C NMR (75 MHz, CD,Cl,) § 177.2(2C), 166.3, 165.8, 155.7, 152.6, 150.8, 149.7, 140.7, 140.4, 134.2,
131.9,129.1, 128.5, 126.9, 124.9, 124.7, 124.3, 123.1, 115.4, 35.0, 31.2.

_|+ PFe

s
CD

rac-Rhbpy

i Rhbpy ( %) ) N Me
_ rac-Rhbpy (4.0 mol% \j
A '//>*Me > N=
NeNN CH,Cly, rt )
o) blue LEDs, 36h o)
1d

An oven-dried 10 mL Schlenk tube was charged with compound 1d (24.0 mg, 0.10 mmol) and rac-
Rhbpy (3.5 mg, 4.0 mol%). Then, CH,Cl, (2.0 mL, 0.05 M) was added via syringe. The reaction mixture
was degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring 36 hours under nitrogen atmosphere,
the mixture was directly transferred to column and purified by flash chromatography on silica gel (n-

hexane/EtOAc= 50:1 to 3:1) to afford the analytically pure product 2d (5.8 mg, Yield 24%).

4.2.5 Gram-Scale Reaction and Catalyst Recovery

An oven-dried 250 mL Schlenk tube was charged with compound 1d (1.08 g, 4.5 mmol) and A-RhS
(155 mg, 0.18 mmol, 4.0 mol%). CH>Cl, (90 mL, 0.05 M) was added via syringe and stirred under an
atmosphere of nitrogen. The blue LEDs light source (24 W) was positioned approximately 10 cm away
from the Schlenk tube. After photolysis for 48 h under an atmosphere of nitrogen, K,CO; (6.22 g, 45.0
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mmol), Hiinig’s base (47 pL, 0.27 mmol, 6.0 mol%), and the chiral salicyloxazoline aux**?' (69 mg,
0.27 mmol, 6.0 mol%) were added stepwise, and then stirred for another 2 h at room temperature.??
Afterwards, the solvent was concentrated and the residue was filtered through a thin pad of silica gel to
remove the inorganic salts. The entire mixture was collected and purified by flash chromatography on
silica gel (n-hexane/EtOAc 20:1 to 10:1) to afford A-(R)-aux-RhS?? (138 mg, 0.155 mmol, 86%) as a
yellow solid with a dr > 99:1 as judged from ’F NMR analysis. The analytically pure product 2d eluted
last and was isolated (970 mg, 90% yield) and the enantiomeric excess determined as ee > 99% by HPLC
analysis (Chiralpak IA column, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 30 °C, tr

(major) = 11.1 min, tr (minor) = 13.6 min).

Q H N\ Me
) ’
/H @-Me ARS (40 mol%) 1 N\J
N CH,Cl, 48 h, rt.
O blue LEDs O
1d (1.08 g, 4.5 mmol) 2d (90% yield)

K>COg3, Hinig's base

OH
After the reaction @(r
N
/J l||Ph

Bu S

A-(R)-aux-RhS
86%, > 99:1 dr
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4.2.6 Follow-Up Conversion

H’, N Me H"
,,,N’\j 1) O3, acetone, -78 °C "iINH
5 \= » O CHO
2) NiCl,"6H20 (0.5 eq)
o) NaBH4 (6 eq) o]
2d (>99% ee) EtOH, 0 °C, 10 min 2d' (>99% ee)
58%

Following a modified literature procedure,* a solution of compound 2d (30 mg, 0.125 mmol) in acetone
(12.5 mL, ¢ = 0.01 M) was cooled to —78 °C. A stream of O3/O, was bubbled into the reaction solution
until the solution became pale blue (15 min). Then, excess ozone was replaced by bubbling O» for 5 min
and bubbling N> for 5 min. Thereafter, the mixture was allowed to warm to room temperature, and was
concentrated to ~1 mL volume. Ethanol (5 mL) was added, the solution was cooled to 0 °C, and
NiCl,-6H>O (15 mg, 0.0625 mmol, 0.5 eq) and NaBH4 (29 mg, 0.75 mmol, 6 eq) were added. After
being stirred at 0 °C for 10 min, NaHCOj (sat.) (5 mL) was added to quench the reaction, and the mixture
was extracted with EtOAc (3%x10 mL). The combined organic layer was washed with brine, dried over
Na»SOs and filtered. The residue was purified by column chromatography on silica gel to afford the
formamide product 2d’ as a colorless oil (eluent: EtOAc/hexane = 3:1, 14.7 mg, 58% yield).
Enantiomeric excess was established by HPLC analysis on chiral stationary phase to be ee >99%
(Chiralpak IG column, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 °C, tr (major) =
21.0 min, tr (minor) = 24.6 min). [a]D* = -38.2° (¢ 1.0, CH,CL).

'"H NMR (CD;CN, as a mixture of rotamer): 0.99 (major, t, J = 6.6 Hz, 0.68H), 1.06 (minor, t, J = 6.5
Hz, 0.32H), 1.76 (major, dd, J = 10.6, 6.5 Hz, 0.68H), 1.92-1.99 (minor, overlapped with CD,HCN,
0.32H), 2.62 (major, dd, J = 10.6, 6.8 Hz, 0.68H), 2.78 (minor, dd, J = 10.6, 6.5 Hz, 0.32H), 7.38-7.48
(major and minor, m, 1H), 7.52-7.60 (major and minor, m, 1H), 7.52-7.60 (minor NH, m, 0.32H), 7.60-
7.70 (major and minor, m, 1H), 7.78-8.02 (major NH, br, 0.68 H), 8.03-8.11 (major and minor, m, 1H),
8.18 (major, s, 0.68 H), 8.48 (minor, d, J = 11.28 Hz, 0.32H).

BC NMR (CDsCN, as a mixture of rotamer): 22.3 (minor), 22.4 (major), 22.9 (major), 23.1 (minor),
68.8, 121.7, 128.8 (major), 129.0 (minor), 129.9, 131.86 (major), 131.93 (minor), 135.8 (major), 135.9
(minor), 142.3, 162.9 (minor), 163.3 (major), 167.1.

HRMS (ESI, m/z) calcd for C;;HoNOsNa [M+Na]*: 226.0480, found: 277.0475.
4.2.7 Single-Crystal X-Ray Diffraction Studies

Single crystals of 2Kk suitable for X-ray diffraction were obtained by slow diffusion from of a solution
of 2k (30 mg) in CH,Cl, (0.5 mL) layered with n-hexane (1.0 mL) at room temperature for several days
in a NMR tube.

Data was collected with an STOE STADIVARI diffractometer equipped with with CuKa radiation,
a graded multilayer mirror monochromator (. = 1.54186 A) and a DECTRIS PILATUS 300K detector
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using an oil-coated shock-cooled crystal at 100(2) K. Absorption effects were corrected semi-empirical
using multiscanned reflexions (STOE LANA, absorption correction by scaling of reflection intensities).
Cell constants were refined using 20551 of observed reflections of the data collection. The structure was
solved by direct methods by using the program XT V2014/1 (Bruker AXS Inc., 2014) and refined by
full matrix least squares procedures on F? using SHELXL-2018/3 (Sheldrick, 2018). The non-hydrogen
atoms have been refined anisotropically, carbon bonded hydrogen atoms were included at calculated
positions and refined using the ‘riding model’ with isotropic temperature factors at 1.2 times (for CH3
groups 1.5 times) that of the preceding carbon atom. CH3 groups were allowed to rotate about the bond
to their next atom to fit the electron density. Nitrogen or oxygen bonded hydrogen atoms were located
and allowed to refine isotropically. The Flack parameter refined to -0.005(5). The absolute structure of
this crystal has been determined.

Crystal structure, data and details of the structure determination for 2k are presented in the Figure
50.

Figure 50. Crystal structure of 2k.
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Table 3. Crystal data and structure refinement for 2k.

Crystal data

Identification code
Habitus, colour

Crystal size

Crystal system
Space group

Unit cell dimensions

Volume

Cell determination
Empirical formula
Moiety formula
Formula weight

Density (calculated)
Absorption coefficient
F(000)

Data collection:

Diffractometer type
Wavelength

Temperature

Theta range for data collection
Index ranges

Data collection software

Cell refinement software

Data reduction software

Solution and refinement:

Reflections collected
Independent reflections
Completeness to theta = 67.686°
Observed reflections

Reflections used for refinement
Absorption correction

Max. and min. transmission
Flack parameter (absolute struct.)

Largest diff. peak and hole
Solution
Refinement

Treatment of hydrogen atoms
Programs used

ZCHBS56
nugget, colourless

0.33x 0.20 x 0.12 mm3

Tetragonal

P4; Z=4
a=7.4607(1) A a=90°.
b=7.4607(1) A B=90°.
c=22.0368(4) A v=90°.
1226.61(4) A3

20551 peaks with Theta 4.0 to 75.8°.
Cis Hii CIN;2 Oz

Ci4 Hi1 CIN;2 Og

274.70

1.487 mg/m3
2.759 m’!
568

STOE STADIVARI
1.54186 A

100(2) K

5.931 to 75.291°.

~9<=h<=8, -8<=k<=9, -19<=]<=27

X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)*!

X-Area Recipe 1.33.0.0 (STOE, 2015)*
X-Area Integrate 1.71.0.0 (STOE, 2016)*
X-Area LANA 1.68.2.0 (STOE, 2016)**

13497

2188 [R(int) = 0.0184]

100.0 %

2178[1 >26(T)]

2188

Semi-empirical from equivalents®*
0.5050 and 0.2134

20.005(5)*

0.198 and -0.243 e.A-3

intrinsic phases*®

Full-matrix least-squares on F2 Y
Calculated positions, constr. ref.

XT V2014/1 (Bruker AXS Inc., 2014)3°
SHELXL-2018/3 (Sheldrick, 2018)*’
DIAMOND (Crystal Impact)*®
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ShelXle (Hiibschle, Sheldrick, Dittrich, 2011)°

Data / restraints / parameters 2188/1/173

Goodness-of-fit on F2 1.048

R index (all data) wR2 =0.0568

R index conventional [[>2sigma(])] R1=0.0214
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4.3 Catalytic a-Deracemization of Ketones Enabled by Photoredox Deprotonation and

Enantioselective Protonation

4.3.1 Synthesis of Substrates

MeONHMe HCl
EDCHCI o
0 LDA 0
©\)J\ > DMAP, NEt; | Mo
OH  Mel, THF OH CH,Cl, n
Me OMe
-78°C to rt Me s1

83% vyield for 2 steps

o 0
N -Br n-BuLi N
nMe  + | S — [
) % THF ~Z Me

1 -78°Ctort 3a

90% yield

1
............................................................................................................ -

First step: n-BuL.i (1.6 M in hexane, 2.2 eq) was added dropwise to a solution of diisopropylamine (2.2
eq) in THF at 0 <C. The mixture was stirred for additional 30 min at the same temperature. After cooling
to —78 °C, a solution of phenylacetic acid (1.0 eq) in THF was added dropwise at —78 °C. The mixture
was stirred for an additional 1 h. lodomethane (1.5 eq) was added in one portion at —78 °C. The mixture
was allowed to warm to rt overnight, quenched by adding of H.O to obtain a clear yellow solution that
was concentrated under reduced pressure. The residue was taken up in H2O, acidified with HCI (1M)
and extracted with EtOAc for three times. The combined organic layers were washed with brine. The
solution was dried with anhydrous Na,SOs, filtrated and concentrated under reduced pressure. The
obtained liquid was dried in vacuum to give the crude product which was directly used for the next step
without further purification.

Second step: To a mixture of the 2-phenylpropionic acid (1.0 eq), N,O-dimethylhydroxylamine
hydrochloride (1.3eq) and DMAP (10% mol) in CH2Cl, (0.2M) at 0 °C were added NEt; (1.33 eqg) and
EDCI (1.3eq) successively. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to
room temperature and stirred overnight. The reaction was diluted with EtOAc. The organic layer was
washed with 1 N HCI (3 x 10 mL), aqueous saturated NaHCOs (3 x 10 mL), and brine (20 mL). The
combined organic layers were dried over anhydrous Na.SOs, filtered, and concentrated under reduced
pressure. The crude mixtute was purified by flash chromatography on silica gel (n-hexane/EtOAc = 30:1
to 3:1) to give the pure Weinreb amide S1. Yield: 83% for 2 steps. The procedure was adapted and
modified from a previous report.*

Third step: To a solution of 2-bromopyridine (1.5 eq) in THF at -78 °C was added n-BuLi (1.5 eq)
dropwise under a nitrogen atmosphere. The reaction was stirred at -78 °C for 1 h. The corresponding
Weinreb amide S1 (1.0 eq in THF) was added dropwise to the flask after the reaction was cooled back
down to -78 °C. The reaction was allowed to warm to room temperature slowly and stirred overnight.

The reaction was quenched with a saturated aqueous NH.CI solution at room temperature and extracted
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with EtOAc. The organic layer was washed with brine. After drying with anhydrous Na,SOs, filtration
and concentration under reduced pressure, the crude residue was purified by flash chromatography on
silica gel (n-hexane/EtOAc = 30:1 to 3:1) to afford the substrate 3a as a white solid. Yield: 90%.
2-Phenyl-1-(pyridin-2-yl)propan-1-one (1)

'H NMR (300 MHz, CDCls) 6 8.80 — 8.70 (m, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.85 (td, J = 7.7, 1.7 Hz,
1H), 7.54 — 7.41 (m, 3H), 7.30 (ddd, J = 11.0, 9.4, 6.1 Hz, 3H), 5.59 (9, J = 7.1 Hz, 1H), 1.66 (d, J =
7.1 Hz, 3H).

BC NMR (75 MHz, CDCls) 5 201.8, 153.0, 148.8, 140.9, 136.8, 128.5, 126.8, 126.6, 122.7, 44.9,
18.2.

HRMS (ESI, m/z) calcd for C14H13NNaO [M+Na]*: 234.0889, found: 234.0900.

MeONHMe'HCI
: EDC'HCI Me
i Me Me DMAP, NEt *
: 0 LDA Q » NEls e
OH Mel, THF OH CH,Cl, Me OMe
_78° Me
78°C tort s2
90% vyield for 2 steps
Me o o Me
Me | Ny -Br n-BuLi Ny
N/ —»
Me OMe / THF I ~Z Me
s2 -78°C to rt 3b

95% yield

According to the same procedure used as for the preparation of 1, 4-methylphenylacetic acid as the
starting material provided 3b as a white solid. Yield: 86% over three steps.
1-(Pyridin-2-yl)-2-(p-tolyl) propan-1-one (2)

'H NMR (300 MHz, CDCls) 6 8.78 — 8.52 (m, 1H), 8.11 — 7.90 (m, 1H), 7.75 (td, J = 7.7, 1.4 Hz,
1H), 7.43 - 7.34 (m, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 5.46 (g, J = 7.1 Hz, 1H),
2.27 (s, 3H), 1.55 (d, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCls) 6 201.9, 153.0, 148.8, 137.8, 136.7, 136.2, 129.2, 128.3, 126.8, 122.7, 7
445,21.0, 18.2.

HRMS (ESI, m/z) calcd for C1sH1sNO [M+H]*: 226.1226, found: 226.1230.
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MeONHMe-HCI :

EDCHCI :

Me OH T onelL o Me N
Mel THF CH,Cl, Ve Ove

-78°C to rt s3

71% yield for 2 steps !

o) _ 9 :

e N’Me 4 | Ny -Br n-BulLi | Ny Me
Me OMe % THF ¥z Me :

s3 -78°Ctort 3c

98% vyield :

According to the same procedure used as for the preparation of 1, 3-methylphenylacetic acid as the
starting material provided 3c as a white solid. Yield: 70% over three steps.
1-(Pyridin-2-yl)-2-(m-tolyl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.76 (dd, J = 4.0, 0.7 Hz, 1H), 8.11 (dd, J = 7.9, 0.9 Hz, 1H), 7.85 (td,
J=77,15Hz, 1H), 7.53 - 7.45 (m, 1H), 7.33 — 7.21 (m, 3H), 7.12 — 7.05 (m, 1H), 5.56 (9, J = 7.1
Hz, 1H), 2.40 (s, 3H), 1.65 (d, J = 7.1 Hz, 3H).

¥C NMR (75 MHz, CDCl3) 6 201.9, 153.0, 148.8, 140.8, 138.0, 136.7, 129.0, 128.3, 127.4, 126.8,
125.6, 122.7, 44.8, 21.4, 18.23.

HRMS (ESI, m/z) calcd for CisH1sNO [M+H]*: 226.1226, found: 226.1231.

MeONHMe HCl
o EDC-HCI o
0
_LbA o DMAP, NEt, Q\HLN’M‘E
OH  Mel, THF OH ch,C, —> \
Me -78°C to rt Me Me Me Me OMe
s4 .
83% yield for 2 steps !
0
0
Ny Br n-BuLi N
N/Me + I N > | \
Me Me OMe Z THF ¥ Me Me
sS4 -78°C to rt

3d
90% yield

____________________________________________________________________________________________________

According to the same procedure used as for the preparation of 1, 2-methylphenylacetic acid as the
starting material provided 3d as a white solid. Yield: 75% over three steps.
1-(Pyridin-2-yl)-2-(o-tolyl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.58 (d, J = 4.6 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.74 (td, J = 7.7, 1.6
Hz, 1H), 7.34 (ddd, J = 7.4, 4.8, 1.0 Hz, 1H), 7.20 — 7.03 (m, 4H), 5.57 (q, J = 7.0 Hz, 1H), 2.57 (s,
3H), 1.50 (d, J = 7.0 Hz, 3H).

B3C NMR (75 MHz, CDCls) § 202.6, 153.2, 148.8, 139.8, 136.7, 136.3, 130.5, 126.9, 126.8, 126.6,
126.1, 122.5, 41.7, 19.9, 17.7.

HRMS (ESI, m/z) calcd for C1sH1sNO [M+H]*: 226.1226, found: 226.1232.
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3e
88% vyield

; MeONHMe HCI ;
: EDCHCI tBu :
1 tBu tBu 0 :
: \©\j\ LDA 0 DMAP, NEt, m Me |
: — — Nig :
: OH Mel, THF OH CH,Cl, Me (I)Me :
H _78° Me H
: 78°C tort S5 :
83% yield for 2 steps
i tBu o o tBu 5
; Ny -Br n-BuLi N :
: Ve + | —_— S :
E Me 6Me “ THF — Me :
S5 -78°C to rt

According to the same procedure used as for the preparation of 1, 4-tert-butylphenylacetic acid as the
starting material provided 3e as a white solid. Yield: 73% over three steps.

2-(4-(tert-Butyl) phenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.67 (d, J = 4.2 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.75 (td, J = 7.7, 1.7
Hz, 1H), 7.39 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.30 (q, J = 8.5 Hz, 4H), 5.50 (q, J = 7.1 Hz, 1H), 1.55
(d, J = 7.1 Hz, 3H), 1.27 (s, 9H).

3C NMR (75 MHz, CDCl3) 6 202.0, 153.1, 149.4, 148.8, 137.6, 136.7, 128.0, 126.8, 125.4, 122.8,
4411, 34.32, 31.29, 18.17.

HRMS (ESI, m/z) calcd for CigH22NO [M+H]*: 268.1696, found: 268.1702.

MeONHMe HCI
EDCHCI -
Bu o) DMAg NCEt B Q
T, e, e
OH CH,Cl, -
Me Me OMe
s6
92% yield
Bu o 0 iBu
N. B Buli
N/Me " | Nl n-BulLi | Ny
| Z
Ve Ome TOHF 2 Me
S6 78°C to rt 3f

87% vyield

According to the similar procedure used as for the preparation of 1, 2-(4-1sobutylphenyl)propionic Acid
as the starting material provided 3f as a white solid. Yield: 80% over three steps.
2-(4-1sobutylphenyl)-1-(pyridin-2-yl) propan-1-one

'H NMR (300 MHz, CDCls) 6 8.66 (d, J = 4.1 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.74 (td, J = 7.7, 1.7
Hz, 1H), 7.43 - 7.32 (m, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 5.48 (q, J = 7.1 Hz,
1H), 2.39 (d, J = 7.2 Hz, 2H), 1.91 — 1.71 (m, 1H), 1.55 (d, J = 7.1 Hz, 3H), 0.86 (d, J = 6.6 Hz, 6H).
B3C NMR (75 MHz, CDCls) § 202.0, 153.1, 148.7, 140.0, 138.0, 136.7, 129.2, 128.1, 126.8, 122.7,
45.0,44.4,30.1, 22.4, 18.2.

HRMS (ESI, m/z) calcd for CigH22NO [M+H]*: 268.1696, found: 268.1707.
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39
90% vyield

MeONHMe-HCI :

MeO MeO EDC-HCI MeO o
o LDA Q DMAP, NEt; Me

OH Wel, THE o " omon o

) '

-7z3e°€: tort Me el Me OMe

S7 :

78% yield for 2 steps

MeO o o OMe E
N._-B N i H

N/Me + | Nl n-BulLi | N\ :

P> H

Me 6Me THF = Me :

57 -78°C to rt :

According to the same procedure used as for the preparation of 1, 4-methoxyphenylacetic acid as the
starting material provided 3g as a colorless liquid. Yield: 70% over three steps.
2-(4-Methoxyphenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) § 8.70 — 8.61 (m, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.75 (td, J = 7.7, 1.7 Hz,
1H), 7.43 —7.25 (m, 3H), 6.80 (d, J = 8.8 Hz, 2H), 5.43 (q, J = 7.1 Hz, 1H), 3.73 (s, 3H), 1.53 (d, J =
7.1 Hz, 3H).

3C NMR (75 MHz, CDCl3) 6 201.9, 158.3, 153.0, 148.7, 136.7, 132.8, 129.4, 126.8, 122.7, 113.9,
55.1, 43.9, 18.1.

HRMS (ESI, m/z) calcd for CisH1sNO2 [M+H]*: 242.1176, found: 242.1181.

; MeONHMe HCI
SN EDC'HCI o o
: o)
¢ :©\)OL LDA ¢ 0 DMAP, NEt; ~ { Me
' —_— —_— -
' o OH M (¢) OH o N
: el, THF CHCl, Me OM
: _78° Me e e
' 78°C to rt s8
: 88% yield for 2 steps
o) o o] O>
< Me Ny, -Br n-BuLi N g
Y N” + I EE— |
Me OMe z THF 2 Me
0
s8 -78°C tort

3h
89% yield

______________________________________________________________________________________________________________

According to the same procedure used as for the preparation of 1, 3,4-methylenedioxyphenylacetic acid
as the starting material provided 3h as a white solid. Yield: 78% over three steps.

2-(Benzo[d] [1,3] dioxol-5-yl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.76 — 8.53 (m, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.76 (td, J = 7.7, 1.7 Hz,
1H), 7.39 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 6.90 (d, J = 1.6 Hz, 1H), 6.83 (dd, J = 8.0, 1.7 Hz, 1H), 6.68
(d, J = 8.0 Hz, 1H), 5.87 (s, 2H), 5.40 (g, J = 7.1 Hz, 1H), 1.51 (d, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCl3) 5 201.6, 152.9, 148.8, 147.6, 146.3, 136.8, 134.6, 126.8, 122.7, 121.6,
108.9, 108.2, 100.8, 44.3, 18.2.

HRMS (ESI, m/z) calcd for Ci1sH1sNO3z [M+H]*: 256.0968, found: 256.0978.
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MeONHMe HCI
Br Br EDC'HCI Br 0
Q LDA 0 DMAP, NEt; Ve
OH Vel THE OH ~ onon il
]
Mseol(,:THF T CH,Cl, Me OMe
-7 tort s9
91% yield for 2 steps
Br. 0 o Br
N<_-Br n-BulLi N
e+ > [
) = THF P~ Me
gl; OMe -78°C to rt 3i
93% vyield

..............................................................................................................

According to the same procedure used as for the preparation of 1, 4-bromophenylacetic acid as the
starting material provided 3i as a white solid. Yield: 85% over three steps.
2-(4-Bromophenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.64 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.00 (dd, J = 7.9, 1.0 Hz, 1H),
7.76 (td, J = 7.7, 1.7 Hz, 1H), 7.44 — 7.33 (m, 3H), 7.29 — 7.22 (m, 2H), 5.45 (q, J = 7.1 Hz, 1H), 1.53
(d, J = 7.1 Hz, 3H).

3C NMR (75 MHz, CDCl3) 6 201.3, 152.6, 148.8, 139.9, 136.8, 131.5, 130.2, 127.0, 122.7, 120.6,
44.3, 18.0.

HRMS (ESI, m/z) calcd for C14H13BrNO [M+H]*: 290.0185, found: 290.0185.

MeONHMe HCI :

EDC.HCI cl o :

R QY It m _DMAP NE, m e
N~ :

OH '

Mel THF CH2<:|2 Me OMe

-78°C to rt S10 H

75% yield for 2 steps

cl o o Cl E
N._B Buli '

N/Me + | X r n-BuLi | N\ :

_ > '

Me (IDMe THF N!e :

$10 -78°C to rt 3j :

87% yield :

According to the same procedure used as for the preparation of 1, 4-chlorophenylacetic acid as the
starting material provided 3j as a white solid. Yield: 65% over three steps.
2-(4-Chlorophenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.73 — 8.57 (m, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.77 (td, J = 7.7, 1.6 Hz,
1H), 7.45 — 7.37 (m, 1H), 7.32 (dd, J = 8.7, 2.1 Hz, 2H), 7.25 — 7.15 (m, 2H), 5.46 (q, J = 7.1 Hz, 1H),
1.53 (d, J = 7.1 Hz, 3H).

B3C NMR (75 MHz, CDCls) 5 201.4, 152.6, 148.8, 139.4, 136.8, 132.5, 129.8, 128.6, 127.0, 122.8,
44.3,18.1.

HRMS (ESI, m/z) calcd for C14H13CINO [M+H]*: 246.0680, found: 246.0690.
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MeONHMe'HCI

EDCHCI ;

@\)\ Q)L _ DWAP N, Q\(& 5
N,Me :

Mel THF CH cl \ !

-78°C to rt = Cl Me OMe :

s1 5

73% yield for 2 steps

9 :

i Me 4 I Ny -Br n-BuLi Ny :

Nig —_— :

¢l Me OMe “ THF | Me CI :
S11 -78°C to rt 3k E
90% vyield :

According to the same procedure used as for the preparation of 1, 2-chlorophenylacetic acid as the
starting material provided 3k as a white solid. Yield: 65% over three steps.
2-(2-Chlorophenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.66 (d, J = 4.5 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.86 — 7.75 (m, 1H),
7.48 —7.34 (m, 2H), 7.29 (dd, J = 7.5, 2.0 Hz, 1H), 7.25 - 7.09 (m, 2H), 5.81 (g, J = 7.1 Hz, 1H), 1.58
(d, J = 7.1 Hz, 3H).

13C NMR (75 MHz, CDCl3) § 201.9, 152.7, 149.0, 139.2, 136.7, 133.9, 129.5, 128.6, 127.8, 126.8,
122.4,42.8, 17.0.

HRMS (ESI, m/z) calcd for C14H13CINO [M+H]*: 246.0680, found: 246.0690.

MeONHMe'HCI
o oh EDC-HCI Ph o
9 LDA o DMAP, NEts Me
—_— —_— F N~
F OH Mel, THF  F OH CH,Cl Me OMe
-78°C tort Me S12
90% vyield for 2 steps !
on . 0 Ph
N._B - i
i N/Me 4 | I Br n-BuLi | Ny E
=
Me 6Me -[;,HF e
s12 -78°Ctort 3l
91% yield

..............................................................................................................

According to the same procedure used as for the preparation of 1, (2-fluoro-4-biphenyl) acetic acid as
the starting material provided 3l as a white solid. Yield: 82% over three steps.
2-(2-Fluoro-[1,1'-biphenyl]-4-yl)-1-(pyridin-2-yl) propan-1-one

'H NMR (300 MHz, CDCls) 6 8.83 — 8.64 (m, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.83 (td, J = 7.7, 1.6 Hz,
1H), 7.59 — 7.50 (m, 2H), 7.50 — 7.33 (m, 5H), 7.27 (dd, J = 7.7, 6.3 Hz, 2H), 5.60 (q, J = 7.0 Hz, 1H),
1.64 (d, J = 7.1 Hz, 3H).

3C NMR (75 MHz, CDCls) 6 201.3, 161.3, 158.0, 152.6, 148.9, 142.4 (d, J = 7.7 Hz), 136.9, 135.6,
130.6 (d, J = 3.9 Hz), 128.9 (d, J = 2.9 Hz), 128.3, 127.5, 127.1, 124.4 (d, J = 3.1 Hz), 122.8, 116.3,
116.0, 44.3, 18.0.

103



Chapter 4: Experimental Part

YF NMR (282 MHz, CDCls) 6 -117.95.
HRMS (ESI, m/z) calcd for CxoH17FNO [M+H]*: 306.1289, found: 306.1298.

88% yield

MeONHMe-HCI :

. EDCHCI . :

DMAP, NEt3 0 :

_Me

Mel THF CH2CI2 L E‘)M :

-78°C to rt e Dhe :

or 13 ]

70% yield for 2 steps !

F 0 Q F
e 4 lN\ Br n-BuLi Ny :

N E—— :

Lote Ome Z THF I he ¢ ;
S13 -78°C to rt 3m

According to the same procedure used as for the preparation of 1, 2,4-difluorophenylacetic acid as the
starting material provided 3m as a pale yellow solid. Yield: 62% over three steps.
2-(2,4-Difluorophenyl)-1-(pyridin-2-yl) propan-1-one

IH NMR (300 MHz, CDCls) & 8.74 — 8.58 (m, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.83 (td, J = 7.7, 1.7 Hz,
1H), 7.44 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.28 (td, J = 8.2, 4.1 Hz, 1H), 6.89 — 6.71 (m, 2H), 5.63 (q, J
= 7.1 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H).

13C NMR (75 MHz, CDCl3) § 201.2, 163.4 (d, J = 12.3 Hz), 162.0 (d, J = 12.4 Hz), 160.2 (d, J = 12.3
Hz), 158.7 (d, J = 12.2 Hz), 152.5, 149.0, 136.8, 129.9 (dd, J = 9.6, 5.9 Hz), 127.0, 124.8 — 123.8 (m),
122.6,111.1 (dd, J = 21.0, 3.7 Hz), 104.3 — 103.0 (m), 38.2 (d, J = 1.7 Hz), 17.1.

19F NMR (282 MHz, CDCls) & -112.62 (d, J = 7.2 Hz), -112.95 (d, J = 7.2 Hz).

HRMS (ESI, m/z) calcd for C14H12F2NO [M+H]*: 248.0881, found: 248.0889.

MeONHMe'HCI
EDCHCI FsC
FaC 0 LDA FoC 0 DMAP, NEt; 9 M
—_— —_— N/ €
OH  Mel, THF OH CH,Cl, Me 6Me
-78°Ctort Me S14
69% yield for 2 steps
F3C o 0 CFs
N._-B - i
N’Me " | il n-BulLi | Ny
7
Me (I)Me THF Me
S14 -78°C to rt 3n
92% vyield

..............................................................................................................

According to the same procedure used as for the preparation of 1, 4-(trifluoromethyl)phenylacetic acid
as the starting material provided 3n as a white solid. Yield: 63% over three steps.

1-(Pyridin-2-yl)-2-(4-(trifluoromethyl) phenyl) propan-1-one
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'H NMR (300 MHz, CDCls) & 8.71 — 8.60 (m, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz,
1H), 7.52 (s, 4H), 7.41 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 5.56 (9, J = 7.1 Hz, 1H), 1.57 (d, J = 7.1 Hz,
3H).

BC NMR (75 MHz, CDCl3) 6 201.1, 152.5, 148.9, 145.1, 136.9, 128.8, 127.1, 125.4 (q, J = 3.8 Hz),
122.8,44.8, 18.1.

F NMR (282 MHz, CDCls) 5 -62.47.

HRMS (ESI, m/z) calcd for C1sH13sF3NO [M+H]*: 280.0944 found: 280.0955.

MeONHMe'HCI
EDC-HCI s
-5 0 DMAP, NEt; ~ 0
—> —_— N,Me
Mel, THF OH CH,Cl, )
-78°C to rt Me Me ~OMe
S15
89% vyield for 2 steps
Ny Br n-BuLi N
N,Me + | A | S
Me CI)Me Z THF Me
S15 -78°C to rt 30
87% yield

..............................................................................................................

According to the same procedure used as for the preparation of 1, 4-(methylthio)phenylacetic acid as
the starting material provided 30 as a yellow solid. Yield: 77% over three steps.
2-(4-(Methylthio)phenyl)-1-(pyridin-2-yl)propan-1-one

'H NMR (300 MHz, CDCls) § 8.65 (d, J = 4.7 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.75 (td, J = 7.7, 1.7
Hz, 1H), 7.43 - 7.35 (m, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 5.44 (q, J = 7.1 Hz,
1H), 2.41 (s, 3H), 1.53 (d, J = 7.1 Hz, 3H).

13C NMR (75 MHz, CDCl3) 6 201.6, 152.9, 148.8, 137.8, 136.8, 136.5, 128.9, 126.9, 126.8, 122.7,
44.4,18.0, 15.9.

HRMS (ESI, m/z) calcd for C15H1sNNaOS [M+Na]*: 280.0767 found: 280.0777.

: MeONHMe HCI :
EDCHCI :

2 0 :

—_— N

Mel THF OH CH,Cl, Me (I)Me :

-78°C to rt Me S16

82% yield for 2 steps !

0 AN
\(\G\HL |N\ Br n-Buli N\
—_—
= THF l P Me

Me OMe
516 -78°C to rt 3p

93% yield

..............................................................................................................
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According to the same procedure used as for the preparation of 1, 4-(2-methyl-1-propen-1-yl)
phenylacetic acid as the starting material provided 3p as a pale yellow liquid. Yield: 76% over three
steps.

2-(4-(2-Methylprop-1-en-1-yl)phenyl)-1-(pyridin-2-yl)propan-1-one

!H NMR (300 MHz, CDCls) 6 8.66 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.75 (td,
J=17.7,17Hz, 1H), 7.38 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.35 - 7.28 (m, 2H), 7.12 (d, J = 8.2 Hz,

2H), 6.18 (s, 1H), 5.47 (9, J = 7.0 Hz, 1H), 1.84 (dd, J = 12.2, 1.1 Hz, 6H), 1.56 (d, J = 7.1 Hz, 3H).
B3C NMR (75 MHz, CDCl3) 5 201.9, 153.0, 148.8, 138.2, 137.1, 136.7, 135.2, 128.8, 128.1, 126.8,
124.7,122.8, 445, 26.9, 19.4, 18.1.

HRMS (ESI, m/z) calcd for Ci1sH20NO [M+H]*: 266.1539, found: 266.1553.

MeONHMe'HCI
EDCHCI

0 LDA o DMAP, NEt; O 0
OH OH N
]
O Mel, THF O T CH,Cl, O Ve Oue
-78°C to rt e

S17
88% vyield for 2 steps

i R
SN P P e}
4
O Me (I)Me THF Z Me

s17 -78°C to rt 3q
94% yield

..............................................................................................................

According to the same procedure used as for the preparation of 1, 1-naphthylacetic acid as the starting
material provided 3q as a pale yellow solid. Yield: 83% over three steps.

'H NMR (300 MHz, CDCls) 6 8.55 (ddd, J = 4.7, 1.6, 0.9 Hz, 1H), 8.39 (d, J = 8.5 Hz, 1H), 8.11 -
7.98 (m, 1H), 7.84 (dd, J = 7.8, 1.0 Hz, 1H), 7.79 — 7.67 (m, 2H), 7.62 — 7.44 (m, 2H), 7.43 — 7.36 (M,
2H), 7.32 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 6.26 (g, J = 7.0 Hz, 1H), 1.69 (d, J = 7.0 Hz, 3H).

BC NMR (75 MHz, CDCl3) 6 202.6, 153.0, 148.9, 137.7, 136.7, 134.1, 131.4, 128.8, 127.3, 126.8,
126.0, 125.5, 124.9, 123.8, 122.5, 40.7, 17.9.

HRMS (ESI, m/z) calcd for C1gH1sNO [M+H]": 262.1226, found: 262.1231.
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: MeONHMe'HClI

: EDC-HCI

: MeO. MeO.

; MeO 0 © _ DWAP NEG; 0

. _Me
; OH Mol THF c:H2<;|2 \

: -78°C to rt Me OMe

S18
89% vyield for 2 steps

MeO. O O o 0 OMe
Ny -Br n-BulLi N
wN/Me + | N a \

~ I
Me CI)Me 'I;HF = Me
s18 -78°C to rt 3r .
88% vyield

According to the same procedure used as for the preparation of 1, 6-methoxy-2-naphthylacetic acid as
the starting material provided 3r as a white solid. Yield: 83% over three steps.
2-(6-Methoxynaphthalen-2-yl)-1-(pyridin-2-yl)propan-1-one

'H NMR (300 MHz, CDCls) 6 8.65 (d, J = 4.3 Hz, 1H), 8.02 (d, ] = 7.9 Hz, 1H), 7.80 — 7.60 (m, 4H),
7.53 (dd, J=8.5, 1.6 Hz, 1H), 7.34 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.17 — 6.98 (m, 2H), 5.62 (q, J = 7.0
Hz, 1H), 3.87 (s, 3H), 1.65 (d, J = 7.1 Hz, 3H).

B3C NMR (75 MHz, CDCl3) 6 201.8, 157.5, 153.0, 148.7, 136.7, 136.1, 133.4, 129.2, 129.0, 127.3,
126.9, 126.85, 126.8, 122.7, 118.7, 105.5, 55.2, 44.9, 18.2.

HRMS (ESI, m/z) calcd for C19H1sNO, [M+H]*: 292.1332, found: 292.1337.

MeONHMe 'HCI
EDCHCI
S S CHC S o
0 LDA 0 DMAP, NEt, Q)
9 — e > N-Me
OH 1
OH Meol, THF T CH,Cl, Me OMe
-78°C tort S19
60% yield for 2 steps
(0]
N 0 Me 4 IN\ Br n-BuLi Ny [y
N/
Me (l)Me “ THF l = Me
S19 -78°C to rt 3s
60% vyield

According to the same procedure used as for the preparation of 1, 3-thiopheneacetic acid as the starting
material provided 3s as a colorless liquid. Yield: 36% over three steps.
1-(Pyridin-2-yl)-2-(thiophen-3-yl)propan-1-one

'H NMR (300 MHz, CDCls) 6 8.75 — 8.59 (m, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz,
1H), 7.49 — 7.35 (m, 1H), 7.25 - 6.99 (m, 3H), 5.63 (q, J = 6.7 Hz, 1H), 1.56 (d, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCl3) 8 201.3, 152.8, 148.8, 141.0, 136.8, 127.7, 126.9, 125.2, 122.8, 121.8,
40.2,17.8.

HRMS (ESI, m/z) calcd for C12H11NNaOS [M+Na]*: 240.0454, found: 240.0461.
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o MeONHMe HCI
EDCHCI
o) 0 O

O Mg, THF o DMAP, NEt; O Q

—_— O —_— O N-Ve
B work u OH )

O r P Me CH.Cl Me OMe

S20

77% yield for total steps

O e Ny B n-BulLi Ny O
: N I —_— > |

: 1 = THF = Me

: Me

© 78°Ctort 3t
S20 B 0
88% yield

First step: To a flask charged with THF (0.2M) and purged with argon was added magnesium turnings
(1.5 eq) and iodine (a few grains). To this solution was added 2-bromodibenzofuran (1.0 eq) in THF,
and the mixture was gently heated with a heat gun until the solution color changed from brown to
colorless. Then, the reaction was allowed to reflux for 1 h. The reaction was then allowed to cool, and
ethyl 2-bromopropionate (2.0 eq) was added. Following 5 h of reflux, the reaction was quenched with 1
M HCI, then extracted with EtOAc for three times, washed with brine, dried with Na;SOs, and
concentrated under reduced pressure. The crude mixture was suspended in a 3 M KOH solution in
MeOH, kept at reflux for 2 h, cooled, and then quenched with water. The reaction mixture was extracted
with EtOAc for three times. The aqueous layer was then acidified with 1 M HCI, extracted with EtOAc
for three times. After drying with anhydrous Na>SOa, the solution was filtered and concentrated under
reduced pressure. The obtained product was dried under vacuum to give the crude product which was
directly used for the next step without further purification. The procedure was adapted and modified
from a previous report.?

The next steps were performed according to the same procedure used as for the preparation of 1 to
provide 3t as a pale yellow solid. Yield: 68% for total steps.
2-(Dibenzo[b,d]furan-2-yl)-1-(pyridin-2-yl)propan-1-one

'H NMR (300 MHz, CDCls) 6 8.75 — 8.59 (m, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.97 (d, J = 1.6 Hz, 1H),
7.93(d, J=7.6 Hz, 1H), 7.75 (td, J = 7.8, 1.5 Hz, 1H), 7.29-7.53 (m, 6H), 5.66 (g, J = 7.1 Hz, 1H),
1.66 (d, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCl3) 8 201.9, 156.5, 155.1, 152.9, 148.8, 136.8, 135.5, 127.8, 127.0, 126.9,
124.4,124.2,122.8,122.6,120.7, 120.3, 111.6, 111.5, 44.8, 18.7.

HRMS (ESI, m/z) calcd for CoH1sNNaO, [M+Na]*: 324.0995, found: 324.1004.
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0 MeONHMe HCI

Pyridine 2 :

cl > nN-Me :

DCM Cl)Me

(o] 1

0°Ctort S21

87% yield E

o) E

0 " Ny B n-BuLi N E
N-Me + | EE—" - | N '
e = THF Z ;
S21 -78°Ctort 3u
87% yield :

First step: To a stirred solution of pyridine (2.0 eq) and N,O-dimethylhydroxylamine hydrochloride
(1.3 eq) in anhydrous CH,Cl, (0.5 M) at 0 T was added dropwise 2-phenylbutyryl chloride (1.0 eq)
dissolved in THF (0.2 M). The reaction mixture was stirred overnight at rt. H,O was added and the
mixture was extracted with CH,Cl,. The organic layer was washed with 1 N HCI (3 x 10 mL), aqueous
saturated NaHCOs (3 x 10 mL), and brine (20 mL). The combined organic layers were dried over
anhydrous Na,SO, filtered, and concentrated under reduced pressure. The crude mixture was purified
by flash chromatography on silica gel (n-hexane/EtOAc = 30:1 to 3:1) to give the pure Weinreb amide
S21. Yield: 87%. The procedure was adapted and modified from a previous report.

Second step: In analogy to the third step in the synthesis of compound 1 to provide 3u as a pale yellow
solid. Yield: 76% for total steps.

2-Phenyl-1-(pyridin-2-yl)butan-1-one

'H NMR (300 MHz, CDCls) § 8.66 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.08 — 7.92 (m, 1H), 7.73 (td, J =
7.7,1.7 Hz, 1H), 7.48 — 7.33 (m, 3H), 7.26 (t, J = 7.4 Hz, 2H), 7.21 - 7.12 (m, 1H), 5.32 (t, J = 7.6 Hz,
1H), 2.33 - 2.11 (m, 1H), 2.04 — 1.83 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H).

BC NMR (75 MHz, CDCls) 6 201.5, 153.2, 148.7, 139.2, 136.7, 128.9, 128.4, 126.8, 126.6, 122.6,
52.4,26.1,12.2.

HRMS (ESI, m/z) calcd for C1sH1sNO [M+H]": 226.1226, found: 226.1230.

MeONHMeHC|
o EDCHCI o
9 LDA DMAP, NEt; Mo
— OH > N’
OH  iPrl, THF CH,Cl, e

-78°C to rt

81% yield for 2 steps

o (0]
Ny -Br n-BulLi N
N,Me + | N - | A
—
6Me THF Z
-78°Ctort 3v
73% yield
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According to the similar procedure used as for the preparation of 1, Phenylacetic acid and 2-iodopropane
as the starting materials provided 3v as a white solid. Yield: 59% over three steps.
3-Methyl-2-phenyl-1-(pyridin-2-yl)butan-1-one

'H NMR (300 MHz, CDCls) & 8.74 —8.59 (m, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.72 (t, J = 7.7 Hz, 1H),
7.47 —7.39 (m, 2H), 7.39 — 7.32 (m, 1H), 7.29 — 7.20 (m, 2H), 7.19 - 7.11 (m, 1H), 5.16 (d, J = 10.8
Hz, 1H), 2.63 (ddt, J = 13.2, 10.9, 6.6 Hz, 1H), 1.02 (d, J = 6.5 Hz, 3H), 0.80 (d, J = 6.7 Hz, 3H).

BC NMR (75 MHz, CDCls) 5 201.9, 153.4, 148.7, 138.6, 136.7, 129.4, 128.3, 126.8, 126.7, 122.5,
58.0, 31.3, 21.7, 20.5.

HRMS (ESI, m/z) calcd for C16H1sNO [M+H]*: 240.1383, found: 240.1388.

MeONHMe HCI Me
(0] /
Q EDCHCI N
OH v _Me
n-BuLi DMAP, NEt; 0
—_— —_—
CO,, THF CH,Cly
-78°C to rt $23

67% yield for 2 steps

Me
Q N/ 0
‘'0-Me + IN\ Br n-BuLi Ny
_—
Z THF |
523 -78°C to rt 3w

89% vyield

First step: A flame dried Schlenk flask under nitrogen atmosphere was charged with indane via syringe,
and n-BuLi (1.6 M in hexane, 1.1 eq) was added dropwise over 10 minutes. The solution was then placed
in a dry ice/acetone bath and solid CO- (dry ice, small amount) was added carefully. The solution was
stirred at -78 °C for 1 h. The reaction was then quenched with aqueous saturated NaHCO3. The aqueous
layer was isolated and ice cold EtOAc was added. Conc. HCI was then added until pH of 2 (pH paper).
The organic layer was separated and reduced on a rotary evaporator to yield the crude product which
was directly used for the next step without further purification. The procedure was adapted and modified
from a previous report.*

The next steps according to the same procedure used as for the preparation of 1, to provide 3w as a pale
yellow solid. Yield: 60% for total steps.

(2,3-Dihydro-1H-inden-1-yl)(pyridin-2-yl)methanone

IH NMR (300 MHz, CDCls) & 8.92 — 8.74 (m, 1H), 8.22 — 8.05 (m, 1H), 7.88 (td, J = 7.7, 1.7 Hz,
1H), 7.66 — 7.46 (m, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.26 — 7.16 (m, 2H), 7.16 — 7.07 (m, 1H), 5.75 (dd,
J=17.7,6.3Hz, 1H), 3.25 (dt, J = 15.5, 7.7 Hz, 1H), 3.13 — 2.95 (m, 1H), 2.65 — 2.38 (m, 2H).

13C NMR (75 MHz, CDCl3) 6 201.3, 153.4, 149.0, 144.8, 141.7, 136.9, 127.0, 126.99, 126.1, 125.4,
124.7,122.8,51.1, 32.1, 29.0.

HRMS (ESI, m/z) calcd for C1sH14NO [M+H]*: 224.1070, found: 224.1078.
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-78 °C to rt
80% yleld

MeONHMe HCI :

EDC'HCI o :

0 DMAP, NEt, o Me ;

OW)]\OH —>CH - ©/ N :

2Lz :

©/ Me Me OMe :
S24 :

76% yield g

0 :
o Me Ng-Br _ Bl -BulLi
'}l l = THF '

Me OMe :

According to the similar procedure used as for the preparation of 1, 2-phenoxypropionic acid as the
starting material provided 3x as a white solid. Yield: 61% for two steps.
2-Phenoxy-1-(pyridin-2-yl)propan-1-one

IH NMR (300 MHz, CDCls) & 8.79 — 8.64 (m, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.87 (td, J = 7.7, 1.7 Hz,
1H), 7.52 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.26 — 7.13 (m, 2H), 6.99 — 6.82 (m, 3H), 6.34 (q, J = 6.8 Hz,
1H), 1.68 (d, J = 6.8 Hz, 3H).

13C NMR (75 MHz, CDCl3) 6 199.4, 157.6, 151.8, 149.1, 137.1, 129.4, 127.7, 122.7, 121.0, 115.2,
73.8,18.3.

HRMS (ESI, m/z) calcd for C14H14NO2 [M+H]*: 228.1019, found: 228.1025.

-78°C tort 3

o y
>r 25 75% yield

According to the similar procedure used as for the preparation of 1, tert-butoxycarbonylamino-
phenylacetic acid as the starting material provided 3y as a white solid. Yield: 61% for two steps.
tert-Butyl (2-oxo-1-phenyl-2-(pyridin-2-yl)ethyl)carbamate

'H NMR (300 MHz, CDCls) 6 8.64 (d, J = 4.5 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.74 (t, J = 7.7 Hz,
1H), 7.46 (d, J= 7.0 Hz, 2H), 7.41 — 7.33 (m, 1H), 7.31 - 7.14 (m, 3H), 6.94 (t, J = 16.3 Hz, 1H), 5.97
(d, J=6.7 Hz, 1H), 1.43 (s, 9H).

MeONHMe HCl

AL, sk QLR |

OH i > N,Me

OsNH CH,Cl, OsUNH OMe 5

0 j)/ S25

>r 90% yield

0 o

N,Me IN\ Br n-BulLi IN\
OYNH OMe Z THE ~Z NHBoc
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BC NMR (75 MHz, CDCls) 5 197.1, 154.9, 151.4, 148.9, 137.2, 136.7, 128.6, 128.4, 127.8, 127.4,
123.1, 79.7, 58.6, 28.3.

HRMS (ESI, m/z) calcd for CigH21N203 [M+H]*: 313.1547, found: 313.1558.

0
X S26 80% yield

According to the similar procedure used as for the preparation of 1, 2-((tert-butoxycarbonyl)amino)-2-

MeONHMe HCI

OO 8 e O f

) 3 H

OH - I}I’Me :

OYNH CH,Cly OYNH OMe :

0 O S26

>r 85% yield :
LA 2 20
Me Ny Br n-BuLi N :

N + | > EE— D :
OYNH OMe b THF 2 NHBoc ;
78°C to rt 3z ;

(naphthalen-2-yl)acetic acid as the starting material provided 3z as a pale yellow solid. Yield: 68% for
two steps.

tert-Butyl (1-(naphthalen-2-yl)-2-oxo-2-(pyridin-2-yl)ethyl)carbamate

IH NMR (300 MHz, CDCls) & 8.65 (d, J = 4.3 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.90 (s, 1H), 7.82 —
7.68 (m, 4H), 7.62 (d, J = 7.7 Hz, 1H), 7.47 — 7.31 (m, 3H), 7.07 (d, J = 7.5 Hz, 1H), 6.08 (d, J = 7.0
Hz, 1H), 1.44 (s, 9H).

13C NMR (75 MHz, CDCl3) 6 197.0, 154.9, 151.4, 149.0, 136.8, 134.7, 133.3, 132.9, 128.4, 128.0,
127.6, 127.6, 127.4, 126.2, 126.1, 126.0, 123.1, 79.8, 58.8, 28.4.

HRMS (ESI, m/z) calcd for CaoH23N203 [M+H]*: 363.1703, found: 363.1716.

MeONHMe HCI
0 EDCHCI 1)
DMAP, NEt
Me OH 3 Me I}I’Me
OYNH CH,Cl, Os_NH OMe

XO XO S27

95% yield
0 0

Mej)LN,Me N IN\ Br n-BuLi Ny Me
—>
OYNH OMe @ THF | NhBoc
) 78°C to rt 3aa
>r s27 84% yield
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According to the similar procedure wused as for the preparation of 1, 2-(tert-
butoxycarbonylamino)propanoic acid as the starting material provided 3aa as a pale yellow solid. Yield:
80% for two steps.

tert-Butyl (1-oxo-1-(pyridin-2-yl)propan-2-yl)carbamate

'H NMR (300 MHz, CDCls) 6 8.77 — 8.61 (m, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.84 (td, J = 7.7, 1.6 Hz,
1H), 7.47 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 5.70 (d, J = 6.5 Hz, 1H), 5.44 (s, 1H), 1.45 (m, 12H).

3C NMR (75 MHz, CDCl3) 6 200.6, 155.1, 151.4, 149.1, 136.9, 127.4, 122.8, 79.5, 51.3, 28.4, 19.3.
HRMS (ESI, m/z) calcd for C1sH19N203 [M+H]": 251.1390, found: 251.1396.

MeONHMe HClI :

EDC'HCI | i

O/\H/OH DMAP, NEt; o ©/\[(N\O/ :

O CH,Cl, 0 :

s28 :

90% yield :

I . Q :
Nog” Ny B n-Buli Ny ;
—_— '

m ol THF | ses E
s28 78 °C to rt 87% yield
0 LiHMDS o ;

Ny NFSI__ I Ny :
| S8 THF _ 3.; .
65% yield :

According to the similar procedure used as for the preparation of 1, phenyl acetic acid as the starting
material provided S28’ as a white solid. Yield: 78% for two steps.
To a solution of 2-phenyl-1-(pyridin-2-yl)ethanone (prepared similarly to substrate 1, 1.0 eq) in
anhydrous THF (0.2M) was added LiHMDS (1.5 eq, 1.0 M solution in THF) dropwise at -78 <C under
nitrogen atmosphere. After stirring for 1 h, N-fluorobenzenesulfonimide (NFSI) (1.2 eq) in anhydrous
THF was added dropwise under nitrogen atmosphere. The reaction mixture was stirred at -78 T to rt
overnight under nitrogen atmosphere. The reaction mixture was quenched with saturated aqueous NH4Cl
and extracted with EtOAc for three times. The organic layer thus obtained was dried over anhydrous
Na,SO4 and filtered. The filtrate was concentrated in vacuo and purified by silica gel column
chromatography to provide 3ab as a white solid. Yield: 65%.
2-Fluoro-2-phenyl-1-(pyridin-2-yl)ethan-1-one
'H NMR (300 MHz, CDCls) 6 8.65 (d, J = 4.7 Hz, 1H), 8.05 (d, J = 7.7 Hz, 1H), 7.80 (dd, J = 10.8,
4.7 Hz, 1H), 7.68 — 7.56 (m, 2H), 7.50 — 7.23 (m, 5H).
BBC NMR (75 MHz, CDCls) 5 194.3 (d, J = 20.9 Hz), 151.1, 148.8, 137.0, 134.2 (d, J = 20.3 Hz),
129.2(d, J = 2.5 Hz), 128.5, 128.0 (d, J = 5.4 Hz), 127.7, 122.9 (d, J = 1.8 Hz), 92.0 (d, J = 180.3 Hz).
F NMR (282 MHz, CDCls) 5 -183.48.
HRMS (ESI, m/z) calcd for C13H10FNNaO [M+Na]*: 251.0639, found: 251.0645.
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MeONHMe HC| 5
; EDC-HCI | :
: \/\H/OH DMAP, NEt, \/\H/N‘o/ :
E 0 > :
' CH2C|2 O '
; s29' ;
: 86% yield ;
| (0]
: N~ N._Br n-BuLi N ;

\/\n/ O + | AN _— | NS E
: (o) — THF — :
: S29" .78 °C to rt S29 ;
: 81% yield !
] 0 LIHMDS a ;
: N :
i | Ny NFSI s j
: _ THF J F :
S29 3ac :
: 78% yield '

According to the same procedure used as for the preparation of 28, butyric acid as the starting
material provided 3ac as a colorless liquid. Yield: 54% over three steps.
2-Fluoro-1-(pyridin-2-yl)butan-1-one
IH NMR (300 MHz, CDCls) & 8.64 (d, J = 4.5 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.86 (td, J = 7.7, 1.6
Hz, 1H), 7.49 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 6.17 (ddd, J = 50.4, 7.5, 3.7 Hz, 1H), 2.05-2.27 (m, 1H),
1.82-2.03 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H).
13C NMR (75 MHz, CDCl3) § 196.8 (d, J = 17.2 Hz), 151.4, 149.0, 137.1, 127.7, 122.5 (d, J = 1.9
Hz), 93.3 (d, J = 179.9 Hz), 25.9 (d, J = 21.5 Hz), 9.0 (d, J = 3.5 Hz).

F NMR (282 MHz, CDCIs) 6 -200.35.
HRMS (ESI, m/z) calcd for CoH10FNNaO [M+Na]*: 190.0639, found: 190.0642.

MeONHMe'HCI
EDC-HCI
N’
Mel THF CHZCIZ Me OMe
-78 °C to rt S1

83% yield for 2 steps

o 0
M Ny -Br n-BuLi N
n-Me + | —_— |
\ P THF g Me

1 Me -78°C to rt Me 3ad
87% yield

According to the similar procedure used as for the preparation of 1, compound 3ad was provided as a
pale yellow solid. Yield: 72% for two steps.
1-(4-Methylpyridin-2-yl)-2-phenylpropan-1-one
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'H NMR (300 MHz, CDCls) & 8.54 (d, J = 4.9 Hz, 1H), 7.92 — 7.81 (m, 1H), 7.49 — 7.37 (m, 2H),
7.33-7.25 (m, 2H), 7.25 - 7.15 (m, 2H), 5.53 (q, J = 7.1 Hz, 1H), 2.39 (s, 3H), 1.59 (d, J = 7.1 Hz,
3H).

BC NMR (75 MHz, CDCl3) 6 202.1, 152.9, 148.6, 148.0, 141.0, 128.4, 127.7, 126.6, 123.5, 44.93,
20.9, 18.1.

HRMS (ESI, m/z) calcd for CI5H16NO [M+H]*: 226.1226, found: 226.1231.

MeONHMe HCI
EDCHCI
©\(u\ DMAP, NEt, m
©\)k > nMe
OH Mel, THE CH,Cly Ve Oue
-78°Ctort S1

83% vyield for 2 steps

o (0]
M Ny -Br n-BulLi N
N’ e + | - I N
| = THF M = Me

s1 -78°C tort 3ae
95% yield

According to the similar procedure used as for the preparation of 1, compound 3ae was provided as a
white solid. Yield: 79% for two steps.

1-(5-Methylpyridin-2-yl)-2-phenylpropan-1-one

IH NMR (300 MHz, CDCls) § 8.51 (dd, J = 1.4, 0.6 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.58 (dd, J =
8.0, 1.5 Hz, 1H), 7.43 (dd, J = 8.1, 0.9 Hz, 2H), 7.35— 7.25 (m, 2H), 7.24 —7.13 (m, 1H), 5.51 (q, J =
7.1 Hz, 1H), 2.39 (s, 3H), 1.59 (d, J = 7.1 Hz, 3H).

13C NMR (75 MHz, CDCl3) 6 201.6, 150.7, 149.3, 141.1, 137.2, 137.1, 128.4, 126.5, 122.4, 44.81,
18.6, 18.2.

HRMS (ESI, m/z) calcd for C14H13NO [M+Na]*: 277.0953, found: 277.0949.

MeONHMe HCI
EDC-HCI 0
N
Mel THF CH2CI2 Ve OMe
-78 °C tort S1

83% yield for 2 steps

Q Me_N._B i
€ r n-BuLi Me< _N
N,Me + [ = _— | A
' Z THF —

Me OMe Me
1 -78°C tort 3af
85% yield
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According to the similar procedure used as for the preparation of 1, compound 3af was provided as a
pale yellow solid. Yield: 71% for two steps.

1-(6-Methylpyridin-2-yl)-2-phenylpropan-1-one

'H NMR (300 MHz, CDCls) 6 7.83 (d, J = 7.7 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.49 — 7.38 (m, 2H),
7.29 (td, J=7.1, 3.3 Hz, 3H), 7.20 (ddd, J = 7.3, 3.7, 1.3 Hz, 1H), 5.56 (q, J = 7.1 Hz, 1H), 2.64 (s,
3H), 1.59 (d, J = 7.1 Hz, 3H).

3C NMR (75 MHz, CDCl3) 6 202.0, 157.6, 152.3, 141.2, 136.8, 128.5, 128.4, 126.5, 126.4, 119.7,
44.8,24.4, 18.0.

HRMS (ESI, m/z) calcd for C1sH1sNO [M+H]*: 226.1226, found: 226.1232.

MeONHMe HCI
EDC'HCI
0 LDA o DMAP, NEt; 0
—_— —_ N’Me
OH  Mel, THF OH CH,Cl, Ve O
N Me e OMe
-78°Ctort S1

83% yield for 2 steps

o 0
B N Br n-BulLi BN
rMe + N [E— . N
N | |
\ — THF Z Me

(o}
S1 -78°Ctort 3ag

93% yield

To a solution of 2,6-dibromopyridine (1.2 eq) in THF at —78 °C was added n-BuLi (1.0 eq)
dropwise under an nitrogen atmosphere. The reaction was stirred at —78 °C for 1 h. The corresponding
Weinreb amide S1 (1.0 eq in THF) was added dropwise to the flask after the reaction was cooled back
down to —78 °C. The reaction was allowed to warm to room temperature slowly and stirred overnight.
The reaction was quenched with a saturated aqueous NH.CI solution at room temperature and extracted
with EtOAc. The organic layer was washed with brine. After dried with anhydrous Na,SOs, filtration
and concentration under reduced pressure, the crude residue was purified by flash chromatography on

silica gel (n-hexane/EtOAc = 100:1 to 30:1) to afford the substrate 3ag as a white solid. Yield: 93%.
1-(6-Bromopyridin-2-yl)-2-phenylpropan-1-one

IH NMR (300 MHz, CDCl3) § 7.93 (dd, J = 7.0, 1.5 Hz, 1H), 7.65 — 7.51 (m, 2H), 7.43 — 7.35 (m,
2H), 7.32 — 7.24 (m, 2H), 7.22 — 7.11 (m, 1H), 5.36 (q, J = 7.0 Hz, 1H), 1.55 (d, J = 7.0 Hz, 3H).
13C NMR (75 MHz, CDCls) § 199.9, 153.4, 141.0, 140.3, 139.1, 131.5, 128.6, 128.5, 126.8, 121.5,
45.3,17.8.

HRMS (ESI, m/z) calcd for CaH12BrNNaO [M+Na]*: 311.9994, found: 312.0007
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. (0] :
: Br N i
: | Ny ON M Mg I ~ '
: e > ~Z Me :
2 + THF, reflux
' Ph Ph  3ah ;

25% yield i

To a flask charged with THF (0.2M) and purged with argon were added magnesium turnings (4.5
eq) and iodine (a few grains). To this solution was added 1-brom-1-phenylethane (3.0 eq) in THF, and
the mixture was gently heated with a heat gun until the solution color changed from brown to colorless,
then the reaction was allowed to reflux. After the formation of the Grignard reagent, the solution was
cooled to room temperature, and added into the solution of a solution of 2-cyano-4-phenylpyridine (1.0
eq) in THF at 0 T dropwise. When the TLC control indicated a fulll conversion of the starting material,
the reaction was quenched by addition of a solution of saturated NH4CI. The organic layer was separated
and extracted twice with CH2Cl,. After evaporation, the organic layer was redissolved in Et,O (40.0 mL)
and 6 M HCI (5.0 mL) was added. After 30 min, the organic layer was separated, and the aqueous layer
was basified with saturated NaHCOs and then extracted three times with CH2Cl,. The combined organic
layers were dried over Na,SO. and evaporated in vacuo. The residue was purified by column
chromatography with n-hexane and ethyl acetate to afford the substrate 3ah as a white solid. Yield: 25%.
The procedure was adapted and modified from a previous report.’
2-Phenyl-1-(4-phenylpyridin-2-yl)propan-1-one
'H NMR (300 MHz, CDCls) § 8.73 (dd, J = 5.1, 0.4 Hz, 1H), 8.29 (d, J = 1.2 Hz, 1H), 7.66 (ddd, J =
7.2,4.5,1.9 Hz, 3H), 7.56 — 7.40 (m, 5H), 7.36 — 7.27 (m, 2H), 7.25 — 7.16 (m, 1H), 5.58 (9, J = 7.1
Hz, 1H), 1.63 (d, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCls) 6 201.9, 153.5, 149.3, 140.9, 137.5, 129.4, 129.2, 128.5, 127.0, 126.7,
124.6, 120.6, 45.1, 18.2.
HRMS (ESI, m/z) calcd for CoH1sNO [M+H]*: 288.1383, found: 288.1388.

MeONHMe HCI
EDCHCI
0 LDA 0 DMAP, NEt, Q
—_— > N,Me
OH Mel, THF OH CH,Cl, )
-78°C to rt Me Me OMe
s1

83% yield for 2 steps

0
Ny Br n-BuLi
e+ | —
' Z THF
S1 -78°Ctort 3ai
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According to the similar procedure used as for the preparation of 1, compound 3ai was provided as a
pale yellow solid. Yield: 66% for two steps.

2-Phenyl-1-(quinolin-2-yl)propan-1-one

'H NMR (300 MHz, CDCls) 6 8.21 (dd, J = 13.6, 8.6 Hz, 2H), 8.09 (d, J = 8.5 Hz, 1H), 7.77 (dt, J =
8.4,4.8 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.27 (t, J = 7.5 Hz, 2H), 7.21 - 7.10
(m, 1H),5.79 (q, J = 7.1 Hz, 1H), 1.65 (d, J = 7.1 Hz, 3H).

C NMR (75 MHz, CDCl3) § 202.0, 152.4, 147.0, 141.1, 136.8, 130.6, 129.8, 129.4, 128.5, 128.4,
127.5, 126.6, 118.9, 44.8, 18.0.

HRMS (ESI, m/z) calcd for C1gH1sNO [M+H]": 262.1226, found: 262.1230.

MeONHMe'HCI
EDC-HCI

Q DMAP, NEt;
©/\)J\OH Mel, THF MCH CH,Cl, MOW
-78°C to rt

90% yleld for 2 steps

0
©/\HL’}I’M6 + | Ny -Br n -BulLi (m
Me OMe = THF
36 78°Ctort 3aj

84% vyield

According to the similar procedure used as for the preparation of 1, compound 3aj was provided as a
pale yellow liquid. Yield: 76% over three steps.

2-Methyl-3-phenyl-1-(pyridin-2-yl)propan-1-one

!H NMR (300 MHz, CDCls) § 8.72 (ddd, J = 4.7, 1.6, 0.9 Hz, 1H), 8.13 — 8.02 (m, 1H), 7.84 (td, J =
7.7,1.7 Hz, 1H), 7.47 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.28 (d, J = 4.4 Hz, 4H), 7.24 — 7.14 (m, 1H),
4.58 — 4.37 (m, 1H), 3.23 (dd, J = 13.6, 6.2 Hz, 1H), 2.71 (dd, J = 13.6, 8.2 Hz, 1H), 1.22 (d, J= 7.0
Hz, 3H).

BC NMR (75 MHz, CDCl3) 8 204.7, 152.9, 148.9, 140.1, 136.8, 129.2, 128.2, 126.9, 126.0, 122.4,
41.1, 38.9, 16.5.

HRMS (ESI, m/z) calcd for C15H15NNaO [M+Na]*: 248.1046, found: 248.1053.

0 TBD 10 mol% 0
0
| N\ | N\
CDCl, (0.2M) _J " Me
= Me 12 h, 86%
3a rac-4
(97% D)

To a solution of 10 mol % of TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) in CDCls; (0.2M), was

added compound 1 (1.0 eq). The reaction mixture was stirred at room temperature for 12 h, then the
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mixture was diluted with CH>Cl,. The combined organic solutions were concentrated under reduced
pressure and purified by flash chromatography on silica gel (n-hexane/ EtOAc=5:1) to afford the pure
rac-4 as a white solid. Yield: 86%. The procedure was adapted and modified from a previous report.®
'H NMR (300 MHz, CDCls) § 8.66 (ddd, J = 4.7, 1.6, 0.9 Hz, 1H), 8.13 — 7.87 (m, 1H), 7.75 (td, J =
7.7,1.7 Hz, 1H), 7.46 — 7.33 (m, 3H), 7.32 — 7.22 (m, 2H), 7.21 — 7.13 (m, 1H), 5.49 (g, J = 7.1 Hz,
0.03H), 1.56 (s, 3H).

B3C NMR (75 MHz, CDCls) 5 201.9, 153.0, 148.8, 140.8, 136.8, 128.5, 128.4, 126.8, 126.6, 122.72,
18.01.

HRMS (ESI, m/z) calcd for C14H13DNO [M+H]*: 213.1133, found: 213.1133.

4.3.2 General Procedure

Depending on the racemic substrate, the reactions were performed with some slight modifications,
especially with respect to the employed base. The methods A-G reflect these variations.

Method A:
®

N

@ 2.0eq
(0]

0
Ar A-RhiInd (4 mol%)

Ar

N » N
N N
| P anhydrous CaSOy (5% w/v) | _

Me acetone, blue LEDs, 24 h

Me

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhInd (4.0
mol%), N-phenylpiperidine (2.0 equiv) and anhydrous CaSO4 (5% m/v). Then, acetone (max. 0.01%
water, purchased from AppliChem GmbH) (0.1 M) was added via syringe. The reaction mixture was
degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring for 24 hours, the mixture was diluted
with CH>Cl,. The combined organic solutions were concentrated, reduced pressure and purified by flash
chromatography on silica gel (n-hexane/ EtOAc) to afford the pure non-racemic product. The

enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Method B:
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()

N

@ 3.0 eq
. 0
Ar A-Rhind (4 mol /0) - : N\ Ar
1
Me anhydrous CaSOy (5% w/v) R P Me

acetone, blue LEDs, 24 h

()

N

@ 3.0 eq
A-Rhind (4 1% ?
N R? ) (4 mol%) N R?
< ’ et DN
¢ anhydrous CaS0, (5% w/v) J 3}
acetone, blue LEDs, 48 h

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhInd (4.0

W

mol%) N-phenylpiperidine (3.0 equiv) and anhydrous CaSO4 (5% m/v). Then, acetone (max. 0.01%
water, purchased from AppliChem GmbH) (0.1 M) was added via syringe. The reaction mixture was
degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring for 24 hours, the mixture was diluted
with CH>Cl,. The combined organic solutions were concentrated under reduced pressure and purified
by flash chromatography on silica gel (n-hexane/ EtOAc) to afford the pure non-racemic product. The

enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Method C:

()

N

@ 3.0eq
(0]

0]
_ [5)
Ar A-Rhind (8 mol%)

R3

» R2 Ar
anhydrous CaSOy, (5% w/v) I
acetone, blue LEDs, 24 h

N N
AN AN
= =

Me Me

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhInd (8.0
mol%), N-phenylpiperidine (3.0 equiv) and anhydrous CaSO4 (5% m/v). Then, acetone (max. 0.01%
water, purchased from AppliChem GmbH) (2.0 mL) was added via syringe. The reaction mixture was
degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring for 24 hours, CH,Cl, (10 mL) and
silica gel (4 g) were added to the reaction mixture. The solvent was removed in vacuo to absorb the
crude reaction mixture onto the silica gel and the silica-gel-absorbed crude product was added to a siliga
gel column. Flash chromatography (n-hexane) afforded the analytically pure non-racemic product. The

enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Method D:
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j\?/\/‘\ 3.0eq

0] 0]
N Ar A-RhS (8 mol%) N Ar
» 0
_ R4 acetone, blue LEDs, 24 h P R4

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhS (8.0
mol%), and N,N-diisopropyl-3,5-di-tert-butylbenzenemethanamine (3.0 equiv). Then, acetone (max.
0.01% water, purchased from AppliChem GmbH) (2.0 mL, 0.1 M) was added via syringe. The reaction
mixture was degassed via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed
approximately 10 cm away from the 24 W blue LEDs. After stirring for 24 hours, the mixture was diluted
with CH,Cl,. The combined organic solutions were concentrated under reduced pressure and the mixture
purified by flash chromatography on silica gel (n-hexane/EtOAc) to afford the analytically pure non-
racemic product. The enantiomeric excess was determined by HPLC analysis on a chiral stationary

phase.

Method E:
:N:
@ 3.0 eq

o)
A-RhInd (4 mol%)

5
N\ R > N\

| _ NHBoc acetone, blue LEDs, 48 h | _ NHBoG

(0]
R5

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhInd (4.0
mol%), and N-phenylazepane (3.0 equiv). Then, acetone (max. 0.01% water, purchased from
AppliChem GmbH) (2.0 mL) was added via syringe. The reaction mixture was degassed via freeze-
pump-thaw for three cycles. Subsequent, the vial was sealed and placed approximately 10 cm away from
the 24 W blue LEDs. After stirring for 48 hours, the mixture was diluted with CH>Cl,. The combined
organic solutions were concentrated under reduced pressure and the mixture was purified by flash
chromatography on silica gel (n-hexane/EtOAc) to afford the analytically pure non-racemic product.

The enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Method F:
®
@ (3 eq)
(o]

A-RhS (4 mol%)

Me acetone, blue LEDs, 48 h — Me

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhS (4.0

mol%), and N-phenylpiperidine (3.0 equiv). Then, acetone (max. 0.01% water, purchased from
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AppliChem GmbH) (2.0 mL) was added via syringe. The reaction mixture was degassed via freeze-
pump-thaw for three cycles. Subsequent, the vial was sealed and placed approximately 10 cm away from
the 24 W blue LEDs. After stirring for 48 hours, the mixture was diluted with CH>Cl,. The combined
organic solutions were concentrated under reduced pressure and the mixture was purified by flash
chromatography on silica gel (n-hexane/EtOAc) to afford the analytically pure product as a single

diastereomer. The enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Method G:
0 DIPEA (3.0 eq) o
N A-RhiInd (4 mol%) N
N Ph > I N Ph
| _ Me acetone, blue LEDs, 48 h _ Me

An oven-dried 10 mL Schlenk tube was charged with racemic substrate (1.0 equiv), A-RhInd (4.0
mol%) and DIPEA (3.0 equiv). Then, acetone (max. 0.01% water, purchased from AppliChem GmbH)
(2.0 mL) was added via syringe. The reaction mixture was degassed via freeze-pump-thaw for three
cycles. Subsequent, the vial was sealed and placed approximately 10 cm away from the 24 W blue LEDs.
After stirring for 24 hours, the mixture was diluted with CH,Cl,. The combined organic solutions were
concentrated under reduced pressure and the mixture was purified by flash chromatography on silica gel
(n-hexane/EtOAc) to afford the analytically pure non-racemic product. The enantiomeric excess was

determined by HPLC analysis on a chiral stationary phase.

4.3.3 Experimental and Characterization Data of the Products
0]

N
N
= Me
(R)-3a
According to the Method A, the reaction of racemic 3a (42.3 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 41.2 mg (97% yield, white solid) of (R)-3a. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol
= 95:5, flow rate 1 mL/min, 25 °C, t; (major) = 5.9 min, t; (minor) = 5.3 min). [a]p** = —-50.9° (¢ 1.0,
CH,Cl).

Me

\

Me
(R)-3b
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According to the Method A, the reaction of racemic 3b (45.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 42.4 mg (94% yield, white solid) of (R)-3b. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 6.9 min, t, (minor) = 6.3 min). [a]p? = -54.3° (¢ 1.0,
CH,Cl).

| N\ Me
o
(R)-3c
According to the Method A, the reaction of racemic 3¢ (45.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 43.5 mg (97% yield, white solid) of (R)-3¢. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 6.9 min, t; (minor) = 6.3 min). [a]p** = —48.7° (¢ 1.0,
CH,Cl).

0O

N\
= Me

(R)-3d

According to the Method A, the reaction of racemic 3d (45.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 44.3 mg (98% yield, white solid) of (R)-3d. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 92% (HPLC: 254 nm, n-hexane/isopropanol
= 98:2, flow rate 1 mL/min, 25 °C, t; (major) = 7.0 min, t; (minor) = 6.0 min). [a]p> = —-176.4° (¢ 1.0,
CH,Cl).

0 tBu

N

I N
= Me

(R)-3e

According to the Method B, the reaction of racemic 3e (53.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0

mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
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acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 48.2 mg (90% yield, white solid) of (R)-3e. Enantiomeric excess was established
by HPLC analysis using a Chiralpak IG column, ee = 92% (HPLC: 254 nm, n-hexane/isopropanol =
99.5:0.5, flow rate 1 mL/min, 25 °C, t, (major) = 7.6 min, t, (minor) = 7.2 min). [a]p* = —8.4° (c 1.0,
CHoCL).

0 iBu

N\
= Me

(R)-3f

According to the Method A, the reaction of racemic 3f (53.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 49.7 mg (93% yield, white solid) of (R)-3f. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 93% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 5.7 min, t; (minor) = 5.3 min). [a]p®* = -28.0° (¢ 1.0,
CH,Cl).

OMe

(R)-39
According to the Method B, the reaction of racemic 3g (48.3 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-Phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous

acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at
room temperature, affording 45.5 mg (94% yield, colorless liquid) of (R)-3g. Enantiomeric excess was
established by HPLC analysis using a Chiralpak IG column, ee = 95% (HPLC: 254 nm, n-
hexane/isopropanol = 97:3, flow rate 1 mL/min, 25 °C, t; (major) = 14.9 min, t; (minor) = 14.1 min).

[a]p® = -45.2° (¢ 1.0, CHaCly).

0 0]
J
Me
(R)-3h

N
N
o

According to the Method A, the reaction of racemic 3h (51.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at
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room temperature, affording 48.5 mg (95% yield, white solid) of (R)-3h. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-
hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 °C, t; (major) = 7.5 min, t; (minor) = 11.3 min).

[a]p® = —34.8° (¢ 1.0, CH,CLy).

(R)-3i

According to the Method A, the reaction of racemic 3i (58.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-Phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 54.3 mg (94% yield, white solid) of (R)-3i. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 6.6 min, t; (minor) = 6.1 min). [a]p®® = -22.4° (¢ 1.0,
CH,Cl).

(R)-3]

According to the Method B, the reaction of racemic 3j (49.1 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 42.6 mg (87% yield, white solid) of (R)-3j. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 97% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 6.5 min, t; (minor) = 6.0 min). [a]p®* = -29.2° (¢ 1.0,
CH2CL).

0]
N
AN

= Me CI

(R)-3k
According to the Method A, the reaction of racemic 3k (49.1 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at

room temperature, affording 45.5 mg (93% yield, white solid) of (R)-3k. Enantiomeric excess was
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established by HPLC analysis using a Chiralpak OD-H column, ee = 91% (HPLC: 254 nm, n-
hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 °C, t, (major) = 8.6 min, t, (minor) = 7.2 min). [at]p?’

=-115.0° (¢ 1.0, CH,CL).

0 Ph

® "
= Me
(R)-3I
According to the Method B, the reaction of 31 (61.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0 mol%), N-
phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous acetone (2.0
mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room temperature,
affording 56.6 mg (93% yield, white solid) of (R)-31. Enantiomeric excess was established by HPLC
analysis using a Chiralpak IG column, ee = 95% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow

rate 1 mL/min, 25 °C, t; (major) = 10.1 min, t, (minor) = 11.6min). [a]p** = —8.9° (¢ 1.0, CH,Cl,).

(0]

N
\
7

Me F

(R)-3m

According to the Method A, the reaction of racemic 3m (49.4 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 43.9 mg (89% yield, pale yellow solid) of (R)-3m. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 92% (HPLC: 254 nm, n-
hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t, (major) = 6.9 min, t; (minor) = 6.2 min). [a]p*

=-55.7° (¢ 1.0, CHaCL).

CF3

(R)-3n

According to the Method B, the reaction of racemic 3n (55.9 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 38.5 mg (69% yield, white solid) of (R)-3n. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol
= 99:1, flow rate 1 mL/min, 25 °C, t,; (major) = 5.9 min, t, (minor) = 5.6 min). [a]p>® = -26.5° (¢ 1.0,
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CH,CL).

0 SN

®
= Me

(R)-30
According to the Method B, the reaction of racemic 30 (51.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 48.8 mg (95% yield, yellow solid) of (R)-30. Enantiomeric excess was
established by HPLC analysis using a Chiralpak IG column, ee = 97% (HPLC: 254 nm, n-

hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 18.8 min, t; (minor) = 17.8 min).

[a]p® = -27.9° (¢ 1.0, CH,Cl,).

0O N
N
I N
P~ Me
(R)-3p
According to the Method B, the reaction of racemic 3p (53.1 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 49.8 mg (94% yield, pale yellow liquid) of (R)-3p. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 91% (HPLC: 254 nm, n-

hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t, (major) = 6.2 min, t; (minor) = 5.9 min). [a]p*’

=-15.8°(c 1.0, CH,CL).

(R)-3q

According to the Method B, the reaction of racemic 3q (52.3 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 45.9 mg (88% yield, pale yellow solid) of (R)-3q. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 95% (HPLC: 254 nm, n-
hexane/isopropanol = 97:3, flow rate 1 mL/min, 25 °C, t, (major) = 9.4 min, t; (minor) = 7.8 min). [a]p*

= 283.6° (¢ 1.0, CHCL).
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YOO

Me
(R)-3r

N
A
4

According to the Method A, the reaction of racemic 3r (58.3 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (64.5 mg, 2.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 54.7 mg (94% yield, white solid) of (R)-3r. Enantiomeric excess was established
by HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol
= 95:5, flow rate 1 mL/min, 25 °C, t; (major) = 7.7 min, t; (minor) = 7.3 min). [a]p®® = —44.5° (¢ 1.0,
CH,Cl).

(R)-3s

According to the Method B, the reaction of racemic 3s (43.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 40.4 mg (93% yield, colorless liquid) of (R)-3s. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 86% (HPLC: 254 nm, n-
hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t, (major) = 9.7 min, t; (minor) = 7.8 min). [a]p*’

=+9.6° (¢ 1.0, CH,CL).

(R)-3t

According to the Method B, the reaction of racemic 3t (30.1 mg, 0.1 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (48.4mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (1.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 28.1 mg (93% yield, pale yellow solid) of (R)-3t. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 95% (HPLC: 254 nm, n-
hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 10.0 min, t; (minor) = 8.7 min).

[a]p? = —13.2° (¢ 1.0, CH,CLy).
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0

N\
= Et

(R)-3u

According to the Method D, the reaction of racemic 3u (45.1 mg, 0.2 mmol), A-RhS (13.8 mg, 8.0
mol%), and N, N-diisopropyl-3,5-di-tert-butylbenzenemethanamine (182.0 mg, 3.0 eq) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 37.2 mg (83% yield, pale yellow solid) of (R)-3u. Enantiomeric excess was
established by HPLC analysis using a Chiralpak IG column, ee = 87% (HPLC: 254 nm, n-
hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t, (major) = 9.2 min, t; (minor) = 8.5 min). [a]p*’

=-40.2° (¢ 1.0, CH,Cl).

0]
N
| N
= iPr
(R)-3v
According to the Method D, the reaction of racemic 3v (47.9 mg, 0.2 mmol), A-RhS (13.8 mg, 8.0
mol%), and N, N-diisopropyl-3,5-di-tert-butylbenzenemethanamine (182.0 mg, 3.0 eq) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 37.3 mg (78% yield, white solid) of (R)-3v. Enantiomeric excess was established
by HPLC analysis using a Chiralpak IG column, ee = 89% (HPLC: 254 nm, n-hexane/isopropanol =
99:1, flow rate 1 mL/min, 25 °C, t; (major) = 7.6 min, t; (minor) = 7.2 min). [a]p®® = —15.1° (¢ 1.0,
CH,ClL).

o]
N
| N
=
(R)-3w

According to the Method D, the reaction of racemic 3w (44.7 mg, 0.2 mmol), A-RhS (13.8 mg, 8.0
mol%), and N,N-diisopropyl-3,5-di-tert-butylbenzenemethanamine (182.0 mg, 3.0 eq) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 35.4 mg (79% yield, pale yellow solid) of (R)-3w. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 86% (HPLC: 254 nm, n-
hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 °C, t, (major) = 6.6 min, t; (minor) = 8.6 min). [a]p*

= 25.6° (¢ 1.0, CHaCly).
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(0]
N o)
| ; Me A
(S)-3x
According to the Method F, the reaction of racemic 3x (45.5 mg, 0.2 mmol), A-RhS (6.9 mg, 4.0 mol%)
and N-phenylpiperidine (96.8 mg, 3.0 eq) in anhydrous acetone (2.0 mL) was stirred under nitrogen
atmosphere for 24 hours with 24 W blue LEDs at room temperature, affording 34.1 mg (75% yield,
white solid) of (S)-3x. Enantiomeric excess was established by HPLC analysis using a Chiralpak 1G
column, ee = 64% (HPLC: 254 nm, n-hexane/isopropanol = 90 :10, flow rate 1 mL/min, 25 °C, t; (major)

= 8.7 min, t, (minor) = 11.0 min). [a]p? = +24.2° (¢ 1.0, CH,Cl,).

0]
N
AN

= NHBoc
(R)-3y

According to the Method E, the reaction of racemic 3y (62.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%) and N-phenylazepane (105.2 mg, 3.0 eq) in anhydrous acetone (2.0 mL) was stirred under
nitrogen atmosphere for 48 hours with 24 W blue LEDs at room temperature, affording 59.3 mg (95%
yield, white solid) of (R)-3y. Enantiomeric excess was established by HPLC analysis using a Chiralpak
IG column, ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 25 °C, t;
(major) = 11.7 min, t; (minor) = 10.5 min). [a]p® =-98.0° (¢ 1.0, CH.CL).

Pee
N
N
= NHBoc
(R)-3z

According to the Method E, the reaction of racemic 3z (36.2 mg, 0.1 mmol), A-RhInd (3.3 mg, 4.0
mol%) and N-phenylazepane (52.6 mg, 3.0 eq) in anhydrous acetone (1.0 mL) was stirred under nitrogen
atmosphere for 48 hours with 24 W blue LEDs at room temperature, affording 32.6 mg (90% yield, pale
yellow solid) of (R)-3z. Enantiomeric excess was established by HPLC analysis using a Chiralpak 1G
column, ee = 85% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 25 °C, t. (major)
= 18.7 min, t; (minor) = 13.6 min). [a]p** = —86.1° (¢ 1.0, CH:Cl,).

(0]
N Me
N

= NHBoc
(R)-3aa
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According to the Method E, the reaction of racemic 3aa (25.0 mg, 0.1 mmol), A-RhInd (3.3 mg, 4.0
mol%) and N-phenylazepane (52.6 mg, 3.0 eq) in anhydrous acetone (1.0 mL) was stirred under nitrogen
atmosphere for 48 hours with 24 W blue LEDs at room temperature, affording 20.5 mg (82% yield,
white solid) of (R)-3aa. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-
H column, ee = 85% (HPLC: 254 nm, n-hexane/isopropanol = 94:6, flow rate 1 mL/min, 25 °C, t; (major)
= 8.6 min, t; (minor) = 6.7 min). [a]p®* = +7.1° (¢ 1.0, CH>CL,).

0
N

I N
= F
(R)-3ab
According to the Method B, the reaction of racemic 3ab (43.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (1.0 mL) was stirred under nitrogen atmosphere for 48 hours with 24 W blue LEDs at room
temperature, affording 39.7 mg (93% yield, white solid) of (R)-3ab. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 72% (HPLC: 254 nm, -

hexane/isopropanol = 90 :10, flow rate 1 mL/min, 25 °C, t; (major) = 9.6 min, t; (minor) = 7.0 min).

[o]p? = —94.2° (¢ 1.0, CH,CL).

0]
N

I N
= F
(R)-3ac
According to the Method B, the reaction of racemic 3ac (33.4 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (1.0 mL) was stirred under nitrogen atmosphere for 48 hours with 24 W blue LEDs at room
temperature, affording 28.3 mg (85% yield, colorless liquid) of (R)-3ac. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 40% (HPLC: 254 nm, »n-

hexane/isopropanol = 99 :1, flow rate 1 mL/min, 25 °C, t; (major) = 8.2 min, t, (minor) = 7.7 min).

[a]p® = +4.7° (¢ 0.3, CH,CLy).

0
N
I N
Z Me
Me (R)-3ad

According to the Method B, the reaction of racemic 3ad (45.1 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
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acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 41.4 mg (92% yield, pale yellow liquid) of (R)-3ad. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 93% (HPLC: 254 nm, »-
25

hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 8.7 min, t; (minor) = 8.0 min). [a]p

=-81.4° (¢ 1.0, CH:CL).

0]

N
I
=

Me Me

(R)-3ae
According to the Method B, the reaction of racemic 3ae (45.1 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 39.6 mg (88% yield, white solid) of (R)-3ae. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 89% (HPLC: 254 nm, n-

hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t; (major) = 10.0 min, t; (minor) = 8.7 min).

[a]p® = —16.5° (¢ 1.0, CH,CLy).

(0]
Me

N\
= Me

(R)-3af

According to the Method C, the reaction of racemic 3af (45.1 mg, 0.2 mmol), A-RhInd (13.2 mg, 8.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 36.3 mg (81% yield, pale yellow solid) of (R)-3af. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 90% (HPLC: 254 nm, n-
hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 °C, t, (major) = 7.1 min, t; (minor) = 6.7 min). [a]p*

= +17.6° (¢ 1.0, CHxCL).

0]
B~_N
| N
= Me
(R)-3ag
According to the Method C, the reaction of racemic 3ag (58.0 mg, 0.2 mmol), A-RhInd (13.2mg, 8.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous

acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at
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room temperature, affording 49.3 mg (85% yield, white solid) of (R)-3ag. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 94% (HPLC: 254 nm, n-
hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 °C, t, (major) = 8.0 min, t, (minor) = 7.1 min). [a]p?’

=+115.9° (¢ 1.0, CH2CL).

N

N
— Me

I
Ph (R)-3ah
According to the Method B, the reaction of racemic 3ah (57.5 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSQO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 53.9 mg (94% yield, white solid) of (R)-3ah. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 88% (HPLC: 254 nm, n-

hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 °C, t, (major) = 8.0 min, t; (minor) = 6.5 min). [a]p*’

=-162.2° (¢ 1.0, CH,CL).

(R)-3ai

According to the Method B, the reaction of racemic 3ai (52.3 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%), N-phenylpiperidine (96.8 mg, 3.0 eq) and anhydrous CaSO4 (100 mg, 5% m/v) in anhydrous
acetone (2.0 mL) was stirred under nitrogen atmosphere for 24 hours with 24 W blue LEDs at room
temperature, affording 47.8 mg (92% yield, pale yellow solid) of (R)-3ai. Enantiomeric excess was
established by HPLC analysis using a Chiralpak OD-H column, ee = 87% (HPLC: 254 nm, n-
hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 °C, t, (major) = 7.2 min, t; (minor) = 6.4 min). [a]p*’

=+254.3° (¢ 1.0, CH:CL).

0
N
| N
= Me
(R)-3aj
According to the Method G, the reaction of racemic 3aj (45.0 mg, 0.2 mmol), A-RhInd (6.6 mg, 4.0
mol%) and DIPEA (77.6 mg, 3.0 eq) in anhydrous acetone (2.0 mL) was stirred under nitrogen
atmosphere for 24 hours with 24 W blue LEDs at room temperature, affording 33.8 mg (75% yield,

colorless liquid) of (R)-3aj. Enantiomeric excess was established by HPLC analysis using a Chiralpak
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OD-H column, ee = 42% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 ml/min, 25 °C, t;
(major) = 16.6min, t, (minor) = 14.7 min). [a]p*® = +22.2° (¢ 0.5, CH,CL,).

4.3.4 Mechanistic Experiments
1) Absorption Spectra

0.8

——Rhind
] substrate 1
06 —— RhlInd/substrate 1 (complex I)

0.7

0.5 1
0.4 1

0.3

Absorbance (a.u.)

0.2
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0.0

400 425 450 475 500 525 550

Wavelength (nm)

Figure 51. UV/Vis-absorbance measurements. UV/Vis absorption spectra of substrate 1, catalyst Rhind,
and the substrate-coordinated catalyst RhInd/substrate 1 (complex I). Recorded in acetone at
concentrations of 0.2 mM.

2) Cyclic Voltammetry

Cyclic voltammetry was carried out on a BAS C3 Cell Stand and a BAS 100 series Electrochemical
Analyzer using a platinum disk anode (2.0 mm diameter) and a platinum wire cathode (0.5 mm diameter)
at r.t. in acetonitrile containing 0.1 M BusNBF,. Potentials were referred to a saturated Ag/AgCl
reference electrode. Before each experiment the surface of the anode was polished followed by thorough
rinsing with distilled water. The solution was purged with nitrogen before each measurement. See

Figure 52 for the results.
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—— RhlInd/substrate 1 (complex I)
- — -substrate 1
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Figure 52. Cyclic voltammetry. Cyclic voltammograms of substrate 1, the catalyst RhInd, and the
substrate-coordinated catalyst RhInd/substrate 1 (complex I). Measured in CH>Cl, (0.6 mM) containing
nBwNBF4(0.1 M) at a scan rate = 0.1 V/s.

3) Retaining deuteration at the chiral center

0 PhNCsH1q (3 equiv)
| Ny A-Rhind (4 mol%)
'
J D 4O'IV'e CaS0, (5 wt%) (R)-4d
(gé;ci/- o) acetonitrile 40% D
o blue LEDs, 12 h 96% yield, 95% ee

An oven-dried 10 mL Schlenk tube was charged with rac-4d (97% D, 21.2 mg, 0.1 mmol, 1.0 eq), A-
RhlInd (3.3 mg, 0.004 mmol, 4.0 mol%), N-phenylpiperidine (48.4 mg, 0.3 mmol, 3.0 eq) and anhydrous
CaSO04 (50 mg, 5% m/v). Then, acetone (max. 0.01% water, purchased from AppliChem GmbH) (1.0
mL) was added via syringe. The reaction mixture was degassed via freeze-pump-thaw for three cycles.
Subsequent, the vial was sealed and placed approximately 10 cm away from the 24 W blue LEDs. After
stirring for 12 hours, the mixture was diluted with CH»Cl,. The combined organic solutions were
concentrated under reduced pressure and the mixture purified by flash chromatography on silica gel (n-
hexane/ EtOAc=50:1t010:1) to afford the pure non-racemic product. The enantiomeric excess was

determined by HPLC analysis on a chiral stationary phase.
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Figure 53. "H NMR analysis of the deuterated (R)-4d when use deuterated rac-4d as the starting material.
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4) Introduction of deuterium at the chiral center

PhNCsH 4 (3 equiv)

Q A-Rhind (4 mol%)
N >
| CaSO0y (5 wit%)
Z Me ° ac4et(on\<lev i (R)-4d
rac-3a blue LEDs, 30 h 30% D
D20 (1 equiv) 85% yield, 82% ee

An oven-dried 10 mL Schlenk tube was charged with rac-3a (21.1 mg, 0.1 mmol, 1.0 eq), A-RhInd
(3.3 mg, 0.04 mmol, 4.0 mol%) and N-phenylpiperidine (48.4 mg, 0.3 mmol, 3.0 eq). Then, a mixture
of acetone (1.0 ml) including DO (2.0 mg) was added via syringe. The reaction mixture was degassed
via freeze-pump-thaw for three cycles. Subsequent, the vial was sealed and placed approximately 10 cm
away from the 24 W blue LEDs. After stirring for 30 hours, the mixture was diluted with CH»Cl,. The
combined organic solutions were concentrated under reduced pressure and the mixture was purified by
flash chromatography on silica gel (n-hexane/ EtOAc=50:1t010:1) to afford the pure non-racemic

product. The enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.
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Figure 54. '"H NMR analysis of the deuterated (R)-4d when add 1 equiv D>O.

5) Hantzsch ester as an alternative reducing agent

tBquc/\(j(COztBu

| | 1
2 equiv
N (2 equiv)

Q H OH
N A-Rhind (4 mol%) Ny
| - |
= Me CaSO0Oy4 (5 wt%) = Me
rac-3a acetone 5, 94% yield

blue LEDs, 24 h

An oven-dried 10 mL Schlenk tube was charged with rac-3a (21.1 mg, 0.1 mmol, 1.0 eq), A-RhInd
(3.3 mg, 0.04 mmol, 4.0 mol%), Hantsch ester (61.9 mg, 0.2 mmol, 2.0 eq) and anhydrous CaSOj4 (50
mg, 5% m/v). Then, acetone (max. 0.01% water, purchased from AppliChem GmbH) (1.0 mL) was
added via syringe. The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the
mixture was thoroughly degassed, the vial was sealed and positioned at approximately 10 cm away from
a 24 W blue LEDs lamp. After stirring for 24 hours, the mixture was diluted with CH,Cl,. The combined
organic solutions were concentrated under reduced pressure and the mixture was purified by flash
chromatography on silica gel (n-hexane/ EtOAc=10:1 to 2:1) to afford the pure product as a white solid.
'"H NMR (300 MHz, CDCl;) 5 8.39 (d, /= 4.8 Hz, 1H), 7.52 (td, J= 7.7, 1.4 Hz, 1H), 7.24 — 7.02 (m,
6H), 6.96 (d, J=7.8 Hz, 1H), 4.80 (d, /= 5.6 Hz, 1H), 3.29 — 3.07 (m, 1H), 1.20 (d, /= 7.1 Hz, 3H).

6) Synthesis of racemic RhInd/substrate complex for cyclic voltammetry
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) |+ PFg
O e
/ /
N-N Me NN
(0] | 22 I e}
/N CHzclz, 14 h rt / NS Me

N + Rh
= Me NS
\C\
N Me N
N A\ N~ \
rac-3a —_ ‘ -
Bu
rac-Rhind Rhind/substrate 1

Racemic substrate 3a (26.4 mg, 0.12 mmol, 2.5 eq.) and racemic RhInd (41.4 mg, 0.05 mmol, 1.0 eq.)
in CH»Cl, (1 mL) were stirred at room temperature for 14 h. Then, the solvent was removed under
reduced pressure and the residue was redissolved in CH,Cl, (1 mL). The resulting mixture was stirred
for another 30 min and the solvent was removed (this procedure was repeated for 2 times). Afterwards,
Et,O was added to the residue and the precipitate was filtered, washed with Et,O to afford the complex
RhInd/substrate 3a (42.1 mg, 0.04 mmol, 88% yield) as an orange solid.

'"H NMR (300 MHz, CD,Cl,): 5 = 8.87 (s, 1H), 8.82 (s, 1H), 8.62 (d, J = 8.0 Hz, 1H), 8.29-8.15 (m,
2H), 7.81 (dd, J=8.9, 8.5 Hz, 2H), 7.72-7.62 (m, 3H), 7.39 (dd, J=9.0, 1.3 Hz, 1H), 7.28-7.14 (m, 3H),
7.08 (s, 1H), 6.94 (t, J=7.2 Hz, 1H), 6.90-6.77 (m, 2H), 6.76-6.62 (m, 4H), 6.06 (dd, J =22.3, 7.6 Hz,
2H), 5.26 (s, 1H), 5.07 (q, J= 6.6 Hz, 1H), 1.55 (d, J = 6.6 Hz, 3H), 1.34 (s, 9H), 0.69 (s, 9H).

13C NMR (75 MHz, CD,Cl,) § 209.6, 154.2, 154.0, 151.7, 150.8, 148.1, 146.3, 145.9, 144.6, 144.2,
142.9, 141.6, 140.9, 137.8, 135.7, 134.5, 131.8, 130.7, 129.5, 128.2, 127.9, 127.6, 127.3, 124.9, 124.8,
123.8, 123.5, 121.4, 121.0, 120.9, 120.8, 114.4, 113.9, 107.9, 107.3, 52.8, 48.8, 35.6, 35.0, 30.8, 30.4,
18.6.

HRMS (ESI, m/z) calcd for C4sH47N5sORK [M]*: 812.2830, found: 812.2849.

7) Enantioselective protonation of rhodium enolate complex

_|+PF5 @7 u 1)@ _(5eq)
°N
@l o DBU (1.1 eq) @
/ Me
S

I/ Z“Me rt, 5 min N\
O — > Rh\ — |
CH,Cl, 1t, 14h | SN 2)bipyridine (10 eq)~  Me
@( N U i, 3 h
N \)

N° /
\ @—tBu CH,Cl, (S)-3a
= 96% vyield, 50% ee

A-RhInd/Enolate (7)

A-RhInd/Substrate 1 (6) not isolated

A rhodium substrate complex from A-RhInd and racemic substrate 3a was synthesized following the
procedure above (Section 5.4). To a solution of A-RhInd/Substrate 3a (38.3 mg, 0.04 mmol) in CH,Cl,
(1.0 mL) was added DBU (6.6 uL, 0.044 mmol, 1.1 eq.) under nitrogen atmosphere to generate the

complex A-RhInd/Enolate in situ. The resulting mixture was stirred for 14 h at room temperature. Then,
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the HCI salt of N-phenylpiperidine (39.5 mg, 0.2 mmol, 5 eq.) was added. The mixture was stirred for
5 min at room temperature. Afterwards, bipyridine (62.5 mg, 0.4 mmol, 10 eq.) was added to the mixture
and stirred for another 3 h. The solvent was removed in vacuo and the mixture was purified by column
chromatography on silica gel (n-hexane/EtOAc 10:1) to afford 8.1 mg (0.037 mmol, 96%) of the non-

racemic ketone (S5)-3a with 50% ee.

"H-NMR spectrum of RhInd/substrate 1 (complex I)

*

DBU

"H-NMR spectrum of enolate cqmplex I1T

AMUWMJL@_ T

T T T r T T T T T T T T T T T r T T T T
Lo 10.5 10.0 9.5 9.0 8.5 8.0 1.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 30 2.5 2.0 1.5 Lo
£1 (ppm)

Figure 55. "H NMR spectrum of RhInd/substrate 3a and enolate complex III.

4.3.5 Follow-Up Chemistry

NaBH,4 (1.1 eq)

MeOH, -78°C to rt
91%

(S)-3a
(96% ee) 32:1 dr, 96% ee

A solution of the NaBH,4 (13.8 mg, 0.33 mmol, 1.1 eq) in methanol (3.0 mL) was placed in a dry
ice/acetone bath. After cooling to -78 <C, a solution of (S)-3a (63.4 mg, 0.3 mmol, 1.0 eq) in THF (1.0
mL) was added dropwise at -78 <C. The reaction mixture was warmed to room temperature. After
completion, the reaction was quenched by addition of saturated aqueous NH.CIl (2 mL) and was
extracted with ethyl acetate for three times. The combined organic layer was dried over anhydrous
Na,SO4. After filtration, the solvent was removed under reduced pressure, and the residue was purified
by column chromatography on silica gel (ethyl acetate/hexane = 1:2) to give the alcohol as a white solid
(58.3 mg, 0.27 mmol, 91% vyield) with 32:1 dr and 96% ee. HPLC: Daicel Chiralcel OD-H,
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iPrOH/hexane = 3/97, 1.0 mL/min, 25 €, 254 nm; t; = 15.1 min, t. = 20.7 min. [o]p?® = -90.0 (c 1.0,
CH.Cl,).

IH NMR (500 MHz, CDCls) § 8.53 — 8.45 (m, 1H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.29 — 7.12 (m, 6H),
7.06 (d, J = 7.9 Hz, 1H), 4.90 (d, J = 5.5 Hz, 1H), 3.86 (s, 1H), 3.32 — 3.22 (m, 1H), 1.31 (d, J = 7.1 Hz,
3H).

13C NMR (75 MHz, CDCl3) 6 160.4, 148.1, 142.2, 136.1, 128.3, 128.1, 126.5, 122.3, 121.5, 77.6, 46.8,
17.1.

HRMS (ESI, m/z) calcd for C14H1sNO [M+H]*: 214.1226, found: 210.1230.

1) TsCI (1.5 eq), EtsN (2 eq)

oH DMAP (0.1 eq)
MeCN, 50 °C, 16 h N Ph

N Ph . (Y

| ] 2) LiAH,4 (5 eq) lJ e
\ 4
& ¢ Me THF, reflux, 16 h 9
8
(96% ee) 46% for 2 steps 96% ee

To a solution of alcohol (19.0 mg, 0.09 mmol, 96% ee) in MeCN (2.0 mL) was added TsClI (28.6 mg,
0.15 mmol, 1.5 eq), DMAP (1.2 mg, 0.01 mmol) and Et3N (28 pL, 0.2 mmol) successively. The reaction
mixture was stirred at 50 <€ for 16 hours. After completion, the solvent was removed under reduced
pressure and the residue was redissolved in THF (2.0 mL). LiAlH4 (19 mg, 0.5 mmol) was added and
the reaction mixture was refluxed under N2 atmosphere for 16 hours. After completion, the reaction
mixture was cooled to 0 € and was quenched by addition of ice water until the evolution of hydrogen
gas ceased. Aqueous NaOH (3 M, 5.0 mL) was added and the reaction mixture was extracted with ethyl
acetate for three times. The combined organic layer was washed with brine and was dried over
anhydrous Na,SO,. After filtration, the solvent was removed under reduced pressure, and the residue
was purified by column chromatography on silica gel (eluted with ethyl acetate/hexane = 1:3) to give
the target product as a colorless oil (8.1 mg, 0.04 mmol, 46% vyield for 2 steps) with 96% ee. HPLC:
Daicel Chiralcel OD-H, iPrOH/hexane = 10/90, 1.0 mL/min, 25 <€, 254 nm; t; = 5.6 min, t, = 7.2 min.
[a]o® =-60.3 (c 0.5, CH.CL,).

'H NMR (300 MHz, CDCls) § 1.27 (d, J = 7.0 Hz, 3H), 2.98 (dd, J = 13.2, 8.2 Hz, 1H), 3.08 (dd, J =
13.2, 6.9 Hz, 1H), 3.21-3.37 (m, 1H), 6.93 (d, J = 7.8 Hz, 1H), 7.07 (dd, J = 7.5, 5.0 Hz, 1H), 7.12-
7.23 (m, 3H), 7.23-7.31 (m, 2H), 7.49 (td, J = 7.8, 1.8 Hz, 1H), 8.47-8.62 (m, 1H).

13C NMR (75 MHz, CDCl3) 6 21.4, 40.4, 47.2, 121.0, 123.6, 126.0, 127.0, 128.3, 135.9, 146.7, 149.2,
160.6.

The 'H and **C NMR data match those reported in the reference.’
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Ph3;PCH3Br (2 eq)
n-BuLi (2 eq) N
s

THF, 0 °C tort, 12h

Me

(Sl;/l-ga 85% 10
(96% ee) 96% ee

To a flask charged with methyltriphenylphosphonium bromide (143 mg, 0.4 mmol) in 4.0 mL of
anhydrous THF at 0 < was added n-butyllithium (0.25 mL, 1.6 M in hexanes, 0.4 mmol). The reaction
was allowed to warm to room temperature spontaneously and then stirred for 1 h. The compound (S)-1
(42.25 mg, 0.2 mmol) in anhydrous THF (1.0 mL) was added dropwise, and the reaction was stirred for
12 h at room temperature. After being quenched with saturated aqueous NH4CI, the mixture was
extracted with ethyl acetate for three times. The combined organic layer was washed with brine and was
dried over anhydrous Na;SO. After filtration, the solvent was removed under reduced pressure, and the
residue was purified by column chromatography on silica gel (ethyl acetate/hexane = 1:3) to afford the
desired product as a white solid (35.6 mg, 0.17 mmol, 85% yield) with 96% ee. The procedure was
adapted and modified from a previous report.® HPLC: Daicel Chiralcel OD-H, iPrOH/hexane = 3/97,
1.0 mL/min, 25 €, 254 nm; t; = 6.2 min, t; = 9.6 min. [a]p?® = +75.9 (¢ 1.0, CH.Cl,).

IH NMR (300 MHz, CDCls) & 8.42 (d, J = 4.7 Hz, 1H), 7.46 — 7.35 (m, 1H), 7.24 — 7.08 (m, 5H),
6.98 (ddd, J = 10.2, 7.4, 5.8 Hz, 1H), 5.73 (s, 1H), 5.21 (s, 1H), 4.36 (q, J = 7.1 Hz, 1H), 1.39 (d, J =
7.1 Hz, 3H).

13C NMR (75 MHz, CDCl3) 6 158.9, 152.4, 148.7, 145.2, 136.2, 128.2, 127.7, 125.9, 122.0, 121.2,
115.1,41.7, 21.41.

HRMS (ESI, m/z) calcd for CisHisN [M+H]*: 210.1277, found: 210.1281.

=—MgBr
Q (1.3 eq) HQ, e///
N Ph 3
X . —" - N\ Ph
| J e THF | H
0°tort, 2 h = Me
(S)-3a 97% 11
(96% ee) >50:1 dr, 96% ee

To a solution of compound (S)-1 (15.8 mg, 0.075 mmol, 96% ee) in THF (1.5 mL) at 0 €€ under N>
atmosphere was added a solution of ethynylmagnesium bromide (0.5 M in THF, 0.2 mL, 0.1 mmol)
dropwise. The reaction mixture was warmed to room temperature and stirred for 2 hours. After
completion, the reaction was quenched by addition of saturated aqueous NH4CI (2.0 mL). The mixture
was diluted with water (5.0 mL) and was extracted with ethyl acetate for three times. The combined
organic layer was washed with brine and was dried over anhydrous Na,SOs. After filtration, the solvent
was removed under reduced pressure, and the residue was purified by column chromatography on silica
gel (eluted with ethyl acetate/hexane = 1:5) to give the desired product as a colorless oil (17.3 mg, 0.73
mmol, 97% vyield) with >50:1 dr and 96% ee. HPLC: Agilent HPLC 1260, Daicel Chiralpak IG,
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iPrOH/hexane = 10/90, 1.0 mL/min, 25 €, 254 nm; t; = 9.4 min, t, = 16.8 min. [o]p?® = -59.5 (c 0.5,
CH.Cl,).

IH NMR (300 MHz, CDCls) § 1.60 (d, J = 7.1 Hz, 3H), 2.63 (s, 1H), 3.32 (q, J = 7.1 Hz, 1H), 5.24-
5.42 (br, 1H), 7.00-7.07 (m, 2H), 7.07-7.11 (m, 3H), 7.11-7.16 (m, 1H), 7.57-7.64 (m, 1H), 7.64-7.73
(m, 1H), 8.23-8.32 (m, 1H).

13C NMR (75 MHz, CDCl3) 6 16.4, 51.5, 73.5, 74.6, 85.8, 121.3, 122.6, 126.5, 127.4, 129.1, 136.6,
140.4, 146.8, 159.5.

HRMS (ESI, m/z) calcd for C16H1sNO [M+H]*: 238.1226; found: 238.1229.

o 1) mCPBA (5 eq)
N Ph CH,Cly, 1t, 16 h HO._Ph
| ] g ) MeONa (1 eq) > =
Y 2) MeONa (1 eq Me
Z Me MeOH, rt, 30 min
(S)-3a 12
(96% ee) 82% over 2 steps 95% ee

To a solution of (S)-1 (52.8 mg, 0.25 mmol, 96% ee) in CH.Cl, (5.0 mL) was added mCPBA (308 mg,
70%, 1.25 mmol) in one portion at room temperature. The reaction mixture was stirred at room
temperature for 16 hours. After completion, the reaction mixture was diluted with ethyl acetate (20 mL)
and was washed successively with saturated aqueous NaHCOs; and brine. The organic layer was dried
over anhydrous Na,SO,. After filtration, the solvent was removed under reduced pressure and the
residue was redissolved in MeOH (5.0 mL), to which MeONa (13 mg, 0.25 mmol) was added and the
mixture was stirred at room temperature for 30 min. Then the reaction mixture was diluted with ethyl
acetate (20 mL) and was washed with water and brine and was dried over anhydrous Na,SO,. After
filtration, the solvent was removed under reduced pressure and the residue was purified by column
chromatography on silica gel (eluted with ethyl acetate/hexane = 1:5) to give the desired product as a
colorless oil (25.0 mg, 0.21 mmol, 82% vyield for 2 steps) with 95% ee. HPLC: Daicel Chiralcel OD-H,
iPrOH/hexane = 10/90, 1.0 mL/min, 25 €, 254 nm; t; = 6.0 min, t, = 6.7 min. [a]p?®> = -23.6 (¢ 1.0,
CH.Cl).

'H NMR (300 MHz, CDCls) § 1.50 (d, J = 6.5 Hz, 3H), 1.85-1.95 (br, 1H), 4.90 (g, J = 6.5 Hz 1H),
7.24-7.31 (m, 1H), 7.31-7.44 (m, 4H).

13C NMR (75 MHz, CDCl3) 6 25.1, 70.4, 125.4, 127.4, 128.5, 145.8.

The 'H and **C NMR data match those reported in the reference.®
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1) NoHy4°H20 (3 eq)

0 HOAc (10 eq) N=N
MeOH, 40 °C, 16 h

[}
I Ny _Ph - | NN Ph
= 2) Phi(OAc), (1.2 eq) Ve
z Me CH,Cly, rt, 30 min Z
(S)-3a 13
(96% ee) 95% for 2 steps 93% ee

To a solution of (S)-1 (16.9 mg, 0.08 mmol, 96% ee) in MeOH (1.5 mL) was added HOAc (46 puL, 0.8
mmol) and N2Hs*H20 (80%, 15 uL, 0.24 mmol). The reaction mixture was stirred at 40 € for 16 hours.
After completion, the reaction mixture was diluted with ethyl acetate (20 mL) and was washed
successively with saturated agueous NaHCOs3; and brine. The organic layer was dried over anhydrous
Na,SO4. After filtration, the solvent was removed under reduced pressure and the residue was
redissolved in CH2Cl, (1.5 mL), to which Phl(OAc)2 (31 mg, 0.096 mmol) was added and the mixture
was stirred at room temperature for 30 min. After completion, the solvent was removed under reduced
pressure and the residue was purified by column chromatography on silica gel (eluted with ethyl
acetate/hexane = 1:2) to give the desired product as a colorless oil (17.0 mg, 0.076 mmol, 95% yield for
2 steps) with 93% ee. HPLC: Daicel Chiralpak IG, iPrOH/hexane = 20/80, 1.0 mL/min, 25 <€, 254 nm;
t1 = 14.5 min, t; = 16.2 min. [o]o® = +30.5 (c 1.0, CH.CL.).

'H NMR (300 MHz, CDCls) 6 1.90 (d, J = 7.3 Hz, 3H), 4.56 (q, J = 7.3 Hz, 1H), 6.85 (t, J = 6.9 Hz,
1H), 6.99 (dd, J = 9.0, 6.6 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.18-7.25 (m, 1H), 7.25-7.40 (m, 4H),
8.63 (d, J = 7.1 Hz, 1H).

13C NMR (75 MHz, CDCl3) 6 21.2, 37.4, 114.9, 117.9, 123.7, 125.1, 126.5, 127.4, 128.6, 130.9,
141.8, 144.6.

HRMS (ESI, m/z) calcd for [C1sH13NsNa]* (M+Na)*: 246.1002; found: 246.1005.

O o = TMSCN(4.7 eq) o =
N mCPBA (2 eq) 1 H DMCC (4.4 eq) NC_N X
H > N\ 0) - | N 0
Me CH,Cl,, 0°C to rt | _ CH,Cl,, 48h Z
(S)-3a 16 h, 61% 89% b
(96% ee) 93% ee

First step: Oxidation of (S)-1 with m-chloroperbenzoic acid (188 mg, percent purity = 55%, 0.6 mmol)
was added to a solution of (S)-1 (63.4 mg, 0.3 mmol) in CH,Cl; (3.0 mL) at 0 °C. The mixture was
stirred at room temperature until completion (monitored by TLC). After that, the reaction was quenched
by addition of saturated aqueous NaHCOs. The mixture was extracted with CHCl, for three times. The
combined organic layer was washed with brine and was dried over anhydrous Na,SOa. After filtration,
the solvent was removed under reduced pressure, and the residue was purified by column
chromatography on silica gel (ethyl acetate/MeOH = 5:1) to give the pyridine oxide as a colorless oil
(44.3 mg, 0.182 mmol, 61%).

Second step: Dimethylcarbamyl chloride (57 ul, 0.62 mmol) was added to a solution of the pyridine

oxide synthesized in the previous step (34 mg, 0.14 mmol) and cyanotrimetilsilane (83 ul, 0.66 mmol)
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in CH2Cl, (0.8 mL) at 0 € under nitrogen. The reaction mixture was stirred for 48 h. After that, the
mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine
and was dried over anhydrous Na;SO4. After filtration, the solvent was removed under reduced pressure,
and the residue was purified by column chromatography on silica gel (ethyl acetate/ hexane = 5:1) to
give the desired product as a white solid (31.5 mg, 0.125 mmol, 89%). The procedure was adapted and
modified from a previous report.? [a]p?® = +37.3 (¢ 1.0, CH.CL,).

'H NMR (300 MHz, CDCls)  8.29 (dd, J =7.9, 0.9 Hz, 1H), 7.99 (t, J = 7.9 Hz, 1H), 7.85 (dd, J =
7.7,0.9 Hz, 1H), 7.53 - 7.43 (m, 2H), 7.42 — 7.28 (m, 3H), 6.20 (g, J = 6.6 Hz, 1H), 1.74 (d, J = 6.6
Hz, 3H).

BC NMR (75 MHz, CDCl3)  162.8, 150.0, 140.8, 138.2, 134.1, 131.0, 128.6, 128.3, 127.8, 126.2,
116.4,74.8, 22.1.

HRMS (ESI, m/z) calcd for CisH12N2NaO, [M+Na]*: 275.0791, found: 275.0800.

4.3.6 Single Crystal X-Ray Analysis of Compound (R)-3I

A suitable crystal of CooHisFNO was selected under inert oil and mounted using a MiTeGen loop.
Intensity data of the crystal were recorded with a STADIVARI diffractometer (Stoe & Cie). The
diffractometer was operated with Cu-Ka radiation (1.54186 A, microfocus source) and equipped with a
Dectris PILATUS 300K detector. Evaluation, integration and reduction of the diffraction data was
carried out using the X-Area software suite.!" Multi-scan and numerical absorption corrections were
applied with the LANA and X-RED32 modules of the X-Area software suite.'>!* The structure was
solved using dual-space methods (SHELXT-2018/2) and refined against F? (SHELXL-2018/3 using
ShelXle interface).!*!>!® All non-hydrogen atoms were refined with anisotropic displacement
parameters. The hydrogen atoms were refined using the “riding model” approach with isotropic
displacement parameters 1.2 times (1.5 times for the methyl groups) of that of the preceding carbon
atom. The fluorine atom was found to be slightly disordered (5 % probability at the second position)
between the two positions corresponding to the ring rotation around the C7—C9 bond. CCDC 2081804
contains the supplementary crystallographic data for this paper. These data can be obtained free of

charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
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Table 4. Selected crystallographic data and details of the structure determination for C»0HsFNO.

Identification code
Empirical formula
Molar mass / g mol™
Space group (No.)
alA

b/A

c/A

VIA

z

Peaic. | g €m3

p/ mm-?

Color

Crystal habitus
Crystal size / mm3
T/K

AA

frange/ °

Range of Miller indices

Absorption correction

Trmin, Tmax

Rint, Rs

Completeness of the data set
No. of measured reflections
No. of independent reflections
No. of parameters

No. of restraints

S (all data)

R(F) (1>20(1), all data)
WR(F?) (1 > 204(1), all data)
Extinction coefficient

Flack parameter x

Apmax, Apmin [ € A3

ZCHO013
C20H16FNO
305.34
P2:2:2, (19)
11.0908(2)
11.5946(2)
11.9725(2)
1539.58(5)

4
1.317
0.723
colorless
block
0.249 x 0.248 x 0.196
100
1.54186 (Cu-K,)
5.311 to 76.052
—-13<h<12
-12<k<14
-15<I1<12
multi-scan and numerical
0.5404, 0.8693
0.0179, 0.0104
0.999
17762
3167
220
0
1.020
0.0276, 0.0282
0.0754, 0.0760
0.0039(5)
-0.04(6)
0.196, -0.126
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Figure 56. X-ray crystallography. Crystal structure of the deracemized compound (R)-31. The disordered
fluorine atom is shown on the position with its major probability. Displacement ellipsoids are shown at
50% probability level at 100 K. The hydrogen atoms are shown with arbitrary radii.
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5.1 List of Abbreviations

'H NMR proton nuclear magnetic resonance spectroscopy
13C NMR carbon nuclear magnetic resonance spectroscopy
F NMR fluorine nuclear magnetic resonance spectroscopy
0 chemical shift

J coupling constant

br broad

S singlet

d doublet

t triplet

q quartet

m multiplet

ppm parts per million

aq aqueous

Ar Aryl-group

bpy 2,2 -bipyridine

CH»Cl/DCM dichloromethane

CD:Cl, dideuteromethylenechloride

CHClL; chloroform

CDCl; deuterochloroform

CH3CN/ MeCN acetonitrile

conc concentrated

DMAP 4-dimethylaminopyridine

DMF dimethylformamide

DMSO dimethyl sulfoxide

dr diastereomeric ratio

ee enantiomeric excesses

Et,O diethyl ether

Et;N triethyl amine

EtOAc ethyl acetate

HAT hydrogen atom transfer

h hour(s)

HPLC high performance liquid chromatography
HRMS high resolution mass spectrometry

IR spectra infrared spectra

Ir iridium
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Rh rhodium

L liter(s)

M mol/liter

m meta-

min minute(s)

mL milliliter(s)

mmol millimole

MS mass spectroscopy
N2 nitrogen

Ph phenyl

ppm parts per million
rac racemate

rt room temperature
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin layer chromatography
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5.6 Enantiomeric Excess for Catalytic Reactions

VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\zch173-3rac-2.D)

mAL

140

0 Rac-2¢

. IG, 254 nm,

n-hexane/isopropanol = 70:30, S

80 flow rate 1 mL/min, 30 °C i e
60

40

20

U e,

0 5| IID 1|5 2|0 2I5
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 22.977 BB 9.5535 2979.61060 81.89731 50.8061
2 28.818 BB @.6671 2978.88550 68.128608 49.9939

VWD1 A, Wavelength=254 nm (E:\Data'ZhangClzche156-1(0,05M).D)
mAU ]

400 4

350 H,‘ N Me
N _
300 0
Me
O

250+

22.248

2c
200
150 Enantioenriched-2¢
97% ee

100
50 -
0 —T 8
‘1~ * r T 1 * T * * [T T r T T 1T * ‘* ©* 1 7 T

0 5 10 15 20 25
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 22.248 BB B.6476 9784.43758 222.70468 98.3834
2 28.654 BB 0.6538 160.77577 3.62973 1.6166

Figure 57. HPLC traces of rac-2c¢ (reference) and enantioenriched-2c.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\zchb169rac-1.D)

mAL
140
120
Rac-2d
100 IA, 254 nm,
n-hexane/isopropanol = 90:10, ]
8 flow rate 1 mL/min, 30 °C h 3
60
40
20
0
2 1 6 8 10 12 14 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] 7

S — [ (R [ [ |
1 11.323 BV 9.4124 2225.82007 76.74575 50.1317
2 13.229 VB 9.4569 2214.12891 69.26335 49.8683

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\zchb169-1.D)
mAU ]

300

H
a ,N\ Me
250 N _
O
200 O

2d
150
Enantioenriched-2d
100 98% ee
50
0+ = "
[ D T T R 14 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] %

1 11.091 BB a.4871 5040.97607 174.48216 98.9862
2 13.664 MM R ©.39064 51.62853 2.20416 1.0138

Figure 58. HPLC traces of rac-2d (reference) and enantioenriched-2d.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB102-1 RE.D)
mAU

300

250
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IG, 254 nm,
207 n-hexane/isopropanol = 70:30,
flow rate 1 mL/min, 30 °C 3
150 - 2
100
50
]
0 2 4 6 8 10
Peak RetTime Type Width Area Height Area
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R — [ [RRR—- [ | |
1 8.340 BB ©.1798 1793 .67868 154.08856 49.9679
2 9.458 BB 9.2107 1799.68884 132.33784 58.08921

VWDT A, Wavelength=254 nm (E\DataZhangCZCHB1022 CHD)
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300+
250—: Me H,' N-_-Me
|I|N\J
200—- O
o] 3
ﬁo{ 2e
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1007 98% ee
5[];
U- ‘m'
N Y
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 &.319 BB 9.1794 1926.47522 165.99669 99.0420
2 9.474 MM R ©.2234  18.63387 1.38997 ©.9580

Figure 59. HPLC traces of rac-2e (reference) and enantioenriched-2e.
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VD1 A, Wavelength=254 nm (E\DataZhangCZ CHE100-TRE.D)

mAl ]

350 H

Rac-2f
007 IG, 254 nm,
. n-hexane/isopropanol = 70:30,
flow rate 1 mL/min, 30 °C ~

200 3 2
150
100

50

n —

0 5 lli é é 1|0 1|2 1|4 1|6 1I8 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] %

1 12.777 VB R ©.2982 3774.15698 196.41737 49.9179
2 15.288 BB ©.3614 3786.57324 162.14777 50.08821

VWD1 A, Wavelength=254 nm (E:DataZhangCZCHB100-2CH D)

mAU ]
700
500 - H
] Me A lNi\lee
] "
500 — E
] O N
400 O
] 2f
300
] Enantioenriched-2f
200 — 98% ee
100
0 1 T T T T T T . T = II K
2 4 6 8 10 12 14 16 mi
Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s] [mAU] 4

1 12.418 BB ©.2940 8436.13184 443.40787 98.9299
2 15.113 BB a.43e8  91.25233 3.18932 1.8701

Figure 60. HPLC traces of rac-3f (reference) and enantioenriched-3f.
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VWD1 A, Wavelength=254 nm (E:\Data'\ZhangC\ZCHC54-1 rac 1G.D)
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150 flow rate 1 mL/min, 30 °C

100 =
50

0

0 2 1 5 3 10 mi
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VWDT A, Wavelength=254 nm (£ \DataiZhangC\ZCHC54-2 ch 1G.D)
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3004 Me O -
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100
0 T L O B A T =
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Peak RetTime Type Width Area Height Area
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1 9.349 BB 0.2113 3489.323691 257.17743 99.4878
2 11.276 MM R ©.2706  17.96380 1.10643 @.5122

Figure 61. HPLC traces of rac-2g(reference) and enantioenriched-2g.
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VWD1 A, Wavelength:‘25'4 nm (E:\.Data;ZhangC\‘ZJCHm 92-1 Rac date.D)
mAl 7]
350
300
] Rac-2h
250 IG, 254 nm, 3
] n-hexane/isopropanol = 70:30, 1 e
2007 flow rate 1 mL/min, 30 °C s
150
100
50
0 . L T
2?5 é ?IS 1I0 12|.5 1|5 17!.5 20 22|_5 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] 7
N [ E— [ [ [ |
1 18.157 BB ©.4023 5905.54395 224.99198 49.5951
2 20.146 BB 2.4960 6801.98193 173.15488 50.40849
VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC192-2 CH date.D)
mAl ]
400 4
H
P Me
% Nx
|I|N\J E
300 O =
Me O
2h
200+
Enantioenriched-2h
93% ee
100
0 - - : ~ -
2?5 7‘5 1IU 12‘.5 1|5 17|.5 ZIU 22I 5 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
S - [ - [ [ [ |
1 18.134 BB 0.4022 7775.54395 293.34097 96.5046
2 20.668 BB 0.4451 281.63449 9.77737 3.4954

Figure 62. HPLC traces of rac-2h (reference) and enantioenriched-2h.
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VWD1A, Wave\englh:‘25’4 nm [E:\.Data{ZhangC\zuchCSQ—1 RE.D)
mAU 7|
400 4
- Rac-2i ©
IG, 254 nm, A o
n-hexane/isopropanol = 70:30, @
s00 flow rate 1 mL/min, 30 °C
100
0 - - - 5 - - - - - i 5 § u : . T
0 2 4 6 8 10
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] 7

1 7.846 BB 0.1924 3466.36865 278.11047 49.6205
2 9.123 BB 0.2258 3519.38721 248.33003 50.3795

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'\zchc89-2-new-re-3.D)

mAU 7]
350
] H
1 2 N Me
1 tBu S
300 ) |||N\J
] O -
250 S
1 )
200 2i
150 Enantioenriched-2i
] 97% ee
100 ]
50
] CI-
T T T T T T T T T T T T T T T T T
2 4 6 8 10
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 7.784 MM R ©.2209 3188.72559 234.59273 98.6889
2 B8.759 MM R ©.2442 41.38056 9.76071le-2 1.3111

Figure 63. HPLC traces of rac-3i (reference) and enantioenriched-3i.
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mAU 7]

700+

600 +

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC123-1.D)

Rac-2j
500 IG, 254 nm, g
n-hexane/isopropanol = 70:30, 1 3
07 flow rate 1 mL/min, 30 °C h
300
200 -
100 -]
0 I I 1 I 1 I 1 1 —
0 2 4 3] 8 10 12 14 16 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %
N E— [ B [ [ [ |
1 13.200 BB 9.3482 9766.34570 443.65759 49.9644
2 15.529 BB 9.3992 9780.28223 377.62646 50.08356

VWD1 A, Wavelength=254 nm (E-DataZhangCZCHC 137-2ch D)

mAU 7]

1000+

H
~ Me .
| Ph - Nx 2
800 - N o
1 O
600 - O
] 2]
400 Enantioenriched-2j
87% ee
2!][]—-
X | w
2 1 6 8 10 12 14 6 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [maU] 7
S —— [ R [ |- |- |
1 13.289 BB ©.3345 1.71598e4 789.77632 93.4318
2 15.753 BB 9.3966 12086.32202 46.97213 6.5682

Figure 64. HPLC traces of rac-2j (reference) and enantioenriched-2j.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangC'\zchb56-1 rac re D)

mAl 4
500 -]
40[],- RaC‘-Zk
] 1G, 254 nm,
] n-hexane/isopropanol = 70:30, .
3007 flow rate 1 mL/min, 30 °C g N
20[]—-
10[]—-
0 ] I 1 I I I I
2 4 6 8 10 2w
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] 7
R — - (R [ (R |
1 8.964 BB ©.1959 3492 .083174 277.35123 50.8877
2 18.372 BB @.2350 3479.79639 229.31519 49.9123
VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'\zchb56-1 ch re-2.D)
mAU 4
500—-
1 H
i z Me
400 Cl "'N'N\
1 —
] O
300 (0] ]
2k ¥
20[]- . .
] Enantioenriched-2k
99% ee
100—-
0 - T " " T T v T T T T " T T * T T T 9.‘ T
2 4 [ 8 10 12 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [maU] %
R E— [ - [N [ (R |
1 8.869 BB 0.2044 3443 .49976 261.85419 99.6375

2 18.385 MM R ©.2553  12.52755 8.17778e-1  ©.3625

Figure 65. HPLC traces of rac-2k (reference) and enantioenriched-2k.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB44-1 Rac new.D)

mAU 7]
120
100 Rac-21
1G, 254 nm, B o
80 n-hexane/isopropanol = 70:30, T3
flow rate 1 mL/min, 30 °C
60
40
20
0 T
0 2 4 6 8 10
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 8.876 W R ©.2262 1160.8264%9 79.53937 50.1496
2 9.6l16 VB ©.2389 1153.18596  74.77422 A49.8584

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB44-2CH.D)

maU ]
400 H/" N Me
" INI\j
-
300 Cl 0 g
0]
2]
200 . .
Enantioenriched-21
99% ee
100
o ~
2 4 6 3 10
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 9.045 BB 9.2151 3862.32788 278.02325 99.7020
2 9725 MM R @.2186 11.54380 1.7993%e-1 ©.2980

Figure 66. HPLC traces of rac-2l (reference) and enantioenriched-2l.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'zchc188-1rac ia1010.D)
mAl 7

200
] Rac-2m

IG, 254 nm,

150 n-hexane/isopropanol = 70:30,

] flow rate 1 mL/min, 30 °C

12.222
16.312

100 +

50+

2 4 6 8 10 12 14 16 18 mi

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] %

R R [ [ [ |
1 12.222 BB 0.5566 4448 68311 113.67832 49.7797
2 15.312 BB 0.5515 4488.65713 116.73582 50.2283

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'zchc188 chdoublecat ia1010.D)
mAll 4

5004

1 "l
q -
] cl ©
O

W

300+

11.904

] 2m
2004

Enantioenriched-2m

] 94% ee
100
.
| T | T 1 T T I T
2 4 6 8 10 12 14 16 18 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 11.984 BB ©.5835 9401.91953 264.62875 96.9234
2 15.382 BB Q.4789 298.41223 9.33634 3.8766

Figure 67. HPLC traces of rac-2m (reference) and enantioenriched-2m.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\ZCHC13-1RAC.D)

mAL ]
350 é
300
] Rac-2n .
250 =1
] IG, 254 nm, 2
2001 n-hexane/isopropanol = 70:30, 2
] flow rate 1 mL/min, 30 °C 1
150
100
50
U . L T
0 2 4 5 8 10 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %

1 7.806 VB R ©.1749 2537.19629 224.48799 508.1848
2 9.285 BB 0.2140 2526.58276 181.91887 49.8952

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC13-2 CH RE.D)

mAU ]
350
H
2 Me
300 F . "'N/N\
-
O o
250 ~
O
200 2“
150 Enantioenriched-2n
98% ee
100
50
0 =2
| | 1 | T
a 2 4 6 8 10 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] %

1 7.792 BB ©.1684 2551.47803 233.78763 99.0664
2 9.327 MM R @.2341 2404582 1.71288 @.9336

Figure 68. HPLC traces of rac-2n (reference) and enantioenriched-2n.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\ZCHC105-1RE 2010.0)
mAU ]

300

Rac-20
27 IG, 254 nm,
n-hexane/isopropanol = 70:30, 3
. flow rate 1 mL/min, 30 °C  j g
150
100
50
0 - T
T T T mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 7

1 7.896 BB 0.2006 2505.06934 194.085273 5@.5498
2 8.745 BB 0.2178 2458.57837 173.51668 49.4502

VWD1 A, Wavelengih=254 nm (E DataZhangCZCHC 105-2CH 2010.0)

mAU ]
400 H," N Me
O-IIN\J
300 - FsC @
(0]
20
2004
Enantioenriched-20
98% ee
100
5 6 7 8 9 10 i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 7

1 7.892 BB @.2029 3735.58537 286.951@5 98.9736
2 8.838 BB 9.2143 38.73763 2.78442 1.8264

Figure 69. HPLC traces of rac-30 (reference) and enantioenriched-3o.
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VWD1 A, Wavelength=254 nm (E-\Data'\ZhangC'\Z CHC47-1 Rac new.D)
mAl

700

600

Rac-2p
1G, 254 nm,
n-hexane/isopropanol = 70:30,
flow rate 1 mL/min, 30 °C

500+

400+

12.853

300

200

100

15.327

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [maU] 7

1 12.853 BB 0.3458 8157.29150 364.85648 49.8839
2 15.327 BB 0.4152 8221.52539 304.33869 50.1961

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC47-2 NEW-DATE.D)

mAl ]
300 H
250 2 H,” N Me
MeO "'N\J 2
200 O r‘_\.
0]
150 2p
100+ Enantioenriched-2p
95% ee
50
0 2
0 é Jl EIS é 1|0 1|2 1‘4
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

e [ B --mmmnee- |-=mmmmmee- |- |
1 12.949 BB ©.3185 4855.63745 196.77440 97.3888
2 15.524 BB 9.3932 188.74123 4.32648 2.6112

Figure 70. HPLC traces of rac-3p (reference) and enantioenriched-3p.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC134-1RACRE.D)

mAU |
200
150 2
100 4 h
B0+
0 I
R T AT Y T T T
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 17.86@ BB ©.5369 4387.67773 126.41782 49.89a5
2 22.879 BB 0.6659 4406.94043 102.44596 50.1895

VWD1 A, Wavelength=254 nm (E\DataZhangCZCHC 1342 CHD)

mAU ]
2004 H
4 ,N'\NjMe
"
EtO\P/OEt e
150 6/ ~O
O
2q
100
50
04— T
IE 1|(] 1|5 EID 2|5 3|(] 3|5 d-lﬂ mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %

1 17.789 BB a.5449 7288.47852 205.41814 99.0127
2 21.419 MM R @©.7986  72.67489 8.06024e-2  8.9873

Figure 71. HPLC traces of rac-2q (reference) and enantioenriched-2q.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC48-1 rac IG 2010.D)

mAUi
4100-
300—- % w
200
100;
.
2|5 5I ?IE 1I0 12|.5 1|5 17‘ 5 ZIU mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %
S [ R | | e |
1 16.796 BV 0.404A8 7102.92627 271.80607 50.06146
2 18.326 VB 0.4406 7O98.77979 249.73477 49.9854
VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\ZCHC55 ch ig 2010.0)
mAU ]
700
H
- ~ Me
— -
500+ O 2
400 O
2r
300
200
100
0 T T T T T T I T == E_‘ T
25 5 75 10 125 15 17.5 20 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %

1 17.261 BB 9.4222 1.23337ed  449.42337 99.7899
2 18.99% MM R @.4889 25.96144 £5.84971e-1 6.2101

Figure 72. HPLC traces of rac-2r (reference) and enantioenriched-2r.
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mAl ]
350
300

250 4

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB35-1 RAC.D)

200 g
150
100
50
0]
2 4 6 8 10 12 m
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
S [ E— [ [ [ |
1 16.590 BB 0.2313 3291.64199 220.31830 49_7880
2 12.425 BB 0.2853 3319.67153 179.085835 58.2120
VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB95-2 CH.D)
mAU ]
00 -| H
z M
. N Ve
OIIIN _
600 MeO %
5 g
2s
400 |
200 -]

]
]
-]
co—]
=
=)
3

mi

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 1.897 BV R ©.2604 9374.54492 551.29944 98.3124
2 12,893 MM R @.31e4 160.921e4 8.63974 1.6876

Figure 73. HPLC traces of rac-2s (reference) and enantioenriched-2s.
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VWD1 A, Wavelength=254 nm (E\Data\ZhangC\ZCHC160-1RAC 1G2010.D)
maU ]
250
200
=T
&
N
150
P
S
B
100
50
0 -
T T T T T T
24 26 28 30 32 34 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 7

1 24.994 BB
2 32.659 BB

0.5606 5421.608596
@.7196 5470.93848

156.39987 49.7735
116.99458 58.2265

VWD A, Wavelength=254 nm (E-\DataZhangCZ CHC160-2 CH 1G2010.D)
mAU |
500
400 | Hc, N Me
f |I|N\J
n O
300 BnO
O
2t
200 -
100 |
24 % % 30 » 3 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 7
S — [ E— [— [ [— |
1 24.117 BB 9.5741 1.23797e4 334.23798 99.4269

2 31.571 MM R ©.7281

71.35336

1.63322

8.5731

Figure 74. HPLC traces of rac-2t (reference) and enantioenriched-2t.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB94-1 RAC.D)

mAU ]
300
250-
200—- §
150{ 1
100
50;
04
T T T T T T T
25 5 75 10 125 15 175
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 16.585 BB @.4588 5380.72656 179.47021 50.1306
2 18.483 BB @.5174 5352.68750 157.93256 49.8694

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB94-2 CH.D)

mAL
500+
H/
400 MeO 2 {fj/Me
lllN
O -
MeO 2
3004 O ®=
2u
200 4
100 4
n @
2I5 é 7|5 '1ID 12|.5 1|5 1TI 5
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] 7

N — [ E— [RRR—- (R [ |
1 16.484 BB 0.4691 384.54355 12.59762 3.78083
2 18.249 BB 0.5269 9787.79980 283.42166 96.2197

Figure 75. HPLC traces of rac-2u (reference) and enantioenriched-2u.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\Z?CHC135-1RAC.D)

mAU
300
250
2004 T =
150
100
50
0
2 4 6 8 10 12 14 m
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [maU] %
R E— - RN [ [ |
1 11.593 VB R ©.2968 3842.61255 199.43239 50.7350
2 13.474 BB 9.3430 3731.27930 168.71753 49.2650
VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC135-2 CH.D)
mAl ]
500—-
] H
] s 2 N Me
400: Ph ”IN\J
1 O
- o} z
300
2v
200
100
0] o
2 4 6 8 10 12 4w
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 11.562 BB 0.2911 5776.9292¢ 307.59854 98.4293
2 13.533 BB 0.3549  92.18547 3.96974  1.5707

Figure 76. HPLC traces of rac-2v (reference) and enantioenriched-2v.
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mAU ]

175

150

125

100

75

50

25+

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHB154-1 RAC-2.D)

29.073

37.042

—
30 35

S
40 mi

0 5 10 15 20 25
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
) T -mmmeemeee |--nneemeee |-=mnemee |
1 29.873 BB ©.5828 4878.68433 168.19929 49.9950
2 37.842 BB 9.7458 4879.50464  B2.886291 50.60050

mAU ]

500+

400+

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'zchb154-2 -new double cat.D)

S 0 g
300 (0] 1
2w
200
100 g
n J\
0 é 1 ID 1|5 2|0 2|5 3ID 3|5 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAUT] %
. - [ [ [ [ |
1 29.276 BB ©.5992 1.226082e4  311.4989@ 81.7737
2 37.646 BB 0.7563 2732.63843 55.12480 18.2263

Figure 77. HPLC traces of rac-2w (reference) and enantioenriched-2w.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangC\ZCHC88-1 NEW-DATE.D)
mAL )
300 H
250
2

200 -| o g

L1
150
100
50

] T
T T T T T T T T T
1] 2 4 [ 8 10 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] %

S — I (R [ [ |
1 5.368 BB 0.2212 2644 .54858 187.89316 A48.9033
2 9.272 BB 0.2330 2652.57888 177.85181 A49.8516

VWD1 A, Wavelength=254 nm (E:\Data\ZhangC'\ZCHC88-2 NEW-DATE-RE.D)

mAU ]
300
Me,
250 - ” ,:lj(
N
- o
O -
200
O
150 2x
100
50
0 2
S ‘™
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] %

1 8.402 BB 0.1842 2388.76611 281.66414 99.5267
2 9.153 MM R 0.1874  11.35977 2.68166e-2 0.4733

Figure 78. HPLC traces of rac-2x (reference) and enantioenriched-2x.
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YVWD1 A, Wavelength=254 nm (E\Data\ZhangC\zch-2-rac.D)
mAll

350

300

250

200

150

100

[=]

ra
w
-
o
.
-
2

VWD1 A, Wavelength=254 nm (E\Data\ZhangC'\zchg54-3.D)
mAU ]
500 —_
0]
400—_ I N\
= Me o
1 g
300 @
4 |I‘
I
200+ |
] |
A
] [
100 ‘ﬂ
2 ||
& [
o4 — — L u-i ; |-'I AN —
T T T T T T T
0 1 2 3 4 5 & 7 mir
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

L L TR n] P [ < |- mnmees |
1 5.298 MM R ©.1143 53.97397 7.87122 2.1555
2 5.988 MM R @.1375 2450.82563 297.84852 97.8445

Figure 79. HPLC traces (Daicel Chiralpak OD-H column) of rac-3a (reference) and (R)-3a.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\zchg57-3-rac ODH 0110.D)
mAL

500
4004

VWDT A, Wavelength=254 nm (E\Data\ZhangClzchgB1-3-ch.D)
mall

8

Me

5
=l

(=] W
= ]
[ T H S A B R

=
|

g

16,317

‘|....|‘..‘|....|...\,....-|....|....|‘..‘
1 2 3 4 5 6 T 8 mir

[=]

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 6.317 MM R ©8.1263 52.72559 6.96021  2.0185
2 6.943 BB 8.1447 2559.38013 269.64249 97.9815

Figure 80. HPLC traces (Daicel Chiralpak OD-H column) of rac-3b (reference) and (R)-3b.
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VWDT A Waisengih=254 i (£ DaEZhangCzcha57-27ac ODH 0T10.0)
mAl 7]

400
300
200 |
1004 | ' |

0 P )

T T T T T T T . T
0 i 2 3 H 5 8 7 8

VDT A, Wavelengih=254 nm [E\Da@ZhangC\zchas7-2_2020-05-04_17-10-30.0)
mal ]

(0]
| N\ Me
= Me

Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s] [mau] %

1 6.320 BB 8.1287  31.866181 3.74126  2.8@25
2 6.899 BB 8.1444 1898.10168 115.85278 97.1975

Figure 81. HPLC traces (Daicel Chiralpak OD-H column) of rac-3c (reference) and (R)-3c.

179



Chapter 5. Appendices

VWD A, Wavelength=254 nm (E:\DatalZhangClzchg61-1-rac.D)
mAL

600

500

400

300

200

(==
[0S 1
(1
E=N
o
<N
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[==]
2

VWD1 A, Wavelength=254 nm (E\Data\ZhangC\zchg61-1-ch.D)
mAU ]

3004
250

200 0

Z
/
— 7013

150 I = Me Me [

504 ‘I

Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s] [mau] %

1 5.989 MM R ©.1278 75.88238 9.89399 3.8Belb
2 7.013 MM R ©.1777 1889.15815 177.19864 956.1384

Figure 82. HPLC traces (Daicel Chiralpak OD-H column) of rac-3d (reference) and (R)-3d.
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VWD1 A, Wavelength=254 nm (E-\DatalZhangC\zch115-3-0110rac.D)
mAll

500

400

300

200
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Figure 83. HPLC traces (Daicel Chiralpak 1G column) of rac-3e (reference) and (R)-3e.

181



Chapter 5. Appendices

Figure 84. HPLC traces (Daicel Chiralpak OD-H column) of rac-3f (reference) and (R)-3f.
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Figure 85. HPLC traces (Daicel Chiralpak IG column) of rac-3g (reference) and (R)-3g.
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Figure 86. HPLC traces (Daicel Chiralpak OD-H column) of rac-3h (reference) and (R)-3h.
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Figure 87. HPLC traces (Daicel Chiralpak OD-H column) of rac-3i (reference) and (R)-3i.
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Figure 88. HPLC traces (Daicel Chiralpak OD-H column) of rac-3j (reference) and (R)-3j.
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Figure 89. HPLC traces (Daicel Chiralpak OD-H column)
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Figure 90. HPLC traces (Daicel Chiralpak IG column) of rac-3l (reference) and (R)-3lI.
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Figure 91. HPLC traces (Daicel Chiralpak OD-H column) of rac-3m (reference) and (R)-3m.
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Figure 92. HPLC traces (Daicel Chiralpak OD-H column) of rac-3n (reference) and (R)-3n.
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Figure 93. HPLC traces (Daicel Chiralpak IG column) of rac-3o (reference) and (R)-30.
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Figure 94. HPLC traces (Daicel Chiralpak OD-H column) of rac-3p (reference) and (R)-3p.
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Figure 95. HPLC traces (Daicel Chiralpak OD-H column) of rac-3q (reference) and (R)-3q.
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Figure 96. HPLC traces (Daicel Chiralpak OD-H column) of rac-3r (reference) and (R)-3r.
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Figure 97. HPLC traces (Daicel Chiralpak OD-H column) of rac-3s (reference) and (R)-3s.
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Figure 98. HPLC traces (Daicel Chiralpak OD-H column) of rac-3t (reference) and (R)-3t.
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Figure 99. HPLC traces (Daicel Chiralpak IG column) of rac-21 (reference) and (R)-21.
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Figure 100. HPLC traces (Daicel Chiralpak 1G column) of rac-3v (reference) and (R)-3v.
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Figure 101. HPLC traces (Daicel Chiralpak OD-H column) of rac-3w (reference) and (R)-

3w.
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Figure 102. HPLC traces (Daicel Chiralpak 1G column) of rac-3x (reference) and (S)-3x.
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Figure 103. HPLC traces (Daicel Chiralpak 1G column) of rac-3y (reference) and (R)-3y.
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Figure 104. HPLC traces (Daicel Chiralpak 1G column) of rac-3z (reference) and (R)-3z.
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Figure 105. HPLC traces (Daicel Chiralpak OD-H column) of rac-3aa (reference) and (R)-
3aa.
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Figure 106. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ab (reference) and (R)-
3ab.
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Figure 107. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ac (reference) and (R)-

3ac.
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Figure 108. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ad (reference) and (R)-
3ad.
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Figure 109. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ae (reference) and (R)-

3ae.
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Figure 110. HPLC traces (Daicel Chiralpak OD-H column) of rac-32 (reference) and (R)-32.
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VWD1 A, Wavelength=254 nm (E:\Data\ZhangCl\zchl98-1-RAC-NEW D)
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Figure 111. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ag (reference) and (R)-
3ag.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangC\zchh060-2-rac D)
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2 7.997 BB 0.1678 1349.93994 124.19554 93.9606

Figure 112. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ah (reference) and (R)-
3ah.
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VIWD1 A, Wavelength=254 nm (E:\Data\ZhangC'\chenhao Zhangtzchg175-2-rac D)
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Figure 113. HPLC traces (Daicel Chiralpak OD-H column) of rac-3ai (reference) and (R)-
3al.
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VWD A, Wavelength=254 nm (E-\Data\ZhangC\zchl111-rac.D)
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1 14.704 BB 0.2951 1532.80457 79.08228 29.1340
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Figure 114. HPLC traces (Daicel Chiralpak OD-H column) of rac-3aj (reference) and (R)-
3aj.
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VWD1 A, Wavelength=254 nm (EX\Data\ZhangC\ZCH-OH-RAC.D)
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Figure 115. HPLC traces (Daicel Chiralpak OD-H column) of rac-8 (reference) and non-

racemic-8.
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VWD A, Wavelengih=254 nm ([E\DalayecACXI-188-2.D)
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VWD A, Wavelength=254 nm (E-\Data\yecCXJ-14.D)
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Figure 116. HPLC traces (Daicel Chiralpak OD-H column) of rac-9 (reference) and non-

racemic-9.
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VWD1 A, Wavelength=254 nm (E-\Data\ZhangCl\zchi90-rac0310.D)
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Figure 117. HPLC traces (Daicel Chiralpak OD-H column) of rac-10 (reference) and non-

racemic-10.
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VWD A, Wavelengin=254 nm (E\Da@lyecaCX-144.D)
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Figure 118. HPLC traces (Daicel Chiralpak IG column) of rac-11 (reference) and non-

racemic-11.
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VWD1 A, Wavelength=254 nm (EADatalyecxdCXI-191-rac-2.0)
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Figure 119. HPLC traces (Daicel Chiralpak OD-H column) of rac-12 (reference) and non-

racemic-12.
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VW1 A, Wavelengih=254 nm (E\Da@yecACR-167 D)
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Figure 120. HPLC traces (Daicel Chiralpak 1G column) of rac-13 (reference) and non-

racemic-13.
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Figure 121. HPLC traces (Daicel Chiralpak 1G column) of rac-14 (reference) and non-racemic-
14.

VWD A, Wavelength=254 nm (EX\Data\ZhangClzch-2CNPy-rac.D)
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5.7 List of NMR Spectra of New Complexes
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