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Abstract

One of the most remarkable findings in biology is that the fundamental processes regulating
the inheritance of genetic material and the proliferation of life are conserved over all forms
of life on Earth ( [4], [144]). This work examined the spatio-temporal organization and
segregation of bacterial DNA in order to investigate these fundamental processes. Such
analyses are motivated by the multitude of breakthrough discoveries resulting from the
study of bacteria that have significantly improved our lives or have the potential to do so
in the future ( [96], [160], [34]).
For the investigation of the spatio-temporal organization of genetic material in the cell
fundamental physical principles were used in this work. The aim was to use concepts of
polymer physics to formulate physical models of the complex biological reality. These
models were evaluated in computer simulations and compared with experimental data.
In the first project of this thesis, the spatial organization of DNA in multipartite bacteria
(= bacteria with multiple replicons) was investigated. Only in recent years, research has
recognized that bacterial chromosomes are organized within the cell. This organization
is associated with important functional and regulatory processes ( [9], [40], [150], [173]).
However, there is little evidence for multipartite bacteria. The results of this work reveal
high order of spatial organization for multipartite bacteria as well. The organization could
be reproduced using a physical model of compacted DNA and geometric constraints on
individual genes. Furthermore, it was possible to make accurate predictions for different
mutants and to predict interactions between replicons with the developed model. These
predictions need to be verified in future experiments.
The second project focused on the study of simultaneous replication and segregation of
bacterial DNA. So far, no unified segregation mechanism has been discovered in bacteria
( [9], [37], [55]). In the present work, segregation patterns of the origin of replication
(ori) were analyzed in the model organism Bacillus subtilis (B. subtilis). Using Molecular
Dynamics (MD) simulations, it was shown that entropic segregation of chromosomes is a
plausible mechanism for the segregation of genetic material that would also explain the
observed variability in the experimental data.
The model of entropic segregation of bacterial chromosomes was extended in the third
project by the implementation of additional segregation mechanisms, so that a large data
set of different trajectories of the ori through the cell could be generated. Thus, machine
learning (ML) models could be used to classify the different segregation movements. The
evaluation of the predictions showed very good results and encourages future classification
of experimental data based on the developed models.
This work is intended to provide new perspectives on the organization of DNA in the
bacterial cell as well as a better understanding of the physical basis of cellular processes.
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Zusammenfassung

Eine der bemerkenswertesten Erkenntnisse der Biologie ist die Tatsache, dass die grundle-
genden Prozesse, die die Weitergabe des Erbgutes und die Verbreitung des Lebens regulieren
für alle Lebensformen auf der Erde die gleichen sind ( [4], [144]). Um diese zu untersuchen,
wurden in dieser Arbeit die raum-zeitliche Organisation und Segregation bakterieller DNA
untersucht. Motiviert sind solche Untersuchungen durch die Vielzahl von bahnbrechen-
den Entdeckungen, die das Studium von Bakterien bereits hervorgebracht hat und die
unser Leben signifikant verbessert haben oder das Potential haben dies in Zukunft zu tun
( [96], [160], [34]).
Ziel dieser Arbeit war es, anhand grundlegender physikalischer Prinzipien die raum-zeitliche
Organisation des genetischen Materials in der Zelle zu untersuchen. Dafür wurden Konzepte
der Polymerphysik genutzt, um physikalische Modelle der komplexen biologischen Realität
zu formulieren. Diese wurden anschließend in Computersimulationen ausgewertet und mit
experimentellen Daten verglichen.
Im ersten Projekt dieser Arbeit wurde die räumliche Organisation der DNA multipartiter
Bakterien (= Bakterien mit mehreren Replikons) untersucht. Erst seit einigen Jahren hat
die Forschung erkannt, dass auch die Chromosome von Bakterien einer Ordnung in der
Zelle unterliegen, die mit wichtigen funktionellen und regulatorischen Prozessen verbunden
ist ( [9], [40], [150], [173]). Allerdings gibt es kaum Erkenntnisse für multipartite Bakterien.
Die hier vorgestellten Ergebnisse zeigen auch für diese eine räumliche Organisation der
DNA in der Zelle. Diese konnte mit einem physikalischen Modell kompaktifizierter DNA
und geometrischen Beschränkungen einzelner Gene reproduziert werden. Außerdem war
es anhand des entwickelten Modells möglich, zutreffende Vorhersagen für verschiedene
Mutanten zu machen und Wechselwirkungen zwischen Replikons vorherzusagen, die mit
zukünftigen Experimenten zu überprüfen sind.
Im Zentrum des zweiten Projekts stand die Untersuchung der gleichzeitigen Replikation
und Segregation bakterieller DNA. Bisher konnte in Bakterien noch kein einheitlicher
Segregationsmechanismus entdeckt werden ( [9], [37], [55]). In der hier vorgestellten Arbeit
wurden die Segregationsmuster des Replikationsursprungs, ori, im Modellorganismus B.
subtilis analysiert. Anhand von MD Simulationen konnte gezeigt werden, dass entropische
Segregation der Chromosome ein möglicher Mechanismus für die Separation des genetischen
Materials ist, der auch die beobachtete Variabilität in den experimentellen Daten erklären
würde.
Das Modell der entropischen Segregation bakterieller Chromosome wurde im dritten Projekt
um weitere Segregationsmechanismen erweitert, so dass ein großer Datensatz verschiedener
Trajektorien des ori durch die Zelle generiert werden konnte. Dieser ermöglichte es ML
Modelle zur Klassifizierung der unterschiedlichen Segregationsbewegungen zu nutzen. Die
Auswertung der Vorhersagen zeigte sehr gute Ergebnisse und ermutigt zur zukünftigen
Klassifizierung experimenteller Daten auf Basis der hier entwickelten Modelle.
Mit dieser Arbeit sollen neue Perspektiven auf die Organisation der DNA in der bakteriellen
Zelle eröffnet und ein besseres Verständnis der physikalischen Grundlagen der zellulären
Prozesse vermittelt werden.
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1. Introduction

1.1. Object of research

The main subject of this work is the examination of two universal features of all cellular
life on earth: the organization and segregation of genetic material. Life on earth appears
in a great number of different manifestations. It is remarkable that all these different
forms of life are very similar in their most basic functions. It is estimated that there
are between 10 to 100 million living species on earth today [4]. A central building block
of all species is the code in which we store our genetic information: Deoxyribonucleic
acid (DNA). We use it to pass our genetic characteristics to our offspring. It does not
matter if we look at complex organisms like the human body which is an accumulation of
1013 cells or if we investigate the single cell of a bacterium: the basis for the organism is
always replication and segregation of the genetic material of one single cell ( [4], [144]).
This heredity principle stands at the most fundamental definition of life. It specifies the
complex system of chemical processes which regulate the maintenance and organization of
living cells [4]. In this sense, the cell can be seen as the fundamental unit of life, similar to
the atom being the fundamental unit of chemical processes. There is nothing smaller than
a cell that is alive [144].
Today, science agrees that all living organisms on earth evolved billions of years ago from
a common ancestor [144]. Consequently, it should not matter which organism is studied
to understand the basic mechanisms of life, such as metabolism and replication. However,
there are many practical reasons for using bacteria as study objects [144]. Some of these
advantages include the fact that bacteria are easy to isolate, they grow and replicate well
and quickly, and scientists have become very skilled at altering the genetic material of
bacteria and creating mutants that can be used to test specific hypotheses. Last but
not least, most of the living organisms on earth are single-celled organisms, so that it is
reasonable to assign them a corresponding weight in research ( [4], [144]).
The study of bacteria has already led to a variety of breakthrough discoveries and applica-
tions that improve our lives or have the potential to do so in the future. As early as the
seventeenth century, microscopic observations by Hooke and van Leeuwnhoek revealed
the cell as the fundamental unit of biological organization [144]. Robert Koch presented
another groundbreaking discovery on March 24, 1882, in his paper on the origin of tuber-
culosis, in which he identified the tubercle bacillus (Mycobacterium tuberculosis) as the
agent responsible for tuberculosis [96]. In the current COVID-19 pandemic, polymerase
chain reaction (PCR) is a key component in containing the spread of the virus by allowing
us to test whether a person is infected. PCR makes it possible to create millions of copies
of a DNA sequence. This allows to amplify an extremely small sample of DNA to the
point where it can be studied in detail ( [159], [160]). The foundations of this technique,
for which Kary Mullis received the Nobel Prize in Chemistry in 1993, were laid by work
on bacteria living in hot springs in Yellowstone National Park [170]. Most recently, the
Nobel Prize in Chemistry in 2020 was awarded to Jennifer A. Doudna and Emmanuelle
Charpentier for the development of the genome editing method CRISPR Cas-9 ( [34], [83]).
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CRISPR, or Clustered-Regularly-Interspaced-Short-Palindromic-Repeats and the protein
Cas9 together build a system used by bacteria in order to protect themselves from viruses.
The Nobel prize was awarded for the conversion of this system into a precise tool for the
modification of genomes of living organisms. With CRISPR Cas-9 it is possible to cut the
genome of a cell at a specified location in order to remove or add genes in vivo. Therefore,
there are high hopes that this technology will be able to help people with certain genetic
disorders in the future.
Against the background of the great successes achieved in the study of bacteria, the
processes within the bacterial cell will also be the object of investigation in the present
work. For this purpose, the question of how bacteria manage to organize their DNA
in the cell and then pass it on to their offspring in the combined process of replication
and segregation will be addressed. Here, the bacterial cell faces major challenges. One
of them is the fact that the length of a bacterial chromosome is about three orders of
magnitude larger than the cell itself ( [9], [197]). As a consequence, cells have to compact
their DNA in a manner that is compatible with vital cellular processes. It is therefore not
surprising that for a long time it was assumed that bacterial chromosomes fit randomly
within cells with no reproducible organization [9]. It is only in recent years that people
have begun to understand that bacteria use different physical and biochemical strategies
to organize their genomes and establish chromosome architectures on small and large
length scales [174]. In doing so, cells depend on being able to accurately duplicate and
segregate their DNA to maintain the level of organization ( [4], [72]). Another particular
difficulty for bacteria is that segregation and replication of DNA occur simultaneously
( [9], [173]). Furthermore, bacteria, unlike eukaryotes, do not possess a macromolecular
machine for the proper segregation of the duplicated DNA. Instead, bacteria use a variety
of segregation mechanism ranging from purely physical forces like entropic segregation of
the chromosomes to protein complexes, organizing and separating the chromosomes. Here,
too, the molecular mechanisms of chromosome segregation in bacteria are just beginning
to emerge. They consist both of specific protein components as well as mechanical-based
mechanisms [9].
At this point, the question arises of how to describe and understand the complexity of the
bacterial cell and its processes. The cell can be understood as a complex system consisting
of a large number of interacting constituents, which is capable of modifying its internal
structure and activity patterns due to an exchange of energy or information with the
environment [99]. If one wants to describe such a complex system, one has to limit oneself
to a certain level of its organization. Thereby the challenge is to neglect the deeper levels
of organization while avoiding loss of meaningful information ( [99], [127]). In this sense,
the goal is to generate an abstraction of the biological problem that is simple enough to
be understood by the human mind while at the same time capable of making testable
predictions [144]. To achieve this, one needs simple analytical models based on some
realistic estimates of the details of the biological system. In the specific case of studying
DNA, it will not be useful for us to use an atomic description of the complete molecule.
Instead, depending on the question, we need to extract the relevant properties of the DNA
to investigate a very specific aspect of its behavior. Therefore, it makes no sense to speak
of a sole simple model of DNA. Rather, one uses a variety of models, each as projections
of the complex real DNA molecule into a specific conceptual space [144].
An important finding in the search for suitable models to describe DNA was the fact that
DNA is a natural polymer composed of monomers called nucleotides. Thus, it was possible
to describe DNA with concepts of polymer physics. Today, polymers are a daily part of our
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lives. Synthetic polymers are used in a wide range of industrial and medical applications,
as well as in the simplest everyday items such as our coffee cup. In addition, silk, DNA
or cellulose represent examples of natural polymers. Staudinger laid the foundation for
the description of polymers in 1920 with the macromolecular hypothesis. According to
this polymers are molecules consisting of covalently bonded monomers ( [58], [157]). In
the following years, the concepts of polymer physics were further deepened. Important
contributions to thermodynamics and conformational statistics were made by P. J. Flory.
The study of the macromolecular conformations of DNA was further promoted by the
discovery of the double helix structure by Watson and Crick in 1953. The emergence of
a harmonic system of models and concepts for describing the fundamental properties of
polymers is closely associated with the work of theoretical physicists such as I. M. Lifshitz,
S. F. Edwards, and P. G. de Gennes ( [58], [157]).
In the present work, the spatial arrangement of genetic material in the bacterial cell, as
well as the combined process of replication and segregation of the DNA are analyzed. To
this end, physical models are developed to study the complex biological systems. The
predictions derived from these models are compared with experimental data. In addition,
this work tests known tools from other research areas for their applicability in the context
of the bacterial cell. The core of the work consists of three different projects that have dealt
with selected of the above-mentioned questions. Taken together, the individual studies
provide an impression of how complex biological systems can be transformed into simple
models using physical considerations. Thereafter, the obtained models are implemented
numerically and finally tested on experimental data.
In the following sections, we begin with a recapitulation of the biological background and
the physical approaches to a model-based description of this biological reality.
In chapter 2 the main focus lies on the question of how multipartite bacteria, i.e. bacteria
which have a main chromosome and additional plasmids over which their genetic material is
distributed, organize their chromosomes in the cell. After several studies have investigated
and reproduced the organization of individual chromosomes in typical model organisms,
the analysis of multipartite bacteria opens up another field of research ( [9], [24], [25],
[173], [183], [190], [199], [214]). The project presented here was carried out as part of the
Transregional Collaborative Research Center ’Spatiotemporal dynamics of bacterial cells’
(TRR174) which is a DFG-funded reseach center comprised of groups from the Marburg
and Munich areas. The results presented here were generated in a collaboration with the
Becker lab, which provided experimental data on the spatial organization of the model
organism Sinorhizobium meliloti (S. meliloti). On the theoretical side, Monte Carlo (MC)
simulations were used to elucidate the differences in the chromosome configuration of
monopartite and multipartite bacteria and how these differences affect the interactions of
the replicons in the cell. The data and analyses shown here will also be the content of two
papers currently in preparation ( [134], [193]).
Chapter 3 addresses the simultaneous process of replication and segregation in the model
organism B. subtilis. In another TRR174 collaboration with the Graumann lab, the
segregation of the two origins of replication (oris) was investigated in the model organism
B. subtilis . Since no uniform mechanism of chromosome segregation in bacteria is known
yet, this question is of particular interest ( [9], [37], [55]). In this project, a theoretical
model of entropic segregation of chromosomes was developed according to a proposal by
Arnold and Jun [84] and its predictions were compared with experimental time-lapse data
of the segregating oris obtained by the Graumann lab. The results of this collaboration
have already been published [37].

3



Finally, in chapter 4 the model for chromosome segregation is expanded by the imple-
mentation of additional segregation mechanisms of the chromosomes. At the same time,
however, the focus of the third project is no longer on comparing experimental data with
the predictions of a model. Instead, the goal of the third project is to apply the powerful
tool of automated classification of trajectories via ML to the classification of the movement
of the ori in the cell. In recent years, considerable success has already been achieved in
the classification of diffusive motions with ML models ( [80], [97], [135], [192]). To try a
corresponding application to the study of chromosome segregation in bacteria, synthetic
data of segregation trajectories beyond the current possibilities of experiments were pro-
duced with the previously developed MD model. For this purpose, different replication
and segregation models were combined to simulate distinct cell types which were later
classified with ML models. Different ML models as well as different techniques of data
preparation were compared and the possibilities of a future application to experimental
data, e.g. from single-particle tracking (SPT) experiments, were tested.
A final evaluation of the results of this work, their placement in the current state of
research, and possibilities for building future studies can be found in chapter 5.

1.2. Biological context

The biological context of this work is briefly summarized here. We discuss the basic
structure of DNA and the challenges bacterial cells face ranging from the compaction and
organization of their DNA in the cell to their replication and segregation. Later, we will
distill the fundamental parameters for a physical description and computer-based modeling
from this broad and complex biological background.

1.2.1. Basic structure of DNA

The information medium that bacteria use to store and organize their genetic information
is the same as in any living organism on earth: double-stranded molecules of DNA.
The monomers in a DNA strand are called nucleotides. They are made up of a sugar
(deoxyribose) that has a phosphate group as well as one of the four bases cytosine (C),
guanine (G), adenine (A) or thymine (T) attached to it. The backbone of the DNA is
formed by the linkage of the sugars via the phosphate groups. The bases protrude from
this backbone and bind to a newly synthesized strand of DNA. Thereby, A always binds
to T and C always binds to G via hydrogen bonds. This process is called base-pairing
and is responsible for the emergence of a double-stranded structure which consists of two
complementary sequences of the bases. The well-known double helix form of the DNA
emerges from the twisting of the two strands. In this common helical form the spacing
between base pairs is 0.34 nm ( [4], [161]). In figure 1.1 a simplified model of a DNA helix
is shown.
The order of the nucleotides along the DNA is used to encode information. Thereby, the
bases A, C, T and G may be seen as letters of a four-letter alphabet which is used to
describe instructions for producing proteins. Proteins are the most important components
of the majority of cell functions. They form enzymes which catalyze chemical reactions in
the cell, they are used to build the cell structures, they regulate gene expression and enable
the cell to move or communicate with other cells [4]. Each segment of DNA containing the
coding sequence for the production of a particular protein is called a gene. The process in
which the genetic information of a gene is converted into a protein is called gene expression.
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Figure 1.1.: Depiction of a DNA double helix. The sugar-phosphate backbone is shown
in pink. The nucleotides are shown in red (cytosine), green (guanine), blue
(adenine), and yellow (thymine), depending on the base of the nucleotide.

In the first step the cell converts the nucleotide sequence of the respective gene into another
nucleotide sequence coding for an Ribonucleic acid (RNA) molecule. In the next step
this is translated into the amino acid sequence of a protein. The number of genes varies
dramatically between organisms. The human genome encodes for roughly 24,000 distinct
proteins. In contrast, the simplest known cells have under 500 genes [4]. The complete
set of genetic information encoded on an organism’s DNA is called its genome. The
genome includes the information for all proteins that the organism will be able to produce.
Eukaryotes divide their DNA between a set of different chromosomes. However, there is
no obvious correlation between the size of the genome and the number of chromosomes
or the complexity of the organism. For example the human genome is divided into 46
chromosomes, while somatic cells from a species of small deer contain only 6 chromosomes
and a species of carp contain over 100 chromosomes [4]. In contrast to eukaryotes, the
majority of bacteria only possess one circular chromosome [133]. However, roughly 10% of
all bacteria are multipartite. In order to refer to the different types of DNA molecules that
exist within a multipartite genome of bacteria, we use the terminology suggested in [40].
Accordingly, we use replicon as a general term referring to any DNA molecule regardless of
its specific nature. More specifically, a secondary replicon is every replicon that is not the
primary chromosome of the cell while obviously the chromosome is the primary replicon.
The chromosome is always the largest replicon containing the majority of the essential
genes. In contrast to a chromosome, megaplasmids or plasmids are defined by their lack
of essential genes. Following [40] we distinguish megaplasmids and plasmids by a lower
cutoff of 350 kb for megaplasmid status. A chromid is a replicon with an intermediate
status between plasmid and chromosome since a chromid carrys at least one essential gene.
Finally, a secondary chromosome describes a secondary replicon formed as a result of an
ancestral chromosome into two replicons [40].
One challenge that eukaryotes and prokaryotes faces alike, whether they have multiple
replicons or not, is the compaction of DNA in the cell. If all 46 chromosomes in a human
cell would be laid end to end, one would reach a length of approximately 2 m. In contrast,
the nucleus to which the DNA is confined, has a diameter of roughly 6 µm [4]. Bacteria
face the same problem. Here, the length of a bacterial chromosome is about three orders
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of magnitude larger than the cell ( [9], [197]). Thus, the task for all cells is to massively
compact their DNA in a manner that is compatible with DNA replication, DNA repair
and further cellular processes. A brief summary of the main mechanisms that bacteria use
for this purpose follows in the next section.

1.2.2. Compaction and organization of DNA in bacteria

The second law of thermodynamics states that closed systems increase their entropy
with time. But since living organisms are able to exchange energy and matter with the
environment they are no closed systems. This is the reason that we find high degrees
of organization in living cells. While it was thought for a long time that bacterial cells
do not organize their genome so that it just resides randomly within the cells, nowadays
it becomes clearer that there is indeed a very complex organization. This organization
is not stochastic but serves functional and regulatory purposes [40]. The high degree of
spatial order can already be seen in the variety of cell geometries among different bacterial
species. Today the three-dimensional organization of the bacterial genome is expected
to play crucial roles in the regulation of gene expression and the establishment of cell
fate [150]. Challenged by the above mentioned packing problem, bacteria have come to
condense their chromosomes into a spatially ordered structure composed of domains with
further subdomains [173]. Thereby, one can differentiate several levels of organization.
At the first level, chromosomal DNA is divided into so-called microdomains. These
domains are negatively supercoiled (described below) and form plectonemic loops which
are topologically insulated. These independent topological domains are expected to
be of size between 10-100kilo base pair (kbp) and are distributed stochastically along
the chromosome. Thus, the Escherichia coli (E. coli) chromosome might consist of
approximately 400 domains with an average size of 10kbp. This estimation is in good
agreement with the number of loops in chromosomes from lysed cells imaged by electron
microscopy (EM) ( [9], [149], [172], [197], [206]).
A schematic illustration of a microdomain consisting of plectonemic loops is shown in
figure 1.2.

Plectoneme Microdomain

Figure 1.2.: Schematic depiction of plectonemes and microdomain formation. Negatively
supercoiled DNA builds plectonemic loops forming microdomains with sizes
of 10− 100kbp. Adapted from ref. [173]

There are various explanations for how microdomains are formed in the cell. In general, one
can differentiate between biochemical and physical mechanisms organizing the bacterial
chromosome. On the physical side the DNA can be seen as an oriented helix with a natural
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pitch of roughly 10.5 base pair (bp) per twist. Consequently, the DNA exhibits torsional
stress if a twist is added or removed. In the case of the circular DNA of bacteria, the
strain is partially released by a process called supercoiling. This is the folding of the DNA
into plectonemes [173]. Such supercoiling is a first mechanism of condensing the DNA.
Another mechanism condensing the DNA in the cell results from the mechanical properties
of the chromosome. A typical bacterial chromosome (e.g. E. coli) has a contour length of
approximately 1.5 mm [86]. At the cellular scale, such a chromosome can be modeled as a
very long and flexible polymer with a persistence length of approximately 50 nm. Within
the cytoplasm the chromosome is surrounded by a large number of crowding particles.
These crowding particles can compress the chromosome into a nucleoid as a result of
excluded volume effects. More precisely, whenever the gain in accessible volume for the
crowding particles is greater than the loss of conformational entropy of the chromosome,
the chromosome will be condensed. It was even shown that this entropic effect produces
forces which are sufficient to compact the chromosome to its in vivo size ( [146], [168]). This
phenomenon is called macromolecular crowding. It was suggested that macromolecular
crowding provides the basis for the nucleoid compaction which is finalized by biochemical
mechanisms as the action of the so-called nucleoid-associated proteins (NAPs) [86]. NAPs
influence the structure of DNA locally. Such NAPs bind in large numbers to the DNA
and thereby collectively structure the chromosome. One can divide NAPs into the group
of DNA benders and DNA bridgers. Some NAPs like FIS in E. coli generate local kinks
in the chromosome and thereby change the local geometry while others like H-NS in E.
coli bridge different DNA segments and stabilize topological domains by simultaneously
binding to multiple sites ( [172], [173], [194], [206]). In figure 1.3 a schematic illustration
of NAPs associating with DNA is shown.

i) ii)

bending bridging

NAP

NAP

NAP

Figure 1.3.: Schematic depiction of DNA bending and bridging by NAPs. (i) Local bending
of a DNA segment. (ii) Distant parts of DNA are bridged by NAPs. Adapted
from ref. [172]

In addition to the positive effect of the compactification of the DNA through supercoiling,
the topological domains also protect the DNA from relaxation, assist in decatenation of
chromosomal links and have been proposed to aid in the repair of double strand breaks [197].
A byproduct of the emergence of plectonemes is that distant parts of the DNA are brought
into spatial proximity [68]. Another possible structure-function relation associated with the
genome packing density is its correlation with genome activity. It is assumed that highly
transcribed genes might cluster into transcription factories [21]. Furthermore, transcription
contributes to supercoiling as RNA polymerase introduces negative supercoils behind it
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and positive supercoils in front [9]. So far it is not known why the microdomains are
distributed across the genome as they are, but it is assumed that domain boundaries could
help to periodically pause DNA replication in order to promote compaction of recently
replicated domains and the decatenation of sister chromosomes [9].
A possible second level of organization of eukaryotic chromosomes are chromosomal
interaction domains (CID) identified in contact maps of eukaryotic genomes [21]. They
were first described in Caulobacter crescentus (C. crescentus) where Hi-C analyses revealed
that the chromosome is divided into approximately 23 CIDs [101]. The domains received
their name from the fact that loci within a domain interact preferentially with each other.
In C. crescentus the CIDs are created in part by highly expressed genes, thereby supporting
the assumption that they are connected to gene activity [101].
On a significantly larger scale than supercoiled domains and CIDs, the bacterial chromosome
is further organized into so-called macrodomains [9]. They were first observed in E. coli
where fluorescence in situ hybridization (FISH) measurements were performed. FISH
experiments measure the spatial distance between two DNA segments in single cells
using fluorescent probes that bind to specific parts of the chromosome. It was observed
that certain loci frequently co-occupy the same restricted space in the cell. In E. coli
four macrodomains called Ori, Ter, Left, and Right were identified, each with a size of
approximately 1 Mb [139]. It is reported that loci within a given macrodomain interact
more frequently with each other than with loci in different macrodomains. Furthermore,
DNA within macrodomains is more restricted in its movement than DNA in unstructured
regions and DNA inversions occuring within a macrodomain are more easily tolerated
than those outside of a macrodomain. These findings indicate that macrodomains are an
important level of chromosome organization in bacteria ( [9], [139], [172]).
At the top level of chromosome organization, the overall arrangement of the chromosome in
the cell is investigated. Here, different bacterial species show variations in their chromosome
configurations. In C. crescentus it was found that the spatial position of the loci within
the cell recapitulated the genetic map with the origin of replication at one cell pole and
the terminus at the opposite cell pole [190]. This configuration is referred to as the ori-ter
configuration. In contrast, the origin in slow growing E. coli resides near the middle of
the cell. The two chromosomal arms arrange to opposite sides of the cell and the terminus
is found variably around mid-cell. This configuration is called left-ori -right. Interestingly,
fast growing E. coli cells adopt an ori-ter configuration and the chromosome of B. subtilis
alternates between the two patterns depending on its cell cycle and developemental stage
( [9], [173], [190], [197], [199], [206], [216]). Remarkably, an origin proximal centromere-like
region parS is present in both C. crescentus and B. subtilis . This region is used for the
segregation of the origin and seems to dictate the global orientation of the chromosome
since it was found that moving the parS region leads to a global rotation of the chromosome
such that the relocated parS sites are still polar but the origins are not [183]. This discovery
suggests that as a consequence of the positioning of parS, the remaining loci are placed
indirectly, probably in combination with further processes like compaction. However,
the ori-ter pattern does not necessarily require pole-anchoring as provided by parS. For
example Myxococcus xanthus (M. xanthus) also adopts an ori-ter pattern while having a
large cytoplasmic gap between the cell pole and the seemingly not anchored origin [9].
The topic of intracellular organization of the bacterial genome becomes even more complex
if we consider the multipartite bacteria. So far, one of the sole studies examining the
three-dimensional genome topology in a multipartite genome was done by Val et al. [185]
with Vibrio cholerae (V. cholerae). While the main focus of this study was on the
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synchronization of replication of the two replicons, the data of the study suggested that
the replicons have very different organizations and occupy different locations in the cell.
Furthermore, it seems as if the two replicons interact physically. However, so far there
is not much known of the organization of multiple replicons within a bacterial cell, with
open questions concerning the interreplicon interactions, the possible impact of removal of
one or more replicons on the localization of the remaining ones and the examination if
there exists a clear spatial division in the cell between the replicons ( [40], [185]).

1.2.3. Replication in bacterial cells

Now that we have already addressed how cells can compact and order their genetic material
in the cell, we have to turn towards the question of how this order can be maintained while
the cell must accurately duplicate its DNA . In doing so, chromosome replication must
be highly regulated to ensure a constant number of chromosomes in the cell. Especially
chromosomal DNA must be replicated exactly once per cell cycle. The fundamental
features of DNA replication have been conserved in all three domains of life (archaea,
bacteria, eukaryotes) [4].
The basic mechanism behind the duplication of genetic material is called DNA templating.
It makes use of the above mentioned complementary base-pairing within the DNA : A
with T and G with C (and vice versa). Thus, a single DNA strand can also be copied
into a complementary DNA sequence if each base in the template is recognized by a
complementary base. Consequently, the two DNA strands serve as templates for the
formation of new strands ( [4], [92]). This process is schematically shown in figure 1.4

S strand

S' strand

5'

3'

3'

3'

5'

3'

5' 5'

new S strand

new S' strand

template S strand

template S' strand

3'

5'

5'

3'

Figure 1.4.: Illustration of the mechanism of DNA templating. The two original strands S
and S’ each serve as a template for a new strand. As shown in ref. [4]

DNA replication is initiated by a highly organized nucleoprotein complex, the replisome,
whose formation is induced by so-called initiator proteins. The localized region of replication
that moves along the DNA is called a replication fork [102]. The basic enzymatic functions
carried out at the replication fork are well conserved from prokaryotes to eukaryotes. It
received its name from its structure in the shape of a Y. It is schematically shown in figure
1.5
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Figure 1.5.: Schematic depiction of the replication fork. Both strands are replicated in
the 5’ to 3’ direction. This happens continuously for the leading strand while
the lagging strand is synthesized discontinuously using Okazaki fragments.
Adapted from [102].

The two ends of a DNA molecule are named the 5’ (five primer) and 3’ (three primer)
referring to the number of the carbon atom in a deoxyribose sugar molecule to which
a phosphate group binds. Synthesis of DNA has a defined 5’ to 3’ direction. Since the
two strands of the DNA are oriented in opposite directions, only the so-called leading
strand can be replicated continuously. The remaining lagging strand must be synthesized
discontinuously in short, separated segments called Okazaki fragments ( [4], [92], [102]).
The replication fork assembles at a defined structure on the DNA called the origin of
replication (ori). The origins of replication are specified by signature DNA sequences
attracting the initiator proteins. In bacteria, the origin sequences have a length of several
hundred base pairs. Here two replication forks assemble which start to replicate the
chromosome in opposite directions (bidirectional replication) at a relatively constant speed
of approximately 500-1000 nucleotides per second until the replication forks meet in the
so-called replication termination region ter ( [4], [92], [102], [152]).
One question that remains unresolved in this context is whether or not the replisomes are
fixed within the cell. In the literature two opposing models are discussed. Within the
factory model on the one side, the replisomes are fixed (and possibly linked to each other)
at the middle of the cell and the parental chromosome is pushed through this factory-like
organization while being duplicated. On the other hand the track model of replication
suggests that the relpisomes are individually resolveable and move in opposite directions
along the parental chromosome like a train on a track ( [81], [103], [104], [117], [152]). A
schematic depiction of both models is provided in figure 1.6
The factory model seems to require an additional mechanism to anchor the replisomes to
the cell. This might come with the advantage of preventing the replisome from winding
along the DNA and interweaving the newly replicated strands. Such an anchor mechanism
could be provided by protein complexes organizing the newly synthesized DNA strands
behind the replication fork and thereby effectively immobilizing the replisomes [117]. The
track model on the other hand does not need such an anchoring mechanism. Instead,
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Factory model Track model

replisomereplisome
two replisomes

(fixed)

Figure 1.6.: Representation of the factory and track model of replication. The parental
chromosome is shown in grey and the newly duplicated strands in yellow
and green. In the factory model the two replisomes are fixed at the middle
of the cell and the parental chromosome is pulled through this replication
factory while being duplicated. In the track model the two replisomes move
in opposite directions along the parental chromosome. Adapted from [81].

the localization and movement of the replisomes would be determined by the spatial
organization of the chromosome. So far, there are several arguments for both models.
Japaridze et al. showed experimental evidence for independently moving replisomes in E.
coli [81]. This is contrasted by another study of Mangiameli et al. using time-lapse data
from B. subtilis and E. coli reporting that both replisomes reside in close proximity for the
most part of the replication period [117]. A further suggestion is that the replication forks
are not strictly fixed and connected via a physical link but that they might be confined to
a limited region, possibly by the dynamics of the growing nucleoid [152]. So far, it is also
unclear whether either of the two replication models provides an advantage in the third
big challenge that bacteria are confronted with: the segregation of the newly duplicated
DNA into opposite cell halves prior to cell division. It has been suggested that the factory
model might facilitate chromosome segregation by pushing the DNA to opposite poles
from midcell and thereby preventing mixing of the chromosomes [117]. In the next section,
we will discuss further mechanisms by which bacteria segregate their DNA.

1.2.4. Bacterial chromosome segregation

Eukaryotes use a well-understood macromolecular machine, the mitotic spindle, to segregate
their genetic material. In contrast, there is no such unique mechanism in bacteria
( [9], [37], [55]). Instead, a variety of mechanisms are known to contribute to segregation
in bacteria. Again, we can differentiate between physical and biochemical mechanisms,
as we did in the section on chromosome compaction. Here, we had already discussed
how entropic forces contribute to the compactification of polymers in the cell. The same
mechanical properties of a polymer that lead to its compactification in the context of
macromolecular crwoding allow us to identify a basic mechanism of spatial separation of
two polymers in a confined cell. Again, according to the second law of thermodynamics,
the effort of polymers to increase their conformational entropy causes two polymers to repel
each other. The reason is that intermingled polymers have less conformational entropy
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than completely separated ones. This effect is especially important in confined spaces like
the bacterial cell, where polymers behave like loaded entropic springs ( [24], [25], [85], [86]).
The idea of entropic repulsion as a basic mechanism for chromosome segregation in bacteria
was confirmed in both experiments and theoretical simulations. In experiments with E.
coli cells of increased width it was shown that the probability of successful chromosome
segregation decreases with increasing cell width, supporting the prominent role of spatial
confinement for chromosome segregation [81]. Also, a number of polymer simulations
confirmed the effective segregation of polymers by entropic repulsion resulting from their
mechanical properties ( [72], [86], [146], [168], [216]). Since entropic repulsion is based on
a fundamental physical principle, it can be assumed that it contributes to chromosome
segregation in all cells. However, in pure entropic segregation, there is no designated
direction of separation. Thus, it may not be sufficient for the the high demands imposed
on the organization of the genetic material in a bacterial cell.
One mechanism that provides a directed separation of the chromosomes are partitioning
(par) proteins. Almost all bacteria use such partitioning systems to segregate their genetic
matieral albeit its contribution to segregation varies strongly. The most prominent parti-
tioning complex is the parABS system (ParAB) system. It consists of three components:
the DNA sequence parS, the DNA-binding protein ParB, and the deviant Walker A-type
ATPase ParA. The ParAB system is especially used to segregate the origins. It appears to
”pull” the duplicated origin region to the opposite cell pole, where it is anchored while the
remaining ori stays at the other cell pole ( [37], [42], [79], [108], [199]).
Another group of proteins which play a crucial role in both bacteria and eukaryotes
are the structural maintenance of chromosome (structural maintenance of chromosomes
(SMC)) proteins. They play a key role in the compaction of DNA and are also believed
to facilitate segregation of chromosomes. In B. subtilis it was shown that SMC is loaded
at ori -proximal parS sites where it encircles DNA and thus separates newly replicated
origins ( [200], [201]). A schematic depiction of how SMC might facilitate the separation
of origins is shown in figure 1.7.
It is suggested that SMC and the ParAB work together in the segregation of the genetic
material in the cell. While ParAB provides a direction to the segregating origins, SMC
ensures compaction of the replicating chromosomes and topologically separates the origins
further. Polymer simulations of chromosome dynamics were able to show that loop
extrusion by SMC proteins is sufficient to compact and segregate chromosomes ( [52],
[197], [199], [200]).
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Figure 1.7.: Sister chromosome separation by SMC. SMC is loaded at the origin and
encircles the newly replicated DNA strand. Thereby, sister chromosomes are
separated. Adapted from [200].

1.3. Modelling approaches

”Philosophy is written in this vast book, which continuously lies open before
our eyes (I mean the universe). But it cannot be understood unless you have
first learned to understand the language and recognise the characters in
which it is written. It is written in the language of mathematics, and the
characters are triangles, circles, and other geometrical figures. Without such
means, it is impossible for us humans to understand a word of it, and to be
without them is to wander around in vain through a dark labyrinth.”
(from Galileo Galilei: Il Saggiatore )

Having gathered the biological knowledge about the bacterial cell in the last section, we
now want to evolve the basic concepts for a mathematical-physical description of the
phenomena, just as Galileo Galilei requested. The following section describes basic physical
models for describing chromosomes with polymer models. In addition, techniques for
computer-based modeling are discussed and an overview of current research approaches is
given.

1.3.1. Physical models of DNA

In order to create a physical model of DNA in a cell, one has to neglect some chemical
details of the monomers and instead develop a coarse-grained model simple enough for
theoretical treatment and yet sufficiently detailed to map the most important properties of
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DNA on the macromolecular scale. Such properties are, for example, the connectivity, local
rigidity and large scale flexibility of the polymer ( [30], [127]). Obviously, the more complex
the model becomes and the more constraints are considered, the higher the computational
cost of analyzing a model. In this sense, there is always a trade-off between the desire to
represent as much detail as possible and computational efficiency.
One of the most basic models for a polymer is the freely-jointed chain (FJC). Here, the
polymer is simply represented as a succession of N segments (= bonds) of length b. The
bonds connect the N +1 monomers of which the polymer is composed. A schematic figure
of a FJC is given in figure 1.8.

b

b

b

bb
b

Figure 1.8.: Schematic depiction of a FJC model. The monomers are shown as grey spheres
connected by the bonds of length b.

The FJC model only considers the chain connectivity as a property of the polymer but it
does not assign a binding energy or torsional stress. Instead, bonds can take arbitrary
relative orientations. Furthermore, the model does not account for self-avoidance of the
polymer, i.e. the polymer chain is allowed to cross itself and no excluded volume effects
are considered. We can represent the configuration of the polymer by noting the positions
of each monomer r⃗0, r⃗1, ..., r⃗N . The bonds connect consecutive monomers, b⃗i ≡ r⃗i − ⃗ri−1,
and are all of length b. A first basic quantitiy characterizing the size of a polymer is the
end-to-end vector R⃗ ( [12], [30], [127], [157], [179]). It can be expressed as

R⃗ =
n∑

i=1

b⃗i . (1.1)

We find that the average end-to-end vector ⟨R⃗⟩ = 0 is zero because configurations with

end-to-end vector +R⃗ and −R⃗ are equally probable. Therefore, the mean square end-to-end
distance is used. It can be written as ( [12], [30], [127], [157], [179])

⟨R2⟩ =
N∑

i,j=1

⟨b⃗i · b⃗j⟩ . (1.2)

The bond vectors b⃗i and b⃗j have an angle of ϕij. Thus, we can write the scalar product

as b⃗i · b⃗j = b2 · cos(ϕij). Furthermore, we assumed above that bonds are not correlated

with each other and bonds can take arbitrary orientations. Therefore, ⟨b⃗i · b⃗j⟩ = 0 if i ≠ j
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because all angles have the same probability. This leaves us with contributions only from
equal bond vectors i = j and we can write ( [12], [30], [127], [157], [179])

⟨R2⟩ =
N∑

i,j=1

⟨b⃗i · b⃗j⟩ = Nb2 . (1.3)

With this we can estimate the size of an ideal polymer as

R =
√

⟨R2⟩ =
√
Nb . (1.4)

We can furthermore define the so called radius of gyration Rg as another measure for the
spatial size of the chain. The idea behind the radius of gyration is that the chain roughly
occupies a sphere of radius Rg. For its definition we need the center of mass rG of the
chain so that we can write [179]

R2
g = ⟨ 1

N + 1

N∑
i=0

(r⃗i − r⃗G)
2⟩ ,

with r⃗G =
1

N + 1

N∑
i=0

r⃗i .

(1.5)

where we assume that the beads have the same mass and are connected by massless bonds.
Instead of using the center of mass of the polymer one can also use the mean square
distance between two monomers to obtain the radius of gyration [179]. With this, we can
write:

R2
g =

1

2

1

(N + 1)2

N∑
i,j=0

⟨
|r⃗i − r⃗j|2

⟩
any conformation. (1.6)

For equation 1.6 no specific chain model is assumed. Therefore, it applies to any chain
conformation. It indicates that R2

g is half of the average square distance between two
monomers on the chain [179].
The advantage of the radius of gyration is that it allows to estimate the size of arbitrary
configurations of polymers. We can explicitly calculate the radius of gyration for an ideal
chain like the FJC model or a bead-spring model. For this we use that the end-to-end
distance of an ideal chain is according to equation 1.4 Nb2. Since the part of the ideal
chain between any i-th and j-th monomer also is an ideal chain, we can write for the end to
end distance of this part ⟨|r⃗i − r⃗j|2⟩ = b2|i− j|. Thereby, we replaced N with |i− j| [179].
Inserting this into equation 1.6 yields

2R2
g =

1

(N + 1)2

N∑
i,j=0

b2|i− j| = 2b2

(N + 1)2

N∑
i=0

i∑
j=0

(i− j)

=
2b2

(N + 1)2

N∑
i=0

1

2
i(i+ 1) = b2

N(N + 2)

3(N + 1)
.

(1.7)
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In the limit of large N we can thus write

R2
g =

b2N

6
. (1.8)

Another quantity used to describe a polymer is the probability distribution function
P (R⃗, N). It describes the probability distribution for the end-to-end vector of the chain

consisting of N segments to equal R⃗. In the case of the FJC the vector R⃗ equals the sum
of N independent, randomly oriented contributions b⃗i. Thus, the central limit theorem of
probability theory states for N >> 1 that the probability distribution becomes a Gaussian

P (R⃗, N) ≈
(

3

2πNb2

)3/2

exp

(
−3

2

R2

Nb2

)
. (1.9)

For this reason, such polymers are also called Gaussian polymers or ideal chains ( [12],
[30], [58], [127], [157]).
We can use the probability distribution of our FJC model to investigate further scaling
laws. For example, we can look at the entropy S of an ideal chain. The entropy is defined
as

S = kB lnΩ , (1.10)

with Ω(N, R⃗) denoting the number of conformations of a freely jointed chain ofN monomers

with end-to-end vector R⃗ and kB is the Boltzmann constant [157]. One can use the
probability distribution function of equation 1.9 to calculate the free energy of an ideal
chain from equation 1.10 (see appendix A.1). One finds

F (N, R⃗) =
3

2
kBT

R⃗2

Nb2
+ F (N, 0) , (1.11)

as the free energy of the chain [157]. The result of equation 1.11 indicates that the free

energy increases quadratically with R⃗. This shows similarity to Hooke’s law, indicating
that an ideal chain has a spring-like entropic elasticity. We can also calculate the force
needed to separate the ends of a FJC polymer by a distance R⃗ as

f =
∂F (N, R⃗)

∂R⃗
=

3kBT

Nb2
R⃗ . (1.12)

With this we find that the force of the spring has an ”entropic spring constant” of
3kBT/Nb2 [157]. This is an important result which will be used again below when we
estimate the excluded volume effects of self-avoiding polymers with the Flory theory.
Furthermore, we will compare the linear dependence of the streching force for an ideal
chain with the force required to strech a polymer under confinement below.
Another important polymer model is the worm-like chain (WLC) model (or Kratky-Porod
model). Here, DNA conformations are described by a three-dimensional space curve r⃗(s)
of fixed length L, where s is the arc length of the curve ( [122], [123]). Thus, the WLC
model represents the continuum limit of the FJC model for the bond length b → 0. The
geometric properties of every continuous, differentiable curve in the R3 are described by
the Frenet-Serret formulas (see appendix A.2) that say that each curve is determined by
the two parameters of the local Frenet-Serret curvature (= bending of the central axis)
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and torsion (= twisting of the curve) [91]. Consequently, we can separate any distortions
of a DNA molecule into distortions of the central axis and distortions defining the internal
twisting of the double helix. For the description of twisting we use that the double
helix repeat states that relaxed DNA makes one turn every h = 3.5nm and thus the
spatial angular frequency ω0 of relaxed DNA can be expressed as ω0 = 2π/h = 1.85nm−1.
Deviations in the twisting rate from ω0 can be described by a scalar field Ω(s). With this,
we can write the elastic energy of a DNA molecule as [123]

Eel

kBT
=

1

2

∫ L

0

ds

⎡⎣A(∂2
s r⃗)

2  
bending

+ CΩ2
twisting

⎤⎦ . (1.13)

Here, the curvature is given by |∂2
s r⃗| and A is the bending persistence length, while C is

the twist persistence length. A can be defind by the exponential decay of tangend vecors
correlation:

⟨⃗t(s) · t⃗(s′)⟩ ∼ exp (−|s− s′|/A) . (1.14)

Thus, we see at this point that the WLC model now also takes into account the energy
cost of introducing local bends in the chain, which was not considered in the FJC model.
The twisting energy arises from deviations in the double helix twist from the equilibrium
state ω0. In aqueous solution of 0.14M univalent salt the bending persistence length equals
A ≈ 50nm and the twist persistence length is C ≈ 75nm ( [121], [122], [123]).

1.3.2. DNA topology

With the WLC model of DNA, we can now make topological considerations to understand
the effect of supercoiling, which is elementary for the compaction of DNA in the cell.
Therefore, we define a topological invariant, called the linking number Lk. It describes the
number of times the two strands of a DNA, described by two curves C and C ′ paramterized
by r⃗(s) and r⃗′(s′) wind around each other. The linking number can be calculated using
the Gauss linking integral [191]:

Lk =
1

4π

∮
C′
ds′
∮
C

ds
r⃗′(s′)− r⃗(s)

|r⃗′(s′)− r⃗(s)|3
·
[
dr⃗′(s′)

ds′
× dr⃗(s)

ds

]
. (1.15)

While the expression of the linking number with the Gauss integral considers two closed
curves that do not touch each other, DNA appears as a single filament at long length
scales. Thus, one would like to recast the linking number in terms of the single polymer
picture of DNA [91]. This is done in the appendix A.3. In this way, an important result
obtained by White and Fuller ( [49], [208]) is obtained:

Lk = TW +Wr . (1.16)

The result of equation 1.16 is also called Calugareanu’s theorem [1]. Here, the linking
number Lk is written as the sum of the twist TW and the writhe Wr. Twist and writhe are
not topological invariants. The twist describes the number of helical turns of one strand
around the other while the writhe states how many times the double helix crosses itself.
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Thus, the writhe can adopt positive or negative values depending on the orientation. We
can express both quantities analytically (see appendix A.3). For the twist we find

TW =
1

2π

∮
C

ds t⃗(s) ·
[
n⃗(s)× dn⃗(s)

ds

]
, (1.17)

and the writhe one finds

Wr =
1

4π

∮
C′
ds′
∮
C

ds
r⃗(s′)− r⃗(s)

|r⃗(s′)− r⃗(s)|3 ·
(
t⃗(s′)× t⃗(s)

)
. (1.18)

Although equation 1.18 has a strong resemblance to the Gauss linking integral of equation
A.24, the equations are not identical because equation A.24 considers two different curves
and equation 1.18 is for the same curve [91]. An exemplary representation of the formation
of twist and writhe at DNA is shown in figure 1.9.

Twist = 0, Writhe = 0

Twist = 1, Writhe = 0 Twist = 0, Writhe = 1

Figure 1.9.: Formation of twist and writhe at DNA.

Important for the understanding of supercoiling is the fact that circular DNA with
covalently linked ends is topologically constraint. In this case the linking number cannot
be changed without cutting at least one of the DNA strands open. We can further express
the linking number of a relaxed DNA molecule in a planar circle. Such a DNA only has
twist as a result of the double helix repeat but no writhe. Thus, the linking number can
be written as

Lk0 =
L

h
=

ω0L

(2π)
. (1.19)

The state Lk0 is energetically most favorable and DNA is supercoiled when △Lk =
Lk − Lk0 ̸= 0 ( [22], [23]). We speak of negatively supercoiled DNA when △Lk < 0 and
of positively supercoiled DNA for △Lk > 0. The DNA of most bacteria have linking
numbers about 5% less than that of the relaxed double helix. Thus, they are negatively
supercoiled. Such changes in the linking number are produced by specialized proteins
in the cell called topoisomerases. These proteins are able to introduce breaks in one
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DNA strand and pass the other strand through the break before closing it again. More
specific, type I topoisomerases are able to break one of the two DNA strands and pass
the other strand through the gap, thereby increasing or decreasing the linking number by
1 through increasing or decreasing the twist. On the other hand type II topoisomerases
break both DNA strands and pass the entire double helix through the gap. Thereby,
they increase or decrease the linking number by 2 through increasing or decreasing the
writhe. When the interwinding of the DNA reaches a critical twist density the molecule
buckles to form plectonemic structures as a result of competition between entropy and
elastic energy. If further turns are introduced, one observes a rapid decrease in extension
of the molecule as twist is traded for writhe. In this way, supercoiling contributes to
the compaction of DNA. Besides this, supercoiling also has an effect on separation of
DNA. If negatively supercoiled DNA is separated, more twists are created in the rest of
the DNA causing rewinding of the unwound strands. Thus, the DNA that is still base
paired is driven towards the relaxed state which is energetically favoured. Therefore,
negatively supercoiled DNA is separated easier than relaxed or positively supercoiled DNA
( [22], [23], [121], [122], [123], [175], [176]).

1.3.3. Excluded volume effects

Another important property of real polymers that we have not considered so far are
monomer-monomer interactions. Especially important are the so-called excluded-volume
effects, taking into account the fact that real polymers are self-avoiding. This additional
property leads to important changes in the configurations of polymers. A first simple
but successful description of excluded-volume effects is provided by the Flory theory
( [12], [41], [157]). The goal of the Flory theory is to describe the balance between the
repulsive energy of the self-avoiding monomers and the entropy loss due to the arising
chain deformations. Although the Flory theory makes rather rough estimates in order to
determine the energetic and entropic terms of the free energy of a self-avoiding polymer, it
still yields results which are in supringsingly good agreement with both experiments and
more sophisticated theories ( [12], [60], [157]).
Again, we start by considering a polymer consisting of N monomers of size b. In order to
take self-avoidance into account, we assign an excluded volume ν to every monomer [157].
This extension of our model results in an effective repulsion of the monomers of the
polymer on small length scales. We denote with R the size of the swollen polymer and
with Rid = b

√
N (see equation 1.4) the size of an ideal chain. Furthermore, we assume that

monomers are distributed uniformly within the volume R3 and that besides the excluded
volume interactions no further correlations between monomers exist ( [12], [60], [157]).
In this case, the volume occupied by the polymer scales like R3. We can also say that
the probability to find a monomer within the excluded volume of another monomer can
be written as a product of the excluded volume ν and the monomer number density
N/V ∼ N/R3. Using this, the Flory theory assumes that the energetic cost of being
excluded from this volume is kBTνN/R3 per monomer [157]. Thus, we can write the
energetic term of the free energy by multiplying the cost per monomer with the number
N of monomers

Fint ≈ kBTν
N2

R3
. (1.20)
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What remains is to estimate the entropic term of the free energy. Here, the Flory theory
estimates that the entropic contribution to the free energy of a real chain is the energy
required to stretch an ideal chain to end-to-end distance which we obtained in equation

1.11 as Fid ≈ kBT
R⃗2

Nb2
[157].

Finally, we can write down the Flory estimate of the free energy by summing up the
energetic term 1.20 and the entropic term

F = Fint + Fid ≈ kBT

(
ν
N2

R3
+

R2

b2N

)
. (1.21)

With this we can now estimate the optimal size of the self-avoiding polymer by minimizing
the free energy

∂F

∂R
= 0 = kBT

(
−3ν

N2

R4
F

+ 2
RF

Nb2

)
→ R5

F ≈ νb2N3

→ RF ≈ ν1/5b2/5N3/5 .

(1.22)

The result indicates that while the self-avoiding polymer still shows a scaling of its size
with the number of monomers, the power law has changed compared to the ideal polymer
Rid ≈ bN1/2 from equation 1.4.
One can compare the size of long ideal and long real chains (with same numbers of
monomers) with the so-called swelling ratio

RF/Rid ≈ (νN1/2/b3)1/5 . (1.23)

The swelling ratio states that due to the excluded volume interactions we find an increase
of polymer size for the real polymer compared to an ideal polymer. A further important
result of the Flory theory is obtained by computing the free energy of a real polymer for
arbitrary dimensions [157]. In this case, one obtains

F ≈ kBT

(
ν
N2

Rd
+

R2

b2N

)
, (1.24)

where only the energetic term depends on the dimension d while the entropic term still
is the one of an ideal polymer, independent of d. Minimization of this generalized form
yields a famous universal power law for the scaling of the polymer size with the number of
monomers

RF ∼ N ν . (1.25)

The exponent ν in equation 1.25 is called the Flory exponent. It depends on the dimension
d as ν = 3

d+2
.

As already mentioned at the beginning of this section, the Flory theory is not perfect
in the sense that it makes some estimation errors. The suprisingly good results of the
theory are due to some degree to cancellation of the errors. The most important errors are
that the Flory theory overestimates the repulsion energy by ignoring correlations between
monomers along the backbone of the chain. On the other hand, the entropic energy is
also overestimated as the Flory theory simply assumes the conformational entropy of an
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ideal chain although real chain conformations are different from the ones of ideal chains.
Nevertheless, the Flory theory still is seen as an useful approach to the conformations of
self-avoiding polymers and the Flory theory result of ν = 3/5 in three dimensions is very
close to the exact value as obtained by renormalization group techniques of ν = 0.588.

1.3.4. Self-avoiding walks

In the following we discuss modelling approaches including the self-avoiding of polymers.
While the WLC model is obviously useful to describe effects like supercoiling and polymer
behaviour on the scales of the persistence lengths, it is often not necessary to consider
molecular details. Instead, one deliberately makes use of coarse-grained models, neglecting
structures below the persistence length. Mostly, such coarse-grained models represent
the polymer as a random walk on a three dimensional (cubic) lattice ( [114], [115], [127],
[171], [188]). Typically, self-avoidance is introduced in lattice models by preventing
multiple occupancies of grid points, in order to construct a self-avoiding random walk
(SAW). Surprisingly, the SAW represents an accurate model for polymers. This is true
although a real polymer molecule lives in continuous space, has tetrahedral bond angles,
a non-trivial energy surface for the bond rotation angles, and a complicated monomer-
monomer interaction potential. On the other hand the SAW lives on a discrete lattice,
has non-tetrahedral bond angles, and an energy independent of the bond rotation angles
plus a repulsive hard-core monomer-monomer potential. Nevertheless, it was shown that
both systems exhibit the same asymptotic behavior independent of their chemical details
( [26], [171]). Some basic statistics of random walks can be found in appendix A.4.
If we aim to simulate bacterial chromosomes with a coarse-grained model this implies
that we have to construct closed SAWs (or self-avoiding polygons (SAP)) since bacterial
chromosomes are circular. It is possible to determine the number of distinct (up to
translation) SAPs with N segments embedded in the cubic lattice, pN , with the formula
from Hammersley [66]:

lim
N→∞

1

N
log pN ≡ κ . (1.26)

Here, κ is the limiting entropy per step and depends on the lattice. The investigation of
such geometrical confined polymers is a challenging task and usually requires the use of
numerical techniques such as MC approaches ( [100], [114], [115], [127], [171]). Efficient
MC simulations of SAWs (as models of polymers) started in 1955 with the invention
of the Rosenbluth algorithm [156] which was later generalized by the PERM [53] and
GARM [153] algorithms. In addition, progress was made through the development of the
BFACF algorithm ( [10], [27]) and the pivot algorithm ( [100], [114]). Depending on the
object of investigation, one can find different algorithms that are adapted to the problem.
Thus, SAW can be divided into different ensembles depending on whether the lengths and
endpoints are fixed or not. In the simulation of bacterial chromosomes, one is interested
in the fixed-length, fixed-endpoint ensemble. Here, the MOS algorithm [115] has proven
to be very powerful and ergodic in any dimension for the cubic lattice (see appendix B.1.1
for detailed description).
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1.3.5. Confined polymers

In addition to defining the overall length and position of the endpoints of the polymer
chains, it is also possible to introduce additional spatial constraints like the confinement of
the polymer by the cell. Confined polymers are in general an important field of study as
they play an important role in both industrial processes and biological systems. Examples
for industrial applications are membrane filtration or oil recovery. For us, the effect of
confinement of the DNA by the cell is of particular interest. A number of studies have
been able to show that spatial confinement of polymers has a great influence on their
spatial arrangement as well as their segregation behavior ( [7], [16], [29], [33], [60], [84],
[85], [120], [130]).
To find a description for two polymers under confinement, one can start by estimating the
free energy cost of two overlapping polymers without confinement. Here, the Flory theory
can be used for a first estimation. The relevant considerations of the Flory theory for
this case are summarized in the appendix A.5. The Flory theory comes to the estimation
that long polymers shuld behave as mutually impenetrable hard spheres. However, as
mentioned above, the Flory theory makes some estimation errors. One main mistake of
the Flory theory is that it assumes that the self-avoiding monomers are independently
distributed in the volume. Thereby, the Flory theory ignores the linkage of the monomers
along the backbone of the polymer. This linkage causes correlations between the monomer
positions and leads to a different estimate of the free energy of a confined polymer. It was
shown by Grosberg et al. [57] that in fact

F ∼ kBT . (1.27)

This result now indicates that polymers in bulk can rather easy intermingle ( [84], [157]).
The question now is how this behavior changes if the polymers are exposed to spatial
confinement. To consider this case, the so-called blob picture of de Gennes [30] is very
helpful. In order to introduce the blob picture it is convenient to start by considering a
self-avoiding polymer consisting of N monomers of size b under tension. We already know
the end-to-end distance of the polymer in the unperturbed state from equation 1.22 as
RF ≈ ν1/5b2/5N3/5. If we assume the excluded volume to scale as ν ≈ b3 we get

RF ≈ bN3/5 . (1.28)

The central idea of the blob picture is to subdivide the polymer chain into segments of size
ξ. The sections of size ξ are called blobs and consist of g monomers each. It is assumed
that at this small length scales the chain statistics behave like that of an unperturbed
chain. Thus, in this concept a ’blob’ is defined as the largest unit of a polymer that
shows the characteristics of an unperturbed chain. Here, each blob contains an extended
piece of the polymer chain. The chain inside each blob does not experience the confining
constraints. Thus, blobs can be interpreted as the effective monomers of the polymer. A
schematic figure of this ’blob-picture’ is shown in figure 1.10
We can estimate the size of a blob using the above formula for the end-to-end distance of
an unperturbed chain. Thereby, we receive

ξ ≈ bg3/5 . (1.29)
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Figure 1.10.: Schematic depiction of a polymer chain in the blob picture. The polymer
chain is shown as the grey line and can be divided into the blobs which
are shown as blue spheres. The chain segments inside a blob behave as an
unconstrained chain. Adapted from [85].

The size of the complete polymer under tension Rf is just the product of the number of
blobs nblobs =

N
g
and the size of a blob

Rf ≈ ξ
N

g
≈

equ. 1.29

N
b5/3

ξ2/3
≈ R

5/3
F

ξ2/3

→ ξ ≈ R
5/2
F

R
3/2
f

.

(1.30)

We can also express the free energy of the streched polymer. For this we make use of
the above result stating that the overlap of two blobs comes with a free energy cost of
order kBT . We can use this result because the polymer chain inside a blob behaves as an
unperturped chain. Thus, we can write the free energy as

F ≈ kBT
N

g
nblobs

≈ kBT
Rf

ξ
≈ kBT

(
Rf

RF

)5/2

. (1.31)

From here, we obtain the force required to stretch the polymer as the derivative

f =
∂F
∂Rf

≈ kBT

RF

(
Rf

RF

)3/2

. (1.32)

This result contrasts with the behavior of ideal chains where the force to stretch the chain
was linearly proportional to RF (see equation 1.12). Here, we find that for real chains the

stretching force scales with R
3/2
f .

Now we are ready to turn to the case of confined polymers. Assume that a polymer is
confined in an infinitely long cylinder of diameter D. In this case, the diameter of the
cylinder defines the size of the blobs since on length scales smaller than D the chain
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segments are not effected by the confinement and thus behave like unperturbed chains.
Thus, we can write analog to equation 1.29

D ≈ bg3/5 . (1.33)

For the free energy we can use the result of Grosberg et al. of a free energy cost kBT per
blob and write for the free energy of the polymer

F ≈ kBT
N

g
nblobs

≈ kBTN

(
b

D

)5/3

. (1.34)

Thus, the repulsion between two confined polymers is very strong and proportional to
the chain length N . This is in stark constrast to the weak repulsion found for polymers
in bulk. In fact, it was suggested that the repulsive force might be a key element for
segregation of bacterial chromosomes ( [7], [60], [84], [132], [157]).

1.3.6. Recent trends

At this point, we will briefly review several studies that investigate the organization and
dynamics of DNA using computational models. To discuss the different approaches to
modeling DNA in bacteria, it makes sense to group them into classes beforehand. A
first division of the approaches is the one in mechanism-based modeling strategies on the
one hand and data-driven approaches on the other hand [150]. The former are based
on a certain mechanistic conception of DNA as a polymer and use this to carry out
simulations. The simulation results are subsequently compared with experimental data.
In contrast, the latter are fed directly with experimental data. In particular, the advent of
the increasingly available Hi-C data sets has led to the emergence of many approaches
that attempt to elucidate the structural properties of chromosomes. Hi-C methods are a
subclass of chromosome conformation capture (3C) methods which generate genome-wide
contact probabilities between loci along the chromosomes. In many studies a relationship
between these contact probabilities and the spatial distance of the loci is assumed [214].
The two classes of model approaches can be further subdivided. In the review of [77],
a subdivision of data-driven models into consensus structure ensembles and data-driven
ensembles is proposed while the mechanistic or de novo models might be categorized as
structural ensembles and mechanistic ensembles. Data-driven models are distinguished
according to whether an attempt is made to reconstruct a single chromosome structure
(the consensus structure model) from Hi-C data or if one aims at producing an ensemble of
structures which reconstructs the Hi-C data (ensemble methods). Typically these methods
use some sort of a polymer description with a set of (flexible) constraints and try to infer
interactions between the monomers by fitting the Hi-C contact map. Therafter, they
sample the space of possible conformations using MC or MD simulations using the inferred
interactions to generate a set of conformations which reproduces the Hi-C data [77].
The de novo approaches do not infer chromosome conformations from experimental data.
Instead, one typically tests physical hypotheses with the simulations. The structural
ensemble methods use typical polymer models like random walks or self-avoiding walks
to gain insights into chromosome organization. Thereby, one usually does not consider a
specific biological mechanism but rather the statistical properties of the ensembles. An
example are lattice MC methods where rather ”unphysical” global moves are often applied
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to the conformations in order to establish an ergodic sampling of conformation space at the
cost of not being able to modulate realistic dynamics of polymers. Mechanistic ensemble
methods on the other hand aim to use only biologically plausible interactions. They start
with a basic polymer model and test whether the implementation of specific mechanisms
is sufficient to explain experimentally observed behavior [77]. While the classification of
the different models is useful to get an idea of different approaches, it must also be noted
that the transitions between the individual classes are fluid and thus clear classifications
are not always possible.
One of the first pioneering data-driven studies was that of Umbarger et al. [183] where the
three-dimensional structure of the C. crescentus genome was modeled with a resolution of
13 kb based on 5C (chromosome conformation capture carbon copy) data. The assumption
in this study was an inverse relationship between the contact probabilities measured by
the 5C data and the average distance of loci pairs. Furthermore, a calibration curve for the
contact probabilites was produced with average distances obtained via FISH (fluorescence
in situ hybridization) which was used in many subsequent studies. Also conducted at C.
crescentus was the study of Le et al. [101] which for the first time identified chromosomal
interaction domains (CIDs) for a bacterial chromosome from the analysis of Hi-C data.
A general problem of many models is that the beforementioned assumption of a direct
relationship between contact frequencies of loci and their average distance is somewhat
problematic. In fact, a given contact frequency for a pair of loci only reflects in what
fraction of cells the loci are close to each other (below a certain threshold) and does not
give an average distance of the loci. Consequently, inferring a consensus structure model is
rather impossible because of the highly variable ensemble of structures underlying a Hi-C
map. Thus, population-based models seem to be an appropriate choice in order to reflect
the cell-to-cell variability. Tjong et al. [181] presented a model for human lymphoblastoid
cells that incorporated the stochastic nature of chromosome conformations. They generated
a large population of chromosome structures in a form where the cumulated contacts of all
structures recapitulate the Hi-C data using a maximum likelihood estimation. Thus, such
an approach does not require a direct functional relation between contact frequencies and
spatial distances. In the study by Zhang and Wolynes [218] a maximum entropy approach
was developed to infer the least-structured distribution of chromosome conformations
matching the Hi-C data which was used by many subsequent approaches like [28] and [126].
Other models have been developed that start with a multi-scale polymer that captures
physical properties of the polymers like supercoiling and plectoneme topology. Then, these
models are further developed by the incorporation of exprimental data like Hi-C maps or
RNA polymerase binding data ( [61], [214]).
We can differentiate the de novo methods for example by the simulation method. At
this point, we restrict ourselves to the simulation methods also used in this work: MC
simulations and MD simulations. Typically, both schemes work with coarse-grained
polymer models in order to simulate effects on the cell level which comes at the price of a
lower structural resolution of the models. A landmark work comes from Arnold and Jun [7]
who performed MD simulations modelling the entropic segregation of overlapping polymers
in confinement. They modeled the polymer with a bead-spring model in a cylindrical
compartment and implemented interactions between the beads and between the beads
and the compartment with a Weeks-Chandler-Andersen (WCA) potential to account for
excluded-volume effects. Simultaneously, chain connectivity is ensured by harmonic bonds
between the beads of a polymer. MD simulations then propagate such a system by solving
the equations of motion, for example using the velocity-Verlet algorithm and a Langevin
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thermostat to keep the system at constant temperature. Thereby, Arnold and Jun were
able to show that the entropic repulsion between polymer chains is sufficiently strong to
cause segregation of the chains, promoting the idea that entropy might be the driving force
of chromosome segregation in bacteria. This work has inspired a variety of subsequent
studies. Jung et al. [89] used a similar model to study ring polymers under cylindrical
confinement. Their results indicated that the ring topology even further enhances the
segregation time of the polymers. Additional works by Minina and Arnold ( [130], [131])
on entropic segregation of polymers has illuminated the importance of the initial symmetry
of the system for the onset of the separation process. MD simulations also enable the
analysis of interactions between DNA and proteins in the cell as demonstrated for example
by Pereira et al. [147]. In their simulations they showed that the interactions of a polymer
with various DNA -binding and non-DNA -binding proteins facilitates the compression
and expansion dynamics of the polymer. The effects of macromolecular crowding were also
studied by Jeon et al. [82] who suggested that the crowding effects are not only important
for the organization of DNA in the cell but also for separating the two chromosome arms
in E. coli . While all the just mentioned MD simulations used a model very similar to the
one described above of Jun and Arnold, there also exist MD simulations in which the DNA
is modeled as a bottle-brush polymer. Jund and Ha [90] analyzed the helical organization
of DNA. They showed that bottle-brush polymers under cylindrical confinement tend to
adopt a helical pattern due to the entropic ordering of their side chains. The same result
was obtained by Swain et al. [177] who also highlighted the importance of the cellular
confinement and cytosolic crowders in the cell.
Another very frequently used method for the analysis of polymers and their spatio-temporal
organization are MC simulations. An influential study by Vologodskii [191] analyzed the
topological properties of the FJC model. The conformational space of such a polymer
with excluded volume interactions and intersegment electrostatic interactions was sampled
using a Metropolis MC procedure consisting of rotation and reptation moves. Also using
the FJC model, Dorier and Stasiak [33] showed that even polymers without excluded
volume form chromosomal territories. Self-avoidance was in contrast implemented in a
work of Cook and Marenduzzo [29] who studied the effect of entropic forces on self-avoiding
polymers under confinement. Instead of a FJC model they implemented the polymer as a
string of beads of ∼ 30 nm diameter that adopted a random walk. Another prominent
model, the elastic filament model, was proposed by Wiggins et al. [211]. The idea is that
the stochastic organization of a chromosome in the cell can be understood by a fluctuating
elasitc filament model with intranucleoid interactions and two mechanisms of external
positioning: Confinement of the chromosome by the cell and tethering of specific loci. Such
targeting of specific chromosomal loci was also investigated by Junier et al. [88]. Their MC
simulations suggested that the existence of structured microdomains in combination with
the tethering of specific loci in the cell is sufficient to explain the segregation patterns in E.
coli . Also, a recent paper by Polson and Kerry [148] investigated the segregation behavior
of confined polymers by calculating the free energy functions in a MC simulation. In
addition, there are a number of other papers investigating the role of topological constraints
and macromolecular crowding on polymer organization ( [2], [3], [16], [47], [75], [77], [87]).
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2. Organization of bacterial DNA

The analyses presented in this chapter result from a project within the Transregional
Collaborative Research Center ’Spatiotemporal dynamics of bacterial cells’ (TRR174)
which is a DFG-funded reseach center comprised of groups from the Marburg and Munich
areas. One of the central reseach areas of this collaborative is the chromosome organization
and segregation in bacterial cells. In this particular collaboration between the Becker lab
and the Lenz lab, the spatial organization of the genetic material of the model organism
S. meliloti was studied. The special interest here is rooted in the fact that S. meliloti
is one of the roughly 10% of bacterial species that are multipartite, i.e. bacteria which
have a main chromosome and additional plasmids over which their genetic material is
distributed. The main focus of our analyses was to investigate the spatial configurations
of the replicons in the bacterial cell. Thereby, we aimed to illuminate differences in the
three-dimensional organization of chromosomes in bacteria with only one chromosome
and those which possess many replicons. Furthermore, possible interactions between
the replicons were investigated. Within this chapter first the model organism and its
specific features is introduced. In addition, the experimental data basis for the theoretical
investigations is explained in section 2.1. Thereafter, in section 2.2 the model of DNA
and the computational framework, by which it is analyzed, are discussed. In the results
section we start by presenting the results for the wild type (WT) of S. meliloti in 2.3.1.
Thereafter, in 2.3.2 we discuss the cases of several mutants designed by the Becker lab,
where either individual replicons have been eliminated or all replicons were fused into
one large chromosome. The data and analyses shown here will also be the content of
two papers currently in preparation, which are cited here as ”manuscripts in preparation”
( [134], [193]).

2.1. Model organism and experimental data

While the majority of bacterial species harbors one chromosome, roughly 10% of the
bacteria a multipartite and distribute their genetic material over several replicons [185].
Until now, the origins of multipartite bacteria are not clear. Two general scenarios are
discussed in the literature. The first one is the so called schism hypothesis. It postulates
that the split of an ancestral chromosome is the reason for secondary replicons. In
contrast, the plasmid hypothesis suggests that a megaplasmid might have been captured
and subsequently aquired essential genes from the original chromosome in the course of
evolution. The latter hypothesis is strengthened by the fact that one observes a bias
for essential genes to be located on one chromosome. Another possibility is the simple
duplication of the ancestral chromosome ( [112], [133], [184]). While the emergence of a
multipartite genome structure may be random, this structure has subsequently been shaped
by evolutionary pressures and has led to adaptation to different niches. Several studies
on multipartite bacteria reveiled that the majority of multipartite genome-harbouring
bacteria are either stress tolerant or pathogens and that the secondary genome elements
encode functions associated with adaptation and survival in different niches. In contrast,
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the primary chromosome is typically larger and encodes more genes needed for core cellular
functions. The primary chromosome also shows a greater conservation of the contents
( [4], [40], [133]). The fact that bacteria with multiple replicons have been identified in
diverse prokaryotic phyla suggests that they have arisen independently, many times in the
course of evolution [184]. The possible advantages of dividing the genome on multiple
replicons include a faster replication time and potentially more rapid growth, possible
genome expansion (if some sort of maximal size limit should exist for a chromosome),
functional division of genes onto separate replicons or an enhanced regulation of genes
as the localization of genes on the same replicon facilitates their coordinated regulation.
However, the experimental data on these points is ambiguous. Until now, no correlation
between genome size and growth rate could be found for bacteria. Furthermore, there
exist species with a single chromosome of 9 Mb size while many multipartite bacteria
have primary chromosomes of less than 3 Mb even though multipartite genomes are on
average larger than genomes of bacteria with a single chromosome ( [40], [112]). At the
same time, maintaining a multipartite genome structure also entails some fitness costs.
Additional replicons require an increased energy for DNA replication and gene expression
due to energetically expensive multiprotein transport systems (ABC systems) which are
enriched in secondary replicons. There could also emerge negative interactions between
pathways encoded by the chromosome and secondary replicons or between the replicons at
the transcriptional level ( [40], [112]).
At the same time, the question of how to solve the spatial organization of replicons in
the cell arises. There are only a few studies on this question especially from Val and
coworkers ( [184], [185]) who studied the three-dimensional genome topology of V. cholerae
which carries two replicons called chr1 and chr2. These studies report that both replicons
are longitudinally arranged in the cell. However, they both occupy distinct locations as
chr1 spreads the entire cell length while chr2 only extends from midcell to the new pole.
Although the two studies provide first important results on the topology of multipartite
bacteria, the main focus of the studies was on the coordination of replication of the two
replicons. Therefore, a lot of questions remain to be answered. It would be interesting to
know whether increased interreplicon contacts exist in multipartite bacteria and if these
contacts are associated with region of special interest. Furthermore, it is unknown if the
spatial organization of multiple replicons in the cell is stable and how it might change if
one or more replicons are removed. To address these questions, the model organism S.
meliloti was studied in this work. It is briefly introduced in the following.
S. meliloti is an α-proteobacterium and as such closely related to bacterial plant and
animal pathogens including Agrobacterium and Brucella ( [43], [50]). S. meliloti infects
roots and induces so-called nodules, specialized organs used by bacterial endosymbionts
to fix nitrogen within the plant cytoplasm. Such nitrogen fixation is very important in
the environment as many plants rely on this symbiosis with bacteria to obtain nitrogen
in poor soils. Thus, the understanding of such processes provides valuable information
for agriculture and ecosystem management [50]. S. meliloti possesses a tripartite genome
composed of one chromosome (3.65 mega base pair (Mbp)) and the megaplasmids pSymA
(1.35 Mbp) and pSymB (1.68 Mbp). The megaplasmids belong to the RepABC family that
is characterized by the combined replication and partitioning repABC locus. It was found
that the pSymB megaplasmid in contrast to pSymA does carry essential genes. Both
megaplasmids encode the majority of the proteins required for the symbiotic association
with plants and thus seem to be important for niche adaptation ( [43], [94], [133], [145]).
The previous infromation on the spatial arrangement of replicons in the cell is mainly
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based on snapshot studies of replication of origins. Here, it was found that all three
oris (oriC, oriA, oriB) are located near the old cell pole, with oriA and oriB drifting a
little bit more towards midcell. These studies also revealed a highly ordered succession in
the partitioning of the free replicons with the chromosome being the first replicon to be
segregated. It is followed by pSymA and finally pSymB ( [43], [94]).
In the collaboration with the Becker lab, we extended these experimental results ( [134],
[193]). Therefore, a triple-color fluorescent labeling system was used to image predetermined
loci positions in non-perturbed living cells. Thereby, the subcellular localization of loci
at an approximate resolution of 60 kbp was obtained for all three replicons. The sites
of the markers were designed to not disrupt genes. A schematic representation of the
replicons of S. meliloti and the distribution of fluorescent markers is provided in figure
2.1. An interesting feature that can already be seen in figure 2.1 is the clearly asymmetric

oriC

Chromosome
3.65Mbp

terC

~60 kbp

oriB

pSymB
1.65Mbp

terB

~60 kbp

oriA

pSymA
1.35Mbp

terA

~60 kbp

Figure 2.1.: Schematic depiction of the replicons in S. meliloti . The chromosome has a
size of 3.65 Mbp, the larger megaplasmid (pSymB), has a size of 1.65 Mbp
and the smaller megaplasmid (pSymA) is of size 1.35 Mbp. The experiments
performed by the Becker lab use fluorescence markers (yellow dots) to identify
the positions of loci from all replicons with a spacing of 60 kbp.

positioning of terB on pSymB. This provides an opportunity to examine whether this
asymmetry is also reflected in the global organization of the replicon in the cell. To generate
an ensemble of cells at similar stage of the cell cycle, the position of the chromosomal
origin were controlled and a size limit was implemented discarding cells longer than 2µm
from the data. With this, it was ensured that cells did not recide in the replication or
segregation stage. The resulting experimental results were compared with predictions of
the physical model presented in the next section.

2.2. DNA model and simulation framework

In the following the theoretical model that was used to make predictions about the global
orientation of the three replicons in S. meliloti is described. There are various requirements
to be met. First, for S. meliloti no Hi-C data is available, yet. Therefore, one cannot
use a data-driven model but a de novo approach was required. For this, we had to use
a coarse-grained model that is able to capture the global organization of three replicons
in the cell while being fine-grained enough to allow a meaningful comparison with the
experimental data in the form described above. Furthermore, the experimental data
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provided averaged positions for individual genes in the cell. Therefore, the model should
also provide an ensemble of cell configurations that produces similar mean values while
reflecting cell-to-cell variability.
To meet the above requirements, a model in which DNA is represented as a SAW on a
three-dimensional lattice was used. The model is an extension of the model presented
in [24]. In this study, the strong linear correlation between the position of genes on the
chromosomal map and their spatial position within the cell of C. crescentus was explained
successfully. Here, this model had to be extended to represent the organization of multiple
replicons in a cell. Bacterial DNA was modeled as a semi-flexible polymer of compacted
units which form the effective monomers (called beads). We can imagine that the beads
are the result of the action of compaction proteins and supercoiling. From section 1.2.2 we
know that supercoiled domains contain roughly l ≈ 10kbp of DNA (we call l the loopsize
of a bead). We estimated the spatial extension of a supercoiled domain using the radius of
gyration given in equation 1.8. Thereby, we assumed that the supercoiled domain occupies
a sphere with radius rb = Rg. For the calculation we used b = 0.34nm for the length of
a base pair and N in equation 1.8 is given by l, i.e. by the amount of DNA in a bead
(measured in base pairs). Thus, by assuming l = 10kbp we obtained

Rg ≡ rb =

√
lb√
6
≈ 14nm . (2.1)

In our simulations we used the diameter db = 2rb of a bead as the basic length scale. The
grid spacing was set to this value so that we could use it to represent DNA configurations
as SAWs on the three-dimensional grid. A schematic depiction of the single steps of the
model construction is given in figure 2.2

l

define loopsize bead diameter grid spacing

g = db

Figure 2.2.: Representation of the individual steps of model construction. First the loopsize
of the DNA inside a supercoiled domain is defined. Via the radius of gyration
this gives the diameter of a bead. The beads are the effective monomers of
the SAW on the lattice which is shown here in two dimensions for the sake of
simplicity (three-dimensional in the actual simulations).

We set the grid dimensions to correspond to a cell of the desired length H (e.g., H = 2µm).
The three-dimensional cell was then usually modeled with dimensions H × 1

4
H × 1

4
H.

We already implemented two geometric constraints by the excluded-volume interactions of
the beads with each other and the spatial confinement of the replicons by the cell walls.
Another important constraint is the fixation of single loci in the cell. To implement this
constraint, the algorithm divided each replicon into individual segments (= strands). Each
strand is the connection of two loci of the plasmid, which are spatially fixed. The number
of beads by which the strand is represented can be calculated using the amount of DNA
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per bead l and the genetic distance △dloci (measured in bp) between the two fixed loci of
the strand

Nbeads(strand) =
△dloci

l
. (2.2)

Consequently, the following resulted for the length, Lstrand, of a strand

Lstrand =
△dloci

l
· db . (2.3)

Obviously, successive strands within a plasmid share the respective start- and end-beads.
After defining the fixed loci for each plasmid on the grid, they need to be connected to form
SAWs. As the number of fixpoints and replicons in the cell increases, this task becomes
more complicated as the strands already established become obstacles to the strands yet to
be constructed due to excluded-colume interactions. Thus, a path finding problem arises.
In order to solve this reliably for all desired configurations, the A*-search algorithm was
used in the simulations (see appendix B.1.2 for a description). The A* algorithm finds
the shortest possible path to connect two fixed loci on the grid. Consequently, the SAWs
found between two fixed loci had to be extended to the length of the respective strand in
a second step. To accomplish this, a method proposed by Berg and Foester [10] was used.
Here, a bead was chosen at random from the inital SAW as found by the A* algorithm
and replaced by a randomly oriented hook consisting of three new beads. Thereby, a chain
elongation by two was realized. If placing the hook was not possible due to occupied grid
positions, a new bead was selected instead to be replaced by a hook. This procedure was
repeated until the strand reached the desired length. The process is schematically shown
in figure 2.3.

length = 5

length = 7

Figure 2.3.: Chain growth by hook expansion in the SAW model. The pink bead on the
original SAW was randomly selected and replaced with a hook consisting of
three new beads in the following. Method as proposed in [10].

For several replicons in the cell, one can encounter a problem, if the fixed loci of different
strands are close to each other. In this case the complete expansion of one strand might
”trap” the neighboring strand in the sense that no more grid spaces are available for the
latter in order to expand further. To avoid this phenomenon, the algorithm expanded all
strands simultaneously, i.e. one hook is added to each strand per iteration.
Finally, we obtained a first configuration for a replicon in the cell, consisting of variable
strands between fixed points and satisfying all constraints. However, our goal was to
find an ensemble of configurations. To realize this, the MOS algorithm was used in the
following. The MOS algorithm is an algorithm for fixed-length, fixed-endpoints ensembles

31



of SAWs on the cubic lattice [115]. It consists of a set of spatial transformations that
allow to sample the phase space of possible configurations of SAWs starting from an
initial configuration. The algorithm is applicable for arbitrary dimensions and guarantees
ergodicity. A brief description of the algorithm and the three transformations is given in
the appendix B.1.1. Also, when transforming the initial configurations using the MOS
algorithm, transformations were always performed simultaneously on all available replicons
to ensure uniform sampling.
With this, we can summarize our program to generate an ensemble of replicon configurations
in the cell:

1. Define size of supercoiled domains in bp. From this, the size and number of beads
per replicon as well as the dimensions of the grid are calculated.

2. Define the loci of each replicon that should be spatially fixed. Accordingly, each
replicon is divided into strands.

3. Initialization of the strands by connecting fixed loci using the A* algorithm.

4. Simultaneous expansion of initial strands to desired length by hook-expansion
mechanism.

5. Sampling of the phase space using the MOS algorithm yields ensemble of replicon
configurations.

Example configurations obtained with this procedure are shown in figure 2.4.

oris

ters

Figure 2.4.: Example configurations of the chromosome (grey) and the megaplasmids
pSymA (green) and pSymB (blue) for the WT of S. meliloti . For these
configurations, the oris (circles) and ters (stars) of the replicons were fixed at
the marked positions.
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2.3. Results

2.3.1. Wild type

We start the presentation of the results of our analyses on the spatial organization of DNA
in S. meliloti with the WT results. As part of our model building, we aimed to test the
following hypotheses:

1. The average spatial organization of the DNA in the cell is governed by the mechanical
properties of the DNA and additional geometric constraints such as excluded-volume
interactions, confinement by the cell, and fixation of several loci to specific positions
in the cell.

2. In the case of multipartite bacteria interactions between replicons are expected and
may affect the organization of DNA in the cell.

The results of previous studies on C. crescentus ( [25], [190]) suggest that the oris and ters
should be considered as potentially fixed loci in particular. Therefore, the experimental
data for the three oris and ters were analyzed first and the coordinates were averaged to
serve as input for fixated loci in the model. Experimental data were collected using the
ImageJ plug-in MicrobeJ [35] and showed some error rate in assigning the correct cell
poles. In addition, non-optimal synchronization of cells could be a source of additional
variance. To correct this, an outlier search was performed before further processing. An
example for this is shown in the appendix in figure C.1. To get a first impression of
the experimental data in figure 2.5 the marker distributions for the entire replichores
are shown (in blue) and the distributions for the oris (red) and ters (black) are depicted
separately to better recognize them. From the heatmap data of figure 2.5 some first
important conclusions could be drawn. Obviously, the chromosome stretches across the
complete length of the cell while the megaplasmids are restricted to smaller subvolumes.
In agreement with previous studies ( [43], [94]), oriC is located at the cell pole while oriA
and oriB are slightly subpolar. The average position of terC is located at the opposite cell
pole while both terA and terB show significantly greater variance and appear to recide
closer to the middle of the cell.
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Figure 2.5.: Experimental data for complete replichores and especially for the oris and
ters of S. meliloti WT. In blue the complete data from all markers of the
respective replicons is shown in the upper heatmaps. In the heatmaps below,
the distributions of the respective oris (red) and ters (black) are highlighted.
The color gradients indicate the respective value of the PDF of a point.

To test the first hypothesis, the mean values of oris and ters were calculated from the
heatmap data and initial model simulations were started in which one time only the oris
were spatially fixed and once both the oris and ters were spatially fixed. The results can
be seen in figure 2.6. In the plots, the position of each marker along the longitudinal axis
of the cell (normalized from -1 to 1) was plotted over the relative position of the marker
on the genomic map. For the genomic map of a replicon the respective ori is chosen as the
reference point and the position (0 ≡ 1) is assigned to it. All subsequent loci are ranked
according to their relative distance from ori. The experimental data are the same in the
two parts whereas in figure 2.6 A only the oris were fixed in the model and in figure 2.6
both the oris and the ters of the replicons were fixed in the cell within the simulations.
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Figure 2.6.: Spatial organization of chromosome and mega plasmids in S. meliloti WT.
Comparison of experimental data with model predicitions for fixations of oris
and ters. Experimental data is shown in black and model predictions are
shown in red. The models standard deviations are shown as shaded areas.
(A): Model prediction for fixation of oris. Here, the ters are not spatially
confined.(B): Model prediction with fixation of all oris and ters. In both,
A and B, the three subplots each show the organization of one of the three
replicons in the same cell. The chromosome is shown on the far left, followed
by pSymA and pSymB.

We can already extract important information from these initial results. From part A we
can see that the model predicted symmetric configurations when we constrained only the
oris. This is plausible since in this case we are dealing with circular polymers held at only
one point. For an average over many configurations, a symmetric arrangement is to be
expected. At the same time, we detect an asymmetry for pSymB in the experimental
data. From this we concluded that at least one more constraint must affect the average
configuration here. Indeed, the model results from (B), in which in addition to the oris the
ters (and in particular terB ) were spatially fixed, show that the asymmetric organization
of pSymB is reproduced in the cell. However, we discover a remarkable feature in the
experimental data on pSymB. It can be seen that terB is not the marker closest to the
cell pole. Instead, this is the marker ”BR17”, which is only 12851.5 bp away from terB.
At first glance, this could indicate a very sudden jump on the configuration of the plasmid
for which no meaningful biological explanation exists so far. However, another possible
explanation for the observation is that the BR17 marker in WT is also part of the broader
terminus region of pSymB. Since the two markers are very close to each other, this is
possible. Thus, BR17 would also be subject to the spatial constraints discussed for terB,
so we included BR17 in the spatial constraints of the terB domain in the model below.
Therefore, based on our mechanistic conception of the model, we assume the existence of
an extended terB domain to which BR17 belongs.
We also find that the intermediate configurations of the chromosome and pSymA were also
reproduced quite well by the model. We note that the chromosome has a C. crescentus
-like organization. Here, too, the loci follow a linear pattern between oriC and terC. This
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pattern was well reproduced by the model in which oriC and terC were fixed at the poles.
This result makes sense and can be understood as a proof of principle in the sense that
the model successfully reproduced the linear pattern of the chromosome as found in C.
crescentus . Obviously, the basic spatial arrangement of the chromosome with fixed oriC
and terC is not fundamentally altered by the existence of additional plasmids.
When looking at pSymA, the first thing that stands out is that the megaplasmid occupies a
much smaller volume than the chromosome and is located in the middle of the cell instead
of extending from pole to pole. At the same time, the comparison of the two model results
shows that only the implementation of an terA fixation allowed a comparable arrangement.
When terA was not fixed, it rather seems that pSymA deviated towards the old pole,
probably as a result of the excluded-volume effects of the other replicons. This could be a
first indication of inter-plasmid interactions in the cell.
With this, the model provided a clear indication that the global organization of both
plasmids pSymA and pSymB is not determined by their oris alone, but that there must be
at least one other spatial constraint, presumably in the vicinity of the two terminus regions.
Thus, we can already record the first important results at this point. The extension of our
geometric model of DNA organization was successful and the new model can reproduce
key features of the DNA organization of S. meliloti . Moreover, based on our mechanistic
understanding of the model, we can conclude that the location of plasmids in the cell must
also be regulated by spatial constraints near the terminus regions. If this were not the
case, the model would predict a shift of pSymA due to excluded volume effects, and the
asymmetric organization of pSymB would also not be reproducible.
In order to clarify the question of how the spatial constraints for the terminus regions of the
replicons are constituted, we first considered the results of figure 2.5 again. Even though
the experimental data used for this were preliminary and showed quite some dispersion,
nevertheless we can see some indications. Obviously, the oris and terC are much more
spatially restricted than we recognize for terA and terB. Thus, the heatmap data suggested
that it makes sense to consider the oris and terC as fixed in the model. In the case of terA
and terB, however, this does not seem to be true. At the same time, our previous results
suggested that there is some kind of spatial limitation for the regiones near terA and terB
on the megaplasmids. In the following, we analyzed two possibilities of additional spatial
constraints that could influence the location of plasmids.
The first possibility is that terA and terB are limited to specific ”enrichment zones.” This
could be important to ensure a smooth replication and segregation process. It has already
been described that the individual replicon partitioning events follow a strict temporal
order in which the chromosome segregates first, followed by pSymA and finally pSymB.
Likewise, segregation of the duplicated terB starts about 20min after segregation of the
duplicated terA [43]. Such an orderly temporal sequence of segregation steps makes it
seem likely that it is accompanied by a corresponding spatial organization. Therefore,
the localization patterns of terA and terB could be the result of the action of different
partitioning proteins or interactions with host cellular structures to ensure the temporal
sequence of segregation. This does not necessarily have to happen in the form of strict
fixation at a specific location, but can also be gradient guided in the form of an approximate
”enrichment zone”. However, because little is known about the coordinated control of
multireplicon replication and segregation, we could not precisely define this zone. Instead,
we made a phenomenological definition based on the experimental variances of the markers.
For this, terA and terB were initially not fixed in the model and a large set of configurations
was created. In a post-processing step, we then allowed only those configurations in which
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terA and terB were within 75 % of the standard deviations of the experimental data by
which we defined an enrichment zone. This approach allows a ”softer” restriction of the
two loci as opposed to strict fixation at one location. The resulting organization is shown
in figure 2.7 (A).
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Figure 2.7.: A: Spatial organization of the replicons in S. meliloti WT due to spatial
confinement of terA and terB to enrichment zones. In black the experimental
data is shown while the model results are shown in red (standard deviation
as shaded area). terA and terB are restricted to an enrichment zone defined
as 75% of the experimental standard deviation for the markers. B: Spatial
organization of the replicons in S. meliloti WT due to genomic fixation of
terA and terB to the chromosome. The interacting loci are marked with
corresponding circles. In both A and B the three subplots each show the
organization of one of the three replicons in the same cell.

The result of figure 2.7 (A) shows a very good agreement between model and experimental
data. Using the model of enrichment zones for terA and terB yielded model results which
recapitulate the global arrangement of the replicons.
Besides the idea of enrichment zones for terA and terB, inter-replicon interactions represent
an alternative possibility for a mechanism of spatial confinement of specific plasmid regions.
Thus, one could imagine that certain regions of a plasmid - in our case, regions near the
termini - are spatially coupled to chromosome regions by proteins or other interactions.
In such a case, there would not be a ”rigid” spatial fixation of the respective plasmid
region, but it would vary with the position of the respective chromosomal anchor point.
At the same time, such a mechanism could perform important regulatory functions in
the cell, e.g. the temporal organization of segregation. Thereby, it could be part of
some kind of checkpointing mechanisms as reported in V. cholerae, where replication of a
locus positioned on chromosome one initiates replication of chromosome two [185]. Such
”genomic fixation” of plasmid regions to the chromosome can also be implemented in the
model. In a first step, the respective plasmid regions were not fixed and a large number of
possible configurations were simulated. In a second post-processing step, the constraint
of genomic fixation was implemented in such a way that only those configurations were
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allowed in which the plasmid region and the chromosomal anchor point lay within a spatial
threshold (e.g. 300 nm) of each other. This drastically restricted the original ensemble
of configurations and provided a model prediction for the case of a chromosome-plasmid
interaction. This procedure could then be extended iteratively to implement further
inter-replicon contacts. Since we already established that for both pSymA and pSymB
at least one additional spatial constraint is required to reproduce the experimental data,
each of the plasmids was assumed to interact with the chromosome in the vicinity of the
respective terminus. The positions on the chromosome that are linked to the plasmids
remained to be determined. We assumed that these will be genes that are already close
to the positions of terA and terB. In figure 2.7 (B) terB was genomically fixed to a
gene on the chromosome with a relative position on the chromosomal map of 0.59 and
terA was “genomically fixed” to a gene on the chromosome with a relative position on
the chromosomal map of 0.25. In figure 2.7 (B) the interconnected loci are marked by
corresponding circles.
Evaluation of the resulting spatial arrangements of replicons shows that we already
achieved a very good fit to the experimental data. In contrast to the model results for a
spatial confinement, it can be seen that the configuration of the chromosome also changes
slightly due to the interaction with the plasmids. Especially at the interaction side of the
chromosome with pSymB an asymmetry is induced. Such an asymmetry could also be
suspected in the experimental data as mentioned above. However, it should be noted at
this point that we do not find this observation in the experimental data of the knock-out
mutant with deletion of pSymA (△ pSymA) (discussed below). Since both the chromosome
and pSymB are unchanged there, one would assume the same for their interaction and the
resulting asymmetry in the average chromosome configuration. Therefore, we could not
clearly determine at this point whether the asymmetry found in WT is truly significant
and, if so, whether it results from an interaction with pSymB.
To illustrate the interaction between replicons clearly once again, in figure 2.8 the two-
point-correlation matrix from the simulation data of genomic fixation is shown for the
whole genome. The matrix shows the two-point correlation coefficients of each genes
position along the long axis in the cell with every other gene’s position. To display the
matrix, a resolution of 10 kbp was chosen. I.e. in the model the positions of loci within a
10 kbp interval were averaged and displayed as a single pixel in the matrix. To illustrate
the whole genome in one matrix, the genes located on pSymA and pSymB were just
added at the end of the chromosomal genes on the axis. Thus, the chromosomal genes
range from 0Mbp-3.65Mbp, pSymA genes follow from 3.65Mbp – 5Mbp and pSymB genes
are shown from 5Mbp – 6.65Mbp. In the two-point correlation matrix of figure 2.8 we
not only see interactions within genes located on the same plasmid but also between
plasmids. Correlation coefficients greater than zero imply positive relationship between
the positions of the genes which we can interpret as attraction of genes. On the other
hand, correlation coefficients smaller than zero imply a negative interaction, which we
interpreted as competition for space in the cell.
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Figure 2.8.: Schematic depiction of the interaction between the plasmids and two-point
correlation matrix for the complete genome. The matrix shows the two-point
correlation coefficients of each genes position along the long axis in the cell
with every other gene’s position.

The main diagonal in figure 2.8 represents the expected positive correlations between genes
with small distances. We can identify our induced interactions between the plasmids in
the correlation matrix as dark red spots next to the main diagonal. We also find that
the correlations between the two chromosome arms are negative. These anticorrelations
might result from spatial exclusion between the two chromosomal arms. Theoretically, the
model could be used to study a wide variety of interactions between individual replicons.
The interactions chosen here are those that resulted in a good fit of the averaged model
configuration to the experimental data. In the future, Hi-C experiments are planned for S.
meliloti so that we can use the experimental Hi-C maps to analyze contact frequencies
between the replicons and compare them with the model prediction.
In summary, after studying the WT strain, we can say that the model reflects the global
organization of replicons in S. meliloti very well. Discrepancies between model and
experiment therefore concern individual points rather than the general position of the
replicons. A striking feature of the data for the chromosome and pSymA is that both oris
show a shift in the direction of the cell pole compared to the general pattern of the other
loci. To date, no biological interpretation exists for such a jump. However, since the oris
are the basic input for the model, their shift causes a systemic deviation of the model from
the remaining data. We will address this point again when we discuss the results for the
knock-out mutant in the next section.
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2.3.2. Mutants

In addition to the studies on the WT strain of S. meliloti , we investigated how the deletion
of a megaplasmid affects the organization of the remaining replicons in the cell. The
experiments on this have shown that deletion of pSymB leads to cell death. However, it is
possible to cure cell lines of pSymA and create a △ pSymA strain. One can also introduce
fluorescence marker to determine the spatial organization of the chromosome and pSymB
in this strain. At the same time, we simulated such a mutant in the model. Here we
assumed that spatial constraints or inter-plasmid interactions that we established in WT
between the chromosome and pSymB are conserved. In figure 2.9 the experimental data
are compared with the model predictions for the assumption of a terB enrichment zone
(A) and for the assumption of an interaction between pSymB and the chromosome (B).
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Figure 2.9.: A:Model prediction of the spatial organization of the replicons in the knock-out
mutant △ pSymA due to spatial confinement of the terB region. In black the
experimental data is shown while the model results are shown in red (standard
deviation as shaded area). B: Model prediction due to genomic fixation of the
terB region to the chromosome. The interaction was implemented between
the same loci that were used in the WT strain (interacting loci marked by the
circles). The three subplots in A and B each show the organization of one of
the three replicons in the same cell.

The results shown in figure 2.9 do not indicate a significant change in the global organization
of the chromosome or pSymB. One still finds a linear organization of chromosomal markers
between oriC and terC . The asymmetric configuration of pSymB is also preserved. The
results of the model prediction using the WT coordinates provided a reasonable fit to the
experimental data. However, to get a more accurate idea of what effect the deletion of
pSymA has on the configuration of the other two replicons, it helps to compare the WT
data directly with that of △ pSymA. This is done in figure 2.10. There we see in (A)
the comparison of the experimental data for WT and △ pSymA. It can be seen that the
location of the chromosomal loci is almost unchanged. The only eye-catching difference
is the location of oriC. Here, the above mentioned circumstance that oriC exhibits an
unnatural poleward shift in the WT data becomes particularly clear. Since at the same
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time all other loci seem to agree in their position, the conjecture that the position of
oriC measured in △ pSymA is the more realistic one is confirmed. Looking at pSymB, on
the other hand, shows a clear difference between WT and △ pSymA. Although the basic
asymmetric configuration is preserved, a poleward offset of the entire plasmid can be seen
compared to WT. The only loci deviating from this observation is oriB, which is even
higher than in WT. However, it seems very questionable that only the ori deviates from
the complete rest of the plasmid configuration, so it seems more reasonable to assume that
oriB actually also shows a poleward offset with respect to the WT position like the other
loci do. Though, this will have to be further investigated in subsequent measurements and
can only be assumed here as a working hypothesis. Figures C.2 and C.3 in the appendix
show results that make this assumption.
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Figure 2.10.: A: Comparison of experimental data in WT and in the knock-out mutant △
pSymA In black the experimental data for WT is shown while the △ pSymA
results are shown in red. B: Model prediction due to spatial confinement of
the terB region in form of an enrichment zone. C: Model prediction due to
genomic fixation of the terB region to the chromosome. The interaction was
implemented between the same loci that were used in the WT strain.
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In figure 2.10 (B) the model results assuming a terB enrichment zone are shown and com-
pared to the model results assuming an interaction between pSymB and the chromosome
as discussed in the WT section shown in (C). It can be seen that in both approaches
the poleward shift of pSymB was predicted, which is confirmed in the experimental data
of (A). The shift is more pronounced in the prediction based on the terB enrichment
zone. Thus, at this point, the model succeeds in making an important prediction for
a first mutant. The obvious assumption is that the deletion of pSymA frees up spatial
volume in the subpolar region of the cell that is partially occupied by pSymB. This
leads to a poleward shift in the configuration of pSymB. The fact that this effect is not
visible to the chromosome reinforces the assumption that terC is fixed at the opposite pole.
In the next part, we subjected these hypotheses to a final test in the form of another mutant.

In figure 2.11, the construction of a fused strain for S. meliloti is shown schematically.
In a first step, the two megaplasmids pSymA and pSymB were fused to form the new
fusion strain of pSymA and pSymB (SmAB). Thereafter, this strain was combined with
the chromosome. With this, the fused strain of the S. meliloti replicons (SmABC) was
obtained. The details of the creation of these strains are beyond the scope of this work
and can be found in [193]. For our purposes, the most important thing to know is that the
resulting SmABC exhibited an entirely merged genome. Furthermore, it should be noted
that for design reasons, two separate regions of the original pSymB plasmid are present in
the fused strain (see blue sections in figure 2.11). To study the organization of the genome
in the cell for this new mutant, fluorescent markers (yellow dots in figure 2.11) were again
attached to the chromosome. We tried to place markers especially at transitions between
the different replicons. Thereby, the region split off from pSymB (near 10 o’clock) is of
particular interest.

oriA
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oriB

terB

oriA

oriB

oriC

terC

oriA

oriB

Step 1

Step 2

pSymB pSymA SmAB

oriC
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SmABChr
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Cre/lox
Cre/lox
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Figure 2.11.: Schematic representation of the constuction of the fused SmABC strain for S.
meliloti . In a first step (top), the two megaplasmids were fused to form the
new SmAB strain using cre/lox recombination technology [193]. Then, in a
second step (below), the chromosome was fused with SmAB to form the final
SmABC strain. To measure the organization in the cell, fluorescence marker
(yellow dots) were placed in the SmABC strain.
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The new SmABC strain now provides yet another opportunity to test our understanding
of genome organization in S. meliloti . In contrast to the WT, we are de facto dealing
with a single large ”chromosome”. However, this new chromosome has three ori - and
three ter -regions. Thus, we were now able to test whether the configuration of the new
chromosome is determined solely by the positions of oriC and terC , so that we would
again expect a C. crescentus-like organization. Another possibility would be that not only
oriC but all oris remain spatially fixed as in WT. In this case, the global organization
should deviate significantly from the linear pattern of C. crescentus . This seems logical if
we assume that the mechanisms leading to the positioning of oris in WT are also active in
the new SmABC strain. Consequently, we checked a third possibility, in which we assumed
that also the two ter -regions of the megaplasmids in SmABC remain close to their WT
positions. In this case, we expected to see a serrated pattern in the plot of longitudinal
positions over the genomic map, with the chromosome extending in a serrated fashion
between the oris and ters. In figure 2.12 the model predictions for all three possibilites are
shown. The background colors indicate from which plasmid the respective section of the
fused chromosome originates.
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Figure 2.12.: Spatial organization of the fused SmABC chromosome in the cell. Experi-
mental data is compared to model predictions for A: fixation of oriC and
terC, B: fixation of oriC, oriB, oriA and C: fixation of all oris and ters.
For the predictions the WT positions of oris and ters were assumed. The
background colors indicate from which plasmid the respective part of the
fused chromosome originates. The colour code is explained below the plots.
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In figure 2.12 (A) the expected genome organization for SmABC for the assumption that
only oriC and terC are fixed according to their WT positions is shown. Although we find
that oriC and terC are quite close to the WT positions, the mean configuration of the rest
of the genome deviates significantly from the corresponding prediction. Apparently, the
organization of the genome of S. meliloti is thus also determined by the fixation of loci of
megaplasmids, as already suspected. In figure 2.12 (B) we can see that very likely both
oris of the megaplasmids, oriB and oriA, are spatially fixed as well, although specifically
for oriB we observe a slight shift compared to the WT position. Assuming a fixation of
both the oris and ters of all replicons results in a further improvement of the fit to the
experimental data as seen in figure 2.12 (C). However, we make an important observation
at this point. The position of terA in SmABC is not the WT position. Rather, terA is
approximately at the level of terB . Furthermore, we see that the markers following terA
are also at this level, deviating from the prediction based on terB fixation. From the
background colors we can see that these deviations appear exactly at the position of the
fused chromosome where the smaller part of pSymB lies as an inlay between the pSymA
part and the chromosomal part. In the WT, the genomic distance of the inlay region of
terB is 31 kbp. Therefore, we can hypothesize that the inlay region belongs to the larger
terB domain that we postulated earlier. This leads to the conclusion that the inlay region
could also be part of the postulated terB enrichment zone. In figure 2.13, we assumed this
and fixed oris and terC in the model (using the now available SmABC coordinates), while
terB and the inlay region were confined in an enrichment zone.
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Figure 2.13.: Model prediction of the spatial organization of SmABC under the premise of
a terB enrichment zone.

From figure 2.13, it can be seen that the terB enrichment zone approach accurately reflects
the mean configuration of the SmABC strain. This is particularly compelling since this
approach also successfully reproduces the organization in WT as well as for the knock-out
version △ pSymA. Furthermore, we observe that the positioning of the terB region in the
merged strain takes priority over the positioning of terA. This could be due to the fact
that essential genes are located on pSymB in contrast to pSymA. In the future, additional
designs for similar fused strains provide the opportunity to further investigate the genomic
organization of S. meliloti .
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2.4. Project summary and outlook

The goal of this project was to investigate the spatial organization of genetic material in
S. meliloti . The complex order of genetic material in bacteria has only in recent years
been the subject of intensive research. Previously, it was assumed for a long period that
DNA is randomly distributed in the cell ( [9], [173]). By analyzing the configurations in
S. meliloti we turned to the special case of multipartite bacteria. Despite the fact that
roughly 10% of all bacterial species harbour multipartite genomes, the organization of
replicons in multipartite bacteria has been sparsely considered. Here, especially the works
of Val et al. ( [184], [185]) should be mentioned, who reported that the two replicons of V.
cholerae are longitudinally arranged in the cell.
However, to date it is not known which advantages have led to the formation of multipartite
genomes, nor how they are organized in the cell. It is unclear whether a controlled spatial
organization of the replicons within multipartite bacteria exists. Furthermore, very little is
known about possible interactions between the replicons of S. meliloti . If such interactions
exist it would be interesting to know if these interactions of the replicons are associated with
regions of special interest. In our collaboration with the Becker lab we aimed to analyze the
three-dimensional organization of the three replicons in S. meliloti by approaching from
two sides. On the experimental side fluorescence marker were inserted into the genome
to measure the positions of the tagged loci in an ensemble of cells. At the same time,
within the framework of this work a theoretical model was developed in order to simulate
the spatial organization of multiple confined polymers due to geometric constraints. For
this purpose, an existing model for the organization of C. crescentus [24] was extended to
multiple replicons. In addition, further analysis methods have been developed to predict
inter-plasmid interactions or enrichment zones.
The following hypotheses were formulated and tested within the project:

1. The averaged configuration of replicons in the cell is a consequence of the compacti-
fication of DNA as well as spatial constraints that affect the DNA’s location.

2. The spatial constraints consist of restriction of DNA to the cell interior, self-avoidance
of DNA, and spatial restrictions of individual loci of special interest to specific
positions in the cell.

3. In the special case of multipartite bacteria, interactions between replicons lead to
further mutual spatial constraints that affect the organization of DNA in the cell.

Research approach To simulate the spatial organization of chromosomes in the cell,
different approaches are chosen. In recent years, some data-driven studies based mainly
on Hi-C data for known model organisms have been performed ( [28], [61], [101], [126],
[181], [183], [214], [218]). Common to these approaches is the attempt to fit a particular
polymer model to produce a set of conformations that reproduces the experimental Hi-C
data. Since such data are not available for S. meliloti , a de novo approach had to be
adopted in the present work. For this purpose, a physical model of DNA was designed on
which the hypotheses on the organization of replicons in S. meliloti could be tested.
In the coarse-grained model used here, DNA is considered a semi-flexible polymer of
compacted beads. Thereby, it is assumed that chromosome compaction is achieved by the
combined effects of supercoiling, macromolecular crowding, and DNA binding proteins.
Corresponding models for describing bacterial chromosomes can be found in many similar
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studies ( [7], [82], [89], [90], [130], [131], [147], [177]), as the neglection of atomic details
enables the study of the global configuration of chromosomes. At the same time, the
small-scale effects of, for example, the binding proteins are included in the coarse-grained
description of the beads and the used model is fine-grained enough to compare its results
with the experimental data providing positioning of genetic loci with a resolution of 60
kbp.
To create ensembles of chromosome configurations with the chosen model, DNA was
modeled as a SAW on a three-dimensional grid. Here, the lattice spacing was determined by
the diameter of a bead. In S. meliloti one has to deal with the particular difficulty of having
multiple replicons in the cell. Therefore, a version of the A* algorithm was implemented
by which initial configurations for an arbitrary number of replicons could be constructed.
These were brought to the desired length afterwards by simultaneous expansion of the
walks. In the following, simultaneous applications of the MOS algorithm [115] allowed us
to sample the configuration space for these replicons and thus it was possible to produce
chromosome configurations reflecting the mean values of the experimentally determined
loci positions as well as the cell-to-cell variability observed in vivo. At the same time,
spatial constraints such as self-avoidance of DNA or fixation of individual loci within
the cell could be implemented. Therefore, duplicate grid occupancies were prevented to
account for self-avoidance and selected loci could be fixed on respective grid points to
account for a spatial constraint. In post-processing procedures configurations were filtered
to modulate inter-replicon interactions or spatial enrichment zones of specific loci.

Key findings For the investigation of the above formulated hypotheses, both the WT
and two mutants were studied. Thus, assumptions made on the WT could be challenged
by testing on the mutants.
In the analyses on the WT strain of S. meliloti oriC was found to reside near the cell
pole while the oriA and oriB are found at subpolar regions, in agreement with previous
studies ( [43], [94], [145]). Furthermore, a linear organization of the chromosome in the
cell was found, very similar to the previously described organization of the chromosome
of C. crescentus ( [24], [25], [190]). Here, modeling showed that this organization can
indeed be derived from the hypotheses described above, with chromosomal oriC and
terC appearing to be fixed at the two cell poles. Such ”strict” fixation of selected loci
was thus to be expected for the two mutants as well. Indeed, this was evident in both
the knock-out mutant △ pSymA and the fused strain SmABC. The result in SmABC is
particularly compelling here, as the relative position of the two loci along the replicon
changed significantly from their position in the WT chromosome in the fused strain, so
that the constant positioning in the cell is due to an external fixation mechanism and
cannot be a consequence of the self-assembly of the replicon. The finding that the main
chromosome of S. meliloti arranges itself similarly to that of C. crescentus in the cell, was
expected as both organisms belong to the group of Alphaproteobacteria.
Another interesting finding that resulted from the analysis of the WT is that spatial
confinement of oris and ters can also be assumed for the two megaplasmids pSymA and
pSymB. The smaller megaplasmid, pSymA, was found to reside near midcell. Interestingly,
the model simulations revealed that without any spatial confinement of terB the excluded
volume effects between the replicons would cause pSymA to reside closer to the cell pole.
This is a first indication of interactions between the replicons. Even more impressive is the
asymmetric organization that was found for pSymB. With the help of the model it was
possible to demonstrate that this organization arises from the confinement of terB and
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is found in all mutants. Thus, modeling has provided a first important indication that
genome organization in S. meliloti is not limited to constraining the chromosomal loci,
but it also appears that the configurations of the megaplasmids are regulated.
While the evaluations for all oris of the replicons as well as for terC suggest a relatively
strict fixation within the cell, for instance by specific anchor proteins, larger variances were
found in the experimental data for the two terminus regions of the megaplasmids. Here it
was possible to set up two different hypotheses with the model in order to take this into
account. First, a spatial enrichment zone would be imaginable into which terminus regions
within the cell are drawn, e.g., in preparation for segregation steps. This would result in a
less strict spatial confinement of the corresponding regions in the cell, which could then also
refer to more extensive areas of the megaplasmids. This suggestion is supported by results
from the fused SmABC strain, in which pSymB derived terminus-proximal sections of the
replicon spatially occupy the same region in the cell, although they are widely separated
along the fused replicon. A second possibility to explain the positioning of the terminus
regions of the megaplasmids are inter-plasmid interactions. Here, with the help of the
model, certain regions of the individual plasmids could be suggested whose interaction with
each other would explain the observed organization of the replicons in the cell. These need
to be tested in future Hi-C studies. Thus, the model provides an important starting point
for further investigations, especially in the form of Hi-C analysis, to test the prediction of
such contacts of the replicons. Remaining questions to be discussed here concern the range
of possible inter-plasmid interactions (here ≈ 300nm was assumed, which corresponds to
the magnitude of the experimental variances) and possible mechanisms that could lead to
an enrichment zone.
The analysis of the two mutants provided further interesting insights. In the knock-out
mutant △ pSymA it was found that the basic organization of the two replicons remains
unchanged from WT and can be correctly predicted by the model. The key difference
compared to WT is a poleward shift of terB, which was also predicted in the model
predictions based on an terB enrichment zone and inter-plasmid interactions, while this
cannot be reproduced by a strictly local fixation of terB. Thereby, the study of the mutant
provides evidence that spatial confinement of terB is indeed a rather ”soft” mechanism, as
opposed to strict fixation at a well-defined point in the cell.
The second mutant that was analyzed, SmABC, results from fusion of all three replicons.
Although this effectively creates a single large chromosome, the fused chromosome does
not arrange itself in the cell in its averaged configuration in a C. crescentus -like manner,
but rather has an organization shaped by the spatially restricted oris and ters. Thereby,
the investigation of SmABC strengthens the assumption of a fixation of oris and terC and
provides indications for an terB enrichment zone since the position of terA seems to be
determined by the adjacent terB -near loci.
In summary, the picture of genome organization in S. meliloti is as follows: By comparing
experiments and modeling, we can assume that the organization of individual replicons
is determined by spatial limitation of oris and ters and the mechanic properties of the
compactified DNA (hypothesis 1). After the spatial location of oris and ters is defined,
presumably by the action of partitioning proteins (ParAB and repABC ) or interactions
between the plasmids and with other cellular structures, the average location of the
remaining genes of a replicon results from the excluded volume effects, confinement due
to the cell and chain connectivity (hypothesis 2). In addition, the model allowed further
hypotheses on inter-plasmid interactions to be formulated that could explain the observed
organization of DNA in the cell (hypothesis 3).
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Outlook At this point, there are many opportunities for further studies. Especially
Hi-C measurements provide a valuable means of identifiying interactions between the
plasmids as suggested by the model. Here, we could also further speculate whether
possible inter-plasmid contacts are part of a checkpoint mechanism for spatiotemporal
regulation of replication and segregation, as in V. cholerae [185]. This seems realistic
in the context of previous studies that have described the strict spatiotemporal order of
replication and segregation of plasmids [43] and the enhanced need for coordinaten of
replication and segregation in multipartite bacteria. Furthermore, Hi-C contact maps
could be calculated from the model data in order to compare them with experimental data.
Other model extensions could be, for example, the implementation of different degrees of
compactification at different sites of a replicon or implementation of the effect of SMC or
other structure regulating proteins. In addition, the model can be applied to a variety of
other species with any number of replicons.
Chromosome-membrane interactions offer another interesting application for the model
developed here. These could be caused by different mechanisms in the cell. One possibility
is transcription ( [107], [141], [142]). A pioneering study by Libby et al. [107] on two loci of
E. coli showed that induction of membrane protein expression rapidly results in a dramatic
repositioning of the loci toward the membrane. It was further noticed that the positions
of loci as far away as 90 kbp from the induced gene were changed. This indicated that
transertion (= coupled transcription and translation) might lead to significant changes
in the DNA configuration [141]. It would be an interesting task to use our model to
explore the impact of gene expression state on the spatial organization of DNA. Within our
model we could simulate the effect of transertion by restricting specific loci to subcellular
positions near the membrane. Thus, additional constraints would be added to the model.
Expression levels of the individual loci could also be represented. For this purpose the
constraints would only be applied to a certain fraction of the calculated configurations
within an ensemble. Thereby, these fractions would reflect the expression levels.
Another possibility would be to turn the question around and analyze whether certain
positions along the chromosome are particularly suitable for transcription. This would
mean using the model to search for loci that have a particularly high probability of being
close to the membrane due to the global organization of the chromosome in the cell. To
analyze this, an iterative approach could be taken. This would involve starting with some
known loci and fixing them near the membrane. E.g., for B. subtilis the chromosomal
positions of some membrane proteins have already been determined [111]. In the following,
the model would be used to determine further loci that are close to the membrane and
these would also be fixed in a second iteration step. This procedure can be continued until
no more loci are found. Subsequently, one could determine which of the loci are already
known experimentally and at which point the model makes predictions for further highly
expressed genes.
A second mechanism that could lead to chromosome-membrane interactions is provided
by proteins binding the chromosome to the membrane. An example for this is CadC in E.
coli . In the context of the description with our model, the observed effect would also have
to be implemented by additional constraints for some selected loci close to the membrane.
These could then be compared experimentally with the distribution of labeled (CadC)
proteins in the cell.
Finally, with the presented MC model it might also be possible to investigate an interesting
hypothesis on membrane domain formation. In this context, there is a suggestion that
transertion contributes to the formation of membrane domains ( [124], [141], [142]).
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Membrane domains are clusters of hyperstructures, i.e., spatially extended assemblies of
molecules. In the case of membrane domains the hyperstructures consist of membrane-
polysome DNA complexes. Within our model it would be possible to describe such
hyperstructures as loci attached to the membrane. In the following one could analyze
under which conditions two hyperstructures attract each other, thereby facilitating the
formation of a membrane domain of multiple hyperstructures. This would involve a
procedure of sampling different chromosome configurations, varying the distance between
the two hyperstructures. From the ensemble of these configurations, entropy differences
can then be calculated, e.g., using the hypothetical scanning method of White and
Meirovitch [209]. Finally, an interaction potential can be calculated from the entropy
differences. This interaction potential, influencing the position of the complexes in the
membrane, would be mediated by the spatial configuration of the chromosome in the cell.
Another interesting investigation of the results of the model concerns the quantitative
analysis of the topological properties of the replicons of S. meliloti . From these, one could
determine the extent to which the replicons mix and interwine. This could be done for
example by calculation of the linking number with a procedure like the one proposed
by Fourey et al. [48]. In this case, the degree of entanglement of the replicons could be
determined as a function of the length of the replicons and the cell size. The assumption
would be that a high degree of intermixing of replicons is a hindrance to their segregation.
In this respect, quantitative information on the degree of mixing would be interesting to
gain an estimate of how much multipartite bacteria are affected by the mixing of their
replicons during segregation.
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3. Segregation of DNA in bacteria

Having investigated the issue of spatial organization of DNA in bacteria in the previous
project, we will address the dynamic processes of replication and segregation in the following
two projects. First, results from another TRR174 collaboration with the Graumann lab
will be presented. In this work, the segregation of oris in the model organism B. subtilis
was studied. The background to the investigations is that no uniform mechanism for
chromosome segregation has yet been discovered in bacteria, although such a mechanism
exists in eukaryotes with the mitotic machinery ( [9], [37], [55]). To determine whether
chromosome segregation in B. subtilis follows recognizable patterns, the Graumann lab
tracked the two oris at 10-s intervals during segregation. In parallel, a theoretical model of
entropic chromosome segregation was developed according to the proposals of Arnold and
Jun [84]. With this, MD simulations were performed. Thus, the experimental trajectories
of the oris could be compared to the simulation results to evaluate whether an entropy-
driven segregation mechanism is sufficient to ensure reliable transfer of genetic material to
the daughter cell. The results of the project have been published and can be found at [37].
In the following, a short introduction of the model organism and the experimental data is
given 3.1. Then the model for the MD simulations is presented in 3.2. Thereafter, the
results of the work are presented and discussed in 3.3. Finally, an outlook on possible
extensions of the model and open questions will be given in 3.4, some of which will be
investigated in the last project.

3.1. Model organism and experimental data

The model organism of this study is the well known B. subtilis. It is a gram-positive
rod-shaped bacterium. B. subtilis is found in soil and in the gastrointestinal tract of
humans. It is known to tolerate extreme environmental conditions and while B. subtilis was
long believed to be a strict aerobe, it has been shown that it can also grow anaerobically. B.
subtilis is not only one of the most frequently used model organisms in research but it is also
used in industrial applications for enzyme production ( [55], [113], [137]). The chromosome
of B. subtilis has a size of 4.2 Mbp. Concerning the orientation of the chromosome in the
cell it was shown that the chromosome of B. subtilis alternates between the ori -ter -pattern
and the left-ori -right-pattern. In sporulating B. subtilis, the chromosome adopts an
ori-ter configuration while during vegetative growth, the chromosome alternates between
the two patterns. The reason for this behaviour is still unclear. It was shown that the
chromosome of B. subtilis is divided into supercoiled domains that are between 24 and
400 kbp ( [55], [173], [197], [199]).
The replication period in B. subtilis was found to be fairly constant at 37◦C with a
duration of about 55min [37]. For B. subtilis a replication machinery positioned at
midcell was proposed ( [55], [103]). Later on, further experiments revealed that while
the replication factory is relatively stationary positioned at midcell, the replication forks
can still move within the cell center and show great mobility there. The chromosome is
pulled through this replication factory at midcell while being replicated. The origin regions
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start moving towards the cell poles soon after initiation of replication and are followed
by the remaining duplicated chromosome regions ( [55], [104], [129], [167]). Time-lapse
fluorescence microscopy experiments revealed that the average velocity of the segregating
origins is 0.17µm/min and thereby faster than the rate by which the cell increases of 0.011
to 0.025µm/min [203]. This movement of oris is even observed in the absence of ParAB.
At the same time the separation of duplicated chromosomes in B. subtilis is very robust.
Only 1 in 10,000 cell cycle events shows a failure in chromosome segregation [55]. This
circumstance makes it particularly exciting to find out how such a low error rate can be
maintained even though no sole segregation mechanism could be observed. As seen above,
the oris segregate faster than the cell grows. Therefore, a tethering mechanism to the cell
wall can be excluded as a possible mechanism. In the same way it was shown that deletion
of ParA and ParB in B. subtilis causes very mild segregation defects and that the ParAB
system consisting of soj and spo0J in B. subtilis is only essential during sporulation and
not during vegetative growth ( [37], [55], [78]). Another protein that has been suggested
as an important component of the segregation mechanism is SMC. It was shown that
the absence of SMC in B. subtilis leads to about 15% anucleate cells as well as to the
loss of spatial arrangement of the chromosome. During fast growth, the origins cannot
be segregated properly in the absence of SMC. However, slowing down the velocity of
the replication forks can bypass the requirement for SMC for the separation of origins in
rich medium while under slow growth conditions (22◦C) origin regions are still segregated
normally in absence of SMC. ( [17], [55], [59], [198]).
There are quite a few other candidates for possible segregation mechanisms in bacteria.
Among others it was also suggested that RNA polymerase could help segregating the
chromosomes as it is a powerful molecular motor and it was shown that inhibition
of RNA polymerase inhibits separation of newly duplicated DNAs near the origin of
replication. Likewise, DNA polymerase could help segregate DNA in B. subtilis , pushing
newly duplicated DNA from midcell towards the poles. However, since the persistence
length of DNA is about 150bp, DNA cannot be pushed from the cell center to the poles
without bending ( [36], [55], [95]). Another idea is that transcription in concert with
translation and insertion of membrane proteins could anchor the chromosome to the
membrane and thereby facilitate chromosome segregation in a process termed transertion.
This was supported by experiments showing that mebrane protein expression can affect
the positioning of chromosomal loci and simulations proving the enhanced efficiency of
chromosome segregation by membrane tethering of DNA for self-avoiding chromosomes
( [32], [55], [95], [107], [212]). In addition to the multitude of possible mechanisms
for chromosome segregation, another promising suggestion is that entropic repulsion of
chromosomes is an important driving force [84]. The aim of the present work was to
apply this concept to B. subtilis and to compare corresponding computer simulations with
experimental data. First, we briefly describe the experimental design before moving on to
the simulation model.
In the experiments fluorescence microscopy was used to track the dynamics of the origins of
replication in B. subtilis for an entire cell cycle in 10-s intervals [37]. Therefore, fluorescent
repressor/operator systems (FROS) as well as ParB/parS systems have been used. The
FROS system has been used successfully in previous studies. However, it should be noted
that the FROS arrays have been shown to hinder the progression of replication forks
in some circumstances [202]. Keeping this in mind, in the here performed experiments
the cells did not show pronounced negative effects due to the FROS system so that the
measurements could be continued. Furthermore, the cells underwent a transition to adopt
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to low-oxygen conditions. The final patterns observed were measured in cells that have
grown exponentially under imaging conditions. Therefore, it can be assumed that the cells
adopted to the growth conditions.
Observation of the origin dynamics revealed that the two oris remained at midcell for an
initial period before they moved towards the quarter-cell positions. Thereafter, the oris
remained at the new positions. Interestingly, it was not possible to describe a unified
pattern of origin movement. Instead, the 80 segregation events that were tracked showed
a rather random movement of the oris that nontheless lead to an overall separation.

3.2. Molecular Dynamics simulations of chromosome
segregation

A widely used method to study the dynamics of biomolecules such as DNA in simulations
are MD simulations. The basic idea behind MD simulations is to evaluate the time-
dependent behavior and evolution of a biomolecule by integrating Newton’s equation of
motion. Thereby, they have proven useful for studies of functional mechanisms of proteins
and polymers but can also be applied to model the dynamics of far bigger systems like
stars or galaxies ( [56], [63], [73]). The first MD simulations were simulations of simple
gasses in the 1950s [6]. In 1967 Verlet proposed a procedure for time integration, the
Velocity Verlet algorithm, that still represents the standard in recent MD simulations (for
a brief description see appendix B.2.1). The first simulation of a protein was performed in
1977 [125] and the groundwork enabling these simulations was awarded the 2013 Noble
Prize in Chemistry ( [106], [109]). The main advantages of MD simulations are the fact
that they capture the positions and velocities of all particles in the simulation at every
time step and that one is able to completely control the simulation conditions. Both would
be very difficult in any experiment. Thereby, the particles in the simulations can be seen
as the building blocks of an abstract model so that it is up to the researcher to define the
concrete setting of the simulation. The particles’ trajectories throughout the simulation
are determined by the forces acting on the particles. Therefore, a model force field must be
implemented representing the various interactions of the particles ( [56], [73], [143], [151]).
In this study, we derived an idea for the particles of our simulation from the previously
described properties of confined DNA. As discussed, the action of compaction proteins,
supercoiling and macromolecular crowding divide the bacterial chromosome in a string
of structural units. Furthermore, the DNA model had to reflect the property of chain
connectivity. Therefore, we used the bead-spring model of DNA, in which the chromosome
is modeled as a spring connected chain of spherical beads. In figure 3.1 a schematic
depiction of a bead-spring chromosome is shown.
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Figure 3.1.: Schematic depiction of the bead-spring model for the chromosome. The beads
represent the structural units of the chromosome made up of supercoiled
domains of compacted DNA. The springs conencting the beads ensure the
chain connectivity and elastic properties of the chromosome.

Here, the beads represent the particles of the simulation. In accordance with the above
mentioned numbers, we divided the chromosome of B. subtilis into 80 beads. Thus, the
beads represented compacted units of l ≈ 52.5kbp. Again, we determined the diameter dB
of a bead using the radius of gyration rg and the length of one bp of DNA b = 0.34nm as

dB = 2 · rg = 2 ·
√
l · b√
6

≈ 64nm . (3.1)

Furthermore, we had to define the different interactions of the particles with each other
and introduce the constraint of the cell volume. To model the entropic repulsion between
the beads we used the electrostatic Debye-Hueckel (DH) potential

VDH = C · q1q2 exp(−κr)

r
for r < rcut . (3.2)

For two beads of charge q1, q2 and at a distance of r. Furthermore, we set κ = 1
dB

,

rcut = 3dB and the prefactor C = lBjerrum · kBT/e2. Here, lBjerrum is the Bjerrum length

lBjerrum =
e2

4πϵ0ϵrkBT
, (3.3)

which is the length at which the Coulomb energy between two unit charges is equal to the
thermal energy kBT . Here, e is the elementary charge, ϵ0 is the vacuum permittivity, ϵr is
the relative dielectric constant of the medium, kB is the Boltzmann constant, and T is
the temperature of the system. To implement the harmonic springs between the beads a
Harmonic potential was used

VH(r) =
1

2
k(r − r0)

2 , (3.4)

where we set r0 = 0. Importantly, the repulsive DH-potential and the attractive harmonic
potential were adjusted to compensate each other at a distance of r = dB.
The chromosomes were spatially constrained by the cell which we implemented as a
cylinder of length lcell = 4µm radius rcell = 0.5µm. The volume of the cell doubled during
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the simulation. To prevent the chromosomes from leaving the cell we implemented a
particle-membrane interaction using a Lennard-Jones (LJ) potential. It is defined as

VLJ =

{
4ϵ
[(

σ
r

)12 − (σ
r

)6
+ cshift

]
, if rmin < r < rcut

0 , otherwise .
(3.5)

Here, we set σ = dB as the diameter of a bead and cshift = 0.25, and rcut = 2
1
6σ = 1.1225σ,

thereby turning the LJ potential into a purely repulsive Weeks-Chandler-Anderson (WCA)
potential. In order to keep the system at constant temperature, a langevin thermostat
was used. It is based on an extension of Newton’s equation of motion to

miv̇i(t) = fi ({xj}, vi, t)− γvi(t) +
√

2γkBTηi(t) . (3.6)

Here, fi are all deterministic forces from the interactions, γ is the bare friction (the friction
term accounts for dissipation in a surrounding fluid) and η is a random, ”thermal” force
(mimics collisons of the particle with solvent molecules at temperature T). The random
force η satisfies

⟨η(t)⟩ = 0, ⟨ηαi (t)ηβj (t′)⟩ = δαβδijδ(t− t′) . (3.7)

Here, ⟨.⟩ denotes the ensemble average and α, β are spatial coordinates [205].
The MD simulations were carried out with simulation package ESPResSo. Here, the
equations of motion are integrated with the Velocity Verlet integrator (see appendix B.2.1)
with a fixed time step of t = 0.01τ [205]. This approach is also found in many of the before
mentioned MD studies on the dynamics of confined polymers ( [7], [82], [84], [89], [90],
[130], [131], [147], [177]).
The simulations started with a circular chromosome which was replicated in the course of
the simulation. The starting configuration of the chromosome was obtained as a random
walk on a cubic lattice with the MC algorithm presented in chapter 2. Afterwards, the
chromosome configuration was projected back onto the confining cylindrical compartment
of the MD simulation. To ensure that no unphysical forces arise between beads in close
proximity at the start of the simulation, an equilibration phase was established prior
to the start of the actual simulation. In this ’warm-up’ the chromosome configuration
was integrated for some time with capped forces. In this process, occurring forces were
artificially limited to a certain cap value, which was subsequently increased step by
step. Thus, possible overlaps between beads could adjust and an equilibrated starting
configuration was obtained. The process could be verified by measuring the energies during
the equilibration phase as shown in figure 3.2. It can be seen that the energies settle
very quickly at a relatively constant level and an equilibrated starting configuration was
achieved.
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Figure 3.2.: Measurement of energies during equilibration phase. Both energies and time
are shown in simulation units. The total energy is shown in black. The kinetic
energy resulting from the particle velocities is shown in green and the energy
of the harmonic bonds between the particles is depicted in blue.

After the equilibration phase the actual simulation could start with the joint replication
and segregation of the chromosomes. Within the framework of the model, it was possible to
implement the two replication models of the track model and the factory model discussed
above. While the two replisomes move along the chromosome in the track model, replication
is locally fixed in the factory model due to the replication factory positioned at midcell.
In the simulations, the chromosome was duplicated bi-directionally, with two replisomes
running in opposite directions starting from ori. The replication in the simulations was
divided into individual duplication steps, during which one bead was duplicated in each
direction. In the track model, the new beads were created in a random radius around
the original position of the bead to be duplicated. In the factory model, an additional
bead was fixed centrally in the middle of the cell and served as a replication factory. The
mother chromosome was connected to this chromosome by additional springs and was
thus pulled into the center of the cell. There, the beads closest to the replication factory
were duplicated. The duplicated chromosomes then segregated from the center of the cell
toward the poles. Thus, with this implementation of the factory model the replication was
spatially fixed. A representation of the two replication models can be seen in figure 3.3.
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Figure 3.3.: Illustration of the two replication models in the MD simulations. Shown are
the first three duplication events (i)-(iii) and the final configuration after
termination of replication at the bottom. A: Within the factory model the
old chromosome (shown in grey) is replicated at the replication factory (pink
bead) in the center of the cell. After replication the new chromosome arms
(depicted in green and blue) extend from midcell towards the poles. B: In the
track model of replication the polymerases move along the old chromosome
(shown in grey). Thereby, the new chromosome (shown in blue) emerges near
the positions of the old chromosome beads.

In the simulations the newly created beads increased their size during a duplication period
to the values of the old beads. It was assumed that newly build DNA is compacted right
after synthesis. Furthermore, the entropic repulsion between the full chromosome and the
partially replicated chromosome causes them to start separating. Therefore, replication
and segregation occur simultaneously. In the literature, the factory model of replication is
assumed for B. subtilis ( [55], [104], [129], [167]). Simulations also showed better agreement
with the factoy model, in which the chromosomes showed a more regular separation from
the cell center to the poles. In contrast, ”trapped” configurations of non-segregating
chromosomes appeared more frequently in the track model as shown in the final snapshot
of figure 3.3B.
It can be seen that while intermediate chromosome configurations of the factory model
(steps i-iii in figure 3.3) are still mixed, the two chromosomes are almost completely
separated at the end of replication. A more in-depth comparison of the two replication
models will be made in the third project of this thesis in chapter 4. For the comparison
with the model organism B. subtilis , we thus used the factory model in agreement with
the literature.
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With these implementations, our model was nearly complete. Finally, only the units for the
simulation had to be defined in ESPResSo. Because ESPResSo does not predefine units,
they must be specified by the user. For this, the length-, mass- and energy-scale have to
be defined by the user and all remaining units are derived from these basic choices [205].
Here, the diameter of a bead, dB, defined the basic length scale [length] = 1dB. Also, the
mass of a bead, mB, defined the basic mass scale. For the latter we made use of the fact
that one bp of DNA has a weight of m1bp = 650Da [4]. Thus, the mass of a bead is the
produt of the amount of DNA per bead given by the loopsize and the weight of one bp.
We received [mass] = 1mB = l ·m1bp. The energy scale was given by the thermal energy
[energy] = ϵ = kBT with the Boltzmann constant kB and the temperature T . With these
choices we obtained the basic time scale of the simulation as

[time] = τ = [length]

√
[mass]

[energy]
. (3.8)

If we insert values here and assume a temperature of T = 300K and a length of the
chromosome of 4.2 Mbp divided into 80 blobs we receive τ ≈ 2.37 · 10−7s. Similarly, we
can determine other required quantities for the simulation in MD units. For example the
value of the Bjerrum length at 300 K is lBjerrum ≈ 0.7095nm = 0.022dB.
An overview of values used in the simulation in SI units and in MD units is given in table
3.1

quantity value (SI units) value (simulation units)

diameter blob dB 32 nm 1 [dB]
thermal energy kBT kB · 300K 1 [ϵ]

mass blob mB 5.665 · 10−20kg 1 [mB]
lBjerrum(300K) 0.7095nm 0.022[dB]

time τ 2.37 · 10−7s 1 [τ ]

Table 3.1.: Table of used units in MD simulations. SI values and simulation values are
shown.
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3.3. Results

3.3.1. Analysis of time scales

A very common problem of MD simulations is that the biological events of interest take
place on timescales that require a very long computation time for MD simulations. In
addition, some interesting dynamic properties of biological molecules cannot be simulated
directly because of nanosecond time scale limitations. A common problem is that the
dynamic evolution of many molecular systems occurs through a series of rare events as the
system moves from one potential energy basin to another. Thus, the task is to simulate a
series of rare transitions between potential energy minima in order to perform realistic
simulations of a molecular system. Thereby, it is possible that the question turns out to
be a multiple timescale problem. This may be the result of special energy landscapes
or may be due to the specific process of the problem in question ( [11], [63], [73]). Such
a problem could also be found in the work presented here. We see from the value of
a simulation time step in table 3.1 that it is very small and thus a direct simulation
of the replication time of B. subtilis of ∼ 55min was impossible. However, we used a
preliminary consideration to justify accelerating the simulation time. The dynamics of
the system consists of the rare duplication events of two beads, while between them there
is only entropic ’equilibration’ of partially replicated chromosomes. Accordingly, we are
interested in correctly simulating the duplication events and the subsequent entropic
equilibration phase during which the partially replicated chromosome arms segregate
as much as possible within the limits of their still existing connections. After entropic
equilibration is completed, a phase follows in which the still-connected chromosome arms
remain in a state of equilibrium and cannot separate any further. Therefore, we can jump
to the next duplication event at this point. Our task is thus to obtain an estimate for the
phase of entropic equilibration following a duplication event. For this purpose, simulations
were performed with completely intermingled chromosomes consisting of different numbers
of beads. The theoretical time of equilibration of two beads can be derived from the results
by interpolation as can be seen in figure 3.4.
The results from figure 3.4 show that the entropic separation of intermingled chromosomes
is very fast and accomplished within the time scale of µs. Thus, the combined time scale
of replication and segregation in bacterial cells is dominated by the replication time. This
means that the time required for the duplication polymerases to migrate from one bead to
the next is the determining factor for the duration of the combined process. To determine
the time required for the new beads created in each duplication step to entropically
equilibrate from the old chromosome we used the fit to the data from figure 3.4. We found
that for two beads a separation time of ≈ 78µs is to be expected. This means that after
this time, the newly formed beads were repelled from the mother chromosome as far as
possible. Consequently, after that we can jump to the next duplication event. Thus, we
enabled the representation of the complete replication phase while reducing the required
computing time.
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Figure 3.4.: Interpolation for entropic equilibration. A: Time needed for entropic sepa-
ration of intermingled chromosomes of different numbers of beads. In red a
polynomial fit for interpolation of the simulated separation times (in blue) is
shown. B - D: Different stages of separating chromosomes. In B the starting
configuration is shown which has already started to separate in C and is
completely separated in D.

To verify this estimation we used another measure proposed by Thirumalai et al. [180]
as well as Whitfield et al. [210], the ergodic measure. The question to be answered was
at what point one can accept the ergodic hypothesis. This assumes that the average
over the simulation trajectory is equal to an average over all states accessible to the
system. Since the ergodic hypothesis is difficult to prove, one tests a necessary criterion
of it instead: At equilibrium, independent simulations over an ergodic system must be
self-averaging. The ergodic measure is used to estimate the simulation length needed to
guarantee self-averaging. For this one calculates the mean-square difference between the
average taken over a simulation α and the average taken over a simulation β, summed
over all atoms of the system. The difference then provides a measure of the convergence of
the two averages ( [110], [180], [210]). One way to define the ergodic measure is to consider
the energies of the particles.
In this case, the ergodic measure χ2(t), could be defined as follows

χ2(t) =
1

N

N∑
j=1

[ϵaj(t)− ϵbj(t)]
2 . (3.9)

Here, ϵaj(t) is the energy for the j-th particle in simulation a and ϵbj(t) is the corresponding
quantity for simulation b. The total number of particles is N . The test for ergodicity with
χ2(t) is straightforward. If the system is ergodic at some point τ then χ2(t) must vanish
as the simulation time t approaches τ [180]. In figure 3.5 the results for the calculation of
the ergodic measure for the MD simulations are shown.
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Figure 3.5.: Evaluation of the ergodic measure as defined in equation 3.9 for the MD
simulations. For the plot the ergodic measure was calculated for 50 pairs of
simulations and the results were averaged.

The time scale in the plot of figure 3.5 starts after duplication of a bead in a typical
simulation of a chromosome consisting of 80 beads. For the calculation of the averaged
entropic measure, 50 individual values of the entropic measure were calculated from 100
simulations and then averaged. The result of figure 3.5 confirms our previous estimate very
well as the entropic measure decays to zero at τ ≈ 75µs. We therefore assumed that after
the duplication of a new bead the system’s average properties correspond to equilibrium
averages after the time τ . Thus, we could jump from this point to the next duplication
event.

3.3.2. Distance of oris over time

With the above considerations it was possible to speed up the simulations accordingly to
cover a time of 55min. With this, we could now compare the results of the MD simulations
for entropic segregation of oris with the experimental data. The quantitative analysis
of experimental data included 80 separation events representing the typical separation
patterns. Here, the separating oris were tracked at 10-s intervals and their distance was
measured along the long axis and short axis of the cell. In figure 3.6 A, three examples of
commonly found separation behaviors in the experiments are shown. Figure 3.6 B shows
three corresponding examples of the separation of oris in the simulations.
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Figure 3.6.: Comparison of ori distances as measured in experiment and simulations. A:
Experimental tracks for the separation of the oris over time as measured in
the experiments. The distance along the long axis (X) of the cell is shown in
blue and the distance along the short axis (Y) of the cell is shown in green.
B: Example tracks of the separation of oris in the MD simulations. The
simulations were performed for chromosomes consisting of 80 beads for a
period of 60 min.

It can be seen from the plots of figure 3.6 that the separation of the oris is stochastic. The
examples show very different separation patterns. The two upper plots in A and B show
separation curves in which the separation is linear on average with a constantly increasing
distance of the oris from each other. On the other hand, both the experiments and the
simulations also showed patterns like the one shown in the middle row of figure 3.6. Here,
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the distance between the oris initially increases, but then drops again in the meantime
and only increases again afterwards. This could rather be described as an oscillating
separation pattern in contrast to the linear patterns in the upper plots. Finally, there
were also trajectories in which the oris are barely separated at the end of the tracked time.
Examples for this are shown in the lower plots of figure 3.6. Based on these examples,
we thus concluded that no uniform pattern for the separation of oris in B. subtilis can
be established. Instead, one finds a pronounced heterogeneity of separation trajectories
in both the experiments and the simulations. Therefore, we concluded that the model
of entropic separation of the oris provides a good description for the observations. We
additionally verified this by taking the average distance of the separating oris over the
80 experimental trajectories and comparing it to an average over 80 tracks from the
simulations. The experimental tracks all showed a length of at least 1800s, so that the
individual trajectories could be averaged over this period. The results are shown in figure
3.7.
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Figure 3.7.: Comparison of the mean distance of separating oris for the experimental data
and the simulation data. The results of 80 trajectories were averaged and
the distances along the long and short axis of the cell were compared. The
shaded areas indicate the standard error of the mean. The distance of the oris
along the longitudinal axis of the cell is shown in red for the experimental
data and in green for the simulation data. Along the short axis of the cell,
the experimental data are shown in black and the model data in blue.

The curves from figure 3.7 confirm that, on average, the oris show a linear separation
along the longitudinal axis of the cell. At the same time, the distance of the oris along the
short axis of the cell hardly changes. Furthermore, the overlap of the curves shows the
good fit of the model with the experimental data. On average, the distance of the oris is
about 0.6µ m after 1800s in both the model and experimental data.
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3.3.3. Step size distribution

Another parameter with which we compared experimental data and simulations is the step
size distribution for the indicidual oris. We expected a Gaussian distribution of the step
sizes since the entropic force acting between the chromosomes should lead to a diffusion
movement of the chromosomes [155]. In figure 3.8 the probability density function (PDF)
for the step size distributions of the experimental tracks and the simulations are compared
and probability plots for both data sets are shown.

A

B

Figure 3.8.: Step size distribution of the ori movement. A: Analysis of experimental step
size distribution. In the main plot the calculated PDF is shown in black
and compared to a fitted normal distribution shown in red. The subplot is
a probability plot for the experimental data. B: Analysis of the step size
distribution from the simulation tracks. Again, in the main plot the calculated
PDF is compared to a fitted normal distribution and a probability plot is
shown in the subplot.
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The plots of the PDFs in figure 3.8 show that the step size distributions for the experimental
data and the simulation data are approximately Gaussian as depicted by the fitted normal
distributions. In order to compare the probability distributions of the datasets to a normal
distribution in both cases probability plots are shown. Here, the quantiles of the measured
distributions (y-axis) are plotted versus the expected quantiles of a normal distribution
(x-axis). For a perfect fit one would expect a linear relationship. However, we find that
the experimental data shows a reasonably linear pattern in the middle of the probability
plot but deviations at the edges. The deviations are mainly due to the high number
of relatively small steps in the distribution. Presumably, these are a consequence of
experimental difficulties in the tracking process. With this restriction we find a Gaussian
step size distribution. This is in accordance with the expectation of a directed diffusion as
a consequence of entropic segregation of the chromosomes.

3.3.4. Subcellular positioning of oris in the cell

The analyses presented so far suggested that the mechanism of entropic segregation is
able to reproduce the basic separation dynamics in B. subtilis. However, in addition
to the successful separation of the genetic material, the cell also depends on this being
accompanied by an appropriate organization of the chromosomes in the cell. To examine
at least one aspect of this organization we looked at the final positions of the oris
after replication. As discussed above, the chromosome of B. subtilis adopts an ori-ter
configuration in sporulating cells and alternates between the left-ori -right-pattern and the
ori-ter pattern during vegetative growth ( [55], [173], [197], [199]). Since the organization
of the chromosome in the cell was not the focus of the publication, no corresponding
experimental data were included for this purpose. However, from the simulations we could
determine the relative positions of the two oris in the cell at the end of replication. The
expectation was that we would also find one of the two patterns mentioned here. The
results of this analysis can be seen in figure 3.9.
Figure 3.9 A shows the development of the two oris over time in the course of an example
simulation. The positions of the oris are marked by the dots and the color code indicates
the time. The oris are near the replication factory in the center of the cell at the beginning
of replication. From there, they move with increasing time in the direction of the poles
or the quarter cell positions. In figure 3.9 B the final positions of the oris from all 80
trajectories in the simulations are shown. The average positions along the long axis of the
cells from these points are x1 = 0.38 and x2 = 0.61. In the case of a left-ori -right-pattern
we would have expected average positions of xexp,1 = 0.25 and, xexp,2 = 0.75. For the ori-ter
pattern even further poleward positions of the oris are expected. Thus, we find that the
results of the simulations showed more similarity with the left-ori -right-pattern. However,
the model could not exactly reproduce the organization of oris in the cell according to the
known patterns. This indicates that additional mechanisms might be needed to realize
exact positioning of the origins in the cell. This finding is in agreement with simulations
on the organization of oris in E. coli where it was shown that entropic repulsion alone
is not sufficient for an accurate chromosome organization-segregation. Instead, it was
shown that in E. coli MukBEF and the oris act together as a self-organising system where
preferential loading of MukBEF places the oris at the expected quarter cell position [72].
Due to the fact that a variety of different organizational systems have already been found
in E. coli and B. subtilis and that entropic segregation results in a diffusive process, it is
not surprising that our result above also indicates the need for additional organizational
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Figure 3.9.: Ori positions in MD simulations. A: Positions of the separating oris in the
course of replication. The positions of the respective oris are depicted in red
and blue while the time course is defined by the colorbars. The plot shows
the positions of an example simulation. B: The respective end positions of
the separating oris for the 80 simulations considered are shown in blue and
red. As in A, the cell length is normalized to 1, so the expected quarter-cell
positions of oris would be 0.25 and 0.75.

mechanisms to realize the highly ordered structures observed in bacteria. It would therefore
be interesting to implement further mechanisms in the simulations. Such are presented
in the third chapter 4, in which the MD simulations were further extended including the
effects of ParAB and SMC.

3.4. Project summary and outlook

The project described here addresses the segregation of oris in B. subtilis. This is a
particularly exciting field since no unique mechanism for chromosome segregation has been
identified in bacteria so far ( [9], [37], [55]). In the specific case of B. subtilis , experiments
showed that even a deletion of the proteins ParAB and SMC, which are often mentioned
in connection with chromosome segregation, does not necessarily prevent the oris from
separating ( [37], [55], [78]). Therefore, the entropic segregation of chromosomes was
investigated as another possible mechanism for the separation of the genetic material in B.
subtilis in this project ( [7], [84], [130], [131]). In order to study the segregation dynamics
of the oris the Graumann lab performed experiments in which the oris were tracked at
10-s intervals in the course of replication. The data from these experiments were then
compared with MD simulations of entropic segregation of chromosomes.

Research approach For the simulations, a bead-spring model of the chromosome was
assumed, in which the DNA is divided into supercoiled domains which represent the
particles of the MD simulations. Start configurations with this model were produced with
the MC scheme presented in the previous chapter. The simulations implement the entropic
interaction between the chromosomes via a repulsive potential between the monomers of
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the chromosomes. In combination with the confinement due to the cell wall this results
in separation of the chromosomes. The potentials which were used to model interactions
between the particles are comparable to the ones used in a number of similar studies
( [7], [82], [84], [89], [90], [130], [131], [147], [177]).
Since replication and segregation occur simultaneously in bacteria, bi-directional replication
was also implemented in the simulations in form of the track model and the factory model
of replication. For B. subtilis, a large number of studies suggest that replication takes
place in the form of the factory model, so this was also used as the basis for the results
discussed here ( [55], [103], [104], [129]). A more detailed comparison of the factory model
and the track model is presented in the following chapter 4.
In order to compare the results of the MD simulations with the experimental data, an
acceleration of the MD time was necessary. This could be achieved as simulations of the
separation of complete chromosomes revealed a dominance of the replication time scale
compared to the segregation time. Here, the entropic segregation of the chromosomes
proved to be a very effective process, which runs significantly faster than the comparatively
slow replication, the duration of which is determined by the speed of the duplication
polymerases along the chromosome. These different time scales result in a relatively
short equilibration time following the duplication of new beads after which the system
is in a temporary equilibrium, so that at this point the simulation can be accelerated
by transitioning to the next duplication event. These considerations were verified by
the additional calculation of the entropic measure. The entropic measure is a measure
of the self-similarity of the simulations whose decay to zero is a measure of reaching a
thermodynamic equilibrium state. With this a MD scheme was developed that provides
data comparable with experimental measurements in B. subtilis . Therefore, analogous to
the experimental procedure, the distances of the oris from each other could be tracked in
the following and compared with the in vivo data.

Key findings Comparison of individual measurements for the distance of the oris
in the course of replication showed a large heterogeneity of the trajectories. Similar
trajectories were found in the experiments and the simulations. Thereby, we found
both approximately linear separation movements of the oris from each other as well as
oscillatory movements of the oris or even no separation at all at the end of a measurement.
However, the average separation of the oris in the ensemble showed an almost linear trend
along the long axis of the cell in both experiment and simulations. Thus, these findings
rather support the idea of separation due to entropic segregation instead of a coordinated
movement which would be expected from any motor-like mechanism. At this point we can
conclude that the analyses revealed a good agreement of the simulation model with the
experimental data for the combined process of replication and segregation. The results
confirmed the proposed factory model for replication as well as entropic segregation as
a robust mechanism and driving force for separation of the oris. Thus, we can confirm
the prediction that confined chromosomes entropically segregate due to their physical
properties ( [24], [25], [72], [85], [86], [146], [168], [216]).
Furthermore, our findings indicate that this mechanism can ensure separation of genetic
material even in the absence of other separation mechanisms. Since entropic repulsion of
the chromosomes is of purely physical origin, one can also speculate that this was the first
and most important way for early life forms to segregate chromosomes before additional
and more complex mechanisms developed during evolution. Moreover, it is certainly a
mechanism that is involved in chromosome segregation in all bacteria, even if there are
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additional more sophisticated mechanisms. For example, the efficiency and importance
of entopic segregation was recently also shown in experiments with E. coli . It could be
shown that the probability of successful chromosome segregation decreases with increasing
cell width [81].
In addition to the important processes of replication and segregation, the question of the
organization of genetic material in the cell must also be considered. Here, the simulations
showed that entropic segregation does not reproduce the typical ori configurations for
B. subtilis ( [9], [197], [199]). Thus, these results indicate that additional mechanisms
are at least needed for the spatial organization of the chromosomes. This result is
understandable since pure entropic segregation does not provide a designated direction of
separation. Therefore, it is unlikely that it is sufficient to ensure the complex organization
of the chromosome in the cell. This goal could possibly be achieved through specialized
proteins like ParAB ensuring the correct positioning of the oris in the cell. Thereafter, the
organization of the rest of the chromosome could result from the mechanical properties
and spatial confinement of the cell similarly to the discussed mechanism in chapter 2.
Furthermore, SMC is known to be very important for the organization of the chromosome
in B. subtilis by juxtaposition of the chromosomal arms which might even facilitate
the segregation of the oris. Consequently, it can be assumed that several mechanisms
orchestrate the complex interplay of replication, segregation, and organization of DNA
in B. subtilis together. Thereby, proteins contribute to the compaction of DNA in the
cell. Additionally, they might determine the position of individual loci in the cell and the
arrangement of the chromosome arms.

Outlook In further studies, it would thus be interesting to extend the simulations with
additional mechanisms such as the effects of the proteins mentioned. This is discussed in
the following chapter, where ParAB and SMC were implemented in the MD simulations.
Furthermore, the different segregation mechanisms were combined with the two competing
models for replication, the factory model and the track model, to form different cell types.
At this point another interesting question is analyzed: Is it possible to distinguish which
mechanism underlies the movement of oris on the basis of their measured trajectories in
the cell?
Besides that, it would be an interesting task for future investigations to extend the MD
approach to multiple replicons. For example, the segregation of replicons in S. meliloti
could be studied. For this, the start configurations could be obtained with the MC scheme
of the first project. Thereafter, the MD scheme would allow testing whether the observed
motion of oris and ters in S. meliloti with a strict temporal order [43] can also be explained
by an entropy-driven segregation process. Presumably, however, additional segregation
mechanisms such as the ParAB system and RepABC [145] will also be important in the
segregation process here. These could be implemented in the MD model by additional
forces.
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4. Classification of segregation
trajectories

In the previous project we already discussed that many different mechanisms are associated
with the segregation of chromosomes in bacterial cells ( [81], [84], [85], [108], [130], [173],
[199], [198], [200], [187]). The successful modelling of the separation of oris in B. subtilis
using MD simulations of entropic segregation of chromosomes serves as one example for a
physical based mechanism. However, it is difficult to identify the relevant mechanisms for
chromosome segregation in a given organism. For this, it would be desirable to infer the
underlying mechanism of molecular motion from experimental data from SPT experiments.
The experiments discussed in the previous project are a good example of the great progress
that has been made in the field of SPT in recent years providing data at a temporal
resolution of some seconds ( [37], [54], [164], [203]). In the case of the previous project the
movement of the ori through the cell was tracked.
The ori has a prominent role in the process of replication and segregation of bacterial
chromosomes since bi-directional replication starts here. The ori is also important for
the organization of the chromosome in the cell ( [72], [198], [203]). In addition, the ori
occupies a central role in the function of two of the proteins arguably most important
for the organization and separation of genetic material. The first of these two protein
complexes is the ParAB system, which is one of the best known partitioning systems of
bacteria and is employed specifically for the segregation of oris. The second important
protein complex, SMC, is also loaded at the ori ( [72], [108], [198], [201]). SMC is known
to be of great importance for chromosome organization and also supports segregation
of oris. Thus, the ori and its movement through the cell are particularly important for
understanding the separation of bacterial DNA.
Consequently, it seems natural to infer the underlying separation mechanism from the
trajectory of the ori through the cell. Comparable successes have already been achieved
in the similar problem of classifying different diffusion processes with ML algorithms
( [80], [97], [135], [192]). However, so far it has not been possible to discriminate segregation
mechanisms in bacteria using ML approaches. A main obstacle here is that one needs a
large number of trajectories in order to train the ML models.
In this project the MD scheme from the previous chapter was therefore extended by
implementing the effects of the two proteins SMC and the ParAB system in order to
produce a large amount of data which can be used for an automated ML classification.
This is especially promising since the previous project has already shown that the data
from the MD simulation are comparable to experimental results. Thus, with the additional
implementation of the effects of the ParAB system and SMC to the already discussed
entropic segregation mechanism described in the previous project, three different drivers for
chromosome segregation can now be studied. Furthermore, by switching the two protein
systems on and off in the simulations, it is possible to simulate knock-out mutants. The
classes to be distinguished are further extended by the two different replication mechanisms
of the track model and the factory model.
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Thus, the goal of the project presented here was to use MD simulations to produce
trajectories of oris for various replication and segregation models corresponding to an
SPT experiment, which would subsequently be classified using ML models. Here, a
logistic regression (LR) classifier and a support vector machine (SVM) were used as linear
classifiers. These were compared with the tree-based gradient boosting (GB) classifier
and random forest (RF) classifier. The accuracy of the classifiers was tested for different
inputs. In one approach, the classifiers were presented with high-dimensional input vectors
consisting of the normalized trajectories. The second approach used low-dimensional input
vectors constructed from eight statistical quantities computed for the original trajectories.
Furthermore, the classifiers were challenged by presentation of very short trajectories of
only a few seconds or by trajectories with a lower temporal resolution (i.e. fewer data
points). This tested an application for corresponding experimental data, in which it is
not always possible to measure with maximum temporal resolution over the complete
replication phase.
The structure of this chapter is as follows. In section 4.1 the implementation of the
additional segregation mechanisms in the MD simulations is described. Thereafter, a brief
introduction into the used ML algorithms is given in section 4.2 followed by a description
of the normalization procedure for the trajectories and the statistical features used for the
classification in section 4.3. In section 4.4 the results of the various classification tasks are
presented and discussed. A concluding summary of the project is given in section 4.5.

4.1. MD implementation of segregation mechanisms

In this section, the implementation of the additional segregation mechanisms by the
proteins ParAB and SMC is described. Both proteins have already been mentioned briefly
in section 1.2.4. At this point, we need to take a closer look at individual aspects to ensure
that they can be implemented in the simulations.

4.1.1. ParAB implementation

As mentioned above, ParAB belongs to the partitioning systems used by bacteria to
position specific loci in the cell. It plays a central role in segregating the oris towards the
cell poles in many bacteria and thus is referred to as the closest analog to the mitotic
apparatus in eukaryotes ( [79], [108]). It was also shown by time-lapse microscopy that the
ParAB system helps establish and maintain the ori-ter pattern of the newly replicated
DNA in B. subtilis. The ParAB system appears to ”pull” the duplicated origin region
to the opposite cell pole, where it is anchored smilarly to its sibling that remains at the
other cell pole ( [14], [37], [42], [79], [108], [197], [199]). At the same time, it is interesting
to note that although all partitioning systems of different bacteria function similarly,
their contribution to origin segregation varies dramatically. For example, the ParAB
system is absolutely critical for segregating oris in C. crescentus. Here, induction of
dominant negative allele of ParA was shown to dramatically block origin segregation. On
the other hand, B. subtilis mutants lacking ParA are able to segregate their chromosomes
( [78], [182], [199]). Thus, in different species, one can assume different importance of the
ParAB system for the segregation of oris, so it would be exciting to infer this by classifying
the trajectories of oris.
The ParAB system consists of three components: the DNA sequence parS, the DNA-
binding protein ParB, and the deviant Walker A-type ATPase ParA ( [14], [42], [79]).
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ParB specifically recognizes parS sequences, which are typically found near the ori of most
bacterial chromosomes. Upon binding to parS, ParB is thought to spread on flanking
sequences to form the so-called ParB/parS partition complex. ParA dimerizes upon ATP
binding, which in turn promotes nonspecific DNA binding ( [108], [197], [199]). A crucial
question to the mechanism of ParAB-dependent transport is the origin of the translocation
force. Lim et al. propose a model, where the translocation force is derived from the
elastic property of the chromosome [108]. In their proposed DNA-relay mechanism the
DNA-associated ParA-ATP dimers serve as transient tethers that harness the intrinsic
dynamics of the chromosome to relay the partition complex from one DNA region to
another. In this model the characteristic elastic force can thus be estimated by tracking
single loci positions prior to replication and segregation. Using a Gaussian fit for the
obtained distributions Lim et al. were able to estimate a force of F ≈ 0.06 pN from the
elastic property of the chromosome.
The same approach was used to implement ParAB in the MD simulations. For this purpose,
the elastic force resulting from the dynamics of the chromosomal loci was estimated in
the simulations as well. This could then be implemented as an external force on the ori
in subsequent simulations. Thus, to determine the force, simulations of a chromosome in
the cell were performed prior to replication and segregation. From these, the step size
distributions of individual loci were calculated. The probability distributions for these are
given by the Boltzmann distribution as

P (△x) ∼ exp
−E(△x)

kBT , (4.1)

where P (△x) is the probability of a locus to fluctuate around its equilibrium point. Further,
kB is the Boltzmann constant, T is the absolute temperature, and E(△x) is the energy
associated with the fluctuation. The idea now was to infer the energy potential E(x) from
the measurement of the distribution. Figure 4.1 shows the measured distribution in our
simulations.

−0.3 −0.2 −0.1 0.0 0.1 0.2

Position (µm)

0

1

2

3

4

5

P
D

F

Fit, σ =72.7nm

Figure 4.1.: Locus dynamics in MD simulations. Step size distribution of a locus of a freely
diffusing chromosome in the cell. The red line is a Gaussian fit to the data
shown in blue.
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In figure 4.1 the red line depicts a Gaussian fit to the step size distributions. With this,
the probability distribution can be written as

P (△x) ∼ exp− (x−x0)
2

2σ2 . (4.2)

Thus, the chromosomal loci move in a harmonic potential of the form E(x) = a (x− x0)
2

with a = kBT/2σ
2. From this we can finally obtain the searched force F (x) by differenti-

ating

F (x) = 2a (x− x0) with ksp = 2a =
kBT

σ2
. (4.3)

From the fit in figure 4.1 we found σ = 72.7nm. Using this, we can calculate the elastic
force (for a temperature of 300K) as

F (x) = ksp · σ =
kT

σ
≈ 0.057pN , (4.4)

which is in very good agreement of the value obtained by Lim et al. from experimental
measurements tracking single loci in the cell. Thus, for our simulations, we now have
found the value of the effective force by which the newly duplicated ori is pulled to the
pole.

4.1.2. SMC implementation

In addition to the active partitioning system ParAB, SMC proteins are also frequently
associated with the segregation of bacterial DNA. However, it is assumed that these are
primarily responsible for the compaction of the DNA in the cell and passively ensure the
separation of the chromosomes through the topological separation of the oris ( [17], [199]).
SMC proteins are essential in many bacteria and are also beyond bacteria conserved in all
domains of life ( [14], [71], [173], [200], [201]). For example in eukaryotes, condensins act
at the earliest stages of mitosis. They compact and resolve interphase chromosomes into
rod-shaped structures that assemble at the metaphase plate [71].
In bacteria the SMC complex consists of the SMC protein (= kleisin) and ScpB [14]. In E.
coli they are called MukB and MukF. The SMC proteins are characterized by interwined
coiled-coil domains that have hinges at both ends enabling them to topologically embrace
DNA helices. A model was proposed by Wang et al. in which the ring-shaped complexes
of SMC encircle the DNA flanking their loading site and thus tethering the DNA duplexes
together. Thereby, SMC plays an important role in the formation of topologically associated
domains ( [14], [17], [71], [199], [200], [201]).
Regarding the association of SMC with chromosome segregation, it was suggested that
SMC and ParAB work together to segregate oris in B. subtilis . In doing so, one imagines
a mechanism in which SMC is loaded at centromeric parS sites near the ori, where it
encircles DNA and individualizes newly replicated origins by promoting the juxtaposition
of DNA flanking parS sites, drawing sister origins away from each other. Thus, while SMC
is loaded at the origin it is still present and acts along the compelte chromosome arms
( [198], [200], [201]). A schematic depiction of this process was shown in figure 1.7.
Similar to the case of ParAB, different consequences of deleting the protein are found
for SMC depending on the species considered. For example, the consequences of deleting
SMC in B. subtilis depend on growth conditions. It was shown that during fast growth
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the rapid inactivation of SMC leads to a failure in resolving newly replicated origins and
chromosome segregation was blocked. On the other hand, during slow growth chromosome
segregation was still possible in the absence of SMC. Here, it was suggested that the ParAB
system provided enough origin segregation for the system even though the cells showed
more heterogeneous nucleoid morphologies which might have resulted from a defect in the
resolution of replicated oris. In E. coli it was reported that slow growing cells lacking
SMC adopt an ori-ter configuration rather than their typical left-ori -right configuration
( [198], [199]).
SMC proteins have already been implemented in various computer simulations. Goloborodko
et al. performed polymer simulations of chromosome dynamics and showed that loop
extrusion by condensins can robustly compact, segregate and disentangle chromosomes.
In this simulations eukaryotic chromosomes were modeled as flexible polymers where each
condensin complex was modeled as a dynamic bond between a pair of monomers [52].
Simulations for bacteria were performed by Wang et al. who showed that a limited number
of ∼ 30 condensin complexes per replication origin can organize DNA in B. subtilis [201].
This number is in good agreement with single molecule tracking experiments in B. sub-
tilis where the number of ∼ 30 SMC dimers moving throughout the chromosome was
reported [165].
Thus, for the implementation in the MD simulations the SMC proteins were modeled
as additional dynamic bonds between opposite beads on the chromosome as suggested
by Goloborodko et al. [52]. Thereby, SMC is loaded at the ori-region by successively
connecting the beads following the ori in the replication with harmonic bonds. Thus,
the number of SMC proteins per chromosome (38) was also comparable to the above
mentioned figures. An example snapshot of a chromosome with and without SMC in our
simulations is shown in fig. 4.2.

SMC

SMC

Figure 4.2.: Example snapshots for a chromosome without (upper picture) and with (lower
picture) SMC bonds in MD simulations.

The snapshots in figure 4.2 show how the SMC proteins juxtapose the two chromosomal
arms and thereby compact the chromosome in the simulation. In contrast, the chromosome
is spatially more extended in the absence of SMC.
With the additional implementation of the two segregation mechanisms by the SMC
and ParAB proteins, the classes (= cell types from here) to be distinguished by the ML
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algorithms could be defined. On the one hand, the two different replication mechanisms of
the track model and the factory model could be used. For the factory model, as seen in B.
subtilis , a left-ori -right configuration of the chromosome was assumed, in which replication
starts in the middle of the cell. In the track model, however, a ori -ter configuration was
used at the beginning of replication. For segregation, the WT was defined as the case
in which all three segregation mechanisms of entropic segregation and the two proteins
were active. In addition, knock-out mutants were possible, in which one of the proteins
or even both proteins were inactive. Thus, the mutant with inactivated SMC (dSMC)
and the mutant with inactivated ParAB (dParAB) as well as the double-knockout mutant
with inactivated SMC and dParAB (dSMCdParAB) emerged. Entropic interaction of
chromosomes is the consequence of basic physical principles. Therefore, there is no sense
in turning it off and it was thus activated in all simulations.
This resulted in a total of 8 different cell types presented to the ML algorithms. An
overview of these is given in figure 4.3.

Wild type
Entropic segregation

+

SMC

+ 

ParAB

SMC
Entropic segregation

+ 

ParAB

ParAB
Entropic segregation

+

SMC

SMC   ParAB
Entropic segregation

Track model

Factory model

Replication models Segregation models

1

2

3

4

5

6

7

8

Figure 4.3.: Overview of replication and segregation mechanisms used to create different cell
types. For replication, either the track model or the factory model were applied.
For segregation, four different mechanisms were possible depending on whether
or not the two proteins SMC and ParAB were aktiv. The combination of the
two replication mechanisms with the four segregation mechanisms resulted in
a total of 8 cell types (depicted by red numbers) to differentiate.
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4.2. Machine learning algorithms

For the automated classifications of our trajectories of different segregation mechanisms
produced with the MD simulations, various processing steps had to be performed. First,
the produced data was divided into a training data set and a test data set (typically in a
ratio of 70% training data to 30% test data). The training data was then used to train
selected ML models for the classification task.
In order to classify a trajectory that was unseen by the models, it was first preprocessed.
Two different approaches were used two preprocess the data. On the one hand, a scheme
suggested by Muñoz et al. [135] was applied, in which the complete trajectory is normalized
and thereafter used as a high-dimensional input vector for the ML models. The second
approach was to reduce the dimensionality of the input vector by the calculation of
statistical features from the trajectory to be classified. These features were then used to
build an input vector for the ML models.
Four different types of classifiers were compared in this study. Two linear classifiers,
namely the logistic regression (LR) classifier and a support vector machine (SVM) were
compared to two tree-based classifiers, a gradient boosting (GB) classifier and a random
forest (RF) classifier. For all classifiers the implementations available in the scikit-learn
library from python were used. In figure 4.4 a schematic depiction of the applied workflow
is shown.

PreprocessingInput Trained models Classification

Track,    Wild Type

Track,     SMC

Track,     ParAB

Track,      SMC   ParAB

Factory,   Wild Type

Factory,     SMC

Factory,     ParAB

Factory,      SMC   ParAB

Normalize

Calculate
features

Training
data

Model training

Figure 4.4.: Schematic depiction of the workflow for trajectory classification. An unknown
trajectory is first preprocessed by either normalization of the trajectory ac-
cording to the protocol from Muñoz et al. [135] or the calculation of statistical
features from the trajectory from which a low-dimensional input vector is
build. The input vector is fed into the previously trained ML models which
assign it to one of the eight possible classes.

In the following, descriptions of the preprocessing procedures and the concepts of the ML
classifiers are given.
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4.2.1. Linear models

The LR classifier and the SVM belong to the group of linear classification methods. Such
methods expect the target value to be a linear combination of the features. The general
notation is

y(β, x) = β0 + β1x1 + ...+ βnxn , (4.5)

where the βi are the coefficients and the xi are the features (also called the explanatory
variables). y(β, x) is the target variable (or response variable) [67]. Upon introducing a
virtual variable x0 = 1 we can write y(β, x) = βTX, with the two vectors β = (β0β1...βn)
and X = (x0x1...xn).
One of the most widely used linear methods for supervised classification is logistic regression
(despite the name regression). In supervised learning, one wants to predict the value of an
outcome measure based on a number of input measures [67]. In the literature, the logistic
regression classifier is also known as logit regression, maximum-entropy classification or
the log-linear classifier. This method predicts the probability that an observation is part
of a certain class. Thereby, the LR classifier in its standard form is a binary classifier
whose target vector can only take two values ( [62], [74]). The idea of a LR classifier is to
include the linear model of equation 4.5 in a logistic (or sigmoid) function 1

1+e−z . Thereby,
the logistic function constrains the values of the output between 0 and 1 so that it can be
interpreted as a probability. The classifier then predicts class 1 for values greater than 0.5
and class 0 otherwise. Thereby, the probability for the occurance of an event is

P (y(β, x)) =
1

1 + e−y(β,x)
. (4.6)

For the classification of more than two classes the LR classifier can be extended with two
different schemes. In the one-vs-rest scheme (OVR) a separate model is trained for each
class. Thereby, a binary problem can be solved for each class. In doing this, one assumes
that the classification problems are independent of each other. The second scheme is
the multinomial logistic regression (MLR). Here, the logistic function is replaced with a
softmax function ( [62], [74]). For the estimation of the coefficients β0, β1, ..., βn typically
the maximum likelihood estimation method (MLE) is used. This method tries to maximize
the log likelihood reflecting the odds that the observed values of the dependent variable
may be predicted from the observed values of the independent variables ( [5], [67]). Thus,
the task at hand is an optimization problem. The algorithm starts with some estimate for
the coefficients and tries to change them iteratively to increase the likelihood function.
In order to reduce the variance of the trained model regularization is applied. In general,
regularization procedures add a penalty term to the loss function that shall be minimized
to penalize complex models. The most common penalties are the L1 and L2 penalties [67]:

L1: α

p∑
j=1

|βj| ,

L2: α

p∑
j=1

β2
j ,

(4.7)

where βj are the parameters of the j-th of p features being learned and α is a hyperparameter
denoting the regularization strength which is to be tuned to find the best model. Higher
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values of α increase the penalty for more complex models ( [5], [62], [67], [74]). In this
work, the implementation of the LR classifier from the python library scikit-learn was
used. Here, a ”lbfgs” optimization algorithm is used with the L2 penalty to determine the
direction and magnitude of change in the coefficients. The lbfgs algorithm belongs to the
quasi-Newton methods and is used by default within the scikit-learn library because of
its robustness.
As a second linear model we used a SVM, also known as the discriminative classifier. A
SVM classifier aims to classify data by finding a hyperplane that divides the data into
classes. A hyperplane is a n − 1 dimensional subspace in an n-dimensional space. The
distance from the separating hyperplane to the nearest expression vector is called the
margin of the hyperplane. The SVM classifier tries to find the hyperplane that maximizes
the margin between the classes in the data ( [5], [67]). The name of SVM results from the
fact that they use so called ”support vectors”, i.e. data points of the training dataset which
are close to the hyperplane and include them in the decision function of the optimizer. In
classifiaction problems the term support vector classifier (SVC) is also used. A typical
proplem considering linear models in general is that real data will rarely be linearly
separable. Thus, a SVC must be balanced between finding the maximal margin for the
hyperplane and minimizing misclassified data points. This balancing task is controlled
with a penalty, C, that is imposed on errors. Therefore, if a small value for C is chosen,
the classifier will have a bigger bias but lower variance compared to a high value of C
( [5], [67], [140]). Furthermore, it is possible to specify different kernel functions for the
decision function. These kernel functions can be linear, polynomial or radial basis function.
The kernel functions are used to transform the input data. Thereby, non-separable input
data can be transformed to higher dimensional space where the problem is separable. One
can even prove that for any given data with consistent labels a kernel function exists that
will allow the data to be linearly separated [140]. However, this comes at a price which is
often referred to as the curse of dimensionality. The problem is that the number of possible
solutions increases exponentially with increasing number of variables under consideration.
Thus, the algorithm will struggle to select the correct solution and furthermore the tendency
to overfit increases [140]. Mathematically, a SVC can be represented as follows

f(x) = β0 +
∑
i∈S

αiK (xi, xi′) . (4.8)

Here, β0 is called the bias and S is the set of all support vector observations. The model
parameters to be learned are termed α, and (xi, xi′) are pairs of two support vector
observations, xi and xi′ . The kernel function K compares the similarity between xi and
xi′ . The most commonly used kernels are the linear kernel, the polynomial kernel and the
radial basis function kernel

linear: K (xi, xi′) =

p∑
j=1

xijxi′j ,

polynomial: K (xi, xi′) =

(
1 +

p∑
j=1

xijxi′j

)d

,

radial basis: K (xi, xi′) = e−γ
∑p

j=1(xijxi′j)
2

.

(4.9)
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Here, p is the number of features, d is the degree of the polynomial kernel function, and γ is
a hyperparameter called the kernel coefficient which must be greater than zero ( [5], [140]).
For the simulations presented in this work again the implementation of the scikit-learn
library was used with a linear kernel.

4.2.2. Tree-based models

In addition to the linear classification methods one can use classifiers build from decision
trees. The key concept of a decision tree is to produce recursive binary splits of the
input space, so that samples belonging to the same label are grouped together. The input
constitutes the root node of the tree, while the subsets represent the successor children.
The splitting process is repeated on each subset in a recursive manner. In this sense a
decision tree consists of a series of chained decision rules ( [5], [80], [97], [135]). Every
decision rule occurs at a so-called decision node, with the rule creating branches leading
to new nodes. If a branch has no decision rule at the end it is called a leaf of the decision
tree. When no further splitting is possible or when the subset at a node has all samples
belonging to the same class (i.e. the node is pure), a terminal tree node is reached, where
the output is obtained ( [5], [80], [97], [135]).
In order to perform the splits at each node, a criterion is needed. The typical measures
for this purpose are the Gini impurity or the information gain. The gini impurity tells us
how often a randomly chosen element from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in that set. It is given by

IG =
J∑

i=1

pi(1− pi) , (4.10)

where J is the number of classes and pi is the fraction of items labeled with class i in the
set. The information gain related to a split is simply the reduction of information entropy,
calculated as the difference between the entropy of a parent node in the tree and a weighted
sum of entropies of its children nodes. When a final decision tree is obtained, it classifies
unseen data by passing it through the nodes of the tree, where each decision is made with
respect to which direction to take. The benefits of decision trees are that they are easy
to interpret and do not require data processing. However, they have the disadvantage
that a small variation in the data may lead to a completely different tree. Furthermore,
decision trees tend to overfit data. To circumvent these negative aspects decision trees are
nowadays used as building blocks of advanced ensemble classifiers ( [5], [80], [97], [135]).
Ensemble learning methods are methods that generate many basic classifiers like decision
trees and aggregate their results. There are different methods to combine the results
of the individual classifiers. The two most prominent ones are bagging and boosting
( [19], [20], [76]). The idea of bagging is to reduce the variance of a learning method by
averaging the results of many classifiers. The background for this is that for a set of n
independent observations O1, ..., On, each with variance σ2, the variance of the mean Ō
of the observations is given by σ2/n. Thus, we see that the variance is reduced through
averaging. The bagging approach for ensemble methods uses bootstrapping to take multiple
training data sets from the original training data. Then the same number of basic classifiers
are trained on the separate bootstrapped data sets and their predictions are averaged.
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Thus, the final prediction f̂bag(x) of a machine learning algorithm using bagging can be
written as

f̂bag(x) =
1

B

B∑
b=1

f̂ b(x) , (4.11)

where B is the number of different bootstrapped training data sets and f̂ b(x) is the
prediction of the b-th basic classifier. In the case of decision trees as basic classifiers each
individual tree has high variance, but low bias. Averaging these trees then reduces the
variance and yields a better classifier. Typically, the overall prediction is determined by a
majority vote ( [5], [19], [20], [76], [97]).
Ensembles of decision trees might encounter a problem if the data contains one particularly
strong predictor within the input variables. In this case all of the trees might use this
stong predictor and become highly correlated. To overcome this problem, the RF classifier
model was proposed by Breimann [20]. In a RF classifier the single decision trees are
decorrelated. Therefore, while growing a decision tree in a RF at each split only a random
subset of m predictors is chosen from the input variables as split candidates from the full
set of p predictors. Typically, one uses m ≈ √

p [5]. Thus, it is prevented that all trees
use a possibly occurring strong predictor and thereby become highly correlated. Due to
this randomization, the bias of the ensemble is slightly higher than that of a single tree,
but the variance is decreased and the model is more robust to variations in the dataset
( [20], [51], [76], [135]).
The second method for the aggregation of ensembles of decision trees is boosting. Here, the
single trees are grown sequentially using information from the previously grown trees. One
of the first boosting algorithms was the AdaBoost algorithm from Freund and Schapire [44].
Another generalization of boosting algorithms was presented by Friedman [45] with the
invention of gradient boosting machines for both classification and regression. The idea of
a GB classifier is that an algorithm, given a loss function and a basic weak learner like
a decision tree, may be used to find an additive model that minimizes the loss function.
For this, an iterative approach is chosen in which new weak basic classifiers are trained
with respect to the error of the whole ensemble learnt so far. Implementations of the GB
algorithm are typically initialized with a best guess and then a gradient (e.g. residual) is
calculated. Thereafter, a model is fit to the residuals to minimize the loss function and the
current model is added to the previous model. This process is repeated for a designated
number of iterations. Within an ensemble of decision trees for the GB algorithm a single tree
can be rather small with only a few terminal nodes. Such a small tree is sometimes called a
stump. By adding small trees to the ensemble, which give a higher priority to observations
the previous model predicted incorrectly, the averaged prediction of the model is improved
in areas where it does not perform well ( [5], [44], [45], [46], [67], [76], [97], [98], [136]).

4.3. Preprocessing protocols

An important step in every ML study is the preprocessing of the data. In this process, the
original data is put into a form in which it can be understood by the classifier ( [5], [67], [76]).
Thereby, the original data is divided into features, which are used as input for the classifier.
These features directly influence the results of the classification accuracy. In this work,
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two different approaches were used to preprocess the segregation trajectories. These are
presented below.

4.3.1. Rescale complete trajectories

The first preprocessing protocol applied to the trajectories is the one described by Muñoz
et al. [135]. Here, the goal was to design a method that makes it possible to classify
heterogeneous data from various spatiotemporal scales. Therefore, the original trajectories
are rescaled. Thereby, a new trajectory is constructed via the normalized displacements of
the original trajectory. As a consequence, the magnitudes of the resulting new trajectories
are comparable, independent of their original values [135]. In detail, the preprocessing
consists of the following steps:

1. The original trajectory is given as a vector of positions

X⃗ = (x⃗1, x⃗2, ..., ⃗xtmax) .

2. This vector is transformed into a vector of distances traveled in an interval of time
Tlag, i.e

W⃗ = (△x⃗1,△x⃗2, ...,△ ⃗xJ−1) ,

where J = tmax/Tlag.
Thereby, △x⃗i is defined as

△x⃗i = | ⃗xiTlag
− ⃗x(i+1)Tlag

| .

3. To normalize the data, the vector W⃗ is divided by its standard deviation to get a
new vector W⃗

′
.

4. Finally, a cumulative sum of W⃗
′
is computed to construct the normalized trajectory

X⃗
′
.

The normalized trajectory X⃗
′
can be used as a high-dimensional input vector for the various

classifiers. In their paper, Munoz et al. point out the high accuracy of the classifications
of diffusion models with a RF classifier due to the preprocessing method, which gave good
results even for short trajectories [135].

4.3.2. Trajectory features

The ML algorithms used in this work all belong to the class of feature-based methods. In
this approach, the trajectories are characterized by certain features that serve as input
to the classifiers and form the basis for their learning and predictions. In the approach
of normalizing the complete trajectories described above, a very high-dimensional input
vector is obtained, where the features are the individual points of the normalized trajectory.
Another commonly used approach is to quantitatively compare the trajectories by a set of
human-engineered statistical features which are used to construct a lower dimensional input
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vector for the classifiers. In the literature there is a wide range of possible features for the
quantitative comparison of trajectories from SPT experiments( [8], [80], [97], [192], [207]).
For this work, eight features were selected, which are described in the following.
Many of the features presented in the following have their origin in studies of distinguishing
the different types of motion of particles in SPT experiments. According to Saxton [162],
four basic movement types are distinguished here: normal diffusion (ND), anomalous
diffusion (AD), directed motion with diffusion (DM), and confined diffusion (CD). The
standard way to identify the different motion types is to analyze the mean squared
displacement (MSD). For a trajectory of N consecutive positions xi(i = 1, ..., N) it is
defined as follows

MSD = ⟨r2n⟩ =
1

N − n

N−n∑
i=1

|xi+n − xi|2 . (4.12)

The four basic motion types are commonly characterized by the shape of their MSD curve:

⟨r2n⟩ = 4Dn△t (ND),

⟨r2n⟩ = 4D (n△t)α (AD),

⟨r2n⟩ = 4Dn△t+ (νn△t)2 (DM),

⟨r2n⟩ ≃ r2c
[
1− A1 exp(−4A2Dn△t/r2c )

]
(CD).

(4.13)

In the equations above, α is the anomalous exponent, ν is the velocity in the directed
motion and for confined diffusion the constants A1 and A2 characterize the shape of the
confinement, while rC is the confinement radius. We used the MSD along the trajectory
as our first feature.
Besides the MSD one can also use the mean squared displacement ratio (MSDR). The
MSDR characterizes the shape of the MSD curve. It is defined as

⟨r2⟩n1,n2 =
⟨r2n1

⟩
⟨r2n2

⟩ −
n1

n2

, (4.14)

with n1 < n2. In order to calculate the MSDR we set n2 = n1 +△t and calculated an
average ratio for every trajectory as proposed in [97].
Furthermore, one can use the anomalous exponent α (Alpha) as a separate feature. It can
be calculated from

⟨r2n⟩ = 4D (n△t)α . (4.15)

For this, the MSD curves of the trajectories were fitted with equation 4.15 so that α could
be obtained from the fit. Here, D is the diffusion coefficient and △t is the elapsed time.
For AD one has α < 1. For normal diffusion (ND) one finds α ≈ 1 [192].
A different measure for a trajectory is the fractal dimension (FD). It provides an index
of complexity by comparing how detail in a pattern changes with the scale at which it is
measured [93]. Thus, it can be seen as a measure of the space-filling capacity of a pattern.
A curve with a fractal dimension close to 1 behaves quite like an ordinary line while a
curve with fractal dimension close to 2 behaves almost like a surface in terms of space
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filling capacity. It can be defined in several ways. Here the definition from Sevcik [166]
was used:

FD = 1 +
log(L)

log(2N − 2)
, (4.16)

where L is the contour length of the trajectory in the unit square and N is the number of
points of the trajectory.
Another feature that was used is the radius of gyration (RG) of a trajectory. It is defined
as

Rg =
1

N

N∑
i=1

|ri − rS|2 =
1

N

N∑
i=1

|ri − r̄|2 . (4.17)

Here, rS is the focus (average position) of the trajectory.
The efficiency (E) is a measure for the linearity of a trajectory and relates the squared net
displacement to the sum of the squared displacements

E =
|xN−1 − x0|2

(N − 1)
∑N−1

i=1 |xi − xi−1|2
. (4.18)

Thus, the E is a measure for linearity of a trajectory.
Similar to the E the straightness (S) of a trajectory relates the net displacement to the
sum of step lengths:

S =
|xN−1 − x0|∑N−1
i=1 |xi − xi−1|

. (4.19)

Finally, the gaussianity (G) was used as a feature for the comparison of the trajectories.
The G was introduced by Ernst et al. [38] to check the Gaussian statistics on increments
within the trajectory. It is defined as

g(n) =
⟨r4n⟩
2⟨r2n⟩2

, (4.20)

with

⟨r4n⟩ =
1

N − n

N−n∑
i=1

|xi+n − xi|4 .

In table 4.1 the individual features are listed again and provided with literature references.
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feature references
MSD ( [80], [97], [135], [162], [192], [204], [207])
MSDR ( [97], [192], [204])
Alpha ( [97], [192])
FD ( [8], [93], [97], [166], [192])
RG ( [8], [157], [179])
E ( [97], [192])
S ( [97], [192])
G ( [38], [97], [192])

Table 4.1.: Table of features used to characterize the trajectories of the various segregation
mechanisms. The input vectors for the classifiers are composed of these features.

4.4. Results

4.4.1. Hyperparameter tuning

The first task to successfully classify the different classes of trajectories was to fine tune
the ML classifiers. This process is called hyperparameter tuning. In this context, a
hyperparameter of a ML model is understood as a parameter that must be set before
the actual learning process begins. The hyperparameter of a ML model define the model
architecture. Their choice is crucial for the learning success of an ML model. Typically, it
is not clear a priori what the optimal hyperparameters are for a given problem. Therefore,
one uses an automatic search in the space of possible hyperparamters to find the best
possible setting. After finding the ideal parameters for a model, the model can be trained
with this architecture and the actual classifications can be performed. In this work, the
workflow depicted in figure 4.5 was chosen for this task.
A central point in ML applications is that one wants to know the accuracy of a created
model based on classifications of unknown data. Therefore, the original data (24,000
trajectories with 3,000 trajectories per class) were divided into training and test data in a
ratio of 70% training data to 30% test data. The test data was put off to the side and
it was pretended to never had been seen before. In the following, both the optimization
of the hyperparameters for the models and the training of the same were carried out
exclusively on the train set. The first step was to fine-tune the hyperparameters. To
find the optimal parameters for the models the RandomizedSearchCV function from the
scikit-learn library was used to perform a random search over possible hyperparameter
settings. Thereby the goal was to find hyperparameters yielding the best possible accuracy
and avoiding overfitting at the same time. Thus, the model should perform well not only
on training data but also on unseen data. The typical technique to avoid overfitting is
cross validation. Here, the training data is split into N subsets (called folds) and the model
trained N times, whereby each time one only trains on N − 1 of the folds and the Nth one
is used for evaluation. Finally, the accuracy over all folds is averaged and final validation
metrics are obtained. In the RandomizedSearchCV procedure many iterations of the cross
validation process are performed with different model settings. The best model is chosen
at the end. Here, three rounds of cross-validation on a set of 50 settings for each classifier
were used. The advantages of such an approach are that the model for optimization is
both trained and evaluated on the complete available data. In addition, the performance
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Figure 4.5.: Schematic depiction of hyperparameter tuning procedure. The synthetic
data is split into training and test data. The hyperparameter tuning is
performed on the training data using the RandomizedSearchCV function of
the scikit-learn library. Thereafter, the optimal architecture is applied
for the model which is trained on the training data again. The final model
evaluation is performed on the separate set of test data which has never been
seen by the model before.

of the model is thus less dependent on which particular set of data was used as the test
set. Another important point for cross-validation is that the data is balanced (= same
number of trajectories in each class), which was met here.
The hyperparameters to be optimized are different depending on the ML model used. The
two ensemble methods based on decision trees have the same hyperparameters. Here, the
following hyperparameters have been optimized: The number of trees in the ensemble, the
maximum depth of a tree (i.e. the maximum number of levels in each decision tree), the
minimal number of samples required to split an internal node, the minimum number of
samples required to be at a leaf node, the number of features to consider when looking for
the best split (one typically chooses either the logarithm or the square root of the number
of features) and a paramter to decide whether to use bootstrap samples when building
trees or not (this parameter is only used for the RF classifier) ( [5], [76], [80]).
We optimized each classifier two times: One time for the dataset of the complete trajectories
with normalization and a second time on the dataset of the statistical features. In table
4.2 the parameters of our optimized tree-based classifiers for the complete trajectories are
shown.
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parameter Random forest Gradient boosting

Number of trees 800 700
Maximum depth of a single tree 20 10
Min. number of samples required

to split an internal node 4 4
Min. number of samples required

to be at a leaf node 10 6
Max. features 58 58
Bootstrap True -

Table 4.2.: Optimal hyperparameters for the tree-based classifiers trained on the complete
trajectories. 50 different settings were tested wit 3 rounds of cross validation.

The optimized parameters for the feature dataset are shown in table 4.3

parameter Random forest Gradient boosting

Number of trees 700 700
Maximum depth of a single tree 90 70
Min. number of samples required

to split an internal node 4 10
Min. number of samples required

to be at a leaf node 12 4
Max. features 3 3
Bootstrap True -

Table 4.3.: Optimal hyperparameters for the tree-based classifiers trained on the feature
dataset. 50 different settings were tested wit 3 rounds of cross validation.

To find the optimal hyperparameters for the two linear models, we used the GridSearchCV
library implemented in scikit-learn. Here, one performs a search over a grid of pa-
rameter values. This made sense in the case of linear classifiers since they have fewer
hyperparameters to optimize. The paramter that we optimized for both classifiers is the
parameter C. It defines the strength of the regularization with a high C resulting in less
regularization (= trying to fit the training data as best as possible) while a low value of C
increases the generalization of the model.
For the SVM we also made the choice to use a linear kernel for the classifier. The reason
for this is that we want to use the coefficients of the fitted classifier to compute feature
importance. This is only possible with a linear kernel since here the fitted hyperplane and
the coefficients are in the same dimensional space as the input vector of our features.
For the logistic regression classifier, one has to select the penalty function for the optimizer.
Here, the l2 penalty was chosen.
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4.4.2. Classifiaction of rescaled trajectories

In total, the MD simulations created a dataset of 24,000 trajectories that were evenly
distributed among the eight different cell types. In each case, the trajectory of the
duplicated ori was tracked since this is the ori which is pulled to the opposite cell pole by
the ParAB system. Thus, the largest changes were expected here by switching the ParAB
system on and off. To get a first impression of the resulting data, example trajectories are
shown in figure 4.6.
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Figure 4.6.: Example trajectories of the duplicated ori as obtained by the MD simulations.
The relative movement of the ori from its start position in the respective
simulation are shown as a function of time. For every cell type two examples
are shown in the plots on the left and right. A: The upper two plots show
example trajectories of the four segregation mechanisms and the track model
of segregation. B: The lower two plots show example trajectories of the four
segregation mechanisms with the factory model of segregation.

One can see from the plots of figure 4.6 that the ParAB system acted as a strong
segregation motor. In the cell types with activated ParAB (WT and dSMC) the ori moved
in a directed way towards the cell pole. On the other hand, the cell types without ParAB
show significantly higher variances and less directional motion of the ori. The different
starting point of the ori in the track model (at the old cell pole) compared to the factory
model (cell center) accounted for the fact that the ori in the track model traveled a longer
distance to the opposite cell pole than in the factory model. At the same time, trajectories
in the track model without ParAB become comparable to trajectories with ParAB in the
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factory model in terms of the distance traveled by the ori. Another important fact to
notice from the example plots of figure 4.6 is that in the cell types without ParAB the ori
has no clear preference for a specific cell pole. Consequently, the simulations support the
conjecture that the ParAB system makes an important contribution to organization of
DNA in the cell by directing the duplicated ori to the new cell pole.
In addition to the influence of the ParAB system on the movement of the ori through the
cell, the simulations also show a strong influence on the overall segregation of chromosomes.
For this purpose, the degree of separation was defined as the ratio of the longitudinal
overlap of the two chromosomes in the cell by the longitudinal extent of the shorter
chromosome in the cell. In table C.1 it can be seen that the action of the ParAB system
results in a much more effective separation of chromosomes. Furthermore, the histograms
of the achieved degrees of separation in figure C.4 and C.5 after finished replication show
that ParAB driven segregation also shows a significantly reduced variance in achieving the
degrees of separation.
For the classification of cell types, at first the approach of a high-dimensional input vector
from the normalized trajectories according to Muñoz et al. [135] was followed. Figure
4.7 shows the averaged courses of the oris in the different cell types over all trajectories.
In addition, the averaged values for the rescaled trajectories are shown alongside for
comparison.
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Figure 4.7.: Average trajectories of the ori in the different cell types. On the left side
the average trajectories from the raw data are shown while on the right the
average values of the rescaled trajectories are compared. A: Results for the
track model of replication. B: Results for the factory model of replication.
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Comparison of the raw data with the rescaled data showed that the preprocessing protocol
indeed allowed comparison of the different spatial scales. At the same time, it was noted
that differentiation of the cell types in the rescaled trajectories was impossible by eye.
For the automatic classification of the trajectories, the classifiers were now trained on the
training dataset and the overall prediction accuracies of the classifiers on the training and
test set were evaluated.
The prediction accuracy of the classifiers is defined as the number of correct predictions
divided by the total number of predictions. It is one of the basic measures to assess
classification performance ( [5], [67]). In table 4.4 the overall accuracies of our classifiers
on both the train and the test data are shown.

Model Acurracy (train set) Acurracy (test set)
Random forest 0.994 0.915
Gradient Boosting 1.0 0.965
Logistic regression 0.950 0.932
SVM 0.949 0.925

Table 4.4.: Overall prediction accuracies of the classifiers on the data using high-dimensional
input vectors.

The results of table 4.7 show excellent prediction accuracies for all classifiers. However,
we can see that the RF classifier has a gap of 7.9% in prediction accuracy between the
training and test set. This finding indicates overfitting, i.e. the classifier seems to have
difficulties in generalizing from the training data. In contrast, the linear classifiers perform
almost equally well on the test and on the training data.
For a better understanding of the performance of the classifiers, in fig. 4.8 the confusion
matrices for each classifier on the test set are shown. The confusion matrix directly
compares the predictions of the classifier with the actual labels of the data. Thereby,
identification and visualization of the number of true and wrong predictions of the classifier
is possible. With this information one gets a more detailed understanding of the strengths
and weaknesses of the classifier. Furthermore, two additional measures can be calculated
from the values of a confusion matrix: the precision value that gives us the fraction of
correct predictions among all predictions of the selected class and the recall value that
gives the fraction of correct predictions of a given class relative to the total number of
members of this class. Thus, the precision score quantifies how often a classifier is correct
if it predicts a certain class, while the recall value quantifies how often a class is predicted
correctly. In tables 4.6 and 4.5 the values for all classifiers are shown.
The confusion matrices in figure 4.8 show that none of the classifiers confuses the two
replication models. Among the cell types with the track model, most classification errors
occur due to confusion of WT cells with dSMC cells. Within the factory model, the most
common mistake is made in discriminating dParAB and dSMCdParAB cells. A further
result is that the classifiers don’t have difficulties in discriminating segregation with and
without ParAB as we expected from the raw data, in which the strong influence of the
ParAB system on segregation was already apparent.
We can further analyze the classification results with the precision and recall values of
tables 4.6 and 4.5.
The analysis of tables 4.6 and 4.5 reveals very high precision and recall for all classifiers.
For cells with the track model of replication, we find that cell types lacking ParAB both
show highest precision and recall scores. Several conclusions can be drawn from this: First,
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Figure 4.8.: Confusion matrices for the classifiers, comparing predicted labels with actual
labels of the test data. On the horizontal axis the predicted labels are shown
and compared with the actual labels on the vertical axis. Top left: Random
forest. Top right: Gradient boosting. Bottom left: Logistic regression. Bottom
right: SVM.

(a) Random forest

Cell Precision Recall
track-WT 0.910 0.911
track-dSMC 0.907 0.899
track-dParAB 0.950 0.944
track-dSMC-dParAB 0.921 0.930
factory-WT 0.924 0.936
factory-dSMC 0.903 0.920
factory-dParAB 0.913 0.895
factory-dSMC-dParAB 0.896 0.884

(b) Gradient boosting

Cell Precision Recall
track-WT 0.958 0.964
track-dSMC 0.961 0.961
track-dParAB 0.978 0.987
track-dSMC-dParAB 0.982 0.967
factory-WT 0.979 0.975
factory-dSMC 0.958 0.972
factory-dParAB 0.97 0.943
factory-dSMC-dParAB 0.938 0.955

Table 4.5.: Prediction and recall values for tree-based classifiers using high-dimensional
input vectors.

the deactivation of ParAB is obviously clear to the classifiers, so that no confusions with
cell types in which ParAB is active occur. Second, the cell types in which ParAB is active
are more similar to each other than those in which ParAB has been deactivated. Therefore,
the precision for the latter is greater than for the former.
In contrast, for cells with the factory model of replication both the precision and recall
values tend to be higher for cells where ParAB is active. Thus, it appears that the opposite
is true here, namely that the cell types in which ParAB is not active are more frequently
confused with each other than those in which ParAB is active.
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(a) Logistic regression)

Cell Precision Recall
track-WT 0.876 0.892
track-dSMC 0.890 0.890
track-dParAB 0.965 0.969
track-dSMC-dParAB 0.967 0.945
factory-WT 0.930 0.977
factory-dSMC 0.949 0.928
factory-dParAB 0.951 0.929
factory-dSMC-dParAB 0.933 0.928

(b) SVM

Cell Precision Recall
track-WT 0.833155 0.887244
track-dSMC 0.873016 0.843373
track-dParAB 0.973742 0.965293
track-dSMC-dParAB 0.970556 0.951872
factory-WT 0.921875 0.977515
factory-dSMC 0.939665 0.93031
factory-dParAB 0.944134 0.938889
factory-dSMC-dParAB 0.94964 0.9093

Table 4.6.: Prediction and recall values for linear classifiers using high-dimensional input
vectors.

It can be concluded that in the track model of replication, in which the ori was transported
over a long distance from one pole to the other, the effect of ParAB is particularly dominant
and cells in which ParAB is active are therefore particularly similar. In contrast, the
two cell types in which ParAB is active, WT and dSMC, are less likely to be confused by
classifiers in the factory model of replication. The reason for this could be that in the
factory model, the deactivation of SMC is more important because replication takes place
in the middle of the cell, where it could be particularly important that SMC topologically
divides the separating daughter chromosomes.
Together with the results from the confusion matrices we can state that the two most
common errors are the confusion of WT with dSMC and dParAB with dSMCdParAB. It
depends on the replication model which of the two errors is the more frequent. At the
same time, there is a clear division into cell types with active ParAB and cell types in
which ParAB is deactivated, which the classifiers can reliably distinguish.

4.4.3. Feature based classification approach

An alternative to using a high-dimensional input vector for the ML algorithms is to
perform dimension reduction by combining selected features of the trajectories into a low-
dimensional input vector. For this purpose, in a second approach, the statistical features
of the trajectories described in the section 4.3.2 were calculated and an input vector was
formed from these. This was to investigate whether the features could help deepen the
understanding of both the classifiers and the data. In addition, it is hoped that the use of
selected features will reduce overfitting by reducing the likelihood of fitting aspects of the
data that cannot be generalized outside of the training data [80]. Furthermore, a reduced
number of features makes the fitting procedure simpler and predictions faster. Therefore,
one often aims to reduce the number of features by the use of feature selection analyses to
identify the least important features which might be omitted.
Using the feature presented in section 4.3.2 resulted in the overall prediction accuracies of
the classifiers shown in table 4.7.
The overall prediction accuracies of table 4.7 show increased accuracies for both the train
and test set for the tree-based classifiers compared with the values found for the complete
normalized trajectories in table 4.4. Another improvement is that the RF classifier shows
a prediction accuracy of 97.4% on the training data and 96% on the test data using the
features as input vector. Thus, the gap in the prediction accuracies between train and
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Model Acurracy (train set) Acurracy (test set)
Random forest 0.974 0.960
Gradient Boosting 1.0 0.973
Logistic regression 0.889 0.860
SVM 0.891 0.872

Table 4.7.: Overall prediction accuracies of the classifiers on the test data using the
statistical features as input.

test set drops from 7.9% in table 4.4 to 1.4% in the feature approach. We also note a
reduced gap in prediction accuracies for the GB classifier on the two data sets. Thus, for
both tree-based classifiers, we note both increased overall prediction accuracy and reduced
overfitting.
At the same time, however, we note that the linear classifiers perform worse on the
feature-based data compared with the analysis of the complete trajectories. Both linear
classifiers show a clear drop in prediction accuracy.
We can investigate the causes of these changes using the confusion matrices in figure 4.9.
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Figure 4.9.: Confusion matrices for the classifiers using statistical features of the trajectories
as input vector. On the horizontal axis the predicted labels are shown and
compared with the actual labels on the vertical axis. Top left: Random
forest classifier. Top right: Gradient boosting classifier. Bottom left: Logistic
regression classifier. Bottom right: SVM.

The confusion matrices of figure 4.9 show that the classifiers still clearly recognize whether
ParAB is active or not. Consequently, misclassifications arise only between two cell types
in which either ParAB is active or inactive.
The increased overall prediction accuracy of the tree-based classifiers is due to the fact
that for the factory model, they only mix up the two cell types dParAB and dSMCdParAB.

91



The two cell types WT and dSMC are no longer incorrectly predicted by the tree-based
classifiers in the factory model.
Also, the linear classifiers no longer make errors for the cells in which ParAB is active and
replication is executed in the form of the factory model. However, since the error rate for
cell types without ParAB increases significantly, the overall prediction accuracies decrease.
In tables 4.8 and 4.9 the calculated precision and recall values are listed.

(a) Random forest

Cell Precision Recall
track-WT 0.942 0.92
track-dSMC 0.923 0.945
track-dParAB 0.973 0.942
track-dSMC-dParAB 0.947 0.974
factory-WT 1 1
factory-dSMC 0.999 0.999
factory-dParAB 0.959 0.939
factory-dSMC-dParAB 0.938 0.959

(b) Gradient boosting

Cell Precision Recall
track-WT 0.949 0.957
track-dSMC 0.957 0.95
track-dParAB 0.981 0.972
track-dSMC-dParAB 0.972 0.98
factory-WT 1 1
factory-dSMC 1 1
factory-dParAB 0.968 0.954
factory-dSMC-dParAB 0.953 0.966

Table 4.8.: Precision and recall values for tree-based classifiers using statistical features as
input data.

(a) Logistic regression

Cell Precision Recall
track-WT 0.903 0.866
track-dSMC 0.867 0.903
track-dParAB 0.726 0.978
track-dSMC-dParAB 0.97 0.655
factory-WT 1 1
factory-dSMC 1 1
factory-dParAB 0.786 0.677
factory-dSMC-dParAB 0.721 0.819

(b) SVM

Cell Precision Recall
track-WT 0.755 0.959
track-dSMC 0.944 0.689
track-dParAB 0.919 0.866
track-dSMC-dParAB 0.878 0.927
factory-WT 1 1
factory-dSMC 1 1
factory-dParAB 0.744 0.81
factory-dSMC-dParAB 0.788 0.717

Table 4.9.: Precision and recall values for linear classifiers using statistical features as input
data.

For the precision and recall values in tables 4.8 and 4.9, the behavior already discussed
in the previous section for tables 4.5 and 4.6 is confirmed: Depending on the replication
model used in the cell types, either the cells in which ParAB is active (if track model)
or those in which ParAB is inactive (if factory model) are more often confused by the
classifiers. This separation is even more evident in the feature-based approach, where
the classifiers have perfect precision and recall values for the cells with active ParAB and
replication in the form of the factory model. This could be due to the fact that in the
factory model of replication, chromosome density in the middle of the cell is very high,
especially at the start of replication. This could be a reason for why the effect of SMC,
which ensures a juxtaposition of the chromosome arms, produces a particularly pronounced
effect in the factory model of replication and facilitates the separation of the chromosomes.
This effect could in turn be detected by the classifiers and be the reason for the improved
accuracy.
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Furthermore, the precision and recall values show that the tree-based classifiers further
improve their performance in the case of low-dimensional input vectors. Both classifiers
show very good scores for all cell types with values always above 90% and mostly even
larger than 95%. However, this is not the case for the linear classifiers. Thus, the high-
dimensional approach of normalized trajectories according to Muñoz et al. [135] is more
recommended for the linear classifiers, while the tree-based classifiers achieve better results
with the low-dimensional approach of the selected statistical feature.
Another interesting question that follows is which features the classifiers considered most
important for classification. By identifying these features, it could be possible to perform a
feature selection, which would further reduce the computational effort. For the analysis of
feature importance for the tree-based classifiers the scikit-learn library offers a build-in
function. It is based on a method proposed by Breiman [19] where the total decrease in
node impurity caused by a given feature is calculated. To do this, the Gini impurities (see
equation 4.10) are calculated before and after each split on a given feature and the total
decrease in the impurity related to the respective feature is calculated. The outcome is
finally averaged over all trees in the ensemble [80].
For the linear classifiers, feature importance values can be derived from the coefficients of
the feature in the decision function. Here it is assumed that the higher the coefficient of a
feature, the higher its importance. For a SVM classifier, however, one should do this only
in the case of a linear kernel. For other kernel functions the size of the coefficients cannot
be used to infer feature importance because the data is transformed into another space by
the kernel and thus coefficients from the higher-dimensional space cannot be related to
the input space. It is also important to scale the data for the fit so that the coefficients of
the individual features are comparable. This was done with the StandardScalar function
implemented in the scikit-learn library, which removes the mean and scales to unit
variance.
Figure 4.10 shows the results of the feature importance analysis for the four classifiers.

MSD Alpha MSDR FD RG E G S

MSD Alpha MSDR FD RG E G S
0

10

20

30

40

50

R
el
at
iv
e
fe
at
ur
e
im
po
rt
an
ce

21

11

0

3

14

22

12
13

5

45

0

28

7

4 4 3

LR
SVM

MSD Alpha MSDR FD RG E G S
0

10

20

30

40

50

R
el
at
iv
e
fe
at
ur
e
im
po
rt
an
ce

12
11 12

14

18

11

6

13
10

21

4

7

33

4

7
9

RF
GB

50

A B

Figure 4.10.: A: Bar chart of the relative importance of the features for the predictions
of the tree-based classifiers. B: Bar chart of the relative importance of the
features for the predictions of the linear classifiers.

The tree-based classifiers show very similar values for the importance of the individual
features. The four features that are considered most important are RG, Alpha, FD and
MSD. However, the even distribution of the feature importance values indicates that it
makes sense to provide all features as input to the classifiers.
In comparison with the feature importance values from figure 4.10B, it is noticeable that
SVM assigns a significantly higher importance to Alpha and that FD as the second most
important feature also stands out clearly from the other features. In contrast, the LR
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classifier distributes feature importance more like the tree-based classifiers. However, both
linear models agree on not needing the MSDR for classification.
To get an idea of what the classifiers can extract from the features, we can look at example
scatterplots of the values of two features against each other. This is done in figure 4.11.

Figure 4.11.: Scatterplots of the feature values of 100 segregation trajectories per cell type.
Left: Values of the exponent alpha for the trajectories plotted versus the
values of the fractal dimension. Right: Gaussianity values plotted versus
values for the mean-squared displacement ratio.

In the first plot of figure 4.11 the exponent alpha calculated for the trajectories is plotted
versus their fractal dimension. For the exponent alpha one expects α ≈ 1 for normal
distribution, α > 1 for directed motion and α < 1 for anomaleous diffusion ( [97], [192]).
One can see in the plot of figure 4.11 that the cell types with active ParAB result in
segregation trajectories for which α > 1 is calculated. Thus, the partitioning system
ParAB ensures directed diffusion of the ori to the cell pole. In contrast, cell types without
ParAB mostly show values of 1 ≥ α ≥ 0. Here, the ori performs normal diffusion or is in
the subdiffusive regime. Consequently, we can see from these well-interpretable results why
the exponent alpha is considered an important feature by the classifiers as it can be used
to distinguish well between cell types with and without ParAB. The fractal dimension is
a measure for the space-filling capacity of a trajectory. One expects values around 1 for
straight trajectories and values around 2 for random trajectories [93]. In the plot of figure
4.11 we again find that the trajectories belonging to cell types with activated ParAB show
lower values for the fractal dimension than the ones belonging to cell types in which ParAB
is disabled. This can be interpreted by the fact that the more directed motion due to the
effect of ParAB causes the trajectories to be more similar to a straight line than they are
without the action of ParAB. Since the motion of the ori is still characterized by a thermal
diffusion in all simulations, values of the fractal dimension of about FD ≈ 1.3− 1.4 are
also obtained for the more directed trajectories. Nevertheless, it can be seen that the
features Alpha and FD already allow a rough clustering of the cell types.
In the second plot of figure 4.11 the values of the efficiency and the straightness for the
trajecotories are plotted against each other as a second example. The efficiency is a
measure for the linearity of a trajectory by relating the square net displacement to the sum
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of the squared displacements. Very similar, the straightness relates the net displacement
to the sum of the step lengths ( [97], [192]). Thus, it is not surprising to detect a quadratic
dependence of the two values with each other. It can be seen that, due to the thermal
fluctuation that underlies all trajectories, both values are close to 0 in each case. However,
it can be observed that the effect of ParAB again is visible producing higher values for
both efficiency and straightness due to the more directed motion of the ori in this cell types.
However, the plot of efficiency versus straightness shows an effect that we have to keep in
mind when considering feature importance values, especially for linear classifiers: Some
of the statistical features correlate with each other, which makes it difficult to determine
the weights. The reason for this is that in linear models the individual effects are added
together, so that it eventually becomes indeterminable to which of two correlating features
a particular effect is to be assigned.
One way to reduce the number of features is to look at the cumulative importance of
the feature. For this purpose, in figure 4.12A the features were sorted according to their
importance and the cumulative importance was plotted as a function of the number of
most important features. One could use this graph as a tool for feature selection, i.e.
define a threshold of accuracy to be reached and omit the remaining features which are
not needed. Furthermore, the prediction accuracies of the classifiers were analyzed after
they were trained with a reduced number of features. The results for this can be found in
figure 4.12B.
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Figure 4.12.: A: Number of features required to reach a defined level of cumulative impor-
tance. The dashed line marks the threshold of 90 % cumulative importance.
B: Accuracy of classifiers trained with reduced numbers of features. When re-
ducing the number of features, those with the least importance were omitted
in each step.

In figure 4.12A one can see that the SVM classifier already reaches a cumulative importance
of 90% with the four most important features. At the same time, however, one can see
from figure 4.12B that the prediction accuracy with these four most important features is
still below 80%. In contrast, the tree-based classifiers reach a cumulative importance of
90% only after six and seven features, respectively. Nevertheless, even with the two most
important features, they achieve a prediction accuracy of over 90%. This shows that the
tree-based classifiers not only perform better overall in the feature-based approach than
the linear models, but also achieve very good prediction accuracy with fewer features.
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4.4.4. Classification of short trajectories

A final test for the classification capabilities of the classifiers, which is also important for a
possible application on experimental data, is the classification of short trajectories. The
practical background for this is that in real experiments it may not be possible to produce
high resolution time-lapse data over 50-60min in every case. This raises the question of
whether the classifiers are also capable of classifying the different cell types on the basis of
significantly shorter recording periods. Another challenge from experimental data could
be that different trajectories were recorded with different temporal resolution. Thus, one
would need a protocol that produces comparable input vectors from these trajectories with
a different number of measurement points and allows a classification. This case is also
highlighted below.
Muñoz et al. have already demonstrated in their paper on the classification of different
diffusion types that the normalization procedure of the trajectories allows a very good
classification by a random forest classifier even for extremely short trajectories [135].
Therefore, this protocol was also used in the present work and the classifiers were trained
with corresponding normalized trajectories of different lengths of down to 5s. The results
of this analysis are depicted in figure 4.13.
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Figure 4.13.: Accuracy of the classifiers on trajectories of reduced length. The classifiers
were trained and evaluated separatly on each length.

It can be seen from the plots of figure 4.13 that the classifiers reached very good prediction
accuracies for very short trajectories up to a length of 10s. After ∼ 1000s all classifiers
reached accuracies comparable to their scores on the complete trajectories. Furthermore we
note, that the tree-based classifiers already reached prediction accuracies for trajectories
shorter than 10s. In this area in particular, they clearly surpass not only the linear
models but also the performance of the human eye, for which no classification of cell
types is yet possible after such a short time. Thus, these results confirm the success of
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the normalization protocol of Muñoz et al. also for trajectories of segregating oris and
additional classifiers.
To test the case of a data set consisting of trajectories of different temporal resolution, it
first had to be artificially created. For this purpose, the previously used data set could
simply be used, but a new temporal resolution was randomly chosen for each trajectory.
According to this new temporal resolution, only every xth point (for a temporal resolution
of x seconds) of the trajectory was then retained. This is exemplified in figure 4.14.
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Figure 4.14.: Construction of a different temporal resolution for an example trajectory. In
this example, every 100th point of the original trajectory is selected to mimic
a temporal resolution of 100s instead of the original 1s. In the subsequent
step, the resulting ”experimental” trajectory with a temporal resolution of
100s is interpolated in order to compare it to trajectories of different temporal
resolutions.

In the second preprocessing step shown in figure 4.14 the selected points of the new temporal
resolution of the trajectory are interpolated again. This procedure allows comparison
of trajectories from different temporal resolutions since we can harmonize them by the
interpolation. This is necessary to construct input vectors of the same dimension for all
trajectories. For the new dataset we used one of the following temporal resolutions per
random for each trajectory: [1s, 2s, 3s, 4s, 5s, 10s, 15s, 20s, 30s, 40s, 50s, 100s].
After the new data set was produced, training and test sets were again created in a ratio of
70% (training) to 30% (test) and the classifiers were trained on the training set and finally
the prediction accuracy was evaluated on both sets. In addition, the two approaches of a
high-dimensional input vector from normalized trajectories and a low-dimensional input
vector from the statistical features were again compared. The results of the prediciton
accuracies are sumamrized in table 4.10.
Looking at the results from table 4.10 one finds that the prediction accuracies are reduced
compared to the case of a dataset with an homogeneous temporal resolution. Nevertheless,
the classifiers are still able to yield suprisingly good results. Thereby, it becomes clear that
the feature-based approach yields higher prediction accuracies of the classifiers than the
approach of high-dimensional input vectors does. Furthermore, the tree-based classifiers
outperform the linear classifiers. The tree-based classifiers are still able to predict more
than 90% of the cell types correctly. Thus, by using the tree-based classifiers and the
statistical features as low-dimensional input vectors it is possible to also discriminate cells
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Normalized Features
% (train set) % (test set) % (train set) % (test set)

Random forest 0.988 0.72 0.946 0.917
Gradient Boosting 1.0 0.812 1.0 0.932
Logistic regression 0.763 0.697 0.663 0.652
SVM 0.749 0.702 0.795 0.783

Table 4.10.: Overall prediction accuracies of the classifiers on the data set containing
trajectories of different temporal resolutions. The table displays both the
results obtained by preprocessing the trajectories according to [135] and by
using the statistical features as input vector for the classifiers. The reached
accuracies on the train set and on the test set are shown for each case.

with different segregation mechanisms if the trajectories in the dataset show a variety of
temporal resolutions.

4.5. Project summary and outlook

In the first two projects described in this paper, there was a direct relationship of data
obtained from physical models and computer simulations to experimental results. In the
third project, these results were built upon. For this purpose, the existing MD model
was further extended with additional segregation mechanisms. Thereby, it was possible
to produce data of oris segregating due to various mechanisms in a quantity beyond the
current possibilities of experiments. The so obtained experimental data was used to provide
a proof of principle for the automated classification of segregation trajectories with ML
models. Thus, the aim of this work was to transfer a tool that has already been successfully
used in other fields, such as diffusion classification ( [80], [97], [135], [192], [207]), to the
research field of bacterial chromosome segregation. Due to the increasing availability of
high-resolution data from SPT experiments, it is hoped that the positive results of this
work will pave the way for classifying experimental data with ML models in the future. To
this end, first steps were taken to adapt to experimental data by testing the classification
of very short trajectories or by classifying data of different temporal resolutions.

Research approach Within this project the MD model of entropic chromosome seg-
regation presented in chapter 3 was extended by the implementation of the ParAB
partitioning system and SMC proteins, which are both thought to play important roles
in the process of chromosome segregation in bacteria. Besides this, the two replication
schemes of the track and factory model of replication were used to create a total of eight
different cell types. In the simulations, the duplicated ori was tracked according to a
SPT and its trajectory through the cell was recorded. Thereby, the trajectories were
labeled by the corresponding cell type. With this, two tree-based classifiers and two linear
classifiers were trained to discriminate the various cell types based on the trajectories of
the oris. The classifiers were presented with two kinds of input vectors: In a first approach
a high-dimensional input vector was used according to a procedure proposed by Muñoz et
al. [135]. Here, the complete trajecotry is normalized and presented to the classifiers. In
the second approach, a set of eight statistical features was calculated from the trajectories
and used to create a low-dimensional input vector. To test the application on possible
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experimental data, the classifiers were also presented with shorter length trajectories. In
addition, trajectories of different temporal resolution were produced, made comparable by
interpolation of the measurement points, and presented to the classifiers. Thereby, the
generalization ability of the ML models was tested.

Key findings Evaluation of the different segregation mechanisms showed that especially
the ParAB system is a very strong segregation driver and is able to control the precise
positioning of the oris in the cell. This is particularly interesting because the previous
project showed that purely entropic segregation does not result in a clear positioning of
the duplicated oris in the cell. In contrast, the ParAB system showed a clear segregation
direction for the ori which reliably arrived at the new cell pole. In addition, the effect
of the ParAB system also affected the segregation of chromosomes as a whole, which in
the case of segregation by ParAB were reliably separated at the end of the replication
phase, whereas without ParAB there was greater variation in the degree of separation. In
this respect, the previously missing mechanism for maintaining the organization of DNA
in the cell and further increasing the efficiency of chromosome segregation was identified
with the ParAB system. Comparing the replication mechanisms, slightly higher degrees
of separation were found for the factory model. In addition, the results of the prediction
accuracies of the classifiers suggest that the effect of SMC is more important in the factory
model of replication, because there is a higher DNA density in the middle of the cell. Thus,
the juxtaposition of chromosome arms by SMC is particularly helpful in chromosome
segregation here.
The results of the classification of the different segregation mechanisms showed very good
overall prediction accuracies and thus strengthen the hope to be able to classify experimental
trajectories with these methods in the future. In the case of classifying trajectories using
high-dimensional input vectors, all classifiers achieved prediction accuracies of more than
90% on the test data. Thus, the good results of Muñoz et al. for the classification of
diffusion trajectories could also be confirmed here for the case of different segregation
trajectories of ori in bacterial cells. Furthermore, the results show that the preprocessing
protocol also provides good results for classifiers other than the RF classifier. Thereby, the
linear classifiers showed a slightly lower tendency to overfitting compared to the tree-based
models. However, the highest accuracy was achieved with the GB classifier. A more
detailed analysis of the classification results shows that all classifiers have no problems
identifying if ParAB was active or not in a given trajectory. Thus, missclassifications only
occurred between the WT and dSMC cells or between the dParAB and dSMCdParAB cells.
Which of the two errors is more frequent depends on the replication mechanism. It was
found that in the factory model the confusion of WT and dSMC was less frequent than in
the track model. Therefore, it could be hypothesized that SMC is of particular importance
in factory model as here chromosome density is very high at the cell center and SMC helps
resolving the sister chromosomes.
In a second approach, low-dimensional input vectors were presented to the classifiers. For
this purpose, eight statistical features were calculated from the trajectories and an input
vector was constructed from these. This approach resulted in an increased speed for the
fitting procedures of the classifiers and an overall increased predication accuracy of the
tree-based classifiers. Furthermore, the tendency of overfitting was reduced for the tree-
based classifiers. In contrast, the linear classifiers performed worse when presented with
the lower-dimensional input vector. Thus, these results suggest to use the high-dimensional
input vecors if one is interested in a linear model and apply the feature-based approach
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for the tree-based classifiers. The analysis of the feature importance showed that the
tree-based classifiers give very similar weights to the individual features, whereas the SVM
classifier in particular already covers more than two-thirds of the feature importance with
only two features. However, the features were not free of multicollinearity, so that the
feature importance values of the linear models should be viewed with caution. At the
same time, this could explain the weaker performance of the linear models when using the
features. Analysis of the features revealed that they, too, were particularly helpful for the
identification of the more linear trajectories due to the ParAB system. This was reflected
for example in a smaller fractal dimension or higher exponent alpha compared to other
cell types. Interestingly, the tree-based classifiers already reached an overall prediction
accuracy of 90% using two out of eight features.
As a final challenge we tested our classifiers on trajectories consisting of less datapoints.
Here, the classifiers proofed to be capable of discriminating trajectories of only some
datapoints, i.e. some seconds of length, using the high-dimensional input vectors. This is
a very promising result with respect to possible applications on experimental data which
might also be of smaller length. Furthermore, it could be shown that it is also possible to
simultaneously classify trajectories of different temporal resolutions using interpolation of
the data points. In this case, however, the approach of low-dimensional input vectors from
statistical features was more successful.
The presented results illustrate that ML models are able to classify segregation trajectories
in bacterial cells according to the underlying mechanisms. This opens up the possibility
of using a new tool in this field. Based on the results presented in this paper, suitable
model architectures and input vectors can be proposed for this purpose. Thereby, it will
be possible to autmatically classify a variety of microscopy data using previously trained
ML models in future applications. In addition, for new organisms an estimate of the
chromosome segregation mechanisms responsible for the tracked movement of loci can be
made.

Outlook Taken together the results of the project demonstrate that classification of
segregation mechanisms with ML methods is a promising approach. In further studies it
might be possible to add experimental trajectories to the dataset produced with the MD
simulations and thereby extend the application towards experimental data.
Another interesting application is the differentiation of replication models. In this project,
both the track model and the factory model of replication were implemented in the MD
simulations. These two models are also the central point of controversy in many fluorescence
microscopy experiments of replication in bacteria. In the experimental observations often
two optically resolvable replication foci are described. However, it is not clear whether
these are two individually resolvable replisomes, as postulated by the track model of
replication, or whether they are the two unresolvable replisomes of some sort of replication
factory corresponding to a factory model of replication ( [81], [117], [152]). Interestingly,
also for the factory model of replication, it is reported that the subcellular localization of
the replisomes varies, i.e. they are mobile, but their movement is caused by chromosomal
re-arrangements rather than by the replisomes’ own movement [117]. Within the MD
scheme presented in this work one could generate a heat map of the duplication polymerases
of the different replication models from the simulations to compare with experimental
data. In addition, it would be possible to also track the trajectories of the replisomes
in the MD simulations and classify them according to the ori trajectories with the ML
models. Based on this, one could perform a characterization of the experimental data.
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There are also some possibilities for further development of the MD simulations. Possible
extensions include a variation of the pulling force of the ParAB system. Here, one could
challenge the classifiers by turning the pulling force on and off during replication or by using
pulling forces of different strengths in different trajectories. Moreover, the implementation
of SMC could be extended and take into account that some SMC proteins exhibit diffusive
dynamics. It has been shown that such dynamics can affect the organization of the
chromosome by SMC [128]. Such dynamics could also be implemented in the model
presented here by allowing the SMC bonds to change along the chromosome.
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5. Conclusions

Object of research Within the scope of this work, the spatio-temporal organization
and segregation of bacterial chromosomes was investigated. The underlying question was
how the complex structure of living cells is maintained and what models we can use to
understand and describe it. We have already seen in the introduction that bacteria are
a suitable object of study for such questions for several reasons. The study of bacteria
has not only led to some of the most important biological and medical discoveries that
have had a lasting impact on our lives, but at the same time the simpler structure of
bacteria compared to eukaryotes provides an advantageous model system for studying the
mechanisms of life conserved across all organisms ( [4], [138], [144]).

Biological physics approach Describing the structure of the complex system of the
bacterial cell offers an exciting challenge for an interdisciplinary approach from physics
and biology. The aim here is to combine the respective strengths of the approaches: The
biological approach provides a variety of details of the complex living world. Here, the
physical view can be used to decipher general laws and simple logics, that is, to see the
forest formed by the trees [138]. To follow this combined approach was one of the central
tasks of the present work. The starting point for this was the experimental data, which is
a slice of the rich reality of life. These had to be abstracted in the following in order to
create models as simple as possible that could be formulated mathematically (we remember
Galileo’s request from chapter 1.3). At the same time, this models still had to be close
enough to reality to function as a realistic projection of reality into the conceptual space of
the questions of interest. By analyzing the models, the hope was to discover the effects of
general laws, to be able to make new predictions, or to open up new perspectives [138]. In
this paper, three projects were presented that used this approach to investigate different
research questions. In the following, we will consider how the results fit into the claim
just formulated. A more detailed summary of the results of the individual projects can be
found at the end of each project.

5.1. DNA organization

The first project of this thesis addressed the question of how bacteria manage to spatially
organize their genetic material in the cell. For a long time, it was assumed that the genome
was randomly arranged in bacterial cells. It was impossible to imagine how bacteria could
compact their chromosomes by three orders of magnitude and at the same time achieve
spatial sorting in the cell. All the more astonishing were the findings of recent years, which
indeed revealed a complex organization of DNA in the cell of bacteria, which is also related
to important functional and regulatory processes of the cell ( [9], [40], [150], [173]). These
new findings have changed the view of the spatial organization of DNA in the cell and
highlighted its importance. At the same time, the new findings almost exclusively concern
typical model organisms, so that the organization of the genome of multipartite bacteria
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remains unclear. Therefore, the aim of this work was to broaden the research horizon in
this direction.
In accordance with the approach to biophysics formulated above, the experiments performed
in the laboratory provided us with a large amount of data for the model organism S.
meliloti . Fluorescence microscopy was used to determine the positions of different loci
along the entire genome in hundreds of cells per loci (more detailed information on the
experimental procedure will be part of the papers [134], [193], which are under preparation).
Thus, the task was to construct a simple model that would allow us to understand the
mechanisms underlying the data and to test corresponding predictions using mutants. For
this purpose, the proven concepts of polymer physics were used. We have seen in this
work that it is possible to understand effects of compactification of DNA in the cell such
as supercoiling and macromolecular crowding based on simple physical models. The effect
of macromolecular crowding is entropy-driven. The loss of conformational entropy of the
DNA (considered as a polymer) is overcompensated by the gain in accessible volume by
the large number of crowding particles ( [86], [119], [146], [168], [216], [173]). Accordingly,
we can trace the formation of supercoiled domains using the topological properties of
circular DNA. Here it can be understood that an energetic ground state results from the
natural double-helix repeat of DNA, which we can express with the concept of the linking
number. Changes in this state caused by proteins such as topoisomerases are balanced
in the interplay of twist and writhe, with the substitution of writhe for twist leading to
a compaction of DNA ( [22], [23], [121], [122], [123], [175], [176]). These considerations
allow us to describe DNA as a sequence of compacted monomers according to the FJC
model. However, since a Gaussian probability distribution for the expansion of DNA can
be calculated for such a model, it becomes possible at this point to use one of the most
powerful ideas of science [144] for the simulation of DNA configurations: random walks.
Thus, with the concept of the self-avoiding walk, a model has finally been found that is
simple and can be described mathematically as requested above, but is at the same time
sufficient to describe the real biopolymer DNA with adequate accuracy in the particular
conceptual space, which is the global organization of the DNA in the cell.
As described in the project summary 2.4, the newly obtained model of DNA was used
to investigate three basic hypotheses. These can also be formulated in a broader sense.
Accordingly, the results of our studies show that the spatial organization of DNA in the
cell is significantly influenced by (i) the mechanical properties of DNA as a polymer, (ii)
by geometric constraints of individual loci and the complete DNA and (iii) interactions of
individual replicons in the cell.
We have already discussed that the mechanical properties of DNA can be captured by
the concept of conformational entropy. This finding can be extended to the whole field
of polymer physics, where the conformational statistical properties of macromolecules
determine the entire field of physical properties of polymers [57]. Furthermore, the results
of this work have shown that, in addition to the global constraint of limiting DNA to the
cell interior, the spatial fixation of individual loci (such as ori and ter) is sufficient to track
the mean configuration of the entire genome in the cell. This statement already contains
the insight that especially a statistical description of the averaged configuration over many
cells makes sense. In this case we are able to recognize recurring patterns, whereas we
discover a large cell-to-cell variability both in reality and in our modeling. Finally, model-
based prediction of inter-replicon interactions from the simplified conceptual framework of
our model could provide the basis for future experiments in the more complex reality. It
could be shown that in the sense of the model used, the effects of inter-replicon interactions

103



can be understood as additional spatial constraints. Since the corresponding simulation
results reflect the actual organization of the genome in the cell very well, they motivate
future Hi-C experiments and already indicate possible loci for which interactions are to
be expected. This is possible even though the chemical complexity of such interactions
is not included in the simplified model. Another noteworthy finding from the modeling
approach taken here concerns the interaction of the different levels of organization of the
bacterial chromosome. In our model, a description of the chromosome at the level of
supercoiled domains was used. At the same time, however, the modeling results have
shown that this small-scale description, in combination with the aforementioned geometric
constraints, produces the global organization of the chromosome in the cell. In this sense,
the hypotheses formulated above form the bridge linking the different levels of organization
of the genome in the cell.
Despite the already discussed findings in the context of this project, there are still a lot of
further perspectives for future research and possibilities to develop the model. Among
the limitations of the model is the fact that a constant degree of compaction is assumed
along the entire genome. This is certainly a very strong simplification, so that in the
future a variation of the degree of compaction is a useful extension, e.g. to account
for different levels of gene expression [39]. In addition, the current model does not yet
include the influences of various proteins, such as SMC, which affect the configuration of
the chromosome in the cell. These could also be implemented in the form of additional
spatial constraints. Using a similar logic, the scope of the model could also be extended
to additional questions. Particularly noteworthy is the area of chromosome-membrane
interactions, which could be caused by transcription or by specific proteins that bind
the chromosome to the membrane. Such effects could also be described as additional
constraints within the model. In this context it would be interesting to see to which
degree the repositioning of specific loci due to transcription alters the global chromosome
organization, and, vice versa, if specific loci are particularly suitable for transcription as a
result of the global configuration of the chromosome in the cell. Furthermore, the model
offers the possibility to investigate the topology of multiple replicons in the cell which
might have an important influence on the processes of replication and segregation of the
genomic material. These processes were part of the investigations of the second project of
this thesis.

5.2. Replication and segregation of DNA

To address the issues of replication and segregation of DNA in the cell, the task was
to answer the question of what effect the above regularities have on the dynamics of
multiple chromosomes in the cell. In other words: while we previously considered static
organization as a consequence of conformational entropy and geometric constraints for
individual chromosomes, in the second project we had to address what these properties of
DNA mean for the DNA’s replication and segregation.
In general, cellular proliferation depends on successful replication and segregation of DNA.
In reality, cells use a complex replication machine consisting of multiple proteins to ensure
a high fidelity while copying their genetic material. The initiation and basic constituents
of this process are conserved in all organisms ( [4], [92], [102], [117], [152]). However, many
basic questions still remain to be answered. For example, it is not known for many bacteria
if bidirectional replication of the chromosome is spatially confined to the center of the cell
(factory model) or if the replisomes are able to move independently along the chromosome
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(track model) ( [81], [117], [152]). Furthermore, no unique mechanism for chromosome
segregation has been identified in bacteria so far ( [9], [37], [55]). Of particular interest in
the context of these questions is the origin of replication (ori). Not only does bidirectional
replication start here, but the ori is also important for the organization of chromosomes
in the cell, as well as being crucial for the action of important proteins like SMC and
ParAB ( [72], [108], [198], [201], [203]). At the same time, focusing on the segregation
of the two oris provides a first step of simplification to approach the complex problem
of replication and segregation of bacterial DNA. Thus, within the second project of the
present work the Graumann lab provided time lapse data of segregating oris in B. subtilis
as experimental input. For the theoretical study of this process in accordance with the
above considerations, a model of DNA was chosen, in which it was again described as a
compacted polymer under confinement (by the cell). Other characterizing properties of
the polymer, such as its connectivity, were modeled by simple physical potentials holding
the monomers together. However, since there are two chromosomes in the volume confined
by the cell, the mechanical properties of the chromosomes yield further conclusions for
their interaction in this case. In order to increase their conformational entropy, polymers
repel each other even if there is no additional mechanism involved ( [7], [85], [86], [130]).
This effect could be represented by an effective repulsion of the individual monomers in
our model. Similarly, the complex question of the mobility of replisomes during replication
was simplified in the conceptual framework of our model. Within the simulations, it was
possible to control whether the duplication of new DNA is fixed within the cell according
to the factory model or whether new DNA was duplicated along the existing chromosome,
as in the track model. It should be noted that this implementation did not consider the
question of the origin of the force required for the mobility of the replisome, but merely
considered its effect. Nevertheless, this modeling allowed quantitative comparisons with
the real data of the experiments (compare project summary 3.4). As a result of the
comparisons of model and reality, it could be stated that the observed separation of the
oris can indeed be thought of as a result of entropic segregation of the chromosomes. Thus,
this finding is another example for the fact that most cellular processes can be understood
as the attempt to maximize entropy [144]. On the other hand, it was also found that
entropic segregation alone is not sufficient to ensure the appropriate organization of genetic
material in the cell. Here, it became apparent that the simplified model lacked certain
ingredients without which reality cannot be described. Thus, a further development of the
model was triggered as discussed in the third project with the additional implementation of
the effects of SMC and ParAB. Moreover, since the experimental data were better fitted by
modeling a factory model than by modeling a track model of replication, a further evidence
could be derived with regard to the question of how replication is spatially organized in B.
subtilis . At this point, however, there are still many opportunities for further investigation
and more appropriate comparisons with experimental data. Thus, a first step would be
to visualize the spatial distribution of duplication events, e.g., in the form of heat maps.
These could then be compared with data from fluorescence microscopy experiments in
which the replisomes could be labeled. The concept of entropic segregation also needs
to be put to the test further. Here, the project on S. meliloti described above offers an
interesting approach to test whether the segregation of the genetic material of multipartite
bacteria can also be realized by entropic effects.
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5.3. Trajectory classification

In the third part of this work, another requirement of the interdisciplinary approach should
be addressed: the opening of new research perspectives through the application of new
methods. A good way to do this is to transfer tools that have proven useful in one area
to another. In our case, this concerns the automatic classification of trajectories using
ML models. As information becomes available faster and in greater quantities, it becomes
even more important to develop tools that allow us to process this information and derive
predictions from it. It would be desirable to have an automated and standardized tool
that recognizes and classifies patterns in the available data [98]. Once we have established
such a method for classifying the data, it gives us the opportunity to ask more complex
questions. In the case of trajectory classification such further questions might include
whether it is possible to determine the underlying mechanism of a trajectory on the basis
of a few datapoints. It would also be interesting to determine how many points are needed
along a trajectory to classify it correctly.
In the context of the questions considered in this work, the data from SPT experiments
offered themselves as an object of investigation as they are becoming more and more
available in high resolutions ( [37], [54], [164], [203]). At the same time, it has already
been shown that ML algorithms are a promising tool for distinguishing different diffusion
processes on the basis of SPT trajectories ( [80], [97], [135], [192]). The aim of the
present work was to test an application of this tool also for the classification of segregation
mechanisms of bacterial chromosomes. A key obstacle to such an attempt in previous
studies was the fact that a large number of trajectories are needed to train the ML models.
The successful development of the MD model for combined replication and segregation of
bacterial chromosomes in the previous project made it possible to produce trajectories of
different segregation mechanisms in sufficient numbers to classify them with ML models for
the first time. In this regard, the results of this work should act as a proof of principle that
the tool of automatic classification of trajectories is also promising for the discrimination
of trajectories of different loci in the bacterial cell. In addition, it was hoped that the
analysis of the decision making of the ML models in their classification would also provide
new insights into the interpretation of the individual models.
As described in the detailed project summary in 4.5, the additional implementation of
further segregation mechanisms in the MD simulations was successful. In the process,
the complex interactions of the proteins with the chromosome were broken down to their
basic effects in the simplified conceptual framework of the model. In this sense, the effect
of the interaction of SMC with the chromosome was considered as another topological
constraint that could be implemented by installing harmonic potentials between the
opposite chromosome arms. In the same way, the effect of the ParAB system can be
understood as an effective traction force on the duplicated ori, which, according to Lim
et al. [108], originates from the elastic properties of the chromosome and was calculated
accordingly. In the process, comparison with experimental studies ( [108], [165] [198], [200])
and further simulations ensured a correct description of the effects within the framework of
the simulation ( [52], [201]). A first interesting result of the following simulations was the
identification of ParAB as the additional mechanism that ensures the maintenance of the
spatial organization of DNA in the cell by providing designated direction of segregation
for the oris. In the following, it was shown that it is indeed possible to use ML models to
successfully classify the trajectories of ori in the cell based on the underlying mechanisms.
Thus, in the form of ML approaches, another tool was identified to analyze the complexity
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of the bacterial cell and the processes taking place within it. First of all, these methods
provide a valuable opportunity to make automatic classifications and predictions as a
”black box”. This is an important aid, especially in biological or medical questions. In
such it is not always possible to work out relationships that are comprehensible to the
human brain due to the large number of interacting mechanisms. Nevertheless, one often
needs reliable predictions or classifications. At the same time, however, the downstream
analysis of the ML methods can give us a glimpse into the ”black box” that can help us
arrive at better interpretations of the underlying system. An example in the present work
was the better distinction of cell types with active SMC from those without SMC in the
factory model. From this it could be deduced that the topological organization of DNA by
SMC must be particularly important in the factory model, in which a higher DNA density
is present in the center of the cell. Moreover, the ML methods enable classification of
very short trajectories and trajectories of different temporal resolutions at a scale at which
this is hardly possible for the human eye. Thus, the results of the present work not only
provide a proof of principle for the application of ML methods to segregation mechanisms
in bacteria, but also show how a new understanding of the underlying processes can arise
from the analysis of ML methods. In addition, suggestions are made for the ML methods
to be used and the architectures of the individual models, as well as the preprocessing steps.
The hope is that this will stimulate further applications of these methods to experimental
data as well.
This offers a wide range of possibilities. For example, the trajectories do not necessarily
have to describe the motion of the ori, but can be recorded for arbitrary loci of interest in
the cell. In the context of S. meliloti , for example, a clear temporal order of the segregation
movements of the terminus regions of the individual replicons [43] was described. Here
it would be interesting to characterize the underlying mechanisms. In addition, the
aforementioned question of the course of replication in track or factory model could be
considered by tracking and classifying the trajectories of the replisomes during replication.
Another challenge that the classifiers were not presented with yet is the possibility that
segregation mechanisms might change within one trajectory. In this case, one would
have to divide the trajectories into shorter sequences and try to classify these sequences
independently of each other. In all these cases, it would be especially desirable to test
transfer learning by testing the ML models on experimental data.

Final remark In conclusion, I hope to have provided some new perspectives on the
spatio-temporal organization and segregation of DNA in the bacterial cell with this work.
Physical modeling was used to gain a better understanding of the complex biological
processes as well as new methods for their analysis. These may contribute to and inspire
further investigations in the future.
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A. Polymer physics

A.1. Free energy of an ideal chain

The entropy S of an ideal chain is defined as

S = kB lnΩ , (A.1)

with Ω(N, R⃗) denoting the number of conformations of a freely jointed chain ofN monomers

with end-to-end vector R⃗ and kB is the Boltzmann constant [157].

Thus, we need to find an expression for Ω(N, R⃗) in order to estimate the entropy. For
this purpose, we can write the probability distribution function of equation 1.9 as the
fraction of all conformations that actually have an end-to-end vector R⃗ between R⃗ and
R⃗ + dR⃗ [157]

P (R⃗, N) =
Ω(N, R⃗)∫
Ω(N, R⃗)dR⃗

. (A.2)

This relationship now allows us to wirte the entropy of our ideal chain as

S(N, R⃗) = kB lnP (N, R⃗) + kB ln

[∫
Ω(N, R⃗)dR⃗

]
= −3

2
kB

R⃗

Nb2
+

3

2
kB ln

(
3

2πNb2

)
+ kB ln

[∫
Ω(N, R⃗)dR⃗

]
  

independent of R⃗→S(N,0)

.
(A.3)

We find that in equation A.3 the last two terms don’t depend on R⃗. Thus, we can denote
them as S(N, 0) and we receive [157]

S(N, R⃗) = −3

2
kB

R⃗

Nb2
+ S(N, 0) . (A.4)

Furthermore, we can now analyze the Helmholtz free energy F (N, R⃗) = U(N, R⃗)−TS(N, R⃗)

of the ideal chain. Here, U(N, R⃗) denotes the internal energy of the system, T the absolute
temperature of the system, and S is the entropy of the system which we just described.
Since we describe an ideal chain, the monomers have no interaction energy and the internal
energy U(N, R⃗) is independent of R⃗. Therefore, we can write [157]

F (N, 0) = U(N, 0)− TS(N, 0) . (A.5)
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Inserting equation A.4 here yields

F (N, R⃗) =
3

2
kBT

R⃗2

Nb2
+ F (N, 0) , (A.6)

as the free energy of the chain [157].

For the force needed to separate the ends of a FJC polymer by a distance R⃗ we find:

f =
∂F (N, R⃗)

∂R⃗
=

3kBT

Nb2
R⃗ . (A.7)

Thus, the force of the spring has an ”entropic spring constant” of 3kBT/Nb2 [157].

A.2. Frenet-Serret formulas

In this section we discuss the Frenet-Serret formulas which describe the geometric properties
of a three-dimensional curve in R3 by describing the derivatives of the so-called tangent,
normal and binormal unit vectors. We will first define the three vectors and then calculate
their derivatives as done in [91]. By construction, the three vectors form an orthonormal
basis for the R3 and the derivates allow us to define the curvature κ and the torsion τ of
the curve. We will need the Frenet-Serret formulas later to calculate the Gauss linking
integral.
To start our discussion, we describe a three-dimensional curve as

r⃗(s) = (x(s), y(s), z(s)) , (A.8)

with s being the arc length of the curve. Furthermore we assume the curve has a fixed
length L. The tangent vector obviously is the vector tangent to the curve and defined as

t⃗(s) =
∂r⃗(s)

∂s
. (A.9)

Since we parameterized the curve by its arc length we know that the tangent vector is of
unit length. We obtain the normal unit vector by calculating the derivative of the tangent
vector with respect to the arc length and normalizing to unit length

n⃗(s) =
∂t⃗(s)
∂s

||∂t⃗(s)
∂s

||
. (A.10)

At this point we can already define the curvature κ(s) at point s as

κ(s) = ||∂t⃗(s)
∂s

|| . (A.11)

The curvature describes the amount by which a curve deviates from a straight line. And
we can write

∂t⃗(s)

∂s
= κ(s)n⃗(s) . (A.12)
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By construction we have

t⃗(s) · n⃗(s) = 0 , (A.13)

ensuring that the first two vectors are perpendicular to each other. For our orthonormal
basis of the R3 we only need one more vector perpendicular to t⃗(s) and n⃗(s). We can
construct it using the cross product

b⃗(s) = t⃗(s)× n⃗(s) . (A.14)

This vector b⃗(s) is termed the binormal vector.
Now that we have obtained our orthonormal basis of the R3 we can write the derivative of
n⃗(s) as a linear combination of the other two basis vectors

∂n⃗(s)

∂s
= α(s)⃗t(s) + τ(s)⃗b(s) , (A.15)

where α(s) is some function of s and τ(s) is called the torsion of the curve. Torsion
describes how much the curve twists out of the plane of curvature.

To find a different expression for α(s), we differentiate the expression t⃗(s) · n⃗(s) = 0. Doing
this we find

0 =
∂

∂t

(
t⃗(s) · n⃗(s)

)
(A.16)

=
∂t⃗(s)

∂s  
κ(s)n⃗(s)

·n⃗(s) + ∂n⃗(s)

∂s  
α(s)⃗t(s)+τ(s)⃗b(s)

·⃗t(s) (A.17)

= κ(s) + α(s) , (A.18)

and thus α(s) = −κ(s). With this we have

∂n⃗(s)

∂s
= −κ(s)⃗t(s) + τ(s)⃗b(s) , (A.19)

for our second derivative. Last but not least we calculate the derivative of the binormal
vector to

∂b⃗(s)

∂s
=

∂t⃗(s)

∂s
× n⃗(s) + t⃗(s)× ∂n⃗(s)

∂s
(A.20)

= κ(s)n⃗(s)× n⃗(s) + t⃗(s)×
(
−κ(s)⃗t(s) + τ(s)⃗b(s)

)
(A.21)

= −n⃗(s)τ(s) . (A.22)

The equations A.12, A.19, and A.22 are the Frenet-Serret formulas and can be written in
matrix notation as

∂

∂s

⎡⎣ t⃗(s)n⃗(s)

b⃗(s)

⎤⎦ =

⎡⎣ 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

⎤⎦⎡⎣ t⃗(s)n⃗(s)

b⃗(s)

⎤⎦ (A.23)
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A.3. Calculation of twist and writhe

In this section we derive expressions for the writhe and twist of two curves. We follow the
approach from [91]. The most common way to calculate the linking number of two curves C
and C ′ paramterized by r⃗(s) and r⃗′(s′) is to use Gauss Linking integral ( [91], [154], [191])

Lk =
1

4π

∮
C′
ds′
∮
C

ds
r⃗′(s′)− r⃗(s)

|r⃗′(s′)− r⃗(s)|3
·
[
dr⃗′(s′)

ds′
× dr⃗(s)

ds

]
. (A.24)

The linking integral can be derived in several ways for example by calculating Ampere’s
law with Biot-Savart’s law ( [31], [91]).
Since DNA appears as a single filament at long length scales, it is useful to recast the
linking unmber in terms of the single polymer picture of DNA. For this purpose, in the
following we assume a ribbon build up of the two curves r⃗(s) and r⃗′(s′) [91]. We can
assume the following relation

r⃗′(s′) = r⃗(s′) + ϵn⃗(s′) , (A.25)

with a small number ϵ and the unit normal vector n⃗(s′) at r⃗(s′) pointing through r⃗′(s′) as
in the Frenet frame above. We can furthermore calculate the tangent vector at r⃗′(s′) as

dr⃗′(s′)

ds′
=

r⃗(s′)

ds′
+ ϵ

d ⃗n(s′)

ds′
= t⃗(s′) + ϵ

dn⃗(s′)

ds′
. (A.26)

Inserting this into equation A.24 we get

Lk =
1

4π

∮
C′
ds′
∮
C

ds
r⃗(s′) + ϵn⃗(t′)− r⃗(s)

|r⃗(s′) + ϵn⃗(t′)− r⃗(s)|3 ·
[(

t⃗(s′) + ϵ
dn⃗(s′)

ds′

)
× t⃗(s)

]
. (A.27)

Now we want to calculate equation A.27 for ϵ → 0. In this limit we receive a singular
part and a non-singular part separated at s = s′. For the evaluation we assume that there
exists a δ ≥ |s− s′| with ϵ << δ. For the non-singular part we receive

1

4π

∮
C′
ds′ lim

δ→0+

[∫ s′−δ

0

ds+

∫ L

s′+δ

ds

]
r⃗(s′) + ϵn⃗(t′)− r⃗(s)

|r⃗(s′) + ϵn⃗(t′)− r⃗(s)|3 ·
[(

t⃗(s′) + ϵ
dn⃗(s′)

ds′

)
× t⃗(s)

]
≡ Wr.

(A.28)

Since ϵ << δ and we take limδ→0, the two curves C and C ′ lie on top of each other and
we can write

Wr =
1

4π

∮
C′
ds′
∮
C

ds
r⃗(s′)− r⃗(s)

|r⃗(s′)− r⃗(s)|3 ·
(
t⃗(s′)× t⃗(s)

)
. (A.29)

This is the writhing number Wr.
The singular part of equation A.27 is

1

4π

∮
C′
ds′
∫ s′+δ

s′−δ

ds
r⃗(s′) + ϵn⃗(s′)− r⃗(s)

|r⃗(s′) + ϵn⃗(s′)− r⃗(s)|3 ·
[(

t⃗(s′) + ϵ
dn⃗(s′)

ds′

)
× t⃗(s)

]
≡ TW . (A.30)
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For small δ we can expand r⃗(s) around s′ and find in linear order

r⃗(s) ≈ r⃗(s′) + (s− s′)⃗t(s′) (A.31)

t⃗(s) ≈ t⃗(s′) + (s− s′)
dt⃗(s′)

ds
. (A.32)

Inserting this yields

TW =
1

4π

∮
C′
ds′
∫ s′+δ

s′−δ

ds
ϵn⃗(s′)− (s− s′)⃗t(s′)

|ϵn⃗(s′)− (s− s′)⃗t(s′)|3
·
[(

t⃗(s′) + ϵ
dn⃗(s′)

ds′

)
×
(
t⃗(s′) + (s− s′)

dt⃗(s′)

ds

)]
t⃗(s′)×t⃗(s′)=0

=
1

4π

∮
C′
ds′
∫ s′+δ

s′−δ

ds
ϵn⃗(s′)− (s− s′)⃗t(s′)

|ϵn⃗(s′)− (s− s′)⃗t(s′)|3
·[

ϵ
dn⃗(s′)

ds′
× t⃗(s′) + t⃗(s′)× (s− s′)

dt⃗(s′)

ds
+ ϵ

dn⃗(s′)

ds′
× (s− s′)

dt⃗(s′)

ds

]
=

1

4π

∮
C′
ds′
∫ s′+δ

s′−δ

ds
1

|ϵn⃗(s′)− (s− s′)⃗t(s′)|3
·

{ϵn⃗(s′) ·
[
ϵ
dn⃗(s′)

ds′
× t⃗(s′)

]
+ ϵn⃗(s′) ·

[
t⃗(s′)× (s− s′)

dt⃗(s′)

ds

]
+
(
ϵn⃗(s′)− (s− s′)⃗t(s′)

)
·
[
ϵ
dn⃗(s′)

ds′
× (s− s′)

dt⃗(s′)

ds

]
} .

(A.33)

We use further that n⃗(s′) · t⃗(s′) = 0 and n⃗(s′) · n⃗(s′) = 1 and this yields

TW =
1

4π

∮
C′
ds′
∫ s′+δ

s′−δ

ds
1√

(s− s′)2t⃗2 + ϵ2
3

{ϵn⃗(s′) ·
[
ϵ
dn⃗(s′)

ds′
× t⃗(s′)

]
+ ϵn⃗(s′) ·

[
t⃗(s′)× (s− s′)

dt⃗(s′)

ds

]
+

+ ϵn⃗(s′) ·
[
ϵ
dn⃗(s′)

ds′
× (s− s′)

dt⃗(s′)

ds

]
− (s− s′)⃗t(s′) ·

[
ϵ
dn⃗(s′)

ds′
× (s− s′)

d ⃗t(s′)

ds

]
} .

(A.34)

With a final integration and taking the limits by letting ϵ got to zero first and then letting
δ go to zero one obtains

TW =
1

2π

∮
C

ds t⃗(s) ·
[
n⃗(s)× dn⃗(s)

ds

]
. (A.35)

Thus, inserting our results into equation A.27 yields the result optained by White and
Fuller ( [49], [208]).

Lk = Wr + TW . (A.36)

It is also called Calugareanu’s theorem [1].
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A.4. Statistics of random walks

In this section a brief overview on the statistcs of random walks is given. Random walks
(on a lattice) are frequently used to model flexible polymer chains. Thereby, one can either
model ideal chains by allowing the random walk to visit the same site more than once or
include self-avoidance and model a real chain by not allowing multiple occupancies of the
same (lattice) site. The description of the basic statistics of random walks is based on the
corresponding chapters in [179].
For simplicity, we start with the description of a one-dimensional random walk along x.
We can define the N -step trajectory of the random walk with a step length b as a chain of
length Nb [179]. In a one-dimensional random walk only ”+” and ”-” steps are possible.
We can write the probability Pn to make n steps in one of the two directions out of a total
of N steps as a binomial distribution

Pn = 2−N N !

n!(N − n)!
. (A.37)

Next, let us examine what changes in the probability distribution for large N . For this
purpose, we take the natural logarithm on both sides of equation A.37 and use Sterling’s
formula lnN ! ∼= N(lnN − 1). We receive

lnPn = −N ln 2 +N(lnN − 1)− n(lnn− 1)− (N − n)[ln(N − n)− 1] (A.38)

= −N ln 2 +N lnN − n lnn− (N − n) ln(N − n) . (A.39)

In the end, we want to represent P as a function of x. That is, we want to find an
expression for Pn = P (x). For this we can use as expression for the distance x covered
after N steps

x = b(2n−N) . (A.40)

From this follows n = (N + x/b)/2. Inserting this expression in equation A.39 yields

lnP ∼=−N ln 2 +N lnN − 1

2
(N − x/b) ln[(N − x/b)/2]

− 1

2
(N + x/b) ln[(N + x/b)/2]

=N lnN − 1

2
(N − x/b) ln(N − x/b)− 1

2
(N + x/b) ln(N + x/b)

=− 1

2
N
[(

1− x

Nb

)
ln
(
1− x

Nb

)
+
(
1 +

x

Nb

)
ln
(
1 +

x

Nb

)]
∼=

Taylor

− 1

2
N
( x

Nb

)2
= − x2

2Nb2
.

(A.41)

In the last part we used the Taylor expansion up to the second order of x/(Nb). This
is possible because P (x) is almost zero except at small |x/(Nb)|. Finally, one needs to
normalize the result with the condition

∫
P (x)dx = 1 and we receive

P (x) = (2πNb2)−1/2 exp

(
− x2

2Nb2

)
. (A.42)
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We find that a (one-dimensional) random walk results in a normal distribution with a zero
mean and a variance of Nb2.
We can now turn towards a three-dimensional case and consider a cubic lattice with lattice
spacing b. Here we can define the displacement of one lattice step as△r⃗1 = [△x1,△y1,△z1].
Furthermore, we have

⟨△r⃗1⟩ = 0

⟨△x2
1⟩ = ⟨△y21⟩ = ⟨△z21⟩ = b2/3

⟨△r21⟩ = b2 ,

(A.43)

for the displacements of a single lattice step. If we consider a total of N steps we find

⟨△r⃗⟩ = 0

⟨△x2⟩ = ⟨△y2⟩ = ⟨△z2⟩ = Nb2/3

⟨r⃗2⟩ = ⟨△r⃗2⟩ = Nb2 .

(A.44)

The probability density for three dimensions can be written as P (r⃗) = Px(r⃗)Py(r⃗)Pz(r⃗).
Thereby, the probability densities of the three components are only differ in the direction.
For the x component we find that the random walks has a zero mean and a variance of
Nb2/3 after N steps. Thus, for large N we expect a normal distribution with the same
mean and variance which can be written as

Px(r⃗) =

(
2πNb2

3

)− 1
2

exp

[
− 3x2

2Nb2

]
. (A.45)

Altogether, this gives us a probability density for three dimensions of

P (r⃗) = Px(r⃗)Py(r⃗)Pz(r⃗)

= (2πNb2)−3/2 exp

(
− 3r⃗2

2Nb2

)
.

(A.46)

We see that equation A.46 is just identical to the probability distribution of a freely jointed
chain as depicted in equation 1.9. Therefore, we see at this point that random walks are
optimal models for polymers.

A.5. Overlapping polymers

In order to estimate the free energy cost of two overlapping polymers without confinement
we consider two identical polymers consisting of N monomers each. The Flory theory
estimates that the size of each of the two polymers scales as described in equation 1.25
RF ∼ Nν . Thus, the volume in which both polymers overlap might be estimated as

V ∼ R3
F ∼ N3ν ∼ N9/5 . (A.47)

Furthermore, the Flory theory assumes independently distributed monomers in the overlap
volume. Thus, the monomer concentration can be written as

ρ ≈ N

V
≈ N1−3ν ≈ N−4/5 . (A.48)
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In the next step one has to consider the number of contacts between the monomers of
different polymers, ncontacts. Here, the Flory theory takes the monomer concentration as
the contact probability, setting pcontact = ρ, and receives

ncontacts ≈ N · N
V

≈ N2

N3ν
≈ N2−3ν ≈ N1/5 . (A.49)

With this the free energy of the interacting polymers is estimated. The free energy scales
with the number of monomer contacts, ncontacts, and thus we can write

F ∼ kBTncontacts ∼ kBTN
1/5 . (A.50)

This result of the Flory theory predicts that long polymers should behave as mutually
impenetrable hard spheres.
However, as discussed previously, the Flory theory makes some estimation errors. The
main mistake of the assumptions made by the Flory theory is to assume independently
distributed monomers. This is obviously wrong because monomer correlations are caused
by the linkage of the monomers along the backbone of the polymer. It was shown later by
Grosberg et al. [57] that in fact

F ∼ kBT . (A.51)

This result now indicates that polymers in bulk can rather easy intermingle ( [84], [157]).
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B. Numerical implementation

B.1. Monte Carlo simulation

B.1.1. MOS algorithm

In this section a short description of the MOS algorithm as presented in [115] shall be given.
The algorithm is defined for arbitrary dimensions d. Thus, we consider a d-dimensional
space Rd. Here, any point is defined by its coordinate (x(1), x(2), ..., x(d)). Since we study
SAWs on a lattice, the d-dimensional lattice is

Ld = {(x(1), ..., x(d)) : x(i) is an integer for i = 1, ..., d} . (B.1)

In this setting an N -step SAW w can be written as a sequence w0, w1, ..., wN where each
point is a nearest neighbor of its predecessor. Thus, |wi − wi−1| = 1 for i = 1, ..., N .
Furthermore, we want to fixate the endpoints, denoted as w0 and wN . With this it is
possible to define the set of all N -step SAWs having w0 = A and wN = B for two points
A,B ∈ Ld, SN(A,B).
The MOS algorithm consists of a finite set F = {F1, ..., Fr} of transformations of SN (A,B)
into itself. If one is given any SAW, w[0], in SN(A,B) at time t = 0, one can iteratively
come up with the next SAW at each successive integer time t, knowing w[t−1], by choosing
a number n(t) at random from {1, .., r} accoring to a fixed probability distribution, and
put w[t] = Fn(t)

(
w[t−1]

)
. The resulting sequence w[0], w[1], ... of SAWs is a Markov chain

on SN(A,B).
What remains is to define the transformations Fi. For this, in a space with d ≥ 3 one
needs three classes of transformations Ti, called inversion, reflection, and interchange as
building blocks of the Fi transformations. A transformation Ti always tries to perturb a
SAW into some other object. Subsequently, the deformation is accepted if the resulting
object is a SAW and rejected otherwise. Therefore, a transformation Fi can be defined as
follows

Fi(w) =

{
Ti(w) if Ti(w) ∈ SN(A,B)

w if Ti(w) ̸∈ SN(A,B) .
(B.2)

The first Ti is the inversion transformation. For a SAW (w0, ..., wN) and integers k and l
such that 0 ≤ k < l ≤ N the inversion transformation T inv

k,l (w) is defined as the sequence

w
′
= (w

′
0, ..., w

′
N) given by

w
′

i =

{
wk + wl − wk+l−i if k ≤ i ≤ l

wi otherwise .
(B.3)

Thus, the inversion transformation inverts the original curve [wl, ..., wk] through the point
(wk + wl)/2. Notably, upon setting l = k + 2 the inversions T inv

k,k+2(w) are exactly the

117



length-preserving BFACF moves.
The reflection transformation reflects a piece of a SAW through a hyperplane which makes
angles of 45◦ with two of the coordinate hyperplanes. Thus, for a SAW w ∈ SN (A,B), and
integers 0 ≤ k < l ≤ N,m ∈ {−1, 1}, and 1 ≤ α < β ≤ d, the reflection transformation

T ref,m
k,l;α,β(w) is defined as follows. The transformation is rejected if w

(α)
l −w

(α)
k ̸= m(w

(β)
l −w

(β)
k )

or if w
(γ)
l ≠ w

(γ)
k for some γ ̸= α, β. In the first case, the points wl and wk would be

opposite corners of a square and in the second case the points would lie in the same plane.
In both cases a reflection would not make sense and thus one puts T ref,m

k,l;α,β = w. However, if
both conditions don’t result in a rejection, one can perform the transformation by setting

(w
′

i)
(γ) =

{
w

(γ)
k −m(w

(α+β−γ)
k+l−i − w

(α+β−γ)
l ) if k ≤ i ≤ l and γ is α or β

w
(γ)
i otherwise .

(B.4)

The last transformation we need to define to ensure ergodicity of the algorithm in three or
more dimensions is the interchange transformation. Again, for w ∈ SN (A,B), 0 ≤ k < l ≤
N,m ∈ {−1, 1}, and 1 ≤ α < β ≤ d, define T int,m

k,l;α,β(w) as follows. The transformation is
also rejected if the points wl and wk lie on opposite corners of a square. If this is not the
case, we define the transformation via the transformation of the sequence of steps that
build the SAW. Thus, if the original walk w is defined by the sequence s1, ss, ..., sN of steps
with si = wi − wi−1, the interchange transformation produces the walk w

′
= T int,m

k,l;α,β(w).

Thereby, the new steps s
′
i = w

′
i − w

′
i−1 are

s
′(γ)
i =

⎧⎪⎨⎪⎩
m · sβi if k < i ≤ l and γ = α

m · sαi if k < i ≤ l and γ = β

s
(γ)
i otherwise .

(B.5)

Thus, the interchange transformation interchanges the α and β coordinates of the steps
sk+1, ..., sl. The orientation of the interchanged coordinates is conserved for m = +1 and
interchanged for m = −1.

B.1.2. A* algorithm

The A* algorithm is a prominent path search algorithm. The goal of the algorithm is to
find the optimal path (i.e. the path with the lowest cost) from a given start node to a
given end node [158]. The cost can be measured in arbitrary units like distance travelled
or time spend. The A* algorithm is a modification of other path seach algorithms like
Breadth First Search or Dijkstra’s algorithm. While Breadth First Search and Dijkstra’s
algorithm explore equally in all directions, the A* algorithm tries to find a directed way
following the smallest estimated cost. Therefore, the A* algorithm does not try to follow
several paths at the same time in order to select a certain one at the end, but the algorithm
decides on-the-fly which of the paths it will follow further. In order to do so, the algorithm
maintains a tree of paths originating at the start node and decides at each iteration which
path to extend further until the goal is reached. This is implemented using the concept
of a frontier. The frontier can be imagined like an expanding ring around the start node
and it describes the successive extension of the search radius over adjacent nodes. In each
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iteration of the algorithm, the frontier is extended and the cost function is calculated for
the new fields. The cost function is at the core of the algorithm [158]. It is defined as

f(n) = g(n) + h(n) . (B.6)

Here, n is the node on the path, g(n) is the cost from the start node to the current node
n, and h(n) is a heuristic function that estimates the cost of the cheapest path from n to
the goal node. On a lattice the logic choice for the heuristic function is the Manhatten
distance. The use of the estimated cost to the target with the help of the heuristic is the
central extension of the A* algorithm compared to the Dijkstra’s algorithm and leads to a
more goal oriented search. A schematic depiction of pathfinding with the A* algorithm on
a two-dimensional grid is shown in figure B.1

Figure B.1.: Path search with the A* algorithm. The start node is shown in red and the
goal node is shown in green. The frontier is marked by the green border and
the costs are noted in the squares. The gray areas represent obstacles.

As can be seen in figure B.1 the algorithm expands its frontier (squares with green borders)
at every iteration. Thereby, the cost function is evaluated and the square within in the
frontier with the lowest cost function is chosen to expand the path. If the goal node is
reached by the frontier or if there are no paths eligible to be extended, the algorithm
terminates [158].
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B.2. MD implementation

B.2.1. Velocity verlet algorithm

In MD simulations the aim is to numerically solve Newton’s equations of motion. Thereby,
the time-dependent behavior of the system is evaluated. In order to do this, an efficient
method for time integration is needed. The standard in Md simulations up to date is the
Velocity Verlet algorithm introduced by Verlet in 1967 [189]. This algorithm shall here be
briefly described. We start with the equations of motion for point-like particle

v̇i(t) =
Fi ({xi}, vi, t)

mi

ẋi(t) = vi(t) .

(B.7)

Here, xi, vi,mi are position, velocity and mass of the particle i and Fi ({xi}, vi, t) are the
forces acting on it as a result of interactions with other particles or external fields. A besic
description of the Verlet formula can be obtained using Taylor expansions for x(t) as

x(t+ h) = x(t) + hẋ(t) + (h2/2)ẍ(t) +O(h3) , (B.8)

where t is the current time, and h ≡ △t. Furthermore, we denote with ẋ(t) the velocity
and with ẍ(t) the acceleration of the particle. Analogue to equation B.8 we can write

x(t− h) = x(t)− hẋ(t) + (h2/2)ẍ(t) +O(h3) . (B.9)

The Verlet formula is obtained by adding equation B.9 to equation B.8

x(t+ h) = 2x(t)− x(t− h) + h2ẍ(t) +O(h4) . (B.10)

We realize that we can calculate the position at t+h by using the information from the two
previous time points t and t− h. This provides the opportunity to calculate a trajectory
iteratively. Furthermore, the velocity can be calculated as

ẋ(t) =
x(t+ h)− x(t− h)

2h
+O(h2) , (B.11)

if needed ( [56], [151]).
A variant of the Velocity Verlet method is the Leapfrog method which is used in the
software package ESPResSo used in this work. The method is derived similarly. We write
the Taylor expansion as

x(t+ h) = x(t) + h [ẋ(t) + (h/2)ẍ(t)]  
=ẋ(t+h/2)

+O(h3) . (B.12)

Thus, we can further write

ẋ(t+ h/2) = ẋ(t) +
h

2
ẍ(t)

ẋ(t− h/2) = ẋ(t)− h

2
ẍ(t) .

(B.13)
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Combination of the two equations above yields

ẋ(t+ h/2) = ẋ(t− h/2) + hẍ(t) . (B.14)

Together, the leapfrog integration formulae are [151]

ẋ(t+ h/2) = ẋ(t− h/2) + hẍ(t)

x(t+ h) = x(t) + hẋ(t+ h/2) .
(B.15)

The algorithm implemented in ESPResSo proceeds in the following four step procedure [205]

1. Calculate the velocity at the half step

2. Calculate the new position

3. Calculate the force based on the new position

4. Calculate the new velocity

It should be noted that in the first time step no forces are present yet in ESPResSo.

Therefore, they are either computed before the first time step (for random forces) or are
lacking in the first half time step (coupling forces).
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C. Additional analyses

C.1. Outlier clearance for experimental data of S. meliloti

Figure C.1.: Outlier detection in experimental data. Shown are the representative heatmaps
of the oris and ters in the S. meliloti WT strain. Analyzing the data, we
realized that the automated foci detection in the MicrobeJ plugin sometimes
exhibits errors in assigning the foci to their cell poles. Furthermore, we have
also assumed a natural rate of measurement outliers of 10%. To eliminate
such outliers, we calculated the probability density function (PDF) for each
data sample and excluded all points with a probability below 10% of belonging
to the distribution (red encircled points). This was done for all experimental
data points.

C.2. Model results for corrected ori positions in S.
meliloti

In the analyses of the experimental data on the WT and △ pSymA strain of S. meliloti ,
there was much variation in the positions of the oris. Assuming that the organization of
plasmids in the cell is regulated by a spatial determination of the oris and that this works
equally in all strains, we can adapt our model accordingly to suitable positions. It makes
sense to choose those positions that do not result in a jump between the position of the
respective ori and the following loci of a plasmid, which is difficult to explain. This is best
satisfied by the position of oriB measured in WT and the position of oriC measured in △
pSymA. In addition, oriA is slightly offset within its standard deviation. In figure C.2 (A)
we see the results for WT if we assume a spatial confinement in the model as before in
consequence of an terB enrichment zone.
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Figure C.2.: A: Spatial organization of the replicons in S. meliloti WT due to spatial
confinement of terA and terB to enrichment zones. In black the experimental
data is shown while the model results are shown in red (standard deviation
as shaded area). terA and terB are restricted to an enrichment zone defined
as 75 % of the experimental standard deviation for the markers. B: Spatial
organization of the replicons in S. meliloti WT due to genomic fixation of
terA and terB to the chromosome. The interacting loci are marked with
corresponding circles. The three subplots in both A and B each show the
organization of one of the three replicons in the same cell.

In figure C.2 (B) the model prediction for inter-replicon interactions of the plasmids with
the chromosome is shown. We recognize that this assumption is not only more logical in
terms of interpretation of the experimental data, but also results in an improved fit of the
model to them. The same applies to △ pSymA. In figure C.3 the same coordinates of oris
were used as for WT and we see an improvement of the fit here as well.
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Figure C.3.: A: Model prediction of the spatial organization of the replicons in the knock-
out mutant △ pSymA due to spatial confinement of the terB region. In black
the experimental data is shown while the model results are shown in red
(standard deviation as shaded area). B: Model prediction due to genomic
fixation of the terB region to the chromosome.

C.3. Degree of separation after replication in MD
simulations

In the simulations the degree of separation of the two chromosomes after replication was
also measured. The results for the various cell types are shown in table C.1.

Track model Factory model

WT 82.16 86.66
dSMC 83.00 91.54
dParAB 40.88 46.1

dSMCdParAB 66.64 42.10

Table C.1.: Average degree of separation within the different cell types after replication.
Results averaged over 3000 runs for each cell type.

For the calculations the degree of separation was defined as the longitudinal overlap of
the chromosomes within the cell divided by the longitudinal elongation of the shorter
chromosome in the cell.
The results from table C.1 show that for the cell types in which ParAB is active (WT
and dSMC) a higher degree of separation of the chromosomes is reached after replication.
Obviously, the ParAB system is both improtant for the partitioning of the oris and also
has a strong influence on the segregation of the complete chromosomes.
The distribution of the achieved degrees of separation after replication per cell type is
shown in the histograms of figure C.4 and figure C.5. Again, one finds a higher variability
in the different degrees of separation after replication for cells lacking the ParAB system.
Without the effect of the ParAB system cells still may achieve complete separation of
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chromosomes during the replication phase, but not as reliably as in the case of additional
help by ParAB.
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Figure C.4.: Histograms for the degree of separation of the chromosomes after replication
with the track scheme. The four histograms display the results for the various
segregation schemes.
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Figure C.5.: Histograms for the degree of separation of the chromosomes after replication
with the factory scheme. The four histograms display the results for the
various segregation schemes.
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in four dimensions. Nuclear Physics B, 215(2), 209-248.

[28] Di Pierro, M., Zhang, B., Aiden, E. L., Wolynes, P. G., & Onuchic, J. N. (2016). Trans-
ferable model for chromosome architecture. Proceedings of the National Academy of
Sciences, 113(43), 12168-12173.

[29] Cook, P. R., & Marenduzzo, D. (2009). Entropic organization of interphase chromo-
somes. Journal of Cell Biology, 186(6), 825-834.

[30] De Gennes, P. G., & Gennes, P. G. (1979). Scaling concepts in polymer physics.
Cornell university press.

128



[31] De Zela, F. (2004). Linking Maxwell, Helmholtz and Gauss through the linking
integral. arXiv preprint physics/0406037.

[32] Di Ventura, B., Knecht, B., Andreas, H., Godinez, W. J., Fritsche, M., Rohr, K., ...
& Sourjik, V. (2013). Chromosome segregation by the Escherichia coli Min system.
Molecular systems biology, 9(1), 686.

[33] Dorier, J., & Stasiak, A. (2009). Topological origins of chromosomal territories.
Nucleic acids research, 37(19), 6316-6322.

[34] Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering
with CRISPR-Cas9. Science, 346(6213).

[35] Ducret, A., Quardokus, E. M., & Brun, Y. V. (2016). MicrobeJ, a tool for high
throughput bacterial cell detection and quantitative analysis. Nature microbiology,
1(7), 1-7.

[36] Dworkin, J., & Losick, R. (2002). Does RNA polymerase help drive chromosome
segregation in bacteria?. Proceedings of the National Academy of Sciences, 99(22),
14089-14094.

[37] El Najjar, N., Geisel, D., Schmidt, F., Dersch, S., Mayer, B., Hartmann, R., ...
& Graumann, P. L. (2020). Chromosome Segregation in Bacillus subtilis Follows
an Overall Pattern of Linear Movement and Is Highly Robust against Cell Cycle
Perturbations. Msphere, 5(3).
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[72] Hofmann, A., Mäkelä, J., Sherratt, D. J., Heermann, D., & Murray, S. M. (2019).
Self-organised segregation of bacterial chromosomal origins. Elife, 8, e46564.

[73] Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all.
Neuron, 99(6), 1129-1143.

[74] Hou, T., Zheng, G., Zhang, P., Jia, J., Li, J., Xie, L., ... & Li, Y. (2014). LAceP:
lysine acetylation site prediction using logistic regression classifiers. PloS one, 9(2),
e89575.

[75] Hsu, H. P., Paul, W., Rathgeber, S., & Binder, K. (2010). Characteristic length
scales and radial monomer density profiles of molecular bottle-brushes: Simulation
and experiment. Macromolecules, 43(3), 1592-1601.

131



[76] Huang, J. Z. (2014). An Introduction to Statistical Learning: With Applications in
R By Gareth James, Trevor Hastie, Robert Tibshirani, Daniela Witten.

[77] Imakaev, M. V., Fudenberg, G., & Mirny, L. A. (2015). Modeling chromosomes:
Beyond pretty pictures. FEBS letters, 589(20), 3031-3036.

[78] Ireton, K., Gunther, N. 4., & Grossman, A. D. (1994). spo0J is required for normal
chromosome segregation as well as the initiation of sporulation in Bacillus subtilis.
Journal of bacteriology, 176(17), 5320-5329.

[79] Jalal, A. S., Tran, N. T., & Le, T. B. (2020). ParB spreading on DNA requires
cytidine triphosphate in vitro. Elife, 9, e53515.

[80] Janczura, J., Kowalek, P., Loch-Olszewska, H., Szwabiński, J., & Weron, A. (2020).
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