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1 Summary 

Wiring of the brain is established by axons, which elongate from a neuron and are guided 

through the brain to their target neurons. Growth cones are actin-rich structures located 

at the tips of axons and are responsible for sensing environmental cues as well as 

controlling directed axonal outgrowth. Motility and function of growth cones are mediated 

by underlying actin dynamics, which in turn are regulated by actin-binding proteins 

(ABPs). Among these proteins is the family of cyclase-associated proteins (CAPs), which 

comprises two members (CAP1, CAP2), which are both expressed in the brain. Despite 

recent progress in uncovering their molecular function in actin dynamics, their 

physiological role during brain development remains largely unknown. Therefore, we 

used knockout (KO) mouse models for both CAPs to investigate their function in brain 

development. We found both proteins expressed in the embryonic brain as well as in 

cultured neurons and being localized within growth cones. CAP1-KO brains displayed 

impaired fiber track formation, but had no alterations in neuron migration or precursor 

proliferation. In addition, CAP1-KO neurons were delayed in development and exhibited 

shorter and thicker neurites. This was accompanied by enlarged growth cones, which 

had fewer filopodia, reduced motility, impaired actin dynamics and consequently 

disturbed responses to guidance cues. Instead, the loss of CAP2 did not cause any 

changes in brain morphology or neuron differentiation. Alterations in differentiation and 

morphology in CAP1-KO neurons as well as growth cone size could be rescued by 

overexpression of either CAP1 or CAP2, suggesting functional redundancy of both 

proteins. Further analysis exploiting CAP1 mutants revealed that the helical fold domain 

and therefore the interaction with the actin regulator cofilin1 is important in mediating 

growth cone function. Establishing a neuron replating protocol to study early neuron 

differentiation and growth cone function upon knockout of either CAP1, cofilin1 or both 

ABPs allowed a more detailed analysis on the functional interaction of CAP1 and cofilin1 

in the growth cone. This approach revealed that both proteins synergistically regulate F-

actin dynamics within the growth cone and that they are functionally dependent on each 

other. Taken together, this study showed that CAP1 and CAP2 are redundant in 

regulating growth cone function in vitro, but that CAP1 is the dominant family member in 

neuron differentiation and brain development. Furthermore, this study provides a new 

protocol for studying protein function during early aspects of neuron differentiation and 

showed that CAP1 and cofilin1 functionally interact in the growth cone and regulate its 

dynamics, thereby providing new insights into the physiological role of CAP1-cofilin1 

interaction.



 

2 
 

2 Zusammenfassung 

Das Axon ist der verlängerte Neurit eines Neurons, welches durch das Gehirn migriert 

um mit anderen Neuronen neuronale Schaltkreise zu bilden. Verantwortlich für die 

Navigation sind Wachstumskegel, welche sich an der Spitze ein jedes Axons befinden. 

Wachstumskegel sind reich an F-Aktin, deren Dynamik von Aktin-bindenden Proteinen 

(ABP) reguliert wird. Zyklase-assoziierte Proteine (CAPs) gehören zu den ABP und 

kommen in Säugetieren in zwei Isoformen vor (CAP1, CAP2), welche beide im Gehirn 

exprimiert werden. Obwohl in kürzlich veröffentlichten Studien gezeigt werden konnte 

wie CAPs Aktindynamik regulieren, ist über deren physiologische Funktion in der 

Gehirnentwicklung nahezu nichts bekannt. Um dieser Frage nachzugehen wurden 

Knockout (KO) Mäuse für beide Proteine analysiert. CAP1-KO Mäuse zeigten stark 

reduzierte Nervenfaserbildung, wohingegen andere wichtige Entwicklungsprozesse wie 

neuronale Migration und Vorläuferzellproliferation unverändert waren. Des Weiteren war 

die neuronale Differenzierung verlangsamt, die Neuriten verkürzt als auch verdickt und 

die Wachstumskegel vergrößert mit weniger Filopodien. Die Wachstumskegel wiesen 

zusätzlich eine verminderte Aktindynamik auf und zeigten eine gestörte Reaktion auf 

chemotaktische Reize. Im Gegensatz zu CAP1-KO Mäusen wiesen CAP2-KO Mäuse 

keinerlei Veränderungen in der Gehirnentwicklung auf und auch die neuronale 

Differenzierung blieb unverändert. Veränderungen in der neuronalen Differenzierung 

und der Morphologie der Neurone als auch in den Wachstumskegeln im CAP1-KO 

konnten durch die Überexpression von CAP1, als auch von CAP2, rückgängig gemacht 

werden. Daraus ließ sich schließen, dass beide Proteine redundante Funktionen in 

differenzierenden Neuronen ausüben. Des Weiteren konnte herausgefunden werden, 

dass die „helical fold domain“, welche die Interaktion mit dem Aktinregulator Cofilin1 

vermittelt, wichtig für die Funktion von CAP1 im Wachstumskegel ist. Um die Interaktion 

von CAP1 und Cofilin1 im Wachstumskegel zu entschlüsseln, wurde ein Protokoll 

entwickelt, welches Neurone replattiert um somit frühe neuronale Differenzierung und 

Wachstumskegel nach dem KO von CAP1, Cofilin1 oder beiden Proteinen zu 

untersuchen. Damit konnte gezeigt werden, dass CAP1 und Cofilin1 synergistisch die 

Aktindynamik in Wachstumskegeln regulieren und dass deren Funktion vom jeweils 

anderen Protein abhängt. Zusammengefasst zeigt diese Studie, dass CAP1 und CAP2 

redundant in ihrer Funktion bezüglich der Regulation der Dynamik von 

Wachstumskegeln sind, aber das CAP1 der wichtigere Regulator in der neuronalen 

Differenzierung ist. 
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Zusätzlich bietet diese Studie ein Protokoll um Proteine in früher neuronaler 

Differenzierung zu untersuchen. Damit konnte gezeigt werden, dass CAP1 und Cofilin1 

gemeinsam Wachstumskegel regulieren, welches einen neuen Einblick in die 

physiologische Relevanz der CAP1-Cofilin1-Interaktion gibt. 
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3 Introduction 

3.1 Axons are the backbone of neuron connectivity 

In 1875, Camillo Golgi laid the basis for modern cellular neuroscience when he 

discovered a method to visualize single neurons in the brain (Shepherd et al. 2011; 

Zupanc 2017). His discovery paved the way for neuroscientists to uncover the 

mechanisms of brain function on a cellular and molecular level. The human brain is a 

highly complex organ consisting of billions of neurons with even more synapses (von 

Bartheld, Bahney, and Herculano-Houzel 2016). This allows the brain to store memories 

as well as process difficult and complex tasks. Axonal fibers traversing the brain and the 

body allow quick signal transmission and are a prerequisite for fast data processing 

(Debanne et al. 2011). During differentiation, neurons form several neurites but only the 

fastest growing neurite will become the axon (Dotti, Sullivan, and Banker 1988) and 

together with dendrites and the soma build up the neuronal circuit. Axon formation is a 

crucial step in the development of a neuron as it defines its polarity (Da Silva and Dotti 

2002). On the way to maturation, the neuron undergoes several distinct stages, which 

are morphologically distinguishable (Figure 1).  

The newly plated hippocampal or cortical neurons exhibit a round shape (stage 1), which 

is disrupted after one day in vitro (DIV1) as the neurons form neurites that protrude out 

of the soma (stage 2). At DIV2, one neurite rapidly elongates and becomes the axon 

(stage 3) and at DIV4, the neuronal dendritic tree develops (stage 4). In the last stage 

(stage 5) the neuron matures, forming dendritic spines and synapses (Dotti, Sullivan, 

and Banker 1988; Polleux and Snider 2010). 

Figure 1 – Differentiation stages of cultured hippocampal neurons and the approximate time 
points. Newly plated neurons exhibit a round shape, from which neurites start to grow out. The 
axon develops after one and a half days and during this time growth cones at the tip of the axon 
and neurites (red box) are clearly visible. After four days, the dendritic tree starts to outgrow, 
followed by neuron maturation after seven days. Modified scheme from Dotti, Sullivan and Banker 
1988. 
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To properly connect neurons and build neuronal circuits, the axon has to be guided 

through the brain to its target cells. To guide the axon on its way, neuron and glia cells 

provide a variety of cues, which can be either repulsive or attractive (Dudanova and Klein 

2013; Chédotal and Richards 2010; Stoeckli 2018). Besides chemical cues, the stiffness 

of the surrounding tissue equally contributes to the guidance of the axon (Koser et al. 

2016). Failed axon guidance or outgrowth is known to result in neurological disorders 

and diseases, with epilepsy being one of the more prominent ones (Izzi and Charron 

2011; Van Battum, Brignani, and Pasterkamp 2015). 

3.2 Structure and function of the growth cone 

A structure crucial for axon guidance is the growth cone, which is located at the tip of 

neurites and the axon. The growth cone has a ‘hand-shaped’ appearance and was first 

described by Ramon y Cajal in 1890 (Tamariz and Varela-Echavarria 2015). It can be 

separated into three different domains according to their shape and composition of 

cytoskeletal elements (Figure 2). 

Beginning from the distal end of a neurite or an axon lays the central (C) domain, which 

mainly consists of bundled microtubules extending from the shaft into the growth cone. 

This is also the place were protein synthesis takes places, supplying the growth cone 

with structural and regulatory components (Lowery and van Vactor 2009). Adjacent to 

the C domain, controlling the progression of microtubules and the axonal shaft, lays the 

Figure 2 – Scheme of a growth cone. The central (C) domain encloses organelles and bundled 
microtubules, which originate from the axonal shaft. The periphery (P) domain contains an F-actin 
meshwork that builds up lamellipodia and F-actin bundles, which in turn define filopodia. Dynamic 
microtubules invade the P domain and align to F-actin bundles within the filopodia. The transition 
(T) zone is composed of short F-actin strands, which form an F-actin arc, and is located between 
the C and P domain. Scheme obtained from Lowery and van Vactor 2009. 
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transition (T) zone. It consists mainly of short actin filaments (F-actin), which are 

decorated with myosins, granting the T zone a high degree of flexibility (Medeiros, 

Burnette, and Forscher 2006; Burnette et al. 2008; Lowery and van Vactor 2009). The 

periphery (P) domain consists primarily of F-actin, which forms lamellipodia and filopodia, 

thereby creating the characteristic ‘hand-shaped’ appearance. (Lowery and van Vactor 

2009; Omotade, Pollitt, and Zheng 2017). In addition, few dynamic microtubules from the 

C domain invade the P domain and connect to the F-actin strands, which define the 

filopodia (Lowery and van Vactor 2009; Cammarata, Bearce, and Lowery 2016). The 

P domain is also the most outer region of the growth cone and therefore it is important 

for sensing environmental cues and reacting to them (Gomez and Letourneau 2015).  

Besides sensing, the growth cone propels axonal outgrowth, which is driven by the actin 

cytoskeleton (Lowery and van Vactor 2009). F-actin polymerizes at the leading edge and 

builds up membrane tension, resulting in a force that pushes F-actin in the direction of 

the T zone (Craig et al. 2015, 2012). There, myosins pull the F-actin towards the T zone 

where it is then depolymerized by members of the actin depolymerizing factor 

(ADF)/cofilin family (Craig et al. 2015; Kerstein, Nichol IV, and Gomez 2015; Lin et al. 

1996). This so-called retrograde F-actin flow enables the growth cone to constantly 

retract and protrude filopodia into the surrounding to sense cues, but does not result in 

any directed movement of the growth cone. The ‘molecular-clutch’ theory hypothesizes 

that these F-actin strands can be coupled to the underlying surface via integrins and 

other anchor molecules leading to a forward movement of the growth cone (Craig et al. 

2015; Nichol IV et al. 2016). Hence, the velocity of the retrograde F-actin flow is inversely 

proportional to the growth cone advance (Lin and Forscher 1995). This can be indirectly 

exploited by guidance cues, as they either strengthen the molecular clutch or weaken it, 

resulting in growth cone advance either into the direction of the source or away from it 

(Gomez and Letourneau 2015; Nichol IV et al. 2016). In addition, guidance cues 

indirectly control actin-binding proteins (ABPs), which regulate the retrograde F-actin 

flow, as well as couple microtubules to F-actin thus determining the direction of 

expansion of the growth cone and subsequently of the axon (Lowery and van Vactor 

2009; Craig 2018).  

3.3 F-actin treadmilling and its regulating proteins 

The constant polymerization and depolymerization of actin described above co-drives 

retrograde F-actin flow. It is a well-known concept in biology, called the F-actin 

treadmilling mechanism that describes a process in which under ‘steady-state’ conditions 

the rate of polymerization and depolymerization of F-actin is equal (Neuhaus et al. 1983; 

Baum et al. 2006). There are multiple ABPs, which control the actin cytoskeleton, but 
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key regulators of the actin treadmilling are members of the three protein families 

ADF/cofilin, profilins and cyclase-associated proteins (CAPs) (Baum et al. 2006) (Figure 

3).  

The protein family ADF/cofilin consists of the three proteins namely ADF, cofilin1 and 

cofilin2, with all of them being expressed in the brain (Vartiainen et al. 2002; Gurniak et 

al. 2014). ADF/cofilin binds to F-actin and enhances its severing as well as 

depolymerization, thereby producing ADP-bound monomeric, globular actin (G-actin) 

(Bamburg, McGough, and Ono 1999; Ono 2013; Baum et al. 2006). The profilin family 

comprises four members of which only profilin1 and profilin2 are expressed in the brain 

(Witke et al. 1998; Braun et al. 2002; Obermann et al. 2005). In contrast to ADF/cofilin, 

profilins bind G-actin and promote the exchange from ADP to ATP thereby providing new 

polymerization-competent G-actin (Ono 2013; Baum et al. 2006; Goldschmidt-Clermont 

et al. 1992).  

CAPs compose the third protein family that regulates actin treadmilling. It comprises two 

members, CAP1 and CAP2, whereof the first one is broadly expressed with the exception 

of adult skeletal muscle and the latter being restricted to certain tissues including the 

brain (Rust et al. 2020; Ono 2013; Bertling et al. 2004). CAPs are multi-domain proteins 

(Rust et al. 2020) with multiple functions in regulating actin treadmilling. The N-terminal 

Figure 3 – F-actin treadmilling and its regulating proteins. ADF/cofilin binds at the (-)-end of F-
actin to dissociate G-actin subunits. CAP enhances the depolymerization through ADF/cofilin and 
releases ADF/cofilin from G-actin. CAP as well as profilin exchange ADP with ATP on G-actin 
allowing for a new round of polymerization at the (+)-end. Scheme obtained from Isabell Metz 
unpublished. 



Introduction 

8 
 

half of the protein contains the helical fold domain (HFD), which binds to ADF/cofilin-

decorated F-actin and enhances the depolymerization rate of actin subunits (Kotila et al. 

2019; Ono 2013; Rust et al. 2020). In addition, CAPs form oligomers via their N-terminal 

oligomerization domain (OD) to further enhance the ADF/cofilin-mediated 

depolymerization of F-actin (Quintero-Monzon et al. 2009; Purde et al. 2019). The 

second large domain is the CAP and Retinitis Pigementosa protein 2 (CARP) domain, 

which is located at the C-terminus. It binds to G-actin and promotes the exchange from 

ADP to ATP on G-actin (Kotila et al. 2018; Ono 2013; Rust et al. 2020). In between the 

HFD and CARP domain are two proline-rich regions, which are important for the 

interaction with other regulatory proteins like profilins (Makkonen et al. 2012; Bertling et 

al. 2007; Rust et al. 2020). Both proline-rich stretches flank the WASP homology 2 (WH2) 

domain, which is crucial for the nucleotide exchange on G-actin and the release of 

ADF/cofilin from the ADF/cofilin-actin complex (Chaudhry et al. 2010; Kotila et al. 2019; 

Rust et al. 2020). 

3.4 ABPs are important regulators of growth cone function 

Actin dynamics are crucial for growth cone function and motility with ABPs playing an 

essential role in regulating growth cone dynamics (Omotade, Pollitt, and Zheng 2017). 

Over the past years, different studies deciphered the role of a variety of ABPs in 

regulating the growth cone and actin dynamics within the growth cone. Among them is 

the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin on existing F-actin 

and thereby promotes F-actin branching and building of an F-actin meshwork (Goley and 

Welch 2006). In growth cones, Arp2/3 builds up lamellipodia and initiates filopodia 

formation (Korobova and Svitkina 2008). Furthermore, it regulates the retrograde F-actin 

flow and the formation of focal adhesions (Korobova and Svitkina 2008; Yang et al. 

2012). As a result, it was shown that Arp2/3 is also important in growth cone translocation 

and axonal guidance (Norris, Dyer, and Lundquist 2009; Strasser et al. 2004; San 

Miguel-Ruiz and Letourneau 2014). Another ABP family are formins that are involved in 

actin polymerization (Le et al. 2020). Formins were shown to fulfill several functions 

within growth cones, including filopodia formation (Matusek et al. 2008; Gonçalves-

Pimentel et al. 2011) and coupling of microtubules to F-actin, which are both important 

for the chemotactic behavior of the growth cone (Földi, Szikora, and Mihály 2017; Kundu 

et al. 2021). Besides axonal guidance, formins are also essential in mediating traction 

force, by engaging in the molecular clutch (Ghate et al. 2020), which in turn couples F-

actin retrograde flow to the forward movement of the growth cone (Nichol IV et al. 2016). 

The family of myosin motor proteins does not modify F-actin itself, but its family members 

are crucial for powering retrograde F-actin flow (Lin et al. 1996), growth cone motility 
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(Bridgman et al. 2001) and are involved in growth cone turning during chemotaxis (Wang 

et al. 2003). Moreover, myosins control filopodia size and stability (Iuliano et al. 2018) 

and promote the actin bundle turnover in the growth cone (Medeiros, Burnette, and 

Forscher 2006). 

Among the proteins described earlier in directly controlling F-actin treadmilling, profilin 

was shown to regulate axonal outgrowth in Drosophila (Wills et al. 1999; Kim et al. 2001). 

Furthermore, profilins provide G-actin at the leading edge hence promoting 

polymerization (Lee et al. 2013) and regulate filopodia elongation in the growth cone 

(Gonçalves-Pimentel et al. 2011). Moreover, a recent study showed that profilin1 is 

important for axon regeneration by controlling retrograde F-actin flow as well as growth 

and invasion of microtubules into the growth cone (Pinto-Costa et al. 2020). 

The family of ADF/cofilin are among the best studied ABPs in the growth cone and are 

considered to be key regulators of growth cone dynamics (Gungabissoon and Bamburg 

2003). ADF/cofilin regulates axonal outgrowth and branching in Drosophila (Sudarsanam 

et al. 2020) as well as retrograde F-actin flow and neurite formation in mouse neurons 

(Flynn et al. 2012). Hence, many signaling pathways in axon guidance regulate the 

activity of ADF/cofilin, resulting in altered retrograde F-actin flow activity and 

subsequently in growth cone turning (Meberg 2000; Marsick et al. 2011; Zhang et al. 

2012; Meberg and Bamburg 2000). Brain-derived neurotrophic factor (BDNF) for 

example controls the length, number and dynamics of filopodia via ADF/cofilin (Fass et 

al. 2004; Gehler et al. 2004). Besides axon guidance, cofilin1 was also shown to be 

crucial in promoting axonal regeneration after axonal injury (Tedeschi et al. 2019). 

3.5 Aim of study 

Two decades ago, CAPs were identified as ABPs (Freeman and Field 2000; Balcer et 

al. 2003) and recent studies unraveled their molecular function on regulating F-actin 

dynamics (Kotila et al. 2019, 2018). Despite the progress in uncovering the functions of 

CAPs in cancer (Hasan and Zhou 2019; Wu et al. 2019), fat metabolism (Jang et al. 

2019), muscle differentiation (Kepser et al. 2019; Colpan, Iwanski, and Gregorio 2021; 

Iwanski, Gregorio, and Colpan 2021), heart physiology (Peche et al. 2012; Field et al. 

2015; Stöckigt et al. 2016; Aspit et al. 2019) and oocyst division (Jin et al. 2018), the role 

of CAPs in the brain remains largely unknown. A first study in Drosophila described that 

the CAP homologue capulet is implicated in axonal pathfinding and effector of the slit 

pathway (Wills et al. 2002). Further recent studies showed that CAP2 is important for 

dendritic complexity, spine density and synapse physiology with implications in 

Alzheimer’s disease (Kumar et al. 2016; Pelucchi et al. 2020). Moreover, it was shown 

that CAP1 is important for astrocyte proliferation and Schwann cell differentiation after 
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brain injury (Zhang et al. 2014; Zhu et al. 2014). However, the function of CAPs during 

neuron differentiation and brain development is still unknown. A global approach that 

investigated protein expression in different brain areas and cell types at different time 

points confirmed that CAPs are expressed during brain development (Sharma et al. 

2015). Therefore, I aimed to uncover the function of CAPs in early brain development, 

by exploiting knockout (KO) mouse models for both CAPs. Furthermore, by performing 

life cell imaging and super-resolution microscopy on isolated hippocampal neurons, I 

aimed to unravel the role of CAPs in neuronal differentiation and the growth cone 

machinery.
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4 Results 

4.1 CAP1 is relevant for neuronal connectivity in the brain 

Before delineating the function of CAPs in mouse nervous system, we aimed to 

determine the expression levels of CAP1 and CAP2 in the developing mouse brain. 

Western blot analysis revealed protein expression of both CAP family members during 

embryonic brain development and CAP1 as well as CAP2 were equally expressed in 

different brain regions including hippocampus at postnatal day (P) 0 (Schneider et al. 

2021a Fig.1 A+B; Schneider et al. 2021c Fig. 1 A+B). To gain a deeper knowledge of 

the role of CAPs in the developing brain, we exploited KO mice for both CAP1 and CAP2 

to investigate their function during mouse brain development. 

To generate a CAP1-KO, we bred conditional KO mice by crossing mice expressing Cre 

recombinase under the nestin promotor (Tronche et al. 1999) with mice carrying loxP 

sites (flx) flanking exon 3 of the CAP1 gene (Schneider et al., 2021a Fig. 1 C). The 

resulting CAP1flx/flx, Nestin-Cre mice (CAP1-KO) were deficient for CAP1 in all neural cells 

including neurons and glia cells (Tronche et al. 1999; Liang, Hippenmeyer, and 

Ghashghaei 2012). Using real time PCR and Western blot assays, we confirmed that 

CAP1 was indeed knocked out in the brain of CAP1-KO mice at the respective 

developmental stage (Schneider et al. 2021a Fig. 1 D+E) without affecting CAP2 protein 

expression levels (Schneider et al. 2021c Fig. 5 A). However, these CAP1-KO mice died 

shortly after birth, which limited our analysis to embryonic stages. In contrast to CAP1 

(Jang et al. 2019), systemic CAP2-KO mice are viable. Western blot analysis confirmed 

that in CAP2-KO mouse brains CAP2 was not detectable and showed that CAP1 protein 

expression levels were not affected (Schneider et al. 2021c Fig. 2 A).  

To describe the role of CAPs in the developing brain, we started with performing Nissl 

staining to examine the brain anatomy in both KO mice. Adult and embryonic CAP2-KO 

brains exhibited normal brain anatomy (Schneider et al. 2021c Fig. 4 A+B), whereas 

CAP1-KO animals displayed larger ventricles and a differently shaped hippocampus at 

E18.5, which was unchanged in area, but altered in length and shape (Schneider et al. 

2021a Fig. S1 A-E). 

Furthermore, immunostaining against Neurofilament and DiI staining in CAP1-KO brains 

revealed hypomorphic or missing fiber tracks in the cerebral cortex and striatum 

(Schneider et al. 2021a Fig. 1 F+G), which were normally developed in CAP2-KO mice 

(Schneider et al. 2021c Fig. 4 C). However, no changes in neuronal migration or 

proliferation of neuronal progenitors in the CAP1-KO mice could be observed (Schneider, 

et al. 2021a Fig. S1 F+G). Taken together, CAP1 played a crucial role in establishing 

neuronal connectivity, whereas CAP2 was dispensable for brain development. 
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4.2 CAP1 is required for proper neuron differentiation 

To study the role of CAPs in neuronal development and hence in neuronal circuitry 

formation on both a cellular and molecular level, we switched to isolated hippocampal 

neurons from E18.5 mouse embryos. These cultured hippocampal neurons expressed 

substantial amounts of CAP1 and CAP2 in vitro (Schneider et al. 2021a Fig. 2 A; 

Schneider et al. 2021c Fig. 1 C). Immunostaining against the microtubule marker 

doublecortin allowed us to study early neuron differentiation, by classifying single 

neurons into different developmental stages (Dotti, Sullivan, and Banker 1988). This 

approach revealed a developmental delay of CAP1-KO neurons, as more neurons were 

categorized into earlier differentiation stages (Schneider et al. 2021a Fig. 2 B+C). 

Interestingly, when treating CAP1-KO neurons with cytochalasin D, we rescued the 

developmental delay (Schneider et al. 2021a Fig. 2 D+E), suggesting impaired actin 

depolymerization in these neurons (Flynn et al. 2012). Despite the delayed development, 

CAP1-KO neurons possessed an axon after two days in vitro (DIV) and general 

morphology in terms of number of primary neurites and neurite endpoints was 

unchanged (Schneider et al. 2021a Fig. 2 F, Fig. S2 A+B). Yet, CAP1-KO neurons 

exhibited significantly shorter and thicker neurites compared to control (CTR) neurons 

(Schneider et al. 2021a Fig. 2 G+H). In contrast to CAP1-KO neurons, loss of CAP2 

neither affected neuronal differentiation (Schneider et al. 2021c Fig. 2 B+C) nor neuron 

morphology (Schneider et al. 2021c Fig. 2 D-H). 

In summary, CAP1 controlled neurite length as well as diameter and therefore early 

neuron differentiation, whereas CAP2 was dispensable for early neuron development. 

4.3 CAPs are centrally localized in the neuronal growth cone 

By determining the subcellular localization of CAPs, we aimed to elucidate where CAP 

is localized during neuron development. Compared to green fluorescent protein (GFP)-

transfected neurons, GFP-tagged CAP1 (GFP-CAP1) was enriched in the growth cone 

(Schneider et al. 2021a Fig. S3 A). Immunostaining against endogenous CAP1 revealed 

a subcellular localization similar to GFP-CAP1. Antibody staining additionally confirmed 

the deletion of CAP1 in CAP1-KO neurons (Schneider et al. 2021a Fig. 3 A). Cross-

sectional line scans of growth cones showed that CAP1 was located in areas with high 

F-actin content (Schneider et al. 2021a Fig. 3 B). Interestingly, a line scan along filopodia 

revealed that CAP1 was largely absent from the filopodia tip and shaft (Schneider et al. 

2021a Fig. 3 C). Similar to GFP-CAP1, GFP-CAP2 as well as myc-CAP2 were enriched 

within the growth cone (Schneider et al. 2021c Fig. 1 D+E) and a cross-sectional line 

scan revealed co-localization of overexpressed GFP-CAP2 and mCherry-CAP1 

(Schneider et al. 2021c Fig. 1 F+G). 
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To get more detailed information about the subcellular localization of CAP1, we 

performed direct stochastic optical reconstruction microscopy (dSTORM) on growth 

cones overexpressing myc-CAP1, which were additionally stained with the F-actin 

marker phalloidin. With this approach, we confirmed that CAP1 was mainly localized in 

the C domain, T zone and P domain, but was largely absent from filopodia ends and 

shafts (Schneider et al. 2021a Fig. 3 D+E, Fig. S3 B). 

In summary, both CAP family members were enriched within the growth cone and 

showed an overlapping localization along with F-actin-rich structures. Moreover, CAP1 

was largely undetectable in filopodia shafts and ends of neuronal growth cones. 

4.4 CAP1 regulates growth cone size, morphology and motility 

As ABPs are essential for regulating growth cone motility (Omotade, Pollitt, and Zheng 

2017) and as we confirmed that CAPs are located within the growth cone, we performed 

life cell imaging to investigate whether the loss of CAPs affects growth cone motility. 

Similar to CTR, CAP2-KO growth cones displayed a normal explorative behavior and 

frequently protruded and retracted filopodia (Schneider et al. 2021a Movie S1; Schneider 

et al. 2021c Movie S1+2). Additionally, fixed CAP2-KO growth cones were comparable 

to CTR in size and morphology (Schneider et al. 2021c Fig. 3 A-C). To out rule the 

possibility that CAP1 compensates for the loss of CAP2 and to exclude other possible 

compensatory effects, we created a small hairpin RNA (shRNA) against CAP2 to acutely 

down regulating CAP2 in neurons. Western Blot analysis confirmed that the shRNA 

successfully knocked down (KD) CAP2 in cortical neurons (Schneider et al. 2021c Fig. 

3 D). To investigate the effect of CAP2 KD on growth cones, we established a protocol 

that allowed us to knockdown CAP2 but at the same time quantify early neuronal stages, 

by resetting the neurons into an undifferentiated state. For this, we transfected the 

neurons with shRNA, replated them two days post transfection as protein levels were 

sufficiently knocked down after this time and analyzed them 24 to 48 hours later 

(Schneider et al. 2021b Fig. 1). Replated neurons behaved similarly to freshly plated 

neurons allowing us to directly compare neurons and their growth cones one day after 

replating (DAR) with neurons at DIV1 (Schneider et al. 2021b Fig. 2-5, Movie S1-S4). 

Applying this method using a shRNA against CAP2, we observed that similar to CAP2-

KO neurons, growth cone size and morphology was unaltered compared to CTR growth 

cones (Schneider et al. 2021c Fig. 3 E-G). In contrast to CAP2-KO neurons, CAP1-KO 

growth cones largely lacked filopodia and were clearly less motile (Schneider et al. 2021a 

Movie S2). Furthermore, fixed growth cones were larger and exhibited a smooth 

morphology as quantified by determining the fraction of growth cones lacking filopodia 

https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
https://www.mdpi.com/2073-4409/10/6/1525
https://www.eneuro.org/content/8/3/ENEURO.0536-20.2021/tab-figures-data
https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
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and measuring the shape indices circularity and solidity (Schneider et al. 2021a Fig. 3 F-

I).  

To exclude that the observed differences in the CAP1-KO growth cones were caused by 

different culture conditions, we seeded CTR and CAP1-KO neurons in the same culture 

dish. CAP1-KO neurons co-cultured with CTR neurons displayed similar growth cone 

changes as in CAP1-KO cultures (Schneider et al. 2021a Fig. 3 J), demonstrating that 

the growth cone phenotype was not caused from environmental cues that might have 

been missing in the pure KO culture. 

To investigate the changes in growth cone appearance in the CAP1-KO in more detail, 

we resolved the ultra-structure of the growth cone with dSTORM (Schneider et al. 2021a 

Fig. 4 A, Fig. S4 A). Hereby we showed that the number of phalloidin localizations per 

square-micrometer was unchanged (Schneider et al. 2021a Fig. 4 B), but that the 

number of actin bundles was strongly decreased in the CAP1-KO (Schneider et al. 2021a 

Fig. 4 C, Fig. S4 C). Furthermore, CAP1-KO growth cones did not exhibit a clearly 

defined C-domain (Schneider et al. 2021a Fig. 4 A, Fig. S4 A), which would normally be 

devoid of F-actin signal (Lowery and van Vactor 2009). Additionally, microtubules in the 

CAP1-KO were less bundled and more microtubules invaded the growth cone, which 

also more frequently reached the leading edge (Schneider et al. 2021a Fig. S4 B-D). 

As CAP1-KO growth cones exhibited more lamellipodia, we treated these cells with an 

inhibitor of the Arp2/3 complex, which is important for building branched F-actin and 

hence affects lamellipodia and filopodia formation (Korobova and Svitkina 2008). CAP1-

KO growth cones treated with the Arp2/3 inhibitor showed more filopodia in comparison 

to the untreated CAP1-KO growth cones, which was also obvious from the changes in 

the parameters circularity and solidity (Schneider et al. 2021a Fig. 4 D-F). 

Taken together, CAP1 controlled size and morphology of the growth cone, as well as its 

motility. CAP2 was not important in any of these parameters. Additionally, we observed 

that CAP1 regulated F-actin architecture of the growth cone and indirectly orchestrated 

the microtubule cytoskeleton. 

4.5 Both CAPs are functionally redundant in neurons 

As we observed that loss of CAP1 severely impaired neuron connectivity, neuron 

differentiation and growth cone morphology, we focused on CAP1-KO neurons. To 

confirm that the observed phenotype was caused by the loss of CAP1, we overexpressed 

either GFP-CAP1 or myc-CAP1 and were able to rescue the CAP1-KO phenotype in 

vitro (Schneider et al. 2021c Fig. 5 B-G). As CAP1 and CAP2 share 60 % sequence 

similarity (Ono 2013), we overexpressed either GFP-CAP2 or myc-CAP2 in CAP1-KO 

neurons to test, whether CAP2 is able to compensate for the loss of CAP1. Quantification 
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of neuron development as well as neurite length and width in CAP1-KO neurons 

overexpressing CAP2 revealed a similar rescue compared to CAP1-KO neurons 

overexpressing CAP1 (Schneider et al. 2021c Fig. 5 B-G). However, overexpression of 

CAP2 only partially reduced growth cone size in the CAP1-KO neuron unlike 

overexpression of CAP1 (Schneider et al. 2021c Fig. 5 B-G). 

In summary, we showed that overexpression of CAP2 compensated for the loss of CAP1 

in neuronal development showing functional redundancy in vitro. 

4.6 CAP1 controls growth cone guidance by regulating its F-actin dynamics 

As CAP2 was dispensable for growth cone function, we examined the role of CAP1 in F-

actin dynamics, the driving force of growth cone motility (Kerstein, Nichol IV, and Gomez 

2015). In order to determine F-actin dynamics, neurons were transfected with GFP-actin 

and fluorescence recovery after photobleaching (FRAP) was measured (Schneider et al. 

2021a Fig. 5 A, Movie S3+S4). Quantification of the fraction of dynamic actin that 

recovered within five minutes and the fluorescence half-recovery time revealed that 

CAP1-KO growth cones had less dynamic actin and needed longer to recover their 

fluorescence signal (Schneider et al. 2021a Fig. 5 B-D). These data revealed impaired 

actin turnover in growth cones from CAP1-KO neurons. In addition, neurons were 

transfected with GFP-tagged lifeAct to monitor retrograde F-actin flow in the growth cone 

(Flynn et al. 2012), which was about seven-fold reduced in the CAP1-KO neurons 

(Schneider et al. 2021a Fig. 5 E+F, Movie S5+S6).  

Dynamic actin remodeling and regulation in the growth cone is essential for reacting to 

guidance cues and for proper steering of the axon (Omotade, Pollitt, and Zheng 2017). 

As we showed disturbed actin dynamics in CAP1-KO neurons, we investigated if this 

affected growth cone behavior in CAP1-KO neurons. For this reason, CTR and CAP1-

KO neurons were either treated with the chemo-attractant brain-derived neurotrophic 

factor (BDNF) or the chemo-repellants ephrin A5, slit-1 or semaphorin 4D (Ye et al. 

2019). BDNF increased growth cone size in CTR neurons and all three repellant cues 

increased the fraction of collapsed growth cones (Schneider et al. 2021a Fig. 6 A-D). In 

CAP1-KO neurons, growth cone size did not change upon treatment with BDNF and only 

ephrin 5, unlike slit-1 and semaphorin 4D, was able to increase the fraction of collapsed 

growth cones, but not to the same extend as in CTR neurons (Schneider et al. 2021a 

Fig. 6 A-D). 

In summary, CAP1-KO neurons showed impaired F-actin dynamics in the growth cone, 

which was accompanied with absent or impaired responsiveness to various guidance 

cues. 

https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
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4.7 CAP1’s helical fold domain is crucial for growth cone function 

After characterizing the phenotype in CAP1-KO growth cones, we aimed to get more 

insights into CAP1-dependent mechanisms in regulating F-actin dynamics in growth 

cones. To achieve this, we overexpressed mutant CAP1 variants to determine the 

domains relevant for regulating growth cone morphology (Schneider et al. 2021a Fig.7 A) 

and measured growth cone size as a readout. 

First, we created deletion mutants where the entire N- (Δ1-213) or C-terminus (Δ319-

474) was missing to see which part of the protein might be important for regulating growth 

cone size. Furthermore, we mutated specific amino acid residues known to be relevant 

for protein interaction (Kotila et al. 2019, 2018, Schneider et al. 2021a Fig.7 A). We 

mutated i) the helical fold domain (CAP1-HFD), ii) the proline-rich stretch 1 (CAP1-PP1, 

iii) the WASP homology domain 2 (CAP1-WH2) and iv) β-sheets within the CARP domain 

(CAP1-CARP) (Kotila et al. 2019; Rust et al. 2020; Shekhar et al. 2019; Chaudhry et al. 

2010). In addition, we also deleted the last four amino acids of the C-terminus (Δ4CT), 

which were shown to be important for actin dynamics (Kotila et al. 2018). For direct 

comparison, we overexpressed GFP-CAP1, which fully rescued growth cone size in 

CAP1-KO neurons, but did not had any effect in CTR neurons (Schneider et al. 2021a 

Fig. 7 B+C). 

After confirming that all CAP1 mutants were located in growth cones (Schneider et al. 

2021a Fig. S3 A), we overexpressed both Δ1-213 and Δ319-474, which both failed to 

rescue growth cone size in the CAP1-KO neurons (Schneider et al. 2021a Fig. 7 C). To 

narrow down which domain is responsible in mediating growth cone function, we 

overexpressed the CAP1 mutants, where either the single domains were mutated or the 

last four amino acids of the C-terminus were missing. Interestingly, all CAP1 mutants 

except for the CAP1-HFD were able to rescue growth cone size in CAP1-KO neurons 

(Schneider et al. 2021a Fig. 7 C). 

To sum this up, we showed that the domain enabling the interaction between CAP1 and 

cofilin1, was crucial to rescue the CAP1-KO phenotype in the growth cone. 

4.8 CAP1 and Cofilin1 synergistically regulate growth cone function 

Studies in yeast showed that the HFD is important for the interaction of CAP1 with cofilin1 

as it enhances F-actin depolymerization (Kotila et al. 2019; Shekhar et al. 2019). In 

addition, we and others showed that ADF/cofilin is important for regulating growth cone 

size and motility in neurons (Gungabissoon and Bamburg 2003; Schneider et al. 2021b 

Fig. 6). Therefore we made use of the replating protocol described above (Schneider et 

al. 2021b Fig. 1) aiming to investigate whether there is a functional co-dependency 

between CAP1 and cofilin1 in regulating growth cone dynamics. For this, we cultured 
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neurons of mice with either floxed cofilin1 gene (Bellenchi et al. 2007), floxed CAP1 gene 

or a combination of both. Before plating, we transfected the cells with either mCherry-

tagged Cre recombinase to knockout the respective proteins or mCherry-tagged 

catalytically inactive Cre recombinase (Kullmann et al. 2020a) as CTR. At DIV2, we 

obtained a full KO of CAP1 (Schneider et al. 2021a Fig. S5), replated the cells and 

performed analysis on the subsequent day. 

First, we investigated F-actin dynamics by co-transfecting the neurons with GFP-actin 

and measuring the recovery rate of the fluorescence signal after photobleaching 

(Schneider et al. 2021a Fig. 8 A, Movie S7-S10). The replated CAP1flx/flx neurons 

expressing mCherry-tagged Cre recombinase (CAP1-KO) showed a comparable 

reduction in fluorescence recovery as the non-replated CAP1-KO neurons described 

above. Similar to the replated CAP1-KO, the replated cofilin1 floxed neurons expressing 

Cre (Cof1-KO) displayed a comparable impairment in fluorescence recovery as the 

CAP1-KO. In both conditions, the fraction of dynamic actin was reduced and the 

fluorescence recovery time was increased compared to CTR (Schneider et al. 2021a 

Fig. 8 B-D). Compared to the single KOs, the replated CAP1/cofilin1 floxed neurons 

expressing Cre (dKO) exhibited a stronger impairment in fluorescence recovery and a 

decreased fraction of dynamic actin (Schneider et al. 2021a Fig. 8 B+D). The same was 

true for the recovery time, which was slower than in the single KOs (Schneider et al. 

2021a Fig. 8 C). When we overexpressed GFP-lifeAct and measured the retrograde F-

actin flow, we again observed a severe decrease in velocity in all three KOs, similar to 

the CAP1-KO neurons described above (Schneider et al. 2021a Fig. 8 E+F, Movie S11-

S14). 

We also compared growth cone size between all four conditions and observed a 

comparable increase in both single KOs and in dKO neurons (Schneider et al. 2021a 

Fig. 9). Overexpression of GFP-CAP1 in Cof1-KO neurons (Schneider et al. 2021a Fig. 

9 B) or GFP-cofilin1 in CAP1-KO neurons (Schneider et al. 2021a Fig. 7 C) were both 

not able to rescue growth cone size. Instead, overexpressing GFP-CAP1 in CAP1-KO 

neurons and GFP-cofilin1 in Cof1-KO neurons successfully rescued growth cone size in 

the respective single KO neurons (Schneider et al. 2021a Fig. 7 C, Fig. 9 B). 

Overexpression of a cofilin1 mutant that cannot bind to actin (Cof1-S3D) in Cof1-KO 

neurons, even slightly increased growth cone size (Schneider et al. 2021a Fig. 9 B). The 

fact that neither CAP1 nor cofilin1 could rescue growth cone size in the respective other 

single KO, let us hypothesize that both ABPs functionally interact in the growth cone. To 

confirm this interaction, we measured growth cone size in dKO neurons after 

overexpressing either GFP-CAP1, GFP-cofilin1 or both ABPs. Interestingly, 

overexpression of either GFP-CAP1 or GFP-cofilin1 could not rescue growth cone size 

https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
https://www.sciencedirect.com/science/article/pii/S0301008221000642?via%3Dihub#sec0140
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in dKO neurons. Only overexpression of both ABPs decreased growth cone size in dKO 

neurons to CTR levels (Schneider et al. 2021a Fig. 9 B). To investigate whether their 

interaction is only restricted in regulating the actin cytoskeleton, we overexpressed Δ1-

213/CAP1-HFD together with wildtype cofilin1 and wildtype CAP1 with Cof1-S3D in dKO 

neurons. In both cases, we were not able to observe a rescue in growth cone size in 

dKO neurons (Schneider et al. 2021a Fig. 9 C). 

In summary, only both wildtype proteins together were able to rescue the dKO and 

neither protein could compensate for the loss of the other. 

4.9 Description of own contribution 

For the publication ‘Mutual functional dependence of cyclase-associated protein 1 

(CAP1) and cofilin1 in neuronal actin dynamics and growth cone function’ (Prog 

Neurobiol. 2021), I performed biochemical analysis, analysis of CAP1 localization in vitro, 

growth cone analysis (on fixed cells, live cell imaging, FRAP, retrograde F-actin flow 

measurements) in CAP1-KO neurons, retrograde flow measurements in replated 

neurons, analysis of neuron differentiation, pharmacological inhibition, growth cone 

guidance, DiI staining, rescue experiments in CAP1-KO neurons and selected rescue 

conditions of replated neurons (CAP1, cofilin1 and cofilin1-S3D in Cof1-KO, 

CAP1+cofilin1-S3D in dKO). I. Metz carried out histology and immunohistology on CAP1-

KO brains. dSTORM data were generated and analyzed in cooperation with J. 

Winkelmeier and U. Endesfelder. Growth cone analysis, including rescue experiments 

(excluding the above mentioned) and FRAP of replated neurons was performed by the 

MD student T.A. Duong under my supervision. M. Rust and I wrote the article. 

For the publication ‘Neuron replating - a powerful and versatile approach to study early 

aspects of neuron differentiation’ (eNeuro 2021), I performed analysis of neuron 

differentiation, growth cone guidance, retrograde F-actin flow measurements of plated 

and replated neurons, growth cone analysis and FRAP of plated neurons as well as 

analysis of growth cones of ADF/cofilin1 dKO neurons. Growth cone analysis and FRAP 

of replated neurons was carried out by the MD student T.A. Duong under my supervision. 

M. Rust and I wrote the article. 

For the publication ‘Functional redundancy of cyclase-associated proteins CAP1 and 

CAP2 in differentiating neurons’ (Cells 2021), I performed Western blot analysis, analysis 

of neuron differentiation, analysis of fixed growth cone, life cell imaging, in vitro 

localization and rescue experiments. I. Metz carried out histology and immunohistology 

on CAP1-KO brains. S. Khudayberdiev designed and validated shRNAs. M. Rust and I 

designed the scheme and wrote the article. 
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5 Discussion 

In this dissertation I aimed to uncover the role of CAPs in murine brain development, 

which I found to be enriched in growth cones and expressed during neuron 

differentiation. Analysis of KO brains and neurons for both CAP1 and CAP2 showed that 

CAP1 was important for neuronal circuitry formation in vivo and neuronal differentiation 

in vitro. Furthermore, this study identified CAP1 as a novel regulator of growth cone 

dynamics and consequently of axonal guidance. In addition, rescue experiments 

revealed a functional redundancy of CAP1 and CAP2 in neuron differentiation and a 

functional dependency of CAP1 and cofilin1 in regulating growth cone dynamics.  

Since the discovery of CAPs 30 years ago (Field et al. 1990), recent studies unraveled 

the mechanism on actin regulation through CAPs by exploiting yeast cells or recombinant 

proteins (Kotila et al. 2019, 2018; Shekhar et al. 2019). In line with these studies, I found 

CAP1 to be essential in regulating actin dynamics in the growth cone. Despite the 

progress in depicting the physiological role of CAPs in different biological systems 

(Kepser et al. 2019; Kumar et al. 2016; Field et al. 2015; Peche et al. 2012), the 

physiological function in the brain remains largely unknown, which is partially caused by 

the lack of appropriate CAP1 mouse models (Jang et al. 2019). By generating conditional 

KO mice for CAP1 and exploiting systemic KO mice for CAP2, I showed that CAP1 was 

essential for neuronal circuitry formation in vivo and neuronal differentiation in vitro, 

whereas CAP2 was largely dispensable for both processes. This suggests that CAP2 is 

dispensable for early brain development and early neuron differentiation and might be 

important in later developmental stages, as it was shown that CAP2 is important for 

dendritic complexity and synapse physiology (Kumar et al. 2016; Pelucchi et al. 2020). 

Despite the fact that both CAPs are expressed during embryonic development, possible 

differences in their total protein amount could account for the lack of a CAP2-KO 

phenotype during embryonic brain development. Therefore, it remains to be shown 

whether CAP1 and CAP2 are expressed at equal or different amounts during brain 

development. Interestingly, other important brain developmental processes like neuronal 

progenitor proliferation or neuronal migration were unaffected in CAP1-KO brains, 

contrary to what is reported for other actin-regulating proteins such as cofilin1 or profilin1 

(Bellenchi et al. 2007; Kullmann et al. 2020b; Wang et al. 2016). This suggests that CAP1 

evolutionary developed a distinct function in axonal guidance and neuronal circuitry 

formation, which fits to a study in Drosophila that assigned a role for the CAP1 

homologue capulet in axonal midline crossing (Wills et al. 2002).

Despite numerous studies uncovering the proteins implicated in controlling the growth 

cone machinery (Lowery and van Vactor 2009; Omotade, Pollitt, and Zheng 2017), our 
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knowledge is still incomplete. In line with a study that identified neuronal growth cone-

associated proteins in the rat forebrain (Nozumia et al. 2009), I found endogenous CAP1 

as well as overexpressed CAP2 to be enriched in the growth cone. In fact, my study adds 

CAP1 to the list of actin regulators in the growth cone machinery, as life imaging and 

pharmacological approaches revealed that CAP1 is relevant for regulating actin 

dynamics in the growth cone and that it acts downstream of guidance cues like 

ephrin A4, slit-1, semaphorin 4D or BDNF. Furthermore, while CAP1 regulated growth 

cone F-actin architecture, CAP2 was again dispensable for the growth cone machinery, 

postulating that CAP1 is the major player in early neuron differentiation and growth cone 

regulation. Enlarged growth cones, delayed neuronal differentiation and disturbed actin 

dynamics in CAP1-KO neurons support that hypothesis and are in line with studies 

showing the same effects when knocking out or down regulating ADF/cofilin, another 

important regulator of the F-actin treadmilling, in neurons (Garvalov et al. 2007; Tedeschi 

et al. 2019; Flynn et al. 2012). Furthermore, CAP1 KD in HeLa cells has been shown to 

result in increased lamellipodia size (Zhang et al. 2013) and CAP1 KD in PC12 cells 

resulted in decreased axonal and neurite length (Nozumia et al. 2009; Lu et al. 2011), 

similar to the enlarged growth cones and shorter neurites upon KO of CAP1 in neurons 

as shown in this study. Contrary to our findings, CAP1 KD in PC12 cells reduced growth 

cone size (Lu et al. 2011), which might be explained by the fact that PC12 cells and 

hippocampal neurons represent different biological systems (Westerink and Ewing 

2008). Additionally, Lu and colleagues supplied their culture medium with nerve growth 

factor (NGF), which is absent in our medium. In our previous experiments we showed 

that CTR neurons treated with BDNF, a chemoattractant similar to NGF (Ye et al. 2019), 

increased growth cone size, similar to what is shown in a study from Meier and 

colleagues (Meier, Anastasiadou, and Knöll 2011). CAP1-KO neurons however were 

unresponsive to treatment with BDNF and did not change growth cone size. It is thus 

likely that in the study from Lu and colleagues CTR growth cones were larger because 

of a diverging responsiveness to NGF, compared to CAP1 KD neurons. 

As CAP1 and CAP2 share 60 % sequence similarity (Ono 2013) and as both are 

expressed in neurons, it is thus likely that both proteins might be functional redundant, 

despite the fact that CAP2-KO neurons displayed no defects in neuron differentiation or 

growth cone function. Still, our rescue experiments support this hypothesis as they 

showed that overexpression of CAP2 at least partially compensated for the loss of CAP1. 

Moreover, it was shown in dendritic spines that CAP2 interacts with cofilin1 to regulate 

actin dynamics (Pelucchi et al. 2020), similar to yeast studies showing actin regulation 

through CAP together with cofilin (Kotila et al. 2019; Shekhar et al. 2019; Rust et al. 

2020). This suggests that CAP2 is partially redundant, but might be regulated differently 
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compared to CAP1. Furthermore, as only overexpression of GFP-CAP2 rescued growth 

cone size in CAP1-KO neurons, it is again likely that differences in total amounts of CAP1 

and CAP2 account for the differences in CAP1-KO and CAP2-KO neurons. However, 

further analysis on neurons with a double KO for both CAP1 and CAP2 are required to 

investigate the functional redundancy of CAP1 and CAP2 in regulating early neuron 

differentiation. Moreover, additional screens for proteins regulating both CAPs need to 

be carried out to shed light on their function during neuron differentiation. 

Given that the loss of ADF/cofilin and CAP1 in neurons show comparable defects in 

growth cone size and motility as well as actin dynamics, it is likely that CAP1 is involved 

in regulating depolymerization of F-actin in neurons. Furthermore, as overexpression of 

cofilin1 or CAP1-HFD were not able to rescue the CAP1 growth cone phenotype, I 

hypothesized that the interaction of CAP1 with cofilin1 is relevant for controlling F-actin 

dynamics in the growth cone. Indeed, a genetic approach revealed that KOs of either 

CAP1, cofilin1 or both ABPs resulted in similar increase in growth cone size, similar 

disturbed actin dynamics and only overexpression of both CAP1 and cofilin1 in the dKO 

reduced growth cone size to CTR levels. Moreover, overexpression of cofilin1 together 

with Δ1-213 or CAP1-HFD or CAP1 together with cofilin1-S3A were unable to rescue the 

dKO. This shows that not only CAP1 and cofilin1 synergistically regulate actin dynamics 

in the growth cone, but that they are also dependent on each other. Cofilin1 is considered 

to be a key regulator in actin dynamics within growth cones (Gungabissoon and Bamburg 

2003; Omotade, Pollitt, and Zheng 2017; Schneider et al. 2021b) and several studies 

demonstrated the importance of cofilin1 in neuronal actin dynamics (Bellenchi et al. 

2007; Wolf et al. 2015; Rust and Maritzen 2015; Flynn et al. 2012). Similar to CAP1, 

cofilin1 is implicated in growth cone motility (Dent, Gupton, and Gertler 2011; Zhang et 

al. 2019; Gomez and Letourneau 2015) and acts as a downstream target of many 

pathways relevant for axonal guidance (Hsieh 2006; Piper et al. 2006; Grintsevich et al. 

2016). Therefore, a cooperation of CAP1 and cofilin1 in regulating the growth cone is in 

line with the above mentioned studies and with studies in yeast that proposed a model 

for the interaction of CAP and cofilin in depolymerizing F-actin (Kotila et al. 2019; 

Shekhar et al. 2019). More important, a recent study implicated cofilin1 to be crucial for 

axon regeneration in the central nervous system, by regulating actin dynamics in the 

growth cone (Tedeschi et al. 2019). As my study showed a functional co-dependency of 

CAP1 and cofilin1, it would be interesting to investigate whether CAP1 similarly plays a 

role in axon regeneration in the central nervous system. Moreover, it would be exciting 

to address the question, whether CAP1 is needed for cofilin1-mediated axon 

regeneration. Several publications used replating of neurons as paradigm for axon 

regeneration (Lee et al. 2020; Saijilafu et al. 2013; Frey et al. 2015). As I established a 
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protocol to replate hippocampal neurons, where I validated that replated neurons 

differentiate normally, this would be a good approach to study whether CAP1 is relevant 

in axonal regeneration of neurons of the central nervous system. If this experiment hints 

towards a role of CAP1 in axon regeneration, it would then be exciting to further validate 

this hypothesis in vivo. 

Besides the interaction with cofilin, studies in yeast also showed that the CARP domain 

of CAP can promote the nucleotide exchange on G-actin (Kotila et al. 2018). However in 

our study, CAP1-CARP was able to rescue growth cone size in CAP1-KO neurons, 

suggesting that nucleotide exchange on G-actin might be covered by other ABPs like 

profilin1 (Omotade, Pollitt, and Zheng 2017; Vitriol and Zheng 2012). Interestingly, 

pharmacological inhibition of the Arp2/3 complex partially restored the hand-shaped 

appearance of the growth cone in CAP1-KO neurons, suggesting an increase in Arp2/3 

complex activity in the CAP1-KO. In fact, this inverse behavior of actin depolymerizing 

factors and the Arp2/3 complex is already hypothesized in dendritic spines and would 

thus serve as a likely explanation for our observations in the growth cone (Spence and 

Soderling 2015). However, it was shown that the abundance of profilin1 at the leading 

edge determines the activity of the Arp2/3 complex and the shape of migrating cells 

(Skruber et al. 2020). If G-actin nucleotide exchange upon loss of CAP1 is mainly 

mediated by profilin1, this could increase the abundance of profilin1 at the leading edge 

of the growth cone and therefore influences its shape in an Arp2/3 complex-related 

manner. Further experiments manipulating profilin1 activity in a CAP1-KO background 

would be interesting as it would cover two questions: First, if profilin1 supplies the growth 

cone with polymerization-competent G-actin in the absence of CAP1. Second, as 

profilin1 and CAP1 were shown to interact with each other (Ono 2013; Rust et al. 2020), 

if they are also functionally dependent. 

Besides cofilin1 and profilin1, CAP1 can also interact with various different proteins via 

its N-terminal half or its proline-rich stretches (Rust et al. 2020). For example, it was 

shown that CAP1 inhibits INF2 activity and hence actin polymerization (A et al. 2019) 

and together with twinfilin1 depolymerizes F-actin (Hilton et al. 2018). This could be an 

additional reason why the growth cones in the CAP1-KO were enlarged as actin 

polymerization through INF2 was not inhibited and similar to cofilin1, F-actin 

depolymerization through twinfilin1 was not possible or slower. Therefore, it would be 

interesting to look for additional potential interaction partners of CAP1 in neurons and 

manipulate their activity in a CAP1-KO background. 

Microtubule disorganization in the CAP1-KO growth cones could be also explained by a 

potential interaction between CAP1 and tubulin. However, it is more likely that this 

represents a secondary effect caused by a less dynamic T zone and missing F-actin 
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strands, which are both needed for constraining microtubules in the growth cone neck 

(Burnette et al. 2008; Geraldo and Gordon-Weeks 2009) and for regulating microtubules 

invasion and their length in the growth cone (Sánchez-Huertas et al. 2020; Cammarata, 

Bearce, and Lowery 2016; Coles and Bradke 2015; Biswas and Kalil 2017). 

Further investigations are needed addressing the question how CAP1 is regulated during 

axonal outgrowth and guidance. Until now, two protein kinases are known to 

phosphorylate CAP1, namely CDK5 (Haitao Zhang et al. 2019) and GSK3 (Wu et al. 

2019; Xie et al. 2018; Zhou, Zhang, and Field 2014), whereof the latter one is already 

described in regulating neuronal polarity, axonal outgrowth and guidance (Meli, Weisová, 

and Propst 2015; Hur et al. 2011; Jiang et al. 2005). Only one study so far described a 

regulatory mechanism of the CAP homologue capulet downstream of robo/slit signaling 

in Drosophila via the tyrosine kinase ABL1 that directly interacts with capulet (Wills et al. 

2002). Studies in mice or murine neurons in vitro should investigate whether CAP1 also 

acts downstream of robo/slit or other known guidance cues (Ye et al. 2019). 

To sum up, I found CAP1 to be an important actin regulator of the growth cone and gave 

new insights on actin regulation via CAP1-cofilin1 interaction. Furthermore, I propose a 

model in which CAP1 acts as a hub for interacting with signaling pathways and to 

mediate actin dynamics in the growth cone. Hence, this dissertation gives a new 

perspective on growth cone function, axon guidance and could provide new concepts in 

curing neurological disorders or axonal damage. 
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