Dokument
Titel: | Quadruple covers and Gorenstein stable surfaces with K^2=1 and χ=2 |
Autor: | Do, Anh Thi |
Weitere Beteiligte: | Rollenske, Sönke (Prof. Dr.) |
Veröffentlicht: | 2021 |
URI: | https://archiv.ub.uni-marburg.de/diss/z2021/0299 |
URN: | urn:nbn:de:hebis:04-z2021-02994 |
DOI: | https://doi.org/10.17192/z2021.0299 |
DDC: | 510 Mathematik |
Publikationsdatum: | 2021-08-09 |
Lizenz: | https://creativecommons.org/licenses/by-nc-sa/4.0 |
Schlagwörter: |
---|
Quadruple covers Algebraic geometry Gorenstein stable surfaces moduli space mathematics singularities Algebraic geometry semi-log-canonical sin, Vierfache verzweigte Überlagerungen Algebraische Geometrie Gorenstein stabile Flächen Modulraum Mathematik Singuläritäten Algebraische Geometrie |
Summary:
In this thesis we study Gorenstein stable surfaces with K 2X = 1 and \chi(\ko_X) = 2. These arise as quadruple covers of the projective plane and we give the precise relation between the structure of the cover and the canonical ring. We then use these results to study some strata of the moduli space \overline{\mathfrak{M}_1,2.
Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten |