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1 Introduction 

1.1 Cell movement builds the fundament of multicellular life 

In multicellular organisms many developmental processes like gastrulation, dorsal closure, or 

organ differentiation as well as immune cell migration are based on movement of either single 

cells or entire epithelial sheets (Barrett et al., 1997; Genova et al., 2000; Tilney et al., 1995). 

Establishing cell polarity is the initial and fundamental part of all cellular migratory processes. 

Cells receive external position information from surrounding cells or tissues by direct contact 

or via external secreted signaling factors and can translate this information to initiate an 

asymmetric rearrangement of their cytoskeleton. Thus, the cytoskeleton itself builds the 

scaffold of the cell but also coordinates morphological processes by dynamic changes of the 

cell shape. The cytoskeleton is composed of three different components – microtubules, 

intermediate filaments and actin filaments. The majority of cell shaping processes rely on fast 

assembly and disassembly of actin filaments. At the cell membrane, the assembly of filaments 

generates forces pushing the membrane outwards to form protrusive structures, which are 

called lamellipodia and filopodia. These dynamic protrusive structures form the so-called 

leading-edge which is responsible for directional movement of the cell (Ananthakrishnan and 

Ehrlicher, 2007; Pollard and Borisy, 2003). The main functions of these two structures differ. 

Filopodia are finger-like structures, whose function mainly lies in exploring the environment. 

Therefore, they also play a critical role in collective and invasive cell migration. In contrast, 

lamellipodia are flat, leaf-like structures, which are especially important for cell migration.  

Cell migration can be differentiated in single cell migration and collective cell migration. Since 

one of the first publications on single cells migration focusses on lamellipodial driven 

movements, this outstanding findings shaped many of the following research in this area 

(Abercrombie et al., 1970a, 1970c, 1970b). Since then, the knowledge about actin regulated 

morphological flexibility has extended enormously. In the classical model of single cell 

migration, experiments were performed on cells migrating on a 2D surface like a coated Petri 

dish or in vivo on an epithelial layer. In all experimental models, extracellular signals initiate 

cell shape changes resulting in directed cell migration. The force generation, induced by F-

actin assembly at the leading edge of the cell, leads to an increase in cell membrane tension. 

The cell membrane is then pushed forward by the forced, opposing the expanding actin 
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filament and pushes them backwards. This can be observed in the characteristic retrograde 

actin flow at the membrane. Cells adhere to the surface/substrate through integrin-mediated 

adhesions. These adhesions are constantly rebuilt at the cell front – the leading-edge – and are 

released at the cell rear to allow constant cell movement. Actin-myosin contractions in the rear 

facilitate the retraction of the cell body (Vicente-Manzanares et al., 2009).  

When it comes to 3D migration, protrusive structures need to be more complex. Cells combine 

not only filopodial and lamellipodial structures or cylindrical-shaped lobopodia composing 

features of lamellipodia, but membrane blebs can appear in addition or exclusively (Sander et 

al., 2013; Sixt, 2012).  

During collective cell migration, the movement of entire groups of cells is coordinated. The 

main principles for collective cell migration are the same as for single cell migration. As in 

single cell migration, the directional information can be received by external signals. However, 

in collective cell migration it is sufficient that only a few tip cells receive the signal. This signal 

is passed on to the other cells in the structure and translated into collective cell movement. To 

ensure the integrity of the group, the cell junction contacts in the group are constantly 

maintained between the moving cells (Aman and Piotrowski, 2010). 

1.1.1 Drosophila as a model for cell migration in a physiological context 

In the last decades, advanced genetic tools and high-resolution imaging techniques have 

improved the toolboxes available to scientists enormously. In vitro approaches have provided 

the necessary insights into cellular processes, but they lack the ability to investigate cell 

dynamics in a multicellular context. Furthermore, cell culture experiments cannot entirely 

substitute the environmental impact on the migratory behavior of cells in vivo. As most actin 

regulated migratory processes are highly conserved across species, knowledge obtained from 

a model organism can be transferred to other organisms. For at least 100 years, Drosophila 

melanogaster is commonly used as a model organism in the life sciences. Observations made 

in Drosophila have a huge impact on our knowledge about both collective and single cell 

migration (Table 1).  
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Table 1: Examples for actin-based processes in Drosophila and their relevance as model function in 

mammalian system 

Drosophila model Actin dependent 

process/ structure 

Mammalian 

Equivalent 

Reference 

border cell 

migration (BCM) 

collective cell 

migration 

neural crest cell 

migration (Shellard 

and Mayor, 2016)  

(Montell, 2003) 

egg rotation collective cell 

migration 

epithelial 

morphogenesis 

(Squarr et al., 2016) 

myoblast fusion cell–cell fusion, 

podosome or 

invadopodia-like 

structure; 

invadopodia-like 

fingers/protrusions 

myoblast fusion (Önel and 

Renkawitz-Pohl, 

2009; Schäfer et al., 

2007) 

 

cellular wound 

response 

single cell migration single cell 

migration, cancer 

metastasis 

(Sander et al., 2013; 

Wood et al., 2006) 

bristles development bundled F-actin brush-border of 

epithelial intestine 

cells (Tilney & 

Mooseker, 1971) 

(Bogdan et al., 

2004) 

cells extravasation 

from vessels 

invadopodium cancer metastasis (Thuma et al., 2018) 

 

Drosophila egg chamber development in particular provides an excellent model to study 

collective cell migration in a multicellular context. During oogenesis, egg chamber maturation 

undergoes 14 different stages until the matured egg. In these 2.5 to 3 days, the egg chamber 

grows massively in size and changes its shape to end in an elongated conformation (Lin and 

Spradling, 1993). This process is driven by so-called follicle cells surrounding the egg 

chamber. The collective migration of follicle cells induces egg rotation, which is necessary for 

the maturation of the egg. The simultaneous reorganization of the actin cytoskeleton in these 

cells leads to cell polarization and enables the generation of unidirectional forces (Squarr et 
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al., 2016). Observation of this mechanism provides general insights into epithelial sheet 

movement.  

Another fascinating and well-established model for collective cell migration, is the border cell 

migration (BCM). The border cell cluster is composed of six to ten cells deriving from the 

follicle cell epithelium. These cells migrate collectively through the egg chamber towards the 

oocyte and finally upwards to form the micropyle. The cluster moves between the nurse cells, 

a process guided by at least three different secreted growth factors. Successful BCM is highly 

dependent on cell cluster integrity based on cadherin-mediated adhesion. Furthermore, cell 

cluster motility is highly dependent on cell polarity and the extension of actin regulated 

protrusion (Llense and Martín-Blanco, 2008; McDonald et al., 2006; Prasad and Montell, 

2007; Silver et al., 2005) . In mammals, a comparable mechanism is found in neural crest cell 

migration (Shellard and Mayor, 2016). 

A convenient system to study single cell migration events, which do not depend on the cellular 

integrity of a cell cluster, are Drosophila macrophages. In their migratory behavior, these cells 

are comparable to mammalian immune or cancer cells. They travel long distances, whereby 

their motion is tightly controlled by their actin machinery. Upon external stimulation, for 

example by a pathogen or a wounding incidence, Drosophila macrophages switch from 

random to directed migration, comparable with mammalian cellular immune response (Sander 

et al., 2013).  

1.1.2 Single cell migration of Drosophila macrophages 

Once a pathogen passes the physical barrier and infiltrates the organism it needs to be 

recognized and eliminated by the host organism to prevent damage. In all multicellular 

organisms, the first and immediate immune response relies on multiple defense strategies of 

the innate immune system. Many reactions are highly conserved across species. Vertebrates 

further possess an adaptive immune system, whose response is slower but more specific on 

pathogens. The crosslinks between innate and adaptive immune response in vertebrates makes 

it difficult to investigate single components independently. Therefore, the high similarity of 

the Drosophila innate immune response is used to study the general underlying mechanisms. 

Immune cells make up a large part of the innate immune defense. Together with the humoral 

immune response, including antimicrobial peptides, the cellular immune response of insects is 

an effective system to fight bacterial infections and induce wound healing (Lemaitre and 

Hoffmann, 2007). While vertebrates possess a full set of specialized cell types, Drosophila 

immune cells, so-called hemocytes, are divided into three classes: hemocytes, crystal cells and 

lamellocytes. However, novel findings based on bulk RNA sequencing suggest a more 
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heterogeneous immune cell population (Cattenoz et al., 2020). Plasmatocytes are the most 

frequent cell type that account for up to 95 % of Drosophila immune cell population. These 

cells share similar functions to vertebrate macrophages and are therefore also called 

Drosophila macrophages (from here on out referred to as macrophages). Macrophages have 

important roles in both development and tissue homeostasis and are able to secrete 

antimicrobial peptides and extracellular matrix components. Their major task is the defense 

against pathogens and the recognition and clearance of cellular debris after wound healing 

(Wynn et al., 2013). 

The second type of Drosophila immune cells are called crystal cells, named after their 

crystalline structures harboring prophenoloxidase. They are essential in wound healing 

processes. After cell rupture, a proteolytic cascade eventually leads to the melanisation at the 

wound site and the additional release of reactive oxygen species induces a systematic immune 

response (Eleftherianos and Revenis, 2011; Theopold et al., 2014). Crystal cells make up less 

than five percent of the immune cell population. The third class of immune cells known as 

lamellocytes appear even more rarely. They only emerge upon immune challenging 

conditions. These giant immune cells encapsulate large immune targets. It has been shown that 

parasitic wasp infections trigger the differentiation of lamellocytes from macrophages 

(Sorrentino et al., 2002). 

Hemocytes development occurs during the embryonic, larval and pupal development of 

Drosophila in three waves depicted in Figure 1 (Gold and Brückner, 2014). The progenitors 

emerge in the head mesoderm in the embryonic stage 7 and differentiate into 600 – 700 

macrophages and a few crystal cells. While crystal cells stay clustered at their origin, 

macrophages migrate through the embryo until they population is dispersed throughout the 

hole embryo in stage 15. Macrophages are motile until the larval stage where they cluster in 

so-called hematopoietic pockets. Here, the rapid proliferation of the existing embryonic 

macrophages occurs in a second wave (Makhijani et al., 2011).  

The second origin for hemocytes is the lymph gland (Figure 1, Holz, 2003). In the embryonic 

stage, lymph gland hemocytes undergo a low rate of proliferation until the second larval stage. 

In the third instar, larval hemocytes differentiate into macrophages and expand during the third 

wave extensively in number. Crystal cells and lamellocytes are only present in small numbers. 

In the pupal stage, both populations of macrophages are released from the hematopoietic 

pockets and the lymph gland and start to circulate in the hemolymph of the pupae and later the 

adult fly to fulfil their immune function. In these developmental stages, only a weak 

hematopoietic activity is observable (Gold and Brückner, 2014; Parsons and Foley, 2015). 
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Figure 1: Scheme of Drosophila hematopoiesis. Macrophage differentiation occurs in three waves. 

Embryonic tissue hemocytes differentiate and proliferate in the embryonal stage and further proliferate 

in the larva. lymph gland macrophages differentiate and proliferate in the late larval stage. Both 

populations are related to the hemolymph of the pupa. Under normal conditions, crystal cells and 

especially lamellocytes make up under five percent of the hemocyte population (modified from Gold & 

Brückner, 2014) 

1.1.3 Chemotactic guidance of macrophage migration during development and 

wound response 

The majority of macrophages originating in the pupal stage are polarized and increased in size 

compared to embryonic and larval macrophages (Sampson and Williams, 2012; Sander et al., 

2013). These macrophages are dispersed throughout the entire animal. Macrophages, which 

are attached to the epithelium, show large protruding lamellipodia embedding few stress fibers 

formed by actin bundles. For effective cell migration of Drosophila macrophages and 

mesenchymal cells, a high level of relevance is attached to these flat lamellipodial structures 

at the leading edge of cells (Sander et al., 2013). However, it is still under debate, whether 

lamellipodia are dispensable for migration (Suraneni et al., 2012; Wu et al., 2012). 
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Figure 2: Schematic view of a migration macrophage. Macrophages show a broad flat lamellipodium 

at the leading edge. This is composed of few actin bundles and a dense branched actin network. 

Hemocyte migration depends on adhesion to the extracellular matrix (ECM) (Ananthakrishnan 

and Ehrlicher, 2007). In classical models, it is proposed that ECM is exogenously present to 

the migrating cell (Olofsson and Page, 2005; Urbano et al., 2009). However, it also has been 

shown that embryonic macrophages are able to secrete autocrine produced laminin and other 

ECM components. Previous studies underline the importance of the presence of ECM for the 

regulation of protrusion stability, dynamics and effective cell migration (Urbano et al., 2017). 

Drosophila macrophages migrate as single cells, reacting to extracellular signals and are able 

to pass cell barriers. By the expression of chemotactic molecules, the guidance and the survival 

of the hemocytes is coordinated in time and space (Kockel et al., 2004; Ratheesh et al., 2015). 

Early studies have already shown that at the end of embryonic stage 10, macrophages start 

actively migrating through the embryo following three major routes (Cho et al., 2002; Tepass 

et al., 1994). One subpopulation in stage 12 passes the cellular barrier of the germband 

epithelium and moves into the yolk sac (Ratheesh et al., 2015; Siekhaus et al., 2010). The 

specific dispersal pattern of macrophages at the ventral midline is coordinated by Platelet-

derived growth factor/ vascular endothelial growth factor (PDGF/VEGF) signaling (Wood et 

al., 2006). The developmental dispersal of the macrophages is a relatively slow process to 

ensure that all cells reach their destination in a certain time frame. In contrast, wound response 

requires a rapid but also precise orchestrated reaction upon wound signals.  

In studies investigating directed immune cell migration in Drosophila, laser-induced 

wounding was inflicted on the organism to identify potential signaling pathways. Wood and 

colleagues claim at least two independent mechanisms for an exact developmental dispersal 

of macrophages and the fast, directed response on wound signals. They demonstrate the 

Phosphoinositide 3-kinase (PI(3)K) is a crucial component in chemotaxis towards wounds in 

Drosophila, but dispensable in coordination of ventral midline dispersal (Heit et al., 2002; 
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Wood et al., 2006). Hydrogen peroxide (H2O2) and ATP are small and fast diffusing molecules 

that get released after wounding and might act as potential chemoattractant. H2O2is postulated 

to signal through the Src42A-Draper-Shark cascade, which is conserved in vertebrates and 

known as Src family kinase immunoreceptor tyrosine-based activation motif (ITAM)-Syk 

immune pathway (Evans et al., 2015; Yoo et al., 2012, 2011). This signaling mechanism is 

further supported by the production of the NADPH dual oxidase enzyme (DUOX) at the 

wound rim of damaged cells (Razzell et al., 2013). However, other data challenges these 

findings. In Weaver et al. (2016) the spatiotemporal properties of a wound attracted gradient 

were defined and a potential diffusion rate of 200 µm2/min for a hypothetical chemoattractant 

upon laser induced wounding was calculated. These findings speak against fast diffusing 

molecules like H2O2 and ATP as direct immune cues (Weavers et al., 2016). Further support 

for this hypothesis comes from the mutation of the Drosophila purinoreceptor Adenosine 

receptor (AdoR), which does not alter the immune response upon wounding (Moreira et al., 

2010). 

Conclusively, inflammatory response signaling is not yet fully understood. However, current 

data suggests redundant functions of different signal cascades on multiple damage-associated 

molecular patterns (DAMPs). This hypothesis is also consistent with reports from leucocyte 

system in vertebrates (Mcdonald et al., 2010). Furthermore, it is still unclear how the 

extracellular signal gets further transduced to the cytoskeleton machinery. This critical step in 

the local rearrangement of the actin network after wounding and its regulation needs to be 

investigated in more detail. 

1.2 The actin cytoskeleton as the fundament for structure and 

dynamics 

A network of actin filamentous structures builds the scaffold of cells and allows cell movement 

by fast and precise reorganization. The reorganization is driven by continuous assembly at the 

barbed end and disassembly at the pointed end of the filaments. Cells use a diverse set of 

proteins to control the polymerization of actin filaments. Actin monomers (G-actin) can self-

assemble into filaments in vitro. Nevertheless, under physiological conditions, the majority of 

free actin monomers are bound to monomer binding proteins like profilin and thymosine-ß4, 

decreasing spontaneous polymerization events compared to in vitro data (Ozaki and Hatano, 
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1984; Safer and Nachmias, 1994; Skruber et al., 2018). This pool of G-actin is only available 

for the actin polymerization machinery under certain conditions. However, the formation of a 

filament nucleus consisting of an actin trimeric is kinetically unfavored (Cooper et al., 1983). 

Thus, the spontaneous polymerization turns out to be inefficient and slow. To overcome this, 

cells have evolved several control steps to tightly regulate actin polymerization as well as 

depolymerization. To do so, cells use the so-called actin nucleators, which share the ability to 

mimic the trimeric state and build the origin of a new actin filament but promote nucleation 

by distinct mechanisms. 

The Arp2/3 complex is highly conserved across species and is a very well characterized actin 

nucleator. It consists of seven subunits in which the actin-related subunits Arp2 and Arp3 show 

structural similarities to monomeric actin itself (Goley and Welch, 2006). The formation of a 

nucleus, catalyzed by the Arp2/3 complex, is most efficient at a pre-existing mother filament. 

The daughter filament emerges in a 70° angle, giving rise to a branched actin network 

structure. To slow down the dissociation, cortactin can bind the filament. As a class II 

activator, its N-terminal end contains equivalent amino acids to bind Arp2/3, but it lacks the 

G-actin binding site (Ammer and Weed, 2008). Several mechanisms are based on this network, 

such as the clathrin-mediated endocytosis, where Arp2/3 dependent actin patches are crucial. 

The most prominent structures based on actin branched networks are leaf-like protrusions 

named lamellipodia (Small et al., 2002). With ongoing growth of the filament, the Arp2/3 

complex is shifted backwards to the cell rear and finally dissociates. Depletion of Arp2/3 

activity results in the complete loss of lamellipodia (Suraneni et al., 2012; Wu et al., 2012).  

Another class of actin nucleators, so-called tandem-monomer-binding nucleators, contain a 

tandem cluster of three or more actin binding WASP homology 2 (WH2) domains. In contrast 

to the Arp2/3 complex, these nucleators are involved in unbranched F-actin formation. Until 

now, three members are identified: Cordon-bleu (COBL), whose function seems to be 

restricted to vertebrates, the muscle-specific nucleator Leiomodin (LMOD) and Spire, which 

was first identified in Drosophila and is required during egg development (Campellone and 

Welch, 2010). Current data on Spire promotes its function as actin nucleator facilitating 

polymerization of filaments by bringing actin monomers in close proximity to the WH2 

domain. However, other data suggests that Spire, if bound to actin, can also result in a stable 

sequestration complex and abolishes polymerization (Rasson et al., 2015). To promote the 

formation of microtubule-actin meshwork, Spire cooperates with the Formin Cappuccino (Bor 

et al., 2015; Rodal et al., 2015).  

Formins are the third prominent class of nucleators. In animal cells, Formins are key factors 

in the formation of linear actin filaments and can additionally initiate actin bundles. They 
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provide the basis of many cellular structures like filopodia (Schirenbeck et al., 2005), but are 

also involved in stress fiber formation (Lammel et al., 2014; Satoh and Tominaga, 2001), long 

range cytoplasmic transport actin networks and other processes (Breitsprecher and Goode, 

2013). Once a filament is initiated, the elongation also needs to be regulated. A majority of the 

Formin members remain associated with the growing barbed end and therefore favor further 

polymerization. The Formin homology 2 (FH2) domain is crucial for the interaction with the 

actin filament . They build homodimers and each carries two F-actin binding sites. The dimeric 

FH2 domain walks progressively with the growing end of the newly build filament. It 

constantly switches between an open state, favoring the addition of an actin monomer, and an 

inactive closed state (Paul and Pollard, 2009; Zigmond et al., 2003). The different Formin 

family members vary in the time they spend in the closed position or open position, which 

characterizes their cellular function. Formins can therefore slow down polymerization but also 

support elongation. Murine Diaphanous 1 (mDia1) is an example for a Formin predominantly 

present in an open position (Kovar et al., 2006). To perform properly, Dia-like Formins are 

dependent on profilin-bound actin as an actin source that is rapidly added to the existing 

filament by their Formin homology 1 (FH1) domain. 

In contrast, elongation mechanisms based on Ena/Vasodilator‐stimulated phosphoproteins 

(VASP) proteins are dependent on pre-existing actin filaments and show a rather weak ability 

to nucleate filaments de novo. At the barbed end, Ena acts antagonistically to capping proteins 

and supports further filament elongation (Bear et al., 2002). The protein family shows a highly 

conserved structure with N-terminal Ena/VASP homology 1 (EVH1) domain, a proline-rich 

domain and the C-terminal EVH2 domain (Krause et al., 2003). They act as a trimer, while 

one of its arms holds contact to the filament, the other offer three binding sites for G-actin 

(Brühmann et al., 2017). 

The intact actin turnover is just as important as the growth control of filaments. One option to 

terminate elongation, as described above, is the blocking of the filament by Formins in major 

inactive gated states (Shemesh et al., 2005). Additionally, there are specialized proteins, 

referred to as capping proteins. They mask the barbed end and make it inaccessible for 

elongation factors (Schafer et al., 1996). 

Maturing actin monomers within the filament undergo conformational changes by the 

hydrolysis of ATP, which prepares this part of the polymer for disassembly (Blanchoin and 

Pollard, 2002). The actin-depolymerization factor cofilin also contains an actin-binding site 

but prefers binding to ADP-bound actin filaments (Tanaka et al., 2018). In comparison, 

Twinfilin promotes disassembly on both sites of the filament, whereas Cofilin just acts at the 

pointed end (Johnston et al., 2015). Crucial for the turnover of branched network is Coronin, 
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so far, the only known Arp2/3 inhibitor. High levels of Coronin influence Arp2/3-dependent 

polymerization negatively, whereas depletion of Coronin increases cofilin phosphorylation, 

resulting in elevated protein activity (Cai et al., 2007). 

Within an equilibrium of assembly and disassembly continuous treadmilling of the filament 

can be observed and provides the basis of the dynamic of the actin cytoskeleton (Pantaloni et 

al., 2001). This rapid and very efficient machinery needs to be precisely coordinated at the site 

of action. To avoid spontaneous and unregulated polymerization, the Arp2/3 complex is 

cytoplasmatically present in its inactive form. It can be activated by so-called nucleation 

promoting factors (NPFs), which are crucial for the site-specific activation in many actin 

driven processes. 

1.2.1 Regulation of branched nucleation by WASP family members 

The fast but controlled nucleation of actin filaments is fundamental for many cellular 

processes. Proteins of the Wiskott-Aldrich syndrome protein (WASP) family have been 

identified as acting as NPFs in the activation of the Arp2/3 complex. In mammals, WASP 

family members are divided in five subfamilies including WASP and neuronal-WASP (N-

WASP), three isoforms of the WASP family verproline homologs (WAVE1-3), WHAMM, 

WASH and JYM. Drosophila expresses only four WASP family proteins (Campellone and 

Welch, 2010): of each, WASP, WAVE (also known as suppressor of cyclic AMP receptor 

(SCAR), Figure 3) and WASH, one orthologue is expressed. The last identified NPF is 

WHAMY, which originated from a wasp gene duplication (Brinkmann et al., 2015). All 

members share a characteristic C-terminal VCA (or WCA: WH2 connecting and acidic) 

domain consisting of the verprolin‐homology domain binding monomeric actin, the cofilin‐

homology/ center domain and the acidic domain (Figure 3) interacting with the Arp2/3 

complex (Campellone and Welch, 2010; Pantaloni et al., 2001; Stradal and Scita, 2005). 

The N-terminus each family member consists of individual unique domains, which regulate 

their interaction with other proteins and specify their localization within the cell. WASP is 

intrinsically present in its folded autoinhibitory state, so the VCA domain is inaccessible for 

Arp2/3 binding (Figure 3). At the N-terminus, WASP exhibits a WASP homology 1 (WH1) 

domain that binds to members of the WASP-interacting protein (WIP) family (Ramesh et al., 

1997) and is required for WASP stabilization in vertebrates. The WH1 domain further 

negatively influences WASP activity (Dai et al., 2001). In contrast, binding of the small GTP-

bound form of Cdc42 to the GTPase binding domain (GBD) unfold WASP and releases the 

VCA domain (Kim et al., 2000), leading to it being accessible for Arp2/3 binding. 
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In contrast, WAVE proteins are incorporated into a regulatory hetero-pentameric complex 

controlling WAVE activity. It is composed of Kette (Nap1), specifically Rac1‐associated 

protein 1 (Sra1), Abelson interactor (Abi), Hematopoietic stem progenitor cell protein 300 

(HSPC300) and WAVE itself (Bogdan et al., 2004; Takenawa and Suetsugu, 2007) with Sra 

and Kette forming an elongated dimer. WAVE binds Abi and HSPC300 with its WHD to form 

a trimer, which aligns on the platform offered by the Sra:Kette dimer (Chen et al., 2010). The 

interference with a single subunit, potentially by degradation, disrupts complex integrity and 

WAVE regulatory complex (WRC) function (Steffen et al., 2004; Stradal and Scita, 2005). A 

diminished amount of the other members underlines the complex as a functional unit. 

However, in Dictyostelium, individual mutants of WRC subunits display different phenotypes 

indicating additional roles of each member. At least for Abi, initial evidence shows that 

interaction with VASP may nucleate actin in a non-classical way (Litschko et al., 2017). 

 

 

Figure 3: Comparison of protein domain structure of Drosophila WASP and WAVE. At the C-

terminus they share the characteristic VCA domain (or WCA: WH2 connecting and acidic) domain 

consisting of the verprolin‐homology domain binding monomeric actin, the cofilin‐homology/ center 

domain and the acidic domain, a basic region (B) and a proline-rich domain (PRD). At the N-terminus 

WASP exhibits a WASP homology domain 1 (WH1) and a GTPase binding domain (GBD). WAVE N-

terminally contains the WAVE homology domain (WHD) including the meander region at the end (not 

shown). Further indicated are potential interacting proteins. 

1.2.2 Spatial regulation of the WRC at the leading edge 

The local induction of the branched actin network relies on the regulated recruitment of a 

molecular scaffold to the leading edge (Buracco et al., 2019). WAVE as the main activator of 

the Arp2/3 complex is a key factor for efficient lamellipodia based migration (Campellone and 

Welch, 2010). The local regulation has been the focus of investigations for many years. WAVE 

is normally present in its inactive, folded form, incorporated in the WRC. The VCA domain 
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is sequestered by various interactions of its verprolin domain (V) and the center/cofilin (C) 

binding to both Sra1 and the meander region of WAVE abolishing G-actin as well as Arp2/3 

complex binding (Chen et al., 2010). Thus, upstream signals need to activate and recruit the 

WRC to the membrane to induce site-specific actin assembly. Many proteins interact with 

WAVE or other WRC family members, leading to the conclusion that cooperative functions 

are essential for the ideal activation of the complex (Figure 4). 

A large body of evidence supports the small Rho GTPases Rac1 to be central to activating the 

WRC and trigger actin polymerization (Abou-kheir et al., 2008; Mehidi et al., 2019; Ridley et 

al., 1992; Steffen et al., 2004). For a long time, only one conserved binding surface at the C-

terminus of Sra1 close to the VCA-binding site was postulated (now named A-site). The 

allosteric binding of Rac-GTP to the A-Site of the WRC subunit Sra-1 destabilizes its binding 

to the meander region and inducing the release of the WAVE VCA domain (Chen et al., 2010; 

Mehidi et al., 2019) (Steffen et al., 2004). Recent studies identified an additional binding site, 

the so-called D-site near the C-terminus of Sra-1 which turned out expendable for WRC 

activation but still functionally relevant for optimal lamellipodial formation and protrusive 

velocity (Mehidi et al., 2019, 2018)(Carver et al., 2017). Both binding sites contribute to actin 

assembly. Whereas the A-site remains the major WRC activation site, the D-site facilitates 

efficiency of actin assembly (Schaks et al., 2018). Constitutive active WRC with mutations in 

both Rac binding sites is partially able to rescue lamellipodia formation and migration defects. 

This implies that Rac is an important factor for WRC activation, but not essential for the 

recruitment of the WRC to the membrane (Schaks et al., 2018). Single molecule tracking of 

the Rac and WRC components showed that Rac immobilization at the lamellipodium tip 

strongly correlates with its activity in turn depends on its effector binding e.g., to the 

immobilized fraction of the WRC. Thus, WRC-RAC binding is not essential for recruitment, 

maintenance and turnover of the WRC at the lamellipodium. Single molecule tracking of 

different WRC subunits shows immobilization of free diffusing WRC increases at the 

lamellipodial tip (Mehidi et al., 2018). This implies that a local diffusion-trapping mechanism 

is responsible for the local recruitment to and accumulation of the WRC at the lamellipodial 

tip.  

Membrane curvature as well as phosphoinositide lipid composition highly affects WRC 

binding affinity to the membrane. The membrane lipid phosphatidylinositol (3,4,5) 

trisphosphate (PIP3), a product of PI(3)K phosphorylating PI(4,5)P2. PIP3 binds WAVEs´ 

positively charged basic region and facilitates the recruitment of the WRC to the membrane 

(Lebensohn and Kirschner, 2009) (Oikawa et al., 2004).. Generally, the electrostatic charge 

distribution on the surface of the WRC further supports the binding of the predominate 
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positively charged complex face of the Sra-1:Kette platform adjected to the basic region to 

phospholipid rafts. The other part of the complex, harboring the WAVE:Abi:HSPC300, is 

negatively charged and facing the cytoplasm (Chen et al., 2010). This renders the VCA and 

the meander region of WAVE accessible for other regulators like kinases or especially the 

Arp2/3 complex as the main effector. The asymmetric distribution of PIP3 and PIP2 therefore 

might be involved in the specificity of WAVE localization at the leading edge. Rac is also 

activated by PIP3 via the activation and locally restricted recruitment of guanine‐nucleotide 

exchange factors (GEFs). Furthermore, Rac activity and mediated actin assembly also 

stimulates PI(3)K activity (Welch et al., 2003). This feedback mechanism supports proper 

local enrichment of Rac and PI(3)K recruitment and therefore further WAVE activation 

(Figure 4). 

For a local activation of the actin machinery upon extracellular signals, these signals need to 

be transduced into the cell and further translated into cell motion. Interestingly, numerus 

membrane receptors and membrane associated proteins have been identified to be carrying a 

WRC interacting receptor sequence (WIRS). This short peptide sequence (Φ-x-T/S-F-X-X) is 

present in an abundance of membrane receptors and membrane-associated proteins including 

cell adhesion receptors, guidance receptors, and tyrosine kinase receptors (Figure 4). It directly 

links potential WIRS ligands to a conserved surface on the WRC formed by the Sra-1 and Abi 

subunits (B. Chen et al., 2014). Fat2 contains a WIRS motive, which interaction with the WCR 

has been demonstrated to drive collective cell migration in follicle cells during Drosophila 

oogenesis (Squarr et al., 2016). So far, this mechanism is only predicted to be involved in 

macrophage guidance. 

Although the phosphorylation of WAVE is frequently reported to influence actin 

polymerization, the precise mechanism remains unknown. There is evidence that WAVE 

might be activated and recruited to the membrane by a combination of membrane receptors 

containing a WIRS motive, PIP3, GTP-bound Rac, phosphorylation and other factors.  Some 

of these can be substituted, but others are critical, e.g. the Rac-dependent activation of WAVE. 

In conclusion, they all need to be tightly coordinated for lamellipodial driven cell motion. 
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Figure 4: Scheme of predicted WAVE dependent lamellipodia formation. Different depicted factors 

influence WRC recruitment and activity at the membrane. GTP bound Rac facilitate the release of the 

VCA domain and further activates the Arp2/3 complex. Negatively charged PI(3)K bind the basic region 

of WAVE and facilitate membrane localization. WIRS-receptors are assumed to transmit external signal 

to the actin machinery. WAVE is targeted by many kinases that influence its activity. 

1.2.3 The influence of phosphorylation on WAVE activity 

Phosphorylation is a well described reversible post-transcriptional modification and has been 

known to play a critical role in the regulation of diverse cellular processes including, but not 

restricted to, growth, apoptosis, receptor-dependent and intracellular signal transduction. 

Phosphorylation is carried out by kinases, catalyzing the energy consuming transfer of a γ-

phosphoryl group to a serine, threonine or tyrosine (Cohen, 2002; Fischer et al., 1959). 

Phosphorylation can lead to conformational changes and either activation or inactivation of 

the protein. Furthermore, it can change the binding affinity and thus enables the recruitment 

of the protein to distinct targets. The modification can be reversed by specific phosphatases. 

1.2.3.1 Kinase specific targeting of WAVE regulatory domains 

Phosphorylation is known to influence WAVE function and localization. Within its regulatory 

domains, WAVE contains many serine, threonine and tyrosine residues being a potential target 
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for diverse protein kinases. Many of the identified residues are species-specific but also 

isoform-specific within species (Krause and Gautreau, 2014; Mendoza, 2013). Nevertheless, 

the specific kinase regulation seems to be restricted to a certain functional WAVE domain 

(Figure 5). 

The VCA domain is crucial for WAVE polymerization function and its release activates WRC 

to further induce Arp2/3-dependent actin nucleation. Casein kinases phosphorylate WAVE2 

at five Serine residues within the VCA domain (Figure 5), whereby three sites (WAVE2 – 

Ser482, Ser484, Ser488) are conserved in all isoforms and across species (Mendoza, 2013a). 

However, the exact effect of VCA phosphorylation on WAVE activity is still a matter of 

controversial discussion (Nakanishi et al., 2007; Pocha and Cory, 2009; Ura et al., 2012).  

In mammals, the Proline rich domain (PRD) of WAVE is mainly controlled by serin-

phosphorylation via Cyclin-dependent kinase (CDK) and extracellular signal-regulated kinase 

(ERK) (Figure 5). CDKs only regulate WAVE1 and act negatively on WAVE function, 

whereas ERK is described to phosphorylate WAVE2, which results in its activation (Mendoza 

et al., 2011). Nevertheless, none of these residues are conserved in invertebrates (Mendoza, 

2013). The question of whether PRD phosphorylation is negligible in invertebrates or whether 

its function has been taken over by other kinases needs further investigation. 

Tyrosine-dependent WAVE regulation is restricted to the WHD domain, where the two 

prominent tyrosine kinases Src and Abelson (Abl) are reported to phosphorylate WAVE in the 

meandering region and therefore act on WAVE’s active state. In mammals, CDK5 is reported 

to additionally support WAVE function via the phosphorylation of WAVE2 at S137 in mouse 

oligodendrocyte precursor cell or T137 in human WAVE1 (Chen et al., 2010; Miyamoto et 

al., 2008). 

 

Figure 5: Kinase specific phosphorylation of WAVE domains. Domain structure of Drosophila 

WAVE. Local regulation by: Serin/threonine kinases in yellow and tyrosine kinases in purple. 
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1.2.3.2 Regulation of WAVE tyrosine phosphorylation  

The Abl tyrosine kinase has repeatedly been described to direct phosphorylate WAVE2 at the 

conserved Y150 (Table 2). This tyrosine residue is located in the WHD meander region and 

maps downstream of the Abi binding site (Figure 6). WAVE activity is increased in the 

presence of Abi and Abl but abrogated in WAVE mutated in the Y150F phosphorylation site 

(phospho-mutant). Hereby, Abi WAVE interaction facilitates WAVE phosphorylation (Stuart 

et al., 2006). The indispensability of Abi in WAVE phosphorylation is still under debate. 

Crystal structure of WAVE1 identified Y151 to localize within the hydrophobic pocket of the 

WRC formed by Sra1 and WAVE. Chen et al. (2010) hypothesized that phosphorylation of 

this residue destabilizes the binding of the C-Helix of the VCA domain, caused by a disruption 

of Sra1 binding to the meander region. Phosphorylation site-mutation, with an amino acid 

substitution of WAVE Y150D (Table 2) mimicking a phosphorylated state, displays high actin 

assembly activity and increase lamellipodia formation. Other studies found that the phospho-

mimicking of conserved WAVE1 Y125– predicted as a Src phosphorylation site within the 

meander region – shows similar actin polymerization activity to that described for Y150 

(Ardern et al., 2006; Chen et al., 2010). This data suggests another alteration mechanism 

beside the Rac1 induced release of the VCA domain leading to WCR activation (Chen et al., 

2010). 

Remarkably, phospho-mutation in WAVE2 Y150 but not in WAVE3 Y151 (Table 2) 

completely blocks Abl-mediated phosphorylation (Sossey-Alaoui et al., 2007; Stuart et al., 

2006). In WAVE3, Y248, Y337 and Y486 (Table 2) need to be additionally modified to 

completely inhibit phosphorylation (Sossey-Alaoui et al., 2007). This might indicate an Abl 

phosphorylation-dependent mechanism that is not restricted to the WHD domain. 

Table 2 Conserved tyrosine residues of WAVE orthologous and corresponding reported effector kinase. 

WAVE1 WAVE2 WAVE3 

 

Drosophila 

WAVE 

Kinase/ 

Phosphatase 

 

Source 

Y125 Y124 Y125 Y127 Src 

     
 

(Ardern et al., 

2006; Chen et 

al., 2010; 

Mendoza, 

2013) 
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In total, Drosophila WAVE exhibits 15 potential tyrosine residues (Figure 6) of which one is 

located at the N-terminal part of WAVE, four residues are located in the WHD domain and 

the remaining ten residues map between the basic region and the PRD domain. The WHD 

domain as well as the four tyrosine residues, located in the meandering region of the domain, 

are highly conserved across species. This region is critical for the autoinhibitory binding of 

the VCA domain and the intermolecular binding of the heteromeric WRC complex (Chen et 

al., 2010). 

 

Y151 Y150 Y151 Y153 Abl 
 

(Joseph et al., 

2017; Krause 

and Gautreau, 

2014; Leng et 

al., 2005; 

Mendoza, 2013; 

Stuart et al., 

2006) 

Y151 Y150 Y151 Y153 Abl 

not 

conserved 

not 

conserved 
Y248 

not 

conserved 
Abl 

not 

conserved 

not 

conserved 
Y337 

not 

conserved 
Abl 

Y543 

(alignment) 

Y480 

(alignment) 
Y486 

not 

conserved 
Abl 

 

(Sossey-Alaoui 

et al., 2007) 

not 

conserved 

not 

conserved 

not 

conserved 
Y234 

PTP61F (Abl 

consensus) 

not 

conserved 

not 

conserved 

not 

conserved 
Y247 PTP61F 

not 

conserved 

Y230 

(alignment) 

not 

conserved 
Y253 

PTP61F (Src 

consensus) 

 

(Chang et al., 

2008; Huang et 

al., 2007) 
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Figure 6: WAVE tyrosine phosphorylation. Drosophila WAVE domain structure with highlighted 

tyrosine residues. Consensus-sequence of WAVE homology domain in 1) Dictyostelium wave, 2) 

Drosophila wave, 3) human wave1, 4) mouse wave1, 5) human wave2, 6) mouse wave2 with tyrosine 

sides highlighted in orange. Predicted Abl (cyan) and Src (magenta) kinase tyrosine targets based on 

reported consensus sequence. 

Most studies claim WAVE WHD phosphorylation facilitates WAVE activation and mainly 

acts positively on actin polymerization. However, in T-cells WAVE2 phosphorylation is 

described to induce WAVE protein degradation from the membrane. It has been shown that 

degradation is initiated when the autoinhibitory state is dissolved and lysine 45 is accessible 

for ubiquitination. This process is reduced in phospho‐deficient transgenes of Abl 

phosphorylation site Y150 (Joseph et al., 2017). The similar mechanism was reported for N-

WASP (Frame, 2002). 

To reverse kinase protein modification, phosphatases are essential to remove added phospho-

residues. In phospho-tyrosine trapping experiments, potential substrates for phosphatase 

PTP61F (Huang et al., 2007) – the counterpart phosphatases of Abl – were identified. WAVE 

fragments 220-267, carrying three tyrosine (Y234, Y247, Y253 (Table 2)), are found in 

Drosophila S2 cells. But it must be mentioned, that aside from Y150 and Y125, no physical 

relevance has been associated with other WAVE tyrosine residues so far.  

Conclusively, phosphorylation is a complex interaction of different kinases and is reversibly 

controlled by phosphatases. Further evidence shows that phosphorylation may not only 

influence protein activity but can also lead to WAVE degradation. All these interactors 
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additionally influence their activity reciprocally. It has to be further determined how the 

phosphorylation state of different residues as well as kinase composition act on actin dynamics 

in vivo. 

1.2.4 Structure and regulation of tyrosine kinase Abelson 

The non-receptor tyrosine kinase Abelson (Abl = Abelson murine leukemia) is involved in 

development and cell shape changes by regulating the activity and localization of target 

proteins. It has been identified in patients with chronic myeloid leukemia. The reciprocal 

translocation of Abl to the breakpoint cluster region (BCR) of the BCR gene results in a new 

chimeric gene with enhanced tyrosine kinase activity (Fogerty et al., 1999; Owen-Lynch and 

Whettno, 1993; Price et al., 1988). Increased levels of constitutive active Abl during eye 

development results in a rough eye phenotype (Fogerty et al., 1999).  

Abl, as well as Src, belongs to the non-receptor tyrosine kinase superfamily. Both are proto-

oncogenes and share a high domain structural similarity (Nagar et al., 2003). In both proteins, 

a tandem Src-homology domain 3 (SH3) localizes to the N-terminus mediating the complex 

assembly by binding the proline rich domain of  target proteins. The SH3 domain is followed 

by a Src-homology domain 2 (SH2) that procures binding to tyrosine phosphorylated residues 

of interaction partners (Waksman et al., 2004). The kinase domain of Abl is located central 

(Figure 7). Abl predominantly phosphorylates tyrosine residues in the consensus sequence 

I/V/L-Y-X-X-P/F  (Figure 6, Mendoza, 2013). C-terminal Abl carries a unique F-actin binding 

domain, which is connected via a long and less conserved linker carrying a PXXP motive 

(Figure 7). However, this direct interaction has only been shown for mammalian Abl-related 

gene (Arg, or Abl2) and is only predicted based on sequence homology for Drosophila (Figure 

7, Galkin et al., 2005; MacGrath and Koleske, 2012; Rogers et al., 2016). Furthermore, 

modification of this actin-binding site in Drosophila has no effect on fly development or 

morphology (Rogers et al., 2016). Additionally, Abl, as well as Src, contain a WIRS motive, 

known to facilitate the interaction of membrane-associated proteins and the WRC. 
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Figure 7: Comparison of protein domain structure of Abl orthologs and Drosophila Src42A. At 

the C-terminus  Abl orthologs possess a SH3 domain interacting with Proline rich regions, followed by 

the SH2 domain binding to phosphorylated tyrosine residues. The tyrosine kinase domain is central in 

Abl orthologs but terminate Src kinases. In Abl kinases a C-terminal F-actin binding site is connected 

by a linker carrying a PXXP motive. Human Arg/Abl2 also possess a microtubule binding motive. 

Drosophila Abl further carries a FP4 motive involved in ENA recruitment and inhibition.  

Abl, as well as Src, are present in an inactive state, in which the SH2 and SH3 domains fold 

back to mask the kinase domain. In case of Abl, a hydrophobic pocket in the kinase domain 

interacts with a myristoyl group (Nagar et al., 2003). The binding of an interaction partner 

leads to a release of lash and a switch to the unfolded confirmation. Additional 

phosphorylation events on tyrosine Abl Y245 (Arg Y272), close to the SH2 domain and Abl 

Y412 (Arg Y439) in the kinase activation loop, lead to a proper orientation of the catalytic site 

and additionally prevent a re-closure of the active confirmation to gain full kinase activity. 

This step can either occur by autophosphorylation in trans by a neighboring Abl or Arg 

molecule, or by another Src kinase family member (Brasher and Van Etten, 2000; Schindler 

et al., 2000). After stimulation with growth factors (EGF and PDGF) Abl is phosphorylated 

and activated. However, this is an indirect mechanism described to  depend on Src-family 

kinases (Plattner et al., 1999). Activation further is transmitted via integrin adhesion or various 

adaptor molecules binding to the SH3/2 domain or the N-terminal PXXP motive. This links 

adaptors like Crk, Nck and the WRC member Abi to Abl (Bradley and Koleske, 2009; 

Reichman et al., 2005; Waksman et al., 2004). 

1.2.5 Abelson associated modification of actin regulation 

Abl’s domain structure suggests that it bridges various proteins, alters their activity and 

influences cytoskeletal regulation. Initial studies already indicated that Abl supports actin 



   1 Introduction 

22 

 

dynamics. PDGF induced activation of Abl in fibroblast leads to membrane ruffling (Plattner 

et al., 1999). Abl is a well-known antagonist of actin regulator Ena (Gertler et al., 1990). Via 

Abl phosphorylation, Ena activity is suppressed by an altered binding affinity to interaction 

targets. In the absence of Abl, Ena is accumulated and ectopically located, leading to an 

increase of bundled actin structures (Gates et al., 2007).  

Moreover, the interaction of the WRC subunit Abi (Abelson interacting protein) with Abl, is 

dissected early and clearly connects Abl to branched actin regulation (Juang and Hoffmann, 

1999). Abl phosphorylates Abi at four distinct positions and has been shown to promote 

protein stability and the incorporation into the WRC. Additionally, Abl mediated 

phosphorylation of Abi supports a re-localization of Abi and Abl to the cell cortex. The 

mutation of four predicted Abl target tyrosine residues decreases the membrane localization 

and reduces the half–life of the protein (Huang et al., 2007). These findings suggest that Abl 

is crucial for the recruitment of the WRC to the membrane and further acts on WRC activation 

via Abi phosphorylation. However, the expression of Abl in cancer cells leads to ubiquitin 

dependent degradation of Abi (Dai et al., 2001).  

Further, Abi fulfils different functions by modulating Abl activity and is claimed to facilitate 

the interaction with WAVE. It has been shown that the WAVE2 proline rich region (PXXP) 

is necessary for Abl binding, most likely via its SH3 domain. However, this binding is 

weakened in the absence of the WAVE WHD domain, known to be crucial for WAVE Abi 

binding (Leng et al., 2005; Stuart et al., 2006). Other data shows that WAVE3 is also able to 

physically interact with Abl without the facilitative function of Abi (Sossey-Alaoui et al., 

2007). This indicates that, at least in cell culture experiments, there might be at least two 

different interaction modes of Abl with WAVE. As described previously, Abl also directly 

phosphorylates WAVE2 at the conserved tyrosine residue 150 (Table 2). In vitro and in cell 

culture the phospho-mimicking mutant of WAVE exhibits an increased activity in actin 

polymerization (Chen et al., 2010; Leng et al., 2005; Sossey-Alaoui et al., 2007). However, its 

impact on actin dynamics in vivo has not yet been  elucidated. 

Abl can also act indirectly on WAVE activation by stimulating the Rho guanine nucleotide 

exchange factor (GEF) Trio that activates WAVE-Arp2/3 dependent actin branching via Rac1.  

The absence of Abl activates Ena and the equilibrium shifts towards filamentous actin. Here, 

Abl is claimed as a regulator that manipulates the proportion of branched and linear actin 

filaments (Kannan et al., 2017). Further, new data underlines the regulatory importance of the 

first C-terminal quarter carrying the PXXP element for Ena regulation during axon guidance. 

Still, they indicate that the same motive may be relevant for Abl interacting with Abi and Trio 

causing WRC activity as well (Sian et al., 2020). 
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Taken together, Abl kinase is a very versatile protein. On one hand, it acts as a scaffold protein 

for various interaction partners and on the other hand it directly phosphorylates target proteins 

via its kinase domain to modulate their activity. This makes the Abl kinase a key regulator of 

many cellular processes. 
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1.3 Aim of the project  

Drosophila macrophage-like immune cells are highly motile cells patrolling in the 

hemolymph. When migrating on epithelia surface, they extend large protruding lamellipodia. 

They switch from random to directed migration in reaction to external immune cues. To 

achieve this, cells rely on the recognition of extracellular signals and their further translation 

into a cell specific response. Therefore, they provide an excellent genetically tractable model 

to investigate actin dynamics in single cell migration. 

The WAVE regulatory complex (WRC) is crucial for cell morphology and cell migration by 

activating the evolutionary conserved Arp2/3 complex, which induces branched actin 

nucleation during lamellipodia formation. The underlying mechanisms need to be tightly 

regulated to induce the fast and exact reorganization of the actin cytoskeleton. Several 

upstream factors control the side specific activation of WAVE.  

There is still little knowledge about the direct recruitment of WAVE to the leading edge in 

response to external signals. Previous studies identified a conserved WRC interacting receptor 

sequence (WIRS) that is part of several membrane and membrane associated proteins. It 

provides a direct interaction platform between those WIRS-ligand and actin machinery via the 

binding of WRC. This thesis addresses the impact of this interaction in immune cell migration. 

Further, the aim of this study is to identify and characterize novel interactors and regulatory 

processes of WAVE at the leading edge. An intriguing mechanism in the activation of the 

WRC is phosphorylation of the subunits. Drosophila WAVE possess 15 tyrosine residues, of 

which two – Y127 and Y153 – within the WHD have been previously linked to effect F-actin 

formation. Y127 is assumed as Src kinase target, whereas Y153 is phosphorylated by Abl 

kinase. The non-receptor tyrosine kinase Abl has been known to be an interaction partner of 

WAVE for a long time and assumed to act as a key regulator influencing WAVE activity. 

However, the effect on cell dynamics has only been insufficiently investigated so far. 

Drosophila macrophages as an in vivo model combined with high resolution live imaging 

allows us to analyze Abl function and the impact of side specific WAVE phosphorylation on 

cell migration. 
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2 Material and Methods 

2.1 Solutions and buffers 

All required chemicals for solutions, buffers and media are obtained in a pro-analysis grade of 

quality level from the following companies unless otherwise indicated. The buffers and 

solutions are according to standard published protocols or mentioned specifically in the 

respective, following chapters. 

 

GIBCO (Eggenstein)   Roche (Mannheim) 

Baker (Groß-Gerau)   Roth (Karlsruhe) 

Biomol (Hamburg)   Merck (Darmstadt)  

Biozym (Hamburg)   New Englang Biolabs (Frankfurt)  

Sigma-Aldrich (Taufkirchen) Clontech (Heidelberg)  

Qiagen (Hilden)  ChromoTek GmbH (Planegg) 

Kobe (Marburg)  Thermo Fisher Scientific (Dreieich)  

2.2 Molecular biology 

2.2.1 Transformation of chemically competent cells 

Chemically competent cells (Top10, Mach1 T1®) are thawed on ice and 1-5 μL of the plasmid 

DNA is gently mixed in. After an incubation time of 30 minutes on ice, a heat shock at 42 °C 

for 30 seconds is performed in a water bath. Cells are kept for two additional minutes on ice, 

before adding 250 μL pre-warmed S.O.C. medium. The mix is incubated at 37 °C for 1 hour 

(180-220 rpm) in a shaking incubator. 20-200 µL from each sample are spread on LB-agar, 

supplemented with the appropriate antibiotics. 
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2.2.2 PCR and site directed mutagenesis 

For polymerase chain reaction (PCR) Q5 DNA Polymerase (NEB) with a proofreading 

function is used. PCR reaction is performed according to manufacturer´s instructions. 

 

Single mutations are generated via quick change mutagenesis. Site directed mutagenesis is 

achieved by long primer pairs harboring the designated mutation site. The following PCR mix 

is set up: 

• DNA (10ng/l)    

• Primer sense (10M) 

• Primer antisense (10M)   

• dNTP-Mix (10mM)   

• (Quick solution just by vector > 5kb) 

• Buffer 5x    

• Q5     

• ddH2O to final volume of 25l 

 

1. 95°C → 1` 

 2.  95°C  → 50`` 

 3. 62°C → 50``  18x   

 4. 72°C → 30`` per 1000 bp 

 5. 72°C → 7` 

 

 

Incubate the reaction after the PCR on ice for 2 min. Then add DpnI to the mix, incubate for 

1 hour at 37 °C and run a test gel afterwards. Transform 5 μL of reaction into chemical 

competent E. coli cells and spread on LB-agar plates supplemented with the appropriate 

antibiotics. Primer for Quick-change mutagenesis are attached in supplementary material. 

 

tyrosine → glutamic acid/ 

glutamate 

TAT/ TAC → GAA phospho-mimic 

tyrosine → phenylalanine TAT/ TAC → TTC phospho-mutant 

 

2.2.3 Plasmid DNA preparation 

For amplification and preparation of plasmid DNA, chemical competent E. coli (Top10, 

Mach1 T1®) are transformed. For mini (2-5 mL) or midi (50-100 mL) plasmid purification, 

bacteria are incubated over night with an appropriate antibiotic at 37 °C and 180 rpm. 

 

  
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Mini preparation using E.Z.N.A® Plasmid DNA Mini Kit I (Omega BIO-TEK) and Midi 

preparation using Plasmid Plus Midi Kit (QIAGEN) is performed according to manufacturer´s 

instructions. 

2.2.4 Gateway cloning 

Gateway cloning is a restriction independent cloning technique. An insert is generated via the 

PCR technic, whereby the product must carry a CACC-Sequence at the 3´ end. For cloning, 

the pENTR/D-TOPO cloning kit produced by Invitrogen/Thermo Fisher is used according to 

the manufacturer´s instructions. The correct pENTR vector is identified by colony PCR or 

restriction after a mini plasmid purification.  

The final cloning into the destination UASp/t-attB-site vector is performed via recombination 

exchange of the attL and the attR site entry and the destination vector (Clonase® II Enzyme 

mix, Thermo Fisher scientific). The LR reaction is transformed into E. coli cells using the 

appropriate transformation protocol. 

2.2.5 Plasmid DNA restriction 

DNA restriction is performed prior to ligation or for test digestion after Mini and Midi 

preparation. Digestion is performed according to fitting conditions for appropriate enzymes 

(NEB). 

2.2.6 DNA Sequencing 

For sequencing 700 to 1200 ng DNA, with the optional addition of specific primers, is sent in 

a total volume of 15 µL to Microsynth SeqLab. Sequencing is performed using single tube 

option. 

2.2.7 Vectors and plasmids 

Plasmid Comment Source/References 

pENTR‐D/TOPO®  Cloning vector, gateway cloning 

technology  

Invitrogen/  

Thermo Fisher 

Scientific 

pENTR/TOPO-TA® Cloning vector, gateway cloning 

technology 

Invitrogen/  

Thermo Fisher 

Scientific 

pUASt-attB-rfa ΦC31 mediated germline 

transformation vector for untagged 

proteins; gateway in vitro cloning; 

Stephan, 2008 (PhD) 
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contains HSP70 promotor for 

expression from embryonic stage 17 

onwards 

pUASp-attB-rfa  ΦC31 mediated germline 

transformation vector for untagged 

proteins; gateway in vitro cloning; 

contains a P‐transposase promotor 

allowing germline expression 

Stephan, 2008 (PhD) 

pUASp-attB-rfa-eGFP ΦC31 mediated germline 

transformation vector for C-terminal 

eGPF tagged proteins; gateway in 

vitro cloning; contains a P‐

transposase promotor allowing 

germline expression 

Stephan, 2008 (PhD) 

pUASp-attB-rfa-myc ΦC31 mediated germline 

transformation vector for C-terminal 

myc tagged proteins ; gateway in 

vitro cloning; contains a P‐

transposase promotor allowing 

germline expression 

Stephan, 2008 (PhD) 

pUASp-attB-myc-rfa ΦC31 mediated germline 

transformation vector for N-terminal 

myc tagged proteins ; gateway in 

vitro cloning; contains a P‐

transposase promotor allowing 

germline expression 

Stephan, 2008 (PhD) 

pENTR-WAVE gateway expression vector, insert 

WAVE 

Christina Gohl (PhD) 

pENTR-WAVE gateway expression vector, insert 

WAVE with STOP 

 

this work (based on 

Christina Gohl 

(PhD)) 

pENTR-WAVE 

Y127,153F 

gateway expression vector, insert 

WAVE with single mutation: Y→F 

127, 153 

with and without STOP 

this work  

pENTR-WAVE Y127F gateway expression vector, insert 

WAVE with single mutation: Y→F 

127 

with and without STOP 

this work  

pENTR-WAVE  Y127E gateway expression vector, insert 

WAVE with single mutation: Y→E 

127 

this work  
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with and without STOP 

pENTR-WAVE Y153F gateway expression vector, insert 

WAVE with single mutation: Y→F 

153 

with and without STOP 

this work  

pENTR-WAVE Y153E gateway expression vector, insert 

WAVE with single mutation: Y→E 

153 

with and without STOP 

this work  

pUASp-attB-WAVE gateway expression vector; insert 

WAVE full-length 

Marianne von Cann, 

master thesis 

pUASp-attB-WAVE 

Y15E 

gateway expression vector, insert 

WAVE with single mutation: Y→E 

18, 127, 142, 153, 158, 234, 247, 

253, 269, 279, 290, 312, 317, 323, 

337 

Rita Kottmeier, 

bachelor thesis  

pUASp-attB-WAVE 

Y15F 

gateway expression vector, insert 

WAVE with single mutation: Y→F 

18, 127, 142, 153, 158, 234, 247, 

253, 269, 279, 290, 312, 317, 323, 

337 

Rita Kottmeier, 

bachelor thesis  

pUASp-attB-WAVE 

Y127,153F 

gateway expression vector, insert 

WAVE with single mutation: 

Y127,153F 

this work  

pUASp-attB-WAVE 

Y127,153E 

gateway expression vector, insert 

WAVE with single mutation: 

Y127,153E 

this work  

pUASp-attB-WAVE 

Y127F 

gateway expression vector, insert 

WAVE with single mutation: Y127F 

this work  

pUASp-attB-WAVE 

Y127E 

gateway expression vector, insert 

WAVE with single mutation: Y127F 

this work  

pUASp-attB-WAVE 

Y153F 

gateway expression vector, insert 

WAVE with single mutation: Y153F 

this work  

pUASp-attB-WAVE 

Y153E 

gateway expression vector, insert 

WAVE with single mutation: 

Y127,153E 

this work  

pUASp-attB-myc-

WAVE 

gateway expression vector with C-

terminal myc-Tag 

this work  

pUASp-attB-myc-

WAVE 15E 

gateway expression vector with C-

terminal myc-Tag, insert WAVE 

with single mutation: Y→E 

Rita Kottmeier, 

bachelor thesis  
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18, 127, 142, 153, 158, 234, 247, 

253, 269, 279, 290, 312, 317, 323, 

337 

pUASp-attB-myc-

WAVE 15F 

gateway expression vector with C-

terminal myc-Tag, insert WAVE 

with single mutation: Y→F 

18, 127, 142, 153, 158, 234, 247, 

253, 269, 279, 290, 312, 317, 323, 

337 

Rita Kottmeier, 

bachelor thesis  

pUASp-attB-myc-

WAVE Y127,153F 

gateway expression vector with C-

terminal myc-Tag, insert WAVE 

with single mutation: Y127, 153F 

this work  

pUASp-attB-myc-

WAVE Y127F 

gateway expression vector with C-

terminal myc-Tag, insert WAVE 

with single mutation: Y127F 

this work  

pUASp-attB-myc-

WAVE Y153F 

gateway expression vector with C-

terminal myc-Tag, insert WAVE 

with single mutation: Y153F 

this work  

pEB2-mScarlet mScarlet red fluorescent protein 

inserted in pEB2 vector 

(Balleza et al., 2018), 

addgene #104006 

pm-mScarlet-H_C1 mScarlet-H stable red fluorescent 

protein inserted in pm vector 

(Bindels et al., 

2017), 

addgene #85043 

pEB2-mScarlet-I mScarlet-H high insensitivity red 

fluorescent protein inserted in pEB2 

vector 

(Balleza et al., 2018) 

addgene #104007 

pENTR-TOPO-TA-

mScarlet 

gateway entry vector with mScarlet  this work 

pENTR-TOPO-TA-

mScarlet-I 

gateway entry vector with mScarlet-I this work 

pENTR-TOPO-TA-

mScarlet-H 

gateway entry vector with mScarlet-

H 

this work 

pUASt-attB-rfA-

mScarlet 

ΦC31 mediated germline 

transformation vector for C-terminal 

mScarlet tagged proteins; gateway in 

vitro cloning; contains HSP70 

promotor for expression from 

embryonic stage 17 onwards 

this work 

pUASt-attB-rfA-

mScarlet-I 

ΦC31 mediated germline 

transformation vector for C-terminal 

mScarlet-I tagged proteins; gateway 

in vitro cloning; contains HSP70 

this work 
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promotor for expression from 

embryonic stage 17 onwards 

pUASt-attB-rfA-

mScarlet-I 

ΦC31 mediated germline 

transformation vector for C-terminal 

mScarlet-H tagged proteins; gateway 

in vitro cloning; contains HSP70 

promotor for expression from 

embryonic stage 17 onwards 

this work 

pENTR-alphaTub84B gateway entry vector, insert alpha 

tubulin84B without stop 

this work 

pUASt-attB-

alphaTub84B-mScarlet 

gateway expression vector with C-

terminal mScarlet-Tag, insert tubulin 

this work 

pUASt-attB-

alphaTub84B-mScarlet-

I 

gateway expression vector with C-

terminal mScarlet-I-Tag, insert 

tubulin 

this work 

pUASt-attB-

alphaTub84B-mScarlet-

H 

gateway expression vector with C-

terminal mScarlet-H-Tag, insert 

tubulin 

this work 

pUASt-attB-

alphaTub84B-mCherry 

gateway expression vector with C-

terminal mCherry-Tag, insert tubulin 

this work 

pENTR-src42ACA_stop gateway entry vector, insert 

constitutive active form of Src42A 

without Amino acid replacement: 

Y511F.  

this work 

pUASp-attB-src42ACA gateway expression vector, insert 

constitutive active form of Src42A 

without Amino acid replacement: 

Y511F 

this work 

pDEST-HemmarG-

eGFP 

modified pDEST-Hemmar-G- vector 

for cloning any enhancer to drive 

expression of eGFP 

(Han et al., 2011) 

addgene # 31221, 

modified by Rita 

Kottmeier, master 

thesis  

pDEST-HemmarG- 

Stinger-eGFP 

modified pDEST-Hemmar-G-vector 

for cloning any enhancer to drive 

expression of nuclear eGFP 

(Han et al., 2011) 

addgene # 31221, 

modified by Rita 

Kottmeier, master 

thesis  

pENTR-hmlΔ gateway entry vector, with truncated 

hml promotor region (Z. Chen et al., 

2010; Steffen et al., 2004) 

this work 
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pDEST-HemmarG 

hmlΔ-StingerEGFP 

gateway expression vector with 

promotor fused hml promotor region 

to nuclear eGFP 

this work 

pDEST-HemmarG 

hmlΔ-eGFP 

gateway expression vector with 

promotor fused hml promotor region 

to eGFP 

this work 

pENTR-WIRS-GGSx4-

eGFP 

gateway expression vector, with four 

inserted WIRS-peptide motifs 

flanked by 10 amino acids which are 

linked with an GGS-linker.  

Malte Kreft, bachelor 

thesis  

pUASp-attB-WIRS-

GGSx4-eGFP 

with four inserted WIRS-peptide 

motifs flanked by 10 amino acids 

which are linked with an GGS-linker. 

Malte Kreft, bachelor 

thesis  

 

Maps of generated plasmids in this work are provided digitally. 

2.3 Fly genetics 

2.3.1 Maintenance and crossing 

All flies are kept on Drosophila standard food in plastic tubes at either 18 °C, 25 °C or room 

temperature. For interbreeding, female virgins are collected and crossed in a 3:1 ratio with 

male flies at 25 °C (29 °C for RNAi expression). 

Drosophila standard food for 54 L 

1. boil up 430 g agar and 3950 g corn flour in 41 L water 

2. mix 930 g dry yeast and 540 g soy flour in 4 L water and add to the first mixture 

3. add 2500 g malt extract 

4. mix 1900 g treacle in 4 L water and add to the mix 

5. boil up for 10 min stirring constantly 

6. add 5 kg ice and chill to 60°C stirring constantly 

7. add 275 mL propionic  acid and 830 mL methyl‐4‐hydroxybenzoate 10% (w/v) in 

70% (v/v) ethanol 

2.3.2 List of flies 

Table 3: Wild type and balancer stocks 
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FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCES 

w1118 

 

w‐, wild type  

 

X (Lindsley and Zimm, 1992) 

w;; TM3, e, 

Sb/TM6B, e 

Hu Tb 

balancer for 

chromosome 3 

3 Christian Klämbt, 

unpublished 

w; CyO-Wee-P-

GFP/Sp; TM2, e 

Ubx/TM6B, e 

Hu Tb 

balancer for 

chromosome 2 and 

3 

2,3 Thomas Hummel, 

unpublished 

y, w, hs-flp ; Sp 

/ CyO ; MKRS 

/ TM6 ;   

heat shock FLP on 

the X chromosome, 

balancer for 

chromosome 2 and 

3 

x, 2, 3 Bloomington stock center 

Table 4: Mutations, transposon, insertions 

FLYSTOCK COMMENT CHROMOSOME 

ARM 

SOURCE/REFERENCE

S 

abiΔ20 Transposon excision 

using 

P{Epgy2}abiEY204

23; genomic 

locus deletion 

3R: 88A9 (Stephan et al., 2011) 

abl1 EMS induced allele 

of the abl locus 

3L: 73B1 – B4 (Gertler et al., 1989) 

BL 8566 

abl2 EMS induced allele 

of the abl locus 

3L: 73B1 – B4 (Gertler et al., 1989) 

BL 8565 

abl4 EMS induced allele 

of the abl locus 

3L: 73B1 – B4 (Gertler et al., 1989) 

BL 3553 

FRT40A, 

scarΔ37 

Transposon excision 

using 

scark13811, 

genomic deletion in 

2L: 32C1 (Zallen et al., 2002) 
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the scar and piwi 

locus 

Src42A26-1 P-element excision 

of Src42Ak10108 

(enhancer trap line), 

Loss of function 

allele 

2R: 42A6-42A7 (Takahashi, 2005) 

neoFRT80B, 

arp383F   

Point mutation, 

lethal 

3L: 66B6-66B6 BL 39727, used in this 

thesis 

Table 5:Gal4 activator lines and promotor fusion constructs 

FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCES 

act5CGal4 actin5C promotor 

fusion; 

drives ubiquitous 

expression 

2 Bloomington stock center 

da-Gal4  daughterless 

promotor/intron 

fusion; 

drives ubiquitous 

expression 

3 (Wodarz et al., 1995) 

GR1-Gal4 Enhancer trap, 

drives 

expression in all 

somatic 

cells during 

oogenesis 

3 BL 36287 

en-Gal4 engrailed promoter 

fusion, construct 

under control of 

engrailed regulatory 

sequences 

2 Bloomington stock center 

hmlΔ-Gal4 truncated 

hemolectin 

promotor fusion, 

expresses GAL4 in 

lymph glands and 

2 

3 

BL 30139 

BL30141 

(Sinenko and Mathey-

Prevot, 2004) 
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circulating 

hemocytes 

slbo-Gal4 Gal4 expression in 

border cells a partial 

follicle cells 

2 Montel Lab 

c306-Gal4 GAL4 expression 

pattern in oocyte: 

stalk cells, border 

cells 

x BL 3743 

tub-Gal4 Drives ubiquitous 

expression 

3 Bloomington stock 

center 

hmlΔ-DsRed Promotor fusion 

construct to mark 

hemocytes, 

cytoplasmic 

expression 

2 (Makhijani et al., 2011) 

Bückner lab. 

hmlΔ-stinger-

eGFP 

Promotor fusion 

construct to mark 

hemocytes, nuclear 

expression 

2 this work 

Table 6: UAS‐ effector lines inclusive RNAi 

FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCES 

pUASp‐AbiWT  express a full‐

length Abi  

3 Julia Squarr,  

(B. Chen et al., 2014) 

pUASp‐

AbiΔWIRS 

express a full‐

length Abi 

protein, 

point mutations at 

position 118 

(R→A) & 122 

(G→W) 

3 Klaus Brinkmann, 

(B. Chen et al., 2014) 

UAS-AblFL express a full‐

length Abl 

2 BL28993 
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UAS-

Abl.K417N/ 

UAS-AblDN 

expression on 

kinase dead Abl 

protein 

2 BL 8566 

UAS-p185Bcr-

Abl 

expression of C-

terminal truncated 

Abl protein, 

truncation leads to 

an active form of 

Abl 

2 (Fogerty et al., 1999) 

UAS‐mCD8‐

GFP 

express mouse 

CD8a fused at the 

C-terminus to the 

coding region of 

GFP 

2 Klämbt lab 

UAS-LifeAct-

eGFP 

LifeAct c-terminal 

tagged to eGFP, 

visualize actin 

filaments 

2 Bloomington stock center 

UAS-eGFP eGFP expression 

under UAS 

control 

2 

3 

BL 6874 

BL 6658 

UAS- Src42ACA expression of a 

constitutively 

active form of the 

Src42A Protein, 

Amino acid 

replacement: 

Y511F 

3 (Tateno et al., 2000) 

UAS-Src42ADN express the kinase 

dead form of the 

Src42A Protein, 

Amino acid 

replacement: 

K295M 

3 (Shindo et al., 2008) 

UAS- abl RNAi to express double‐

stranded 

RNAi against the 

abl gene product 

2 BL 61170 
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UAS-src42A 

RNAi 

to express double‐

stranded 

RNAi against the 

src42A gene 

product 

2 VDRC 100708 

UAS-src42A 

RNAi 

to express double‐

stranded 

RNAi against the 

src42A gene 

product 

3 BL 55868 

UAS-scar RNAi to express double‐

stranded 

RNAi against the 

scar gene product 

2 NIG 4636R-2 

pUASt-WAVE expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

3 Bogdan stock collecktion 

pUASt-WAVE-

15E 

expression of 

phosphor-mimic 

WAVE protein, 

all 15 Y→E, in 

landing site 

M{3xP3-

RFP.attP'}ZH-68E 

3 Rita Kottmeier, bachelor 

thesis 

pUASt-WAVE 

15F 

expression of 

phosphor-mutant 

WAVE protein, 

all 15 Y→F, in 

landing site 

M{3xP3-

RFP.attP'}ZH-68E 

3 Rita Kottmeier, bachelor 

thesis 

pUASp-WAVE expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

3 Marianne von Cann, 

master thesis 
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pUASp-WAVE 

Y127F+Y153F 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

with single 

mutation: 

Y127F+Y153F 

3 this work  

pUASp-WAVE 

Y127E+Y153E 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

with single 

mutation: 

Y127E+Y153E 

3 this work  

pUASp-WAVE 

Y127F 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

with single 

mutation: Y127F 

3 this work  

pUASp-WAVE 

Y127E 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

with single 

mutation: Y127E 

3 this work  

pUASp-WAVE 

Y153F 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

with single 

mutation: Y153F 

3 this work  

pUASp-WAVE 

Y153E 

expression of 

WAVE full-length 

protein, in landing 

site M{3xP3-

RFP.attP'}ZH-68E 

3 this work  
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with single 

mutation: Y153E 

Table 7: Stocks for gene dosage experiments 

FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCES 

hmlΔ-Gal4, 

UAS-eGFP ; 

abl4/TM6,Tb 

eGFP marked 

hemocytes in abl 

mutant 

background, 

crossing with abl2 

2, 3 this work 

hmlΔ-Gal4, 

UAS-lifeAct-

eGFP ; 

abl4/TM6,Tb 

eGFP filamentous 

marked hemocytes 

in abl mutant 

background, 

crossing with abl2 

2, 3 this work 

FRT40A 

scarΔ37/ 

CyOWee-P-GFP; 

abl2/TM6,Tb 

gene dosage 

experiment to 

reduce WAVE 

protein amount in 

abl mutant 

background 

2, 3 this work 

Src42A26-1/ 

CyOWee-P-GFP; 

abl2/TM6,Tb 

gene dosage 

experiment to 

reduce Src42A 

protein amount in 

abl mutant 

background 

2, 3 this work 

Table 8: Stocks for genetic mosaics 

FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCE

S 

hsFLP; 

FRT40A,Gal80/

CyO; 

tub-Gal4, UAS-

CD8‐GFP/TM6b 

to induce cell 

mutant 

clones; used for 

MARCM analysis 

x, 2, 3 Stephan, 2008 

(PhD) 
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hsFLP; 

FRT40A,Gal80/

CyO; 

hmlΔ-Gal4, 

UAS‐

eGFP/(TM6b) 

to induce 

hemocyte specific 

cell mutant 

clones; used for 

MARCM analysis 

x, 2, 3 this work 

hsFLP;;FRT80B 

ubi‐GFP/TM6b 

to induce 

ubiquitously 

mutant cell 

clones; negative 

marking 

x, 3 Christina Gohl, 2010  

(PhD) 

Table 9: Constructs for rescue experiments 

FLYSTOCK COMMENT CHROMOSOME SOURCE/REFERENCES 

hmlΔ-dsRed, 

FRT40A scarΔ37/ 

CyOWee-P-GFP;  da-

Gal4 / TM6B ; 

for ubiquitous 

expression of 

recue constructs 

in wave (scar) 

mutant 

background, 

cytoplasmic 

expression of 

dsRed in 

hemocytes 

2, 3 this work 

 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASt-WAVE/ 

(TM6B, ubiGFP) 

expression of 

WAVE full-

length construct 

in wave mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASt-

WAVE15E/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mimic 

construct in wave 

mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVE15F/ 

(TM6B, ubiGFP)  

expression of 

WAVE 

phosphor-mutant 

construct in wave 

2, 3 this work 
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mutant 

background 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-WAVE/ 

(TM6B, DfdGFP) 

expression of 

WAVE full-

length construct 

in wave mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY127,153E/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mimic 

(Y127,153E) 

construct in wave 

mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY127,153F/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mutant 

(Y127,153F) 

construct in wave 

mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY127E/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mimic 

(Y127E) 

construct in wave 

mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY127F/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mutant 

(Y127F) 

construct in wave 

mutant 

background 

2, 3 this work 

FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY153E/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mimic 

(Y153E) 

construct in wave 

mutant 

background 

2, 3 this work 
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FRT40A scarΔ37/ 

CyOWee-P-GFP; 

pUASp-

WAVEY153F/ 

(TM6B, ubiGFP) 

expression of 

WAVE 

phosphor-mutant 

(Y153F) 

construct in wave 

mutant 

background 

2, 3 this work 

hmlΔ-dsRed/ 

CyOWee-P-GFP ; 

abiΔ20, da-Gal4/ 

TM6B  

for ubiquitous 

expression of 

recue constructs 

in abi mutant 

background, 

cytoplasmic 

expression of 

dsRed in 

hemocytes 

2, 3 this work, based on 

(B. Chen et al., 2014) and 

(Makhijani et al., 2011) 

hmlΔ-dsRed / 

CyOWee-P-GFP ; 

AbiFL/ TM6B 

expression of 

Abi full-length 

construct in wave 

mutant 

background 

2, 3 this work, based on 

(B. Chen et al., 2014) and 

(Makhijani et al., 2011) 

hmlΔ-dsRed / 

CyOWee-P-GFP ; 

AbiΔWIRS/ TM6B  

expression of 

AbiΔWIRS 

(R106A/G110W) 

construct in wave 

mutant 

background 

2, 3 this work, based on 

(B. Chen et al., 2014) and 

(Makhijani et al., 2011) 

2.3.3 Mosaic analysis using the FLP/FRT system 

To generate genetic mosaics in macrophages, the flippase recombination target/flippase 

(FRT/FLP) system was applied. It is a site‐directed recombination system original derived 

from Saccharomyces cerevisiae and involves the recombination between FRT sites (flipase 

recognition target sites) mediated by the flipase recombinase (FLP). To induce homozygous 

mutant cells, a fly line with a temperature sensitive FLP is used, which expresses the FLP 

recombinase under 37 °C conditions. The generated mutant cell clones can be identified either 

by the absence of the marker gene expression (e.g. negatively labelled by GFP expression) or, 

as in this case, by the presence of the marker gene expression (GFP) only in the mutant cells 

(Lee and Luo, 2001; Perrimon, 1992). 

The induction of heat shock clones in macrophages has been described previously in Moreira 

et al. (2013). The heat shocks are set for one hour at 37 °C in a water bath. Afterwards flies 
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are kept on 18 °C for one hour and finally returned on 25 °C. This procedure is repeated the 

next two days as depicted in Figure 8 (Moreira et al., 2013).  

 

 
Figure 8: Timeline for heat shock after crossing. 

2.3.4 Germline transformation and establishing of a transgenic fly line 

2.3.4.1 Injection 

Germline transformation is performed using the germline specific FC31 integration system (Z. 

Chen et al., 2010; Steffen et al., 2004). The chorion of 30 min old embryos (25 °C) is removed 

by a 2-minute incubation in a 50 % sodium hypochlorite solution. Afterwards, the embryos 

are washed with tap water. For injection they are lined up in the same orientation. For injection 

they are stamped on a parcel tape heptane glue covered cover slip. After drying for 5 minutes, 

they are overlaid with 10 S oil (Voltalef®). 

The injection mix contains 3-5 µg DNA in add to a final volume of 15 µL with injection buffer.  

 

Injection buffer (10x): 

1 mM phosphate buffer 

50 mM KCl 

pH 7,4  

 

 

Injection is performed using a FemtoJet microinjector (Eppendorf). Injected embryos are 

placed in an apple agar dish with a water pond. They are kept at 18 °C for one day and are 

placed in the evening at 25 °C until they hatch the next day. Larvae are collected and 

transferred in a food vial close to a spot with fresh baker´s yeast.  
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2.3.4.2 Establishment of a transgenic fly strain and recombinant flies 

Transgenic flies 

After injection, hatching males are crossed with white minus balancer female virgins in a 

batch. In the F1 generation flies with integrated injected DNA express the white gen and can 

be selected via their orange/red eyes. white positive males are crossed in single crosses with 

balancer female virgins to remove the integrase gene on the first chromosome. If in any 

crossing step a female is the origin of the cross an additional crossing step need to be 

performed. Finally, the stable line is established by crossing identical genotypes with each 

other. 

 

Recombinants 

In the F1 generation, trans-heterozygous female virgins for our genes of interest are collected 

and are then crossed against balancer males. The F2 generation is screened for markers of the 

genes or tested via PCR for a positive recombination. A stable line of positive tested strain is 

established. 

2.4 Biochemical approaches and immunohistochemistry 

2.4.1 Antibodies 

Table 10: Primary antibodies 

ANTIBODY CONJUGATION DILUTION REFERENCE/SOURCE 

α Abelson rabbit 1:500 (PA in IH) Gininger Lab, NINDS 

USA 

α myc rabbit 1:500 (WB) Santa Cruz 

α Phospho-

Tyrosine (pTyr) 

mouse  1:1000 (WB) Cellsignaling 

Technology® 

#9411 
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α Src42A guinea pig 1:500 (WB) Müller Lab, Kassel 

α Tubulin mouse 1:1000 (WB) DSHB 

α WAVE guinea pig 1:1000 (IH, WB) (Bogdan et al., 2005) 

α WAVE rabbit 1:500 (IH) unpublished 

Table 11: Secondary antibody 

ANTIBODY CONJUGATION DILUTION REFERENCE/SOURCE 

α guinea pig Alexa Fluor™ 488, 

-568, -647 

1:1000 (IH) Thermo Fisher Scientific, 

488: A11073 

568: A11075 

647: A21450 

α mouse Alexa Fluor™ 488, 

-568, -647 

1:1000 (IH) Thermo Fisher Scientific, 

488: A11029 

568: A11031 

647: A21236 

α rabbit Alexa Fluor™ 488, 

-568, -647 

1:1000 (IH) Thermo Fisher Scientific,  

488: A11034 

568: A11036 

647: A21045 

α guinea pig 800CW, 680RD/LT 1:10000 (WB) LI-COR Biosciences 

α mouse 800CW, 680RD  1:10000 (WB) LI-COR Biosciences 

α rabbit 800CW, 680RD  1:10000 (WB) LI-COR Biosciences 

Phalloidin Alexa Fluor™ 488, 

-568, -647 

1:100 (IH) (647 

1:50) 

Thermo Fisher Scientific, 

488: A12379 

568: A12380 

647: A22297 
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2.4.2 Transfection of S2R+ cells 

Drosophila S2R+-cells are cultured on 1 x Schneider’s medium (M3+/+, Gibco) in T-flasks (75 

cm2, Corning) at 25 °C. The minimal medium M3-/-  is supplemented with 10 % fetal bovine 

serum, penicillin (50 U/mL) and streptomycin (50 μg/mL) to generate the M3+/+ medium. One 

day prior to transfection, cells are seeded in 24 well plate (3 x 105 cells/ mL; 1 mL/well). 

The cells are co-transfected with 1 µg DNA of pUASt- or pUASp expression constructs and 

act5c-Gal4 0.6 µg DNA using FuGENE® HD Transfection Reagent (Promega). Prior to 

adding 100 µL transfection mix, 600 mL of the total of 1000 mL culture medium are removed.  

 

Transfection mix (100 μl) 

1 μg pUASp/pUASt exp. construct 

0.6 μg Act5c-Gal4 DNA 

4 μl Fugene HD 

ad 100 μl M3-/- 

2.4.3 Protein extraction from Drosophila hemocytes 

For protein extraction 30 wandering third instar larvae are washed in PBS and carefully rolled 

on tissue paper to remove the cell from the body wall. Larvae are prepared in M3-/- medium by 

opening the body wall lateral with forceps and shaking them slightly. The medium containing 

the isolated cells is transferred into a reaction tube and paced on ice until further processing. 

Cell are centrifuged for 10 min at 500 g at 4 °C. The medium is removed and cells are resolved 

in 10 µL 2x Laemmli buffer (Laemmli, 1970). The sample is boiled for 5 min and further 

analyzed on an SDS page. 

2.4.4 Protein extraction from S2R+ cells  

For protein extraction from transfected S2R+ cells, cells are resuspended in ice cold lysis 

buffer and transferred in a reaction tube. Cells are placed on ice for 15 min and vortexted three 

times in the meantime to lyse the cells. To analyze phosphorylated proteins, phosphatase 

inhibitors are added to the lysis buffer. Cells are spinned down for 15 min at maximum speed, 

4 °C. The supernatant is boiled with Laemmli buffer for 5 min.  

 

  



   2 Material and Methods 

47 

 

Lysis buffer (5 mL) 

20mM  Tris pH 7.7  100 µL, 1M stock 

150 mM NaCl 750 µL, 1M stock 

1 mM EDTA 10 µL, 0.5 stock 

1 mM EGTA 10 µL, 0.5 stock 

1 % Triton-X 100 % 

½ Tablet Protease inhibitor cOmplete Mini, 

EDTA-free, Roche 

2.5 mM Pyrophosphate 50 µL, 250 mM 

stock 

1 mM  Glycerolphosphate 50 µL, 100 mM 

stock 

1 mM  Vanadate 50 µL, 200 mM 

stock 

 

2.4.5 Immunoprecipitation and Co-Immunoprecipitation 

The ChromoTek Trap® system is used for immunoprecipitation of proteins. Therefore, eight 

transfected wells per sample are resolved in lysis buffer optional with phosphatase inhibitors. 

The further procedure is performed according to the manufacturer´s instructions. The samples 

can be stored at -20°C or directly be loaded on an SDS gel. 

2.4.6 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

To separate and analyze protein samples, a SDS polyacrylamide gel electrophoresis (PAGE) 

under denaturating conditions is performed. For phosphorylated samples the ratio of 

Acrylamide und Bis-acrylamide in the running buffer is altered (see below, after (Singh et al., 

2020)). 

3-4 x stacking gels 5 % 

4.1 ddH2O 

1 30 % Polyacrylamide 

0.75 0.5 Tris pH 6.8 

0.06 10 % SDS 

0.06 10 % APS 

0.006 TEMED 
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2 x running gels 10 % 

6.3 ddH2O 

5.33 30 % Polyacrylamide 

4 1.5 Tris pH 8.8 

0.16 10 % SDS 

0.16 10 % APS 

0.016 TEMED 

 

2 x Phospho-running gels 10 % 

5.82 ddH2O 

5.3 30 % Acrylamide 

0.48 2 % Bisacrylamide 

4 1.5 Tris pH 8.8 

0.16 10 % SDS 

0.16 10 % APS 

0.016 TEMED 

 

The gel is transferred into a vertical electrophoresis chamber (BioRad, Mini-PROTEAN Tetra 

Vertical Electrophoresis Cell) filled with SDS running buffer and samples are loaded onto the 

gel. In the initial phase a current voltage of 80 V is used. As soon the samples have reached 

the running gel, voltage is increased to 140-180 V. As protein standard Precision All Blue 

Protein Standards is used. 

10 x SDS Running buffer 

25 mM Tris 

192 mM Glycine 

0.1 % SDS (w/v) SDS 

Dilute 1:10 in ddH2O to obtain 1x solution. 

 

10 x SDS Transfer buffer 

25 mM Tris 

192 mM Glycine 

Dilute 1:10 in ddH2O and add 10 % MeOH to obtain 1x 

solution. 
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2.4.7 Western Blot analysis  

The Western Blot technique is used to visualize separated proteins. Therefore, the PVDF 

membrane (Immobilon®-FL Transfer Membrane, pore size: 0.45 µm, Merck Milipore) is 

activated 30 sec in Methanol and incubated 10 min in a transfer buffer as well as two thin and 

two thick layers of Whatman® blotting papers. The gel is placed onto the membrane in a 

sandwich of thin a thick Whatman papers. The transfer is performed using Trans-Blot Turbo 

Transfer System (BioRad) using preset standard program (1.3 A for a single mini format gel, 

2.5 A for a single midi or two mini format gels). 

Afterwards, the membrane is blocked for 30 min using Intercept® (TBS) Blocking Buffer (LI-

COR Biosciences) 1:1 with TBS. The primary antibody is diluted in the blocking buffer with 

additional 0.2 % Tween20 and incubated at 4 °C rotation overnight. The membrane is washed 

three times for 15 min, rotating with TBS-Tween before incubating with the corresponding 

antibody for 1 hour at room temperature. Finally washing the membrane three times with TBS-

Tween and once with TBS. For protein detection after staining, Odyssey® Sa imager system 

(LI-COR Biosciences) is used. 

2.4.8 Fixation and immunostaining staining of Drosophila macrophages and 

S2R+ cells 

Per coverslip, 10-15 wandering third instar larvae or 3-5 prepupae ~3 hours after pupae 

formation (APF) are washed in PBS and carefully rolled on tissue paper to remove cells from 

the body wall. The larvae are place in M3-/- medium and the body wall is opened lateral with 

forceps and then shaken slightly. The medium including the isolated cells is transferred into a 

reaction tube and paced on ice until further processing. In the meantime, coverslips are coded 

with Concanavalin A (ConA, Sigmar) for 30 min. After removing ConA, coverslips are 

washed once with PBS. Then, cells are incubated 1 h at 25 °C on the coated coverslips.  

Afterwards, cells are fixed with PFA for 12 min and then permeabilized with 0.1 PBS-T and 

immediately removed and washed three times with PBS for 5 min. After blocking for 30 min 

with 3 % BSA in PBS, cells are stained for 2 h with a primary antibody diluted in 3 % BSA in 

PBS in a humid chamber. The coverslip is dipped two times in PBS for washing and then 

stained for 1 hour with the secondary antibody including optional added phalloidin. The 

coverslip is dipped two times in ddH2O and finally mounted in Mowiol. 
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Mowiol 

12 g  Mowiol 

30 g glycerol (analytical grade) 

30 ml ddH2O 

60 ml Tris‐HCl buffer, pH 8.5 

• magnetic stirrer at 56°C for 10 min 

• centrifuge at 5000g for 15 min 

2.4.9 Fixation and immunostaining staining of wing imaginal discs 

Wandering third instar larvae are transferred into a dissection dish with PBS. For preparation 

the anterior part is separated and turned inside out. The surrounding tissue of the wing disks 

is removed, and the dissected tissue is selected in a 0.2 mL collection tube filled with PBS. 

The PBS is removed, and the tissue is covered in 4 % PFA for fixation for 45 min rotating in 

a 50 mL tube. Then, the PFA discarded and the tissue rinse ones with PBS-T 0.3 % before 

washing it twice in PBS-T 0.3 %, once PBS-T 0.5 % rotating and twice again in PBS-T 0.3 % 

rotating. For blocking, the sample is covered with 3 % BSA for one hour. The primary antibody 

is dissolved in 3 % BSA-T 0.3 % and  incubated at 4 °C overnight for one hour. The next day 

it is washed out for 15 minutes three times with PBS-T 0.3 %. The secondary antibody and 

optional Phalloidin (1:100) are dissolved in 3 % BSA-T 0.3 % and incubated for one hour at 

room temperature rotating. The tissue is washed three times for 15 minutes with PBS. Finally, 

the complete liquid is removed, and the tissue is embedded in Fluoromount at 4 °C (at least 2 

hours). 

The dissection of the imaginal disks takes place on an imaging-slide in Fluoromount and can 

be stored at 4°C. 

2.4.10 Fixation and immunostaining staining of female egg chamber 

Young adult females and a few males are collected and transferred into a fly-vial with 

additional fresh baker´s yeast. To analyze border cell migration, flies are kept for 36-48 h at 

25 °C (29°C for RNAi experiments). Time is dependent on temperature and on the desired egg 

chamber stages. 

Female flies are anaesthetized using CO2 and dissection takes place in a dissection dish filled 

with cold M3+/+. For preparation the fly is fixated with forceps and the abdomen is ripped up. 

Carefully the ovaries are pushed out in the medium. Single egg chambers are isolated out of 

the muscle tube by carful pulling at the anterior part of the ovary. They are transferred with 
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per saturated and cut of piped tip into a 0.2 mL tube. The tissue is fixed for 20 minutes in 4 % 

PFA at RT. Afterward, it is rinsed once with PBS and is then washed and permeabilized once 

with PBS-T 0.5 % and three times with PBS-T 0.1 %, each for 20 minutes rotating upside 

down. The primary antibody is dissolved in 3 %, BSA is incubated at 4 °C overnight for one 

hour while rotating. Then, the tissue is washed for 20 minutes while rotating three times with 

PBS-T 0.1 %. Then, the secondary antibody and optional Phalloidin (1:100) in 3 % BSA is 

incubated for 1 h at room temperature while rotating. Finally, the tissue is washed for 15 

minutes while rotating upside down with PBS.  

After removing the entire liquid, the tissue is embedded in Fluoromount at 4 °C for at least 

two hours. Then, the egg chambers are mounted on an imaging-slide in Fluoromount and 

stored at 4°C. 

2.5 Quantification and statistical analysis 

2.5.1 Imaging acquisition and processing 

Images of total flies or detailed body structures are acquired with Fluorescent Stereo 

Microscope Leica M165 FC equipped with a Leica DFC7000 T camera. Standard confocal 

fluorescent images are recorded using a Leica TCS SP8 Confocal Laser Scanning Microscope 

with Light sheet unit. Structure illumination microscopy images are taken with an ELYRA S.1 

Microscope (CellObserver SD, 63x/1.4 oil-immersion objective; Carl Zeiss AG). Live 

imaging analysis is performed using a Carl Zeiss AG spinning disc confocal unit (Cell 

Observer SD with Yokogawa CSU-X1 scanning unit). Ablation experiments are done using a 

355 nm pulsed UV Laser (Rapp, Optoelectronics). Images and movies are processed using Fiji 

(ImageJ) software and the Imaris 9.3.0 software update. 

2.5.2 Morphology analyzes of isolated macrophages 

To analyze cell morphology larval or prepupae macrophages are isolated and stained with 

phalloidin as described in chapter 2.4.8 overview images are taken and analyzed using FIJI 

shape descriptor parameter. Beside Area and Perimeter following parameters are calculated: 
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Circularity:  4π × 
[𝐀𝐫𝐞𝐚]

[𝐏𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫]^𝟐 
 

Aspect ratio (AR): [Major Axis]

 [Minor Axis]
 

Roundness: 4 × 
[Area] 

π × [Major axis]^2 
 

Solidity:  [Area]

[Convex area]
 

  

Furthermore, lamellipodia width is measured. Lamellipodia is defined as dens actin structure 

stained with phalloidin. The mean of five measurements per one cell is calculated form three 

independent measurements. 

2.5.3 Fluorescence intensity measurement 

To determine the level of cellular fluorescence, correlated total cell fluorescence (CTCF) is 

calculated. “Area integrated” intensity and “mean grey value” are set in FIJI measurement 

setup. Cells of interest are circled with the free hand tool. For backup measurement an area 

close to the cell is selected.  

 

CTCF is calculated as followed: 

Integrated Density – (Area of selected cell X Mean fluorescence of background 

readings)  

 

To analyze membrane fluorescence intensity of macrophages, overview images acquired in 

the counting modus (confocal Leica SP8) are used.  

 

Use FIJI and proceed as followed:  

Set line width to two and surround the cell exactly at the outer border with the free hand tool. 

Start at the cell rim (check Phalloidin staining) an choose part with the lowest fluorescence. 

Convert “area to line”, “plot profile” and extract list of data. Draw a line inside the cell for 

expression level control. Normalize measurements by subtracting cytoplasmic florescence. 

And normalizes cell perimeter to 100 %. 
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2.5.4 Analyzes of border cell migration 

For analyzing Border cell migration at stage 10 A egg chambers are analyzed, when follicle 

cells are in  line with the oocyte (Figure 9). The real migrated distance of the BCC is taken in 

relation to total migrated distance is calculated using FIJI (chapter 7.1.3). 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

 

This method gives continues data, that makes it more sensitive in statistical analyzes. For 

visualization, the migration route is separated in quartiles beginning at the anterior tip of the 

egg chamber. 

 

 

Figure 9: Schematic illustration of BCM and corresponding analyzes method. Border cell (BC) 

cluster already migrated from the anterior tip towards the oocyte. Stage 10 A can be identified when 

follicle cells (FC) reached the same high as the oocyte. 

2.5.5 Quantification of F-actin staining in imaginal wing discs 

To analyze the influence of a certain protein on F-actin, it is expressed in the posterior part of 

the wing disc using engrailed Gal4 driver line. Wing discs are isolated and stained as described 

in chapter 2.4.9. 

For further investigation, close-up images are taken with the Leica SP8 confocal microscope 

in the counting modus. The procedure is illustrated in Figure 10 and the quantification method 

is described in more detail. 
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Figure 10: Schematic illustration of F-actin level quantification. Posterior expression by en-Gal4 

driver in Drosophila imaginal wing disc is compared to anterior expression. 

2.5.7 Live-cell imaging of S2R+ cells and isolated Drosophila macrophages 

For live cell imaging of either transfected S2R+ cells or isolated Drosophila macrophages are 

placed in an 8-well imaging chamber, pre-incubated with ConA (Sigmar) for 30 minutes. Per 

well, 50-100 µL of either transfected cells (in vitro) or isolated macrophages (ex vivo) from 5 

larvae/ 1-2 prepupae are diluted with M3+/+ and incubated for 30 minutes in an 8-well chamber.  

2.5.8 In vivo imaging of Drosophila macrophages 

For in vivo live imaging of random migration of macrophages, prepupae are fixed with heptane 

glue on a cover slip ~3 h APF. The cover slip is placed in a wet imaging chamber and placed 

under the microscope. Imaging is performed in the anterior part dorsal of the prepupae. 

Live imaging of directed migration is performed in drosophila pupal wing. Therefore, third 

instar larvae are transferred onto a water wettened tissue and incubated for 20 h at 25°C/ 16 

hours 29°C. For imaging, the puparium is removed, and the pupa is placed on the wing or 

thorax in a wet imaging chamber and placed under the microscope. For precise laser induced 

wounding, a 355 nm pulsed UV Laser (Rapp, Optoelectronics) is used. Both procedures have 

been published and illustrated and described in detail (Rüder et al., 2018). 

2.5.9 Tracking of macrophages by Imaris and analysis of migratory behavior 

Time lapse movies are analyzed using the Imaris 9.3.0 software update. For random migration, 

a reference frame is set in offset position. For directed migration the reference frame is set at 

the ablation site. The spots mode option is used to track cells over time with parameters listed 
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in. Quality is adjusted manually for best detection result. After automatic tracking all time 

lapse movies are checked for correct results and are manually corrected. 

2.5.10 Analysis of migration 

To analyze the migratory behavior of cells, different parameters can be taken into account. 

“Track speed mean” can be directly extracted from Imaris. Graphs and statistical analysis (also 

see statistical analysis) are performed using Prism 7/8 or by R studio with ggplot package. 

Further analysis of migratory behavior is based on the three-dimensional position data of an 

object/cell over time. With this information motion vectors can be calculated, which describes 

the displacement of an object. 

 

Motion vector:   𝐴𝐵⃗⃗⃗⃗  ⃗ = (

𝑥𝑏 − 𝑥𝑎

𝑦𝑏 − 𝑦𝑎

𝑧𝑏 − 𝑧𝑎

) 

 

Length of a vector:   

 |𝐴𝐵⃗⃗⃗⃗  ⃗| = √𝑥2 + 𝑦2 + 𝑧2 

 

Track speed mean: average speed calculated by the track length divided by the time 

between first and last object. 

The persistence angle of two vectors gives information about the persistence of a cell, whereas 

the bias angle reflects the directionality toward a wound/source. The R script is giving the 

option to set an outer and an inner radius within that the positions/cells are relevant for data 

calculation. 

 

Scalar: 𝑎 ∘ 𝑏⃗      =   (

𝑎𝑥

𝑎𝑦

𝑎𝑧

) ∘ (

𝑏𝑥

𝑏𝑦

𝑏𝑧

)  

=    𝑎𝑥 ∗ 𝑏𝑥 + 𝑎𝑦 ∗ 𝑏𝑦 + 𝑎𝑧 ∗ 𝑏𝑧 

 

Angle: cos 𝜃 = 
𝑎⃗ ∘𝑏⃗ 

|𝑎⃗ |∗|𝑏⃗ |
 

 

 

  

 

 

 

 

 

 

θ
b 

θ
p 

wound 

θ
p
 : persistence angle 

θ
b
 : bias angle
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Cell straightness and displacement form origin are both rough values for cell movement. Both 

are highly sensitive to variance in track duration. Therefore, displacement form origin is 

normalized by time. 

Speed= 
|𝑋𝑡1𝑋𝑡0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

𝑡1−𝑡0
 

For directed cell migration track speed mean is just taken for cells in r radius between 15-70 

µm from wounding site. This can be either extracted via direct filter using Imaris or the 

attached r-script. 

Straightness =  
|𝑋𝑡0𝑋𝑡𝐸𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

∑𝑋𝑡0+𝑋𝑡𝑛
 

Displacement from origin over time: DOT =  
|𝑋𝑡0𝑋𝑡𝐸𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

𝐹𝑟𝑎𝑚𝑒𝑠
∗ 𝐹𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡 

2.5.11 Statistical analyzes 

For statistical analyzes GraphPad Prism 7 and 8 are used. Before analysis, groups are checked 

for data distribution using Shapiro-Wilk-test (column statistics). For normally distributed data, 

parametric tests are performed. Otherwise, nonparametric tests are used for analyses. 

To compare to two unpaired experiments either the t-test (parametric data) or the Mann-

Whitney test (non-parametric data) are used. For experiments with multiple groups, either 

parametric or non-paramedic multiple comparison tests are performed. There, all groups are 

compared with the corresponding control group. 



   3 Results 

57 

 

3 Results 

3.1 wave depleted macrophages show a disturbed lamellipodial 

migration but still respond to wound signals 

Migration of cells is highly dependent on the temporal and spatial reorganization of the actin 

network. In the last decades, research has identified hundreds of factors that are important in 

the processes of modulating and regulating actin assembly as well as disassembly. The Arp2/3 

complex has been identified as actin nucleator on preexisting mother filaments. For proper 

function, it must be activated by NPFs of the WASP family, which are conserved across 

species (Campellone and Welch, 2010). At the leading edge, migrating cells extend large 

protruding lamellipodia, consisting of branched actin (Abercrombie et al., 1970c). Drosophila 

macrophages provide a powerful system to address the role of lamellipodia in random but even 

more outstanding in directed migration in vivo (Sander et al., 2013; Weavers et al., 2016; Wood 

et al., 2006). 

Additionally, macrophages can be easily isolated from white prepupae to analyze their cell 

shape and visualize actin structures. WAVE induced activation of the Arp2/3 complex is 

required for the formation of branched actin filament at the leading edge of macrophages. 

Isolated macrophages show a broad lamellipodium at the cell front and denser actin structure 

at the rear (Figure 12A+A´). WAVE is predominantly localized at the rim of the 

lamellipodium, but also detectable in the cytoplasm (Figure 12A´´). 

Mutations of wave as well as single Arp2/3 subunits lead to embryonal lethality (Zallen et al., 

2002). Therefore, macrophage specific RNAi-mediated gene knockdown experiments were 

performed to confirm the requirement of WAVE in lamellipodia formation. Suppression of 

Arp2/3-mediated actin polymerization in cells depleted for wave (Figure 12B, green cells) 

causes the almost complete disruption of lamellipodial structures. Cells exhibit finger-like 

filopodial protrusion and show a stellate shape as it has been previously described in S2R+ 

cells and Drosophila macrophages (Rogers et al., 2003; Rüder et al., 2018; Sander et al., 2013; 

Zobel and Bogdan, 2013). 

Moreia et al. established a protocol based on the MARCM (Mosaic Analysis with a 

Repressible Cell Marker) system to induce homozygous lethal mutations in Drosophila 

macrophages in viable mosaic flies (Lee and Luo, 2001; Moreira et al., 2013). This method 

was used to investigate the first wave mutant macrophages in vivo. FRT recombination is 
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induced by a temperature sensitive flippase (hs-FLP) to generate homozygote mutant cell in 

an otherwise wild typic background (Figure 11). There, wave mutant macrophages are labeled 

with a fluorescent eGFP marker (Figure 12C) and show an even stronger stellar phenotype in 

comparison to the cells generated by RNAi mediated knock down experiment. Mutant cells 

exhibit several long thin filopodia and a complete loss of lamellipodia.  

Additionally, arp3 mutant macrophages were generated using the twin-spot technique 

(Germani et al., 2018). The twin-spot technique relies on an FRT-site combined with a 

ubiquitously expressed fluorescence marker (Figure 11). Here, the FRT mediated 

recombination resulted in homozygous mutant cells and the lack of GFP expression. arp3 

mutant macrophages show an overall reduction of branched actin network and exhibit ectopic 

filopodia leading to a stellate cell shape (Figure 12D, eGFP negative). However, they do not 

exactly phenocopy the wave knock out cells. In isolated cells this technique also allows for a 

direct internal control.  

 

 

Figure 11: Crossing scheme to generate homozygote mutants in mosaic flies. The heat-shock 

induction is described in 2.3.3 Mosaic analysis using the FLP/FRT system. 

These data confirm previous results generated by RNAi mediated knock down. In Drosophila 

macrophages WAVE is the essential factor regulating Arp2/3 complex dependent lamellipodia 

formation.  

RNAi-mediated gene knock down of the WAVE upstream activator Rac, shows a wave 

mutant-like phenotype (Supplementary Figure 2). However, this phenotype is not as 

pronounced as observed in wave mutant cells. This let assume that other upstream factors are 

also critical for WAVE activity in macrophages. 



   3 Results 

59 

 

 

Figure 12: Analysis of WAVE in Drosophila macrophages. (A-A´´) Isolated pupal wild type 

macrophages plated on ConA stained for F-actin (white), nucleus (magenta) and WAVE (green) spread 

out show characteristic wild type morphology with broad lamellipodial structures. WAVE is localized 

in a thin line at the membrane. (B) RNAi-mediated (hmlΔ-Gal4) wave knockdown in macrophages 

stained for F-actin (white), nucleus (magenta) and cytoplasmic eGFP expression. Cells almost 

completely lack lamellipodial structures and exhibit filopodia. (C) Induction of wave mutant 

macrophage clones (eGFP positive, orange arrow) stained for F-actin (white), nucleus (magenta) exhibit 

extended filopodial structures and completely lack lamellipodia in comparison to wild type cells (white 

arrow). (D) Induction of arp 3 mutant macrophage clones (eGFP negative, orange arrow) stained for F-

actin (white), nucleus (magenta) in comparison to wild type cells (white arrow). arp 3 show disturbed 

lamellipodial and thick actin bundles surrounding the whole cell with filopodial protrusions. Genotypes 

are indicated. Scale bar = 10 μm. 

Previous data emphasize the relevance of lamellipodia protrusions in two dimensional 

migration on surfaces (Brinkmann et al., 2015; Sander et al., 2013). They provide an extended 

surface mediating the adhesion to the epidermal surface under physiological conditions (Nagel 

et al., 2017). In prepupae, sub-epidermal macrophages acquire broad lamellipodia protrusion 

at the leading edge of the cell initiating random cell migration (Figure 13, Movie 1). 
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Figure 13: Random migrating macrophages. Frames of time-lapse images of wild type macrophages 

at the epidermis of a white prepupa (box top-left image). The cells are visualized using macrophage 

specific expression (hmlΔ-Gal4) of lifeact-GFP. At the leading edges, cells exhibit a broad, flat 

lamellipodium. Scale bar white prepupa = 500 μm, macrophages = 10 µm. 

The MARCM system, used for the generation of homozygote wave mutant macrophages, 

allows the expression of the fluorescent marker eGFP only in homozygous mutant cells. It 

provides a powerful tool to investigate migratory behavior of macrophages lacking 

lamellipodia formation in vivo, to further address their outstanding role and characterize their 

motion in vivo. 

Epidermal wild type macrophages expressing cytoplasmic eGFP reveal large protruding 

lamellipodia (Figure 14A), whereas the wave mutant as well as wave knock down 

macrophages completely lack lamellipodia formation. Instead, wave depleted macrophages 

exhibit long and extended filopodial protrusions (Figure 14B+C). In comparison to wild type 

macrophages, the majority show only rudimentary motion stretching out their filipodia but 

otherwise staying almost at their origin. Only some macrophages relocated within the 20 min 

acquisition time. To characterize cell motion of either wild type or wave depleted cells, 

macrophages were tracked during migration using Imaris software. This provides the position 

of every cell over time and allows the calculation of objective parameters to define cell 

migratory behavior (2.5.10 Analysis of migration). For better visualization, the color of the 

trajectories reflects the speed of the cell at each respective timepoint. This show that wild type 

macrophages move in a continuous motion and homogenous speed. The cell speed mean of 
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wave depleted cell is significantly reduced in comparison to the wild type macrophages (Figure 

14D, Movie 2). The majority of the cell stay sessile at their position. If relocate, they overcome 

a relatively long distance in a comparatively short time, but then become sessile again. 

Therefor their motion can be defined an erratic motion (Figure 14B+C, Movie 3).  

Straightness of the cell movement (optimal migration distance/migrated distance, (2.5.10 

Analysis of migration)) is also reduced, but significantly only in case of wave mutant cells 

(Figure 14E). This result is also reflected in the persistence of the cells (2.5.10 Analysis of 

migration): wild type cells show a relatively low cell persistence with a mean angle ~30 °, 

indicating overall straight motion (Figure 14A, F+F´). In wave mutant and RNAi mediated 

wave knock down migrating macrophages the persistence angle is significantly increased 

(Figure 14A, F+F´). Remarkably, the distribution of the median angle shows a high variance 

within the group. Trajectories show that, if wave depleted cells migrate, they do it in a 

relatively persistent manner. The persistence angle is highly dependent on the more sessile 

cells, which show a slight local tumbling (Figure 14B+C, Movie 3).  

In conclusion, wave depletion causes severe migratory defects in random migration of 

Drosophila macrophages. Filopodia can only partially take over the function of lamellipodia. 

These findings point out the importance of WAVE as actin regulator in lamellipodial cell 

migration. 
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Figure 14: Loss of wave causes severe migration defects. (A-C) Still images of randomly migrating 

pupal macrophages (20 minutes). Cells are tracked with Imaris and trajectories are depicted with speed-

color code (in µm/s). (A) Wild type macrophages expressing eGFP show broad lamellipodia attached 

to the epithelia, migrating constantly. (B) wave knock down cells expressing eGFP and (C) induced 

wave mosaic mutant cells (eGFP positive) exhibit long filopodial structures resulting in an altered 

migratory behavior. (D-F) Graphs are depicted in a scatter dot blot with bars indicating mean and SD. 

*** = p ≤ 0.001 (Mann-Whitney-U-Test). In the bias angle histogram one bar depicts the accumulated 

density of 3 °. Dotted line indicates the median angle of the distribution. (D) Analysis parameter of 

random migration show a reduced cell speed for wave KD and wave mutant cells. Cell migration 

straightness is reduced in wave mutant cell but not significantly for wave KD. (F) Cell persistence is 

reduced in wave KD and wave mutant cells as depicted in persistence angle histogram (F´) which shows 

a shift in angle distribution to larger angles. Scale bar = 20 μm. 

Macrophages respond to immune cues by switching from random explorative motility to 

directed migration towards the source of chemokine. It is still under debate whether 
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lamellipodia are indispensable in directed migration upon a chemotactic stimulus (Suraneni et 

al., 2012; Wu et al., 2012). To address this controversial question, the role of lamellipodia in 

directed cell migration upon a precise laser induced wounding in pupal wing was analyzed 

(Figure 15A+B, 2.5.5 Quantification of F-actin staining in imaginal wing).  

In comparison to the previous experimental setup, where cells migrate on a two-dimensional 

epithelial layer, here, cells migrate within the three-dimensional ECM filled cavity of the wing. 

Protrusions of the cells appear to be more complex, exhibiting lamellipodial as well as 

filopodial structures (Figure 15C, Sander et al., 2013). Upon wound induction, wild type cells 

directly switch from random to directed migration (Figure 15C, Movie 4). Protrusions of the 

cells are re-orientated towards the wounding site. Within 30 minutes, most cells in a distinct 

radius reach their destination and clot around the induced wound (Figure 15C magenta spot, 

Movie 4). As in random migration, wave depleted cells extend long filopodia and completely 

lack lamellipodial structures (Figure 15D+E). Upon laser ablation, cells depleted for wave 

send their long filopodia towards the wound, which indicates that wound response is still intact 

(Figure 15D+E, Movie 5). However, the cell speed mean is significantly reduced in 

comparison to wild type (Figure 15F), as also observed in random migration cells. To gain 

further information about the cell directionality towards the wounding site, the median bias 

angle for each cell was calculated using a newly established R-script (7.1.3.2 R-script). The 

analysis is based on the position data of the wound and those of the cells over time. A value 

close to 0° indicates the highest directionality, whereas cells with a value close to 180° move 

in opposite direction. In comparison to wild type cells, wave depleted cells show no significant 

differences in directionality (Figure 15G+G´). It should be mentioned, that in wild type cells 

the cell bias angle also turned out to be unexpectedly high, ranging around 80° in the mean 

(Figure 15G+G´).  
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Figure 15: Lamellipodia are dispensable for wound recognition. (A) Dorsal and ventral view of a 

Drosophila pupa 20 h APF (B) Scheme of laser-induced wounding experiment in the pupal wing (C-E) 

Stills of time laps images of directed macrophage migration upon wounding of a single cell (magenta 

dot in the center). Cells are imaged for 30 minutes after ablation in a 30 second interval and tracked 

afterwards using Imaris. Trajectories with speed color code indicate that wild type and wave depleted 

macrophages migrate towards the wounding site. (F+G) Graphs are depicted in a scatter dot blot with 

bars indicating mean and SD. *** = p ≤ 0.001 (Mann-Whitney-U-Test). In the bias angle histogram one 

bar depicts the accumulated density of 3 °. Dotted line indicates the median angle of the corresponding 

distribution (F) Speed is reduced in wave KD macrophages. (G) Cell bias angle ranges around 80 ° in 

both wild type and wave KD macrophages and bias angle histogram shows no differences in angle 

distribution (G´). Scale bar = 20 μm. 

To summarize, WAVE can be confirmed as a key regulator for branched actin filament 

formation located at the leading edge of the cell. In the absence of WAVE, cells fail to form 

lamellipodia. Instead, they exhibit long filopodial structures. This has negative consequences 

on the migratory behavior of the cells: filopodia barely substitute lamellipodial protrusion, 
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resulting in reduced cell speed and increased persistence angle. However, despite the absence 

of WAVE in macrophages, they are still able to detects wounds and respond to them.  

3.2 WIRS-ligand binding to the WRC is negligible in macrophage 

wound response 

The loss of lamellipodia causes severe migration defects underlying the importance of proper 

lamellipodia formation at the leading edge of migrating cells. The local recruitment and 

activation of Arp2/3 driven branched actin formation via WAVE is an important factor for 

efficient lamellipodia based directed cell migration. In previous studies a short peptide 

sequence present in over 100 membrane and membrane-associated proteins was identified (B. 

Chen et al., 2014). This motive binds to a pocket within the WRC formed by the subunits Sra-

1 and Abi and is therefore termed the WAVE interacting regulatory sequence (WIRS). The 

interaction of WIRS receptor Fat-2 with the WRC is relevant in collective migration of follicle 

cells driving egg rotation. Disruption of the WIRS binding results in a round egg phenotype 

(Squarr et al., 2016).  

Upon wounding, the actin machinery rearranges to initiate direct motion towards the wounding 

site. So far, the underling molecular mechanism of chemotactic behavior of pupal 

macrophages has been poorly addressed. Many potential WIRS ligands are highly expressed 

in Drosophila macrophages suggesting a functional role of WRC-WIRS interaction also in 

immune response. To identify potential WIRS membrane receptors that might be regulating 

WRC-driven directed migration, specific RNAi-mediated knockdown of genes of potential 

candidates were performed. For 28 membrane receptors at least two independent RNAi targets 

(with exceptions) were screened for defects in directive migration upon wound response. 

Candidates exclusively expressed in macrophages like Platelet-derived growth factor receptor/ 

vascular endothelial growth factor receptor (PDGFR/VEGFR) known to be important in 

chemotaxis of embryonal macrophages during development or Nimrod C1, a phagocytoses 

receptor, were prioritized (Supplementary Figure 3). However, none of the tested receptors 

showed a severe defect in wound response.  

To analyze the impact of the WRC-WIRS interaction in translating wound signals into changes 

in cell motility, flies lacking the WIRS binding surface were further investigated. Inducing 

two point mutations (R106A/G110W, AbiΔWIRS) into the Abi binding site disrupts the binding-

ability of the whole WRC and consequently the interaction with potential WIRS-receptors 
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required in wound response. To this aim wound response of macrophages ubiquitously re-

expressing AbiΔWIRS in abi mutant (abiΔ20) background was compared with rescue abi mutants 

by re-expressing wild typic Abi (AbiWT). Upon laser-induced wounding of a single cell, 

macrophages with directed WIRS binding motive are still responding to the wound signal. 

They show neither any morphological nor obvious migratory defects (Figure 16A+B, Movie 

6+7). To test this in more detail, directed migration of macrophages re-expressing AbiΔWIRS 

were compared to wild typic Abi re-expression in abi mutant background. The histogram-

based macrophage migration score (HMMS, Lammel et al. 2014) was used as an indirect 

method to analyze macrophage migration upon wounding. It utilizes a radial histogram around 

the laser induced wound to determine the migration of the macrophages. The score increases 

over time, when the cells get closer to the wounding site in the center and finally reaches a 

plateau. The median HMMS for macrophages re-expressing wild type Abi and AbiΔWIRS 

clearly show macrophages responding to the wound signal (Figure 16C). However, the slope 

of cells with disrupted WIRS binding site is constantly lower than the wild type level. These 

data suggest that the disruption of the WIRS binding site causes mild wound response defects. 

Nevertheless, it should be mentioned, that HMMS is sensitive to cell number, size and is only 

a rough approximation but does not describes cell motion itself. To analyze possible changes 

in the migratory behavior of single cells in more detail, cells were tracked over time upon 

wounding. Trajectories of migrating cells show that rescued macrophages by wild typic Abi 

re-expression as well as an Abi transgene with disrupted WIRS binding surface respond to the 

wound stimulus and reach the wound within 30 minutes (Figure 16A+B, magenta spot, Movie 

6+7). Neither the cell speed mean nor the cell bias angle is affected by the disruption of the 

WIRS binding motif. This is also visualized in the cell bias histogram showing a high overlap 

of angle distribution of both groups (Figure 16E´). 
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Figure 16: Disruption of the WIRS binding barely affect wound response of Drosophila 

macrophages. Ubiquitously (da-Gal4) re-expression of wild typic Abi (AbiWT) or Abi with disrupted 

WIRS binding site (R106A/G110W, AbiΔWIRS) in abi (abiΔ20) mutant background. (A+B) Stills of time 

laps images of directed macrophage migration upon wounding of a single cell (magenta dot in the 

center). Cells are imaged for 30 minutes after ablation in a 30 second interval and tracked afterwards 

using Imaris. Trajectories with speed color code indicate that AbiWT and AbiΔWIRS re-expression in 

macrophages migrate towards the wounding site. (C) Mean HMMS value of AbiWT (green) and 

AbiΔWIRS (red) determined from movies after laser ablation indicate a slight overall decrease for the 

AbiΔWIRS rescue compared to AbiWT. (D+E) Graphs are depicted in a scatter dot blot with bars 

indicating mean and SD. *** = p ≤ 0.001 (Mann-Whitney-U-Test). In the bias angle histogram one bar 

depicts the accumulated density of 3 °. Dotted line indicates the median angle of the corresponding 

distribution (D+E) Neither speed nor persistence is altered when disrupting the WIRS binding site in 

Abi. Scale bar = 20 μm. 

In another approach the interaction of WRC with potential WIRS-ligand was tried to be 

inhibited by the allosteric binding of the WIRS peptide. For this, the WIRS sequence from the 

human protocadherin 10 (PCDH10) was sequence optimized for Drosophila and sequentially 

linked four times (UASp-WIRS-GGSx4, Kreft, 2017, bachelor thesis). This UASp-construct 

was established in flies. For a proof of principle, it was expressed in follicle and follicle steam 

cells (Supplementary Figure 4). It was assumed that the WIRS peptide occupy the WIRS 

binding site of the WRC and diminish the binding of WIRS ligand Fat2. However, the 

overexpression of WIRS-GGSx4 does not copied the expected round egg phenotype of fat2 
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mutants and the disruption of the WIRS binding site in the WRC (Supplementary Figure 4). 

Still, this is a promising approach and need to be pursued.  

Taken together, disrupting the WIRS binding site within the WRC does not affect directed cell 

migration. Detailed analysis of the directionality and the speed of the cells show no evidence 

for the importance of the WRC-WIRS interaction. 

3.3 WAVE is tyrosine-phosphorylated by Abl and Src42A kinase 

The non-receptor tyrosine kinase Src and Abl emerged as a promising candidate, as both has 

previously shown to bind WAVE and influence the activity. They are described as key 

regulators with an important role in cell proliferation, morphogenesis and cell migration. Both 

kinases share a N-terminal tandem SH3 and SH2 domain serving as interaction sites for PXXP 

carrying proteins as well as providing the binding site for phosphorylated tyrosine residues. In 

the cytoplasm they are present in their folded, autoinhibited kinase inactive form (Brasher and 

Van Etten, 2000; Nagar et al., 2003; Plattner et al., 1999; Schindler et al., 2000; Xu et al., 

1999). Upon growth factor stimulation, they get phosphorylated, regulating the release of the 

autoinhibited state. Moreover, the interaction with binding partners is associated with the 

disruption of the intramolecular inhibition. Deregulation of the kinase activity of both kinases 

is highly associated with cancer. The chromosomal translocation of Abl, leading to a 

constitutive active form (BCR-Abl), identified Abl as one of the first human oncogenes 

involved in leukemia (Price et al., 1988). The expression of BCR-Abl is associated with 

growth factor independent proliferation and reduction of cells undergoing apoptosis (Fogerty 

et al., 1999).  

The ubiquitous expression of the kinase active form BCR-Abl or the constitutively active (CA) 

Src42A by da-Gal4 as well as segmental expression by en-Gal4 diver causes embryonal 

lethality (data not shown). Further, the specific ectopic expression in macrophages results in 

over proliferation and massive cell growth resulting in large macrophages (Figure 17A-C, 

orange arrow). The expression of BCR-Abl additionally induces lamellocytes differentiation, 

which under normal conditions only appear upon infection or by other immune cues (Figure 

17B, blue arrow). Strikingly, a dense actin network surrounds the e cell (Figure 17B, orange 

arrow).  
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Figure 17: Overexpression of kinase active Abl and Src causes gigantic cell growth. (A-C) Isolated 

pupal macrophages plated on ConA stained for F-actin (white), nucleus (magenta), cytoplasmic eGFP.  

Constructs are expressed specifically in macrophages by hmlΔ-Gal4 driver. (B+C) Expression of kinase 

active Abl and Src causes massive cell growth (orange arrow). (B) Expression of kinase active Abl 

additionally result in differentiation of lamellocytes (blue arrow). Scale bar = 10 μm. 

To confirm WAVE being a target of Abl and Scr42A, Drosophila S2R+ cells were transfected 

with either constitutive active Src42A, BCR-Abl or both constructs simultaneously. Protein 

lysates were treated with Vanadate to preserve phosphorylation state of the cell and then 

separated on an SDS-PAGE with low bis-acrylamide concentrations of 0.06% to allow for 

better separation of endogenously WAVE protein (2.4.6 SDS polyacrylamide gel 

electrophoresis (SDS-PAGE)). It shows that already in the control (eGFP) endogenous WAVE 

resolves in three separated bands, with the most prominent band at 76 kDa corresponding with 

the expected molecular weight of WAVE (Figure 18A). Expression of BCR-Abl leads to a 

shift in molecular weight and WAVE resolves in at least five separate bands, where the 

uppermost band (~90 kDa) appears to be the prominent one. Surprisingly, the expression of 

constitutive active Src42A results in the same band pattern as seen in the control expression 

with EGFP (Figure 18A). The co-expression of BCR-Abl and constitutive active Src42A 

shows no clear increase in molecular weight of WAVE in comparison to single expression of 

BCR-Abl alone. It has to be mentioned that the separation of the single band is not as clear as 

in treatments with BCR-Abl alone. 

As the addition of a single phosphoryl group does not necessary lead to a, shift in molecular 

weight detectable in a SDS page gel.  Further experiments were performed to directly detect 

WAVE tyrosine phosphorylation. To this aim, S2R+ cells were co-transfected with myc-

tagged WAVE in combination with the kinase active form of Abl or Src42A. WAVE was 

precipitated with anti-myc nanobody-coated beads and further analyzed for tyrosine 

phosphorylation by staining with anti phospho-tyrosine antibody (Figure 18B). The 

experiment confirmed that BCR-Abl phosphorylates WAVE. Consistent with results 
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published before, it was shown that constitutive active Scr42A phosphorylates WAVE (Ardern 

et al., 2006; Leng et al., 2005; Sossey-Alaoui et al., 2007; Stuart et al., 2006).  

 

Figure 18: Kinase active form of Abl and Src phosphorylate WAVE. (A) BCR-Abl but not 

Src42ACA overexpression in transfected S2R+ cells induces a shift in molecular weight of WAVE. (B) 

Immunoprecipitation with myc-trap beads from lysates of S2R+ cells co-transfected with WAVE-myc 

and indicated constructs. Anti phospho-tyrosine antibody staining shows phosphorylation of WAVE by 

BCR-Abl and Src42ACA. 

Previous data already demonstrated that Abl directly interacts with WAVE (Mehidi et al., 

2019). To identify a possible physiological interaction between Src42A and WAVE in 

Drosophila, co-immunoprecipitation was performed with WAVE and constitutive active 

Src42A. However, neither for constitutive active Src42A alone nor in the presents of BCR-

Abl an interaction of Src42A and WAVE could be detected (Figure 19).  

 

Figure 19: Src42A does not directly interact with WAVE. Co-Immunoprecipitation with myc-trap 

beads from lysates of S2R+ cells co-transfected with WAVE-myc and Src42A. Src42A is not enriched 

after co- immunoprecipitation. 

In summary, the ectopic expression of the kinase active form of Abl as well as Src42A result 

in massive cell growth and over-proliferation in isolated macrophages. In vitro data reveal that 
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both kinases are able to phosphorylate WAVE (Chen et al., 2010). For Src42A no directed 

physiological interaction could be detected under chosen experimental condition. 

Nevertheless, Src as well as Abl are prime candidates to influence WRC activity via 

phosphorylation of WAVE.  

3.4. Kinase activity of Src42A negatively influences random cell 

migration but does not impair wound response 

For further dissection of Src42A kinase function in regulating WRC activity, random 

migration of macrophages was investigated in prepupal stage. As the mutation of src42A leads 

to embryonal lethality, macrophage specific RNAi-mediated knockdown of src42A was 

performed. The efficiency of the RNAi-mediated knockdown was determined by measuring 

protein level via Western Blot (Supplementary Figure 6) showing a remaining protein amount 

of 25 % in comparison to wild type cells. Random migrating macrophages show no 

morphological or migratory defect upon RNAi-mediated knockdown (Figure 20 C-E). Further, 

a dominant negative transgene of Src42A (Src42ADN) with lacking kinase activity was 

overexpressed in macrophages. These cells show no morphological changes in comparison to 

wild type cells (Figure 20A, Movie 8). Analyzing the migratory behavior in more detail, they 

show a reduction in speed as well as in straightness (Figure 20C+E). The Cell persistence is 

not affected (Figure 20D+D´). The overexpression of constitutive active Src42A also lead to 

a reduction of cell speed (Figure 20C). Further, cell straightness as well as persistence of the 

migrating macrophages are decreased (Figure 20D-E). Additionally, overexpression of 

constitutive active Src42A results in gigantic macrophages, which might also influence motion 

of the cells (Figure 20B, Movie 9).  
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Figure 20: Overexpression of kinase dead and kinase active form of Src impair random cell 

migration. (A+B) Still images of randomly migrating pupal macrophages. Cells were tracked with 

Imaris and trajectories are depicted with speed-color code (in µm/s). (A) Macrophages overexpressing 

kinase dead Src (DN) show no morphological defects but (B) overexpressing kinase active Src (CA) 

result in giant cells. (C-E) Graphs are depicted in a scatter dot blot with bars indicating mean and SD. 

*** = p ≤ 0.001 (non-parametric multiple comparison test). In the bias angle histogram one bar depicts 

the accumulated density of 3 °. Dotted line indicates the median angle of the corresponding distribution. 

(C) Cell speed is not altered in src42A KD but reduced in macrophages expressing Src42ADN and 

Src42ACA (D) Cell persistence is only reduced in macrophages expressing Src42ACA but (E) 

straightness is impaired in macrophages expressing Src42ADN and Src42ACA. Scale bar = 20 μm. 

Previous data in Drosophila embryo demonstrated an important role of Src42A in macrophage 

wound response (Evans et al., 2015). To further analyze Src42A as a potential mediator to 

transduce the wound signals to the WRC, wounding experiments were performed in pupal 

wing. Upon ablation of a single cell (magenta spot) in the center of the wing, the surrounding 

cells start to migrate towards the wound (Figure 21A+B, Movie 4+10). The overexpression of 

kinase dead Src42A has no effect on cell morphology. Cell speed mean of the cells is slightly 

but not significantly reduced (Figure 21C). Further, the cell bias angle as an indicator for 
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directionality shows no significant differences in comparison to wild type wound response 

(Figure 21, D+D´).  

 

Figure 21: Overexpression of kinase dead Src42A does not alter wound response of Drosophila 

macrophages. (A+B) Stills of time laps images of directed macrophage migration upon wounding of a 

single cell (magenta dot in the center). Cells were imaged for 30 minutes after ablation in a 30 second 

interval and tracked afterwards using Imaris. Trajectories with speed color code indicate that wild type 

and Src42ADN overexpressing macrophages migrate towards the wounding site. (C+D) Graphs are 

depicted in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (Mann-Whitney-U-

Test). In the bias angle histogram one bar depicts the accumulated density of 3 °. Dotted line indicates 

the median angle of the corresponding distribution. Speed (C) as well as cell bias is not altered in 

macrophages overexpressing Src42ADN. Scale bar = 20 μm. 

Conclusively, Src42A overexpression of either the dominant negative construct or the 

constitutive active version causes severe defects in 2D randomly migrating macrophages in 

Drosophila white prepupae. These defects have to be considered when further investigating 

directed migration upon wound signals. However, diverging from previous data, macrophages 

expressing a kinase dead Src42A transgene still response to wound signals almost as effective 

as wild type. Hence, these results challenge previously reported outstanding role of Src42A 

kinase in wound response (Evans et al., 2015). 
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3.5 Functional characterization of non-receptor tyrosine kinases 

Abelson function in macrophages 

Abl is known for its oncogenic function and appears to be a potential target for corresponding 

leukemia treatment. Under physiological conditions, Abl is described as being involved in 

many actin-dependent processes like axon guidance, cell morphogenesis and migration in both 

vertebrates and invertebrates (Bradley and Koleske, 2009; Fogerty et al., 1999; Gertler et al., 

1989). Nevertheless, because the diversity of functions and effector targets the normal cellular 

function is still not completely understood in its complexity. Abelson’s SH2 and SH3 domains 

as well as the Proline rich motive offer important interaction sites for several other proteins. 

Many of these interacting proteins, like Ena, Abi and Trio are well known to regulate actin 

dynamics. During embryogenesis and in later pupal stages, Abl is highly expressed in 

developing musculature and in the nervous system. Recent publication on axonal growth cone 

dynamics postulated Abl to act as a mediator between formation of branched actin network 

and linear filamentous actin polymerization (Kannan et al., 2017). 

Beside its function acting as a scaffold interaction platform for other actin regulators, Abl 

kinase function provides the ability to directly modulate target protein activity via 

phosphorylation. Abl is known to interact with WAVE and additionally changes its activity 

by phosphorylation (Leng et al., 2005; Plattner et al., 1999; Sossey-Alaoui et al., 2007; Stuart 

et al., 2006). Still, the physiological relevance remains poorly understood. Most of these results 

were obtained from cell culture experiments and have been rarely addressed in vivo, so far. As 

WAVE is known to regulate lamellipodia in Drosophila macrophages, the impact of Abl 

kinase on WAVE activity was further investigated using the macrophage system. 

3.5.1 Loss of abl promotes lamellipodial cell spreading 

Abl is hypothesized to play a critical role in local WAVE activation initiating site-specific 

branched actin formation. To fulfil this function, Abl is assumed to localize to the leading edge 

of lamellipodia. To analyze cellular localization of Abl in macrophages, isolated cells were 

stained with a Drosophila Abl specific antibody. In wild type macrophages Abl is mainly 

localized in the cytoplasm and at the nucleus. Only a weak staining is visible at the cell 

periphery. (Figure 22A). In macrophages isolated from abl mutant pupae (trans-heterozygous 

abl2/abl4) only a weak signal is detectable, which might be a background signal (Figure 22B). 

Re-expression of wild typic Abl (AblWT) construct in abl mutant background shows a similar 

staining comparable to wild type control with the same cellular localization (Figure 22C). 

Ectopically expressed wild type Abl is localized in the cytoplasm, at the nucleus and is also 
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detectable at the cell membrane (Figure 22D+D´). Macrophages expressing a dominant 

negative Abl transgene show a loss of nuclear staining while cytoplasmic signal is preserved 

and increased at the lamellipodium (Figure 22E+E´). In contrast, the ectopic expression of 

active form of Abl (BCR-Abl) leads to a less prominent staining compared to the 

overexpression of wild typic Abl or the dominant negative Abl transgene (Figure 22F+F´). 

 

Figure 22: Abl is localized at the membrane as well as in the nucleus. (A-F) Isolated pupal 

macrophages plated on ConA and stained for F-actin and Abl (staining color code is indicated). (A) Abl 

expression is weak in wild type macrophages but can be detected in the cytoplasm and the cell periphery 

and, (B) only a weak cytoplasmic signal is detectable in abl mutant macrophages. (C) Expression of 

AblWT in abl mutant macrophages shows the same localization as wild type macrophages. (D-F) 

Macrophage specific (hmlΔ-Gal4) overexpression of indicated Abl constructs. AblWT is localized at 

the membrane and the nucleus (D-D´´´). Scale bar = 10 μm. 
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To characterize Abl function in Drosophila macrophages, the morphology of isolated 

macrophages from abl mutant pupae were compared with wild typic cells. abl mutant 

macrophages exhibit a broad lamellipodium and no drastic changes in morphology (Figure 

23A+B). However, abl mutant cells in more detail show them to be increased in size as well 

as in roundness in compression to wild type macrophages (Figure 23C+D). The same can be 

observed in macrophages when kinase dead Abl transgene (AblDN) was specific overexpressed 

in macrophages. These results can be reproduced in larval as well as prepupal macrophages 

(Supplementary Figure 5).  

Further, in abl mutant macrophages 30 % show a round cell morphology, whereas in wild type 

cells less than 10 % show this specific cell shape (Figure 23E). It can be concluded that the 

loss of Abl kinase function promotes cell spreading of macrophages. 

 

 

Figure 23: abl mutant macrophages were increases in size and roundness. (A+B) Isolated pupal 

macrophages plated on ConA stained for F-actin (white), nucleus (magenta). Wild typic and abl mutant 

cells both exhibit a broad lamellipodium. (C) Cell shape parameter area and (D) roundness are depicted 

in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (Mann-Whitney-U-Test). Abl 

mutant macrophages and macrophages expressing AblDN construct are increased in size (C) and round 

rounded up (D) in comparison to their corresponding control. (E) The ratio of round cells to irregular 

shaped cells is shown, counted in overview images. In abl mutant macrophages the number of round 

cells is increased. Genotypes are indicated. Scale bar = 10 μm. 



   3 Results 

77 

 

3.5.2 Random migrating macrophages show reduced explorative behavior in the 

absence of Abl 

The aforementioned results showed the loss of abl on influences cell morphology in roundness 

and size of the cells. To further dissect the impact of Abl on actin dynamics, random migration 

of pupal macrophages was characterized in vivo.  

Wild type cells were polarized, with a broad lamellipodium pointing in the direction of 

migration. In contrast abl mutant cells exhibit large protruding lamellipodia with no clear 

asymmetry (Figure 29A+A´, B+B´). Cell trajectories show wild type macrophages travel long 

distances within 20 minutes acquisition time (Figure 29A, Movie 11). In contrast, abl mutant 

cells only migrate in region around their origin (Figure 29B, Movie 12). However, migration 

speed is not impaired in abl mutant macrophages (Figure 29D). Unfortunately, the re-

expression of wild typic Abl in abl mutant background show a slight increase in speed, what 

has to be considered for further interpretation (Figure 29D, Movie 13). In comparison to wild 

type macrophages, abl mutant cells’ persistence is significantly decreased, indicated by an 

increase in cell persistence angle (Figure 24C and C´). However, the re-expression of wild 

typic Abl did not rescue cell persistence, challenging the expected effect of the loss of Abl. 

Further, the cell motion straightness shows a slight but not significant decrease (Figure 24E). 

Displacement from the origin was calculated to determine the “explorative activity” of a cell. 

As the parameter “displacement” is highly influenced by the acquisition duration, the track 

length and speed of the cells and the likelihood of randomly migrating cells returning to their 

origin by chance is increased over time, the displacement is normalized by time. It turned out 

that loss of abl results in drastically reduced displacement from the origin over time (Figure 

24F). The loss of explorative activity could be rescued by re-expressing of wild typic Abl in 

abl mutant background (Figure 24F).  
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Figure 24: Loss of abl impairs explorative behavior of macrophages. (A-B) Still images of random 

migrating pupal macrophages. Cells are tracked with Imaris and trajectories are depicted with speed-

color code (in µm/s). (A) Wild type control macrophages expressing cytosolic eGFP migrating 

constantly. (A, green arrow, A´ closeup) Cells are polarized with a leading edge with characteristic 

broad lamellipodium. (B, green arrow, B´ closeup) In abl mutant macrophages lamellipodium is 

surrounding the whole cell. (C-F) Graphs are depicted in a scatter dot blot with bars indicating mean 

and SD. *** = p ≤ 0.001 (non-parametric multiple comparison test). In the bias angle histogram one bar 

depicts the accumulated density of 3 °. Dotted line indicates the median angle of the corresponding 

distribution. (C) In abl mutant cells persistence is decreased but cannot be rescued by re-expression of 

Abl. (D+E) Cell speed and straightness is not altered (F) Displacement from the origin over time is a 

value for the explorative behavior of the cells. abl mutants show a decreased “explorative ability” and 

can be rescued by re-expression of Abl. Scale bar = 20 μm. 

 

Previous results demonstrated that the absence of Abl kinase results in lager and round cells, 

which can be phenocopied by overexpressing dominant negative Abl transgene. Further, the 

overexpression of BCR-Abl, the kinase active ortholog, causes massive cell growth in isolated 
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macrophages. To evaluate the influence of kinase activity on cell motion, either dominant 

negative or BCR-Abl was overexpressed in macrophages. Additionally, RNAi mediated 

knock-down of abl was performed.  

Similar to the observations in abl mutant macrophages, the expression of the kinase dead 

transgene of Abl (dominant negative Abl, AblDN) and the RNAi meditated suppression has 

negligible effects on cell speed, persistence, and straightness (Figure 25B-D). Nevertheless, 

the explorative behavior indicated by the displacement from the origin over time in RNAi 

mediated knock down of abl in macrophages and of macrophages, expressing ectopically 

dominant negative Abl, is significantly reduced (Figure 25E). This finding is consistent with 

the migratory behavior of abl mutant macrophages. Together these results suggest that kinase 

activity of Abl is a critical factor for the explorative behavior of randomly migrating 

macrophages. 

Under physiological conditions in vivo in the living pupa, the overexpression of the kinase 

active form BCR-Abl results in large cells with huge lamellipodia (Figure 25A, Movie 14). 

The analysis of the random migration of these cells show that they are almost unable to 

migrate, which is reflected in a drastic reduction of cell speed mean (Figure 25B). 

Additionally, cell persistence is significantly decreased, which is also depicted in a shift in the 

distribution of the overall persistence angle towards lager angles (Figure 25C+C´). These data 

are consistent with the motion straightness of the cells, which is accordingly significantly 

decreased (Figure 25D). Because of the huge differences in cell speed in comparison to control 

cells, displacement from the origin by time is not a suitable value. 
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Figure 25: Overexpression of kinase active Abl impairs migration and kinase dead Abl reduced 

exploratory behavior. (A) Still images of random migrating pupal macrophages. Cells were tracked 

with Imaris and trajectories are depicted with speed-color code (in µm/s). Morphologically, 

overexpression of kinase active BCR-Abl results in gigantic cells. (B-E) Graphs are depicted in a scatter 

dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (non-parametric multiple comparison test). 

In the bias angle histogram one bar depicts the accumulated density of 3 °. Dotted line indicates the 

median angle of the corresponding distribution. (B) Cell speed is not altered when overexpressing kinase 

dead Abl (DN) or in abl KD macrophages but drastically reduced overexpressing BCR-Abl. (C+D) Cell 

persistence and straightness is reduced in macrophages overexpressing BCR-Abl and not effected in abl 

KD or kinase dead overexpression. (E) Displacement from the origin over time is a value for the 

explorative behavior of the cells. abl KD and overexpression of kinase dead Abl show a decreased 

explorative ability. As cell speed is reduced in BCR-Abl overexpressing macrophages, this value is not 

meaningful. Scale bar = 20 μm. 

In conclusion it has been shown that loss of abl has mild effects on cell morphology of random 

macrophage migration in vivo. Even more outstanding is the tremendous negative impact of 

the loss of abl as well as the interference with kinase activity on the explorative activity of the 

cells. Consistent with these findings, in abl mutant cells cell speed is not affected but the cells 

tend to stay close to their origin. Further, the overexpression of the kinase active ortholog 

BCR-Abl causes reduced speed and less persistence of macrophages randomly migrating in 

prepupae. Although these large macrophages exhibit broad lamellipodia, their migration is 

almost blocked. 
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3.5.3 Wound response is not affected by the loss of abl 

For an effective wound response, the correct organization of the actin cytoskeleton is as 

fundamental as for random migration. Previous experiments have shown that in the absence 

of wave macrophages were still able to respond to wound signals but are highly impaired in 

their migratory behavior. Noteworthy is the reduction of the explorative behavior in 

comparison to wild type macrophages. This might in particular influence the responsiveness 

of abl mutant macrophages upon wounding. 

To determine the role of Abl in directed wound response of macrophage, ablation experiments 

of a single cell in the pupal wing were performed. Upon wounding wild type macrophages as 

well as abl mutant macrophages switch from random to directed migration towards the 

wounding site indicated by cell trajectories (Figure 26A+B, Movie 4+16). abl mutant cells 

does not interfere with cell speed nor with the bias angle indication the directionality of 

migration towards the wound (Figure 26D, E+E´). When removing one wave gene copy in abl 

mutant background, analysis showed a reduction in cell speed mean (Figure 26, D) in 

comparison to wild type cells but the directionality indicated by the cell bias angle is not 

significantly affected.  
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Figure 26: abl mutant macrophages still respond to wound signals. (A-C) Stills of time laps images 

of directed macrophage migration upon wounding of a single cell (magenta dot in the center). Cells 

were imaged for 30 minutes after ablation in a 30 second interval and tracked afterwards using Imaris. 

Trajectories with speed color code indicate that wild type, abl depleted macrophages and abl depleted 

macrophages lacking one copy of wave migrate towards the wounding site. (D+E) Graphs are depicted 

in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (non-parametric multiple 

comparison test). In the bias angle histogram one bar depicts the accumulated density of 3 °. Dotted line 

indicates the median angle of the corresponding distribution. (D) Cell speed mean is not altered in abl 

mutant cells but reduced when eliminating one copy of wave. (E) Cell bias angle is not affected in abl 

mutant cells as well as in abl mutant macrophages lacking one copy of wave. Scale bar = 20 μm. 

In conclusion, the absence of the tyrosine kinase abl has no effect on the responsiveness of 

cells on cell damage. Removing one gene copy of wave leads to a slowdown of cells, whereas 

the directionality is not impaired. Nevertheless, to further understand the underlying principle 

it has to be investigated whether the loss of one gene copy of wave alone shows similar effects. 
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3.5.4 Src42A protein level is increased in abl mutant macrophages and might act 

compensatory 

Abl kinase itself can be activated by tyrosine phosphorylation. One known upstream regulator 

is Src kinase (Brasher and Van Etten, 2000; Nagar et al., 2003; Plattner et al., 1999; Schindler 

et al., 2000). Abl and Src kinase show a high structural homology (Figure 7). Furthermore, Src 

has been described to influence WAVE activity and influence the migration of cells (Ardern 

et al., 2006; Evans et al., 2015). The hypothesis can be made that Src is able to substitute for 

the loss of Abl. In abl mutant macrophages protein level of Src42A, was increased about 1.2-

fold (Figure 27A and A’).  

 

Figure 27: Src42A protein level is slightly increased in abl mutant macrophages. (A) Western Blot 

analyses of isolated larval macrophages. Genotype and antibody staining are indicated. (B) 

Quantification of Src42A protein level normalized to tubulin expression. Control expression is set to 

1.0. Bars depict the median (abl mut = 1.214). *** = p ≤ 0.001 (Mann-Whitney-U-Test).  

Increased Src42A level in abl mutant background could indicate a compensatory effect. To 

further address this question, gene dosage experiments for src42A in abl mutant background 

were performed and analyzed regarding random macrophage migration. src42A mutants are 

lethal and therefore cannot be analyzed in post-embryonal stages. 

Cells lacking one gene copy of src42A in abl mutant background show a wild typic cell 

morphology (Figure 28B, Movie 16). Cell speed shows no significant difference compared to 

wild type macrophages or abl mutant cells (Figure 28C). The reduction by one gene copy of 

src42A in abl mutant background lowers the value of displacement from the origin in a similar 

scale as the abl mutation alone and have no additional effect (Figure 28F). Noteworthy, cell 

persistence as well as cell motion straightness is decreased in abl mutant macrophages lacking 

one copy of src42A (Figure 28D+D´). The loss of one gene copy src42A in wild typic 

background already shows a significant increase in cell speed which has to be taken into 

account in further conclusions (Figure 28, C). Additionally, cell persistence is decreased in 

control cells lacking one gene copy of src42A (Figure 28, D+D´).  
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Figure 28: Random macrophage migration in src42A gene dosage experiments. (A+B) Still images 

of random migrating pupal macrophages. Cells were tracked with Imaris and trajectories are depicted 

with speed-color code (in µm/s). (B) abl mutant cells lacking one copy of src42A show no 

morphological defects (C-F) Graphs are depicted in a scatter dot blot with bars indicating mean and SD. 

*** = p ≤ 0.001 (non-parametric multiple comparison test). In the bias angle histogram one bar depicts 

the accumulated density of 3 °. Dotted line indicates the median angle of the corresponding distribution. 

(C) cell speed is not reduced in abl mutant cells lacking one copy of src42A. The reduction of one copy 

of src42A in wild typic background leads to increased cell speed. (D) In abl mutants lacking one copy 

of src42A cell persistence further decreased but not significantly to abl mutation alone. (E) Cell 

straightness is reduced in abl mutants lacking one copy of src42A. (F) Displacement from the origin 

over time is a value for the explorative behavior of the cells. abl mutants lacking one copy of src42A 

show a decreased explorative ability comparable to abl mutants alone. Scale bar = 20 μm. 

In summary, it was demonstrated that Src42A protein level is slightly increased in abl mutants. 

Gene dosage experiment in abl mutant background shows that the reduction of one gene copy 

of src42A results in a further decrease in the cell persistence and straightness. However, at 

least for cell persistence already the reduction of Src42A alone shows a severe effect. This 

might indicate an Abl independent effect on cell speed and persistence, when reducing src42A 

level. Whether Src42A has a compensatory effect on the loss of Abl cannot be demonstrated 

conclusively.  
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3.5.5 abl depleted macrophages show an increased WAVE membrane localization 

The loss of abl is predicted to interfere WAVE activity and with WAVE membrane 

recruitment. To address this question, the localization of WAVE in wild type macrophages is 

compared to the localization in abl mutant cells. The analysis of WAVE at the membrane show 

WAVE membrane-localization is increased in abl mutants (Figure 29A+A´, B+B´). To 

compare different cell sizes, the cell perimeter is normalized to 100 % and the median intensity 

of each tenth of the cell’s perimeter was plotted with the corresponding confidence interval 

(CI) (2.5.3 Fluorescence intensity measurement). The quantification shows an overall and 

significant increase of WAVE membrane localization (Figure 29C). By subtracting WAVE 

wild type membrane fluorescence intensity from intensity in abl mutant cells, a 1.4-fold 

increase in WAVE along the whole membrane can be (Figure 29C´). In contrast, correlated 

total cell fluorescence (CTCF) is only slightly increased in abl mutant macrophages (Figure 

29D, 2.5.3 Fluorescence intensity measurement). This indicates that the overall WAVE level 

is stable and only membrane localization of WAVE in influenced in abl mutant macrophages. 

 

Figure 29: WAVE membrane localization is increased in abl mutant cells. (A+B) Isolated pupal 

macrophages plated on ConA and stained for F-actin and WAVE (color code for staining is indicated). 

WAVE membrane localization is increased in abl mutant macrophages. (C) Measurement of WAVE 

mean fluorescence intensity at the membrane. Cell perimeter is normalized to 100 %. Bars indicate the 

median of mean fluorescence intensity of a tenth of the cell perimeter and 95 % CI. WAVE mean 
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fluorescence intensity is increased around 1.4-fold at whole membrane (C´). (D) Measurements of the 

correlated total cell fluorescence (CTCF). Bars depicts the mean and SD. *** = p ≤ 0.001 (Mann-

Whitney-U-Test). Abl macrophages show only a slight but not significant increase in total WAVE 

amount by analysing the CTCF. Scale bar = 10 μm. 

To confirm these findings, WAVE protein level in abl mutant macrophages was analyzed in 

quantitative Western Blot analysis. WAVE expression is normalized against internal tubulin 

expression control. In all three independent experiments, WAVE levels are increased in 

comparison to wild type expression. In median, the expression is increased 1.2-fold. However, 

the three independent data points show a huge variance, therefore drawing a final conclusion 

on the effect of the loss of abl on WAVE protein level is not possible (Figure 30, 

Supplementary Figure 7).  

 

Figure 30: WAVE protein level is slightly increased in abl mutant macrophages. (A) Western Blot 

analyses of isolated larval macrophages. Genotype and antibody staining are indicated. (B) 

Quantification of WAVE protein level normalized to tubulin expression. Control expression is set to 

1.0. Bars depict the median (abl mutant = 1.197). *** = p ≤ 0.001 (Mann-Whitney-U-Test). WAVE is 

slightly but not significantly increased (also compare Supplementary Figure 7). 

Conclusively, loss of Abl leads to increased membrane localization of WAVE continuously 

by 1.4-fold along the entire membrane. Further, calculating the CTCF show slightly but not 

significantly increase of WAVE on a cellular level. Further, quantitative Western Blot analyses 

of the protein level display an increased about 1.2-fold. However, because of a broad 

distribution of the data point this result needs to be confirmed by additional repetitions.  

3.5.6 wave reduction in abl mutant background further impairs random cell 

migration 

Previous results demonstrated that WAVE localization at the membrane increases in abl 

mutant macrophages. To analyze whether the resulting migratory phenotype is caused by only 
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an increased presence of WAVE, gene dosage experiments were performed. Each, one gene 

copy of wave is eliminated in abl mutant background and in wild typic background.  

Control cells lacking one copy of wave show no morphological changes and the measured 

parameters (speed, persistence, straightness, and displacement from the origin) are not affected 

in these cells in comparison to wild type (Figure 31C-F). The reduction of one wave copy 

alone has no effect on random migrating macrophages. 

abl mutant cells missing one copy of wave show already morphological differences in 

comparison to wild type but also to abl mutant cells (Figure 31A and B). abl mutant cells 

exhibit a broad lamellipodium (Figure 31A). The reduction of one gene copy of wave results 

in the frequent appearance of filopodial structures (Figure 31B´, Movie 17). In these cells, the 

persistence and straightness significantly decrease in comparison to wild type cells and slightly 

in comparison to abl mutant cells (Figure 31C and E, Movie 17). Those cells show also a 

reduced exploratory behavior, indicated by the decreased displacement of the cells for the 

origin similar to abl mutant macrophages (Figure 31F).  
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Figure 31: Random macrophage migration in wave gene dosage experiments. (A-B) Still images 

of random migrating pupal macrophages. Cells were tracked with Imaris and trajectories are depicted 

with speed-color code (in µm/s). (A, green arrow, A´ closeup) In abl mutant macrophages the 

lamellipodium is surrounding the whole cell. (B, orange arrow, B´ closeup). Macrophages with only 

one copy of wave in abl mutant background show more filopodial structures.  (C-F) Graphs are depicted 

in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (non-parametric multiple 

comparison test). In the bias angle histogram one bar depicts the accumulated density of 3 °. Dotted line 

indicates the median angle of the corresponding distribution. (C) In abl mutants lacking one copy of 

wave cell persistence decreased further but not significant to abl mutation alone. (D) Cell speed is not 

altered. (E) Cell straightness is reduced in abl mutants lacking one copy of wave. (F) Displacement from 

the origin over time is a value for the explorative behavior of the cells. abl mutants lacking one copy of 

wave show a decreased explorative ability comparable to abl mutants alone. Scale bar = 20 μm.  
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Taken together it was shown that the reduction of one gene copy of wave in abl mutant 

background only slightly interferes with random cell migration. Persistence of the cells and 

straightness is further reduced. Additionally, filopodial structures were frequently visible. 

3.6 Dissecting the impact of WAVE tyrosine residues in influencing 

actin polymerization 

Phosphorylation is a post-transcriptional modification known to modulate protein folding, 

influencing their activity and binding ability. WAVE possesses several phospho-residues as 

potential targets for diverse kinases. The WHD and therein especially tyrosine residues Y153 

and Y127 are highly conserved across species (Chen et al., 2010; Krause and Gautreau, 2014; 

Mendoza, 2013, 1.2.3 The influence of phosphorylation). The phosphorylation of these 

residues modulates WRC activity in cells by altering the binding affinity of Sra1 to the 

meandering region. Also, Y153 is targeted by Abl kinase, whereas Y127 residue is 

phosphorylated by Src42A kinase (Ardern et al., 2006; Leng et al., 2005; Mendoza, 2013). 

Until now, most studies are performed in cell culture and the impact on migration in vivo is 

barley addressed.  

To investigate the impact of distinct tyrosine residues, WAVE transgenes were generated with 

either a transition of tyrosine to phenylalanine leading to a phospho-abolishing mutation 

(phospho-mutant) or tyrosine residues, where mutated to glutamic acid achieves a phospho-

mimicking mutation. The tissue specific expression allows to further examine the distinct 

function of the single residues. 

3.6.1 WAVE phosphorylation of Y153 induces F-actin formation  

In order to determine the impact of phosphorylation of Y127 and Y153 on WAVE dependent 

F-actin assembly, phospho-mutant and phospho-mimicking constructs were overexpressed 

tissue-specifically in Drosophila macrophages. Isolated macrophages show a wild typic 

morphology with a broad lamellipodium (Figure 32A). To gain further insights, lamellipodia 

width was measured. Overexpression of the phospho-mimicking Y153E results in a significant 

increase of branched actin filaments in comparison to wild type cells (Figure 32B). However, 

the increase does not significantly differ when comparing WAVE Y153E to wild typic WAVE 

overexpression. Thus, this could be also an overexpression effect and needs to be investigated 

in a higher sample size (Figure 32B). The overexpression of the phospho-mimicking WAVE 
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Y127E does not alter lamellipodia width in comparison to wild type cells. Also, the WAVE 

transgenes with a mutation in WAVE tyrosine 127 and 153 show no significant increase in 

lamellipodia width (Figure 32B). On the other hand, the transition of tyrosine to non-

phosphorylatable phenylalanine of either one or both tyrosine sides have no significant effects 

on lamellipodia width.  

 

Figure 32: Overexpression of phospho-mimic WAVE Y153E leads to increase of branched actin 

structures.  (A) Isolated pupal macrophages plated on ConA and stained for F-actin and WAVE (color 

code of staining is indicated). (B) Graphs are depicted in a scatter dot blot with bars indicating mean 

and SD. *** = p ≤ 0.001 (non-parametric multiple comparison test). Lamellipodia width is measured as 
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indicator for branched actin formation. Overexpression of WAVE Y153E leads to increased 

lamellipodia width in comparison to wild type (W8) cells. Scale bar = 10 μm. 

To further fortify this finding, phospho-mutant and phospho-mimicking WAVE were 

overexpressed in Drosophila imaginal wing disc by en-Gal4. The anterior-posterior altering 

expression pattern allows a direct internal comparison of endogenous actin formation versus 

overexpression dependent effects on F-actin level (2.5.5 Quantification of F-actin staining in 

imaginal wing discs). Therefore, wing discs were stained for WAVE expression and F-actin. 

The WAVE staining shows a homogenous expression of all constructs in the posterior site of 

the wing disc (Figure 33A). The analysis show that the overexpression of phospho-mimicking 

WAVE Y153E leads to an elevation of F-actin level (Figure 33A, red arrow). The 

quantification of a ratio between F-actin level of the anterior and posterior site confirms that 

overexpression of Y153E leads to an increase in F-actin formation (Figure 33B). In contrast, 

the overexpression of phospho-mimicking WAVE Y127E has no significant effect on F-actin 

assembly. Compared to wild type WAVE overexpression, the overexpression of phospho-

mimicking WAVE with two mutated amino acids (Y127E+Y153E) shows only a slight but 

not significant increase in F-actin formation. The single or double tyrosine transition of 

Tyrosine to Phenylalanine (F) has no significant effect on F-actin level (Figure 33B).  
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Figure 33: Segmental overexpression of phospho-mimic WAVE Y153E leads to an increase of F-

actin level. (A) Isolated wing discs stained for F-actin and WAVE (color code of staining is indicated). 

Using en-Gal4 driver line constructs were expressed only in the posterior half (P, right) of the imaginal 

wing disc (anterior =A). WAVE staining is weakly increased in the posterior part due to overexpression. 

(B) Graphs are depicted in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (non-

parametric multiple comparison test). Ratio of F-actin level is depicted for indicated genotypes. F-actin 

polymerization ratio is increased in wing discs expressing phospho-mimic WAVE Y153E (A, red 

arrow). Scale bar = 40 μm. 
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To summarize these results, overexpression of phospho-mimicking WAVE Y153E leads to an 

increase of WAVE dependent formation of filamentous actin. This is confirmed by measuring 

the lamellipodia width in macrophages and by calculating the actin formation ratio in wing 

discs. Both results confirm WAVE phosphorylation of tyrosine 153 modulating WRC activity 

and directly inducing F-actin formation. However, the phospho-mimicking mutation of 

WAVE Y127E has neither an effect on lamellipodia width nor F-actin formation in wing disks. 

Additionally, also the double phospho-mimic version WAVE Y127E+E153E show in both 

experimental designs only a mild but not significant increase in actin polymerization activity 

and reduction, when comparing to overexpressing of WAVE Y153E alone.  

 

3.6.2 Mutation of alone Y153 does not impede Abl-dependent WAVE 

phosphorylation 

WAVE tyrosine residue Y153 is phosphorylated by Abl kinase. To test whether the absence 

of this single residue is sufficient to block Abl mediated phosphorylation of WAVE immune-

precipitation experiments were performed. C-terminal myc-tagged wild typic WAVE or 

phospho-mutant Y153F were co-expressed with eGFP or BCR-Abl to induce phosphorylation. 

Co-expression control with eGFP shows no WAVE tyrosine phosphorylation while expression 

of BCR-Abl induced WAVE phosphorylation. Mutated WAVE Y153F still gets 

phosphorylated (Figure 34).  

 

Figure 34: Phospho-mutant WAVE Y153F is not sufficient diminish Abl phosphorylation activity 

on Wave tyrosine residues. Immunoprecipitation with myc-trap beads from lysates of S2R+ cells. Co-

transfection of cells with WAVE-myc or WAVE Y153E-myc and eGFP or BCR-Abl. Co-expression 

control with EGFP shows negative pTyr staining, whereas pTyr staining is detectable for co-expression 

of WAVE-myc and WAVE Y153F-myc with BCR-Abl. 
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This leads to the conclusion that mutated tyrosine residue Y153 alone does not completely 

diminish Abl dependent WAVE phosphorylation. This suggested that further residues are 

targeted by Abl and might influences WAVE activity. 

 

3.6.3 WAVE phosphorylation is critical in Drosophila development  

Since phosphorylation of WAVE is suggested to have an influence on WRC activity, the effect 

on Drosophila development remains to be determined. Phospho-mimicking and phospho-

defective WAVE transgenes were ubiquitously re-expressed in wave mutant background using 

da-Gal4 driver line. Transgenes with amino acid exchanges of all 15 tyrosine residues (WAVE 

15F and 15E) were established in a previous work in a UASt-gateway vector (Kottmeier, 2010, 

bachelor thesis). The somatic expression is stronger in comparison to transgenes cloned in a 

UASp vector and so cannot be compared.  

Neither phospho-mutant transgenes by transition of tyrosine to phenylalanine of either all nor 

single tyrosine sites affect viability of the animals (Table 12). The flies also show no 

morphological defects as it can be observed in kette hypomorphic flies in bristle formation 

(Bogdan et al., 2004, data not shown). In contrast, phospho-mimicking WAVE mutation of all 

15 tyrosine residues leads to embryonal lethality. The re-expression of WAVE phospho-

mimicking transgenes with mutation of tyrosine Y127E+Y153E is not able to rescue wave 

mutant lethality. In contrast, re-expression of single phospho-mimicking WAVE Y127E and 

WAVE Y153E completely rescues viability until fly adulthood (Table 12).  

Table 12: Survival of flies in wave mutant rescue experiments 

EXPRESSION IN WAVE MUTANT 

BACKGROUND 

VIABILITY 

UASt-WAVE  viable 

UASt-WAVE 15F viable 

UASt-WAVE 15E embryonal lethal 

UASp-WAVE viable 

UASp-WAVE Y127F viable 

UASp-WAVE Y127E viable 
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UASp-WAVE Y153F viable 

UASp-WAVE Y153E viable 

UASp-WAVE Y127F+Y153F viable 

UASp-WAVE Y127E+Y153E late pupal lethal/ defects in adult 

eclosion 

The F1 generation of flies re-expressing the phospho-mimicking WAVE transgenes were 

further analyzed for morphological defects. Flies re-expressing single phospho-mimicking 

WAVE transgenes for either Y127 or Y153 develop normally until adulthood as those re-

expressing wild typic WAVE do (Figure 35). In contrast, re-expression of phospho-mimicking 

WAVE Y127E+Y153E transgene causes severe developmental defects. In most animals, 

morphogenesis already terminates in pupal stage (Figure 35A-1). It is also notable, that the 

pupal case of is often deformed (Figure 35A-2,3). A minority of the animals develop to adult 

flies whereas the others die. However, these flies showed defects in adult eclosion and finally 

die in the pupal case (Figure 35B-1,2). Opening the pupal case show some flies to be fully 

developed. A mild rough eye phenotype caused by eye bristle defects can be observed in 

WAVE Y127E+Y153E expressing flies (Figure 35D).  
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Figure 35: Morphological analysis of wave mutant flies rescued by phospho-mimic WAVE 

constructs. WAVE transgenes were ubiquitously expressed by da-Gal4 in wave mutant background. 

(A) 3 days APF the adult fly is almost fully developed. Rescue with WAVE Y127E+Y153E often die 

in pupal stage (A1). Some develop further but show defects in eclosion (B1+2). (B) Thorax lateral (C) 

and dorsal view shows intact fly and bristle formation. Flies, rescued with WAVE Y127E+Y153E, are 

cut out of the pupal case. Adult were fully developed but dead. (D) The eye developments normal, 

except of flies rescued with WAVE Y127E+Y153E that exhibit a rough eye phenotype. 

In conclusion, the re-expression of the WAVE transgenes with executionary non‐

phosphorylateable tyrosine residues were able to rescue wave mutant lethality. In contrast, 

transgenes mimicking WAVE tyrosine phosphorylation of all 15 tyrosine residues as well as 

the combined mutation of Y127 and Y153 are not able to restore viability.  
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3.6.4 WAVE-WHD phosphorylation of Y127 and Y153 affect lamellipodia 

formation of macrophages 

To further analyze the influence of WAVE WHD phosphorylation on actin formation rescue 

experiments were performed by ubiquitously expressing different WAVE transgenes in wave 

mutant background. 

The majority of isolated rescued cells show the wild typic cell shape with a broad 

lamellipodium at the leading edge and cytoplasmic WAVE staining and at the membrane 

(Figure 36). As described before, da-Gal4 induces a mosaic expression pattern. Even when 

expressing the wild typic WAVE, few cells of the macrophage do not express the transgene 

and remain wave mutant. These cells are identified by the absence of WAVE staining as well 

as showing the typical wave mutant stellar cell morphology with extended filopodia (Figure 

36, orange arrow). 

 

Figure 36: Analysis of WAVE rescue in Drosophila macrophages. Isolated pupal macrophages 

plated on ConA stained for F-actin and WAVE (color code of staining is indicated). WAVE wild type 

is ubiquitously expressed by da-Gal4 in wave mutant background. Rescued cells show characteristic 

wild type morphology with broad lamellipodial structures. Cells failed to be rescued lack WAVE 

staining and exhibit filopodia instead of lamellipodial structures (orange arrow). Scale bar = 10 μm. 

To further study the effect of WAVE tyrosine phosphorylation in macrophages, either single 

or double phospho-mimicking and phospho-mutant transgenes were re-expressed in wave 

mutant background. Similar to WAVE wild type expression, in all experimental setups, a few 

cells are not rescued indicated by the absence of WAVE staining.  

Re-expression of all transgenes besides  phospho-mimicking WAVE Y127E+Y153E were 

able to restore the wild typic morphology exhibiting a broad, flat lamellipodium, consisting of 

branched actin structures. (Figure 37A). Cells expressing phospho-mimicking WAVE 

Y127E+Y153E with two mutation sites show a wave mutant like phenotype with extended 

filopodial structures (Figure 37A). In contrast to wave mutant cells, most cells re-expressing 
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WAVE Y127E+Y153E still show rudimentary lamellipodial structures. They can be clearly 

distinguished from wave mutant cells by WAVE antibody staining.  

Further, morphological analysis using shape descriptor parameters showed cells re-expressing 

phospho-mimicking WAVE Y127E+Y153E  were significantly smaller compared to wild type 

rescue (Figure 37C). Although, roundness in wave mutant cells is significantly decreased, it is 

not a suitable indicator to characterize a stellar cell morphology (Figure 37C´). In contrast, 

circularity is extremely sensitive to extended protrusions like filopodia (2.5.2 Morphology 

analyzes of isolated macrophages). The stellar morphology of wave mutant macrophages 

causes a dramatic decrease in circularity. Similar, the re-expression of phospho-mimicking 

WAVE Y127E+Y153E leads to a strong decrease of circularity in comparison to WAVE wild 

type expression (Figure 37C´´).  

The morphological analysis also shows that re-expression of phospho-mutant WAVE Y127F 

in macrophages displayed a decreased cell area, but circularity of these cells is comparable to 

wild typic cells (Figure 37C-C´´). 

In wave mutant macrophages lamellipodia are completely disrupted and therefore their shape 

cannot be quantified, whereas the re-expression of phospho-mimicking WAVE 

Y127E+Y153E causes some rudimentary lamellipodial structures. Consequently, 

lamellipodial width is drastically reduced. In contrast, macrophages re-expressing the 

phospho-mimicking WAVE Y153E transgene in wave  mutant background show an increase 

in lamellipodia width in comparison to wild type WAVE re-expression (Figure 37B). 
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Figure 37: Analyses of WAVE tyrosine phosphorylation in wave mutant background in 

Drosophila macrophages. Isolated pupal macrophages plated on ConA stained for F-actin and WAVE 

(color-code of staining is indicated). WAVE transgenes were ubiquitously expressed by da-Gal4 in 

wave mutant background. Cells lack WAVE staining and exhibit filopodia instead of lamellipodial 

structures were quantified as wave mutants (example Figure 36). All constructs except of WAVE 

Y127E+Y153E can rescue wave mutant cells showing characteristic wild type morphology with broad 

lamellipodial structures. (B+C) Graphs are depicted in a scatter dot blot with bars indicating mean and 

SD. *** = p ≤ 0.001 ((B)ANOVA, (C) non-parametric multiple comparison test). (B) Lamellipodia 

width is increased in macrophages expressing WAVE Y153E and reduced in WAVE Y127E+Y153E 

expressing cells. In wave mutant cells lamellipodial structures are not measurable. (C) Cell shape 

analyses show a wave mutant like phenotype for macrophages expressing WAVE Y127E+Y153E. Cell 

size (C) and circularity is decreased. Scale bar = 10 μm. 

Analyzing cell morphology demonstrated that the expression of phospho-mutant WAVE 

constructs completely rescues wave mutant phenotype. In contrast, expressing double 

phospho-mimic WAVE Y127E+Y153E causes severe morphological defects comparable to 
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wave mutant macrophages. They exhibit only rudimental lamellipodial structures, whereas 

expression of single phospho-mimic WAVE Y153E lead to extended branched actin 

lamellipodial structures. 

3.6.5 Phosphorylation of WAVE WHD interfere with migration of macrophages 

The importance of WAVE regulation in macrophage migration and the consequences of its 

loss is described in detail in part 3.1. Thus, to get further insights in the regulatory mechanisms 

of WHD tyrosine residues Y127 and Y153 they are expressed in wave mutant background by 

da-Gal4 driver. To visualize migrating macrophages, they are marked with dsRed fused to the 

macrophage specific truncated hmlΔ promotor (Movie 18).  

When further analyzing random migratory behavior neither expression of phospho-deficient 

transgenes with single (Y127F, Y153F, Movie 19+20) nor double tyrosine transition 

(Y127F+Y153F, Movie 21) of tyrosine to phenylalanine has any severe effect on either speed, 

straightness or persistence of randomly migrating macrophages (Figure 38E-G). Also, single 

phospho-mimicking tyrosine side WAVE Y127E does not alter motion of macrophages in 

comparison to WAVE wild type expression (Figure 38E-G, Movie 22).  

Although previous experiments demonstrated that phospho-mimicking of WAVE Y153E 

leads to an increase in branched F-actin formation, cell speed is significant decreased in 

random migrating cells (Figure 38E). This is indicated by color-code of the trajectories in 

comparison to cells expressing WAVE wild type (Figure 38A+C, Movie 18+23). Straightness 

shows a mild but not significant reduction compared to re-expression of wild type WAVE in 

mutant cells (Figure 38F).  

As described before, double phospho-mimic construct WAVE Y127E+Y153E fails to rescue 

wave mutant lethality and leads to severe morphological defects in isolated macrophages. As 

expected it also shows migration defects in vivo (Figure 38D-G, Movie 24): Cell speed is 

drastically reduced, (Figure 38D+E, color code of the trajectories, Movie 24), track 

straightness is highly impaired and cells almost rest at their origin (Figure 38D+F). This is 

supported by the reduction of the cell persistence (Figure 38G). The distribution of the 

persistence angle is also massively shifted to higher values (Figure 38G´). 



   3 Results 

102 

 
 



   3 Results 

103 

 

Figure 38: Expression phospho-mimic WAVE impairs random cell migration. (A-D) WAVE 

transgenes were ubiquitously expressed by da-Gal4 in wave mutant background. Macrophages are 

marked by hmlΔ-dsRed expression. Still images of random migrating pupal macrophages. Cells are 

tracked with Imaris and trajectories are depicted with speed-color code (in µm/s). (E-G) Graphs are 

depicted in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (non-parametric 

multiple comparison test). In the bias angle histogram one bar depicts the accumulated density of 3 °. 

Dotted line indicates the median angle of the corresponding distribution. (E) Cell speed is reduced in 

cells expressing WAVE Y153E and WAVE Y127E+Y153E. (F) Cells expressing WAVE 

Y127E+Y153E show also a reduction in straightness and (G) increase in cell persistence angle as 

indicated by the right shifted distribution in the persistence angle histogram (G´). Scale bar = 20 μm. 

To get further insights of cell morphology, closeup images of migrating cells were recorded 

with a higher laser intensity. Nevertheless, expression of wild type WAVE in wave mutant 

background completely rescued lamellipodia disruption (Figure 39A, Movie 25). Further, 

expression of single phospho-mimicking WAVE Y127E and WAVE Y153E exhibit 

lamellipodial structures (Figure 39B+C). Prepupal macrophages, expressing double phospho-

mimic WAVE Y127E+Y153E construct, show a more heterogenous cell population. Some 

cells exhibit almost wild typic lamellipodia (Figure 39D, blue arrow) whereas other cells show 

reduced lamellipodial structures but more filopodial protrusions (Figure 39D, orange arrow, 

Movie 26). 
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Figure 39: Expression phospho-mimic WAVE Y127E+Y153E show a morphological defect. (A-

D) WAVE transgenes were ubiquitously expressed by da-Gal4 in wave mutant background. 

Macrophages are marked by hmlΔ-dsRed expression. Close-up images of random migrating pupal 

macrophages. (A) Rescue with WAVE wild type cells show characteristic wild type morphology with 

broad lamellipodial structures. (B+C) Expression of single phospho-mimic WAVE Y127E and WAVE 

Y153E show no morphological defects. (D) Rescue with WAVE Y127E+Y153E show a heterogenous 

macrophage population. Some show wild typic morphology with broad lamellipodial structures (blue 

arrow) other exhibit predominant filopodial protrusions (orange arrow). Scale bar = 10 μm. 

In conclusion, these data show the importance of precise actin regulation in random cell 

migration. It could be demonstrated that increased lamellipodial branched F-actin formation 

by the expression of WAVE Y153E interfere with cell migration in in vivo. Further, the re-

expression of a WAVE transgene with to phospho-mimicking mutations does not rescue the 

wave mutant phenotype.   
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4 Discussion 

4.1 Functions of cell protrusions in random an directed migration  

The precise regulation of the Arp2/3 complex via its main activator WAVE is indispensable 

for efficient lamellipodia-based migration. The investigation of the complex interaction and 

integration of biochemical signals at the leading edge of lamellipodia has been the focus of 

research for many decades. Cells provide a powerful setup of regulatory mechanisms to ensure 

time and space-specific nucleation and elongation of branched actin at the leading edge as 

driving force for cell motility. The controlled recruitment, activation, and turnover of WAVE 

within the WRC is crucial for efficient lamellipodia-based migration. 

At the leading edge of cells migrating on a flat substrate lamellipodia are the predominant 

protrusive structure (Abercrombie et al., 1970a; Small, 1988; Small et al., 2002). Depletion of 

components of the Arp2/3 complex as key nucleator for branched actin filaments leads to 

complete loss of lamellipodia. This loss is compensated by an extensive outgrowth of 

filopodial protrusions (Figure 12, Rogers et al., 2003; Sander et al., 2013; Zobel and Bogdan, 

2013). The same defects in cell morphology can be observed for most cell types in the absence 

of WAVE. Previous studies address the consequences of the loss of lamellipodia on migration 

under cell culture conditions and have provided essential insight for today’s knowledge on 

regulation of the actin machinery. 

Building on this data, in this study the relevance of lamellipodia in vivo migrating Drosophila 

macrophages as well as in response to wound signals was addressed. Beside RNAi mediated 

gene suppression of wave, the generation of mutant macrophages by MARCM technique 

allowed the analysis of the migration of wave mutant macrophages in vivo (Figure 14). The 

loss of WAVE resulted in a complete disruption of lamellipodial structures and confirmed that 

in Drosophila wave depletion cannot be substituted by other NPFs like WASP. In 

Dictyostelium, depletion of scar (wave) yields only mild morphological defects as it is partially 

compensated by WASP function (Veltman et al., 2012). In contrast, Drosophila wave mutant 

macrophage exhibited extended filopodial structures consist of bundled actin filaments. The 

analysis of their migratory behavior revealed that wave mutant cells still showed a rudimental 

filopodial based migration (Figure 14, Movie 3). They linger at one position starching out their 

long filopodia until they relocate and overcome a relatively long distance. In contrast to 
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continuously migrating wildtype macrophages, the migration mode of wave mutants can be 

characterized as an erratic motion.  

Consistently, previous studies have drawn a complex picture displaying lamellipodia as a 

meshwork with bundled actin structures which contribute to a great extent to the formation 

and dynamics of lamellipodia. F-actin elongators such as Formins and ENA/VASP contribute 

to the formation. They cooperate with the WRC and elongate preexisting Arp2/3 nucleated 

filaments (Beli et al., 2008; X. J. Chen et al., 2014; Isogai et al., 2015). Indeed, this study 

confirmed previous data, showing that filopodia also nucleate independently of branched actin 

structures (Bischoff et al., 2020; Evans et al., 2013). The de novo formation of filopodia reveals 

a more outstanding role of filopodial structures in cell migration. Cells like nascent myotubes 

of Drosophila testes are highly motile collective migrating cells completely lacking 

lamellipodia but instead exhibit numerous filopodia driving their migration (Bischoff et al., 

2020). In migrating B16-F1 melanoma cells and fibroblasts, loss of Formin FMNL2 and 

FMNL3 function impairs lamellipodia formation and reduces migration (Kage et al., 2017). 

Further, in this work the role of lamellipodia in directed wound response of Drosophila pupal 

macrophages was addressed. Initial publication by Suraneni et al. 2012 and Wu et al. 2012 

controversially discusses whether lamellipodial structures are indispensable in directed cell 

migration. Suraneni and colleagues (2012) showed that arp3 depleted mouse embryonic 

fibroblasts (MEFs) lose their ability to follow an EGF-gradient. In contrast, Wu and colleagues 

(2012) demonstrated in arp3 KO MEFs that these cells are only affected in speed but still 

slowly follow a chemotactic PDGF gradient. Consistent with their findings, the results of this 

study clearly showed that wave depleted cells lacking lamellipodia are still able to respond to 

wound signals (Figure 15, Movie 5). Indeed, they show characteristic stellate morphology and 

reveal reduction in motility. The loss of WAVE leads to a reduction in cell speed but has 

influence of directionality of the migrating cells. This is consistent with previous data from 

macrophages in the Drosophila embryo (Evans et al., 2013). The authors show a reduced 

responsiveness of wave mutant macrophages to laser induced wounds. However, consistent 

with the findings of this work, the main effects occur in the reduction of cell speed, whereas 

the directionality of the cells is similar to wild type macrophages. Similar data are obtained in 

wave lacking dendritic cells. Furthermore, the depleting WAVE upstream activator Rac does 

not interfere with the ability of cells to respond to chemotactic cues (Leithner et al., 2016; 

Monypenny et al., 2009). In conclusion, currently available data highly supports the existence 

of a chemotactic mechanism independent of the classical GTPase-WAVE-Arp2/3 pathway, in 

the absence of lamellipodia. A cooperative role of filopodial and branched structures can be 

also assumed orchestrating efficient directed migration response. Initial chemotactic sensing 
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could be fulfilled by signaling molecules inducing filapodial filaments, which could serve as 

template for the further binding of the Arp2/3 complex to induce branched network structures. 

Recent data show ENA/VASP being critical in Fascin dependent actin bunding in Drosophila 

macrophages. Lamellipodia of ena mutant macrophages almost completely lose F-actin 

bundled structures and exhibit impaired migration speed. However, directionality during 

inflammatory chemotaxis is not effected (Davidson et al., 2019). As chemotaxis still works in 

the absence of actin bundles as well as in cells with disrupted branched actin network it can 

be suggested that both structures also contribute independently to directed migration towards 

external chemotactic cues.  

4.2 WRC-WIRS ligand binding is not crucial in macrophage wound 

response 

Cells need to discriminate between different external signals and adapt their response 

accordingly. In migratory processes these external stimuli need to be integrated and transferred 

to the intracellular actin machinery and be further decoded into cell motion.  

A previous study has identified a small WCR binding motif, the so-called WRC interacting 

receptor sequence (WIRS), which is highly conserved across multicellular species (B. Chen et 

al., 2014). It is present in around 120 proteins, most cell adhesion proteins, membrane 

receptors but also cytoplasmic proteins. The binding to the WRC is mediated by a pocket 

formed by the two subunits Sra-1 and Abi. This interaction relays on a complete assembly of 

the complex indicating its physiological relevance in WRC dependent processes. 

The variety of proteins carrying a WIRS motif allow us to draw conclusions about the diversity 

of biological processes where WIRS mediated interaction with the WRC may be important. 

WIRS membrane bound proteins can directly recruit the WRC to the membrane and facilitate 

binding and accumulation of the WRC at distinct locations. The minimum WIRS motive alone 

does not act on WRC activity, whereas its embedding in complex protein structure comes with 

further regulatory abilities (B. Chen et al., 2014). The cytoplasmic tail of Protocadherin 

PCDH10 facilitates Rac dependent WRC activation but PCDH17 inhibits activity in vitro.  

For the cell adhesions receptor Fat2, the WIRS-WRC interaction was shown to be of high 

physiological relevance. Mutation of Fat2 causes a round egg phenotype in developing 

Drosophila egg-chambers (Squarr et al., 2016). The receptor binds the WRC via the C-

terminal cytoplasmic WIRS motive, controlling the collective movement of the follicle cells. 
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The disruption of the WIRS binding site within the WRC phenocopies fat2 defects underlines 

the importance of these interactions in this dynamic migratory process.  

Further, the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VDGF) 

related receptor Pvr has also been listed as a potential WIRS ligand (Supplementary Figure 3). 

Collective border cell migration is guided by PDGF signaling (Bianco et al., 2007; Duchek et 

al., 2001). However, it has been shown that the disruption of the WIRS binding site does not 

interfere with border cell migration (Kreft, 2017). Additionally, the dispersal of Drosophila 

macrophages during embryogenesis is controlled by Pvr and its ligands Pvf2 and Pvf3. 

However, downstream activation of PI(3)K is essential in wound chemotaxis of embryonic 

macrophages but not for directed migration during development (Wood et al., 2006). This 

indicates at least two separate mechanisms that coordinate directed macrophage migration in 

Drosophila embryo. In fibroblasts, PI(3)K is not essential for chemotaxis toward a PDGF 

gradient, which is consistent with findings in genetic studies in Dictyostelium (Hoeller and 

Kay, 2007; Welf et al., 2012). 

In this study WIRS ligands were screened for potential candidates mediating wound response 

transduction and decoding the signals for the actin machinery in pupal macrophages. These 

candidates, including Pvr but also 28 other membrane receptors like immune Toll-like 

receptors, EGF-like phagocytosis receptor Nimrod C1 and receptor tyrosine kinase Ephrin 

were analyzed regarding their ability to impact the migrating response on laser induced 

wounding (Supplementary Figure 3). However, none of the candidates showed an apparent 

impact on the migratory behavior of cells as cells successfully migrate to the wounding site. It 

must be stated that the initial design of the screen is created to identify strong migration 

defects. This avoids false positive candidates but on the other hand false negative results 

cannot been excluded.  

To dissect the impact of WIRS-WRC interaction further the wound response of macrophages 

with disrupted WIRS binding sites was investigated in more detail. First, an analysis using the 

previously established HMMS score, showed weak defects in wound response (Figure 16, 

Lammel et al., 2014). However, the HMMS score is an indirect method to analyze the 

fluorescent signal of macrophages in correlation to their distance to the wounding source. 

Therefore, it is sensitive to differences in cell size and number of responding cells. To 

circumvent this, a method to determine directionality of migrating cells towards a wound 

signal by calculating the bias angle of every cell in a certain radius was established in this 

work. This, more precise analysis, shows that defected WIRS binding of the WRC does not 

affect responsiveness nor directionality of macrophages to wounds (Figure 16). These results 
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suggest that binding of the WRC to certain membrane receptors via the WIRS motive plays a 

minor role in macrophage migration. 

The endocytosis of IL-2 highlights another perspective on WAVE interaction with WIRS 

membrane receptors (Basquin et al., 2015). Generally, endocytosis is a common mechanism 

to internalize membrane receptors to control their abundance at the membrane. IL-2 uptake is 

a clathrin-independent mechanism (Grassart et al., 2008). In a first step, WAVE induces 

outward forces by forming membrane protrusion that simultaneously initializes the 

invagination of the membrane. The following recruitment and accumulation of IL-2 at the 

basis of the pit is dependent on WRC binding the WIRS motive of IL2. The authors claim this 

protrusion, based on endocytosis, to be a potential mechanism for other WIRS carrying 

membrane receptors, based on the recruitment WIRS motive carrying receptors to the 

invagination site via WRC-WIRS binding (Basquin et al., 2015). A large number of WIRS 

ligands are adhesion proteins. Therefore, internalization of WIRS-ligands might provide a 

further regulative mechanism to modulate cell-cell contacts. Evolutionarily, this might be a 

further explanation for the high conservation of the WIRS motive in membrane receptors. This 

perspective highlights the diversity of biological processes in which WRC-WIRS interaction 

might be involved in.  

4.3 Phosphorylation as a mechanism to modulate WAVE activity  

Phosphorylation of the individual subunits of the WRC, especially WAVE and Abi and its 

impact on WRC activity has been discussed for a long time. The transfer of the γ-phosphoryl 

group to either a serine, threonine or tyrosine residue is catalyzed by specific kinases. Kinases 

and their counterparts – phosphatases – act as molecular switches to change phosphorylation 

state of proteins and therefore regulate their activity. WAVE and Abi are targets of several 

kinases, of which none is exclusively specific to a certain regulatory target protein (Krause 

and Gautreau, 2014; Mendoza, 2013). Additionally, kinases target more than one phospho-

residue in one protein with potentially opposing regulatory effects. This makes it challenging 

to address the question of phosphorylation from the site of kinase or to try to extract the impact 

of single residues in the phosphorylated and unphosphorylated state (Figure 40).  

WAVE proteins possess several phospho-residues, which are found in conserved domains of 

the protein but not be restricted to them (Figure 6, (Krause and Gautreau, 2014; Mendoza, 

2013)). Some of these residues are known to play critical role in regulating WAVE function. 
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However, the phospho-residues are neither uniformly conserved across different WAVE 

isoforms nor across species (Supplementary Figure 1). In humans, different WAVE isoforms 

show only partially overlapping expression patterns (Sossey-Alaoui et al., 2003). Specifically, 

in tissues, where all isoforms are expressed, it can be assumed that altered phosphorylation 

patterns might define the individual function of the isoform. 

Still, in highly conserved domains like the WHD, PRD and the VCA domain phospho-residues 

are not uniformly conserved. The PRD is mainly serine phosphorylated by ERK or CDK, 

respectively (Krause and Gautreau, 2014; Mendoza, 2013). It is speculated that PRD 

phosphorylation might regulate WAVE by affecting the binding affinity of SH3 domain 

containing regulators like Abl or Src. In Drosophila WAVE, only one Serine is conserved in 

the PRD.  

Focusing on WAVE activation, phosphorylation events within the VCA domain are of great 

interest. WAVE-VCA carries three highly conserved serine residues (WAVE2 – Ser482, 

Ser484, Ser488, Supplementary Figure 1) phosphorylated by CK2 (Nakanishi et al., 2007; 

Pocha and Cory, 2009). Pocha and colleagues (2009) postulate that phosphorylation of the 

VCA domain is essential for WAVE activity. They show that the phospho-mutation of five 

serines of WAVE2 leads to a disruption of lamellipodia in fibroblasts. Additionally, 

phosphorylation of three serines (S488, S489, S497) increases the affinity to the Arp2/3 

complex. Remarkably, the same study also demonstrated that increased binding affinity comes 

with a reduction in Arp2/3 activity (Nakanishi et al., 2007; Pocha and Cory, 2009). This last 

observation is consistent with data from Dictyostelium. Ura et al. (2012) demonstrated that 

phosphorylation increases intramolecular binding of the VCA domain and thereby keeps the 

WRC in an inactive state. On the other site, non-phosphorylatable WAVE-VCA increases 

WAVE activity resulting in extensive WAVE driven protrusions (Ura et al., 2012). Further 

investigation is crucial to extend the knowledge of VCA phosphorylation and the impact of 

different Casein kinases. 

Like serine phosphorylation, tyrosine phosphorylation is described to modulate WAVE 

activity. In human and murine isoforms of WAVE, tyrosine residues are distributed over the 

whole protein. Nevertheless, a functional relevance is only described for those within the 

WHD. The four tyrosine sites found in Drosophila are conserved across species, in particular 

Y127 as Src kinase and Y153 (dWAVE) as target of Abl kinase are prime candidates to 

regulate WAVE dependent actin dynamics (Ardern et al., 2006; Leng et al., 2005).  

This work addresses the impact of phosphorylation of distinct conserved phospho-residues in 

the WHD in a multicellular organism for the first time. The overexpression in Drosophila wing 

imaginal discs and macrophages of WAVE transgene, containing a phospho-mimicking 
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mutation of Y153 leads to an elevation in the level of F-actin (Figure 33). Structural analysis 

has shown that corresponding Y151 in WAVE1 is located in the α5– α6 loop of the meander 

region and facilitates the interaction of Sra-1 and WAVE1. Phosphorylation is predicted to 

destabilize the interaction of the meander region with Sra-1, causing a release of the VCA 

domain. These results suggest that an additional activation mechanism for WAVE exists, 

parallel to the Rac activation mode. In conclusion, it can be assumed that in Drosophila 

phosphorylation of WAVE Y153 leads to higher WAVE activity facilitating actin assembly 

consistent with previous in vitro data (Chen et al., 2010). The authors further postulate a 

similar mechanism for Y125. This residue is part of loop α3 and hydrogen bound to Sra-1 

Asp689. Phospho-mimicking mutations of eighter Y125 or Y151 show an increase in 

lamellipodia formation in HeLa cells (Chen et al., 2010). However, the results from this study 

could not confirm an increase in F-actin level related to phosphorylation of Y127. Neither the 

overexpression in imaginal wing discs nor in macrophages show any changes in F-actin 

staining.  

 

 

Figure 40: Scheme of complex regulation of WAVE and the WRC by phosphorylation. Abl kinase 

phosphorylates and directly interacts with the WRC subunit Abi and WAVE. Key phosphorylation 

events of WAVE and the corresponding effector kinase are depicted. Tyrosine phosphorylation is 

resticted to the WHD. Abl phosphorylates conserved Y153 (WAVE1/3 Y151, WAVE2 Y150), Src 

targets Y127 (WAVE1/3 Y125, WAVE2 Y124). Further, so far unknown residues in the WHD 

(meander region) of WAVE might be targeted by Abl. In mammals, WHD serine/threonine 

phosphorylation by CDK is reported, but the residues are not conserved in invertebrates. Phosporylation 
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within the WDH interferes with the inhibitory binding of the VCA, inducing the release. ERK and JNK 

are targeting WAVE PRD, that has so far only been reported for mamalian WAVE isoforms. CK2 

phosporylation of the VCA is partially conserved across species and ifluences WAVE activty as well 

as binding affinity with the Arp2/3 complex.  

 

In vivo analysis of migrating macrophages shows that cells re-expressing the phospho-

mimicking Y153E mutation in a wave mutant background exhibit broader lamellipodia (Figure 

37). In random migration mode, this leads to a significant reduction in cell speed of these cells 

(Figure 38). Consistent with this result, the overexpression of the kinase active form of Abl 

(BCR-Abl) phenocopy this migratory behavior (Figure 25). The proper organization of the 

lamellipodium is highly dependent on an equilibrium between actin branching on one site and 

elongation of filaments on the other site (Figure 41). It is postulated an increase of actin 

branching leads to a stiffer network resulting in a slowing down of protrusion dynamics. The 

model predicts conversely that shifting the balance in favor of actin elongation, lamellipodia 

become faster due to an increased persistence (Bear et al., 2002; Krause and Gautreau, 2014). 

Recent studies have showed that the overexpression of actin assembly factor ENA/VASP in 

Drosophila macrophages increases the speed of the cells (Davidson et al., 2019).The loss of 

FMNL2 and FMNL3 consistently reduces the speed of lamellipodial protrusions (Kage et al., 

2017). However, the overexpression of actin elongators at a certain point limits the 

accessibility of monomeric actin at the lamellipodial tip by favoring a so-called “non-

productive” capturing, which already takes place in the cytosol (Dimchev et al., 2017). A 

similar effect might be an additional explanation for the decrease in cell speed observed in this 

study. The results allow the assumption that the expression of a more active form of WAVE 

might cause an unprecise nucleation of branched structures (Figure 41). This would interfere 

with the efficiency of cell migration. To test this hypothesis in the future, the recovery rate 

after bleaching could be determined to analyze the actin turnover rate. Further, high resolution 

microscopy might give additional insights about the density of the actin-network.  
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Figure 41: An equilibrium between F-actin branching and elogation is essential for efficient 

lamellipodia formation. Abl-dependent WAVE phosphorylation of Y153 leads to increased F-actin 

branching. This results in broader lamellipodia and causes a slow down of random migratin 

macrophages (modiefied after Krause and Gautreau, 2014). 

4.4 Abl kinase is an important but not essential regulator of WRC 

dependent F-actin formation 

The biological function of the non-receptor tyrosine kinase Abl has been in the focus of 

investigations for many decades. As a consequence, a complex network of biological processes 

involving Abl was found. A large number of substrates for Abl, including other kinases, 

adaptor proteins and cytoskeleton regulators have been identified so far (Antoku et al., 2008; 

Boyle et al., 2007; Fox and Peifer, 2007; Kain and Klemke, 2001; Kannan et al., 2017; Plattner 

et al., 2003; Sossey-Alaoui et al., 2007). Abl acts as interaction platform carrying a PDR, SH2, 

SH3 domain and offering a binding site for a diverse set of proteins. Additionally, it is able to 

modify their activity by phosphorylation. The subcellular localization of Abl cannot be 

restricted to a certain compartment (Wang, 2014). It is highly expressed in the nucleus but also 

localizes in the cytoplasm and is further associated with actin structures.  

Several studies link Abl activation to cytoskeleton remodeling. Also, cell migration is at least 

partially mediated through Abl dependent phosphorylation of the WRC. Abi was first 

identified as interacting with Abl through binding the SH3 and PRD domain, respectively. 

Further, the direct interaction with WAVE provides an additional interaction site with the 

WRC (Huang et al., 2007; Leng et al., 2005; Sossey-Alaoui et al., 2007; Stuart et al., 2006). 

Transfection of S2 cells with an active form of Abl kinase clearly confirms WAVE as a 

substrate of Abl kinase (Figure 18). In WAVE2, Y150 is the only tyrosine residue targeted by 

c-Abl (Leng et al., 2005). The authors show that the transition of tyrosine to phenylalanine in 

Y150 of WAVE2 abrogates phosphorylation of WAVE. For Drosophila WAVE, this study 

could demonstrate that mutation of corresponding Y153 is not sufficient to block Abl 
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dependent phosphorylation (Figure 34). Similar results have been demonstrated previously for 

WAVE3, in which three additional tyrosine residues (Y248, Y337, Y486) are phosphorylated 

by Abl (Sossey-Alaoui et al., 2007). However, only Y486 is conserved in other WAVE 

isoforms, although it does not carry a canonical Abl motif. None of the residues are conserved 

in invertebrates (Table 2; Supplementary Figure 1). In Drosophila WAVE tyrosine residues 

Y234 shows an Abl corresponding consensus sequence. Furthermore, Y234, Y247 and Y253 

have been identified as a substrate for PTP61F in a tyrosine phospho-proteomics screen in S2 

cells (Chang et al., 2008). PTP61F dephosphorylates four conserved tyrosine sites of Abi 

previously targeted by Abl kinase (Huang et al., 2007), but so far has not been investigated for 

WAVE phosphorylation status. Until further investigations reveal any functional impact for 

the other tyrosine residues, WAVE Y153 is the only Abl target that revealed a physiological 

relevance. 

abl mutant flies are partially lethal and show severe actin dependent defects during 

development. Kinase-dead Abl restores the abl mutant viability almost as effectively as wild 

type Abl (Rogers et al., 2016). To dissect the impact of WAVE phosphorylation, WAVE 

transgenes with specifically mutated Abl target Y153 as well as abrogated phosphorylation of 

all 15 tyrosine residues were investigated. The re-expression of WAVE phospho-mutant 

transgenes were in all combinations able to rescue wave lethality. Further, the adult rescued 

flies reveal no morphological defects (data not shown). From this data it can be concluded that 

the loss of WAVE tyrosine phosphorylation has a negligible regulatory function in 

developmental processes. This is consistent with findings for serine phosphorylation in 

Dictyostelium. There, the abrogation of phosphorylation of eight serine residues fully restores 

wave mutant migration defects and partially facilitates migration (Singh et al., 2020). 

However, it must be considered that the five serine residues within the acidic domain, which 

previously have been claimed as the important regulators for WAVE activation, were not 

included. As already mentioned, in Dictyostelium WASP can partially substitute the WAVE 

function. Therefore, Drosophila might be the more reliable model organism to investigate this 

question. 

Further investigations in this study addressed the impact of Abl function in macrophage 

migration as this system is sensitive to changes in WAVE dependent lamellipodia formation. 

Fibroblast mutant for abl and arg (abl2) fail to induce membrane ruffles in response to PDGF 

stimulation and show reduced actin fibers in the cell periphery (Kain and Klemke, 2001; Stuart 

et al., 2006). In contrast, macrophages lacking abl are still able to form proper lamellipodia 

(Figure 23). The shape analyses showed that the cells are increased in size and show a round 

morphology. This phenotype is phenocopied by overexpressing a dominant negative Abl 
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construct, revealing the kinase function as essential for macrophage cell morphology (Figure 

23). So far, the impact of abl depletion on single cell migration has not been addressed in vivo. 

The results of this work showed that abl mutant macrophages were still able to migrate with a 

comparable speed as wildtype cells but lose their explorative behavior (Figure 24).  

Interestingly, abl mutant macrophages show an increased Src42A protein level. Therefore, it 

can be suggested, that Src compensates for the loss abl. The reduction of one gene copy of 

src42A in abl mutant background slightly decreases cell persistence, straightness, and 

explorative behavior. Nevertheless, the reduction of src42A alone already impairs migration. 

Therefore, no final conclusion can be drawn regarding Src42A potentially substituting Abl in 

its absence. 

A previous study has shown that Abl dependent WAVE phosphorylation correlates with the 

translocation of WAVE to the membrane (Leng et al., 2005). Surprisingly, the results in this 

work showed WAVE, in the absence of Abl, to be significantly increased at membrane of 

macrophages (Figure 29). This could be an explanation for the increase in cell size of abl 

mutant macrophages. However, this does not allow a definitive conclusion on whether WAVE 

is recruited more efficiently or if the dissociation of WAVE from the membrane is deregulated. 

Further research into this question will be necessary. It can be assumed that the regulatory 

defects of WAVE at the membrane might cause the observed migratory defects and the loss 

of explorative behavior of abl mutant macrophages. 

4.4.1 Wound-signal transduction in Drosophila is not mediated by Abl or Src 

kinases 

The reduced explorative ability in random migration due to loss of abl (Figure 24) might 

indicate that Abl kinase is important in the transmission of extracellular chemotactic guidance 

cues. As direct binding partner of WRC, direct phosphorylation of WAVE or Abi might 

transmit the external signal to the actin machinery. Similar to Abl, Src is reported as interacting 

with WAVE via its SH3 domain. However, in this study we were unable to confirm a direct 

interaction between the Src42A active form and WAVE in Co-IP experiments (Figure 19). 

Src42A also carries a SH2 domain binding phospho-tyrosine, which offers the possibility that 

WAVE might also depend on WAVE phosphorylation and/or activity state. The co-expression 

of the active form of Abl does not facilitate the Src42A-WAVE binding (Figure 19). Still, 

other regulatory mechanisms might influence the binding and the exact activation state of 

WAVE as well as Src.  

Abl and Src42A contain a cysteine residue that is conserved in Src family kinases (SFK). In 

zebra fish leucocyte wound attraction is mediated by SFK Lyn (Yoo et al., 2012, 2011). In this 
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process, the cysteine residue acts as sensor to transmit H2O2 as a damage signal via oxidation 

to induce the activation of the kinase domain. This makes Abl and Src42A kinase interesting 

candidates to transmit wound signals to the actin machinery. However, this study could not 

identify any defects in the wound-response for either Abl or Src42A kinase (Figure 21, Figure 

26). These results contradict previous findings in Drosophila embryo. They demonstrating that 

in src42A mutants as well as macrophages expressing a dominant negative Src42A transgene 

the wound response is impaired (Evans et al., 2015). These conflicting results could be 

explained by the difference of the quantification method. In this work, the cell bias angle was 

determined to detect directionality of the migrating cells towards the wound on cellular level. 

For this parameter no significant defects could be detected. In contrast, Evans and colleagues 

(2016) mainly count the cell number at the wounding site to address the general 

responsiveness. Their method might be affected by general migratory defects. In their study 

they already found a reduction of speed in src42A mutant macrophages. These findings are 

consistent with the results of this work. Macrophages expressing kinase dead Src42A show 

migration defects in random migration independently from external wounding signals (Figure 

20). In conclusion, it could be shown that Src42a interferes with macrophage migration but 

neither Abl nor Src42A are key regulators that transmit an external wounding signal to the 

actin machinery. These findings are supported by another study by Weavers et al. (2016). They 

determine the diffusion ability of a potential chemoattractant due to the response time of 

macrophage upon wounding. Their data excludes quickly diffusing molecules like H2O2 and 

ATP (Weavers et al., 2016). 

In collective border cell migration, the anterior-posterior migration is guided by PVR and 

EGFR signaling (Bianco et al., 2007; McDonald et al., 2006; Montell, 2003). Src, as well as 

Abl kinase, are activated upon growth factor signaling and therefore seem to be potential 

candidates to transduce this chemotactic guidance clue to the actin cytoskeleton. Here, the 

RNAi mediated depletion of Src42A or the expression of the kinase dead transgene specifically 

in border cells reveal strong defects in collective border cell migration (Supplementary Figure 

9). However, depletion of Abl or interference with Abl kinase function has no impact on border 

cell migration (Supplementary Figure 9). Judging by these results, it can be assumed that 

Src42A might be activated upon the growth factor signaling in border cell migration. Further 

results, gained by suppressing wave by c306-Gal4 strong, a specific border cell driver showed 

an interference of migration in a comparable range as the one determined for Src42A kinase 

(Supplementary Figure 9). Therefore, further investigations are needed to identify a correlated 

mechanism of WAVE and Src42A in collected border cell migration.  
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4.5 Negative regulation of WAVE at the leading edge  

In previous studies, phosphorylation of WAVE has mainly been characterized as an additional 

mechanism to regulate WRC activation to induce actin polymerization (Ardern et al., 2006; 

Chen et al., 2010). As discussed in the previous chapter, phosphorylation of conserved residue 

Y153, but not Y127, leads to an elevation of the F-actin level (Figure 33). Interestingly, 

phosphorylation of both tyrosine residues simultaneously has not been addressed, so far. With 

this, it is likely that under physiological conditions Y127 as target for Src kinase and Y153, 

being a substrate for Abl kinase, are phosphorylated at the same time. Abl itself can be 

activated by Src kinase (Panjarian et al., 2013). Furthermore, Src and Abl both carry a SH2 

domain binding to phosphorylated tyrosine residues. It might be that phosphorylation of one 

residue facilitates the recruitment of the respective kinase and consequently phosphorylation 

of further residues. Therefore, this study investigates the effects of the exchange of tyrosine 

Y127 and Y153 to glutamic acid for macrophage migration. 

Interestingly, mimicking phosphorylation of both residues does not lead to an increase of F-

actin level compared to the exchange of Y153 alone (Figure 33, Figure 37). On the contrary, 

macrophages exhibit long filipodia and show only a rudimentary lamellipodium when re-

expressing the phospho-mimicking transgene with two exchanges in a wave mutant 

background (Figure 37). In random migration, these cells show a drastically reduced cell 

speed, a lower persistence and straightness in a range that was detected in migration of wave 

mutant cells (Figure 38, Movie 24). This might be a first hint that phosphorylation might also 

be a negative control mechanism for WAVE.  

Until today, negative regulation of WAVE dependent actin polymerization is only poorly 

investigated in comparison to mechanisms that facilitate WAVE activation. The results of this 

study show that WAVE with phospho-mimicking mutations of all WAVE 15 tyrosine residues 

is embryonically lethal (Table 12). Furthermore, the simultaneous phosphorylation of only two 

important residues, Y127 and Y153, within the WHD domain leads to a late pupal lethality. 

Consistent with these results, ubiquitous (da-Gal4) as well as posterior (en-Gal4) 

overexpression of the active kinase form Src42A and Abl cause embryonal lethality. This 

might be due to over-proliferation but could be facilitated by actin dysregulation. Furthermore, 

the overexpressing BCR-Abl expression in the eye leads to a strong rough eye phenotype 

(Fogerty et al., 1999). The results of this study show that the re-expression of the phospho-

mimicking transgene Y127E+Y153E in a wave mutant background leads to a milder version 

of this eye phenotype (Figure 35). Eye development is highly dependent on WRC dependent 

actin regulation. Depletion of one subunit of the WRC interferes with axon targeting during 
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eye development (Bogdan et al., 2004; Zallen et al., 2002). Nevertheless, further 

quantifications are needed to validate the defects observed in this study. Detailed analysis of 

the interommatidial bristles of the eye via electron microscopy could be performed to get 

further insights. In summary, it can be predicted that the phosphorylation status of WAVE 

finetunes the activity of the WRC. Single phosphorylation of Y153 facilitates WAVE activity 

whereas simultaneous phosphorylation of Y127 and Y153 interferes with its function. 

Different hypotheses can be stated to mechanistically explain how phosphorylation of WAVE 

also negatively regulates the WRC.  

First, complex integrity of the WRC is crucial for proper WAVE function. The substitution of 

all 15 tyrosine sites to negatively charges glutamic acid might interfere with the quaternary 

structure formation of WRC. This is proposed with negative consequences for complex 

stability and might explain embryonal lethality. The phosphorylation of the different WRC 

subunits are not independent from each other. WAVE2 needs to be phosphorylated at Y150 

until Abi can be phosphorylated respectively (Leng et al., 2005). Mutation of Y150F 

consequently blocks Abi phosphorylation. Additionally, WAVE2 binding of Abi facilitates 

Abl dependent phosphorylation of WAVE. In conclusion, this data indicates a strong 

dependency between those subunits and has to be considered for further experiments. 

Furthermore, it needs to be investigated whether multiple phosphorylation and consequently 

the addition of negative charges to WHD interfere with the binding of Abi to WAVE. As 

mentioned previously, for Sra-1 it has been demonstrated that phosphorylation of a single 

residue in the meander region of WAVE (WAVE2 Y150, Y124, S137/ WAVE1 T138) 

destabilizes the binding of these two subunits and induct the release of the VCA (Chen et al., 

2010; Miyamoto et al., 2008). These studies did not show whether multiple simultaneous 

phosphorylation events in the region might further destabilize the binding of Sra1 and WAVE 

which might cause serious consequences for complex integrity (Figure 42-1). The results in 

this study show that phosphorylation of two tyrosine residues in the WHD interfere with 

WAVE function that might be caused by the destabilization of the WRC. Complex integrity 

is essential for protein stability of the single subunits (Steffen et al., 2004; Stradal and Scita, 

2005). 

Secondly, the recruitment and localization of WRC at the leading edge is facilitated by a 

trapping mechanism, immobilizing the free diffusing WRC at the lamellipodium tip (Mehidi 

et al., 2019, 2018). Therefore the correct binding and orientation of the complex might depend 

on the charge composition of the complex (Chen et al., 2010). The correct orientation is crucial 

for the accessibility of the WAVE for upstream activators like RAC, different effector kinases 

or the binding to the Arp2/3 complex. Interference with these interactions would negatively 
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influence F-actin formation. Additionally, the addition of multiple negative charges most 

likely alter the binding ability and orientation of the whole complex to the membrane 

phospholipids. Tyrosine residues close to the positively charged basic region are particularly 

likely to interfere with the binding of WAVE with to PIP3 (Figure 42-2). After activating the 

Arp2/3 complex, the WRC needs to dissociate for efficient elongation of the newly formed 

daughter filament. This is facilitated by a stronger binding of the WRC to the lamellipodial tip 

than to the Arp2/3 complex (Mehidi et al., 2018). Additionally, regulatory proteins like 

Cortactin can bind to the Arp2/3 complex, weakening VCA-Arp2/3 interaction and increasing 

the turnover efficiency rate of actin nucleators before dissociating from the membrane 

(Dimchev et al., 2017). Serine phosphorylation of the VCA might be an additional mechanism 

to facilitate WAVE activation and at the same site weaken Arp2/3 binding. In abl mutants it 

can be assumed that WAVE, but also Abi, are present in a less phosphorylated state than in 

the presence of Abl. Interestingly, WAVE is found to be increased at the membrane, 

supporting the notion that a decrease of negative charges might facilitate binding or 

recruitment of WAVE to the membrane.  

Third, the increased membrane localization of WAVE could also be caused by dysregulation 

of WAVE dissociation from the membrane. Recent studies in T-cells directly link WAVE 

activation, by the VCA release, from autoinhibiting conformation to proteasomal degradation 

(Joseph et al., 2017). Since the autoinhibitory conformation of the WRC preserves complex 

stability, the release of the VCA domain unmasks the particularly highly conserved WAVE2 

lysine K45 (dWAVE K48, Supplementary Figure 1). Conclusively, Joseph and colleges claim 

that activation of WAVE makes the protein simultaneously accessible for the ubiquitination 

machinery initiating protein degradation (Figure 42-3). Thus, degradation would be a self-

controlled mechanism to remove activated WAVE and prevent overshooting activity of the 

activated WRC. This hypothesis is further supported by data for serine phosphorylation in 

Dictyostelium. In this case, dephosphorylation of serine residues in the VCA domain activate 

on WAVE. Furthermore, this leads to an accelerated degradation of WAVE, showing that 

activation rather than phosphorylation is the critical step to regulate WAVE protein level (Ura 

et al., 2012). Equally, Src-dependent phosphorylation activates N-WASP, but simultaneously 

initiates degradation via ubiquitination (Suetsugu et al., 2002). Furthermore, Abi2 - targeted 

by Src and Abl kinase is first activated but finally degraded (Dai et al., 2001). Degradation of 

one complex subunit leads to the degradation of the others WRC members (Kunda et al., 2003; 

Rogers et al., 2003; Schenck et al., 2004). A recent publication by Cloud et al. (2019) connects 

WAVE protein level regulation with Ataxin-7, a subunit of the SAGA chromatin remodeling 

complex. Ataxin-7 binds the deubiquitinase Non-stop. Interestingly, the released and freely 
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dissociating Non-Stop interacts with the WRC mediated by WIRS motive binding. Depletion 

of Ataxin-7 or overexpression of Non-Stop results in a drastic increase of WAVE protein 

levels, blocking ubiquitin regulated degradation (Cloud et al., 2019). This offers a new 

perspective on phosphorylation dependent WAVE activation. The molecular weight shift that 

was observed in BCR-Abl expressing S2R+ cells in Western blot analyzes was initially 

interpreted as having been caused by WAVE phosphorylation. However, a single phosphate 

group only adds 80 Da, whereas ubiquitin is 8.5 kDa polypeptide and therefore more likely to 

cause the detected weight differences (Figure 18, A). To prove this hypothesis, WAVE needs 

to be precipitated and stained with the respective antibody to detect ubiquitination. Just as 

phosphorylation, ubiquitination is a reversable posttranscriptional protein modification. 

Following this theory, it could be suggested that WAVE levels are increased in abl mutants, 

as it is expected to be less degraded. Initial data has confirmed this assumption. The overall 

protein level in abl mutants was increased 1.2-fold (Figure 30; Supplementary Figure 7), 

which is comparable with previous published data. Zhu and Bhat (2011) demonstrate that Abl 

negatively regulates WAVE protein level while WAVE mRNA stays constant (Zhu and Bhat, 

2011). Analyzing the distribution of WAVE in macrophages in the absence of Abl showed 

that WAVE in particular accumulated at the membrane, while overall cellular WAVE remains 

almost equal (Figure 29). In comparison to wild type macrophages membrane localization is 

increased about 1.4-fold. Taken together, these findings suggest that phosphorylation 

dependent WAVE activation balances protein activation. At the same time, it might regulate 

a constant turn-over of at the membrane by degradation of activated WAVE. In migrating abl 

mutant cells this leads to a reduction in the explorative behavior. 

Finally, the results of this study lead to a new working model (Figure 42). This implies further 

perspectives for a self-control mechanism to prevent over-activation of the WRC at the 

membrane. Thereby, all three suggested processes - complex integrity, charge distribution on 

the WCR surface and finally degradation via ubiquitination - may also work in parallel and 

facilitate each other. In consequence, this makes tyrosine phosphorylation of WAVE, 

especially in the WHD domain, a mechanism to fine-tune WRC activity.  



   4 Discussion 

121 

 

 

Figure 42: Negative regulation of active WAVE at the leading edge – a working model. 

Phosphorylation of the two conserved tyrosine residues Y127 and Y153 with WAVE WHD interfere 

with lamellipodia formation. Three different hypotheses are suggested how phosphorylation might 

interfere with WAVE dependent F-actin formation at the leading edge. 1) An increace of negative 

charges might interfere with the quaternary structure formation of WAVE and the binding affinity to 

the other subunits of the VRC. 2) The orientation and binding affinity of the WCR to negatively charged 

phosphoinositide incorporated in the membrane is suggested to be weakened in highly phosphorylated 

WAVE. 3) The activation of WAVE by the release of the VCA domain unmasked K48, which 

ubiquitination is associated with WAVE degradation. 
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5 Summary – Zusammenfassung 

Cell migration is highly dependent on the precise orchestration of the assembly and 

disassembly of filamentous actin at their leading edge. Therefore, the temporal and spatial 

regulation of WAVE activity as the main regulator of Apr2/3 for branched actin 

polymerization is crucial for efficient lamellipodia-driven cell motility. 

This work shows that wave mutant Drosophila macrophages completely lack lamellipodia that 

causes severe migration defects. However, they still respond to wound signals by relying on 

rudimentary filopodia based migration. Furthermore, it could be shown that the disruption of 

the WIRS receptor binding site within the WRC does not interfere with wound response of 

macrophages. 

The non-receptor tyrosine kinase Abl is assumed to be a key regulator of WAVE, altering its 

activity via phosphorylation. The results in this study confirm that the active form of Abl is an 

effector of WAVE. The loss of abl and the overexpression of Abl kinase dead transgene leads 

to an increase of cell spreading. Further, WAVE localization at the membrane is elevated in 

the absence of Abl. This alteration seems to influence random migration by reducing the 

explorative behavior of macrophages. However, loss of abl did not affect the responsiveness 

of macrophages to external damage signals. WAVE possesses four tyrosine residues within 

the WHD: Y127 is a Src kinase target and Y153 of the Abl kinase. The WAVE phospho-

mutant Y153F is still phosphorylated via Abl. This indicates that additional tyrosine sites are 

targeted by Abl. Nevertheless, the phosphorylation of Y153 results in an elevated F-actin level 

that indicates the physiological relevance of this tyrosine residue. This suggests that 

phosphorylation of Y153 activates WAVE and the WRC, which is consistent with the results 

of previous studies. The analysis of random migrating macrophages revealed that this leads to 

a reduction of cell speed. In contrast, the phosphorylation of Y127 in the WHD showed neither 

an impact on the F-actin level nor on the migratory behavior of macrophages. Interestingly, 

the simultaneous phosphorylation of both residues leads to a drastic reduction of lamellipodial 

structures in macrophages. These cells exhibited extended filopodia and showed a stellar cell 

shape comparable to wave mutant macrophages. Consequently, in vivo migrating macrophages 

show a reduction of cell speed and a negative impact on the persistence of these cells. 

Individual phospho-mimicking mutation of Y127 or Y153 also do not interfere with the 

viability of the flies, whereas the simultaneous phosphorylation of both sites lead to late pupal 

lethality. These results indicate that phosphorylation of multiple tyrosine residues has a 

negative regulatory effect on WRC function. In conclusion, it can be shown that 

phosphorylation state of WAVE finetunes WRC activity. 
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❖  

Die Migration von Zellen ist im hohen Maße von dem Auf- und Abbau der Aktinfilamente am 

Leitsaumen der Zellen abhängig. Dabei ist die lokale und zeitgenaue Regulation von WAVE 

als Schlüsselregulator des Arp2/3 Komplexes für vernetzte Aktin Polymerisierung 

entscheidend für eine effiziente, durch das Lamellipodium getriebene, Zellbewegung. 

Diese Arbeit zeigt, dass mutierte wave Makrophagen in Drosophila keine Lamellipodia mehr 

ausbilden, was starke Migrationsdefekte zur Folge hat. Dennoch reagieren weiter sie auf 

Wundsignale, die sie mittels einer rudimentären, filopodialen Migration erreichen. Jedoch 

konnte gezeigt werden, dass die Zerstörung der WIRS Rezeptor-Bindestelle im WRC die 

Wundantwort der Makrophagen nicht beeinträchtigt. 

Die Nicht-Rezeptor-Tyrosinkinase Abl wird als Schlüsselregulatoren für WAVE vermutet, 

indem sie mittels Phosphorylierung die Aktivität verändert. Die Ergebnisse dieser Studie 

bestätigen, dass die aktive Form von Abl ein Effektor von WAVE ist. Der Verlust von abl 

sowie die Überexpression des dominant negativen Transgens führen zu einer gesteigerten 

Zellspreizung. Weiter ist in der Abwesenheit von Abl die Membranlokalisation von WAVE 

erhöht. Diese Veränderung hat Einfluss auf die freie Migration, indem sie das explorative 

Verhalten der Zellen senkt. Jedoch hat der Verlust von abl keine Auswirkung auf das 

Reaktionsvermögen von Makrophagen auf externe Beschädigungssignale. WAVE besitzt vier 

Tyrosine in der WHD: Y127 ist ein vorhergesagtes Ziel der Src Kinase und Y153 der Abl 

Kinase. Die WAVE Phospho-Mutante Y153F wird jedoch immer noch von Abl 

phosphoryliert. Das weist darauf hin, dass noch weitere Tyrosine relevante Ziel von Abl sind. 

Nichtsdestotrotz führt die Phosphorylierung von Y153 zu einer Erhöhung des F-Aktin Level, 

was die physiologische Relevanz dieses Tyrosins unterstreicht. Es kann angenommen werden, 

dass die Phosphorylierung von Y153 aktivierend auf WAVE und den WRC wirkt. Dieses 

Ergebnis ist konsistent mit denen anderer Studien. Die Analyse der Migration von 

Makrophagen zeigt, dass die Phosphorylierung von Y153  zu einer Reduktion der 

Geschwindigkeit führt. Im Gegensatz dazu hat die Phosphorylierung von Y127 weder einen 

Einfluss auf das F-Aktin Level noch auf das Migrationsverhalten der Makrophagen. 

Interessanterweise führt die gleichzeitige Phosphorylierung von beiden Tyrosinen zu einer 

drastischen Reduktion von lamellipodialen Strukturen. Diese Zellen stellen verlängerte 

Filopodien aus und besitzen eine sternförmige Zellform, die mit mutierten wave Makrophagen 

vergleichbar ist. In migrierenden Makrophagen führt dies zu einer Reduktion in der 

Geschwindigkeit und hat einen negativen Einfluss auf die Persistenz der Zellen. Die 

individuelle Phosphorylierung von Y127 oder Y153 hat keinen negativen Einfluss auf die 

Viabilität der Fliegen, wohingegen die gleichzeitige Phosphorylierung zu Letalität im späten 
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Puppenstadium führt. Diese Ergebnisse deuten darauf hin, dass Phosphorylierung von 

multiplen Tyrosinen einen negativ regulatorischen Effekt auf die Funktion des WRC hat. 

Zusammenfassend kann gesagt werden, dass der Phosphorylierungs-Status von WAVE 

wichtig ist für die Regulation der Aktivität des WRC.  
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7. Appendix 

7.1 Supplementary Material 

7.1.1 Primer 

Supplementary Table 1: List of Primer 

NAME SEQUENCE FINAL 

VECTOR 

hmlΔ-Topo-

fwd 

CACCCCAAAAGTTATTTCTGTAGGC pDEST-

HemmarG- 

eGFP/Stinger-

eGFP 

hmlΔ-rev TTTGTTAGGCTAATCGGAAATTG pDEST-

HemmarG- 

eGFP/Stinger-

eGFP 

mScarlet_F_

XhoI 

GAACTCGAGATGAGTAAAGGAGAAGCTGTG

A 

pBlueScript_mS

carlet 

mScarlet_R_

XhoI 

GAACTCGAGTTTTTGTATAGTTCATCCATGCC pBlueScript_mS

carlet 

Scarlet_seq 

_F 

CAAGTGGGAACGCGTAATGA Scarlet(-I) 

sequencing 

Primer 

mScarlet-

H_XhoI_F 

GAACTCGAGATGGTGAGCAAGGGCGAGG pBlueScript_mS

carlet-H 

mScarlet-

H_XhoI_R 

GAACTCGAGTTCTTGTACAGCTCGTCCATGC pBlueScript_mS

carlet-H 

Scarlet-

H_seq _F 

GCGTGATGAACTTCGAGGAC Scarlet(-H) 

sequencing 

Primer 

mScarlet_R 

NheI 

GAAGCTAGCTTATTTGTATAGTTCATCCATG

CC 

mScarlet/Scarlet-

I 
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mScarlet_F_

NheI 

GAAGCTAGCATGAGTAAAGGAGAAGCTGTG

AT 

mScarlet/Scarlet-

I 

mScarlet-

H_NheI_F 

GAAGCTAGCATGGTGAGCAAGGGCGAGG mScarlet-H 

mScarlet-

H_NheI_R 

GAAGCTAGCTTACTTGTACAGCTCGTCCATG

C 

mScarlet-H 

WAVE-

Y153F-sense 

GGATGGTCTTAAGTTCTTCACGGATCCGAAC

TAC 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→F at referred 

site 

WAVE-

Y153E-sense 

GCAAGGATGGTCTTAAGTTCGAAACGGATCC

GAACTACTTC 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→E at referred 

site 

Y127E-sense CCGGCACCAATGATGGACACAGAAGCCCAG

TGCGA 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→E at referred 

site 

Y127F-sense CGGCACCAATGATGGACACATTTGCCCAGTG

CG 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→F at referred 

site 

WAVE-

Y153E 

antisense 

GAAGTAGTTCGGATCCGTTTCGAACTTAAGA

CCATCCTTGC 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→E at referred 

site 

WAVE-

Y153F 

antisense 

GTAGTTCGGATCCGTGAAGAACTTAAGACCA

TCC 

pUASp-attB-

WAVE/ pUASp-
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attB-myc-

WAVE 

Y→F at referred 

site 

Y127E-

antisense 

TCGCACTGGGCTTCTGTGTCCATCATTGGTGC

CGG 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→E at referred 

site 

Y127F-

antisense 

CGCACTGGGCAAATGTGTCCATCATTGGTGC

CG 

pUASp-attB-

WAVE/ pUASp-

attB-myc-

WAVE 

Y→F at referred 

site 

7.1.2 R-scripts for analyses migratory behavior 

Cell are tracked by Imaris software using following parameters. 

Supplementary Table 2: Tracking Parameters 

Random migration - hole 

cell 

Directed migration - hole 

cell 

Directed migration - 

nucleus 

[Algorithm] 

Enable Region Of Interest = 

true 

Process Entire Image = false 

Enable Region Growing = 

false 

Enable Tracking = true 

[Region of Interest] 

Region1: XYZT from [1 1 1 

1] to [608 960 26 61] 

[Source Channel] 

Source Channel Index = 1 

Estimated Diameter = 10.0 

um 

Background Subtraction = 

true 

[Algorithm] 

Enable Region Of Interest = 

false 

Enable Region Growing = 

false 

Enable Tracking = true 

[Source Channel] 

Source Channel Index = 1 

Estimated Diameter = 10.0 

um 

Background Subtraction = 

true 

[Classify Spots] 

"Quality" above 12.5  

[Tracking] 

[Algorithm] 

Enable Region Of Interest = 

true 

Process Entire Image = false 

Enable Region Growing = 

false 

Enable Tracking = true 

[Region of Interest] 

Region1: XYZT from [1 1 1 

2] to [608 864 21 61] 

[Source Channel] 

Source Channel Index = 2 

Estimated Diameter = 6.00 

um 

Background Subtraction = 

true 
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[Classify Spots] 

"Quality" above 20.9  

[Tracking] 

Algorithm Name = 

Autoregressive Motion 

MaxDistance = 15.0 um 

MaxGapSize = 2 

Fill Gap Enable = false 

[Classify Tracks] 

"Track Duration" above 110 

s 

 

Algorithm Name = 

Autoregressive Motion 

MaxDistance = 20.0 um 

MaxGapSize = 2 

Fill Gap Enable = false 

[Classify Tracks] 

"Track Duration" above 300 

s 

 

[Classify Spots] 

"Quality" above 15.0  

"Distance from Origin 

Reference Frame" between 

15.0 um and 70.0 um 

[Tracking] 

Algorithm Name = 

Brownian Motion 

MaxDistance = 15.0 um 

MaxGapSize = 2 

Fill Gap Enable = false 

[Classify Tracks] 

"Track Duration" above 250 

s 

 

The following R-scripts are used to analyze cell migration. The following order structure is 

recommended to run the scripts. Otherwise, working directories would have to be changed 

within the single scripts. Further descriptions are included in more detail in the method chapter 

or as comments within the script (2.5.10 Analysis of migration). 

 

 

Figure 43: Recommended folder structure to analyse A) random migration B) directed migration 
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7.1.2.1 Analysis of random cell migration (RCM) 

#library(data.table) 
#install.packages("ggplot2") 
#library(ggplot2) 
#install.packages("xlsx") 
#library("xlsx") 
 
#list data and set working directory 
rm(list = ls()) 
wd <- "E:/Imaris/Done/Random" 
folder <- list.files(wd, full.names=FALSE) 
setwd(wd) 
 
#loop folder in random 
for (x in 1:length(folder)){ 
  Mig<-data.frame() 
  cell_c <- data.frame() 
  cell_angle_P <- data.frame() 
  wd1 <- paste0(wd,"/",folder[x]) 
  setwd(wd1) 
  paste0(wd,"/",folder[x]) 
   
#migration analyses   
  for (f in list.files(pattern = "Position_Reference_Frame.csv", recursive = 
TRUE)){  
     
    obj <- read.csv(f, header=TRUE, skip=3)                            
     
    sortTrackID <-obj[order(obj$TrackID),]             #sort data by Track ID 
     
    richtungsvektor<- data.frame(matrix(nrow=nrow(sortTrackID), ncol=3))    
 #motionvector of all cells 
    for (i in 2:(nrow(sortTrackID))) { 
      if (sortTrackID$TrackID[i]==sortTrackID$TrackID[i-1]){                 
   #as long track ID identical calculate motion vector 

richtungsvektor[i,1]<- c((sortTrackID$Position.X[i])-  
(sortTrackID$Position.X[i-1])) 
richtungsvektor[i,2]<- c((sortTrackID$Position.Y[i])-
(sortTrackID$Position.Y[i-1])) 
richtungsvektor[i,3]<- c((sortTrackID$Position.Z[i])-
(sortTrackID$Position.Z[i-1])) 

      }  
    } 
     

richtungsvektor$Steplenght<- 
c(sqrt(((richtungsvektor$X1)**2)+((richtungsvektor$X2)**2)+((richtungsv
ektor$X3)**2))) 

     
    sortTrackID$richtungsvektor <- richtungsvektor 
     
scalar<- data.frame(matrix(nrow=nrow(sortTrackID), ncol=1)) 
#matrix(nrow=nrow(sortTrackID_Radius), ncol=1) 
     
    for (i in 2:(nrow(richtungsvektor))) { 

scalar[i,1] <- c((richtungsvektor$X1[i]*richtungsvektor$X1[i-1])+ 
(richtungsvektor$X2[i]*richtungsvektor$X2[i-1]+ 
(richtungsvektor$X3[i]*richtungsvektor$X3[i-1]))) #scalar persitance 

    } 
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names(scalar)<- c("scalar") 
     
    sortTrackID$scalar <- scalar 
     
    results<- data.frame(matrix(nrow=nrow(sortTrackID), ncol=2)) 
     
    for (i in 2:(nrow(sortTrackID))) { 

results[i,1] <- 
c(acos((scalar$scalar[i])/((richtungsvektor$Steplenght[i])* 
(richtungsvektor$Steplenght[i-1]))))                 

        #radians / Bogenmaß 
      results[i,2] <- 
c((acos((scalar$scalar[i])/((richtungsvektor$Steplenght[i])* 

(richtungsvektor$Steplenght[i-1]))))*(360/(2*pi)))  
        #angle / Winkel 
      results[i,3] <- c(sortTrackID$TrackID[i]) 
      results[i,4] <- c(sortTrackID$Time[i]) 
      results[i,5] <- c(folder[x])       
    } 
     
    names(results) <- 
c("bogenmas","persitanceangel","TrackID","Time","Genotype") 
     
    sortTrackID$results <- results 
     

 #filter out tracks with exact 0 od 180 degree, just show up when track gaps 
are connected connection 

    results<-subset(results, results$persitanceangel<180)  
    results<-subset(results, results$persitanceangel>0) 
     
    Mig<-rbind.data.frame(Mig,results) 
     
    #calcultes cell mean angle 

cell_mean <- aggregate(results$persitanceangel, 
by=list(results$TrackID), FUN=mean, na.rm=T) 

    #calcultes cell median angle 
cell_median <- aggregate(results$persitanceangel, 
by=list(results$TrackID), FUN=median, na.rm=T) 

     
    cell_c <- cbind(cell_mean,cell_median) 
   
    cell_angle_P <-rbind.data.frame(cell_angle_P,cell_c) 
  } 
   
  #Genotype 
  for(i in 1:(nrow(cell_angle_P))){ 
    cell_angle_P[i,5]<- (folder[x]) 
  } 

names(cell_angle_P) <- c("TrackID","Cell_mean_p_angle", 
"TrackID2","Cell_median_p_angle","Genotype") #"Cellpersistanceangle" 

   
  #save data as csv in new folder (see folderstructure) 
    setwd("E:/Imaris/Done/csvdataRandom/cell_persistance") 
    write.csv(cell_angle_P,file=(paste0(folder[x],".","csv"))) 
    #write.xlsx(cell_angle_P,file=(paste0(folder[x],".","xlsx"))) 
     
    setwd("E:/Imaris/Done/csvdataRandom/persistance") 
    write.csv(Mig,file=(paste0(folder[x],".","csv"))) 
    #write.xlsx(Mig,file=(paste0(folder[x],".","xlsx"))) 
}  
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7.1.2.2 Analysis of directed cell migration (DCM) 

#library(data.table) 
#install.packages("ggplot2") 
#library(ggplot2) 
 
rm(list = ls()) 
#wd <- "E:/Imaris/Done/directed/RNAi" 
wd <- "E:/Imaris/Done/directed/Mutant" 
folder <- list.files(wd, full.names=FALSE) 
setwd(wd) 
 
for (x in 1:length(folder)){ 
  Mig_persit <-data.frame() 
  Mig_bias <-data.frame() 
  cell_c <-data.frame() 
  cell_angle_P <-data.frame() 
  cell_angle_B <-data.frame() 
  wd1 <- paste0(wd,"/",folder[x]) 
  setwd(wd1) 
  paste0(wd,"/",folder[x]) 
   
  for (f in list.files(pattern = "Position_Reference_Frame.csv", recursive = 
TRUE)){  
  #for (f in list.files(pattern = "Detailed.csv", recursive = TRUE)){   
    obj <- read.csv(f, header=TRUE, skip=3)                            
     
    #Sort tracks via ID 
    sortTrackID <-obj[order(obj$TrackID),] 
     

obj$disRefPoint<-
c(sqrt(((obj$Position.X.Reference.Frame)**2)+((obj$Position.Y.Reference
.Frame)**2)+((obj$Position.Z.Reference.Frame)**2))) 

    #calculates distance from all point towards the wound (0/0/0) to every 
timepoint 
     
  #Set radius within cells should be analysed   

radius<-subset(obj, obj$disRefPoint<=70 & obj$disRefPoint>=15)    #zellen 
die sich wärend der Aufnahme im radius X aufhalten  

     sortTrackID_Radius <-radius[order(radius$TrackID),]  #again, sorting 
     
    #calculations for general cell persistance in wounding experiments 
        richtungsvektor<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), 
ncol=3))     
        for (i in 2:(nrow(sortTrackID_Radius))) { 
          if (sortTrackID_Radius$TrackID[i]==sortTrackID_Radius$TrackID[i-1]){ 
             

richtungsvektor[i,1]<- 
c((sortTrackID_Radius$Position.X.Reference.Frame[i])-
(sortTrackID_Radius$Position.X.Reference.Frame[i-1]))    
richtungsvektor[i,2]<- 
c((sortTrackID_Radius$Position.Y.Reference.Frame[i])-
(sortTrackID_Radius$Position.Y.Reference.Frame[i-1])) 
richtungsvektor[i,3]<- 
c((sortTrackID_Radius$Position.Z.Reference.Frame[i])-
(sortTrackID_Radius$Position.Z.Reference.Frame[i-1])) 

          }  
        } 
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        richtungsvektor$Steplenght<- 
c(sqrt(((richtungsvektor$X1)**2)+((richtungsvektor$X2)**2)+((richtungsv
ektor$X3)**2))) 

         
        sortTrackID_Radius$richtungsvektor <- richtungsvektor 
         
        scalar<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), ncol=1))  
        for (i in 2:(nrow(richtungsvektor))) { 

scalar[i,1] <- c((richtungsvektor$X1[i]*richtungsvektor$X1[i-
1])+(richtungsvektor$X2[i]*richtungsvektor$X2[i-
1]+(richtungsvektor$X3[i]*richtungsvektor$X3[i-1]))) #scalar 
persistance 

        } 
        names(scalar)<- c("scalar") 
         
        sortTrackID_Radius$scalar <- scalar 
         
        results_persit<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), 
ncol=2)) 
        for (i in 2:(nrow(sortTrackID_Radius))) { 

results_persit[i,1] <- 
c(acos((scalar$scalar[i])/((richtungsvektor$Steplenght[i])*(richtungsve
ktor$Steplenght[i-1])))) 
results_persit[i,2] <- 
c((acos((scalar$scalar[i])/((richtungsvektor$Steplenght[i])*(richtungsv
ektor$Steplenght[i-1]))))*(360/(2*pi))) 

       results_persit[i,3] <- c(sortTrackID$TrackID[i]) 
       results_persit[i,4] <- c(sortTrackID$Time[i]) 
       results_persit[i,5] <- c(folder[x]) 
        } 
         

names(results_persit) <- 
c("bogenmass","persistanceangel","TrackID","Time","Genotype") 

         
      #calculates mean and median angle for cell persistance   

cell_mean <- aggregate(results_persit$persistanceangel, 
by=list(results_persit$TrackID), FUN=mean, na.rm=T) 
cell_median <- aggregate(results_persit$persistanceangel, 
by=list(results_persit$TrackID), FUN=median, na.rm=T) 
cell_c <- cbind(cell_mean,cell_median) #bind median table and mean table 
columwise 

         
        cell_angle_P <-rbind.data.frame(cell_angle_P,cell_c) #rowbind different 
experiments per loop run for one genotype 
         
        sortTrackID_Radius$results_persit <- results_persit 
         
        Mig_persit<-rbind.data.frame(Mig_persit,results_persit) 
     
#calcluates scalar of bias angle, angle towards wound 
      scalar_bias<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), ncol=1)) 
#matrix(nrow=nrow(sortTrackID_Radius), ncol=1) 
      for (i in 2:(nrow(sortTrackID_Radius))) { 

scalar_bias[i,1] <- c((sortTrackID_Radius$richtungsvektor$X1[i]*(-
(sortTrackID_Radius$Position.X.Reference.Frame[i-
1])))+(richtungsvektor$X2[i]* (-
(sortTrackID_Radius$Position.Y.Reference.Frame[i-
1])))+(richtungsvektor$X3[i]* (-
(sortTrackID_Radius$Position.Z.Reference.Frame[i-1])))) #scalar 
persitance 
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      } 
       
      names(scalar_bias)<- c("scalarbias") 
       
      sortTrackID_Radius$scalar_bias <- scalar_bias 
       
      results_bias<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), ncol=2)) 
       
    for (i in 2:(nrow(sortTrackID_Radius))) { 

results_bias[i,1] <- 
c(acos((scalar_bias$scalarbias[i])/((sortTrackID_Radius$disRefPoint[i-
1])*(sortTrackID_Radius$richtungsvektor$Steplenght[i])))) 
results_bias[i,2] <- 
c(acos((scalar_bias$scalarbias[i])/((sortTrackID_Radius$disRefPoint[i-
1])*(sortTrackID_Radius$richtungsvektor$Steplenght[i])))*(360/(2*pi))) 

      results_bias[i,3] <- c(sortTrackID$TrackID[i]) 
      results_bias[i,4] <- c(sortTrackID$Time[i]) 
      results_bias[i,5] <- c(folder[x]) 
       
    } 
     
    names(results_bias) <- 
c("bogenmass_bias","biasangel","TrackID","Time","Genotype") 
     
    sortTrackID_Radius$results_bias <- results_bias 
     
    Mig_bias<-rbind.data.frame(Mig_bias,results_bias) 
     
    #calculate cellbias angle 

cell_mean <- aggregate(results_bias$biasangel, 
by=list(results_bias$TrackID), FUN=mean, na.rm=T) 
cell_median <- aggregate(results_bias$biasangel, 
by=list(results_bias$TrackID), FUN=median, na.rm=T) 
cell_c <- cbind(cell_mean,cell_median) #bind median table and mean table 
columwise 

       
cell_angle_B <-rbind.data.frame(cell_angle_B,cell_c) #rowbind different 
experiments per loop run for one genotype 

  } 
   
   
  #create header for cell angle table 
    for(i in 1:(nrow(cell_angle_B))){ 
      cell_angle_B[i,5]<- (folder[x]) 
    }  
     
    names(cell_angle_B) <- c("TrackID","Cell_mean_b_angle", 
"TrackID2","Cell_median_b_angle","Genotype") 
  
   
    for(i in 1:(nrow(cell_angle_P))){ 
      cell_angle_P[i,5]<- (folder[x]) 
    } 
    names(cell_angle_P) <- c("TrackID","Cell_mean_p_angle", 
"TrackID2","Cell_median_p_angle","Genotype") 
 
   
  #save calculation in corresponding folders 
    setwd("E:/Imaris/Done/csvdataDirect/cell_persistance") 
    write.csv(cell_angle_P,file=(paste0(folder[x],".","csv"))) 
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    setwd("E:/Imaris/Done/csvdataDirect/cell_bias") 
    write.csv(cell_angle_B,file=(paste0(folder[x],".","csv"))) 
     
    setwd("E:/Imaris/Done/csvdataDirect/persistance") 
    write.csv(Mig_persit,file=(paste0(folder[x],".","csv"))) 
     
    setwd("E:/Imaris/Done/csvdataDirect/bias") 
    write.csv(Mig_bias,file=(paste0(folder[x],".","csv"))) 
     
} 

7.1.2.3 Creation of angle histogram for random and directed migration 

#library(data.table) 
#install.packages("ggplot2") 
#library(ggplot2) 
 
#Put Data from "Migrations analyse csv" in Analyse IN folder, Name it correctly 
for blot names 
 
#low part: Run for all blot in advance until "specific part" 
 
  rm(list = ls()) 
  wd <- "E:/Imaris/Done/AnalyseR/IN" 
  folder <- list.files(wd, full.names=FALSE) 
  setwd(wd) 
   
  for (x in 1:length(folder)){ 
    wd1 <- paste0(wd,"/",folder[x]) 
    AllDataBind <- data.frame() 
    setwd(wd1) 
    paste0(wd,"/",folder[x]) 
     
    #bind data to analyse 
    for (f in list.files(pattern = ".csv", recursive = TRUE)){  
      obj <- read.csv(f, header=TRUE)    #data<-read.csv(f, header = FALSE, sep 
= ",") 
       
      AllDataBind <- rbind.data.frame(AllDataBind,obj) 
       
      setwd("E:/Imaris/Done/AnalyseR/OUT") 
      write.csv(AllDataBind,file=(paste0(folder[x],".","csv"))) 
      setwd(wd1)   
    } 
  } 
   
  library(ggplot2) 
  library(plyr) 
   
  rm(list = ls()) 
  wd <- "E:/Imaris/Done/AnalyseR/OUT" 
  folder <- list.files(wd, full.names=FALSE) 
  setwd(wd) 
 
#spezific part 
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  #Random-Cell-Persistance Angle 
 
for (f in list.files(pattern = "random_cell_persistance.csv", recursive = TRUE)) 
{  
        df <- read.csv(f, header=TRUE)                            
        } 
       
      mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_mean_p_angle)) 
       

hist_RCP_mean <-ggplot(df, aes(x=Cell_mean_p_angle,fill=Genotype, 
color=Genotype))+ 
geom_histogram(alpha=0.2, position="identity", binwidth = 
2,aes(y=..density..)) + 

       theme_bw()+ theme(legend.position="bottom")+ xlim(0,150) + ylim 
(0,0.07)+ 

geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
linetype="dashed") 

       
      mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_median_p_angle)) 
         

hist_RCP_median <- ggplot(df, aes(x=Cell_median_p_angle,fill=Genotype, 
color=Genotype))+ 
geom_histogram(alpha=0.2, position="identity", binwidth = 
2,aes(y=..density..))  + 

       theme_bw()+ theme(legend.position="bottom")+ xlim(0,150) + ylim 
(0,0.07)+ 

geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
linetype="dashed") 

       
      #save histograms and name it like file 
      wd <- ("E:/Imaris/Done/AnalyseR/IN/random_cell_persistance") 
      setwd(wd) 
      name <- list.files(wd,full.names=FALSE) 
       
      setwd("E:/Imaris/Done/graphs/Histograms/random_cell_persistance") 
       
      # 1. Open jpeg file and name it like analyse in data 

png(paste0("RCP-MEAN_", 
(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 

      # 2. Create the plot 
      plot(hist_RCP_mean) 
      # 3. Close the file 
      dev.off() 
       

png(paste0("RCP-MEDIAN_", 
(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 

       plot(hist_RCP_median) 
       dev.off() 
 
#Random Persistence Angle 
       
      for (f in list.files(pattern = "random_persistance.csv", recursive = 
TRUE)){  
        df <- read.csv(f, header=TRUE)   #data<-read.csv(f, header = FALSE, sep 
= ",") 
      } 
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      mu <- ddply(df, "Genotype", summarise, 
grp.median=median(persitanceangel)) 
       
      ggplot(df, aes(x=persitanceangel,fill=Genotype, color=Genotype))+ 

geom_histogram(alpha=0.2, position="identity", binwidth = 2, 
aes(y=..density..))  + 

       theme_bw()+ theme(legend.position="bottom")+ 
       geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                   linetype="dashed") 
       
     
      #save histograms and name it like file 
      wd <- ("E:/Imaris/Done/AnalyseR/IN/random_persistance") 
      setwd(wd) 
      name <- list.files(wd,full.names=FALSE) 
       
      setwd("E:/Imaris/Done/graphs/Histograms/random_persistance") 
       
      # 1. Open jpeg file and name it like analyse in data 
      png(paste0("RP-MEAN_", 

(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 
      # 2. Create the plot 
      plot(hist_RCP_mean) 
      # 3. Close the file 
      dev.off() 
 
 
#Direct-cellbias Angle 
 
      for (f in list.files(pattern = "cellbias.csv", recursive = TRUE)){  
        df <- read.csv(f, header=TRUE) #data<-read.csv(f, header = FALSE, sep = 
",") 
        } 
         
        mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_mean_b_angle)) 
         

hist_CBA_mean <- ggplot(df, aes(x=Cell_mean_b_angle,fill=Genotype, 
color=Genotype))+ 

geom_histogram(alpha=0.2, position="identity", binwidth = 2, 
aes(y=..density..))  + 

          theme_bw()+ theme(legend.position="bottom")+ xlim(50,160) + 
ylim(0,0.07)+ 
          geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                     linetype="dashed") 
         
        mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_median_b_angle)) 
         

hist_CBA_median <- ggplot(df, aes(x=Cell_median_b_angle,fill=Genotype, 
color=Genotype))+ 
geom_histogram(alpha=0.2, position="identity", binwidth = 2, 
aes(y=..density..))  + 

       theme_bw()+ theme(legend.position="bottom")+ xlim(50,160) + 
ylim(0,0.06)+ 
       geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                     linetype="dashed") 
         
        #save histograms and name it like file 
        wd <- ("E:/Imaris/Done/AnalyseR/IN/cellbias") 
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        setwd(wd) 
        name <- list.files(wd,full.names=FALSE) 
         
        setwd("E:/Imaris/Done/graphs/Histograms/cellbias") 
         
        # 1. Open jpeg file and name it like analyse in data 
        png(paste0("CBA-MEAN_", 

(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 
        # 2. Create the plot 
        plot(hist_CAB_mean) 
        # 3. Close the file 
        dev.off() 
         

png(paste0("CBA-MEDIAN_",  
 (sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 

        plot(hist_CBA_median) 
        dev.off() 
 
 
  #Direct-bias Angle 
 
     for (f in list.files(pattern = "bias.csv", recursive = TRUE)){  
        df <- read.csv(f, header=TRUE) #data<-read.csv(f, header = FALSE, sep = 
",") 
        } 
         
     mu <- ddply(df, "Genotype", summarise, grp.median=median(biasangel)) 
         
      hist_BA <- ggplot(df, aes(x=biasangel,fill=Genotype, color=Genotype))+ 
      geom_histogram(alpha=0.2, position="identity", binwidth = 2, 
aes(y=..density..))+ 
      theme_bw()+ theme(legend.position="bottom")+ 
      geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                     linetype="dashed")   
    
#save histograms and name it like file 
      wd <- ("E:/Imaris/Done/AnalyseR/IN/bias") 
      setwd(wd) 
      name <- list.files(wd,full.names=FALSE) 
         
      setwd("E:/Imaris/Done/graphs/Histograms/bias") 
         
      # 1. Open jpeg file and name it like analyse in data 

        
png(paste0("BA_",(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),
".png")) 

        # 2. Create the plot 
        plot(hist_BA) 
        # 3. Close the file 
        dev.off() 
           
  #Direct-cellpersistance-angle 
         
    for (f in list.files(pattern = "direct_cellpersistance.csv", recursive = 
TRUE)){  
          df <- read.csv(f, header=TRUE) #data<-read.csv(f, header = FALSE, sep 
= ",") 
        } 
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    mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_mean_p_angle)) 
         

hist_DCP_mean <- ggplot(df, aes(x=Cell_mean_p_angle,fill=Genotype, 
color=Genotype))+ 
geom_histogram(alpha=0.2, position="identity", binwidth = 

2,aes(y=..density..))+ 
theme_bw()+ theme(legend.position="bottom")+ 
geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                     linetype="dashed") 
         

    mu <- ddply(df, "Genotype", summarise, 
grp.median=median(Cell_median_p_angle)) 
         

hist_DCP_median <- ggplot(df, aes(x=Cell_median_p_angle,fill=Genotype,       
color=Genotype))+ 

     geom_histogram(alpha=0.2, position="identity", binwidth = 2, 
aes(y=..density..))+ 
     theme_bw()+ theme(legend.position="bottom")+ 
     geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
                     linetype="dashed") 
         
        #save histograms and name it like file 
        wd <- ("E:/Imaris/Done/AnalyseR/IN/direct_cellpersistance") 
        setwd(wd) 
        name <- list.files(wd,full.names=FALSE) 
         
        setwd("E:/Imaris/Done/graphs/Histograms/direct_cellpersistance") 
         
        # 1. Open jpeg file and name it like analyse in data 
        png(paste0("DCP-MEAN_", 

(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 
        # 2. Create the plot 
        plot(hist_DCP_mean) 
        # 3. Close the file 
        dev.off() 
         

 png(paste0("DCP-MEDIAN_",   
(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".png")) 

        plot(hist_DCP_median) 
        dev.off() 
 
   
#Direct-persistanceangel 

 
        for (f in list.files(pattern = "direct_persistance.csv", recursive = 

TRUE)){  
          df <- read.csv(f, header=TRUE) #data<-read.csv(f, header = FALSE, sep = 

",") 
        } 

         
        mu <- ddply(df, "Genotype", summarise, 

grp.median=median(persistanceangel)) 
         
        hist_DP <- ggplot(df, aes(x=persistanceangel,fill=Genotype, 

color=Genotype))+ 
geom_histogram(alpha=0.2, position="identity", binwidth = 2, 

aes(y=..density..))  + 
           theme_bw()+ theme(legend.position="bottom")+ 
           geom_vline(data=mu, aes(xintercept=grp.median, color=Genotype), 
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                     linetype="dashed") 
         
        #save histograms and name it like file 
        wd <- ("E:/Imaris/Done/AnalyseR/IN/direct_persistance") 
        setwd(wd) 
        name <- list.files(wd,full.names=FALSE) 
         
        setwd("E:/Imaris/Done/graphs/Histograms/direct_persistance") 
         
        # 1. Open jpeg file and name it like analyse in data 

          
png(paste0("DP_",(sub(".csv","",name[1])),"+",(sub(".csv","",name[2])),".
png")) 

        # 2. Create the plot 
        plot(hist_DP) 
        # 3. Close the file 
        dev.off() 

7.1.2.4 Displacement over time (DOT)  

#just for random migration! 
#library(data.table) 
#install.packages("ggplot2") 
#library(ggplot2) 
rm(list = ls()) 
wd <- "E:/Imaris/Done/Random" 
folder <- list.files(wd, full.names=FALSE) 
setwd(wd) 
 
for (x in 1:length(folder)){ 
 
  wd1 <- paste0(wd,"/",folder[x]) 
  setwd(wd1) 
  paste0(wd,"/",folder[x]) 
  Min1<- data.frame() 
  Max1<-data.frame() 
  MinMax<- data.frame() 
  Hit<-data.frame() 
   
   
  for (f in list.files(pattern = "Position_Reference_Frame.csv", recursive = 
TRUE)){  
     
    obj <- read.csv(f, header=TRUE, skip=3)                           
    obj <-obj[order(obj$TrackID),]                             
   
    Min1 <- obj[1,] 
    MinMax <- rbind.data.frame(MinMax,Min1) 
     
     
    for(i in 2:(nrow(obj)))     #Starting point of vector 
      if (obj$TrackID[i]>obj$TrackID[i-1]) 
      { 
        Hit<-obj[i-1,] 
        MinMax <- rbind.data.frame(MinMax,Hit) 
        Hit<-obj[i,] 
        MinMax <- rbind.data.frame(MinMax,Hit) 
      } 
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    Max1 <- obj[nrow(obj),]     #Endpoint of vector 
    MinMax <- rbind.data.frame(MinMax,Max1) 
 
    richtungsvektor<- data.frame(matrix(nrow=nrow(MinMax), ncol=3)) 
     
    for(i in 2:(nrow(MinMax))){ 
      if (MinMax$TrackID[i]==MinMax$TrackID[i-1]){ 
        richtungsvektor[i,1]<- c((MinMax$Position.X[i])-(MinMax$Position.X[i-
1]))     
        richtungsvektor[i,2]<- c((MinMax$Position.Y[i])-(MinMax$Position.Y[i-
1])) 
        richtungsvektor[i,3]<- c((MinMax$Position.Z[i])-(MinMax$Position.Z[i-
1])) 

 richtungsvektor[i,4]<- c((MinMax$Time[i])-(MinMax$Time[i-1]))                 
#frame length 

      } 
    } 
     

richtungsvektor$Steplenght <- 
c(sqrt(((richtungsvektor$X1)**2)+((richtungsvektor$X2)**2)+((richtungsv
ektor$X3)**2))) 

 
  }  
  
   MinMax$OriVector<-richtungsvektor 
    
   MinMax$PerMin <- c((MinMax$OriVector$V4)/3) #Frame in this case 20 seconds 
V4(Frame numbre / 3 equals minutes) 
    
   MinMax$OriDisTime <- c((MinMax$OriVector$Steplenght)/(MinMax$PerMin)) 
#Steplength of displacemnt normalized by time (in this case bay miuntes) 
    
   setwd("E:/Imaris/Done/csvdataRandom/DisplacedOriginTime") 
   write.csv(MinMax,file=(paste0(folder[x],".","csv"))) 
 

}   

7.1.2.5 Track speed calculation – random and direct 

#library(ggplot2) 
#list data and set working direktory 
rm(list = ls()) 
data<- data.frame() 
wd <- "E:/Imaris/Done/Random" 
folder <- list.files(wd, full.names=FALSE) 
setwd(wd) 
 
#loop folder in random 
for (x in 1:length(folder)){ 
  wd1 <- paste0(wd,"/",folder[x]) 
  setwd(wd1) 
  paste0(wd,"/",folder[x]) 
   
  #binding speed data   
  for (f in list.files(pattern = "Track_Speed_Mean.csv", recursive = TRUE)){  
     
    obj <- read.csv(f, header=TRUE, skip=3) 
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    for(i in 1:(nrow(obj))){ 
      obj$Genotype<- (folder[x])  
    } 
     
    data <- rbind.data.frame(data,obj) 
  } 
} 
 
ggplot(data, aes(Genotype,Track.Speed.Mean))+ 
  geom_jitter(color = "gray50", size=0.5)+ 
  geom_boxplot(fill=gray(0.9), outlier.size = 0.5, alpha = 0.4)+theme_bw()+ 
  theme(axis.text.x = element_text(angle = 45, hjust = 1,face="bold", size= 12),  
axis.text.y = element_text(face="bold", size=12)) 
 
Anova_Results <- aov(Track.Speed.Mean ~ Genotype, data = data) 
summary(Anova_Results) 
TukeyHSD(Anova_Results) 
plot(TukeyHSD(Anova_Results)) 
 
 
#save data as csv in new folder (see folderstructure), subsitute "name" 
setwd("E:/Imaris/Done/Trackspeed") 
write.csv(data,file=(paste0("name","Random-Trackspeed",".","csv"))) 
 
 
### Track speed mean in direct migration 
 
#library(data.table) 
#install.packages("ggplot2") 
#library(ggplot2) 
 
rm(list = ls()) 
Trackspeedmean_G<- data.frame() 
Trackspeedmean_S <- data.frame() 
Trackspeedmean <- data.frame() 
#wd <- "E:/Imaris/Done/directed/RNAi" 
wd <- "E:/Imaris/Done/directed/Mutant" 
folder <- list.files(wd, full.names=FALSE) 
setwd(wd) 
 
for (x in 1:length(folder)){ 
  Trackspeedmean <- data.frame() 
  wd1 <- paste0(wd,"/",folder[x]) 
  setwd(wd1) 
  paste0(wd,"/",folder[x]) 
   
  for (f in list.files(pattern = "Position_Reference_Frame.csv", recursive = 
TRUE)){  
   # for (f in list.files(pattern = "Detailed.csv", recursive = TRUE)){   
    obj <- read.csv(f, header=TRUE, skip=3)   
     
    #Sort tracks via ID 
    sortTrackID <-obj[order(obj$TrackID),] 
     

obj$disRefPoint<-
c(sqrt(((obj$Position.X.Reference.Frame)**2)+((obj$Position.Y.Reference
.Frame)**2)+((obj$Position.Z.Reference.Frame)**2))) 

    #calculates distance from all point towards the wound (0/0/0) to every 
timepoint 
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    #Set radius within cells should be analysed   

radius<-subset(obj, obj$disRefPoint<=70 & obj$disRefPoint>=15)    #zellen 
die sich wärend der Aufnahme im radius X aufhalten  

    sortTrackID_Radius <-radius[order(radius$TrackID),]      #again, sorting 
     
    #calculations for general cell persistance in wounding experiments 
    richtungsvektor<- data.frame(matrix(nrow=nrow(sortTrackID_Radius), ncol=3))     
    for (i in 2:(nrow(sortTrackID_Radius))) { 
      if (sortTrackID_Radius$TrackID[i]==sortTrackID_Radius$TrackID[i-1]){ 
         

richtungsvektor[i,1]<- 
c((sortTrackID_Radius$Position.X.Reference.Frame[i])-
(sortTrackID_Radius$Position.X.Reference.Frame[i-1]))    
richtungsvektor[i,2]<- 
c((sortTrackID_Radius$Position.Y.Reference.Frame[i])-
(sortTrackID_Radius$Position.Y.Reference.Frame[i-1])) 
richtungsvektor[i,3]<- 
c((sortTrackID_Radius$Position.Z.Reference.Frame[i])-
(sortTrackID_Radius$Position.Z.Reference.Frame[i-1])) 

      }  
    } 
     

richtungsvektor$Steplenght<- 
c(sqrt(((richtungsvektor$X1)**2)+((richtungsvektor$X2)**2)+((richtungsv
ektor$X3)**2))) 

     
richtungsvektor$Speed <- c((richtungsvektor$Steplenght)/30) #20 seconds 
timeframe 

      
    data <- cbind.data.frame(sortTrackID_Radius,richtungsvektor) 
     
    #print(s) 
    Trackspeedmean_S <- aggregate(data, by = list(data$TrackID), FUN = mean, 
na.rm=T) 
     
    for(i in 1:(nrow(Trackspeedmean_S))){ 
      Trackspeedmean_S$Genotype<- (folder[x]) 
       
       
    } 
     
    Trackspeedmean_G <- rbind.data.frame(Trackspeedmean_G,Trackspeedmean_S) 
      
  } 
   Trackspeedmean<- rbind.data.frame(Trackspeedmean,Trackspeedmean_G) 
   
} 
 
setwd("E:/Imaris/Done/Trackspeed") 
write.csv(Trackspeedmean,file=(paste0("name","Trackspeedmean-
direct",".","csv"))) 
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7.1.3 Analysis of Border cell migration  

7.1.3.1 FIJI Macro  

Source: Luis Garcia Rodrigues, University of Münster (unpublished) 

 
input = getDirectory("Input directory"); 
output = getDirectory("Output directory"); 
 
Dialog.create("File type"); 
Dialog.addString("File suffix: ", ".tif", 5); 
Dialog.show(); 
suffix = Dialog.getString(); 
 
processFolder(input); 
 
 
function processFolder(input) { 
 run("Clear Results"); 
 list = getFileList(input); 
 for (i = 0; i < list.length; i++) { 
  if(File.isDirectory(input + list[i])) 
   processFolder("" + input + list[i]); 
  if(endsWith(list[i], suffix)) 
   processFile(input, output, list[i]); 
 } 
 saveAs("Results",output+"results.csv"); 
    waitForUser("Results has been saved in"+output+"results.csv "+"\n click 
OK to close"); 
    while (nImages>0) {  
          selectImage(nImages);  
          close();  
    }  
} 
 
function processFile(input, output, file) { 
 setTool("multipoint"); 
 open(input+file); 
 redo = true; 
 skip = false; 
 while (redo){ 
  waitForUser("Measure", "Waiting for the reference points."); 
  getSelectionBounds(selectionx,selectiony,w,h); 
   
  if (selectionx == 0 && selectiony == 0){ 
   x=newArray(1); 
   y=newArray(1); 
   //this is just a quick (and dirty) solution for skip  
   skip = getBoolean("Ok Mate, seems that you want to skip this 
image. \n Are you sure? \n (cancel will stop the macro)"); 
   if(skip){ 
    totaldistance=-1; 
    migrationdistance=-1; 
   }else{ 
    totaldistance=-2; 
    migrationdistance=-1;  
   } 
  }else{ 
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   getSelectionCoordinates(x,y); 
   if (x.length < 3 && x.length > 1){ 
    x0 = newArray(x[0],y[0]); 
    x1 = newArray(x[1],y[1]); 
    totaldistance = distance(x0,x1); 
    migrationdistance = totaldistance; 
   }else if(x.length == 1){ 
     totaldistance = 1; 
     migrationdistance = 0; 
    
   }else{ 
    result = line_intersection(x,y); 
    x0 = newArray(x[0],y[0]); 
    x1 = newArray(x[1],y[1]); 
    x5 = newArray(result[0], result[1]); 
    totaldistance = distance(x0,x1); 
    migrationdistance = distance(x0,x5); 
   } 
  } 
  if (totaldistance >= migrationdistance){ 
   redo = false; 
  }else{ 
   selectImage(nImages); 
   close(); 
   if (totaldistance == -2){ 
    waitForUser("Ok, let's try again."); 
   }else{  
    waitForUser("Total distance was smaller than 
migrated distance, \n please be careful with the points, repeat measure."); 
   } 
   open(input+file); 
  } 
 } 
 
 row = nResults; 
 if (skip == false){ 
 setResult("image", row, file); 
 setResult("migration D", row, migrationdistance); 
 setResult("total D", row, totaldistance); 
 updateResults(); 
 } 
 selectImage(nImages);  
    close();  
    if (row == 99){ 
 waitForUser("Congrats!", "WOW, you have completed a set of 100 images. 
\n You should take a rest."); 
 } 
} 
 
function line_intersection(x, y){ 
   
  k = ((y[1]-y[0]) * (x[2]-x[0]) - (x[1]-x[0]) * (y[2]-y[0])) / 
((y[1]-y[0])^2 + (x[1]-x[0])^2); 
  x3= x[2] - k * (y[1]-y[0]); 
  y3 = y[2] + k * (x[1]-x[0]); 
  drawLine(x[0], y[0], x[1], y[1]); 
  drawLine(x[2], y[2], x3, y3); 
   
  xdiff = newArray(x[0]-x[1],x[2]-x3); 
  ydiff = newArray(y[0]-y[1],y[2]-y3); 
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  div = det(xdiff,ydiff); 
  if (div == 0) { 
   print('lines do not intersect'); 
   return -1; 
  } 
  a0 = newArray(x[0],y[0]); 
  a1 = newArray(x[1],y[1]); 
  a2 = newArray(x[2], y[2]); 
  a3 = newArray(x3,y3); 
  d1 = det(a0,a1); 
  d2 = det(a2,a3); 
  d = newArray(d1,d2); 
  x = det(d,xdiff)/div; 
  y = det(d,ydiff)/div; 
 
  intersection_point = newArray(x,y); 
  makePoint(x,y); 
   
  return intersection_point; 
} 
function det(a,b){ 
 return a[0]*b[1]-a[1]*b[0];  
} 
 
function distance(a,b){ 
 d1 = a[0]-b[0]; 
 d2 = a[1]-b[1]; 
 dis = sqrt(pow(d1,2)+pow(d2,2)); 
 return dis; 
 } 

 

7.1.3.2 R-script  

Source: Luis Garcia Rodrigues, University of Münster 
library("data.table") 
library("ggplot2") 
 
migration_analysis <- function(folder){ 
  obj<-data.table() 
  for (f in list.files(folder,pattern = ".csv", recursive = TRUE)){ 
    print(f) 
    obj<-rbind(obj,analysis_individual(paste(folder,f,sep=""), f),fill=TRUE) 
  } 
   
  #plot<-ggplot(obj, aes(quadrant))+geom_bar(aes(fill = genotype),position = 
position_stack()) + 
  #coord_flip() + 
  #theme(legend.position = "top") 
  #print(plot) 
   
  plot2<-ggplot(obj, aes(genotype))+geom_bar(aes(fill = quadrant),position = 
position_stack()) + 
    coord_flip() + 
    theme(legend.position = "top") 
  print(plot2) 
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    plot3<-ggplot(obj, aes(x=quadrant, 
group=genotype))+geom_bar(aes(y=..prop.., fill=factor(..x..)) )+ 
    coord_flip() + facet_grid(~genotype) 
    theme(legend.position = "top") 
  print(plot3) 
   
  plot3<-ggplot(data=unique(obj[,.(genotype,quadrant, quadrant_percent)]), 
aes(x=genotype, y=quadrant_percent, fill=quadrant))+geom_bar(stat="identity" )+ 
    coord_flip() + 
    theme(legend.position = "top")+ 
    labs(x="Ratio") 
   
  print(plot3) 
   
  return(obj) 
} 
 
analysis_individual<- function(filePath, fileName){ 
  dt <- fread(filePath) 
  dt[,normalized_migration:= `migration D`/`total D`] 
  dt[,genotype:=paste(strsplit(fileName,".csv"))] 
  dt[,quadrant:=paste(((normalized_migration-0.00001)%/%0.25)+1)] 
  total_entries <- nrow(dt) 
  total_by_quadrant <- dt[, length(genotype), by=quadrant] 
   
  dt[,quadrant_percent:=percent(genotype,dt),by=quadrant] 
   
  dt<-dt[order(normalized_migration)] 
  return (dt) 
} 
 
percent<-function(vector, dt){ 
  return(length(vector)/nrow(dt)) 
} 

7.1.3.3 Manual for statistical analysis of BCM-data 

Create an analysis folder and set it as working directory. Then, call function (R-script) 

migration_analysis("./") or one of the other. 

Further save results as .csv file in working directory: 

 command:  results<- migration_analysis("./") 

   write.csv(results,file=("name.csv")) #saved in working directory 

GraphPad: 

Create contingency table with outcome --> 100-75, 75-50, 50-25, 25-0 

use "quadrant_percent" information to create the bars. 
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Example for BCM quantification 

 

Statistics: 

use column statistics: data --> normalized_migration 

make a non-parametric test (Mann–Whitney U test) 
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7.2 Supplementary Figures 

7.2.1 Alignment WAVE isoforms and orthologs 

 

 

 

Supplementary Figure 1: Multiple sequence alignment by NCBI clustal W2.  
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7.2.2 Rac depletion in macrophages 

 

Supplementary Figure 2: Test of Rac RNAi-mediated knockdown. Isolated larval macrophages 

plated on ConA and stained for F-actin and nucleus, expressing cytoplasmic eGFP (see color code). 

Supplementary Table 3: Compression of results gained by RNAi mediated Rac suppression in 

macrophages (Supplementary Figure 2) with previous performed experiments. 

 CHROMO-

SOME 

OFF  

TARGETS 

HEMOZYTE– 

MORITZ 

SANDER 

TESTIS – 

MAIK 

BISCHHOFF 

HEMOZYE – 

THIS THESIS 

RAC1      

NIG-Fly 

2248R-1 

I ? NO NO NO 

NIG-Fly 

2248R-2 

I ? NO NO stellate (weak) 

Bloomington 

349110 

III ? NO NO NO 
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VDRC 

49246 

II RAC2 spiky (strong) NO NO 

RAC2      

VDRC 

50349 

III RAC1 spiky (strong) NO spiky 

VDRC 

50350 

III RAC1 spiky (strong) NO spiky 

NIG-Fly 

8556R-1 

III ? stellate YES small cells with 

reduced 

lamellipodia 

NIG-Fly 

8556R-3 

III ? spiky YES small cells with 

reduced 

lamellipodia 
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7.2.3 WIRS-ligand screen 

Supplementary Figure 3: Tested 

potential WIRS-ligands that has 

been tested for directed wound 

response in this thesis. At least 

two independent RNAi were used 

in hemocyte specific knock down 

by hmlΔ-Gal4.  
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Supplementary Figure 4: Expression test of WIRS-GGSx4-eGFP. (A+B) Isolated larval 

macrophages plated on ConA and stained for F-actin (white) and cytoplasmic expression of eGFP (A) 

or WIRS-GGSx4-eGFP (B) by hmlΔ-Gal4. (C) Expression of eGFP or WIRS-GGSx4-eGFP in follicle 

cells (gr1-Gal4). Egg-shape analysis show no differences. (D) Scheme of WIRS-GGSx4-eGFP 

expression construct. 

7.2.4 Shape analysis of abl mutant larval macrophages 

 

Supplementary Figure 5: abl mutant larval macrophages are increases in size and rounded up. 

(A+C) Isolated larval macrophages plated on ConA stained for F-actin (white), nucleus (magenta). 

Morphologically both show a broad lamellipodium. (C) Cell shape parameter area and roundness are 

depicted in a scatter dot blot with bars indicating mean and SD. *** = p ≤ 0.001 (Mann-Whitney-U-

Test). (D) abl mutant macrophages, macrophages expressing AblDN construct and abl RNAi-mediated 

knockdown are increased in size in comparison to their corresponding control. (D´) abl mutant 

macrophages are also rounded up. Scale bar = 10 μm. 
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7.2.5  src42A RNAi efficiency test 

 

Supplementary Figure 6: Result of quantitative analysis of indicated src42A RNAi constructs by 

Western blot. Src42A protein level normalized to respective actin level and Src42A expression in eGFP 

control transfected cells. Abl KD -1 = VDRC Src42A RNAi line 100708, Abl KD -1 = Bloomington 

Src42A RNAi line 55868 

 

Supplementary Figure 7: Western Blot analyses of isolated larval macrophages. Genotype and 

antibody staining are indicated. Three independent experiments. Quantification Figure 30. 

In a site experiment the function of WAVE, Abl and Src42A was investigated in collective 

cell migration in border cell migration. Recent work manly used slbo-Gal4 for ectopic tissue 

specific expression in border cells, were not able to detect any effect of wave and other WRC 

complex members on border cell migration. Here, another border cell driver c306-Gal4 were 

tested and compared with the expression level and timepoint in egg chamber development 

(Supplementary Figure 8). The results show an earlier and almost 2 times stronger expression 

of eGFP. 
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7.2.6 Border cell migration: the impact of WAVE, Abl and Src42A 

Tissue specific suppression with RNAi expression by c306-Gal4 show 40 % overall and 10 % 

severe border cell migration defects (Supplementary Figure 9). When analyzing the effect of 

two important kinases Abl and Src42A that are known acting on WAVE activity, only 

interference with Src function result in impaired border cell migration (Supplementary Figure 

9).  

 

 

Supplementary Figure 8: Comparison of expression pattern of two different border cell driver. 

eGFP expression is in median 1.5-fold increased driven by c306-Gal4 in comparison to slbo-Gal4. 

Additionally, c306-Gal4 expresses already in earlier egg chamber stages (white arrow).  
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Supplementary Figure 9: Analysis of Border cell migration (BCM). Expression of indicated RNAi 

by c306-Gal4. Control egg chamber show wild typic BCM. Step 1. delamination, step 2. Collective cell 

migration through the nurse cells, step 3. Reaching the oocyte in stage 10A (100 % migration, see 

method part 2.5.4). BCM is analyzed, when expressing indicated constructs. Depletion of wave as well 

as src42A or the expression of Src42ADN show severe defects in BCM. The expression of AblDN has no 

effect on BCM. 
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7.2.7 Three variances of Scarlet, a new bright monomeric red fluorescent protein 

 

 

Supplementary Figure 10: Novel fluorophore mScarlet: Expression test of three different 

variants. Still images of time laps. Comparison of brightness at imaging start and 19 timepoints later. 

Tubulin driven cherry expression is used as control for a classic red fluorescent protein. Table illustrated 

performance in comparison to cherry ((+ more, - less), Bindels et al., 2017). 
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