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Summary 

The first topic of this thesis (Chapter 2) presents a mutational study performed on 17β-

hydroxysteroid dehydrogenase type 14 (17β-HSD14) S205 variant. Five different mutations 

were done with respect to five amino acids which are believed to have an essential role in the 

enzyme activity and assembly. The five variants are: His93Ala, Gln148Ala, Lys158Ala, 

Tyr253Ala and Cys255Ala. The mutated amino acids are located in the active site of the 

enzyme (His93, Gln148 and Lys158) or on a flexible loop of the enzyme, which is located 

above the active site (Tyr253 and Cys255). X-ray crystallography is the method utilized in this 

study to obtain a 3D crystal structure of each variant. A non-steroidal potent 17β-HSD14 

inhibitor (inhibitor 1) has been crystallized in complex with each variant, that has been used to 

verify the binding capability of the mutated enzyme. Enzymatic assays have been performed 

with each variant to compare the activity of each one. Estrogen (estradiol) and androgen (5-

diol) have been used as a substrate in the enzyme kinetics assay with NAD⁺ as a cofactor.  

The second part of this thesis (Chapter 3) is focused on a new crystal sample holder (the 

Roadrunner I chip) which is used in Serial Synchrotron X-ray Crystallography (SSX). The 

Roadrunner I chip is a micro-patterned sample holder from single crystalline silicon (waiver 

technology) with micropores. The aim of using the Roadrunner I chip is to have a sample holder 

that can present hundreds to thousands of crystals to the high intensity PETRA III beam line 

P11 (DESY – Hamburg) without interfering with the diffraction pattern. In this study, 

Thermolysin (TLN) is the protein used to test the limit of this new method. Thermolysin 

crystals were grown, washed, soaked and frozen at cryogenic temperature without removing 

them from the chip. Data sets were collected of TLN crystals while they are located on the chip. 

The experimental part of this study was performed at Deutsches Electronen-Synchrotron 

(DESY), Hamburg at PETRA III P11 beamline in collaboration with associated laboratories at 

the facility. 

The third part of this thesis (Chapter 4) discusses cyclodextrins (CDs) and their ability to 

enhance hydrophobic compounds solubility in aqueous solutions. The targeted protein in this 

study is 17β-HSD14. Many compounds were assembled for this study, such as a fluorine-

compound library, hydrophobic drugs and sex hormones. The aim of this study is to obtain a 

compound that binds to the enzyme by introducing it as a compound/CD complex. Most of the 
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compounds used in this study have already been tested with 17β-HSD14 without the use of 

CDs, but due to their low solubility it was not possible to introduce them in crystallization 

samples of the enzyme. The data obtained from this study show the effect of the compound/CD 

complex, as it is introduced to the enzyme via co-crystallization method.  

The fourth part of this thesis (Chapter 5) focuses on a fragment screening. A 96-fragment 

library is screened against trypsin using X-ray crystallography. This study focuses on the 

difference of hits and partial hits obtained from the fragment screening. Fragment screening 

has been performed on two trypsin crystal form (trigonal and orthorhombic). The data obtained 

from this study show the different results from each screen and how the crystal form and the 

fragment delivery method influence the hit ratio. Many aspects were considered in this study, 

such as the difference in electron density, volume of the binding pocket, anomalous peaks and 

water channels. 
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Zusammenfassung 

Das erste Kapitel dieser Dissertation (Kapitel 2) präsentiert eine Mutationsstudie, die an der 

17β-Hydroxysteroid-Dehydrogenase Typ 14 (17β-HSD14) S205-Variante durchgeführt wurde. 

Dafür wurden fünf Aminosäuren mutiert, von denen man annimmt, dass sie eine wesentliche 

Rolle bei der Enzymaktivität und dem struckturen Aufbau spielen. Die fünf mutierten 

Aminosäuren sind: His93Ala, Gln148Ala, Lys158Ala, Tyr253Ala und Cys255Ala. Alle 

mutierten Aminosäuren befinden sich im aktiven Zentrum des Enzyms (His93, Gln148 und 

Lys158) oder auf der flexiblen Schleife, die sich über dem aktiven Zentrum befindet (Tyr253 

und Cys255). Die Röntgenkristallographie ist die Methode der Wahl, die in dieser Studie 

verwendet wird, um die Kristallstruktur jeder Variante zu erhalten. Ein nicht-steroidal potenter 

17β-HSD14-Inhibitor (Inhibitor 1) wurde in einem Komplex mit dem Wildtyp kristallisiert, der 

zur Überprüfung der Bindungsfähigkeit des mutierten Enzyms verwendet wurde. Mit jeder 

Variante wurde ein enzymatischer Assay durchgeführt, um die Aktivität der einzelnen 

Varianten zu vergleichen. Östrogen (Östradiol) und Androgen (5-Diol) wurden als Substrat im 

Enzymkinetik-Assay mit NAD⁺ als Co-Faktor verwendet.  

Der zweite Teil der Arbeit (Kapitel 3) konzentriert sich auf einen neuen Kristallprobenhalter 

(The Roadrunner I Chip), der in der seriellen Röntgenkristallographie (SSX) eingesetzt wird. 

Der Roadrunner I-Chip ist ein mikrostrukturierter Probenhalter aus monokristallinem Silizium 

(Waiver-Technologie) mit Mikroporen. Das Ziel der Verwendung des Roadrunner I-Chips ist 

es, einen Probenhalter zu haben, der Hunderte bis Tausende von Kristallen dem hochintensiven 

Röntgenstrahl präsentieren kann, ohne das Beugungsmuster zu stören. In dieser Studie wurde 

Thermolysin (TLN) als Protein verwendet, um die Grenzen dieser neuen Methode zu testen. 

Thermolysin-Kristalle wurden bei kryogener Temperatur gezüchtet, gewaschen, in 

Ligandlösungen eingeweicht und eingefroren, ohne sie vom Chip zu entfernen. Nachdem alle 

Kristallhandhabungsschritte durchgeführt worden waren, wurden Datensätze von TLN-

Kristallen gesammelt, während sie auf dem Chip lokalisiert sind. Der experimentelle Teil dieser 

Studie wurde am Deutschen Elektronen-Synchrotron (DESY), Hamburg, an der PETRA III 

P11-Strahllinie in Zusammenarbeit mit assoziierten Labors der Anlage durchgeführt.  
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Der dritte Teil dieser Arbeit (Kapitel 4) befasst sich mit Cyclodextrinen (CDs) und ihrer 

Fähigkeit, die Löslichkeit hydrophober Verbindungen in wässrigen Lösungen zu verbessern. 

Das Zielprotein in dieser Studie ist wieder 17β-HSD14. Viele Verbindungen wurden für diese 

Studie zusammengestellt, wie z.B. eine Fluorverbindungsbibliothek, hydrophobe 

Medikamente und Sexualhormone. Das Ziel dieser Studie war es, eine Verbindung zu erhalten, 

die an das Enzym bindet, indem es als Verbindung/CD-Komplex eingeführt wird. Die meisten 

der in dieser Studie verwendeten Verbindungen wurden bereits mit 17β-HSD14 ohne die 

Verwendung von CDs getestet, aber aufgrund ihrer geringen Löslichkeit war es nicht möglich, 

sie in das Enzym einzubringen. Die aus dieser Studie gewonnenen Daten zeigen die Wirkung 

des Verbindungs-CD/Komplexes, wie er über die Co-Kristallisationsmethode in das Enzym 

eingebracht wird. 

Der vierte Teil dieser Arbeit (Kapitel 5) konzentriert sich auf das Fragmentscreening. Eine 

Bibliothek von 96 Fragmenten wurde mittels Röntgenkristallographie gegen Trypsin gescreent. 

Diese Studie konzentriert sich auf den Unterschied zwischen den durch das Fragmentscreening 

erhaltenen Treffern und Teiltreffern. Das Fragmentscreening wurde an zwei Kristallformen 

(trigonal und orthorhombisch) durchgeführt. Die aus dieser Studie gewonnenen Daten zeigen 

den Unterschied zwischen den einzelnen Screeningergebnissen und den Einfluss der Packung, 

der Kristallsymmetrie und der Fragmentabgabe auf die Trefferquote. Viele Aspekte wurden in 

dieser Studie berücksichtigt, wie z.B. der Unterschied in der Elektronendichte, das Volumen 

der Bindungstasche, anomale Peaks und Wasserkanäle. 
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1.1. 17β-hydroxysteroid dehydrogenase family 

Hydroxysteroid dehydrogenases (HSD) are steroid hormones that act through specific 

receptors, which are involved in the activation of gene transcription. HSD convert steroids at 

position 3,5,11,17 and 20, which makes them responsible for the regulation of steroid hormones 

action [1,2]. 17β-hydroxysteroid dehydrogenase (17β-HSD) has a high potency to estrogens 

and androgens, that converts them at position 17. 

 

Figure 1. Schematic showing the oxidoreduction at C17 oxo/β-hydroxyl groups of androgen 

and estrogen hormones. 

 

As seen in Figure 1, the 17β-HSDs family plays a key role in the formation and degradation 

of sex hormones, in which, all intracellular availability and potential activation of sex hormones 

is regulated through this family [3–31]. 

The interest in 17β-HSDs appeared in the 1980s, with 14 different mammalian 17β-HSDs have 

been characterized up to now. All members of this family share the same conserved Rossman-

fold domain established by an α/β sandwich folding pattern that is arranged in 6 to 7 central β-

sheets, and flanked by 3 α-helices at both sides (Figure 2) [32–34]. 
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Figure 2: (A) Ribbon representation of the 17β-HSD14 apoenzyme. The conserved Rossmann-

fold domain is established by α-helices (white) and β-sheets (beige). The loops giving special 

shape to the binding pocket and the variable C-terminal tail are colored in green. (B) Close-

up view of the substrate binding pocket. The catalytic amino acids are shown as stick model. 

All structural representations were prepared with PyMOL [35]. This figure was adopted from 

Nicole Bertoletti’s thesis [36]. 

 

Due to the enzyme expression in multiple organs in the human body, there is a growing interest 

to characterize this protein and reach a therapeutic target that corresponds to the functionality 

of the steroid hormones. 

 

 

1.2. Serial Synchrotron X-ray crystallography 

Since the beginning of crystallographic studies, collecting data sets from small-sized crystals 

has always been a challenge, because of their weak diffraction power that limits the number of 

signals collected before the damageable effects of the X-ray radiation become significant. 

Recently, there has been a huge surge in serial X-ray crystallography (SSX) method, due to its 

usefulness in obtaining data sets from crystals on the nanometre to micrometre scale [37–49]. 

Collection and merging of data sets from multiple crystals are not something new, in fact, that 

was state of the art before the advances of cryo-cooling [50]. In previous times, 

crystallographers have always faced a major challenge, which is the need to optimize the 
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growth of crystals to a large size to obtain a sufficient diffraction to resolve a protein structure 

either from one crystal or from multiple crystals of the same protein and merge them [37]. SSX 

came with a solution to many problems faced before, of course with the technological 

advancement and the foundation of microfocus X-ray beams, the collection of data sets of small 

crystal has been facilitated. The reason that many researchers focused on tiny crystals was their 

advantages over larger crystals. If a crystal has a higher mosaicity, a smaller crystal from the 

same macromolecule would have a less total number of mosaic blocks, so the broadness of the 

Bragg peaks will be reduced leading to an improved overall crystal quality. Another main 

advantage of smaller crystals is the higher tendency of a crystal to bind a ligand during soaking 

experiment and the higher successful rate of freezing crystals in cryogenic temperature 

compared to their equivalents that possess a bigger size [51,52]. Another major bottle neck 

facing crystallographers is radiation damage, which put a limitation on the number of datasets 

that could be collected from the same crystal. There are multiple types of radiation damage 

which has a devastating effect on the data sets collected. For example, generation of free 

radicals, degradation of overall data quality or breaking of chemical bonds which is 

unfortunately, only visible after obtaining an electron density [53–56]. Therefore, 

macromolecular crystallography is usually carried out at cryogenic temperature (100 K) to 

minimize radiation damage [57,58]. Furthermore, measuring at cryogenic temperature can 

extend the crystal lifetime by two orders compared to its equivalent at room temperature [59–

61]. However, collecting data sets at room temperature is considered more convenient, rapid 

and less consumable.  

In SSX, there is a high need to find a good combination of crystal size, X-ray beam size and 

the velocity of the stream to have most of the crystal illuminated by X-ray while it passes 

through the beam. From a practical point of view, a certain minimum stream size is needed to 

avoid clogging. In SSX with fixed-target methods, many scientific institutes and research 

facilities have been working relentlessly to develop sample holders in which crystals can be 

grown, buffers can be exchanged and data sets can be collected without removing the crystals 

from these sample holders [62–64]. The sample holders are designed to develop a system with 

low interference with the X-ray diffraction pattern and the requirement of less crystallization 

medium around crystals. The goniometer or scanning stage, which holds the fixed-target 

samples, allows full control of crystal characterization and data collection. Crystals can be 

located with a grid scan, and rotation data can be collected for each selected crystal 
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subsequently [38,65]. Alternatively, the whole sample could be scanned either with still images 

or with oscillation images [66,67] 

 

 

 

Figure 3. Serial synchrotron X-ray crystallography, starting with a crystal ending with a 

structure. Figure adopted from [68]. 
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1.3. Cyclodextrins 

Cyclodextrins (CDs) were discovered approximately 100 years ago and the first CD complex 

was registered in 1953. Cyclodextrins (CDs) are a family of cyclic oligosaccharides, consisting 

of multiple glucose subunits forming a ring by α-1,4 glycosidic bonds. Cyclodextrins result 

from the cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19; CGTase) catalyzed degradation 

of starch [69,70]. Nowadays, there are multiple uses of CDs in day-to-daily life, such as food 

additives, drugs, lubricants and many chemical products. The most common CDs come with 

6,7 and 8 D-glucopyranosyl units (α-, β- and γ-cyclodextrin respectively) as shown in Figure 

4. The glucose subunits all have the ⁴C1 (chair) conformation. The three main CDs also share 

similar structures (bond length and orientations), with an exception for the glucose subunit 

numbers. Their shape looks like a bowl (cone) stiffed with hydrogen bonding between the 2-

OH and 3-OH groups around the outer rim, making a hydrophobic central cavity 

and hydrophilic outer surface. The strength of the hydrogen bonds is dependent on the number 

of glucose units in CD, α-cyclodextrin < β-cyclodextrin < γ-cyclodextrin [71–78].  

 

 

Figure 4. 2D representation of the most common cyclodextrins. 

 

Due to the relatively large number of hydrogen donors and acceptors, CDs are not able to 

permeate lipophilic membranes. The main focus of this study is the usage of CDs in enhancing 

compound solubility. CDs are used as agents to increase aqueous solubility of poorly soluble 

drugs; thus, increasing their bioavailability and stability. There are approximately 30 drugs 

containing cyclodextrin derivatives (Table 1) that have been approved by the U.S. Food and 

Drug Administration (FDA) and European Medicines Agency (EMA). 
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Due to the CDs molecular structure and shape of CDs, they own a unique ability to act as 

containers for other molecules by locking (entrapping) the hydrophobic part inside the 

lipophilic internal cavity. However, when in aqueous solution, no covalent bonds are broken or 

formed during the molecule/CD complex formation [79–85]. The resulting complex hides most 

of the hydrophobic functionality of the bound molecule by locking the hydrophobic moiety 

inside the cavity. The hydrophilic hydroxyl groups located on the outer surface are exposed to 

the outer environment, leading to a water-soluble complex. Furthermore, the entrapping of the 

hydrophobic moiety inside the cavity would result in the hydrophilic moieties of a compound 

to point to the outside environment, which would increase the compound’s solubility [86–91].  

 

Table 1. Molecular weight and solubility of the most common cyclodextrins. 

Cyclodextrin MW (Dalton) 

Solubility in water 

(mg/ml) at 25°C 

α-cyclodextrin 972 45 

β- cyclodextrin 1135 5 

γ- cyclodextrin 1297 80 

Methyl-β- cyclodextrin 1312 350 

2-hydroxypropyl-β- cyclodextrin 1400 300 

2-hydroxypropyl-γ- cyclodextrin 1576 400 

These data are based on entries in pharmacopoeias and health organizations in USA, Europe and Japan. 

As seen in Table 1, the more subunits and moieties are added to the CD molecule, the larger 

water solubility will be. However, there are other factors that determine the degree of 

dissociation of the complexes, such as the various environmental factors (dilution, temperature 

and pH) [92–95]. This concept has made cyclodextrin most intriguing for many drug designers. 

The fact that a candidate drug physiochemical property, such as solubility, bioavailability, 

stability and affinity to its receptor are posted while gaining no negative side effects, makes it 

a favourable additive in the solubility enhancement study performed on 17β-HSD14.
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1.4. Fragment screening 

In a human body there are about 25,000 genes that are protein coding, which means there are 

at least 25,000 proteins in the human body. In a recent study by Brandon et al. [96] there are 

around 42 million protein molecules in a simple cell.  With this tremendous amount of proteins, 

finding an efficient and fast screening method for drug candidates was necessary. Drug design 

of lead compounds that have an affinity to a protein; thus, halting or posting its function is 

required. The main aim of drug discovery is to find lead compounds that have specificity and 

potency to their targeted proteins, so drugs for new or old diseases are synthesized accordingly. 

Fragment screening offers a great advantage due to its ability of introducing various moieties 

to the targeted protein, which is the initial step to reach a final drug based on the results obtained 

by such a screen. Furthermore, the small size of the fragments can easily reach the protein 

active sites and travel easier through the protein water channels [97,98]. A successful hit from 

a fragment screen would provide a promising candidate for a follow-up drug to be developed 

based on the structure and moieties of the binding fragment. Unlike the fragment used in the 

screening, a bigger size compound consisting of extra moieties based on the original fragment 

used or even multiple combined fragments together could provide a more potent ligand with 

enhanced properties. 

The aim of fragment screening is to identify chemical moieties that specifically interact with a 

particular protein target. Recently, fragment screening has gained a lot of popularity. Multiple 

designated moieties can be introduced to a single protein to identify which one would form an 

interaction with that protein. This means, decreasing the time for drug discovery and screening 

various amounts of protein through this process. Fragments are small chemical entities which 

become increasingly favourable starting points for drug discovery [99–113]. A standard 

definition of a fragment suggests that fragments are chemical entities that possess a small size 

and a low molecular weight (MW ≤ 300 Da) [98,105,114]. 

Fragment-based drug discovery (FBDD) or Fragment-based screening (FBS) has come a long 

way recently. Even with the High-Throughput Screening (HTS) method being widely used, but 

the difference between HTS and FBS is the molecule size which ranges from 300-500 Da in 

the HTS libraries making FBS more favourable nowadays. The bigger molecule size in HTS 

hinders the development of the pharmacokinetics and pharmacodynamics properties of the  
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selected molecules because they are less manoeuvrable around the active site and the water 

channels passing through a crystal of the targeted protein [97,98,115]. 

There is no doubt that in present days, X-ray crystallography is the dominant method to 

determine the structure of macromolecules and it is quite sufficient when it comes to fragment 

screening. Mainly, with all the automization that has been developed to make it less time and 

resource consumable. The main reason for the effectiveness of this technique is the undeniable 

result obtained by resolving the 3D structure of the macromolecules which confirms or denies 

the presence of a fragment in the active site or any other location throughout the protein 

structure. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of molecular mass vs potency of leads developed from conventional HTS 

and FBDD approaches. The dashed lines show Lipinski’s Rule of Five (500 Da molecular 

weight cut-off and the Rule of Three 300 Da molecular weight limit). This figure is taken from 

[111].   
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In any fragment screening, there are standard steps that need to be met which are organized in 

the sketch below. 

  

Expression, purification and crystallization of the target protein 

 

Data collection, structure determination, refinement, and validation of the protein structure 

 

Selection of a compound library by virtual pre-screening (Docking) 

 

Solubilization of compounds and soaking into protein crystals or co-crystallization 

 

Data collection of crystal structures in complex with the selected compounds 

 

Difference electron density map calculation and ligand identification and placement 

 

Generation of geometric restraint dictionary for ligand, final water placement and structure 

refinement/validation of ligand complex 
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1.5. Trypsin 

Trypsin (EC 3.4.21.4) was first identified by Kühne in 1876 [116]. It is a well-known pancreatic 

enzyme and a member of the Protease of mixed nucleophile superfamily A (PA clan). There is 

a pre-existing availability of trypsin from bovine pancreas making it easily to purify by 

crystallization [117]. Since many years, trypsin has been associated with the proteolytic activity 

that cleaved peptide bonds after Lys and Arg [118,119]. Throughout the 80s and 90s, the role 

of the amino acids present in the enzyme were identified and afterwards, trypsin was linked 

with hereditary pancreatitis. The enzyme has many functions such as tissue dissociation when 

mixed with enzymes like elastase and collagenase, cell harvest via trypsinization, protein 

studies “in vitro”, mitochondria isolation, subculturing cells, tryptic mapping, cleavage protein 

fusion and glycopeptides generation from pure glycoproteins [120–131]. As a general 

structureal description, trypsin is a globular protein of 24 KDa, with a total of 220 residues. 

The protein is composed of 13 beta-strands, six of which form a beta-barrel structure. There 

are four regions of alpha helix and six disulfide bridges as well as the Ca²⁺ binding loop that 

extends from Glu70 to Glu80.  

Serine proteases evolved a similar catalytic device characterized by the His, Asp and Ser triad 

(His57, Asp102 and Ser195 in trypsin). These three amino acids are often referred to as a 

catalytic triad. The serine in the triad is much more reactive then other serines in the protein. 

The serine hydroxyl is normally protonated at neutral pH, but in the enzyme Ser195 is hydrogen 

bonded to His57, which is further hydrogen bonded to Asp102 [132–135]. 

Residues 189-195 and 214-220 form the primary substrate binding pocket called S1 binding 

pocket. There are residues that form two loops near the S1 binding pocket, residues 185-188 

and 221-224, which are called L1 and L2, respectively. There is a high favourability towards 

basic residues. Residue Asp189 in trypsin lies at the bottom of the S1 binding pocket and forms 

a salt bridge with the positively charged group at the end of the substrate lysine and arginine 

side chain, and determines many of the enzyme chemical properties [136–138]. 
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Figure 6. overall structure of trypsin and the S1 binding pocket where Asp189 is located at the 

back end of the pocket. 

 

 

 

Figure 7. Octahedral coordination of calcium ion (blue sphere) in trypsin by Glu70, Glu80, 

two water molecules (red spheres) and two carbonyl group from the backbone of Asn72 and 

Val75. 



 

 

 

 

 

 



 

 

 

2 
Chapter 2 

Mutational Study 

Mutational and structural studies uncover crucial amino 

acids determining activity and stability of 17β-HSD14 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introductory remarks 

 

This chapter closely relates to a publication which appeared in the Journal of Steroid 

Biochemistry and Molecular Biology [139]. The fluorescence-based assay was designed and 

performed by Dr. Sandrine Marchais-Oberwinkler in collaboration with the author of the thesis. 

The expression and the purification of the 17β-HSD14 variants, the crystallization study and 

the elucidation of the variant crystal structures established and performed by Dr. Nicole 

Bertoletti with the author of this thesis. Furthermore, the author significantly contributed to the 

writing of the manuscript in collaboration with Dr. Sandrine Marchais-Oberwinkle.   
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2.1. Introduction 

17β-Hydroxysteroid dehydrogenase type 14 (17β-HSD14), which is also known as retSDR3, 

DHRS10 or SDR47C19, is one of the last members of the short-chain dehydrogenase (SDR) 

family to be identified [3,140,141]. The purpose of many studies of this enzyme is to figure out 

its main role in the human body which is yet to be discovered, but throughout previous and 

current research, it was established that the main substrates for this enzyme are : Estradiol (E2), 

5-androstene-3β,17β-diol (5-diol) and testosterone (T) as they have been tested on the enzyme 

in vitro [140]. There are two variants that occur naturally (T205 and S205) that have been 

already characterized [142].  The enzyme has a clear role in oxidizing of the hydroxyl group at 

position 17 of the substrates in the presence of the cofactor NAD+ [140]. Nevertheless, the 

main role of this protein still has to be proven by in vivo studies. 

 

Figure 1. Representation of the cofactor NAD+ and the reduced form NADH 

Until now, 14 different 17β-HSD subtypes have been reported with 17β-HSD14 being the last, 

two of these subtypes are 17β-HSD1 and 17β-HSD2 which were most previously characterized 

subunits from the 17β-HSD tree, that predominantly catalyze the oxidation and reduction of 

estrogens and androgens. Inhibitors of these two enzymes have already been reported [143–

148].  The gene of 17β-HSD14 was initially isolated from the retina [149]. and expressed as 

well in cancer breast tissue [150]. In later immunological studies by Sivik et al. [151], it was 

demonstrated that 17β-HSD14 has a wide distribution throughout the human body and is 

located in different organs such as the heart, eye, adrenal glands, testis, liver, esophagus, rectum, 

skeletal muscles and salivary glands. In another study by Lukacik et al. [140], which was more 

conservative toward the distribution of the enzyme in the human body, revealing that the 

mRNA coding this enzyme is mainly expressed in the brain, placenta and liver. The enzyme is 

located in the cytoplasm as well and assembled in solution as a homo tetramer [142]. The first 

crystal structure of the wild type has been recently determined as an apo enzyme (PDB ID: 

5ICS) [142]. The holoenzyme structure has been determined as well (PDB ID: 5JS6 and 5JSF) 

and the holoenzyme in complex with both the cofactor and non-steroidal inhibitors (PDB ID: 
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5ICM) [142]. After investigating the crystal structure obtained using X-ray crystallography, it 

is obvious that the enzyme is a tetramer formed by interactions of two identical monomers to 

form a dimer that joins with another identical dimer in an organised way (as seen in the crystal 

structure), in which the flexible loop from each monomer is attached to the adjacent monomer 

in a hook shape. This dimer formed is linked to the other dimer with multiple amino acid 

interactions on the surface of the enzyme. The crystal structure shows a tetramer formed by 

four identical monomers joined together and the flexible loop from each monomer adopts a 

closed conformation. 

 

Figure 2. Surface representation of 17β-HSD14 wild type variant S205 (PDB ID: 6G4L). In 

the centre of the figure the flexible loops of each monomer are visible in a different colour as 

they are hooked together forming a dimer (blue and light blue) and joined by a similar dimer 

(pink and brown) that has the same attachment, but located on the back of the molecule. Both 

dimers are linked through surface amino acid interactions. 

The active site of 17β-HSD14 is characterized by three catalytic amino acids also known as the 

catalytic triad Ser141, Tyr154 and Lys158. This catalytic triad is shared with other types of 

17β-HSD14s and they are involved in interactions between the cofactor and the substrate, so 

they are responsible for the enzymatic activity of the protein. There are other amino acids 

beside the ones from the catalytic triad which have a major role in the activity or the assembly 

of the enzyme, Gln148, Tyr253 and Cys255 which are not present in other types of human 17β-

HSDs. Unfortunately, all attempts to obtain a crystal structure with suspected substrates 

estradiol (E2) and 5-androstene-3β,17β-diol (5-diol) were unsuccessful, but it is believed that 

Ser141, Tyr154 and O17 from estradiol (E2) form a trigonal H-bond network similar to the one 
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observed in 17β-HSD1 [152]. In the active site of 17β-HSD14, Lys158 stabilizes the cofactor 

NAD+ by an H-bond interaction with the two hydroxyl groups of the ribose ring of the 

nicotinamide moiety [139]. In the case of 17β-HSD1, it was suggested that Lys158 is 

interacting with catalytic amino acid Tyr155 and as for 17β-HSD14, the interaction is formed 

with the catalytic Tyr154 via electrostatic interactions and acts as a catalytic base. This leads 

to the lowering of the pKₐ value of Tyr155 in 17β-HSD1 [153]. As suggested by a study done 

by our working group [139], Lys158 is involved directly in the activity of the enzyme after 

applying multiple fluorescence assays on the 17β-HSD14 variant Lys158Ala, which showed 

an absence of activity compared to the wild type, while using both estradiol (E2), 5-androstene-

3β,17β-diol (5-diol) as a substrate and NAD+ as a cofactor in the activity assay. Cys255 is 

located on the flexible loop of the enzyme, as seen in the crystal structure, this amino acid has 

a role in the interface between the two dimers. Cys255 forms a disulfide bridge with the 

equivalent Cys255ˈ from the adjacent monomer mate. Due to the hook-like shape of the flexible 

loop, and how the two flexible loops from both adjacent monomer mates are located, they are 

able to link together like a ribbon. The placement of Cys255 and Cys255ˈ from both adjacent 

monomers is at the top of the hook. It is believed that the disulfide bridge formed by both has 

a major role in the stability of the tetrameric assembly of the enzyme. However, a study done 

by our working group [139] shows the role of the disulfide bridge is irrelevant neither for the 

activity nor in the stabilization of the dimer or the tetramer. Tyr253 is also located at the flexible 

loop of 17β-HSD14. To better understand the involvement of this amino acid, the enzyme 

should be studied as a dimer because of how Tyr253 is placed on the flexible loop, which points 

toward the binding pocket of the adjacent monomer mate. The crystal structure with a non-

steroidal inhibitor 1 (PDB ID: 5ICM) which is a highly potent 17β-HSD14 inhibitor, shows 

that Tyr253ˈ from the adjacent monomer has an interaction with the fluorine moiety of the 

inhibitor 1 binding in the active site of the enzyme. 

 

Figure 3. Highly potent 17β-HSD14 inhibitor (inhibitor 1). 
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Gln148 is located at the rim of the active site of the enzyme acting as a gate keeper. The 

positioning of this amino acid of the rim has a crucial part in obtaining a binding compound 

inside the active site. His93 is placed behind Gln148 in the inner pocket of the active site and 

they both interact with each other. Although located in the binding pocket and its entrance, both 

His93 and Gln148 do not share any interactions with inhibitor 1. To get a better understanding 

of the role of the enzyme and its metabolic participation in the human body, His93, Gln148, 

Lys158, Tyr253 and Cys255 were investigated via a mutagenesis study. In order to observe the 

affinity for each mutated variant using inhibitor 1 was used as a standard to check the difference 

of binding mode in the active site or if there will be any affinity at all. All of these amino acids 

were replaced with an alanine, each variant contains one mutated amino acid which led to five 

different mutated variants His93Ala, Gln148Ala, Lys158Ala, Tyr253Ala and Cys255Ala. The 

variants were all expressed and purified in our lab with addition of NAD+ as cofactor. Then 

the protein is crystallized by the vapour diffusion method with the presence of inhibitor 1 with 

each variant. Five crystal structures were determined using X-ray crystallography as a method 

of choice. Each one of the five variants were further characterized by enzyme kinetics. The 

mutagenesis study was carried out on the allelic variant S205 [142]. 

 

2.2. Materials and methods 

2.2.1. Preparation of the mutant proteins 

The five 17β-HSD14 variants, His93Ala, Gln148Ala, Lys158, Tyr253 and Cys255Ala, were 

all generated by mutating the p11-HSD17B14 vector (sequenced according to NCBI data bank 

entry Q9BPX1). The Quick-Change Lightning Multi Site-Directed Mutagenesis kit (Agilent 

Technologies, La Jolla, CA, USA) was used. The sequence was coded for the wild type variant 

S205 and T205, but it was the wild type variant S205 that was used in this study, although some 

kinetics were done using the wild type variant T205, but all the structural studies were done 

with the S205 variant. The forward primer 5’-

CGGACCCGCGTGCGACCATTCGTGAAGGTATGC-3’ and the reverse primer 5’-

GCATACCTTCACGAATGGTCGCACGCGGGTCCG-3’, were obtained from Udo 

Oppermann, Structural Genomics Consortium (SGC) Oxford. The mutation was introduced to 

the plasmid using the manufacturer instructions and it was later checked by Sanger sequencing 
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to ensure that both the mutation and its site are correct. The primers that have been utilized for 

the generation of the variants are listed in Table 1. 

Table 1. Internal primers used for the site-directed mutagenesis. 

Mutation Direction Nucleotide sequence of primer 

Lys158Ala Forward G TAT GTG GCG ACC GCA GGT GCG GTG ACC GC 

 Reverse GC GGT CAC CGC ACC TGC GGT CGC CAC ATA C 

His93Ala Forward AT AAT GCG GGT CAT GCC CCG CCG CCG CAG CGT C 

 Reverse G ACG CTG CGG CGG CGG GGC ATG ACC CGC ATT AT 

Gln148Ala Forward TG GGT GCG ATT GGT GCG GCG CAG GCG GTG CCG T 

 Reverse A CGG CAC CGC CTG CGC CGC ACC AAT CGC ACC CA 

Cys255Ala Forward CTG GGC TAT GGT GCC AAA GCG AGC CGT AGC 

 Reverse GCT ACG GCT CGC TTT GGC ACC ATA GCC CAG 

Tyr253Ala Forward GCG GAA CTG GGC GCT GGT TGC AAA GCG AGC C 

 Reverse G GCT CGC TTT GCA ACC AGC GCC CAG TTC CGC 

The mutant codons of the primer pairs are underlined. 

The plasmid sequences were further investigated to ensure a successful introduction of the 

desired replacement of amino acid (Eurofins Genomics, Ebersberg). 

2.2.2. Expression and purification of 17β-HSD14 variants 

All of the variants shown in this study are from the human wild type variant S205 of 17β-

HSD14 and they were expressed in E. coli BL21 (DE3) pLysS competent cells (Agilent 

Technologies) as pET- based vector, p11 Torontal (SGC). These E. coli BL21 (DE3) pLysS  are 

chemically competent cells designed for applications that require high-level expression of non-

toxic recombinant proteins from high copy number, T7 promoter-based expression systems 

[154], containing the coding sequence of the human HSD17B14 variant S205 with N-terminal 

6His-tag. The competent cells were removed from -80°C and put on ice to prevent a heat shock. 

The competent cell solution was waited to liquefy slowly while on ice (approximately 20 min). 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=IVGNprodListLink&FeatureType=501&Feature=192801&IVGNcatDisplayCategory&catKey=81301
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2 μL of p11-17 human βHSD type 14 variant S205 is added to 25 μL of the competent cells 

and stirred gently without any force or shaking then incubated for 30 minutes. The mixture is 

kept all the time on ice to prevent the decaying of the competent cells. After incubation a heat 

shock is applied for 30 seconds at a temperature of 42°C using a thermomixer, followed by 

returning the sample immediately on ice. This procedure allows the plasmid to diffuse through 

the pores at the surface of the competent cells that were extended by the heat shock [154]. An 

additional 973 μL of Lysogeny Broth medium (LB-medium) is added to the mixture enlarging 

the volume to 1 mL. The sample is transferred to a thermomixer and incubated for 45 minutes 

at 37°C at 350 rpm. After incubation, the sample is centrifuged for one minute at 13000 rpm. 

900 μL of the supernatant is removed and the centrifuged cells are resuspended gently by 

stirring in the remaining 100 μL. Under a sterile hatch, the cells are transferred to an agar plate 

and spread on top of it and moved to a plate incubator at a temperature of 37°C overnight. One 

colony of the grown culture on the agar plate is transferred to a flask containing 90 mL of 

Terrific Broth medium (TB-medium) containing 100 μg/mL of ampicillin with an additional 

10 mL of potassium salt solution, containing potassium dihydrogen phosphate (KH₂PO₄) 23.1 

mg/mL and dipotassium phosphate (K₂HPO₄) 125.4 mg/mL which stabilizes the pH of the 

culture. The culture is incubated overnight (at least 12h) at 37°C in a shaking incubator. The 

100 mL culture is divided equally on four big 5-liter glass containers containing 900mL of TB-

medium, 100 mL potassium salt solution and 100 μg/mL ampicillin, with 25 mL of the culture 

is added to each container. The containers are placed in a shaker at 37°C and the optical density 

OD₆₀₀ is checked regularly (ideally, every 20 minutes) using the spectrometer NanoDropᵀᴹ 

(Thermo Fisher SCIENTIFIC) and freshly prepared TB-medium as a blank until the OD₆₀₀ 

reaches 0.5. The temperature is decreased to 15°C in the shaker, when the OD₆₀₀ reaches 1. A 

volume of 1 mL IPTG (isopropyl-β-D-thiogalactopyranosid) solution 120 mg/mL dissolved in 

distilled water is added to each container. The cells are left to grow overnight (at least 16h). 

The cell culture is centrifuged for 15 minutes at 10000 rpm at 4°C and the cells are harvested 

and the supernatant is disposed. The cells are stored at -80°C. It is worth mentioning that the 

cells should not be immediately lysed for purification after harvesting since the final yield of 

the protein would be cut by half or even less, although the reason for that is yet unknown. After 

freezing, the cell pellets are transferred to ice and resuspended in lysing buffer (LB) containing 

25 mM Tris, 500 mM NaCl, 5mM imidazole, 250 mM glucose, TCEP (Tris 2-carboxyethyl 

phosphine hydrochloride) 0.25 mM and 1 mM NAD+, after adjusting the pH to 8. 5% w/v 

triton X is added to the final volume of the LB as well as one tablet of complete protease 

inhibitor cocktail (Roche) is added to each 100 mL of the lysing buffer. The cells are mixed 

https://www.sigmaaldrich.com/catalog/substance/tris2carboxyethylphosphinehydrochloride286655180545911
https://www.sigmaaldrich.com/catalog/substance/tris2carboxyethylphosphinehydrochloride286655180545911
https://www.sigmaaldrich.com/catalog/substance/tris2carboxyethylphosphinehydrochloride286655180545911
https://www.sigmaaldrich.com/catalog/substance/tris2carboxyethylphosphinehydrochloride286655180545911
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and resuspended with LB-medium in a glass dancer until a more viscous texture is reached. 

The resuspended pellets are lysed using an Emulsiflex. At least four cycles should be performed. 

The procedure must be done while the pellets are on ice and there should be a small break 

between each cycle to prevent the pellets from heating up which will lead to the denaturation 

of the protein. Another 0.5 mM of NAD+ is added for a further stabilization of the protein. The 

protein is centrifuged at 10000 rpm for 2 h, the supernatant is transferred to a sterile container 

and the precipitant is discarded. Using the ÄKTA, the supernatant is run through a HisTrapᵀᴹ 

Fast Flow Crude (GE Health care) for one or two (more preferable) runs with 2 mL/min (flow 

through speed) maximum. The HisTrapᵀᴹ is washed with Tris BB (Binding Buffer) pH 8 

containing 0.25 mM Tris, 500 mM NaCl, 250 mM glucose, 0.25 mM TCEP and 0.5 mM NAD+ 

with 2 mL/min and under a pressure of 0.5 mPa to eliminate non-specific bound proteins until 

a plateau on the ÄKTA is reached. Then the column is washed with Tris WB (Washing Buffer) 

containing 50 mM Tris, 1.5 M NaCl, 0.5 mM NAD+ at 2 mL/min and under 0.5 mPa to 

eliminate non-specifically bound DNA until a plateau is reached again. The last washing step 

is performed with Tris BB to expel the Tris WB from the column. The volume of Tris BB buffer 

used depends on the capacity of the column, but should be at least five times the volume of the 

column. First, the column is eluted with a ratio of 7% Tris EB (Eluting Buffer) containing 25 

mM Tris, 500 mM NaCl, 300 mM imidazole, 250 mM glucose, 0.5 mM TCEP and 0.5 mM 

NAD+ and 93% Tris BB to elute non-specifically bound proteins until a plateau is reached, 

then the column is eluted with 100% Tris EB and the flow through is collected. 10 mL of TEV 

(Tobacco Etch Virus) at 1 mg/mL is added to the sample and transferred to 4 L of dialysis buffer 

containing 0.25 mM Tris, 500 mM NaCl, 250 mM glucose, 0.25 mM TCEP and 0.5 mM NAD+. 

The sample is left in the dialysis buffer overnight (at least 12 h) at 4°C. The sample is locked 

inside a porous membrane (10-20 kDa) while in the dialysis buffer. After dialysis, the sample 

is applied to a HisTrapᵀᴹ and washed with Tris BB. A gradient of 5% Tris EB to 95% Tris BB 

is applied to obtain the weakly binding targeted protein inside the HisTrap column in the flow 

through. Last step is injecting the protein sample into a HiLoad Superdex 200 column (GE 

Healthcare) after concentrating it to 5 mL using VIVA spin. The peak sample is collected and 

frozen at -80°C after adding 0.5 mM NAD+ for more stability of the sample. 
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2.2.3. 17β-HSD14 kinetics 

The activity of the 17β-HSD14 wild type is decreased by the long storage time. Enzymatic 

activity is measured using fresh sample of the enzyme as fast as possible after purification (less 

than a week). The same is done as well for determining the kinetics of the variants to ensure 

all measurements for all variants are done at equal conditions. The enzymatic activity was 

evaluated by fluorometric assay using a protocol developed in our lab [142]. Fluorescence 

spectra were recorded on a Tecan Saphire 2 machine. Before starting the enzymatic assay, the 

concentration of the protein is measured immediately before the assay (1 mg/mL, 3.5 μM in 

the assay) and NAD+ is added to reach 1.2 mM in the protein buffer. The substrate in the 

enzymatic activity assay is E2 and 5-diol (32 μM) in 100 mM phosphate buffer, pH 8, at 25°C. 

A separate measurement was done for each substrate. The substrates were first dissolved in 

DMSO and resuspended in the phosphate buffer reaching a final concentration of 0.05% 

DMSO in the phosphate buffer. The sample containing the protein and NAD+ is mixed with 

the phosphate buffer containing the substrate in a 96-well plate making the volume up to 200 

μL in each well (180 μL of phosphate buffer and 20 μL of protein buffer). The fluorescence is 

produced due to the formation of NADH that is driven by the oxidation of E2 and 5-diol at 

position 17 in the presence of NAD+. NADH fluorescence emission was measured at 496 nm 

following excitation at 340 nm. The slit width for excitation was 7 nm while that for emission 

was 15 nm. A linear relationship between product formation and reaction time was obtained. 

The slope of these progress curves, representing the velocity of the NADH formation, was 

calculated by linear regression, and revealed the initial velocity. For each new batch of protein, 

to ensure the purity of the protein sample and the absence of any parasitic activity, a validation 

experiment was run without E2 as a control. This linear relationship was obtained by keeping 

the same concentration of protein but with a different substrate concentration with a series of 

dilutions ranging from 0.1 mM to 7.5 mM in the phosphate buffer. 

The dilution method is furthermore explained in Table 2. 
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Table 2. The dilution series of the substrate and final concentration in the assay 

Buffer 

Nr. 

Concentration 

of stock 

solution (E2 

or 5-diol) ᵃ 

Volume ratio 

(substrate + 

phosphate 

buffer) ᵇ 

Substrate 

concentration in 

phosphate buffer 

Substrate 

concentration in 

assay  ͨ 

10 7.5 mM 0.05% + 99.95% 37.5 μM 33.7 μM 

9 5 mM 0.05% + 99.95% 25 μM 22.5 μM 

8 3 mM 0.05% + 99.95% 15 μM 13.5 μM 

7 2 mM 0.05% + 99.95% 10 μM 9 μM 

6 1.5 mM 0.05% + 99.95% 7.5 μM 6.75 μM 

5 1 mM 0.05% + 99.95% 5.25 μM 5.625 μM 

4 0.75 mM 0.05% + 99.95% 3.75 μM 3.375 μM 

3 0.5 mM 0.05% + 99.95% 2.5 μM 2.25 μM 

2 0.3 mM 0.05% + 99.95% 1.5 μM 1.35 μM 

1 0.2 mM 0.05% + 99.95% 1 μM 0.9 μM 

0 0.1 mM 0.05% + 99.95% 0.5 μM 0.45 μM 

ᵃ The concentration of substrate (E2 or 5-diol) in DMSO. ᵇ Ratio of substrate dissolved in DMSO to 

phosphate buffer. ͨ The final concentration of substrate in the enzymatic assay after adding the protein sample 

ratio 1:9 of protein buffer and phosphate-substrate buffer, respectively. 

 

All of the 17β-HSD14 variants were measured under the same conditions, except for the 

Gln148Ala variant because the reaction in the enzymatic assay was so fast, it was diluted 80-

fold to a concentration of 45 nM to be able to determine the Km. 
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Figure 4. The oxidation of the OH-group at C17 

of both substrates (E2 and 5-diol). The reaction 

is triggered by the presence of NAD+. This 

mechanism is the driving force for the assay. The 

cofactor is reduced to NADH which gives the 

florescent emission in the enzymatic assay. 

 

 

2.2.4. Michaelis-Menten kinetic constant 

To determine both kinetic parameters Km and Vmax, the substrate concentration was varied 

between 12% and 250% of the estimated Km value. Multiple assay cycles took place in order 

to achieve an accurate statistic that solidifies the result of other similar runs. The assay for each 

variant was done in 96-well plates in triplicate (3 wells for each substrate concentration). At 

least five independent measurements were performed on each variant (n = 5-7). The kinetic 

constants Km (μM) and Vmax (nM.secˉ¹) were calculated from the initial velocities by directly 

fitting the curves in Lineweaver-Burk plots. The kcat values (minˉ¹) were calculated from the 

Vmax values. The fitting and data analysis was performed using GraphPad Prism 7 [155]. 

 

2.2.5. Native PAGE electrophoresis 

Native PAGE electrophoresis is a method used to determine the net charge, size and shape of 

the protein sample investigated. In this study it is used to confirm the tetrameric assembly of 

the variant sample, so both the wild type and the variants are included in this experiment. The 

stock solutions prepared are acrylamide solution (30 grams acrylamide and 0.8 grams of bis-

acrylamide in 100 mL of distilled water) stored at 4°C, separating buffer (1.5 M Tris HCl 

dissolved in distilled water, pH = 8.8), stacking gel buffer ( 0.5 M Tris HCl dissolved in distilled 

water, pH = 6.8) and polymerizing solution (10% ammonium persulfate in distilled water and 

TEMED). The sample buffer is prepared by adding 15.5 mL of 1 M Tris HCl solution (dissolved 

in distilled water) pH=6.8, 2.5 mL of 1% bromophenol blue solution, 7 mL distilled water and 

25 mL glycerol. This procedure is sufficient to make five gels with an average size of 10*6 cm 
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and 2mm thickness. In the case of 17β-HSD14 variant samples, there is no need of adjusting 

the pH of the sample buffer because the protein buffer has a close pH range. To prepare the 

electrophoresis buffer, in a 1 L container 3 grams Tris base and 14.4 grams of glycerol are 

mixed and the volume is adjusted to 1 L with a final pH of 8.3. As for preparing the gel, at first 

the separating gel, 7.5 mL acrylamide solution, 7.5 mL separating gel buffer, 14.85 mL distilled 

water, 150 μL polymerizing solution and 15 μL TEMED were added in a flask and stirred 

gently for an even mixing and poured into a molder (normal SDS gel molder). 60-70% of the 

volume should be filled and it should rest for at least 30 minutes to solidify. A layer of 

isopropanol is applied on top of the gel in the molder to prevent the gel from drying or the 

formation of any air bubbles on the exposed separating gel’s edge. While the separating gel is 

solidifying, the stacking gel solution should be prepared. 1.5 mL acrylamide solution, 3 mL 

stacking gel buffer, 7.4 mL distilled water and 100 μL polymerizing solution were added in a 

flask and mixed gently. The isopropanol layer is poured out and the stacking gel is added on 

top, a plastic separator is added on top before the stacking gel solidifies to define a pocket in 

which the sample would be loaded into. The gel is gently transferred to an electrophoresis 

machine and filled with the electrophoresis buffer until the gel is completely soaked. The 

samples are loaded in the gel with 10 μL volume from each and a protein ladder (Thermo 

Fisher) in one pocket is used as a reference for comparison. The gel electrophoresis is started 

with protein sample running toward the anode. At last, the gel is stained with Coomassie blue 

dye. This protocol is based on an established procedure [156] with some modifications to suit 

the protein sample characterization. 

 

2.2.6. Protein crystallization 

Before crystallization of the protein, the activity and the concentration of the enzyme have to 

be guaranteed for every new protein batch prepared. Activity is checked with enzymatic 

activity assay (fluorometric assay) and concentration should be 10 mg/mL (35 μM) in the 

protein buffer that contains 500 mM NaCl, 25mM Tris HCl, 250 mM glucose, 0.25 mM TCEP 

and 0.5 mM NAD+ at pH=8. The protein was crystallized using hanging drop and sitting drop 

methods. Although, the crystallization buffers are the same for each variant, a variety of 

dilutions were used to obtain crystals for each variant. Co-crystallization is the method of 

choice. A stock of 100 mM of inhibitor 1 was dissolved in DMSO and a final volume of 5% of 

DMSO in the protein sample making the final concentration of inhibitor 1 in the sample 5mM. 
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The protein sample was incubated with inhibitor 1 for at least 20 minutes at room temperature. 

The mixture was centrifuged at 12000 g for 15 minutes to ensure all non-dissolved particles of 

inhibitor 1 have precipitated. The protein-inhibitor 1 sample drop was placed in the crystal 

plate and additionally each crystallization buffer was added to the protein drop with a ratio of 

1:1. 3 μL each of the protein sample and crystallization buffer was used to make the final 

volume of the drop 6 μL. The crystallization buffer contains 10-25% (w/v) PEG6000, 0.1 M 

HEPES pH=7 and 5% DMSO (v/v). Each well in the crystal plate is filled with 800 μL of 

crystallization buffer. A range of PEG6000 is used in the crystallization buffer 10-25% (w/v) 

and that is where the difference in the crystallization condition between each variant is noticed. 

The crystal plates are kept in a controlled cooling area at 18°C. During the crystal formation, 

any slight imbalance or change with the surrounding temperature (±0.5°C) could affect the 

formation of the crystals or even, the crystals could form in a different PEG6000 concentration 

and that is the main reason why a variation of PEG6000 ratio was used in each well. It was 

seen in many cases that the crystals of the same protein variant are obtained from a different 

concentration of PEG6000. The hanging drop plates are sealed using a semi-viscous silicone 

gel placed around the rim of the well to fix the glass slides and the sitting drop plates are sealed 

by transparent tape (Hampton research). It takes between 10-20 days until a measurable protein 

crystal is grown. A cryo-protectant buffer is needed before the crystals are frozen in liquid 

nitrogen. The cryo-protectant buffer contains the same condition as the one the crystal is grown 

in with an additional 20% glucose v/v and inhibitor 1 (5 mM final concentration) to prevent the 

washing out of the inhibitor. 

 

Figure 5. Crystals of 17β-HSD14 variants. 

 

All of the crystals above are obtained using co-crystallization method in sitting drop plates. 

The size, shape, fragility and resolution of crystals is dependent on the thermal stability of the 

environment and at which PEG6000 concentration range they formed in. The crystals that form 
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in a higher ratio of PEG6000 tend to have less water content and a better resolution in most of 

the cases compared to their equals from a lower ratio of PEG6000. 

 

2.2.7. Data collection and processing 

For this study, all data were collecting at Helmholtz-Zentrum Berlin (Berlin-Adlershof, 

Germany) [157] at BESSY II at beam line MX14.1 and MX14.2. The data collection was done 

under cryogenic temperature at 100 K (-173°C) and wavelength 0.9184Å on a silicon Pilatus 

6M pixel detector at atmospheric pressure. Data sets collected were indexed, processed and 

scaled using XDSAPP [158]. Details of the data collection and processing are given in Table 

5. 

 

2.2.8. Crystal structure determination and refinement 

Crystal structures were determined by molecular replacement using the program PHASER 

MR [159] from the CCP4 suite [160]. The structure of the wild type 17β-HSD14 S205 

variant was used as a search model for molecular replacement (PDB ID: 5ICM) after 

removing all non-protein molecules and hydrogen atoms using FCONV [161]. In the 

refinement, a 5% subset of the reflections was used for the Rfree calculations and they were 

consequently omitted from the refinement. The model was built in COOT [162] and the 

refinement was done using PHENIX.refine version 1.10.1-2155 [163]. The restraints of the 

ligands were generated using the Grade Web Server [164] or by eLBOW from PHENIX 

[163] which was also used for energetically minimization and restraint generation. SMILEs 

codes were obtained from Molinspiration v2014 [165]. First refinement step was performed 

with default parameters. XYZ coordinates, occupancies and individual B-factors were 

alternated with structural adaption in COOT [162]. A series of repeated refinement steps 

were applied until the electron density is well explained by the built model. His93Ala (PDB 

ID: 6HNO), Gln148Ala (PDB ID: 6FFB), Tyr253Ala (PDB ID: 6G4L) and Cys255Ala 

(PDB ID: 6GBT) were isotropically refined, while Lys158Ala (PDB ID: 6H0M) was 

anisotropically refined using PHENIX.refine [163]. Water molecules in all data sets were 

isotropic refined and hydrogen atoms were included in the final model at calculated 

positions. Refinement statistics are included in Table 5. 
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2.2.9. Mass spectrometry under denaturating and native conditions 

The molecular weight of the mutated monomeric proteins was determined by 

electrospray/ionization (ESI) under denaturating conditions after passing through an RP-HPLC 

(RP4H or RP-C4) column and analyzed on an Orbitrap Velos Pro from Thermofischer 

Scientific. The molecular weight of the intact folded protein samples was determined by native 

mass spectrometry using a TOF-Mass spectrometer (Synapt G2 Si, Waters).  

 

2.2.10. Volume calculation of the binding pocket 

The volume of the binding pocket was calculated using FCONV [161], a program devolved in 

our working group. The first step of the program is to identify the residues surrounding the 

binding pocket. In the case of 17β-HSD14, the protein has to be studied as a dimer because of 

the residues from the adjacent monomer mate interacting with the inhibitor in the binding 

pocket. All amino acids clustered for this study should have an interaction with the inhibitor in 

the binding pocket or forming the interior surface of the same binding pocket. The amino acids 

that are engaged in this study are clustered into nine continuous chains surrounding the binding 

pocket: Thr15 – Ala23, Lys41 – Arg48, Cys61 – Gln65, Val85 – Gln97, Glu112 – Thr122, 

Asn138 – Gly144, Ile146 – Ala151, Ile182 – Gly216 and Thr246 – Lys256. The chain Thr246 

– Lys256 is the one identified from the adjacent monomer mate. 

 

2.3. Results 

2.3.1. Site directed mutagenesis, expression, purification and characterization 

 

The five selected amino acids His93, Gln148, Lys158, Tyr253 and Cys255 were individually 

mutated to alanine. Alanine is frequently selected to functionally probe the importance of 

residues as it usually maintains the spatial folding without introducing novel specific 

interactions. All the variants of 17β-HSD14 were applied to the wild type S205 variant. The 

molecular mass of the variants and the wild-type protein was determined under denaturing 

conditions. The observed masses, shown in Table 3, were consistent with the expected values.  
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Table 3. Molecular mass of the wild-type and the mutants as monomer and as tetramer  

Protein 
Monomer mass in Daa 

(calculated massb) 
Tetramer mass in Dac 

Wild-type S205 variant 28641 (28641.78) 114500 

Lys158Ala 28584 (28584.68) 115170 

His93Ala 28576 (28575.71) nd 

Gln148Ala 28585 (28584.72) 115144 

Cys255Ala 28609 (28609.72) nd 

Tyr253Ala 28549 (28549.68) nd 

a The molecular masses of the monomers were determined by ESI mass spectrometry  
b Calculated masses using the web Server expasy [166] 
c The molecular masses of the tetramers were determined by TOF-mass spectrometry 

nd: not determined 

 

The assembly of all studied protein variants was further investigated using size-exclusion 

chromatography (Figure 7), native mass spectrometry and native PAGE gels (Figure 6). 

Although the mass was determined for the wild type (Table 3) and all the variants, the native 

mass determinations Table 3 were only successful for the wild type (S205 variant) and for both 

Lys158Ala and Gln148Ala variants confirming that these species also form a homotetramer in 

the gas phase under the applied MS conditions. As for the His93Ala, Tyr253Ala and Cys255Ala 

variants, no interpretable mass peak could be obtained under the conditions of the native mass 

spectrometry experiment. Regarding the size-exclusion chromatography, the column used was 

SEC200 (HiLoadᵀᴹ 26/200 Superdexᵀᴹ 200pg GE Life Science). All protein samples (wild 

type and variants) eluted after addition of the same eluent volume and with comparable 

chromatographs (Figure 7). The final protein yield after a successful purification of the wild 

type and the variants ranges from 7 to 13 mg for each litre of cell culture utilized. 
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Figure 6. Native PAGE of the wild-type and the mutants 

 

 

 

 
 

Figure 7. The diagram of the eluted protein peak. The highest peak shows the eluted protein in 

the flow through after using 100% of elution buffer. the ÄKTA machine was used in this 

experiment. The sample used in this figure is the wild type (S205 variant). X axis (volume mL) 

and Y axis (UV emission) 

 

 

The native PAGE gel analysis showed a similar mobility for all studied variants as for the wild 

type confirming their tetrameric assembly except for the Cys255Ala variant. Under the 

conditions of the native gel, a preponderant band was observed at the molecular weight of the 
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dimer for Cys225Ala and might suggest that for this variant the equilibrium is shifted 

predominantly toward the dimer [139]. 

 

2.3.2. Enzyme kinetics of 17β-HSD14 wild type and variants 

In a previous study [142], the wild type enzyme S205 variant showed a higher efficacy in the 

presence of E2 (143 nM sec-1 mg-1 of substrate converted by the protein) compared to the 

efficacy with 5-diol (68 nM sec-1 mg-1  of substrate converted by the protein). Although, in the 

case of the two variants Lys158Ala and Tyr253Ala, no matter which substrate was used both 

variants have very low or no catalytic activity (between 0.1 and 12 nM sec-1 mg-1 of substrate 

converted by the protein). Unfortunately, due to the absence of activity, no kinetic parameters 

could be determined for these two variants. The Cys255Ala variant showed a similar turnover 

(kcat) as the wild type for both substrates (E2 and 5-diol), shown in Table 4. The Km value, 

however, differed slightly for E2 exhibiting a five-fold higher Km and for 5-diol a 25-fold 

increase. On average, the kinetic profile of this variant was similar to the wild type for both 

substrates. Obviously, the mutated residue Cys255 did not have a pronounced impact on the 

kinetic properties of the enzyme. In case of the His93Ala variant, a three to four-fold faster 

initial velocity was observed for E2 and 5-diol and for Gln148Ala variant a 20-fold increase 

was observed with E2 but not for 5-diol. The initial velocity of the His93Ala variant was found 

to be slightly higher than the wild type with E2 (four times). This result matched well with a 

slightly increased turnover of the mutant. The Gln148Ala variant also catalyzes the reaction 

faster in presence of E2, and the higher initial velocity correlated well with the improved 

turnover (0.51 min-1) compared to the wild type (0.02 min-1). The faster turnover of this mutated 

form was not observed with 5-diol, thus this variant clearly discriminated between both 

substrates exhibiting a nine-fold and a 22-fold higher kcat, respectively. In presence of 5-diol 

nearly the same kcat was observed for E2 and 5-diol (4-fold and 2-fold, respectively). The 

catalytic efficiency (kcat/Km), which allows the comparison of the two substrates, E2 and 5-diol 

for one enzyme, highlights that for the variant Gln148Ala E2 is more efficient than 5-diol by a 

factor of five. 
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Table 4. Enzyme kinetics of 17β-HSD14 wild type and variants. 

 

Estradiol 5-diol 

Initial 

velocityb 
Km

c Vmax
d kcat

e 
Initial 

velocityb 
Km

c  Vmax
d kcat

e 

Wild-typef 143±16 6.2±1.4 1.3±0.1 0.02 68±9.0 6.6±1.4 1±0.4 0.02 

Lys158Alaf 5.6±5.0 nd nd nd 12±2.2 nd nd nd 

His93Alaf 541±35 6.2±1.9 12.0±2.4 0.21 214±28 0.3±0.1 3.5±0.2 0.06 

Gln148Alaf 

 

2741 

±158 
ns nd nd 135±4 2.1±0.9 2.5±0.3 0.04 

Gln148Alag 

 
nd 4.0±0.4 

0.4 

±0.1 
0.51 nd nd nd nd 

Cys255Alaf 155±20 1.3±0.3 2.8±0.3 0.05 66±8 
0.25 

±0.03 
1.1±0.4 0.02 

Tyr253Alaf 5.4±2.0 nd nd nd 0.1±2.2 nd nd nd 

Mean values and given standard deviations were calculated based on 5−7 measurements. b. Given in nM.sec-

1.mg-1 protein, [substrate]= 32 µM. c. Given in µM. d Given in nM.sec-1. e Given in min-1. f Protein 

concentration: 3.5 µM, 1 mg/mL. g Protein concentration: 45.5 nM, 0.013 mg/mL. nd: not determined, ns: 

no saturation. 

 

2.3.3. Comparison of crystal structures 

Details of the data collection, processing, diffraction data, refinement and other parameters 

related to 17β-HSD14 crystal structures variants are listed in Table 5. 
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Table 5. Data collection and refinement statistics for all crystal structures 

Variant 

PDB code 

Tyr253Ala 

6G4L 

Cys255Ala 

6GBT 

Lys158Ala 

6H0M 

Gln148Ala 

6FFB 

His93Ala 

6HNO 

Data collection and processing 

Space group I 4 2 2 I 4 2 2 I 4 2 2 I 4 2 2 I 4 2 2 

Unit cell 91.5 91.5 132.2 91.6 91.6 134.1 91.6 91.6 131.1 91.6 91.6 132.5 91.4 91.4 132.7 

Matthews coefficient a 2.4 2.4 2.4 2.4 2.4 

Solvent content (%) 49.4 49. 9 49.0 49.4 49.2 

Diffraction data b 

Resolution range 
50-1.44 

(1.53-1.44) 

50-2.10 

(2.22-2.10) 

50-1.25 

(1.33-1.25) 

50-1.65 

(1.75-1.65) 

50-1.68 

(1.78-1.68) 

Unique reflections 
50078 

(7713) 

17086 

(2653) 

76893 

(12249) 

33549 

(5353) 

31576 

(5144) 

R(I)sym (%) c 5.5(50.3) 8.7(47.7) 4.5(49.5) 9.3(50.4) 5.8(50.2) 

Wilson B factor 23.4 31.6 18.1 18.2 20.7 

completeness 99.4(96.3) 99.4(97.4) 99.9(99.7) 97.7(98.0) 97.5(99.7) 

redundancy 8.5(8.2) 8.6(9.0) 10.1(9.5) 8.6(8.8) 8.2(8.7) 

<I/σ(I)> 20.6(3.2) 20.8(4.8) 27.1(4.1) 14.0(2.9) 23.2(4.0) 

Refinement 

Resolution range 46.21-1.44 37.83-2.10  46.07- 1.25  45.34-1.65 46.32-1.68 

Reflections used in 

refinement (work/free) 

50076 

(47572/2504) 

17086 

(16231/855) 

76893 

(73048/3845) 

33549 

(31871/1678) 
31576 (29997/1579) 

Final R value for all 

reflections (work d/free e) 

(%) 

15.6/17.9 14.9/19.0 12.6/14.7 14.9/17.5 16.8/20.5 

Protein residues 253 255 257 253 257 

Water molecules 218 159 239 214 191 

rmsd from ideality: bond 

length (Å) 
0.008 0.009 0.007 0.008 0.009 

rmsd from ideality: bond 

angle (°) 
1.005 0.886 1.008 0.998 1.038 

Ramachandran most 

favored(%) f 
97.6 97.7 98.1 98.4 98.0 

Ramachandran 

additionally allowed (%) 
f 

2.4 2.3 1.9 1.6 2.0 

Mean B factor protein 

(Å²) g 
18.9 25.6 15.5 21.1 28.2 

Mean B factor ligand 

(cofactor/ligand) (Å²) g 
14.7/18.9 23.7/27.1 11.4/- 15.5/35.1 28.9/- 

Mean B factor water 

molecules (Å²) g 
29.2 34.0 27.2 32.2 35.6 

a Calculated with Matthews_coef program from CCP4 suite version 6.4.0. b Values in parenthesis describe 

the highest resolution shell. c R(I)sym = [∑h∑i|Ii(h) – ⟨I(h)⟩|/∑h∑iIi(h)] × 100, in which I(h) is the mean of 

the I(h) observation of reflection h.  d Rwork = ∑hkl|Fo – Fc|/∑hkl|Fo|. 
 e Rfree was calculated as shown 

for Rwork but on refinement-excluded 5% of data. f Calculated with PROCHECK [167]. g Mean B factors 

were calculated with MOLEMAN [168]. 
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All protein variants were co-crystallized with inhibitor 1 to check the difference of the binding 

mode in the various variants. Crystal structures were obtained for all 17β-HSD14 variants, 

holo-enzyme for His93Ala and Lys158Ala as a ternary complex with the cofactor and in 

complex with cofactor and inhibitor 1 for variants Gln148Ala, Tyr253Ala and Cys255Ala.  

 

 

Figure 8. Superimposition of the crystal structures of the different 17β-HSD14 mutated 

variants. A. Cartoon representation. B. Surface representation. The cofactor and inhibitor 1 

are omitted for clarity. The PDB IDs of the corresponding 3D structures are indicated by the 

colours used to represent the individual protein. 

 

As seen in Figure 8, there are no structural changes and all the variant structures exhibit the 

same overall geometry. In the case of Cys255Ala variant (PDB ID: 6GBT) shown in light pink 

in Figure 8, one extra residue is visible in the electron density at the end of the flexible loop 

(before the C-terminus) which is Arg259. The C-terminus was not visible in the electron 

density for the Cys255Ala variant, unlike in other variant structures. To get a better 

understanding of the difference between the variant structures, the maximum RMSD 

(maxRMSD) between the Cα atoms of two structures was calculated to obtain insight into the 

local variation between the mutated variants (Table 6). Each maximum RMSD value was 

calculated for each variant with each other as pairs. 
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Table 6. Maximum RMSD between Cα carbons for pairs of the different structures 

MaxRMSD (Å) Structures 

0.23 Gln148Ala + Lys158Ala 

0.24 Cys255Ala +  Lys158Ala 

0.22 His93Ala +  Cys255Ala 

0.21 His93Ala + Lys158Ala 

0.21 Gln148Ala + Cys255Ala 

0.18 His93Ala + Tyr253Ala 

0.18 His93Ala + Gln148Ala 

0.17 Tyr253Ala + Lys158Ala 

0.18 Tyr253Ala + Cys255Ala 

0.17 Tyr253Ala + Gln148Ala 

Fitting was performed using the McLachlan algorithm as implemented in the program Profit [169]. 

 

All maximum RMSD values obtained are rather low and very similar. These values highlight 

the similarity of all mutants. Nonetheless, a slight variation can be observed with maxRMSD 

values between pairs with Tyr253Ala. This could be due to the location of this residue on the 

flexible loop near the C-terminus. The flexible loop in 17β-HSD14 acts as a gate keeper that 

regulates the compound accessibility to the active site. Residue Tyr253 is pointing toward the 

active site and mutating it to Alanine gives better accessibility and higher exchange and 

movement rate in the active site compared to the wild type. 

 

2.3.4. Volume comparison of the binding pocket 

The volume of the binding pocket was calculated for each variant structure using FCONV 

program [161]. This study was done to observe any variation in the volume of the active site 

cavity especially after mutating amino acids that are located around or inside the binding pocket. 

The values of volume of the binding pocket are shown in Table 7. 
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Table 7. Volume of the binding pocket in the wild type and different mutated variants 

Protein Volume of the binding pocket (A³)a 

Wild type 2619.2 

His93Ala 2365.8 

Gln148Ala 2171.2 

Lys158Ala 2359.4 

Tyr253Ala 1824.9 

Cys255Ala 2514.3 

a The volume of the binding pocket is measured using FCONV [161]. 

 

There are slight differences seen in the volume of the binding pocket (Table 7). The largest 

volume variation is observed for Gln148Ala and Tyr253Ala replacements. This variation might 

be due to the removal of the side chain residue Tyr253' located on the flexible loop on the 

adjacent monomer mate, although all calculations were done with respect to the dimer form 

but the final value of the volume of the binding pocket calculated is for one monomer and this 

change will affect the cavity in both adjacent monomer mates. In the FCONV calculations, all 

the amino acids located along the rim of the binding pocket or interacting with the ligand or 

the cofactor are considered essential in the calculation. By superimposing the binding pockets 

of all mutants, they all fit identically and there are no significant changes in the arrangement 

or the positioning of the amino acids that form the binding pocket are observed. The only 

difference is observed for the Tyr253Ala mutation.  
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2.4. Discussion 

 

2.4.1. His93Ala and Gln148Ala variants 

Although no double mutation was presented in a single structure in this study, in the case of 

His93Ala and Gln148Ala variants, they should be studied together because of their positioning 

(Figure 9) on the inner surface of the binding pocket and on the outer rim (entrance) of the 

binding pocket, respectively. These two residues (His93 and Gln148) are not conserved in the 

17β-HSD family like 17β-HSD1 and 17β-HSD2, the other common trait with both residues is 

that they have no direct interaction with the ligand in the active site via H-bonds. Instead, they 

share H-bonding with each other (Figure 10A), thus contributing to the folding of the protein 

as well as forming the entrance of the binding pocket as seen in Figure 9A. The crystal structure 

of His93Ala variant (Figure 9B) did not indicate any significant shifts of the neighbouring 

amino acids or the backbone chain. However, the volume of the binding pocket did differ 

significantly compared to the wild type. Despite all the similarity with the wild type, even in 

the kinetics, the turnover for His93Ala expressed by kcat in presence of E2 and 5-diol is slightly 

increased in comparison to the wild type, nine times higher in His93Ala with E2 than the wild 

type and four times with 5-diol, suggesting that His93 has to some extent a role in 

differentiation of velocity of the enzymatic reaction. This is intriguing, after all the similar 

characteristics to the wild type. The His93Ala structure was co-crystallized with inhibitor 1 

like all other variants and the wild type compared to. Nevertheless, introducing the inhibitor 1 

to the active site of the variant was unsuccessful, even after many trials were done to obtain a 

bound compound in the active site. Unfortunately, no ternary complex could be obtained. To 

finalise this result, there is a possibility that inhibitor 1 binds in the His93Ala variant but a 

crystal structure in complex with the inhibitor was not obtained in the experiments undertaken 

with this variant. In the case of Gln148Ala variant, the residue is positioned at the entrance rim 

of the binding pocket. Due to this positioning, this amino acid should regulate the exchange 

rate of the compounds entering the binding pocket, as seen in Figure 9C. The Gln148Ala 

variant structure (PDB ID:6FFB) is missing the dent on the entrance of the binding pocket, thus 

opening a large portion of the entrance that was blocked by residue Gln148 (Figure 9A). This 

might lead to a higher exchange rate of compounds through the active site and larger molecules 

could enter the binding pocket. The H-bonding between His93 and Gln148 in the wild type 

sterically hinders the access to the binding site. Although this H-bonding was dismissed in 

His93Ala, no structure was obtained in complex with inhibitor 1. However, the crystal structure 
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of the Gln148Ala variant has been obtained in complex with inhibitor 1. The kinetics of 

Gln148Ala showed a higher turnover compared to the wild type, the variant is 22-fold more 

active in the presence of E2. However, this high value is less significant as with 5-diol where 

the turnover is only 2-fold higher than the wild type. The catalytic efficacy (kcat/Km) is increased 

30-fold for E2 against 11-fold for 5-diol, suggesting a discrimination for the variant Gln148Ala 

between both substrates (E2 and 5-diol). Estrogens (E2) and androgens (5-diol) differ in the 

presence or absence of the C19 methyl group between the steroidal A and B-ring (Figure 11). 

As discussed before, the missing H-bonded gate in Gln148Ala variant possibly facilitates the 

access of the substrates (E2 and 5-diol) to the binding pocket cavity. However, there is a 

possibility that the additional bulky C19 methyl group in 5-diol makes it harder to enter the 

active site, while in the case of E2, this methyl group is not present. This makes E2 slender and 

smaller than 5-diol, leading to greater advantage from the missing dent at the entrance of the 

active site after mutating Gln148 and this is one explanation of the kinetics observed for both 

substrates. Even more, it could be that in the wild type the rupture of the His93•••Gln148 H-

bonded gate defines the rate limiting step whereas in the mutated variant the diffusion into the 

catalytic centre becomes the limiting factor. In consequence, the catalytic turnover of the better 

accessible variant starts to discriminate the efficacy of substrate turnover with respect to their 

spatial demand.  
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Figure 9. Representation of the active site. A. The wild type 17β-HSD14 in grey, highlighting 

His93 (red surface) and Gln148 (blue surface) PDB ID: 5ICM. B. The His93Ala variant in 

grey and the mutated residue Ala93 (red surface) PDB ID: 6HNO. C. The Gln148Ala variant 

in grey and the mutated residue Ala148 (blue surface) PDB ID: 6FFB. Both the cofactor NAD+ 

and the inhibitor 1 are coloured in orange and yellow, respectively. 

 

 

 
Figure 10. A. Crystal structure of 17β-HSD14 wild type (PDB ID: 5ICM). B. Crystal 

structure of Gln148Ala variant (PDB ID: 6FFB). 
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Figure 11. Solvent accessible surface representation to indicate the spatial requirements of E2 

(left, green) and 5-diol (right, yellow). The red termini on both sides correspond to the OH 

group attached at C3 and C17. This figure was taken from the paper by Badran et al. [139]. 

 

 

2.4.2. Lys158Ala variant 

The catalytic triad of 17β-HSD14 consists of three amino acids Ser141, Tyr154 and Lys158 

[140]. A study by Puranen et al. [170] suggests that the conserved catalytic triad’s amino acids 

are essential for the catalytic activity for all members of the SDR family. Ser141 and Tyr154 

of the catalytic triad interact with the OH group at C17 of the substrate which will fix the 

binding ligand in an optimal geometry making it possible for the hydride to transfer. Lys158 

stabilizes the cofactor NAD+ via H-bonding interactions with distances of 2.9Å and 3.1Å to 

the hydroxy group of the ribose ring of nicotinamide. There is a strong believe that the 

positively charged Lys158 lowers the pKa value of the adjacent catalytic triad amino acid 

Tyr154. This proposition is based on the a similar case from a previous study with 17β-HSD1 

[153]. The main reason to mutate Lys158 to an alanine is to confirm that this amino acid, which 

is not directly involved in the substrate recognition, has a key role in 17β-HSD14 activity. 

Furthermore, when Lys158 is mutated to an alanine, the H-bonding contact to the cofactor and 

the interaction with Tyr154 is lost. The shift of the hydroxyl group of Tyr154 toward the 

vacancy is created by mutating Lys158. The OH-group moved further away from the inhibitor 

1 (Figure 12B) binding position (equals 1.4 Å). Interestingly, the structure of the Lys158Ala 

variant could not be obtained as a ternary complex with both the cofactor and inhibitor 1, but 

only with the cofactor as a holoenzyme. Apparently, the shift already mentioned had an impact 

on the stability of the ligand via H-bonding interactions that were present before the OH-group 
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of Tyr154 shifts. Regarding the cofactor NAD+, there was no shifting or displacement and it 

found at the exact position as it is in the wild type structure (PDB ID: 5ICM).  

 

 
 

Figure 12. Representation of the active site of 17β-HSD14. A. structure of the wild type (PDB 

ID: 5ICM). B. Structure of Lys158Ala variant (PDB ID: 6H0M). 

 

In Figure 12B, the amino acids of the Lys158Ala variant are coloured in pink and the Try154 

in blue colour is superimposed, the distance labelled in red is the shift of the OH-group of 

Tyr154.The cumulative effect of the OH-group shift and the loss of the H-bonding contributes 

to the inactivity of the Lys158Ala variant. Furthermore, the loss of the electrostatic interactions 

between Lys158 and Tyr154 had most definitely a major impact on the enzymatic activity of 

the protein and that was already observed in the kinetic study for both the wild type and the 

Lys158Ala variant. 

 

2.4.3. Tyr253Ala variant 

As observed in the wild type crystal structure, the residue Tyr253' from the adjacent dimer 

mate penetrates into the substrate binding pocket of the neighbouring monomer (Figure 14), 

which will have an effect on the catalytic properties of the enzyme. According to this 

observation, the Tyr253 residue was mutated to an alanine to have a better understanding of its 

role in the protein. After inspecting the apo structure of the wild type (PDB ID: 5ICS), a 

hydrogen bond interaction between Tyr253' and the catalytic Tyr154 through a chain of three 

conserved water molecules was found (Figure 14B), while in the wild type structure in 
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complex with inhibitor 1 (PDB ID: 5ICM), it was seen that the inhibitor 1 is able to displace 

these three conserved water molecules that link Tyr253' and Tyr154 (Figure 14A), while 

improving its binding pose.  

 

 

Figure 13. Dimer arrangement of 17β-HSD14 as found in the crystal structure and a close up 

view of the ligand binding site (PDB ID: 5ICM). The cofactor and inhibitor 1 are presented as 

sticks in orange and yellow respectively. The amino acids (catalytic triad and mutated 

residues) from the suggested monomer (grey) are shown in blue sticks and the amino acids 

from the adjacent monomer mate (light pink) are shown in pink sticks. 

 

Figure 14. Closer view of 17β-HSD14 active site. A. Structure of the apo enzyme (PDB ID: 

5ICS), showing the water molecules (red dots) connecting between the catalytic Tyr154 and 

Tyr253' from the adjacent monomer mate. B. Structure of ternary complex with inhibitor 1 

(PDB ID: 5ICM), showing the displacement of the water molecules by the potent inhibitor. 
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The crystal structure of Tyr253Ala variant indicates two alternative configurations for the 

terminal phenyl ring in inhibitor 1 (Figure 15B). By taking the inhibitor complex of the wild 

type as a reference to compare the binding pose of the substrate. It can be argued that the 

steroidal substrate is stabilized through a similar H-bonding network extending from the OH-

group of Tyr154 via C17-OH of Estradiol and a conserved water molecule toward the OH-

group of Tyr253'. Unfortunately, after many efforts, a crystal structure for both the wild type 

and Tyr253Ala variant in complex with the substrate (E2) were not possible to obtain. Even 

with the product (estrone), no crystal structure was obtained to gain a proof of the hypothesis. 

Nonetheless, according to the absence of activity of the Tyr253Ala variant, it is reasonable to 

assume that the substrate is not positioned correctly nor sufficiently stabilized in the active site 

of the protein to allow the hydride transfer to occur. As observed from the crystal structure of 

17β-HSD14 wild type, both residues Tyr253 and Tyr253' strongly support the dimer contact 

and stability by mutually penetrating into the active sites of the adjacent monomer mate 

hooking them tightly together. The interaction that is seen in Figure 14B between Tyr253' and 

fluorine moiety of inhibitor 1 is another proof how this residue is engaged in the activity of the 

protein as a dimer. Even after mutating Tyr253, the inhibitor is still binding in the active site, 

but the loss of activity in the kinetic assay is additional proof of how important this amino acid 

is in the activity and stability of 17β-HSD14. 
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Figure 15. A. Crystal structure of 17β-HSD14 wild type in complex with cofactor and inhibitor 

(PDB ID: 5ICM). B. Crystal structure of Tyr253Ala variant (PDB ID: 6G4L). The protein is 

presented as grey cartoon. Tyr253' is depicted by green sticks while the amino acids of the 

neighbouring monomer are coloured in blue, cofactor and inhibitor in orange and yellow, 

respectively. The unoccupied space created by mutating Tyr253 to an alanine (B) is partially 

filled with a DMSO molecule.  

 

 

 

 

 

Figure 16. Crystal structure of 17β-HSD14 

(PDB ID: 6H0M) showing the positioning of 

both residues Tyr253 and Tyr253' (blue), 

each pointing in the opposite direction toward 

the active site of the other adjacent monomer 

mate. 
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As a last proof of the effect of this mutant on the tetrameric assembly, a SAXS (Small angle 

X-ray scattering) experiment at the PETRA III beamline at DESY, Hamburg was done. The 

experiment was undertaken on a protein sample solution of the Tyr253Ala variant and it 

showed a dominant tetrameric arrangement in the protein buffer (Figure 17). 

 

Figure 17. SAXS experiment. The graph shows the 

tetrameric signal (red curve) corresponding to the 

signal measured in the protein buffer. 

 

 

 

The protein concentration used for the SAXS experiment is 1 mg/mL and the sample buffer 

contains the same ingredients as the ones utilized in the purification step. 

 

 

2.4.4. Cys255Ala variant  

The argument that the dimer association is the engine behind the activity of the enzyme drives 

the idea of mutating Cys255 to an alanine. Cys255 is located at the flexible loop of 17β-HSD14 

(Figure 18). The mutation of Cys255 to an alanine means abolishing the disulfide bridge 

formed between Cys255 and Cys255' from the adjacent monomer mate (Figure 19). In the 

Cys255Ala variant structure, the disulfide bridge ceased to exist, which was proven by the 

missing electron density in the X-ray crystallography experiment and further supported by the 

lack of an anomalous signal alternatively observed for sulfur atoms in the electron density [160]. 

Also, a comparison was done between the electron density maps for both the Cys255Ala variant 

and the wild type. 

 

 tetramer 

 dimer 

 monomer 
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Figure 18. A cartoon representation of the 

17β-HSD14 structure showing the residue 

Cys255 (blue) and the C-terminal tail. The 

other mutated amino acids are shown as well 

in blue, inhibitor 1 in yellow and glucose in 

light pink. 

 

 

 

 

 

 
Figure 19. Surface representation of 17β-HSD14 Lys158Ala variant (PDB ID: 6H0M) and a 

closer view of the disulfide bridge formed by the two cysteine residues from the adjacent 

monomer mates. In this crystal structure, Cys255 adopts two alternative conformations forming 

an attachment (disulfide bridge) to its equivalent residue Cys255' from the adjacent monomer 

mate. 

 

 

 

 

Cys255 
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The role of the disulfide bridge to stabilize the dimer is not clear yet, but after breaking of the 

disulfide bridge, the kcat values of the Cys255Ala variant with both substrates (E2 and 5-diol) 

are very similar to the ones of the wild type. Furthermore, inhibitor 1 was able to bind the 

mutated protein during the co-crystallization process and the binding pose it adopts is similar 

to the pose observed in the wild type complex (Figure 20A and B).  

 

 

 

Figure 20. A. Crystal structure of 17β-HSD14 wild type in complex with cofactor and inhibitor 

1 (PDB ID: 5ICM) are shown in the dimer conformation. The amino acids coloured in blue 

are from the first monomer mate (grey), the amino acids coloured in pink are from the second-

adjacent monomer mate (light pink). The cofactor and inhibitor 1 are shown in both monomers 

in orange and yellow sticks, respectively. B. Crystal structure of Cys255Ala variant in complex 

with cofactor and inhibitor 1 (PDB ID: 6GBT). The mutated alanine residue occupies very 

similar space as the parent cysteine residue; however, no covalent attachment can be formed. 

 

According to the native PAGE experiment (Figure 6), the Cys255Ala variant protein buffer 

hosts a mixture of tetramer and dimer in the gel with the dimer being the largest fraction in the 

protein buffer, based on the stronger dye label on the dimeric molecular weight, while all the 

other mutated variants show higher population at the tetrameric signal. Regarding the size 

exclusion chromatography, the Cys255Ala variant sample was eluted at the molecular weight 

of a tetramer. Therefore, it is more convincing to proclaim that both species, dimer and tetramer, 

exist side by side in equilibrium inside the protein sample. To further identify the assembly of 

the variant, a native mass spectrometry of the wild type was measured under reducing 
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conditions in presence of DTT (dithiothreitol) at different concentrations ranging from 5 mM 

to 4 M, the expectation from this experiment is the rupture of the disulfide bridges, especially 

the one linking Cys255 and Cys255'. The mass spectrometry measurement was performed with 

the addition of ammonium acetate 50 mM in the gas phase. The final result showed the protein 

as a tetramer, which suggest that the absence of the disulfide bridge does not influence the 

tetrameric assembly of the enzyme. The disulfide bridges in the protein might not be ruptured 

even with different incubation time with the reducing media (ranging from one hour to three 

days). Apparently, the detectable dimer portion is only observable in native gel for the 

Cys255Ala variant. These deviating results obtained through the previously mentioned 

experiments to determine the symmetry of the protein can be most likely explained by the 

significantly different conditions applied during these experiments. Unfortunately, it is not 

possible to reach a final argument or an evidence regarding which quaternary structure of the 

protein variants are populated to which extent under the applied conditions in the experiments 

performed. However, the assumption reached from the data gathered that the formation or 

rupture of the disulfide bridge is not essential for the tetramer stability and the enzymatic 

activity as well. However, with the Cys255 located on the flexible loop near the C-terminal tail 

where also Tyr253 is located, it could be important to stabilize and fix the loop at its basis 

because it is seen in the Tyr253Ala variant that the loss of the OH-group of Tyr253 in the 

protein abolishes enzymatic activity. The superimposition of all variant structures (Figure 8) 

showed a more visible portion (one extra residue) of the C-terminal tail (flexible loop). The 

electron density in the crystal structure was insufficient to build residue Lys256 which is rather 

odd, according to the hypothesis, the disulfide bridge should stabilize the flexible loop. The 

fact that there is an extra portion of that loop visible proves otherwise. Supposedly, the disulfide 

bridge has no contribution to the overall assembly and activity of 17β-HSD14. 

 

2.5. Conclusion 

This study investigated the role of several amino acids located at influential positions in 17β-

HSD14 wild type, although these amino acids do not have any equivalents in other 17β-HSD 

family members. Gln148 was chosen because of its location at the entrance of the active site 

where the substrate binds. It is believed that this residue restricts the entrance of the substrate 

and other potent compounds to the active site. With the high activity recorded in the kinetics 

compared to the wild type, expectations were fulfilled regarding this amino acid and its role in 

the enzymatic activity of the protein and the binding pose of the potent inhibitor used in this 
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study, which is similar to the pose observed for the wild type structure complex with the same 

inhibitor. The major observation is the higher catalytic activity recorded with the estrogenic E2 

whereas the androgen 5-diol has less activity. The possible explanation might be that the H-

bonding between Gln148 and His93 does not exist anymore, thus, allowing a faster exchange 

rate and less prohibited entry to the binding pocket. In the case of androgen 5-diol, having a 

less slender geometry than the estrogen E2 restricts the faster exchange rate, resulting in less 

advantage from the additional space created. There could be another explanation for the higher 

activity of estrogen (E2) than the androgen (5-diol) which always brings back the question 

asked by multiple researchers who tried to study and further characterize the 17β-HSDs family: 

‘‘Are E2 and 5-diol the real substrates of this enzyme?’’. This still needs to be answered 

through more research on the 17β-HSDs family. In addition to Gln148, His93 is located next 

to it at the inner entrance of the substrate binding site, also restricting the entry to the binding 

pocket and the H-bond between the two residues is essential in the catalytic activity and access 

to the binding pocket. Another studied amino acid is Tyr253. This residue plays a key role in 

both stability and activity of the enzyme. The interaction formed between the OH group of 

Tyr253 with inhibitors in the active site of the neighbouring monomer mate has an undeniable 

role in geometrical orientation of the compounds binding inside the active site. On the C-

terminal tail (flexible loop), Cys255 is located. The reason this residue is considered in this 

study is the disulfide bridge it forms to the corresponding Cys255' from the adjacent monomer 

mate. It is believed to strengthen the dimeric assembly of the protein and to fix the C-terminal 

tail at bay, thus, stabilizing the rest of the loop and in particular the Tyr253 residue that is 

located on the same loop and has an interaction with compounds populating the active site of 

the protein. In the case of Lys158, being part of the three amino acids forming the catalytic 

triad in 17β-HSD14, mutating this amino acid led to the loss of activity and the ability of potent 

inhibitor binding in the active site. This makes complete sense, however, studying this variant 

had undeniably brought extra understanding and valuable data about the protein properties. 

Summing things up, studying 17β-HSD14 variants provided a more profound understanding 

of the enzyme and its activity in vitro, hopefully, more investigations will be done in the near 

future to gain more reliable data about the function of the protein in vivo and to discover and 

characterize the preferred substrate of this enzyme.
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3.1. Introduction 

For over three decades, X-ray crystallography has been the dominant method to determine 

protein structures. Due to the important role proteins play in vivo, an increasing need emerged 

to identify their structures and characteristics. This was the driving force to achieve higher 

resolution structures that allow to better define and, most importantly, to reduce the time to 

determine such protein structures. Serial Synchrotron X-ray crystallography (SSX) is an 

emerging technique to determine multiple protein structures in very short time. In addition, 

serial crystallography has proven to be an ideal method to obtain information about crystals of 

smaller size (micrometre or nanometre) [171,172]. Data collections at synchrotrons are getting 

increasingly faster. Most synchrotrons are trying to reduce the time and costs to be spend to 

measure protein crystals. Even measuring at room temperature instead of cryogenic 

temperature is attempted [173,174]. Synchrotrons around the world are rapidly adopting the 

concept of serial X-ray crystallography. One of the bottlenecks in SSX is to find an efficient 

and reliable system to expose the crystals to the beam which needs less protein material, 

reduced data collection time, and eases fast handling of the protein crystals [175]. This task 

virtually started a kind of competition between the various beamline scientists to design the 

most reliable and efficient delivery system [176–181]. The current study will make use of the 

mounting and delivery system developed and used at the Deutsche Electronen-Synchrotron 

(DESY), Hamburg, Germany [176] named “Roadrunner” [48,64,182,183]. It is a micro-

patterned sample holder from monocrystalline silicon (waiver technology) with micropores 

[64]. Like other sample holders designed at the various synchrotrons, the aim is to have a 

sample holder that can present hundreds to thousands of crystals to the high intensity beam 

without interfering with the diffraction pattern [64,182,184].  

When it comes to X-ray beam exposure, there are two different types of radiation damage, the 

specific and global one. Specific radiation damage occurs due to the inelastic scattering of the 

X-ray photons with the sample on the mounting system through either photoelectric absorption 

or Compton scattering. This leads to the cleavage of chemical bonds or generates free radicals. 

Global radiation damage (tertiary damage) occurs at random and destabilizes the crystal lattice 

[185]. Here, the Roadrunner provides an advantage as, due to its properties as a single crystal, 

it significantly reduces the background scattering. It was tested at a dose up to 565.6 kGy, and 

a decrease in the diffracting power by half has been observed for a dose of D½ = 147.5 ± 9.1 

kGy at room temperature. Nevertheless, this decrease is less under cryogenic temperature 

conditions [182]. The Roadrunner is compatible with room and cryogenic temperatures (≈100 
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Kelvin) during data collection. The crystallization on chip can be carried out by either 

crystallizing immediately the protein directly on the silicon chip via the vapour diffusion 

method or already grown crystals are transferred onto the chip. The most popular method is to 

grow crystals directly on the chip, which saves a lot of time and materials. The idea is to have 

a system where crystallization, washing, soaking and applying cryo-protectants are all applied 

without removing the crystal from the delivery system. Furthermore, this will reduce the human 

errors in crystal handling especially of sensitive, fragile or high water-content crystals. Another 

reason for using the Roadrunner is the easier exposure of ligands to high-quality microcrystals 

[186] which is possible with the device because crystal handling by hand or typical laboratory 

equipment is nearly impossible to apply without damaging the crystals. 

Up to now, many target proteins have been used to test the scope and efficacy of this delivery 

system [48,64,182,183]. In our experiment, the target protein thermolysin (TLN; EC 3.4.24.27) 

was used, which is a thermostable enzyme produced by gram-positive bacteria. It requires one 

zinc and four calcium ions for structural stability [187].  The TLN is part of the endopeptidase 

subfamily that is responsible of breaking the peptide bonds of non-terminal amino acids. TLN 

mechanism proceeds over two steps as shown in Figure 1. 

 

 
Figure 1. Experimentally proposed reaction cycle for TLN (adopted from [188]) 
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Before starting the experiment, a set of compounds must be chosen for the on-chip soaking. 

The compounds were picked from a 364-fragment library developed in a previous BMBF-

project at the Institute of Pharmaceutical Chemistry (Philipps-Universität Marburg) and a 96-

fragment library developed in collaboration with the Helmholtz-Zentrum Berlin (HZB) at 

BESSY II in the BMBF Frag2Xtal project. A more detailed description of the libraries can be 

found in Chapter 4. For this feasibility study, three fragments were chosen from the 364-

fragment library and seven fragments from the 96-fragment library. The experimental part of 

this study was performed at Deutsches Electronen-Synchrotron (DESY), Hamburg at PETRA 

III P11 beamline in collaboration with associated laboratories at the facility. 

 

3.2 Materials and methods 

 
3.2.1. Preparation of the protein sample 

The reason for choosing TLN for this study is its easy access in large quantities, its high 

tendency to crystallize in a short period of time and the various studies done with this enzyme 

by many researchers including our working group, even though, TLN is arguably not directly 

important for pathogenic processes in the human body. Freeze-dried thermolysin was 

purchased from Calbiochem (EMD Biosciences). TLN was suspended in pure DMSO and 

mixed with the same volume of crystallization buffer (all buffers used for this experiment are 

summarized in Table 1. The final protein concentration was 4 mM. The sample was centrifuged 

for 5 minutes at 10000 rpm to precipitate undissolved particles.   

 

3.2.2. 3D printed crystal plates 

Unlike the usual hanging or sitting drop plates used for other experiments done throughout this 

thesis, the Roadrunner has special crystal plates that are custom-made by 3D printers to suit 

the criteria of the method (Figure 2). There are various types of such plates (one-well plate, 6-

well plate and adapter-like plates) [183], however for the current study, we only used the 6-

well plates. 
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Figure 2. 6-well Roadrunner crystallization plate produced by a 3D printer 

As seen in Figure 2, there is a hole at the outer wall of each well. It is covered with a magnetic 

seal glued to the rim of the hole to hold the sample holder. 

 

3.2.3. Crystallization condition and protein buffer 

The Roadrunner chip is designed to carry out all steps of crystal handling on the chip from 

growing crystals until data collection. In the present study, the crystals were either grown on 

the chip inside the 3D printed crystal plates or additionally on usual 24-well sitting drop crystal 

plates (Hampton research). Here, the crystals were subsequently transferred manually to the 

Roadrunner chip for further application. As for the crystallization condition in the well, it 

consisted of demineralized water only. The crystallization condition is based on an established 

protocol taken from [189]. 
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Table 1. Sample, washing and soaking buffers used in the experiment 

Sample buffer 
100 mM Tris/HCl pH 7.5 

3.8 M CsCl 

The sample buffer is mixed with equal 

volume of DMSO containing the protein 

Washing 

buffer 

120 mM Tris/HCl pH 7.5 

2 mM Ca2Cl 

20% isopropanol 

Incubation duration: 4 hours 

Soaking 

buffer 

+ 

cryo-

protectant 

120 mM Tris/HCl pH 7.5 

2 mM Ca2Cl 

20% glycerol 

30% DMSO 

The fragment is dissolved in DMSO. 

Final fragment concentration in the buffer 

100 mM 

Incubation duration: 4 hours 

 

3.2.4. Setting up the plates 

The smaller Roadrunner I prototype [183] was used for this experiment. All the Roadrunner I 

versions are manufactured from the same crystalline silicon material, but the difference lies in 

the chip’s surface diameter (1.5 * 1.5 mm² for small Roadrunner I), which will affect the sample 

drop volume. The magnetic tip holding the chip was gently removed from the vial and placed 

on a fixed magnetic ward with the conical shape face pointing upwards (the frame of the chip 

is flat from one side and has a small inner edge from the other). This prevents the sample from 

pouring out of the edges. 10 µL of the protein sample drop is placed on the chip, which is a 

sufficient volume to cover the whole surface. Each well of the 3D plate is filled with 1 mL of 

distilled water, then the chip is slowly and gently capped inside the well. The plates are sealed 

with transparent tape (SharkTape: 1.88-inch-wide Crystal Clear Tape from Hampton research) 

suitable for vapour diffusion method. Grown crystals appear after 8-12 hours at 18°C in both 

24-well sitting drop plates and on the Roadrunner chip Figure 3.  
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Figure 3. Microscopic view of TLN crystals. A. Crystals grown on the Roadrunner chip. B. 

Crystals grown on a sitting drop plate. 

 

It can be observed that crystals grown in a 24-well sitting drop plate (Figure 3B) have a more 

regular shape than those grown on the chip (Figure 3A). The reason for this are the pores on 

the chip, where the crystals imitate the surface they are grown on. They are thicker at the 

position of the pores than on the edges, but regarding the obtained diffraction pattern and 

resolution, no significant difference could be observed between crystals grown by either 

technique. 

 

3.2.5. Crystal handling on the chip 

3.2.5.1. Hydration stream 

In any normal crystallization system, the crystals are removed from the sample drop to a 

soaking buffer or a cryo-protectant buffer. Thus, it is obvious that moving the crystal out of 

solution will initiate drying out of the crystal due to water evaporation destroying the crystal. 

In the case of the Roadrunner chip, the sample has to be dried and the buffer needs to be 

exchanged. To prevent crystal dehydration of the chip, a custom-made hydro-stream nozzle is 

assembled and the delivery system holding the chip is placed into the stream. The hydro-stream 

consists of a pipe connected through a hose to multiple water bottles, an air stream is induced 

from the water bottles toward the pipe creating a moisture atmosphere around the tip of the 

pipe. Crystals can survive for quite some time (at least two hours were tested) without being 

soaked in a solution. Their diffraction patterns and resolution matches with that of crystals 

grown under the same conditions in wells other than the chip. 
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3.2.5.2. Incubation with isopropanol 

Another challenge in handling TLN crystals is the washing step with isopropanol (IPA). 

Putative TLN apo crystals host the auto-proteolysis product Val-Lys in the catalytic site. It is 

possible to perform soaking without removing the dipeptide, but there is no guarantee that the 

fragments will replace the low micromolar Val-Lys. Likely, the fragments are weak binders and 

the auto-protolysis peptide has, most likely, a higher affinity to remain in the active site. IPA 

can be used as a small molecule to bind to the TLN active site. Applied in high concentration, 

it is able to wash-out the Val-Lys peptide from the active site [190]. The chip is attached to a 

magnetic sample holder placed in the hydro-stream. An absorption tissue is gently placed under 

the chip for a short period to remove all remaining sample buffer. Otherwise, the danger of 

crystal aggregation is given and data collection will not be successful due to overlapping 

crystals contributing to the total diffraction pattern which makes it impossible to process and 

evaluate the data. After the draining of protein buffer, a volume of 10 µL of washing buffer was 

pipetted on the chip and left to incubate for 4 hours. 

 

3.2.5.3. Soaking on the chip 

Within the hydro-stream, the same procedure was done to drain the washing buffer with the 

removed Val-Lys peptide off using again a tissue paper. Several fragments from the 96-

fragment library were selected (Table 2) for which a previous fragment screen had shown 

successful TLN binding (Francesca Magari, doctoral thesis [191]). 
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Table 2. Selected fragments from the 96-fragment library for the Roadrunner experiment 

Fragment 

Nr. 

Library 

ID 
Structure 

MW 

(g/mol) 

Hit rateª 

(TLN fragment screen) 

1 J13 

 

125.1 
hit 

PDB ID: 6SBK 

2 J20 

 

177.2 
partial hit 

no PDB ID 

3 J21 
 

127.1 no hit 

4 J26 

 

194.1 no hit 

5 J32 
 

201.7 
partial hit 

no PDB ID 

6 J35 

 

253.2 
partial hit 

no PDB ID 

7 J37 

 

125.2 No hit 

ªThe ratio of compounds that bind in the active site of TLN, hit = a fragment is found in the active site, partial 

hit = a portion of the fragment found in the active site (according to the electron density) and no hit = no 

sign of the fragment inside the active site. 

 

The chosen fragments from the 96-fragment library were hand-picked because of their 

structural similarity with other fragments from the same library that were successful hits: J13, 

J22, J28, J62, J77, J88 and J96 (Appendix). The second set of fragments selected from the 

364-fragment library are listed in Table 3.  
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Table 3. Selected fragments from the 364-fragment library for the Roadrunner experiment 

Fragment 

Nr. 

Library 

ID 
Structure 

MW 

(g/mol) 

Hit rate 

(TLN fragment screen) 

1 F196 

 

264.1 n.d 

2 F218 

 

254.1 n.d 

3 F285 

 

164.1 n.d 

n.d = not determined 

 

The soaking conditions described by Magari were used in the fragment screen contain 20% 

MPD as a cryo-protectant [191]. Due to the appearance of ice rings, it was replaced by 20% 

glycerol instead, which resolved the problem. In the protocol applied by our working group, 

glycerol is not used as a cryo-protectant because of the appearance of ice rings during data 

collection. However, the ice rings did not appear during data collection while using the 

Roadrunner chip with glycerol as a cryo-protectant. 

 

3.2.6. Data collection and processing 

Data sets were collected at PETRA III beamline P11 (DESY – Hamburg) [192], at a wavelength 

of 1.0332Å with a Pilatus 6M detector. The experiment was done at 100 K and the chip holding 

the crystals was stored in liquid nitrogen. 600 diffraction images were collected for each data 

sets. The chip had 30º rotation during data collection. According to Roedig et al.  [64], the chip 

allows for a larger degree of rotation. Nonetheless, in the present case of TLN the large amount 

of TLN crystals located on most of the chips, as well as their tight mutual 
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placement, made interference of diffraction patterns of multiple crystals likely during data 

collection. As TLN crystals possess hexagonal symmetry (space group P6122, no.177), 30º was 

in most cases sufficient to obtain data sets with acceptable completeness (˃90%) [193]. 

Collected data were indexed, processed and scaled using XDSAPP [158]. Some data sets with 

low completeness required merging with other data sets collected from the same chip to achieve 

acceptable completeness using BLEND [194] from the CCP4 suite [195]. 

 

3.2.7. Crystal structure determination and refinement 

Crystal structures were determined by molecular replacement using the program PHASER MR 

[159] from the CCP4 suite [195]. For data sets that did not require merging, an auto-refine 

pipeline [196] was used. The structure was solved using molecular replacement starting from 

structure PDB ID: 6SBK [191] after removing all non-protein molecules and hydrogen atoms 

using FCONV [161]. In the refinement, a 5% subset of the reflections was used to calculate 

Rfree and they were consequently omitted from the refinement. The model was built in COOT 

[162] and the refinement was done using PHENIX.refine version 1.15.2-3472 [163]. First 

refinement steps were performed with default parameters for XYZ coordinates, occupancies 

and individual B-factors were altered with structural adaption in COOT. B-factors for all model 

atoms (except for hydrogen atoms) were refined anisotropically for resolutions better than 1.4 

Å and isotropically for resolutions worse than 1.41 Å. 

 

3.3. Results 

 
3.3.1. Soaking outcome 

The soaking period and fragment concentration in the soaking buffer (100 mM) is based on an 

established protocol used by our working group [189]. All soaking experiments done on the 

Roadrunner chip were successful and the crystals survived, except the crystals soaked with 

fragments F218 and F285, where unfortunately, the crystals dissolved in the soaking buffer 

after a few seconds. 
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3.3.2. Obtained data sets 

About 180 data sets were collected from 20 Roadrunner chips used in the experiment. Details 

about the data collection are listed in Table 4 below.  

Table 4. List of data set collected using the Roadrunner chip. 

Chip ID 

+ 

Fragment 

ID 

Data set 

Nr. 

Resoluti

on 

Å 

Completenes

s 
Hit rateª comment 

Chip 1 

J13 
001 – 014 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 2 

J13 

001 2.4 Å 99.5% 
Partial 

hit 
Parts of the fragments 

appear in the electron 

density, but could not 

be added 

002 2.1 Å 99.5% 
Partial 

hit 

003 2.4 Å 97.2% 
Partial 

hit 

004 2.0 Å 95.9% No hit - 

005 ˃ 4.0 Å 95.9% - - 

Chip 3 

J20 
001 _ 014 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 4 

J20 

001 1.90 Å 99.7% No hit - 

002 1.81 Å 92.1% No hit - 

003 1.95 Å 99.5% No hit - 

004 1.90 Å 99.3% No hit - 

005 1.86 Å 82 % No hit Data sets were merged 

Completeness 91% 006 1.92 Å 77 % No hit 

007 1.90 Å 99.2% No hit - 

008 - - - Chip displacementᵇ 

009 1.80 Å 99.6% No hit - 
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010 1.60 Å 92.1% No hit - 

011 - - - Chip displacementᵇ 

012 - - - Chip displacementᵇ 

Chip 5 

J21 

001 2.6 Å 97.8% No hit - 

002 - - - Crystals overlapᶜ 

003 - - - Crystals overlapᶜ 

004 1.8 Å 99.7% No hit - 

005 ˃ 3.0 Å 94.2% - - 

006 ˃ 3.0 Å 96.1% - - 

007 1.95 Å 99.7% No hit - 

008 ˃ 3.5 Å 92.3% - - 

009 - - - Chip displacementᵇ 

010 2.55Å 99.7% No hit - 

011 2.0Å 99.3% No hit Chip displacementᵇ 

012 - - -  

013 2.27Å 75% No hit Data sets were merged 

Completeness 94.2% 014 1.91Å 84.1% No hit 

Chip6 

J26 
001 _ 009 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 7 

J26 

001 ˃ 3.5 Å 92.1% - - 

002 1.82 Å 98.7% No hit - 

003 1.95 Å 95.9% No hit - 

004 1.91 Å 96.5% No hit - 

005 2.22 Å 41.2% 
No hit 

Data sets were merged 

Completeness 74.0% 006 2.71 Å 29.7% 

007 - - - Chip displacementᵇ 

008 - - - Chip displacementᵇ 

009 2.04 Å 99.1% No hit - 

010 2.02 Å 99.4% No hit - 
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011 ˃ 4.0 Å - - - 

Chip 8 

J26 

001 ˃ 4.0 Å - - - 

002 ˃ 3.0 Å 21% - Chip displacementᵇ 

003 - - - Chip displacementᵇ 

004 1.80 Å 99.8% No hit - 

005 1.73 Å 99.7% No hit - 

006 1.82 Å 98.9% No hit  

007 1.87 Å 99.6% No hit - 

008 - - - Crystals overlapᶜ 

009 - - - Chip displacementᵇ 

010 ˃ 3.0 Å - - - 

011 1.90 Å 99.6% No hit - 

012 - - - Chip displacementᵇ 

Chip 9 

J32 
001 _ 007 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 10 

J32 

001 - - - Chip displacementᵇ 

002 - - - Chip displacementᵇ 

003 2.01 Å 95.5% No hit - 

004 2.62 Å 99.7% No hit - 

005 - - - Crystals overlapᶜ 

006 - - - Crystals overlapᶜ 

007 - - - Chip displacementᵇ 

008 - - - Chip displacementᵇ 

009 - - - Crystals overlapᶜ 

010 1.90 Å 99.5% No hit - 

011 - - - Chip displacementᵇ 

012 - - - Chip displacementᵇ 

013 - - - Crystals overlapᶜ 

014 - - - Crystals overlapᶜ 
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015 - - - Crystals overlapᶜ 

016 - - - 
Chip displacementᵇ + 

Crystals overlapᶜ 

017 - - - 
Chip displacementᵇ + 

Crystals overlapᶜ 

018 - - - Chip displacement 

Chip 11 

J35 
001 _ 005 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 12 

J35 

001 - - - Chip displacementᵇ 

002 - - - Chip displacementᵇ 

003 2.03 Å 99.6% No hit  

004 - - - Crystals overlapᶜ 

005 - - - Crystals overlapᶜ 

006 - - - Chip displacementᵇ 

007 1.80 Å 99.7% No hit  

008 - - - Crystals overlapᶜ 

009 - - - Crystals overlapᶜ 

010 - - - 
Chip displacementᵇ + 

Crystals overlapᶜ 

011 - - - 
Chip displacementᵇ + 

Crystals overlapᶜ 

Chip 13 

J37 
001 _ 007 - - - 

Ice ring 

Cryo-protectant 

contains MPD 

Chip 14 

J37 
001 _ 009 - - - 

Chip displacementᵇ + 

Crystals overlapᶜ 

Chip 15 

F196 
001 _ 008 - - - 

Ice ring 

Cryo-protectant 

contains MPD 
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Chip 16 

F196 

001 1.50 Å 99.3% - 

The Val-Lys peptide is 

not washed from the 

active site 

002 1.40 Å 99.7% - 

The Val-Lys peptide is 

not washed from the 

active site 

003 ˃ 5.0 Å - - Cannot be processed 

004 1.63 Å 99.6% No hit  

005 - - - Crystals overlapᶜ 

006 1.88 Å 99.6% No hit - 

007 - - - Chip displacementᵇ 

008 - - - Chip displacementᵇ 

009 - - - Chip displacementᵇ 

010 ˃ 5.0 Å - - - 

011 - - - Chip displacementᵇ 

012 - - - Chip displacementᵇ 

ªFragments that binds in the active site of TLN or at any other position. ᵇDue to the pressure by the cryogenic stream (LN2), the chip is moving 

back and forward (waving), thus the crystal under measurement is displaced from the centre of the X-ray beam losing diffraction or obtaining 

unstable diffraction images that could not be measured. ᶜDuring data collection, the crystals may overlap on top of each other of by the rotation 

of the chip during the process leading to extra random diffraction from two or more crystals. 

 

3.4. Discussion 

 
3.4.1. Overall Roadrunner usage 

Using the Roadrunner chip provided many advantages regarding data collection and the 

reduction in time required to perform a crystal screening. The easy handling of micro-size 

crystals was possible because there was no need to handle them manually. Growing crystals on 

the chip was as fast similar to a normal 24-well crystallization plate but the porous surface of 

the chip altered the shape of the crystal and reduced their size as well. In addition, there were 

many micro-crystals formed on the chip during crystallization. Exchanging buffer on the chip 

is somehow tricky, particularly when draining off the buffer in order to exchange it with another 

one. Experience and manual training are essential. If the tissue paper is not in touch with the 

whole area under the chip there could remain some problems like the residual movement of 

small crystals that are not attached to the chip surface next to the point where the tissue paper 
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is absorbing the solution from the chip. This leads to the assembly of many crystals at a single 

spot piling up on top of each other. This is a major reason why many data sets have to be 

suspended because overlapping diffraction patterns of more than one crystal during data 

collection. Another problem occurred during the exchange of the buffers at the inner edge on 

the upper surface of the chip, even after drying out with a tissue paper. A small volume of the 

drained buffer remains between the inner surface and the surrounding rims. This has bad impact 

on the freezing process in liquid nitrogen. It was noticed during data collection under cryogenic 

temperature, where all the crystals that were close to the gap near the inner frame, showed ice 

rings. It is due to the fact that they were no longer surrounded by the cryo-protectant but instead 

by the remaining drained buffer. Importantly, the crystals far away from that rim (closer to the 

middle of the chip) showed no ice rings during data collection. Another obstacle was faced 

while removing the Val-Lys peptide from the catalytic centre. After checking multiple data sets 

that were collected on the chip, there were several ones showing some remainder of the Val-

Lys peptide, still occupying the catalytic site. This was never the case applying the original 

protocol developed by Magari [191] after 4 hours of exposing the protein crystals to the 

washing buffer. The incomplete removal of Val-Lys was more frequently observed for crystals 

of bigger size. So it could well be that a longer exposure time to isopropanol is required for 

larger sized crystals. The complete removal of the dipeptide for micro-size crystals supports 

this hypothesis. Affinity of J13 for TLN from the 96-fragment library was not determined, e.g. 

by enzyme kinetics. Fragment J13 however, inhibits the active site of TLN and a complex with 

this fragment could be obtained by Magari (PDB ID: 6SBK) [191]. Unfortunately, soaking the 

same fragment at a concentration of 100 mM over a period of 4 hours on the Roadrunner 

remained unsuccessful with no residual electron density indicating the occupancy of J13 in the 

active site or at any other position in the structure of TLN. 
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Figure 4. Diffraction images from data collection performed on Chip 8 – J26 (data set 003) 

showing the effect that occurred by the fluttering movement of the chip in the cryo-gas stream 

during data collection. A. Diffraction image #100, the diffraction pattern is well resolved. B. 

Diffraction image #250, the diffraction pattern is attenuated and less spots are visible leading 

to a decrease in resolution. C. Diffraction image #500, there are no diffraction spots visible as 

the measured crystal has been completely moved out of the focus of the X-ray beam. 

 

 

Figure 5. Diffraction images from data collection performed on Chip 10 – J32 (data set 005) 

showing the effect of crystals overlapping during data collection. A. Diffraction image #100 

after 5º of chip rotation, the diffraction pattern is clear and single spots are well defined. B. 

Diffraction image #500 after 25º of chip rotation. There are multiple diffraction spots 

appearing on the detector resulting from two crystals showing overlapping diffraction patterns. 

 

3.4.2. Comparison of TLN structures  

Initially, we assumed that data collection using the Roadrunner instead of “classically” grown 

and mounted crystals would produce data sets of similar quality. TLN is a well-studied target 

and much information is already available about this target protein. It was therefore selected 

for this study as the crystal growth and handling is straightforward compared to other novel 

cutting-edge targets. As expected, after evaluating the diffraction data from the data collection 
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on the chip, no difference could be observed, although the crystals on the chip had relatively 

odd shape compared to the usually grown TLN crystals on a 24-well plate. They exhibit the 

same properties such as the space group with similar cell dimension and require similar 

strategies for data collection and evaluation. In Figure 6, a direct comparison of the crystal 

structure of TLN in complex with fragment J13 from the 96-fragment library (PDB ID: 6SBK) 

obtained from a “classically” grown and mounted crystal is shown along with a structure 

determination obtained by data from the Roadrunner chip. The superimposition shows identical 

crystal structures. 

 

 

 

Figure 6. Superimposition of TLN structure in complex with J13 (PDB ID: 6SBK) in light green 

and TLN structure from crystal data collected with the Roadrunner in light blue.
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3.5. Conclusion 

Indeed, there were many obstacles to overcome using the Roadrunner chip. The outcome of 

the experiments was not as expected. However, it is impressive to run through many crystal 

handling steps without the need to remove the crystals from the wells in the crystallization 

devices or to place them on special crystal holders. Data collection was much faster and easier 

to perform. The fluttering movement of the chip during data collection caused the loss of many 

data sets. As the chip is still a prototype, additional technical improvements are required. The 

silicon waiver chip offers the advantages of high transparency. A more stiff and firm material 

that can hold the chip at its basis will likely improve the present prototypes [183]. Another 

major issue is the collapsing of crystals on the X-ray beam during data collection due to 

agglomeration of the crystals on top of each other. An improved sample holder has to resolve 

these shortcomings. Nevertheless, the crystallization protocol has succeeded in producing 

crystals suitable for measurement. Experience shows that crystals grown on the chip, even if 

they remain less-well shaped or small can be handled, as no manual interference is required. 

SSX has a long way to go, yet, the first steps are made and will offer an exciting perspective 

toward faster data collection and high-throughput crystallographic fragment screening.
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4.1. Introduction 

A drug designer’s main objective is to find a compound that binds to a given receptor in order 

to achieve a therapeutic effect and to pass the clinical trial and produce an end product usable 

as a medication. However, to reach this aim, this compound must have at least a sufficient 

affinity to its receptor. There are multiple factors that determine the affinity of a compound. 

Solubility of a compound is considered one of the most essential factors regarding affinity 

[197–200]. Recently, many studies focused on cyclodextrins (CDs) as a molecular solubility 

enhancer [79,80,84,85]. Due of their cone-shaped molecular structure (bottomless cylinder) 

with a hydrophobic interior and hydrophilic exterior, CDs can hide large parts of the 

hydrophobic functionalities of a probe compound, leaving the hydrophilic moieties pointing to 

the outside environment; thus, the overall solubility is increased.  

The protein selected for testing ligand binding using this solubilization method is 17β-

hydroxysteroid dehydrogenase type14 (17β-HSD14). The human enzyme 17β-HSD14 oxidizes 

the hydroxyl group at position 17 of estradiol and 5-androstenediol using NAD⁺ as cofactor (s. 

Chapter 2). However, the physiological role of this enzyme remains unclear. Through many 

recent studies performed by our working group [30,31,142], 17β-HSD14 has a good correlation 

with sugars. In the purification protocol, glucose is used as an additive to stabilize the protein 

and a glucose molecule is known to bind to the surface of the enzyme in the crystal structure. 

In a previous protein purification protocol used in our working group, glycerol has been used 

in the purification buffer instead of glucose. The protein yield tripled. However, it must be 

emphasized that glycerol in the presence of NAD+ and the enzyme, without substrate, induces 

the production of a fluorescent substance which, after investigation, turned out to have the same 

fluorescence fingerprint as NADH. We concluded that glycerol is recognized as a substrate 

by h17β-HSD14, thereby transforming NAD+ into NADH [142]. This issue has been resolved 

by replacing glycerol with glucose in the protein buffer. Sugars seem to have an impact on the 

activity and stability of 17β-HSD14, therefore, it has been a good subject for the solubility 

study with CDs. 
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Figure 1. A surface representation of 17β-HSD14 variant (PDB ID: 6G4L) and closer view on 

the glucose (pink) binding location on the surface of the enzyme. 

 

4.2. Materials and methods 

4.2.1. Fluorine-compound library 

According to previous studies by Braun and Bertoletti in our working group [30,31,142], 

aromatic compounds sharing OH-group and F-group proved to exhibit high affinity towards 

17β-HSD14. 
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Figure 2. Inhibitors of 17β-HSD14 and inhibition constant (Ki) with different substitution on 

the A-ring. The Ki values were obtained by a fluorometric assay on the 17β-HSD14 enzyme, 

substrate E2 (1.2 mM) and cofactor NAD⁺ (1.2 mM) at 25°C. The resulting Ki values are 

calculated by averaging three consecutive assay experiments done with each inhibitor under 

the same conditions [30].  

 

Based on the high selectivity of 17β-HSD14 enzyme towards ligands comprising an OH group 

and F atom at an aromatic moiety, multiple compounds were purchased from different vendors 

or synthesized in our lab that contain these two functionalities. These gathered compounds are 

referred to as the fluorine-compound library, the compounds are listed in the Appendix 4.5. 

 

4.2.2. Hydrophobic drugs 

To test the enhanced solubilization provided by the addition of CDs, many hydrophobic drugs 

were included in the current solubility study. The hydrophobic drugs were all selected based 

on the length and size of their hydrophobic part. The molecular shape of CDs containing a 

bottomless cone with hydrophobic functionality in the inner surface made it more convenient 

to test hydrophobic compounds with a long hydrophobic part while the opposing end is 

decorated by one or more hydrophilic functionalities. Particularly, as the interior of the CD 
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cone is hydrophobic, and the outer rim holds many hydrophilic functionalities, especially OH-

groups, the study of amphiphilic drug-like molecules makes it notably interesting to investigate 

such compounds. Unlike the compounds from the fluorine-compound library, the hydrophobic 

part of these hydrophobic drugs does not contain any functionality other than carbon atoms that 

should form interactions with the interior hydrophobic surface of CDs. In theory, locking their 

hydrophobic part inside the hydrophobic cavity of a CD and leaving the hydrophilic moieties 

pointing to the surrounding aqueous environment would results in an increased solubility 

through drug/CD complex formation (as inclusion or host/guest complexes). Even more, the 

sole exposure of the hydrophilic part of the drug molecules, will provide a higher chance to 

achieve binding to the active site of 17β-HSD14. The studied hydrophobic drugs are listed in 

Figure 3.
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Figure 3. The hydrophobic drugs used in the co-crystallization experiment with 17β-HSD14. 

  

Although 17β-HSD14 is located in multiple tissues in the human body, the main function in 

vivo is yet to be identified. Likely, the natural substrates of the enzyme are steroid-like 

compounds (s. below), thus, also ligands of rather hydrophobic nature. Nevertheless, from a 

pragmatic point of view it appeared more convenient to select freely available highly 

hydrophobic drug molecules on the market that affect multiple receptors throughout the human 

body. As shown above in Figure 3, a set of well-known and widely used hydrophobic drugs 

has been assembled. Most of these drugs are slightly to sparingly soluble in water or even at 

room temperature virtually insoluble. Thus, the aim of this study was to enhance their water 

solubility by transferring them to the enzyme via a drug/CD complex operating as a kind of 

“solubilizing ferry”. 
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Table 1. The hydrophobic product from pharmaceutical point of view 

Drug Trade 

nameᵃ 

Indicationᵇ Dosage 

formᶜ 

MWᵈ Solubilityᵉ 

Ergocalciferol Drisdol 

Calcidol 

Hypoparathyroidism 

Osteoporosis 

Oral 396.65 ≈ 50 

Acetaminophen Tylenol 

Tempra 

Headache 

Muscle pain 

Arthritis 

Fever 

Oral 

Parenteral 

Rectal 

151.16 ≈ 15 

Caffeine Vivarin CNS stimulus Oral 194.19 ≈ 16 

Ibuprofen IBU 

Advil 

Mortin 

Headache 

Pain 

Aseptic Necrosis 

Chronic myofascial 

Oral 206.29 ≈ 0.02 

Nimesulide Nimesulide 

Mesulid 

Pain 

Fever 

Osteoarthritis 

Oral 36.83 ≈ 0.01 

Fenofibrate TriCor 

Lofibra 

Lipofen 

Hypercholesterolemia Oral 360.83 ≈ 30 

Ranitidine Zantac Gastric ulcer 

Gastroesophageal-reflux 

Oral 

IV 

IM 

314.4 ≈ 500 

Tetracycline Sumycin 

Actisite 

Acne 

Bacterial infections 

Oral 

Parenteral 

444.43 ≈ 0.2 

Valproic acid Depakene 

Stavor 

Mania 

Epilepsy 

Migraine prophylaxis 

Oral 144.21 ≈ 1 

Methylphenidate 

hydrochloride 

Ritalin ADHD Oral 269.77 ≈ 18.6 

Doxercalciferol Hectorol Pre-dialysis 

Renal impairment 

Hepatic impairment 

Oral 

IV 

412.6 ≈ 0.001 

Lubiprostone Amitiza Idiopathic constipation 

Irritable bowel-syndrome 

Oral 390.46 ≈ 0.5 

Loratadine Claritin Allergies Oral 382.88 ≈ 0.007 

ᵃthe trade name of the drug manufactured by a pharmaceutical company inside EU, NA and Japan 

ᵇas stated in USP  
ᶜas stated in the EU, US and pharmaceutical manufacturers 

ᵈmolecular weight (g/mol) 

ᵉsolubility in distilled water (g/L) at 25°C  
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4.2.3. Sex hormones 

As mentioned earlier, it is highly debated whether 17βHSD14’s main substrates are estrogens 

(E2) and androgens (5-diol and testosterone) [20]. Sex hormones are well soluble in organic 

solvents such as DMSO, but in aqueous solution, they are only poorly soluble. For example, 

E2 solubility is 20 mg/mL in DMSO at 25°C, while in water, the solubility is around 3.6 mg/L 

at 25°C. Unfortunately, many trials have been done to obtain a crystal structure with one of the 

three sex hormones in the active site of 17β-HSD14, using co-crystallization as a method of 

choice. However, no detectable electron density disclosing the binding mode of such a ligand 

could be seen. In some cases, uninterpretable electron density was found in the active site. 

However, through the solubilization mechanism of host-guest complex formation with CDs, 

the sex hormones were introduced to the protein solution as CD/hormone complex using a 

lower amount of DMSO, which is described in detail in the crystallization protocol. 

The sex hormones selected for the current solubility study (Figure 4) are the same used in 

previous experiments (without CDs) and other sex hormones that have similarity to E2, 5-diol 

and testosterone. 

 

 

        Figure 4. Sex hormones selected for the solubility study. 
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4.2.4. Cyclodextrin derivatives 

The three main cyclodextrins, considered in this study, were α-, β- and γ-cyclodextrin, which 

consist of 6, 7, and 8 D-glucopyranosyl residues, respectively. The derivatives of CDs are 

developed by adding more hydrophilic functionalities to the original three CDs to increase their 

water solubility. Many CD derivatives are considered safe for human consumption by the FDA 

and EMA. In this study, only the human consumable derivatives that are applicable in daily life 

have been used. The only exception is β-cyclodextrin, which, due to its low solubility in 

aqueous solutions (5 mg/mL), was not applied. A list of the CDs and some other derivatives 

that have been used to obtain crystal structures with 17β-HSD14 are listed in Table 2. 

 

Table 2. List of Cyclodextrins used in the solubility study and their solubility in water 

Cyclodextrin’s derivative MW (Dalton) 
Solubility in water  

(g/L) at 25°C 

α-cyclodextrin 972 45 

methyl-β-cyclodextrin 1312 350 

2-hydroxypropyl-β-cyclodextrin 1400 300 

carboxymethyl-β-cyclodextrin 1541 50 

γ-cyclodextrin 1312 350 

2-hydroxypropyl-γ-cyclodextrin 1576 400 

 

 

Depending on the solubility rate of cyclodextrins shown in Table 2 above, all CDs were 

dissolved in water at room temperature to accomplish a concentration of 200 mM (≈ 260 

mg/mL on average for all CDs). However, in the case of α-cyclodextrin and carboxymethyl-β-

cyclodextrin, both could only be resolved by heating the mixture up to 60°C in a water bath for 

24 h to achieve the required concentration. 

The reason for preparing a CD solution with a concentration of 200 mM, was that the CD 

solution mixture was subsequently mixed with the same volume of the probe compound 

dissolved or in some cases suspended in DMSO with the same concentration (200 mM) to 

reach a final concentration of 100 mM in the CD/compound mixture. After incubation, a 
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volume of 5% v/v of the CD/compound mixture was added to the crystallization drop; thus, the 

required 5 mM concentration of the compound is present in the drop. 

 

4.2.5. Expression and purification of 17β-HSD14 

For this study the wild-type variant S205 17β-HSD14 was overexpressed using a pET-based 

vector, p11-Toronto1 (SGC), containing the coding sequences of the human gene HSD17B14 

variant S205 with a N-terminal 6His-tag and a TEV (tobacco etch virus) protease cleavage site 

in E. coli BL21 (DE3) pLysS cells. Purification followed an established procedure [142]. The 

purity of the protein was verified by SDS-Page (SDS-gel not shown) after size exclusion 

chromatography (SEC200 HiLoad 26/200 Superdex, eluent buffer containing 25 mM Tris HCl, 

500 mM NaCl, 250 mM Glucose and 0.5 mM TCEP at a pH = 8, volume of 200 mL at flow 

rate 2 mL/min). The protein concentration was quantified routinely using the UV-vis 

spectrometer Nanodropᵀᴹ at 280 nm and taking the buffer as blank. This method was 

previously validated by comparison with the Bradford assay, which afforded a similar protein 

concentration as observed spectrophotometrically at 280 nm. The yield of the purified protein 

varied between 10-14 mg of protein per liter of bacterial culture. 

 

4.2.6. Crystallization protocol 

The 17β-HSD14 complex crystal structures were obtained by co-crystallization. A solution of 

the ligand dissolved in DMSO (or suspended if the ligand was too hydrophobic) and 

cyclodextrin (CD) dissolved in distilled water, each with a concentration of 200 mM, were used 

(s. above). Equal volumes from each stock solution were mixed together making the final 

concentration of each (ligand and CD) 100 mM in the mixture.  

To ensure that all particles of the ligand were completely dissolved, the mixture was heated at 

60°C in a water bath for 6 hours and gently shaken from time to time during the process. The 

mixture was kept at room temperature for 24 hours. Samples that have been incubated for 

longer time at room temperature showed results that were more promising (2-3 weeks). Due to 

the pronounced hydrophobicity of some ligands, there could be some parts of the material that 

remained not fully dissolved in the mixture. In such cases, more heating or extended incubation 

time were applied. If even then, some ligand material remained incompletely dissolved, 
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centrifugation for 15 min at 10000 rpm was performed and the solid material was discarded 

(any undissolved material present in the crystallization drop will hamper the nucleation process 

to form crystals). 

 A volume ratio of 10 % of the ligand/CD mixture was added to the protein solution (10 mg/mL) 

making the final concentration of each ligand and CD in the protein solution to 5 mM. An 

incubation time of 30 min at room temperature was necessary before centrifugation for 10 min 

at 10000 rpm and the supernatant was used. 

The concentration of the crystallization buffers in the crystallization well (reservoir) were used 

as follows: 100 mM HEPES, pH 7, 2.5% DMSO, 2.5% cyclodextrin (the same derivative of 

cyclodextrin used in the drop) and 15-30% PEG6000 (depending on the derivative used, the 

crystals appear in different PEG6000 range). The final volume of the reservoir was 800 µL. A 

3 µL drop of the protein was mixed with an equal amount of the reservoir solution in a sitting 

drop plate and the plates were sealed with tape. Crystals with quality sufficient for data 

collection were grown at 18°C between 1-3 weeks. The crystals were dipped for a few seconds 

into cryo-buffer solution composed by the crystallization buffer with an addition of glucose 

(20% v/v), 5 mM CD and 5 mM ligand. 

 

4.2.7. Data collection and processing 

For the current study, all data were collected at Helmholtz-Zentrum Berlin (Berlin-Adlershof, 

Germany) [157] at BESSY II using beamlines MX14.1 and MX14.2. The data collection was 

done at cryogenic temperature of 100 K (-173°C) and wavelength 0.9184Å using a silicon 

Pilatus 6M pixel detector at atmospheric pressure. Data sets collected were indexed, processed 

and scaled using XDSAPP [158]. 

 

4.2.8. Crystal structure determination and refinement 

Crystal structures were determined by molecular replacement using the program PHASER 

MR [159] from the CCP4 suite [195]. The structure of the wild type 17β-HSD14 S205 

variant was used as a search model for molecular replacement (PDB ID: 5ICM [142]) after 

removing all non-protein molecules and hydrogen atoms using FCONV [161]. In the 

refinement, a 5% subset of the reflections was used for the Rfree calculations and they were 
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consequently, omitted from the refinement. The model was built in COOT [162] and the 

refinement was done using PHENIX.refine version 1.18.2-3874 [163]. The restraints 

assigned to the ligands were generated using the Grade Web Server [164] or eLBOW from 

PHENIX [163]. They were also used for energy minimization and restraint generation, 

SMILEs codes were obtained from Molinspiration [165]. First refinement step was 

performed with default parameters for XYZ coordinates, occupancies and individual B-

factors were alternated with structural adaption in COOT [162]. 

 

4.2.9. Inhibition assay of 17β-HSD14 

The inhibition of 17β-HSD14 by the various test compounds was evaluated with a 

fluorimetric assay following an established protocol [30], using the purified, recombinantly 

expressed enzyme, E2 as substrate and NAD+ as cofactor. A high enzyme (between 3.4 µM) 

and substrate concentration (E2 = 32 µM) had to be applied because of the low sensitivity 

of the assay. To a mixture of NAD+ (1.2 mM) and E2 (32 µM) in 100 mM phosphate buffer 

pH 8, the compound was added in DMSO (final DMSO concentration in assay: 1%) and the 

enzymatic reaction was started by adding the purified enzyme (1 mg/mL). The production 

of the fluorescent NADH by the enzymatic reaction was measured continuously for 15 min 

on a Tecan Saphire 2. 

 

4.3. Results and discussion 

4.3.1. Compounds solubility with cyclodextrins 

4.3.1.1. The fluorine-compound library solubility 

The compounds from the fluorine-compound library (Appendix) were purchased from 

different vendors or synthesized by our working group. They are soluble in organic solvents 

(such as DMSO), except for most of the compounds which were synthesized by our working 

group (FB20, FB133, ES19, ES24 and AM4.6). 

The first attempts were to solubilize the insoluble library compounds in distilled water by the 

addition of CDs. However, even when in principle a CD/compound complex should be formed 
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in aqueous solution enhancing overall hydrophilicity, no improved solubility in water was 

observed. 

Then, all compounds were first solubilized or suspended in DMSO and then mixed with the 

same volume of CD solution. There was a large portion of the compound that precipitated in 

the mixture. The mixtures have been centrifuged at 10000 rpm for 10 min and the supernatant 

was filtered (to obtain a clear mixture), to be later used in the crystallization experiment.   

 

4.3.1.2. Hydrophobic drugs solubility 

Solubilizing the hydrophobic drugs in water was not possible without heating. A water bath at 

80°C was needed for 24 – 72 h to solubilize the hydrophobic drugs. All drugs showed an 

enhancement in solubility when heated in water in presence of an equal amount of CD. The 

protocol was successful except for the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs, 

Ibuprofen and nimesulide) and vitamin D analogs (ergocalciferol and doxercalciferol), which 

were practically insoluble in water. 

Since all of the hydrophobic drugs were soluble in organic solvents, they were first solubilized 

in DMSO. Then, by mixing with an equal amount of aqueous CD solution, the organic drug 

solution was successfully prepared. The NSAIDs solutions precipitated after mixing with the 

CD solution, while solution of the Vitamin D analogs turned into a kind of emulsion (assessed 

by visual inspection). 

 

4.3.1.3. Sex hormones solubility 

Sex hormones (estrogens and androgens), are badly soluble and water repellent, thus dissolving 

them directly in water is not an option. All of the sex hormones used in this study are well 

soluble in DMSO. Thus, mixing the sex hormones dissolved in DMSO with an equal volume 

of aqueous CD solution led to a clear solution. 
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4.3.2. Crystal quality and stability with cyclodextrins 

In the crystallization protocol used for 17β-HSD14 without CDs (Chapter 1), measurable 

protein crystals were obtained after 7-21 days. Their resolution varied from 1.4 - 2.2 Å.  

The addition of the CD solution to the crystallization condition resulted in an increased size 

and number of 17β-HSD14 crystals in the crystallization drop. However, poorly shaped or no 

crystal growth was observed with compounds which were insoluble or poorly soluble in the 

CD/compound mixture. All of the crystals obtained are co-crystallized with compounds which 

were previously dissolved in DMSO before mixing with the CD solution. No crystals were 

observed for the crystallization condition with only water as a solvent. 

 

 

Figure 5. Crystals of 17β-HSD14 co-crystallized with hydrophobic probe compounds (marked 

below each image) in presences of different cyclodextrin derivatives. 
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The majority of the crystals are obtained under crystallization conditions in which β-CD 

derivatives are present, especially, 2-hydroxypropyl-β-CD. 

Unfortunately, even with the increased size and number of 17β-HSD14 crystals, there was only 

a small improvement in the diffraction resolution. 17β-HSD14 crystals do not have a long 

duration in the crystallization drop (2 weeks up to 3 months maximum). Longer than that, the 

crystals dissolve in the crystallization drop or lose their diffraction power. 

 

 

Figure 6. Comparison between 17β-HSD14 crystals co-crystallized with ligand FB20. A. 

crystals grown with cyclodextrin. B. crystals grown without cyclodextrin. 

 

As seen in Figure 6A, the crystals grown in presence of CD have a sustained durability in the 

crystallization drop. After 9 months from preparing the initial crystal batch, the crystals were 

still in good shape. The resolution of the data set collected after 9 months did not decrease 

compared to those collected after a few weeks from starting the preparation of crystal plates 

without adding the CDs. However, the crystals that were grown in higher concentration of 

PEG6000 (˃ 25% w/v) showed more durability than crystals grown in lower PEG6000 

concentrations (˂ 20% w/v). 
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4.3.3. The fluorine-compound library  

4.3.3.1. Hits from the Fluorine-compound library 

As mentioned earlier, all the compounds from the fluorine-compound library were screened 

with 17β-HSD14 without the addition of CDs. No successful hits could be recorded. Instead, 

all the hits obtained from screening the library were revealed in the presence of CDs in the 

crystallization buffer.  

 

 

Figure 7. The compounds from the fluorine-compound library. All compounds surrounded by 

a box did crystallize with 17β-HSD14 (red box = compound is not binding, yellow box = 

compound is partially binding and green box = compound is binding). 

 

Throughout this study, the only successful method used to obtain 17β-HSD14 crystals was to 

co-crystallize the test compound with the enzyme. However, the enzyme had to be crystallized 

at 18°C, due to a thermostability issue of the enzyme. When leaving the enzyme for 1 hour at 

room temperature, the protein concentration decreases by 40% (concentration measured by 

using spectrometer NanoDropᵀᴹ from Thermo Fisher SCIENTIFIC) and crystallizing at 

theconditions of the cold room (≈ 4°C) does not result in crystal growth. The growth period of 

17β-HSD14 crystals ranged from 7 - 21 days. In previous inhibition assays done in our working 

group by Florian Braun or in the present study, mostly, any compound that has no affinity to 
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the enzyme did not result in the production of protein crystals when co-crystallized with the 

enzyme. 17β-HSD14 needs to be in the complex with a potent inhibitor to be sufficiently stabile 

or in conformationally homogeneous form in order to crystallize. Nevertheless, even when a 

compound had sufficient affinity to the enzyme, it does not necessarily mean that it will 

crystallize (especially for compounds with rather poor solubility). All the compounds rendered 

by boxes in Figure 7 did produce protein crystals when subjected to co-crystallization with the 

enzyme. Nevertheless, small compounds (fragments) usually have very weak affinity to bind 

to a biological target macromolecule. In the case of compounds FB20, FB133, ES19, ES24, 

AM4.4, AM4.5 and AM4.6, they were all synthesized as putatively potent 17β-HSD14 

inhibitors. They all share an aromatic ring with hydroxyl and fluorine functionalities which 

make favourable interactions in the active site. However, some of these compounds did not 

produce crystals while others did, but without a visibly bound hit indicated by an appropriate 

difference electron density in the active site. The issue with these compounds is not the affinity, 

but possibly their minor solubility. The presence of cyclodextrins made it possible to obtain 

protein crystals with compounds, such as FB20, ES19, AM4.5 and AM4.6, while the first 

attempts using the original crystallization protocol (without CD) was not successful in 

obtaining any crystals. 

 

4.3.3.1.1. Compound FB20 

Ligand FB20 was synthesized in our working group by Florian Braun. The inhibition constant 

Ki of FB20 was determined by the described fluorometric assay using the 17β-HSD14 enzyme 

(Ki = 190 ± 45 nM). The poor water solubility made it difficult to obtain protein crystals in 

complex with this ligand. Fortunately, when the protein is co-crystallized in presence of the 

ligand/CD complex, protein crystals were obtained.  

Before co-crystallizing the protein with FB20, the ligand was dissolved (or suspended due to 

its low solubility) in DMSO. This solution was then mixed with an equal volume of different 

CD derivatives dissolved in water (each at a time). The molarities of both, FB20 and CD, were 

adjusted equal so that stoichiometric complex formation was possible. Protein crystals were 

obtained from conditions that contained α-CD, methyl-β-CD, 2-hydroxypropyl-β-CD, γ-CD or 

2-hydroxypropyl-γ-CD. The ligand is visible in the electron density when 2-hydroxypropyl-β-

CD and 2-hydroxypropyl-γ-CD were applied. 
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However, after resolving the crystal structure, a structural difference to the ligand topology 

predicted from synthesis was found. FB20 contains a chlorine atom which is easily detected in 

the difference electron density due to its massive signal in the mFo-DFc map. Even more, an 

anomalous map has been created to check the presence of the chlorine atom in the active site 

(Figure 10 A), not to mention the bond length difference which is obvious in the electron 

density (Figure 10 B). There are three functional groups attached to the aromatic ring C of 

FB20, a chlorine, fluorine and hydroxyl group. A Cl•••C bond length is usually 1.73 - 1.75 Å, 

while a F•••C and HO•••C bond length are both about 1.34 - 1.36 Å in length, respectively. 

Thus, it is easy to distinguish the Cl attachment at the aromatic ring from the other bond lengths 

in crystal structure with an acceptable quality and resolution (1.5 Å in our case).  

In X-ray crystallography, the difference electron density is the compass to determine whether 

a compound is binding or not and how a compound is oriented in the binding site. The electron 

density in the binding pocket shows that ligand FB20 fits (Figure 10 B), but the chemical 

structure seems to deviate from the synthesis proposal. Even more, the average B-factor for the 

ligand after refinement is 28.0 Å2 at an occupancy of 0.75 with all atoms fitting in the electron 

density (except for a carbon atom at the pyridine ring which is located slightly outside the 

selected electron density contour level).  

Both the electron density and the anomalous map showed that the ligand FB20 is clearly bound 

to the active site, but a different chemical structure has to be assigned compared to that 

originally proposed by synthesis. 
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Figure 8. A cartoon representation of 17β-HSD14 (left) with cofactor NAD⁺ and ligand FB20 

presented as balls and sticks in orange and blue respectively and a closer view of ligand FB20 

(right) inside the binding pocket. Residue Tyr253' (blue) is from the adjacent monomer mate. 

 

 

 

Figure 9.1. The proposed chemical structure of the synthesized ligand FB20. 2. The chemical 

structure of ligand FB20 as found in the crystal structure. 

 

17β-HSD14 crystals in complex with ligand FB20 were obtained with five different CD 

derivatives. Only crystal structures that were crystallized with 2-hydroxypropyl-β-CD and 2-

hydroxypropyl-γ-CD, showed the ligand’s electron density in the binding pocket. The crystal 

structure shown in Figure 8 has been crystallized with 2-hydroxypropyl-β-CD. 

The protein did not yield any proper crystals with bound ligand FB20 without exposing the 

protein to the ligand/CD complex. However, the bound ligand in the active site showed a 

deviating chemical structure in comparison to the originally anticipated chemical structure as 

obtained from synthesis. In Figure 9 (A) the chemical structure of the originally synthesized 

ligand showing on the aromatic ring (A) both a fluorine and a chlorine atom at para and meta 

positions respectively, while in Figure 9 (B) the chlorine is found at the aromatic ring (C) at 

ortho position while at ring (A) a fluorine and hydroxyl group are detected with mutually 

exchanged positions. 

The protein has been crystallized multiple times in complex with FB20/CD mixture over a 

period of time spanning about 18 months. During the first attempts, many methods to analyse 

the chemical structure of FB20 were performed. Mass spectrometry was performed and a mass 

of 345 Da was found. Nevertheless, as both chemical structures in Figure 9 show the same 

chemical composition they share the same mass. Furthermore, Nuclear Magnetic Resonance 

(NMR) was performed suggesting correctness of the topology of ligand FB20 as displayed in 

Figure 9 A, but the interpretation of the aromatic substitution pattern is quite delicate in the 
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present case. The first crystal structure was collected six months after the NMR was performed, 

and the sample was stored at -20°C in an air tight and inert dark glass container, which makes 

structural changes to the ligand during storage unlikely. Also, structural changes of FB20 once 

exposed to 2-hydroxypropyl-β-CD appear unlikely as stable C-halogen bonds would be 

necessary to break and the ligand forms only an inclusion complex with the CDs. Thus, no 

covalent bonds are formed or broken during the complex formation. The fact that FB20 only 

forms with 2-hydroxypropyl-CDs a detectable complex is likely explained by the deviating 

physicochemical property which render these CDs prominent (Table 3). 

 

Table 3. Cavity size and some physiochemical properties natural cyclodextrin and some 

derivatives. 

CD type Substituent 
Inner cavity 

diameter(Å) 

Hydrogen 

donor 

Hydrogen 

acceptor 
Log PO/W  

a 

α-CD H 4.7_5.3 18 30 -13 

β-CD H 6.0_6.5 21 35 -14 

γ-CD H 7.5_8.3 24 40 -17 

methyl-β-CD -CH3 5.8_6.5 7 35 - 

2-hydroxypropyl-β-CD -CH2-CHOH-CH3 6.0 25 39 -11 

2-hydroxypropyl-γ-CD -CH2-CHOH-CH3 8.0 24 45 -13 

a
The partition coefficient, abbreviated P, is defined as a particular ratio of the concentrations of a solute between the two       

solvents (octanol/water). 

Data is taken from [201–205] 

 

 

 

Table 3 shows the different physicochemical properties for each CD derivative used to produce 

a complex with ligand FB20. As mentioned earlier, the interior cavity of CD is lipophilic and 

the exterior is hydrophilic, which means that the OH groups are located on the outer surface of 

the CD. Especially, 2-hydroxypropyl-β-CD has the highest number of hydrogen-bond donors 

while having relatively the smallest cavity size compared to other CDs. The chances of 

compound binding might be for these reasons higher along with the better aqueous solubility 

https://en.wikipedia.org/wiki/Concentration
https://en.wikipedia.org/wiki/Solution
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of the more polar CD. Nevertheless, this does not explain the observed differences in the 

chemical structure anticipated from synthesis and found by crystal structure analysis. Exposure 

to X-ray can break chemical bond, especially to electron-rich atoms. However, we believe that 

also this modification does not explain the quantitative transformation of a chlorine atom from 

ring A to C along with the topology change of hydroxyl and fluorine substitution in ring A. 

Definitely, a more detailed analysis of the synthesis protocol will be required. The chlorine 

atom has been introduced to aromatic ring by electrophilic halogenation, following the use of 

Cl2 in the presence of an appropriate Lewis acid catalyst (e.g. FeCl3). Possibly in this step, the 

other ring was substituted leading to the isomeric product. Mass spectrometry and NMR can 

hardly distinguish the two isomers. However, to clarify this aspect, a more detailed analysis 

will be required, which is beyond the scope of this thesis. For the question studied in the chapter, 

the issue is of minor importance as it could be shown that the use of a more polar CD definitely 

allowed to obtain a crystal structure with a badly water-soluble ligand, which could not be 

cocrystallized otherwise.   

 

 

Figure 10. A. Ligand FB20 represented as ball and stick in the binding pocket, where the black 

mesh around the chlorine atom (green) is the anomalous peak. B. Ligand FB20 represented as 

stick model in the binding pocket, where the black mesh surrounding it is the mFo_DFc map 

at 3.0Å σ level. 
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4.3.3.1.2. Compound bad25 

The fluorine-compound library contains many organo-fluorine compounds, but bad25 

(pentafluorophenol, MW = 184 g/mol) which is a colourless solid that melts just above room 

temperature (melting point 32.8°C) with a pKa value of 5.5 is the most acidic phenol from the 

library. Pentafluorophenol has one hydrogen-bond donor (OH group) and five fluorine atoms 

which make favourable interactions in the binding pocket with the catalytic triad and the OH 

group of Tyr253' from the adjacent monomer mate. The compound’s small size makes it easier 

to travel through the water channels to the active site. However, no protein crystals could be 

obtained in complex with bad25 when crystallized using the original protocol without CDs. It 

seems that the high acidity of the compound has a detrimental effect on the crystallization 

process which is performed under neutral pH conditions. 

Bad25 has no solubility issue and it is well soluble in water and organic solvents like most 

small compounds (fragments). Just like other small compounds, bad25 tends to have lower 

affinity than larger compounds. Unfortunately, the inhibition constant (Ki) could not be 

determined for bad25, as the assay is not sensitive enough to record weakly binding ligands. 

 

 

 

Figure 11. A cartoon representation of 17β-HSD14 as a dimer (PDB ID: 6ZDE) and a closer 

view of the active site where compound bad25 (balls and sticks) is binding. 

 

Compound bad25 is hydrophilic with five fluorine functionalities on the aromatic ring, which 

means that it will likely bind on the hydrophilic outer surface of the CD. However, the electron 
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density does not show traces of cyclodextrin or any glucose subunits, beside the conserved 

glucose molecule on the surface of the enzyme. 

17β-HSD14 in complex with bad25 was crystallized with γ-CD. The interaction of compounds 

with cyclodextrins leads to apparent changes in their chemical properties, such as shifts in their 

absorption spectra and acid-base equilibrium. Formation of inclusion complexes between 

acidic and/or basic forms of a compound with CDs can change the amount of the conditional 

acidity constant [206]. Apparently, the effect of the bad25/γ-CD inclusion body made it 

possible to obtain protein crystals by masking the high acidity of bad25 in the crystallization 

drop. 

The interactions of the compound in the active site (Figure 11) with the enzyme show a typical 

pattern similar to that observed for potent inhibitors synthesized by our working group. The 

OH group interacts with residues Ser141 and Tyr154, while one of the fluorine atoms is 

interacting with residue Tyr253' from an adjacent monomer mate. The interaction between 

fluorine and residue Asn186 is not seen for other potent compounds. However, the presence of 

multiple fluorine atoms on one ring in bad25 makes the difference compared to synthesized 

potent inhibitors, which contain only one fluorine atom on the aromatic ring.  

 

4.3.3.1.3. Compound bad26  

Bad26 (2-fluoro-5-nitropenol, MW = 157.1 g/mol) is harmful if swallowed (toxic), inhaled 

(targeting organ is the lung) or contacted the skin (irritant), so all experiments done with this 

compound were performed under a chemical fume hood. Unfortunately, due to its toxic and 

slightly volatile chemical properties, no experiments apart form crystallization was performed 

(e.g. inhibition assay). 17β-HSD14 crystals were obtained in complex with compound bad25, 

the co-crystallization of the protein was done by introducing a bad25/CD mixture to the protein 

sample in the crystallization drop. Protein crystals were obtained from conditions that 

contained α-, γ-, methyl-β-, 2-hydroxypropyl-β- and 2-hydroxypropyl-γ-cyclodextrin. Data 

sets were collected for each crystal with a different CD. 
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Figure 12. A close view of the active site of 17β-HSD14 in complex with compound bad26 

(balls and sticks). The catalytic triad residues Ser141 and Tyr154 (grey sticks) and residue 

Tyr253' from the adjacent monomer mate (blue sticks). A. the OH group and F atom forming 

interactions to Ser141 and Tyr154 (PDB ID: 6ZDI). B. The nitro group is forming very similar 

interactions as the OH and F substituent (PDB ID: 6ZRA). 

 

 

 

Figure 12 shows two crystal structures of 17β-HSD14 in complex with compound bad26, but 

the established interactions found in each structure are different (the compound orientation 

changed). Both structures were crystallized using 2-hydroxypropyl-β-CD, which throughout 

this study, is the CD that gave the better results (crystal quality, crystal growth and resolution). 

Figure 12A shows the OH group and F atom are forming interactions with residues Ser141 

and Tyr154 from the catalytic triad and residue Tyr253' from the adjacent monomer mate, 

which is the pattern seen with other potent inhibitors containing these two functionalities, such 

as inhibitor 1 (Chapter 1). However, in Figure 12B the compound changes orientation and the 

nitro group is making interactions instead of the OH group and F atom at the aromatic ring. 

The first data set from 17β-HSD14 in complex with bad26 is the one shown in Figure12 A 

where the OH group and F atom are forming the interactions. Another data set was collected 

from different protein batch aiming for a better resolution. The newly collected data set did not 
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have a better resolution. However, it has been noticed that the interaction pattern has changed. 

To validate these results, data sets for 17β-HSD14 in complex with bad26/2-hydroxypropyl-β-

CD complex were collected multiple times (4 times) to assess which orientation of the 

compound in the active site is the predominant one. Crystal plates have been prepared, crystals 

from different plates were tested and collected, they all show the interaction pattern seen in 

Figure 12A, where the OH group and F atom at the aromatic ring are forming interactions with 

the protein. Thus, the structure where the nitro group was interacting with the enzyme`s amino 

acids was assumed to be a rare case grown under slightly different conditions which are difficult 

to reproduce. Likely, both orientations found for the fragment are very close in energy. 

 

4.3.3.1.4. Compound bad22 

Compound bad22 (3-chloro-2.6-difluorophenol, MW = 164.5 g/mol) is a chlorophenol. The 

compound is corrosive, irritant, environmental hazardous with fair vitality. The handling of the 

compound and the preparation of crystals plate were all done under a chemical fume hood. 

 

 

 

Figure 13. A close view of the active site of 17β-HSD14 in complex with compound bad26 

(PDB ID: 6ZT2). The catalytic triad residues Ser141 and Tyr154 (grey sticks) and residue 

Tyr253' from the adjacent monomer mate (blue sticks). The electron density is shown at 3.0 Å 

σ level. 
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Compound bad22 shares similarity to compound FB20 in terms of attached functionalities 

which are forming interactions with the enzyme. Even with an extra F atom, the positioning of 

the Cl atom of bad22 in the active site is similar to that of FB20 that binds to the active site of 

the enzyme (Figure 8). The orientation seems to be favoured when a compound with F, HO, 

and Cl substituents are present in the active site. The chlorine atom is easily localized due to 

its strong anomalous signal, but it does not form any interactions with active-site residues. 

 

4.3.3.2. The fluorine-compound library partial hits 

Many compounds from the fluorine-compound library shown in Figure 7 were labelled as 

partial hits. In this study, a compound is considered a “partial hit” (no full population of the 

bound fragment) when there is a change in the mFo-DFc map of the collected data set. A 

“change” is defined as newly visible difference electron density which is not present in 17β-

HSD14 apo crystal structure, independent whether the difference is in the active site or other 

areas throughout the structure. 

 

 

Figure 14. Examples of the compounds considered as “partial hits” (balls and sticks) 

displayed together with mFo-DFc map at 3.0 σ (black mesh) inside 17β-HSD14 active site. The 

electron density shown, was enhanced using a polder map [207]. 

 

All compounds selected for the fluorine-compound library share the presence of an OH group 

and an adjacent F substituent at an aromatic ring in common. However, only a few of these 

compounds were found to bind to the active site, while some others were classified as “partial 

hits”. Apparently, the presence of a favoured pattern of functional groups in a compound is not 
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sufficient to observe binding to a given macromolecule target. The compounds of bigger size 

do not bind to the enzyme and some even do not crystallize with the protein. The volume of 

the binding pocket of 17β-HSD14 (2619Å³) [139] is big enough to host most of the compounds 

of the library, but the spatial fixation of the flexible loops contributed by two adjacent monomer 

mates on top of the entrance of the binding pocket makes it more difficult for larger compounds 

to enter. 

 

4.3.4. The hydrophobic drugs 

Even with the use of CDs to make inclusion complexes with the hydrophobic drugs, it was not 

possible to completely solubilize them in an aqueous solution. Still, the crystallization 

experiment was conducted after centrifugation and filtration of the drug/CD complex to remove 

any suspended particles which were not dissolved. The only protein crystals that formed were 

those with acetaminophen (paracetamol) that was incubated with 2-hydroxypropyl-γ-CD. 

Unfortunately, no visible electron density for acetaminophen could be traced within the 

structure. 

 

4.3.5. Sex hormones 

A crystal structures containing one of the sex hormones such as estrogens (E2) and androgens 

(5-diol), arguably being 17β-HSD14 substrate, would be useful to study their interaction 

pattern in the active site of the enzyme. Protein crystals formed when co-crystallized with 

estrone (E1), estradiol (E2) and Androst-4-en-3-one. Sadly, none of the collected data sets 

contained a bound hormone molecule in the active site or any location elsewhere in the crystal 

packing. Even after enhancing the electron density, no signal of a bound compound could be 

observed. To enhance the chances to obtain hormone-enzyme structures, CDs were added to 

the crystallization conditions. The crystals that grew from co-crystallization with the sex 

hormones/CD complexes had inadequate properties in terms of crystal shape, diffraction 

pattern and resolution, thus also this protocol did not result in a novel crystal structure. 
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4.3.6. Water channels and cyclodextrin 

 

 

Figure15. A. Surface representation of 17β-HSD14 tetramer as arranged in the crystal lattice 

(each tetramer indicated with a different colour). B. Two adjacent tetramer mates represented 

as surface (each monomer is labelled with a different colour, but the same colour category for 

each tetramer) with a closer view on the water channel between the two tetramers where 

glucose molecules are found. C. The same as B, but from 90° vertical view. The red mesh 

around the glucose units is the mFo-DFc map at 3.0 σ level. 
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It has been noticed in the current investigation that multiple crystal structures, crystallized in 

the presence of CD, contain massive electron density (at 3.0 Å σ level) located in the water 

channels of 17β-HSD14 between each two adjacent tetramer mates (Figure 15). The electron 

density shape is oval and connected to one another, thus it might be a CD molecule. However, 

the size and diameter of the water channels at the position where the electron density was found 

is not sufficiently large to host a CD molecule. Even the smallest CD, used for this study (α-

CD), could not be fitted in the water channel without clashing with neighbouring amino acids. 

This difference in the electron density between crystals grown in presence or absence of CD 

gave strong evidence of a substantial involvement of CDs in compound delivery to the active 

site. Even if the molecule located throughout the water channels of the enzyme is not a CD 

molecule, and observing that water molecules, which occupied the water channels are displaced 

by this other compound are an indication of the definite CD effect on the delivery system of 

the enzyme (water channels). 

Many attempts were made to find a suitable molecule to fit in the unexplained electron density 

found in the water channels. After failing to fit a CD molecule inside, the ligands that were 

crystallized in each sample set that showed this electron density were tried to fit. Unfortunately, 

the compounds were not able to explain the residual electron density as well. Finally, a glucose 

molecule proved to be a good candidate to explain the electron density. In the close-up view of 

the water channel in Figure 15A and B, four neighbouring glucose molecules were placed, 

each molecule is from a different monomer that are forming the water channel (two monomers 

from each neighbouring tetramer in the asymmetric unit). During refinement, the glucose 

occupancy was set to 100% because each molecule is part of a separated monomer. The glucose 

molecule proved to be a good fit to explain the residual electron density. However, the high 

fluctuation of the refined B-factors between the different glucose atoms was an issue. All 

glucose atoms forming interactions with other atoms from the neighbouring glucose molecules 

had high B-factor values, so the molecules were discarded. When the occupancy is set to 25% 

for each glucose molecule, the B-factor average for all atoms converted to an acceptable value 

(≈ 35 Å2), but the electron density was not explained properly after refinement. Surprisingly, 

all crystals were grown with glucose present in the crystallization buffer independent of 

crystallization with or without presence of CDs. Thus, the observation of a newly hosted 

glucose molecules in the water channels only accommodated once a CD was added to the 

crystallization trials is not fully comprehensible. Possibly, the CD molecules 
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dissociated (glycosidic linkage broke) and multiple glucose molecules roam freely through the 

water channels. 

 

4.3.7. Crystallographic table 

Details of the data collection, processing, diffraction data, refinement and other parameters 

related to 17β-HSD14 crystal structures are listed in Table 5. 
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Table 5. Data collection and refinement statistics for all crystal structures 

PDB code 6ZDE 6ZDI 6ZR6 6ZT2 6ZRA 

Data collection and processing 

Space group I 4 2 2 I 4 2 2 I 4 2 2 I 4 2 2 I 4 2 2 

Unit cell 91.2 91.2 133.0 91.2 91.2 133.0 91.1 91.1 132.1 91.2 91.2 133.5 91.1 91.1 132.5 

Matthews coefficient a 2.34 2.43 2.4 2.9 2.4 

Solvent content (%) 49.4 49. 4 48.9 58.3 49.1 

Diffraction data b 

Resolution range 
50-1.87 

(1.98-1.87) 

50-2.13 

(2.26-2.13) 

50-1.50 

(1.59-1.50) 

50-1.95 

(2.06-1.95) 

50-1.73 

(1.83-1.173) 

Unique reflections 23587(2322) 16003(2517) 44723(7128) 20921(3271) 29510(4670) 

R(I)sym (%) c 8.4(52.3) 11.7(48.5) 4.8(52.4) 10.2(57.7) 6.7(56.4) 

Wilson B factor 22.5 21.6 18.0 24.1 23.4 

completeness 99.8(99.7) 99.3(98.4) 99.9(99.7) 99.7(98.4) 99.9(99.8) 

redundancy 13.1(13.6) 8.5(8.1) 8.7(8.9) 8.5(8.8) 13.2(13.5) 

<I/σ(I)> 24.2(5.22) 14.8(4.2) 25.9(3.9) 15.1(3.5) 24.2(4.6) 

Refinement 

Resolution range 29.65-1.87 46.34-2.13 45.12-1.50 46.37-1.95 46.2-1.73 

Reflections used in 

refinement (work/free) 

23603 

(22425/1178) 

16003 

(15200/803) 

44723 

(42496/2236) 

20921 

(19875/1046) 

28510 

(27083/1426) 

Final R value for all 

reflections (work d /free e) 

(%) 

16.4/19.3 20.8/21.4 15.1/17.9 17.5/21.5 17.7/16.7 

Protein residues 252 252 257 252 256 

Water molecules 149 52 165 96 132 

rmsd from ideality: bond 

length (Å) 
0.007 0.007 0.005 0.007 0.006 

rmsd from ideality: bond 

angle (°) 
0.81 0.88 0.77 0.83 0.81 

Ramachandran most 

favored(%) f 
98.4 98.5 98.4 98.4 98.4 

Ramachandran 

additionally allowed (%) f 
1.6 1.5 1.6 1.6 1.6 

Mean B factor protein 

(Å²) g 
23.84 29.6 22.2 24.2 25.2 

Mean B factor ligand 

(cofactor/ligand) (Å²) g 
20.8/27.9 26.0/30.7 17.0/31.5 22.4/25.6 23.5/26.6 

Mean B factor water 

molecules (Å²) g 
29.9 28.0 27.2 27.3 30.8 

a Calculated with Matthews_coef program from CCP4 suite version 6.4.0. b Values in parenthesis describe the highest 

resolution shell. c R(I)sym = [∑h∑i|Ii(h) – ⟨I(h)⟩|/∑h∑iIi(h)] × 100, in which I(h) is the mean of the I(h) observation of 

reflection h.  d Rwork = ∑hkl|Fo – Fc|/∑hkl|Fo|.  e Rfree was calculated as shown for Rwork but on refinement-excluded 5% of data. f 

Calculated with PROCHECK [167]. g Mean B factors were calculated with MOLEMAN [168]. 
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4.4. Conclusion 

Using cyclodextrins to form an inclusion complex with a compound to be transferred into the 

17β-HSD14 enzyme in order to grow subsequently a protein crystal proved to be successful 

throughout this study. Without the usage of CDs, most of the hydrophobic compounds did not 

bind successfully to the enzyme. Some even did not lead to any successful crystal formation 

when co-crystallized with the enzyme. The fluorine-compound library contains hydrophobic 

and hydrophilic compounds. No crystals could be obtained without the usage of CDs when 

dealing with the hydrophilic compounds from the library, mainly, because of their chemical 

properties (acidity) was sufficiently masked by the CD, e.g. in the case of compound bad25. 

Some hydrophobic compounds, which showed promising results (e.g. FB20 and ES19), 

showed an improvement due to increased solubility of the compounds. Multiple data sets could 

be collected from protein crystals formed as complexes with these compounds. Even more, 

through the enhancement of electron density maps (Polder maps), multiple compounds from 

the library could be identified as potential binders to the enzyme. Unfortunately, no successful 

hits could be obtained in the case of the hydrophobic drugs and sex hormones when the protein 

was exposed to CD complexes with these probe molecules. However, protein crystals have 

been obtained with these compounds, which is an advantage over the original crystallization 

protocol used in absence of CDs.  

Glucose is seen in almost every 17β-HSD14 crystal structure deposited by our working group 

(PDB ID: 6G4L, 6H0M, 6ZRA) as bound on the surface of the enzyme. The glucose was 

present in the crystallization conditions as it was used in the purification protocol of the enzyme. 

Surprisingly, in the crystal structures obtained with the presence of CDs, the glucose molecules 

are supposedly in the water channels. Obviously, 17β-HSD14 is compatible with sugars and 

this was another reason to use CDs in the crystallization condition of the protein. The stability 

and quality of the protein crystals showed an observable enhancement. The crystals could 

survive for longer times in the crystallization plates without losing the diffraction power.  

Among all CDs, 2-hydroxypropyl-β-CD is the derivative that gave the best results when 

compared to other CD derivatives used in this study in terms of crystal formation, hit generation 

or data set quality and resolution. Still, further research is required to identify the effect of CDs 

on enhanced compound binding to 17β-HSD14 and the mechanism how the solubility 

improvement and compound transfer operates. 
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4.5. Appendix 

The fluorine-compound library 

 ID Structure 
MW 

(g/mol) 

1 bad1 

 

156.1 

2 bad2 

 

223.2 

3 bad3 

 

342.3 

4 bad4 

 

332.3 

5 bad5 

 

184.2 

6 bad6 

 

303.2 

7 bad7 

 

348.4 

8 bad8 

 

344.3 
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9 bad9 

 

340.3 

10 bad10 

 

323.3 

11 bad11 

 

184.2 

12 bad12 

 

219.2 

13 bad13 

 

169.2 

14 bad14 

 

154.1 

15 bad15 

 

319.336 

16 bad16 

 

318.3 

17 bad17 

 

274.3 

18 bad18 

 

291.2 
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19 bad19 

 

263.3 

20 bad20 

 

188.1 

21 bad21 

 

166.2 

22 bad22 

 

164.5 

23 bad23 

 

145.1 

24 bad24 

 

128.1 

25 bad25 

 

184.1 

26 bad26 

 

157.1 

27 bad27 

 

192.1 

28 bad28 

 

180.1 
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29 FB20 

 

345.7 

30 FB133 

 

379.4 

31 ES19 

 

330.4 

32 ES24 

 

342.4 

33 AM4.4 

 

304.3 

34 AM4.5 

 

304.3 

35 AM4.6 

 

304.3 

 

 

 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 
Chapter 5 

Fragment-based drug discovery 

Fragment screening against trypsin in a trigonal and 

orthorhombic crystal form 
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5.1. Introduction 

Fragment-based lead discovery (FBLD) or in a broader sense named fragment-based drug 

discovery (FBDD) is an established approach and widely used method applied in drug 

discovery to find lead compounds. FBDD is increasingly used in pharmaceutical industry to 

reduce attrition and obtain leads for intractable or new biological targets.  

Fragments are identified as low-molecular weight ligands which “usually” follow “The Rule 

of Three”, which is having a maximum of three H-bond donors/acceptors, clogP≤3, less than 

20 non-hydrogen atoms (MW ≤ 300 Da)  not more than three rotatable bonds and Polar Surface 

Area (PSA) ≤ 60Å². However, fragments have weak affinity which requires a highly sensitive 

biophysical technique to check their binding mode with a designated target, such as nuclear 

magnetic resonance (NMR) or X-ray crystallography which is the method of choice in this 

study [97,98,105,111,113,114,208].  

The high success rate in generating chemical series that possess lead-like properties is one of 

the advantages of FBDD. Fragment libraries contain a number of compounds to screen against 

a targeted receptor. However, small-scale screening compounds from a library can be 

customized or specifically picked depending on the target. In small-scale screening against a 

biological macromolecule, many criteria should be considered, such as the volume of the active 

site, the unrestricted movement through the water channels if soaking techniques are applied 

and the residues inside the corresponding active site. 

Even with low affinity and small size fragments, hits obtained from a fragment screening would 

lead to a subsequent expansion of hits after optimizing a fragment candidate, through the 

addition of better matching functionality and making it more compatible to its corresponding 

receptor. When observing hits from a fragment screen, it is noticeable that the number of 

interactions is relatively low because of the low number of atoms. Unfavourable or unexpected 

interactions could form in regions other than the targeted ones [111].  

Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are 

key players in stabilizing energetically-favoured ligands. The low water solubility of many 

drug-like compounds makes it harder to obtain a hit. Fragments of small size and low molecular 

weight offer higher hydrophilic hits that can boost affinity. Occasionally, adding a hydrophobic 

group can increase affinity. Starting from a hydrophilic fragment and adding a hydrophobic 

group would ease the process and compromise between hydrophilicity and affinity [209–213]. 
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In this study, X-ray crystallography is the method of choice for FBDD to screen against cationic 

trypsin (EC: 3.4.21.4). There are other methods used to identify fragment hits, such as SPR, 

NMR or TSA, but X-ray crystallography is the method used in this study. The availability of 

third generation synchrotron sources and the modern instrumentation used in automated crystal 

mounting systems, data collection and processing enable FBDD to be done with more ease and 

speed. The automated refinement pipeline developed in the working group of Prof. Gerhard 

Klebe (AG. Klebe) contributed enormously to reduce the time required for manual structural 

refinement [196]. 

Trypsin (EC: 3.4.21.4) was first described in the late 1800s as a proteolytic activity present 

in pancreatic secretions [128]. Subsequent studies revealed that this enzyme specifically 

hydrolyzes peptide bonds C-terminal to the amino acid residues lysine (Lys)and arginine (Arg) 

10⁹ times faster than hydrolysis by hydroxide ion. Since its initial discovery, trypsin has been 

identified in all animals, including insects, fish, and mammals.  The natural substrate for the 

enzyme is generally any peptide that contains Lys or Arg. The specificity of trypsin allows it 

to serve both digestive and regulatory functions. As a digestive agent, it degrades 

large polypeptides into smaller fragments. As a regulatory protease, it activates other proteins 

through proteolysis at specific Lys or Arg bonds. 

 

Trypsin crystallization conditions can reveal different crystal packing. In this study trypsin 

crystals obtained are either trigonal or orthorhombic. The fragment screening was done on each 

crystal form of trypsin crystals using the soaking method. However, for orthorhombic trypsin 

crystals, both soaking and cocrystallization methods were applied.  

 

For the description and structural characterization of protein-ligand interactions using X-ray 

structure analysis, protein crystals are grown in solution. For this purpose, the saturation point 

of the protein in the solution needs to be exceeded, so that the protein can crystallize. It is 

important that this process takes place slowly in order to form crystallization nuclei that can 

grow to larger crystals. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/trypsin
https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-degradation
https://www.sciencedirect.com/topics/medicine-and-dentistry/pancreas-secretion
https://www.sciencedirect.com/topics/medicine-and-dentistry/peptide-bond
https://www.sciencedirect.com/topics/medicine-and-dentistry/carboxy-terminal-sequence
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/arginine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzymatic-hydrolysis
https://www.sciencedirect.com/topics/medicine-and-dentistry/hydroxide
https://www.sciencedirect.com/topics/medicine-and-dentistry/inorganic-ions
https://www.sciencedirect.com/topics/medicine-and-dentistry/trypsin
https://www.sciencedirect.com/topics/medicine-and-dentistry/polypeptide
https://www.sciencedirect.com/topics/medicine-and-dentistry/proteinase
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Figure 1. Phase diagram for protein crystallization taken from Bijelic [214]. 

 

As seen in Figure 1, a distinction is made between an unsaturated and saturated range. At the 

boundary of both states, the maximum solubility of the protein is present at a defined 

concentration. 

In addition, the saturated area is divided into a metastable and an unstable phase. In the 

metastable phase (Figure 1), the first crystallization nuclei are obtained from which no protein 

crystals can yet be formed. This process only takes place in equilibrium with the metastable 

phase, so that the crystals can grow slowly. If the saturation point is exceeded, an imbalance is 

created and a state is reached in which the protein can crystallize. 

In order to achieve such supersaturation, the temperature can be lowered so that the solubility 

of the protein is reduced. This can also be additionally influenced by adding other precipitants 

such as PEG. Since proteins have, among other properties, titratable functional groups which 

can change protonation state, the crystallization can be supported by changing the pH value 

and the ionic strength of the solutions used in the protein sample buffer of the crystallization 

buffer. 

The "salting out" process removes the solvent from the protein, thus achieving increased 

saturation and facilitating crystallization. Usually the hanging drop or the sitting drop method 
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is used in practice. If crystallization is carried out by hanging drop, the protein and reservoir 

solution are mixed together in the same ratio on a glass plate and then the reservoir is covered 

with it according to Figure 2. Depending on the difference in vapour pressure, the aqueous 

phase slowly passes into or out of the reservoir, resulting in a shift in concentration in the drop 

by vapour diffusion. 

 

 

Figure 2. The well is covered by a glass plate in the hanging drop method (right), while in the 

sitting drop method (left) the well is sealed with a sealing tape. 

 

Both the protein concentration and the precipitant concentration are increased and consequently 

a supersaturated solution is obtained. Vapour diffusion works in a similar way via the sitting 

drop method in which the drop is placed on a micro-bridge. As soon as the crystals formed 

have a sufficient size (> 0.05 mm), they can be subjected to diffraction experiments. Here, X-

rays are used which, with their short wavelength of approx. 1 Å, should exert elasticity 

(scattering without energy loss) on the sample. 

When X-rays hit the electrons of an atom, they are scattered in different directions. The atoms 

in the crystal are periodically arranged and through them, series of parallel lattice planes can 

be laid out, which differ in their orientations, their relative distance and their density of atoms. 

A detector can then collect the reflected rays and obtain a diffraction image from which the 

intensity and amplitude of these reflected rays can be determined. From this, differential 

electron density maps are calculated, which define the positioning of the respective atoms of 

the protein in the elementary cell.
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5.2. Materials and methods 

5.2.1. The 96-fragment library 

The 96-fragment library used in this study is an inhouse library developed in collaboration with 

the Helmholtz Zentrum Berlin (HZB) MX-group at BESSY II (AG Weiss). The library is used 

for fragment screening by X-ray crystallography. The fragments are selected with respect to 

many criteria, such as, size, molecular weight, functional groups and number of hydrogen bond 

accepter/donor properties.  

The assembled fragments are selected from existing protein-ligand complexes, carbohydrates, 

nucleotides, amino acids, peptide like fragments and drug-like organic compounds. 52 entries 

of the 96-fragment library are extracted from a 361-fragment library developed by the working 

group of Prof. Gerhard Klebe (AG Klebe) at the Institute of Pharmaceutical Chemistry 

(Philipps University Marburg), 34 compounds from a HZB screening set, which was part of 

the PDBeChem database. 

Most of the fragments from the 96-fragment library follow “The Rule of Three”. However, all 

of the fragments have a molecular weight less than 300 Da. The smallest fragment from the 

library is J95 (MW= 115 Da) and the biggest one is J24 (MW= 288 Da). The average molecular 

weight of all the compounds is around 190 Da. 

 

5.2.2. Protein Sample 

Trypsin from bovine pancreas (EC: 3.4.21.4) is purchased from Sigma Aldrich. The sample 

comes as essentially salt-free lyophilized powder. Trypsin consists of a single chain 

polypeptide of 223 amino acid residues (MW= 23.8 kDa), produced by the removal of the N-

terminal hexapeptide from trypsinogen which is cleaved at the Lys - Ile peptide bond. The 

sequence of amino acids is cross-linked by 6 disulfide bridges. Trypsin is a member of the 

serine protease family. Solid trypsin samples were stored at -20°C. 
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5.2.3. Competitive fragment screening on two crystal forms 

This study focuses on two crystal forms with trigonal and orthorhombic lattice geometry. 

Both crystal forms were obtained from the same protein sample, but the difference is in the 

crystallization conditions used to obtain crystals. The fragment screening was done against 

each crystal form by using the crystallization method of soaking.  

The trigonal crystal form can be obtained as ligand-free crystals by direct crystallization 

conditions (see 2.4.1). These crystals were subjected to a soaking protocol exposing them to a 

fragment concentration of 100 mM (see 5.2.4.1). The orthorhombic crystal form is more 

difficult to obtain, particularly if uncomplexed crystals are desired. Trypsin tends to suffer from 

autoprotolysis. This can be countered by adding an inhibitor such as benzamidine and crystals 

of the orthorhombic form are readily formed. However, since benzamidine is a fragment that 

blocks the active site of trypsin, the fragment has either to be washed out of the formed crystals 

to apply a soaking protocol. An alternative option will be the displacement of benzamidine by 

the fragment of interest. This however, requires that, under equilibrium conditions, the probe 

fragment achieves higher potency. Since benzamidine is a two-digit micromolar inhibitor of 

trypsin, the displacement affords rather potent ligands exposed at very high concentration. This 

is difficult to achieve. In a preliminary trial (see 5.2.4.3), the 96-fragment library was added to 

the crystallization buffer to obtain the orthorhombic crystal form of trypsin. Only with some 

fragment, crystals were obtained. Remarkably with fragment J24 a co-crystal structure was 

produced, where the active site showed no significant residual electron density indicating a 

bound ligand. Only in a remote position a bound copy of fragment J24 could be detected. Since 

this protocol produced crystals of the orthorhombic form with unoccupied active site, these 

crystals were subjected to soaking experiments of the 96-fragment library at a fragment 

concentration of 100 mM. 

In addition to these two soaking scenarios, the successful cocrystallization experiments 

mentioned above with some of the of 96-ragments will be considered in the following. These 

cocrystallization trials were performed at a fragment concentration of 5 mM, much lower than 

those used for soaking. However, we have to keep in mind that under cocrystallization 

conditions the fragment complexes are formed in solution and the complexes then crystallized. 

Usually, such conditions require adjustment of different concentration than soaking. The latter 

usually works at higher fragment concentrations. 
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Figure 3. A. Trypsin crystals with trigonal space group P 31 1 2 (space group #152). B. Trypsin 

crystals with orthorhombic space group P 21 21 21 (space group #19) 

 

5.2.4. Crystallization protocol 

5.2.4.1. Trigonal crystal form (soaking) 

Trypsin powder is dissolved in distilled water containing 10 mM CaCl2. The final trypsin 

concentration is 40 mg/mL in the sample buffer. Sitting and hanging drop plates (Hampton 

research) are used for growing the crystals. The crystallization buffer (reservoir) contains 200 

mM (NH4)2SO4, PEG8000 15% w/v, ethylene glycol 25% w/v and 0.1 M HEPES pH = 7.5. 

Each well is filled up to 500 µL with the crystallization buffer. A 2 µL drop from the protein 

sample is placed on the micro-bridge of the sitting drop plate and mixed with an equal volume 

(2 µL) of the crystallization buffer. The crystallization buffer drop added should not be mixed 

with the protein and should be placed directly on top of the protein sample drop (if both drops 

are not pipetted directly on top of each other, it will lead to a higher crystal population in the 

contact area and less (or none) crystals in the unmixed area). The higher population of crystals 

in a certain area of the crystallization drop would let crystals merge together during their growth 

and require more effort to fish the crystals out of the drop. In 24-48 h crystals with sufficient 

quality for data collection should be seen in the drop. 

In the case of the hanging drop plate, the same procedure as the sitting drop applies. The 

difference in the hanging drop plate is the sealing of the well, which is sealed by a glass slide. 
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The glass slide is fixed on top of the well with the crystallization drop facing the reservoir. A 

medium viscosity hydrophobic grease is applied to the outer rim of the well to fix the glass 

slide at its base. The crystals were grown at 18°C. In 24-48 h crystals with sufficient quality 

for data collection should be seen in the drop. 

Regarding PEG8000 concentration, using a ratio of 15%w/v would yield medium size crystals. 

Decreasing the PEG8000 concentration down to 11% w/v would give less crystals in the drop, 

but of a bigger size. However, it has been noticed that smaller trigonal trypsin crystals showed 

better results with soaking experiment (the crystals durability in the soaking buffer is better for 

smaller crystals than for larger ones). Higher crystal count with a smaller size would be possible 

by increasing the PEG8000 concentration in the crystallization buffer to 18% w/v.  This 

protocol is taken from [215] with minor modifications. 

The crystals were fished out of the drop and transferred into a soaking buffer containing the 

same crystallization condition as the crystals were grown in with an extra 20% glycerol and a 

concentration of 100 mM of the fragment dissolved in DMSO (obtained from a 1 M stock 

solution of fragment in DMSO by adding 10% v/v to the soaking solution). Smaller soaking 

buffer drops make it easier to fish the crystals (drop size = 1-2 µL). The crystals are soaked for 

24 h in a sitting drop well which should be sealed with tape so no drying occurs. After soaking 

the crystals were dipped in liquid nitrogen and stored for later data collection. 

 

5.2.4.2. Orthorhombic crystal form (Soaking/co-crystallization) 

Orthorhombic crystals are obtained via co-crystallization first with benzamidine added to the 

crystallization conditions. Then soaking was carried out on the co-crystallized crystals. The 

compound in the soaking buffer should displace the benzamidine present in the active site that 

was used in co-crystallization. Unfortunately, fragments have relatively low affinity to their 

biological receptor, so a displacement of benzamidine in the active site of trypsin by a fragment 

in the soaking buffer would require high concentrations of the fragment, as likely, benzamidine 

used to co-crystallize the orthorhombic trypsin crystals has a higher affinity to the protein. 

Trypsin powder is dissolved in a solution containing 10 mM CaCl2 and 1 mM benzamidine 

HCl (dissolved in DMSO, final DMSO concentration in the protein sample buffer is 5% v/v). 

The final trypsin concentration is 40 mg/mL in the protein sample buffer. The protein sample 
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buffer was left to incubate at room temperature for 20-30 min. Benzamidine is used as an igniter 

to start crystal growth. The crystallization buffer contains 1.7 mM (NH4)2SO4 and 50 mM MES 

pH = 6 in distilled water. The crystal plate well is filled with 500 µL of the crystallization 

buffer. A 2 µL drop of the protein sample buffer is placed on the micro-bridge (Sitting drop 

plate) or on a glass slide (hanging drop plate) and an additional 2 µL of the crystallization 

buffer is added to the drop. The sitting drop plates are sealed with transparent tape (Hampton 

Research - SharkTape). The hanging drop well rims are coated with medium viscosity 

hydrophobic grease and the glass slide is place gently on top of it, the drop is facing the interior 

of the well. Crystals are grown at 18°C, after 24-72 h crystals with sufficient quality for data 

collection should be seen in the drop.  

For soaking experiment, the crystals are moved to a soaking buffer containing the same 

condition as the crystallization buffer with an additional 20% glycerol v/v and a concentration 

of 100 mM of the fragment dissolved in DMSO, final DMSO concentration in the soaking 

buffer is 10% v/v.  

For co-crystallization experiment using all 96 fragments from the screening sample, a 

concentration of 5 mM of the fragment was added to the protein sample prior to crystallization 

(obtained from a 100 mM stock solution of fragment in DMSO by adding 5% v/v to the sample 

protein buffer). Instead of plunging the crystals in the soaking buffer, they were dipped into 

the cryo-protectant buffer containing the same crystallization buffer as the crystals are grown 

in with an additional 20% glycerol v/v and 5 mM of the fragment used in the protein sample 

buffer dissolved in DMSO. This crystallization protocol was adapted from the one developed 

by Rauh et al. [216] with minor modifications. 

 

5.2.4.3. Benzamidine displacement 

The  affinity of benzamidine to trypsin is fairly high for a small compound of this size (Ki = 10⁻⁷ 

M) [217]. This has led to an issue with the soaking experiment. Many collected data sets from 

the soaking experiment with different fragments from the 96-fragment library showed the 

unchanged presence of benzamidine in the S1 binding pocket of trypsin. Fragments with an 

affinity to trypsin will not bind to the enzyme unless they have higher affinity than benzamidine 

to replace it in the active site. 
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As a consequence, the preliminary soaking experiments performed on the orthorhombic crystal 

form of trypsin, with the idea to displace benzamidine with a fragment from the 96-fragment 

library was not successful, except fragment J21 which was indeed able to displace benzamidine 

from the active site. 

 

 

Figure 4. Fragment J24 from the 96-fragment library 

 

J24 is the biggest fragment in the 96-fragment library (MW = 288). It did not bind in the S1 

binding pocket but on the surface of the protein making interactions with residues Tyr20 and 

Lys159. From the electron density seen inside the S1 binding pocket, some conserved waters 

were absent and a trace of fragment J24 could be seen, but the electron density was not 

sufficient to add J24. Fortunately, many orthorhombic trypsin crystals could be grown when 

co-crystallized with fragment J24 instead of benzamidine, which made it possible to do soaking 

experiments with the entire fragment library. In due course of this study, a second crystal 

structure was obtained by co-crystallization with fragment J24, and there the fragment was 

found to bind in the surface depression and in the S1 binding pocket as well (PDB ID: 6ZFK). 

In this second, the electron density in the active site was sufficient to add J24 as shown in 

Table 1. (see 5.3.1). 

 

5.2.5. Data collection and processing 

For this study, all data were collecting at Helmholtz-Zentrum Berlin (Berlin-Adlershof, 

Germany) [157] at BESSY II at beam line MX14.1 and MX14.2. The data collection was done 

under cryogenic temperature at 100 K (-173°C) and a wavelength of 0.9184 Å on a silicon 

Pilatus 6M pixel detector at atmospheric pressure. Data sets collected were indexed, processed 

and scaled using XDSAPP [158]. Details of the data collection and processing are given in 

Table 2-4 (see 5.3.2). 
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5.2.6. Crystal structure determination and refinement 

Crystal structures were determined by molecular replacement using the program PHASER 

MR [159] from the CCP4 suite [160]. The structure of trypsin was used as a search model 

for molecular replacement (PDB ID: 5MNK) after removing all non-protein molecules and 

hydrogen atoms using FCONV [161]. During refinement, a 5% subset of the reflections was 

used for the Rfree calculation and they were consequently omitted from the refinement. The 

model was built in COOT [162] and the refinement was done using PHENIX.refine version 

1.16-3549 [163]. The restrains of fragments were generated using the Grade Web Server 

[164] or by eLBOW from PHENIX [163] which were also used for energetically 

minimization and restraint generation. A first refinement step was performed with default 

parameters, XYZ coordinates, occupancies and individual B-factors were alternated with 

structural adaption performed in COOT [162]. A series of repeated refinement steps were 

applied until the electron density was well explained by the built model. All crystal 

structures were anisotropically refined using PHENIX.refine [163]. Water molecules in all 

data sets were refined (isotropically refined for resolution ≥ 1.31 Å and anisotropically 

refined for resolution ˂ 1.30 Å) and hydrogen atoms were included in the final model at the 

calculated positions. Refinement statistics are included in Tables 2-4 (see 5.3.2). 

 

5.2.7. Volume calculation of the binding pocket 

The volume of the binding pocket was calculated using FCONV [161], a program devolved by 

Gert Neudert. The first step in this program is to identify the residues surrounding the S1 

binding pocket. In the case of trypsin, the protein is studied as a monomer. Fragment J2 is 

bound in every structure of trypsin obtained by the three different protocols (trigonal/soaking, 

orthorhombic/soaking, orthorhombic/co-crystallization). These three structures have been used 

as input for the binding pocket volume calculation. All amino acids clustered for this study 

should have an interaction with fragment J2 in the binding pocket or located in the cavity of 

the active site. Before starting the calculation, water molecules and hydrogen atoms were 

removed from the PDB files. All unbound molecules (not amino acids from trypsin) except 

fragment J2 were deleted (sulfate, DMSO, ethylene glycol and calcium atoms). The first run 

was focused on the area surrounding J2 (diameter 10 Å) and fragment J2 deleted. The amino 
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acids that are used in this study to calculate the volume of the active site cavity are clustered 

into three continuous chains and few other adjacent residues: Val17, His57, Leu99, Asp102, 

Gly142 – Asn143, Gly188 – Ser195, Gly211 – Tyr228. 
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5.3. Results and discussion 

5.3.1. The 96-fragment library hits 

In this work, crystal structures of the bovine trypsin (pancreatic trypsin) in complex with 

fragments from the 96-fragment library were determined. The structures were identified using 

X-ray crystallography. The data ranged from 0.98-1.6 Å in resolution. 

 

Table 1. Hits obtained from the 96-fragment library screening against trypsin 

Trigonal / Soaking 

Fragment J2 PDB ID: 6YIY 

 

Fragment J21 PDB ID: 6YIS 

 

Fragment J29 PDB ID: 6YIT 

 

Fragment J85 PDB ID: 6YIU 

 

Orthorhombic / Soaking 
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J2 PDB ID: 6YIW 

 

J21 PDB ID: 6YIV 

 

J29 PDB ID: 6YIX 

 

Orthorhombic / Co-crystallization 

Fragment J2 PDB ID: 6ZFJ 

 

Fragment J24 PDB ID: 6ZFK  

 

The electron density around each fragment represented in grey mesh is the mFo_DFc map at 3.0 σ level. 

The hits obtained from the 96-fragment library with trypsin are summarized in Table 1. Each 

hit will be discussed in detail in the following. 
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5.3.1.1. Fragment J2 

 

Figure 5. Fragment J2 from the 96-fragment library 

 

 

Figure 6. A. Crystal structure of cationic trypsin (trigonal space group) in complex with 

fragment J2 (soaking) (PDB ID: 6YIY). B. Crystal structure of cationic trypsin (orthorhombic 

space group) in complex with fragment J2 (soaking) (PDB ID: 6YIW). C. Crystal structure of 

cationic trypsin (orthorhombic space group) in complex with fragment J2 (co-crystallization) 

(PDB ID: 6ZFJ). All distances are given in Å. 
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Fragment J2 (3H-isoindol-1-yl amine, MW = 132 Da) binds to trypsin in both crystal forms 

(trigonal and orthorhombic) and is obtained following both crystallization protocols (soaking 

and co-crystallization) in the orthorhombic crystal form. In all trypsin crystal structures in 

complex with J2, the fragment binds in the S1 specificity pocket (Figure 6). With respect to 

for the binding mode, there are no differences in the three structures that could be linked to the 

interactions formed between trypsin’s amino acids in the S1 pocket and fragment J2. The 

interactions with J2 are conserved for all structures (Figure 6A, B, and C), in which the amino 

group is interacting with two water molecules (W1 and W2), Ser190 and Asp189. In native 

trypsin, residue Asp189 is located at the bottom of the primary substrate binding pocket and 

interacts with the arginine and lysine side chain of the substrate peptide chain. Therefore, also 

in case of fragments, a basic functional group is favoured. 

Soaking of small fragments is different from soaking a highly potent ligand. The fragment 

concentration in the soaking buffer is 100 mM. Occasionally, soaking for long times at such 

high concentrations (depending on the fragment influence on the crystals in the soaking buffer) 

can have a damaging effect on the crystal quality and integrity. The crystals which were soaked 

in buffers containing 100 mM of J2 could survive for at least 72 h, which is the longest duration 

a trypsin crystal has survival in the soaking buffer considering the present screening of the 96-

fragment library.  

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/aspartic-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/arginine
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5.3.1.2. Fragment J21 

 

Figure 7. Fragment J21 from the 96-fragment library 

 

 

Figure 8. A. Crystal structure of cationic trypsin (trigonal space group) in complex with 

fragment J21 (soaking) (PDB ID: 6YIS). B. Crystal structure of cationic trypsin (orthorhombic 

space group) in complex with fragment J21 (soaking) (PDB ID: 6YIV). All distances are given 

in Å. 

 

Fragment J21 (N-amidinopiperidine, MW = 127 Da) binds in the S1 pocket of trypsin in both 

crystal forms via soaking protocol (Figure 8). Unfortunately, no crystal structure of trypsin in 

complex with fragment J21 could be obtained by co-crystallization in orthorhombic trypsin 

crystal form. The protein tends to precipitate in the crystallization drop under the applied 

conditions. 

As discussed earlier in the protein crystallization procedure, benzamidine was first used to 

obtain orthorhombic trypsin crystals for soaking which was later exchanged by fragment J24 

(see 5.2.4.3). Fragment J21 was the only fragment in the soaking experiment with 
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orthorhombic trypsin crystals that was able to replace benzamidine. In a previous study by 

Schiebel et al [215] the affinities of benzamidine and fragment J21 (N- amidinopiperidine) to 

trypsin were determined and in solution benzamidine is about a factor of 10 more potent. 

However, it does not mean that the solution affinities must correspond exactly to the affinity 

against a crystal form. However, the initial concentration of benzamidine used to obtain 

orthorhombic trypsin crystal is 1 mM using cocrystallization protocol, while J21 was 

introduced to the orthorhombic crystal using soaking protocol with concentration of 100 mM. 

This can compensate for a possibly slightly lower binding affinity of J21. 
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5.3.1.3. Fragment J29 

 

Figure 9. Fragment J29 from the 96-fragment library 

 

Figure 10. A. Crystal structure of cationic trypsin (trigonal space group) in complex with 

fragment J29 (soaking) (PDB ID: 6YIT). B. Crystal structure of cationic trypsin (orthorhombic 

space group) in complex with fragment J29 (soaking) (PDB ID: 6YIX). All distances are given 

in Å. 

 

Fragment J29 (thiophene-3-amidine, MW = 126 Da) binds into the S1 pocket of trypsin in the 

trigonal and orthorhombic trypsin crystal form (Figure 10). However, no crystal structure in 

complex with fragment J29 could be obtained with the orthorhombic trypsin crystals using the 

co-crystallization protocol. 

An anomalous map was generated to validate the presence of the ligand in the S1 pocket 

(Figure 18). An anomalous signal for the sulfur was visible at 3.0 σ contour level in the 

orthorhombic crystal structure, while in the trigonal crystal structure, it was a weaker signal at 

3.0 σ contour level. From the refinement steps that were done for the trypsin structures in 

complex with J29, a second alternative conformation of J29 with lower occupancy (˂11%) is 
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indicated in the trigonal crystal form, while in the orthorhombic crystal form the occupancy of 

the alternative conformation is 25% and the electron density was well explained (PDB ID: 

6YIX). 

The interactions and the positioning of J29 in the S1 pocket is similar to the one of J21 and 

benzamidine as well. However, fragment J29 was able to replace J24 in the S1 pocket, but it 

was not able to displace benzamidine out of the pocket, which supposedly indicates that the 

affinity of J29 is lower than the other two compounds. The alternative conformations show the 

thiophen sulfur either oriented to Gly219 (75% occupancy) or to Ser190 (25% occupancy). 

 

5.3.1.4. Fragment J85 

 

Figure 11. Fragment J85 from the 96-fragment library 

 

Figure 12. Crystal structure of cationic trypsin (trigonal space group) in complex with 

fragment J85 (PDB ID: 6YIU). All distances are given in Å. 
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Fragment J85 (3-aminobenzamide, MW = 136 Da) binds into the S1 pocket of trypsin in 

trigonal trypsin crystal form only (Figure 12). Unfortunately, no crystal structure in complex 

with fragment J85 could be obtained with the orthorhombic trypsin crystal form. J85 does not 

have a direct interaction with Asp189 at the bottom of the S1 specificity pocket, instead, a water 

molecule (W1) interacts with both J85 and Asp189 (Figure 12). In the case of the structures in 

complex with fragments J21 and J29, the amino group has a direct interaction with Asp189 

(Figure 8 and 10) at the bottom of the S1 pocket. In the J85 case, the amino group is interacting 

with Gly219; thus, fixing J85 away from Asp189. This is also observed in the crystal structures 

in complex with fragment J2 (Figure 6), where the indole is interacting with Gly219 and the 

amino group of the carboxamide is interacting with residue Asp189. Even with similar 

functionality, the structural differences of a fragment (the position of the functionalities at the 

ring in meta, ortho or para position) plays a key role in the positioning of the fragments in the 

active site, which could be an argument for not having a direct interaction between the amino 

group of fragment J85 and Asp189 at the bottom of the S1 pocket. 
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5.3.1.5. Fragment J24 

 

Figure 13. Fragment J24 from the 96-fragment library 

 
Figure 14. Crystal structure of cationic trypsin (orthorhombic space group) in complex with 

fragment J24 (co-crystallization) (PDB ID: 6ZFK). A. Surface representation of the enzyme 

showing fragment J24 located in the S1 binding pocket. B. Closer view at fragment J24 

interactions with the enzyme. All distances are given in Å. 

 

Figure 15. Crystal structure of cationic trypsin (orthorhombic space group) in complex with 

fragment J24 (co-crystallization) (PDB ID: 6ZFK). A. Surface representation of the enzyme 

showing fragment J24 binding on the surface at the opposite side of the S1 binding pocket. B. 

Closer view at fragment J24 interactions on the surface of the enzyme. All distances are given 

in Å. 
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Fragment J24 (MW = 288 Da) is the fragment from the 96-fragment library with the highest 

molecular weight. The first crystal structure obtained by co-crystallization of the orthorhombic 

trypsin crystals proved to be useful for soaking experiments using the orthorhombic crystal 

form (instead of benzamidine). Although J24 binds in the S1 binding pocket (Figure 14), in 

the first obtained co-crystallized structure of the protein with J24, it did not bind to the S1 

pocket. Surprisingly, in that structure, fragment J24 was binding only on the surface of the 

protein at a site opposite of the S1 pocket (Figure 15). There was some electron density 

indicated in the binding pocket, but not sufficient to assign J24. Obviously, J24 has some weak 

affinity to bind to the S1 pocket of trypsin. After preparing a new batch of crystals, the binding 

of J24 in the S1 pocket could be confirmed (PDB ID: 6ZFK). Overall, there were only three 

hits with S1 binders obtained from the fragment screening of the orthorhombic trypsin crystal 

form by soaking into crystals obtained from cocrystallization. Nevertheless, all of the data sets 

collected from the soaked crystals obtained by that protocol did not show any trace of J24 

binding on the surface of the protein (as evaluated from the electron density). Although J24 

has some affinity to bind trypsin, it cannot be very strong as the fragment must have been 

washed out by simply transferring the crystals into the soaking buffer not containing J24 apart 

from the additives.  

There is no direct interaction in the S1 pocket between Asp189 and the nitrogen of the pyridine 

ring of fragment J24, but both interact with a water molecule (W1) (Figure 14B). The sulfate 

ion seen in Figure 14B is present near the entrance of the S1 pocket in almost every structure 

of cationic trypsin, but it establishes no interaction to any fragment from the library, except to 

J24. 

Regarding the hit on the surface of the protein (Figure 15), there is a depression on the surface 

where Tyr20 and Lys159 are present. In other crystal structures, only water molecules are 

present in this area and it is one of the narrowings along the water channels in this trypsin 

crystal form. The distance between the amino group of Lys159 and the carbonyl groups of 

Ser96 and Asn97 of the adjacent crystal mate by symmetry is 3.0 Å and 2.9 Å, respectively.  

Water channels in the crystal are the bottlenecks that the compound has to travel through during 

soaking. Due to the narrow channels in this area, J24 accumulated there and was easily detected 

at that position, even in the cocrystallized structure which was washed by the transfer to the 

cryo buffer. Possibly the exchange is so strongly slowed down that the electron density of the 
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ligand is still visible in the crystals at that position whereas the wash-out from the S1 pocket is 

more easily achived. 

 

5.3.2. Crystallographic tables 
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Table 2. Data collection and refinement statistics for trigonal trypsin crystal structures obtained through 

soaking 

a Calculated with Matthews_coef program from CCP4 suite version 6.4.0. b Values in parenthesis describe the highest resolution shell. c 

R(I)sym = [∑h∑i|Ii(h) – ⟨I(h)⟩|/∑h∑iIi(h)] × 100, in which I(h) is the mean of the I(h) observation of reflection h.  d Rwork = ∑hkl|Fo – Fc|/∑hkl|Fo|. 
 

e Rfree was calculated as shown for Rwork but on refinement-excluded 5% of data. f Calculated with PROCHECK [167]. g Mean B factors were 

calculated with MOLEMAN [168]. 

PDB code 6YIY (J2) 6YIS (J21) 6YIT (J29) 6YIU (J85) 

Data collection and processing 

Space group P 31 2 1 P 31 2 1 P 31 2 1 P 31 2 1 

Unit cell 54.6 54.6 107.5 54.6 54.6 107.5 54.6 54.6 107.5 54.6 54.6 107.5 

Matthews coefficient a 1.8 1.8 1.8 1.8 

Solvent content (%) 32.3 31.4 31.5 31.7 

Diffraction data b 

Resolution range 
50-1.11 

(1.18-1.11) 

50-1.19 

(1.26-1.19) 

50-1.25 

(1.33-1.25) 

50-1.36 

(1.44-1.36) 

Unique reflections 
73703 

(11641) 
58894 
(9206) 

52150 
(8335) 

40740 
(6477) 

R(I)sym (%) c 5.8(58.6) 5.5(58.0) 6.0(59.9) 4.7(57.9) 

Wilson B factor 12.0 12.1 13.0 14.8 

completeness 99.3(98.2) 97.7(95.8) 99.8(99.7) 99.7(99.3) 

redundancy 6.4(6.1) 6.6(6.4) 6.5(6.5) 6.4(6.0) 

<I/σ(I)> 15.9(2.9) 17.4(2.9) 16.6(3.0) 21.4(2.9) 

Refinement 

Resolution range 47.29-1.11 47.25-1.19  43.29- 1.25  43.34-1.36 

Reflections used in 

refinement (work/free) 
73703 

(70017/3686) 
58894 

(55949/2945) 
52150 

(49542/2608) 
40740 

(38703/2037) 

Final R value for all 
reflections (work d /free 

e) 

(%) 

14.0/15.7 15.0/17.9 14.0/16.3 14.3/16.9 

Protein residues 223 223 223 223 

Water molecules 193 156 171 148 

rmsd from ideality: bond 
length (Å) 

0.006 0.006 0.006 0.006 

rmsd from ideality: bond 
angle (°) 

0.93 0.92 0.95 0.90 

Ramachandran most 

favored(%) f  
99.1 98.2 99.1 98.2 

Ramachandran 

additionally allowed (%) f   
0.9 1.8 0.9 1.8 

Mean B factor protein 
(Å²) g 

15.1 16.0 16.2 17.8 

Mean B factor (ligand) 

(Å²) g 
17.1 17.2 16.1 21.7 

Mean B factor water 

molecules (Å²) g 
25.1 24.6 25.7 27.0 
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Table 3. Data collection and refinement statistics for orthorhombic trypsin crystal structures obtained 

through soaking 

a Calculated with Matthews_coef program from CCP4 suite version 6.4.0. b Values in parenthesis describe the highest resolution shell. c 

R(I)sym = [∑h∑i|Ii(h) – ⟨I(h)⟩|/∑h∑iIi(h)] × 100, in which I(h) is the mean of the I(h) observation of reflection h.  d Rwork = ∑hkl|Fo – Fc|/∑hkl|Fo|. 
 

e Rfree was calculated as shown for Rwork but on refinement-excluded 5% of data. f Calculated with PROCHECK [167]. g Mean B factors were 

calculated with MOLEMAN [168]. 

PDB code 6YIW (J2) 6YIV (J21) 6YIX (J29) 

Data collection and processing 

Space group P 21 21 21 P 21 21 21 P 21 21 21 

Unit cell 54.2 58.1 66.8 54.2 58.1 66.8 54.2 58.1 66.8 

Matthews coefficient a 2.0 2.0 2.0 

Solvent content (%) 40.1 39.9 39.8 

Diffraction data b 

Resolution range 
50-0.97 

(1.03-0.97) 

50-0.95 

(1.01-0.95) 

50-1.31 

(1.39-1.31) 

Unique reflections 
125036 

(19736) 

130966 

(19891) 

50997 

(8098) 

R(I)sym (%) c 6.7(48.0) 2.5(22.5) 4.7(49.4) 

Wilson B factor 7.5 7.5 7.5 

completeness 99.5(98.1) 97.7(92.6) 98.9(98.3) 

redundancy 6.4(4.8) 4.6(3.6) 4.6(4.7) 

<I/σ(I)> 12.0(2.2) 29.4(4.7) 19.0(2.3) 

Refinement 

Resolution range 42.13-0.97 29.06-0.95  43.29- 1.31  

Reflections used in refinement 
(work/free) 

125036 
(118784/6252) 

130966 
(124417/6549) 

50997 
(48447/2550) 

Final R value for all reflections 

(work d /free e) 
(%) 

13.0/14.2 12.4/13.4 17.6/19.3 

Protein residues 223 223 223 

Water molecules 287 303 215 

rmsd from ideality: bond length 
(Å) 

0.006 0.006 0.006 

rmsd from ideality: bond angle (°) 0.97 0.97 0.96 

Ramachandran most favored(%) f 99.1 98.6 99.1 

Ramachandran additionally 
allowed (%) f 

0.9 1.4 0.9 

Mean B factor protein (Å²) g 10.2 9.0 13.5 

Mean B factor (ligand) (Å²) g 10.7 7.0 13.7 

Mean B factor water molecules 

(Å²) g 
20.7 19.4 22.9 
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Table 4. Data collection and refinement statistics for orthorhombic trypsin crystal structures 

obtained through co-crystallization 

a Calculated with Matthews_coef program from CCP4 suite version 6.4.0. b Values in parenthesis describe the highest resolution shell. c 

R(I)sym = [∑h∑i|Ii(h) – ⟨I(h)⟩|/∑h∑iIi(h)] × 100, in which I(h) is the mean of the I(h) observation of reflection h.  d Rwork = ∑hkl|Fo – Fc|/∑hkl|Fo|. 
 

e Rfree was calculated as shown for Rwork but on refinement-excluded 5% of data. f Calculated with PROCHECK [167]. g Mean B factors were 

calculated with MOLEMAN [168]. 

PDB code 6ZFJ (J2) 6ZFK (J24) 

Data collection and processing 

 

Space group P 21 21 21 P 21 21 21 

Unit cell 54.3 58.2 66.8 54.7 58.2 67.0 

Matthews coefficient a 2.3 2.2 

Solvent content (%) 45.3 45.6 

Diffraction data b 

Resolution range 
50-1.00 

(1.06-1.00) 
50-1.10 

(1.17-1.10) 

Unique reflections 
113783 

(18318) 

84897 

(12117) 

R(I)sym (%) c 6.1(40.0) 6.7(47.2) 

Wilson B factor 6.1 8.6 

completeness 99.1(99.5) 97.5(86.9) 

redundancy 5.3(5.0) 5.1(3.4) 

<I/σ(I)> 13.7(8.3) 14.6(2.6) 

Refinement 

Resolution range 43.90-1.00 43.94-1.10 

Reflections used in refinement (work/free) 
113783 

(108093/5690) 
84897 

(80652/4245) 

Final R value for all reflections (work d /free 

e) 

(%) 

11.3/12.6 12.5/13.8 

Protein residues 223 223 

Water molecules 295 244 

rmsd from ideality: bond length (Å) 0.006 0.006 

rmsd from ideality: bond angle (°) 1.02 0.94 

Ramachandran most favored(%) f 98.2 98.2 

Ramachandran additionally allowed (%) f 1.8 1.8 

Mean B factor protein (Å²) g 6.6 9.3 

Mean B factor (ligand) (Å²) g 8.2 16.4 

Mean B factor water molecules (Å²) g 20.3 24.2 
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5.3.3. Volume of the binding pocket 

A crystal structure was obtained in complex with fragment J2 with both space groups (trigonal 

and orthorhombic) and with both crystallization methods in orthorhombic trypsin crystal 

structures (soaking and co-crystallization). The volume of the binding pocket was calculated 

for each structure in complex with J2 using FCONV program [161]. 

 

Table 5. Volume of the binding pocket in trypsin in complex with fragment J2 

PDB ID Space group 
Method of fragment 

delivery 

Volume of the 

binding pocket (Å³)a 

6YIY Trigonal Soaking 123 

6YIW Orthorhombic Soaking 138 

6ZFJ Orthorhombic Co-crystallization 144 

a The volume of the binding pocket is measured using FCONV [161]. 

 

The results from the binding pocket volume calculations listed in Table 5 show a slight 

difference in the volume of the binding pocket between trypsin structures in the different crystal 

forms. As the volume difference is low, this unlikely serves as an explanation for the 

differentiation in the number of the hits obtained from the fragment screens with trigonal and 

orthorhombic trypsin crystals (one hit less from the screening preformed on orthorhombic 

crystal form using soaking protocol compared to the trigonal crystal form). The residues of the 

S1 pocket where fragment J2 binds exhibit no difference in their positioning, except Gln192 at 

the entrance of the S1 pocket, when superimposing the corresponding residues (Figure 16).  

From each crystal form, data sets have been refined and the positioning of Gln192 is fixed 

according to the electron density. As shown in Figure 16, in the trigonal crystal form, about 

80% of the data sets collected from the 96-fragment library screening show that Gln192 is 

pointing toward the entrance of the binding pocket. However, about 70% of the collected data 

sets from the 96-fragment library on the orthorhombic crystal form show that Gln192 is 

pointing away from the entrance of the binding pocket. That was the case in crystal structures 

in complex with fragment J2. Residue Gln192 is involved in the binding pocket calculation 
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because it is part of the amino acids forming the S1 cavity and it has interactions to residues 

that are interacting with fragment J2.  

 

 

Figure 16. Superimposition of trigonal crystal structures (blue) and orthorhombic crystal 

structures (green). Residue Gln192 at the entrance of the S1 pocket is shown as sticks. 

 

In total 40 superimposed structures are shown in Figure 16, 20 structures from each crystal 

form (trigonal and orthorhombic). The dent covering a small portion from the entrance of the 

binding pocket in the trigonal trypsin crystal structure, which is made by residue Gln192 

shifting toward the entrance of the S1 pocket that may restrict fragments entering the active 

site. This slight shift of residue Gln192 has created a small difference in the value of the binding 

pocket volume. However, for other crystal structures that do not show the same positioning of 

Gln192 in both trigonal and orthorhombic structures, Gln192 is either seen in alternative 

conformation, insufficient electron density for Gln192 to be assigned or Gln192 is pointing in 

the other direction unlike the majority of the data sets collected from the screening for each 

crystal form. 

According to the data obtained from calculating the binding pocket volume and the 

superimposition of multiple crystal structures from both crystal forms, orthorhombic crystal 

structures should have better tendency to bind fragments due to the slightly bigger size of the 

S1 cavity. However, the fragment screening against trigonal trypsin crystals gave more hits 

(four hits) compared to the orthorhombic crystals (three hits). Since the volume of the S1 

binding pocket is slightly bigger for the orthorhombic crystal structures the outcome was not 
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expected, especially for the soaking method, in which the fragment concentration used is the 

same (100 mM).  

By observing different trypsin crystal structures found in the Protein Data Bank, the positioning 

of residue Gln192 closer or further from the entrance of the active site is not a characteristic of 

a space group (trigonal or orthorhombic). It was simply the case in the collected data sets 

presented in this study. 

 

5.3.4. Anomalous map 

Anomalous map calculation is a method to identify anomalous scattering elements in a 

structure by electron density maps. An anomalous map is supportive to improve the model and 

to investigate the presence of any anomalous scattering in the model. In this study, the 

anomalous maps are created to investigate the presence of sulfur. 

A python script used by our working group was developed by Dr. Alexander Metz. The script 

requires a pdb file (fully refined structure), mtz file and XDS_ASCII.HKL file from processing 

with XDSAPP [158] in which the Friedel’s law is set to false. The output file contains an 

anomalous map and anomalous map peaks. 

The reason for using an anomalous map is the different conformation noticed for fragment J29 

in the orthorhombic space group crystal structure and the absence or at least lower population 

of the alternative conformation in the trigonal space group crystal structure. An anomalous map 

was created for all structures in complex with fragment J29 to check the positioning of the 

sulfur (Figure 17). 
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Figure 17. A stick representation of fragment J29 (orange) and the anomalous map peak 

(crimson red mesh). A. Anomalous peak of the trigonal trypsin crystal structure (soaking) in 

complex with J29 (PDB ID: 6YZA). B. Anomalous peak of the orthorhombic trypsin crystal 

structure (soaking) in complex with J29 (PDB ID: 6YIX). All the peaks from the anomalous 

map are displayed at 3.0 σ. 

 

The anomalous signal for sulfur is observed for both crystal structures in complex with 

fragment J29 (Figure 17). A difference is seen in the orthorhombic crystal structure obtained 

through soaking (Figure 17B). The signal is extended compared to the trigonal crystal structure. 

During refinement, fragment J29 is added after explaining all possible electron density 

surrounding the S1 pocket and all around the structure. The occupancy for each fragment added 

is fixed at 50% before starting the refinement. Then, the occupancy is refined using 

refine.Phenix [163]. The occupancy of J29 refined to 80% and the m2Fo-DFc map does not 

show any negative signal after the occupancy refinement, but in the orthorhombic crystal 

structure the occupancy was refined to 60%. After refinement with a negative signal 

surrounding the sulfur. After adding the alternative conformation, the occupancy was refined 

to 75% and 25% for each conformation of fragment J29.  

The output obtained by creating an anomalous map is highly dependent on the quality of the 

data set, the resolution and the wavelength used for collecting the data set. All of the trypsin 

structures in complex with J29 are collected at the same beamline under identical conditions. 

Furthermore, the trigonal crystal structure obtained by soaking and the orthorhombic crystal 

structure obtained by soaking are in the same resolution range 1.25 and 1.31Å, respectively. 

Although, the alternative conformation is present in the orthorhombic crystal structure, the 
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sulfur atom in the alternative conformation is not forming any interactions with the enzyme 

amino acids or the solvent molecules surrounding it. 

Another reason for investigating the peaks in the anomalous map is the co-crystallized 

orthorhombic crystal structure in complex with fragment J24 (PDB ID: 6ZFK). The first try to 

obtain a crystal structure in complex with fragment J24 was successful. However, fragment 

J24 was not binding in the S1 binding pocket but on the surface of the enzyme. The absence 

and rearrangement of some conserved water molecules (compared to the apo structure) in the 

S1 pocket indicates that J24 could bind in the S1 pocket. The trypsin crystals were co-

crystallized again with J24 and this time it could be seen on the surface and in the S1 pocket 

as well. Fortunately, J24 contains a sulfur atom to compare both binding fragments (surface 

and S1 pocket) in the crystal structure by creating an anomalous map. 

 

 

Figure 18. A stick representation of fragment J24 and the anomalous signal as crimson red 

mesh verifying the presence of sulfur in yellow (PDB ID: 6ZFK). A. Fragment J24 binding at 

the surface of the binding pocket. B. Fragment J24 binding in the S1 pocket. Peaks from the 

anomalous map are displayed at 3.0 σ level. 

 

Fragment J24 is seen binding on the surface of the enzyme of every trypsin crystal co-

crystallized with J24, but it is easily washed away by soaking the crystal in buffer not 

containing any fragment. Washed orthorhombic crystals showed water molecules in the 

position of the fragment binding on the surface in their structures, which makes these crystals 

the starting point to do soaking experiments. However, not every crystal structure co-

crystallized with fragment J24 showed the binding of the fragment in the S1 pocket of the 

structure. Even when trypsin crystals in complex with fragment J24 were obtained under 



Chapter 5. Fragment-Based Drug Discovery  5.3. Results and discussion 
 

  147 

 

identical conditions, some structure showed electron density of J24 in the active site while 

others did not and the reason for that is unclear. In the orthorhombic crystal form cocrystallized 

with J24 (PDB ID: 6ZFk), fragment J24 binding on the surface has an occupancy of 100% 

while the one binding in the S1 pocket has an occupancy of 78%. That would explain the 

weaker anomalous signal seen for the sulfur atom for the fragment binding in the S1 pocket 

(Figure 18B) compared to the fragment binding on the surface (Figure 18A). 

 

5.3.5. Water channels 

Map-Channels [218] is a computational tool that facilitates visualization and characterization 

of solvent channels or pores within macromolecular crystals. Mapping the shortest distance to 

protein surfaces is calculated on a grid embedding the unit cell. The grid values are written to 

a map file. Multiple map files were selected from both packing of trypsin crystal forms 

(trigonal and orthorhombic) to visualize and calculate multiple positions in the water channels 

of the crystal structures. The results showed a very similar fit of all the generated water channel 

maps with no significant differences to be observed. The area around fragment J24 that binds 

on the surface was most intriguing. However, no significant changes or modifications in the 

diameter of the water channels in that area could be observed.  

Using Map-Channels, the area in the water channels with the minimum diameter (bottleneck) 

could be identified and calculated. The minimum distance of each structure in complex with 

fragment J2 are as follow: 3.6 Å (trigonal/soaking – PDB ID: 6YIY), 3.4 Å 

(orthorhombic/soaking – PDB ID: 6YIW) and 3.6 Å (orthorhombic/co-crystallization – PDB 

ID: 6ZFJ). 

It seems that water channels in both trypsin space groups do not affect the hits obtained from 

the 96-fragment library. Even more, with the small fragment size (˂300 Da), the narrowest 

positions of the water channels of trypsin would not create a barrier to the movement of the 

fragments through the water channels.  
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5.3.6. Comparison of crystal structures 

Some fragments from the 96-fragment library which were hits from the fragment screening 

against trypsin share structural similarities to compounds that were already obtained in 

complex with trypsin crystals. The main difference between the crystal structures presented in 

this study and other crystals structures are the crystallization condition used to obtain trypsin 

crystals. As mentioned in the crystallization protocol section, different crystallization 

conditions used to obtain trypsin crystals led to different crystal forms (trigonal and 

orthorhombic). 

One example of structural similarities between the fragments from the 96-fragment library 

which were hits and other compounds that were obtained in complex with trypsin is fragment 

J2 (1H-isoindol-3-amine) and 2-aminopyridine. Another example are the two fragments J21 

and J29 sharing structural similarity to benzamidine.  
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Figure 19. Overview of the S1 binding pocket in cationic trypsin. A. Crystal structure of 

cationic trypsin in complex with fragment J2 (PDB ID: 6YIW). B. Crystal structure of cationic 

trypsin in complex with 2-aminopyridine (PDB ID: 5MN1) [215]. C. Superimposition of both 

structures. All distances are given in Å. 

 

The amino group of fragment J2 has a direct interaction with residue Asp189 (Figure 19A) 

and that is the case for all other trypsin structures in complex with fragment J2. However, the 

amino group of 2-aminopyridine does not have a direct interaction with residue Asp189 

(Figure 19B). When both trypsin crystal structures in complex with J2 and 2-aminopyridine 

were superimposed (Figure 19C), the shift of the amino group of the crystal structure in 

complex with 2-aminopyridine (PDB ID: 5MN1) is observed. The amino group of 2-

aminopyridine shows a long interaction of 3.6 Å with residue Asp189 compared to 3.1 Å with 
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fragment J2. As seen in Figure 19C, beside the more remote positioning of the amino group 

of 2-aminopyridine away (2.7 Å/3.0 Å) from residue Asp189 at the bottom of the S1 pocket, 

the nitrogen on the ring has shifted away from residue Gly219. The binding pocket volume 

calculation showed a slightly bigger cavity site for trypsin structures in the orthorhombic 

crystal form. The positioning of residue Gln192 was the reason for the different cavity volume. 

The majority of trypsin crystal structures in an orthorhombic crystal form showed that residue 

Gln192 is positioned away from the entrance of the S1 cavity (Figure 16), while in a few cases 

residue Gln192 is positioned closer to the entrance of the S1 cavity or adopts both alternative 

conformations. The positioning of 2-aminopyridine in the S1 cavity is restricted by residue 

Gln192 which is positioned closer to the entrance of the binding pocket shifting it away from 

residue Gly219. Unlike fragment J2, where residue Gln192 is positioned away from the 

binding pocket making no restrictions for J2 in the S1 cavity to move closer to residue Gly219 

and interact with residues Asp189 

 

 

 

Figure 20. Superimposition of crystal structures in complex with benzamidine (PDB ID: 

5MNG) [215], fragment J21 (PDB ID: 6YIS) and fragment J29 (PDB ID: 6YIT). 
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Since benzamidine was mentioned plentifully during this study, comparing the positioning of 

this fragment with other similar binding fragments in the S1 pocket was excuted. Figure 20 

shows three different trypsin crystal structures, one in complex with benzamidine (PDB ID: 

5MNG), another in complex with fragment J21 (PDB ID: 6YIS) and the last one in complex 

with fragment J29 (PDB ID: 6YIT). The amidino nitrogens of all fragments share identical 

interactions with three residues inside the S1 specificity pocket (Asp189, Ser190 and Gly219). 

The difference in the distances between the amino group of each compound and residue Asp189 

at the back of the S1 specificity pocket is ˂ 0.2 Å. The orientation and the interactions of these 

compounds in trypsin active site are similar. 
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5.4. Conclusion 

Fragment screening’s main objective in drug discovery is finding lead compounds that will 

prove to be good starting point for the development of drug candidates. Throughout this study, 

the biological macromolecule receptor is the same (trypsin) for every screen performed. 

However, when the fragment screen was performed on two different trypsin crystal forms 

(trigonal and orthorhombic) using soaking technique, the outcome showed one additional hit 

compared to that preformed on the trigonal crystal form. When the fragment screening was 

performed on the same crystal form (orthorhombic), but with a different crystallization 

technique (soaking and co-crystallization), an extra hit was obtained in favour of soaking 

technique.  

If trypsin crystals were crystallized under different conditions (buffers, pH or temperature), the 

hits obtained could vary from the ones obtained in this study. However, all the hits obtained 

with trypsin in this study represent the smallest fragments from the 96-library with a basic 

moiety (except fragment J24), which has been excepted due to trypsin favouring basic 

compounds.  

When performing a fragment screen with trypsin, soaking proved to be the method of choice. 

The ease of crystallization without depending on which fragment is used in co-crystallization, 

the higher crystal count in the crystallization drop and less material consumption (protein, 

fragments and buffers) makes it more favourable. All the fragments from the library were 

screened against trypsin through the soaking protocol and data sets were collected for each 

soaked fragment. While using the method of co-crystallization for the orthorhombic trypsin 

crystals. 

Trypsin is a well-studied protein throughout the last century. However, the aim of this project 

was observing the outcome of a fragment screening against the same protein, but with different 

crystal forms.
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5.5. Appendix 

Table 6. The 96-fragment library 

ID Structure 
MW 

(g/mol) 
SMILES code 

J1 

 

150.1 CC1=CC(=CC=C1)C(=O)NN 

J2 

 

132.1 C1C2=CC=CC=C2C(=N1)N 

J3 

 

277.9 CNC(=S)NC1=C(C=C(C=C1)Br)Cl 

J4 

 

191.1 CC1=NC=CC(=N1)N2CCCCCC2 

J5 

 

172.2 CCC(C)(CN)N1CCOCC1 

J6 

 

219.1 C1CCC(C1)NCC2=CC3=C(C=C2)OCO3 

J7 

 

262.1 O=C(CN1CCCCC1)Nc1ccc2OCOc2c1 
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J8 

 

204.2 CC(C)NC1=CC=CC=CC1=NC(C)C 

J9 

 

240.1 C1=CC=NC(=C1)CNC2=CC3=C(C=C2)NC(=O)N3 

10 

 

212.9 C1=CC(=CC=C1C(=O)CN)Br 

J11 

 

236.1 C1CN2CC(=NNC2=N1)C3=CC(=C(C=C3)F)F 

J12 

 

186.0 C1=CC(=CC(=C1)Cl)C(C(=O)O)O 

J13 

 

125.1 CC1=NN(C(=C1)CN)C 

J14 

 

204.1 CNCC1=CC=C(O1)OC2=CN=CC=C2 

J15 

 

252.2 CCN(CC)C(=N)C 
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J16 

 

218.1 C1CC(=NC1)NNC(=O)C2=CC=C(C=C2)Br 

J17 

 

179.1 CN(C)C1=CC=CC(=C1)C(=O)NN 

J18 

 

168.1 C1=CC(=CC=C1CC(=O)NN)Br 

J19 

 

205.1 C1CC(NC1)C2=CC3=C(C=C2)OCCO3 

J20 

 

177.1 C1CCN(C1)C2=NNC(=C2C#N)N 

J21 

 

127.1 NC(=N)N1CCCCC1 

J22 

 

208.0 CC1ON=C(C(NCC(F)(F)F)=O)C=1 

J23 

 

265.2 CC(C1=NOC(NC(CN2CCC(C)CC2)=O)=C1)C 
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J24 

 

288.1 CC(C1=CN=CC=C1)NC(=O)CCC(=O)C2=CC=CS2 

J25 

 

274.2 CC1=CC(=NC(=C1C#N)NCCCN2CCOCC2)C 

J26 

 

194.1 CC1=C(SC(=N1)N)C2=NC=CN2C 

J27 

 

264.2 CC1CC(CN(C1)CC2=NC(=NC(=N2)N(C)C)N)C 

J28 

 

122.1 C1(=CC=CN=C1)CCN 

J29 

 

126.0 C1=CSC=C1C(=N)N 

J30 

 

165.0 NCC1OC(C(F)(F)F)CC1 

J31 

 

196.2 O=C(C1CCCNC1)N1CCCCC1 
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J32 

 

165.1 COC(=O)C1=CC=C(C=C1)CN 

J33 

 

188.1 C1=CC(=CC=C1C(=N)N)C(F)(F)F 

J34 

 

270.2 CCOC1=NC(=NC2=C(C=CC=C21)C)N=C(N)N 

J35 

 

253.2 CN1C=CC=C1CNCCC2=CNC3=CC=CC=C32 

J36 

 

200.0 CNCC1=CC(=CC(=C1)Cl)[N+](=O)[O-] 

J37 

 

125.1 CNCC1=NC=CN1C 

J38 

 

251.1 C1=CC=C(C=C1)NC(=O)CC2=CN3C=CC=CC3=N2 

J39 

 

211.2 C1CCC(CC1)C(=O)NCC2CCCO2 
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J40 

 

257.2 CC(N(CC1NC(=O)C2=C(C=CC=C2)N=1)C)C1CC1 

J41 

 

166.1 CN(C)C1=NC=C(C=C1)C(=O)O 

J42 

 

216.1 CC1=CC(=C(O1)C)C(=O)NC2=CC=NC=C2 

J43 

 

244.1 CC1=C(C(=NN1C)C)CC(=O)NC2=CC=CC=N2 

J44 

 

258.1 CN(C(CC1C2=C(C=CC=C2)C=CN1C(C)=O)=O)C 

J45 

 

155.1 C1=CC(=CC=C1C(CN)O)F 

J46 

 

164.1 CC(=O)NC1=CC=CC(=C1)CN 

J47 

 

153.1 COC1=C(C=C(C=C1)CN)O 
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J48 

 

242.1 C1COC2=C(O1)C=CC(=C2)NCC3=CC=NC=C3 

J49 

 

200.0 C1=CC=C(C(=C1)CSC(=N)N)Cl 

J50 

 

219.1 C1CCN(CC1)C2=NC3=C(N2)C(=O)NC=N3 

J51 

 

248.2 CC1=C(OC2=C1C(=N)N(C=N2)CCCN(C)C)C 

J52 

 

221.2 CC1CCC(CC1)NC(=O)CN2C=CN=C2 

J53 

 

253.1 
C12[C@H]([C@@H]([C@@H](C(O1)O2)SC3=CC=C

C=C3)O)N 

J54 

 

210.1 CC(C)(C)C1=CC(=NO1)CC2(COC2)N 

J55 

 

207.1 
CC1=CC(=CC=C1)C2C[C@H]([C@H]([C@@H]2N)

O)O 
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J56 

 

117.1 O[C@@H]1CNCCOC1 

J57 

 

281.1 
C1(=NC=CC=C1)CNC(CC2[C@@H]([C@@H](C(C

N)O2)O)O)=O 

J58 

 

181.1 CC(C)C1=NOC(=N1)C2CCCN2 

J59 

 

143.1 C2C1COC(=O)N1CCN2 

J60 

 

249.1 C1CC(N(C1)C(=O)OCC2=CC=CC=C2)C(=O)O 

J61 

 

122.1 C1=CC(=CN=C1)C(=O)N 

J62 

 

179.1 COC(=O)C(CC1=CC=CC=C1)N.Cl 

J63 

 

180.1 CN1C=NC2=C1C(=O)NC(=O)N2C 
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J64 

 

151.1 C1=NC2=C(N1)C(=O)NC(=N2)N 

J65 

 

167.0 C1=CC(=CC=C1C(=O)O)[N+](=O)[O-] 

J66 

 

168.9 C1=CC2=C(C=C1Cl)NC(=O)O2 

J67 

 

117.1 C(CCN)CC(=O)O 

J68 

 

142.1 O=C1NC2NC(=O)NC2N1 

J69 

 

171.0 C1(C(O)=O)NC(=O)NC(=O)C1N 

J70 

 

169.1 CN1C=C(N=C1)CC(C(=O)O)N 

J71 

 

194.1 C12N=CN(C)C=1C(N(C)C(=O)N2C)=O 
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J72 

 

176.1 [C@H](N)(CCONC(=N)N)C(=O)O 

J73 

 

243.1 C1C2C(C(S1)CCCCC(=O)O)N=C(N2)N 

J74 

 

169.1 C1=CC(=C(C=C1C(CN)O)O)O 

J75 

 

276.1 C1=CC(=C(C=C1CC(C(C)C)=O)C(F)(F)F)[N](=O)O 

J76 

 

129.0 OC(=O)C1CCC(=O)N1 

J77 

 

174.1 C(CC(C(=O)O)N)CN=C(N)N 

J78 

 

189.1 NCC(=O)NCC(=O)NCC(O)=O 

J79 

 

153.0 C12=NNN=C1NC(=O)NC2=O 

J80 

 

253.1 CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N 



Chapter 5. Fragment-Based Drug Discovery  5.5. Appendix 
 

  163 

 

J81 

 

161.1 C(CC(C(=O)[O-])N)CN=C(N)N 

J82 

 

155.0 C1=CC(=C(C=C1[N+](=O)[O-])O)O 

J83 

 

160.1 C1=CC(=CC(=C1)N)C2=CN=CO2 

J84 

 

133.1 C1=CC2=C(C=CN2)C=C1O 

J85 

 

136.1 C1=CC(=CC(=C1)N)C(=O)N 

J86 

 

157.1 C1CC(CCC1CN)C(=O)O 

J87 

 

192.1 CSCCC(NC(N)=O)C(O)=O 

J88 

 

160.1 CN(C)NC(=O)CCC(O)=O 
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J89 

 

137.1 C1=CC(=CC=C1C(=O)N)O 

J90 

 

190.0 C1=CC2=C(C=CC(=C2N=C1)O)[N+](=O)[O-] 

J91 

 

157.1 CC(=O)N1CCC[C@H]1C(O)=O 

J92 

 

200.0 C1=C(C=C(C(=C1[N+](=O)[O-])O)O)[N+](=O)[O-] 

J93 

 

252.0 
C1=C2C(=CC(=C1[N+](=O)[O-])[N+](=O)[O-])NC(=

O)C(=O)N2 

    

J94 

 

196.9 C1=C(SC(=C1)Cl)S(=O)(=O)N 

J95 

 

115.1 NC(=O)C1CCOC1 

J96 

 

155.1 ONC(=O)C12CCC(CC1)C2 
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