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    I stand at the seashore, alone, and start to think. 
    There are the rushing waves  
    mountains of molecules 
    each stupidly minding its own business 
    trillions apart 
    yet forming white surf in unison 
 
    Ages on ages 
    before any eyes could see 
    year after year 
    thunderously pounding the shore as now. 
    For whom, for what? 
    On a dead planet 
    with no life to entertain. 
 
    Never at rest 
    tortured by energy 
    wasted prodigiously by the Sun 
    poured into space. 
    A mite makes the sea roar. 
 
    Deep in the sea 
    all molecules repeat 
    the patterns of one another 
    till complex new ones are formed. 
    They make others like themselves 
    and a new dance starts. 
    Growing in size and complexity 
    living things 
    masses of atoms 
    DNA, protein 
    dancing a pattern ever more intricate. 
 
    Out of the cradle 
    onto dry land 
    here it is 
    standing: 
    atoms with consciousness; 
    matter with curiosity. 
 
    Stands at the sea, 
    wonders at wondering: I 
    a universe of atoms 
    an atom in the Universe. 
 

   1955, Richard Feynman, Physicist  
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Summary 
Cells are highly integrated biological systems that perform complex tasks. These self –

sustained compartments exist thermodynamically out-of-equilibrium with the environment 

and require a constant influx of energy to drive the internal metabolism and prevent decay to 

equilibrium. Photosynthetic autotrophic organisms convert light into chemical energy, which 

is the driving force for the transformation of inorganic carbon into organic compounds. 

Ultimately, the photosynthetic conversion of light energy proceeds through membrane bound 

protein complexes, which generate the energy-rich chemical cofactors adenosine triphosphate 

(ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). ATP and NADPH 

are subsequently used to fuel metabolic processes, in particular the fixation of carbon dioxide 

(CO2) through the Calvin-Benson-Bassham (CBB) cycle. So far, efforts to create an artificial 

cell or organelle that mimics autotrophic photosynthesis have not succeeded in linking light 

harvesting and carbon fixation at the micron scale. In this work, microfluidics and synthetic 

biology were combined in an attempt to develop and optimize a functional mimic of a 

chloroplast in a mostly bottom-up fashion.  

In this work, a photosynthetic energy module was developed based on thylakoid membranes 

of spinach chloroplasts, its function optimized, and then used to power different enzymatic 

reactions and complex metabolic networks by light. Microfluidic-based encapsulation of the 

photosynthetic energy module generated cell-sized droplets that can be equipped with 

enzymes, energized by light and analyzed for catalytic function in multiplex and real-time. The 

activity of the micro-droplets can be programmed and controlled by adjusting internal 

compositions (e.g. thylakoid membranes and enzyme concentrations) as well as using light as 

an external trigger.  

Coupling this photosynthetic energy module with a 17-enzyme, new-to-nature CO2-fixation 

cycle, created a structural and functional mimic of a chloroplast that continuously converts 

CO2 into the organic compound glycolate. In essence, natural and synthetic parts have been 

combined to drive anabolic reactions by light at a micron scale. This platform represents a 

basis useful for multiple applications in both top-down and bottom-up synthetic biology 

approaches, while also signifying another step on the way towards creating functional mimics 

of living cells. 
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Zusammenfassung 
Zellen sind hochintegrierte biologische Systeme, die komplexe Aufgaben ausführen. Diese sich 

selbsterhaltenden Kompartimente befinden sich fernab des thermodynamischen 

Gleichgewichts mit der Umwelt und erfordern einen konstanten Zufluss von Energie, um den 

inneren Stoffwechsel anzutreiben und die Rückkehr zurück ins Gleichgewicht zu verhindern. 

Photosynthetische, autotrophe Organismen wandeln Licht in chemische Energie um, die die 

treibende Kraft für die Umwandlung von anorganischem Kohlenstoff in organische 

Verbindungen ist. Letztendlich erfolgt die photosynthetische Umwandlung von Lichtenergie 

über membrangebundene Proteinkomplexe, die die energiereichen chemischen Cofaktoren 

Adenosintriphosphat (ATP) und reduziertes Nicotinsäureamid-Adenin-Dinukleotid-

Phosphat (NADPH) erzeugen. ATP und NADPH werden dann verwendet, um 

Stoffwechselprozesse anzutreiben, insbesondere die Fixierung von Kohlendioxid (CO2) durch 

den Calvin-Benson-Bassham- (CBB-)Zyklus. Bisher sind Versuche, künstliche Systeme, Zellen 

oder Organellen zu erschaffen, die autotrophe Photosynthese imitieren können, daran 

gescheitert, die Lichtsammlung und Kohlenstofffixierung im Micron-Maßstab miteinander zu 

verbinden. Hier wurden nun Microfluidics und synthetische Biologie kombiniert, um 

größtenteils „bottom-up“ eine funktionelle Chloroplasten-Nachbildung zu entwickeln und zu 

optimieren. 

In dieser Arbeit wurde ein photosynthetisches Energiemodul basierend auf 

Thylakoidmembranen von Spinatchloroplasten entwickelt, dessen Funktion optimiert und 

dann verwendet wurde, um verschiedene enzymatische Reaktionen und komplexe 

metabolische Netzwerke durch Licht anzutreiben. Die Einkapselung des photosynthetischen 

Energiemoduls durch Microfluidics erzeugte Tröpfchen in der Größe von Zellen, die mit 

Enzymen ausgestattet, mit Licht angeregt und im Multiplex und in Echtzeit auf ihre 

katalytische Funktion analysiert werden können. Die Aktivität der „Micro-Droplets“ kann 

programmiert und gesteuert werden, indem die interne Zusammensetzung (z.B. 

Thylakoidmembranen und Enzymkonzentrationen) verändert und Licht als externer Auslöser 

verwendet wird. 

Durch die Kopplung dieses photosynthetischen Energiemoduls mit einem neuartigen CO2-

Fixierungszyklus, bestehend aus 17 Enzymen, wurde eine strukturelle und funktionelle 

Nachahmung eines Chloroplasten erzeugt, der CO2 kontinuierlich in Glykolat umwandelt. Im 
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Wesentlichen wurden natürliche und synthetische (Bau-)Teile kombiniert, um anabole 

Reaktionen durch Licht im Micron-Maßstab zu steuern. Diese Plattform stellt die Basis für 

viele potenzielle Anwendungen dar, die in der synthetischen Biologie für sowohl „top-down“ 

als auch „bottom-up“ Strategien von Nutzen sind, und ist gleichzeitig ein weiterer Schritt auf 

dem Weg zur Nachbildung funktionaler, lebender Zellen. 
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1.  Introduction 

 Life 
What is life? Scientists and philosophers have sought an answer to this question for millennia. 

Something that is living can be recognized with ease, however, defining life is indeed a complex 

issue. Scientists have asked questions such as: What features make something alive? Or, when 

does matter become alive? These large questions lack clear answers however, by dividing 

complex issues into smaller more manageable parts scientists can address these questions; 

e.g. when does a bacterial cell divide? By answering these simpler questions, scientists have 

begun to elucidate fundamentally what is required to be alive rather than specifically what it 

is to be alive. In his book titled, “What is life?,” Erwin Schrödinger asked the question, “How 

can the events within the spatial boundary of a living organism be accounted for with physics 

and chemistry?” Thinking thermodynamically, he noted that life exists outside of equilibrium 

with its environment and that a continuous supply of energy is required to maintain life1. This 

can only be done within a confined space and therefore, life requires a boundary. In a living 

system, that boundary encloses what we call a cell. 

Thus, life requires cells. Even viruses, while not necessarily considered alive cannot reproduce 

without a portion of their lifecycle existing within the confines of a cellular environment. This 

has been a core principle of biology2. A cell is an intricately organized and controlled chemical 

factory that exists outside of equilibrium with the environment. They are equipped with the 

machinery that gives them the ability to take matter and energy from the surroundings and 

use this to grow and eventually replicate. These self-organizing and self-regulated 

compartments are incredibly diverse. Nevertheless, they share certain common principles that 

are consistent among them. These principles are3,4: 

Program is the organized plan that is encoded in DNA. This blueprint influences the 

structure, components of the cell, and kinetics of the interaction of those components. 

The plan or program summarized in the DNA is maintained and passed on through 

generations and will encode for the proteins and nucleic acids that carry out the cellular 

functions.  
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Adaptation is the capacity of the living system, or cell to make modifications to the 

program itself. The living system exists as part of the environment around it and a 

program must be plastic, allowing modifications that ensure the survival of the species 

after changes in the environment. Modifications of the program can be achieved 

through mechanisms such as mutation or horizontal gene transfer, and eventual 

selection of these adaptations. Changes providing a benefit will be passed down 

through generations and allow for a long-term response to changes in the environment 

or circumstances around a living system.  

Energy is required to prevent the cell from decaying to equilibrium. A consistent 

source of energy is required to drive the essential functions of the living system e.g. 

facilitation of active transport, movement, and metabolism. On earth, the primary 

source of this energy is derived from the sun. Through photosynthesis, energy rich 

chemicals are produced which are used to counteract and prevent entropic decay to 

equilibrium. 

Metabolism is a hallmark of a living cell; it is the execution of the program. This is 

the complex chemistry that occurs within a cell. Through metabolism the necessary 

components to grow are regenerated compensating for the inevitable losses that occur 

within the living system. Examples of this are the (re-)synthesis of cofactors; passive 

or active transport of chemicals into or out of the living organism; or the repair of 

damaged enzymes, cofactors, and nucleic acids. In particular, carbon fixation restores 

the organic molecules used for both energy regeneration and as carbon building blocks 

for other processes in the cell. It is important that many reactions can occur 

simultaneously within the living system. This occurs naturally in sub cellular 

compartments or through the speed and selectivity of enzymes, so that enzymes do not 

react uncontrollably with any chemical that they come in contact with. Regulation of 

the program can occur through feedback or feedforward responses. 

Compartmentalization. Living systems must be confined to a limited volume and 

in cells this this volume is enclosed with a semipermeable membrane. By defining an 

in and an out of a living system allows for it to exist outside of equilibrium with the 

environment. Inside this compartment important chemical components can be 

enriched allowing fundamental biochemical reactions to take place and the toxic, 
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deleterious components can be exported or isolated from the inside of the 

compartment. Diverse compartments also exist within a cell e.g. bacterial 

microcompartments that are enclosed with a proteinaceous shell, or a nucleus enclosed 

with a membrane in a eukaryotic cell. 

Regulation is the immediate response to the environment in a feedback or 

feedforward manner to use the aforementioned program to respond to the 

environment. This requires the living system to perceive and immediately adapt its 

“behavior” on a molecular level to the world around it. Examples of this include 

adapting to high light conditions, new carbon source, taxis, or cell-cell communication. 

Replication or self-replication is the ability of an organism to create another copy of 

itself. Here the program is copied and passed on to daughter cells. Reproduction is a 

mechanism for the living system to reset. Furthermore, this enables an organism to 

undergo Darwinian evolution. 

These principles: program, adaptation, energy, metabolism, compartmentalization, 

regulation, and replication reflect both the thermodynamic and kinetic principles that govern 

life and cells on earth. When observing the life that exists on this planet the implementation 

of these principles is clear. For example, natural selection is simply adaptation and 

photosynthetic linear electron flow is a source of energy. These guiding principles can also be 

used as tools in the laboratory e.g. directed evolution. Particular adaptations in the program 

could be selected by creating artificial conditions for an organism to evolve5,6. This is enhanced 

by using various techniques to modify these principles including: genetic engineering that will 

alter the program7; or by using RNAi8 or CRISPRi9 that can regulate the cell to specific 

instructions on a short term. Using these techniques one can further elucidate what is life? To 

study life in this fashion is called a top-down approach, essentially taking an organized system 

apart, even minimizing it10, and studying it. However, there is also what is called a bottom-up 

approach, which would be building more complex systems from simpler pieces to learn about 

the whole11,12. The act of (re)-building living systems can provide insights and better 

understanding about life and demonstrate a true understanding of the principles that govern 

life13.  

In Mary Shelley’s book, “Frankenstein, or, the Modern Prometheus,” Dr. Frankenstein 

reanimated a being that was built from parts of others, and in an analogous fashion, can 
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scientists create life from the bottom up14? Despite having an understanding of the principles 

that govern life or that are required for life, scientists have yet to build life from scratch. 

However, using various approaches scientists from many fields have begun to create systems, 

which mimic some of the processes of life including energy regeneration15,16, 

compartmentalization 17, self-replication 18, metabolism 19, etc.  

With a similar mindset, this work set out to create a structural and biochemical mimic of a 

chloroplast, requiring interdisciplinary approaches. In order to even begin to build life from 

the bottom up, the basic key principles that define life must be established in the lab. In an in 

vitro setting, a robust supply of chemical energy and metabolism must precede the 

implementation of repair and reproduction. Starting with an autotrophic pathway that 

generates the initial building blocks for other subsequent pathways provides a foundation that 

can be built upon. Here, light-driven carbon fixation was compartmentalized through the 

encapsulation into to cell-sized water-in-oil (w/o) droplets. This introduction will focus on the 

tools and components, both synthetic and natural, used to establish some of these essential 

pillars (specifically energy, regeneration, seclusion, and compartmentalization) in the lab.  

 Energy and cofactor regeneration—oxygenic photosynthesis 
As Schrödinger stated, cells operate out-of-equilibrium and to sustain this state, there must 

be a constant flux of energy in order to enable cellular functions. Organisms across the 

kingdoms of life employ different strategies for this. Here, the strategy employed by 

photoautotrophs will be discussed. In plants, algae, and cyanobacteria there is specialized 

photosynthetic machinery that allows for the harvesting of light energy and its conversion into 

chemical energy in the form of adenosine triphosphate (ATP) and reduced nicotinamide 

dinucleotide phosphate (NADPH). This chemical energy can, in turn, be used to synthesize 

organic compounds from CO2 through the Calvin-Benson-Bassham (CBB) cycle and 

eventually fueling other cellular processes, building biomass, and feeding the majority of the 

biosphere. The complex energy converting biological machines generate molecular oxygen by 

using water as an electron donor, use light to elevate the derived electrons to higher (useable) 

energy levels, and establish a proton motive force across a membrane. Oxygenic 

photosynthesis is one of the most significant evolutionary events and it resulted in the great 

oxygenation event that occurred 2.4 billion years ago20,21. This dramatic buildup of molecular 
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oxygen in the atmosphere had profound biological and geological consequences and ultimately 

enabled the life we encounter now.  

In photosynthetic organisms, the components capable of photochemistry evolved alongside 

the CBB cycle, creating an incredibly interconnected system. The success of these combined 

processes led to the high level of oxygen in the atmosphere, which had detrimental 

consequences, some are discussed below. 

Cyanobacteria are thought to be the evolutionary ancestors of chloroplasts, organelles 

specialized in photosynthesis located in the eukaryotic algae and plants22,23. In chloroplasts 

and photosynthetic eukaryotes, the complex molecular components capable of converting 

light-energy into chemical energy undergo complex processes to photophosphorylate ATP and 

photoreduce NADPH.  

1.2.1. Linear electron flow 

Oxygenic photosynthetic carbon fixation is driven by the chemical energy that is converted 

from light energy into ATP and NADPH and uses water as its primary electron donor. These 

reactions are coined the light reactions of photosynthesis. In cyanobacteria, and organisms 

that have taken them up as endosymbionts, these reactions are carried out by complexes 

housed on or near the thylakoid membrane (Gleobacter being the sole exception known to 

date24). In a first step of linear electron flow (LEF, Figure 1), at photosystem II (PSII), the 

photons are used to excite the special pair of chlorophyll, which undergoes complex charge 

separation and used to extract electrons from water, this occurs at the oxygen evolving 

complex. Here, eight photons are needed to oxidize two water molecules producing molecular 

oxygen and four protons on the side of the lumen. This is one of the most important reactions 

on the planet and is the source of all the oxygen in our atmosphere. The electrons extracted 

from the water are used to reduce plastoquinone to plastoquinol at the Q-site of PSII. These 

enter the Q-cycle at the Cytochrome b6f complex, a plastoquinol—plastocyanin reductase, an 

intermediate step between PSII and PSI. Through this complex, two more protons are pumped 

across the thylakoid membrane and the electrons are used to reduce the soluble electron 

carrier protein, plastocyanin (PC). The reduced form of this protein, located on the lumen side 

of the thylakoid membrane interacts with the photosystem I (PSI). At PSI, light energy is used 

to oxidize PC (lumen) and reduce ferredoxin (stroma). PSI is astonishing in that it is capable 

of using light energy and the electrons from PC to create a reductant capable of generating 
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enough reducing potential to reduce ferredoxin. NADP+ photoreduction occurs when the 

electrons from ferredoxin (Fdx) are transferred by action of the Ferredoxin—NADP+ 

oxidoreductase (FNR).  

 

Figure 1. Schematic showing ATP and NADPH generation from linear 

electron flow in the thylakoid membrane. Upon excitation by light, PSII extracts 

electrons from water, depositing two protons per electron into the lumen, and reduces 

plastoquinone. The reduced plastoquinol is oxidized at the Qo site (quinol oxidation) 

of the cytochrome b6f complex (Cyt b6f) and the electrons are passed to plastocyanin 

(PC). During PQH2 oxidation, two protons are deposited in the lumen. The PC will then 

transfer an electron to PSI that will then reduce ferredoxin (Fdx) and 

ferredoxin:NADP+ oxidoreductase (FNR), eventually leading to the reduction of 

NADP+, producing NADPH. The proton motive force (PMF) built through this process 

will be used to drive ATP synthesis through ATP synthase.  

The protons that have been pumped across the membrane during this process lead to the 

formation of a proton motive force (PMF) that drives ATP synthesis through the F0F1-ATP 

synthase. The overall reaction of this process is: 

8 photons + 2 H2O + 2 NADP+ + 2.57 ADP + 2.57 Pi  → O2 + 2 NADPH + 2.57 ATP     (eq. 1.1) 

The resulting photon: O2: NADPH: ATP ratio is fixed at 8: 1: 2: 2.57 due to the number of 14 

subunits in the c-ring in ATP-synthase itself25,26. Through LEF this ratio is fixed, however other 

processes exist in the cell to modulate the ratio of ATP/NADPH production to meet the energy 

demands of the cell. In order to maintain LEF and prevent photodamage there must be a 
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balance in the consumption and production of NADPH and ATP. This is especially important 

for maintaining plasticity in the cells to compensate for varying environmental conditions and 

to meet cellular demands.   

When comparing the NADPH and ATP demands of carbon fixation through the CBB cycle, 

which requires 2 NADPH for every 3 ATP (see eq 1.2), there is a discrepancy to the 

NADPH/ATP production through LEF. It has been a matter of debate if the production of ATP 

and NADPH through LEF is capable of meeting the demands of the CBB cycle25,27. However, 

there are mechanisms within the cell to provide extra ATP, including cyclic electron flow 

around PSI providing additional ATP without the concomitant generation of NADPH 

(discussed in Section 1.2.2). 

None of this would be possible without the ancillary light-harvesting complexes (LHC) that 

act as antenna to increase the likelihood that energy from a photon can be used by the 

photosystems. These complex proteinaceous structures are filled with light active pigments 

like chlorophyll and photoprotective carotenoids. These undergo complex interactions with 

both photosystems to funnel absorbed photons to the special pairs of chlorophyll within the 

reaction core of each photosystem (p680 and p700, in PSII and PSI respectively). Simply put, 

photosynthetic antennae act much like a satellite dish, used to increase the likelihood that a 

photon will be captured and can be used for photochemistry. The LHC are rich in chlorophyll, 

on average there are 617  and 552 chlorophyll molecules per PSII and PSI reaction center, 

respectively28. This difference is due to the fact that there is slightly more PSI than PSII. In 

whole thylakoid preparations, the PSI/PSII was determined to be 1.1328. The thylakoids 

membranes have a very organized architecture and this ratio varies over specific parts of the 

membrane. On average there are 4 light harvesting complexes per PSII monomer. The 

chlorophyll molecules are capable of absorbing blue and red light28.  

Photoinhibition occurs when the light energy absorbed exceeds the demands of the cell. 

Complex regulatory mechanisms are in place to prevent the photodamage that causes 

photoinhibition, including non-photochemical quenching.  Particular components of the light 

reactions are highly reactive and under such conditions, when the photons excite the reaction 

centers and are unable to enter into the electron transport chain can result in the formation of 

reactive oxygen species (ROS). In particular, O2 will be reduced at PSI and form superoxide 

(O2
-) and at PSII, O2 will be excited from the ground state (triplet, 3O2) to the singlet state (1O2). 
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ROS formed affects the redox state of the cell and chloroplast and it plays an important role in 

cell signaling and will affect protein expression29.  

As discussed above, the production and consumption of NADPH and ATP must be balanced25. 

Conditions where they are not balanced can lead to situations where the system is over 

reduced, which will prevent the absorbed light energy from undergoing photochemistry and 

result in the formation of ROS and lead to photodamage. In order to maintain plasticity 

through altering the NADPH and ATP production ratio is important. Cyclic electron flow can 

help the cell to alter the ratio in which NADPH/ATP are produced.   

1.2.2. Cyclic electron flow and reduced ferredoxin 
The major role of reduced ferredoxin is to reduce NADP+ via FNR, however it can have other 

important fates within the chloroplast or cell. This can include nitrogen assimilation, amino 

acid synthesis, sulfur assimilation, and cyclic electron flow. Cyclic electron flow (CEF) occurs 

around PSI and plays an important role in the homeostasis of the cellular environment, 

especially under adverse conditions. In this second route for light energy utilization, electrons 

from ferredoxin or NADPH will reduce the plastoquinone pool, resulting in additional proton 

translocation at the cytochrome b6f complex and thus generation of ATP independent of 

NADPH formation30. This modulates the ATP/NADPH energy budget and plays a role in 

photoprotection by preventing photoinhibition. This slows down the net oxidation by PSI and 

further acidifies the thylakoid lumen31.  There are multiple routes for CEF, one of the most 

studied is NAD(P)H dehydrogenase (Ndh)32-34.  

Furthermore, reduced ferredoxin can be autoxidized by molecular oxygen, resulting in the 

formation of superoxide, a reactive oxygen species that must be detoxified. The mechanism 

for this is discussed in detail below. 

1.2.3. Reactive oxygen species  
The oxygen generated from oxygenic photosynthesis has enabled life as we know it, however, 

this comes at a cost. It creates a reactive environment that facilitates the generation of free 

radicals. In a living system, reactive oxygen species (ROS) can have harmful or even lethal 

effects. Organisms have evolved numerous strategies for the prevention of damage caused by 

ROS and many mechanisms have evolved in living systems to overcome the formation of ROS. 

Mutations in these systems can be fatal or significantly decrease fitness.  
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Oxygenic photosynthesis is a major source of ROS, forming superoxide, hydrogen peroxide, 

and singlet oxygen. Moreover, oxygen is an important electron acceptor, which allows 

photosynthetic organisms to drain excess electrons that will lead to photoinhibition and 

damage to PSI.  Many mechanisms both prevent the creation of ROS and deal with ROS that 

are generated. The antioxidant capacities of the cell involve many proteins including multiple 

super oxide dismutases, ascorbate peroxidases, glutathione reductase, and catalase. In one 

example, when Fdx rd reduces oxygen it forms superoxide through the Mehler reaction, which 

is then detoxified. This set of reactions is also called the water-water cycle: 

Photooxidation at PSII  2 H2O → O2 + 4 e- + 4 H+  
Reduction of O2 at PSI  2 e- + 2 O2 → 2 O2

.-  
SOD catalyzed    2 O2

.- + 2 H+ → H2O2 + O2  
Peroxidase catalyzed    H2O2 + 2 AH2 → 2 AH + 2 H2O  
Cofactor regeneration    2 AH + 2 e- + 2 H+ → 2 AH2  
 

Overall reaction    2 H2O + O2 → O2 + 2 H2O  
 

When molecular oxygen acts as the terminal electron acceptor, photophosphorylation will 

occur without the generation of NADPH. Therefore, the water-water cycle influences the 

formation and balance between ATP and NADPH35,36.  

All of these enzymes serve important roles in the cell and prevent over-reduction of the 

insoluble and soluble electron carriers and maintain LEF activity. This maintains proper 

poising of redox states throughout the components of the electron transport chain, preventing 

photodamage. 

 Metabolism—Carbon dioxide fixation 
An essential requirement of life on earth, directly or indirectly, is the conversion of inorganic 

carbon into organic carbon molecules, or, in other words, the conversion of non-living matter 

to living matter. The fixation of carbon serves as the basis for all life and in that sense, it could 

be argued to be the most important biosynthetic process on earth. This important molecular 

process affects the global climate and efforts to improve or exploit this process are ongoing6,37. 

Autotrophic carbon fixation occurs through six naturally occurring pathways and in the recent 

past, synthetic pathways have been developed38. The organic matter fixed through these 

pathways is catabolized in order to generate energy rich cofactors used to drive cellular 

functions like metabolism, locomotion, growth, and replication.   
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1.3.1. Calvin-Benson-Bassham (CBB) Cycle 
Arguably, the most important carbon fixing pathway is the Calvin-Benson-Bassham (CBB) 

cycle39. Naturally, the CBB cycle occurs in oxygenic photosynthetic organisms like plants, 

algae, and cyanobacteria, but also many chemo-litho-autotrophic, chemo-organo-autotrophs, 

as well as (photo-)heterotrophic bacteria40. In the primary producing organisms, the pathway 

is used to fix and reduce CO2 into carbohydrates. In photosynthesis, this process is called the 

dark reactions and will eventually reduce CO2 into organic molecules such as starch or sucrose, 

building biomass. This serves as a longer-term energy storage that can be catabolized by the 

cell (and eventually other organisms) to fuel other cellular processes.  

The CBB cycle can be divided into three phases: carboxylation, reduction, and regeneration 

(Figure 2). In the carboxylation step, the enzyme ribulose 1,5-bisphosphate 

carboxylase/oxygenase, RuBisCO, will carboxylate ribulose 1,5-bisphosphate (RuBP) to 3-

phosphoglycerate (PGA). The reduction phase, comprised of several enzymes, will use the 

NADPH and ATP generated from the light reactions to reduce PGA to glyceraldehyde 3-

phosphate (G3P). Five out of six of the G3P are used to regenerate RuBP and one can be 

siphoned off (Figure 2) to eventually produce sucrose or enter biosynthetic pathways directly.  

The overall reaction for the CBB cycle is:  

3 CO2 + 6 NADPH + 6 H+ + 9 ATP → G3P + 6 NADP+ + 9 ADP + 3 H2O + 8 Pi                     (eq. 1.2) 

 

Figure 2. Simplified schematic of the Calvin-Benson-Bassham cycle. The 

three phases of the pathway (carboxylation, reduction, and acceptor regeneration) are 

indicated. Ribulose-1,5-bisphosphate will be carboxylated and eventually a single, 3 

carbon sugar phosphate can be withdrawn to enter central metabolism.  
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1.3.1.1 Photorespiration 
The CBB cycle relies solely on the enzyme RuBisCO for carboxylation and as the name 

suggests, this enzyme can also perform an oxygenation reaction resulting in the formation of 

2-phosphoglycolate. This metabolite is toxic and must be removed from the cell, through an 

energetically expensive process called photorespiration. Moreover, this side reaction competes 

with carboxylation and will occur around one third of the time under physiological 

conditions41. While the enzyme itself has a higher preference to use CO2 as a substrate, the 

atmosphere, as a result of the light reactions has a high concentration of O2 compared to that 

of CO2 (21% vs. 0.0412%)42,43. The differences in the solubility of these gases also have an effect 

on the overall carboxylation vs. oxygenation ratio. Furthermore, temperature affects the 

solubility of these gases and as the global temperature continues to rise due to human activity 

this effect will become more pronounced because the ratio of dissolved [CO2] to [O2] will 

continue to decrease. Note, the increase in atmospheric CO2 does not overcome this effect. 

Therefore, losses in productivity due to an increase of photorespiration in phototrophs will 

continue to increase. Nature has employed several strategies to compensate for this, including 

high expression of RuBisCO and carbon concentrating mechanisms (e.g. C4 photosynthesis, 

pyrenoids, and carboxysomes). Scientists have employed various strategies to decrease losses 

through photorespiration including engineering the carboxysome into plants44 and 

engineering more efficient pathways for photorespiration45,46. 

1.3.2. Synthetic CO2 fixation cycles 
Meeting the food and energy demands of a growing global population requires novel solutions. 

Modern agricultural techniques e.g. using fertilizer and irrigation has dramatically improved 

crop yield likely shifting the limitation in productivity to carbon fixation. Efforts to improve 

carbon fixation by altering both the light-dependent reactions and the dark, or light-

independent reactions have shown promise47,48. The limitations of RuBisCO make it a target 

in efforts to improve carbon fixation. Attempts at directly improving RuBisCO through 

altering the speed or specificity have achieved marginal improvements49,50. Therefore, creating 

RuBisCO independent pathways could offer interesting solutions to improve carbon fixation. 

To that end, synthetic cycles for the fixation of carbon dioxide that bypass RuBisCO entirely 

have been designed, developed, and established38,51.  This visionary approach, takes advantage 

of all of the enzymes that have been discovered to date providing many opportunities for 

diverse solutions and expanding the repertoire of carbon fixing pathways. 
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One solution is the 17-enyzme Crotonyl-CoA Ethylmalonyl-CoA 4-hydroxybutyryl-CoA cycle, 

or CETCH cycle, that has been established in vitro (Figure 3).  This pathway employs reductive 

carboxylases called enol-CoA carboxylases/reductases (ECRs), which have unequaled high 

rates of catalysis and efficiency of carboxylation and do not react with oxygen52-55. 

  

Figure 3. The synthetic CO2 fixation pathway, CETCH 5.4 The portions of the 

cycle based on the ethylmalonyl-CoA pathway are indicated in green; crotonyl-CoA 

regeneration module in blue, and biosynthesis/readout module in salmon38. 

The CETCH cycle is based on the natural ethylmalonyl-CoA pathway, which is employed in 

some bacteria for acetyl-CoA assimilation53. This linear pathway is converted into a cycle 

through the addition of four enzymes that regenerate the starting substrate (crotonyl-CoA). 

Through several rounds of optimization, some enzymes were replaced and engineered to 

accept novel substrates. In initial attempts to establish the CETCH cycle in vitro, the cycle 

would not complete a full turn and methylsuccinyl-CoA accumulated. This indicated 

methylsuccinyl-CoA dehydrogenase (Mcd) was rate limiting. Mcd catalyzes the oxidation of 

methylsuccinyl-CoA and requires an electron acceptor, for the in vitro experiments 
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ferrocenium was added to act as an electron acceptor. In these conditions (low ferrocenium, 

high NADPH), the ferrocenium would be oxidized by NADPH to ferrocene. Naturally, after 

oxidizing methylsuccinyl-CoA this enzyme will eventually reduce the quinone pool through 

electron transport flavoprotein ubiquinone oxidoreductase (Etf:QO) via the soluble electron 

carrier, electron transport flavoprotein (Etf). This entire module was not reconstructed in the 

lab however, the Mcd was rationally engineered to use molecular oxygen as an electron 

acceptor, creating methylsuccinyl-CoA oxidase (Mco). The reduction of oxygen will produce 

H2O2, and catalase was added to prevent oxidative damage. After this substitution, the CETCH 

cycle was capable of performing two turns. The addition of an output module further improved 

the cycle performance because the depletion of the glyoxylate produced from the CETCH cycle 

should drive the Mcl reaction. However, the addition of an output module had unwanted side 

reactions. Correcting for this required the addition of enzymes that are capable of correcting 

dead-end side products for metabolic proofreading. Furthermore, this required changing one 

of the core enzymes, which also performed an unwanted side reaction. This substitution 

replaced the step performed by the biotin dependent carboxylase, propionyl-CoA carboxylase 

(Pcc), with two enzymes. One is another engineered enzyme to act as a propionyl-CoA oxidase 

(Pco) reducing O2. The oxidation of propionyl-CoA forms acrylyl-CoA, which in turn is 

carboxylated by the crotonyl-CoA carboxylase/reductase (Ccr) to form methylmalonyl-CoA. 

In combination, these enzymes resulted in a cycle capable of fixing CO2 in vitro.  In a living 

system, combinations of enzymes and biochemical pathways have been optimized overtime to 

function congruently. The CETCH cycle combined enzymes from many different organisms 

and since they were not combined in nature they had not evolved to function synchronously 

and enviably had unintended crossreactivity with other substrates. Operation of a synthetic 

cycle required artificially correcting and optimizing the pathway for successful functionality.  

The in vitro CETCH cycle can continuously fix carbon dioxide, however this requires the 

regeneration of ATP and NADPH. One enzyme in particular, 4-hydroxybutyryl-CoA 

synthetase (Hbs) requires a high ATP/ADP ratio for the reaction to proceed. Meaning, ATP 

must continuously be regenerated to maintain this high ratio. Regeneration of these cofactors 

relied on polyphosphate kinase (Ppk) and an engineered formate dehydrogenase (Fdh), which 

required the addition of polyphosphate and formate, respectively. The capacity for energy 

regeneration is limited to the amount of added formate and polyphosphate. Furthermore, Fdh 

will oxidize formate to CO2 in order to regenerate NADPH; decreasing the net carbon fixed by 
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the CETCH cycle. Coupling CETCH to an alternative energy source such as the light-driven 

regeneration of NADPH and ATP from photosynthetic linear electron flow would achieve a 

truly carbon negative synthetic CO2-fixing pathway.  

In its final form, CETCH relies on enzymes from all domains of life and engineered enzymes 

that together can perform the essential task of carbon fixation.  This solution for carbon 

fixation relies on biochemical and molecular biological discoveries, that combined create a 

seventh autotrophic CO2 fixing cycle that has not evolved in nature. The final net reaction is 

summarized in the following chemical equation: 

2 CO2 + 3 NADPH + 2 ATP + FAD    glyoxylate + 3 NADP+ + 2 ADP + 2 Pi + FADH2         (eq 1.3) 

 Compartmentalization   
Compartmentalization is an essential feature of a living system that allows the spatial and 

temporal control of biological processes. The boundary of living cells is a semipermeable 

membrane composed of a lipid bilayer, allowing for the enrichment of specific components 

while isolating the internal space from waste products or toxic molecules. Internally, a cell 

often has other compartments that serve essential functions. Examples include the 

chloroplast, mitochondria, pyrenoids, bacterial microcompartments, and more. The barrier 

enclosing these internal compartments can vary56-58. Internal compartments allow for specific 

division of labor and isolation of reactions that may be toxic for the cell. They may even allow 

to maintain specific conditions for certain tasks or reactions to take place. Without a boundary, 

the essential components of life would diffuse to concentrations too low for cellular functions 

to reliably occur. Building life from the bottom up requires some compartmentalization and 

there are several technologies that are suited for this.  

One method, microfluidics, has created many opportunities for research in physics, chemistry 

and biology. Specifically, using these miniaturized fluid devices allows for the high-throughput 

formation of large quantities of monodisperse microdroplets. Their characteristics are easily 

controlled allowing the creation of uniform droplets in both size and content. Droplet-based 

microfluidics has been used to perform quantitative measurements in very small reaction 

volumes59, for complex sorting60, extremely high-throughput screening efforts61,62, and in 

bottom-up synthetic biology63,64. These closed compartments can vary in structure and size 

and be used to model cellular processes and dynamics. Techniques have been developed to 

form various types of compartments including water-in-oil (w/o) droplets65 and liposomes 
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(e.g. small, large, or giant unilamellar liposomes)63,66,67. Liposomes, possessing a lipid bilayer, 

more similarly reflect a cell than w/o droplets which have a simpler boundary at the interface 

of the water and oil. Liposomes can be created using different lipid types which vary in 

properties68. W/o droplets do not model the membrane in complexity the way liposomes do; 

however, they still form a closed reaction volume resembling a cell in size.  

Often, w/o droplets are manufactured using a T-junction or a flow focusing microfluidic chip59. 

The size of a droplet can be controlled by adjusting the flow rates while manufacturing. The 

w/o droplets must be stabilized with a surfactant to prevent coalescence69. Depending on the 

surfactant used, the head groups can be functionalized70. It is possible that components within 

droplet, or even the oil, can diffuse between the two phases (aqueous and oil) depending on 

the properties of the components, oil, and surfactant. 

This work used microfluidics to generate monodisperse w/o droplets to act as individual 

reaction chambers that could be controlled in volume and allowed for reactions to take place 

in a defined space. Since they are reproducible and monodispersed they can be used for 

quantitative and qualitative studies and comparisons at such small volumes that resemble cells 

in size.  

 Aims 
This work set out to combine an artificial CO2 fixing pathway with light derived energy and 

eventually develop a synthetic system analogous to chloroplasts. Using a bottom-up approach, 

photosynthetic membranes were co-encapsulated together with the CETCH cycle in cell-sized 

water-in-oil (w/o) droplets to mimic a chloroplast, both in structure and metabolic function. 

In order to achieve this a stepwise development of specific modules was required: 

1. Energy  

a. Light driven generation of NADPH and ATP 

Development of the energy module required the isolation of photosynthetically 

active membranes. The rate of photophosphorylation and photoreduction was 

to be determined in respect to alterations and additions of soluble electron 

carriers, substrates, and antioxidants. The stability of the membranes needed 

to be characterized and conditions optimized to improve the function and 

lifetime of these membrane preparations. 
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2. Metabolism 

a.  Powering carbon fixing reactions in vitro  

After the development of a functional in vitro energy module the NADPH and 

ATP generated had to be used to power enzymatic reactions. Therefore, 

enzymes that use either ATP or NADPH or both were needed. The carboxylases, 

propionyl-CoA carboxylase and crotonyl-CoA carboxylase/reductase of the 

ethylmalonyl-CoA pathway were selected for this purpose. 

b. Powering carbon fixing pathways for the continuous reduction of CO2 

Once the energy module could be coupled to different enzymatic reactions, the 

complexity of the system could be increased by expanding it to an entire CO2 

fixing pathway. This required optimization for both the CO2-fixation and 

energy modules to operate harmoniously. Towards that end, the original CO2 

fixation pathway had to be modified.  

3. Compartmentalization:  

a. Development of a functional microfluidic platform 

With the eventual goal of encapsulating the combination of the energy module 

and the CETCH cycle in cell-sized droplets, a suitable microfluidic platform had 

to be developed. Taking a similar approach as above this was achieved in a 

stepwise fashion. Firstly, the energy module has to be encapsulated, tested and 

optimized for the drastic down-scale in volume. The light driven generation of 

NADPH was demonstrated in droplets. Using this system thousands of droplets 

could be created and monitored in real time 

b. Coupling photosynthetic membranes with individual reactions 

Next, the photosynthetic droplets needed to be tested in the context of co-

encapsulated single enzyme reactions. The single enzymes tested were 

glyoxylate reductase (Ghr), Crotonyl-CoA carboxylase/reductase, and 

propionyl-CoA synthase (Pcs).  

c. Encapsulating all of the components for light driven continuous CO2 fixation 

Finally, the entire CETCH cycle was coupled to the photosynthetic membranes 

and co-encapsulated into cell-sized water-in-oil droplets. The activity was 

confirmed in real time by monitoring the dynamic equilibrium of individual 

droplets overtime and the contents of the droplets were measured by HPLC-

MS for both CoA ester intermediates and the output product glycolate. This set-

up provided a high throughput platform to study the dynamics, controllability 

and function of the CETCH cycle in multiplex. Using this system cycle, variants 

were compared side by side 
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2.  Results 

 Establishment of the energy module 
In photosynthesis, complex proteins located on the thylakoid membranes convert light energy 

into chemical energy.  Light reactions of photosynthesis are intimately connected with the dark 

reactions, the CBB cycle for CO2-fixation in vivo. These processes have evolved congruently 

for billions of years and balance between them is tightly controlled and regulated. This 

interconnectivity poses a challenge for utilizing this incredible light driven energy 

regeneration ability to drive non-canonical reactions and reaction cascades in vivo. This 

complexity lies at every step of the biological process from the DNA up to the biochemistry of 

enzymes, e.g. difficulty for genetic modification, stoichiometry of enzyme expression, repair, 

and balancing of redox equivalents.  One major hurdle is that due to the complexity and 

interconnectivity in these primary producing organisms the “rewiring” of the metabolism 

proved to be difficult. Therefore, to exploit this natural “power-plant” to drive synthetic carbon 

fixing cycles, photosynthetically active membranes themselves were isolated and established 

for the light driven regeneration of ATP and NADPH in vitro.  

2.1.1. NADP+ photoreduction in vitro 
The thylakoid membranes of Chlamydomonas reinhardtii and Spinacia oleracea were 

isolated via density centrifugation33,71-74. Eventually, S. oleracea thylakoids were used 

exclusively due to the ease of isolation and stability of the membranes. Crude extracts were 

able to regenerate NADPH and ATP without the supplement of soluble electron carriers. 

However, when using purified and washed membranes it was important to add ferredoxin 

(Fdx). To determine the optimal concentration of ferredoxin, NADP+ photoreduction was 

measured at 340 nm using a Cary 60 spectrophotometer with various Fdx concentrations. 

NADP+ photoreduction was observed upon illumination; with 100 µmol photons m-2 s-1 of 

white light, the addition of 5 µM of Fdx was optimal (Figure 4A & C). The difference in 

reduction rates was negligible between Fdx from C. reinhardtii (Fdx1) and S. oleracea (Fdx2), 

which have 75% sequence identity. Purified ferredoxins showed the typical absorption maxima 

for 2Fe-2S clusters75 (Supplemental Figure S1).  Initially, ferredoxin:NADP+ reductase (FNR) 

was also added to the reaction mixture at 10 µM (further discussion in Section 2.2.2). 
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The NADP+ photoreduction occurred in a light dependent manner and could be regulated by 

alternating light dark cycles (Figure 4B). At 100 µmol photons m-2 s-1 these thylakoid 

preparations catalyzed the light-dependent reduction of NADP+ to NADPH at a specific 

activity of 3.41 ± 0.01 µmol min-1 µg-1 total chlorophyll (chlorophyll A and B, referred to as Chl; 

Figure 4D), which is comparable to values measured by others (Supplementary Table 1).  

 

Figure 4. Characterization of the light-driven NADP+ photoreduction by 

thylakoid membrane-based energy modules. (A) NADPH production is 

dependent on light and externally added ferredoxin (B) NADPH photoreduction is 

controlled by alternating light dark cycles.  (C) NADP+ photoreduction: Titration of 

ferredoxin concentrations. NADPH production is dependent upon the addition of 

external ferredoxin. The highest rates of NADP+ photoreduction were achieved with 

the addition of ferredoxin between 2.5-10 µM. Shown are representative examples of 

NADPH production rates at 100 µmol photons m-2 s-1, 10 µg total chlorophyll a + b 

(Chl) and varying ferredoxin concentrations. (D) NADP+ photoreduction by 

photosynthetic membranes NADPH production rate normalized to µg of Chl (line is 

the mean value with shaded area corresponding to ± standard deviation, N = 6). Rate 

of NADP+ photoreduction was determined from the first minute after the light had 

been turned on (100 µmol photons m-2 s-1). 
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2.1.2. ATP photophosphorylation in vitro 
Thylakoid membranes also catalyzed the regeneration of ATP from ADP, both in the light and 

the dark. The ATP that was generated in the dark can be attributed to the membrane bound 

adenylate kinases76, which catalyze the reaction: 

2 ADP ⮂ 1 AMP + 1 ATP  (eq 2.1) 

The ATP regeneration in the dark was quantified at 1.2 ± 0.2 µM min-1 µg-1 Chl, which could be 

suppressed by using an adenylate kinase specific inhibitor, diadenosine pentaphosphate 

(DAPP) 33,77 (Figure 5). When exposed to light, ATP production from ADP increased 6-fold (6.5 

± 0.5 µM min-1 µg-1 Chl) and in a sample containing DAPP resulted in a light- (and ATPase) 

dependent ATP synthesis rate of 5.4 ± 0.5 µM min-1 µg-1 Chl (Figure 5). This is comparable to 

previous studies using chloroplast and thylakoid extracts (Supplementary Table 1). Indicating 

that the energy module could be capable of generating sufficient ATP and NADPH to drive CO2 

fixation with the CETCH cycle. 

 

Figure 5. Characterization of the light-driven ADP photophosphorylation 

by thylakoid membrane-based energy modules. (A) ATP production is 

dependent on light, with some background reaction in the dark due to membrane 

bound adenylate kinase (B) Light-driven ATP formation and dark-control in the 

presence of the adenylate kinase inhibitor DAPP (teal and grey, respectively; open 

circles indicate samples with DAPP added). The addition of DAPP decreases ATP 

formation both in the dark and in the light (lines shown are linear fits, 2 biological 

replicates, 60-70 µmol photons m-2 s-1), presumably due to inhibition of the 

background reaction of membrane-bound adenylate kinase. 
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2.1.3. Optimization, stability, and mitigation of ROS 
In chloroplast and thylakoid extracts, the enzymes responsible for CEF are unstable and will 

lose activity quickly33. Without a contribution from CEF, the LEF production ratio of 

ATP:NADPH should be 1.28:1. After 30 minutes in the light without the addition of DAPP a 

ATP:NADPH ratio was determined to be 0.8 and with the addition of DAPP it was 1.6  (Figure 

6A).  The exact reason for this discrepancy was not specifically elucidated, however, this could 

be due to not all membranes being completely intact or limitations on the electron acceptor 

side. The measured NADPH production and O2 evolution ratio match the expected ratio of 2:1 

(Figure 6B & C).  This would be an indication that the membranes were not fully intact and 

some protons would be leaking. However, this would need to be experimentally confirmed. 

 

Figure 6. Characterization and stoichiometry of light-driven ATP and 

NADPH regeneration by thylakoid membrane-based energy modules. (A) 

Stoichiometry of cofactor regeneration: ATP (solid lines) and NADPH (dashed lines) 

production in the presence (coral triangles) and absence of DAPP (blue circles), and 

the calculated ATP to NADPH ratio at 15 and 30 minutes after light exposure (60 µmol 

photons m-2 s-1). (B) Relative molar NADP+ photoreduction and O2 evolution curves 

over light/dark cycles. The O2 production occurs in a 1:2 molar ratio with NADPH, the 

same ratio that occurs under physiological conditions. (C) NADPH production with O2 

evolution curves at 60 µmol photons m-2 s-1. Lines are the average of three replicates 

and the standard deviation is shown in the shaded area. 

The specific activities of thylakoid membranes varied slightly between individual preparations 

(Figure 7B). Thylakoid membranes were stably maintained in the dark for at least two hours 

at room temperature and at least 24 hours when maintained on ice with no observable loss of 

NADPH productivity upon illumination (Figure 7A). Membrane preparations could be stored 

at -80 °C for more than a year without notable loss of activity (Figure 7B), demonstrating their 
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long-term usability as a thylakoid membrane-based energy module for subsequent 

experiments. 

 

Figure 7. Stability of thylakoid membrane-based energy modules. (A) 

Stability of thylakoids in the dark: NADPH production of the energy module was 

maintained in the dark for 1 and 2 hours (at room temperature) or 6, 24, and 48 hours, 

respectively (at 0 ℃, 60 µmol photons m-2 s-1). (B) Reproducibility of energy module 

preparations: NADPH production rates of thylakoids are consistent between different 

thylakoid preparations. Two replicate experiments from two different thylakoid 

preparations, one of which had been stored at -80 ℃ for over a year, are shown (at 23 

℃, 60 µmol photons m-2 s-1). 

The light intensity used affected the lifespan of the thylakoids. In general, lower light 

intensities were inversely proportional to thylakoid lifespan (Figure 8A & B). Photosynthetic 

activity was assayed at three light intensities (30, 60, 300 µmol photons s-1 m-2) by measuring 

O2 evolution.  At 60 µmol photons s-1 m-2 the O2 evolution was the highest, however after 3500 

seconds the oxygen levels were surpassed by that of thylakoids illuminated with 30 µmol 

photons s-1 m-2. Initially, thylakoids illuminated with 300 µmol photons s-1 m-2  out-performed 

thylakoids illuminated with 30 µmol photons s-1 m-2, however the oxygen level quickly 

decreased, indicating a loss of function. 

Adding antioxidative substrates and enzymes increased the lifetime of the thylakoids. 

Chloroplasts contain two ascorbate peroxidases, one being membrane bound78. In order to 

preserve the activity of ascorbate peroxidases, ascorbate was included in every step during the 

purification of the thylakoids79. The activity of three superoxide dismutases (Sods) was assayed 

using the method based on nitro blue tetrazolium (NPT) and the production of superoxide 
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from xanthine oxidase80. In this indirect activity assay, the oxidation of NPT is prevented by 

Sod activity. The oxidation was monitored at 560 nm. Sod A and B were overproduced and 

purified from E. coli, and compared to the commercially purchased Bovine Sod had lower 

activity, therefore the bovine Sod was used in subsequent experiments. The native E. coli 

catalase (Cat) was overexpressed and purified from E. coli. The addition of these enzymes 

allowed for the in vitro system to prevent oxidative damage from the many sources of ROS 

including from the photosystems themselves.  Addition of superoxide dismutase and catalase 

to scavenge reactive oxygen species (ROS) resulted in prolonged thylakoid membrane activity 

(Figure 8A).   

The importance of the addition of the antioxidative enzymes Sod and Cat was demonstrated 

by measuring O2 evolution in the presence and absence of Cat and Sod at 60 and 300 µmol 

photons s-1 m-2 conditions. The O2 evolution was higher at 60 µmol photons s-1 m-2 versus 300 

µmol photons s-1 m-2. Furthermore, the activity was maintained longer in conditions 

containing Cat and Sod (Figure 8A).  In the subsequent experiments, SOD and catalase were 

always included and light intensities between 50-60 µmol photons m-2 s-1 were used to 

minimize the formation of ROS that would be damaging the photosynthetic apparatus while 

providing sufficient rates of NADPH regeneration (Figure 8B).  

 

Figure 8. (A) Relative O2 evolution at 60 or 300 µmol photons m-2 s-1 in a reaction 

buffer either with or without catalase (Cat) and superoxide dismutase (Sod). (E) A 

similar experiment as in (B) but an even lower light condition is shown. All conditions 

contained Sod and catalase. At 30 µmol m-2 s-1 the O2 evolution was slower but was 

maintained longer.  

In summary, these efforts created a functional photosynthetic energy module that could be 

used to regenerate ATP and NADPH in light. The thylakoid preparations could be 

cryopreserved for long periods and were consistent in their behavior. Adding antioxidative 
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proteins and substrates showed a benefit for the activity. Using low light intensities would 

maintain activity for longer periods while generating ATP and NADPH sufficiently. 

 Coupling metabolism to energy generation 

2.2.1.  Individual light powered CO2-fixation reactions  
To test if the ATP and NADPH generated through LEF from the photosynthetic membranes 

could be used to drive individual biochemical reactions the energy module was coupled to two 

different CO2-fixing enzymes, namely crotonyl-CoA carboxylase/reductase (Ccr) and 

propionyl-CoA carboxylase (Pcc), which require NADPH and ATP, respectively (Figure 9). In 

the case of Ccr, product formation was strictly light-dependent with a CO2-fixation rate of 5.2 

± 0.2 µM min-1 µg-1 Chl (Figure 9B). Pcc showed a light-dependent CO2-fixation rate of 5.1 ± 

0.2 µM min-1 µg-1 Chl (Figure 9B). There was a low, light-independent carboxylation by Pcc 

that occurred at a rate of 0.8± 0.1 µM min-1 µg-1 Chl, due to the adenylate kinase activity of the 

thylakoids (see above). Notably, these carboxylation rates are more than three orders of 

magnitude higher than recent efforts to couple enzymatic CO2-fixation to isolated PSII 

(approx. 6.9∙104 molecules h-1 per PSII reaction center compared to 34 molecules h-1 per PSII 

reaction center, Supplementary Table 2), highlighting the capability of the thylakoids to 

efficiently energize catalytic transformations. 

 

Figure 9. Light-driven cofactor regeneration by thylakoid membrane-

based energy modules. (A) Scheme of thylakoid energy module-driven 

carboxylation reactions of propionyl-CoA carboxylase (Pcc) and crotonyl-CoA 

carboxylase/reductase (Ccr) utilizing light-produced ATP and NADPH, respectively. 

(B) Reactions coupled to thylakoid energy module (2.5 or 5 µg Chl and 60 µmol 

photons m-2 s-1) (N=6). 
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2.2.2. Metabolism: Light driven CO2-fixing cycles 
Within living cells, biocatalysis and metabolism occur in networks or cycles. Mostly, carbon 

fixation occurs by adding a carbon to a longer backbone. Eventually, a pathway intermediate 

will be split creating an organic molecule that can be used for biosynthetic routes and another 

product that will be used to regenerate the substrate for the carboxylation, thus forming a 

cycle. Combining the thylakoid energy module with a complete metabolic cycle for the fixation 

of CO2, would allow for the continuous fixation of carbon dioxide by light. To that end, the 

energy module was combined with the core enzymes of the CETCH cycle (version 5.4, see 

Figure 3 in Section 1.3.2.) and a glyoxylate/hydroxypyruvate reductase from Escherichia coli 

(Ghr)38. To demonstrate that the light dependent regeneration of NADPH and ATP could be 

extended to sustain entire metabolic cycles, all CETCH cycle enzymes were added to the 

thylakoid reaction mixture. After light exposure, samples were taken throughout, and the 

formation of the CoA thioester intermediates and their incorporation of 13C-labeld CO2 were 

analyzed by HPLC-MS. The expected incorporation of the 13C label is shown in Supplemental 

Figure S2.  

Initial efforts to operate the CETCH cycle (CETCH version 5.4) together with the energy 

module failed, and the expected CoA ester intermediates were not produced (Figure 10A-D). 

This indicated some sort of negative interaction of system components. To assess this problem, 

supernatant from pre-illuminated thylakoids was used as the reaction buffer for the CETCH 

enzymes. For this, the reaction buffer contained everything except the CETCH enzymes and 

substrates, only ADP and NADP+ were added and illuminated for 45 minutes. Subsequently, 

the thylakoids were spun down at 3000 x g for 3 minutes and the CETCH enzymes were added 

to the supernatant. The reaction sequence was started by addition of propionyl-CoA and 

samples were taken. The results are depicted in Figure 10E and show that thylakoids were 

capable of generating sufficient NADPH and ATP to turn the cycle 3 times. Through an 

iterative process, several issues with the combination of the thylakoids and CETCH module 

were determined. Particularly there was a negative interaction between FAD dependent 

enzymes in the cycle with NADPH formation.  
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Figure 10. Initial experiments to couple the CETCH cycle to the thylakoid 

energy module (in bulk). To couple the CETCH cycle to the thylakoid energy 

module, enzymes of the CETCH cycle plus Ghr from E. coli were mixed with thylakoids. 

Propionyl-CoA was added and the reaction mixture was illuminated (100 µmol 

photons m-2 s-1). Operation of the CETCH cycle was assessed by following the 13C-

labelling patterns (see Supplementary Figure 2) and CETCH cycle metabolites 

methylmalonyl-CoA and ethylmalonyl-CoA as previously described38. (A-B) Labelling 

pattern of CETCH v6.0 coupled to p (50 µg Chl mL-1) starting with 150 µM propionyl-

CoA. Both conditions were supplemented with an addition of 10 µM ferredoxin-NADP+ 

reductase (FNR), with added 15 µM FAD (1:1.5 molar ratio, for the contribution of FAD 

and FNR on the system see Figure 11). Very little difference between the light (A) and 

dark (B) operated cycles was observed and ethylmalonyl-CoA was only detected after 

60 minutes in the light. (C-D) Labelling pattern of CETCH v6.0 coupled to the 

thylakoid energy module (70 µg chl mL-1) in the absence of FNR starting with 150 µM 

propionyl-CoA (see Supplementary Fig. 6 for details on the effect of FNR and its 

interplay with Mco and free FAD). When additional FNR was left out of the reaction 

mixture, the cycle operation increased under illumination (C), demonstrated by the 

13C-labelling pattern and formation of ethylmalonyl-CoA. The dark control (D) did not 

show any significant label incorporation and no ethylmalonyl-CoA formation. (E) 

Positive control demonstrating that supernatant of a thylakoid reaction (with 20 µg 

Chl) illuminated for 45 minutes is able to provide sufficient NADPH and ATP to 

subsequently operate the CETCH cycle v6.0 for several rounds, suggesting some 

negative interactions of CETCH cycle v5.4 and the thylakoids. 
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There seemed to be a link between the flavin adenine dinucleotide (FAD)-dependent enzymes 

methylsuccinyl-CoA oxidase (Mco) and propionyl-CoA oxidase (Pco) interfering with 

thylakoid productivity, likely due to the formation of ROS and unbound FAD in the enzyme 

preparations. The latter is capable of directly oxidizing NADPH through the interaction with 

FNR (see also Figure 10A, 10B, 11B, 11A). This interaction was simplified by returning to 

experiments containing only thylakoids. In literature, experiments using chloroplast extracts 

often have added external FNR. However, here additional FNR did not increase activity 

further (Figure 11A). When unbound FAD was added the NADPH production rate actually 

decreased.  If a system contained FNR and FAD was added later, the NADPH was directly 

oxidized and the NADPH production would halt. Therefore, free FAD in the system appeared 

to cause direct oxidation of NADPH through the interaction with FNR (Figure 11B). Naturally, 

FNR exists in two states—a soluble and a membrane associated state. FNR will become 

dissociated from the membrane under stress conditions that lead to the formation of super 

oxide. When this occurs FNR will switch from an NADPH producer to an NADPH consumer81, 

which was apparently the case in the in vitro system. 

 

Figure 11. Negative effect of Mco and free FAD on NADP+-dependent 

photoreduction by thylakoids: (A) NADP+ photoreduction monitored on a 

spectrophotometer at 340 nm by thylakoids starts upon illumination (60 µmol photons 

m-2 s-1). Fdx is required for NADP+ photoreduction (Figure 4A) and adding 5 µM FNR 

did not improve the NADPH production rate from thylakoids (10.3 µM min-1 with only 

Fdx and 9.9 µM min-1 with Fdx and FNR, calculated from the first 2.5 minutes of 

illumination). However, adding excess FAD (14 µM) decreases this rate (4.3 µM min-

1). (B) NADPH is produced in the presence of FNR and Fdx (5 µM each) but inhibited 

upon the addition of FAD (14 µM) even under constant illumination. 

[N
A

D
P

H
] 

(µ
M

)

[N
A

D
P

H
] 

(µ
M

)

FAD
A B



Results 
   

31 
 

The flavin adenine dinucleotide (FAD)-dependent enzymes methylsuccinyl-CoA oxidase 

(Mco) and propionyl-CoA oxidase (Pco) were often prepared with additional FAD (in a 1:1.2 

molar ratio of protein to FAD). Compared to their native counterparts, these engineered 

enzymes would only loosely bind FAD and during purification lose a significant amount of 

FAD. Furthermore, each of these oxidases would directly produce ROS by using molecular 

oxygen as a substrate. The effects caused by free FAD and ROS formation were minimized by 

changes in the CETCH cycle and the enzyme purification protocols. In the case of Pco, it could 

easily be replaced with Pcc, but due to the side reaction with acetyl-CoA as discussed in Section 

1.3.2 this would require an alternative output module. An output module helps to pull the 

reaction catalyzed by malyl-CoA lyase (Mcl) and thus forcing the cycle to turn forward. 

Different output modules were tested and eventually Ghr was chosen, which directly withdrew 

glyoxylate from the cycle (creating CETCH cycle version 6.0, Figure 14A), and having the 

additional benefit of an ease of detection of glycolate. 

However, replacing Mco with a methylsuccinyl-CoA dehydrogenase (Mcd) was much more 

difficult. In natural systems, the conversion of methylsuccinyl-CoA to mesaconyl-CoA is 

catalyzed by Mcd. Mcd is a FAD–dependent acyl-CoA dehydrogenase, which is coupled via 

electron transfer flavoproteins (Etf) to the membrane-located ubiquinone pool through the 

membrane bound electron transfer flavoprotein-ubiquinone oxidoreductase (Etf:QO, Figure 

12). During the development of the CETCH cycle, Mcd alone and in combination with its 

cognate Etf was not sufficient to operate the CETCH cycle38. This required engineering of a 

Mco that was ultimately used in CETCH v5.4 (Figure 3). The efforts for replacing Mco with 

Mcd are outlined below. 
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Figure 12. Mco and Mcd reaction: Mco catalyzes the reduction of methylsuccinyl-

CoA and uses O2 as an electron acceptor. Naturally, this reaction proceeds with 

multiple enzymes involved in electron transport to eventually link the reaction to the 

quinone pool.  

Electron transfer flavoprotein-ubiquinone oxidoreductase is a membrane anchored protein 

that contains an FAD, 4Fe-4S cluster, and a ubiquinone binding site 82. This plays an important 

role in a cell or organelle, its activity includes linking fatty acid oxidation to the respiratory 

chain. Through this enzyme electrons from Etf will reduce ubiquinone to ubiquinol in two one-

electron transfer steps81 (Figure 12).  Etf:QO was cloned from Rhodobacter sphaeroides 2.4.1 

into pET-16b with an N-terminal strep II tag. Etf:QO was overproduced in E. coli and purified 

from the insoluble fraction (Supplemental Figure S3). The interaction of the protein with the 

thylakoid membranes was assessed by incubating Etf:QO with purified membranes and 

subsequent washing. After three washing steps samples were taken and analyzed by SDS 

PAGE and subsequently blotted using an anti-his antibody. Even after the washes a slight band 

of Etf:QO was visible, indicating an association with the membrane (Supplemental Figure S4. 

For a control the similar sized enzyme, citrate synthase from Synechocystis sp. PCC 6803, was 

used and after washing there was no association with the membrane fraction.  This enzyme 

was active without additional quinone (Figure 13). Purification of this enzyme was rather 

laborious and had limited yields. Higher expression was achieved with the Etf:QO from P. 

migulea and was still capable of accepting the electrons from the Etf from R. sphaeroides 

(Figure 13A, B, & C).  Replacing Mco with Mcd, its cognate electron transfer protein (Etf), as 
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well as an Etf-ubiquinone oxidoreductase (creating CETCH cycle version 7.0) further 

improved glycolate formation from CO2 and light. After addressing these issues, the CETCH 

cycle could be run with either Mco or Mcd (Figure 13D and 14B, C, & D). 

 

Figure 13. Developing a functional Mcd reaction for CETCH v7.0: Mco can 

impair the thylakoid energy module productivity through ROS and free FAD (Supp-

lementary Fig. 5a), we aimed to replace Mco in the CETCH cycle with a functional Mcd 

reaction. (A) Mcd (6.75 µM) from Rhodobacter sphaeroides (McdRs) alone does not 

catalyze the conversion of methylsuccinyl-CoA (starting with 250 µM, shown in black) 

into mesaconyl-CoA (grey). The decrease of methylsuccinyl-CoA in the reaction 

mixture is due to spontaneous CoA-thioester hydrolysis. (B) Mcd in combination with 

6.25 µM of its cognate Etf from R. sphaeroides (EtfRs) is able to form mesaconyl-CoA, 

likely due to re-oxidation of Etf in the presence of O2. (C) Addition of 6.25 µM Etf-

ubiquinone oxidoreductase from Pseudomonas migulea (EtfQOPm) increases the 

conversion of methylsuccinyl-CoA into mesaconyl-CoA by McdRs and EtfRs more than 

tenfold. (D) Replacing Mco in CETCH v6.0 with McdRs, EtfRs, and EtfQOPm (3, 8, and 1 

µM respectively) creates CETCH v7.0. Comparison of glycolate formed from CETCH 

v6.0 (Mco-based) and CETCH v7.0 (Mcd-Etf-EtfQO-based) using Ppk and Fdh as 

regeneration systems and starting with 2 mM NADP+ and 0.5 mM ADP. (D) Replacing 

Mco in CETCH v6.0 with McdRs, EtfRs, and EtfQOPm (3, 8, and 1 µM respectively) 

creates CETCH v7.0. Comparison of glycolate formed from CETCH v6.0 (Mco-based) 

and CETCH v7.0 (Mcd-Etf-EtfQO-based) using Ppk and Fdh as regeneration systems 

and starting with 2 mM NADP+ and 0.5 mM ADP.  
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Subsequently, the coupled system produced 156 µM glycolate from 120 µM acceptor molecule 

(Figure 14B, C, & D).  

 

Figure 14. Light-driven, continuous fixation of CO2 into organic acids (A) 

Scheme of CETCH version 6.0 for the conversion of CO2 into glycolate coupled to the 

thylakoid energy module. (B-C) 13C-labeling patterns and total levels of 

methylmalonyl-CoA (blue) and ethylmalonyl-CoA (orange) over time, starting the 

CETCH cycle with 80 µM propionyl-CoA. (B) CETCH cycle version 6.0 directly 

operated by 125 µg Chl mL-1 the thylakoid energy module under constant illumination 

(60 µmol photons m-2 s-1). Shown is the extracted ion peak area and the fractional 

labeling of ethylmalonyl-CoA, as well as methylmalonyl-CoA (in shades of orange and 

blue, respectively, see Supplementary Fig. 4 for explanation of the labeling pattern) (C) 

same as in (B) but in the dark, showing that light is required to operate the cycle. 

Ethylmalonyl-CoA is not produced in the dark when starting from propionyl-CoA (n.d., 

not detected). (D) Glycolate production in the light and the dark by CETCH version 

6.0. 
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 Compartmentalization through encapsulation  
Compartmentalization is a fundamental part of life, providing an “in” and an “out” allows the 

cell to maintain an out-of-equilibrium state. Droplet based microfluidics has emerged as a 

useful method for creating cell-like mimics in the lab68. Here independent monodisperse 

droplets were generated, which encapsulated both the CO2-fixing module and the 

photosynthetic membranes and could be illuminated to drive the continuous fixation of CO2 

(Figure 15). The droplet activity was triggered by using white light, switching the droplets from 

a “sleeping” state to an active state, which was monitored by NADPH fluorescence and on a 

single droplet level. In the end, the microdroplets were capable of continuously fixing CO2 for 

several hours. The microfluidic platform allowed for the high throughput generation of 

droplets and multiplexing of experiments. Perturbations of cycle components could be tested 

side-by-side and in real time. This system was developed in a stepwise fashion, which is 

outlined below.  

 

Figure 15. Photosynthetically active microdroplets. Scheme of the thylakoid 

energy system co-encapsulated with CETCH in microdroplets. Light triggers the 

thylakoid energy module activity to produce NADPH and ATP to drive carbon fixation. 

NADPH production is monitored by NADPH fluorescence (365 nm) of individual 

droplets. Populations of droplets can be distinguished from one another through the 

addition of a barcoding dye. 
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2.3.1. Development of a functional microfluidic platform  
The microfluidic platform developed was modified from Beneyton et al.19. Here, microfluidic 

chips were used to generate water-in-oil droplets, approximately 300 pL in volume 

(Supplemental Figure S5 A). The droplets would fill a chamber, where individual droplets 

could be measured and tracked overtime. The chamber was observed with a fluorescence 

microscope that had been equipped with a white LED to illuminate the droplets (Supplemental 

Figure S5 B). To scale this system up and generate many different droplet populations 

simultaneously required using multiple dropmaker devices in parallel.  This led to different 

populations of droplets in one experiment with uniform size (Supplemental Figure S5 C). 

These various droplet populations were distinguished using a coding dye (Supplemental 

Figure S5 D). The dye used was sulforhodamine B and could be excited at 550 nm. Droplet 

activity was monitored using NADPH fluorescence. NADPH was excited using a 365 nm diode 

(Supplemental Figure S5 E). Conditions for the measurement of NADPH had to be established 

that minimized bleaching and damage to the membranes. For this, a shutter was installed to 

minimize the time the chamber was excited with the 365 nm diode. For each experiment, the 

time between images was considered and adapted to minimize exposure while maximizing 

information. 

Image analysis software was developed by Mathias Girault to extract data from each droplet83. 

The location and radius of individual droplets was determined from a bright field image of the 

chamber. After which, the barcode of the droplet was determined, this could be used to sort 

the droplets by population. The NADPH level of each droplet over time is extracted from the 

NADPH fluorescence images taken throughout the experiment. This process is outlined in 

Supplemental Figure S6. 

Initially, the photosynthetic microdroplets were optimized using the energy module alone. 

This was done through encapsulating the thylakoids and reaction mixture (Figure 16 & 17). In 

initial experiments, it was clear that the thylakoids were functional within the droplets and 

when the droplets were illuminated would produce NADPH. However, during the 

manufacture of the droplets the thylakoids would settle in the reservoir solution overtime, 

leading to variances in the thylakoid composition of the microdroplets. Furthermore, the 

thylakoids would aggregate in the droplet overtime (Figure 16B). To address this, 330 mM 

sorbitol was added as an osmolyte to the reaction mixture, this prevented the thylakoids from 

settling in the syringe and aggregating in the droplets.  Increasing the sorbitol concentration 
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to 700 mM further improved the lifetime of the thylakoids in the droplets (Figure 16A). After 

this, droplets could be manufactured with consistent in compositions and droplet-to-droplet 

variation in NADPH production was largely determined by statistical fluctuations of the 

number of encapsulated thylakoid granules (Supplementary Figure S7).  

The energy module was further characterized and optimized for operation in micro-droplets. 

The effect of varying light intensities on NADP+ photoreduction was assessed. NADP+ 

photoreduction increased with higher light intensities from 50 to 200 µmol photons m-2 s-1, 

above which NADPH production rates decreased again, likely due to photodamage 

(Supplemental Figure S8). As shown in bulk experiments, the NADP+ photoreduction was 

operable and stable over light-dark cycles (Figure 18D & Supplemental Figure S9), 

demonstrating that the energy module could be switched on and off in individual droplets. 

 

 

Figure 16. Thylakoid stability in droplets. (A) Relative thylakoid activity 

([NADPH]/[NADPH]max) over time under continuous illumination (100 µmol photons 

m-2 s-1) using either 330 mM or 700 mM sorbitol in the reaction buffer. The relative 

activity is defined as the NADPH concentration normalized to its maximum value. (B) 

Droplets imaged after an overnight experiment (14-16 hours). The increasing sorbitol 

concentration prevents aggregation and improves the distribution of the thylakoids.  

 

After this initial optimization, multiplexing was used to study the activity of the droplet-

encapsulated thylakoid energy module. NADP+ photoreduction in droplets was strictly 

dependent on illumination and directly correlated to the amount of thylakoids added, 

following a correlation with chlorophyll content (Figure 17). A maximum photoreduction rate 
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of 2.0 ± 0.1 (95% confidence interval) NADPH µmol min-1 µg-1 Chl at 50 µmol photons m-2 s-1 

was observed, which was comparable to rates obtained earlier in bulk experiments.  

 

Figure 17. Encapsulation of a functional thylakoid energy module in micro-

droplets. (A) Scheme of the energy module system encapsulated in micro-droplets. 

Light triggers thylakoid activity to produce NADPH and ATP. NADPH production is 

monitored by NADPH fluorescence (365 nm) of individual droplets. Populations of 

droplets can be distinguished from one another through the addition of a barcoding 

dye. (B) Microscopic pictures of a representative 4-bit emulsion of droplets containing 

four different thylakoid concentrations. First row, left to right: barcode fluorescence, 

bright field. Second row, left to right: NADPH fluorescence at time point 0, NADPH 

fluorescence after ten minutes. A time-lapse video of the increasing NADPH 

fluorescence is available as Movie S1. (C) NADPH concentration versus time of 

micro-droplets with varying thylakoid concentrations.  

2.3.2. Coupling the energy module with individual biochemical 
reactions  
In a next step, the capability of the energy module to power individual enzymatic reactions 

inside the droplets was tested by co-encapsulation of enzymes and substrates. First, the 

enzyme Ghr that catalyzes the NADPH-dependent reduction of glyoxylate to glycolate (Figure 

18A) was tested. A 120 µg Chl mL-1 reaction mixture that also contained 8.2 µg mL-1 Ghr, 5 mM 

glyoxylate, 0.8 mM NADP+, was illuminated with 50 µmol photons m-2 s-1. After 75 minutes of 

illumination the droplets were dissolved and quenched and analyzed using HPLC-MS. In 

illuminated droplets a concentration of 4.7 mM glycolate was determined while no production 

of glycolate was detectable in the dark control indicating that the energy module was operating 

and producing NADPH only under irradiation with light. 



Results 
   

39 
 

Control over the metabolism and activity of the droplet could be achieved using an external 

trigger and by changing the internal compositions e.g. changing the concentration of 

thylakoids. However, the properties of the droplet could also be controlled by varying the 

substrate and enzyme concentrations. Modifications in internal components resulted in 

distinct dynamic NADPH equilibrium states that were reached under continuous light. 

Differences in this dynamic equilibrium could be seen between various populations of droplets 

that had different internal components (Figure 18B & C), reflecting the real-time cofactor 

production and consumption rates in the different populations of droplets. Furthermore, by 

modifying the external trigger for example using light-dark cycles could temporally regulate 

cofactor regeneration and enzyme kinetics in droplet populations (Figure 18D).  

 

Figure 18. Coupling the NADPH-dependent reduction of glyoxylate to the 

thylakoid energy module in droplets demonstrates how metabolic activity 

and energy levels can be controlled in droplets externally. By coupling the 

NADPH-dependent reduction of glyoxylate to the energy module in droplets we 

demonstrate the control that can be achieved in droplets by varying the internal 

content and externally regulating the droplet by illumination. (A) Scheme of the 

Thylakoid/Ghr coupled system in microdroplets (as found in the main text). The light 

triggers the energy module activity to produce NADPH, which is used by Ghr to 

catalyze the reduction of glyoxylate into glycolate. (B) NADPH concentration over time 
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under continuous illumination (100 µmol photons m-2 s-1) for different glyoxylate 

concentrations (0.5, 1.5 mM and 150 µg Chl mL-1). As substrate is consumed, the 

NADPH level increases. (C) NADPH concentration over time under continuous 

illumination (50 µmol photons m-2 s-1) for different concentrations of the enzyme Ghr, 

added at 0, 50, & 1000 nM with 65 µg Chl mL-1. Different dynamic equilibrium states 

can be observed; as the concentration of Ghr increases, the maximum NADPH level 

reached decreases. Both (B) and (C) show how the internal composition can be 

modified to control the activity in the droplets. (D) Thylakoid energy module (120 µg 

Chl mL-1) is coupled to Ghr (30 nM) and NADPH concentration is observed over time 

under fluctuating light conditions (50 µmol photons m-2 s-1 and dark). When the light 

is on, the thylakoid energy module produces NADPH, and in the dark the oxidation of 

NADPH catalyzed by Ghr can be observed. This is a method for synchronizing the 

activity in droplets and could be useful in future kinetic studies in droplets. An increase 

of thylakoid stability is observed in droplets containing 700 mM sorbitol (solid line) in 

contrast to droplets containing only 330 mM sorbitol (dashed line), where the 

thylakoid activity collapses after three light/dark cycles. NADPH concentration of all 

populations was corrected for the non-catalytic oxidation observed in the NADPH-only 

control.  A time-lapse video of oscillations is available as movie S2. 

The homogenous behavior of droplet populations allowed for the programming of the 

metabolism within the droplets. Modifying the contents of the droplets enabled the creation 

of “reaction compartments” with a predictable behavior. This was demonstrated by creating a 

patterned emulsion of two populations of droplets differing in thylakoid content as well as Ghr 

concentration. This binary emulsion was activated by illumination, resulting in distinct 

NADPH production rates, depending on the thylakoid concentration in the two droplet 

populations. In a subsequent dark phase, NADPH was consumed at distinct rates that were 

correlated to different Ghr loading of the two populations (Figure 19 & Supplementary video 

3), demonstrating the high level of spatial, temporal, and synchronized control over individual 

reaction compartments that can be achieved with this platform. Similar results were also 

obtained for other droplet-encapsulated enzymes that required ATP- and/or NADPH, namely 

Ccr and propionyl-CoA synthase (Pcs) (Figure 20 and 21). With Ccr a single-enzyme CO2-

fixation rate of 6.4 µmol min-1 mg-1 Chl was measured in the droplets. Without any further 

optimization, these rates were more than two orders of magnitude higher than recent reports 

of coupling photosystem II (PSII) reaction centers to pyruvate carboxylase16, comparable to 

values reached for PSII-coupled photoelectrochemical hydrogen production (notably without 

CO2 fixation84, and reaching levels measured for isolated whole chloroplasts (Supplementary 

Table 2).  
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Figure 19. Time and space control of metabolic activity in droplets. A binary emulsion 

of droplets with two different thylakoid and Ghr concentrations was created. A spatial 

pattern was created by filling the droplets into an observation chamber, with each 

population filling approximately half of the chamber. The plot shows relative NADPH 

fluorescence over time under fluctuating light conditions (dark, 50 µmol photons m-2 

s-1, dark) for both droplet populations, with the same color coding. A time-lapse video 

of NADPH fluorescence is available as movie S3.  
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Figure 20. Coupled single carboxylase reaction to the thylakoid energy 

module and controlled with an external signal. (A) Scheme of the energy 

module/Ccr-coupled system in microdroplets. Light triggers Thylakoid-dependent 

production of NADPH, which is used by crotonyl-CoA carboxylase/reductase (Ccr) to 

catalyze the reductive carboxylation of crotonyl-CoA to ethylmalonyl-CoA. (B) NADPH 

concentration over time under light (50 µmol photons m-2 s-1) and dark cycles of 

thylakoids (120 µg Chl mL-1) coupled to Ccr (42 nM) in microdroplets. Thylakoids in 

microdroplets is shown in green, Ccr coupled to thylakoid energy in microdroplets is 

shown in orange. Similar to the Ghr coupling experiment seen in Figure 18D, a 

stabilizing effect of increased sorbitol can be observed (solid lines represent droplets 

containing 700 mM sorbitol and dashed lines 330 mM). NADPH concentration of all 

populations was corrected for the non-catalytic oxidation observed in the NADPH-only 

control (0.8 mM NADPH).   
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Figure 21. Propionyl-CoA Synthase coupled to thylakoid energy module (A) 

Scheme of the energy module/Pcs-coupled system in microdroplets. Light triggers 

thylakoid activity to produce NADPH and ATP, which are used by propionyl-CoA 

synthase (Pcs) to catalyze the synthesis of propionyl-CoA from 3-hydroxypropionate. 

(B) NADPH concentration over time under fluctuating light (50 µmol photons m-2 s-1)-

dark cycles of the thylakoids (82 µg Chl mL-1) coupled to the Pcs reaction (with 100 nM 

Pcs, 5 mM CoA, 5 mM 3-hydroxypropionate, 0.8 mM NADP+, and 1.2 mM ATP or 

ADP). Thylakoid energy module in microdroplets is shown in green, Pcs coupled to the 

energy module in microdroplets is shown in orange, Pcs coupled to the energy module 

and additional ATP in micro-droplets is shown in brown. In droplets that contain 

additional ATP, more NADPH oxidation can be observed, indicating that ATP 

production (or ADP inhibition) is limiting the Pcs reaction. NADPH concentration of 

all populations was corrected for the non-catalytic oxidation observed in the NADPH-

only control (black line).   
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2.3.3. Encapsulating all components for continuous light driven CO2-
fixation 
Having created photosynthetic micro-compartments able to power single enzyme reactions, 

the next aim was ultimately the encapsulation and screening of different variants of the 

CETCH cycle inside thylakoid energy module-containing droplets to demonstrate the full 

capabilities of the platform. Through the step from single reactions to the full cycle required 

optimization, two specific cases are outlined below. 

2.3.3.1. The tale of coenzyme B12 and ascorbate 
Multiple enzymatic candidates exist for the reduction of glyoxylate. For the above 

experiments, GhrA from E. coli was used; however, this exhibits a relatively high KM for 

gloxylate85.  For this reason, other candidate enzymes were tested, including GhrB from E. coli. 

Tests with GhrB coupled to the full CETCH cycle were unsuccessful. These experiments were 

performed with different independent droplet populations in parallel containing: a control 

with NADPH and a CETCH cycle that lacked Ccr; NADP+, the thylakoids, and a CETCH cycle 

that lacked Ccr; and lastly, droplets with NADP+, thylakoids, and a functional CETCH cycle. 

From the fluorescence, NADPH oxidation was apparent in the control droplets where there 

should have been no NADPH oxidization. The problematic components were elucidated to be 

GhrB in combination with B12 and ascorbate (Figure 22). In the full CETCH experiments excess 

coenzyme B12 was added along with ascorbate. These components undergo a reaction with one 

another, where the B12 is reduced by ascorbate and will get reoxidized by oxygen forming H2O2 

86. There are two issues with this, the hydrogen peroxide can damage the B12 and it will also 

form the oxidized form of ascorbate, dehydroascorbate. Dehydroascorbate is prone to 

delactonation 87, which results in the formation of 2,3-diketoglugonic acid. The latter is similar 

in structure to a known substrate of GhrB, 2,5-Didehydro-D-gluconate85. It was likely that 

GhrB would use 2,3-diketoglugonic acid as a substrate, consuming the NADPH in the droplets 

and preventing the CETCH cycle from functioning  

Nevertheless, both the mutases, Mcm and Ecm, require coenzyme B12 and could not be 

replaced. Therefore, GhrA was used in subsequent experiments. Additionally, the mutases 

would be incubated with to coenzyme B12 for 30 minutes prior to their addition to the reaction 

mixture. These measures solved the issue of wasteful NADPH consumption.   
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Figure 22. GhrB interaction with the B12 and ascorbate mixture. Reaction 

mixtures containing various combinations of glyoxylate reductases, B12, and ascorbate. 

In the droplet population containing B12, ascorbate, and GhrB NADPH oxidation was 

dramatic and 1 mM of NADPH was consumed within 25 minutes. There was a slight 

oxidation in droplets containing GhrB and ascorbate alone.  

2.3.3.2. Promiscuous hydratases and CoA ester stability 
Manufacturing large quantities of droplets takes time and in certain experiments up to 1 hour. 

During this incubation period the “sleeping” reaction mixture would undergo changes.  

Usually, in bulk experiments propionyl-CoA would be added and the starting substrate for the 

cycle and therefore in CETCH v6.0, the first reaction taking place is propionyl-CoA 

carboxylation. This step is catalyzed by Pcc, requiring ATP and results in the formation of 

methylmalonyl-CoA. Methylmalonyl-CoA will be further transformed into succinyl-CoA by the 

mutase Mcm before reaching the first NADPH requiring reaction that is catalyzed by succinyl-

CoA reductase. As discussed in Section 2.1.2, thylakoids can produce ATP in the dark 

independent of photosynthetic electron transport via membrane bound adenylate kinases. 

Over this hour of incubation, ATP would be produced by the adenylate kinases be used by Pcc 

to carboxylate propionyl-CoA and eventually converted to succinyl-CoA. Succinyl-CoA is 

particularly vulnerable to hydrolysis and overtime the substrate pool for the CETCH cycle 

would be depleted through hydrolysis of succinyl-CoA. This would decrease the overall 

production of glycolate when the light was turned on. To address this, other starting points for 

the CETCH cycle were considered.   
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Although crotonyl-CoA was the best candidate there was an intrinsic hydratase activity 

associated with the thylakoid preparations that converted crotonyl-CoA into 3-

hydroxybutyryl-CoA (Figure 23).  This was addressed by the introduction of an additional 

enzyme, a crotonase from P. aeruginosa (PhaJ)88 to provide metabolic proof-reading89. 

Higher production of glycolate was achieved when starting at crotonyl-CoA versus propionyl-

CoA after incubation for 1 h (Figure 24). 

 

Figure 23. 3-hydroxybutyryl-CoA formation by thylakoids. (A) Incubation of 

the thylakods with 1.2 mM crotonyl-CoA in the dark leads to formation of 3-

hydroxybutyryl-CoA. 3-Hydroxybutyryl-CoA formation is light-independent and 

linear to the thylakoid concentration at a rate of 1.6 ± 0.1 µM minute-1 µg-1 Chl (Y = 

1.642X + 5.356, R2 = 0.99) The reaction mixture included 5 µM Fdx, 310 nM SOD, 1.2 

µM Cat, 1.85 µM Pcc, and 1.29 µM Ccr and various concentrations of thylakoids (2.5, 

5, 10, 15, and 30 µg Chl). (B) The same reaction conditions but under illumination (60 

µmol photons m-2 s-1) and in the presence of Ccr (1.29 µM). Thylakoid-dependent 

conversion of crotonyl-CoA (green) into 3-hydroxybutyryl-CoA (purple) is still 

significant compared to the conversion catalyzed by Ccr (orange). Shown is a reaction 

containing 10 µg Chl. 

 

 

A B

1.6 mM minute-1

µg Chl-1
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Figure 24. Optimizing preparation of microdroplets for operating the 

CETCH cycle with the thylakoid energy module. During encapsulation, the 

reaction mixture incubates for about one hour in the dark and at room temperature. 

To assess the effect of prolonged incubations of the reaction mixture before 

illumination, we measured glycolate production rates of CETCH v7.0 coupled to energy 

module in bulk with simulated conditions during encapsulation. (A) Glycolate formed 

starting from 120 µM propionyl-CoA when reactions are illuminated directly after 

mixing (teal line) or kept in dark conditions (grey line). (B) Glycolate formed when 

starting from both propionyl-CoA (blue) and crotonyl-CoA (purple) (120 and 90 µM, 

respectively) after one hour incubation in the dark. Samples were taken at 0, 5, 15, 30, 

60, 90, and 120 minutes after illumination (60 µmol photons m-2 s-1) or at 0, 60, and 

120 minutes after the initial 1-hour incubation for samples that remained in the dark. 

These results from a representative experiment suggest that, with prolonged 

incubation times, starting from crotonyl-CoA leads to higher production rates 

compared to starting from propionyl-CoA. This might be explained by adenylate kinase 

activity producing ATP in the dark, which allows propionyl-CoA carboxylase (Pcc) to 

carboxylate propionyl-CoA to methylmalonyl-CoA, which is subsequently converted 

into succinyl-CoA. Succinyl-CoA is prone to spontaneous hydrolysis, likely lowering 

overall productivity of the system. As a result, we used crotonyl-CoA, and not 

propionyl-CoA as described by Schwander et al.38, to prepare CETCH- and energy 

module-containing microdroplets, mimicking the chloroplast. 

After these additional optimization steps of the droplet operating conditions, the co-

encapsulation of both the CETCH cycle and the energy module achieved continuous fixation 

of CO2.  Different CETCH cycle versions were encapsulated together with the energy module 

and the dynamic equilibrium of NADPH was monitored (Figure 25). This allowed for a direct 

quantification of the behavior of different CETCH variants in hundreds of micro-

A B
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compartments side-by-side and in real time, which would not have been possible in bulk 

experiments (Figure 25A, 25B, 26B, & 26C). Droplets with CETCH based on Mcd (version 7.0) 

maintained energy module activity longer than droplets containing CETCH based on Mco 

(version 6.0) (Figure 25). Supply of an additional ATP regeneration module (Ppk and 

polyphosphate) did not increase activity further (Figure 26B & 25C), suggesting that cofactor 

regeneration was not limiting productivity of the integrated photosynthetic system, but rather 

the concentration, and/or interplay of the individual components within the system, such as 

the stability of CoA-thioester intermediates (Figure 24). Without further optimization, this 

integrated system was able to produce 47 ± 5 µM glycolate from CO2 over 90 minutes in 

droplets (Figure 26D). Thus, while overall productivity of the highly complex system was 

lowered compared to Ccr alone, it still outperformed other efforts using only single enzymes16.  

For the full CETCH cycle, a light to carbon conversion efficiency of about 3.5% within the 

micro-compartments could be calculated (NADPH consumption rate of CO2 reduction divided 

by the measured maximum rate of NADP+ photoreduction achieved in droplets). Overall these 

results demonstrated that it is possible to interface natural and synthetic biological modules 

in thousands of cell-sized compartments to create new-to-nature photosynthetic entities that 

have the potential to outcompete natural photosynthesis (i.e. because of a more efficient CO2-

fixation metabolism that does not suffer from photorespiration). 

Using microfluidics to combine the natural photosynthetic machinery with a synthetic CO2-

fixation pathway, we created a light-driven micro-compartment that in essence mimics a 

chloroplast. Functional coupling of a synthetic pathway, such as the CETCH cycle, to the native 

photosynthetic machinery to create a new-to-nature photosynthetic process provided an 

experimental and technical challenge. 
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Figure 25. Dynamic equilibrium monitoring of various versions of the 

CETCH cycle powered by the thylakoid based energy module. (A) Different 

versions of CETCH v6.0 coupled to thylakoids (70 µg Chl mL-1) in microdroplets. 

Droplets containing a functional thylakoid based energy module, 1 mM NADP+ and a 

functional CETCH v6.0 (with Mco, green line), as well as control droplets containing 

the energy module, 1 mM NADP+ and all enzymes of CETCH v6.0 except Ccr (red line), 

droplets containing the energy module, 1 mM NADP+, all enzymes of CETCH v6.0 

except Ccr and no ferredoxin (grey line), as well as control droplets containing 1 mM 

NADPH. The dynamic equilibrium level of NADPH (indicating thylakoid energy 

module activity) decreases after 100 minutes in droplets containing a functional 

CETCH v6.0 cycle. (B) Comparison of CETCH v6.0 (with Mco, green line) as shown in 

(A) and CETCH v7.0 (with Mcd, yellow line). Droplets with CETCH v7.0 maintain the 

dynamic equilibrium level of NADPH longer than droplets with CETCH v6.0, which is 

likely due to the use of Mcd instead of Mco. 
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Figure 26. Light-driven, continuous fixation of CO2 into organic acids by 

CETCH version 7.0 coupled to the thylakoid energy module in micro-

droplets. (A) Scheme of the CETCH version 7.0 coupled to the thylakoid energy 

module operating inside micro-droplets. (B) Dynamic equilibrium states of NADPH 

fluorescence of four populations of droplets: Droplets containing the thylakoid energy 

module (60 µg Chl mL-1), 1 mM NADP+ and CETCH version 7.0 (teal line), droplets 

containing the thylakoid energy module, 1 mM NADP+ and an additional ATP 

regeneration system (Ppk and polyphosphate, coral line), as well as control droplets 

containing 1 mM NADPH and all CETCH version 7.0 components except for Ccr (black 

line), and control droplets containing the thylakoid energy module, 1 mM NADP+ and 

all CETCH version 7.0 components except for Ccr (green line). (C) Images of the 

droplets from (B) using the same color coding; first row, left to the right: bright field, 

thylakoid fluorescence with overlap from the coding dye, coding dye; second row, left 

to the right: NADPH fluorescence before illumination, after 15 minutes, and after 30 
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minutes illumination (scale bar corresponds to 100 µM). A time-lapse video is available 

as movie S4. (D) Glycolate formed per acceptor molecule (sum of crotonyl-CoA and 

3-hydroxybutyryl-CoA) over time in droplets and in bulk solution. The light and dark 

curves represent droplets maintained in the light and in the dark. The bulk curve shows 

an experiment with the same reaction mixture but on the micro-tube scale, kept in the 

dark for the duration of droplet manufacture. The bulk solution and the droplets were 

simultaneously exposed to light for parallel comparison.  
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3. Discussion and general outlook 

 Design and realization of CO2 fixing microdroplets 
This work outlines the creation of microdroplets with a controllable metabolism, in which light 

drives the generation of NADPH and ATP that are used to energize the continuous fixation of 

CO2 via the synthetic CETCH cycle. Here parts of living cells and synthetic modules were 

combined within independent and monodisperse metabolically active droplets that are 

capable of synthetic photosynthesis. These cell sized droplets house a functional light- driven 

metabolism, which appears to be the most miniaturized realization of such complex reactions 

in artificial compartments that lie within the size range of normal plant cells (10-100 µm)90.  

To create the functional metabolism within these droplets, first, a light-driven energy module 

had to be established and optimized. The basis for the light driven energy module was 

thylakoid membranes extracted from the chloroplasts of spinach. After determining the 

optimum concentrations of reaction components, the membranes were capable of using water 

as an electron donor to generate molecular oxygen, NADPH, and ATP in the light, 

demonstrating that the membranes were intact and functional. A functional energy module 

required osmolytes, antioxidative components, cofactors, and soluble electron carriers to be 

added. Using low light intensities were found to prolong thylakoid activity while 

simultaneously producing sufficient amounts of NADPH and ATP to power a complex set of 

biochemical reactions at high enough rates.  

Secondly, the energy module needed to be successfully coupled to a synthetic CO2 fixation 

pathway comprising 17 individual enzymes. This entailed modifying the previously described 

version of the CETCH cycle (v5.4)38, exchanging and adding several enzymes and also 

replacing the output module. Initially, the energy module was used to power two individual 

carboxylation reactions, catalyzed by Pcc and Ccr, which use ATP and NADPH, respectively.  

Subsequently, this was expanded t0 the entire non-natural CO2-fixing CETCH cycle, which 

required optimization to operate alongside the thylakoid membrane energy module. 

Optimizing operation conditions required modifying buffer and enzyme components as well 

as improving certain enzyme preparation methods. Eventually, the entire 17 enzyme 

comprising CETCH cycle could be powered by light allowing the continuous conversion of CO2 

into glycolate.  
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Lastly, a platform for the miniaturization, automation, and encapsulation was developed to 

create hundreds to thousands of photosynthetic reaction compartments. Each of these 

droplets could be individually controlled in their activity and when active, could maintain a 

non-equilibrium state for several hours. Compartmentalization of these modules into cell-

sized droplets was achieved using microfluidics. The platform was developed such that both 

the CETCH cycle and the energy regeneration system could operate synchronously within 

water-in-oil droplets independent from the environment. Here, thousands of droplets were 

created that had individual characteristics and could be controlled and monitored in parallel. 

The droplet activity was triggered using light, switching it from a “sleeping” state to an active 

one. Testing individual reactions, i.e. Ghr, Pcs, and Ccr, within the droplets demonstrated that 

the properties of the droplets could not only be controlled by external signal but also by 

altering their internal composition. By specific loading of the contents of the “reaction 

compartment” and using light, the droplets could be programmed and activated in a 

predictable fashion and used to study both the thylakoid and enzyme activity. This and the 

high throughput capability of the platform was used to test cycle variants for the improvement 

of the cycle. Under continuous light the droplets reached a steady state, a dynamic equilibrium 

that was used to compare different operating conditions side by side. In the end, the droplets 

were capable of the continuous fixation of CO2 by two new versions of the CETCH cycle (v6.0 

and ultimately v7.0) using light as the sole source of energy. 

 Comparison to other complex systems 
These efforts are notably different from recent and similar work to recapitulate complex 

metabolisms in droplets or other cell-free systems for energy regeneration. In these recent 

examples either PSII or bacteriorhodopsin were commonly used in combination with ATPase 

to drive ATP synthesis15,16,91. In particular Lee et al. designed a system where ATP generation 

could be turned on and off using light. In Lee et al.  both PSII and proteorhodopsin were 

embedded in liposomes together with an ATPase. Red light was used to build a PMF across 

the liposome membrane to generate ATP. Proteorhodopsin is a green-light activated 

bidirectional proton pump that is dependent on pH. Therefore, contingent on the pH of the 

system and the PMF built, green light could be used to actually pump protons out of the 

liposome and deplete the PMF, halting the production of ATP. This small photosynthetic 

liposome was put inside a giant unilamellar liposome where the controllable ATP production 

was linked actin polymerization and depolymerization. When the actin filament was growing 
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it physically pushed against the artificial membrane, resulting in morphological changes. 

Thus, energy generation was employed to control an artificial cytoskeleton, which could 

potentially be used to facilitate a controlled merging of different types of reconstituted 

liposomes as well as for the development of division and replication in artificial systems in the 

future.    

Water served as the electron donor for PSII however, PSII also requires an electron acceptor 

and for this Lee et al. employed the artificial electron acceptor, phenyl-p-benzoquinone. If 

PSII no longer has electron acceptors available, its activity would come to a halt therefore, 

phenyl-p-benzoquinone would actually limit the entire system. Adapting these liposomes for 

continuous ATP generation would require the incorporation an artificial Q-cycle, allowing the 

reduced phenyl-p-benzoquinone to be re-oxidized within the system, for the efficient 

regeneration of the electron acceptor.  

Lee et al. also powered the carbon fixation reaction converting pyruvate to oxaloacetate 

catalyzed by pyruvate carboxylase. When comparing the CO2-fixation and ATP production 

from Lee et al., to the rates achieved in the photosynthetic micro droplets in this thesis were 

100 and even 1000 times higher (Supplemental table 1 & 2). Additional comparisons to other 

synthetic methods and rates measured for natural systems are also shown in Supplemental 

table 1 & 2. Overall, this work achieved similar ATP and NADPH production rates for isolated 

thylakoid membranes as were described in literature but somewhat lower rates compared to 

intact chloroplasts. In general, the productivity of isolated membranes is usually higher than 

with reconstituted systems. Using a combination of PSII and PSI generates both NADPH and 

ATP. The concomitant consumption of NADPH by CETCH enzymes should constantly re-

supply electron acceptors for PSII, allowing for the continuous generation of ATP and NADPH 

via the photosynthetic electron transport chain. Furthermore, the generation of ATP and 

NADPH allows for more complex sets of reactions to take place inside the compartments. 

Moreover, reduced ferredoxin is also provided which could be partially diverted to enzymatic 

reactions that require lower redox potential electron donors. Overall, using the entire 

photosynthetic electron transport chain provide the means to power diverse biosynthetic 

reactions or reaction cascades. 

In a similar microfluidic platform, Beneyton et al. used inverted membrane vesicles (IMVs) 

derived from E. coli, which housed NADH oxidase to regenerate NAD+ required for a minimal 
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metabolism that converted glucose-6-phosphate into phosphogluconolactone19. The droplets 

were capable of maintaining an out-of-equilibrium state as long as there was glucose-6-

phosphate available to be consumed. After the substrate ran out the droplets would return to 

a “sleeping” state that could be restarted when additional substrate was picoinjected into the 

droplets. Naturally, the NADH that was oxidized would be used by the membranes to generate 

a PMF and finally drive ATP synthesis. It would be interesting to use the natural ability for the 

IMVs to generate ATP and use it to expand the minimal metabolism with an ATP dependent 

reaction like protein biosynthesis92. The system presented by Beneyton et al. had several 

differences in comparison to the system described in this work, which uses light derived 

NADPH and ATP to drive a much more complex metabolism. In the study presented here the 

trigger to start the metabolism came from light and did not require any additional 

picoinjection. In theory, using light one could achieve an almost perpetual regeneration of 

NADPH and ATP that can be used to run synthetic CO2 fixation in a droplet. Furthermore, by 

using an anabolic biosynthetic cycle the minimal metabolism was not limited by a substrate. 

The combination of these membrane systems could achieve interesting results and provide the 

means to generate NADH alongside NADPH.  

 Further optimization 
To truly take advantage of a limitless supply of energy, such as light, the system harvesting 

that energy must be stable over long periods. The chloroplast mimic described here, showed 

evidence of damage and would lose activity overtime. Damage to both the photosynthetic 

apparatus and to some of the CETCH enzymes did occur. Detailed characterization of the 

membranes could elucidate weak points in the energy module and promote additional 

improvements. Using photosynthetic fluorescence and quantum yield measurements, the PSI 

and PSII activity could be studied and used to further optimize their operation conditions. 

Likewise, finding membranes that have a more stable and robust photosynthetic apparatus 

could increase the time that membranes are active. Specifically, purifying thylakoids from 

organisms like thermophilic Synechococcus strains or Chlorella ohadii, which have been 

shown to survive in extreme conditions like high-light93,94, could be a promising approach. 

Another strategy would be to immobilize the thylakoid membranes in a physical scaffold like 

a silica gel, since several such methods have demonstrated their utility in preserving purified 

thylakoid activity. Changing the buffer conditions could also improve activity; compounds like 

glycine betaine have been shown to provide a protective benefit to the membranes. The 
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ultimate solution would be to implement repair mechanisms for the photosynthetic apparatus 

itself. Such efforts would serve a dual purpose, increasing the lifetime of the membranes and 

simultaneously escalating the overall life-like complexity. 

Additionally, oxidative stress still seems to have deleterious effects, when comparing the 

dynamic equilibrium of droplets that contain CETCH v6.0 and CETCH v7.0, which differ only 

in the enzymes that catalyze the oxidation of methylsuccinyl-CoA. Droplets containing CETCH 

6.0 that utilized Mco appeared to lose activity faster than those that used the Mcd/Etf/Etf:QO 

system. Adding in more antioxidative enzymes could further mitigate the damage from ROS 

and improve all-over activity. One such enzyme could be a soluble ascorbate peroxidase. 

Another option could be to add glutathione and a glutathione regeneration system. 

Furthermore, the addition of IMVs from R. sphaeroides engineered to over-express their 

native Etf:QO could decrease ROS by providing an effective route for electron transport from 

methylsuccinyl-CoA to the quinone pool. Moreover, the IMVs from R. sphaeroides also 

possess photosynthetic activity that could be used to produce additional ATP.  

 Potential applications  
The efforts described in this work have led to the successful creation of a platform that can be 

used to reconstruct, control, and study complex reaction networks in a cell-like environment. 

This has far-reaching applications in bottom-up and top-down synthetic biology. On the one 

hand, the microfluidics platform has the potential to aid and lead metabolic engineering 

efforts by prototyping and optimizing metabolic reaction cascades prior to their 

transplantation in vivo. Being able to test and optimize the behavior of complex pathways and 

their interplay with native cell extracts could help to overcome the limitations of common 

practice in metabolic engineering and synthetic biology that still rely on the laborious 

construction and analysis of individual strains95. The ideal stoichiometry of enzymes can easily 

be determined to fine-tune expression levels for in vivo implementation. Furthermore, the 

enzyme functionality is tested in conditions that more closely resemble the cell or organelle 

environment. For example, the B12 dependent mutases are functional in a buffer that contains 

10 mM ascorbate, which would be representative of a chloroplast stroma, indicating that if the 

enzymes were intact in the chloroplast they could be active despite the negative interaction of 

B12 and ascorbate. Current technical developments, especially of combinatorial screening 

methods96 and bar-coding techniques to encode reaction conditions in microfluidics-based 
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high-throughput screenings97 will further enhance multiplexing capabilities and guide efforts 

for implementing the CETCH cycle and other new-to-nature pathways into living cells.  

Furthermore, equipping the droplets with light activated energy supply also provides the 

means of control. These microreactors are activated with an external trigger and thousands of 

droplets can be synchronized, potentially simplifying the microfluidic techniques that are 

needed for a particular experiment. For example, if one were analyzing enzyme kinetics this 

circumvents the need for picoinjection of substrates or cofactors to initiate the reaction. Here, 

all that is needed is light to initiate metabolic activity in the droplets. 

This platform also represents an effort in cell-free or in vitro metabolic engineering for the 

production of biochemicals. This strategy provides an advantage over traditional metabolic 

engineering because it can overcome a number of restraints that are imposed by living cells. 

In such in vitro systems, higher product titers can be achieved, because energy resources that 

would normally go to cell maintenance (growth, replication, etc.) can be diverted to product 

synthesis. Additionally, the in vitro platform can be used to reach product concentrations that 

would potentially be toxic to the living cell. Moreover, with these systems, a diverse set of 

feedstocks can be used that would otherwise require additional processing or specialized 

transporters to enter the cell. Without these limitations, the potential metabolic reaction space 

can be expanded to pathways that would normally not be possible in the cellular environment. 

Limited efforts in this field have sought to use CO2 as a feedstock98,99. While much of the 

research has focused on using classical feedstocks, such as glucose, in vitro metabolic 

engineering has not been exploited for the utilization of inorganic carbon as raw material until 

recently. In this respect, the encapsulated CETCH cycle provides glycolate as a starting 

molecule for downstream applications, which can easily be converted into intermediates of the 

central carbon metabolism, potentially feeding into diverse biosynthetic routes 100. 

 From droplets to minimal cells 
These efforts exemplify how natural and synthetic biological modules can be mixed and 

matched to create highly integrated systems from the bottom-up, showing life-like functions. 

Specifically, these efforts recapitulate three of the pillars of life: energy, metabolism, and 

compartmentalization. This ‘synthetic chloroplast’ possesses the essential characteristics of 

photosynthesis that allows it to create biological building blocks from inorganic carbon, 

providing the basis to develop a self-sustained, completely synthetic ‘designer’ metabolism in 
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this artificial organelle. The glycolate that is produced in these droplets can be used as a 

substrate for additional downstream reactions or pathways and serve as the basis of 

metabolism. Expansion of this rudimentary metabolism with other metabolic modules could 

be used to form a variety of different molecules necessary to sustain the various processes in a 

cell (e.g. amino acid biosynthesis).  

The life-like complexity can be increased by the future implementation of other life 

characteristics, such as self-repair, reproduction, as well as information processing and 

regulatory circuits. This will further contribute to the realization of synthetic organelles and 

cells that approach a grade of organization and integration similar to their natural 

counterparts. By adding transcription and translation the artificial cell would be provided with 

an executable program. Furthermore, these already established pillars can be improved, for 

example through repair mechanisms, expanding the metabolic module to produce other 

building blocks like amino acids, and the method of compartmentalization could be changed 

to allow for the barrier to be a more life-like semi-permeable lipid bilayer.  Examples of these 

systems have been demonstrated in vitro or in other artificial cells. More specifically, examples 

of compartmentalization105, quorum sensing101,102, information processing through DNA or  

RNA, advanced transcription-translation (TX-TL) circuits103-108, cytoskeleton mimics109, cell 

division110, or complex in vitro metabolic networks 38,111-114 have been developed. Combining 

all of these life-like systems could model the sophistication of a cell within a simplified system 

created of minimal parts. This would be an astonishing achievement while simultaneously 

providing a new tool for scientists to address what are the fundamental principles required for 

life.   

In the future, different sizes of microdroplets could be patterned and tested, including 

patterning the droplets in layers to test self-shading, or in a pattern that resembles a leaf.  The 

implementation of droplet-to-droplet communication could allow for further division of labor 

and compartmentalization of different metabolic pathways alongside each other in an 

organized fashion. Further expanding and increasing the life-like complexity in a bottom-up 

fashion.  

 Outlook and closing remarks  
The successful creation of an artificial cell would demonstrate an unprecedented 

understanding of life. Feynman wrote, “[w]hat I cannot create, I do not understand.” Despite 
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having an understanding of the core principles required for life, scientists have yet to reverse 

engineer life in the lab. However, there is a strong foundation of knowledge and tools already 

available to be used to build life-like structures. Using these tools, this work created a 

structural and functional mimic of a chloroplast, which is a stepping stone in these efforts. The 

process of (re)-building life will provide new insights and a better understanding of life’s 

guiding principles. (Re)-building living systems will demonstrate whether or not we truly 

understand life’s mechanisms.  

Overall, the system described in this work is a bridge between in vitro development to in vivo 

implementation, serving as a model for sophisticated cells using minimal parts. At this 

interface invaluable knowledge can be garnered from complex metabolic pathways that can be 

used for the eventual implementation of these pathways in vivo or be used to continue to build 

cell mimics from the bottom up. 

Pressing and difficult challenges exist for civilization, scientists, and policy makers and we 

must act collectively to create an effective stratagem to tackle them. With an ever increasing 

population, meeting the energy and food demands as well as mitigating climate change 

become more and more imperative. Estimates for food demand will exceed the current 

capacity of agriculture by 2050115,116. Human activity continues to impact the global CO2 

level117.  However, synthetic biology and bottom up biotechnology can be a significant 

contributor in the search for solutions to these critical issues.  One can take inspiration from 

one of biology’s most elegant innovations, that of photosynthesis and see CO2 as a feedstock 

for the production of valuable commodities. High value and high energy compounds that are 

produced from CO2 can create a carbon neutral future. The combination of sustainable energy 

generation and novel biological solutions make this idea feasible. The chemical conversion of 

CO2 into organic compounds often requires harsh conditions like high temperature or high 

pressure118. In contrast, enzymes can operate at standard temperatures and pressures and 

produce molecules of interest with high specificity.  This work as well as that of many others 

represent novel solutions for the enzymatic conversion of CO2. The described platform can be 

used to directly produce high value products or be used to optimize pathways for the fixation 

of CO2 in vivo or in vitro.  

The platform created here can be used to streamline the testing and evaluation of these novel 

biotechnological solutions. Here the utility of the platform was demonstrated by powering a 
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synthetic CO2 fixing pathway and that it could be used for side by side comparison of droplets 

containing varying perturbations of the CETCH cycle. This can be expanded to more variations 

and even new cycles like HOPAC and CHYME, which can speed the creation of robust CO2 

fixing cycles38.  

By creating a robust photosynthetic energy source, the active membranes’ ability to convert 

light energy into chemical energy could provide an almost limitless supply of chemical power 

to drive these reactions. This would require that the membranes were stabilized further to 

increase their lifetime. An alternative solution would be to link these pathways directly to 

photovoltaic systems to drive these reactions.  

Overall, we have tools that empower us to solve the most pressing issues of the world today. It 

is our job to use this knowledge and these tools to create novel, innovative, and transformative 

solutions. Harnessing the sun to capture carbon dioxide can be part of a solution to a 

sustainable future. Because after all, “life and civilization will continue as long as the sun 

shines119!” 
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4. Materials and methods  

 Materials 
Chemicals were purchased from Sigma-Aldrich (Munich, Germany) and CARL ROTH GmbH 

(Karlsruhe, Germany). Sulforhodamine B and 1H, 1H, 2H, 2H-perfluoro-1-octanol were 

purchased from Sigma. Na13CO3H was obtained from Cambridge Isotope Laboratories Inc. 

(Tewksbury, USA) and 3-hydroxypropionate was bought from TCI Deutschland GmbH 

(Eschborn, Germany). Fluoro-silane (Aquapel) was purchased from Aquapel Glass Treatment 

(Pittsburgh Glass Works LLC Pittburgh, PA, USA). Coenzyme A was purchased from Roche 

Diagnostics. Biochemicals and materials for cloning and expression were obtained from 

Thermo Fisher Scientific (St. Leon-Rot, Germany), New England Biolabs GmbH (Frankfurt am 

Main, Germany), and Macherey-Nagel GmbH (Düren, Germany). Carbonic anhydrase was 

bought from MP Biomedicals (Illkirch, France). Primers were obtained from Eurofins MWG 

GmbH (Ebersberg, Germany). Synthesized genes were obtained from Eurofins MWG GmbH 

(Ebersberg, Germany) or BaseClear B.V. (Leiden, Netherlands). Materials and equipment for 

protein purification were obtained from GE Healthcare (Freiburg, Germany), Bio-Rad 

(Munich, Germany) or Merck Millipore GmbH (Schwalbach, Germany). 

 CoA-Thioester synthesis 
Crotonyl-CoA and propionyl-CoA were synthesized from their respective anhydrides according 

to D. Peter et al.120. (S)-methylsuccinyl-CoA and mesaconyl-CoA were synthesized via the 

mixed anhydride method starting from the free acids and obtaining a racemic mixture of 2-

(S)-methyl and 3-(S)-methyl-thioester. Ethylmalonyl-CoA and methylmalonyl-CoA were 

enzymatically produced with either crotonyl-CoA carboxylase or propionyl-CoA carboxylase 

starting from crotonyl-CoA or propionyl-CoA according to Schwander et al. and Peter et al. 38, 

120. All CoA-thioesters were purified using a HPLC (1260 Infinity, Agilent Technologies GmbH) 

with a Gemini® 10µm NX-C18 110 Å Column (Phenomenex, Aschaffenburg, Germany) as 

described previously38,120. The concentration of CoA-esters was quantified by determining the 

absorption at 260 nm (ε = 22.4 mM-1 cm-1 for unsaturated and ε = 16.4 mM-1 cm-1 for saturated 

CoA-thioesters).  
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 Cloning and mutagenesis 
Chlamydomonas reinhardtii ferredoxin, spinach ferredoxins, and spinach ferredoxin:NADP+ 

oxidoreductase (FNR) lacking the transit peptides were codon optimized for enzyme 

production in E. coli by Eurofins Genomics Germany GmbH (Ebersberg, Germany). They were 

cloned into pET-16b, pET-28b, or pASK-IBA7 with the addition of an N-terminal Strep-tag. A 

C. reinhardtii FNR expression plasmid was provided by Dr. Winkler and described in Rumpel 

et al.121. The Rhodobacter sphaeroides 2.4.1 electron transport flavoprotein-ubiquinone 

oxidoreductase was cloned from genomic DNA (using the forward 5’-TAT ACA TAT GAC CGA 

GCA GAC TCC C and reverse 5’-TAT AGG TCT CGG ATC CTC ACA TGT TGG GAT AGT TCG 

primers) into pET16b vector containing a Strep-tag using NdeI and BamHI. The PCR product 

was cut with BsaI and NdeI to avoid the naturally occurring internal BamHI sites. The 

Pseudomonas migulae electron transport flavoprotein-ubiquinone oxidoreductase was codon 

optimized and synthesized by BaseClear B.V. (Leiden, Netherlands).   

 General protein production and purification  

4.4.1. General heterologous production and purification of enzymes 
Enzymes were produced in Escherichia coli strains BL21(DE3), BL21(DE3) AI, Rosetta 2 (DE3) 

pLysS, C41(DE3) pLysS pRKisc, and BL21(DE3) ΔiscR. Cells were grown in terrific broth at 37 

°C using the appropriate antibiotic for selection (100 µg/ml ampicillin, 50 µg/ml kanamycin, 

34 µg/ml chloramphenicol, 20 µg/ml Streptomycin, 10 µg/ml tetracycline, and 50 µg/ml 

spectinomycin). Unless otherwise noted, when an OD600 = 0.7-1.0 was reached the culture was 

cooled to 23°C and induced by the addition of 500 μM IPTG (Isopropyl-D-β-

thiogalactopyranoside) or 200 μg/L anhydrotetracycline. When using E. coli BL21(DE3) AI as 

an expression host 0.02 % (w/v) L-arabinose was additionally added. After 14-18 hours the 

cells were harvested for 12 min at 6,600 × g at 4 °C. Unless immediately purified, cell pellets 

were frozen and stored at -20° or -80° C. Unless otherwise specified, His-tagged enzymes were 

purified by resuspending the cell pellet 1:2 (w/v) ratio in Buffer L (50 mM HEPES pH 8.0 or 

20 mM Tris-HCl pH 8.1, 500 mM NaCl, 5 mM MgCl2, 10% glycerol, and DNAse) and lysed by 

ultrasonication. The lysate was clarified by ultracentrifugation (1 hour at 100,000 × g) and the 

resulting supernatant was filtered through a 0.45 or 0.2 µm filter. Lysate was loaded onto a 

HisTrap FF (GE Healthcare, Freiburg, Germany) and unspecifically bound protein was 

removed with a buffer containing: 50 mM HEPES-KOH pH 8.0 or 20 mM Tris-HCl pH 8.1, 

500 mM NaCl, and 75 mM imidazole. The protein was eluted in 50 mM HEPES-KOH pH 8.0 
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or 20 mM Tris-HCl pH 8.1, 500 mM NaCl, and 500 mM imidazole. The eluted protein was 

either desalted in a buffer containing: 50 mM HEPES-KOH pH 8.0 or 20 mM Tris-HCl pH 8.1, 

and 150 mM NaCl with a HiTrap 5 ml Desalting (GE Healthcare, Freiburg, Germany) column 

or by gel filtration using a HiLoad 16/600 Superdex 200 pg (GE Healthcare, Freiburg, 

Germany) size exclusion column equilibrated with a buffer containing: 50 mM HEPES-KOH 

pH 8.0 or 20 mM Tris-HCl pH 8.1, and 200 mM NaCl. Elution fractions were concentrated 

with Amicon Ultra-4 centrifugal filters (Merck Millipore, Darmstadt, Germany). Purified 

proteins were stored in 30-50% Glycerol at -20°C or -80°C and the concentration was 

determined on a Nanodrop 2000 (Thermo Scientific, St. Leon-Rot, Germany) from extinction 

coefficients calculated on ProtParam, unless otherwise specified. 

Recombinant production and purification of 4-hydroxybutyryl-CoA dehydratase (Nmar0207), 

4-hydroxybutyryl-CoA synthetase (Nmar0206), and 2-(S)-methylsuccinyl-CoA oxidase (Mco) 

was purified as described in Schwander et al38. However, the resulting protein solution was 

flash frozen and stored at -80°C. This increased the stability of some of the enzymes from days 

or weeks to months 38. Codon optimized propionyl-CoA synthase (Pcs) was produced and 

purified according to Bernhardsgrütter et al. 122.  

4.4.2. Recombinant protein production and purification of Chlamydomonas 
and Spinach ferredoxins 

Ferredoxins were produced in C41(DE3) pLysS pRKisc, or BL21(DE3) ΔiscR cultures were 

grown to an OD600 of 0.7-0.9 and cooled to 23 °C and induced by the addition of 500 μM IPTG 

and ammonium ferric citrate was added (260 mg per liter of growth media). Cells were 

harvested after 14-18 h as described above. Cell pellets were resuspended in a lysis buffer (50 

mM HEPES-KOH pH 7.8, 150 mM NaCl, 2 mM DTT, and 10% glycerol) at 2 mL per gram of 

pellet. The cells were lysed and clarified as above. The supernatant was loaded onto a StrepTrap 

HP (GE Healthcare, Freiburg, Germany) equilibrated with the lysis buffer or a buffer without 

the glycerol. The unbound protein was washed with the same buffer. Elution was carried out 

in the same buffer with the addition of 2.5 mM desthiobiotin. The resulting protein was 

concentrated as described above, but quantified using the following extinction coefficients: 

Chlamydomonas ferredoxin, 8.38 mM cm-1 at 420 nm 75; Spinacia oleracea ferredoxin, 9.68 

mM cm-1 at 420 nm 123. 
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4.4.3 Recombinant protein production and purification of Chlamydomonas and 
Spinach Ferredoxin NADP+ reductase (FNR) 
Strep-tagged FNR from both S. oleracea and C. reinhardtii were produced in BL21(DE3) as 

described above. Cells were lysed in a buffer containing 50 mM HEPES-KOH pH 7.8, 150 mM 

NaCl, and 10% glycerol. Lysis and clarification were performed as above and loaded onto a 

StrepTrap HP (GE Healthcare, Freiburg, Germany). It was washed with a buffer containing 

50mM HEPES-KOH pH 7.8 and 150 mM NaCl and eluted in a buffer containing 2.5-5 mM 

desthiobiotin. The protein was concentrated in an Amicon and 40% glycerol was added as a 

cryoprotectant prior to freezing. The concentration for both C. reinhardtii and Spinach FNR 

were determined using the extinction coefficient, 10.74 mM cm-1 at 456 nm 124. 

 

4.4.4 Electron transport flavoprotein-oxidoreductase (ETF:QO) protein 
production and purification 
ETF:QO enzymes were produced in BL21(DE3) or C41(DE3) harboring both the pLysS, and 

the pRKisc plasmid for iron-sulfur cluster formation125. Cells were grown, induced, and 

harvested according to the basic protocol above. The enzyme was purified based on a modified 

method from Usselman et al.126. Cell pellets were resuspended in 1:3 ratio (w/v) in buffer A (50 

mM Tris-HCl pH 7.6, 500 mM NaCl, and 0.1 mM DTT), prior to lysis and 10 µg/mL DNAseI 

was added. Cells were lysed by French press or ultrasonication and the insoluble fractions were 

harvested by ultracentrifugation for 1 hour at 100,000 × g. The supernatant was removed and 

the resulting pellet was washed in buffer A and centrifuged again. A rough protein 

concentration of the pellet was determined with the Pierce™ Rapid Gold BCA Protein assay kit 

(Thermo Scientific). The pellet was resuspended in buffer A to approximately 20 mg 

protein/mL. The pellet was solubilized by adding dodecyl-β-D-maltoside at a ratio of 2.5:1 

(w/w) of protein to dodecyl-β-D-maltoside and shaking for 90 minutes at 8°C. The solution 

was centrifuged for a third time for 1 hour at 100,000 × g and the resulting supernatant was 

diluted 10-fold in buffer A, filtered with a 0.45 µm syringe filter, and loaded onto a StrepTrap 

HP or HisTrap FF (rsETF:QO and pmETF:QO, respectively). The washing and elution of the 

enzymes was done according to the protocols above for His and Strep-tagged proteins. 

 Chloroplast isolation  
Chloroplasts were isolated from young spinach purchased from the local market or grocery 

store using a modified method from33, 74. Spinach leaves were stored in the dark at 4-8 °C until 

use. The leaves were washed and the large stems were removed and buffer was added at a ratio 
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of 1 g plant material to 1 mL cold buffer (330 mM sorbitol, 50 mM HEPES-KOH pH 7.6, 5 mM 

MgCl2, 0.1% (w/v) bovine serum albumin) and blended using a standard kitchen immersion 

blender. The resulting solution was pressed through a piece of fine mesh cotton fabric and the 

filtrate was centrifuged for 10 min at 3000 × g. The pellet was gently resuspended in buffer 

(300 mM sorbitol, 50 mM HEPES-KOH pH 7.6, 5 mM MgCl2, 2 mM EDTA, and 10 mM sodium 

L-ascorbate,), using a fine paint brush to remove any clumps. This was overlaid on an 80/40% 

percoll gradient (80%: 80% v/v percoll, 10 mM sodium L-ascorbate, 300 mM sucrose, 66 mM 

MOPS-KOH pH 7.6 and 40%: 40% v/v percoll, 10 mM sodium L-ascorbate, 300 mM sucrose, 

25 mM MOPS-KOH pH 7.6). The fractions containing thylakoids and intact chloroplasts were 

pooled and diluted in buffer and centrifuged for 10 min at 3000 × g. The pellet was 

resuspended in osmotic shock buffer (10 mM HEPES-KOH, 10 mM MgCl2, 10 mM sodium L-

ascorbate). Thylakoids were flash frozen with 10% DMSO as an osmoprotectant and stored 

at -80°C until use. The thylakoid/chloroplast solutions were maintained in darkness. 

Before use, thylakoids were stored on ice and washed 2-3 times in a buffer containing: 0, 330, 

or 700 mM sorbitol, 10 mM HEPES-KOH pH 7.6, 10 mM MgCl2, and 10 mM sodium L-

ascorbate. The chlorophyll content of the resulting solution was determined according to Porra 

2002 127. 

 Assays of thylakoid activity 
4.6.1 Spectrophotometric observation of NADP+ photoreduction and the 
ferredoxin titration. 
Thylakoid activity was assayed by monitoring NADPH production spectrophotometrically in a 

5 mm quartz cuvette at 340 nm on a UV-Vis spectrophotometer (Cary 60 UV-Vis, Agilent 

Technologies GmbH). In a reaction volume of 0.7 mL, thylakoids were added to reach a total 

of 10 µg of chlorophyll to a reaction buffer containing: 50 mM HEPES-KOH pH 7.8, various 

ferredoxin concentrations, 3 mM ADP, 5 mM of K2HPO4, 3mM NADP+, 10 mM sodium L-

ascorbate, 10 mM KCl, 5 mM MgCl2, 1.5 µM E. coli catalase, and 52 U mL-1 of bovine superoxide 

dismutase and illuminated with white light at 50-100 µmol photons m-2 s-1. Initially, various 

ferredoxins (SpFdx1, SpFdx2, & CrFdx1) were tested with minimal differences in activity. 

Ultimately, for the ferredoxin titration 0, 2.5, 5, 10, 25, and 50 µM of CrFdx1 was assayed. The 

concentration of NADPH was calculated using an extinction coefficient of 6.22 mM cm-1. 
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4.6.2 ATP/NADPH ratio   

The ATP/NADPH production ratio was determined using a similar reaction mixture (0.7 mL) 

listed above, with the inclusion of 700 mM sorbitol. The NADPH production was monitored 

spectrophotometrically in a 5 mm quartz cuvette at 340 nm on a UV-Vis spectrophotometer 

(Cary 60 UV-Vis, Agilent Technologies GmbH) and the concentration was determined. To 

trigger thylakoid activity, a white light was used at 60 µmol photons m-2 s-1. Samples for ATP 

measurements were taken at 0, 5, 15, 30 minutes after illumination and quenched with 5% 

formic acid. The samples were immediately measured by HPLC-MS as described below. The 

concentrations were calculated using a standard curve. Standard solutions were made using 

commercially available ATP prepared in a buffer reflective of assay conditions for accurate 

concentration calculation. 

 

4.6.3 ATP production rate 

The ATP production rate was determined in a reaction buffer (0.2 mL) containing: 50 mM 

HEPES-KOH pH 7.6, 10 mM sodium L-ascorbate, 700 mM sorbitol, 5 mM MgCl2, 5 mM 

K2HPO4, 10 mM KCl, 5 µM of CrFdx1, 2 mM NADP+, 2 mM ADP, 1.5 µM of catalase, and 52 U 

mL-1 of bovine superoxide dismutase, and if DAPP was added, it was at 20 µM. Thylakoids were 

added at 2.5 µg and 10 µg chlorophyll and assayed both in the dark and in the light at 60-70 

µmol photons m-2 s-1. Samples were taken at 0, 5, 10, and 15 minutes and quenched with a final 

concentration of formic acid of 5%. ATP was measured with HPLC-MS by the method 

described below. The concentrations were calculated using a standard curve. Standard 

solutions were made using commercially available ATP prepared in a buffer reflective of assay 

conditions for accurate concentration calculation. 

 

4.6.4 Oxygen evolution and NADPH production  
Simultaneously, the rates of O2 evolution and NADPH production were measured in an assay 

volume of 0.7 mL in a reaction buffer containing: 50 mM HEPES-KOH pH 7.6, 10 mM sodium 

L-ascorbate, 700 mM sorbitol, 5 mM MgCl2, 5 mM K2HPO4, 10 mM KCl, 5 µM of CrFdx1, 3 mM 

NADP+, 2 mM ADP, 1.5 µM of catalase, 52 U mL-1 of bovine superoxide dismutase, and 30 µM 

DAPP. Thylakoids were added at a total of 10 µg chlorophyll and assayed both in the dark and 

in the light at 60-70 µmol photons m-2 s-1. NADPH production was measured as discussed 

above. The O2 evolution was measured with a PyroScience fiber optic oxygen probe, either an 

optically isolated minisensor (OXF1100-OI) or microsensor (OXF50-OI). The NADPH 
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production was measured in a spectrophotometer in a 5mm quartz cuvette at 340 nM. A 

decrease of O2 was observed in reaction mixtures that lacked thylakoids, and this was used for 

a baseline correction of samples.  

 

4.6.5 Oxygen evolution at different light intensities or with and without catalase 
and SOD 

The O2 evolution was measured at different light intensities with a PyroScience fiber optic 

oxygen probe, either an optically isolated minisensor (OXF1100-OI) or microsensor (OXF50-

OI). The rates were measured in an assay volume of 0.4 mL in a reaction buffer containing: 50 

mM HEPES-KOH pH 7.6, 10 mM sodium L-ascorbate, 700 mM sorbitol, 5 mM MgCl2, 5 mM 

K2HPO4, 10 mM KCl, 5 µM of CrFdx1, 3 mM NADP+, 2 mM ADP, either with or without 1.5 µM 

of catalase, and 52 U mL-1 of bovine superoxide dismutase. Thylakoids were added at a total of 

10 µg chlorophyll and assayed both in the dark, 30, 60, or 300 µmol photons m-2 s-1. There was 

a decrease in O2 levels in the dark and this decrease was subtracted from the samples in the 

light.  

 

4.6.6 Oxygen evolution during Carbon fixation  
The O2 production from thylakoid energy module during the fixation of carbon (by Ccr and 

Pcc) was measured in an assay volume of 0.5 mL. The reaction mixture was comprised of 50 

mM HEPES-KOH pH 7.6, 10 mM sodium L-ascorbate, 700 mM sorbitol, 5 mM MgCl2, 5 mM 

inorganic phosphate (K2HPO4), 10 mM KCl, 5 µM of CrFdx1, 0.6 mM Propionyl-CoA, 1 mM 

Crotonyl-CoA, 1 mM NADP+, 0.5 mM ADP, 30 nM carbonic anhydrase, 1.5 µM of catalase, 52 

U mL-1 of bovine superoxide dismutase, 1.3 µM Ccr, and 1.8 µM Pcc, and 30 µM DAPP. 

Thylakoids were added at a rate of 7.5µg total chlorophyll. The reactions were assayed, both in 

the dark and illuminated at 60-70 µmol photons m-2 s-1. O2 was measured using the 

PyroScience fiber optic oxygen probe with either an optically isolated minisensor (OXF1100-

OI) or microsensor (OXF50-OI). There was a decrease in O2 levels in the dark and this was 

used as a baseline correction. To measure product formation from Pcc or Ccr, samples were 

taken at 0, 2, and 5 minutes and quenched with formic acid (final concentration of 5%) and 

analyzed by HPLC-MS using the method described below. Concentrations were calculated 

using a standard curve prepared in a solution of quenched, unreacted reaction mixture.  
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 CETCH assays 
4.7.1 Assay of CETCH  
The initial photoCETCH cycle experiments were performed in 270 µl reaction volume with 

thylakoids added at 125 µg Chl/mL in a buffer containing: 50 mM HEPES, 330 mM Sorbitol, 

10 mM sodium L-ascorbate, 100 µM coenzyme B12, 80 µM propionyl-CoA, 1.25 mM ADP, 2 

mM NADP+, 5 mM MgCl2, 5 mM K2HPO4, 10 mM KCl, 50 mM NaH13CO3, 1.2 µM catalase, 310 

nM superoxide dismutase, 5 µM FdxCr, 1.3 µM Ghr, and the core enzymes from CETCH v6.0 

(listed in Materials and Methods Table 1). Samples (30 µL) were taken at 0, 5, 15, 30, 45, 60, 

90 and 120 minutes and quenched with formic acid at a final concentration of 5 %. The CoA 

esters were measured using an Agilent 6550 iFunnel Q-TOF LC-MS as described below. The 

glycolate produced was derivatized and measured by UPLC-MS/MS (using Agilent 6495B 

Triple Quad LC/MS) as described below. The glycolate was quantified using a standard curve. 

Standard solutions were prepared in a quenched, unreacted reaction mixture. 

4.7.2 Assay of CETCH v6.0 with Ghr 
CETCH cycle v6.0 was reacted in 300 µL with thylakoids added at 125 µg Chl/mL in a buffer 

containing: 50 mM HEPES-KOH, 330 mM Sorbitol, 10 mM sodium L-ascorbate, 100 µM 

coenzyme B12, 80 µM propionyl-CoA, 1.25 mM ADP, 2 mM NADP+, 5 mM MgCl2, 5 mM 

K2HPO4, 10 mM KCl, 50 mM NaH13CO3, 1.2 µM catalase, 310 nM superoxide dismutase, 5 µM 

FdxCr, 1.3 µM Ghr, and the core enzymes from CETCH v6.0 (listed in Materials and Methods 

Table 1). Samples (30 µL) were taken at 0, 5, 15, 30, 45, 60, 90 and 120 minutes and quenched 

with formic acid at a final concentration of 5 %. The CoA esters were measured using an Agilent 

6550 iFunnel Q-TOF LC-MS as described below. The glycolate produced was derivatized and 

measured by UPLC-MS/MS (using Agilent 6495B Triple Quad LC/MS) as described below. 

The glycolate was quantified using standard curve. Solutions were prepared in a quenched, 

unreacted reaction mixture.  

4.7.3 Assay of CETCH v7.0 

CETCH cycle v7.0 was reacted in 300 µL with the thylakoid energy module added at 210 µg 

Chl/mL in a buffer containing: 50 mM HEPES-KOH, 700 mM Sorbitol, 10 mM sodium L-

ascorbate, 100 µM coenzyme B12, 85 µM propionyl-CoA, 0.5 mM ADP, 2 mM NADP+, 5 mM 

MgCl2, 5 mM K2HPO4, 10 mM KCl, 50 mM NaH13CO3, 1.2 µM catalase, 310 nM superoxide 

dismutase, 5 µM FdxCr, 1.3 µM Ghr, and the core enzymes from CETCH v7.0 (listed in 

Materials and Methods Table 1). Samples (30 µL) were taken at 0, 5, 15, 30, 45, 60, 90 and 120 
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minutes and quenched with formic acid at a final concentration of 5 %. The CoA esters were 

measured using an Agilent 6550 iFunnel Q-TOF LC-MS as described below. The glycolate 

produced was derivatized and measured by UPLC-MS/MS (using Agilent 6495B Triple Quad 

LC/MS) as described below. The glycolate was quantified using a standard curve. Standard 

solutions were prepared in a quenched, unreacted reaction mixture.  

4.7.4 Optimization of CETCH v7.0 for droplets 

CETCH cycle v7.0 was reacted in 300 µL with the thylakoid energy module added at 126 µg 

Chl/mL in a buffer containing: 50 mM HEPES-KOH, 700 mM Sorbitol, 10 mM sodium L-

ascorbate, 85 µM crotonyl-CoA or propionyl-CoA, 0.5 mM ADP, 2 mM NADP+, 5 mM MgCl2, 

5 mM K2HPO4, 10 mM KCl, 50 mM NaH13CO3, 1.2 µM catalase, 310 nM superoxide dismutase, 

5 µM FdxCr, 1.3 µM Ghr, and the core enzymes from CETCH v7.0 (listed in Materials and 

Methods Table 1). Ecm and Mcm were incubated with 2 µl of a buffered solution of 5 mM 

coenzyme B12 for 30 minutes in the dark and at room temperature prior to adding the enzymes 

to the reaction mixture. Some samples included the addition of PhaJ (14 µM) and some 

reactions were incubated for 1 hour prior to illumination. The samples (30 µL) were taken at 

0, 5, 15, 30, 45, 60, 90 and 120 minutes and quenched with formic acid at a final concentration 

of 5 %. The CoA esters were measured using an Agilent 6550 iFunnel Q-TOF LC-MS as 

described below. The glycolate produced was derivatized and measured by UPLC-MS/MS 

(using Agilent 6495B Triple Quad LC/MS) as described below. The glycolate was quantified 

using a standard curve. Standard solutions were prepared in a quenched, unreacted reaction 

mixture.  

 Quantification of reaction Products 
4.8.1 High Resolution LC-MS/MS of CoA Esters 
Compounds were separated on a RP-18 column (50 mm x 2.1 mm, particle size 1.7 µm, Kinetex 

EVO C18, Phenomenex) using a mobile phase system comprised of 50 mM ammonium formate 

pH 8.1 (A) and methanol (B). Chromatographic separation was carried out using the following 

gradient condition at a flow rate of 250 µL/min: 0 min 2.5% B; 2.5 min 2.5% B; 8 min 23% B; 

10 min 80 %B; 11 min 80%; 12 min 2.5% B; 12.5 min 2.5% B. The column oven was set to 40 

°C and autosampler was maintained at 10 °C. Standard injection volume was 1 µL.  

CoA esters were analyzed using an Agilent 6550 iFunnel Q-TOF LC-MS system equipped with 

an electrospray ionization source set to positive ionization mode.    
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Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying 

(13 L/min, 225 °C) and sheath gas (12 L/min, 400°C). The TOF was calibrated using an ESI-L 

Low Concentration Tuning Mix (Agilent) before measurement (residuals less than 2 ppm for 

five reference ions) and was recalibrated during a run using 922 m/z as reference mass . The 

scan range for MS data is 500-1200 m/z.   

Alternatively, the CoA esters were detected using an Agilent 6495B Triple Quad LC/MS system 

equipped with an electrospray ionization source. The source conditions were identical to that 

of the QTOF conditions. Data were acquired in the positive MRM mode with collision energy, 

dwell time, and fragmentor voltage set to 35 V, 20 ms, and 380 V respectively.  The following 

MRM transitions were used to quantify the CoA esters : ethylmalonyl-CoA (882 m/z  428 

m/z and 331 m/z), methylsuccinyl-CoA (882 m/z  428 m/z and 375 m/z), succinyl-CoA (868 

m/z  428 m/z and 361 m/z), methylmalonyl-CoA (868 m/z  428 m/z and 317 m/z), 

propionyl-CoA (824 m/z  428 m/z and 317 m/z), crotonyl-CoA (836 m/z  428 m/z and 

329 m/z), and β- / γ-hydroxybutyryl-CoA (854 m/z  428 m/z and 347 m/z). To complement 

the MRM data, CoA esters were also UV detected at 260 nm on an Agilent 1290 Infinity II DAD 

detector equipped with a Max-Light cartridge cell (60 mm).   

LC-MS data were analyzed using MassHunter Qualitative Navigator and QQQ Quantitative 

analysis software. 

4.8.2 UPLC-MS/MS analysis of derivatized glycolate 
Glycolate was derivatized according to the method published by Han et al.128. Briefly described, 

50 μl of sample was mixed with 50 μL 150 mM 1-(3-Dimetheylaminopropyl)-3-

ethylcarbodiimide (EDC), 50 μl 250 mM 3-nitrophenylhydrazine (3-NPH), and 50 μl of 7.5% 

pyridine in methanol in a 1.5 ml Eppendorf tube. The reaction was incubated at 30°C for 30 

min. After incubation, the samples were centrifuged at 13,000 x g for 1 min and the 

supernatant transferred into HPLC vials.   

UPLC-MS/MS analyses were performed on an Agilent 6495B Triple Quad LC/MS system 

equipped with an electrospray ionization source.  

The analytes were separated on a RP-18 column (50 mm x 2.1 mm, particle size 1.8 µm, 

ZORBAX RRHD Eclipse Plus C18, Agilent) kept at 40 °C using a mobile phase system 

comprised of 0.1% formic acid in water (A) and acetonitrile (B). The gradient is as follows: 0 
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min 5% B; 1 min 5% B, 6 min 95% B; 6.5 min 95% B; 7 min 5 %B at a flow rate of 250 µL/min.  

Samples were held at 15°C and injection volume was 5 µL.  

MS/MS data were acquired in negative MRM mode. Capillary voltage was set at 3 kV and 

nitrogen gas was used as nebulizing (25 psig), drying (11 L/min, 130 °C) and sheath gas (12 

L/min, 400°C). The dwell time and fragmentor voltage were 20 ms and 380 V respectively.  

Optimized collision energy used for the both quantifier (210 m/z  137 m/z) and qualifier (210 

m/z  152 m/z) and was 22 V.   

LC-MS data were analyzed and quantified using MassHunter Qualitative Navigator and QQQ 

Quantitative Analysis softwares (Agilent).   

4.8.3 UPLC-MS/MS analysis of ATP, ADP, and AMP 
UPLC-MS/MS analyses were performed on an Agilent 6495B Triple Quad LC/MS system 

equipped with an electrospray ionization source.   

The analyte was separated on a HILIC column (50 mm x 2.1 mm, particle size 1.7 µm, 130 Å, 

BEH Amide, Waters) using a mobile phase system comprised of 95:5 20 mM ammonium 

acetate pH 9.3 / acetonitrile (A) and acetonitrile (B).  The compounds were eluted through the 

column at a flow rate of 400 µL/min under the following conditions: 0 min 90% B, 1.5 min 

40% B, 1.8 min 40% B, 1.9 min 90 %B, 2.5 min 90% B.  Samples were held at 15°C and injection 

volume was 1 µL.  

MS/MS data were acquired in negative MRM mode. Capillary voltage was set at 3.5 kV and 

nitrogen gas was used as nebulizing (20 psig), drying (13 L/min, 225 °C) and sheath gas (12 

L/min, 400°C). The dwell time and fragmentor voltage were 50 ms and 380 V respectively.  

Optimized collision energy used for the analytes were as follows: ATP (506 m/z  408 m/z, 

25 V, 506 m/z  159 m/z, 35 V); ADP (426 m/z  159 m/z, 25 V, 426 m/z  79 m/z, 35 V); 

and AMP (346 m/z  134 m/z, 35 V, 346 m/z  79 m/z, 25 V).   

LC-MS data were analyzed and quantified using MassHunter Qualitative Navigator and QQQ 

Quantitative Analysis softwares (Agilent).   

 Microfluidic device fabrication and operation  
Dropmaker devices (Supplemental Figure S5) were made of poly(dimethylsiloxane) (PDMS, 

Sylgard 184) from a SU8-3000 negative photoresist (MicroChem Corp) mold (30 µm depth) 

produced using a standard soft-lithography procedure 129. Microfluidic channels were treated 
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using fluoro-silane (Aquapel, Aquapel) before use. Nemesys syringe pumps (Cetoni) were used 

to control the flows in the microfluidic channels. Devices were connected to pumps with PTFE 

tubing (Fischer Scientific, ID 0.3 mm, OD 0.76 mm). Droplets were produced in fluorinated 

oil (Novec®3000, 3M) and stabilized against coalescence by a perfluoropolyether-

polyethyleneglycol block-copolymer surfactant (Fluosurf, Emulseo). 

A microfluidic 2D-chamber (Supplemental Figure S5) was assembled as previously 

described19. Briefly, the chamber geometry (35 mm x 10 mm) was cut in a 60 µm-thick double-

sided bonding tape (1375, SDAG Adhésifs) using a Graphtech cutting plotter (CE 6000-40). 

The double-sided bounded template was sandwiched between two microscopy glass slides (76 

x 25 x 1mm, Mareinfeld). Holes and glued nanoports on the top glass slide served as 

inlet/outlet. The chambers were treated using fluoro-silane (Aquapel, Aquapel) before use. 

 Thylakoid encapsulation  
Independently from final composition, thylakoids suspensions were flowed (100 µL/h) in the 

dropmaker device and flow-focused with two streams of fluorinated oil containing 3 wt% 

surfactant (225 µL/h). In typical experiments, 4-bit emulsions were produced by encapsulating 

four different mixtures in parallel. The 4-bit emulsions were barcoded with sulforhodamine B 

fluorophore (2, 8, 16, 40 µM).  Droplets were collected together in a PTFE tubing and directed 

to the 2D-chamber. Once the 2D-chamber was fully loaded, flows were stopped and the 2D-

chamber closed with caps. Specific assay mixtures can be found in the tables below. 

 Time-lapse fluorescence measurements 
The 2D-chamber device was mounted on the stage of an inverted microscope equipped with 

light emitting diodes (Supplemental Figure S5). A 365 nm diode (1150 mW, Thorlabs) 

combined to an epifluorescence cube composed of an excitation bandpass filter (F39-370, 

AHF), a beamspliter (F38-409, AHF) and an emission bandpass filter (F39-438, AHF) was 

used for measuring NADPH fluorescence. A 550 nm diode (CoolLED pE-2) was used for 

measuring sulforhodamine B fluorescence. A warm white light emitting diode (2000 mW, 

Thorlabs) mounted on the stage of the microscope was used for the light-activation of the 

thylakoids. Images were taken with a digital camera (EOS 600, Canon). A labVIEW routine 

triggering the white LED, the 365 nm LED, and the digital camera was used to perform the 

time lapse experiments with defined light and imaging patterns. 
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 Image processing 
The home-made image processing algorithm consists of a three-step procedure to 

automatically extract information from every image captured during the time-lapse 

experiment (Supplemental Figure S6).  (i) A region of interest is drawn on the brightfield image 

to select the droplets of interest and discard droplets located in the image corners. Using the 

brightfield image, an intensity threshold is applied in order to discriminate the edges of the 

droplets to the background of the image. Then, the brightfield image is converted into a binary 

image where the edges of the droplets are only displayed. From this binary image, droplet 

boundaries are detected using the Hough transform procedure. The detection of droplets is 

limited to the range of a low and high radius in order to reduce the time processing. The Hough 

transform procedure outputs radius and the locations of droplets in the region of interest. The 

data are saved and the image processing algorithm automatically moves to the coding image. 

(ii) The coding image is captured at the same location as the brightfield image. Consequently, 

the droplet location and radius data can be used to find every droplet of interest in the coding 

image. The fluorescence intensity of each droplet is obtained by listing the intensity value of 

all pixels composing the droplets tested. The median value of the pixel intensity for each 

droplet is saved and characterizes the coding intensity of the droplet tested. This process is 

repeated for every droplet in the imaged region of the interest. Then the image processing 

algorithm moves to the time lapse images. (iii) Every time lapse image is processed using the 

same method as the coding image step (ii). Briefly, the median value of the fluorescence 

intensity of every pixel composing a droplet is saved. Then, this process is iterated for every 

droplet and image composing the time lapse. The LabVIEW code used for image analysis has 

been uploaded to a repository on GitHub 83.   

 Large-scale experiments 
1-bit emulsions (contents outlined below) were produced in large quantities (~500 µL, ~108 

droplets) and collected in a 2 mL glass vial. The glass vial was continuously rotated and 

illuminated with warm white LED. 30 µL of emulsion was regularly sampled from the vial and 

coalesced as follows: the droplets were added to 50 µL of fluorinated oil; 20 µL of 1H, 1H, 2H, 

2H-perfluoro-1-octanol was added and the mixture was vortexed and centrifuged; and the 

aqueous phase was pipetted and quenched with 1% of HCl.  
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4.13.1 Ccr and Ghr in 1-bit emulsions 
Thylakoid energy module powered reactions Ghr and Ccr in droplets were assayed in a buffer 

containing the following: 100 mM HEPES-KOH, pH 7.8, 330 mM sorbitol, 5 mM K2HPO4, 10 

mM KCl, 5 mM MgCl2, 10 mM sodium L-ascorbate, 5 µM ferredoxin, 52 U mL-1 superoxide 

dismutase, 1.2 µM catalase, 1.6 mM ADP, 0.8 mM NADP+, 120 µg Chl mL-1 of thylakoids, and 

8 µM Sulforhodamine B. To assay Ccr: 255 nM Ccr, 33.5 nM carbonic anhydrase, 1 mM 

Crotonyl-CoA, and 50 mM NaHCO3 was added. To assay Ghr: 214 nM GhrB and 5 mM 

glyoxylate was added. Droplets were created from a solution with a total volume of 500 µL. 

Samples were taken after 75 minutes of illumination at 50 µmol photons m-2 s-1 and quenched 

as described above. To assess Ccr activity CoA-thioesters were measured by HPLC-MS as 

described above and quantified using a standard curve. Ghr activity was assessed by measuring 

glycolate produced by HPLC-MS. The concentration was determined using a standard curve. 

Standard solutions were prepared in a buffer reflective of assay conditions for accurate 

concentration calculation. 

 

4.13.2 1-bit emulsions containing CETCH v7.0 and the thylakoid energy module 
Droplets containing thylakoid powered CETCH v7.0 were generated from a solution (total 

volume, 1.8 mL) that contained 70 µg Chl/mL in a buffer that contained 50 mM HEPES-KOH, 

pH 7.8, 700 mM Sorbitol, 10 mM sodium L-ascorbate, 90 µM crotonyl-CoA, 0.5 mM ADP, 2 

mM NADP+, 5 mM MgCl2, 5 mM K2HPO4, 10 mM KCl, 50 mM NaH13CO3, 10 mM 

polyphosphate, 1.2 µM catalase, 310 nM superoxide dismutase, 5 µM FdxCr, 1.3 µM GhrA, 14 

µM PhaJ, and the core enzymes from CETCH v7.0 (listed in Materials and Methods Table 1). 

Ecm and Mcm were incubated with 2 µl of a buffered solution of 5 mM coenzyme B12 for 30 

minutes in the dark and at room temperature prior to adding the enzymes to the reaction 

mixture.  The samples (30 µL) were taken and quenched as described above. The CoA esters 

were measured using an Agilent 6550 iFunnel Q-TOF LC-MS and quantified using the 

integrated UV260nm peak and a standard curve. The glycolate produced was derivatized and 

measured by UPLC-MS/MS (using Agilent 6495B Triple Quad LC/MS) as described above. 

 

4.13.3 Thylakoid activity in droplets 2, 3, & 4-bit emulsions 

4.13.3.1 Controlling TEM in droplets with fluctuating light conditions  

The effect of fluctuating light conditions in the droplets was tested (Supplemental Figure S9). 

Three populations of droplets were created from 0.5 mL solutions that contained: 50 mM 
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HEPES-KOH, pH 7.8, 330 mM sorbitol, 5 mM K2HPO4, 10 mM KCl, 5 mM MgCl2, 10 mM 

sodium L-ascorbate, 5 µM Ferredoxin, 52 U mL-1 superoxide dismutase, 1.2 µM catalase, 0.8 

mM ADP, and various concentrations of  sulforhodamine B, thylakoids, NADPH, and NADP+. 

Population 1 contained: 0 µg Chl mL-1 of thylakoids, 0.5 mM NADP+, 2 µM sulforhodamine B. 

Population 2 contained: 11 µg Chl mL-1 of thylakoids, 0.5 mM NADP+, 8 µM sulforhodamine 

B. Population 3 contained: 0 µg Chl mL-1 of thylakoids, 0.5 mM NADPH, 40 µM 

sulforhodamine B. Droplets were prepared and monitored as discussed above.  

 

4.13.3.2 Light intensity  

The effect of light intensity in NADPH production on the droplets was assayed using light 

intensities at 50, 100, 200, 400 and 1200 µmol photons m-2 s-1 (Supplemental Figure S8). Two 

populations of droplets were created from solutions of 0.5 mL that contained: 100 mM HEPES-

KOH, pH 7.8, 330 mM sorbitol, 3 mM K2HPO4, 10 mM KCl, 5 mM MgCl2, 10 mM sodium L-

ascorbate, 5 µM Ferredoxin, 52 U mL-1 superoxide dismutase, 1.2 µM catalase, 0.75 mM ADP, 

and various concentrations of sulforhodamine B, thylakoids, NADPH, and NADP+. Population 

1 contained: 23 µg Chl mL-1 of thylakoids, 0.5 mM NADP+, 2 µM sulforhodamine B. Population 

2 contained: 0 µg Chl mL-1 of thylakoids, 0.5 mM NADPH, 40 µM sulforhodamine B. 

 

4.13.3.3 Thylakoid consistency in droplets  

The consistency between independently prepared droplets was tested using droplets 

manufactured from four independently pipetted 0.5 mL solutions (Supplemental Figure S6 C 

& S7 C). The four populations contained: 50 mM HEPES-KOH, pH 7.8, 700 mM sorbitol, 5 

mM K2HPO4, 10 mM KCl, 5 mM MgCl2, 10 mM sodium L-ascorbate, 5 µM Ferredoxin, 52 U 

mL-1 superoxide dismutase, 1.2 µM catalase, 1.6 mM ADP, and various concentrations of 

sulforhodamine B, thylakoids, NADPH, and NADP+. Population 1, 2, and 3 contained: 1.0 mM 

NADP+, 125 µg Chl mL-1 of thylakoids, and either 2, 8, 20 µM sulforhodamine B. In population 

4, thylakoids were omitted and 1 mM NADPH was used instead of NADP+, for the coding dye 

40 µM was used. Droplets were prepared and monitored as discussed above.  

 

4.13.3.4 Controlling droplets  

Various enzyme and substrate concentrations were used in multiplexed experiments (4-bit, 

Figure 18B, 18C).  In each case the TEM was coupled to Ghr and either various enzyme and/or 
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substrate concentrations were assayed. The specific reaction conditions are shown in Table 

M2. The droplets were manufactured and monitored as discussed above from 0.5 mL solutions.  

 

4.13.3.5 Ghr and Ccr in droplets  

Both 330 and 700 mM sorbitol conditions were tested with coupling Ccr and Ghr. In each case, 

four populations were tested either with 330 or 700 mM sorbitol (Figure 18D & 20B).  The 

specific reaction conditions are shown in Table M3. The droplets were manufactured and 

monitored as discussed above from 0.5 mL solutions. The contents of each droplet population 

is indicated and a grey box indicates that component was omitted from that population.   

 

4.13.3.6 Pcs in droplets  

The specific reaction conditions to test Pcs coupling is shown in Table M4 (Figure 21). The four 

populations of droplets were manufactured and monitored as discussed above from 0.5 mL 

solutions. The contents of each droplet population is shown and a grey box indicates that 

component was omitted from that population.   

 

4.13.3.7 Time and space control of droplets 2-bit emulsion 

As a demonstration of the controllability of droplets, both in time and space, a binary emulsion 

was created (Figure 19). The two population of droplets were created using 0.5 mL solutions. 

The two populations contained 50 mM HEPES·KOH, pH 7.8, 700 mM sorbitol, 5 mM K2HPO4, 

10 mM KCl, 5 mM MgCl2, 10 mM sodium L-ascorbate, 5 µM Ferredoxin, 52 U mL-1 superoxide 

dismutase, 1.2 µM catalase, 1.2 mM ADP, 0.8 mM NADP+, 10 mM glyoxylate, and two different 

concentrations of GhrA, thylakoids, or sulforhodamine B. Either: 40 nM GhrA, 200 µg Chl mL-

1 thylakoids, and 2 µM sulforhodamine B or 2.5 nM GhrA, 40 µg Chl mL-1 thylakoids, and 8 µM 

sulforhodamine B. 

The 2 populations of droplets were filled into the observation chamber via two inlets. After 2 

minutes in the dark, the droplets were exposed to 50 µmol photons m-2 s-1 light. The light was 

turned off again after 60 minutes. 

4.13.3.8 Thylakoid Stability 

Thylakoid stability was assayed (Figure 17C). Four populations of droplets were created from 

0.4 mL solutions that contained 50 mM HEPES-KOH, pH 7.8, 330 mM sorbitol, 5 mM 

K2HPO4, 10 mM KCl, 5 mM MgCl2, 10 mM sodium L-ascorbate, 1.0 mM NADPH, and various 

concentrations of sulforhodamine B, GhrB, GhrA, and Coenzyme B12. Population 1 contained: 
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1.3 µM GhrA, 0 µM coenzyme B12, 2 µM sulforhodamine B. Population 2 contained: 1.3 µM 

GhrA, 100 µM coenzyme B12, 8 µM sulforhodamine B. Population 3 contained: 53.5 nM GhrB, 

100 µM coenzyme B12, 16 µM sulforhodamine B. Population 4 contained: 53.5 nM GhrB, 100 

µM coenzyme B12, 40 µM sulforhodamine B.  Droplets were prepared and monitored as 

discussed above.   

 

4.13.3.9 CETCH in droplets 

Four-bit reaction conditions for droplets containing CETCH v6.0 and 7.0 that were monitored 

in the 2D array chamber described in Table M5 (Figure 26B, 26C, 25A & 25B). Three 

experiments are shown and droplets were created from 500 µL solutions. The contents of each 

droplet population is shown and a grey box indicates that component was omitted from that 

population.  
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Table M1. 
Enzyme concentrations used in CETCH experiments. 
 

CETCH Cycle v6.0 and 7.0 enzyme composition 

Enzyme full name Organism Name Enzyme 
abbreviation

Concentration added (nM) 
propionyl-CoA carboxylase M. extorquens PccAB Pcc 2310 
emC/mmC epimerase R. sphaeroides Epi Epi 20 
methylmalonyl-CoA mutase R. sphaeroides Mcm Mcm 360 
succinyl-CoA reductase C. kluyveri SucD Scr 194 
succinic semialdehyde reductase H. sapiens AKR7a2 Ssr 670 
4-hydroxybutyryl-CoA synthetase N. maritimus Nmar0206 Hbs 5890 
4-hydroxybutyryl-CoA dehydratase N. maritimus Nmar0207 Hbd 560 
crotonyl-CoA carboxylase/reductase M. extorquens Ccr Ccr 580 
ethylmalonyl-CoA mutase R. sphaeroides Ecm Ecm 550 
methylsuccinyl-CoA oxidase R. sphaeroides. Mco Mco 21410 
methylsuccinyl-CoA dehydrogenase R. sphaeroides Mcd Mcd 3000 
electron transport flavoprotein  R. sphaeroides Etf A/B Etf 1000 
Etf ubiquinone oxidoreductase P. migulae Etf:QO Etf:QO 8000

mesaconyl-CoA hydratase R. sphaeroides Mch Mch 30 
β-methylmalyl-CoA lyase R. sphaeroides Mcl1 Mcl1 2720 
glyoxylate reductase  E. coli GhrA Ghr 1300 
enoyl-CoA hydratase  P. aeruginosa PhaJ PhaJ 14000  
 
The enzyme highlighted in blue is Mco that was used in CETCH v6.0, and those highlighted in orange are those 
used in CETCH v7.0. The last two enzymes, highlighted in green, are used in the cycle but are not part of the core 
reactions. 
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Table M2. 
Detailed pipetting schemes of multiplexed Ghr coupling experiments. Some internal 

components were varied (either enzyme concentration or substrate concentration). In each 

experiment, four populations were multiplexed and analyzed simultaneously. Grey boxes 

indicate the component was omitted, and concentrations of components that were varied are 

indicated.  

 

    Protein 
concentration 

 Substrate 
concentration 

  Droplet population  Droplet population 
Component  Concentration  1 2 3 4  1 2 3 4 

HEPESꞏKOH, pH 7.8  100 mM          
Sorbitol 330 mM          
K2HPO4 3 mM          
KCl  10 mM          
MgCl2 5 mM          
Sodium L-ascorbate 10 mM          
Catalase  0.1 mg/mL          
Ferredoxin  5 µM          
Superoxide Dismutase  52 U/mL          
ADP  0.75 mM          

NADP+ 0.5 mM    -     - 

NADPH 0.5 mM - - -   - - -  

Glyoxylate mM - 0.5 0.5 -  - 0.5 1.5 - 

GhrA nM 50 50 1000 50  1000 1000 1000 1000 

Thylakoids  µg mL-1 65 65 65 -  150 150 150 - 

Sulforhodamine B µM 2 8 20 40  2 8 20 40 

 



Materials and methods 

82 
 

Table M3. 
Detailed pipetting schemes of single enzyme coupling experiments. Ccr and Ghr were coupled 

in parallel two times either with 700 or 330 mM sorbitol. Grey boxes indicate the component 

was omitted, and concentrations of components that were varied are indicated.  

 
 

330 or 700mM Sorbitol Ccr and GhrB Coupling 

  Droplet population  
Component  Concentration  1 2 3 4 

HEPESꞏKOH 100 mM    

Sorbitol 700 or 330 mM    
K2HPO4

 5 mM    

KCl  10 mM    
MgCl2

 5 mM    

Sodium L-ascorbate 10 mM    

Catalase  0.1 mg mL-1    

Ferredoxin  5 µM    

Superoxide Dismutase  52 U mL-1         
Ccr 41.8 nM         
GhrB 53.5 nM         
Carbonic anhydrase 33.5 nM         
Crotonyl-CoA 5.0 mM         
Glyoxylate 5.0 mM         
NaHCO3 50 mM         
ADP  1.6 mM         
NADP+ 0.8 mM         
NADPH 0.8 mM         
Thylakoids  120 µg Chl mL-1   
Sulforhodamine B µM 2 8 16 40 
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Table M4. 
Detailed pipetting schemes of Pcs coupling experiments. Grey boxes indicate the component 

was omitted, and concentrations of components that were varied are indicated.  

 

Pcs Coupling 

  Droplet population  
Component  Concentration  1 2 3 4 

HEPESꞏKOH, pH 7.8  50 mM    

Sorbitol 330 mM    
K2HPO4

 3 mM    

KCl  10 mM    
MgCl2 5 mM    

Sodium L-ascorbate 10 mM    

Catalase  0.1 mg mL-1    

Ferredoxin  5 µM    

Superoxide Dismutase  52 U mL-1    

Pcs 100 nM         
CoA 5 mM         
3-Hydroxypropionate 5 mM         
ADP  1.2 mM         
ATP 1.2 mM         
NADP+ 0.8 mM         
NADPH 0.8 mM         
Thylakoids  80 µg Chl mL-1         
Sulforhodamine B µM 2 4 20 40 
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Table M5. 
Detailed pipetting schemes of individual multiplexed CETCH experiments. Grey boxes indicate 

the component was omitted, and concentrations of components that were varied are indicated.  

 
 

    Figure 25 A  Figure 25 B  Figure 26 B-C 

  Droplet population   Droplet population   Droplet population  

Component  Concentration  1 2 3 4  1 2 3 4  1 2 3 4 

HEPESꞏKOH, pH 7.8  100 mM               

Sorbitol 700 mM               

K2HPO4 5 mM               

KCl  10 mM               

MgCl2 5 mM               

Sodium L-ascorbate 10 mM                

Catalase  1.2 µM                

Ferredoxin  5 µM               

Superoxide Dismutase  52 U/mL                           

mcd 3 µM                           

etf 8 µM                           

etf:QO 1 µM                           

mco  21.4 µM                           

Ccr 580 nM                           

Other CETCH core enzymes, see Table S3                           

Ppk  1.6 µM                           

polyphosphate 10 mM                           

Carbonic anhydrase 33.5 nM                           

Crotonyl-CoA 250 µM                           

phaJ  14 µM                           

GhrA 1.3 µM                           

NaHCO3 50.0 mM                           

CoA 0.5 mM                           

ADP  mM 1.6 1.6 1.6 1.6  1.6 1.6 1.6 1.6  1.2 1.2 1.2 1.2 

NADP+ 0.8 mM                           

NADPH 0.8 mM                       

Thylakoids  µg Chl mL-1 70 70 70   70 70 70    60 60 60   

Sulforhodamine B µM 2 8 16 40  2 8 16 40  2 8 16 40 
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Table M6 
List of vectors used in this work. 

Vector Relevant features Source or reference 

pET28a-PPK pET28a, SMc02148 (codon optimized Ppk2), kanr Nocek et al., 2008 PNAS130 

Nmar0206 pET16b, nmar0206, ampr Könneke et al. 2014, PNAS131 

p2BP1 pLIC-SGC1, akr7a2, ampr Addgene plasmid #39130 

pBB541 E. coli Chaperones GroEL, GroES, spectinomycinr 
Marco et al. 2007, BMC 
Biotechnology132, Addgene 
plasmid #27394 

pRKisc E. coli ORF2-iscS-iscU-iscA-hscB-hscA-fdx-0RF3 Gene 
Cluster Involved in the Assembly of Fe-S Clusters, tetr 

Nakamura et al. 1999, J. 
Biochemistry 125 

pMCH_RS_JZ06 pET16b, mch, ampr Zarzycki et al. 2008, J. 
Bacteriol133 

pMCL1_RS_JZ03 pET16b, mcl1, ampr Erb et al. 2010 J. Bacteriol134 

JW5656 pCA24N,tiaE, camr, ASKA collection Kitagawa et al. 2005, DNA Res135 

JW5146 pCA24N, ycdW, camr, ASKA collection Kitagawa et al. 2005, DNA Res135 

JW1721 pCA24N, katE, camr, ASKA collection Kitagawa et al. 2005, DNA Res135 

JW3879 pCA24N, SodA, camr, ASKA collection Kitagawa et al. 2005, DNA Res135 

JW1648 pCA24N, SodB, camr, ASKA collection Kitagawa et al. 2005, DNA Res135 
pET21a(+)-
fdhD221A pET21, fdh (D221A), ampr Hoelsch et al. 2013, Appl. 

Microbiol. Biotechnol.136 

pTE22 pET16b, mcd, ampr 
Erb et al. 2009, Mol. 
Microbiol.137 

pTE33A pET16b, ecm, ampr Erb et al. 2008, JBC.138 

pTE45 pET16b, epi, ampr Erb et al. 2008, JBC.138 

pTE46 pET16b, mcm, ampr Schwander et al. 2016, Science38 

pTE71 pET16b, ccr, ampr Rosenthal et al. 2014 Nat. Chem. 
Biol.52  

pTE1012 pSEVA 471, Propionyl-CoA synthetase (Erythrobacter 
sp. Nap-1) optimized for E. coli 

Bernhardsgrütter et al. 2019, 
JACS122 

pTE701 pET28a, His-phaJ from P. aeruginosa (codon 
optimized), kanr Schwander et al. 2016, Science38 

pTE2101 
pET28a, ETF:QO from P. migulae, codon optomized, 
kanr this work,  BaseClear 

pTE380 pCDFDuet-1, 6xHis-sucD, yihU, streptomycinr Schwander et al. 2016, Science38 

pTE392 
pCDFDuet-1, His-etfA, etfB, R. sphaeroides, 
streptomycinr Schwander et al. 2016, Science38 

pTE393 pRSET B, nmar0207 (codon optimized), ampr Schwander et al. 2016, Science38 

pTE801 pET16b, mcd, ampr Schwander et al. 2016, Science38 

pTE826 pTE16b, "pco" acx4_opt (T134I), ampr Schwander et al. 2016, Science38 

pTE813 pET16b, "mco" mcd (T317G, W315F, E377N), ampr Schwander et al. 2016, Science38 
pASK-IBA7-
FNRCr 

pASK-IBA7, n-term strep tag, FNR C. reinhardtii, transit 
peptide removed, ampr 

Rumpel et al., 2014, Energy & 
Environmental Science121 

pTE2001 pEX-A2-Fdx, petF  C. reinhardtii (codon optimized), 
transit peptide removed, ampr 

Eurofins MWG 

pTE2002 pET16b, petF  C. reinhardtii (codon optimized), transit 
peptide removed, n-term strep tag, ampr 

This work 

pTE2003 
pEX-A2-3_Fdx, Fdx1  S. oleracea , Fdx2 spinach, Fdx2 
A. thaliana, codon optimized, transit peptides removed, 
ampr 

Eurofins MWG 

pTE2004 
pET16b, Fdx1  S. oleracea  (codon optimized), transit 
peptide removed, n-term strep tag, ampr This work 
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pTE2005 pET16b, petF  S. oleracea (codon optimized), transit 
peptide removed, n-term strep tag, ampr 

This work  

pTE2006 pEX-A2_FNRSp, FNR Spinach (codon optimized), 
transit peptide removed, n-term strep tag, ampr 

Eurofins MWG 

pTE2007 pASK-IBA7, n-term strep tag, FNR spinach (codon 
optimized), transit peptide removed, ampr This work  

pTE2008 pET16b, ETF:QO from R. sphaeroides 2.4.1, ampr This work  
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Table M7. 
DNA sequence of the codon optimized genes used in this work 
 

 

 

 

Gene name Codon optimized DNA sequence  
FdxCr  

(petF) from 
C. reinhardtii 

TACAAGGTCACCCTGAAAACCCCTAGCGGCGATAAAACGATTGAGTGCCCAGCCGACACTTACATTTTGGA
TGCTGCTGAAGAGGCGGGGCTGGACCTGCCGTATTCGTGTCGCGCGGGTGCCTGCTCTTCATGCGCGGGC
AAAGTGGCCGCAGGCACCGTGGATCAAAGCGACCAGTCATTCTTAGACGATGCGCAGATGGGTAACGGTT
TTGTGCTGACGTGTGTAGCTTATCCGACGAGTGATTGCACTATCCAAACACATCAGGAAGAAGCGCTGTAT
TAA 

FdxSp1  
(Fdx1) from 
S. oleracea 

GCAGCATATAAAGTGACGCTGGTGACTCCGACCGGTAACGTAGAATTTCAGTGTCCTGATGACGTCTATAT
CCTTGATGCTGCTGAAGAGGAAGGCATCGATTTACCATACTCCTGTCGCGCCGGTTCGTGCTCAAGCTGCG
CCGGTAAACTGAAGACGGGATCATTGAACCAAGACGATCAGAGCTTCCTGGACGACGACCAGATTGATGAA
GGGTGGGTTCTGACATGCGCGGCGTACCCGGTGAGCGATGTTACCATTGAGACCCATAAGGAAGAAGAAC
TCACCGCGTAA 

FdxSp2  
(petF) from S. 

oleracea 

GCGACTTACAAAGTCACCTTAGTTACACCATCTGGTTCACAAGTTATTGAATGTGGTGACGATGAATATATC
TTGGACGCCGCGGAAGAGAAAGGTATGGATCTGCCGTACTCCTGTCGCGCGGGCGCATGCTCGTCGTGCG
CAGGTAAAGTAACTTCAGGCTCGGTGGACCAGAGCGATCAGAGCTTTTTGGAAGATGGACAGATGGAAGA
AGGCTGGGTGCTCACATGCATAGCCTATCCGACCGGCGATGTGACGATCGAAACCCATAAGGAGGAAGAG
TTGACCGCCTAA 

FNRSp      
(FNR) from 
S. oleracea 

ATGGCTAGCTGGAGTCATCCGCAATTTGAGAAAATCGAAGGTCGCCAGATTGCATCTGATGTGGAAGCCCC
ACCACCCGCTCCGGCGAAAGTGGAGAAACATAGCAAAAAAATGGAAGAAGGCATCACAGTTAATAAATTTA
AACCAAAAACACCTTATGTTGGACGATGCTTGTTGAATACCAAGATCACCGGCGATGACGCCCCTGGTGAG
ACTTGGCACATGGTCTTCTCCCACGAAGGCGAGATCCCTTACCGTGAGGGCCAATCGGTTGGGGTCATTCC
GGATGGCGAAGATAAAAATGGTAAACCGCACAAACTGAGGCTGTACTCAATAGCCAGTAGCGCATTAGGG
GATTTCGGGGATGCAAAGTCCGTCTCACTGTGCGTTAAACGCCTGATTTATACTAATGACGCTGGTGAAAC
CATCAAAGGCGTATGCTCGAATTTTTTATGTGATCTGAAACCGGGCGCAGAGGTAAAGTTAACGGGCCCGG
TGGGTAAAGAAATGCTGATGCCGAAGGACCCCAACGCAACCATTATTATGCTCGGTACTGGGACGGGCATT
GCTCCGTTTCGTTCTTTTCTTTGGAAAATGTTTTTTGAGAAACACGATGATTATAAATTCAACGGTCTCGCC
TGGCTATTCCTCGGTGTCCCGACGTCCTCATCGCTGCTGTACAAGGAAGAGTTCGAGAAAATGAAGGAAAA
AGCTCCGGACAACTTCCGCCTTGATTTCGCGGTGAGCCGTGAGCAGACCAACGAAAAAGGCGAAAAAATGT
ATATCCAGACCCGGATGGCGCAGTACGCGGTGGAACTGTGGGAAATGTTGAAAAAGGACAACACCTATTTT
TATATGTGTGGTCTGAAAGGGATGGAGAAGGGCATTGATGACATTATGGTGAGTCTTGCCGCGGCGGAAG
GAATTGACTGGATCGAATACAAGCGCCAGCTGAAAAAAGCGGAACAGTGGAACGTGGAAGTGTATTGA 

ETF:QOpm   
(Etf:QO) 
from P. 
migulea 

ATGGAGCGTGAGTACATGGAATTTGATGTCGTAATTGTTGGGGCTGGTCCTGCTGGTCTTTCTGCGGCGTG
TCGCTTAAAGCAAAAAGCCGCAGAGGCTGGGAAAGAAATCAGCGTATGTGTTGTTGAAAAGGGGAGTGAG
GTGGGTGCTCATATCTTATCTGGTGCTGTTTTTGAGCCACGCGCCCTGAATGAGCTGTTCCCTGACTGGAA
GGAACTGGGAGCCCCTCTTAACACTCCTGTAACTCGCGATGATATCTTTGTGTTGAAAAATGCGGATTCAG
CACAAAAAATTCCAGACCTTTTTGTTCCAAAGACCATGCACAACGAGGGCAACTACATTATCTCCCTGGGAA
ATCTGTGTCGTTGGTTGGCCCAACAAGCAGAAAACTTAGGTGTAGAGATCTACCCGGGATTTGCTGCGCAG
GAGGCTCTGTTTGATGAAAATGGAGTAGTCCGTGGTATCATTACTGGGGATTTAGGTGTAGACCGTGAGG
GACATCCCAAGGAGGGATTGTATACACCGGGTATGGAGTTACGTGGCAAGTATACGTTGTTCGCAGAAGG
CTGCCGCGGTCATATTGGAAAACAATTGATTAAACGCTTCAACCTTGACTCGGAAGCTGATGCCCAACACT
ATGGTATTGGACTTAAAGAAATCTGGGAGATCGATCCAGCCAAACATCAGCCCGGGCTGGTCGTGCACACG
GCGGGCTGGCCTTTAGACATCATGGGAACTGAGAACACAGGGGGTTCGTTTTTATATCATCTTGAGAACAA
CCAGGTTGTCGTCGGTTTGATCGTTGACCTTTCATACTCCAACACGTATCTGTCCCCCTTTGATGAGTTTCA
GCGTTTGAAGCATCACCCTGTTCTGAAGCAGTATCTGGAGGGTGGTAAACGTATCTCGTATGGTGCACGCG
CGATCTGCAAAGGCGGCCTGAACTCGCTGCCTAAAATGGTATTCAAGGGTGGTGCCCTTATCGGCTGCGAT
CTTGGAACTTTAAATTTCGCGAAGATCAAAGGATCACACACCGCCATGAAGAGCGGGATGTTGGCGGCAGA
AAGCGTGGCTGAGGCGCTTTTTGCGGAGAAGGATGGAACTGAGGAATTGACCACGTATGTCGATGCGTTT
AAAAAATCGTGGCTTTATGACGAGTTGTTCGCCTCGCGTAATTTTGGGCCGGCTATTCACAAGTTCGGGGC
CATTGTCGGTGGGGGCTTTAACTGGCTTGACCAGAATATCTTCGGAGGAAAACTTCCCTTCACGTTACACG
ACACTAAGCCCGACTACGCCTGCTTGAAACTTGCAGCGGATTGTAAGAAAATCGATTATCCAAAGCCCGAC
GGTAAAATCTCTTTTGACAAACTGTCTAGCGTCTTTATTTCGGGTACGAATCACGAGGAAGAACAGCCTTG
TCATCTGAAATTGACCGATCCCTCCATCCCCATCGCAAAAAATTTACCCATGTACGACGAACCTGCCCAGCG
CTACTGTCCCGCGGGGGTTTACGAAGTCGTGACGAAGGAGGACGGGGAGAAACGTTTCCAAATCAATGCC
CAGAACTGTGTTCATTGCAAAACGTGCGACATTAAGGATCCTGCTCAGAACATCACGTGGGTAGCGCCTGA
AGGTGCTGGTGGCCCAACATACCCAAATATGTAA 
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6. Supplemental material 

 Supplementary figures 

 

Figure S1. Ferredoxin (A) Ferredoxin absorption spectra of two fdx normalized to 

the maximum at 330 nM. The typical peaks for 2Fe-2S are apparent, indicating an 

intact iron sulphur cluster (B) SDS-page from a typical Fdx purification. Shown is 

PETF from C. reinhardtii.  
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Figure S2. Expected 13CO2 isotopic labelling pattern in the CETCH cycle: 

Shown is the expected labelling pattern for the four turns of the CETCH cycle starting 

at either crotonyl-CoA or propionyl-CoA using isotopic labelling with 13C-bicarbonate. 

The cycle features two CO2-incorporation steps per turn catalyzed by Ccr (shown in 

blue) and Pcc (shown in red). 13C-labeled carbon incorporated into the C4-acceptor 

crotonyl-CoA by Ccr remain with the output molecule glyoxylate when β-methylmalyl-

CoA is split by Mcl into propionyl-CoA and glyoxylate (position and migration of the 

13C-label is shown in blue). The carbon incorporated into the C3-acceptor propionyl-

CoA (shown in red), stays with the acceptor molecule during each turn of the cycle 

(position and migration of the 13C-label is indicated by different shades of red). Note 

that the CETCH cycle includes carbon skeleton-rearranging steps catalyzed by mutases, 

resulting in a complex labelling pattern. 
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Figure S3. SDS-PAGE from a typical Etf:QO purification. Samples were loaded 

from each purification step. The elution band was loaded with approximately 2 µg of 

protein. The elution sample was not boiled.  

 

Figure S4. Etf:QO interacts with the thylakoid membrane. Etf:QO and citrate 

synthase were incubated with thylakoid membranes and washed. Samples were taken 

and blotted with an anti-his antibody. A small band is visible in samples incubated with 

Etf:QO  and not in the control with citrate synthase.  



Supplemental material 
 

 
100 

 

 

Figure S5. Description of the microfluidic platform. (A) Microfluidic workflow. 

Thylakoids are encapsulated in 300 pL water-in-oil (w/o) droplets using a dropmaker 

device with two parallel production nozzles (30x30 µm). Two devices are used in 

parallel to produce 4-bit emulsions. Droplets are then flowed into an incubation 

chamber and stored as a 2D-array for light activation and time-lapse microscopy 

imaging. (B) Optical setup. The 2D-incubation chamber is integrated on the stage of an 

inverted microscope equipped with a 10x objective. A white-light LED and a 365 nm 

LED are used for the light activation of the thylakoids and the NADPH fluorescence 

excitation, respectively. The two LEDs are triggered together with the camera using a 

home-made LabVIEW routine to perform automated time-lapse fluorescence imaging 

with defined light/dark cycles. A 550 nm LED is used for the sulforhodamine B 

fluorescence excitation (barcoding). (C) Bright-field image of a 4-bit emulsion and 

droplet radius distribution. (D) 550 nm (barcoding) fluorescence image and droplet 

fluorescence distribution. (E) 365 nm (NADPH) fluorescence image. Linear 

relationship between NADPH concentration and 365 nm fluorescence. Scale bars are 

100 µm unless specified. 

A B

C D E
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Figure S6. Image processing workflow. (A) Typical sequence of processed 

images: bright-field, 550 nm LED and 365 nm LED time-lapse images (0, 17, 27 and 37 

min). Scale bars are 100 µm. (B) Image processing of the sequence. A region of interest 

is defined. Droplet positions and radii are extracted from the bright-field image. The 4-

bit droplet barcoding is extracted from 550 nm fluorescence image. The NADPH level 

of each droplet over time is extracted from the 365 nm fluorescence time-lapse imaging. 

(C) Dynamics of NADPH concentration at the single droplet level are shown by, 365 

nm fluorescence versus time for each individual droplet. The mean for each population 

is indicated in bold. In a typical experiment, N = 50 for each population. For more 

clarity, only population 1 and population 4 are shown here. On the right, the average of 

the same populations is shown with the corresponding standard deviation indicated by 

the shaded area.  
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Figure S7. TEM encapsulation. (A) Bright-field and chlorophyll fluorescence 

images of thylakoids within 300 pL w/o droplets. Scale bars are 100 µm. (B) 

Distribution of the thylakoids: area per droplet estimated using image processing. 

Briefly, similar to the time-lapse algorithm, the Hough transform procedure is used on 

binary images to detect droplet boundaries. Then, a local threshold intensity allows the 

detection of thylakoids in the droplet. This step is suitable to distinguish thylakoids 

with a low intensity from the image background. Finally, the pixels identified as 

thylakoids in the droplet are summed. This process is iterated for every droplet. (C) 

NADPH production consistency. NADPH concentration over time for three different 

droplets populations prepared with the same initial quantity of added thylakoids 

normalized by total chlorophyll (125 µg Chl mL-1) and containing 1 mM NADP+ under 

continuous illumination (50 µmol photons m-2 s-1). NADPH concentration of all 

populations was corrected for the non-catalytic oxidation observed in the NADPH-only 

control. The average measurements are indicated by a bold line with corresponding 

shading indicating the ± standard deviation (N = 50).  

   

A

B C
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Figure S8. Effect of light intensity on NADPH production of the thylakoid 

energy module encapsulated in droplets. (A) NADPH production rates (green 

points) of 130 µg Chl/mL TEM encapsulated in microdroplets under continuous 

illumination using 50, 100, 200, 400 or 1200 µmol photons m-2 s-1 and 0.5 mM NADP+. 

Black lines show 0.5 mM NADPH in microdroplets lacking thylakoids. (B) NADPH 

production rate versus light intensity. Maximum NADPH production of around 200 

µmol photons m-2 s-1 is achieved. However, we opted to operate the TEM at 50-60 µmol 

photons m-2 s-1 in order to limit the production of ROS that would damage the TEM. 

Depicted are the mean values with error bars that correspond to ± standard deviation 

(N = 50).  
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Figure S9. Control of NADPH production by thylakoids encapsulated in 

droplets through light-dark cycles. (A) Scheme of the thylakoid energy module 

system in microdroplets. Light triggers thylakoid activity to produce ATP and NADPH. 

NADPH production is monitored through fluorescence measurements. (B) NADPH 

concentration over time under programmed light-dark cycles (50 µmol photons m-2 s-

1/dark) using thylakoids (65 µg Chl mL-1) and 0.5 mM NADP+ (green line). NADPH 

production stops almost immediately when the light is turned off. Controls: 0.5 mM 

NADPH in droplets (black line), 0.5 mM NADP+ in droplets (grey line) and TEM (65 

µg Chl mL-1) with 0.5 mM NADPH (green line). NADPH concentration of all 

populations was corrected for the non-catalytic oxidation observed in the NADPH-only 

control (0.5 mM NADPH in droplets, black line). This demonstrates that the energy 

status of the droplets can be controlled using light as an external signal. The average 

measurements are indicated by a bold line with corresponding shading indicating the 

standard deviation (N = 50). 
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 Supplementary movies 
Movie S1. 

Time-lapse of NADP+ photoreduction in droplets containing various concentrations of 
thylakoids (experiment shown in Figure 17B). Images show NADPH fluorescence, excited 
using a 365 nm diode, images taken every 2.5 minutes. 

  

 

Movie S2.  

Time-lapse of NADPH oscillations in light/dark cycles of droplets containing the Ghr reaction 
(experiment shown in Figure 18D). Images show NADPH fluorescence, excited using a 365 
nm diode, images taken every 2.5 minutes. 
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Movie S3.  

Time-lapse of NADPH fluorescence of experiment demonstrating how the metabolic activity 
of droplets can be controlled in time and space (experiment shown in Figure 19). Images show 
NADPH fluorescence, excited using a 365 nm diode. After 2 minutes in the dark, the droplets 
were exposed to 50 µmol photons m-2 s-1 light. The light was turned off again after 60 minutes. 
The images were taken every minute for the first 5 minutes, at 7.5 minutes, then every 5 
minutes until 125 minutes, and taken every 10 minutes after that. 

 

 

 

Movie S4.  

Time-lapse of the NADPH fluorescence of droplets encapsulated with variations of the full 
CETCH cycle (experiment shown in Figure 26B & C, detailed droplet contents can be found 
in Table S7). Images show NADPH fluorescence, excited using a 365 nm diode. The images are 
taken every 2.5 minutes. 
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7. List of abbreviations  
ATP  Adenosine triphosphate 

Cat   Catalase 

CETCH cycle Crotonyl-CoA Ethylmalonyl-CoA 4-hydroxybutyryl-CoA cycle 

DAPP  Diadenosine triphosphate 

E. coli  Escherichia coli 

FAD   flavin adenine dinucleotide 

Fdx  Ferredoxin 

FNR  Ferredoxin:NADP+ reductase 

R. sphaeroides Rhodobacter sphaeroides 2.4.1 

Spinach  Spinacia oleracea 

DMSO   dimethyl sulfoxide  

DNA   deoxyribonucleic acid  

DNase   deoxyribonuclease 

Ecm   ethylmalonyl-CoA mutase 

Hbd   4-hydroxybutyryl-CoA dehydratase 

Hbs   4-hydroxybutyryl-CoA synthetase 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HPLC-MS   high performance liquid chromatography coupled massspectrometry 

IPTG   isopropyl β-D-1-thiogalactopyranoside 

LB    lysogeny broth 

Mcl   β-methylmalonyl-CoA mutase  

Mcm   methylmalonyl-CoA mutase  

Mco   methylsuccinyl-CoA oxidase 

MOPS   3-(N-morpholino)propanesulfonic acid 

NADH  Nicotinamide adenine dinucleotide 

NADPH   nicotinamide adenine dinucleotide phosphate 

NPT  nitro blue tetrazolium  

Pcc   propionyl-CoA carboxylase  

Pco  propionyl-CoA oxidase 

Pcs   propionyl-CoA synthase 

PMF  proton motive force  

RuBisCO   ribulose-1,5-bisphosphate carboxylase/oxygenase 

Sod  Superoxide dismutase  

SucD   succinyl-CoA reductase  



List of abbreviations 
 

 
110 

 

TaCo pathway  tartronyl-CoA pathway 

Tris   tris(hydroxymethyl)aminomethane 

w/o   water-in-oil  

wt    wildtype 
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