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Summary 

Anthropogenic carbon dioxide (CO2) emissions cause an imbalance in the global carbon cycle that 

consequently leads to global warming. Besides the indisputable role of CO2 as harmful greenhouse gas, 

this small molecule harbors great potential as a simple and accessible carbon source. To exploit this 

potential, biotechnological strategies need to be established to convert CO2 into value-added products, 

like fuels or antibiotics. It is therefore indispensable to identify and characterize efficient carboxylases. 

To date, the members of the enoyl-CoA carboxylase/reductase (Ecr) family account for the most efficient 

carboxylases found in nature. Their efficiency partly depends on the effective stabilization of the CO2 

molecule within the active site. The conserved CO2-binding motif is characteristic for Ecrs. 

This work deals with the thorough study of the three-domain fusion enzyme propionyl-CoA synthase 

(Pcs) of Erythrobacter sp. NAP1. This complex enzyme comprises the Ecr family CO2-binding motif in 

its reductase domain, suggesting a potential carboxylase activity and therefore deserves detailed 

investigation. 

The first part sets a focus on the biochemical features of Pcs. Combined kinetic and structural analysis 

proposed that Pcs uses a highly synchronized catalytic mechanism to sequester its reactive intermediate 

acrylyl-CoA. X-ray crystallography revealed an enclosed reaction chamber that features all three active 

sites of the fusion enzyme. This allows for the catalysis of the three subsequent reactions within the 

chamber. Kinetic data supported the idea that conformational changes in the Pcs ligase domain regulate 

the opening and closing of the catalytic compartment. Additional structural elements in Pcs either mimic 

domains of neighboring protomers in stand-alone homologues that contribute essential residues for 

catalysis or seal the reaction chamber. The presumed carboxylation potential of the reductase domain 

was demonstrated albeit at a very low efficiency in Pcs wildtype. Rational design was used to implement 

the two principles of efficient carboxylation known from Ecrs into the Pcs reductase domain. Improved 

CO2-binding and shielding of the active site from water converted the reductase domain into a 

carboxylase domain. The engineered trifunctional, substrate-channeling carboxylase could prove 

advantageous in synthetic CO2-fixation pathways.  

In the second part of this work, light is shed on the physiological and ecological role of Pcs. While well 

described in the context of the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus, 

the presence of Pcs in the genome of several (potential photo-) heterotrophic microorganisms suggests 
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an alternative function. The genome of the aerobic anoxygenic phototrophic bacterium Erythrobacter sp. 

NAP1 encodes homologous enzymes of a partial 3-hydroxypropionate bi-cycle able to convert acetyl-

CoA and two bicarbonate molecules into succinyl-CoA. The two key enzymes, Pcs and malonyl-CoA 

reductase (Mcr), were shown to be upregulated when the cells were grown in the light. Hence, it was 

suggested that this pathway might be involved in the adjustment of photosynthesis-induced redox 

imbalance. 
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Zusammenfassung 

Anthropogene Kohlenstoffdioxid (CO2) Emissionen stören das Gleichgewicht im globalen 

Kohlenstoffzyklus und führen schließlich zur Erderwärmung. Abgesehen von der Funktion als 

schädliches Treibhausgas, steckt in diesem kleinen Molekül großes Potential als einfache und 

zugängliche Kohlenstoffquelle. Um dieses Potential jedoch ausnutzen zu können, müssen 

biotechnologische Strategien entwickelt werden für die Umsetzung von CO2 in höherwertige Produkte, 

wie Treibstoff oder Antibiotika. Die Identifizierung und Charakterisierung von effizienten Carboxylasen 

ist daher unabdingbar. Die Familie der Enoyl-CoA Carboxylasen/Reduktasen (Ecr) umfasst die am 

schnellsten CO2-fixierenden Enzyme, die bisher in der Natur identifiziert wurden. Ihre Effizienz beruht 

unter anderem auf der erfolgreichen Stabilisierung des CO2-Moleküls im aktiven Zentrum des Enzyms. 

Das konservierte CO2-Bindungsmotiv ist charakteristisch für Ecrs.  

Diese Arbeit befasst sich mit der gründlichen Untersuchung des Fusionsenzyms Propionyl-CoA 

Synthase (Pcs) von Erythrobacter sp. NAP1, welches aus drei Domänen besteht. Die Reduktase-Domäne 

dieses komplexen Enzyms enthält das CO2-Bindungsmotiv der Ecr Familie, was eine potentielle 

Aktivität als Carboxylase vermuten lässt und daher genauer untersucht werden soll.  

Der erste Teil dieser Arbeit konzentriert sich auf die biochemischen Eigenschaften von Pcs. Anhand 

kinetischer und struktureller Analysen wurde vorgeschlagen, dass Pcs einen hoch-synchronisierten 

Katalysemechanismus nutzt, um das Entweichen des reaktiven Zwischenprodukts Acrylyl-CoA zu 

verhindern. Proteinkristallographie offenbarte eine geschlossene Reaktionskammer, welche alle drei 

aktiven Zentren des Fusionsenzyms enthält. Somit wird die Katalyse der drei aufeinanderfolgenden 

Reaktionen im Innern der Kammer ermöglicht. Kinetische Daten stützten die Idee, dass 

Konformationsänderungen in der Pcs Ligase-Domäne das Öffnen und Schließen der Kammer regulieren. 

Zusätzliche strukturelle Elemente in Pcs imitieren entweder Domänen benachbarter Protomere in 

eigenständigen Homologen, welche wesentliche Aminosäurereste zur Katalyse beitragen, oder 

verschließen die Reaktionskammer. Das vorgeschlagene Carboxylierungspotential der Reduktase-

Domäne konnte nachgewiesen werden, wenn auch nur mit sehr geringer Effizienz im Pcs Wildtyp. 

Rationales Design wurde angewandt, um die zwei Prinzipien der effizienten Carboxylierung, welche aus 

den Ecrs bekannt sind, in der Reduktase-Domäne der Pcs anzuwenden. Verbesserte CO2-Bindung und 

Abschirmung des aktiven Zentrums gegen das Einströmen von Wasser überführten die Reduktase-
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Domäne in eine Carboxylase-Domäne. Die verbesserte trifunktionelle Carboxylase, welche den direkten 

Transfer reaktiver Zwischenprodukte von einem aktiven Zentrum zum nächsten ermöglicht, könnte sich 

in einem synthetischen Stoffwechselweg zur CO2-Fixierung als sehr erfolgreich erweisen.  

Der zweite Teil dieser Arbeit gibt Aufschluss über die physiologische und ökologische Rolle von Pcs. 

Pcs wurde ursprünglich im Kontext des autotrophen 3-Hydroxypropionat Bizyklus in Chloroflexus 

aurantiacus entdeckt und detailliert beschrieben. Die Verbreitung des pcs Gens in mehreren (potentiell 

photo-) heterotrophen Mikroorganismen suggeriert jedoch noch eine alternative Funktion. Im Genom 

des aeroben anoxygenen phototrophen Bakteriums Erythrobacter sp. NAP1 sind neben pcs auch alle 

Gene des 3-Hydroxypropionat-Bizyklus Abschnittes vertreten, um Acetyl-CoA und zwei Bicarbonat-

Moleküle in Succinyl-CoA umzuwandeln. Die zwei Schlüsselenzyme Pcs und Malonyl-CoA Reduktase 

(Mcr) waren in höheren Mengen vertreten, wenn die Zellen bei Licht wuchsen. Folglich wurde 

vorgeschlagen, dass dieser Stoffwechselweg in der Regulierung eines Redox-Ungleichgewichts beteiligt 

ist, welches durch photosynthetische Aktivität ausgelöst wird.
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1 Introduction 

1.1 Carbon dioxide – a curse and a chance 

Carbon is a fundamental element in biology. It constitutes the backbone for all living matter on earth. 

Due to its chemistry, carbon can form covalent bonds with up to four other atoms. This makes carbon 

compounds highly versatile, ranging from simple one-carbon molecules like carbon dioxide (CO2) to 

highly complex and branched carbon scaffolds as in lipids, carbohydrates, proteins and nucleic acids. 

Primary producers like plants and autotrophic microorganisms can build all these building blocks from 

CO2 as sole carbon source, while heterotrophic organisms or so-called consumers require organic 

compounds for growth. The energy to drive growth can be either harvested from light or from chemical 

energy stored in the bonds of organic and inorganic compounds. Independent of the lifestyle, the 

metabolism of all living organisms constantly moves the carbon between the different reservoirs on earth 

(Figure 1). Even dead organic matter does not leave the carbon cycle. Over millions of years, buried 

organic matter is decomposed and transformed into fossil fuel, which would slowly recur through 

volcanic activities. This exemplifies how the carbon cycle keeps the balance between the different 

reservoirs over the long term. However, since the industrial era, an excess of CO2 is emitted into the 

atmosphere by human activities, primarily by fossil fuel combustion. This has led to continuous increase 

of the atmospheric CO2 concentration. 

CO2 represents one of the major greenhouse gases next to methane and nitric oxide and the increase in 

its atmospheric concentration initiates a vicious cycle of global warming. CO2 molecules absorb the 

infrared radiation from reflected sunlight and thereby heat up the atmosphere. Increased temperatures in 

turn make CO2 leak from the oceans and melt the pole ice, exposing surface that absorbs more heat1. 

With an atmospheric CO2 level of about 410 ppm as of 20192, even halting the CO2 emissions completely 

would not be sufficient to stop climate change3. Inevitably, we have to establish strategies to capture CO2 

efficiently from the atmosphere. A promising approach in the mitigation of climate change is the use of 

negative CO2 emission technologies, like the so-called ‘bioenergy with carbon-capture and storage’ 

(BECCS) technology. This technology envisions that energy is gained from combustion of CO2-derived 

biomass and released CO2 is then captured and stored indefinitely. Despite the potential of BECCS, there 

are many concerns. Growth of required biomass would compete with crop plants for land, water and 

fertilizer and safe geological storage reservoirs would need to be established. However, the advantage of 
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BECCS lies in employing natural CO2-fixation for biomass generation, which works at atmospheric CO2 

concentration and ambient conditions. In contrast, chemical CO2 reduction reactions usually require 

increased CO2 concentrations and high energy input4. Another strategy for climate change mitigation 

based on natural CO2-fixation is reforestation. An increase of 25 % in forested area could represent a 

sink for about 25 % of the current atmospheric CO2 pool5. However, a recent model predicts that the 

potential of our tropical forest trees to sequester additional CO2 is declining6. Taken together, there is a 

high demand for alternative innovative technologies. Synthetic biology, while still in its infancy, has a 

great potential to harness and even improve nature’s ability to capture CO2 from the atmosphere. 

Moreover, synthetic biology could be employed to convert CO2 not only into biomass but also into 

various complex carbon compounds such as fuels, bioplastics, or antibiotics. Towards that aim, 

carboxylases are the key players to provide substrates to biosynthetic pathways in a synthetic setup. In 

order to exploit the full potential of carboxylases, thorough understanding of the natural CO2-fixation 

processes needs to proceed its application.  

 

Figure 1: Simplified schematic of the global carbon cycle. Primary producers like plants fix atmospheric CO2. This biomass serves as 
feed for the whole ecosystem and its decomposition under pressure yields energy-rich fossil fuels. Augmented mining of these fossil fuels 
and the combustion thereof lead to a disproportional release of CO2. Synthetic biological strategies to harvest CO2 and convert it into value-
added products like biofuel, bioplastic or antibiotics might partially compensate for the increased CO2 emissions.  
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1.2 Natural CO2-fixation pathways 

Biological fixation of CO2 into organic matter is primarily catalyzed by carboxylating enzymes, so-called 

carboxylases. In autotrophic organisms, carboxylases are essential to assimilate biomass, which in turn 

feeds the ecosystem. To date, we know of six pathways for autotrophic CO2 assimilation. The most 

prominent pathway is the Calvin-Benson-Bassham (CBB) cycle, which performs in all plants, algae and 

some bacteria7. Not surprisingly, the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate-

carboxylase/-oxygenase (RubisCO), is probably the most abundant enzyme on earth8-10 and accounts for 

almost all biological carbon fixation in aquatic environments11. Its importance is also reflected in 

numerous studies undertaken to elucidate structures and the reaction mechanism in detail. In a first step, 

RubisCO binds the substrate ribulose-1,5-bisphosphate and forms the enediolate12. Proton abstraction is 

required for enolization and is likely performed by the carbamoyl group of an active site lysine. This 

carbamylation has been reported to be a crucial modification in order to activate RubisCO13,14. The same 

carbamoyl group is also required to coordinate a magnesium ion in the active site, which in turn stabilizes 

the enediolate. In this state, the nucleophilic enediolate attacks the CO2 to form a new C-C bond (Figure 

2). The C6 compound is subsequently hydrolyzed into two molecules of 3-phosphoglycerate. Despite 

RubisCO’s predominance in biological carbon fixation, its carboxylation reaction per se is not very 

efficient. RubisCO is a rather slow catalyst with an average turnover rate of less than ten per second in 

plant homologues and with a chance of erroneously use oxygen (O2) instead of CO2 as substrate15. This 

oxygenation reaction is catalyzed in roughly every fifth turnover and yields the rather toxic 2-

phosphoglycolate16. Photorespiration, the detoxification pathway for 2-phosphoglycolate, is a wasteful 

process that uses energy and releases CO2 and ammonia. 

The carboxylases in the autotrophic CO2 assimilation pathways 3-hydroxypropionate (3HP) bi-cycle17,18 

and 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle19 are acetyl-CoA and propionyl-CoA 

carboxylase (Acc and Pcc), which belong to the family of biotin-dependent carboxylases20-23. These 

enzymes consist of three functional domains, the biotin carboxylation (BC) domain, the biotin carboxyl 

carrier protein (BCCP) domain and the carboxyltransferase (CT) domain. The biotin cofactor is 

covalently linked through an amide bond to a lysine residue in the BCCP domain. This link serves as a 

swinging-arm that can swing the biotin moiety from the BC domain to the CT domain and back. The BC 

domain catalyzes the MgATP-dependent activation of bicarbonate to carboxyphosphate. Subsequent 

release of CO2 from carboxyphosphate and enolization of biotin promote the C-N bond formation 
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between these substrates to yield carboxybiotin (Figure 2). The carboxyltransferase reaction is most 

likely initiated by decarboxylation of carboxybiotin in the active site of the CT domain, followed by 

deprotonation and enolization of the substrate, which then combines with the CO2 through nucleophilic 

attack (Figure 2).  

Similarly, the carboxylation mechanism of phosphoenolpyruvate carboxykinase (Pck), a carboxylase 

employed in the autotrophic dicarboxylate/hydroxybutyrate (DC/HB) cycle24, also depends on activation 

of bicarbonate as CO2 species and enolate formation within the active site25-28. The activated 

carboxyphosphate is formed from bicarbonate and the phosphate group of phosphoenolpyruvate. 

Subsequently, the CO2 moiety from carboxyphosphate is released and attacked by the enolate form of 

pyruvate (Figure 2). The carboxylation reaction of the second carboxylase in the DC/HB cycle, the 

pyruvate:ferredoxin oxidoreductase (Por), underlies a more complex radical mechanism29,30. The 

reactive intermediate to react with the CO2 molecule is stabilized as an enamine formed between acetyl-

CoA and the cofactor thiamine pyrophosphate (Figure 2). The same enzyme also functions in the 

reductive tricarboxylic acid (rTCA) cycle31,32 together with the 2-oxoglutarate:ferredoxin 

oxidoreductase, another member of the same superfamily of enzymes. Isocitrate dehydrogenase (Idh) is 

the third carboxylase in the rTCA cycle. The reversible isocitrate dehydrogenase catalyzes the NAD(P)+-

dependent oxidative decarboxylation of isocitrate in the TCA cycle and the NAD(P)H- and CO2-

dependent reductive carboxylation of 2-oxoglutarate in the rTCA cycle. The catalytic reaction occurs in 

three steps33,34. During reductive carboxylation the 2-oxoglutarate substrate is first deprotonated within 

the active site and stabilized in the enolate form. The enolate subsequently undergoes C-C bond 

formation with the CO2 to yield oxalosuccinate, which is then reduced by NAD(P)H in the second step 

of catalysis (Figure 2). 
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Figure 2: Simplified reaction mechanism of some selected carboxylases. The two crucial steps of carboxylation, activation of the 
substrate to its enolate or enamine form and C-C (or C-N) bond formation between the activated substrate and CO2, are depicted for the 
selected carboxylases.  
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The difficulty in carboxylation reactions is the low reactivity of CO2. Despite the very few carboxylases 

that have been described in this chapter, a common principle to overcome this challenge becomes 

apparent. The carboxylase enhances the nucleophilic reactivity of the substrate by converting it into its 

enolate or enamine form. These intermediates are highly reactive and could simply resolve by abstracting 

a proton from free water molecules or any proton donor in its vicinity. Therefore, carboxylases need to 

(i) stabilize the enolate within their active sites, (ii) position the resolving electrophile in close proximity 

to the enolate and (iii) exclude undesired electrophiles from the active site. While these principles apply 

to all carboxylases, there is a difference in their preference for the CO2 species. In an aqueous solution, 

CO2 and bicarbonate are at equilibrium. While bicarbonate is the predominant species, it is an even 

weaker electrophile than CO2. Thus, carboxylases that use bicarbonate have to invest energy to activate 

it in a first step, e.g., biotin-dependent carboxylases or PEP carboxylase convert bicarbonate to 

carboxyphosphate.  

This chapter has set a focus on carboxylases in autotrophic CO2 fixation pathways. These “autotrophic 

carboxylases” 35 are essential as they supply most of the carbon for life on earth. Nevertheless, 

carboxylases play a crucial role in many other biological processes like organic carbon assimilation, 

biosynthesis or redox balancing. A few of the above-mentioned carboxylases serve in multiple pathways, 

e.g., biotin-dependent carboxylases that operate in fatty acid biosynthesis, polyketide biosynthesis and 

acetyl-CoA assimilation. Considering the broad functional spectrum of carboxylases, it will not be 

surprising if future studies uncover novel mechanisms and/or novel candidates of this enzyme class.  

1.3 Efficient carboxylation by the enoyl-CoA carboxylase/reductase family 

A significant discovery in the class of carboxylases was the enoyl-CoA carboxylase/reductase (Ecr) 

enzyme family. Its members catalyze the reductive carboxylation of an enoyl-CoA thioester to the 

corresponding malonyl-CoA derivative using CO2 and NADPH as reducing agent. This unprecedented 

biochemical reaction achieves one of the fastest turnover rates among all carboxylases known to date 

and complete specificity for CO2 in presence of oxygen. How is this carboxylation reaction so efficient? 

Comparable to the carboxylases described in chapter 1.2, Ecrs convert the enoyl-CoA substrate into its 

enolate form within the active site and stabilize it to increase the nucleophilic reactivity36. However, in 

the previously described carboxylases, substrate enolization is usually induced by a reversible 

deprotonation reaction (ΔG of about 0.5 to 1 kcal/mol)37. In contrast, Ecrs achieve enolization through a 
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hydride transfer from NADPH onto the β-position of the enoyl-CoA thioester. This step is nearly 

irreversible and thereby commits the enolate towards product formation rather than resolving into the 

substrate. The enolate then attacks the CO2 molecule and the resulting α-carboxylated acyl-CoA 

(malonyl-CoA derivative) is released from the active site (Figure 2)36,38. Interestingly, this efficient 

carboxylation reaction remained unnoticed for a long time, because in the absence of CO2 the enzyme 

catalyzes the “usual” reduction of enoyl-CoA by protonating the enolate. Only later, it has been 

uncovered that the reduction reaction per se, i.e., the protonation of the enolate, proceeds 

nonenzymatically36. In absence of CO2, a covalent ene intermediate between NADPH and the enoyl-

CoA ester accumulates, is released from the active site and subsequently decays into NADP+ and the 

reduced acyl-CoA36.  

The Ecr family is involved in a wide range of physiological processes. Crotonyl-CoA 

carboxylase/reductase, the first Ecr that has been discovered, is the key enzyme of the ethylmalonyl-CoA 

pathway38,39. It plays a crucial role in the assimilation of two-carbon compounds like acetyl-CoA in 

bacteria that lack the glyoxylate cycle34,39. Additionally, some members of the Ecr family operate in 

secondary metabolism where they provide extender units for polyketide biosynthesis40-43. Taken 

together, the physiological diversity and high catalytic efficiency make Ecrs valuable candidates for 

applications in biotechnology and synthetic biology. This is impressively reflected in the CETCH cycle, 

a synthetic CO2-fixation cycle established around the highly efficient Ecr carboxylation reaction44. The 

in vitro reconstituted cycle consists of 17 enzymes and compares favorably with natural autotrophic CO2 

fixation. Furthermore, engineered Ecrs have been successfully implemented in polyketide synthase 

systems where they provide unusual extender units for the structural diversification of polyketides45-47.  

Successful engineering of Ecrs underlies the fundamental understanding of the catalytic mechanism in 

general and of substrates and cofactor binding in particular. Crystal structures combined with kinetic and 

mutational studies offer insight into the catalytic mechanism of Ecrs. To date, there are two crystal 

structures of Ecrs available that include the respective CoA-ester substrate or product and the NADP 

cofactor in the active site (PDB 4A0S and 6OWE)48,49. Additionally, the CO2 molecule was positioned 

within the active site by in silico docking and Quantum Mechanics/Molecular Mechanics (QM/MM) 

simulations, respectively. This structural insights allowed for speculations about binding and 

stabilization of substrates. Only recently, a thorough study using experimental biochemistry and 

computational simulations revealed molecular details about the role of the individual active site amino 
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acids (Figure 3)49. As suggested before48, the side chain carboxamide NH2 group of the active site 

asparagine is directly involved in CO2 binding. The asparagine in turn is coordinated by two second shell 

residues, which seems to be necessary to properly orient the asparagine in respect to the CO2 molecule. 

On the opposite side, the CO2 molecule is stabilized through a complex hydrogen bonding network. An 

ordered water molecule coordinated by the active site histidine and glutamine is in direct contact to the 

CO2 molecule. Mutation of these residues result in loss of the ordered water molecule and hence to 

increased tumbling of the CO2 molecule. Nevertheless, carboxylation was fully maintained in both 

variants. A fourth amino acid was shown to be critical for efficient carboxylation in Ecrs. An aromatic 

residue (phenylalanine or tyrosine) beneath the CO2 molecule shields the active site from water. The 

mutation to a non-aromatic residue allows water diffusion into the active site where it displaces the CO2 

molecule and quenches the enolate intermediate. Taken together, the four active site residues constitute 

the two basic principles for efficient carboxylation in Ecrs: (i) stabilization of CO2 and proper positioning 

in respect to the substrate and (ii) exclusion of water from the active site. 

 

Figure 3: CO2-binding pocket of Ecr from Kitasatospora setae49. The CO2-binding pocket is defined by four conserved residues 
(Asn81, Phe170, Glu171, His365). CO2 was modeled into the structure (PDB 6OWE).  

Taken together, it was suggested that Ecr homologues containing these four conserved residues could 

catalyze the carboxylation of their substrates. One such homologue has been identified as the reductase 

domain of the multidomain propionyl-CoA synthase (Pcs). This enzyme has been described to catalyze 

the three step reaction sequence from 3-hydroxypropionate to propionyl-CoA in the 3-hydroxypropionate 

bi-cycle of Chloroflexus aurantiacus. There, carboxylase activity of the Pcs was unexpected, as the 
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reduced product propionyl-CoA is in turn substrate for subsequent enzymes in this autotrophic pathway. 

However, Pcs homologues are encoded beyond C. aurantiacus in a few potentially photosynthetic 

organisms, many of which belong to the aerobic anoxygenic phototrophic (AAP) bacteria18. The 

physiological role of Pcs in these bacteria and its potential to carboxylate is yet to be discovered.  

1.4 Aerobic anoxygenic phototrophic bacteria 

AAP bacteria are obligate aerobic organisms with a heterotrophic lifestyle that are capable of additionally 

harvesting light energy. Astonishingly, these bacteria have been overlooked until recently despite their 

wide distribution and potential ecological relevance. In marine surface water, they account for up to 15 % 

of the total microbial community and thus play a significant role in the marine carbon cycle50-52. About 

2-5 % of photosynthetic electron flux in the upper ocean have been attributed to AAP bacteria50. The 

photosynthetic apparatus of AAP bacteria is similar to that of purple non-sulfur bacteria; however, their 

16S ribosomal genes show a polyphyletic origin within the non-phototrophic proteobacteria. The 

evolutionary emergence of AAP bacteria therefore remains an enigma. It has recently been suggested 

that anaerobic phototrophic purple non-sulfur bacteria might have evolved independently into the 

proteobacterial AAP clades, in which most members lost the phototrophy during evolution53.  

The metabolic diversity across AAP bacteria exacerbates the general study of this functional group. 

Common to all members is the photosynthetic machinery, which consists of a type-II photosynthetic 

reaction center similar to that of purple non-sulfur bacteria and light-harvesting complexes that contain 

the pigment bacteriochlorophyll a (BChl a). Harvesting light energy under aerobic conditions harbors 

the great danger of the emergence of harmful reactive oxygen species (ROS). However, AAP bacteria 

have developed two major strategies to overcome this threat. First, AAP bacteria express a high amount 

of carotenoids, which are able to capture high-energy radiation and quench ROS54. And second, the 

BChl a expression underlies strong regulation and is only activated in the dark55-57. This regulation seems 

contradictory. However, regarding the bacteria’s rather long generation time and the continuous 

day/night cycle they experience in their natural environment, BChl a should always be available at 

sufficient amounts to enable photosynthesis throughout the light period. In line with this strategy, growth 

promoting effects by light could only be observed when the AAP bacteria were incubated in a dark/light 

cycle and not if continuous illumination was applied55,56. While reported several times under laboratory 

cultivation conditions, only recently, direct evidence was also collected for the light-dependent 
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stimulation of natural populations of marine AAP bacteria58. Some AAP bacteria have been shown to 

accumulate as much as 25 – 110 % more carbon under light/dark conditions compared to the dark59. The 

increased growth arises mainly from the ability to invest organic compounds into biomass production 

rather than respiring them for energy conservation. Upon illumination, respiration was shown to decrease 

to about a quarter of its rate in the dark59,60. Additionally, increased CO2-fixation rates in the light have 

been observed to provide for up to 11 % of the cellular carbon content59. Despite the significant 

contribution of carbon fixation, genetic as well as experimental evidence for autotrophic growth is 

lacking61-63. Dinoroseobacter shibae was shown to up-regulate the ethylmalonyl-CoA pathway in light64. 

Hence, the two carboxylases of this pathway, crotonyl-CoA carboxylase/reductase and propionyl-CoA 

carboxylase, could account for the increased CO2-fixation rate. However, other AAP bacteria like 

Erythrobacter sp. NAP1 do not encode the genes for the ethylmalonyl-CoA pathway but still demonstrate 

enhanced CO2-fixation in light59. This light-promoted efficiency in carbon utilization provides a 

competitive advantage over purely heterotrophic bacteria. Moreover, it has been demonstrated that the 

exposure to light-dark cycles extends the survival of AAP bacteria under nutrient starving conditions64,65. 

The strategies and pathways underlying these phenomena remain to be thoroughly investigated. 
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1.5 Aim of this thesis: 

A bioinformatics inquiry revealed that one domain of the multidomain Pcs contains the CO2-binding 

motif characteristic to Ecrs. So far, Ecrs had only been known as lone-standing enzymes. Therefore, this 

finding attracted interest and prompted for further investigations. A general aim of this study was to 

characterize the multidomain enzyme and to engineer it for its application in (synthetic) CO2-fixation 

pathways. A second objective was the understanding of the physiological role of Pcs in its host 

Erythrobacter sp. NAP1.  

Pcs is a fascinating enzyme as it comprises three catalytic functions in one scaffold. Chapter 2 aimed to 

comprehensively characterize Pcs using biochemical and structural approaches. These data could build 

the base to understand the mechanistic principles of such a complex enzyme. Thorough kinetic assays 

could provide insight into the synchronization of the three-step reaction sequence. Besides, the 

evolutionary emergence and advantage of such a fusion enzyme deserved study. Structural arrangements 

required to fuse three stand-alone enzymes into a fully functional complex could in turn hint towards 

essential regulatory or catalytic contributions. Canonical motives for the evolution of Pcs needed to be 

probed, e.g., substrate channeling or increased catalytic efficiency compared to stand-alone enzymes. 

Regarding the highly reactive acrylyl-CoA intermediate, substrate channeling was a highly likely 

outcome. However, substrate channeling of the bulky and electrically charged CoA-thioester 

intermediate would presumably require a mechanism that differentiates from canonical substrate 

channeling enzymes. The elaborate study could deepen our understanding of general principles in fusion 

and substrate channeling enzymes. Furthermore, it would allow for detailed comparison of the Pcs 

reductase domain with Ecrs. The question was raised whether the two principles for efficient 

carboxylation in Ecrs, i.e., effective stabilization of CO2 and shielding of the active site from water, could 

be universally applied to Ecr homologues. Chapter 3 aimed to address this question on the example of 

the Pcs reductase domain. A carboxylating Pcs would be a highly attractive candidate to be employed in 

(synthetic) CO2-fixation pathways, like the HOPAC cycle that includes the same three-step reaction 

sequence. Furthermore, this proof-of-principle would unlock a great potential to engineer carboxylation 

activity within Ecr-related reductases. 

Pcs had been identified as part of the autotrophic 3-hydroxypropionate bi-cycle in C. aurantiacus. The 

genomic distribution of pcs in several (potential photo-) heterotrophs raised the question of the 
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physiological role of this enzyme within these organisms. The objective in chapter 4 was to investigate 

the physiological and ecological role of Pcs in the aerobic anoxygenic phototrophic bacterium 

Erythrobacter sp. NAP1. In vivo approaches across different growth conditions could reveal the 

regulation and function of Pcs in the metabolism of this marine bacterium.   
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2 The multi-catalytic compartment of propionyl-CoA synthase 

sequesters a toxic metabolite 

2.1 Abstract 

Cells need to cope with toxic or reactive intermediates formed during metabolism. One strategy is to 

sequester reactions that produce such intermediates within specialized compartments or tunnels 

connecting different active sites. Here we show that propionyl-CoA synthase (PCS), a 400 kDa 

homodimer, three-domain fusion protein and the key enzyme of the 3-hydroxypropionate bi-cycle 

for CO2-fixation, sequesters its reactive intermediate acrylyl-CoA. Structural analysis showed that 

PCS forms a multi-catalytic reaction chamber. Kinetic analysis suggests that access to the reaction 

chamber and catalysis are synchronized by interdomain communication. The reaction chamber of 

PCS features three active sites and has a volume of only 33 nm³. As one of the smallest multi-reaction 

chambers described in biology, PCS could inspire the engineering of a new class of dynamically 

regulated nanoreactors.  

2.2 Introduction 

Biological systems face the challenging task of efficiently catalyzing hundreds to thousands of 

different chemical reactions in one “pot”, the cytoplasm. Diffusion is relatively fast compared to 

biochemical reactions, which leads to uniform concentrations of metabolites in the cytoplasm, in 

particular when considering the size and structural organization of microbial cells 1. The free diffusion 

of pathway intermediates can result in “cross-talk” between metabolic pathways and cause cross-

inhibition, inactivation or even irreparable damage to metabolism, especially when the respective 

intermediates are instable or reactive 2. Nature has evolved several strategies to ensure that 

problematic pathway intermediates are not released into the cytoplasm, but directly transferred to the 

next enzyme or active site. These strategies include encapsulation of intermediates in membrane or 

protein delimited organelles (compartmentalization), covalent attachment of intermediates to multi-

domain enzyme complexes or carrier proteins, electrostatic guidance of intermediates from one active 

site to the next, or formation of direct intramolecular tunnels between two active sites 1.  

Here, we report on the enzyme reaction cascade from 3-hydroxypropionate to propionyl-CoA, which 

is the key sequence in the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation 3,4. The 

overall reaction sequence comprises three enzymatic steps, during which a highly reactive, toxic and 

unstable intermediate, acrylyl-CoA, is formed5. In autotrophic Sulfolobales the three reactions are 
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catalyzed by individual enzymes 6,7. However, in several phyla (e.g., Proteobacteria and Chloroflexi, 

Supplementary Figure 1) the three reactions are catalyzed by a fusion enzyme of about 1850 amino 

acids, that comprises three catalytic domains, the propionyl-CoA synthase (PCS, Figure 1 and S2) 3, 

suggesting that PCS specifically evolved as a fusion enzyme to overcome the free diffusion of 

reactive acrylyl-CoA. Here we show that the PCS from Erythrobacter sp. NAP1 (GenBank accession 

no. EAQ29651) is a multi-catalytic “nanoreactor” that features a central reaction chamber to sequester 

its reaction intermediates acrylyl-CoA during catalysis. Biochemical experiments show that access to 

the reaction chamber is dynamically controlled during the catalytic cycle and that catalysis is 

synchronized through interdomain communication. 

 
Figure 1. Trifunctional PCS: Structure and reaction sequence. Dimeric structure of PCS from Erythrobacter sp. NAP1 (PDB 
6EQO). One protomer is depicted in cartoon and one in surface representation. The multi-domain organization is highlighted by 
different colors: orange, ligase domain; purple, dehydratase domain; cyan, reductase domain; blue sphere, N-terminus; red sphere, C-
terminus. Schematic arrangement of the three domains and their individual reactions are shown using the same color code.  

  



The multi-catalytic compartment of PCS sequesters a toxic metabolite 

-26- 
 

2.3 Results 

PCS sequesters the reactive intermediate acrylyl-CoA 

To study the catalytic cycle of PCS from 3-hydroxypropionyl-CoA to propionyl-CoA (Figure 1), we 

produced PCS from Erythrobacter sp. NAP1 (GenBank accession no. EAQ29651) and characterized 

the enzyme biochemically. When we followed the overall reaction of PCS, we could not detect 

acrylyl-CoA in the assay mixture, while the other intermediates 3-hydroxypropionyl-CoA and 

propionyl-CoA accumulated over time (Figure 2a). Only when we increased the concentration of the 

enzyme by two orders of magnitude, acrylyl-CoA became detectable, albeit at very low levels (Figure 

2b). The concentration of acrylyl-CoA corresponded to 1.8 ± 0.1 % of PCS monomers and stayed 

constant during steady-state. This demonstrated that acrylyl-CoA was formed in situ by the 

dehydratase domain, but presumably stayed sequestered within PCS, where it was quickly consumed 

by the reductase domain. Notably, when the reduction reaction was prevented (by omitting NADPH), 

acrylyl-CoA did yet not accumulate, while 3-hydroxypropionyl-CoA still did (Figure 2c). This 

indicated that even when interrupting the catalytic sequence, acrylyl-CoA remained effectively 

sequestered within PCS. We could also show that externally added intermediates were not or only to 

a minor amount converted by the enzyme (Figure 2d and 2e), as discussed in detail later in this 

manuscript. 

 
Figure 2. PCS sequesters the reactive intermediate acrylyl-CoA. a, Time course of the overall reaction with 0.1 µM PCS, 800 µM 
CoA, 500 µM 3-hydroxypropionate, 800 µM ATP and 300 µM NADPH. Production of the 3-hydroxypropionyl-CoA intermediate 
(orange) and the final product propionyl-CoA (cyan) was observed. In contrast no free acrylyl-CoA was detectable. b, Time course of 
the reaction containing 10 µM PCS, 5 mM CoA, 5 mM 3-hydroxypropionate, 5 mM ATP and 5 mM NADPH. At these high enzyme 
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concentrations acrylyl-CoA (purple) was detected at 0.18 µM during steady-state corresponding to 1.8% occupancy of reductase active 
sites. 3-Hydroxypropionyl-CoA und propionyl-CoA accumulate over time. c, as in a, but without NADPH. Again, formation of 3-
hydroxypropionyl-CoA was observed, but not of free acrylyl-CoA. d, Isotopic labeling competition experiment containing unlabeled 
3-hydroxypropionate and either 13C-labeled 3-hydroxypropionyl-CoA (experiment 1) or acrylyl-CoA (experiment 2). The reaction 
was started by the addition of PCS. Products were analyzed by LC-MS (see Supplementary Table 4 for detailed assay conditions). e, 
Results of the isotopic labeling competition experiment. Only 0.8 ± 0.4 % of propionyl-CoA was produced from exogenous 13C-
labeled 3-hydroxypropionyl-CoA during steady state (experiment 1). Approximately every fifth propionyl-CoA (21 ± 15%) was formed 
from exogenous 13C-labeled acrylyl-CoA during steady-state (experiment 2). a – c, data of a representative single experiment. e, data 
mean ± s.d. (n=3). 

PCS forms a multi-catalytic reaction chamber 

To understand the structural basis of acrylyl-CoA sequestration in PCS, we solved the crystal 

structure of the enzyme in the presence of CoA, NADP+ and an ATP analog 

(phosphomethylphosphonic acid adenylate ester) using a new phasing compound 8 (PDB 6EQO, 

Supplementary Table 1 and Supplementary Figure 3 and 4). PCS forms a dimer (of 400 kDa) 

around a central core of reductase domains (Figure 1). The ligase and dehydratase domains extend 

to both sides, enclosing spherical compartments (‘reaction chambers’, Supplementary Figure 5) that 

each feature three internal active sites (Figure 3). The active sites are not connected through 

individual tunnels but all open into the central cavity of the reaction chamber. The surface of the 

central cavity is positively charged, which may help retaining the CoA-ester intermediates during 

catalysis or even guide them between active sites as shown in the example of the malate 

dehydrogenase / citrate synthase cascade9-11. Escape of intermediates from the reaction chamber is 

presumably disfavored by negative charges surrounding any small openings.  

The inner diameter of the reaction chamber is between 3.5 – 5.5 nm with a total volume of 33 nm³. 

This volume is between three and six orders of magnitude smaller than that of bacterial 

microcompartments 12 (14 × 103 to ~10 × 107 nm3, calculated from inner diameters ranging from 30 

to 600 nm) 13, two orders of magnitude smaller than of described nanocompartments, such as 

encapsulins (5 × 103 nm3, calculated from inner diameter of 22 nm) 14, and even half of that of 

proteasomes (59 and 84 nm3) 15. Thus, PCS forms one of the smallest multi-catalytic reaction 

chambers observed in Nature.  
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Figure 3. Multi-catalytic reaction chamber of PCS. Volume filling representation16 of the reaction chambers enclosed by PCS. The 
central catalytic reaction chamber of each protomer is formed through the contribution of all three domains. Orange, contribution of 
the ligase domain; purple, contribution of the dehydratase domain; cyan, contribution of the reductase domain. The close up shows a 
cross section through the reaction chamber. Electrostatic charge distribution is shown as a gradient from red – negatively charged to 
blue – positively charged. The three active sites are well connected within the reaction chamber. Large positively charged patches may 
help retaining the CoA-ester intermediates inside during catalysis or even guide them between active sites. Negative charges around 
the small openings may also prevent leakage of the negatively charged CoA-derivatives. The PCS structure co-crystalized with CoA 
(no density), an ATP analog and NADP+ is depicted in cartoon showing the ligase domain in orange, the dehydratase domain in purple 
and the reductase domain in cyan. CoA binding sites have been modelled based on the superposition of the structures of lone-standing 
CoA ligase (PDB 2P2F) 17, dehydratase (PDB 5JBX) 18 and reductase (PDB 4A0S) 19 onto PCS (compare Supplementary Figure 6, 
7 and 8). Distances between the active sites have been determined by measuring the distance between sulfur atoms of modelled CoA 
moieties to be: ligase - dehydratase 42.5 Ǻ, dehydratase – reductase 33.7 Ǻ, ligase – reductase 63.5 Ǻ. 
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Structural elements in PCS mimic protomer contributions 

The active sites of the acyl-CoA ligase, dehydratase and reductase domain of PCS align well with the 

ones of their corresponding lone-standing homologues (i.e., individual acyl-CoA ligase, dehydratase 

and reductase enzymes Supplementary Figure 6, 7 and 8). However, these lone-standing enzyme 

pendants are organized as homo-oligomers that require contributions from neighboring protomers in 

the oligomeric complex, whereas the individual domains of PCS seem to be organized as functional 

monomers within the enzyme 17-19. Notably, in PCS the individual “monomeric” domains carry 

additional structural elements that apparently compensate (or “mimic”) the essential contributions 

from the missing neighboring protomers in the lone-standing pendants (Supplementary Figure 9, 

10 and 11).  

As an example, compared to lone-standing dehydratases, the dehydratase domain of PCS features 

additional helices (Supplementary Figure 10) containing two highly conserved residues (F1220 and 

K1223 18) that are involved in stabilization of the CoA-ester. In case of the lone-standing dehydratases 

these residues usually protrude from one protomeric subunit helix into the active site of a neighboring 

protomeric subunit of the homo-trimeric complex. Another example is the reductase domain of PCS 

that carries a structural extension compensating the part of the CoA binding site, which is provided 

by a neighboring protomeric subunit in lone-standing homo-tetrameric enoyl-CoA 

reductases/carboxylase homologues (Supplementary Figure 11). Although the additional elements 

in the monomeric PCS domains structurally mimic the missing protomeric contributions from the 

lone-standing counterparts, they seem not to be related on the primary sequence level, which raises 

the question about the evolutionary history and significance of these additional structural elements. 

In addition to these protomer-mimicking structural elements, the ligase domain of PCS carries 

structural extensions that are absent in any lone-standing acyl-CoA synthetase homologues 

(Supplementary Figure 9), most prominently, an additional four helix bundle. This four-helix 

bundle appears to be unique to PCS and is exclusively found in PCS homologues (based on BLASTP 

analysis). The four helix bundle caps one side of the reaction chamber. Its absence would leave the 

reaction compartment wide open (Supplementary Figure 14). Taken together, PCS is more than just 

a simple fusion of individual catalytic domains, but contains structural extensions that allow to form 

a highly organized multi-functional enzyme compartment.  

Access to the PCS reaction chamber is controlled 

How is the sequence of reactions orchestrated within the compartment? The three enzyme reactions 

of PCS can be measured individually, when the appropriate substrates and cofactors are provided, 

demonstrating that all active sites are in principle accessible for their respective substrates 3. We 
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determined the kinetic parameters for the overall reaction of PCS as well as for each catalytic domain. 

While the ligase and the dehydratase domain had apparent turnover frequencies (kcat) comparable to 

the overall reaction of PCS, the kcat of the reductase domain was almost 30-fold higher 

(Supplementary Figure 12, Supplementary Table 2 and 3). This suggests that acrylyl-CoA is 

immediately consumed upon its formation in situ. To study whether externally provided intermediates 

can access the reaction chamber of PCS during steady-state, we performed an isotopic labeling 

competition experiment 20,21. When starting from 3-hydroxypropionate, PCS preferentially catalyzed 

the overall reaction. Externally added 3-hydroxypropionyl-CoA was unable to enter PCS under these 

conditions, while some externally added acrylyl-CoA was converted to propionyl-CoA. However, 

the amount of isotopically labeled propionyl-CoA corresponded well to the amount of acrylyl-CoA 

expected to be turned over in the pre-steady-state of PCS (i.e., within the first 0.6 s before 3-

hydroxypropionyl-CoA is formed by the ligase domain) (Figure 2d, 2e and Supplementary Table 

4). In other words: despite the high catalytic efficiency of the reductase domain, only a minor amount 

of externally added acrylyl-CoA was reduced by PCS in the steady-state. These results demonstrated 

that catalysis in PCS is consecutive, and that internally produced 3-hydroxypropionyl-CoA and 

acrylyl-CoA are effectively channeled within the enzyme. 

Interdomain communication regulates access to the chamber 

Apparently, external acrylyl-CoA is prevented from entering the reaction chamber of PCS, indicating 

that the enzyme assumes a “closed state” during catalysis. Therefore, we wondered, if any of the 

substrates (CoA, ATP, 3-hydroxypropionate) or products (AMP) would restrict access of exogenous 

acrylyl-CoA to the reductase domain during steady-state. Indeed, CoA had a strong effect on both the 

KM and the kcat of acrylyl-CoA consumption by the reductase domain. Most notably, binding of CoA 

to the ligase domain directly lowered activity of the reductase domain. We showed that lysine K783 

plays a crucial role in conferring this interdomain communication (Supplementary Figure 12, 13 

and Supplementary Table 2). The synchronization of domains in PCS was additionally supported 

by the fact that NADPH (the co-substrate of the third reaction) had a strong effect on the kinetic 

parameters of the first reaction. Notably, this effect was independent from an active reductase domain. 

NADPH had an ever stronger effect on the kinetic parameters of the ligase reaction when the cofactor 

was added to a dehydratase mutant of PCS (E1027Q variant), where the reductase domain is still 

functional but not provided with substrate due to the inactive dehydratase domain. These observations 

suggested that interdomain communication in PCS works in both directions (Supplementary Figure 

12 and Supplementary Table 2) and that the individual domains in PCS do not act independently 

from each other, but catalyze the three-step reaction sequence in a concerted fashion. 
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Taken together, our experiments demonstrated a functional coupling of the last reaction step in PCS 

to the first one and vice versa. Apparently, PCS undergoes synchronized conformational changes 

during catalysis allowing substrates and products to enter and leave the reaction chamber. The 

gatekeeper to the reaction chamber of PCS is presumably the ligase domain. Stand-alone CoA ligases 

undergo significant conformational changes between “open” and “closed” states during catalysis 17,22. 

When we superposed a “closed-state” Salmonella enterica ligase (PDB 2P2F) 17 with the PCS ligase 

domain, the structures aligned almost perfectly (rmsd of 0.932 Å over 441 Cα-atoms) with the 

exception of above mentioned additional four-helix bundle extension that is only present in PCS 

(Supplementary Figure 9). An “open-state” ligase of Saccharomyces cerevisiae (PDB 1RY2) 22 still 

aligned well to the PCS ligase domain with its N-terminal domain (rmsd of 0.955 Å over 374 Cα-

atoms), while the C-terminal domain (~130 residues) appeared to be rotated outwards. Modelling a 

corresponding conformational change onto PCS resulted in the exposure of a “hole” that would 

provide access to the interior of an “open state” compartment (Supplementary Figure 14). Upon 

binding of CoA and formation of 3-hydroxypropionyl-CoA the ligase domain would switch back to 

the closed state, sealing the reaction chamber and sequestering the CoA-bound intermediates. 

We performed limited proteolysis on PCS with trypsin in the absence and presence of different 

substrates and products to directly test for conformational changes of PCS during catalysis 

(Supplementary Figure 15). When incubated in the presence of CoA, which restricts access to the 

active site of the reductase and forces the enzyme in the “closed” confirmation, PCS was fragmented 

within 90 min. In contrast, the simultaneous addition of 3-hydroxypropionate, NADP+ and ATP 

protected PCS from total proteolysis (Supplementary Figure 16). Peptide fragment analysis 

localized the changes in proteolysis to the flexible parts of the ligase domain that get solvent exposed 

in the “closed” formation and presumably buried in the “open” confirmation of the enzyme. In 

summary, limited proteolysis confirmed that the enzyme assumed different conformations depending 

on the presence of different substrates or products. Additional SAXS analyses of PCS in the presence 

of different substrates supported this conclusion (Supplementary Table 5). 

2.4 Discussion 

PCS, a key enzyme in the 3-hydroxypropionate bi-cycle for CO2 fixation, catalyzes the three-step 

reaction sequence from 3-hydroxypropionate to propionyl-CoA. The enclosed reaction chamber, the 

observed interdomain communication and the proposed conformational changes suggest a highly 

complex and synchronized catalytic mechanism according to the following model (Figure 4). First, 

the ligase forms 3-hydroxypropionyl-AMP from ATP and 3-hydroxypropionate in the open 
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conformation. Binding of CoA then closes the reaction chamber leading to the formation of 3-

hydroxypropionyl-CoA inside the enzyme. CoA-binding is facilitated by NADPH, which is 

consistent with the lowered KM,CoA observed upon NADPH addition and might ensure that the enzyme 

contains all necessary cofactors to catalyze the complete reaction sequence after closing the chamber. 

The formed 3-hydroxypropionyl-CoA is subsequently dehydrated to acrylyl-CoA within the closed 

reaction chamber, isolated from the external environment. The final reduction reaction triggers the 

re-opening of the reaction chamber for product release and prepares the enzyme for the next catalytic 

cycle. This mechanism fits well with the observation that the kcat of the ligase reaction alone drops 

significantly in presence of NADPH, indicating that NADPH stabilizes the closed conformation and 

limits the catalytic rate of the ligase domain.  

Our experiments show that the three domains of PCS follow a synchronized reaction mechanism to 

sequester and channel the toxic intermediate acrylyl-CoA between active sites. Thus, PCS is not the 

simple fusion product of three individual enzymes, but represents a sophisticated three-dimensional 

arrangement of three different domains enclosing a central reaction chamber connecting all three 

active sites. The volume of the reaction chamber of PCS (33 nm3) is several orders of magnitude 

smaller than those of known bacterial micro- or nanocompartments. Usually proteinaceous 

compartments consist of self-assembling shell proteins that encapsulate their enzymes 23-26. In PCS, 

these elements are integrated all into one polypeptide, which fulfills both the structural role of forming 

the reaction chamber, as well as the catalytic role of driving the multi-reaction sequence. This 

minimizes biosynthetic costs, because no additional proteins are required to build the compartment.  

The three-reaction sequence in PCS is orchestrated through interdomain communication and 

conformational changes. Access to the reaction chamber is catalytically controlled by the ligase 

domain that is the only entry and exit site. This makes PCS a complex ‘nanoreactor’ and differentiates 

the enzyme from canonical channeling enzymes (eg. tryptophane synthase27,28, 

amidotransferases29,30), which usually connect two active sites through a narrow channel where 

conformational changes of single residues suffice to gate separate entry and exit sites29,31,32. 

Compared to dimethylglycine oxidase (DMGO) that has also been described to possess an internal 

cavity and a single entry and exit funnel, PCS appears to be more complex, featuring a reaction 

chamber of three active sites and a more complex opening and closing mechanism 33,34.  

PCS catalyzes three very fundamental chemical reactions in CoA-ester biochemistry and is able to 

retain free CoA-esters within its reaction chamber. Known CoA-ester enzyme cascades, such as 

polyketide, fatty acid or HMG-CoA synthases, require covalently attached CoA-intermediates or 

shared binding sites of the CoA moiety between two active sites to direct intermediates along a 
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defined multi-reaction sequence35-37. Compared to those PCS employs an intriguingly ‘simple’ design 

principle to catalyze a consecutive reaction sequence within a controlled environment. The natural 

example of a minimal self-assembling nanoreactor that is dynamically regulated could serve as a 

model for the engineering of spatially and temporally controlled reaction sequences 38-43, especially 

such that proceed via toxic, reactive or unstable intermediates. 

 
Figure 4. Proposed catalytic cycle of PCS. In the open conformation 3-hydroxypropionate (3OHP) and ATP are converted to 3-
hydroxypropionyl-AMP (3OHP-AMP) through the ligase domain (orange). The binding of CoA induces closing of the enzyme and 
the formation of 3-hydroxypropionyl-CoA (3OHP-CoA). 3OHP-CoA is released into the reaction chamber, where it is converted by 
the dehydratase domain (purple) to acrylyl-CoA. Acrylyl-CoA then enters the active site of the reductase domain (cyan). Following 
the reduction of acrylyl-CoA to propionyl-CoA the reaction chamber reopens to release propionyl-CoA, which leaves PCS ready for 
the next catalytic cycle.  
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2.5 Methods 

Chemicals 

Chemicals were obtained from Sigma-Aldrich (Munich, Germany) and CARL ROTH GmbH 

(Karlsruhe, Germany). 3-hydroxypropionate was bought from TCI Deutschland GmbH (Eschborn, 

Germany). Coenzyme A was purchased from Roche Diagnostics. 1-13C-propionate sodium salt was 

purchased from Cambridge Isotope Laboratories Inc. (Tewksbury, USA). Biochemicals and materials 

for cloning and expression were obtained from Thermo Fisher Scientific (St. Leon-Rot, Germany), 

New England Biolabs GmbH (Frankfurt am Main, Germany) and Macherey-Nagel GmbH (Düren, 

Germany). Carbonic anhydrase was bought from MP Biomedicals (Illkirch, France). Primers or 

synthesized genes were obtained from Eurofins MWG GmbH (Ebersberg, Germany) or the DOE 

Joint Genome Institute (California, USA), respectively. Materials and equipments for protein 

purification were obtained from GE Healthcare (Freiburg, Germany), Bio Rad (Munich, Germany) 

or Merck Millipore GmbH (Schwalbach, Germany). 

Synthesis of 3-hydroxypropionyl-CoA, 13C-acrylyl-CoA and 13C-3-hydroxypropionyl-CoA 

For the synthesis of unlabeled 3-hydroxypropionyl-CoA a previously described method using 

carbonyldiimidazole coupling of the precursor acid with coenzyme A was used 44. Unlabeled acrylyl-

CoA was synthesized using a previously described mixed anhydride coupling via 

ethylchloroformate44. 13C-acrylyl-CoA and 13C-3-hydroxypropionyl-CoA were synthesized in two 

steps from 13C-propionate. In the first step the CDI coupling method was adapted for the synthesis of 
13C-propionyl-CoA by a protonation step. 13C-propionate (0.156 mmol, 4.8 eq.) was dissolved into 

1 mL THF containing pTsOH (0.156 mmol, 4.8 eq.) for 15 min, the mixture was centrifuged and CDI 

(0.130 mmol, 4 eq.) added to the supernatant. The mixture was stirred at RT for 1 h. CoA (0.0325 

mmol, 1 eq.) dissolved in 250 µL 0.5M NaHCO3 was added and stirred for 1h. The mixture was 

lyophilized, HPLC purified and again lyophilized. 13C-acrylyl-CoA was synthesized enzymatically 

using the acyl-CoA oxidase Acx4 from Arabidopsis thaliana 45. A 1 mL assay contained 100 µL 1 M 

KHPO4 200 µL 30 mM 13C-propiony-CoA and 600 µL 1mg/mL Acx4. The reaction was quenched 

after 1 h by adding 20 µL 50% formic acid and directly injected into the HPLC-MS for purification 

using a previously described purification protocol 44. In case of 13C-3-hydroxypropionyl-CoA the 

assay contained additionally 50 µL of the dehydratase PhaJ from Pseudomonas aeruginosa for direct 

hydration of the in situ generated acrlyl-CoA. 
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Bacterial strains and growth conditions 

E. coli DH5α (Thermo Scientific™) strains were used for cloning and grown in LB medium 46. For 

protein expression E. coli BL21-AI™ (Invitrogen) or Arctic-Express (DE3) RIL (Agilent 

Technologies) were grown in TB medium47. Incubation temperature was 37°C. Antibiotics for 

selection purposes were used accordingly: 100 µg/ml ampicillin, 15 µg/ml gentamycin. 

Cloning. All in silico cloning was performed with Clone Manager 9 (Scientific & Educational 

Software). For purification, preparation, cloning, transformation and amplification of DNA, standard 

protocols were used 48. Plasmid isolation and PCR product purification was performed with kits from 

Macherey Nagel (Düren, Germany) according to the manufacturer’s protocols.  

The gene encoding for PCS (GenBank accession no. EAQ29651) with an N-terminal 10x His tag was 

synthesized by the DOE Joint Genome Institute. The construct was cloned into the expression 

backbone pET-16b by restriction cloning, resulting in the plasmid pTE1005. Point mutants were 

generated by QuickChange® Site-Directed mutagenesis (Stratagene, La Jolla, USA). Following 

primers were used: forward primer (5’-CGT TTC GGT CAA CCA CAA ATC AAT CTT CGC-3’) 

and reverse primer (5’-GCG AAG ATT GAT TTG TGG TTG ACC GAA ACG-3’) for the E1027Q 

variant; forward primer (5’-CGG AAA TTT TTG GCA CAG CGC TGT GCA ATG CTT ATG AG-

3’) and reverse primer (5’-CTC ATA AGC ATT GCA CAG CGC TGT GCC AAA AAT TTC CG-

3’) for the H1769A variant; forward primer (5’-CCT CAC AGC CAG ATG GGT GTA ACT CC-3’) 

and reverse primer (5’-GGA GTT ACA CCC ATC TGG CTG TGA GG-3’) for the K783M variant. 

Expression and purification of PCS 

PCS was expressed from the plasmid pTE1005 using E.coli ArcticExpress (DE3) RIL as expression 

host. The cells were transformed with the expression plasmid and plated on LB agar containing 

selective antibiotic and grown overnight. The colonies were used to inoculate 1 L TB medium. The 

expression culture was incubated at 37°C while shaking at 110 rpm until an OD600 of 0.7 – 0.9 was 

reached. The E.coli ArcticExpress (DE3) RIL culture was cooled down to 14°C before induction. 

Expression was induced by adding 0.25 mM IPTG. The culture was incubated for 16-20 h. The cells 

were harvested by centrifugation at 5000 x g for 10 min. The pellet was stored at -20°C, optionally. 

Cells were resuspended in a 1:3 ratio (w/w) in Buffer A (50 mM Tris-HCl pH 7.9, 500 mM NaCl) 

containing SIGMAFAST™ protease inhibitor (Sigma-Aldrich, Munich, Germany) and lysed by 

ultrasonication. The lysate was cleared by ultracentrifugation at 50’000 x g for 45 min at 4°C 

followed by filtration through a 0.45 μm syringe filter. The lysate was loaded onto a 1 mL His-Trap 

(GE Healthcare). Unspecifically bound proteins were washed off with 15 mL of 5 % Buffer B 

(50 mM Tris-HCl pH 7.9, 500 mM NaCl, 500 mM imidazole). To wash away the E.coli 
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ArcticExpress (DE3) RIL Cpn60 chaperone, an additional wash step was performed with 15 mL 

removal buffer (50 mM Tris-HCl pH 7.5, 50 mM KCl, 20 mM MgCl2, 5 mM ATP). PCS was eluted 

with 100% buffer B and applied to a pre-equilibrated HiLoad 16/60 200 pg superdex (GE Life 

Science) column (150 mM NaCl, 20 mM Tris HCl pH 7.9). The purity of the PCS was tested by SDS-

PAGE (Supplementary Figure 17).  

Kinetic characterization of PCS 

Spectrophotometric assays were set up to measure the activity of PCS. The assays were performed in 

10 mm quartz cuvettes (Hellma Analytics) on a Cary-60 UV/Vis spectrometer (Agilent Technologies 

Inc. Santa Clara, CA, USA). The assay temperature was set to 30 °C. The parameters for the CoA 

ligase domain alone were measured using a coupling assay via myokinase (purified from ASKA 

JW1375), pyruvate kinase and lactate dehydrogenase (SigmaAldrich P02694). To probe the influence 

of acrylyl-CoA on the ligase reaction, the assay was repeated using the PCS E1027Q variant deficient 

in the enoyl-CoA hydratase reaction to avoid back reaction of acrylyl-CoA to 3-hydroxypropionyl-

CoA. In this assay PCS and acrylyl-CoA were added to the reaction and incubated for 5 min at 30°C 

before starting the reaction with the addition of CoA. The effect of NADPH on the ligase reaction 

was also tested with the PCS E1027Q variant to avoid overall reaction. The reaction catalyzed by the 

dehydratase domain was assayed using the PCS H1769A variant that is deficient in the reductase 

reaction. Acrylyl-CoA formation was coupled to its reduction by a stand-alone reductase (Etr1p from 

Saccharomyces cerevisiae). The PCS reductase reaction was measured using the E1027Q variant that 

is deficient in the enoyl-CoA hydratase reaction to avoid the back reaction of acrylyl-CoA to 3-

hydroxypropionyl-CoA. The assay was repeated in presence of different concentrations of free CoA. 

PCS and CoA were added to the reaction mixture and incubated for 10 min at 30°C before starting 

the reaction with the addition of acrylyl-CoA. 

All reactions were measured by following the consumption of NADPH or NADH (ligase coupling 

assay) at 340 nm (εNAD(P)H = 6.22 mM-1 cm-1) or at 365 nm (εNADH = 3.4 mM-1 cm-1). The detailed 

conditions for all assays can be found in Supplementary Table 2.  

Crystallization of PCS 

All crystallization was performed at 18°C using the sitting drop method in 96-well 2-drop MRC 

Crystallization Plates in polystyrene (Molecular Dimensions, Suffolk, UK). Crystallization drops (1.4 

– 2 µL) contained PCS at 10 mg/ml premixed with 2mM of CoA, NADP+ and 

phosphomethylphosphonic acid adenylate ester each mixed with reservoir solution in a 1:1 ratio. First 

thin needle-shaped crystals appeared after several weeks in 100 mM BisTris pH 6.5, 200 mM NaAc, 
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25 % (w/v) polyethylene glycol (PEG) 3350 supplemented with 3 % (w/v) trimethylamine N-oxide 

dihydrate as additive (condition 1). These crystals had a C2 symmetry and the best resolution obtained 

was 2.7 Å, which was used for the final structure model. Increasing the additive trimethylamine N-

oxide dihydrate to 6 % still lead to crystal formation (condition 2) but exhibited strong twinning. 

Crystals could also be reproduced in the same condition replacing the additive with 100 mM D-(-)-

fructose (condition 3) or 4 % (v/v) tert-butanol (condition 4). Crystals of the space group P 21 21 2 

were obtained in the same condition supplemented with 2 % (w/v) benzamidine hydrochloride as 

additive (condition 5). Phasing was achieved by soaking crystals of condition 3 in 100 mM Xo4 8 for 

4 minutes. All crystals were cryo-protected with the respective crystallization solution supplemented 

with 20 – 30 % ethylene glycol. 

X-ray crystallography analysis 

Numerous heavy atom derivatives have been tested attempting to solve the structure of PCS such as: 

Potassium tetrachloroplatinate(II), organic mercury derivatives, 5-amino-2,4,6-triiodoisophthalic 

acid and lanthanide phasing compounds (NatX-ray SAS, Saint Martin d'Hères, France). These 

derivatives resulted in either very low occupancy of the heavy atoms or a significant decrease in 

diffraction. A recently developed lanthanide complex, Xo4, containing a terbium ion 8 gave the best 

results with high anomalous signal not interfering with diffraction quality for short time soakings. 

We solved PCS in the C2 crystalline form using the single-wavelength anomalous scattering method. 

Datasets were collected at beamline Proxima-2A of the SOLEIL synchrotron (Paris, France) at the 

Tb LIII absorption edge (wavelength of 1.649165 Å) on two different crystals (condition 3, see above) 

soaked in Tb-Xo4. Merging provided a 3.45 Å resolution data set with high redundancy facilitating 

the location of 18 terbium sites using the SHELX 49 software and PHASER 50. After multiple cycles 

of phasing, electron density modification, and secondary structure building using AUTOSOL from 

the PHENIX package 51, the electron density quality was sufficient to build a model with Buccaneer 

from the CCP4 package 50. The initial model was then used as template for molecular replacement 

with a dataset of a native crystal (condition 1, see above) using PHASER-MR. The native dataset was 

collected (wavelength of 0.97625 Å) at beamline ID29 of the ESRF (Grenoble, France). Manual 

extension of the model was done using COOT 52. Several rounds of manual and automatic refinements 

were performed using COOT and PHENIX-Refine. The model (PDB 6EQO) structure was refined 

with Ramachandran statistics of 94.93 % favored, 4.82 % allowed, and 0.25 % outliers. 
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Limited proteolysis 

PCS at 0.5 mg/mL was forced into a supposedly closed or open state by adding 3 mM CoA or a 

combination of 3.4 mM ATP, 2 mM 3-hydroxypropionate and 2 mM NADP+, respectively. A zero 

time sample of 10 μL was taken. Trypsin (Promega, diluted in 25 mM Tris-HCl pH 7.5, 10 mM 

CaCl2) was added in a protein:protease ratio of 200:1. Samples of 10 µL were taken at different time 

points. The sample was quenched with 10 μL 4x SDS buffer and heated at 90°C for 10 min. Samples 

were applied onto an SDS-PAGE gel. For peptide quantification, the limited proteolysis was repeated 

as described. However, the samples were quenched by adding PMSF protease inhibitor (dissolved in 

2-propanol) to a final concentration of 1 mM. The propylation was performed overnight in the dark 

(at RT) in 100 mM HEPES buffer pH 7.5, 400 mM sodium cyanoborohydride and 5 % (v/v) acetone 
53. The open state PCS samples were treated with unlabeled acetone while the closed state PCS 

samples were incubated with D6-labeled acetone. The reaction was stopped with 0.07 % TFA. 

Samples were concentrated and dried in a Speedvac. The open and closed state samples of each time 

point were combined and purified over a C18 membrane (cut from EmporeTM SPE disks). Peptides 

were eluted with 0.1 % trifluoroacetic acid (TFA) in 50 % acetonitrile (ACN). Samples were dried in 

the Speedvac. Peptides were resuspended in 50 µl 0.1 % TFA. 1 µl of the peptide sample was mixed 

with 1 µl solution of 3 g/L alpha-Cyano-4-hydroxycinnamic acid in 80 % ACN (v/v) containing 0.3 

% TFA onto a MALDI plate. The dried spots were measured automatically for MS and MSMS in a 

MALDI TOF/TOF analyzer (Applied Biosystems/MDS Sciex, Framingham, MA, USA) and the 4800 

Series Explorer Software. 

Time course assays 

The time course assays with 0.1 µM PCS contained 0.8 mM CoA, 0.5 mM 3-hydroxypropionate, 0.8 

mM ATP, 4 mM MgCl2, 40 mM KCl, 50 mM KHCO3 and 0.3 mM NADPH, if stated, in 100 mM 

potassium phosphate buffer pH 8. At specific time points 20 µL of the assay were quenched with 20 

µL of 50 % formic acid. The samples were centrifuged at 17´000  × g and frozen in liquid nitrogen. 

Samples were immediately thawed before application to hrLC-MS. The time course assay with 10 

µM PCS contained 5 mM CoA, 5 mM 3-hydroxypropionate, 5 mM ATP, 6 mM MgCl2, 60 mM KCl 

and 2 mM NADPH in 100 mM Tris-HCl pH 7.8. At specific time points 10 µL of the assay were 

quenched with 10 µL acetonitrile and 10 % formic acid and directly injected into the hrLC-MS. 

Standard curves (0.05 µM to 500 µM) for quantification for 3-hydroxypropionyl-CoA, acrylyl-CoA 

and propionyl-CoA were prepared in the corresponding buffer conditions and treated in parallel to 

the samples. Acrylyl-CoA concentrations in PCS samples were too low for UV/Vis quantification, 

therefore MS based quantification using the extracted ion count of the standard curve the was used. 
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Acrylyl-CoA could only be detected via MS in the samples containing high amounts of PCS (acrylyl-

CoA detection limit was 5nM). 

Isotopic labeling competition experiment 

The competition contained 3 mM CoA, 2 mM 3-hydroxypropionate, 200 µM NADPH, 5 mM ATP, 

7.5 mM Mg2Cl, 60 mM KCl, 100 mM KHCO3 and 100 mM Tris-HCl pH 7.8. For the competition 

either 100 µM 13C-3-hydroxypropionyl-CoA or 100 µM 13C-acrylyl-CoA was added. The assay was 

started with 2 µL of 1.28 mg/mL PCS wt and the reaction monitored photospectrometrically at 340 

nm using a Cary-60 UV/Vis spectrometer (Agilent Technologies Inc. Santa Clara, CA, USA) at 30°C 

using quartz cuvettes (10-mm path-length; Hellma® (Germany)). The assay was quenched after a 

ΔAbs of 0.36 that corresponds to a turnover of 60 µM. The isotopic pattern of the produced propionyl-

CoA was analyzed by hrLC-MS.  

High resolution LC-MS (hrLC-MS) 

3-hydroxypropionyl-Coa, acrylyl-CoA and propionyl-CoA were analyzed using an Agilent 6550 

iFunnel Q-TOF LC-MS system equipped with an electrospray ionization source set to positive 

ionization mode through a 1290 Infinity UPLC (Agilent Technologies Inc. Santa Clara, CA, USA). 

Compounds were separated on a RP-18 column (50 mm x 2.1 mm, particle size 1.7 µm, Kinetex XB-

C18, Phenomenex, Aschaffenburg, Germany) using a mobile phase system comprised of 50 mM 

ammonium formate pH 8.1 (A) and methanol (B). Chromatographic separation was carried out using 

the following gradient condition at a flow rate of 250 µl/min: 0 min 0% B; 1 min 0% B, 3 min 2.5% 

B; 9 min 23% B; 14 min 80 %B; 16 min 80%; 17 min 0 % B; 18 min 0 % B.  

Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying 

(13 l/min, 225 °C) and sheath gas (12 l/min, 400°C). The TOF was calibrated using an ESI-L Low 

Concentration Tuning Mix (Agilent Technologies Inc. Santa Clara, CA, USA) before measurement 

(residuals less than 2 ppm for five reference ions). MS data were acquired with a scan range of 750-

1200 m/z. 

CoA-thioesters were additionally detected by UV absorbance at 260 nm using a diode array detector 

(1290 Infinity II, Agilent Technologies Inc. Santa Clara, CA, USA) 

LC-MS data were analyzed using MassHunter Qualitative Analysis software (Agilent). 

SAXS analysis 

PCS was freshly purified as described above two days before SAXS analysis was performed. The 

protein was stored on ice until measurements. Gel filtration buffer for dilutions and blank 

measurements was treated equally. SAXS data were recorded at the European Synchrotron Radiation 
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Facility (Grenoble, France) on beamline BM29. The protein was up-concentrated at the beamline. If 

stated, cofactors were added to the concentrated protein at following concentrations: 3-

hydroxypropionate, 2mM; CoA, 3 mM; ATP, 3.4 mM. Two-fold dilution series (4 mg/mL to 0.125 

mg/ml) were prepared by dilution with gel filtration buffer containing the corresponding cofactors. 

The different dilutions were measured to investigate sample quality. Sample storage and 

measurement temperature was set to 20°C. The ESRF BM29 online software was employed for 

primary data reduction. PrimusQt (version 4.8.1 54) was used for data analysis.  
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2.7 Supplementary Information 

Supplementary Tables 

Supplementary Table 1. X-ray diffraction data collection and model refinement statistics 

 PCS with NADP+, 
phosphomethylphosphonic acid 
adenylate ester 
(PDB: 6EQO) 

PCS with NADP+, 
phosphomethylphosphonic acid 
adenylate ester, Tb-Xo4 
(SAD data) 

Data collection   
Space group C 1 2 1 C 1 2 1 
Cell dimensions   
    a, b, c (Å) 383.41, 86.74, 133.96 389.68, 88.02, 134.91 
     () 90.00, 108.89, 90.00 90.00, 108.53, 90.00 
Resolution (Å) 46.18 - 2.70 (2.75 - 2.70)* 49.66 - 3.45 (3.54 – 3.45)† 
Rmerge 0.212 (0.886) 0.497 (3.374) 
I / I 4.2 (1.7) 7.5 (1.3) 
CC1/2 (%) 
Completeness (%) 

95.8 (18.9) 
97.9 (94.2) 

98.2 (30.5) 
99.7 (99.0) / ano. 99.7 (98.8) 

Redundancy 3.1 (2.7) 20.2 (16.9) / ano. 10.2 (8.5) 
   
Refinement  Not fully refined 
Resolution (Å) 46.18 - 2.70 (2.75 - 2.70) NA 
No. unique reflections 111918 (5260) NA 
Rwork / Rfree 0.191 / 0.229 NA 
No. atoms 28218 NA 
    Protein 27636 NA 
    Ligands 150 NA 
    Water 432 NA 
B-factors   
    Protein 52.99 NA 
    Ligands 52.86 NA 
    Water 42.07 NA 
R.m.s. deviations   
    Bond lengths (Å) 0.006 NA 
    Bond angles () 0.765 NA 

*The structure was determined from a single crystal. †Phasing was achieved with a merged dataset from two crystals. Values in 
parentheses are for highest-resolution shell. NA, not applicable.  
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Supplementary Table 2. Kinetic parameters of the reactions of propionyl-CoA synthase of Erythrobacter sp. NAP1. 

Data are shown as the mean ± 95% confidence intervals, as determined from a non-linear fit of at least 18 data points. Michaelis-
Menten graphs of the original data are shown in Supplementary Figure 11. NA, not applicable. For detailed reaction compositions, 
see Supplementary Table 3. 

reaction PCS 
variant 

substrate app. KM in 
mM 

app. kcat in s-1 

overall 

wt CoA 0.22 ± 0.05 4.7 ± 0.3 

wt ATP 0.34 ± 0.14 3.6 ± 0.3 

wt 3OHP 0.20 ± 0.02 4.71 ± 0.12 

wt NADPH 0.020 ± 0.003 5.1 ± 0.2 

dehydratase + 
reductase 

wt 3OHP-CoA 6.6 ± 1.1 11.7 ± 1.0 

ligase alone 

wt CoA 6 ± 3 5.7 ± 1.2  

wt CoA (+ 2 mM NADP+) 3.3 ± 0.5 8.3 ± 0.6 

E1027Q CoA 1.6 ± 0.4 9.1 ± 0.7 

E1027Q CoA (+ 0.2 mM NADPH) 0.019 ± 0.003 1.63 ± 0.06 

E1027Q 
CoA (+ 0.2 mM acrylyl-
CoA) 

2.4 ± 0.3 8.6 ± 0.5 

E1027Q 
K783M 

CoA 2.6 ± 0.2 2.77 ± 0.08 

dehydratase 
alone 

H1769A 3OHP-CoA 2.4 ± 0.5 5.7 ± 0.4 

reductase alone 

E1027Q acrylyl-CoA 0.014 ± 0.005 137 ± 17 

E1027Q  
acrylyl-CoA (+ 0.0 mM 
CoA) 

0.015 ± 0.003 44 ± 3 

E1027Q 
acrylyl-CoA (+ 0.3 mM 
CoA) 

0.070 ± 0.016 34 ± 3 

E1027Q 
acrylyl-CoA (+ 3.0 mM 
CoA) 

NA NA 

E1027Q 
K783M 

acrylyl-CoA 0.008 ± 0.003 24 ± 2 

E1027Q 
K783M 

acrylyl-CoA (+ 3.0 mM 
CoA) 

0.5 ± 0.4 29 ± 12 
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Supplementary Table 3. Composition of enzyme assays to determine kinetic parameters of PCS. 
 

overall 
 
 
 
(CoA) 

overall 
 
 
 
(ATP) 

overall 
 
 
 
(3OHP) 

overall 
 
 
 
(NADPH) 

dehydratase 
+ 
reductase 
 
(3OHP-CoA) 

ligase 
 
 
 
(CoA) 

ligase 
+ 
NADP+ 
 
(CoA) 

ligase 
+/- 
NADPH 
 
(CoA) 

ligase 
+/- 
acrylyl-CoA 
 
(CoA) 

dehydratase 
 
 
 
(3OHP-CoA) 

reductase 
 
 
 
(acrylyl-
CoA) 

reductase 
+/- 
CoA 
 
(acrylyl-
CoA) 

Pi buffer pH 8 100 100 100 100 100 100 100 100 100 100 100 100 

KHCO3 50 50 50 50 50      50 50 

3OHP 2.3 1.3 X 2.1  2.3 2.3 2.1 2.1    

CoA X 2 2 1.7  X X X X   X 

ATP 5 X 5 3  5 3 3 3    

3OHP-CoA     X     X   

acrylyl-CoA         0.2 / 0  X X 

NADPH 0.3 0.3 0.3 X 0.3   0.2 / 0   0.3 0.3 

KCl 40 40 40 40 40 40 40 40 40    

MgCl2 4 4 4 10 4 10 10 10 10    

PEP      1 1  1    

NADH      0.3 0.3  0.3    

NADP+       2      

PCS [nM] 32 32 32 47 32 X1 17.3 104.02/25.22 22.32 34.23 1.82 X4 

CA [nM] 67 67 67 67 67      2 2 

Etr1p [µM]          0.5   

PK/LDH [U]      ̴ 4.8/6.9 ̴ 2.4/3.5 ̴ 2.4/3.5 ̴ 2.4/3.5    

Myo [μM]      4.6 2.4 2.9 2.9    
All concentrations given in mM if not stated otherwise. Abbreviations: 3OHP, 3-hydroxypropionate; 3OHP-CoA, 3-hydroxypropionyl-CoA; CA, carbonic anhydrase (Simga-Aldrich C3934); PEP, 
phosphoenolpyruvate; Myo, myokinase; PK/LDH, mixture of pyruvate kinase and lactate dehydrogenase (Sigma-Aldrich P0294) 
1 14 nM of wild type PCS or 68 nM of PCS E1027Q K783M. 
2 PCS E1027Q mutant that is deficient in the dehydratase reaction was used. 
3 PCS H1769A mutant that is deficient in the reductase reaction was used. 
4 PCS concentration was different depending on CoA concentration in assay. Assay with PCS E1027Q: without CoA, 5 nM PCS; with 0.3 mM CoA, 9 nM PCS; with 3 mM CoA, 17 nM PCS. Assay 
with PCS E1027Q K783M: without CoA, 12 nM PCS; with 3 mM CoA, 22 nM PCS.
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Supplementary Table 4. Isotopic labeling experiments. 

WT control 

 % of 3OHP-CoA 
% of acrylyl-

CoA 
% of propionyl-

CoA 
unlabeled 100 ND 100 

labeled 0 ND 0 

    
WT + 100µM 13C-3-hydroxypropionyl-CoA 

 % of 3OHP-CoA 
% of acrylyl-

CoA 
% of propionyl-

CoA 
unlabeled 39 ± 9 ND 99.2 ± 0.3 

labeled 61 ± 9 ND 0.8 ± 0.3 

    
WT + 100µM 13C-acrylyl-CoA 

 % of 3OHP-CoA 
% of acrylyl-

CoA 
% of propionyl-

CoA 
unlabeled 96.4 ± 0.9 7 ± 0.5 79 ± 15 

labeled 3.6 ± 0.9 93 ± 0.5 21 ± 15 
    

100µL assays contained 2 mM 3-hydroxypropionate, 5 mM ATP, 3 mM CoA, 200 µM NADPH, and labeled intermediate as 
indicated. Reactions were started by adding 0.1 µM of PCS. Consumption of NADPH (last reaction step forming propionyl-CoA) 
was monitored at 340 nm. Reactions were stopped by adding 20 µL of 50% formic acid after 20% of NADPH was consumed. 
Fractions of labeled and unlabeled 3-hydroxypropionyl-CoA (3OHP-CoA), acrylyl-CoA and propionyl-CoA were determined by 
hrLC-MS. All assays were performed in triplicates. Errors are given as standard deviation. ND, not detectable. 
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Supplementary Table 5. Small angle X-ray scattering (SAXS) data.  

PCS control 
PCS concentration 

(mg/mL) I0 (cm-1) Rg (nm) 
4 288.95 ± 0.55 6.35 ± 0.21 
2 282.72 ± 0.54 6.53 ± 0.22 
1 284.30 ± 0.78 6.47 ± 0.21 

   

PCS + CoA 
PCS concentration 

(mg/mL) I0 (cm-1) Rg (nm) 
4 322.45 ± 0.58 6.30 ± 0.34 
2 305.86 ± 0.51 6.56 ± 0.20 
1 309.86 ± 0.62  6.86 ± 0.28 

   

PCS + ATP + 3OHP 
PCS concentration 

(mg/mL) I0 (cm-1) Rg (nm) 
4 406.75 ± 1.65 7.91 ± 2.30 
2 393.42 ± 1.46 8.00 ± 2.30 
1 371.30 ± 1.67 7.86 ± 2.03 
   

SAXS data were recorded for PCS in the presence or absence (PCS control) of any cofactors/substrates. If stated, cofactors were 
added to the concentrated protein at following concentrations: 3-hydroxypropionate (3OHP), 2mM; CoA, 3 mM; ATP, 3.4 mM; 
NADP+, 2 mM. Sample and measurement temperature was 20°C. The ESRF BM29 online software was employed for primary 
data reduction. PrimusQt (version 4.8.1 54) was used for data analysis. Standard deviation as provided by PrimusQT for individual 
datasets. The changes of the radii of gyration (Rg) demonstrate that ATP and 3OHP induce a global relaxation of PCS, while the 
structure of apo PCS or PCS in presence of CoA is more compact. 
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Supplementary Figures 

 
Supplementary Figure 1. Maximum likelihood phylogenetic tree of PCS homologues. The evolutionary history was inferred 
based on the Le-Gascuel model 55. The scale of the branch lengths is measured in number of substitutions per site. All positions 
containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA7 56. Bootstrap values 57 for 
confidence limits are given at important nodes. The position of the PCS homologue of Eryhrobacter sp. NAP1 is highlighted with 
a red box. 
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Supplementary Figure 2. PCS domain distribution. Sequence alignment of Erythrobacter sp. NAP1 PCS (PDB 6EQO) with its 
closest lone-standing homologues; the acetyl-CoA ligase of Salmonella enterica (PDB 2P2F) 17, the HMG-CoA dehydratase of 
Myxococcus xanthus (PDB 5JBX) 18 and the enoyl-CoA carboxylase/reductase of Streptomyces sp. JS360 (PDB 4A0S) 19. The 
secondary structure of PCS is represented above the sequence and colored according to their domain contribution; orange - ligase 
domain, purple – dehydratase domain, cyan - reductase domain. 
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Supplementary Figure 3. Anomalous map contoured at 6 σ indicating the positions (in orange) of terbium contained in the 
new phasing compound Tb-Xo4 8. 

 

 
Supplementary Figure 4. Superpositions of Fo-Fc electron density simulated annealing omit maps on refined ligands. a, 
Omit maps at 1.5 σ for the refined phosphomethylphosphonic acid adenylate ester (ACP) in both of the polypeptide chains of the 
dimeric PCS model (PDB 6EQO). b, Omit maps at 3.0 σ for the refined NADP+ (NAP) in both of the polypeptide chains of the 
dimeric PCS model (PDB 6EQO). 
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Supplementary Figure 5. Stereodiagram of the PCS reaction chamber. The central catalytic reaction chamber is formed through 
the contribution of all three domains. Orange, contribution of the ligase domain; purple, contribution of the dehydratase domain; 
cyan, contribution of the reductase domain. 
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Supplementary Figure 6. Close-ups of the active sites of the ligase domain of PCS and a close homologue. a, Active site of the 
PCS ligase domain co-crystalized with an ATP analog (green) and with the predicted CoA binding site indicated (green label). The 
ATP entry site is indicated by a black arrow. b, Active site of a lone-standing CoA ligase of Salmonella enterica (PDB 2P2F) 17 co-
crystalized with an ATP analog and CoA (green).  



The multi-catalytic compartment of PCS sequesters a toxic metabolite 

-54- 
 

 

Supplementary Figure 7. Close-ups of the active sites of the dehydratase domain of PCS and a close homologue. a, Active 
site of the PCS dehydratase domain with the essential active site glutamate E1027. b, Active site of a lone-standing dehydratase of 
Myxococcus xanthus co-crystalized with CoA and malonic acid (green) (PDB 5JBX) 18 with the essential active site glutamate E132.  
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Supplementary Figure 8. Close-ups of the active sites of the reductase domain of PCS and a close homologue. a, Active site 
of the PCS reductase domain with essential active site histidine H1769 co-crystalized with NADP+ (green). The NADP+ entry site 
is indicated by a black arrow. b, Active site of a lone-standing enoyl-CoA carboxylase/reductase of Streptomyces sp. JS360 co-
crystalized with octenoyl-CoA and NADP+ (green) (PDB 4A0S) 19 with the essential active site histidine H361.  
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Supplementary Figure 9. Superposition of the ligase domain with a close homologue, the acetyl-CoA synthetase of 
Salmonella enterica (PDB 2P2F) 17. The blue and red spheres corresponds to the N-termini and C-termini of PCS or the homologue, 
respectively. The pink spheres mark the insertion points of the additional secondary structure elements in PCS. a, Superposition of 
a PCS ligase domain (orange) with the monomer of the homologue (gray, rmsd of 0.930 Ǻ over 447 Cα-atoms). Additional structural 
elements of the PCS monomer are shown in pink. b, Superposition of a PCS ligase domain with the dimer of the homologue (gray 
and black). The peripheral extensions of the PCS ligase domain are not aligning with the second chain of the dimeric homologue. 
The largest additional structural element is a four helix bundle on top of the structure. 
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Supplementary Figure 10. Superposition of the PCS dehydratase domain with a close homologue, the HMG-CoA 
dehydratase of Myxococcus xanthus (PDB 5JBX) 18. The blue and red spheres corresponds to the N-termini and C-termini of 
PCS or the homologue, respectively. The pink spheres mark the insertion points of the additional secondary structure elements in 
PCS. a, Superposition of a PCS dehydratase domain (purple) with the monomer of the homologue (gray, rmsd of 1.085 Ǻ over 147 
Cα-atoms). Additional structural elements of PCS dehydratase domain are shown in pink. b, Superposition of a PCS dehydratase 
domain with the trimeric homologue (gray, sand and black). The additional secondary structure elements in the PCS dehydratase 
domain partly mimic the neighboring chain of the trimeric homologue. 
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Supplementary Figure 11. Superposition of the PCS reductase domain with a close homologue, the enoyl-CoA 
carboxylase/reductase of Streptomyces sp. JS360 (PDB 4A0S) 19. The blue and red spheres corresponds to the N-termini and C-
termini of PCS or the homologue, respectively. The pink spheres mark the insertion points of the additional secondary structure 
elements in PCS. a, Superposition of a PCS reductase domain (cyan) with the monomer of the homologue (gray, rmsd of 1.530 Ǻ 
over 291 Cα-atoms). Additional structural elements of PCS reductase domain are shown in pink. b, Superposition of a PCS reductase 
domain with the dimer of the homologue (gray and black). The additional secondary structure elements in the PCS reductase domain 
partly mimic the neighboring chain of the homologue dimer. 
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Supplementary Figure 12. Michaelis-Menten plots of the kinetic characterizations of the reactions of PCS from 
Erythrobacter sp. NAP1. All points were measured in triplicates and the 95% confidence intervals are indicated. For kinetic 
parameters see Supplementary Table 2, for assay compositions see Supplementary Table 3. a, Overall reaction of PCS dependent 
on CoA concentration. The curve was fitted excluding values above 5 mM CoA, which resulted in substrate inhibition. b, Overall 
reaction of PCS in dependence of ATP concentration. Substrate inhibition was observed at 10 mM ATP. c, Overall reaction of PCS 
in dependence of 3-hydroxypropionate concentration. d, Overall reaction of PCS in dependence of NADPH concentration. e, The 
coupled dehydratase and reductase reaction depending on the 3-hydroxypropionyl-CoA concentration. f, The ligase reaction alone 
depending on the CoA concentration in presence or absence of NADP+. g, The ligase reaction alone using the PCS E1027Q variant 
deficient in the dehydratase reaction to test the effect of acrylyl-CoA. Substrate inhibition can be observed above 10 mM ATP. The 
curve was fitted including those values. h, The ligase reaction alone using the PCS E1027Q variant deficient in the dehydratase 
reaction to test the effect of NADPH. i, The ligase reaction alone using the PCS E1027Q K783M variant depending on the CoA 
concentration. j, The dehydratase reaction alone using the H1769A variant deficient in the reductase activity to allow coupling to 
the stand-alone reductase Etr1p (from Saccharomyces cerevisiae) to monitor acrylyl-CoA formation. k, The reductase reaction 
alone depending on the acrylyl-CoA concentration. l, The reductase reaction alone using the PCS E1027Q variant depending on the 
acrylyl-CoA concentration in presence of different CoA concentrations. m, The reductase reaction alone using the PCS E1027Q 
K783M variant depending on the acrylyl-CoA concentration in presence of different CoA concentrations.
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Supplementary Figure 13. Lineweaver-Burk representation of the effects of CoA on the reductase reaction of PCS. All points 
were measured in triplicates and the 95% confidence intervals are indicated. a, The reductase reaction alone catalyzed by the PCS 
E1027Q variant depending on the acrylyl-CoA concentration in presence of three different CoA concentrations. The inhibition 
effect is competitive at a CoA concentration of 0.3 mM (change in apparent KM, CoA, same kcat) but gains non-competitive character 
at the higher CoA concentration of 3 mM (changes in apparent KM, CoA and kcat). b, Detailed view of the data of a,. c, The reductase 
reaction alone catalyzed by the PCS E1027Q K783M variant depending on the acrylyl-CoA concentration in presence of two 
different CoA concentrations. The interaction between K783 and CoA is suggested to stabilize the closed conformation of PCS 
(Supplementary Figure 14). The K783M mutation rendered the ligase as well as the reductase domains still functional. Notably 
the non-competitive inhibition of CoA on the reductase domain was completely removed in this variant. Thus, we concluded that 
the ligase domain and the reductase domain act not independently from each other and that the K783 plays an important role in 
communication between the two domains. d, Detailed view of the data of c,.  
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Supplementary Figure 14. Hypothetic conformational change of PCS upon CoA binding. The left panel depicts the effect of 
the plausible conformational change on the overall structure by surface representation, while the right panel shows a close up of the 
ligase domain active site in the different conformations with modeled CoA. The modeled open conformation suggests how PCS 
allows substrates to enter the reaction chamber. Our observation of CoA preventing access of intermediates to the reaction chamber 
can be explained by this hypothesis. Note, that the PCS-specific four-helix bundle is required to enclose the enzyme compartment. 
a, closed conformation of PCS as it was obtained from the crystal structure in this study. The closed conformation might be stabilized 
by interactions of K783 and R812 of the flexible cap domain with bound CoA. b, open conformation of PCS was modeled by 
replacing the flexible cap subdomain of PCS with the one from the open-state ligase of Saccharomyces cerevisiae (PDB 1RY2) 22. 
The size of the opening is roughly 13 Ǻ and 24 Ǻ in the two dimensions. A loop corresponding to PCS residues 831-862 had to be 
omitted from the model because of clashes. The green spheres mark its insertion points. Orange – non-flexible part of ligase domain, 
light green – flexible cap of ligase domain (defined by comparing PDB 2P2F and 1RY2 17,22), purple – dehydratase domain, cyan 
and grey – reductase domains from both protomers. 
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Supplementary Figure 15. Limited proteolysis on PCS with different substrates/products. Limited proteolysis of PCS with 
trypsin (200:1 protein:protease ratio) analysed by SDS-PAGE. 1, PCS (0.5mg/ml) apo; 2, with CoA; 3, with CoA, ATP, NADP+; 
4, with an ATP analog, CoA, 3-hydroxypropionate; 5, with ATP; 6, with ATP, NADP+; 7, with ATP, 3-hydroxypropionate; 8, with 
ATP, 3-hydroxypropionate, NADP+; 9, PCS apo without trypsin. CoA at 3 mM, ATP and analog at 3.4 mM, 3-hydroxypropionate 
at 2mM, NADP+ at 2mM.  

 
Supplementary Figure 16. Limited Proteolysis of PCS in open and closed conformation. a, limited proteolysis of PCS with 
trypsin (200:1 protein:protease ratio) analysed by SDS-PAGE. The closed conformation (left) was induced by addition of 3 mM 
CoA, while the open conformation was stabilized by 2 mM 3HP, 3.4 mM ATP and 2 mM NADP+ (right). b, percent of remaining 
full-length PCS over time was quantified from the SDS-PAGE gel. Samples on both gels derive from the same experiment and gels 
were processed in parallel. c, peptides from the closed and open conformation appearing after the first 30 seconds of the limited 
proteolysis were quantitatively compared. Peptides in blue are slightly less prominent in the sample of closed PCS (ratio of peptide 
in closed sample to open sample: 0.73 for peptide 866-890, 0.82 for peptide 714-724, 0.84 for peptide 1053-1065, 0.90 for peptide 
121-131) while peptides in red are overrepresented in the sample of closed PCS (ratio of peptide in closed sample to open sample: 
1.38 for peptide 664-673, 1.71 for peptide 866-890, 2.05 for peptide 805-818, 2.3 for peptide 837-855). Data of a representative 
single experiment.  
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Supplementary Figure 17. SDS-PAGE gel following the purification of PCS. The lysate was loaded onto a 1 mL His-Trap 
column. A wash step with buffer containing ATP was applied to flush away the E.coli ArcticExpress (DE3) RIL Cpn60 chaperone. 
PCS was eluted and separated from contamination or degradation products on a HiLoad 16/60 200 pg superdex column. 
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3 Awakening the sleeping carboxylase function of enzymes: 

engineering the natural CO2-binding potential of reductases 

3.1 Abstract 

Developing new carbon dioxide (CO2) fixing enzymes is a prerequisite to create new biocatalysts for 

diverse applications in chemistry, biotechnology and synthetic biology. Here we used bioinformatics 

to identify a “sleeping carboxylase function” in the superfamily of Medium-chain 

Dehydrogenases/Reductases (MDR), i.e., enzymes that possess a low carboxylation side activity next 

to their original enzyme reaction. We show that propionyl-CoA synthase from Erythrobacter sp. 

NAP1, as well as an acrylyl-CoA reductase from Nitrosopumilus maritimus possess carboxylation 

yields of 3 ± 1 and 4.5 ± 0.9 %. We use rational design to further engineer these enzymes into 

carboxylases by increasing interactions of the proteins with CO2 and suppressing diffusion of water 

to the active site. The engineered carboxylases show improved CO2-binding and kinetic parameters 

comparable to naturally existing CO2-fixing enzymes. Our results provide a strategy to develop novel 

CO2-fixing enzymes and shed light on the emergence of natural carboxylases during evolution. 

3.2 Introduction 

To harvest atmospheric CO2 as a sustainable carbon source for (bio)catalytic and (bio)technological 

applications1-5, it is necessary to extend the repertoire of CO2-fixing reactions. One possibility is to 

engineer a carboxylation function into the scaffold of non-CO2-fixing enzymes. Generally, the 

interaction of CO2 with proteins is poorly understood6. However, for enoyl-CoA 

carboxylase/reductase from Kitasatospora setae (ECRKs), four conserved amino acids that form a 

CO2-binding pocket at the active site were described recently7 (Figure 1a). These four amino acids 

anchor and position the CO2 molecule during catalysis, in which a reactive enolate is formed that 

attacks the CO2
8. 

To identify enzyme scaffolds capable of binding CO2 beyond the ECR enzyme family, we searched 

homologs of the MDR superfamily for the CO2-binding motif. Our search revealed two enzyme 

families that show the potential to bind CO2, the propionyl-CoA synthase (PCS) and an archaeal 

enoyl-CoA reductase (AER) family (Figure 1b). The PCS family clusters closely to ECRs and shows 

a fully conserved CO2-binding motif across individual family members (Figure S1). The AER family 

is more distantly related to the ECR family, and selected homologs only contain one or two of the 
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four conserved residues of the CO2-binding pocket (Figure S2). We decided to test selected members 

of these enzyme families in their CO2-fixing capabilities. 

 
Figure 1: CO2-binding pocket of ECR and its partial conservation in the MDR superfamily. a, active site of ECRKs

7. The CO2-
binding pocket is defined by four conserved residues (Asn81, Phe170, Glu171, His365). CO2 was modeled into the structure. b, 
Maximum-likelihood tree of the MDR superfamily9 with (potential) CO2-binding enzyme families highlighted in color. 

3.3 Results 

PCS is a three-domain fusion enzyme that catalyzes the overall conversion of 3-hydroxypropionate 

to propionyl-CoA10 (Figure 2a). The enzyme forms a central reaction chamber, in which three 

subsequent reactions take place in a synchronized fashion11. When we assayed PCS from 

Erythrobacter sp. NAP1, PCSEN, at 4.4 mM dissolved CO2, we detected minor amounts of 

methylmalonyl-CoA besides the main product propionyl-CoA. Incorporation of 13CO2-label 

confirmed the latent carboxylation activity of PCSEN (Figure 2b). Notably, the carboxylation 

function was not limited to the Erythrobacter enzyme, but was also detected with PCS from 

Chloroflexus aurantiacus (PCSCa, Table S1). 

The last reaction in the three-reaction sequence of PCS is the reduction of acrylyl-CoA to propionyl-

CoA, catalyzed by a reductase domain harboring the CO2-binding motif (Figure 2a and 2c). We 

directly tested the reductase domain for carboxylation activity with an E1027Q variant of PCSEN 

(PCSEN_ΔDH) that is unable to generate acrylyl-CoA. When providing PCSEN_ΔDH with external 

acrylyl-CoA and 4.4 mM dissolved CO2, the enzyme showed a carboxylation yield (defined as 

percentage yield of carboxylated product compared with total product formed, including reduced side 

product) of 3 ± 1 % (Table 1). This showed that the reductase domain is able to carboxylate acrylyl-

CoA directly. 
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Figure 2: PCSEN possesses a “sleeping carboxylase function”. a, Reaction sequence of PCS. PCS natively catalyzes the conversion 
of 3-hydroxypropionate into propionyl-CoA (solid lines) and possesses a low carboxylation activity yielding methylmalonyl-CoA 
(dashed line). b, HPLC-MS traces of the PCSEN overall reaction showing 3-hydroxypropionyl-CoA, propionyl-CoA (3-12/13C)-
methylmalonyl-CoA at m/z 840.14, 824.15 and 868.13/869.13, respectively. Methylmalonyl-CoA is only detected in presence of 
12/13CO2 (provided as bicarbonate). Data represent an individual experiment with two replicates. c, Active site of PCSEN reductase 
domain (cyan, PDB: 4EQO11) and ECRKs (blue7), both co-crystallized with NADP+. Acrylyl-CoA and CO2 are modeled into the active 
site. WebLogo-Illustration12,13 of conserved active site residues using 129 PCS and 29 ECR sequences. Numbering according to PCSEN 
or ECRKs, respectively. 

To further improve the carboxylation efficiency of PCSEN, we compared the active site of PCSEN 

(PDB: 6EQO) with ECRKs. While the NADPH binding site, as well as the four CO2-binding pocket 

residues are structurally conserved (Figure 2c), we noticed differences in the second shell of the 

active site. ECRKs features a small hydrophilic residue (Thr82), which interacts with Asn81 that 

stabilizes CO2 through its carboxyamide NH2 group. The corresponding residue in PCSEN is occupied 

by an aspartate (Asp1302). Molecular dynamics (MD) simulations demonstrated that Asp1302 in 

PCSEN forms a strong anionic hydrogen bond to the carboxamide NH2 group of Asn1301 (Figure 3a 
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and S5), locking Asn1301 in a position which prevents interactions with CO2. This finding is in line 

with the fact that we could not determine an apparent KM for CO2 with PCSEN_ΔDH and that replacing 

Asn1301 by an aspartate abolished carboxylation activity.  

Table 1: Reaction parameters and carboxylation yield for the reductase domain of different PCSEN variants.  

PCS variant 
app. kcat (s-1) at 
4.4 mM CO2 

app. KM_acrylyl-

CoA (mM) 
% carboxylation 
at 4.4 mM CO2 

app. KM_CO2 
(mM) 

PCSEN_ΔDH WT 7.4 ± 1.0 0.014 ± 0.002 3 ± 1 n.m. 

PCSEN_ΔDH 
D1302S 1.77 ± 0.09 0.027 ± 0.003 20.9 ± 0.7 27 ± 5 

PCSEN_ΔDH 
T1753M 6.5 ± 0.6 0.0197 ± 0.0012 10 ± 2 n.m. 

PCSEN_ΔDH 
D1302S 
T1753M 0.46 ± 0.03  0.026 ± 0.003 69 ± 3 % 26 ± 5 

kcat shows combined reduction and carboxylation activity. KM were determined from a Michaelis-Menten fit of at least 18 data points, 
with fixed acrylyl-CoA concentrations for KM_CO2 (Figure S3 and S4, Table S2 for kcat values). Carboxylation yields are calculated 
from mean carboxylation yields over five time points in three replicates. Data are mean ± s. d. CO2 concentrations were calculated. 
n.m., not measurable. 

We aimed at unlocking Asn1301 from its fixed position by replacing Asp1302 with different small 

hydrophilic residues. PCSEN_ΔDH variant D1302S (Figure 3b) showed an increased carboxylation 

yield of 20.9 ± 0.7 % at 4.4 mM dissolved CO2, and notably also Michaelis-Menten-like behavior 

with CO2 at an apparent KM_CO2 of 27 ± 5 mM (Table 1). Together with MD simulations that showed 

a more flexible asparagine residue (Figure S5) this demonstrated that unlocking Asn1301 improves 

CO2-binding and carboxylation efficiency in PCSEN. 

Another, equally important catalytic principle in carboxylases is the exclusion of water from the 

active site to minimize protonation reactions which would prematurely quench C-C bond 

formation7,14-16. In ECRKs, a conserved methionine (Met356) restricts access of water to the CO2-

binding pocket. In PCSEN, this residue is a threonine, which presumably allows water to enter the 

active site and displace the CO2 molecule (Figure 3c). When we introduced the methionine in PCSEN 

(PCSEN_ΔDH T1753M, Figure 3d), carboxylation yield increased to 10 ± 2 % at 4.4 mM dissolved 

CO2. When combining the D1302S with the T1573M mutation, the carboxylation yield of PCSEN_ΔDH 

further increased up to 69 ± 3 % at 4.4 mM CO2 (Table 1). Under saturating CO2 concentrations (i.e., 

44 mM CO2), PCSEN_ΔDH D1302S T1753M showed a carboxylation yield of 94.5 ± 0.7 %, 

demonstrating that we successfully converted the reductase domain into a carboxylase. During 

engineering, the kcat of reduction was strongly decreased, while the apparent kcat for carboxylation 
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was maintained (Table S2) and falls in the range of naturally existing ECRs4,17. The engineered 

carboxylase domain also improved carboxylation yield in the context of the overall reaction of PCSEN 

(Supplementary Information I). 

 
Figure 3: Directed mutagenesis to exploit the carboxylation activity of PCSEN. a, representative snapshot from the MD simulation 
of the active site in wild type PCSEN. b, active site model of PCSEN D1302S to unlock Asn1301. c, active site of wild type PCSEN. d, 
active site model of PCSEN T1753M to restrict water access to the active site. Acrylyl-CoA and CO2 were modeled into the active site. 

We next investigated the carboxylation potential in the AER enzyme family of unknown function. 

We chose Nmar_1565 (AERNm), a homolog from N. maritimus, in which two of the four amino acids 

of the CO2-binding motif, namely Phe122 and Glu123, are conserved (Figure 4a and 4b). Although 

no function was assigned to AERNm so far, we speculated that the enzyme might catalyze the 

reduction of acrylyl-CoA in the 3-hydroxypropionate/4-hyroxybutyrate cycle of N. maritimus18,19. 

Indeed, the enzyme reduced acrylyl-CoA to propionyl-CoA at an apparent kcat of 0.99 ± 0.11 s-1, 

confirming its reductase function. 

AERNm activity was very sensitive to salt and buffer composition (Supplementary Information II). 

When we incubated the enzyme with NaHCO3, at concentrations corresponding to 1.31 mM free 

CO2, activity dropped 10-fold. However, under these conditions AERNm showed a latent 

carboxylation activity and converted acrylyl-CoA into methylmalonyl-CoA at a carboxylation yield 

of 4.5 ± 0.9 % (Table 2), despite the lack of two of the four amino acid residues of the CO2-binding 

motif. To increase the carboxylation efficiency of AERNm we decided to re-build the CO2-binding 

pocket through introduction of asparagine and histidine. Re-introduction of histidine failed due to 
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inactive protein, which might be a result of interrupted second-shell interactions to Thr307 or steric 

clashes. However, replacing Asp50 by asparagine increased carboxylation yield dramatically (to 82 

± 5 %, Figure 4c, Table 2). The increase in catalytic activity in AERNm D50N was accompanied by 

an improved KM_CO2 (0.18 ± 0.03 mM), indicating increased CO2-binding. AERNm D50N performed 

best in 100 mM phosphate buffer, where it showed kcat and carboxylation yields comparable to those 

of naturally existing carboxylases, such as RubisCO20 (Table 2). 

Table 2: Reaction parameters and carboxylation yield for AERNm variants in 100 mM KHPO4 (pH 7.5). 

AER variant 

app. kcat (s-1) 

at 1.31 mM CO2 

% carboxylation 

at 1.31 mM CO2 KM_CO2 (mM) 

WT 0.084 ± 0.011 4.5 ± 0.9 n.m. 

D50N 1.6 ± 0.2 82 ± 5 0.18 ± 0.03 

kcat shows combined carboxylation and reduction activity. KM_CO2 were determined from a Michaelis-Menten fit of at least 18 data 
points with a fixed concentration of acrylyl-CoA (Figure S6, Table S3 for kcat values). Carboxylation yields were calculated from the 
mean carboxylation ratio over five time points in three replicates. Data are mean ± s. d. CO2 concentrations were calculated. n.m., not 
measureable. 

 
Figure 4: Awakening the “sleeping carboxylase function” in AERNm. a, Active sites of AERNm (salmon) and ECRKs (blue). 
Illustration of conserved active site residues, generated by WebLogo12,13 using 21 AERNm and 29 ECR sequences. Residue numbering 
refers to AERNm or ECRKs sequence, respectively. b, Model of the AERNm wild type active site carrying an Asp50 instead of a conserved 
Asn. c, Model of the AERNm D50N active site. Homology models were created with an ECR from Streptomyces sp. NRRL 2288 (PDB: 
4y0k21) using SWISS-MODEL22. Acrylyl-CoA and CO2 were modeled into the active site. 
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3.4 Discussion 

In conclusion, we successfully re-shaped the energy landscape of acrylyl-CoA reductases from the 

thermodynamically favored product propionyl-CoA (ΔrG’0 ≈ -63 kJ/mol) to the disfavored 

methylmalonyl-CoA (ΔrG’0 ≈ -43 kJ/mol)23. Our engineering efforts show that improving CO2-

binding (reduced energy barrier for carboxylation) and minimizing side reaction with water 

(increased energy barrier for reduction) are both required to establish a carboxylation activity in the 

scaffold of different reductases. This is in line with the idea that in catalysis stabilization of favorable 

transition states (‘positive catalysis’) and destabilization of unwanted transition states (‘negative 

catalysis’) are both important24-26, as further supported by the finding that suppression of competing 

protonation side reactions is essential for efficient CO2-fixation in ECRKs and 2-Ketopropyl 

Coenzyme M Oxidoreductase/Carboxylase14-16. 

On a broader picture, our findings also raise questions about the emergence of natural carboxylases. 

How did carboxylation functions naturally evolve in the scaffold of proteins, such as RubisCO or 

ECR? It has been suggested, that these enzymes originated from non-CO2-fixing ancestors27,28. Our 

data provides experimental evidence for this evolutionary scenario by demonstrating that the MDR 

superfamily, to which ECR belongs, naturally possesses the capacity to interact with the CO2-

molecule. It apparently takes only few mutations to transform latent carboxylases that convert CO2 

at low efficiency and non-physiological CO2 concentrations into decent CO2-fixing enzymes.  

Another apparent question is why PCS and AER would possess a “sleeping carboxylase function”? 

One explanation might be that the latent carboxylation activity was selected for. PCS operates in the 

3-hydroxypropionate bicycle in C. aurantiacus and a modified version thereof in E. sp. NAP1 

(Figure S7a)29,30, while AERNm presumably works in the 3-hydroxypropionate/4-hyroxybutyrate 

cycle in N. maritimus (Figure S7b)18. Bioenergetic considerations suggest that even a low 

carboxylation activity would increase biomass yield of these organisms, which thrive at a constantly 

low energy supply18 (Supplementary Information III).  

In summary, our proof-of-principle study demonstrates that it is possible to exploit the active site of 

reductases to create novel carboxylases. This opens the possibility for the future engineering of novel 

CO2-fixing enzymes that could find application in biocatalysis and synthetic biology (e.g. in artificial 

pathways for the conversion of CO2
31,32). 
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3.5 Methods 

Chemicals 

Chemicals were obtained from Sigma-Aldrich (Munich, Germany) and CARL ROTH GmbH 

(Karlsruhe, Germany). 3-hydroxypropionate was bought from TCI Deutschland GmbH (Eschborn, 

Germany). Coenzyme A was purchased from Roche Diagnostics. Biochemicals and materials for 

cloning and expression were obtained from Thermo Fisher Scientific (St. Leon-Rot, Germany), New 

England Biolabs GmbH (Frankfurt am Main, Germany) and Macherey-Nagel GmbH (Düren, 

Germany). Carbonic anhydrase was bought from MP Biomedicals (Illkirch, France). Primers or 

synthesized genes were obtained from Eurofins MWG GmbH (Ebersberg, Germany) or the DOE 

Joint Genome Institute (California, USA), respectively. Materials and equipment for protein 

purification were obtained from GE Healthcare (Freiburg, Germany), Bio Rad (Munich, Germany) 

or Merck Millipore GmbH (Schwalbach, Germany). 

Synthesis of CoA-esters 

For the synthesis of 3-hydroxypropionyl-CoA a previously described method using 

carbonyldiimidazole coupling of the precursor acid with coenzyme A was used33. Acrylyl-CoA was 

synthesized using a previously described ethylchloroformate method33. Propionyl-CoA was produced 

from propionic anhydride using the symmetric anhydride method33. Methylmalonyl-CoA was 

enzymatically synthesized using the ligase MatB33. All CoA-esters were purified by HPLC-MS as 

previously described33.  

Bacterial strains and growth conditions 

E. coli DH5α (Thermo Scientific™) strains were used for cloning and grown in LB medium34. For 

protein expression E. coli BL21-AI™ (Invitrogen) were grown in TB medium35. Incubation 

temperature was 37°C. Antibiotics for selection purposes were used accordingly: 100 µg/ml 

ampicillin, 20 µg/ml streptomycin. 

Cloning. All in silico cloning was performed with Clone Manager 9 (Scientific & Educational 

Software). For purification, preparation, cloning, transformation and amplification of DNA, standard 

protocols were used36. Plasmid isolation and PCR product purification was performed with kits from 

Macherey Nagel (Düren, Germany) according to the manufacturer’s protocols.  

The Eryhtrobacter sp. NAP1 PCS gene (PCSEN, GenBank accession no. EAQ29651) with an N-

terminal 10x His tag codon-optimized for E. coli, the Chloroflexus aurantiacus PCS gene (PCSCa, 

GenBank accession no. AAL47820.2) with an N-terminal 10x His tag and the Nitrosopumilus 

maritimus SCM1 Nmar_1565 gene (AERNm, GenBank accession no. ABX13461) with N-terminal 
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6x His tag were synthesized by the DOE Joint Genome Institute. The PCSEN gene was integrated into 

the pSEVA471 expression backbone. The plasmid is referred to as pTE1012. The PCSCa gene was 

cloned into the pET-16b expression vector, resulting in pTE1006. The pRSET B backbone was used 

for the integration of the AERNm gene. The plasmid is referred to as pTE421. Point mutants were 

generated by QuickChange® Site-Directed mutagenesis (Stratagene, La Jolla, USA). Following 

primers were used for Site-Directed mutagenesis on the PCSEN gene: forward primer (5’-CGA AGT 

TAA CTT CAA CAG TAT CTG GGC TCT GAC TG-3’) and reverse primer (5’-CAG TCA GAG 

CCC AGA TAC TGT TGA AGT TAA CTT CG-3’) for the D1302S variant; forward primer (5’-

CCG AAG TTA ACT TCG ACG ATA TCT GGG CTC-3’) and reverse primer (5’-GAG CCC AGA 

TAT CGT CGA AGT TAA CTT CGG-3’) for the N1301D variant; forward primer (5’-CGC AGG 

TAT GGA TGC GTC AGC GCC GC-3’) and reverse primer (5’-GCG GCG CTG ACG CAT CCA 

TAC CTG CG-3’) for the T1753M variant.  

For mutagenesis of the AERNm gene following primers were used: forward primer (5’- CAG CCC 

TGA ACT ACA ACG ATA TCT GGG G-3’) and reverse primer (5’-GCC CCA GAT ATC GTT 

GTA GTT CAG GGC TGC-3’) for the D50N variant; forward primer (5’-CAT TCT GGG CTC TCA 

TCA AGG GAC GCG TG-3’) and reverse primer (5’-CAC GCG TCC CTT GAT GAG AGC CCA 

GAA TG-3’) for the T307H variant. 

The Pseudomonas aeruginosa PhaJ gene, encoding for an enoyl-CoA hydratase, was synthesized by 

Eurofins MWG GmbH to be codon-optimized for E. coli. It was cloned into a pET-16b expression 

vector with an N-terminal strep tag. The plasmid is referred to as pTE656. 

Expression and purification 

The two PCS homologs (PCSEN and PCSCa) and variants thereof as well as PhaJ were expressed from 

the plasmid pTE1012, pTE1006 or pTE656 using E.coli BL21 (DE3) AI as expression host. AERNm 

variants were expressed from pTE421 using E.coli BL21 (DE3). The cells were transformed with the 

expression plasmid and plated on LB agar containing selective antibiotic and grown overnight. The 

colonies were used to inoculate 1 L TB medium. The expression culture was incubated at 37°C while 

shaking at 110 rpm until an OD600 of 0.7 – 0.9 was reached. The E.coli culture was cooled down to 

20°C before induction. Expression was induced by adding 0.25 mM IPTG. When using E.coli BL21 

(DE3) AI as expression host 0.02 % L-arabinose was added additionally. The culture was incubated 

for 16-20 h. The cells were harvested by centrifugation at 5000 x g for 10 min. The pellet was stored 

at -20°C, optionally. Cells expressing PCS homologs and variants thereof as well as PhaJ were 

resuspended in a 1:3 ratio (w/w) in buffer A (50 mM Tris-HCl pH 7.9, 500 mM NaCl) containing 

SIGMAFAST™ protease inhibitor (Sigma-Aldrich, Munich, Germany), 5 mM MgCl2 and 10 µg/mL 
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DNaseI. Per gram cells expressing AERNm variants, 2 mL buffer C (500 mM NaCl, 50 mM Tris-HCl, 

pH 7.5, 1 M L-proline) containing 5 mM MgCl2 and 10 µg/mL DNaseI was used to resuspend the 

pellet. Cells were lysed by ultrasonication. A heat precipitation step for 15 min at 60°C followed for 

the lysate containing the C. aurantiacus PCS homolog. The lysate was cleared by ultracentrifugation 

at 50’000 x g for 45 min at 4°C followed by filtration through a 0.45 μm syringe filter. The lysates 

from the different PCS and AER overexpression strains were loaded onto a 1 mL His-Trap column 

(GE Healthcare). Unspecifically bound proteins were washed off with 15 mL of 5 % buffer B (50 mM 

Tris-HCl pH 7.9, 500 mM NaCl, 500 mM imidazole) during purification of PCS and PhaJ and buffer 

D (50 mM Tris-HCl pH 7.5, 500 mM NaCl, 500 mM imidazole, 1M L-proline) was used for AERNm. 

PCS homologs and AERNm were eluted with 100% buffer B or D, respectively. Desalting columns 

with Sephadex G-25 resin (HiTrapTM, GE Life Science, USA) and desalting buffer (125 mM NaCl, 

12.5 mM Tris, pH 7.5, 1 M L-proline) were used for size exclusion chromatography with AERNm, 

while PCS homologs were applied to a pre-equilibrated HiLoad 16/60 200 pg superdex (GE Life 

Science) column (150 mM NaCl, 20 mM Tris HCl pH 7.9). The lysate of PhaJ overexpression strain 

was loaded onto a 1 mL Strep-Trap column (GE Healthcare). PhaJ was eluted with 2.5 mM 

desthibiotin in buffer A. The purity of the proteins was tested by SDS-PAGE. 

Kinetic characterization  

Spectrophotometric assays were set up to measure the activity of PCSEN and AERNm. The assays were 

performed in 10 mm quartz cuvettes (Hellma Analytics) on a Cary-60 UV/Vis spectrometer (Agilent 

Technologies Inc. Santa Clara, CA, USA). The assay temperature was set to 30 °C. The PCSEN overall 

reaction and the reduction reaction alone as well as the reaction of AERNm were measured by 

following the consumption of NADPH at 340 nm (εNADPH = 6.22 mM-1 cm-1). The parameters for the 

CoA ligase domain alone of PCSEN were measured using a coupling assay via myokinase (purified 

from ASKA JW1375), pyruvate kinase and lactate dehydrogenase (SigmaAldrich P02694). Data is 

illustrated in Figure S3 and S10 and listed in Table S1. Detailed assay compositions to determine 

biochemical characteristics are listed in Table S4 and S7. The influence of ionic strength on the 

AERNm variants was measured under compositions listed in Table S8. The kcat values for the AERNm 

WT in dependence on NaCl concentrations ranging from 0-200 mM were measured in 100 mM 

KxHyPO4 (pH 7.5). The ion screen was performed with the AERNm D50N variant in 20 mM Tris / 

200mM proline (pH 7.5) with addition of 0, 20 or 200 mM of the displayed ions Figure S9. 

To determine the KM for CO2 of the different PCSEN and AERNm variants, a discontinuous assay had 

to be performed. Detailed assay compositions are listed in Table S5 and S9. The assays with PCSEN 

variants were performed in 100 mM Tris buffer (pH 8.0) and KHCO3 concentrations ranging from 0 
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– 2 M (potassium concentration was filled up to 2 M in every assay sample using KCl) and the 

corresponding dehydratase deficient PCSEN_ΔDH variant. Assays with AERNm contained either buffer 

with 100 mM KxHyPO4 (pH 7.5) or 20 mM tris - 200 mM prolin (pH 7.5) and NaHCO3 concentrations 

ranging from 0 – 80 mM (sodium concentration was filled up to 80 mM in every assay sample using 

NaCl). Each reaction contained 69 nM carbonic anhydrase and 2 mM NADPH. Impurities in 

chemically synthesized acrylyl-CoA interfered with assay analysis. Therefore, the substrate acrylyl-

CoA was generated in situ using 2 mM 3-hydroxypropionyl-CoA and the dehydratase PhaJ. The 

samples were quenched with pre-cooled formic acid to a final concentration of 10 % (v/v), centrifuged 

for 10 minutes at 17’000 x g and 4°C and immediately analyzed by UHPLC. Triplicates were 

measured at every CO2 concentration, each replicate comprising six time points to determine the 

slope for methylmalonyl-CoA and propionyl-CoA generation by UHPLC analysis. The 

methylmalonyl-CoA generation rates and the carboxylation efficiencies were plotted against the CO2 

concentration (Figure S4 and S6). Separate kcat values for carboxylation and reduction are listed in 

Table S2 and S3. 

The CO2 concentration was calculated from the following formula37: [CO2] = ([HCO3
-] x [H+]2) / 

([H+]2 + Ka1 x [H+] + Ka1 x Ka2), with Ka1 = 4.45 x 10-7, Ka2 = 4.69 x 10-11. 

Carboxylation in PCS overall reaction 

PCSEN WT was assayed for its carboxylation capability by running the overall reaction and analyzing 

the generated products by hrLC-MS. The overall reaction was performed in 100 mM phosphate 

Buffer (pH = 8), 10 mM MgCl2 and 40 mM KCl in the presence or absence of 200 mM NaHCO3 or 

NaH13CO3 and 69 nM carbonic anhydrase. 1.45 µM of PCSEN WT was supplied with 8 mM of 

NADPH, 8 mM of ATP, 8 mM of 3-hydroxypropionate and 5 mM of CoA. 

Carboxylation ratios of the different PCS homologs and variants thereof in the overall reaction were 

determined in time course assays. Detailed assay compositions are listed in Table S6. A master mix 

was prepared for all different reactions that contained everything except the starting substrate 3-

hydroxypropionate. The master mix was then split into three replicates which were started 

individually by adding 3-hydroxypropionate. Samples were taken at specific time points and 

quenched with pre-cooled formic acid to a final concentration of 10 % (v/v). Samples were 

centrifuged for 10 minutes at 17’000 x g and 4°C and the supernatant was immediately frozen in 

liquid nitrogen and stored at -80°C until UHPLC analysis. Triplicates were measured, each replicate 

comprising six time points. The 3-hydroxypropionyl-CoA, methylmalonyl-CoA and propionyl-CoA 

concentration in each sample was determined and plotted against the reaction time (Figure S8). 
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UHPLC product analysis 

To measure the product or intermediate formation, 1 µL of the assay sample was injected into a 1290 

Infinity II UPLC-UV system (Agilent Technologies Inc. Santa Clara, USA). The samples were 

separated on Eurospher II 100-2 C18 column (Knauer Wissenschaftliche Geräte, Berlin, Germany). 

To detect the CoA-thioesters via UV absorbance an InfinityLab Max-Light cartridge cell was used 

(10 mm detector length for the carboxylation assay samples of PCSEN WT, D1302S and N1301D 

variants, 60 mm detector length for all other samples, Agilent Technologies Inc. Santa Clara, USA). 

To separate the CoA-thioesters in the overall reaction samples, a gradient of 2 – 10 % (v/v) 

acetonitrile in 10 mM potassium phosphate buffer (pH 6.8) over 6.5 min at a flow rate of 0.2 mL/min 

was applied (retention times: methylmalonyl-CoA 3.9 min, propionyl-CoA 7.1 min, 3-

hydroxypropionyl-CoA 5.0 min, CoA 4.2 min). In the longer method with a gradient of 1.5 – 10 % 

(v/v) acetonitrile in 10 mM potassium phosphate buffer (pH 6.8) over 8 min at a flow rate of 

0.2 mL/min the compounds eluted as followed; methylmalonyl-CoA 4.1 min, propionyl-CoA 

8.0 min, 3-hydroxypropionyl-CoA 5.1 min, CoA 4.4 min. Standard series for free CoA, 3-

hydroxypropionyl-CoA, propionyl-CoA and methylmalonyl-CoA in a range from 5 µM to 500 µM 

were run on both separation methods. The standards were dissolved in the assay matrix (80 mM 

potassium phosphate (pH 8.0), 40 mM potassium bicarbonate, 10 % (v/v) formic acid). For 

quantification of the CoA-thioesters in the samples, standard curves for all compounds were 

generated and a linear regression model was applied for the correlation of compound concentration 

and UV260 peak area. 

High resolution LC-MS (hrLC-MS) 

3-hydroxypropionyl-Coa, propionyl-CoA and methylmalonyl-CoA were analyzed using an Agilent 

6550 iFunnel Q-TOF LC-MS system equipped with an electrospray ionization source set to positive 

ionization mode through a 1290 Infinity UPLC (Agilent Technologies Inc. Santa Clara, CA, USA). 

Compounds were separated on a RP-18 column (50 mm x 2.1 mm, particle size 1.7 µm, Kinetex XB-

C18, Phenomenex, Aschaffenburg, Germany) using a mobile phase system comprised of 50 mM 

ammonium formate pH 8.1 (A) and methanol (B). Chromatographic separation was carried out using 

the following gradient condition at a flow rate of 250 µl/min: 0 min 0% B; 1 min 0% B, 3 min 2.5% 

B; 9 min 23% B; 14 min 80 %B; 16 min 80%; 17 min 0 % B; 18 min 0 % B.  

Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying 

(13 l/min, 225 °C) and sheath gas (12 l/min, 400°C). The TOF was calibrated using an ESI-L Low 

Concentration Tuning Mix (Agilent Technologies Inc. Santa Clara, CA, USA) before measurement 
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(residuals less than 2 ppm for five reference ions). MS data were acquired with a scan range of 750-

1200 m/z. 

CoA-thioesters were additionally detected by UV absorbance at 260 nm using a diode array detector 

(1290 Infinity II, Agilent Technologies Inc. Santa Clara, CA, USA) 

LC-MS data were analyzed using MassHunter Qualitative Analysis software (Agilent). 

Molecular dynamic simulations 

The starting structure for all simulations was the PCSEN crystal structure (PDB: 6EQO11) with the 

two NADP+ cofactors. Missing residues in the crystal structure were added with the Modeller 

software38 and the protein dimer with both cofactors and the water molecules in the crystal structure 

were solvated inside a rectangular box of TIP3P water molecules with a distance of 10 Å between the 

enzyme and the edge of the box. To neutralize the system, sodium and chloride ions were added to 

reach a concentration of 0.150 mol/L. All molecular dynamics simulations were performed with the 

software Amber1739 and CHARMM36m force field40 for the protein. Molecular mechanics 

parameters for NADP+ were taken from Pavelites41. 

For the D1302S mutant the aspartate residue in the crystal structure was modified to serine. After the 

solvation, each system was subject to energy minimization and three equilibration stages: 500ps NVT 

using the Langevin thermostat (300 K, 1.0 ps-1, 2 kcal mol-1 Å-2 center of mass restraint on NADP+), 

5 ns NPT using Langevin thermostat and Monte Carlo barostat (300 K, 1 bar) and a final equilibration 

of 30 ns NVT. Electrostatic interactions were calculated with the PME method with a cut-off of 8 Å 

and a vdw interaction were calculated up to 8 Å using a time step of 2 fs. All bonds were constraint 

with the SHAKE algorithm. 

Three independent simulations of the WT and the D1302S mutant were carried out and analyzed with 

respect to the orientation of Asp1301 in the active site. 

Phylogenetic tree construction 

Homologous sequences of PCSEN and AERNm were searched using the ProtBlast/PSI-Blast tool 

available from the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de)42. The nr90 

database was screened for 250 sequences each, which were then forwarded to the HHfilter tool. 

Sequences with a minimal coverage of 90 % and an identity in the lower range from 45-70 % (14 

PCS sequences, 20 AER sequences) or in the higher range from 75 – 90 % for AER (21 sequences) 

or from 70 – 90 % for PCS (13 sequences) were selected. Similar phylogenetic tree were obtained 

with both sets of sequences (high vs. low sequence identity to AERNm or PCSEN, respectively). The 

PCS sequences were shortened to the reductase domain (analysis with full-length PCS gave similar 
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results). The PCS reductase and AER sequences were combined with all sequences used to construct 

a previous MDR superfamily tree28. Phylogenetic analysis was performed using MEGA7 by the 

Maximum Likelihood method based on the Le_Gascues_2008 model. The bootstrap consensus tree 

inferred from 100 replicates is taken to represent the evolutionary history of the taxa analyzed43. 

Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. 

The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 

are shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by 

applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a 

JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site. The analysis involved 

145 amino acid sequences. There were a total of 746 positions in the final dataset. 
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3.7 Supplementary Information 

Supplementary Information 

I Engineered PCSEN carboxylase domain in the context of the overall reaction 

Our engineering approaches successfully increased the carboxylation efficiency from 3 ± 1 % in 

PCSEN_ΔDH wild type to 69 ± 3 % in the PCSEN_ΔDH D1302S T1753M variant when at 4.4 mM CO2 

(Table 1). We also tested, whether the engineered carboxylase domain would function in the context 

of the overall reaction of PCSEN. Indeed, carboxylation efficiency was dramatically improved from 

4.3 ± 0.6 % in PCSEN wild type to 54 ± 2 % at physiological, non-saturating CO2-concentrations in 

PCSEN D1302S T1753M (i.e., 1.1 mM CO2). However, the overall kcat was strongly decreased and 

even below the kcat of the engineered carboxylase domain alone (Table S1). Catalysis in PCS is highly 

synchronized across the enzyme’s three domains11. Detailed analysis showed that the surprising loss 

of catalytic efficiency in the overall reaction was based in the ligase domain (from 5.7 ± 1.2 s-1 in 

PCSEN WT11 to 0.0060 ± 0.0002 s-1 in PCSEN D1302S T1753M), pointing toward an impaired domain 

communication in PCSEN D1302S T1753M.  

II AERNM sensitivity to buffer composition and ionic strength 

Buffer composition and ionic strength had an important influence on the carboxylation efficiency of 

AERNm, which showed a narrow activity optimum in phosphate buffer and was sensitive to ion 

concentrations above 60 mM (Figure S9 and S10). The enzyme performed best in 100 mM phosphate 

buffer pH 7.5. 

III Physiological context of latent carboxylases 

We suggested that the latent carboxylation activity in PCS and AER was positively selected for 

because of the physiological context of these enzymes. PCS operates in the 3-hydroxypropionate 

bicycle (3-HPBC) of C. aurantiacus and a modified version of the same pathway in E. sp. NAP129,30. 

In the 3-HPBC 3-hydroxypropionate is converted into propionyl-CoA by PCS (Figure S7a). Half of 

the propionyl-CoA pool is further carboxylated into methylmalonyl-CoA to feed the autotrophic 

branch of the cycle by an ATP-dependent propionyl-CoA carboxylase. The other half of the 

propionyl-CoA is used to feed the assimilation branch. A PCS variant that is able to reductively 

carboxylate acrylyl-CoA directly into methylmalonyl-CoA would make the ATP-dependent 

propionyl-CoA carboxylation step dispensable. With five ATP per three CO2 fixed into pyruvate, a 

50 % carboxylating PCS variant would save 20 % ATP in the cycle. Even a PCS with a carboxylation 

efficiency of only 5 % would make a distinct difference in biomass yield. The argument becomes 

even stronger, when the 3-HPBC is used during mixotrophic growth, e.g., when acetate is assimilated, 
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where a fully carboxylating PCS variant would save 25 % ATP. Similar arguments hold true for 

AERNm that presumably works in the 3-hydroxypropionate / 4-hydroxybutyrate cycle in N. 

maritimus18 (Figure S7b). A fully carboxylating AERNm would save 25% ATP per two CO2 

converted into acetyl-CoA, while a partially carboxylating enzyme would save biomass yield 

according to the grade of carboxylation efficiency. In the physiological context of ammonia oxidizing 

archaea, such as N. maritimus, which thrive at a constantly low energy supply18, it seems unlikely 

that the sleeping carboxylation function of AERNm in N. maritimus would not play a role in 

contributing to the lifestyle of these organisms.  

Supplementary Figures 

 

Figure S1: PCS sequence alignment of CO2-binding residues. The Erythrobacter sp. NAP1 homolog PCSEN is marked with a blue 
star. The four essential residues to bind the CO2 molecule are framed. The residue numbering refers to the PCSEN sequence. The four 
spheres behind the sequence represent the conservation of the four essential residues (green, conserved; orange, not conserved). 
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Figure S2: AER sequence alignment of CO2-binding residues. The Nitrosopumilus maritimus homolog AERNm is marked with a 
blue star. The four essential residues to bind the CO2 molecule are framed. The residue numbering refers to the AERNm sequence. The 
four spheres behind the sequence represent the conservation of the four essential residues (green, conserved; orange, not conserved). 
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Figure S3: Michaelis-Menten plots of the kinetic characterizations of PCSEN variants. All points were measured in triplicates, 
mean ± s.d. is schown. For detailed assay conditions see Table S1. The reductase domain alone is assayed depending on the acrylyl-
CoA concentration in a, c, e and g using the corresponding variant in a dehydratase deficient mutant. b. b, d and f depict the turnover 
number of the overall reaction in dependence of the CoA concentration. Assays were performed with a, PCSEN_ΔDH D1302S, b, PCSEN 
D1302S, c, PCSEN_ΔDH N1301D, d, PCSEN N1301D, e, PCSEN_ΔDH D1302S T1753M, f, PCSEN D1302S T1753M, g, PCSEN_ΔDH 
T1753M. 

 

a b

c d

e f

g

kcat = 0.50 ± 0.02 s
‐1kcat = 3.15 ± 0.12 s

‐1

kcat = 2.88 ± 0.01 s
‐1 kcat = 1.05 ± 0.04 s

‐1

kcat = 3.6 ± 0.2 s
‐1 kcat = 0.0091 ± 0.0004 s‐1

kcat = 32 ± 2 s
‐1
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Figure S4: Determination of KM_CO2 and carboxylation efficiency of PCSEN variants at different CO2 concentrations. The 
methylmalonyl-CoA (MM-CoA) generation rate is represented as black dots, the carboxylation efficiency in grey bars. MM-CoA 
generation rate over the reaction time course (5 time points) was determined by UHPLC (UV-peak area) measurements in triplicates 
and was corrected for 1 nM of enzyme. Carboxylation efficiencies are given as mean ± s. d. as calculated from the mean carboxylation 
ratio over the reaction time course in three replicates. CO2 concentrations were calculated from bicarbonate concentration. Michaelis-
Menten fit was plotted where applicable and the associated KM_CO2 is shown above the graph. For detailed assay conditions see Table 
S2. Assays were performed with a, PCSEN_ΔDH WT, b, PCSEN_ΔDH D1302S, c, PCSEN_ΔDH T1753M, d, PCSEN_ΔDH D1302S T1753M in 
100 mM Tris buffer (pH 8.0) at fixed concentration of acrylyl-CoA. 

PCSEN_ΔDH T1753M

KM_CO2 n.d.

a b

c d

PCSEN_ΔDH D1302S

KM_CO2 = 27 ± 5 mM

PCSEN_ΔDH D1302S T1753M

KM_CO2 = 26 ± 5 mM

PCSEN_ΔDH WT

KM_CO2 n.d.



Awakening the sleeping carboxylase function of enzymes 

-88- 
 

 

Figure S5: Molecular dynamics simulation of the PCSEN wt and D1302S active site. a shows the probability distribution of the 
Asn1301 dihedral angle in the PCSEN wt. The model at the dominant Asn1301 dihedral angle (250°) is depicted in b. c shows the 
probability distribution of the Asn1301 dihedral angle in the PCSEN D1302S variant. The models of the two predominant Asn1301 
dihedral angles, at 100° and 180°, are depicted in d and e, respectively. 
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Figure S6: Determination of KM_CO2 and carboxylation efficiency of AERNm variants at different CO2 concentrations. The 
methylmalonyl-CoA (MM-CoA) generation rate is represented as black dots, the carboxylation efficiency in grey bars. MM-CoA 
generation rate over the reaction time course (5 time points) was determined by UHPLC (UV-peak area) measurements in triplicates 
and was corrected for 1 µM of AERNm WT and for 1 nM of AERNm D50N. Carboxylation efficiencies are given as mean ± s. d. as 
calculated from the mean carboxylation ratio over the reaction time course in three replicates. CO2 concentrations were calculated from 
bicarbonate concentration. Michaelis-Menten fit was plotted where applicable and the associated KM_CO2 is shown above the graph. 
For detailed assay conditions see Table S7. Assays were performed with a, c, AERNm WT, b, d, AERNm D50N in either 100 mM 
KxHyPO4 (a,b) or 20mM Tris/200 mM proline buffer (c,d) at fixed concentration of acrylyl-CoA. 

AERNm WT

KM_CO2 n.d.

a b

c d

AERNm D50N

KM_CO2 = 0.18 ± 0.09 mM

AERNm D50N

KM_CO2 = 0.56 ± 0.12 mM

AERNm WT

KM_CO2 n.d.
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Figure S7: Physiological context of PCS & AER as sleeping carboxylases. a, PCS operates in the 3 hydroxypropionate bicycle (3-
HPBC, black and grey reactions) of C. aurantiacus and a modified version of the same pathway in Erythrobacter sp. NAP1 (black 
reactions). b, AERNm presumably operates in the 3-hydroxypropionate / 4-hydroxybutyrate cycle in N. maritimus.  
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Figure S8: Carboxylation efficiency in the overall reaction of PCS homologs and variants thereof. Time course (3 replicates each) 
of the overall reaction with 0.8 mM 3-hydroxypropionate, 0.8 mM ATP, 0.8 mM NADPH and 0.5 mM CoA, see Table S3 for detailed 
assay conditions. 3-hydroxypropionyl-CoA (3OHP-CoA), propionyl-CoA (Prop-CoA) and methylmalonyl-CoA (MM-CoA) 
concentrations were determined over a time course by UHPLC using an individual standard series for all three compounds (ranging 
from 1 – 500 µM). Carboxylation efficiency of a, PCSEN WT, b, PCSEN D1302S, c, PCSEN N1301D, d, PCSEN T1753M, e, PCSEN 
D1302S T1753M, f, PCSECaN WT is illustrated as bar plot. data mean ± s.d. (n=3). 

a b

c d
MM-CoA

e f
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Figure S9: Influence of ionic strength on AERNm. a, kcat in dependence on the NaCl concentration of AERNm WT in 100 mM 
KxHyPO4 buffer. b, Scan for ions with low inhibitory effect on the kcat of AERNm. Experiments were carried out with the AERNm D50N 
variant in 50 mM Tris/200 mM proline buffer containing 50 mM KHCO3 or NaHCO3 and 0, 20 or 200 mM of the displayed ions. kcat 
is given as mean with error bars from 3 replicates measured at fixed concentrations of acrylyl-CoA and NADPH. 

 

Figure S10: Influence of buffer composition on AERNm WT and AERNm D50N carboxylation efficiency and kcat. Experiments 
were carried out either in 100 mM KxHyPO4 (pH 7.5) or 200 mM proline/20 mM Tris buffer (pH 7.5) at fixed concentrations of acrylyl-
CoA and NADPH. kcat data is shown as mean with error bars determined from 3 replicates. Carboxylation efficiencies are given as 
mean ± standard deviation as calculated from the mean carboxylation ratio over the reaction time course (3 time points) in three 
replicates. See Table S6 for detailes assay conditions. 
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Supplementary Tables 

Table S1: Reaction parameters and carboxylation ratio for the overall reaction of different PCS homologs and variants thereof.  

 
Reductase domain 

reaction only 
Three-domain reaction sequence 

PCS variant 
app. kcat (s-1) 
at 1 mM CO2 

app. kcat (s-1) 
at 1 mM CO2 

% carboxylation 
at 1 mM CO2 

PCSEN WT 140 ± 20 1) 4.7 ± 0.3 1) 4.3 ± 0.6 

PCSEN D1302S 3.15 ± 0.12 0.46 ± 0.02 29 ± 2 

PCSEN N1301D 2.88 ± 0.01 1.06 ± 0.04 n.d. 

PCSEN T1753M 32 ± 2 4.6 ± 0.2 2) 8.1 ± 0.2 

PCSEN  
D1302S T1753M 

3.6 ± 0.2 0.0091 ± 0.0004 54 ± 2 

PCSCa WT n.d. 8.4 1) 0.6846 ± 0.0007 
kcat (combined reduction & carboxylation activity) and KM data are shown as mean ± s. d. as determined from a Michaelis-Menten fit 
of at least 18 data points (Figure S3). Carboxylation ratios are given as mean ± s. d. as calculated from the mean carboxylation ratio 
over the reaction time course (5 time points) in three replicates (Figure S8). CO2 concentrations were calculated from bicarbonate 
concentration. n.d., not determined. 
1) previously reported value10,11  
2) triplicate measurement at saturating conditions 
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Table S2: Specific activities of different PCSEN variants 

 PCS wt PCS D1302S PCS T1753M PCS D1302S T1753M 
[CO2] 
 

kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

44 mM 1.6 ± 0.3 7.7 ± 0.6 1.3 ± 0.1 1.1 ± 0.3 5.9 ± 0.7 7.6 ± 0.4 0.91 ± 0.07 0.09 ± 0.02 

30.8 mM 1.1 ± 0.3 7.0 ± 0.4 1.09 ± 0.11 1.20 ± 0.08 3.9 ±0.2 6.7 ± 0.3 0.72 ± 0.04 0.09 ± 0.02 
17.6 mM 0.66 ± 0.12 6.5 ± 0.2 0.81 ± 0.02 1.27 ± 0.08 2.2 ± 0.2 6.4 ± 0.1 0.52 ± 0.03 0.11 ± 0.02 
13.2 mM 0.48 ± 0.07 6.0 ± 0.1 0.62 ± 0.06 1.27 ± 0.05 1.8 ± 0.2 6.4 ± 0.3 0.46 ± 0.03 0.13 ± 0.03 
8.8 mM 0.48 ± 0.05 7.5 ± 1.0 0.54 ± 0.02 1.362 ± 0.004 1.22 ± 0.04 6.1 ± 0.1 0.37 ± 0.03 0.13 ± 0.01 
4.4 mM 0.21 ± 0.04 7.2 ± 1.0 0.34 ± 0.02 1.43 ± 0.07 0.6 ± 0.2 5.9 ±0.4 0.29 ± 0.01 0.17 ± 0.02 
Specific activities of the reduction and carboxylation reaction, calculated from the change in UV peak over time using a previous standard curve. Note, the low kcat values are due to the 
inhibition by high concentrations of potassium. 

	

Table	S3:	Specific	activities	of	different	AERNm	variants	in	phosphate	buffer	

 AERNm WT AERNm D50N 

[CO2] 
kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

kcat (s-1) 
carboxylation 

kcat (s-1) 
reduction 

1.31 mM 
0.0056 ± 0.0002 

 
0.078 ± 0.010 1.36 ± 0.11 0.29 ± 0.07 

1.09 mM 
0.0045 ± 0.0002 

 
0.081 ± 0.008 1.37 ± 0.04 0.33 ± 0.06 

0.88 mM 0.0044 ± 0.0003 0.090 ± 0.003 1.45 ± 0.05 0.36 ± 0.03 
0.66 mM 0.0034 ± 0.0002 0.10 ± 0.01 1.30 ± 0.03 0.43 ± 0.06 
0.22 mM 0.00180 ± 0.00004 0.134 ± 0.002 0.85 ± 0.06 0.54 ± 0.06 
0.11 mM 0.00141 ± 0.00009 0.136 ± 0.001 0.62 ± 0.09 0.60 ± 0.12 

Specific activities of the reduction and carboxylation reaction, calculated from the change in UV peak over time using a previous standard curve. 
Note, the low kcat values are due to the inhibition by high ionic strength. 
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Table S4: Detailed assay conditions to determine the kinetic parameters for the different PCSEN variants.  
 

overall reaction   reductase reaction  ligase reaction  

Tris buffer pH 8 (mM) 100 100 100 

KHCO3 (mM) 50 50 50 

KCl (mM) 40 40 40 

MgCl2 (mM) 10 10 10 
3-hydroxypropionate 
(mM) 

2.1  2.1 

CoA (mM) X  8 
ATP (mM) 3  3 
NADPH (mM) 0.3 0.3  

NADH (mM)   0.3 
acrylyl-CoA (mM)  X  

PCSEN variant (nM) 1) 2) 3) 
Carbonic anhydrase (nM) 69 69 69 
Phosphoenolpyruvate 
(mM) 

  1 

PK/LDH (U)   ~ 2.4 / 3.5 
Myokinase (µM)   2.7 

Triplicates were measured at six different concentrations of substrate X. The ligase reaction was measured in triplicate at a fixed 
concentration of all substrates. PK/LDH, mixture of pyruvate kinase and lactate dehydrogenase (Sigma-Aldrich P0294). 
1) 676 nM of PCSEN D1302S, 227 nM of PCSEN N1301D, 9282 nM of PCSEN D1302S T1753M 
2) 97 nM of PCSEN_ΔDH D1302S, 82 nM of PCSEN_ΔDH N1301D, 11 nM of PCSEN_ΔDH T1753M, 101 nM of PCSEN_ΔDH D1302S T1753M 
3) 9282 nM of PCSEN D1302S T1753M 

 

Table S5: Detailed assay conditions to determine the KM_CO2 for the different PCSEN variants.  

Tris buffer pH 8 (mM) 100 

KHCO3 (mM) x 
Carbonic anhydrase 
(nM) 

69 

NADPH (mM) 2 
KCl (mM) 2000 - x 
3OHP-CoA (mM) 2 
PCSEN_ΔDH variant 
(µM) 

1) 

PhaJ (µM) 1.5 
Triplicates were measured at six different CO2 concentrations, each replicate comprising six time points to determine the slope for 
methylmalonyl-CoA and propionyl-CoA generation by UHPLC analysis. 
1) 0.12 µM of PCSEN_ΔDH, 0.44 µM of PCSEN_ΔDH D1302S, 0.10 µM of PCSEN_ΔDH T1753M, 0.43 µM of PCSEN_ΔDH D1302S T1753M 
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Table S6: Assay conditions for the PCSEN overall reactions to determine the carboxylation efficiency. 

Tris / Pi buffer pH 8 
(mM) 1) 

100 

KHCO3 (mM) 50 

KCl (mM) 40 

MgCl2 (mM) 10 
3-hydroxypropionate 
(mM) 

0.8 

CoA (mM) 0.5 
ATP (mM) 0.8 
NADPH (mM) 0.8 
PCSEN variant (µM) 2) 

Carbonic anhydrase (nM) 69 
1) PCSEN WT, PCSEN D1302S, PCSEN N1301D were measured in phosphate buffer. PCSEN T1753M, PCSEN D1302S T1753M and 
PCSCa were measured in Tris buffer. 
2) 0.15 µM of PCSEN WT, 1.5 µM of PCSEN D1302S, 0.75 µM of PCSEN N1301D, 11.6 µM of PCSEN D1302S T1753M, 0.075 µM of 
PCSCa 

 

Table S7: Assay conditions for the kcat determination of AERNm variants. 

NADPH (mM) 0.6 

Acrylyl-CoA (mM) 0.5 

NaHCO3 (mM) 50 
Carbonic anhydrase 
(nM) 

69 

AERNm 1) 
in phosphate or proline buffer. 
1) 0.29 µM of AERNm WT in proline buffer (20 mM Tris/200mM proline, pH 7.5), 0.095 µM of AERNm WT in phosphate buffer 
(100 mM KxHyPO4, pH 7.5), 0.053 µM of AERNm D50N in phosphate buffer, 1.4 µM of AERNm D50N in proline buffer 
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Table S8: Composition of assays to determine the influence of ionic strength on AERNm.  

NADPH (mM) 0.3 

OH-propCoA (mM) 0.5 
KaHCO3/NaHCO3 
(mM) 

50 

Carbonic anhydrase 
(nM) 

69 

PhaJ (µM) 0.4 

AERNm 1) 
1) 0.55 µM of AERNm WT in phosphate buffer (100 mM KxHyPO4, pH 7.5), 0.39 µM of AERNm D50N in proline buffer (20 mM 
Tris/200 mM proline, pH 7.5) 
 

Table S9: Detailed assay conditions to determine KM_CO2 for AERNm variants.  

 AERNm WT AERNm D50N 
NADPH (mM) 2 2 
3-OH propionyl-CoA 
(mM) 

2 2 

NaHCO3 (mM) x x 
NaCl (mM) 60 - x 80 - x 
Carbonic anhydrase 
(nM) 

69 69 

PhaJ   

AERNm 2) 2) 
NaHCO3 concentrations ranging from 0 – 60 mM in assays with the AERNm wt and ranging from 0 – 80 mM with the AERNm D50N 
variant. 
1) PhaJ concentration was two times the concentration of AERNm. 
2)concentration of AERNm WT in proline buffer (20 mM Tris/200mM proline) and phosphate buffer (100 mM KHPO4) was 7.8 µM. 
AERNm D50N concentration in Phosphate buffer was 0.33 µM and was 0.22 µM in proline buffer.  
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4 Propionyl-CoA synthase module in Erythrobacter sp. NAP1: a 

light-induced pathway to maintain the redox homeostasis 

4.1 Abstract 

As photosynthetic organisms, aerobic anoxygenic phototrophic (AAP) bacteria are facing the 

challenge of over-reduction by light-driven electron transfer. Despite aerobic growth with oxygen 

serving as electron acceptor, several AAP bacteria respond to the surplus of reducing equivalents 

with the upregulation of a reductive metabolic pathway. Here, we describe a putative propionyl-CoA 

synthase (Pcs) module, a part of the 3-hydroxypropionate bi-cycle, in the AAP bacterium 

Erythrobacter sp. NAP1. Bioinformatics and proteomic approaches confirmed that Erythrobacter sp. 

NAP1 encodes and expresses all the genes required for the postulated Pcs module. A significant light-

dependent upregulation of the key enzymes in Erythrobacter sp. NAP1 suggests the Pcs module to 

be involved in redox homeostasis. This finding would be in line with the phylogenetic distribution of 

the two key enzymes of the Pcs module among potential phototrophic microorganisms. 

4.2 Introduction 

Propionyl-CoA synthase (Pcs) and malonyl-CoA reductase (Mcr) have been described as key 

enzymes of the autotrophic 3-hydroxypropionate (3HP) bi-cycle in the green non-sulfur bacterium 

Chloroflexus aurantiacus1,2 (Figure 1). Mcr reduces malonyl-CoA to 3-hydroxypropionate in a two-

step reaction using two equivalents of NADPH. Pcs catalyzes the subsequent three-step reaction 

sequence from 3-hydroxypropionate to propionyl-CoA, which is the branching point metabolite 

between the first and the second part cycle1. Together, the two cycles generate the central metabolite 

pyruvate from CO2, while regenerating the initial acceptor molecule acetyl-CoA. Although Pcs and 

Mcr are key to the mixotrophic and (facultative) photoautotrophic lifestyle of C. aurantiacus3, the 

enzymes are notably spread beyond the phylum of Chloroflexi and are encoded in a variety of 

heterotrophic microorganisms.  

Strikingly, all of the Pcs-encoding microorganisms are potential phototrophs and most of them belong 

to the group of aerobic anoxygenic phototrophic (AAP) bacteria. AAP bacteria are obligate aerobes 

that metabolize organic carbon for growth, while additionally utilizing light for energy conservation. 

AAP bacteria account for up to 15% of the total microbial community in the upper ocean4-6 and 

contribute significantly to the marine carbon cycle. However, the physiology and metabolic repertoire 

of these ecologically relevant microorganisms is still poorly understood. 
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Our finding that Pcs is encoded by a variety of AAP bacteria encouraged us to study the role of this 

multi-domain enzyme in these organisms. We chose Erythrobacter sp. NAP1 as our model, which 

had been isolated from Atlantic surface water, characterized and sequenced7,8. We previously 

described the detailed structure and function of the Erythrobacter sp. NAP1 Pcs homologue as a 

multi-domain synchronized reaction-chamber9. In this study, we investigated the potential 

physiological role and regulation of Pcs in Erythrobacter sp. NAP1 using growth studies and whole 

cell proteomics. 

4.3 Results 

To understand the physiological role of Pcs and Mcr we first investigated the evolution and 

phylogenetic distribution of the two genes (Figure S1 and S2). Interestingly, while the two genes 

seem to have spread as a unit in most cases, some organisms encode one of the two key enzymes 

independent of the other (Supplementary Information I); e.g., Chloracidobacterium thermophilum 

strain B (referred to as C. thermophilum) carries the mcr but not the pcs gene. However, a closer 

inspection of the C. thermophilum genome reveals two genes on different loci, one homologous to 

the ligase domain (56 % amino acid sequence identity, 97 % coverage) and the other to the reductase 

domain (60 % amino acid sequence identity, 99 % coverage) of Pcs. Moreover, the C-terminal and 

the N-terminal end of the C. thermophilum ligase and reductase homologues, respectively, align 

further into the dehydratase domain of Pcs. Together the two sequences cover the complete Pcs 

sequence (Figure S3 and S4). The two C. thermophilum sequences clustered within the Pcs full-

length sequences, when we phylogenetically analyzed the individual Pcs domains compared to their 

stand-alone homologues (Figure S5, Supplementary Information II). It is unclear, whether these 

sequences represent an intermediate stage on the evolutionary track of Pcs or if they represent the 

truncated remnants of a full-length Pcs sequence. 

Bioinformatics analysis of the C. thermophilum genome revealed homologous genes for a partial 3HP 

bi-cycle able to convert acetyl-CoA and two bicarbonate molecules into succinyl-CoA. The same set 

of homologous genes was identified in the genome of Erythrobacter sp. NAP1, where they are 

arranged in two gene clusters, as noted before2,3 (Figure 1a). One putative cluster encoded Pcs and 

Mcr, while the other one encoded propionyl-CoA carboxylase, as well as methylmalonyl-CoA 

epimerase and mutase. Homologues of all other genes of the 3HP-bi-cycle were absent. Altogether, 

these data suggested the distribution of an incomplete 3HP bi-cycle, a linear Pcs module that allows 

the transformation of acetyl-CoA into succinyl-CoA (Figure 1b). This finding is in line with the 

heterotrophic lifestyle of C. thermophilum and Erythrobacter sp. NAP1. 
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Figure 1: Putative Pcs module in Erythrobacter sp. NAP1. a, two Erythrobacter sp. NAP1 gene clusters encode for five out of the 
six Pcs module enzymes, illustrated by arrows labelled by the respective UniProt ID. b, 3-hydroxypropionate bi-cycle with the putative 
Pcs module enzymes highlighted in color and metabolites in black. The enzymes are color coded: acetyl-CoA carboxylase, teal; Mcr, 
blue; Pcs, purple; propionyl-CoA carboxylase, pink; methylmalonyl-CoA epimerase, red; methylmalonyl-CoA mutase, orange. 

Using Erythrobacter sp. NAP1, we assessed whether the Pcs module might be involved in the 

assimilation of one of its intermediates (e.g., acetate, 3-hydroxypropionate or propionate). We first 

tested the growth of Erythrobacter sp. NAP1 on various carbon sources. While growth on glucose 

and acetate could be observed with growth rates of 0.05 ± 0.02 h-1 and 0.08 ± 0.02 h-1, respectively, 

no growth was detected in minimal medium containing either 3-hydroxypropionate or propionate 

alone (Figure 2). Cells grown on acetate showed formation of intracellular storage compounds, likely 

polyhydroxyalkanoates granules (Figure S6). 

We next asked whether acetate is assimilated via the Pcs module. Notably, Erythrobacter sp. NAP1 

also encodes the enzymes of the glyoxylate cycle (isocitrate lyase (Icl) and malate synthase (Ms)), a 

well-studied acetate assimilation pathway. To distinguish the contribution of the two pathways, we 

sought to suppress the glyoxylate cycle with 3-nitropropionate (3-NP), a specific inhibitor of 

isocitrate lyase10. When testing growth of Erythrobacter sp. NAP1 in minimal medium containing 
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either glucose or acetate as carbon source and different concentrations of 3-NP (Figure 2), we 

observed that growth on acetate was completely abolished at very low 3-NP concentrations (30 µM). 

Notably, in glucose medium, the growth rate was unaffected at 30 µM 3-NP and only slightly affected 

at higher 3-NP concentrations. The lag phase prolonged with increasing 3-NP concentrations. This 

finding indicated that acetate assimilation proceeds via the glyoxylate cycle and that the Pcs module 

is not able to functionally replace the glyoxylate cycle for growth on acetate. 

 
Figure 2: Influence of 3-nitropropionate on growth of Erythrobacter sp. NAP1 on different C-sources. Erythrobacter sp. NAP1 
was able to grow on minimal medium with glucose or acetate as the only carbon source. 3-hydroxypropionate or propionate could not 
promote growth of Erythrobacter sp. NAP1. 3-NP extended the lag phase and slightly impaired the growth rate of Erythrobacter sp. 
NAP1 on glucose and completely abolished growth on acetate. 

We then studied the protein abundance pattern of the Pcs module on glucose or acetate using shotgun 

proteomics and label-free quantification (Figure S7a, Table S1). The relative abundance of the Pcs 

module enzymes was inconsistent across experiments and seemed to be regulated independently of 

the respective carbon source. In contrast, the glyoxylate cycle was clearly upregulated (Icl: 24.3 ± 1.7 

fold and Ms: 3 ± 0.4 fold) when cells were grown on acetate. Note, that in Erythrobacter sp. NAP1 

the genes encoding for Icl and Ms are not organized in an operon, which explains the different 

magnitude of upregulation. 

Notably, it had been shown for other AAP bacteria, that some metabolic pathways are tightly linked 

to the presence of light (or: are regulated by illumination)7,11-13. Generally, these pathways, i.e., the 

ethylmalonyl-CoA, polyhydroxyalkanoate (PHA) biosynthesis or anaplerotic CO2-fixation pathways, 

share the common feature of being reductive pathways. To test whether light also regulates the 

abundance of the Pcs module enzymes, we cultivated Erythrobacter sp. NAP1 in batch cultures in 
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two incubators with an anti-parallel light/dark cycle and analyzed the proteome at specific time points 

(Figure S8). A comparison of the proteomes of cells that were incubated for 2 hours in light versus 

2 hours in the dark is illustrated in Figure 3a. It is apparent that the key enzymes Pcs and Mcr are 

significantly more abundant when the cells were harvested during the light phase. Notably, the highest 

levels of Pcs and Mcr were detected in the beginning of the light phase, which decreased over time 

(Figure 3b). All other predicted enzymes of the Pcs module were detected but did not show a 

significant change in protein levels depending on the light regime (Figure S7b, Table S2). Significant 

changes were also observed in many proteins that are part of the light-harvesting complexes, which 

were upregulated in the light. An exception are the enzymes involved in bacteriochlorophyll a 

biosynthesis that are less abundant in light, as reported before14-16. 

 
Figure 3: Differential abundance of Pcs module key enzymes Pcs and Mcr depending on light. a, volcano plot comparing the 
proteome of Erythrobacter sp. NAP1 grown for 2 hours in light versus 2 hours in the dark from cultures grown at a 12h light/dark 
cycle. Samples were prepared in triplicates per time point and light condition. 1998 proteins were quantified by shotgun LC-MS 
proteomics. The significance cutoff (black curve) was set with s0 = 0.5 and FDR = 0.001 and resulted in 56 proteins with a significantly 
different abundance (Table S2). Pcs module enzymes are highlighted using the same color code as in Figure 2. Pcs and Mcr are 
significantly more abundant in cells grown with light. b, Pcs and Mcr levels in Erythrobacter sp. NAP1 grown for the defined time at 
light/dark in a 12h light/dark cycle. Multiple t-tests were applied to probe significance. The difference between the protein levels in 
the light versus dark is significant for Pcs and Mcr at every time point with p<0.001. The decrease in Pcs and Mcr in light over time 
(1 h light to 6 h light) is significant with p<0.0001 (marked with four asterisks). 

We performed growth experiments to test whether an upregulation of the Pcs module in light entailed 

higher flux through this pathway and thus promoted growth. We therefore let Erythrobacter sp. NAP1 

grow in minimal medium with acetate in either a 12 h/12 h light/dark cycle or in the continuous dark. 

While growth was not directly promoted in cultures grown in a light/dark cycle compared to cultures 
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kept in the dark, there seemed to be an advantage in maintaining cell viability in nutrient-scarce 

conditions (Figure S9).  

When comparing Erythrobacter sp. NAP1 grown on glucose or on acetate, we noticed differences in 

cell morphology. Transmission electron micrographs revealed substantial PHA granules within the 

cells grown on acetate (Figure S6). In line with this finding, significantly increased levels of a Phasin 

protein and increased levels of the β-ketothiolase (PhaA) and the acetoacetyl-CoA reductase (PhaB) 

were detected in cells grown on acetate compared to glucose (Figure S10). The PHA synthase (PhaC) 

on the other hand, was present at similar levels on both carbon sources. It has been previously 

described that PHA production in an AAP bacterium was increased under dark-light cycle conditions 

compared to continuous dark conditions17. However, in Erythrobacter sp. NAP1 no effect of the light 

regime on the abundance of PHA-related proteins could be observed in minimal medium containing 

acetate (Figure S10).  

4.4 Discussion 

Here we present a putative Pcs module, a linear part of the 3-hydroxypropionate bi-cycle that allows 

the transformation of acetyl-CoA into succinyl-CoA. The distribution of the two key enzymes in 

potential phototrophs might hint towards an early evolution of this pathway in photosynthetic 

organisms. This hypothesis might be supported by the identification of all Pcs module enzyme 

homologues in C. thermophilum. In contrast to Chloroflexi and all AAP bacteria, the microaerophilic 

C. thermophilum contains a type-I reaction center and was shown to be obligate photoheterotrophic 

as it required light and organic carbon sources to grow18,19. Furthermore, the pcs gene is split into two 

separate coding sequences, of which the gene products should be biochemically probed for activity 

and potential complex formation. 

Using Erythrobacter sp. NAP1 we investigated the role of the putative Pcs module. As we showed 

by growth experiments with the inhibitor 3-NP, this module is not sufficient for acetate assimilation. 

Instead, acetate is assimilated through the canonical glyoxylate cycle. This is in contrast to 

Paracoccus denitrificans that uses two different pathways, namely the glyoxylate cycle and the 

ethylmalonyl-CoA pathway, to assimilate acetate20. This genetic redundancy allows optimal growth 

in a changing environment. The protein abundance of the Pcs module key enzymes was largely 

unchanged with different carbon sources. In contrast, we could show a light-dependent increase in 

Pcs and Mcr protein levels. Similarly, the abundance of these two key enzymes has also been shown 

to be upregulated in Chloroflexus aurantiacus when comparing photo(hetero)trophic to mixotrophic 

growth but did not change much between the different organic carbon sources provided in 
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photoheterotrophic growth3. The previously reported significant enhancement of CO2-fixation in light 

in Erythrobacter sp. NAP17,13 might thus be linked to the higher activity of the Pcs module with its 

two carboxylases (acetyl-CoA carboxylase and propionyl-CoA carboxylase). Carbon fixation in light 

might also be the underlying mechanisms of prolonged cell viability, which we observed under 

nutrient-limiting conditions. This phenomenon was previously studied in different AAP bacteria and 

was even reported to occur in the absence of any organic carbon source21,22. 

The reason for the light-dependent regulation of the Pcs module remains subject of future research; 

some speculations are presented here. In photoheterotrophic growth, organic compounds deliver 

carbon and reducing power while light can additionally be used to conserve energy. Consequently, 

when grown under light conditions, the cell might experience a surplus of energy and reducing 

equivalents. One would assume that Erythrobacter sp. NAP1, an aerobic photoheterotrophic 

bacterium, could simply use oxygen as an electron sink. However, it has been described before that 

AAP bacteria decrease their respiration rate under light conditions7,11,12. Therefore, we hypothesize 

that the Pcs module might play a key role in re-stabilizing the redox homeostasis in Erythrobacter 

sp. NAP1. The two carboxylases of the Pcs module, acetyl-CoA and propionyl-CoA carboxylase, 

might thus be classified as redox-balancing carboxylases23. 

Erythrobacter sp. NAP1 is equipped with another potential redox-balancing pathway, the PHA 

biosynthesis pathway. Interestingly, the abundance of this pathway’s enzymes changed depending on 

the carbon source but not on the light condition. The enhancing effect of acetate as carbon source on 

PHA biosynthesis has been reported previously for Rhodobacter sphaeroides and several other 

bacteria24-27. The reason behind this effect is yet to be investigated. A possible explanation for the 

enhanced PHA biosynthesis on acetate by Erythrobacter sp. NAP1 might be that assimilating acetate 

by the glyoxylate cycle generates NADH and might thus be another source of reductive stress. 

Erythrobacter sp. NAP1 might differentiate between a surplus of reducing equivalents originating 

from carbon metabolism or photosynthesis and responds with an upregulation of either the PHA 

biosynthesis pathway or the Pcs module, respectively. In contrast, the activation of both the reductive 

ethylmalonyl-CoA pathway as well as the PHA biosynthesis have been previously reported as a 

response to the redox imbalance caused by photosynthesis in Dinoroseobacter shibae12,17. Comparing 

these different pathways, differences in terms of bioenergetics, CO2-fixation and consumption of 

reducing equivalents become obvious (Table 1). The Pcs module re-oxidizes the most equivalents of 

NADPH per converted acetyl-CoA but also requires the most energy input in form of ATP, which 

might be negligible under energy-rich photosynthetic conditions. The lower NADPH re-oxidation 

potential of the EMCP and PHA biosynthesis pathway might explain, why D. shibae has to upregulate 
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both reductive pathways in response to light. The advantage of the EMCP and the Pcs module is the 

co-assimilation of CO2, which could significantly enhance growth in nutrient-scarce environments. 

Table 1: Comparison of the PHA biosynthesis pathway, the EMCP and the Pcs module. Consumption of NADPH, ATP and co-
assimilation of CO2 are given in equivalents per converted acetyl-CoA into the pathways final products. 

Equivalents per 

converted actely-CoA 

NADPH CO2 ATP 

PHA biosynthesis 1/2   

EMCP 2/3 2/3  

Pcs module 3 2/3 3 

 

In anaerobic phototrophs, the requirement for reductive metabolic pathways has been studied in 

detail. For example, the upregulation of the 3-hydroxypropinate bi-cycle key enzymes Pcs and Mcr 

has been shown in C. aurantiacus when generally comparing phototrophic to chemotrophic 

growth3,28,29. In purple non-sulfur bacteria, close relatives and implied ancestors of AAP bacteria30,31, 

the Calvin-Benson-Bassham cycle or the reductive tricarboxylic acid cycle are absolutely required to 

maintain the redox homeostasis during photosynthesis32-34. Even though the requirement for such 

reductive metabolic pathways is not expected to be found in aerobic phototrophs, it seems to be a 

general theme in all phototrophic bacteria. Potentially, the funneling of electrons into CO2-co-

assimilating pathways rather than respiration could serve as a strategy to maximize growth in an 

environment of scarce organic carbon sources like the upper ocean. The evolution of the different 

pathways in different phototrophic lineages and their ecological role are still to be elucidated. 

Extensive research efforts are necessary to further understand the function and regulation of these 

pathways. 

4.5 Methods 

Culture conditions 

The Erythrobacter sp. NAP1 strain was kindly provided by the Koblížek lab. The minimal medium 

for growth of Erythrobacter sp. NAP1 was composed of 30 g/L hw Marinemix professional 

(Wiegandt GmbH, Krefeld, Germany) salt mix, 1 mM (NH4)2SO4, 1 mM NH4HCO3, 0.1 mM sodium 

phosphate buffer pH 8.0, trace element solution 1 (15 mg/L EDTAꞏ2H2O, 3 mg/L FeSO4ꞏ7H2O), 

trace element solution 2 (3 mg/mL CoCl2ꞏ6H2O, 4.5 mg/L ZnSO4ꞏ7H2O, 0.64 mg/L MnCl2, 1 mg/L 

H3BO3, 0.4 mg/L Na2MoO4ꞏ2H2O, 0.3 mg/L CuSO4ꞏ5H2O, 3 mg/L CaCl2ꞏ2H2O) and vitamin 

solution (25 µg/L thiamine, 1 µg/L riboflavin, 1 µg/L nicotinamide, 0.1 µg/L pyridoxine, 0.1 µg/L 
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folic acid, 0.01 µg/L cobalamin, 1 µg/L D-biotin, 1 µg/L pantothenic acid), 20 mg/L streptomycin 

and either 10 mM acetate, 3.3 mM glucose, 6.7 mM propionate or 6.7 mM 3-hydroxypropionate as 

carbon source. Erythrobacter was grown in batch cultures at 30°C while shaking. Growth was 

followed by measuring the optical density at 650 nm using a photometer (Spectroquant® Prove 300, 

Merck KGaA, Darmstadt, Germany). For the light condition, the batch cultures were illuminated with 

100 µE m-2 s-1. Growth curves were measured in 24-well plates (TC Plate, Sarstedt AG & Co. KG, 

Nümbrecht, Germany) using a Tecan plate reader (Tecan Group Ltd., Männedorf, Switzerland) at a 

wavelength of 650 nm. To avoid cell clumping within the wells, 0.02 % tyloxapol was added to the 

medium and the wells were filled with 1.5 mL culture each. 

Sample preparation for proteomics and protein digestion 

For the analysis of the proteome in dependence of different carbon sources, Erythrobacter sp. NAP1 

was grown in minimal medium with acetate or glucose as sole carbon source. In a Test setup one 

culture per carbon source was analyzed, while in the Experiment setup the cultures were prepared in 

quadruplicates (Figure S7a). To investigate the effect of light on the Erythrobacter sp. NAP1 

proteome, the cells were grown in minimal medium with acetate and incubated in parallel in two light 

incubators with inverse light/dark cycles (Figure S7b and S8). Samples were prepared in triplicates 

per time point and light condition. Cell cultures were harvested into pre-cooled tubes by 

centrifugation at 3800 x g and 4°C for 10 minutes. The cells were washed with one volume of 1x 

PBS (pre-cooled and filtered). The cells were resuspended in 1 mL of 1x PBS, transferred into 

Eppendorf tubes and pelleted. The pellet was snap-frozen in liquid nitrogen and kept at -80°C until 

further processing. 

The pellet was resuspended in 4 µL lysis buffer (2 % sodium-lauroyl sarcosinate (SLS) and 5 mM 

tris(2-carboxyethyl)phosphine in 100 mM ammonium bicarbonate) per mg pellet and heated for 

15 minutes at 95°C and 1200 rpm. The cells were lysed by ultra-sonication for 4x 30 seconds using 

a VialTweeter (Hielscher Ultrasonics GmbH, Teltow, Germany) and incubated for another 

15 minutes at 95°C while shaking at 1200 rpm. 10 mM of freshly prepared iodacetamide were added 

to the cooled-down supernatant, which was incubated for another 30 minutes at 25°C and 500 rpm in 

the dark. The lysate was cleared by centrifugation for 5 minutes at 15´000 rpm on an Eppendorf table 

centrifuge and the protein concentration in the supernatant was determined by BCA assay (Pierce™ 

Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). 50 µg of total protein was 

diluted to a final concentration of 0.5 % SLS in 100 mM ammonium bicarbonate. Digestion was 

performed overnight at 37°C with 1 µg of porcine trypsin (Promega, Walldorf, Deutschland). The 

SLS was precipitated by adding 1 % of trifluoroacetic acid (TFA). After 10 minutes incubation at 
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room temperature, the sample was centrifuged for 10 minutes at 15´000 rpm. The peptides were 

desalted using a C18 micro spincolumn (Harvard Apparatus, Holliston, United States) according to 

the manufacturer´s instructions. The eluted peptides were dried under vacuum and resuspended in 

100 µL 0.1 % TFA.  

Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis 

Peptides were analyzed by HPLC-MS using a Q-Exactive Plus instrument connected to an Ultimate 

3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source (all: Thermo Scientific). 

For chromatographic separation of the plasmids, a reverse-phase HPLC column (75 µm x 42 cm) 

packed in-house with C18 resin (2.4 µm, Dr. Maisch) was used. For the proteomics experiment 

comparing the proteome depending on different carbon sources the following separating gradient was 

applied: 98 % solvent A (0.15% formic acid) and 2 % solvent B (99.85 acetonitrile, 0.15 % formic 

acid) to 25 % solvent B over 105 minutes and to 35 % solvent B for additional 35 minutes at a flow 

rate of 300 nl/min. Peptides of the proteomics experiment comparing the proteome depending on light 

conditions were separated from 4 % to 30 % solvent B over 2h. The data acquisition mode was 

adjusted to obtain one high-resolution MS scan at a resolution of 70,000 full width at half maximum 

(at m/z 200) followed by MS/MS scans of the most intense ions. By enabling the charged state 

screening modus to exclude unassigned and singly charged ion, the efficiency of the MS/MS attempts 

was increased. The dynamic exclusion duration was set to 30 seconds. The ion accumulation time 

was set to 50 ms for MS and 50 ms at 17,500 resolution for MS/MS. The automatic gain control was 

set to 3x106 for MS survey scans and 1x105 for MS/MS scans.  

Label-free quantification (LFQ) of the data was performed using Progenesis QIP (Waters 

Corporation, Milford, MA, USA) and SafeQuant. The strategy has been described in Glatter et al. 

201535. 

Electron Microscopy 

Erythrobacter sp. NAP1 was grown in minimal medium with acetate or glucose as carbon source. 

The culture was concentrated by thorough centrifugation and different concentrations were high-

pressure frozen (HPF Compact 02, Wohlwend, Switzerland) and freeze-substituted (AFS2, Leica, 

Wetzlar, Germany) according to the following protocol: -90°C for 20h, from -90°C to -60°C in 1h, -

60°C for 8h, -60°C to -30°C in 1h, -30°C for 8h, -30°C to 0°C in 1h. The substitution medium 

contained 0.25% osmium tetroxide, 0.2% uranyl acetate and 5% ddH2O in acetone.  

The samples were washed three times with acetone at 0°C. At room temperature a 1:1 mixture of 

Epon 812 substitute resin (Fluka, Buchs, Switzerland) and acetone was applied and incubated for 2 
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hours before it was replaced with pure resin. The samples were impregnated overnight. After another 

substitution with fresh Epon, samples were polymerized at 60°C for 2 days. 

The polymerized blocks were trimmed with razor blades. 50 nm ultrathin sections were sliced off 

using an ultramicrotome (UC7, Leica, Wetzlar, Germany) and a diamond knife (Diatome, Biel, 

Switzerland). Sections were applied onto 100 mesh copper grids coated with pioloform.  

For additional contrast mounted sections were post-stained with 2% uranyl acetate for 20-30 min and 

subsequently with lead citrate for another 1-2 min. 

The sections were analyzed and imaged using a JEM-2100 transmission electron microscope (JEOL, 

Tokyo, Japan) equipped with a 2k x 2k F214 fast-scan CCD camera (TVIPS, Gauting, Germany). 
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4.7 Supplementary Information 

Supplementary Information I: Phylogenetic distribution of Pcs and Mcr 

Since the last comparison of the Pcs and Mcr phylogenetic distribution3, numerous additional 

sequences of these two genes have been retrieved through metagenomic sequencing. However, the 

general statement has not changed. The phylogenetic trees for Pcs and Mcr still look very similar, 

suggesting that these two genes distributed as a unit (Figure S1 and S2). However, two novel sub-

branches appear in the phylogenetic tree of Pcs, which cluster the homologues encoded in 

Euryarchaeotes and Firmicutes. Interestingly, the respective candidates are all potentially able to 

harvest energy from light, either by rhodopsin in Euryarchaeotes or by bacteriochlorophyll in 

Firmicutes. The Pcs homologues in these two phyla are phylogenetically close to the homologues in 

the Chloroflexi phylum. As described before3, in the genome of some members of Chloroflexi the 

pcs and mcr genes are located far from each other, which might explain the transfer of the pcs gene 

independent of mcr. However, the absence of a bifunctional Mcr does not necessarily entail the 

absence of malonyl-CoA reduction activity, e.g., it has been shown that this two-step reaction can be 

catalyzed by two individual enzymes36. The opposite scenario of Mcr presumably encoded in the 

absence of a full-length Pcs can be found in the phylum of Acidobacteria, in the genome of 

Chloracidobacterium thermophilum strain B (see chapter 4.3). A conclusive remark about the 

evolutionary origin of Pcs or Mcr remains elusive. The fact that the gene sequences from the same 

phylum/class cluster in separate sub-branches in both phylogenetic trees suggests some intricate 

events of horizontal gene transfer. 

Supplementary Information II: Phylogenetic analysis of the individual Pcs domains 

The multidomain fusion enzyme Pcs exists in bacteria and archaea, but also the stand-alone 

homologues of the three individual domains are known to coexist in strains of both kingdoms (e.g., 

in Rhodobacter sphaeroides, in Metallosphaera sedula and in Nitrosopumilus maritimus, Figure S4). 

This might indicate that the fusion enzyme evolved independently in both kingdoms. 

Noteworthy, when we compared the individual Pcs domains to their stand-alone homologues, a few 

sequences apart from the C. thermophilum homologues became apparent. Two stand-alone 

homologues cluster within the full-length Pcs reductase domains (Figure S5c). While the 

Melghirimyces algeriensis sequence aligns with the additional Rossmann fold in the Pcs reductase 

sequence (Supplementary Figure 11, in chapter 2), the Halococcus agarilyticus sequence covers 

the complete Eryhtrobacter sp. NAP1 Pcs reductase sequence (97 % coverage) and shares 57 % 

sequence identity. Besides, all three stand-alone homologues of the Pcs domains are encoded by 
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neighboring genes in H. agarilyticus (Figure S4). Furthermore, the same sequences from Candidatus 

Rokubacteria are retrieved in the BLAST search of the Pcs dehydratase and reductase domain (Figure 

S5b and c). Interestingly, these sequences encode fusion enzymes of the two domains, however, in 

reverse order compared to Pcs (N-terminal reductase domain, C-terminal dehydratase domain). The 

additional elements that mimic contributions of neighboring protomers in Pcs (Supplementary 

Figure 10 and 11 in chapter 2) also exist in the Candidatus Rokubacteria sequences. While 

homologues of the Pcs ligase domain can be found in the recorded metagenomics data of Candidatus 

Rokubacteria, none of them contains the additional 4-helix domain. However, conclusive remarks 

cannot be made at this point as most Candidatus Rokubacteria metagenomes are incomplete. 

Generally, the large and heterogenic genomes of individual Rokubacteria cells37, might hint towards 

a high rate of genome modifications, which could put Rokubacteria into the position of a chassis for 

the evolution of (foreign) DNA. The genomic plasticity of Candidatus Rokubacteria is refelected in 

their sulfate reduction system, which has been shown to be of mosaic evolutionary origin38. 

Apart from the above mentioned cases, the three domains in Pcs of Erythrobacter sp. NAP1 cluster 

with stand-alone homologues from different kingdoms. While the stand-alone homologues of the 

ligase domain are mainly encoded in archaeal strains, the dehydratase and reductase domains seem 

to descend from bacterial genes (Figure S5). This suggests that horizontal gene transfer of the 

individual genes preceded the fusion event. Furthermore the full-length Pcs sequences cluster 

differently depending on the domain they are compared by (Figure S5), which might suggest that the 

fusion enzyme evolved several times independently. 
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Supplementary Figures 

 
Figure S1: Maximum-likelihood tree of Pcs homologues. 66 Pcs sequences with a minimal query coverage of 90 % were retrieved 
using the ProtBlast/PSI-Blast tool (nr90) available from the MPI Bioinformatics Toolkit39. The Maximum Likelihood method based 
on the Le-Gascuel_2008 model in MEGA7 was used for phylogenetic analysis40,41. The number of substitutions per site is represented 
in the branch lengths (see scale bar). Bootstrap values42 are given at important nodes. The Pcs homologue of Erythrobacter sp. NAP1 
is highlighted with a red box. Pcs is distributed far beyond the phylum of Chloroflexi. Affiliation of the Pcs homologues to the 
respective phylum/class is illustrated by color code.  
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Figure S2: Maximum-likelihood tree of Mcr homologues. 55 Mcr sequences with a minimal query coverage of 90 % were retrieved 
using the ProtBlast/PSI-Blast tool (nr90) available from the MPI Bioinformatics Toolkit39. The Maximum Likelihood method based 
on the Le-Gascuel_2008 model in MEGA X was used for phylogenetic analysis41,43. The number of substitutions per site is represented 
in the branch lengths (see scale bar). Bootstrap values42 are given at important nodes. The Mcr homologue of Erythrobacter sp. NAP1 
is highlighted with a red box. Mcr is distributed far beyond the phylum of Chloroflexi. Affiliation of the Mcr homologues to the 
respective phylum/class is illustrated by color code.  
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Figure S3: Alignment of the Erythrobacter sp. NAP1 Pcs sequence with homologues in C. thermophilum. The C. thermophilum 
acyl-CoA synthetase is homologous to the Pcs ligase and part of the dehydratase domain. The C. thermophilum dehydrogenase is 
homologous to part of the Pcs dehydratase domain and the reductase domain. Figure was created using BoxShape, a tool available on 
the ExPASy Bioinformatics Resource Portal. 
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Figure S3 (continued) 
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Figure S4: Organization of the genes encoding the Pcs stand-alone homologues in different bacteria. The genome neighborhood of 
Pcs stand-alone homologues in selected organisms. The genes for the ligase, dehydratase and reductase are depicted as arrows in orange, 
purple and cyan, respectively. Grey arrows show genes of unrelated function. 3HB-CoA, 3-hydroxybutyryl-CoA. 

 

 
Figure S5: Maximum-likelihood tree of individual Pcs domains. Some selected full-length Pcs sequences were split into the individual 
domains, i.e., the ligase domain in a, the dehydratase domain in b and the reductase domain in c, and compared to stand-alone homologues. 
Stand-alone homologues from different phyla were manually retrieved from the ProtBlast/PSI-Blast tool (nr90) available from the MPI 
Bioinformatics Toolkit39. The Maximum Likelihood method based on the Le-Gascuel_2008 model in MEGA7 was used for phylogenetic 
analysis40,41. The number of substitutions per site is represented in the branch lengths (see scale bar). Bootstrap values 42 are given at 
important nodes. The star  marks the shortened sequences of full-length Pcs homologues. Affiliation of the homologues to the respective 
phylum/class is illustrated by color code. 
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Figure S6: Transmission electron micrographs of Erythrobacter sp. NAP1 grown on acetate reveals PHA granules. 
Erythrobacter sp. NAP1 was grown on a, actetate or b, glucose. PHA granules are visible in cells grown on acetate. The scale bar 
represents 0.5 µm. 

   
Figure S7: Abundance change of Pcs module enzymes based on proteomics data. Comparison of the protein abundance of the 
glyoxylate cycle and Pcs module enzymes depending on a, the carbon source (acetate versus glucose) and b, light regime (2 hours light 
versus 2 hours dark). In a, the Test setup comprised one sample each per carbon source, while quadruplicates were analyzed in the 
Experiment setup. The enzyme names are abbreviated as following: AccA-D, acetyl-CoA carboxylase subunit A-D; Mcr, malonyl-
CoA reductase; Pcs, propionyl-CoA synthase; PccA-B, propionyl-CoA carboxylase subunit A-B; Epi, methylmalonyl-CoA epimerase; 
Mcm, methylmalonyl-CoA mutase; Icl, isocitrate lyase; Ms, malate synthase. 

 
Figure S8: Sampling scheme for the light dependent proteomics experiment. Erythrobacter sp. NAP1 was grown in batch cultures 
in minimal medium with acetate and incubated in parallel in two light incubators with inverse light/dark cycles. After the light-switch 
at 39 hours, samples were collected in triplicates at three specific time points (1 h, 2 h, 6 h with new light setting).  
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Figure S9: Light-induced Pcs module allows increased cell viability in nutrient-scarce conditions. Four cultures of Erythrobacter 
sp. NAP1 in minimal medium with acetate each were grown either with a 12h/12h light/dark cycle or in the dark. Multiple t-tests were 
applied to probe significance, which is represented by asterisks as following: *, p<0.05; ***, p<0.001; ****, p<0.0001. Data of a single 
representative experiment. 

 
Figure S10: Abundance change of PHA-related enzymes based on proteomics data. Comparison of the abundance pattern of the 
glyoxylate cycle and Pcs module enzymes depending on the carbon source (acetate versus glucose) or on the light regime (2 hours 
light versus 2 hours dark). The enzyme names are abbreviated as following: PhaA, β-ketothiolase; PhaB, acetoacetyl-CoA reductase; 
PhaC, PHA synthase; PhaZ, putative Pha depolymerase. 
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Supplementary Tables 

Table S1: List of all significantly changed protein levels depending on the carbon source (acetate versus glucose). 2100 proteins were 
identified by shotgun proteomics. The significance cutoff was set with s0 = 0.5 and FDR = 0.001 and resulted in 145 proteins with a 
significantly different abundance. Proteins that are more/less abundant on acetate are highlighted in green/red, respectively. Similar 
protein hits are given for uncharacterized proteins, when available. 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

7.69 3.05 A3WG46 Putative sugar nucleotide dehydratase    

7.25 4.45 A3WBU0 Putative RNA methyltransferase    

6.24 2.83 A3WAL2 Pilus assembly protein CpaB    

5.89 2.85 A3WD46 Phosphate regulon transcriptional 
regulatory protein  

  

5.28 2.93 A3WFY2 Uncharacterized protein    

5.02 2.13 A3WDV0 Acetyltransferase, GNAT family protein    

4.57 9.56 A3WCR0 Isocitrate lyase    

4.37 5.07 A3WBU6 Putative polysaccharide export protein    

4.27 2.26 A3WG52 ATP-grasp_3 domain-containing protein Carbamoyl-phosphate synthase 
large subunit 

4.23 5.47 A3WDC5 Thiol:disulfide interchange protein   

4.19 2.11 A3WG58 Exopolysaccharide biosynthesis protein    

4.16 3.36 A3WCH0 HTH marR-type domain-containing 
protein 

MarR family transcriptional 
regulator 

4.09 3.99 A3WDY5 Uncharacterized protein    

4.05 4.18 A3WGW0 YCII domain-containing protein   

3.79 3.70 A3WA81 Penicillin-binding protein    

3.79 7.73 A3WE91 Phasin_2 domain-containing protein   

3.74 4.01 A3WAB5 Uncharacterized protein  Pilus assembly protein CpaD 

3.14 5.11 A3WCH8 Uncharacterized protein  Inositol monophosphatase 

3.10 6.97 A3WG97 Sodium:solute symporter family protein    

3.03 3.97 A3WBT0 Peptidase_S8 domain-containing protein   

2.96 6.59 A3W9S9 Dehydrogenase    

2.94 8.37 A3WG95 Uncharacterized protein  Porin 

2.86 4.27 A3WFW1 Divalent cation tolerance protein    

2.86 8.02 A3WG93 Putative regulator in two-component 
regulatory system LuxR family protein  

  

2.84 3.18 A3WHT2 5-aminolevulinate synthase    

2.84 6.43 A3WA88 Bacteriophage N4 adsorption protein B    

2.72 7.81 A3WG94 Acetyl-coenzyme A synthetase    

2.70 2.93 A3WF52 Uncharacterized protein    

2.70 3.38 A3WDY6 Putative ISXo8 transposase    

2.67 5.34 A3WB60 Uncharacterized protein    

2.64 5.58 A3WEA0 Two-component response regulator    

2.61 4.51 A3WA89 Uncharacterized protein    

2.57 4.70 A3WGA0 DNA polymerase III subunit epsilon    

2.50 3.26 A3WDD4 TraC    

2.49 5.53 A3WEX9 Uncharacterized protein  Phage major capsid protein 

2.46 4.28 A3WB18 ApaG domain-containing protein Co2+/Mg2+ efflux protein ApaG 

2.44 2.59 A3WC09 Indole-3-glycerol phosphate synthase    
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Table S1 (continued) 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

2.39 4.84 A3WFJ9 Peroxiredoxin    

2.37 2.98 A3WBX7 Uncharacterized protein    

2.24 3.18 A3WDL8 Uncharacterized protein  Outer membrane family protein 

2.23 2.57 A3WDJ6 Uncharacterized protein    

2.16 5.09 A3WFW0 Uncharacterized protein    

2.13 4.07 A3WC32 Uncharacterized protein  Septum formation initiator 

2.07 4.75 A3WGS7 Uncharacterized protein  Methyltransferase domain-
containing protein 

2.06 3.67 A3WGS9 Uncharacterized protein  Hydrolase 

2.01 4.11 A3WAW5 Curlin-associated protein    

1.80 3.28 A3WFC5 ABC transporter, ATP-binding protein    

1.79 5.77 A3WFU3 Uncharacterized protein  Fe-S cluster assembly protein SufD 

1.72 4.42 A3WAB6 Type II secretion system protein    

1.64 5.50 A3WBF3 Orotidine 5'-phosphate decarboxylase    

1.63 5.69 A3WIF1 Malate synthase G    

1.55 5.73 A3WCQ9 Uncharacterized protein    

1.52 4.67 A3WA29 Cell division protein ftsA    

1.47 5.78 A3WB20 30S ribosomal protein S12    

1.47 5.24 A3W9H2 Probably methylase/helicase    

1.46 4.96 A3WE22 Myeloperoxidase, thyroid peroxidase, 
cyclooxygenase catalytic domain  

  

1.42 6.01 A3WCJ1 ParA-like protein    

1.38 7.25 A3WBY5 NADH-quinone oxidoreductase subunit D    

-1.27 8.15 A3WID4 TonB-dependent receptor    

-1.30 7.17 A3WAT6 Integration host factor subunit alpha    

-1.35 6.54 A3WGH4 Enoyl CoA dehydratase/isomerase    

-1.35 6.99 A3WC35 Haloalkane dehalogenase    

-1.42 7.04 A3WI38 Glycerol-3-phosphate dehydrogenase    

-1.42 6.95 A3WEH9 Xaa-Pro dipeptidase, putative    

-1.43 5.01 A3WHS1 Acetyl-coenzyme A synthetase    

-1.45 6.32 A3WH94 Metalloendopeptidase PepO   

-1.46 4.81 A3WGZ1 DUF4440 domain-containing protein   

-1.47 4.65 A3WCE7 Acetyltransferase, GNAT family protein    

-1.48 6.10 A3WBH0 Signal recognition particle protein    

-1.49 4.49 A3WB65 Amidase    

-1.50 4.52 A3WCF3 Probable dehydrogenase/ reductase 7    

-1.51 4.53 A3WB07 Putative dolichol monophosphate 
mannose synthase  

  

-1.53 5.57 A3WAX0 Predicted transcriptional regulator    

-1.57 4.54 A3WHW0 Bacteriochlorophyllide reductase subunit 
BchX  

  

-1.58 6.48 A3WFJ7 Uncharacterized protein  Phosphoribosylformylglycinamidine 
synthase 

-1.60 6.06 A3WHJ7 DUF547 domain-containing protein   

-1.62 5.10 A3WGM2 Uncharacterized protein  Putative methyltransferase 
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Table S1 (continued) 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

-1.64 4.94 A3WGV8 Tyrosine protein kinase:Aminoglycoside 
phosphotransferase  

  

-1.65 5.76 A3WH29 Uncharacterized protein    

-1.67 4.28 A3W9G7 Curlin-associated protein    

-1.67 7.51 A3WBS4 Acyl-CoA synthase    

-1.68 4.20 A3W9F4 SnoaL-like domain-containing protein Ketosteroid isomerase 

-1.69 7.02 A3WIC3 Glyoxalase    

-1.69 5.58 A3WE13 Malonyl-CoA reductase   

-1.70 9.00 A3WGV7 Aldehyde dehydrogenase family protein    

-1.70 4.89 A3WD65 RND efflux system, outer membrane 
lipoprotein, NodT  

  

-1.74 4.11 A3W9Z2 Guanylate cyclase-related protein    

-1.77 6.35 A3WE14 Propionyl-CoA synthase   

-1.77 3.78 A3WDI6 Glutathione-dependent formaldehyde-
activating, GFA  

  

-1.79 4.34 A3WI11 Uncharacterized protein    

-1.80 4.84 A3W9U1 Uncharacterized protein    

-1.84 4.66 A3WAU1 Protein-disulfide isomerase    

-1.84 5.49 A3WAW0 Dienelactone hydrolase family protein    

-1.87 4.90 A3WFD7 Uncharacterized protein    

-1.87 3.95 A3WEH8 Lactamase_B domain-containing protein Pyrroloquinoline quinone 
biosynthesis protein PqqB 

-1.89 3.21 A3WDN3 Uncharacterized protein    

-1.90 3.05 A3WBX0 Bacterioferritin comigratory protein, 
putative  

  

-1.93 3.65 A3W9U8 TonB_C domain-containing protein   

-1.93 5.85 A3WEI1 Endoribonuclease L-PSP    

-1.95 3.63 A3WFA9 Glyco_trans_2-like domain-containing 
protein 

  

-1.96 3.96 A3WDA4 Uncharacterized protein    

-1.98 3.85 A3WH88 Alpha/beta hydrolase    

-1.98 3.46 A3WD01 Chloramphenicol phosphotransferase-like 
protein  

  

-1.99 3.33 A3WHW2 2-desacetyl-2-hydroxyethyl 
bacteriochlorophyllide a dehydrogenase  

  

-1.99 6.48 A3WF79 Alcohol dehydrogenase large subunit    

-1.99 4.29 A3W9L7 Putative sphingosine-1-phosphate lyase    

-2.02 4.00 A3WHW9 Putative magnesium chelatase subunit 
BchD  

  

-2.03 4.82 A3WBL9 Alpha/beta hydrolase fold protein    

-2.03 3.87 A3W9R4 Uncharacterized protein  Cytochrome c domain-containing 
protein 

-2.08 5.37 A3WCZ5 Shikimate kinase    

-2.12 4.04 A3WAJ4 FAS1 domain-containing protein   

-2.16 2.74 A3WHV0 Putative bacteriochlorophyll synthase, 34 
kDa subunit  

  

-2.17 3.08 A3WF21 Uncharacterized protein    

-2.18 6.43 A3WHT0 Cytochrome c family protein    

-2.23 5.15 A3WAQ8 Sensory box histidine kinase    
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Table S1 (continued) 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

-2.24 4.42 A3WHV4 Photosynthetic reaction center L subunit    

-2.24 6.08 A3WHU5 Coenzyme B12-binding protein    

-2.30 2.67 A3WCW3 Uncharacterized protein    

-2.32 4.95 A3WAG9 Ferroxidase    

-2.35 5.84 A3WD33 Uncharacterized protein    

-2.46 4.84 A3WHU8 Geranylgeranyl reductase    

-2.46 3.36 A3WI60 ABC sugar (Glycerol) transporter, inner 
membrane subunit  

  

-2.58 3.57 A3WEK8 Uncharacterized protein    

-2.59 4.50 A3WIB2 Uncharacterized protein  Methyltransferase 

-2.64 6.06 A3WHL8 Uncharacterized protein    

-2.64 4.65 A3WE55 Uncharacterized protein    

-2.66 5.20 A3WHU2 Light-independent protochlorophyllide 
reductase subunit N  

  

-2.69 3.47 A3WF68 UPF0145 protein NAP1_11678    

-2.71 4.72 A3WFW8 Uncharacterized protein  UrcA family protein 

-2.79 7.80 A3WGH5 TonB-dependent receptor    

-2.88 3.38 A3WEN6 Uncharacterized protein    

-2.92 2.59 A3W9R3 Beta_helix domain-containing protein   

-3.03 3.53 A3WH17 Uncharacterized protein    

-3.04 3.43 A3WD27 Glycerol-3-phosphate acyltransferase    

-3.08 6.73 A3WFJ5 Catalase-peroxidase    

-3.10 4.58 A3W9G8 Uncharacterized protein  Holin of 3TMs, for gene-transfer 
release 

-3.28 3.67 A3WHT6 Possible photosynthetic complex assembly 
protein  

  

-3.61 3.11 A3WDR5 N-carbamoylsarcosine amidase-like 
protein  

  

-3.67 4.46 A3WDA8 Putative oxidase    

-4.02 2.44 A3WH03 Uncharacterized protein  TonB family protein 

-4.08 6.17 A3WA24 TonB-dependent receptor, putative    

-4.15 3.86 A3WI77 Uncharacterized protein    

-4.75 7.16 A3WEG4 Possible Dps protein family starvation-
inducible DNA-binding protein  

  

-4.95 1.67 A3WGG2 Putative oxidoreductase    

-5.72 1.68 A3WE18 Phosphatidylserine synthase    
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Table S2: List of all significantly changed protein levels depending on the light regime (2 hours light versus 2 hours dark). Proteins 
that are more/less abundant in the light condition are highlighted in green/red, respectively. Similar protein hits are given for 
uncharacterized proteins, when available. 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

4.83 3.98 A3WEK0 Two-component system regulatory protein   

4.73 3.97 A3WFY0 Uncharacterized protein Heme biosynthesis protein 
HemY 

4.08 4.38 A3WA67 Uncharacterized protein   

3.93 7.73 A3W9H6 Uncharacterized protein Transmembrane Protein 
(mercury transport) 

2.79 2.53 A3WE59 UPF0276 protein   

2.72 4.36 A3WIA0 Response regulator, hypothetical   

2.40 5.40 A3W9H5 Regulatory protein   

2.33 3.40 A3WEI7 Uncharacterized protein   

2.31 3.57 A3W9T3 DJ-1/PfpI family protein   

2.16 3.92 A3WGS8 Flagellin   

2.08 4.35 A3WGT9 Flagellar basal body protein   

2.08 4.39 A3WF10 Uncharacterized protein   

1.96 4.88 A3WFK0 Alkyl hydroperoxide reductase, subunit f   

1.88 4.58 A3WAV1 Uncharacterized protein   

1.88 4.56 A3WD60 RNA polymerase sigma-24 factor   

1.83 3.59 A3WHV5 Photosynthetic reaction center M protein   

1.71 2.38 A3WHW4 Alpha/beta hydrolase fold protein   

1.67 3.02 A3WCY5 Hemerythrin   

1.65 4.38 A3WBR3 Uncharacterized protein   

1.61 3.81 A3WHV4 Photosynthetic reaction center L subunit   

1.60 4.17 A3WHW9 Putative magnesium chelatase subunit BchD   

1.59 4.91 A3WHV6 LHC domain-containing protein   

1.53 6.33 A3WE14 Propionyl-CoA synthase   

1.43 4.24 A3W9Q1 Uncharacterized protein   

1.36 7.43 A3WHU7 Transcriptional regulator PpsR1 Fis family 
protein 

  

1.36 7.71 A3WHT9 H subunit of photosynthetic reaction center 
complex 

  

1.31 5.14 A3WEL1 Uncharacterized protein   

1.31 5.42 A3WGK7 Bacteriophytochrome (Light-regulated signal 
transduction histidine kinase) 

  

1.30 3.53 A3WF16 YcfI, putative structural proteins   

1.27 4.74 A3WHH2 Guanylate kinase   

1.25 4.12 A3WDI2 NADH dehydrogenase   

1.24 3.87 A3WBB8 Alanyl-tRNA synthetase   

1.19 5.22 A3WEL5 Hva1_TUDOR domain-containing protein   

1.18 1.54 A3WBJ3 Methyl-accepting transducer domain-containing 
protein 

  

1.11 1.70 A3WAY2 DNA topoisomerase, type I, putative   

1.10 4.82 A3WE13 Malonyl-CoA reductase   

1.08 4.41 A3WEK1 HWE_HK domain-containing protein protein histidine kinase 
activity 

0.99 4.04 A3WG54 Uncharacterized protein   

0.97 4.13 A3WEA7 Two-component response regulator   
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Table S2 (continued) 

Log(Difference) -Log(P-value) Accession Code Protein Description Similar Protein 

0.95 5.75 A3WHT0 Cytochrome c family protein   

0.91 2.88 A3WHW1 Hydroxyneurosporene methyltransferase CrtF   

0.86 5.22 A3WHS5 Outer membrane efflux protein   

0.86 3.99 A3WGS9 Uncharacterized protein Hydrolase 

0.83 6.20 A3WHS4 RND efflux membrane fusion protein   

-0.74 5.55 A3WEX9 Uncharacterized protein Phage major capsid protein 

-0.90 4.01 A3WDC5 Thiol:disulfide interchange protein   

-1.00 2.90 A3WDY6 Putative ISXo8 transposase   

-1.07 3.56 A3WBW5 Methyltransf_11 domain-containing protein SAM-dependent 
methyltransferase 

-1.09 2.09 A3WGR6 Uncharacterized protein Flagellar biogenesis protein 

-1.14 2.54 A3WHU8 Geranylgeranyl reductase   

-1.16 2.86 A3WHU5 Coenzyme B12-binding protein   

-1.23 3.09 A3WHW2 2-desacetyl-2-hydroxyethyl 
bacteriochlorophyllide a dehydrogenase 

  

-1.65 4.04 A3WHW0 Bacteriochlorophyllide reductase subunit BchX   

-1.76 3.02 A3WHU1 Mg-protoporphyrin IX methyl transferase   

-1.79 2.56 A3WHU4 Magnesium-protoporphyrin O-methyltransferase 
BchH subunit 

  

-1.99 3.06 A3WC72 DNA polymerase III delta prime subunit   
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5 General Discussion and Outlook 

5.1 Pcs: a substrate-channeling reaction chamber  

Multidomain fusion enzymes that catalyze consecutive reactions evolve for several reasons; e.g., the 

coupling of biochemical reactions increases catalytic efficiency1, intermediates are channeled 

between active sites2, or the fixed stoichiometric ratio between the catalytic domains can be 

beneficial3. Substrate channeling in turn provides a strategy to avoid metabolic cross-talk between 

competing pathways and to cope with unstable or toxic intermediates. Nature has evolved several 

strategies to ensure substrate channelling from one enzyme or active site to the next, including the 

formation of intramolecular tunnels between active sites, covalent linking of intermediates, 

electrostatic guidance of intermediates over surfaces and compartmentalization4. As described in 

chapter 2, in Pcs the CoA-thioester intermediates are sequestered within an intramolecular 

chamber and their relay from one active site to the next is presumably facilitated by electrostatic 

guidance over the chamber surface. Even though, this mechanism combines known channeling 

strategies, several aspects set Pcs apart from previously described examples. So far, three different 

mechanisms have been described to channel bulky and electrically charged CoA-thioesters. In fatty 

acid or polyketide synthases the acyl-moiety of the acyl-CoA substrate is transferred to an 

acyl-carrier protein by covalent linking and guided from one enzyme to the next5. The second strategy 

has been observed in two multi-enzyme complexes where the 3’-phospho-ADP moiety of the acyl-

CoA is bound at a shared CoA-binding site and the long-spanning pantetheinyl arm swings the 

acyl moiety between the active sites6,7. Similarly, in the bifunctional Escherichia coli enzyme PaaZ, 

the phosphoadenosine moiety of the CoA substrate was suggested to be guided over a short 

distance of positively charged surface between the two active sites followed by the hydrophobic head 

group8. The sequestration of the intermediates within a reaction chamber in Pcs presents a novel way 

to channel CoA-thioesters. Conformational changes induced by CoA binding in the ligase domain 

closes the reaction chamber and sequesters the CoA-intermediates from bulk solution. This feature 

of controlled access has also been described for enzymes with an intramolecular narrow substrate 

channel, where conformational changes upon ligand binding functions as switch to open/close the 

channel2,9,10. However, while the conformational rotation of a single residue can be sufficient to 

block such a substrate tunnel, the conformational changes needs to be of more drastic nature to 

open/close the reaction chamber in Pcs. This controlled access ensures synchronization of the 

catalytic cycle. The reaction chamber prevented any leakage of the reactive intermediate acrylyl-
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CoA, even when the subsequent reduction reaction was inactive. This is in contrast with some other 

channel- or cavity-forming enzymes, where the absence of substrates leads to significant intermediate 

release2,11. This feature demonstrates the highly synchronized orchestration of the catalytic cycle and 

raises questions about the evolution and underlying mechanisms of such a complex metabolic 

machinery. 

5.2 Pcs: a complex multidomain machinery 

The emergence of multifunctional enzymes by gene fusion has been studied on numerous examples 

in nature12-16 and has even been experimentally demonstrated in a laboratory evolution experiment17. 

In an attempt to improve the Saccharomyces cerevisiae glycerol pathway in an E. coli selection strain, 

the two heterologous genes, that were initially arranged in a bicistronic operon, had simply fused into 

a single open reading frame17. The increased efficiency of the bifunctional fusion enzyme was 

explained by partial substrate channeling. The argument of substrate channeling, however, cannot 

explain the fusion of the two tryptophan synthetase subunits during the evolution of fungi18, as the 

bacterial heterodimeric enzyme already connects both active sites with a functional substrate tunnel19. 

This fusion event could possibly be explained by necessary genetic adaptions in the eukaryotic 

acquisition of bacterial operons in order to maintain the linked expression profile20.  

The multidomain fusion enzyme Pcs exists in bacteria and archaea, but also the stand-alone 

homologues of the three individual domains are known to coexist in strains of both kingdoms. 

According to the Rosetta Stone method, the three stand-alone homologues are likely to interact21, but 

this has never been described so far. However, a substrate-channeling interaction as in Pcs seems 

unlikely due to the large structural changes, e.g., the reduction of multimeric architecture in stand-

alone homologues to a single chain in Pcs. Additional structural elements that mimic protomer 

contributions (Supplementary Figures 9-11 in chapter 2) indicate that Pcs is not the result of simply 

fusing three stand-alone enzymes. Rather, several duplication, deletion and rearrangement events 

were necessary to forge the parts into a functional fusion enzyme. This is also depicted in the multiple 

sequence alignment of all Pcs sequences, where the least conserved regions can be assigned to the 

linker regions between domains and to the additional structural elements. Nevertheless, these 

elements are essential for the complex structure and reaction mechanism of Pcs. The four-helix 

bundle of the ligase domain is suggested to play a crucial role in synchronizing the catalytic cycle. 

Its localization at the interface of the catalytic domain of the ligase and reductase domain is perfectly 

suited for signal transduction between the domains. This so-called interdomain communication is a 

phenomenon found in several multidomain enzymes and particularly in substrate-channeling 



General Discussion and Outlook 

-131- 
 

complexes22-24. Generally, allosteric regulation ensures directionality of the catalytic sequence by 

orchestrating accessibility of active sites and substrate tunnels in a step-wise manner. Substrate 

binding and release or even change of cofactor redox state in a distant domain have been shown to 

induce the underlying conformational changes25-27. 

 

Figure 1: Suggested communication network across the ligase and reductase domain of Pcs. a, The ligase domain is shown in 
orange and the reductase domain in cyan. The cartoon shown in darker color represents the additional structural elements (4-helix 
bundle in the ligase domain and extra Rossmann fold in the reductase domain). Involved residues are shown in blue with the hydrogen 
bonds depicted as red interrupted lines. b, WebLogo-Illustration29,30 of the residues involved in the suggested communication network.  

In Pcs, binding of CoA induces closure of the reaction chamber. This state is presumably stabilized 

by a salt bridge between R760 in the flexible cap domain of the ligase and D311 in the four-helix 

bundle. The signal to re-open the reaction chamber and reset Pcs to its initial conformation after the 

final reduction step remains to be investigated. A hydrogen-bond network could be the key to this 

long-range communication (Figure 1a). The network stretches from the R760-D311 salt bridge all 

the way to the CoA-ester binding Rossmann fold. Note that this Rossmann fold is one of the additional 

structural elements in Pcs and mimics the neighboring subunit in stand-alone Ecrs (Supplementary 

Figure 11 in chapter 2). Subunit communication has been recently reported in the Ecr of 

Kitasatospora setae28. There, the allosteric signal is transmitted between the subunits over a 

hydrogen-bond network across the shared substrate binding site. Pcs might imitate this “half-site 

reactivity”, with the crucial difference that one of the subunits (the additional Rossmann fold) does 

not perform catalytic activity but might rather regulate the opening and closing of the ligase domain. 
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While the underlying communication network differs between the K. setae Ecr and Pcs, the change 

might be triggered by product and/or cofactor release in both scenarios. In Pcs, product release from 

the reductase domain active site (back into the reaction chamber) could induce conformational 

changes in the Rossmann fold, which would be relayed over the communication network to break the 

R760-D311 salt bridge. Alternatively, the oxidation of the cofactor or its release could be sensed by 

the interaction with W1752 (Figure 1a), a residue at the end of the communication network. Most 

residues of the suggested network are conserved throughout most of the Pcs sequences (Figure 1b). 

However, mutagenesis experiments are required to validate this elaborate mechanism. Disruption of 

the network would be expected to result in a drop of catalytic efficiency of the overall reaction. This 

effect was observed in the Pcs variant comprising an engineered carboxylase domain (PCS D1302S 

T1753M), where distant mutations presumably disturbed the interdomain communication (see 

chapter 3). 

5.3 Pcs: a blueprint for the engineering of CO2-fixation 

In the light of the ever-increasing CO2 concentration in earth’s atmosphere, assimilation and recycling 

of CO2 into biofuels or valuable chemicals by autotrophic microorganisms is gaining more and more 

attention. While many microorganisms have the ability to assimilate CO2, the efficiency of the natural 

pathways is often limited by the carboxylating enzyme per se; e.g., RubisCO that has a low turnover 

number and performs a futile side reaction in presence of oxygen. On the other hand, the most 

efficient carboxylating enzymes, the Ecrs31, are not employed in any known natural autotrophic 

pathways. The CETCH cycle successfully tackles this dilemma and represents a synthetic alternative 

for CO2 assimilation based on the highly efficient Ecr reaction32. Another, theoretically designed, 

synthetic CO2-fixation module is the HOPAC cycle32. In the HOPAC cycle, the reaction sequence 

from 3HP to methylmalonyl-CoA is catalyzed by three individual enzymes, whereof one is the 

efficient carboxylase Ecr (Figure 2). The same overall reaction sequence is part of the 3HP bi-cycle 

in C. aurantiacus and the Pcs module in Erythrobacter sp. NAP1 as described in chapter 4. In the 

latter two, Pcs and propionyl-CoA carboxylase (Pcc) are employed as biocatalysts. While the ATP-

consuming biotin-dependent Pcc lags behind Ecr in terms of carboxylation efficiency, this set of 

enzymes might nevertheless prove beneficial. As pointed out in chapter 2, acrylyl-CoA is a highly 

reactive intermediate and its sequestration by Pcs avoids futile or harmful side reactions. Moreover, 

the fusion of the three catalytic domains in Pcs guarantees optimal stoichiometry in contrast to the 

three stand-alone enzymes. On another note, the reduced number of enzymes required to run the 

HOPAC cycle with Pcs could be significant regarding protein burden when implementing it in vivo. 
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In chapter 3 we use targeted mutagenesis to evoke carboxylation activity in the Pcs reductase domain. 

A carboxylating Pcs could spare yet another enzyme in the HOPAC cycle and cut down the energy 

requirement by one equivalent of ATP. For the same reason, a carboxylating Pcs could also prove 

beneficial within Erythrobacter sp. NAP1.  

 

Figure 2: Potential role of Pcs in the HOPAC cycle. Pcs wildtype (shown in cyan) together with Pcc or a carboxylating Pcs variant 
(shown in salmon) convert 3HP directly into methylmalonyl-CoA and thereby skips the three steps catalyzed by 3HP synthetase (Hps), 
enoyl-CoA hydratase (Ech) and crotonyl-CoA carboxylase/reductase (Ccr). The reactive intermediate acrylyl-CoA is thereby 
sequestered. 

The close phylogenetic relation and structural similarity of Ecrs and Pcs reductase domains paved the 

way for targeted mutagenesis of the latter. The two main principles for efficient carboxylation in Ecrs, 

namely anchoring of CO2 and exclusion of water from the active site, were integrated into the Pcs 

reductase scaffold. The significantly enhanced carboxylation efficiency, however, was accompanied 

by a loss of reaction velocity. This trade-off between CO2 affinity and velocity is a phenomenon often 

met in the attempt to optimize carboxylases, particularly in the case of RubisCO33-36. Insufficient 

understanding of structure-function relationships limits the success in rational engineering. 

Additionally, a systems-wide modeling study has revealed that the evolution of turnover frequency 

in multifunctional enzymes is constrained by strong epistasis37. Increasing the catalytic efficiency in 

one active site does not improve the overall reaction and often a neutral mutation needs to be acquired 

for further fitness gains. In order to free the enzyme engineering from these and other constraints, 

directed evolution using an activity-based selection system could be applied. This approach has 

yielded the greatest improvement of RubisCO in terms of carboxylation activity38. A selection system 

to directly couple improved carboxylation efficiency of Pcs to growth is presented in the Outlook 

(chapter 5.5).  
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5.4 Pcs: a physiological role in redox homeostasis within AAP bacteria 

The redox state of a cell tightly regulates many biological processes and its imbalance can cause the 

accumulation of toxic products. It is therefore crucial to maintain the cellular redox homeostasis. For 

that matter, cells express several sensors that detect the redox environment and induce the 

corresponding regulatory responses. 

Oxidative stress is usually associated with a cellular accumulation of reactive oxygen species (ROS), 

which cause cellular damage. ROS are formed during aerobic respiration when a single electron is 

transferred onto oxygen, mainly by flavoproteins39, before reaching the end of the electron transport 

chain. The presence of ROS is sensed within the organism and induces a defense reaction, which 

includes ROS scavengers such as a superoxide dismutase, catalase and peroxidase or also non-

enzymatic antioxidants39. Aerobic phototrophic bacteria, like purple non-sulfur and AAP bacteria, 

additionally produce carotenoids. The conjugated electron system in these pigments can effectively 

quench ROS or also an over-excited BChl a triplet state, which could otherwise react with molecular 

oxygen to form harmful singlet oxygen40. This seems especially crucial in AAP bacteria, where 

photosynthesis and thus the presence of BChl a occurs under aerobic conditions.  

On the other hand, photosynthesis creates a surplus of reducing equivalents which induces reductive 

stress within the cell. Again, cells have evolved several strategies to re-establish redox homeostasis. 

Usually, reducing equivalents are re-oxidized in the process of cellular respiration, where electrons 

are relayed onto a terminal electron acceptor (oxygen in aerobes and e.g., nitrate in anaerobes) while 

energy is conserved in form of ATP. However, photosynthetic activity inhibits cellular respiration as 

reported almost a century ago for purple non-sulfur bacteria41,42. This inhibitory effect might be due 

to the membrane potential, which is higher in illuminated cells compared to respiring cells43-45. The 

same observation of light-induced inhibition of respiration has recently been made in some AAP 

bacteria as well46-48. Taken together, photosynthesis creates an excess of reducing equivalents while 

suppressing the main process for their regeneration. Hence, it is essential for phototrophic bacteria to 

activate other reductive metabolic pathways upon illumination. 

We believe to have identified one of these reductive metabolic pathways in Erythrobacter sp. NAP1 

to be the Pcs module as described in chapter 4. This pathway converts acetyl-CoA into succinyl-CoA 

via the two key enzymes Pcs and Mcr. The light-dependent regulation of these two enzymes supports 

our hypothesis. The Pcs module requires three equivalents of ATP and NADPH each to assimilate 

acetyl-CoA into one C4 molecule and thus has a strong impact on the cellular redox state. 

Furthermore, acetyl-CoA as a central metabolic intermediate independent of the carbon source 
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represents a convenient starting substrate for a redox state-maintaining pathway like the Pcs module. 

During photosynthesis, when the required energy could be (partly) provided by light, the co-

assimilation of CO2 in the Pcs module might offer a significant growth advantage in the nutrient-

scarce waters where Eryhtrobacter sp. NAP1 resides. In the absence of light, however, this pathway 

seems rather costly for acetate assimilation. We showed indeed, that the glyoxylate cycle49 is mainly 

used for that matter. In this canonical acetate assimilation pathway, two molecules of acetyl-CoA are 

assimilated into one C4 molecule while generating one equivalent of NADH. 

Within their natural environment, AAP bacteria are exposed to both extremes of redox stress during 

a diurnal cycle: reductive stress during the photosynthetic light phase and oxidative stress in the 

respiratory dark phase. Adaptation to the different regimes is therefore regularly required and should 

be energy-efficient. The results presented in chapter 4 would be well in line with this requirement. 

Only the two large key enzymes Pcs and Mcr are upregulated under light conditions, while the other 

enzymes are maintained at a constant level. 

The data in chapter 4 provide initial evidence about the role of the Pcs module within Erythrobacter 

sp. NAP1. However, further experiments will be necessary to prove its activity and regulation. Stable 

isotope labeling studies of cells grown in the dark or with a light/dark cycle will shed more light on 

the activity and regulation of the Pcs module. Furthermore, the necessity of the Pcs module for redox 

homeostasis during photosynthesis should be investigated. However, the perturbation of the Pcs 

module might prove difficult. There is no specific inhibitor to any of the enzymes and Erythrobacter 

sp. NAP1 remains genetically inaccessible despite various transformation attempts. Alternatively, the 

Pcs module might be perturbed in a different, genetically accessible AAP bacterium or it could be 

insightful to replace the reductive EMCP in D. shibae with the Pcs module. 
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5.5 Outlook: Directed evolution of Pcs 

Structural and mechanistic complexity of Pcs limited the targeted evolution of the Pcs reductase domain 

towards improved carboxylation efficiency (chapter 3). Converting the reductase domain into a 

carboxylase drastically impaired the turnover rate of the Pcs overall reaction. To overcome these 

constraints, a carboxylase activity-based selection system for the directed evolution of Pcs needs to be 

set up. 

Pcs wildtype catalyzes the three-step reaction sequence from 3HP to propionyl-CoA. Successful 

evolution of the reductase domain into a carboxylase yields (S-)methylmalonyl-CoA as the product of 

Pcs. (S-)Methylmalonyl-CoA can be further converted by two enzymes, methylmalonyl-CoA epimerase 

(Epi) and mutase (Mcm), into the central carbon metabolite succinyl-CoA. Cells require succinyl-CoA 

to synthesize the essential cell wall component peptidoglycan via di-aminopimelic acid (DAP)50. 

Furthermore, succinyl-CoA serves as a precursor in the biosynthesis of the amino acids lysine (via DAP) 

and methionine. In order to force growth depending on the Pcs carboxylation efficiency, it would be 

desirable to engineer an E. coli selection strain, where the essential succinyl-CoA exclusively derives 

from 3HP via the activity of Pcs, Epi and Mcm (Figure 3). This requires the integration of the three 

genes for the constitutive expression of Pcs, Epi and Mcm within a succinyl-CoA auxotrophic strain. To 

that end, the Rhodobacter sphaeroides genes encoding for Epi and Mcm organized in an operon will be 

genomically integrated using the no-SCAR protocol51. The pcs library, which can be generated by 

random mutagenesis using error-prone PCR (polymerase chain reaction), will be expressed from a 

plasmid. Partially carboxylating Pcs variants will still generate the reduction product propionyl-CoA, 

which will be metabolized by the endogenous methylcitrate cycle (Figure 3). Additional integration of 

the Methylorubrum extorquens propionyl-CoA carboxylase (Pcc) can serve as proofreading strategy to 

convert the Pcs reductase product propionyl-CoA into methylmalonyl-CoA. 

E. coli can be turned auxotrophic for succinyl-CoA by deleting the genes for the two TCA cycle enzymes 

2-oxoglutarate dehydrogenase (SucAB) and succinyl-CoA synthetase (SucCD)52. However, this strain 

(referred to as selection strain A) still generates succinate, which might be activated to succinyl-CoA by 

non-specific synthetases or CoA transferases. To avoid this, an alternative selection strain that 

additionally lacks succinate production could be designed (referred to as selection strain B). To this end, 

the genes for the TCA cycle enzymes SucAB, the succinate dehydrogenase (Sdh) and fumarate reductase 
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(Frd) as well as the glyoxylate cycle gene for isocitrate lyase (AceE) need to be deleted. Furthermore, 

the operon encoding for the methylcitrate cycle, prpBCDE, needs to be excised to prevent succinate 

generation from propionyl-CoA. Accumulation of propionyl-CoA, however, can be toxic to the cell due 

to competitive inhibition of the citrate synthase53. Both selection strains require two additional genes to 

be deleted; scpB and scpC encoding for a methylmalonyl-CoA decarboxylase and a propionyl-

CoA:succinate CoA transferase, respectively. 

 

Figure 3: Schematic of two potential E. coli selection strains for directed evolution of Pcs. In both selection strains, succinyl-CoA can 

exclusively be generated from 3HP via a carboxylating Pcs variant, Epi and Mcm. The genes encoding for the enzymes depicted in red, 

need to be deleted in selection strain A and B; in orange; need to be deleted in selection strain A only; in pink, need to be deleted in selection 

strain B only; in green, need to be implemented in both selection strains. Pcc could be additionally implemented as proofreading strategy. 

When designing selection strains, it is important to adapt the stringency to the potential flux through the 

enzyme or pathway to be evolved. Here, the Pcs carboxylation activity needs to sustain the succinyl-CoA 

pool only, which accounts for roughly 0.2 – 1.5 mM in E. coli cells54. The rest of the biomass can be 

assimilated from a defined carbon source (e.g., glycerol). Additionally, the suggested selection strains 

allow for clever tuning of the selection pressure by titration of lysine, methionine and DAP (or 

alternatively succinate in case of selection strain B) to the growth medium. Selection pressure can be 

further adapted by changing the expression level of the Pcs variants. The Golden Gate assembly of the 

expression plasmid from individual parts allows for quick exchange of promoter or ribosomal binding 

site to yield various expression levels. Furthermore, the expression plasmid backbone could be 

exchanged to vary the plasmid copy number within the cells.  
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Directed evolution is a powerful tool also or especially for the engineering of multidomain/enzyme 

complexes, where complex interactions are not obvious or easy to anticipate. In previous studies, 

allosteric domain communication has been improved in the three-domain chaperone DnaK55 or even 

introduced de novo into a Bayer-Villiger monooxygenase56 through the directed evolution approach. 

Moreover, the beta subunit of the canonical channeling enzyme tryptophan synthetase (TrpB), which 

loses most of its activity when detached from the heterodimeric complex, could be regained through 

directed evolution57. It has been proposed that the allosteric effects, which are usually implied by the 

alpha subunit, were reestablished in the improved variants. In the light of these previous 

achievements, it appears promising that the interdomain communication in Pcs could be recreated by 

random mutagenesis and selection. Eliminating these constraints in the carboxylating Pcs variant 

(D1302S T1753M) would leave the reductase as the rate-limiting domain with an apparent kcat of 3.6 

± 0.2 s-1 (Table S1 in chapter 3), which is in the range of the overall turnover rate of Pcs wildtype 

(4.7 ± 0.3 s-1). Together with a decrease of the KM for CO2, the improved Pcs variant could be 

efficiently applied in the synthetic CO2-fixing HOPAC cycle. 
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