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SUMMARY 

Summary 

Fungi have the ability to generate tremendously complex and diverse natural products. Fungal 

secondary metabolites are highly relevant in mankind’s daily life by playing an important role in 

medicine, agriculture and manufacturing industries. Since the discovery of antibiotics in the first half 

of the last century, an enormous variety of natural products has been discovered in different fungi. 

With the advent of the genomics revolution, scientists have realized that the remarkable chemical 

space of fungal secondary metabolites has resulted from the diversification of biosynthetic gene 

clusters (BGC). Enzymes as efficient catalysts are the bridge between these biosynthetic genes and 

the resulting small molecules. The initial chemical scaffolds are assembled by backbone enzyme(s) 

and undergo decorations catalysed by a set of tailoring enzymes to mature the products. 

Prenyltransferases are one representative family of these tailoring enzymes. “Aromatic” 

prenyltransferases accept a broad spectrum of substrates including, but no limited to, indole 

derivatives, benzene carbaldehydes and naphthalenes. Prenylated metabolites can be further 

modified by enzymatic or nonenzymatic reactions to facilitate the functional group density. Thus, 

understanding the complexity and diversity of natural product scaffolds requires investigation of whole 

biosynthetic assembly lines in vivo as well as the participating enzymes and their mechanisms. 

There are substantial studies demonstrating the diversification of enzymatic post-modifications on 

prenyl moieties. For example, the nonheme FeII/2-oxoglutarate (2-OG)-dependent oxygenase FtmOx1 

from Aspergillus fumigatus is involved in the biosynthesis of fumitremorgin-type mycotoxins and 

catalyses an endoperoxide formation by insertion of an oxygen molecule into two prenyl moieties. 

Following this work, we cloned and overexpressed its homologous gene NFIA_045530 from 

Neosartorya fischeri. The recombinant protein EAW25734 encoded by NFIA_045530 was purified to 

apparent homogeneity and incubated with intermediates of the fumitremorgin biosynthetic pathway. 

LC-MS analysis revealed no consumption of fumitremorgin B, the natural substrate of FtmOx1, but 

good conversion with its biosynthetic precursor tryprostatin B in the presence of FeII and 2-OG. 

Structure elucidation confirmed the three products as 22-hydroxylisotryprostatin B, 14-

hydroxylisotryprostatin B and 14, 22-dihydroxylisotryprostatin B. Further detailed biochemical 

characterization proved EAW25734 to be a nonheme FeII/2-OG-dependent oxygenase, which 

catalyses a double bond migration within the dimethylallyl moiety accompanied by hydroxylation. We 

proposed that the reaction mechanism for this transformation is a radical rearrangement prior to 

accepting a hydroxyl radical from FeIII. The major origin of the hydroxyl groups at C14 and C22 was 

confirmed to be O2 by labelling experiments. Solvent exchange was also observed for that at C22. LC-

MS analysis of the fungal culture revealed the presence of 22-hydroxylisotryprostatin B, indicating the 

hijacking of tryprostatin B by EAW25734 from the fumitremorgin pathway. Our study demonstrates a 

notable oxidative modification of prenyl moieties. 
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SUMMARY 

In cooperation with Dr. Jinglin Wang, we investigated spontaneous rearrangements of 4-dimethylallyl-

1,3-dihydroxynaphthalene to two tetrahydrobenzofuran and one bicyclo[3.3.1]nonane derivatives. 

Incubations of FgaPT2, 1,3-dihydroxynaphthalene and DMAPP under 18O2-enriched atmosphere and 

with 18O-enriched water confirmed that the two additional hydroxyl groups were originated from one 

molecule of O2. Thus, a radical-involved mechanism was proposed starting with a reactive C4-peroxyl 

intermediate, which led to radical shifts and the formation of tricyclic products. These results provide 

one additional example for the nonenzymatic oxidative cyclisation and give valuable insights into the 

structural diversification by spontaneous reactions. 

In cooperation with Jonas Nies, a nine-gene fog cluster was identified in Aspergillus ruber. Genome 

mining revealed the presence of a prenyltransferase gene fogH in the fog cluster. The involvement of 

the fog cluster in the biosynthesis of the prenylated salicylaldehyde flavoglaucin and congeners was 

confirmed by heterologous expression of the whole cluster in Aspergillus nidulans. The highly-reducing 

polyketide synthase FogA, together with three additional enzymes, was proven to be responsible for 

the formation of the benzyl alcohol intermediates. Deletion of fogH led to the accumulation of C5-

hydroxylated hydroquinones, which were unstable and partially oxidised to their benzoquinone forms. 

Biochemical characterization revealed that the prenyltransferase FogH can accept both hydroquinone 

and benzoquinone forms as substrates. Consecutively, the alcohols were oxidized to the final 

aldehyde products by an oxidase, which only accepts prenylated derivatives as substrates. Meanwhile, 

the spontaneous oxidoreduction from prenylated benzoquinone alcohols to final hydroquinone 

aldehydes was observed as a minor side reaction during isolation. Therefore, this study demonstrated 

a highly efficient and programmed biosynthetic machinery for the flavoglaucin formation and 

highlighted the importance of the prenyltransferase FogH in the assembly line. 

In the review on fungal benzene carbaldehydes, we summarised their structural features, distribution, 

biological activities and biosynthesis with focus on alkylated derivatives and meroterpenoids. The first 

group carries different alkyl chains (C3, C5, C7, C9 or C11) at the ortho-position to the aldehyde group 

and the second group contains structural features derived from a C5, C10 or C15 prenyl moiety. In 

addition, simple benzaldehydes, benzophenones, spirocyclic and other benzene carbaldehydes were 

also included. Most of the reviewed compounds are salicylaldehyde derivatives, which are assembled 

by polyketide synthases from ascomycetes and released directly as aldehydes or afterwards 

oxidised/reduced by tailoring enzymes. 
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ZUSAMMENFASSUNG 

Zusammenfassung 

Pilze besitzen die Fähigkeit hoch komplexe und diverse Naturstoffe zu produzieren. Pilzliche 

Sekundärmetabolite sind von hoher Relevanz im täglichen Leben von Menschen und spielen eine 

wichtige Rolle in Medizin, Landwirtschaft und Industrie. Seit der Entdeckung der Antibiotika in der 

ersten Hälfte des letzten Jahrhunderts wurde eine Vielzahl von verschiedenen Naturstoffen aus Pilzen 

isoliert. Mit dem Aufkommen der genomischen Revolution wurde es für Wissenschaftler deutlich, dass 

die bemerkenswerte Varianz und Vielfalt der pilzlichen Sekundärmetabolite aus der Diversifizierung 

von biosynthetischen Genclustern (BGCs) resultiert. Enzyme, als effiziente Katalysatoren, bilden die 

Brücke zwischen diesen Genen und den resultierenden niedermolekularen Verbindungen. Die 

anfänglichen Grundgerüste werden durch sogenannte „Backbone“-Enzyme konstruiert und durch 

weitere Enzyme zu den jeweiligen Endprodukten modifiziert. Ein Vertreter dieser modifizierenden 

Enzyme ist die Prenyltransferase. „Aromatische“ Prenyltransferasen akzeptieren diverse Substrate, 

einschließlich, aber nicht beschränkt auf Indolderivate, Benzaldehyde und Naphthaline. Prenylierte 

Metabolite können durch enzymatische oder nichtenzymatische Reaktionen weiter modifiziert werden, 

um die Vielfalt der funktionellen Gruppen zu erhöhen. Um die Komplexität und strukturelle Vielfalt von 

Naturstoffen zu verstehen, sind daher Untersuchungen der gesamten Biosynthesewege, sowie der 

beteiligten Enzyme und ihrer Mechanismen erforderlich. 

Es gibt umfangreiche Studien, die die Diversifizierung enzymatischer Postmodifikationen an 

Prenyleinheiten demonstrieren. Die nicht-Häm-FeII / 2-Oxoglutarat (2-OG) abhängige Oxygenase 

FtmOx1 aus Aspergillus fumigatus ist, z.B. an der Biosynthese der Mykotoxine vom Fumitremorgin-

Typ beteiligt und katalysiert die Bildung eines Endoperoxids durch Insertion eines Sauerstoffmoleküls 

zwischen zwei Prenylresten. Darauf aufbauend haben wir ein homologes Gen NFIA_045530 aus 

Neosartorya fischeri kloniert und überexprimiert. Das von NFIA_045530 kodierte rekombinante 

Protein EAW25734 wurde zur Homogenität gereinigt und mit den Intermediaten des Fumitremorgin-

Biosynthesewegs inkubiert. Die LC-MS Analyse zeigte keinen Umsatz von Fumitremorgin B, dem 

natürlichen Substrat von FtmOx1, allerdings aber einen guten Umsatz mit seinem Vorstufe 

Tryprostatin B in Anwesenheit von FeII und 2-OG. Die Strukturaufklärung bestätigte die drei Produkte 

als 22-Hydroxylisotryprostatin B, 14- Hydroxylisotryprostatin B und 14,22-Dihydroxylisotryprostatin B. 

Detaillierte biochemische Untersuchungen zeigten, dass die nicht-Häm-FeII / 2-Oxoglutarat abhängige 

Oxygenase EAW25734 die Doppelbindungsverschiebung innerhalb der Dimethylallyl-Einheit und 

gleichzeitige Hydroxylierung katalysiert. Als Reaktionsmechanismus haben wir eine radikale 

Umlagerung vorgeschlagen, bevor ein an das FeIII gebundene Hydroxylradikal übertragen wird. Durch 

Markierungsexperimente wurde bestätigt, dass der Sauerstoff an C14 und C22 hauptsächlich aus 

O2 stammt. Für C22-OH wurde ein Austausch des Sauerstoffs mit H2O nachgewiesen. LC-MS Analyse 

der Pilzkultur bestätigte das Vorhandensein von 22-Hydroxylisotryprostatin B, was darauf schließen 

ließ, dass EAW25734 Tryprostatin B aus der Fumitremorgin-Biosynthese abzweigt.  
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ZUSAMMENFASSUNG 

In einer Kooperationsstudie mit Dr. Jinglin Wang haben wir eine spontane Umlagerung von 4-

Dimethylallyl-1,3-Dihydroxynaphthalin zu zwei Tetrahydrobenzofuran- und einem 

Bicyclo[3.3.1]nonan-Derivat untersucht. Inkubation von FgaPT2, 1,3-Dihydroxynaphthalin 

und DMAPP unter 18O2-angereicherter Atmosphäre und mit 18O-angereichertem Wasser 

bestätigten, dass die beiden zusätzlichen Hydroxylgruppen von einem O2-Molekül stammten. 

Daher wurde ein Mechanismus vorgeschlagen, der mit einem reaktiven C4-Peroxyl-

Zwischenprodukt beginnt, zu Radikalverschiebungen und zur Bildung trizyklischer Produkte 

führt. Diese Ergebnisse liefern ein weiteres Beispiel für die nichtenzymatische oxidative 

Zyklisierung und geben wertvolle Einblicke in die strukturelle Diversifizierung durch spontane 

Reaktionen. 

In Kooperation mit Jonas Nies wurde das fog-Gencluster in Aspergillus ruber entdeckt, das 

insgesamt neun Gene umfasst. Durch Genome-mining wurde darin auch das 

Prenyltransferasengen fogH identifiziert. Durch heterologe Expression in Aspergillus nidulans 

konnte gezeigt werden, dass das fog-cluster für die Biosynthese von dem prenylierten 

Salicylaldehyd Flavoglaucin und Analoga verantwortlich ist. Gendeletionsexperimente im 

heterologen Expressionsstamm deuteten darauf hin, dass die hoch-reduzierende 

Polyketidsynthase FogA zusammen mit drei zusätzlichen Enzymen für die Bildung der 

Benzylalkohol-Zwischenprodukte verantwortlich ist. Die Deletion von fogH führte zur Akkumulation 

von instabilen C5-hydroxylierten Hydrochinonen, die teilweise zu ihren 

Benzochinonformen oxidierten. Die biochemischen Untersuchungen zur Prenyltransferase 

FogH ergab, dass diese sowohl die Hydrochinon- als auch die Benzochinonform als Substrate 

akzeptieren kann. Anschließend wurden die Alkohole durch eine Oxidase, die nur prenylierte 

Intermediate als Substrate akzeptiert, zu den endgültigen Aldehydprodukten oxidiert. Des 

Weiteren konnte während der Isolierung in geringer Menge die spontane Oxidoreduktion von 

prenylierten Benzochinonalkoholen zu endgültigen Hydrochinonaldehyden beobachtet werden. 

Diese Studie zeigt die hocheffiziente und programmierte Maschinerie zur Biosynthese von 

Flavoglaucin und Analoga und hebt vor allem die Bedeutung der Prenyltransferase FogH im 

gesamten Kontext hervor. 

In dem Übersichtsartikel haben wir die strukturellen Besonderheiten, Verbreitung, 

biologische Aktivitäten und Biosynthese pilzlicher Benzaldehyde zusammengefasst. Der 

Schwerpunkt lag auf alkylierten Derivaten mit unterschiedlichen Alkylketten (C3, C5, C7, C9 oder 

C11) an der ortho-Position zur Aldehydgruppe und Meroterpenoiden mit Strukturelementen aus 

einem C5-, C10- oder C15-Prenylrest. Einfache Benzaldehyde, Benzophenonaldehyde und 

spirozyklische Benzaldehyde wurden ebenfalls behandelt. Die meisten der besprochenen 

Substanzen sind Salicylaldegydderivate, die von Polyketidsynthasen aus Schlauchpilzen 

synthetisiert werden. Diese werden entweder direkt als Aldehyde freigesetzt oder durch 

Modifikationsenzyme nachträglich oxidiert/reduziert. 
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INTRODUCTION 

1 Introduction 

1.1 Fungi as source of natural products 

Together with plants and animals, fungi represent one of the three major eukaryotic lineages of the 

terrestrial ecosystems (Heitman et al. 2017). They originated as a distinctive group of unicellular 

eukaryotes in the Precambrian about 760 million to 1.06 billion years ago (Watkinson et al. 2015). 

After million years of diversification and adaption, fungi are present all over the planet earth in different 

habitats ranging from aquatic to terrestrial ecosystems. With persistent evolution and long-distance 

dispersal, approximately 80,000 to 120,000 fungal species have been described so far. The total 

number of species is estimated at least to be 5.1 million (Blackwell 2011). In the most recent 

phylogenetic classification scheme, the true fungi (or Eumycota), which make up this monophyletic 

clade called Kingdom Fungi, comprise the seven phyla: Chytridiomycota, Blastocladiomycota, 

Neocallimastigomycota, Microsporidia, Glomeromycota, Basidiomycota and Ascomycota. (Hibbett et 

al. 2007; Moore et al. 2020) The majority of the described fungal species belong to the Ascomycota 

and the Basidiomycota (Kavanagh 2017). 

It is well known that fungi can bring disaster but also blessing to humankind. Fungi act as harmful 

entities which spoil our foods and food grains, blight cultivated plants and cause health hazards. On 

the other side, fungi are commonly used in food production, weaving, chemical and pharmaceutical 

industries. Most of the drastically different impacts of fungi are related to their secondary (or 

specialized) metabolites (SMs), also known as natural products (NPs). In general, SMs are small 

molecules produced late in the growth cycle. They are not essential for basic growth, development or 

reproduction, but involved in ecological or environmental interactions (Mérillon and Ramawat 2016), 

e.g., for self-protection against predators, inhibition of competing microorganisms (Calvo and Cary

2015; Schrettl et al. 2010), communication purposes (Dufour and Rao 2011; Tsitsigiannis and Keller 

2007) and  establishing interactions with their biotic environment (Brakhage 2013; Rohlfs and Churchill 

2011). The fungal dependence on SMs to conquer diverse habitats and promote their development is 

proven for most species. 

Since the discovery of the first broad-spectrum antibiotic penicillin G by Alexander Fleming in 1928 

and proof of its importance in World War II, significant progress has been achieved not only in medical 

use but also in screening for other bioactive SMs from fungi (Fleming 1929). To date, over 250,000 

NPs were discovered in total via various strategies (Figure 1) (Wilson et al. 2020), about 45 % of them 

originated from fungi (Bérdy 2012). Historically, chemists focused on the characterisation of the 

expressed metabolome, which was achieved by detection of unidentified structures in fungal crude 

extracts or bio-guided fractionation for bioactive metabolites. To meet the growing demand on 

bioactive compounds, new fungal resources from marine and extreme environments were taken into 

consideration. Furthermore, a so-called OSMAC (One Strain - Many Compounds) approach was 
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INTRODUCTION 

suggested to discover a broader array of compounds , which is based on alteration of culture 

conditions e.g. light, pH value, nutrients and co-cultivation with different microorganisms (Ariantari et 

al. 2019; Bode et al. 2002; Selegato et al. 2019). However, the OSMAC-based fermentation approach 

has failed to access all of the potential compounds from one organism due to the far greater number 

of hypothetical BGCs in its genome. In the last decade, advances in sequencing technologies and 

molecular biology gave rise to the idea that genome manipulation is a successful strategy in fungal 

NP identification. Bioinformatics analysis of available fungal genome sequences revealed that 

approximately 80 % of their secondary metabolome remains unidentified, indicating the plethora of 

compounds waiting to be discovered (Heitman et al. 2017). To activate the silent/lowly expressed 

biosynthetic gene clusters (BGCs), strategies such as epigenetic regulation, global regulator 

(de)activation and specific transcription factor stimulation have been applied to influence the 

production of SMs (Keller 2019; Lyu et al. 2020). For example, the ‘Velvet Complex’ composing VelB, 

VeA and LaeA is associated with global positive regulation of many BGCs in filamentous fungi (Amare 

and Keller 2014; Bok et al. 2005; Bok and Keller 2004; Kumar et al. 2017), while McrA acts as a global 

negative regulator in Aspergillus and Penicillium species (Oakley et al. 2017). Bioinformatics analysis 

of interesting active clusters provides the basis for gene deletion or overexpression experiments in the 

native strain (Matsuda and Abe 2016; Sanchez et al. 2012a). Furthermore, for slow-growing and 

genetically difficult to be manipulated fungi, heterologous expression in surrogate hosts represents 

another way for discovery of novel NPs (Lazarus et al. 2014; Zhang et al. 2019a). 

Based on their biosynthetic origin, well-studied fungal NPs mainly belong to polyketides, peptides, 

terpenoids and alkaloids (Figure 1). Most of these molecules exhibit an enormous range of biological 

activities, e.g. antibacterial, antifungal and antitumor activities or even toxicity, hence representing 

both positive and negative effects of fungal SMs. 

Polyketides are the most abundant and sophisticated fungal SMs, which are generally synthesized by 

polyketide synthases (PKSs). The fungal polyketide metabolite lovastatin from Aspergillus terreus is 

known as the first cholesterol-lowering statin approved by the Food and Drug Administration (Alberts 

et al. 1980; Golomb and Evans 2008). Griseofulvin from Penicillium griseofulvum serves as the earliest 

antifungal agent against dermatophyts (Develoux 2001; Oxford et al. 1939). Another representative is 

aflatoxin B1 produced by Aspergillus flavus with a highly hepatotoxic activity (Hesseltine et al. 1966; Li 

et al. 2001). Moreover, peptides also play an important role in fungal natural product diversity and are 

mostly produced by nonribosomal peptide synthetases (NRPSs). Typical examples of NRPS-

produced peptides include penicillin G and cyclosporine A. Penicillin G, as mentioned above, is one 

of the most famous antibiotics (Houbraken et al. 2011; Sika-Paotonu and Liligeto 2019; Smith et al. 

1990). Cyclosporine A is another clinically used cyclic undecapeptide from the fungus Tolypocladium 

inflatum with immunosuppressive and antifungal properties (Bolton et al. 1982; Borel and Wiesinger 

1979). An isocyanide-NRPS hybrid antibiotic xanthocillin was isolated from Penicillium notatum in 

1950 (Lim et al. 2018; Rothe 1954). The presence of the isonitrile moiety usually exhibits unique 
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biological and chemical properties and has enabled synthetic and biochemical applications (Garson 

and Simpson 2004; Wilson et al. 2012). 

Terpenoids, also known as isoprenoids, comprise the structurally diverse family of fungal NPs. They 

are synthesized from the 5-carbon precursors (dimethylallyl diphosphate (DMAPP) and isopentenyl 

diphosphate (IPP)), elongating with C5n IPP (n = 1, 2, 3, etc.) by head-to-tail coupling reactions 

(Kellogg and Poulter 1997; Poulter and Rilling 1978). The subsequent cyclisation reactions yield a 

myriad of products typically containing multiple fused rings and stereo centres (Gao et al. 2012b; 

Lesburg et al. 1998; Quin et al. 2014). For example, a highly oxygenated tetracyclic diterpenoid, 

gibberellin A3, contains seven stereo centres in the 20-carbon skeleton. It has positive effects on plant 

development, such as stimulation of rapid stem and root growth (Bomke and Tudzynski 2009). In 

Figure 1 Application of multiple strategies for the discovery of abundant fungal natural products 
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addition, alkaloids are one of the largest classes of nitrogen-containing fungal SMs. Most of them 

present attractive bioactivities, such as ergotamine from Claviceps purpurea as a vasoconstrictor and 

paxilline from Penicillium paxilli as a mycotoxin (Rowan 1993; Silberstein 1997). 

Humanity’s fascination with the Fungal Kingdom is a natural and ancient one. It is probably based on 

the countless natural products which bring humankind food and famine, drugs and diseases. Today, 

we are familiar with the importance of SMs in pharmaceuticals, agrochemicals, food additives and 

cosmetics. Advances in microbiology, biochemistry, genome sequencing and bioinformatics provide 

unlimited possibilities to enrich the natural product library and expand the pharmaceutical repertoire. 

1.2 Prenylated aromatic natural products 

As aforementioned, natural products are widely distributed in terrestrial and marine organisms with a 

great structural diversity. These include prenylated natural containing aromatic scaffolds and one or 

more prenyl moieties, e.g. prenylated indole alkaloids, naphthalenes, benzene carbaldehydes, 

flavonoids, xanthones and quinones (Figure 2A). They exhibit an extensive range of biological and 

pharmacological activities such as cytotoxic (Li et al. 2014), antioxidant (Sunassee and Davies-

Coleman 2012), antimicrobial (Liu et al. 2013; Oya et al. 2015), antiviral (Sanna et al. 2018) activities, 

which are often distinct from their non-prenylated precursors. The distinctive prenyl moieties play an 

important role in the structural diversity of these natural products, due to various backbones, assorted 

prenylation positions and different prenyl donors as well as different patterns (regular or reverse) 

(Figure 2). In general, prenyl donors can be classified into DMAPP (C5), geranyl (GPP, C10), farnesyl 

(FPP, C15) and geranylgeranyl (GGPP, C20) diphosphate. They can be attached onto the scaffold in 

regular or reverse manners. The regular prenylation implies the connection of the prenyl moieties via 

their C-1’ to an acceptor and the reverse prenylation via their C-3’ atoms (Winkelblech et al. 2015). In 

addition, the prenylated compounds can be further modified by rearrangement, cyclisation, oxidation 

and hydroxylation. 

Figure 2 Representatives of common numbering of aromatic scaffolds (A); prenyl donors and their 

connection patterns (B) 
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1.2.1 Prenylated indole alkaloids 

Fungal prenylated indole alkaloids are hybrid natural products containing indole/indoline and 

isoprenoid moieties or structures derived thereof (Li 2010). They are mainly produced by the genera 

Penicillium and Aspergillus of the Ascomycota. The majority of the prenylated indole alkaloids are L-

tryptophan-containing compounds derive from NRPS-related biosynthetic pathways with 

diketopiperazine or benzodiazepindinone skeletons. Representatives of the prenylated cyclic 

dipeptides are brevianamide F and its derivatives consisting of L-tryptophan and L-proline (Figure 3A). 

The formation of brevianamide F is catalysed by the synthetase FtmPS also termed FtmA, which was 

proven by heterologous overexpression of the NRPS gene ftmA in Aspergillus nidulans (Maiya et al. 

2006). It can be further converted to tryprostatin B with a regular C2-prenylation or deoxybrevianamide 

E with a reverse C2-prenylation. Tryprostatin B acts as a key intermediate in the biosynthesis of 

diverse metabolites such as tryprostatin A, demethoxyfumitremorgin C and fumitremorgin C or its N1-

prenylated derivatives verruculogen and fumitremorgin B in Aspergillus fumigatus (Li 2011). 

Spirotryprostatins A and B with unique spiro ring systems have been frequently chosen as a target of 

chemical synthesis due to their structural complexity and important pharmaceutical activities (Cui et 

al. 1996). Meanwhile, deoxybrevianamide E serves as the precursor of brevianamide A and austamide 

as well as notoamides B and E (Grundmann and Li 2005; Kato et al. 2007; Tsukamoto et al. 2008; 

Williams et al. 2000). 

Figure 3 structures of prenylated indole alkaloids derived from cyclo-L-Trp-L-Pro and their biosynthetic 

relationship (A); examples of other L-tryptophan-containing natural products (B) 
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Besides cyclo-L-Trp-L-Pro, L-tryptophan-containing natural products can also comprise other amino 

acid such as a second L-tryptophan, L-histidine or L-alanine (Figure 3B). Fellutanine D from Penicillium 

fellutanum is diprenylated cyclo-L-Trp-L-Trp with a fused ring system and exhibits cytotoxic activity 

against several cell lines (Kozlovsky et al. 2000). Prenylated cyclo-L-Trp-L-His derivative roquefortine 

C with a reverse prenylation at C3 was firstly isolated from Penicillium roqueforti (Scott and Kennedy 

1976) and identified later in a quantity of Penicillium strains as the precursor of several prenylated 

indole alkaloids such as roquefortine E, glandicoline B, meleagrin and oxaline (Overy et al. 2005; 

Reshetilova et al. 1995; Steyn and Vleggaar 1983). A prominent example of muti-prenylated cyclo-L-

Trp-L-Ala is echinulin initially isolated from Aspergillus amstelodami (Birch et al. 1961) and later, 

together with congeners, from assorted Aspergillus strains (Cardani et al. 1959; Du et al. 2012; Ma et 

al. 2016). Apart from cyclic dipeptides, ergot alkaloids are another complex family with diverse 

structures and biological activities (Flieger et al. 1997; Schardl et al. 2006). Biogenetically, the ergoline 

ring in ergot alkaloids such as fumigaclavine C is derived from the C4-prenylated tryptophan (Figure 

3B). In addition, the indole-diterpene hybrid compounds produced by filamentous fungi are composed 

of an indole residue and a cyclic geranylgeranyl moiety as shown in Figure 3B (Cole et al. 1977; Sings 

and Singh 2003). 

1.2.2. Prenylated benzene carbaldehydes 

Prenylated benzene carbaldehydes are a group of compounds consisting of dimethylallyl, geranyl or 

farnesyl moieties on benzaldehyde skeleton and are widely distributed in ascomycetes and 

basidiomycetes. The prenyl moieties are usually attached on meta-position (C3) of the aldehyde group 

as shown in Figure 4. An example is cristaldehyde A from the marine-derived fungus Eurotium 

cristatum as a prenylated chromene-5-carbaldehyde (Zhang et al. 2019b). It displays a significant anti-

inflammatory effect on the LPS-stimulated RAW 264.7 cells (Zhang et al. 2019b). Other well-known 

prenylated benzaldehydes are flavoglaucin and its congeners, which were obtained from different 

Aspergillus/Eurotium strains with antibacterial (Fathallah et al. 2019; Shi et al. 2019), antioxidant 

(Huang et al. 2012; Miyake et al. 2014), anti-inflammatory (Shi et al. 2019; Wu et al. 2014a) and 

cytotoxic (Wang et al. 2006) activities. Annullatin A with a benzofuran ring derived from the 

dimethylallyl group was isolated from the entomopathogen Cordyceps annullata (Asai et al. 2012). It 

exhibits potent agonistic activity towards the cannabinoid receptors CB1 and CB2 (Asai et al. 2012). 

A representative geranylated benzene carbaldehyde is ilicicolin E was obtain from pathogenic fungus 

Verticillium hemipterigenum with a substituted cyclohexone ring by cyclisation within a modified 

farnesyl chain (Seephonkai et al. 2004). 

Figure 4 Examples of prenylated benzene carbaldehydes 
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1.2.3. Prenylated naphthalenes 

Prenylated naphthalenes are a less abundant class of prenylated secondary metabolites, which are 

mainly derived from a tetrahydroxynaphthalene (THN) precursor formed through the action of a 

polyketide synthase (Funayama et al. 1990). Single or multiple prenylation events with further 

cyclisation via enzymatic or nonenzymatic reactions decorate the THN precursor and form complex 

natural products. Various prenyl donors, including dimethylallyl, geranyl and farnesyl diphosphates, 

are initially appended to the nucleophilic C-2 and C-4 positions of THN via electrophilic aromatic 

substitution reactions catalysed by aromatic PTs (Murray et al. 2020). The non-nucleophilic C3-prenyl 

moiety originates from a C4-prenylated intermediate via oxidative dearomatisation and a halogenation-

induced -hydroxyketone rearrangement of the prenyl moiety from C4 to C3 (Murray et al. 2018). 

Based on C2 or C3/C4 prenylation patterns, most prenylated naphthalenes can be divided in two 

classes (Figure 5). Furanonaphthoquinone I (Haagen et al. 2006), adenaflorins A and D (Hussein et 

al. 2004) and vismione E (Laphookhieo et al. 2009) belong to the first group. They exhibit antimicrobial, 

(Nagata et al. 1998) cytotoxic (Hussein et al. 2004) and antimalarial (Laphookhieo et al. 2009) activities, 

respectively. Examples for the second group of prenylated naphthalenes are the cytotoxic tri-

prenylated adenaflorin C from Adenaria floribunda (Hussein et al. 2004), antibiotic merochlorin B from 

Streptomyces sp. strain CNH-189 (Kaysser et al. 2012), 7-demethylnaphterpin from Streptomyces 

prunicolor (Shin-ya et al. 1992) as well as the antibiotic debromomarinone from a marine actinomycete 

(Pathirana et al. 1992). 

1.3. Backbone enzymes in microbial natural product biosynthesis 

In contrast to the primary metabolites synthesized by genes distributed through the genome, 

secondary metabolites are general encoded by genes arranged in a contiguous fashion as a 

Figure 5 Examples of prenylated naphthalenes 
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biosynthetic gene cluster (Keller 2019). A typical BGC contains one or more major genes responsible 

for the backbone formation of the metabolite, e.g. PKS, NRPS and terpene synthase, and one or more 

genes in charge of structural modification, metabolite transport or expression regulation (Rokas et al. 

2020). 

Within the wide variety of the natural product library, polyketides and peptides are the prolific origin of 

bioactive natural products such as the cholesterol-lowering lovastatin and the antibiotic penicillin G. 

They share a similar chemical logic and enzymatic machinery of biosynthetic assembly lines: starting 

with the recruitment of monomer units, followed by extension of the ketidyl/peptidyl chains that are 

transiently bound as covalent thioester intermediates to carrier protein domains, which can undergo -

modifications and will be released from the synthetase after the formation of the initial backbone 

(Rokas et al. 2020; Walsh and Tang 2017). 

1.3.1 Polyketide synthase 

PKS is the core enzyme in the biosynthesis of the carbon backbone for polyketides via repetitive 

decarboxylative Claisen condensation. The common logic and enzymatic machinery for polyketides is 

mimicked from fatty acid synthesis, i.e. initiation, elongation, process and termination. Generally for 

minimal assemblage, a PKS requires an acyltransferase (AT) to transfer a start unit onto an acyl carrier 

protein (ACP) and then a -ketoacyl synthase (KS) to introduce an extender unit for the chain 

elongation which will be repeated until product release. In some cases, during each extension cycle, 

three processing enzyme components, i.e. -ketoacyl reductase (KR), dehydratase (DH), enoyl 

reductase (ER), can catalyse the conversion of the -C=O to the -CH2. In addition, methyltransferase 

(MT), product template (PT), thioesterase (TE), as well as reductase (R) domain may also act as 

accessory domains for the construction and modification of polyketide products.  

Based on the domain architecture, the PKSs can generally be categorized into three types: (i) type I 

PKSs are huge proteins with multiple autonomously functional domains found in fungi and bacteria 

(Keatinge-Clay 2012); (ii) type II PKSs are a set of separate individual proteins that interact only 

transiently and are mainly found in gram-positive actinomycetes (Hertweck et al. 2007); (iii) type III 

PKSs consist of very simple ketosynthases which use one or more malonyl-CoA molecules  as 

extender units and are mostly found in plants but also in fungi and bacteria (Abe and Morita 2010; 

Funa et al. 1999; Hashimoto et al. 2014). Among the three distinct classes, type I PKSs can be 

subclassified in modular and iterative groups. Modular type I PKSs possess a multitude of domains 

and each of them is used once. They are the producers of linear or macrocyclic and reduced 

polyketides. In comparison, iterative type I PKSs, commonly found in fungi, only have one copy of 

each catalytic and carrier protein domain, the functional domains are used repetitively (Walsh and 

Tang 2017). It is now well-accepted that the nonreducing (NR), the highly reducing (HR), and the 

partial reducing (PR) PKSs are three major classes of iterative type I PKSs with different degrees of 

reductive behaviour (Cox 2007).  
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Obviously, the variable domain constructions as well as various starter and extender molecules lead 

to the structural diversity and complexity of polyketides. As shown in Figures 6 and 7, the rounds of 

chain extension influence the number of aromatic rings and the different oxidative rearrangement 

reactions lead to various ring topologies. The released product can be further decorated by tailoring 

enzymes to afford the bioactive secondary metabolites. 

Fungal aromatic polyketides are mainly synthesized by NR-PKSs in which no reductive domain is 

employed during the elongation steps of the polyketide chain. Cyclisation reactions are generally 

catalysed by the PT domain with a poly--ketone backbone as the substrate. In the case of citrinin 

biosynthesis, after four rounds of chain elongation and two times of C-methylation, the linear poly--

ketone intermediate is accepted by the PT domain for the C2–C7 aldol condensation to afford the 

aromatic ring. Afterwards, the R domain is proposed to catalyse reductive release of the polyketide, 

which morphs into citrinin (Figure 6A). In contrast, the tricyclic norsolorinic acid anthrone, represented 

by aflatoxin B1, reflects a distinct cyclisation regioselectivity that starts the first ring with a C4–C9 bond 

formation and then the second with C2–C11 (Figure 6B). Moreover, the third pattern with C6–C11 

first-ring cyclisation is involved in the biosynthesis of tetracyclic fungal metabolite such as 

viridicatumtoxin (Figure 6C). 

Figure 6 Biosynthesis of aromatic polyketides by various NR-PKSs. PT domain mediated cyclisation 

reactions are classified by three distinct regioselectivities 
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Besides the specific PT domain mediated cyclisation products made by NR-PKSs, aromatic products 

can also be produced by PR- and HR-PKSs. Unlike the NR-PKSs, the domain architecture of most 

PR-PKSs does not include a PT-similar domain but is still able to form the aromatic skeleton, e.g. 6-

methylsalicylic acid synthase (MSAS) (Figure 7A). The HR-PKSs exhibit more complex biosynthetic 

programming. Some of them contain additional processing domains to achieve a -keto reduction. For 

example, a recent study from Yi Tang’s group showed another aromatisation mechanism: two 

individual short-chain dehydrogenases/reductases, Vir B and Vir C, selectively reoxidized β-hydroxyl 

groups to β-ketones in the linear HR-PKS product, which enabled further intramolecular aldol 

condensation between C2 and C7 (Figure 7B).  

The highly programmed PKS assembly lines offer a large group of structural diverse and bioactive 

natural products, which fascinates many biochemists and biomolecular engineers. On one hand, 

sustained exploration of natural PKS holds the potential for discovering new natural bioactive 

polyketides. On the other hand, a better understanding of mechanisms could promote the evolution of 

PKS engineering, thus enabling us to effectively expand the polyketide chemical space artificially. 

1.3.2 Nonribosomal peptide synthetase 

Similarly, NRPSs serve as templates to program the assembly of amino acids by forming C-N bond 

linkages in a parallel chemical logic to PKSs (Walsh and Tang 2017). In analogy to the minimal domain 

architecture (KS-AT-ACP) of a PKS module, there are three core domains in a minimal NRPS module, 

i.e. condensation (C), adenylation (A) and thiolation (T) domains (Sieber and Marahiel 2005). The A

domain is responsible for recognition and activation the amino or aryl acid monomer as well as transfer 

to the adjacent T domain, also referred to as peptidyl carrier protein (PCP). The C domain is 

responsible for the peptide chain extension via C-N bond formation between the electrophilic upstream 

Figure 7 Biosynthesis of aromatic polyketides by PR- (A) and HR-PKSs (B) 
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peptidyl-S-T1 and the nucleophilic downstream aminoacyl-S-T2. The typical order of domains for 

elongation is C-A-T. While the extending intermediate is covalently tethered onto the T domain, several 

specialized domains can carry out further modifications to increase the diversity and complexity of the 

final products. For example, the epimerization (E) domain can epimerize and incorporate L-amino acid 

monomers to their D-form (Süssmuth and Mainz 2017). Methyltransferase (MT) domains can transfer 

a -CH3 group onto the amino group of the aminoacyl-S-T intermediate with an N-methylation. The Cy 

(cyclisation) domain as a subset of a C domain exhibits a heterocyclization activity. Like type I PKSs, 

the termination modules of NRPS assembly lines usually have a C-A-T-TE organization to release the 

product by hydrolysis or cyclisation. In fungal systems, a terminal C domain may perform the 

cyclisation reaction for termination as shown in Figure 8 (Gao et al. 2012a). 

The nonribosomally produced peptides reflect the complexity and abundance of structural classes, 

from simple indole alkaloids to 20-mer peptides. Among them, the indole-containing nonribosomal 

peptides are produced when an NRPS module incorporates an L-tryptophan as start monomer. A 

representative is the biosynthesis of verruculogen in Aspergillus fumigatus (Figure 8) (Maiya et al. 

2006). The prototypic fungal dipeptide synthetase FtmA was identified by deletion and overexpression 

in the native host as well as heterologous expression in Aspergillus nidulans. Theoretically, the A1 

domain in FtmA recognizes L-tryptophan, activates the carboxylated group which is then installed as 

an aminoacyl thioester on the neighboring T1 domain. The next module C-A2-T2 extends the chain by 

adding a prolinyl group. Then the dipeptide brevianamide F is released and post-modified to various 

products such as tryprostatins, spirotryprostatins and fumitremorgins (Li 2011). 

The number of genes known to code for PKSs and NRPSs has increased rapidly because of 

development in genome sequencing over the past decade. A fundamental understanding of the 

underlying biosynthetic logic would facilitate the elucidation of the structural diversification of 

polyketides, nonribosomal peptides and their hybrids. Advances of biosynthesis-inspired chemical 

Figure 8 The biosynthesis of verruculogen in Aspergillus fumigatus 
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synthesis and combinatorial biosynthesis suggest new methods for enhancing structural diversity 

and drug discovery and allow reprogramming of new assembly lines for effective chemical 

production. 

1.4. Aromatic prenyltransferases as modification enzymes 

As aforementioned, the released products of PKS and NRPS are in many cases not the final 

metabolic products. They are often modified by various specialized enzymes, termed as post-

assembly or tailoring enzymes, contributing to the diverse and sophisticated structural 

modifications of NPs (Li 2009; Sattely et al. 2008; Walsh 2008). A notable set of decorating 

enzymes are prenyltransferases (PTs) which catalyse the transfer of different prenyl moieties 

onto numerous acceptor molecules (Winkelblech et al. 2015). Aromatic PTs are generally 

classified into the UbiA-type, the CloQ/NphB-type, and the dimethylallyltryptophan synthase 

(DMATS)-type (Winkelblech et al. 2015). 

The PTs of the UbiA superfamily are membrane-bound proteins and their reactions are dependent 

on the presence of divalent ions (Young et al. 1972). They are not only involved in secondary but 

also in primary metabolism and use diverse aromatic compounds as substrates (Li 2016). LaPT1 

(Shen et al. 2012) and SfG6DT (Sasaki et al. 2011) from this family catalyse the prenylation of 

flavonoids, while UbiA and its homolog MenA play important roles in the biosynthesis of 

menaquinone (vitamin K2) and ubiquinone (coenzyme Q) (Meganathan and Kwon 2009). In contrast 

to the membrane-bound PTs, the members from the CloQ/NphB and DMATS superfamilies are 

soluble proteins containing no aspartate-rich motif, e.g. NDxxDxxxD, in their sequences (Bonitz et 

al. 2011; Heide 2009; Winkelblech et al. 2015). Known CloQ/NphB-like PTs are mainly found 

in Streptomyces and use aromatic compounds such as hydroxynaphthalenes, phenazines, 

quinones and phenolic compounds as substrates (Heide 2009; Winkelblech et al. 2015). NphB 

was proven to be involved in the biosynthesis of naphterpin and derivatives (Kuzuyama et al. 2005). 

Its crystal structure contains the typical  barrel fold with antiparallel strands (Kuzuyama et al. 

2005). 

The DMATS superfamily is the most investigated subgroup among the aromatic prenyltransferases. 

They are metal-independent enzymes, but addition of metal ions such as Ca2+ and Mg2+ 

strongly enhance their activities in some cases (Li 2009; Pockrandt et al. 2012; Yu et al. 2012). 

Structural analysis of DMATS enzymes reveals a common PT fold (Metzger et al. 2009; Pojer 

et al. 2003; Saleh et al. 2009). The first member of this family is the tryptophan C4-prenyltransferase 

DmaW in the biosynthesis of ergot alkaloids in Claviceps fusiformis (Gebler and Poulter 1992; Tsai 

et al. 1995). The PTs of the DMATS superfamily are involved in the biosynthesis of diverse 

microbial secondary metabolites, especially prenylated indole alkaloids (Li 2010). In the 

biosynthesis of the ergot alkaloid fumigaclavine C, FgaPT2 catalyses the first pathway-specific 

step, i.e. the C4-prenylation of L-tryptophan, resulting in the formation of 4-dimethylallyl-L-

tryptophan as the key intermediate (Unsöld and Li 2005). In the case of the fumitremorgin/

verruculogen biosynthetic pathway, FtmPT1 catalyses a C2-regular prenylation of brevianamide F at 

an early stage (Grundmann and Li 2005) and FtmPT2 
16



INTRODUCTION 

 
 

carries out an N1-prenylation (Grundmann et al. 2008). The final product fumitremorgin A with an 

additional O-prenyl moiety is formed by prenylation with FtmPT3 (Mundt et al. 2012). In most cases, 

one PT only catalyses one specific transfer reaction, but there are also rare multifunctional PTs 

involved in more than one prenylation steps. The remarkable examples are EchPTs in the echinulin 

biosynthesis in Aspergillus ruber. EchPT1 catalyses the first prenylation step, leading to preechinulin. 

The unique EchPT2 attaches, in a consecutive prenylation cascade, up to three dimethylallyl moieties 

to preechinulin and its dehydro forms neoechinulins A and B, resulting in the formation of echinulin 

and congeners (Wohlgemuth et al. 2017). 

More interestingly, members of the DMATS superfamily demonstrate an intriguing substrate flexibility 

and catalytic promiscuity (Fan et al. 2015). They accept not only natural substrates but also molecules 

with different scaffolds. Several studies have proven that bacterial metabolites such as flavonoids, 

hydroxynaphthalenes and indolocarbazoles as well as plant metabolites like flavonoids and 

acylphloroglucinols can also be accepted by fungal DMATS enzymes (Yu et al. 2012; Yu et al. 2011; 

Yu and Li 2011; Zhou et al. 2015). The high substrate plasticity of the DMATSs facilitated an enzyme-

driven regiospecific production of various prenylated products. In a previous study, one-step reactions 

were performed for the production of seven monoprenylated products from one unnatural substrate, 

Figure 9 Overview of one-step reactions achieving the attachment of prenyl moieties to all 

nucleophilic reactive positions of the indole nucleus via chemoenzymatic synthesis (modified after 

(Fan and Li 2013; Liao et al. 2018)) 
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cyclo-L-homotryptophan-D-valine, by eight PTs (Figure 9). (Fan and Li 2013) This study expands 

significantly the potential usage of prenyltransferases as biocatalysts for Friedel–Crafts alkylation. 

However, one bottleneck for the use of DMATS enzymes in biotechnology is their high specificity 

toward DMAPP as the prenyl donor (Fan et al. 2015). Advances in enzyme crystal structure analysis 

provide a better understanding of reaction mechanisms and basis for protein engineering. Structure-

guided molecular modelling and site-directed mutagenesis on FgaPT2 led to the creation of GPP- and 

FPP-accepting enzymes (Mai et al. 2018). Mutation of the gatekeeping residues in six PTs turned on 

or improved the acceptance of GPP for cyclo-L-Trp-L-Trp prenylation to generate nine products with 

different prenylation positions or patterns (Liao et al. 2018). These efficient biochemical approaches 

tremendously enrich the biocatalyst toolboxes. 

PTs serve as remarkable decoration enzymes during numerous metabolite post-assembly lines to 

produce key intermediates or final products. Further investigation on their characteristics will benefit 

their potential application in chemoenzymatic synthesis and synthetic biology to increase structural 

diversity.  

1.5. Post-modifications on the prenyl moieties 

The attached prenyl moiety can undergo significant structural diversification to yield the final bioactive 

compounds. Prenylated pathway intermediates can be further modified by a variety of chemical 

transformants such as cyclisation, halogenation, alkynylation dehydrogenation and rearrangements 

(Figures 10 − 12). Once the prenyl group is attached on the nascent intermediate, enzymatic or 

nonenzymatic reactions can take place to diversify chemical structures and enhance the bioactivity of 

the resulting products.  

1.5.1. Post-modifications by enzymatic reactions 

An example for enzymatic post-modification of a prenylated intermediate can be found in the 

penigequinolone biosynthesis in Penicillium thymicola. The pen cluster contains an assortment of 

genes for redox enzymes, PTs and methyltransferases (Figure 10) (Zou et al. 2015). Genome mining 

showed that this BGC was putatively responsible for the productions of penigequinolone and 

yaequinolone C with a highly modified C10 isoprenoid chain. The backbone synthase PenN and 

associating enzymes catalyse the formation of a 6,6-bicyclic core skeleton (1). The first 

prenyltransferase PenI carries out the attachment of only one dimethylallyl group (C5) which 

undergoes a dehydrogenation to generate the aryl diene quinolone 3. The terminal 3’ double bond 

in 3 affords the electron-rich position C4’ for the subsequent “head to tail” prenyl-prenyl elongation by 

the second prenyltransferase PenG to the C3’-prenylated “pseudo-geranyl” intermediate 4. After the 

epoxidation of compound 4, two distinct biosynthetic routes are performed via cationic epoxide 

rearrangements to build the cyclopropane-tetrahydrofuran or -tetrahydropyran ring systems, 

respectively (Zou et al. 2017). Generally, the prenyl moiety is transferred onto the electron-rich 
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substrate with the designated size (dimethylallyl, geranyl, farnesyl, etc.) in natural product biosynthesis. 

Nevertheless, Zou et al. published an unprecedented prenyl chain extension mechanism via “prenyl-

prenylation” (Zou et al. 2015). 

In addition to dehydrogenation, iterative prenylation, epoxidation and consequent rearrangement as 

in the penigequinolone biosynthesis, there are also other post-modifications on prenyl moieties. The 

notable set is cyclisation via C-N, C-O or C-C bond to afford morphed scaffolds and structural rigidity 

(Figure 11). For example, the cytochrome P450 FtmE and FAD-binding oxidoreductase CnsA 

catalyse the oxidative C-N bond formation between the C2’ of the indole prenyl group and the nearby 

N atom to form six or seven number rings (Chen et al. 2020; Kato et al. 2009). Another cyclisation type 

is the endoperoxide formation catalysed by the nonheme FeII/2-oxoglutarate (FeII/2-OG)-dependent 

oxygenase FtmOx1 (Steffan et al. 2009). This intriguing enzyme converts fumitremorgin B to 

verruculogen by introducing one molecule of O2 to assemble the O-O bond. Furthermore, a uniquely 

fused spirobicyclisation on the geranyl moiety is carried out by the cytochrome P450 VrtK via two C-

C coupling steps (Chooi et al. 2013). The cyclisation most likely starts with an initial oxidation of C17 

to an allylic carbocation resulting in the first C15-C19 cyclisation, which can undergo concerted 1,2-

alkyl shift/1,3-hydride shift to yield a new C15 tertiary carbocation, following by C7 Friedel−Crafts 

alkylation to afford the second C7-C15 cyclisation. The bicyclo[2.2.2]diazaoctane nucleus is widely 

distributed among natural products such as notoamides and brevianamides. This core framework was 

Figure 10 Genetic organisation of the pen gene cluster in Penicillium thymicola and the simplified 

biosynthetic pathways of penigequinolone and yaequinolone C 
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proven to be biosynthesized by a reductase MalC via an intramolecular [4+2] hetero-Diels–Alder 

cyclisation (Dan et al. 2019). 

Recent studies of the enzymatic post-modifications on prenyl moieties revealed the biosynthetic bases 

for two decade-old problems. One is for the formation of the tetracyclic ergoline core via initial 

Figure 11 Enzymatic reactions on the prenyl moieties 
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oxidoreductase (EasE) catalysed dehydrogenation (Figure 11) (Yao et al. 2019). Another is for the 

construction of an alkyne group by an unprecedented cytochrome P450 enzyme BisI (Figure 11) (Lv 

et al. 2020). Moreover, the chloroperoxidase NpaH1 was identified to introduce a Cl+ leading to a 

spontaneous C-O coupling cyclisation to the tetrahydropyran ring (Figure 11) (Bernhardt et al. 2011). 

The hydroxylation and double bond migration was performed by a FAD/FMN-dependent 

monooxygenase to generate an active intermediate PC-M5 for the construction of the characteristic 

bicyclo[4.2.0]octane system (Figure 11) (Liu et al. 2015). 

1.5.2. Post-modifications by nonenzymatic reactions 

Alternatively to the enzymatic modifications mentioned above, the diversity of prenylated secondary 

metabolites can also be increased by the assistance of nonenzymatic reactions. During natural product 

formation, enzymatic and nonenzymatic reactions generally unfold in a cooperative manner, since in 

some cases the enzymatic products are chemically unstable and tend to convert to chemically more 

stable forms. 

Investigations of prenylation mechanisms revealed the unique tandem enzymatic/nonenzymatic 

sequence via post-rearrangements in some biosynthetic pathways (Tanner 2015). Based on the C- or 

O-prenylation, the pericyclic reactions can be classified into Claisen rearrangement and Cope

rearrangement (Figure 12A and B). Biochemical study of the tyrosine prenyltransferase LynF 

demonstrated an O to C Claisen rearrangement at ‘physiological’ temperature in aqueous buffers, 

which occurred nonenzymatically after nascent C-prenylated product release (McIntosh et al. 2011). 

This example provides another mechanism for aromatic prenylation, which is not through an 

electrophilic aromatic substitution, but as a result of the Claisen rearrangement. Similarly, the 

generation of 4-DMAT, the early-stage product of ergot alkaloid biosynthesis, was speculated to be 

derived from a C3-reversed prenyl adduct that undergoes the Cope rearrangement following by 

deprotonation on the aromatic ring (Luk et al. 2011). Apart from 4-DMAT, the subsequent 

rearrangements after nucleophilic C3-prenylation can most likely occur in many fungal indole alkaloid 

biosynthetic pathways, like N-DMAT (Qian et al. 2012), tryprostatin B (Cardoso et al. 2006) and 

paxilline (Tagami et al. 2013). 

In addition to the rearranged intermediates, environmental stimuli can also initiate the chemical 

conversions. These include pH- or temperature-mediated, light- or oxygen-induced, or even organic 

solvent catalysed reactions (Capon 2020). Phenols with a prenyl substituent on the ortho-position are 

prone to acid-mediated cyclisation or hydroxylation during isolation and handling (Figure 12C). The 

enzymatic or nonenzymatic epoxidation on the isoprenyl side chain most likely leads to the 

spontaneous cyclisation (Figure 12C). A series of butenolides were isolated from three marine-derived 

Aspergillus terreus species treated with chlorinated solvents, i.e., acidic conditions (Figure 12D) 

(Parvatkar et al. 2009; Sun et al. 2018; Wang et al. 2011). The chemical cyclisation of prenylated 

products was observed under 2 % conc. aqueous sulphuric acid or 2 % conc. HCl in methanol 
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(Parvatkar et al. 2009). The spontaneous 5-exo and 6-endo cyclisation was detected with an epoxide 

as the intermediate to form tetrahydrofuran and tetrahydropyran (43:1) products in vitro (He et al. 

2019). 

In summary, the diversity of prenylated aromatic products is expanded by the combination of various 

core scaffolds derived from diverse backbones and variable prenyl moieties with enzymatic or 

nonenzymatic modifications. How nature assembles these hybrid structures raises a number of 

intriguing points: i) The exploration of related synthetic mechanisms has been used for the design and 

development of novel chemical entities by combinatorial biosynthesis; ii) Commitment identification of 

the chemical and biological properties of artifacts provides new insights into the natural product 

chemical space; iii) Further development of genetic manipulation, chemoenzymatic synthesis and 

analytical instrumentation will enhance future prospects for exciting new discoveries of natural 

products.  

Figure 12 Examples of non-enzymatic reactions: the Claisen rearrangement during tyrosine prenylation 

(A); the Cope rearrangement during indole alkaloid prenylation (B); pH-mediated phenol rearrangements 

(C); examples of rearranged artifacts from the prenylated precursor (D) 
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1.6. Isotopic labelling experiments in the elucidation of reaction mechanisms 

Biosynthetic studies have established themselves to be one of the most exciting areas of natural 

product research and have become an important part of modern drug discovery and development 

efforts. Isotopic labelling experiments have been commonly applied to confirm the biosynthetic origin 

and identity the enzymatic logic with simple precursors, e.g. acetate, glucose, O2, CO2, H2O, and 

methionine (Figure 13A) (Schor and Cox 2018a; Walsh and Tang 2017). However, more elaborated 

studies are needed in some cases, e.g. for more complex biosynthetic intermediates that often are 

result of a complicated synthetic mechanism (Bloomer et al. 1968; O'Brien et al. 2003).  

Feeding experiments with isotopic building blocks remain crucial in order to determine the origin and 

their connectivity before generating to the end products. Through isotope tracer studies, several 

previously unrecognized biosynthetic pathways have now become obvious. One of the remarkable 

examples is the discovery of the emodin and ravenelin pathways (Figure 13B). Emodin has been 

served as a well-studied anthraquinone since 1924 (Dong et al. 2016; Jacobson and Adams 1924). 

Later, ravenelin was identified as the first fungal xanthone from Helminthosporium ravenelii (Raistrick 

et al. 1936). Feeding experiments with [1-13C]-, [1,2-13C2]- and [1-13C, 18O2]-acetate led to the 

generation of the tricyclic ring system in emodin (Birch et al. 1975; Hill et al. 1982). The results proved 

acetate as the origin of the methyl group on the aromatic C ring and the presence of the symmetrical 

benzophenone intermediate. Furthermore, the oxidative removal of the C-10 in emodin is most likely 

via a Baeyer-Villiger-like reaction, thereby introducing the atmospheric 4- and 8/10a- oxygen prior to 

ring closure to the xanthone skeleton (Schor and Cox 2018b). 

Moreover, the mechanism of enzymatic or nonenzymatic post-assembly lines can also be clarified by 

isotopic studies. Treatment with an 18O2-enriched atmosphere during the FtmOx1 reaction led to the 

incorporation of one molecule labelled 18O2 (Steffan et al. 2009). This demonstrated that the FeII/2-

OG-dependent oxygenase captured both oxygen atoms to form the endoperoxide bond (Figure 13C). 

Incubation of hydroxyclavatol in H2
18O at 25 °C for 16 h resulted in the incorporation of 18O into 

hydroxyclavatol, which therefore indirectly evidenced the existence of chemically reactive intermediate 

ortho-quinone methide and subsequent nonenzymatic 1,4-Michael additions (Figure 13D) (Fan et al. 

2019). 

Overall, classical isotope tracer experiments remain an important role in understanding how and from 

what precursors a specific natural product is constructed. This in turn provides meaningful information 

for further investigation using genetic and enzymatic approaches. Thus, using a combination of 

genome manipulation, enzymology and chemistry, coupled with mass and NMR spectroscopy, it is 

now possible to dissect mechanisms and processes involved in the natural product biosynthesis at the 

molecular level. 
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Figure 13 Examples of labelling experiments: commonly used isotopomers in natural product labelling 

experiments (A); labelling pattern in ravenelin biosynthesis revealed from isotopic feeding experiments 

(B), modified after (Schor and Cox 2018b); oxidative labelling pattern for peroxide formation (C), modified 

after (Steffan et al. 2009); confirmation of reactive intermediate by 18O-isotopic water (D), modified after 

(Fan et al. 2019) 
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2 Aims of this thesis 

The following issues have been addressed in this thesis: 

Double bond migration and hydroxylation within a dimethylallyl moiety catalysed by a 

nonheme FeII/2-oxoglutarate-dependent oxygenase 

Prenylated products represent a large group of SMs and are widely distributed across bacteria, fungi, 

and plants. Prenylation contributes significantly to the structural diversity of natural products. They 

often can be further modified via hydroxylation, cyclisation, epoxidation and double bond migration by 

various tailoring enzymes. Among them, FeII/2-OG-dependent oxygenases as unique oxidative 

enzymes catalyse a remarkably wide array of biochemical transformations such as the peroxide 

formation by FtmOx1. These oxidative transformations play critical roles in biochemical processes and 

highlight their importance in nature. Inspired by the notable FeII/2-OG-dependent oxygenase FtmOx1, 

a homologue enzyme EAW25734 from the fungus Neosartorya fischeri was identified and 

characterized biochemically. The following experiments were carried out: 

 Sequence alignments of the nonheme FeII/2-oxoglutarate-dependent oxygenases FtmOx1Af, 

FtmOx1Nf and EAW25734. This part was carried out by Viola Wohlgemuth. 

 Overproduction and in vitro investigation of EAW25734 with verruculogen and its biosynthetic 

intermediates as substrates 

 Isolation and structure elucidation of the enzyme products by LC-HR-MS and NMR analyses  

 Biochemical characterization of the recombinant protein EAW25734 

 The natural role of EAW25734 in Neosartorya fischeri 

 Elucidation of the reaction mechanism by 18O labelling experiments 

 

Tricyclic derivative formation via spontaneous oxidative cyclisations of 1,3-dihydroxy-4-

dimethylallylnaphthalene  

Prenylated naphthalene derivatives exhibit intriguing structure diversity and a whole array of biological 

activities. Our recent study demonstrated the acceptance of hydroxynaphthalenes by eight members 

of the DMATS superfamily, i.e. FgaPT2, 7-DMATS, FtmPT1, AnaPT, CdpC3PT, CdpNPT, CTrpPT 

and SirD (Yu et al. 2011). Twelve prenylated naphthalenes were isolated and identified. None of them 

underwent spontaneous rearrangement. In this project the rearrangements of the C4-prenylated 1,3-

dihydroxynaphthalene were investigated. The following experiments were carried out in cooperation 

with Dr. Jinglin Wang.  
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 Overproduction and purification of the recombinant prenyltransferases FgaPT2, CdpNPT,

FtmPT1 and AnaPT

 Testing their activities with 1,3-dihydroxynaphthalene in the presence of DMAPP

 Testing the stability of 1,3-dihydroxy-4-dimethylallylnaphthalene

 LC-MS analysis of the incubation mixtures

 Isolation and structure elucidation of the rearrangement products

 Proof of the spontaneous oxidative cyclisations of 1,3-dihydroxy-4-dimethylallylnaphthalene

via the isotopic labelling experiments

Biosynthesis of the prenylated benzene carbaldehyde flavoglaucin and its congeners requires 

prenylation as a key biosynthetic step 

Flavoglaucin and congeners are prenylated benzene carbaldehyde derivatives carrying a C7 side 

chain without/with one to three double bonds or with a furan ring. They were isolated from different 

microbes and exhibit a whole array of different biological activities. Moreover, they are also proposed 

to be precursors of interesting complex molecules. Their biosynthetic origin was still unknown prior to 

this study. The aim of this project is to identify the biosynthetic pathway of flavoglaucin in Aspergillus 

ruber by genome mining-based molecular biological and biochemical strategy as well as by feeding 

experiments. The following experiments were carried out in cooperation with Jonas Nies. 

 Genome mining for flavoglaucin biosynthetic gene cluster in Aspergillus ruber

 Heterologous expression of the whole fog cluster in Aspergillus nidulans LO8030 under the

control of their native promoters

 Verifying the role of fog cluster in the flavoglaucin biosynthesis by LC-MS and NMR analyses

of the pathway products

 Functional proof of the genes from the fog cluster by gene deletion, heterologous expression

and pathway intermediate analysis

 Characterisation of the prenyltransferase FogH by in vitro investigation with recombinant

protein. FogH was cloned by Viola Wohlgemuth in the expression vector pVW84.

 Verification of the fogF function by heterologous expression and feeding experiment

Jonas Nies carried out genetic experiments, while the PhD candidate carried out the isolation and 

structure elucidation as well as biochemical characterisation.  
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3 Results and discussion 

3.1 Double bond migration and hydroxylation within a dimethylallyl moiety 

catalyzed by a nonheme FeII/2-oxoglutarate-dependent oxygenase 

Prenylations fulfil an important function in the biosynthesis of secondary metabolites. Attachment of 

one or more prenyl moieties from different donors with C5n (n=1, 2, 3…) units to a wide range of prenyl 

acceptors contributes substantially to natural product diversity. In most cases, prenylated molecules 

serve as intermediates for further conversion by tailoring enzymes. Therefore, enzymatic post-

modification on the prenyl moiety is an attractive research field. In vivo biosynthetic experiments can 

be extremely challenging due to multiple complex interactions and parameters that cannot be 

controlled. Therefore, design and optimization of biocatalysts in vitro is an effective approach to 

address this challenge. 

In a previous study, the FeII/2-OG-dependent oxygenase FtmOx1Af from Aspergillus fumigatus was 

reported to catalyse an endoperoxide formation between two prenyl moieties (Steffan et al. 2009). 

Later gene sequencing of the close relative Neosartorya fischeri NRRL181 resulted in the identification 

of a very similar fumitremorgin gene cluster containing the homologue FtmOx1Nf with an identity of 

95 % on the amino acid level and one additional O-prenyltransferase (Mundt et al. 2012). Further 

genome mining in Neosartorya fischeri led to the identification of another homologous protein 

EAW25734 in the same fungi with a sequence identity of 48 % with both FtmOx1Af and FtmOx1Nf. 

Sequence alignments of EAW25734 with FtmOx1Af (Steffan et al. 2009; Yan et al. 2015), FtmOx1Nf 

(Mundt et al. 2012) and other two known FeII/2-OG-dependent oxygenases PrhA (Nakashima et al. 

2018) and AusE (Nakashima et al. 2018) indicated the presence of typical conserved 2-His-1-Asp ion-

binding triad in the potential nonheme iron enzyme EAW25734 (Figure 14). 

Figure 14 Sequence analysis of EAW25734 and homologue: Mode of FtmOx1-FeII-2-OG binary 

complex (A), modified after (Yan et al. 2015); Structure of the FtmOx1-FeII-2-OG-fumitremorgin B 

tertiary complex (B), modified after (Yan et al. 2015); Sequence alignments of nonheme FeII/2-OG-

dependent oxygenases (C) 
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For biochemical characterization, the coding sequence of EAW25734 was cloned into pQE-70 and 

overexpressed in E. coli by Viola Wohlgemuth. The PhD candidate was handed over this project and 

purified the recombinant N-terminally His6-tagged protein to near homogeneity as confirmed on SDS-

PAGE, yielding 7.6 mg per litre of bacterial culture (Figure 15A). The high homology with both FtmOx1 

proteins encouraged us firstly to test its activity with fumitremorgin B as substrate. However, 

EAW25734 did not replicate the function of FtmOx1 to form an endoperoxide bond in the presence of 

ascorbic acid (AA), Fe[(NH4)2(SO4)2] (FeII) and 2-OG at 37 °C for 16 h (Figure 15B). This inspired us 

to examine other intermediates in the fumitremorgin biosynthetic pathway as potential substrates. LC-

MS analysis revealed the acceptance of tryprostatin B (8) by EAW25734. Three products 9, 10 and 

11 were clearly detected with conversions of 50.5 %, 3.8 % and 26.9 %, respectively. 

These products were afterward isolated for structure elucidation by MS and NMR analyses. HRMS 

analysis gave [M-H]- ions at m/z 366.1830 ± 0.005 for 9 and 10 and m/z 382.1773 ± 0.005 for 11, i.e. 

16, 16 and 32 Dalton larger than that of 8 at m/z 350.1876 ± 0.005. This indicated the insertion of one 

or two oxygen atoms into the product structures. Inspection of the 1H NMR spectrum of the major 

product 9 revealed the formation of a hydroxyl group appearing as a singlet at 4.70 ppm and a new 

double bond with two doublets between 6.4−6.7 ppm. The 13C and relevant 2D NMR spectra confirmed 

that the double bond shifted from C21/C22 to C20/C21 and the hydroxyl group was introduced at C22. 

Figure 15 SDS-PAGE analysis of the recombinant EAW25734 (A) and its enzymatic reactions with 

fumitremorgin B (B) and tryprostatin B (C) as substrates, respectively 
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Similarly, the structures of the other two products were proven to be 14-hydroxylisotryprostatin B (10) 

and 14,22-dihydroxylisotryprostatin B (11) by MS and NMR analyses, respectively. The 

stereochemistry of the hydroxyl group at C14 in 10 was assigned after interpretation of the NOESY 

correlations. 

Further experiments with 9 and 10 as substrates demonstrated that EAW25734 converted both 

compounds to 11, but preferred 10 than 9, explaining the conversion ratio and relationship among the 

three enzymatic products (Figure 15C). Furthermore, we tried to address the biosynthetic role of 

EAW25734 in the native strain. Cultivation of the fungus Neosartorya fischeri NRRL 181 in mCDY 

medium led to the detection of 9 by LC-MS, indicating that tryprostatin B could be hijacked by 

EAW25734 from the fumitremorgin pathway and launches a shunt route. 

To investigate EAW25734 biochemically, time and co-factor dependencies were tested. Time 

dependent experiments also confirmed double bond migration accompanied by the hydroxylation at 

the dimethylallyl moiety as the main reaction and the -hydroxylation at C14 as a side reaction of 

EAW25734. Incubation without exogenous 2-OG and FeII led to nearly no consumption of 8, while the 

absence of AA resulted in a slight decrease of enzyme activity from 81.2 % to 51.8 %. These results 

proved unequivocally EAW25734 as a nonheme FeII/2-OG-dependent oxygenase. 

Inspired by the biochemical study of 2-OG-dependent oxygenases (Schofield and Hausinger 2015), 

we postulated a reaction mechanism as shown in Figure 16. The important aspect in this mechanism 

is the abstraction of the hydrogen atom from C20 on the prenyl moiety by the FeIV=O species (stage 

E, Figure 16), followed by radical rearrangement and hydroxyl group attachment to form the 3-

hydroxyl-3-methyl-1-butenyl moiety in 9. To further investigate the origin of oxygen in the hydroxyl 

groups, 18O labelling experiments were performed. In the incubation mixture under 18O2-enriched 

atmosphere, incorporation of 18O into the hydroxyl group at C22 and C14 was calculated to 35 % and 

95 %, respectively. These results suggested that O2 supplies the majority of the installed hydroxyl 

groups. Consistently, incorporation of one 18O atom into the hydroxyl group at C22, but not into that at 

C14, was detected in the incubation mixture in 18O-enriched water. The different oxygen origins at C22 

could arise from solvent exchange (Schofield and Hausinger 2015) or two distinct reaction 

mechanisms. 

As mentioned above, prenylated products could be further modified to expand the structural diversity 

and biological activities. Exploration of related decoration enzymes gave researchers a clue for better 

understanding of the assembly line to create efficient approaches for novel and bioactive compounds. 

However, one challenge in elucidating biosynthetic pathways comes from the extremely low 

production of natural products in the producing strain such as compound 9 in Neosartorya fischeri. 

Here, investigation on the involved enzymes in vitro could be an effective method to define the 

catalysts and intermediates that constitute the biosynthetic pathway of interest. 
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For details on this work, please see the publication (section 4.1) 

Huomiao Ran, Viola Wohlgemuth, Xiulan Xie and Shu-Ming Li (2018). A nonheme FeII/2-oxoglutarate-

dependent oxygenase catalyzes a double bond migration within a dimethylallyl moiety accompanied 

by hydroxylation. ACS Chemical Biology, 13 (10), 2949–2955, DOI: 10.1021/acschembio.8b00588. 

Figure 16 Proposed mechanism of EAW25734-mediated double bond migration accompanied by 

hydroxylation 
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3.2 Tricyclic derivative formation via spontaneous oxidative cyclisations of 1,3-

dihydroxy-4-dimethylallylnaphthalene 

Prenylated naphthalenes are polyketide-isoprenoid hybrid molecules with a wide range of biological 

and pharmacological activities, e.g. antitumor (Komiyama et al. 1990), antagonistic (Shiomi et al. 1986) 

and antioxidant (Shin-ya et al. 1990) potentials. Many of these natural products have been discovered 

from terrestrial and marine Streptomyces during past decades. Advances in biosynthetic research and 

13C-labelling studies confirm that hydroxynaphthalene serves as the key aromatic polyketide 

framework, which can undergo prenylation with various prenyl donors catalysed by CloQ/NphB-type 

PTs. Interestingly, fungal PTs from DMATS superfamily share no significant sequence homology, but 

structure similarity with the CloQ/NphB-type PTs. 

In a previous study, eight members of the DMATS superfamily were tested for the acceptance of 

different hydroxynaphthalenes (Yu et al. 2011). The products were isolated and identified as regularly 

C-prenylated derivatives without further modification on the prenyl moieties. However, benzofuran or

benzopyran ring systems are found in natural products with a 1,3-dihydroxynaphthalene (12) core 

scaffold (Figure 5). It seems that the prenylation on an electron-rich aromatic nucleophile facilitates 

the subsequent enzymatic conversion or chemical rearrangement. Therefore, it would be interesting 

to investigate the behaviour of prenylated 1,3-dihydroxynaphthalenes. 

Dr. Jinglin Wang used the available expression construct for fgaPT2 expression, overproduced and 

purified the recombinant FgaPT2 to near homogeneity as described previously (Steffan et al. 2007) 

(Figure 17A). The recombinant protein was then incubated with 12 in the presence of DMAPP and 

CaCl2 at 37 °C for 30 min in 100 μL Tris-HCl buffer (pH 7.5). After addition of 100 μL acetonitrile and 

centrifuging at 13,000 rpm for 30 min, 10 μL of supernatant were subjected to LC-MS analysis, which 

revealed the presence of four product peaks. LC-HR-MS data proved that one product (13) bared a 

molecular weight of 228.115, 68 Da larger than that of 12, indicating a monoprenylated derivative. 

Other three products share the same [M + H]+ at m/z 261.112 ± 0.005, being 100 Da larger than that 

of 12. This suggests the addition of one prenyl moiety and two oxygen atoms. Interpretation of the 

HMBC spectrum of 13 proved its structure as C4-dimethylallylated derivative. In the 1H NMR spectra 

of 14, 15 and 16, four coupling protons at H5−H8 for the phenyl ring can be easily recognized by the 

presence of typical signals between 7.0 to 8.0 ppm. Furthermore, signals of two alcoholic hydroxyl 

groups were detected at H 4.7−7.0. Correspondingly, signals in the spectrum of 13 for H-1’ and 2’ of 

the prenyl moiety and for two phenolic protons were disappeared. Similar 1H and 13C spectra of 14 

and 15 indicated their isomeric feature. HMBC correlations proved their structures as 

tetrahydrobenzofuran derivatives. Interpretation of the 13C spectrum of 16 revealed the presence of 

two ketone carbons and the absence of olefinic carbons of the dimethylallyl moiety in 13. 

Comprehensive analysis of the HSQC and HMBC data confirmed 16 to be a bicyclo[3.3.1]nonane 
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derivative. The relative configurations of 14, 15 and 16 were elucidated by NOESY experiments 

(Figure 17B). 

Identification of the three tricyclic products raised the question on their formation. Firstly, we wondered 

whether the cyclisation is specific for the FgaPT2 reaction. Three prenyltransferases, CdpNPT, 

FtmPT1 and AnaPT, were then incubated with 12 in the presence of DMAPP and CaCl2 at 37 °C for 

16 h. The three tricyclic products 14−16 were also clearly detected in all the reaction mixtures. 

To investigate that 14, 15 and 16 are enzymatic or nonenzymatic products, we incubated the 

prenylated product 13 with the heat-inactivated FgaPT2 in the presence of DMAPP and CaCl2 at 37 °C 

for 30 min, 4h and 24h, respectively. HPLC analysis showed approx. 22 % of 13 was already converted 

to 14, 15 and 16 after dissolving in solvent (Figure 18). The conversion was calculated to be approx. 

46 % and 86 % after incubation for 0.5 and 4 h, respectively (Figure 18). The total consumption of 13 

was detected in the 24h incubation mixture. These results proved the nonenzymatic oxidative 

cyclisation of 13 to 14, 15 and 16 (Figure 18). 

To provide more evidence for the relationship among 13, 14, 15 and 16, pH-dependent assays were 

carried out for 13 at 37 °C for 1 h. After 1h incubation in phosphate buffer at pH 2.5, 6.0, 7.5, 8.5 and 

10.0, the reaction mixtures were analysed by LC-MS The conversions under acidic conditions were 

clearly slower than those under neutral and basic conditions. 51.4 % and 75.6 % of 13 were converted 

to 14, 15 and 16 at pH 2.5 and 6.0, respectively. In comparison, approx. 99 % were consumed in the 

buffer of pH 7.5 and higher pH values. Those data proved the spontaneous pH-dependent oxidative 

rearrangement from 13 to 14, 15 and 16. 

Figure 17 SDS-PAGE analysis of the recombinant FgaPT2 (A); structures of compounds 12−16 (B) 
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To investigate the origin of the introduced oxygen atoms, FgaPT2 assays with 13 and DMAPP were 

carried out under 18O2-enriched atmosphere and in 18O-enriched water. The reaction mixtures were 

then analysed on LC-HR-MS. Under UV absorption at 254 nm, 100 % conversion of 13 to 14, 15 and 

16 was clearly observed in all reaction mixtures. Compounds 14, 15 and 16 were detected in the 

incubation mixture under normal atmosphere with [M + H]+ ions at m/z 261.1126, 261.1132 and 

261.1127, respectively. In the incubation mixture under 18O-enriched atmosphere, incorporation of two 

oxygen-18 atoms each in 14, 15 and 16 was confirmed by detection of the isotope peaks of their [M + 

H]+ ions at m/z 265.1189, 265.1200 and 265.1205, respectively. In contrast, no oxygen-18 insertion 

was observed in the incubation mixture in 18O-enriched water. These results undoubtedly proved the 

involvement of O2 during the oxidative rearrangement to form two hydroxyl groups in 14, 15 and 16. 

Having proved the O2-originated spontaneous reactions, we postulated the relative reaction 

mechanism in Figure 19. The cyclisation process starts by the attachment of one O2 molecule on the 

prenylated position (C4). The reactive peroxyl radical 17 can undergo radical addition to both of the 

olefinic positions of the dimethylallyl moiety at C2’ or C3’, leading to the formation of two endoperoxide 

patterns in 18 and 21. Subsequent radical transfer in 18 resulted in the cleavage of the O-O bond in 

19, which can be further oxidized to an active oxygen radical and subjected to an intramolecular 

nucleophilic attack to form the diastereomers 14 and 15. In the other endoperoxide manner, the radical 

shift and endoperoxide cleavage enabled to generate the bi-radical intermediate 23. Consequent 

radical cyclisation takes place via C-C coupling to form the bicyclo[3.3.1]nonane skeleton in 16. 
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Figure 18 The reaction mixtures were incubated in Tris buffer (pH 7.5) at 37 °C for 0, 0.5, 4 and 24 h 
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RESULTS AND DISCUSSION 

In summary, we identified three new rearranged prenylated naphthalene derivatives with 

tetrahydrobenzofuran (14 and 15) and bicyclo[3.3.1]nonane (16) cores. Detailed investigations 

including time- and pH-dependent assays proved that they are spontaneous oxidative cyclisation 

products of 1,3-dihydroxy-4-dimethylallylnaphthalene 13. The incorporation of two labelled oxygen 

atoms in the product structures supports the peroxyl radical-mediated cyclisation mechanism. These 

results provide one additional example for the nonenzymatic oxidative cyclisation of enzyme products. 

For details on this work, please see the publication (section 4.2) 

Jinglin Wang,* Huomiao Ran,* Xiulan Xie, Kaiping Wang, and Shu-Ming Li. (2020). Spontaneous 

oxidative cyclisations of 1,3-dihydroxy-4-dimethylallylnaphthalene to tricyclic derivatives. Organic and 

Biomolecular Chemistry, 18 (14), 2646-2649, DOI: 10.1039/d0ob00354a (* equal contribution) 

Figure 19 The proposed cyclisation mechanism 
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3.3 Biosynthesis of the prenylated benzene carbaldehyde flavoglaucin and its 

congeners requires prenylation as a key step 

Flavoglaucin (24a) and congeners 24b−f are prenylated benzene carbaldehyde derivatives carrying a 

saturated or an unsaturated C7 side chain and with an additional dimethylallyl (C5) moiety at C3 

position (Figure 20) (Hamasaki et al. 1980; Huang et al. 2012; Li et al. 2008a). They show interesting 

biological activities such as antioxidant (Huang et al. 2012; Miyake et al. 2014; Sun et al. 2013), 

antibacterial (Fathallah et al. 2019) and anti-inflammatory properties (Shi et al. 2019; Wu et al. 2014b). 

Their side chains can be further modified to a benzofuran system (25b−d) and spirocyclic compound 

(Li et al. 2008a; Li et al. 2008b). However, little is known about their biosynthesis and the involved 

enzymes prior to this study. Recently, Zhao et al reported on the biosynthesis of the alkylated 

salicylaldehyde derivative sordarial from Neurospora crassa by involvement of a HR-PKS containing 

cluster (srd) (Zhao et al. 2019). Lately, a homologous (vir) cluster was discovered for the trichoxide 

biosynthesis in Trichoderma virens (Liu et al. 2019). Those reports suggest that 24a−f could also be 

biosynthesised by a HR-PKS containing cluster.  

To investigate the biosynthetic pathway, Jonas Nies carried out genome mining in Aspergillus ruber 

by using AntiSMASH (Weber et al. 2015) and by comparison with the members of the known srd and 

vir clusters, leading to the identification of the fog cluster containing nine genes (fogA−I). Heterologous 

expression of the identified fog cluster in Aspergillus nidulans LO8030, LC-MS analysis of the extracts 

from the transformants as well as isolation and structure elucidation proved the accumulation of 24a−f 

and the involvement of fogA-I for their biosynthesis. Deletion of the putative transcription factor gene 

fogI in the heterologous expression strain completely abolished the production of 24a−f, suggesting 

its role as a positive regulator for gene expression. 

Figure 20 Structures of compounds isolated from Aspergillus ruber 
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To elucidate the function of each gene, deletion and coexpression experiments in Aspergillus nidulans 

LO8030 were carried out. The HR-PKS FogA with a domain structure of KS-AT-ACP-DH-ER-KR was 

integrated into the host Aspergillus nidulans genome under the control of the constitutive gpdA-

promoter. One major product 26 and three minor products 27−29 were detected by LC-HR-MS 

analysis of the rice culture extract. A spontaneous conversion of 26 to 27−29 was observed during the 

isolation process on a silica-gel column. LC-HR-MS data proved that 27−29 share a molecular formula 

of C14H22O5, indicating the conversion of 26 (C14H24O5) to 27−29 by elimination of one molecule water. 

NMR data, especially the HMBC correlations confirmed that 27, 28 and 29 harboured -alerolactone, 

heptanolactone and tetrahydropyran core nuclei in their structures, respectively. This confirmed the 

linear trihydroxy 26 as their common precursor. The determination of 1H-1H coupling constants for the 

olefinic protons with 15 Hz proved the all-trans geometry of the double bonds on the side chain. The 

relative configuration in 27 and 28 were determined by interpretation of the NOESY correlations. 

(Figure 21). 

To identify the enzymes involved in the formation of aromatic products, Jonas Nies deleted fogA, fogB, 

fogC or fogD from the cluster. None of the resulted mutants was able to produce flavoglaucin and 

congeners. A small number of 26 was monitored in the ∆fogB, ∆fogC and ∆fogD mutant strains, 

indicating the slight accumulation of initial PKS product. We then constructed the coexpression strain 

of fogABCDI by removing genes fogEFGH from the whole cluster expression strain. The first aromatic 

pathway intermediates 30a−d were identified and isolated as C6-alkyl salicyl alcohols with none, one, 

two, and three double bonds on the side chain, respectively (Figure 24). These results imply that the 

nascent polyketide is modified in FogA-bound form by FogBCD to generate the aromatic scaffold. 

The cytochrome P450 FogE-catalysed hydroxylation on C5 position was confirmed by deletion of fogE 

and fogH. Benzyl alcohols 30a−d and their hydroxylated derivatives, were detected in the extract of 

∆fogE strain. The accumulation of unprenylated dihydroxybenzyl alcohols 31a and 31b in the fogH 

deletion transformants indicated that the FogE products are substrates of the PT FogH (Figure 24). 

To confirm this hypothesis, the recombinant FogH was overproduced in E. coli and purified to near 

homogeneity as confirmed on SDS-PAGE. Incubation of FogH with 31a in the presence of DMAPP at 

37 °C for 10 min resulted in the formation of a major product 32a and a minor one 34a with conversions 

of 77.7 % and 2.3 %, respectively. In the 1H NMR spectra of both compounds, signals for a 

dimethylallyl moiety were clearly detected at approx. 3.2, 5.3 and 1.7 ppm, proving 32a as a C3-

Figure 21 Nonenzymatic cyclisation from 26 to 27−29 
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prenylated dihydroxybenzyl alcohol, as 34a its dihydroquinone derivative. We have also observed that 

the dihydroquinone alcohol forms 31a and 32a were instable and can be easily oxidized to the 

benzoquinones 33a and 34a during the isolation. Both unprenylated hydroquinone 31a and 

benzoquinone 33a can be accepted by FogH as shown in Figure 22A.To provide evidence that the 

benzyl alcohol feature is really essential for the prenylation, this PhD candidate synthesized the 

corresponding aldehyde 35a and tested with FogH. However, 35a was not consumed by FogH at all, 

proving the alcohol group is a prerequisite for the acceptance by FogH. Determination of the kinetic 

parameters proved that both the hydroquinone 31a and benzoquinone 33a are natural substrates of 

FogH. 

In addition, the spontaneous oxidoreduction was observed in the stability test of 31a−34a in water at 

25 °C. The benzoquinone alcohols 33a and 34a were reactive agents that slightly converted to the 

dihydroquinone alcohols 31a/32a and the dihydroquinone aldehydes 35a/24a in approx. equal 

amounts (Figure 22A). A proposed mechanism is given in Figure 22B. Two molecules 34a can act 

as both oxidant and reductant to form 32a and the instable benzoquinone aldehyde intermediate 36, 

which reacts with a third molecule of 34a to form the aldehyde 24a. 

Figure 22 In vitro assays of FogH and spontaneous conversion between hydroquinones, benzoquinones 

and aldehyde (A), proposed mechanism of the spontaneous conversion (B) 
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Subsequently, the prenylated benzyl alcohols have to be finally oxidized to aldehydes. Deletion of 

FogF indeed led to the accumulation of 34a and congeners 34b−d. Feeding 34a to the fogF 

overexpression Aspergillus nidulans strain led to the production of flavoglaucin 24a, which proved 

FogF as an alcohol oxidase (Figure 24). No conversion was detected for the unprenylated 31a by the 

same strain, indicating the importance of the prenyl moiety for the acceptance by FogF. 

During the isolation from the extract of the ∆fogF mutant, 32a−d were observed as instable metabolites 

and rapidly oxidized to their reactive benzoquinone form 34a−d. In the presence of a double bond at 

C1’ (34b−d), benzofuran derivatives were identified as compounds 37b−d, very likely via spontaneous 

intramolecular cyclisation of the proposed benzoquinone (Figure 23). Feeding experiments of the 

benzofuran alcohol 37b to the fogF expression strain did not lead to aldehyde formation, suggesting 

that the furan ring in some flavoglaucin derivatives, e.g. 25b−d, was very likely formed after oxidation 

of the benzyl alcohol to aldehyde. 

Taken together, we elucidated the biosynthesis of flavoglaucin and congeners by genome mining, 

heterologous expression, feeding experiments and biochemical characterisation (Figure 24). A HR-

PKS and three tailoring enzymes are responsible for the formation and release of the salicyl alcohol 

Figure 24 Proposed biosynthetic pathway of flavoglaucin and congeners 

fogH fogI

A. ruber QEN-0407-G2

fogGfogFfogEfogDfogB fogCfogA

1 kb

HR-PKS CupinSDR PTSDR OR TFSDRCYP

Figure 23 Spontaneous conversion to benzofuran derivatives 
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derivatives which is a prerequisite for subsequent hydroxylation and prenylation. The 

prenyltransferase FogH as a key enzyme in the biosynthesis accepts both hydroquinone and 

benzoquinone derivatives as substrates, but requires the presence of the alcohol character. 

Consecutively, the alcohol was oxidized to the final aldehydes by an oxidase, which only accepts 

prenylated derivatives as substrates. This cooperative and highly programmed machinery ensure the 

effective formation of the final pathway products. 

For details on this work, please see the publication (section 4.3) 

Jonas Nies,* Huomiao Ran,* Viola Wohlgemuth, Wen-Bing Yin and Shu-Ming Li (2020). Biosynthesis 

of the prenylated salicylaldehyde flavoglaucin requires temporary reduction to salicyl alcohol for 

decoration before reoxidation to final product. Organic Letters, 22 (6), 2256-2260, DOI: 

10.1021/acs.orglett.0c00440. (* equal contribution) 
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RESULTS AND DISCUSSION 

3.4 The review of fungal benzene carbaldehydes on their structural features, 

distribution, biological activities and biosynthesis 

In addition to my research work, the PhD candidate contributed, together with Prof. Dr. Shu-Ming Li, 

to a review article on fungal benzene carbaldehydes. This substance family with salicylaldehydes as 

predominant representatives carry usually hydroxyl, methyl and chloro groups, prenyl moieties or alkyl 

side chains. They are widely distributed from terrestrial to marine-derived, plant endophytic and 

pathogenic fungi, including both ascomycetes (79 %) and basidiomycetes (17 %). These natural 

products display a wide range of biological and pharmacological activities. Cytotoxic, antibacterial and 

antifungal activities were detected for a large number of benzene carbaldehydes, followed by anti-

inflammatory and antioxidant activities. Since the first report on the family members, flavoglaucin and 

auroglaucin, in the fungus Aspergillus glaucus in 1934 (Gould and Raistrick 1934), at least 185 

structures were identified in various fungi. They can be grouped into six categories based on skeleton 

substitutions: simple benzene carbaldehydes, alkylated benzene carbaldehydes, meroterpenoids, 

benzophenones, spirocyclic and miscellaneous benzene carbaldehydes (Figure 25). 

Figure 25 Representatives of fungal benzene carbaldehydes 
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Simple benzene carbaldehydes are a class of merely hydroxylated, halogenated, methylated and/or 

ethylated benzaldehydes with broad biological and pharmacological activities such as antifungal, 

antibacterial and cytotoxic activities. The majority of their producers are the genera of Aspergillus, 

Penicillium and Bjerkandera. Benzaldehyde is the simplest representative of benzene carbaldehydes 

(Figure 25) and one of the most industrial used chemicals in cosmetic and food industries. 

Furthermore, benzaldehyde shows antioxidant, anti-insect, antibacterial and antifungal potentials 

(Ullah et al. 2015). 

Alkylated members constitute the largest class of benzene carbaldehydes with 66 structures. In 

comparison to the simple benzene carbaldehydes, most of them (94 %) share a modified or unmodified 

alkyl chain at the ortho-position to the formyl group. With one exception, all these natural products are 

salicylaldehyde congeners from ascomycetes. They also exhibit important biological activities like 

antibacterial, antifungal and cytotoxic potentials. Biosynthetically, alkylated benzene carbaldehydes 

are derivatives of aromatic polyketides extended with different numbers of malonyl-CoA units (Cox 

2007; Staunton and Weissman 2001). Thus, the members of this group can be conveniently 

subdivided according to the length of the side chains, i.e. C3-, C5-, C7-, C9- and C11-alkylated benzene 

carbaldehydes (Figure 25). 

Meroterpenoids belong to another major benzene carbaldehyde class and contribute significantly to 

the structural diversity of these natural products. Meroterpenoids are hybrid natural products which 

mostly generated from polyketide and terpenoid pathways (Blunt et al. 2004; Geris and Simpson 2009; 

Matsuda and Abe 2016; Murray et al. 2020; Sunassee and Davies-Coleman 2012). The majority of 

the fungal meroterpenoids have a C5, C10 or C15 terpenoid chain, which is usually connected to meta-

position of the formyl group and ortho-position of at least one hydroxyl group or structural feature 

derived thereof (Figure 25). Similarly, they share interesting bioactivities, e.g. antiviral, antifungal, 

antibacterial, anti-inflammatory, phytotoxic and cytotoxic activities. The main producers with 66 % of 

the mentioned metabolites are from ascomycetes, while 30 % of them are from basidiomycetes. 

In addition, benzophenones with a diarylketone skeleton and spirocyclic derivatives via [4+2] Diels-

Alder reaction are all isolated from ascomycetes, which can be further modified by hydroxylation, 

methylation, methoxylation, halogenation, prenylation or cyclisation (Figure 25). Moreover, more than 

20 fungal benzene carbaldehydes with naphthalene, chromanone or other skeletons are also 

discussed in this review (Figure 25). 

The benzene carbaldehydes act as critical intermediates or end products of various biosynthetic 

pathways. Biosynthetically, benzene carbaldehydes are formed by direct releasing from NR-PKS, 

alcohol oxidation or acid reduction, which was intensively discussed and clearly exemplified in the 

review. Releasing from NR-PKSs is usually catalysed by a terminal R domain, while several other 

enzymes are involved by releasing form HR-PKS.  
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Up to April 2020, more than 140 publications deal with the structural features, distribution, biological 

activities and biosynthesis of fungal benzene carbaldehydes. However, it became a challenge to get 

new bioactive natural products under conventional laboratory culture conditions. One solution could 

be screening microorganisms from less explored or untapped sources such as extreme environments 

(Chávez et al. 2015; Ibrar et al. 2020; Matsuda and Abe 2016; Wilson and Brimble 2009; Wilson and 

Brimble 2020) and/or symbiotic systems (Adnani et al. 2017). Furthermore, metabolite dereplication 

(Covington et al. 2017; Mohimani et al. 2017; Nielsen and Larsen 2015), OSMAC approach (Ariantari 

et al. 2019; Bode et al. 2002; Selegato et al. 2019) and genetic manipulation as mentioned in section 

1.1 (Keller 2019; Lazarus et al. 2014; Lyu et al. 2020; Matsuda and Abe 2016; Sanchez et al. 2012b; 

Zhang et al. 2019a) became remarkable strategy for bioactive metabolite finding. 

For details on this work, please see the publication (section 4.4) 

Huomiao Ran and Shu-Ming Li (2020). Fungal benzene carbaldehydes: occurrence, structural 

diversity, activities and biosynthesis. Natural Product Reports, DOI: 10.1039/d0np00026d. 
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A Nonheme FeII/2-Oxoglutarate-Dependent Oxygenase Catalyzes a
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ABSTRACT: Prenylation of cyclodipeptides contributes largely to the
structure diversification and biological activity. The prenylated products
can be further metabolized by modifications like hydroxylation with
cytochrome P450 enzymes or nonheme FeII/2-oxoglutarate-dependent
oxygenases. Herein, we cloned and overexpressed NFIA_045530 from
Neosartorya fischeri, which shares high sequence similarity with the
nonheme FeII/2-oxoglutarate-dependent oxygenase FtmOx1Af from
Aspergillus fumigatus on the amino acid level. FtmOx1Af is a member of
the biosynthetic enzymes for fumitremorgin-type mycotoxins and catalyzes
the conversion of fumitremorgin B to verruculogen by insertion of an
oxygen molecule into the two prenyl moieties. The recombinant protein
EAW25734 encoded by NFIA_045530 was purified to apparent
homogeneity and then was used for incubation with intermediates of
the fumitremorgin biosynthetic pathway. LC-MS analysis revealed no
consumption of fumitremorgin B but good conversion with its biosynthetic precursor tryprostatin B in the presence of FeII and
2-oxoglutarate. Structure elucidation confirmed 22-hydroxylisotryprostatin B and 14α, 22-dihydroxylisotryprostatin B as the
major enzyme products. Further detailed biochemical characterization led to the identification of a novel enzyme, which
catalyzes a double bond migration within the dimethylallyl moiety of tryprostatin B with concomitant hydroxylation. Incubation
with 18O2-enriched atmosphere confirmed O2 as the major origin of the hydroxyl groups. Solvent exchange was also observed
for that at C22. LC-MS analysis confirmed the presence of 22-hydroxylisotryprostatin B in a Neosartorya fischeri extract,
highlighting the role of this enzyme in the metabolism of intermediates of the fumitremorgin/verruculogen pathway. A plausible
reaction mechanism implementing a radical rearrangement prior to accepting a hydroxyl radical from FeIII is discussed.

■ INTRODUCTION

Prenylated natural products have diverse important functions
in living organisms.1,2 These compounds can be further
modified by hydroxylation,3 epoxidation,3 cyclization,4 oxida-
tion,5 and double bond migration.6 The 3-hydroxy-3-methyl-1-
butenyl moieties, which are highlighted in the structures of
Figure 1,7−12 can be considered as modifications of
dimethylallyl moieties. Liu et al. demonstrated that a FAD/
FMN-dependent oxidase PtmO in the penitrem biosynthesis
catalyzes the conversion of 20-prenylpenijanthine to PC-M5 by
conversion of the dimethylallyl to a 3-hydroxy-3-methyl-1-
butenyl moiety.13

FeII/2-oxoglutarate-dependent oxygenases belong to a
unique, well-studied subfamily of oxidative enzymes. They
are ubiquitously distributed in viruses,14 bacteria,15 fungi,16

plants,17 as well as animals,18 and catalyze a remarkably wide
array of biochemical transformations including hydroxylation,
dealkylation, elimination, desaturation, epimerization, epox-
idation, halogenation, cyclization, peroxide formation, and ring

rearrangement.19−24 These oxidative transformations play
crucial roles in biochemical processes and highlight their
importance in nature. Therefore, extensive mechanistic
investigations on FeII/2-oxoglutarate-dependent oxygenases
have been reported.25 Although radical rearrangement was
proposed for the conversion of penicillin N to deacetox-
ycephalosporin C,26−28 specific conversions catalyzed by
nonheme FeII/2-oxoglutarate-dependent oxygenases have not
been reported before.
In the course of our investigations on the biosynthesis of

indole alkaloids, a biosynthetic gene cluster for verruculogen
was identified from the opportunistic fungus Aspergillus
fumigatus Af293.29 One gene from this cluster, f tmOx1Af,
encodes a nonheme FeII and 2-oxoglutarate-dependent oxy-
genase and catalyzes the conversion of fumitremorgin B to
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verruculogen by installing an oxygen molecule into the two
prenyl residues to form an endoperoxide bridge (Scheme
1).30,31 The biosynthetic intermediates like tryprostatins A and
B can also be metabolized to side products such as
spirotryprostatins (Scheme 1).32 Later, a similar cluster with
one additional gene for the conversion of verruculogen to
fumitremorgin A was identified in Neosartorya fischeri
NRRL181.33 The two proteins FtmOx1Af and FtmOx1Nf
from both clusters share a sequence identity of 95%. In this
study, we identified an additional homologue EAW25734
encoded by NFIA_045530 in N. fischeri NRRL181, which is
not located in the fumitremorgin gene cluster and has a protein
sequence identity of 48% with both FtmOx1Af and FtmOx1Nf.
The conserved 2-His-1-Asp ion-binding triad was clearly
identified in the EAW25734 sequence (Supplementary Figure
1). This high homology encouraged us to investigate its role in
the fumitremorgin biosynthetic pathway or metabolism of its
precursors.

■ RESULTS AND DISCUSSION
Overproduction and In Vitro Characterization of the

Oxygenase EAW25734. To investigate its function,
NFIA_045530 comprising merely one exon of 894 bp was
cloned from genomic DNA and overexpressed in Escherichia

coli XL1 Blue MRF’ cells. The recombinant protein was
purified with the aid of Ni-NTA agarose resin and confirmed
on SDS-PAGE and LC-ESI-TOF-MS analyses (Supplementary
Figure 2), yielding 7.6 mg of purified EAW25734 per liter of
bacterial culture. Due to the high homology with FtmOx1Af
and FtmOx1Nf, we speculated that EAW25734 could be a
nonheme FeII/2-oxoglutarate-dependent oxygenase also ac-
cepting fumitremorgin B as a substrate. The purified
recombinant EAW25734 was therefore first incubated with
fumitremorgin B in the presence of 2-oxoglutarate, ascorbic
acid and FeII, as carried out for FtmOX1Af, previously.

30 HPLC
chromatogram of the reaction mixture did not show any
product formation (Supplementary Figure 3).
Interestingly, in the LC-MS chromatogram of a reaction

mixture containing the pathway precursor tryprostatin B (1)
EAW25734, 2-oxoglutarate, ascorbic acid, and FeII, three
products were clearly detected (Figure 2, i), which are absent

Figure 1. Natural product examples containing 3-hydroxy-3-methyl-1-
butenyl residues.

Scheme 1. Proposed Metabolism of 1 in N. fischeria

aThe main biosynthetic pathway leading to the formation of fumitremorgins is highlighted with a purple,29 the branch-pathway forming
spirotryprostatins with an orange,32 and the conversion by EAW25734 with a green frame.

Figure 2. HPLC analysis of the incubation mixtures of 1 with
EAW25734 in the full assay with native enzyme, ascorbic acid (AA),
FeII and 2-oxoglutarate (2OG) (i); full assay without AA (ii); full
assay without exogenous FeII (iii); full assay without exogenous FeII,
but with EDTA (iv); full assay without 2OG (v); denatured enzyme
with AA, FeII and 2OG (vi). Absorptions at 296 nm are illustrated.
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in the assay with heat-inactivated enzyme (Figure 2, vi).
Substrate consumption of 81.2% was calculated after
incubation of 1 mM 1 with 15.6 μM EAW25734 at 37 °C
for 16 h. Further investigations demonstrated that this enzyme
requires FeII and 2-oxoglutarate but not ascorbic acid as
cofactors. A slight decrease of enzyme activity was observed in
the assay without ascorbic acid (Figure 2, ii). In contrast,
nearly no consumption of 1 was detected in the assay without
2-oxoglutarate (Figure 2, v). In the assay without exogenous
FeII, a conversion yield of 51.8% was observed and corresponds
to a relative activity of 63.8%, in comparison to that of the full
assay (Figure 2, i, iii). Addition of the chelating agent EDTA to
the reaction mixture abolished the enzyme reaction completely
(Figure 2, iv). These results proved that EAW25734 functions
as a nonheme FeII/2-oxoglutarate-dependent enzyme.
Identification of the Enzyme Products. Detailed

analysis of the HPLC chromatogram in Figure 2, i, revealed
peak 2 as the major enzyme product with a conversion yield of
50.5% under the condition described above. High-resolution
mass spectrometric analysis gave a [M−H]− ion at m/z
366.1830 (Supplementary Table 1), corresponding to the
molecular formula of C21H25N3O3 and indicating incorpo-
ration of one oxygen atom into 1. Interpretation of the 1H
NMR spectrum and data (Supplementary Table 2 and
Supplementary Figure 4) revealed the presence of an E-
configured double bond bearing two protons with signals at
6.69 (d, J = 16.2 Hz) and 6.40 (d, J = 16.2 Hz) ppm,
respectively. Due to this double bond formation, the broad
triplet signal of H-21 and the doublet of H-20 in 1 disappeared.
This indicated that the double bond was very likely shifted
from C21/C22 to C21/C20. The 13C and relevant 2D NMR
spectra (Supplementary Table 2 and Supplementary Figures
5−9) confirmed the double bond position and the
introduction of the hydroxyl group at C22. This proved
unequivocally the conversion of 1 to 22-hydroxylisotryprosta-
tin B (2) by double bond migration and hydroxylation, as
depicted in Scheme 1.
In analogy, products 3 and 4 with conversion yields of 3.8

and 26.9%, respectively, were also isolated and used for taking
NMR and MS spectra (Supplementary Tables 3 and 4,
Supplementary Figures 10−19). Interpretation of the spectro-
scopic data suggested the α-hydroxylation at C14 in 3 (14α-
hydroxylisotryprostatin B). The stereochemistry of the
hydroxyl group at C14 of 3 was assigned after interpretation
of the NOESY correlations (Supplementary Figure 16)
between OH-14 and H-19α, H-19β and H-17β as well as H-
11α and H-17α (Scheme 1). The [M−H]− ion of the second
major product 4 was observed at m/z 382.1773, that is, 32 Da
larger than that of 1 at m/z 350.1876 ([M−H]−), indicating
insertion of two oxygen atoms into the structure. Interpreta-
tion of its NMR spectra and comparison with those of 2 and 3
confirmed the double bond migration from C21/C22 to C21/
C20 and hydroxylation at C14 and C22.
Conversion of 2 and 3 by EAW25734 to 4. From their

structures, it seems like 2 and 3 could serve as precursors of 4
in an enzyme or nonenzyme conversion. To prove this
hypothesis, we assayed 2 and 3 with active or denatured
EAW25734 as well as 2-oxoglutarate, ascorbic acid and FeII.
LC-MS analysis confirmed the enzymatic conversion of 2 and
3 to 4 (Figure 3, i, (ii). Interestingly, 2 was lesser
(approximately 17.7%) converted to 4 than 3 (approximately
61.0%). This is in line with the observed ratios of the three
products in the assay with 1 (Figure 2, (i), which was also

confirmed by time-dependent formation of these products
(Figure 4). Figure 4 also proved the double bond migration
accompanied by the hydroxylation at the dimethylallyl moiety
as the main reaction and the α-hydroxylation at C14 as a side
reaction of EAW25734.

LC-MS Analysis of a N. fischeri Culture for the
Presence of EAW25734 Products. To prove the production
of 2, 3, and 4 by N. fischeri NRRL181, we cultivated the fungus
in the mCDY medium at 37 °C for 7 days. The fungal extract
was analyzed on LC-MS and is shown in Figure 20
(Supporting Information). Compound 2, but not 3 or 4 was
clearly identified by using the enzyme products as standards
and by comparison of their physiochemical properties such as
retention times, [M−H]− ions and fragmentation patterns in
MS2 (Supplementary Figure 21). Also in the fungal culture, the
accumulation of 2 was higher compared with 3 and 4.
Obviously, 1 was hijacked by EAW25734 from the
fumitremorgin pathway. Of course, it cannot be excluded
that other oxidative enzymes are also involved in these
conversions.

Postulated Mechanism of EAW25734-Mediated Dou-
ble Bond Migration Accompanied by Hydroxylation. As
aforementioned, a conversion of dimethylallyl to a 3-hydroxy-
3-methyl-1-butenyl moiety has not been reported for nonheme
FeII/2-oxoglutarate-dependent oxygenases. Recently, one such
enzyme, PrhA, was reported to catalyze a double bond

Figure 3. LC-MS analysis of the incubation mixtures of EAW25734
with 2 (i) and 3 (ii) as substrates. The isolated enzyme products were
used as standards. Only absorptions at 296 nm are illustrated.

Figure 4. Time-dependent conversion of 1 to 2, 3, and 4 catalyzed by
EAW25734
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isomerization in a ring system.34 To understand the double
bond migration accompanied by a hydroxylation at the
dimethylallyl moiety in 1, we postulated a reaction mechanism
as depicted in Scheme 2. As for all nonheme FeII/2-
oxoglutarate-dependent oxygenases, the catalysis is initiated
by coordination of FeII to the 2-His-1-Asp facial triad35,36

(Supplementary Figure 1) and three water molecules
(intermediate A in Scheme 2), followed by displacement of
two metal-bound water molecules with the keto and carboxyl
groups of 2-oxoglutarate in the FeII center (B in Scheme 2).
Substrate 1 binds then to the active site of the enzyme, which
triggers an available site for O2 binding, forming a FeIII-
superoxo and FeIV peroxohemiketal bicyclic intermediates (C
and D in Scheme 2). After releasing one molecule of CO2 and
the abstraction of a hydrogen at C20 of 1, the iron was reduced
to FeIII, and a radical at C20 of 1 is formed (E and F in Scheme
2). The key intermediate G for the formation of 2 is then
formed by electron migration from C20 to C22. Transfer of
the hydroxyl radical to C22 would result in the formation of 2
and reduction of FeIII to FeII (H in Scheme 2). Succinate
release under attachment of three water molecules will
regenerate the initial state A. Product 3 will be formed via a
mechanism for usual nonheme FeII/2-oxoglutarate-dependent
oxygenase-catalyzed hydroxylations by using 1 as substrate.25

Compound 4 is expected to be the product of 3 via an
analogous mechanism as for 2 or the product of 2 by a
hydroxylation at C14 (Scheme 2).
To elucidate the origin of the oxygen atoms in the installed

hydroxyl groups and to confirm our hypothesis in Scheme 2,
EAW25734 assays were carried out under 16O2,

18O2-enriched
atmosphere or in 18O-enriched water (97% purity for both
18O2 and H2

18O). The reaction mixtures were then analyzed on
LC-MS. As shown in Supplementary Figure 22, conversion of
1 to 2, 3, and 4 was clearly observed in all reaction mixtures
with UV detection. In the incubation mixture under 18O2-
enriched atmosphere, incorporation of one oxygen-18 atom
each in 2 and 3 and up to two in 4 was confirmed by detection
of the isotope peaks of their [M−H]− ions. In addition to the
[M−H]− ions at m/z 366.18 with the highest percentage of
natural abundance, strongly enhanced isotope peaks at m/z

368.19 were detected for 2 and 3. In the case of 4, [M−H]−
ions at m/z 382.18, 384.18, and 386.19 were detected, proving
the incorporation of none, one, and two 18O atoms,
respectively. Interestingly, different ratios of the isotope
peaks were determined for the [M−H]− ions of 2, 3, and 4.
Lower incorporation of 18O into the hydroxyl group at C22
than that of C14 was calculated (35% versus 95%). In contrast,
incorporation of one 18O atom into the hydroxyl group at C22,
but not into that at 14α, was detected in the incubation
mixture in 18O-enriched water. This indicates a solvent
exchange in the intermediates proceeding 2 and 4.19 These
results prove unequivocally that O2 supplies the majority of the
installed hydroxyl groups. However, solvent exchange also
contributes to the hydroxylation at C22. The results were
confirmed by two independent experiments with lower 18O2
contents of the 18O2-enriched atmosphere (Supplementary
Table 5).

■ CONCLUSIONS
In conclusion, we identified an unusual FeII/2-oxoglutarate
oxygenase EAW25734 catalyzing two chemical reaction steps
(i.e. an exceptional double bond migration and hydroxylation
at a dimethylallyl moiety). This could be explained by the
electron migration in the radial intermediates (F and G in
Scheme 2). In our example presented in this study, it seems
like EAW25734 in N. fischeri NRRL181 just uses intermediates
of other biosynthetic pathways, here from the fumitremorgin
pathway, as substrates. This could also be considered as a
branch-pathway of the tryprostatin metabolism, as in the cases
for cyclotryptostatins,32 which were also isolated from N.
fischeri NRRL 181 (Scheme 1).37 Moreover, it would be
interesting to find more examples for the conversion of
dimethylallyl to a 3-hydroxy-3-methyl-1-butenyl moiety. Some
potential candidate substances are shown in Figure 1.

■ METHODS
Materials. Tryprostatin B was isolated as reported previously.38

Reagents with highest available quality were supplied by Sigma-
Aldrich and Carl Roth. Oxygen-18 (18O2, 97%) and 18O-enriched
water (H2

18O, 97%) were obtained from Eurisotop.

Scheme 2. Postulated Mechanism of EAW25734-Mediated Double Bond Migration Accompanied by Hydroxylation
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Bacteria, Plasmids, and Cultivation Conditions. pGEM-T
Easy (Promega), pQE-70 (Qiagen) were used as cloning and
expression vectors. XL1 Blue MRF’ cells of Escherichia coli (Agilent
Technologies) were used for both cloning and overexpression. The
bacteria were cultivated in Luria−Bertani broth with 5 g L−1 yeast
extract, 10 g L−1 tryptone, and 10 g L−1 NaCl or Terrific broth
containing 4.5 g L−1 glycerol, 12 g L−1 tryptone, 24 g L−1 yeast
extract, 0.017 M KH2PO4, and 0.072 M K2HPO4. The bacteria were
also grown on solid LB medium containing 1.5% agar at 37 °C. 50 μg
mL−1 of carbenicillin were supplemented for recombinant strain
selection.
Cultivation of N. fischeri NRRL181 for Secondary Metabolite

Production. For detection of fungal metabolites, the strain was
cultivated in a 250 mL of flask, which contains 100 mL of mCDY
medium (30 g L−1 sucrose, 5.1 g L−1 yeast extract, 2.0 g L−1 NaNO3,
1.0 g L−1 KH2PO4, 0.3 g L−1 MgSO4 7H2O, and 0.01g L−1 FeSO4
7H2O),

33 at 25 °C and 150 rpm in darkness for 7 days. The filtrates of
the culture were extracted twice with EtOAc. The mycelia were
thoroughly crushed in a mortar and extracted with methanol/acetone
(1:1). Both fractions were combined, and the solvents were
evaporated under reduced presure at 30 °C, The residue was taken
in methanol and analyzed via LC-MS as described below.
DNA Isolation, Gene Amplification, and Cloning. DNA

manipulation and propagation in E. coli were performed as reported
previously.39 Genomic DNA was isolated from N. fischeri NRRL181
according to a method described previously.40 NFIA_045530
containing merely one exon was PCR amplified by using genomic
DNA as a template and vwFtmOx1f-2-fw_5 (5′-CCGCATGCCC-
GTCGACTCCAAGCC-3′) and vwFtmOx1f-2-rev_5 (5′-
CCGGATCCAGCAGGCAAATCAGTAGCCT-3′) as primers. The
underlined letters represent the introduced restriction site SphI in the
first and BamHI in the second primer for cloning in pQE-70. For
cloning in pQE-70 at the SphI site, the original genomic sequence was
mutated by change the base pair labeled as a bold letter in
vwFtmOx1f-2-fw_5. The generated PCR fragment containing the
entire coding region was inserted into pGEM-T Easy and
subsequently sequenced to verify the putative gene sequence (Seqlab
Sequence Laboratories). The insert was then cut by the restriction
enzymes SphI and BamHI and cloned subsequently into the pQE-70
vector. The resulted construct pVW53 was introduced to the
expression host.
Gene Expression and Purification of EAW25734 and

FtmOx1Af. XL1 Blue MRF’ cells harboring pVW53 were grown in
500 mL TB media supplemented with 50 μg mL−1 carbenicillin at 37
°C and 230 rpm. When absorption at 600 nm reached approximately
0.60, gene expression was induced by 1 mM of isopropyl
thiogalactoside. The bacteria were cultivated for additional 16 h at
37 °C. Protein purification was done on Ni-NTA agarose resin
(Qiagen) as described in the manufacturer’s protocol. The protein
fraction was subsequently passed through a Sephadex G25 column
(PD-10, GE Healthcare) using 50 mM Tris-HCl, pH 7.5, 15%
glycerol as eluent to afford the recombinant protein, which was then
stored at −80 °C. Protein yield was calculated to be 7.6 mg L−1. The
purity of the obtained protein was proven on SDS-PAGE, showing a
major protein band at approximate 33 kDa (Supplementary Figure 2,
i). FtmOx1Af was overproduced as described previously.30

LC-ESI-TOF Analysis of the Purified His6-EAW25734. To
confirm the molecular weight of His6-EAW25734, the purified protein
was desalted online using a Waters ACQUITY H-Class HPLC-system
equipped with a MassPrep column (Waters). Desalted protein was
eluted into the ESI source of a Synapt G2Si mass spectrometer
(Waters) under the condition as described previously.41 Positive ions
within the mass range of m/z 500−5000 were detected. Glu-
Fibrinopeptide B was measured every 45s for automatic mass drift
correction. Averaged spectra were deconvoluted after baseline
subtraction and eventually smoothing using MassLynx instrument
software with MaxEnt1 extension. The determined value of 33520 Da
corresponds to the molecular weight of His6-EAW25734 after removal
of the methionine residue at the N-terminus by E. coli methionyl
aminopeptidase.42,43

Enzyme Assays of EAW25734 and FtmOx1Af. To determine
the enzyme activity toward tryprostatin B and fumitremorgin B, the
enzyme assays (100 μL) contained Tris-HCl (50 mM, pH 7.5),
ascorbic acid (1 mM), tryprostatin B or fumitremorgin B (1 mM),
Fe[(NH4)2(SO4)2] (1 mM), 2-oxoglutarate (1 mM), glycerol (0.5−
5%), DMSO (2.5%), and the purified recombinant EAW25734 (50
μg, 15.6 μM) or FtmOx1Af (14 μg, 4.7 μM). The enzyme assays were
incubated at 37 °C for 16 h and treated twice with EtOAc. The
solvent was removed on a rotary evaporator at 30 °C. The residues
were taken in 100 μL of CH3OH and analyzed via LC-MS (see
below).

To determine the cofactor dependency of the EAW25734 reaction,
the 100 μL reaction mixtures containing 50 μg of EAW25734, 1 mM
of tryprostatin B, and different cofactor combinations were incubated
at 37 °C for 16 h. For time dependence of EAW25734 toward
tryprostatin B, the standard reaction mixtures were incubated at 37 °C
for 0−14 h.

Enzyme Assays in the Presence of 18O2-Enriched Atmos-
phere and 18O-Enriched Water. For incubation with EAW25734
under 18O2-enriched atmosphere, a 500 μL assay contained the same
components as in the standard reaction mixture. 16O2 in the reaction
mixture was removed by application of vacuum followed by flushing
with argon for three times. Argon was then removed by vacuum and
finally 18O2 was allowed to enter the reaction mixture. The reaction
was terminated by addition of 500 μL methanol after incubation at 37
°C for 30 min. LC-MS was used for monitoring the incorporation.

For incubation with EAW25734 in 18O-enriched water, a 50 μL
reaction mixture contained the same components as in the standard
assay in a mixture of H2

18O and H2
16O with a ratio of 4:1.

Preparation and Isolation of Enzyme Products for Structure
Elucidation. Assays (50 mL) were done for enzyme product
isolation. They contained Tris-HCl (50 mM, pH 7.5), ascorbic acid
(1 mM), tryprostatin B (1 mM), Fe[(NH4)2(SO4)2] (1 mM), 2-
oxoglutarate (1 mM), and recombinant EAW25734 (25 mg) and
were incubated at 37 °C for 16 h. The products were extracted with
EtOAc and purified on a preparative HPLC column.

HPLC and LC-MS Conditions. The enzyme assays were analyzed
on an Agilent HPLC series 1200 (Agilent Technologies) with an
Agilent Eclipse XDB-C18 column (4.6 × 150 mm, 5 μm) by using
H2O (solvent A) and CH3CN (B) as solvents at 0.5 mL min−1. The
procedure was initiated with a linear gradient from 20−30% B over 5
min, followed by linear gradients from 30−33% B in 30 min, and from
33−40% B in 5 min. After each run, the column was holding with
100% B for 5 min and equilibrated with 20% B for 5 min. Detection
was carried out with a photodiode array detector and absorptions at
296 nm are given in this study.

The enzyme products were isolated on the same equipment by
using an Agilent Eclipse XDB-C18 column (9.4 × 250 mm, 5 μm)
with an isocratic elution at 30% B in 40 min and a flow rate at 2.0 mL
min−1.

Analysis of the enzyme products on LC-MS was carried out on an
Agilent 1260 series with Eclipse XDB-C18 column (4.6 × 150 mm, 5
μm) and micrOTOF-Q III Mass spectrometer. Analysis of the
enzyme products was performed by using the same solvents and
elution profile as for HPLC analysis mentioned above. HR-ESI-MS
data of the reported compounds are given in Supplementary Table 1.

Analysis of the fungal extract on LC-MS was carried out on the
same equipment by using a CS Multospher 120 RP 18 column (2 ×
250 mm, 5 μm) with a linear gradient of 5−100% B in 50 min, both
containing 0.1% formic acid, and a flow rate at 0.25 mL min−1. After
each run, the column was holding with 100% B for 5 min and
equilibrated with 5% B for 10 min.

NMR Analysis. For structural elucidation, the samples were
dissolved in DMSO-d6 or CDCl3 and subjected for taking NMR
spectra including 1H NMR, 13C NMR, 1H−1H COSY, HSQC,
HMBC, and NOESY spectra. The spectra were recorded at RT on a
Bruker Avance III 500 MHz (1H) or 125 MHz (13C) spectrometer
installed with a cryo probe 5 mm Prodigy for Broad Band
Observation. All spectra were processed with MestReNova 6.0.2
(Metrelab Research) and the chemical shifts were referenced to those
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of the solvents. The NMR data are given in Supplementary Tables 2−
4 and spectra as Supplementary Tables 2−19.
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S2 
 

1 TABLES 

Table S1. HR‐ESI‐MS data of the reported compounds 

Compound 
Chemical 

Formula 

[M-H]- 
Deviation (ppm) 

Calculated Measured  

1 C21H25N3O2 350.1874 350.1876 -0.6 

2 C21H25N3O3 366.1823 366.1830 -1.9 

3 C21H25N3O3 366.1823 366.1835 -3.2 

4 C21H25N3O4 382.1772 382.1773 -0.3 
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Table S2. NMR Data of 2 in DMSO-d6 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

Position  δC, multi  δH, multi., J in Hz  HMBC correlation  COSY correlation  TOCSY correlation 

1  ‐  11.03, s  C‐2, 3, 8, 9  ‐  H‐4, 5,20, 21 

2  134.2  ‐  ‐  ‐  ‐ 

3  108.1  ‐  ‐  ‐  ‐ 

4  118.7  7.53, d, 8.0  C‐3, 6, 8  H‐5  H‐1, 5, 6, 7, 10 

5  118.5  6.93, dd, 8.0, 7.0  C‐7, 9  H‐4, 6  H‐1, 4, 6, 7, 10 

6  121.8  7.05, dd, 8.0, 7.0  C‐4, 8  H‐5, 7  H‐1, 4, 5, 7, 10 

7  110.6  7.26, d, 8.0  C‐5, 9  H‐6  H‐1, 4, 5, 6, 10 

8  136.4  ‐  ‐  ‐  ‐ 

9  128.3  ‐  ‐  ‐  ‐ 

10 
25.7 

3.35a, dd, 14.7, 5.2  C‐2, 9, 16  H‐10, 11  H‐11 

10  3.06, dd, 14.7, 6.5  C‐2, 9, 16  H‐10, 11  H‐11, 12 

11  55.5  4.27, dd, 6.5, 5.2  C‐3, 13, 16  H‐10, 10 H‐10, 10, 12, 14, 19 

12  ‐  7.06, br s  C‐10, 14, 16  H‐11  H‐10, 10, 11, 14 

13  168.5  ‐  ‐  ‐  ‐ 

14  58.4  4.02, dd, 9.0, 7.2  C‐13, 19  H‐19, 19  H‐11, 12, 18, 18, 19, 19   

16  165.3  ‐  ‐  ‐  ‐ 

17 
44.6 

3.43, dt, 11.4, 7.9  C‐14, 16, 19  H‐17, 18, 18  H‐14, 18, 18, 19, 19 

17  3.20, ddd, 11.4, 9.0, 4.2  C‐19  H‐17, 18, 18  H‐14, 18, 18, 19, 19 

18 
21.8 

1.65, m  C‐17, 19  H‐17, 17, 18, 19, 19  H‐14, 17, 17, 19, 19 

18  1.55, m  ‐.  H‐17, 17, 18, 19, 19  H‐14, 17, 17, 19, 19 

19 
27.6 

1.93 dtd, 12.1, 7.0, 2.9  C‐18, 17  H‐14, 18, 18, 19  H‐14, 17, 17, 18, 18 

19  1.28, m  C‐13, 14, 17, 18  H‐14, 18, 18, 19  H‐14, 17, 17, 19, 19 

20  114.6  6.69, d, 16.2  C‐2, 3, 22  H‐21  H‐10, 10, 11, 23, 24, 22‐OH 

21  138.4  6.40, d, 16.2  C‐2, 22, 23, 24  H‐20  H‐10, 10, 11, 23, 24, 22‐OH 

22  69.5  ‐  ‐  ‐  ‐ 

22‐OH  ‐  4.70, s  C‐21, 22, 23, 24  ‐  H‐20, H‐21, H‐23, H‐24 

23  30.2  1.34, s  C‐21, 22, 24  ‐  ‐ 

24  30.1  1.35, s  C‐21, 22, 23  ‐  ‐ 

a Overlapped with solvent signal at 3.33 ppm; ‐ not observed 
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Table S3. NMR Data of 3 in DMSO-d6 and CDCl3 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

Position  δC, multi  δH, multi., J in Hz  HMBC correlation  NOESY 

CDCl3  DMSO‐d6  CDCl3 DMSO‐d6 CDCl3 DMSO‐d6 CDCl3 

1  ‐  ‐  7.93, s  10.74, s  C‐3, 8, 9  C‐2, 3, 8, 9  H‐7, 20, 21, 23 

2  136.5  137.4  ‐  ‐  ‐  ‐  ‐ 

3  104.6  104.4  ‐  ‐  ‐  ‐  ‐ 

4  118.0  117.9  7.48, d, 7.2  7.44, d, 7.9  C‐3, 6, 8,  C‐6, 8,  H‐5, 1010, 11, 12 

5  120.1.  120.0  7.10, dd. 8.1, 7.2  6.92, t, 7.9  C‐7, 9  C‐7, 9  H‐7 

6  122.0  118.0  7.16, dd, 8.1, 7.1  6.99, t, 7.9  C‐4, 8  C‐4, 8  H‐4 

7  110.7  110.4  7.31, d, 7.1  7.25, d, 7.9  C‐5, 9  C‐5, 9  H‐1, 5 

8  136.0  135.3  ‐  ‐  ‐  ‐  ‐ 

9  128.1  127. 8 ‐  ‐  ‐  ‐  ‐ 

10
25.8  25.9 

3.69, dd, 15.1, 3.9  3.27, dd, 14.6, 5.2  C‐2, 3, 9, 11  C‐2, 3, 9, 11, 16  H‐1011, 4 

10 2.91, dd, 15.1, 11.6  2.96, dd, 14.6, 6.6  C‐2, 3, 9, 11, 16  C‐2, 3, 9, 11, 16  H‐1020, 12, 11, 4 

11  54.3  55.1  4.52, dd, 11.6, 3.9  4.35, t, 6.0  C‐3, 10  C‐3, 10, 16  H‐4, 1010, 12, 20 

12  ‐  ‐  5.62, s  7.08, s  C‐11, 14  C‐10, 11, 13, 14  H‐11, 20, 21 

13  ‐  166.8  ‐  ‐  ‐  ‐  ‐ 

14  87.7  86.5  ‐  ‐  ‐  ‐  ‐ 

14‐OH  ‐  ‐  3.11, s  6.50, s  ‐  ‐  H‐19

16  167.0  166.2  ‐  ‐  ‐  ‐  ‐ 

17
45.5  44.3 

3.79, m  3.38a, m  ‐  C‐18, 19  H‐11, 17, 18, 19 

17 3.62, m  3.33a, m  ‐  C‐14, 18, 19  H‐17, 18, 19 

18
19.9  19.1 

2.17, m  1.85, m  C‐14  C‐14, 17, 19  H‐17, 18 

18 1.98, m  1.53, m  C‐14  C‐14, 17, 19  H‐18 

19
37.0  35.1 

2.22, m  1.88, m  C‐14, 17  C‐14, 17, 18  14‐OH 

19 2.19, m  1.52, m  C‐13, 14, 17, 18  H‐17 

20
25.2  24.7 

3.49, dd, 16.2, 7.1  3.54, dd, 16.4, 7.8  C‐2, 3, 21  C‐2, 3, 21, 22  H‐1, 10, 11, 12, 21, 23 

 3.44, dd, 16.2, 7.3  3.41, dd, 16.4, 6.6  C‐2, 3, 21  C‐2, 3, 21, 22  H‐1, 10, 11, 12, 21, 23 

21  119.8  121.4  5.31,  tdt,  7.2,  2.8,  5.31, t, 7.2  C‐23, 24  C‐2, 23, 24  H‐12, 20, 24 

22  136.0  131.9  ‐  ‐  ‐  ‐ 

23  18.1  17.7  1.75, s  1.72, s  C‐21, 22, 24  C‐21, 22, 24  H‐20 

24  25.8  25.3  1.78, s  1.69, s  C‐21, 22, 23  C‐21, 22, 23  H‐21 

a Overlapped with solvent signal at 3.33 ppm; ‐ not observed
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Table S4. NMR Data of 4 in DMSO-d6 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

Position  δC, multi  δH, multi., J in Hz  HMBC correlation 

1  ‐  11.06, s  C‐2, 3, 8, 9 

2  134.4  ‐  ‐ 

3  108.1  ‐  ‐ 

4  118.3  7.52 d, 8.1  C‐6, 8, 

5  121.5  6.92, dd, 8.1, 7.3  C‐7, 9 

6  118.3  7.05, dd, 8.0, 7.3  C‐4, 8 

7  110.4  7.26 d, 8.0  C‐5, 9 

8  136.4  ‐  ‐ 

9  128. 6 ‐  ‐ 

10 
25.5 

3.38a, m  C‐2, 3, 9, 11, 16 

10  3.03, dd, 14.7, 7.0  C‐2, 3, 9, 11, 16 

11  55.2  4.37, dd, 7.0, 5.0  C‐3, 10, 16 

12  ‐  6.95, s  C‐11, 13, 14 

13  166.5  ‐  ‐ 

14  86.9  ‐  ‐ 

14‐OH  ‐  6.54, s  ‐ 

16  166.4  ‐  ‐ 

17 
44.3 

3.42, m  ‐ 

17  3.37a, m  ‐ 

18 
19.6 

1.90, m  ‐ 

18  1.65, m  ‐ 

19 
35.3 

1.90, m  ‐ 

19  1.66, m  ‐ 

20  114.2  6.69, d, 16.1  C‐2, 3, 22 

21  138.2  6.41, d, 16.1  C‐2, 22, 23, 24 

22  69.8  ‐  ‐ 

22‐OH  ‐  4.75, s  C‐23, 24 

23  30.6  1.15, s  C‐21, 22, 24 

24  30.6  1.16, s  C‐21, 22, 23 

a Overlapped with solvent signal at 3.33 ppm; ‐ not observed.
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Table S5. Results of the 18O‐labeling experiments 

 

  Intensity ratios of m/z 366.18 to m/z 368.19 

experiments  1st    2nd    3rd   

control  96:4  97:3    97:3 

18O2‐enriched atmosphere  65:35  86:14    81:9   

18O‐enriched water (97 %)  77:23    80:20    77:23 

  Intensity ratios of m/z 366.18 to m/z 368.19 

experiments  1st  2nd    3rd   

control  97:3  96:4  97:3   

18O2‐enriched atmosphere  5:95    62:38    73:27   

18O‐enriched water (97 %)  96:4  97:3    97:3 

  Intensity ratios of m/z 382.18: m/z 384.18: m/z 386.19 

experiments  1st    2nd  3rd   

control  89.2:10:0.8  95.7:4.0:0.3  95.8:4.0:0.2 

18O2‐enriched atmosphere  5:70:25  57:31:12  77:19:4 

18O‐enriched water (97 %)  72.2:27:0.8  73.8:26:0.2  73.8:26:0.2 

 

The  percentages  of  the  supplied  18O2  for  the  three  experiments  with  18O2‐enriched  atmosphere  are 

calculated to be 95, 37, and 26 %, respectively.
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2 Figures 

.

Figure S1. Sequence alignments of FtmOx1Af (XP_747181.1, A. fumigatus Af293), FtmOx1Nf (XP_001261651.1, N. 

fischeri NRRL181),  EAW25734  (XP_001267631.1, N.  fischeri NRRL181),  PrhA  (5YBM_A, Penicillium  brasilianum 

NBRC 6234), and AusE (5YBL_A, A. nidulans FGSC A4). Red asterisks indicate the conserved two‐His‐one‐Asp iron‐

binding triad. The alignments were created by using Clustal Omega1 (https://www.ebi.ac.uk/Tools/msa/clustalo/) 

and visualized by using EsPript 3.02 (http://endscript.ibcp.fr/ESPript/cgi‐bin/ESPript.cgi)
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Figure S2. Analysis of the purified His6‐EAW25734 on SDS‐PAGE (i) and by LC‐ESI‐TOF‐MS (ii). For SDS‐PAGE analysis, 

the proteins were separated on a 12% polyacrylamide gel and stained with Coomassie brilliant blue R‐250. The 

measured molecular weight of 33520 Da corresponds very well  to that of His6‐EAW25734 after removal of the 

methionine residue at the N‐terminus by E. coli methionyl aminopeptidase 
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Figure S3. HPLC analysis of the incubation mixtures of fumitremorgin B (5) with EAW25734 (i) and FtmOx1Af (ii), 

which catalyzed 5 to verruculogen (6). The enzyme assays were carried out as described previously.3 
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Figure S4. 1H NMR spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6 (500 MHz)
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Figure S5. 13C NMR spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6 (125 MHz)
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Figure S6. HSQC spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6
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Figure S7. HMBC spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6
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Figure S8. 1H‐1H COSY spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6

66



S15 
 

 

Figure S9. 1H‐1H TOCSY spectrum of 22‐hydroxylisotryprostatin B (2) in DMSO‐d6
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Figure S10. 1H NMR spectrum of 14‐hydroxylisotryprostatin B (3) in DMSO‐d6 (500 MHz)
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Figure S11. HSQC spectrum of 14‐hydroxylisotryprostatin B (3) in DMSO‐d6
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Figure S12. HMBC spectrum of 14‐hydroxylisotryprostatin B (3) in DMSO‐d6 
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Figure S13. 1H NMR spectrum of 14‐hydroxylisotryprostatin B (3) in CDCl3 (500 MHz)
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Figure S14. HSQC spectrum of 14‐hydroxylisotryprostatin B (3) in CDCl3
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Figure S15. HMBC spectrum of 14‐hydroxylisotryprostatin B (3) in CDCl3
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Figure S16.    1H‐1H NOESY spectrum of 14‐hydroxylisotryprostatin B (3) in CDCl3
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Figure S17. 1H NMR spectrum of 14,22‐dihydroxylisotryprostatin B (4) in DMSO‐d6 (500 MHz)
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Figure S18. HSQC NMR spectrum of 14,22‐dihydroxylisotryprostatin B (4) in DMSO‐d6
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Figure S19. HMBC spectrum of 14,22‐dihydroxylisotryprostatin B (4) in DMSO‐d6
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S26 

Figure S20. LC‐MS analysis of the fungal extract of N. fischeri. Detection was carried out at UV 190−400 nm 

and EIC for [M‐H]‐ ions of 1, 2, 3, and 4. The isolated enzyme products were used as standards. 

1  and  2  were  clearly  detected  in  the  extract  by  comparison  of  their  retention  times,  [M‐H]‐  ions  and 

fragmentation patterns in MS2 with those of standards (Figure S21). An additional peak in EIC of 366.1823 

was found with a larger retention time than that of 2. The identity of this peak cannot be proven in this 

study. No peak in EIC of 382.1772 shares a same retention time with 4. 
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Figure S21. MS and MS2 spectra of standard 1 (i), compound 1 in extract (ii), standard 2 (iii), and 

compound 2 in extract (iv). The isolated enzyme products were used as standards.

396.1937

350.1876
‐MS, 24.7min #2690

125.0353 153.0651

350.1873
‐MS2(350.1876), 17.5‐52.5eV, 24.7min #2691

0.00

0.25

0.50

0.75

1.00

5x10
Intens.

0.0

0.5

1.0

1.5

2.0

4x10

100 150 200 250 300 350 400 m/z

283.1113
1‐ 311.2239

1‐

327.2193
1‐

396.1950
1‐

426.2037
1‐

350.1886
1‐

‐MS, 24.3min #4914

125.0399

153.0695

‐MS2(350.1886), 35.0‐87.5eV, 24.3min #4915
0

2000

4000

6000

Intens.

0

50

100

150

100 150 200 250 300 350 400 m/z

350.1512

412.1881

366.1830
‐MS, 19.6min #2087

125.0355 153.0673

366.1830
‐MS2(366.1830), 17.5‐52.5eV, 19.6min #2090

0.0

0.5

1.0

5x10
Intens.

0

2

4

4x10

100 150 200 250 300 350 400 m/z

155.1093

199.0999

253.1439

273.1705

327.2149

343.2141

428.1811

410.1727

366.1820

‐MS, 19.0min #3677

125.0425

153.0720

180.0867
293.0933 345.2121

‐MS2(366.1822), 35.0‐87.5eV, 19.0min #3679
0

2000

4000

6000

Intens.

0

20

40

60

80

100

100 150 200 250 300 350 400 m/z

i

ii

iii

iv

79



S28 

Figure S22. LC‐MS analysis of the incubation mixtures of 1 in the presence of 16O2, 18O2‐enriched 

atmosphere, and 18O‐enriched water. A) UV absorptions at 296 nm; C−D) Compared mass spectra of 2−4. 
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Spontaneous oxidative cyclisations of 1,3-
dihydroxy-4-dimethylallylnaphthalene to tricyclic
derivatives†

Jinglin Wang,‡a,b Huomiao Ran,‡a Xiulan Xie,c Kaiping Wang d and
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The attachment of a dimethylallyl moiety to C4 of 1,3-dihydroxy-

naphthalene led to spontaneous oxidative cyclisations, resulting in

the formation of two tetrahydrobenzofuran and one bicyclo[3.3.1]

nonane derivatives. Incubation under an 18O-rich atmosphere

proved that both the incorporated oxygen atoms originated from

O2. A radical-involved mechanism is proposed for these

cyclisations.

Prenylated natural products are hybrid molecules with an ali-
phatic or aromatic skeleton, with one or more prenyl moieties
of different chain lengths derived from dimethylallyl, geranyl
or farnesyl diphosphate. The formation of these compounds is
usually initialised by prenyl transfer reactions and further
modified by oxidation, hydroxylation, cyclisation and even
rearrangement.1–3 Prenylated naphthalene derivatives,
especially those of 1,3,6,8-tetrahydroxynaphthalene (THN),
have been reported to show intriguing biological and pharma-
cological activities.4–6 Cyclisation reactions between the prenyl
moieties and hydroxyl groups in THN often led to the for-
mation of a five- or six-numbered ring system.4,7–10 As shown
in Fig. 1, derivatives of both C2- and C4-prenylated THN are
identified in nature. Furanonaphthoquinone I,11 furaquino-
cins12 and adenaflorin D 10 belong to the first group. In the
formation of these compounds, the nucleophilic attack of one
of the ortho-hydroxyl groups on the prenyl residue, at C1 or C3,
leads to cyclisation and formation of a 2H-furan or 2H-pyran

ring. Some of the metabolites like adenaflorin C 10 are the
cyclisation products of C4-prenylated THNs. Naphterpin13,14

and marinone analogues6,9 carrying a modified C3-prenyl
moiety originate from a C4-prenylated intermediate, which is
formed by oxidative dearomatization and α-hydroxyketone
rearrangement.15 Enzymatic and nonenzymatic reactions are
involved in the formation of these prenylated natural products.
It seems that complex rearrangement takes place easily in C4-
prenylated THNs. Therefore, we were curious to know the
behaviour of a C4-prenylated naphthalene with merely two
meta-hydroxyl groups. In a previous study,16 we demonstrated
prenylations of 12 hydroxynaphthalenes by eight fungal prenyl-
transferases. In this study, we prepared C4-prenylated 1,3-dihy-
droxynaphthalene and investigated its stability under mild
conditions.

For this purpose, the tryptophan prenyltransferase FgaPT2
was produced in E. coli and purified to near homogeneity as
reported previously.17 The recombinant protein was then incu-
bated with 1,3-dihydroxynaphthalene (1) in the presence of di-
methylallyl diphosphate (DMAPP) at 37 °C for 30 min. The
reaction mixture was analysed by HPLC. As shown in Fig. 2A, a
peak was detected for product 2 at 33.6 min. LC-HRMS ana-
lysis showed the presence of an [M + H]+ ion at m/z 229.1224,
corresponding to a mono-prenylated product with the mole-

Fig. 1 Representative examples of prenylated THN derivatives.
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cular formula C15H16O2 (see Table S1 in the ESI†).
Interpretation of the HMBC spectrum of 2 confirmed the
attachment of the dimethylallyl moiety to C4 of the naphtha-
lene ring. Key correlations of H-1′ of the prenyl residue with
C-3, C-4 and C-10 were clearly detected (Table S2 and Fig. S1–
S4†). Interestingly, three additional products 3, 4 and 5 were
also observed at 11.2, 11.8 and 17.5 min, respectively. No
peaks for 2–5 were detected in the negative control with
denatured FgaPT2, indicating the necessity of the active
enzyme for their formation. Upon extending the incubation
time to 16 h, products 3, 4 and 5 were detected, but not 2.

From their [M + H]+ ions at m/z 261.1126 (3), 261.1129 (4)
and 261.1127 (5) (Table S1†), it can be deduced that they
shared the same molecular formula of C15H16O4, indicating
the incorporation of two oxygen atoms into 2. In the 1H NMR
spectra of 3, 4 and 5 (NMR data of 3, 4 and 5 are given in
Tables S2–S5† and their spectra are shown in Fig. S5–S23†),
the signals of the four coupling protons at C5–C8 are still
present, indicating that no changes have taken place on this
ring. In contrast, signals of two alcoholic hydroxyl groups at δH

4.7–7.0, instead of those of two phenolic protons at δH 9.3 and
9.9 in 2, were detected. The signals at δC 124.5 and 129.7 for
the olefinic carbons C2′ and C3′ of the dimethylallyl moiety of
2 also disappeared in the 13C NMR spectra of 3, 4 and 5.
Instead, signals of two ketone carbons at δC 194 and δC 205
were observed in the 13C NMR spectrum of 3. A comprehensive
analysis of the HSQC and HMBC data confirmed that 3 is a
bicyclo[3.3.1]nonane derivative (Fig. 2B). Similarly, signals of
two oxygenated carbons in the range of δC 65 to 92 were found
in the 13C spectra of 4 and 5 and can be assigned to those of
C2′ and C3′ of the original dimethylallyl moiety in 2.
Inspection of the HSQC and HMBC data suggested that 4 and
5 are tetrahydrobenzofuran derivatives, which differ from each
other only in their stereochemistry. Analysis of the NOESY data
and relevant coupling constants confirmed the relative con-
figurations of 3, 4 and 5, as given in Fig. 2B.

We wondered whether the formation of 3, 4 and 5 is
specific for the FgaPT2 reaction. 1 was then incubated at 37 °C
with DMAPP and three additional prenyltransferases CdpNPT,
FtmPT1 and AnaPT18–20 for 16 h. 3, 4 and 5, but not 2, were
detected in all the reaction mixtures (Fig. 2A).

To investigate whether 3, 4 and 5 are the enzyme products
of the prenyltransferases or just nonenzymatic rearrangement

Fig. 2 HPLC chromatograms of the incubation mixtures of 1,3-dihy-
droxynaphthalene (1) with 20 μg purified recombinant FgaPT2, CdpNPT,
FtmPT1 and AnaPT in the presence of DMAPP (A) and structures of 1–5
(B). Detection was carried out on a photo diode.

Fig. 3 HPLC chromatograms of the incubation mixtures of 2 and the
denatured enzyme. The reaction mixtures were incubated in Tris buffer
(pH 7.5) at 37 °C for 0, 0.5, 4 and 24 h (A) or in phosphate buffer at pH
2.5, 6.0, 7.5, 8.5 and 10.0 for 1 h (B). Detection was carried out with a
photo diode array detector and absorption at 254 nm is shown. The data
were obtained from three independent experiments.
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events of 2, the isolated 2 was incubated with denatured
recombinant FgaPT2 at 37 °C.

The reaction mixture was monitored using LC-HRMS after
0, 0.5, 4 and 24 h. As shown in Fig. 3A, 22.7 ± 0.1% of 2 was
already converted to 3, 4 and 5 after isolation from enzyme
assay and sample dissolving for analysis (at 0 h). No trace of 2
was detected after incubation for 24 h, unequivocally proving

the nonenzymatic spontaneous oxidative cyclisations of 2 to 3,
4 and 5. Incubation of 2 in phosphate buffer at pH 2.5, 6.0,
7.5, 8.5 and 10.0 (Fig. 3B) revealed the pH dependence of this
conversion. The conversions of 2 to 3, 4 and 5 under acidic
conditions were clearly slower than those under neutral and
basic conditions. 51.4 ± 1.7% and 75.6 ± 2.4% of 2 were con-
verted at pH 2.5 and 6.0, respectively, after incubation at 37 °C

Fig. 4 Mass spectra of 3, 4 and 5 from different incubation mixtures (A–C) and the proposed cyclisation mechanism (D).
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for 1 h. In comparison, approx. 99% of 2 was consumed at pH
7.5 and higher pH values (Fig. 3B).

To clarify the origin of the two incorporated oxygen atoms,
FgaPT2 assays with 1,3-dihydroxynaphthalene (1) and DMAPP
were carried out under an 18O2-rich atmosphere and in
a buffer with 18O-rich water, as reported previously.21,22

Incubation of FgaPT2 without isotope labelled components
was used as a control. LC-HRMS analysis revealed complete
conversion of 1 to 3, 4 and 5 in all the three assays (Fig. S24†).
As mentioned above, [M + H]+ ions at m/z 261.112 ± 0.002 were
detected for 3, 4 and 5 in the control assay and in the incu-
bation mixture with H2

18O (Fig. 4A and C). In the incubation
mixture under an 18O-rich atmosphere, incorporation of two
oxygen-18 atoms each was confirmed in 3, 4 and 5 by detection
of the isotope peaks of their [M + H]+ ions at m/z 265.120 ±
0.002, in addition to the ions at m/z 261.112 ± 0.002.
Incorporation rates of approximately 15% were calculated
(Fig. 4B). These results undoubtedly proved that the two
oxygen atoms originated from molecular O2 without any invol-
vement of water.

It can be proposed that the attachment of one O2 molecule
to C4 of the C4-prenylated 1,3-dihydroxynaphthalene initia-
lises the cyclisation process (Fig. 4D). The reactive peroxyl
radical 6 can undergo radical addition at both the olefinic
positions of the dimethylally moiety, leading to the formation
of two different bi-radicals 7 and 8 with endoperoxide features.
Cleavage of the endoperoxide structure and radical shift in 7
and 9 as well as subsequent intramolecular cyclisation in 10
would result in the formation of 3. The fate of radical 8 begins
with an electron shift. Cleavage of the endoperoxide bond in
11 would be followed by furan ring formation in 12, resulting
in two diastereomers 4 and 5. From the postulated mecha-
nism, products of intermolecular coupling could also be
expected. However, no such compounds were detected under
the conditions used in this study.

In summary, in this study, we isolated three new com-
pounds 3, 4 and 5 with tetrahydrobenzofuran and a bicyclo
[3.3.1]nonane core using prenyltransferase assays. Detailed
investigations including isotope labelling experiments proved
that they are spontaneous oxidative cyclisation products of 1,3-
dihydroxy-4-dimethylallylnaphthalene 2. This study provides
one additional example of natural product formation by contri-
butions from enzymatic and nonenzymatic spontaneous
reactions.
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Experimental Procedures 

1. Chemicals

Dimethylallyl diphosphate (DMAPP) was synthesized according to the method reported 
previously.1 1,3-dihydroxynaphthalene (1) was obtained from Fluka. Oxygen-18 (18O2, 97 %) 
and 18O-enriched water (H2

18O, 97 %) were purchased from Eurisotop. All other chemicals 
used in this study were of analytical grade. 

2. Overproduction and purification of recombinant proteins

Overproduction and purification of FgaPT2,2 CdpNPT,3 FtmPT1,4 and AnaPT5 were carried 
out as described in the literature. 

3. Enzyme assays with different prenyltransferases

The enzymatic reaction mixtures (50 μl) contained 50 mM Tris-HCl (pH 7.5), 10 mM CaCl2, 1 
mM 1,3-dihydroxynaphthalene (1), 2 mM DMAPP, 0.15–1.5% (v/v) glycerol, 5% (v/v) dimethyl 
sulfoxide (DMSO) and 20 μg of the purified recombinant proteins. These mixtures were 
incubated at 37°C for 30 min or 16 h and terminated by addition of one volume acetonitrile 
(CH3CN) and subsequently centrifuged at 17,000 × 𝑔𝑔 for 30 min before further analysis on 
HPLC. For structure elucidation, products were isolated from large-scale incubations of 10 ml 
with 4 mg protein. 

4. Time and pH dependent assays with 1

To determine the nonenzymatic formation, a time dependent assay was performed. 1 mM 1,3-
dihydroxynaphthalene (1) was incubated with 10 mM CaCl2, 2 mM DMAPP, 0.15–1.5% (v/v) 
glycerol, 5% (v/v) DMSO and 20 μg of denatured FgaPT2 in 50 mM Tris-HCl (pH 7.5) at 37°C 
for 0, 0.5, 4 and 24h. pH dependence assays were carried out by incubation in phosphate 
buffer at pH 2.5, 6.0, 7.5, 8.5 and 10 for 1 h. The products were monitored on LC-HRMS. 

5. Enzyme assays under 18O2-enriched atmosphere and in buffer with 18O-enriched
water

For incubation with FgaPT2 and 1,3-dihydroxynaphthalene (1) under 18O2-enriched 
atmosphere, a 500 µL assay contained the same components as in the standard reaction 
mixture. 16O2 in the reaction mixture was removed by application of vacuum followed by 
flushing with argon for three times. Argon was then removed by vacuum and finally 18O2 was 
allowed to enter the reaction mixture, as reported previously.6,7 After incubation at 37 °C for 3 
h, the reaction was terminated by addition of 500 µL CH3CN, and subjected to LC-HRMS 
analysis as described below. One assay was carried out under normal condition as a control. 
For incubation with FgaPT2 and 1,3-dihydroxynaphthalene (1) in buffer with 18O-enriched 
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water, a 50 µL reaction mixture contained the same components as in the standard assay in 
a mixture of H2

18O and H2
16O with a ratio of 4:1. 

6. HPLC and LC-HRMS conditions for analysis and isolation of products

Separation was performed on an Agilent series 1200 HPLC (Agilent Technologies, Böblingen, 
Germany) with an Agilent Eclipse XDB-C18 column (150 × 4.6 mm, 5 μm). H2O (A) and CH3CN 
(B), both with 0.1 % (v/v) trifluoroacetic acid, were used as solvents at a flow rate of 0.5 
mL/min. The substances were eluted with a linear gradient from 15–80 % B in 50 min. The 
column was then washed with 100 % (v/v) solvent B for 10 min and equilibrated with 5 % (v/v) 
solvent B for 10 min. Product isolation was performed on the same equipment with an Agilent 
Eclipse XDB-C18 column (9.4 × 250 mm, 5 μm) column, and a linear gradient from 35–80 % 
B in 20 min at a flow rate of 2.5 ml/min. 

LC-HRMS analysis was performed on an Agilent 1260 HPLC system equipped with a 
microTOF-Q III spectrometer (Bruker, Bremen, Germany) by using a Multospher 120 RP18-
5µ column (250 × 2 mm, 5 μm) (CS-Chromatographie Service GmbH, Langerwehe, 
Germany). H2O (A) and CH3CN (B), both with 0.1% (v/v) formic acid, were used as solvents 
at a flow rate of 0.25 mL/min and the same gradient for separation. Electrospray positive or 
negative ionization mode was selected for determination of the exact masses. The capillary 
voltage was set to 4.5 kV and a collision energy of 8.0 eV. Sodium formate was used in each 
run for mass calibration. The masses were scanned in the range of m/z 100–1500. Data were 
evaluated with the Compass DataAnalysis 4.2 software (Bruker Daltonik, Bremen, Germany). 

7. NMR analysis

For structural elucidation, the isolated products were dissolved in DMSO-d6 or CD3CN and 
subjected to NMR analysis. The spectra were recorded at room temperature on a Bruker 
Avance III 500 MHz (1H) or 125 MHz (13C) spectrometer installed with a cryo probe 5 mm 
Prodigy for Broad Band Observation. All spectra were processed with MestReNova 6.0.2 
(Metrelab Research) and the chemical shifts were referenced to those of the solvents. The 
NMR data are given in Tables S2–S5 and spectra as Figures S1–S23. 

8. Structure elucidation

Compound 2 was obtained as beige amorphous solid. The 1H and 13C NMR of 2 showed 
signals of one methylene, one olefin and two tertiary methyl units. In addition, the HMBC 
correlations of H-1´/C-3, C-4 and C-10 suggested that a dimethylallyl residue was attached to 
position C4. 

Compound 3 was isolated as creamy white solid. The HMBC correlations of H-5/C-4, H-8/C-
1, H-2/C-4, H-2/C-3´, H-2/C-2´, H-1´/C-3, H-1´/C-3´ as well as 1H-1H COSY correlations of H-
1´/H-2´/2´-OH indicated that a bicyclo[3.3.1]nonane system was fused with an aromatic ring 
through C-9 and C-10. Two additional hydroxyl groups were confirmed to be at C-4 and C-2´ 
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by the HMBC correlation of 4-OH/C-4, C-1´ and C-10 as well as of 2´-OH/C-1´, C-2´ and C-3´. 
The relative configuration of 3 was determined by NOESY analysis. Strong correlations of ´H-
2´/H-4´ with H-1´/H-5´ as well as weak cross peak between 4-OH and H-2´ suggest that 4-OH 
and 3´-OH are located with opposite orientations. 

Compound 4 and 5 was obtained as creamy white solids. 4 and 5 are two isomers with the 
same molecular formula, C15H16O4, deduced from HR-ESI-MS data. The 1H, 13C, and HMBC 
(Tables S4 and S5) showed the same planar structures for 4 and 5, namely 4,3´-dihydroxyl 
tetrahydrofuran derivatives with two chiral centers. The relative configuration of 4 as shown in 
Figure S18 was confirmed by the NOESY correlations of 4-OH to H-2´. In comparison, the 
NOESY spectrum of 5 suggested an α-orientated 4-OH and β-orientated 2´-H as shown in 
Figure S23. 
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Tables 

Table S1 HR-ESI-MS data of the reported compounds 

[M + H]+ Deviation 
[ppm] 

[M - H]- Deviation 
[ppm] Compound Formula Calculated Measured Calculated Measured 

2 C15H16O2 229.1223 229.1224 -0.4 227.1078 227.1088 -4.4

3 C15H16O4 261.1121 261.1126 -1.9 259.0976 259.0974 0.8

4 C15H16O4 261.1121 261.1129 -3.1 259.0976 259.0972 1.5

5 C15H16O4 261.1121 261.1127 -2.3 259.0976 259.0983 -2.7
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Table S2 NMR data of compound 2 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

OH

OH Key HMBC

1
2

3
45

6

7
8

9

10

1' 2'

3'
4' 5'

Position δH, multi., J in Hz δC, type HMBC correlations 
1 - 152.2, C - 
2 6.62, s 100.6, CH C-1, 3, 4, 9
3 - 152.2, C -
4 - 109.5, C -
5 7.67, dd, 8.5, 1.0 122.6, CH C-1, 4, 7, 9, 10
6 7.37, ddd, 8.5, 6.7, 1.6 126.3, CH C-8, 10
7 7.16, ddd, 8.3 6.7, 1.0 120.7, CH C-5, 6, 9
8 7.98, dd, 8.3, 1.6 122.4, CH C-1, 6, 10
9 - 120.1, C -
10 - 133.8, C -
1´ 3.52, d, 6.7 23.1, CH2 C-2´, 3´, 3, 4, 10
2´ 5.09, m 124.5, CH C-4´, 5´
3´ - 129.7, C -
4´ 1.80, s 17.9, CH3 C-2´, 3´, 5´
5´ 1.61, s 25.5, CH3 C-2´, 3´, 4´
1-OH 9.88, s - C-1, 2, 9
3-OH 9.30, s - C-2, 3, 4

96



S9 

Table S3 NMR data of compound 3 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

O

O

OH
OH

1'
2'

3'
4

1

2

8

6

9

5

7

10
3

4'
5'

O

O

CH3
CH3

OH
OH

1'
2'

3'
4

1 2
8

6

9

5

7

10
3

4'5'

1H-1H COSY Key HMBC

O

O

CH3
CH3

OH
OH

1'

2'
3'

4

1

2

8

6

9

5

7

10
3 4'

5'

Key NOESY

H

H
Ha Hb

Position δH, multi., J in Hz δC, type HMBC correlations COSY correlations NOESY correlations 
(s:strong, w:weak) 

solvent DMSO-d6 CD3CN DMSO-d6 CD3CN DMSO-d6 CD3CN DMSO-d6 CD3CN 

1 - - 194.2, C 193.7, C - - - - 

2 3.25, s 3.30, s 73.6, CH 73.1, CH C-1, 3, 4, 9, 2´, 3´,4´, 5´ C-1, 3, 4, 9, 2´, 3´,4´, 5´ - H-4´, 5´ 
3 - - 205.2, C 204.7, C - - - - 

4 - - 77.6, C 77.6, C - - - - 

5 7.83, ma 7.83, ddd, 7.9, 1.3, 0.5 125.5, CH 125.1, CH C-4, 7, 9 C-4, 7, 9 H-6 - 

6 7.82, ma 7.78, ddd, 7.9, 7.2, 1.4 135.9, CH 135.5, CH C-10 C-8, 10 H-5, 7 H-7

7 7.55, m 7.51, ddd, 7.9, 7.2, 1.3 128.4, CH 128.1, CH C-5, 9 C-5, 9 H-6, 8 H-6, 8 

8 7.90, d, 7.9 7.94, ddd, 7.9, 1.4, 0.5 125.2, CH 124.8, CH C-1, 6, 10 C-1, 6, 10 H-7 H-7

9 - - 131.2, C 129.8, C - - - - 

10 - - 146.8, C 146.1, C - - - - 

1´a 1.98, dd, 12.8, 5.2 2.17, dd, 12.7, 5.4 46.8, CH2 46.5, CH2 C-3, 4, 10, 2´, 3´ C-3, 4, 10, 2´, 3´ H-2´ H-2´, 2´-OH, H-5´(s), H-4´(w) 

1´b 2.11, dd, 12.8, 11.3 2.21, dd, 12.7, 11.3 C-3, 4, 10, 2´, 3´ C-3, 4, 10, 2´, 3´ H-2´ H-2´, 2´-OH 

2´ 3.09, ddd, 11.3, 5.5, 5.2 3.25, ddd, 11.3, 5.6, 5.4 69.6, CH 69.5, CH C-3´, 4´, 5´ C-1´, 4´, 5´ H-1´a, 1´b, 2´-OH H-4´, 1´a, 1´b 

3´ - - 44.8, C 44.7, C - - - - 

4´ 1.01, s 1.08, s 18.8, CH3 18.5, CH3 C-2, 2´, 3´, 5´ C-2, 2´, 3´, 5´ - H-2´, 1´a(w) 

5´ 0.91, s 0.91, s 24.8, CH3 24.5, CH3 C-2, 2´, 3´, 4´ C-2, 2´, 3´, 4´ - H-2, 1´a(s) 

4-OH 6.37, s 4.37, s - - C-4, 1´, 10 C-4, 1´, 10 - H-2´

2´-OH 4.94, d, 5.5 2.98, d, 5.6 - - C-2´, 3´ C-1´, 2´, 3´ H-2´ H-1´a, 1´b 
a Signals are overlapping with each other. 
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Table S4 NMR data of compound 4 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

O

O
HO

OH

1
2
3

410

8
7

6

9

5

1' 2' 3' 5'

4'

O

O
HO

OH

1
2
3

4
10

8
7

6

9

5

1' 2' 3' 5'

4'
1H-1H COSY Key HMBC

O

O
HO

OH

1
2

3
410

8
7

6

9

5
1'

2' 3' 5'

4'

Key NOESY

HHa Hb

Position δH, multi., J in Hz δC, type HMBC COSY correlations NOESY correlations 
1 - 185.1, C - - - 
2 5.55, s 98.5, CH C-1, 3, 4, 9 - H-2´, 4-OH 
3 - 179.6, C - - - 
4 - 73.2, C - - - 
5 7.62, ma 126.6, CH C-1, 4, 7, 9 H-6 H-1´a, 1´b, 4-OH, 7
6 7.61, ma 132.1, CH C-8, 10 H-5, 7 H-7
7 7.49, ddd, 7.7, 6.2, 2.4 128.3, CH C-5, 9, 10 H-6, 8 H-5, 6, 8
8 7.89, d, 7.7 125.4, CH C-1, 6, 10 H-7 H-7
9 - 130.6, C - - -
10 - 141.2, C - - -
1´a 2.70, dd, 12.6, 4.6 C-3, 4, 2´ H-1´a, 2´ H-5, 2´, 4-OH, 1´b, 5´
1´b 2.05, ddd, 12.6, 10.1, 1.1 35.9, CH2 C-10, 2´, 3´ H-1´b, 2´ H-5, 3´-OH, 1´a, 4´, 5´
2´ 4.77, dd, 10.1, 4.6 91.5, CH C-1´, 4´, 5´ H-1´a, 1´b H-1´a, 4´, 5´, 4-OH
3´ - 69.2, C - - -
4´ 1.22, s 26.1, CH3 C-2´, 3´, 5´ - H-5´,1´a, 1´b, 3´-OH, 2´, 4-OH
5´ 1.11, s 25.6, CH3 C-2´, 3´, 4´ - H-4´, 1´a, 3´-OH, 2´, 4-OH
4-OH 6.27, d, 1.1 - C-1´, 3, 4 - H-4´, 5´, 1´a, 2´, 2, 5
3´-OH 4.68, s - C-2´, 3´, 4´, 5´ - H-4´, 5´, 1´b, 5

a Signals are overlapping with each other. 

98



S11 

Table S5 NMR data of compound 5 (500 MHz for 1H NMR and 125 MHz for 13C NMR) 

O

O
HO

OH

1
2
3

4
10

8
7

6

9

5
1' 2' 3'

4'

5'

1H-1H COSY Key HMBC

O

O
HO

OH

1 2

34
10

8
7

6

9

5
1' 2'

3'

4'

5'

Key NOESY

HbHa H

O

O
HO

OH

1
2

34
10

8
7

6

9

5 1' 2'
3'

4'

5'

Position δH, multi., J in Hz δC, type HMBC correlations NOESY correlations 
1 - 185.2, C - - 
2 5.60, s 98.5, CH C-3, 4, 9 H-2´
3 - 180.1, C - - 
4 - 72.1, C - - 
5 7.65, ma 126.8, CH C-4, 7, 9 H-1´a, 1´b, 6
6 7.64, ma 132.1, CH C-8 H-5, 7
7 7.50, ddd, 7.6, 6.2, 2.5 128.3, CH C-5, 9 H-6, 8
8 7.90, d, 7.6 125.3, CH C-1, 6, 10 H-7
9 - 130.6, C - - 
10 - 141.2, C - - 
1´a 2.91, dd, 13.9, 1.1 34.7, CH2 C-3, 4, 3´ H-1´b, 5, 5´, 3´-OH, 4-OH
1´b 2.54, dd, 13.9, 10.0 C-2´, 10, 4, 3´ H-1´a, 5, 2´
2´ 4.71, dd, 10.0, 1.1 91.7, CH C-1´, 4´, 5´, 3, 4 H-1´b, 4´, 5´, 2
3´ - 70.0, C - - 
4´ 1.35, s 26.4, CH3 C-2´, 3´, 5´ H-2´, 5´, 3´-OH, 4-OH
5´ 1.26, s 27.0, CH3 C-2´, 3´, 4´ H-2´, 4´, 1´a, 3´-OH, 4-OH
4-OH 6.98, br s - C-1´, 4, 10 1´a, 4´, 5´
3´-OH 6.11, br s - C-2´ 1´a, 4´, 5´

a Signals are overlapping with each other. 
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Figures 

Figure S1. 1H NMR spectrum of compound 2 in DMSO-d6 (500 MHz) 
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Figure S2. 13C NMR spectrum of compound 2 in DMSO-d6 (125 MHz) 
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Figure S3. HSQC NMR spectrum of compound 2 in DMSO-d6 
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Figure S4. HMBC NMR spectrum of compound 2 in DMSO-d6 
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Figure S5. 1H NMR spectrum of compound 3 in DMSO-d6 (500 MHz) 
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Figure S6. 13C NMR spectrum of compound 3 in DMSO-d6 (125 MHz) 
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Figure S7. HSQC NMR spectrum of compound 3 in DMSO-d6 
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Figure S8. HMBC NMR spectrum of compound 3 in DMSO-d6 
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Figure S9. 1H-1H COSY NMR spectrum of compound 3 in DMSO-d6 
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Figure S10. 1H NMR spectrum of compound 3 in CD3CN (500 MHz) 
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Figure S11. HMBC NMR spectrum of compound 3 in CD3CN  
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Figure S12. NOESY NMR spectrum of compound 3 in CD3CN 
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Figure S13. 1H NMR spectrum of compound 4 in DMSO-d6 (500 MHz) 
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Figure S14. 13C NMR spectrum of compound 4 in DMSO-d6 (125 MHz)  
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Figure S15. HSQC NMR spectrum of compound 4 in DMSO-d6 
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Figure S16. HMBC NMR spectrum of compound 4 in DMSO-d6 
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Figure S17. 1H-1H COSY NMR spectrum of compound 4 in DMSO-d6 
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Figure S18. NOESY NMR spectrum of compound 4 in DMSO-d6 
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Figure S19. 1H NMR spectrum of compound 5 in DMSO-d6 (500 MHz) 
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Figure S20. 13C NMR spectrum of compound 5 in DMSO-d6 (125 MHz) 
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Figure S21. HSQC NMR spectrum of compound 5 in DMSO-d6  
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Figure S22. HMBC NMR spectrum of compound 5 in DMSO-d6 
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Figure S23. NOESY NMR spectrum of compound 5 in DMSO-d6 
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Figure S24. LC-HRMS analysis of the incubation mixtures with FgaPT2  

The enzyme assays were incubated under standard condition (A), under 18O-enriched atmosphere (B) or in buffer 

with 18O-enriched water (C) at room temperature for 3h. Extracted Ion Chromatograms (EICs) refer [M + H]+ ions 

of 1 (D), 2 (E) and 3−5 (F) with a tolerance range of ±0.005.   
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ABSTRACT: The biosynthetic pathway of the prenylated
salicylaldehyde flavoglaucin and congeners in Aspergillus ruber
was elucidated by genome mining, heterologous expression,
precursor feeding, and biochemical characterization. The polyke-
tide skeleton was released as alkylated salicyl alcohols, which is a
prerequisite for consecutive hydroxylation and prenylation, before
reoxidation to the final aldehyde products. Our results provide an
excellent example for a highly programmed machinery in natural
product biosynthesis.

Flavoglaucin (1a) and congeners 1b−1h are prenylated
salicylaldehyde derivatives carrying a saturated or an

unsaturated C7 side chain (Figure 1). They were isolated from

various microorganisms including Aspergillus ruber1−6 and
show interesting biological activities.2,6−11 Moreover, they are
also proposed to be precursors of complex molecules like
cryptoechinulin D and effusin A.12,13 However, little is known
about their biosynthesis and the involved enzymes.
Involvement of a highly reducing polyketide synthase (HR-

PKS) was reported in the biosynthesis of the alkylated
salicylaldehyde pyriculol in Magnaporthe oryzae.14 A homolo-
gous (srd) cluster from Neurospora crassa was later identified
for the biosynthesis of sordarial (Figure 2). Four genes coding
for a HR-PKS SrdA, a cupin-domain-containing protein SrdD,
and two short-chain dehydrogenases/reductases (SDRs) SrdC
and SrdE are essential for the formation of sordarial, which was

likely reduced by a reductase from the host Aspergillus nidulans
A1145.15 Recently, the vir cluster was discovered for the
trichoxide biosynthesis in Trichoderma virens (Figure 2) by
expression in the same host A1145.16 Three homologous genes
of the sordarial cluster, VirA (SrdA homologue), VirB (SrdC),
and VirD (SrdE), were proposed to be responsible for
alkylated salicylaldehyde formation, which was then reduced
by a third SDR VirG.16

Genome mining17 revealed the presence of a nine-gene ( fog)
cluster in A. ruber with four homologues of more than 40%
identity to that of the srd and six of the vir cluster (Figure 2).
These include a HR-PKS FogA (homologue of SrdA and
VirA), SDRs FogB (SrdC, VirB), FogD (SrdE, VirD), and
FogG (VirG), a cupin protein FogC (SrdD, VirC), and a
cytochrome P450 (CYP) FogE (VirE). This suggests the
involvement of the fog cluster in the flavoglaucin biosynthesis,
which was strongly supported by the presence of a
prenyltransferase (PT) gene fogH. Furthermore, genes for an
oxidoreductase FogF and a transcription factor (TF) FogI are
also present. Orthologous clusters sharing sequence identities
between 87.5 and 95.6% were found in the A. glaucus and A.
cristatus genomes (Table S1 in Supporting Information (SI)).
Cultivation of the three fungi and LC-MS analysis confirmed
their capability to produce 1a and congeners 1b−1f (Figures 1
and SI, see below for identification).

Received: February 4, 2020
Published: March 5, 2020

Figure 1. Flavoglaucin and congeners isolated from A. ruber.
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To provide evidence that the identified fog cluster is
responsible for 1a biosynthesis, the whole cluster fogA-I was
assembled in Saccharomyces cerevisiae and integrated into the A.
nidulans LO8030 genome18 under control of their native
promoters (see SI, Tables S2−S4 and Figures S2−S5 for
details). LC-MS analysis of the resulting transformant A.
nidulans JN004 led to detection of 1a−1f (Figures 3ii and S6),
in comparison to that of the control (Figure 3i). Isolation and
structural elucidation (see SI for details; NMR data are given
in SI and spectra as Figures S23−S73) confirmed 1a, 1b, 1c,
and 1d as flavoglaucin,7 aspergin,7 dihydroauroglaucin,1 and
auroglaucin,7 respectively. 1e and 1f were also reported
previously.2,19 Deletion of fogI led to complete abolishment
of the cluster products (Figures 3iii), proving its importance as
a positive regulator for gene expression, as reported for other
TF genes.20,21

Having identified the fog cluster, we intended to elucidate
the gene function. fogA, coding for a HR-PKS with the domain
structure KS-AT-ACP-DH-ER-KR, was integrated into the
LO8030 genome. LC-MS analysis of the fogA expression strain
JN001 showed one major product peak 2d and three minor
peaks 3d−5d (Figures 4Ai and S7). 2d with a [M(C14H22O5)
− H]− ion at m/z 269.1387 (calcd 269.1389) was instable
during isolation and converted in water easily to 3d, 4d, and
5d, sharing a molecular formula of C14H20O4 (Figures 4Aii and
S7). Obviously, 2d was converted to 3d−5d by water
elimination. Indeed, structural elucidation confirmed that 3d,
4d, and 5d are lactone and tetrahydropyran derivatives of
(8E,10E,12E)-3,5,7-trihydroxytetradeca-8,10,12-trienoic acid
(2d) (Figure 4B). This result is consistent with that of VirA
being responsible for assembling the polyketide chain but
requiring additional enzymes for modification and cyclization.
In contrast to VirA probably reducing acyl thioesters to
aldehydes, FogA released a carboxylic acid 2d as its product.
Moreover, masses for its derivatives with one and two double
bonds were also detected (Figure S7). This indicates that FogA
is able to reduce the initial triketide, thus being at least partially
responsible for the differently saturated heptyl side chains of 1a
congeners.
To find enzymes involved in the aromatic core formation,

we deleted single genes in JN004. Deletion of fogA resulted in
complete abolishment of product formation (Figure 3iv).
Neither 1a and congeners nor 2d and its rearrangement
products 3d−5d could be observed by UV detection after
removing fogB, fogC, or fogD from the cluster (Figure 3v−vii).
This is in agreement with the expression results of srdACD.15

However, inspection of the extracted ion chromatograms
(EICs) of the ΔfogB, ΔfogC, and ΔfogD strains revealed the
presence of 2d (Figure S8). In comparison, no trace of 2d was

detected in the EIC of the ΔfogA mutant. Conserved domain
analysis revealed similarities between FogB and enoyl-(ACP)
reductases, which catalyze double bond reduction in fatty acid
biosynthesis and 3-oxoacyl-(ACP) reductases involved in the
conversion between β-ketoacyl-ACP and β-hydroxyacyl-
ACP.22−24 Therefore, FogB was speculated to be responsible
for oxidation of a hydroxyl group or reduction of remaining
double bond(s) at the C7 residue (Scheme 1). FogD shares a
sequence identity of 71.9% with VirD (Figure 2), catalyzing
both alcohol oxidation and aldehyde reduction.16 The very low
accumulation of 2d in the ΔfogD mutant (Figure S8v) could
indicate its role for the reductive release of the modified PKS
products. In conclusion, this implies that the nascent
polyketide is modified in FogA-bound form by FogBCD
(Scheme 1).
Four products 6a−6d were detected in the expression strains

of fogABCDI, i.e., ΔfogEFGH from JN004 (Figures 3xi and S9),
fogABCDGI (ΔfogEFH, Figures 3x and S10), and fogABCDF-
GHI (ΔfogE, Figures 3ix and S11). Structural elucidation
confirmed 6a, 6b, 6c, and 6d to be 2-alkyl salicyl alcohols with
none, one, two, and three double bonds on the side chain,
respectively (Scheme 1). This proved that FogABCD is
necessary for the formation of the aromatic core and that the
cyclized PKS products were released as salicyl alcohols. The
cytochrome P450 FogE is responsible for the hydroxylation at
C3 of the benzene ring afterward. FogG, however, seems to
have no function because no difference between ΔfogEFGH
and ΔfogEFH transformants (Figures 3x and xi) was observed,
which was also confirmed by deletion of fogG from JN004
(Figures 3viii and S12). The same products 1a−1f were
detected from the fog cluster with and without fogG (Figures
3ii and viii). These results differ clearly from those observed for
its homologue VirG (54.9% sequence identity), which
catalyzes the reduction of salicylaldehydes to salicyl alcohols.16

It can not be excluded that a FogG homologue from A.
nidulans complements its function. However, the best hit
AN5653.2 was found only to share a sequence identity of
37.0% with FogG.
Deletion of fogE alone resulted also in the accumulation of

1a and 1b as minor products (Figure 3ix). It seems that 6a and
6b were used by an endogenous enzyme from A. nidulans as
substrates and converted to 2-heptyl-3,6-dihydroxybenzyl
alcohols violaceoid C (7a) and A (7b),25 which were
subsequently metabolized by the enzymes of the flavoglaucin
pathway. Hydroxylation of 6a and 6b by an A. nidulans enzyme
was also observed in deletion mutants ΔfogEFH and
ΔfogEFGH (Figures 3x and xi). However, the hydroxylated
products 7a and 7b could not be further consumed in these
strains. Blast search revealed indeed the presence of a

Figure 2. Comparison of fog cluster in A. ruber with srd cluster in N. crassa and vir cluster in T. virens. The sequence identities on the amino acid
level are given as percent.
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candidate cytochrome P450 AN8358.4 in A. nidulans, sharing a
sequence identity of 49% with FogE.
Accumulation of unprenylated derivatives 7a and 7b in the

transformants with fogH deletion, i.e., ΔfogEFH, ΔfogEFGH,
and ΔfogH (Figures 3x−xii, S9, S10, and S13), indicated that
the FogE products are substrates of the prenyltransferase FogH
(Scheme 1). This hypothesis was proven by biochemical
characterization with recombinant FogH from E. coli (Figure
S15). As shown in Figure 5Ai, 77.7% of 7a was converted to 9a
by FogH after incubation with dimethylallyl diphosphate

(DMAPP) at 37 °C for 10 min. Structural elucidation
confirmed 9a as the expected prenylated product. During the
isolation, it was observed that 9a was unstable and can be
easily oxidized to its quinone 10a, which was also detected in
the FogH assay with a yield of 2.3% (Figure 5Ai). Spontaneous
conversion between 7a, its quinone 8a, and aldehyde 12a as
well as between 9a and its quinone 10a was proven by
incubation in aqueous solution at 25 °C (Figures S16 and
S17).

Figure 3. LC-MS analysis of the extracts of A. nidulans strains.

Figure 4. HPLC analysis of the extract of A. nidulans JN001 harboring
fogA and nonenzymatic conversion of 2d to 3d−5d (A). Schematic
presentation of their relationships (B).

Scheme 1. Proposed Biosynthetic Pathway of Flavoglaucin
and Congeners

Figure 5. In vitro assays of FogH with its natural substrate 7a (A) and
the corresponding quinone 8a (B) as well as aldehyde 12a (C).
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To provide evidence that the benzyl alcohol feature is really
essential for the prenylation, we synthesized the corresponding
aldehyde 12a (Figure S18) and used it for FogH incubation.
The benzoquinone alcohol 8a was also tested. As shown in
Figure 5, 8a was well accepted by FogH and converted to 10a
with a yield of 41.0%. However, 12a was not consumed by
FogH at all, proving the alcohol group is a prerequisite for
acceptance by FogH. Therefore, it makes sense that the
aromatic core was released as alcohols rather than aldehydes,
although the prenylated benzyl alcohols have to be finally
oxidized back to aldehydes. This differs clearly from other
known pathways. PTs utilize substituted benzoic acids,
lactones, or aldehydes as substrates.26−28 In the case of
ilicicolin B, a metabolite closely related to flavoglaucin,
orsellinic acid is first prenylated and subsequently reduced to
the aldehyde.29,30 Determination of kinetic parameters proved
the dihydroquinone 7a and congeners as natural substrates of
FogH (Figure S19), being in consistence with 7a and 7b as
products of the ΔfogH mutants (Figures 3x−xii).
The prenylation product 9a has to be oxidized to 1a

subsequently. We therefore deleted the oxidoreductase gene
fogF from the cluster, leading indeed to the accumulation of 9a
and congeners 9b−9d (Figures 3xiii and S14). As observed for
7a, compounds 9a−9d were instable and rapidly oxidized to
their quinone form, so that 9a was isolated as its quinone 10a
and 9b as a benzofuran derivative 13b after oxidation and
intramolecular cyclization (Figure S20). This phenomenon
could explain the isolation of flavoglaucin congeners with a
benzofuran ring from fungi like A. ruber.1 The prenylated
dihydroquinone alcohols 9a−9d differ from the final cluster
products only in the oxidation stage of the hydroxymethyl
group. Accumulation of 9a−9d as major products in the ΔfogF
mutant indicates its role for the oxidation of the benzyl
alcohols to final aryl aldehydes, i.e., the last step in the
biosynthesis of flavoglaucin and congeners (Scheme 1). The
presence of 1a−1d in the mutant is very likely caused by direct
nonenzymatic oxidation of the alcohol to the aldehyde, which
was confirmed by detection of 1a as the minor product after
incubation of 9a in PDB medium (Figure 6Aiii).

Attempts to produce recombinant FogF for biochemical
investigation failed (data not shown). We therefore verified its
function by expressing fogF in A. nidulans. The overexpression
strain JN025 was cultivated in PDB medium and fed with 9a
and the corresponding quinone 10a for 4 days at final
concentrations of 50 μM. In PDB medium, 66.5% of 9a was

oxidized to 10a (Figure 6Aiii). 95% of 9a was converted to 1a
in JN025 (Figure 6Ai), significantly higher than the 2.8%
conversion in the isogenic control (Figure 6Aii). In this
culture, 9a was still the major product (77%), and only 20%
was oxidized to quinone 10a. It seems that the A. nidulans
culture condition is more suitable to keep the reduced form of
dihydroquinone/benzoquinone, being in consistence not only
with the detected products 9a−9d in the ΔfogF mutant (Figure
3xiii) but also with the results obtained by feeding 10a in
JN025. As shown in Figure 6B, 98.7% of the fed 10a was
converted to 1a in JN025, while only 1.4% was transformed to
1a and 87% to 9a in the isogenic control. It is plausible that the
fed 10a was first converted to 9a and then oxidized to 1a by
FogF. Furthermore, reactions between two quinone molecules
as shown in Figure S17 also contribute to the presence of 9a,
10a, and 1a in isogenic controls (Figure 6).
Additionally, the unprenylated 7a and the benzofuran

derivative 13b were fed into the fogF overexpression mutant
JN025. Neither 7a nor 13b was converted to their expected
aldehydes 12a and 11b, proving the importance of the prenyl
moiety and the noncyclized C7 side chain (Figures S21 and
S22). The furan ring of the related flavoglaucin derivatives is
very likely formed after oxidation of the benzyl alcohol to
aldehyde via nonenzymatic rearrangements as demonstrated
above.
In summary, we elucidated the biosynthetic pathway for

flavoglaucin and congeners. As reported previously,15,16 several
enzymes are necessary for the formation of the aromatic core
structure. Differing from the trichoxide biosynthesis,16 the
backbone of flavoglaucin was released as salicyl alcohol, which
is critical for the subsequent hydroxylation and prenylation.
After decoration, the alcohol was oxidized to the final aldehyde
products by an oxidase, which only accepted prenylated
derivatives as substrates. Therefore, this study demonstrated a
highly programmed biosynthetic pathway.
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S5 

Experimental Procedures 

1. Strain cultivation

Escherichia coli DH5α was used for DNA propagation. The bacteria were cultivated at 37°C on
Lysogeny Broth medium (LB) supplemented with carbenicillin (50 µg/ml) for selection.

Saccharomyces cerevisiae HOD114-2B was used for cloning by homologous recombination.1 
Generally, yeast was grown at 30°C in YPD medium [1% yeast extract, 2% peptone and 2% 
glucose]. Selection was performed with synthetic complete (SC) medium without uracil (SC-Ura) 
[6.7 g/L yeast nitrogen base with ammonium sulfate, 650 mg/L CSM-His-Leu-Ura (MP 
Biomedicals), histidine and leucine].2 

Aspergillus nidulans strains were cultured at 37°C on Glucose Minimal Medium (GMM)3 
supplemented with 1 mg/ml uracil, 2.442 mg/ml uridine, 2.5 µg/ml riboflavin and 0.5 mg/ml 
pyridoxine depending on used selective marker genes. Small-scale fermentation in order to 
prove new metabolites in the created strains was carried out on 10 g Alnatura long-grain rice 
with 15 ml distilled H2O (total volume assumed: 25 ml) supplemented with uracil, uridine, 
riboflavin or 5 g/L yeast extract for pyridoxine-auxotrophy depending on the selective marker 
used. These cultures were incubated at 25°C for 10 days. 

Aspergillus ruber, Aspergillus cristatus and Aspergillus glaucus were cultivated at 25°C on 
Potato Dextrose medium [24 g/L potato dextrose broth (Sigma Aldrich)] either in a standing 
culture or shaking at 200 rpm for 14–28 days. 

2. Isolation of DNA from fungi

For genomic DNA (gDNA) isolation, A. ruber QEN-0407-G2 was grown in Potato Dextrose Broth
at 25°C and shaking at 230 rpm for 14 days. The mycelium was collected, washed with distilled
H2O, frozen with liquid nitrogen and powdered with mortar and pestle. 1.2 ml Digestion Buffer
[100 mM NaCl, 10 mM Tris, 25 mM EDTA, 0,5% (w/v) SDS; pH 8] with 0.1 mg/ml proteinase K
were added to 100 mg powdered mycelium. The mixture was incubated at 50°C for 2 h with
shaking at 160 rpm. The gDNA was extracted by addition of one volume
phenol/chloroform/isoamyl alcohol (25:24:1). After inversion of the mixture for 2 min and
centrifugation at 13000 rpm for 5 min the aqueous phase was taken and the DNA was
precipitated by addition of 0.1 volume 3 M sodium acetate and 1 volume 2-propanol before
centrifugation of the mixture at 13000 rpm at 4°C for 30 min. The DNA was washed once with
600 µl 70% (v/v) ethanol and dissolved in distilled H2O after drying at 55°C.

For quick gDNA isolation from A. nidulans, the fungus was grown in 0.5 ml GMM at 37°C 
overnight. The lightly dried mycelium was transferred into 400 µl LETS solution [20 mM EDTA, 
0.5% (w/v) SDS, 0.1 M LiCl, 10 mM Tris-HCl; pH 8] and crushed with glass beads in a Minilys 
Homogenizer (Bertin Technologies, Montigny-le-Bretonneux. France) for 200 seconds at full 
speed. 300 µl LETS solution were added and the further gDNA extraction was carried out as 
described above. 

3. Isolation of RNA and cDNA synthesis

A. ruber QEN-0407-G2 was grown as a shaking culture in PDB at 25°C and 230 rpm for two
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weeks. The mycelium was separated from the medium by filtration. Total mRNA was extracted 
with the E.Z.N.A® Fungal RNA Kit (Omega bio-tek, Norcross, USA) according to the manual. 
The mRNA was used for cDNA synthesis with the help of the ProtoScript® First Strand cDNA 
Synthesis Kit (New England BioLabs, Ipswich, USA) using oligo-dT primers. 

4. Cloning of flavoglaucin cluster for heterologous expression in A. nidulans LO8030

The flavoglaucin cluster (EURHEDRAFT_499888 - _402538 + 500 bp upstream of the first and
downstream of the last gene; bp 222263-244370; unplaced genomic scaffold00012; A. ruber

CBS135680 genome GenBank: KK088422) was amplified from gDNA of A. ruber QEN-0407-
G2 in 5 fragments with primers listed in Table S2. The fragments were designed with a 300–322
bp overlap to each other, the outmost fragments carried a 25 bp overlap to the linearized pYWB2
which in turn had an overlap to the outmost fragments of 24 bp (Table S2). pYWB2 was
linearized via PCR with the primers prJN081 & prJN091 (Table S2). The reconstruction of the
cluster and cloning into the plasmid was carried out by yeast homologous recombination as
described4, leading to pJN014 (Table S3). In analogy, pJN041 for triple deletion mutant JN020
∆fogEFH was created similarly. The cluster fragments ended before the first or started after the
last base of the genes to be deleted and shared 25 bp overlap to each other.

5. Cloning of the deletion vectors

For the deletion of the single genes of the flavoglaucin gene cluster, 1.2 kb upstream and
downstream of the respective gene were amplified with primers listed in Table S2 introducing
complementary overhangs of 30-35 bp to the backbone of pYWB2 and the pyrG-gene cassette
of A. fumigatus, which served as selection marker. The cloning of AfpyrG between the 5’- and
3’-regions into pYWB2 to form the deletion vector was performed via yeast homologous
recombination.

6. Cloning of pVW84 for heterologous expression of fogH in E. coli

The open reading frame for fogH without any introns was amplified from A. ruber QEN-0407-
G2 cDNA with primers vwRbPT3-f' and vwRbPT3-r introducing recognition sites for SphI (5’) and
BamHI (3’). The commercially available vector pQE-70 (Qiagen, Venlo, Netherlands) and the fogH

fragment were digested with SphI and BamHI and purified via ethanol precipitation. The purified
vector and DNA fragment were ligated with T4 DNA ligase (Jena Bioscience, Jena, Germany)
according to the manual before transformation of E. coli DH5α with the ligation mixture.

7. Cloning of pJN052 for heterologous expression of fogF in A. nidulans LO8030

The whole gene fogF with 500 bp 3’ of the stop codon were amplified from A. ruber QEN-0407-
G2 gDNA using primers prJN277 and prJN278 (Table S2) exhibiting 30 bp overhang to SfoI-
linearized pJN017. The linearized plasmid and the DNA-fragment were cloned together via
homologous recombination in yeast to give pJN052.

8. Transformation of A. nidulans LO8030

The transformation of A. nidulans LO8030 was performed through PEG-mediated protoplast
transformation as described5 with one alteration. Cell wall degradation of the germlings was
achieved by digestion with 20 mg yatalase (Takara Bio Inc., Japan) and 50 mg lysing enzymes
from Trichoderma harzianum (Sigma-Aldrich, St. Louis, USA) in 10 ml osmotic medium (1.2 M
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MgSO4, 10 mM sodium phosphate buffer, adjusted to pH 5.8) for 2 - 3 h at 37°C and shaking at 
100 rpm. 

9. Confirmation of positive A. nidulans transformants

gDNA of the transformants was isolated and checked by PCR. Since the correct integration into
the waPKS gene locus could be observed by a color change of the conidia from green to white,
the presence of the integrated cluster/gene was verified by a single PCR with primers amplifying
parts of the inserted gene(s) (Table S2, Figure S1). Primers for the control of gene deletion
mutants were binding upstream or downstream of the homologous parts used for integration
with counterparts binding in the marker gene. Additionally, a PCR with primers binding in the
deleted gene was performed to ensure its absence (Figure S2).

10. Feeding experiments in the fogF expression strain A. nidulans JN025

In order to test the function of the FAD-dependent oxidoreductase FogF, heterologous
expression strain JN025 was created with fogF under control of the constitutive gpdA-promoter.
5 ml PDB with 1 mg/ml (8.9 mM) uracil, 2.442 mg/ml (10 mM) uridine, 0.5 mg/ml pyridoxine and
50 µg/ml carbenicillin in a 25 ml Erlenmeyer flask were inoculated with 4x105 spores. As
substrates the compounds 7a, 9a, 10a, and 13a were dissolved in DMSO and added to the
culture for a final concentration of 50 µM directly after inoculation. In addition to the expression
strain JN025, the isogenic control JN002 and a culture without any fungus were also tested to
monitor stability of the substrates in the medium. The standing cultures were incubated at 25°C
for 4 days. Mycelium and the remaining liquid were transferred into a 50 ml reaction tube. 30 ml
EtOAc were added and the mixture was homogenized with a T 18 digital ULTRA-TURRAX (IKA,
Staufen, Germany) for 30 sec at 10000 rpm. To achieve better phase separation, the mixture
was centrifuged for 5 min at 5000 rpm. The organic phase was filtered and dried via evaporation.
The extracts were dissolved in acetonitrile (ACN) and analyzed via LCMS.

11. Large-scale fermentation, extraction and isolation of secondary metabolites

To isolate flavoglaucin (1a) and its derivatives (1b−1f), A. nidulans JN004 spores were
inoculated into 10 x 2 L-Fernbach flasks containing 100 g Alnatura long-grain rice and 150 mL
H2O supplemented with 500 mg/L uracil + uridine and 5 g/L yeast extract in a total volume of
250 ml each and cultivated at 25°C for 14 days. The cultures were extracted with equal volume
of EtOAc for three times, which was then concentrated and evaporated under reduced pressure
to obtain a crude extract (9.8 g). The crude extract was subjected to silica gel column
chromatography, eluted with petroleum ether (PE) / EtOAc (50:1 to 10:1, gradient), to give nine
fractions (1–9). Fraction 3, eluted with PE / EtOAc (30:1), was further purified on semi-
preparative HPLC (ACN/H2O (85:15)) to yield flavoglaucin (1a) (5 mg) and aspergin (1b) (8 mg).
While 1e (3 mg), 1c (2 mg), and 1f (1.5 mg) were obtained from fraction 4 (PE / EtOAc 25:1) by
using Sephadex LH-20 column eluting with methanol (MeOH) and subsequent semi-preparative
HPLC (ACN/H2O (80:20)). Fraction 6 (PE / EtOAc 20:1) was separated on semi-preparative
HPLC (ACN/H2O (80:20)) to yield 1d (3 mg).

To isolate 2d rearrangement products 3d–5d, A. nidulans JN001 was cultivated in 15 x 2 L-
Fernbach flasks each containing 100 g rice and 150 mL H2O supplemented with 500 mg/L uracil 
+ uridine and 5 g/L yeast extract (for an assumed total volume of 250 ml per flask) at 25°C for
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7 days. The cultures were extracted with EtOAc as mentioned above to obtain a crude extract 
(6.3 g). The crude extract was fractionated on a silica gel column and eluted with a gradient PE 
/ acetone (5:1, 4:1, 3:1, 2:1, 1:1, 1:2, and 1:3), yielding seven fractions (1–7). Further purification 
of fraction 5 on a silica gel column with dichloromethane (CH2Cl2) / MeOH (30:1) as solvents 
afforded three subfractions. Subfraction 1 was subjected to semi-preparative HPLC (ACN/H2O 
(35:65)) to give 3d (10 mg). Fraction 4 (PE / acetone 2:1) was separated on Sephadex LH-20 
column eluting with MeOH to yield pure 4d (5 mg). 5d (3 mg) was obtained from fraction 3 by 
semi-preparative HPLC (ACN/H2O (40:60)). 

To isolate 1a−1d, A. nidulans JN007 was cultivated in 10 x 2 L-Fernbach flasks each containing 
100 g rice and 150 mL H2O supplemented with 5 g/L yeast extract in a total volume of 250 ml 
per flask at 25°C for 10 days. The cultures were extracted with EtOAc as mentioned above to 
obtain a crude extract (4.9 g). The crude extract was separated on a silica gel column and eluted 
with a gradient of PE / EtOAc (20:1 to 1:1) to give 5 fractions (1–5). 6a (3 mg) and 6b (5 mg) 
were obtained by semi-preparative HPLC (ACN/H2O (70:30)) from fraction 3 (PE / EtOAc 5:1), 
while 6c (2 mg) was purified by semi-preparative HPLC (ACN/H2O (65:35)) from fraction 4 (PE 
/ EtOAc 3:1). Compound 6d (2 mg) was obtained by semi-preparative HPLC (ACN/H2O (70:30)) 
from fraction 5 (PE / EtOAc 3:1). 

To isolate 7a and 7b, A. nidulans JN006 was cultivated in 30 x 2 L-Fernbach flasks each 
containing 100 g rice and 150 mL H2O supplemented with 5 g/L yeast extract in a total volume 
of 250 ml per flask) at 25°C for 10 days. The cultures were extracted with EtOAc as mentioned 
above to obtain a crude extract (5.9 g). The crude extract was subjected to silica gel column 
chromatography and eluted with a gradient PE / acetone (4:1, 3:1, and 2:1) to give 3 fractions 
(1–3). 7b (15 mg) and 7a (6 mg) were isolated by semi-preparative HPLC (ACN/H2O (50:50)) 
from fraction 2 (PE / acetone 3:1). 

To isolate 9a and 9b, which converted to 10a and 13b during isolation, A. nidulans JN010 was 
cultivated in 10 x 2 L-Fernbach flasks each containing 100 g rice and 150 mL H2O supplemented 
with 5 g/L yeast extract in a total volume of 250 ml per flask at 25°C for 10 days. The cultures 
were extracted with EtOAc as mentioned above to obtain a crude extract (2.6 g). The crude 
extract was fractionated on a silica gel column and eluted with a gradient PE / EtOAc (30:1 to 
5:1) to give 6 fractions (1–6). 10a (8 mg) and 13b (6 mg) were obtained by semi-preparative 
HPLC (ACN/H2O (80:20)) from fraction 3 and 4 (PE / EtOAc 15:1 and 10:1), respectively. 

12. Overproduction and purification of FogH

The fogH expression plasmid pVW84 was used to transform E. coli XL1-Blue. An overnight
preculture was used to inoculate 20 x 100 ml LB in 250 ml Erlenmeyer flasks to an OD600 of 0.6.
These cultures were incubated at 30°C with shaking at 230 rpm for 16–24 h without any
induction. The recombinant 6xHis-tagged protein was purified via NiNTA-agarose column
(Qiagen, Hilden, Germany) and further subjected to preparative gel filtration chromatography
using a Superdex 200 16/60 pg column connected to a ÄKTAprime plus (GE Healthcare,
Chalfont St Giles, Great Britain) with storage buffer [50 mM Tris-HCl, 150 mM NaCl, 20 % (w/v)
glycerol, pH 7.5] at a flow rate of 0.5 ml/min. The purified protein was analyzed via SDS-PAGE
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(Figure S17). 

13. In vitro assays of FogH

To determine the enzyme activity toward 7a, 8a, or 12a (see below for synthesis), the enzyme
assays (50 μL) contained Tris-HCl buffer (50 mM, pH 7.5), CaCl2 (10 mM), dimethylallyl
diphosphate (DMAPP) (2 mM), 7a (0.1 mM), 8a (0.1 mM, immediately after isolation) or 12a

(0.1 mM), glycerol (0.5−5%), DMSO (up to 5%), and the purified recombinant FogH (0.1 µM).
The enzyme assays were incubated at 37°C for 10 min and terminated with one volume of ACN.
The reaction mixtures were centrifuged at 17000 ൈ 𝑔 for 30 min before further analysis on
HPLC.

To isolate 8a as a non-enzymatic conversion product of 7a, 5 mg 7a was incubated in 10 ml 
Tris-HCl buffer (50 mM, pH 7.5), CaCl2 (10 mM), DMAPP (2 mM) at 37°C for 16 h. The reaction 
mixture was extracted subsequently with double volume of EtOAc for three times and then 
subjected to semi-preparative HPLC (ACN/H2O (60:40)) to give 8a (4 mg). 

To isolate 9a (enzymatic product) and 10a (non-enzymatic conversion product), 8 mg of 7a was 
incubated in 10 ml Tris-HCl buffer (50 mM, pH 7.5), CaCl2 (10 mM), DMAPP (2 mM) and FogH 
(5 µM) at 37°C for 16 h. The reaction mixture was extracted subsequently with double volume 
of EtOAc for three times and then subjected on semi-preparative HPLC (ACN/H2O (85:15)) to 
give 9a (3 mg) and 10a (4 mg). 

14. Spontaneous conversion between dihydroquinones, quinones and aldehyde

For testing the dihydroquinone derivative stability, 7a was incubated in aqueous solution at 25°C
for up to 4 h. Its oxidized form 8a was observed already after 30 minutes (Figure S20).
Interestingly, 8a in turn could be spontaneously reduced again to 7a and converted to the
salicylaldehyde 12a in a ratio of approximately 1:1 after incubation at 25°C for 4 h (Figure S20).
The same behavior was also shown for their prenylated counterparts 9a and 10a (Figure S20).
Therefore, it can be proposed that the benzoquinone alcohol 8a or 10a can act as both oxidant
and reductant to form dihydroquinone alcohol and aldehyde products with involvement of an
instable benzoquinone aldehyde intermediate (Figure S21).

15. Determination of kinetic parameters of FogH

For determination of kinetic parameters of FogH toward 7a and 8a (Figure S18), the enzyme
assays were performed in 50 μL reaction mixture containing Tris-HCl buffer (50 mM, pH 7.5),
CaCl2 (10 mM), DMAPP (2 mM), glycerol (0.5 %), DMSO (2 %), and the purified recombinant
FogH (0.1 µM). The concentrations of substrates 7a and 8a were 0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
1 mM. The reactions were carried out at 37°C for 10 min, terminated with one volume ACN, and
centrifuged at 17,000 ൈ 𝑔 for 30 min before further analysis on LC-MS. The kinetic parameters
KM and kcat were determined using non-linear regression analysis of Michaelis-Menten equation
by GraphPad Prism 6. All reactions were carried out in triplicate and values reported were taken
as the average of these data. 7a is a slightly better substrate, with a KM at 0.07 ± 0.01 mM and
a kcat at 2.02 ± 0.08 s-1, than 8a with a KM at 0.09 ± 0.01 mM and a kcat of 1.15 ± 0.04 s-1 (Figure
S18).
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16. Chemical synthesis of the salicylaldehyde 12a

For in vitro assays of FogH, the salicylaldehyde derivative 12a was synthesized chemically
according to the published methods (Figure S19).6,7 The intermediate 1,4-benzenediol was
obtained under microwave irradiation by using KF–Al2O3 as catalyst and then formylated with
hexamethylenetetramine (HMTA) to give 12a.

17. HPLC and LC-HRMS analysis of secondary metabolites

Analysis of secondary metabolites was performed on an Agilent series 1200 HPLC (Agilent
Technologies, Böblingen, Germany) with an Agilent Eclipse XDB-C18 column (150 × 4.6 mm, 5
μm). Water (A) and ACN (B), both with 0.1% (v/v) trifluoroacetic acid, were used as solvents at
a flow rate of 0.5 mL/min. The substances were eluted with a linear gradient from 5–100% B in
40 min, then washed with 100% (v/v) solvent B for 5 min and equilibrated with 5% (v/v) solvent
B for 10 min. Semi-preparative HPLC was performed on the same equipment with an Agilent
Eclipse XDB-C18 column (9.4 × 250 mm, 5 μm) column and a flow rate of 2.5 ml/min.

LC-HRMS analysis was performed on an Agilent 1260 HPLC system equipped with a 
microTOF-Q III spectrometer (quadrupole time-of-flight type mass analyzer) (Bruker, Bremen, 
Germany) by using a Multospher 120 RP18-5µ column (250 × 2 mm, 5 μm) (CS-
Chromatographie Service GmbH, Langerwehe, Germany). Water (A) and ACN (B), both with 
0.1% (v/v) formic acid, were used as solvents at a flow rate of 0.25 mL/min and the same method 
for separation. Electrospray positive or negative ionization mode was selected for determination 
of the exact masses. The capillary voltage was set to 4.5 kV and a collision energy of 8.0 eV. 
Sodium formate was used in each run for mass calibration. The masses were scanned in the 
range of m/z 100 - 1500. Data were evaluated with the Compass DataAnalysis 4.2 software 
(Bruker Daltonik, Bremen, Germany). 

18. NMR analysis

NMR spectra were recorded on a JOEL ECA-400 MHz or ECA-500 MHz spectrometer (JEOL,
Tokyo, Japan). All spectra were processed with MestReNova 6.1.0 (Mestrelab, Santiago de
Compostela, Spain). Chemical shifts are referenced to those of the solvent signals.

19. Physiochemical properties of the compounds described in this study

Flavoglaucin (1a): The product was isolated as yellow amorphous solid. 1H NMR (500 MHz,
CDCl3)  11.92 (s, 1H, 6-OH), 10.25 (s, 1H, H-7), 6.88 (s, 1H, H-4), 5.27 (tq, J = 7.3, 1.4 Hz,
1H, H-2´´), 4.31 (br s, 1H, 3-OH), 3.28 (d, J = 7.3 Hz, 2H, H-1´´), 2.87 (t, J = 7.9 Hz, 2H, H-1´),
1.75 (d, J = 1.4 Hz, 3H, H-5´´), 1.69 (d, J = 1.4 Hz, 3H, H-4´´), 1.63 (quintet, J = 7.9 Hz, 2H, H-
2´), 1.40 (quintet, J = 7.9 Hz, 2H, H-3´), 1.35–1.20 (m, 6H, H-4´, H-5´, and H-6´), 0.87 (t, J =
7.0 Hz, 3H, H-7´). The NMR data of 1a correspond well to those of flavoglaucin.8 HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C19H29O3, 305.2111; Found 305.2112.

Aspergin (1b): The product was isolated as yellow amorphous solid. 1H NMR (500 MHz, CDCl3) 
 11.73 (s, 1H, 6-OH), 10.09 (s, 1H, H-7), 7.02 (s, 1H, H-4), 6.48 (d, J = 16.2 Hz, 1H, H-1´), 5.99 
(dt, J = 16.2, 6.8 Hz, 1H, H-2´), 5.31–5.27 (m, 1H, H-2´´), 4.99 (br s, 1H, 3-OH), 3.31 (d, J = 7.3 
Hz, 2H, H-1´´), 2.30 -2.34 (m, 2H, H-3´), 1.76 (br s, 3H, H-5´´), 1.70 (br s, 3H, H-4´´), 1.52 
(quintet, J = 7.3 Hz, 2H, H-4´), 1.36–1.33 (m, 4H, H-5´ and H-6´), 0.91 (t, J = 7.0 Hz, 3H, H-7´). 
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The NMR data of 1b correspond well to those of aspergin.8 HRMS (ESI-TOF) m/z: [M + H]+ 
Calcd for C19H27O3, 303.1955; Found 303.1950. 

Dihydroauroglaucin (1c): The product was isolated as yellow amorphous solid. 1H NMR (500 
MHz, CDCl3)  11.78 (s, 1H, 6-OH), 10.09 (s, 1H, H-7), 7.00 (s, 1H, H-4), 6.56 (d, J = 15.7 Hz, 
1H, H-1´), 6.44 (dd, J = 15.7, 10.3 Hz, 1H, H-2´), 6.27 (dd, J = 15.0, 10.3 Hz, 1H, H-3´), 5.89 
(dt, J = 15.0, 7.3 Hz, 1H, H-4´), 5.30–5.28 (m, 1H, H-2´´), 3.32 (d, J = 7.3 Hz, 2H, H-1´´), 2.15 
(q, J = 7.3 Hz, 2H, H-5´), 1.75 (br s, 3H, H-5´´), 1.70 (br s, 3H, H-4´´), 1.47 (sextet, J = 7.3 Hz, 
2H, H-6´), 0.94 (t, J = 7.3 Hz, 3H, H-7´). The NMR data of 1c correspond well to those of 
dihydroauroglaucin.9 HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H25O3, 301.1798; Found 
301.1799. 

Auroglaucin (1d): The product was isolated as orange amorphous solid. 1H NMR (500 MHz, 
CDCl3)  11.80 (s, 1H, 6-OH), 10.09 (s, 1H, H-7), 7.00 (s, 1H, H-4), 6.65 (d, J = 15.8 Hz, 1H, H-
1´), 6.49 (dd, J = 15.8, 9.7 Hz, 1H, H-2´), 6.36–6.31 (m, 2H, H-3´ and H-4´), 6.16 (dd, J = 15.0, 
9.8 Hz, 1H, H-5´), 5.86 (dq, J = 15.0, 6.8 Hz, 1H, H-6´), 5.32–5.27 (m, 1H, H-2´´), 3.32 (d, J = 
7.3 Hz, 2H, H-1´´), 1.83 (d, J = 6.8 Hz, 3H, H-7´), 1.76 (br s, 3H, H-5´´), 1.70 (br s, 3H, H-4´´),. 
The NMR data of 1d correspond well to those of auroglaucin.8 HRMS (ESI-TOF) m/z: [M + H]+ 
Calcd for C19H23O3, 299.1642; Found 299.1643. 

(E)-2-(hept-3'-en-1-yl)-3,6-dihydroxy-5-(3"-methylbut-2"-en-1-yl)benzaldehyde (1e): The 
product was isolated as yellow amorphous solid. 1H NMR (500 MHz, CDCl3)  11.93 (s, 1H, 6-
OH), 10.24 (s, 1H, H-7), 6.88 (s, 1H, H-4), 5.46–5.34 (m, 2H, H-3´ and H-4´), 5.28 (t, J = 7.3 Hz, 
1H, H-2´´), 4.34 (br s, 1H, 3-OH), 3.29 (d, J = 7.3 Hz, 2H, H-1´´), 2.88 (t, J = 7.4 Hz, 2H, H-1´), 
2.42–2.30 (m, 2H, H-2´), 2.05–1.96 (m, 2H, H-5´), 1.76 (br s, 3H, H-5´´), 1.69 (br s, 3H, H-4´´), 
1.45 (sextet, J = 7.4 Hz, 2H, H-6´), 0.87 (t, J = 7.4 Hz, 3H, H-7´). The NMR data of 1e correspond 
well to those of (E)-2-(hept-3’-en-1-yl)-3,6- dihydroxy-5-(3´´-methylbut-2´´-en-1-
yl)benzaldehyde.10 HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H27O3, 303.1955; Found 
303.1960. 

2-(1´,5´-heptadienyl)-3,6-dihydroxy-5-(3´´-methyl-2´´-butenyl)benzaldehyde (1f): The product 
was isolated as yellow amorphous solid. 1H NMR (500 MHz, CDCl3)  11.71 (s, 1H, 6-OH), 
10.08 (s, 1H, H-7), 7.02 (s, 1H, H-4), 6.44 (d, J = 16.2 Hz, 1H, H-1´), 5.91 (dd, J = 16.2, 7.0 Hz, 
1H, H-2´), 5.55–5.47 (m, 1H, H-6´), 5.46–5.40 (m, 1H, H-5´), 5.29 (br t, J = 7.3 Hz, 1H, H-2´´), 
5.09 (br s, 1H, 3-OH), 3.31 (d, J = 7.3 Hz, 2H, H-1´´), 2.40 (q, J = 6.9 Hz, 2H, H-3´), 2.23 (q, J 
= 6.9 Hz, 2H, H-4´), 1.76 (d, J = 1.4 Hz, 3H, H-5´´), 1.70 (d, J = 1.4 Hz, 3H, H-4´´), 1.69 (br d, J 
= 7.0 Hz, 3H, H-7´). The NMR data of 1f correspond well to those of 2-(1´,5´-heptadienyl)-3,6-
dihydroxy-5-(3´´-methyl-2´´-butenyl)benzaldehyde.8 HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 
C19H25O3, 301.1798; Found 301.1795. 

5-3-hydroxy-5-(8E,10E,12E)-7-hydroxynona-8,10,12-trien-1-yl)tetrahydro-2H-pyran-2-one (3d):
The product was isolated as yellowish amorphous solid. 1H NMR (500 MHz, acetone-d6)  6.26
(dd, J = 15.1, 10.5 Hz, 1H, H-9), 6.21 (dd, J = 15.1, 10.5 Hz, 1H, H-10), 6.10 (ddd, J = 14.8,
10.4, 1.5 Hz, 1H, H-12), 6.09 (dd, J = 15.1, 10.4 Hz, 1H, H-11), 5.72 (dd, J = 14.8, 7.0 Hz, 1H,

142



S12 

H-13), 5.71 (dd, J = 15.1, 6.8 Hz, 1H, H-8), 4.79 (dddd, J = 11.0, 7.6, 5.7, 3.2 Hz, 1H, H-5),
4.37–4.33 (m, 1H, H-7), 4.33–4.30 (m, 1H, H-3), 3.95 (br s, 1H, 7-OH), 2.66 (dd, J = 17.3, 4.6
Hz, 1H, H-2a), 2.48 (ddd, J = 17.3, 3.5, 1.9 Hz, 1H, H-2b), 2.04–1.99 (m, 1H, H-4b), 1.96 (ddd,
J = 13.8, 7.3, 7.3 Hz, 1H, H-6a), 1.82 (ddd, J = 13.8, 11.5, 3.0 Hz, 1H, H-4a), 1.73 (dd, J = 7.0,
1.5 Hz, 3H, H-14), 1.72 (ddd, J = 13.8, 6.5, 5.7 Hz, 1H, H-6b). 13C{1H} NMR (125 MHz, acetone-
d6)  170.2 (C-1), 136.8 (C-8), 133.9 (C-10), 132.7 (C-12), 131.3 (C-9), 130.9 (C-11), 130.4 (C-
13), 74.2 (C-5), 69.3 (C-7), 63.2 (C-3), 44.4 (C-6), 39.5 (C-2), 36.6 (C-4), 18.4 (C-14). HRMS
(ESI-TOF) m/z: [M +HCOOH - H]- Calcd for C15H21O6, 297.1344; Found 297.1353.

3-(7-((8E,10E,12E)-hepta-8,10,12-trien-1-yl)-5-hydroxytetrahydro-2H-pyran-2-yl)acetic acid 

(4d): The product was isolated as yellowish oil. 1H NMR (500 MHz, acetone-d6)  6.23 (dd, J = 
15.0, 10.5 Hz, 1H, H-9), 6.19 (dd, J = 15.2, 10.5 Hz, 1H, H-10), 6.10 (dd, J = 15.2, 10.3 Hz, 1H, 
H-11), 6.09 (dd, J = 15.2, 10.3 Hz, 1H, H-12), 5.75 (dd, J = 15.0, 5.9 Hz, 1H, H-8), 5.71 (dd, J
= 15.2, 6.9 Hz, 1H, H-13), 4.54–4.48 (m, 1H, H-3), 4.28–4.23 (m, 1H, H-7), 4.06–4.00 (m, 1H,
H-5), 2.68 (dd, J = 14.9, 8.5 Hz, 1H, H-2b), 2.52 (dd, J = 14.9, 6.2 Hz, 1H, H-2a), 1.98–1.93 (m,
1H, H-6a), 1.82 (ddd, J = 13.0, 4.0, 1.6 Hz, 1H, H-4a), 1.73 (dd, J = 7.0, 1.5 Hz, 3H, H-14), 1.59
(ddd, J = 13.0, 9.8, 5.3 Hz, 1H, H-4b), 1.30 (ddd, J = 12.7, 9.8, 9.8 Hz, 1H, H-6b). 13C{1H} NMR
(125 MHz, acetone-d6)  172.3 (C-1), 134.8 (C-8), 133.5 (C-10), 132.7 (C-12), 130.9 (C-11),
130.7 (C-9), 130.0 (C-13), 70.7 (C-5), 69.4 (C-3), 63.8 (C-7), 41.5 (C-4), 38.5 (C-2), 38.3 (C-6),
18.3 (C-14). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H19O4, 251.1289; Found 251.1295.

7-((8E,10E,12E)-hepta-8,10,12-trien-1-yl)-3,5-dihydroxyoxocan-2-one (5d): The product was 
isolated as brownish oil. 1H NMR (500 MHz, acetone-d6)  6.22 (dd, J = 15.1, 10.7 Hz, 1H, H-
9), 6.19 (dd, J = 15.1, 10.7 Hz, 1H, H-10), 6.10 (dd, J = 15.5, 10.7 Hz, 1H, H-11), 6.09 (dd, J = 
15.1, 10.7 Hz, 1H, H-12), 5.71 (dd, J = 15.1, 5.9 Hz, 1H, H-13), 5.62 (dd, J = 15.1, 5.8 Hz, 1H, 
H-8), 4.40–4.36 (m, 1H, H-7), 4.35–4.27 (m, 1H, H-3), 4.21–4.18 (m, 1H, H-5), 2.43 (dd, J =
15.2, 7.8 Hz, 1H, H-2b), 2.36 (dd, J = 15.2, 5.2 Hz, 1H, H-2a), 1.72–1.66 (m, 2H, H-4), 1.73 (dd,
J = 6.9, 1.0 Hz, 3H, H-14), 1.46 (dddd, J = 13.5, 11.7, 5.6, 2.8 Hz, 1H, H-6b), 1.43 (dddd, J =
13.5, 11.7, 5.6, 2.8 Hz, 1H, H-6a). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H19O4, 251.1289;
Found 251.1303.

2-heptyl-1-(hydroxymethyl) phenol (6a): The product was isolated as colorless oil. 1H NMR (500
MHz, CDCl3)  7.43 (s, 1H, 6-OH), 7.11 (t, J = 7.8 Hz, 1H, H-4), 6.75 (d, J = 7.8 Hz, 1H, H-3),
6.71 (d, J = 7.8 Hz, 1H, H-5), 4.95 (s, 2H, H-7), 2.59–2.53 (m, 2H, H-1´), 2.08 (s, 1H, 7-OH),
1.50–1.44 (m, 2H, H-2´), 1.33–1.24 (m, 8H, H-3´ - H-6´), 0.89 (t, J = 7.1 Hz, 3H, H-7´). 13C{1H}
NMR (125 MHz, CDCl3)  156.9 (C-6), 141.4 (C-2), 129.2 (C-4), 122.6 (C-1), 121.6 (C-5), 114.7
(C-3), 60.6 (C-7), 33.5 (C-1´), 32.0 (C-2´ and C-4´), 29.7 (C-5´), 29.3 (C-3´), 22.8 (C-6´), 14.3
(C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H21O2, 221.1547; Found 221.1549.

(E)-2-(hept-1´-en-1-yl)-1-(hydroxymethyl) phenol (6b): The product was isolated as yellowish oil. 
1H NMR (500 MHz, CDCl3)  7.62 (s, 1H, 6-OH), 7.13 (t, J = 7.9 Hz, 1H, H-4), 6.92 (d, J = 7.9 
Hz, 1H, H-3), 6.77 (d, J = 7.9 Hz, 1H, H-5), 6.50 (d, J = 15.5 Hz, 1H, H-1´), 6.00 (dt, J = 15.5, 
6.9 Hz, 1H, H-2´), 4.99 (s, 2H, H-7), 2.29 (s, 1H, 7-OH), 2.20 (ddd, J = 15.5, 6.9, 1.5 Hz, 2H, H-
3´), 1.48–1.43 (m, 2H, H-4´), 1.34–1.31 (m, 4H, H-5´ and H-6´), 0.90 (t, J = 7.1 Hz, 3H, H-7´). 
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13C{1H} NMR (125 MHz, CDCl3)  156.7 (C-6), 137.7 (C-2), 135.2 (C-2´), 129.0 (C-4), 126.5 (C-
1´),121.6 (C-1), 118.9 (C-3), 115.2 (C-5), 60.4 (C-7), 33.4 (C-3´), 31.4 (C-5´), 29.0 (C-4´), 22.6 
(C-6´), 14.1 (C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H19O2, 219.1391; Found 
219.1399. 

2-((1´E,3´E)-hepta-1´,3´-dien-1-yl)-1-(hydroxymethyl) phenol (6c): The product was isolated as 
yellowish amorphous solid. 1H NMR (500 MHz, CDCl3)  7.50 (s, 1H, 6-OH), 7.15 (t, J = 7.9 Hz, 
1H, H-4), 7.01 (d, J = 7.9, Hz, 1H, H-3), 6.78 (d, J = 7.9 Hz, 1H, H-5), 6.58–6.56 (m, 2H, H-1´ 
and H-2´), 6.24–6.17 (m, 1H, H-3´), 5.84 (dt, J = 14.8, 7.0 Hz, 1H, H-4´), 5.01 (s, 2H, H-7), 2.12 
(dd, J = 14.4, 7.2 Hz, 2H, H-5´), 1.48–1.43 (m, 2H, H-6´), 0.93 (t, J = 7.1 Hz, 3H, H-7´). 13C{1H} 
NMR (125 MHz, CDCl3)  156.7 (C-6), 137.2 (C-2), 136.8 (C-4´), 133.1 (C-2´), 130.6 (C-3´), 
129.1 (C-4), 126.3 (C-1´),121.7 (C-1), 118.4 (C-3), 115.7 (C-5), 60.4 (C-7), 35.1 (C-5´), 22.6 (C-
6´), 13.9 (C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H17O2, 217.1234; Found 217.1232. 

2-((1´E,3´E,5´E)-hepta-1´,3´,5´-trien-1-yl)-1-(hydroxymethyl) phenol (6d): The product was 
isolated as white amorphous solid. 1H NMR (500 MHz, CDCl3)  7.49 (s, 1H, 6-OH), 7.15 (t, J = 
7.9 Hz, 1H, H-4), 7.03 (dd, J = 7.9, 1.0 Hz, 1H, H-3), 6.78 (dd, J = 7.9, 1.0 Hz, 1H, H-5), 6.61 -
6.68 (m, 2H, H-1´ and H-2´), 6.32 (dd, J = 15.3, 10.1 Hz, 1H, H-4´), 6.26 (dd, J = 15.3, 8.4 Hz, 
1H, H-3´), 6.14 (ddq, J = 15.0, 10.1, 1.5 Hz, 1H, H-5´), 5.79 (dq, J = 15.0, 6.9 Hz, 1H, H-6´), 
5.01 (s, 2H, H-7), 2.11 (br s, 1H, 7-OH), 1.81 (dd, J = 6.9, 1.5 Hz, 3H, H-7´). 13C{1H} NMR (125 
MHz, CDCl3)  156.7 (C-6), 137.0 (C-2), 134.5 (C-4´), 132.8 (C-2´), 131.8 (C-5´), 131.2 (C-6´), 
130.4 (C-3´), 129.2 (C-4), 127.7 (C-1´), 121.7 (C-1), 118.3 (C-3), 115.8 (C-5), 60.3 (C-7), 18.5 
(C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H15O2, 215.1078; Found 215.1075. 

Violaceoid C (7a): The product was isolated as brown oil. 1H NMR (500 MHz, methanol-d4)  
6.53 (d, J = 8.6 Hz, 1H, H-4), 6.45 (d, J = 8.6 Hz, 1H, H-5), 4.65 (s, 2H, H-7), 2.65–2.61 (m, 2H, 
H-1´), 1.49–1.48 (m, 2H, H-2´), 1.35–1.30 (m, 4H, H-3´ and H-4´), 1.31–1.25 (m, 4H, H-5´ and
H-6´), 0.87 (t, J = 6.9 Hz, 3H, H-7´). The NMR data of 7a correspond well to those of violaceoid
C.11 HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H21O3, 237.1496; Found 237.1483.

Violaceoid A (7b): The product was isolated as white amorphous solid. 1H NMR (500 MHz, 
methanol-d4)  6.59 (d, J = 8.6 Hz, 1H, H-4), 6.53 (d, J = 8.6 Hz, 1H, H-5), 6.45 (dt, J = 16.0, 
1.7 Hz, 1H, H-1´), 6.06 (dt, J = 16.0, 6.9 Hz, 1H, H-2´), 4.71 (s, 2H, H-7), 2.25 (tdd, J = 6.9, 6.9, 
1.5 Hz, 2H, H-3´), 1.54–1.48 (m, 2H, H-4´), 1.42–1.35 (m, 4H, H-5´ and H-6´), 0.94 (t, J = 7.1 
Hz, 3H, H-7´). The NMR data of 7a correspond well to those of violaceoid A.11 HRMS (ESI-TOF) 
m/z: [M - H]- Calcd for C14H19O3, 235.1340; Found 235.1333. 

2-heptyl-1-(hydroxymethyl)cyclohexa-2,5-diene-3,6-dione (8a): The product was isolated as
brown oil. 1H NMR (500 MHz, acetone-d6)  6.81 (d, J = 10.1 Hz, 1H, H-4), 6.78 (d, J = 10.1 Hz,
1H, H-5), 4.49 (s, 2H, H-7), 2.60–2.57 (m, 2H, H-1´), 1.54–1.45 (m, 2H, H-2´), 1.36–1.28 (m,
8H, H-3´ - H-6´), 0.88 (t, J = 7.0 Hz, 3H, H-7´). 13C{1H} NMR (125 MHz, acetone-d6)  188.9 (C-
3), 188.3 (C-6), 147.2 (C-2), 142.2 (C-1), 137.5 (C-4), 137.2 (C-5), 55.6 (C-7), 32.6 (C-5´), 30.8
(C-2´), 30.7 (C-3´), 30.5 (C-4´), 26.8 (C-1´), 23.4 (C-6´), 14.4 (C-7´). HRMS (ESI-TOF) m/z: [M
- H]- Calcd for C14H20O3, 236.1412; Found 236.1414.
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2-heptyl-1-(hydroxymethyl)-5-(3´´-methylbut-2´´-en-1-yl)benzene-3,6-diol (9a): The product
was isolated as white amorphous solid. 1H NMR (500 MHz, acetone-d6)  8.16 (s, 1H, 6-OH),
7.42 (s, 1H, 3-OH), 6.54 (s, 1H, H-4), 5.28 (tq, J = 7.3, 1.3 Hz, 1H, H-2´´), 4.88 (s, 2H, H-7),
3.21 (d, J = 7.3 Hz, 2H, H-1´´), 2.60–2.56 (m, 2H, H-1´), 1.70 (d, J = 1.3 Hz, 3H, H-5´´), 1.68 (d,
J = 1.3 Hz, 3H, H-4´´), 1.46–1.40 (m, 2H, H-2´), 1.37–1.26 (m, 8H, H-3´ - H-6´), 0.87 (t, J = 7.0
Hz, 3H, H-7´). 13C{1H} NMR (125 MHz, acetone-d6)  148.8 (C-6), 148.4 (C-3), 132.1 (C-3´´),
126.9 (C-5), 125.2 (C-1), 124.8 (C-2), 124.1 (C-2´´), 115.7 (C-4), 60.7 (C-7), 32.6 (C-5´), 31.3
(C-2´), 29.8 (C-3´ and C-4´), 28.6 (C-1´´), 26.2 (C-5´´), 25.9 (C-1´), 23.3 (C-6´), 17.8 (C-4´´),
14.4 (C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C19H29O3, 305.2122; Found 305.2136.

2-heptyl-1-(hydroxymethyl)-5-(3´´-methylbut-2´´-en-1-yl)cyclohexa-2,5-diene-3,6-dione (10a):
The product was isolated as brown oil. 1H NMR (500 MHz, acetone-d6)  6.47 (s, 1H, H-4), 5.28
(tq, J = 7.3, 1.4 Hz, 1H, H-2´´), 4.50 (s, 2H, H-7), 3.12 (d, J = 7.4 Hz, 2H, H-1´´), 2.59–2.54 (m,
2H, H-1´), 1.75 (d, J = 1.4 Hz, 3H, H-5´´), 1.65 (d, J = 1.4 Hz, 3H, H-4´´), 1.48–1.43 (m, 2H, H-
2´), 1.37–1.26 (m, 8H, H-3´ - H-6´), 0.87 (t, J = 7.0 Hz, 3H, H-7´). 13C{1H} NMR (125 MHz,
acetone-d6)  188.9 (C-3), 188.3 (C-6), 148.8 (C-4), 146.9 (C-2), 142.4 (C-1), 136.3 (C-3´´),
132.9 (C-5), 119.8 (C-2´´), 55.8 (C-7), 32.5 (C-5´), 30.8 (C-1´), 30.7 (C-2´), 30.1 (C-4´), 26.6 (C-
3´), 28.2 (C-1´´), 25.9 (C-5´´), 23.4 (C-6´), 17.9 (C-4´´), 14.4 (C-7´). HRMS (ESI-TOF) m/z: [M]-

Calcd for C19H28O3, 304.2038; Found 304.2034.

2-heptyl-3,6-dihydroxybenzaldehyde (12a): The product was isolated as orange amorphous
solid. 1H NMR (400 MHz, CDCl3)  11.59 (s, 1H, 6-OH), 10.28 (s, 1H, H-7), 7.00 (d, J = 8.9 Hz,
1H, H-4), 6.72 (d, J = 8.9 Hz, 1H, H-5), 4.42 (s, 1H, 3-OH), 2.95–2.89 (m, 2H, H-1´), 1.64–1.56
(m, 2H, H-2´), 1.42–1.37 (m, 2H, H-3´), 1.35–1.25 (m, 6H, H-4´, H-5´, and H-6´), 0.88 (t, J = 7.0
Hz, 3H, H-7´). 13C{1H} NMR (100 MHz, CDCl3)  195.6 (C-7), 157.7 (C-6), 145.5 (C-3), 131.7
(C-2), 126.0 (C-4), 118.0 (C-5), 115.8 (C-1), 32.0 (C-2´), 31.9 (C-5´), 29.8 (C-3´), 29.2 (C-4´),
24.4 (C-1´), 22.9 (C-6´), 14.2 (C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C14H19O3,
235.1340; Found 235.1343.

1-(hydroxymethyl)-5-(3´´-methylbut-2´´-en-1-yl)-3-pentylbenzofuran-5-ol (13b): The product 
was isolated as brown oil. 1H NMR (500 MHz, acetone-d6)  8.42 (br s , 1H, 6-OH), 7.06 (s, 1H, 
H-4), 6.43 (s, 1H, H-1´), 5.28 (tq, J = 7.5, 1.0 Hz, 1H, H-2´´), 5.23 (br s, 1H, 7-OH), 5.04 (s, 2H,
H-7), 3.37 (d, J = 7.5 Hz, 2H, H-1´´), 2.71 (td, J = 7.5, 0.9 Hz, 2H, H-3´), 1.73 (d, J = 1.0 Hz, 3H,
H-4´´), 1.72 (d, J = 1.0 Hz, 3H, H-5´´), 1.69–1.72 (m, 2H, H-4´),1.39–1.34 (m, 4H, H-5´ and H-
6´), 0.89 (t, J = 7.3 Hz, 3H, H-7´). 13C{1H} NMR (125 MHz, acetone-d6)  159.9 (C-2´), 151.1 (C-
3), 149.6 (C-6), 132.6 (C-3´´), 126.1 (C-1), 126.0 (C-5), 123.9 (C-2´´), 120.8 (C-2), 110.3 (C-1´),
100.7 (C-4), 61.8 (C-7), 32.1 (C-5´), 28.9 (C-3´), 28.6 (C-1´´), 28.2 (C-4´), 25.8 (C-5´´), 23.0 (C-
6´), 17.7 (C-4´´), 14.3 (C-7´). HRMS (ESI-TOF) m/z: [M - H]- Calcd for C19H25O3, 301.1809;
Found 301.1802.

20. Structural elucidation

The structures of the isolated products were elucidated by comprehensive interpretation of their
UV and MS (Figure S23) as well as NMR data (Figures S24−S73). All known compounds were
identified by comparison of these data with those described in the literature.
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The triene system of 3d−5d, the rearrangement products of 2d obtained from the fogA 

expression stain JN001, was determined as all trans-(8E,10E,12E) geometry by determination 
of the 1H-1H coupling constants for the olefinic protons, i.e. 15Hz for J8,9, J10,11, and J12,13 as well 
as 10Hz for J9,10, J11,12, and J11,12. The relative configuration in 3d and 4d were determined by 
interpretation of the NOESY correlations. 

Characterized signals of the methylene groups (C7) in alkylated salicyl alcohols are the singlets 
for two protons at 4.49 - 5.04 ppm in 1H NMR spectra and 55.6 - 61.8 ppm in 13C{1H} NMR 
spectra. The signals for the corresponding aldehyde group were observed at δH 10.09–10.28 
ppm and δC 195.6 ppm in their NMR spectra. The chemical shift of C3 of the benzoquinone 10a 
at δC 188.9 ppm differs clearly from that of the same carbon of dihydroquinone 9a at 148.4 ppm. 
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21. Gene and protein sequence of FogH

Genomic sequence of fogH 

ATGGCTTTACAAACGACCAATACATGGGAGACACTGGCGCAACTGTTGCCCTCGCGCAATCATGATCAGGACTTTTGGTGGAAGGTGACA

GGGCGCCAGCTGGCTGTGTTGTTGGAGGCGGCCGGCTATCCTATTGAGAGACAGTACAACACTCTCTTGTTTCACTATCACTGGGCGGTA

TGAAGCTTCTTTTTTTTTTTTTTCCTTTCTTTCTTTTTTCTTTCTGCCCCTCATAATTTAGGCTAATTGCGTGCTGTTGCCAGATTCCATACCTG

GGACCAGCTCCTGCAAGTGGTGTAGCCAAATGGCCGTCGCAGCTATCTGTTGACGGGTCTCCAATTGAGTATTCGTGGAAATGGAACACA

AAGTCAAAGGCGCCTGATGTGCGGTATACCATGGAGCCTATGAGCGAGTTTACGGGCACAAAGTTGGACCCGCTTAACCAGCGCGCGTT

CCGCGAGCTGCTGCACAAGCTTAGCCAGTTCGTGCCTGACGTCGATTTAGCACCGACTGATTACTTTATGTCTACCCTGTTCGATCATGAC

AGGTCAGTGCTGATGAAGGCGGTTGACGATGGCGTGCCGTTGCAGTTTTCTAGCACTGCTCTTGCATTCGAGTTTCTAGACAAGGGCCTT

TTGCTCAAGACGTATTACGCGCCCCGCAAACTGGAGACAGGTCACTTTGTCCTGAAGGACTGGGACACGGCTATTCGCGGCTATTACCCC

GAGAGCAAGGCGCTGGATATCGTGTATGAGTTCCTGAAGACAAGCCCCGAGGGCGAACTTATGAACCCGTACCATCTCGCCGTCGACAA

CGTCAAAGACGGACGGCTCAAATTCTATTTCCAGTCGCCTCACCGCACCTTTACTTCGGTCCGCGAGATCTTGACCATCGGCGGGCGTGT

ACAGCGCGAGGGCTTAGAAGAGCAACTCCTCTCCCTGCGCGATCTCCTCAACGCACTGACCGGCCAGTCTCCCGACTTCCCCGAAGAC

GGCGAGCCCCCGATCGTCGAGGAAGACGTCACCGCCGACTTAGACACAGACGGCCACCCGGAACTCATGTCCGGATATCTATACTACTTC

GACATCGCCCCCGGCGCGGCCCTACCCGAGATCCGCTTCTACGTCCCCATCCGCCGGTACTGCAAGAGCGATCTGGACCTGGCGCAATC

GCTCACGGCCTGGATGGCAGCGAACGGCCGTGGCACGTACTGCCAGCAGTACTTGGACCTAGTCCACAGTCTGGCCGAGCACCGTGAG

ATATCAAAGGATCGGGGGCTGCAGCGGTACATCGCTTGCCTGTTGGCAAAGAATGGGGAGATTGAGGTGACGACGTATTTGGCACCAGA

GACGTATGAGCAGGTCAGGCGTTCGCAGAAAACTGCGGTATAAATATGGATTATGGGAAATGTGATGTG 

Coding region of fogH 

ATGCCTTTACAAACGACCAATACATGGGAGACACTGGCGCAACTGTTGCCCTCGCGCAATCATGATCAGGACTTTTGGTGGAAGGTGACA

GGGCGCCAGCTGGCTGTGTTGTTGGAGGCGGCCGGCTATCCTATTGAGAGACAGTACAACACTCTCTTGTTTCACTATCACTGGGCGATT

CCATACCTGGGACCAGCTCCTGCAAGTGGTGTAGCCAAATGGCCGTCGCAGCTATCTGTTGACGGGTCTCCAATTGAGTATTCGTGGAAA

TGGAACACAAAGTCAAAGGCGCCTGATGTGCGGTATACCATGGAGCCTATGAGCGAGTTTACGGGCACAAAGTTGGACCCGCTTAACCAG

CGCGCGTTCCGCGAGCTGCTGCACAAGCTTAGCCAGTTCGTGCCTGACGTCGATTTAGCACCGACTGATTACTTTATGTCTACCCTGTTC

GATCATGACAGGTCAGTGCTGATGAAGGCGGTTGACGATGGCGTGCCGTTGCAGTTTTCTAGCACTGCTCTTGCATTCGAGTTTCTAGAC

AAGGGCCTTTTGCTCAAGACGTATTACGCGCCCCGCAAACTGGAGACAGGTCACTTTGTCCTGAAGGACTGGGACACGGCTATTCGCGG

CTATTACCCCGAGAGCAAGGCGCTGGATATCGTGTATGAGTTCCTGAAGACAAGCCCCGAGGGCGAACTTATGAACCCGTACCATCTCGC

CGTCGACAACGTCAAAGACGGACGGCTCAAATTCTATTTCCAGTCGCCTCACCGCACCTTTACTTCGGTCCGCGAGATCTTGACCATCGG

CGGGCGTGTACAGCGCGAGGGCTTAGAAGAGCAACTCCTCTCCCTGCGCGATCTCCTCAACGCACTGACCGGCCAGTCTCCCGACTTC

CCCGAAGACGGCGAGCCCCCGATCGTCGAGGAAGACGTCACCGCCGACTTAGACACAGACGGCCACCCGGAACTCATGTCCGGATATC

TATACTACTTCGACATCGCCCCCGGCGCGGCCCTACCCGAGATCCGCTTCTACGTCCCCATCCGCCGGTACTGCAAGAGCGATCTGGACC

TGGCGCAATCGCTCACGGCCTGGATGGCAGCGAACGGCCGTGGCACGTACTGCCAGCAGTACTTGGACCTAGTCCACAGTCTGGCCGA

GCACCGTGAGATATCAAAGGATCGGGGGCTGCAGCGGTACATCGCTTGCCTGTTGGCAAAGAATGGGGAGATTGAGGTGACGACGTATTT

GGCACCAGAGACGTATGAGCAGGTCAGGCGTTCGCAGAAAACTGCGGTA 

Protein sequence of FogH 

MALQTTNTWETLAQLLPSRNHDQDFWWKVTGRQLAVLLEAAGYPIERQYNTLLFHYHWAIPYLGPAPASGVAKWPSQLSVDGSPIEYSWKWN

TKSKAPDVRYTMEPMSEFTGTKLDPLNQRAFRELLHKLSQFVPDVDLAPTDYFMSTLFDHDRSVLMKAVDDGVPLQFSSTALAFEFLDKGLLLK

TYYAPRKLETGHFVLKDWDTAIRGYYPESKALDIVYEFLKTSPEGELMNPYHLAVDNVKDGRLKFYFQSPHRTFTSVREILTIGGRVQREGLEEQ

LLSLRDLLNALTGQSPDFPEDGEPPIVEEDVTADLDTDGHPELMSGYLYYFDIAPGAALPEIRFYVPIRRYCKSDLDLAQSLTAWMAANGRGTYC

QQYLDLVHSLAEHREISKDRGLQRYIACLLAKNGEIEVTTYLAPETYEQVRRSQKTAV 
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Supplementary Tables 

Table S1. Similarities and putative functions of proteins encoded by the fog clusters in A. ruber, 
A. cristatus & A. glaucus

A.ruber A. cristatus A. glaucus Putative function 
Protein (Acc. Nr.) length 

in aa 
Acc. Nr 
(length in 
aa) 

Identity 
(similarity) 

Acc. Nr (length 
in aa) 

Identity 
(similarity) 

FogA (EYE95336; 
EURHEDRAFT_499888) 

2403 ODM22003 
(2443) 

92.0% 
(95.7%) 

XP_022400332 
(2442) 

94.0% 
(96.2%) 

highly-reducing 
polyketide 
synthase 

FogB (5’ partial 
annotation; EYE95337; 
EURHEDRAFT_377419) 

273 ODM22004 
(273) 

91.6% 
(94.9%) 

XP_022400333 
(5’ partial) 
(273) 

94.1% 
(97.4%) 

short-chain 
dehydrogenase / 
reductase 

FogC (3’ partial 
annotation; EYE95337; 
EURHEDRAFT_377419) 

203 ODM22005 
(203) 

93.1% 
(97.0%) 

XP_022400333 
(3’ partial) 
(203) 

95.6% 
(97.5) 

cupin domain-
containing protein 

- - - - XP_022400334 
(304) 

- transposon 

FogD (EYE95338; 
EURHEDRAFT_455854) 

286 ODM22006 
(286) 

93.0% 
(96.9%) 

XP_022400335 
(282) 

92.7% 
(96.9%) 

short-chain 
dehydrogenase / 
reductase 

FogE (EYE95339; 
EURHEDRAFT_455792) 

538 ODM22007 
(498) 

86.8% 
(89.8%) 

XP_022400336 
(539) 

95.2% 
(97.4%) 

cytochrome P450 

FogF (EYE95340; 
EURHEDRAFT_412154) 

497 ODM22008 
(498) 

91.8% 
(96.0%) 

XP_022400337 
(498) 

91.4% 
(95.8%) 

FAD-binding 
oxidoreductase 

FogG (EYE95341; 
EURHEDRAFT_515220) 

348 ODM22009 
(348) 

92.0% 
(96.3%) 

XP_022400338 
(348) 

92.2% 
(95.4%) 

short-chain 
dehydrogenase / 
reductase 

FogH (EYE95342; 
EURHEDRAFT_530727) 

434 ODM22010 
(435) 

90.6% 
(94.9%) 

XP_022400339 
(434) 

94.2% 
(97.2%) 

prenyltransferase 

FogI (EYE95343; 
EURHEDRAFT_402538) 

415 ODM22011 
(414) 

87.5% 
(92.3%) 

XP_022400340 
(411) 

88.6% 
(91.5%) 

transcription factor 
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Table S2. Strains used in this study 
Strain Genotype Created 

with 
Plasmid 

Reference 

E. coli DH5α F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG 
purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK

–

mK
+), λ– 

- 2

E. coli XL1-Blue endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 
proAB+ lacIq Δ(lacZ)M15] hsdR17(rK

- mK
+) 

- Stratagene 

S. cerevisiae
HOD114-2B

MATα ura3-52 his3Δ1 leu2-3112 - 1

A. ruber QEN-
0407-G2

wt - 12

A. cristatus
CGMCC 3.6083

wt - Chinese 
General 
Microbiological 
Culture 
Collection 
(China) 

A. glaucus
NRRL116

wt - ARS Culture 
Collection 
(USA) 

A. nidulans:
LO8030 pyroA4, riboB2, AfpyrG89, nkuA::argB, deletion of secondary 

metabolite clusters: (AN7804-AN7825)∆, (AN2545-AN2549)∆, 
(AN1039-AN1029)∆, (AN10023-AN10021)∆, (AN8512-
AN8520)∆, (AN8379-AN8384)∆, (AN9246-AN9259)∆, 
(AN7906-AN7915)∆, (AN6000-AN6002)∆. 

- 13

JN001 wA-PKS::gpdA(p)-fogA + 500bp 3’UTR-Afribo in LO8030 pJN012 This study 
JN002 wA-PKS::Afribo in LO8030 (isogenic control strain) pYWB2 This study 
JN004 wA-PKS::flavoglaucin cluster (500 bp 5’UTR-

EURHEDRAFT_402538-EURHEDRAFT_499888–500 bp 
3’UTR)-Afribo in LO8030 

pJN014 This study 

JN006 fogH::AfpyrG in JN004.3 pJN019 This study 
JN007 fogE::AfpyrG in JN004.3 pJN020 This study 
JN009 fogD::AfpyrG in JN004.3 pJN022 This study 
JN010 fogF::AfpyrG in JN004.3 pJN023 This study 
JN013 fogG::AfpyrG in JN004.3 pJN025 This study 
JN015 fogA::AfpyrG in JN004.3 pJN031 This study 
JN020 wA-PKS::flavoglaucin cluster (500 bp 5’UTR-

EURHEDRAFT_402538-EURHEDRAFT_499888–500 bp 
3’UTR)-Afribo without fogEFH in LO8030 

pJN041 This study 

JN025 wA-PKS::gpdA(p)-fogF + 500bp 3’UTR-Afribo in LO8030 pJN052 This study 
JN029 fogG::AfpyrG in JN020.3 pJN051 This study 
JN033 fogI::AfpyrG in JN004.3 pJN053 This study 
JN034 fogB::AfpyrG in JN004.3 pJN060 This study 
JN035 fogC::AfpyrG in JN004.3 pJN061 This study 
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Table S3. Oliogonucleotide primers used in this study 
Primer Sequence Description 

499888_f ctaccccgcttgagcagacatcaccatgaatgatgacccgccatgcatcg for cloning of pJN012: 
amplification of fogA in 2 
fragments and recombination 
with pJN017 

499888_r2 acaacagggacaccgtgggg 

499888_f2 cttccctagcaacgagcccc 

499888_r caacaccatattttaatcccatgtggacccaacagccattctcgacatca 

499888_contr_f ggccacgtactcgactgg Control for integration of fogA 

pJN017_499888_
or 

cgatgcatggcgggtcatcattcatggtgatgtctgctcaagcggggtag Linearization of pJN017 

prJN059 tgatgtcgagaatggctgttgggtccacatgggattaaaatatggtgttg 

prJN080 gatgtcgagaatggctgttgggtcgatcccacatgggattaaaatatgg for cloning of pJN014: 
flavoglaucin cluster (in 5 
fragments) to clone into 
pYWB2 

prJN081 caccatattttaatcccatgtgggatcgacccaacagccattctcgaca 

prJN082 aggaagacgcagatgaatgcc 

prJN083 catggcatctccttagggcg 

prJN084 cctcgatgacgacaccgtag 

prJN085 tgattcggagggtcgatccg 

prJN086 tttgactggttggaatcgcttgg 

prJN087 tgctcttgcctcgcaaagc 

prJN088 agataactgcttacgagctgagc 

prJN089 gggctacgcatcttcatctggg 

prJN090 cggacttgactctccttctcctgatcggatccagggagggggtccggtg 

prJN091 ctcgcctcaccggaccccctccctggatccgatcaggagaaggagagtc 

prJN104 aactcaattgcctgatc Verification of 5’-region of fogI; 
binds in waPKS-down 

prJN115 gagagttattctgtgtctg Amplification of AfpyrG 

prJN116 attctgtctgagaggag 

prJN117 caggggataacgcagg Amplification of general E.coli 
ori/ampR + ScURA-CEN/ARS-
backbone from pYWB2 

prJN118 acacaggaaacagctatgac 

prJN119 tttgctcacatgttctttcctgcgttatcccctggaccggaaacactcc for cloning of pJN19: 5’-region 
of fogH prJN120 catatttcgtcagacacagaataactctctttgacagataactgcttac 

prJN121 cacgcatcagtgcctcctctcagacagaatatatggattatgggaaatg for cloning of pJN19: 3’-region 
of fogH prJN122 attcgtaatcatggtcatagctgtttcctgtgtgcattcacattcgcac 

prJN123 ctcacatgttctttcctgcgttatcccctgagaacgttcacatcgaatg for cloning of pJN20: 5’-region 
of fogE prJN124 aacatatttcgtcagacacagaataactctctgtgataattgaagtttg 

prJN125 cacgcatcagtgcctcctctcagacagaatatttgtcattctcatatgg for cloning of pJN20: 3’-region 
of fogE prJN126 cgtaatcatggtcatagctgtttcctgtgtggattcaactttggcattg 

prJN127 ttgctcacatgttctttcctgcgttatcccctggttgaaaacatggctg for cloning of pJN60: 5’-region 
of fogB prJN128 acatatttcgtcagacacagaataactctctttagtagatgtctttggc 

prJN129 tcacgcatcagtgcctcctctcagacagaattaaactagtgcattgtac for cloning of pJN61: 3’-region 
of fogC prJN130 attcgtaatcatggtcatagctgtttcctgtgtattggttcgatcggag 

prJN131 tcacatgttctttcctgcgttatcccctgaagtagtgatcccgaaatag for cloning of pJN22: 5’-region 
of fogD prJN132 cacaacatatttcgtcagacacagaataactctctttgacggccgtagg 

prJN133 acgcatcagtgcctcctctcagacagaatattaccatggaaatataggg for cloning of pJN22: 3’-region 
of fogD prJN134 tcgtaatcatggtcatagctgtttcctgtgtttcgggcatgcatggttg 

prJN135 gctcacatgttctttcctgcgttatcccctgcgtgacgaggacggcatc for cloning of pJN23: 5’-region 
of fogF prJN136 aacatatttcgtcagacacagaataactctctgcggttcgtctgtcccg 

prJN137 tcacgcatcagtgcctcctctcagacagaattgttacgtatatagcttg for cloning of pJN23: 3’-region 
of fogF 

150



S20 

Table S3. (continued) 
prJN138 attcgtaatcatggtcatagctgtttcctgtgtacccggagaaaattac for cloning of pJN23: 3’-region 

of fogF 

prJN139 ctcacatgttctttcctgcgttatcccctgattcggcattctccgtttc for cloning of pJN25: 5’-region 
of fogG prJN140 catatttcgtcagacacagaataactctcattgaaattacaagtagaag 

prJN141 cacgcatcagtgcctcctctcagacagaatctctatttttctttagcgc for cloning of pJN25: 3’-region 
of fogG 

prJN170 gtaatcatggtcatagctgtttcctgtgttcgacgtcaggcacgaactg 
prJN143 tatcactctgctagcgcc Verification of 5’-region of fogH 

prJN144 actcacaaagacgcgcc Verification of 3’-region of fogH 

prJN145 atggctttacaaacgacc Partial fragment of fogH 

prJN146 tcttcctcgacgatcgg 

prJN147 ggaaattctccgcaagagg Verification of 5’-region of fogE 

prJN148 atgccgaattattctgggg Verification of 3’-region of fogE 

prJN149 atgataacggcctcatcag Partial fragment of fogE 

prJN150 agtttcataaggtcgacg 

prJN151 tgaagctgtaatccggtg 
Verification of 5’-region of 
fogB/C 

prJN152 ccaccggagcaattgtg 
Verification of 3’-region of 
fogB/C 

prJN153 atggacattaccggaaacg Partial fragment of fogB 

prJN154 gaaagtcttcgggactctaac 

prJN155 gtcctgtaattttctccggg Verification of 5’-region of fogD 

prJN156 tcccgagaatctcaagag Verification of 3’-region of fogD 

prJN157 atgtctacgaaatttgctc Partial fragment of fogD 

prJN158 tgtttttagtttcaatacccag 

prJN159 acacaaaccgcagttgg Verification of 5’-region of fogF 

prJN160 tttcgggatcactacttcg Verification of 3’-region of fogF 

prJN161 atgcgcaggaacatcttg Partial fragment of fogF 

prJN162 gtttgctccgatttggcc 

prJN163 cagcaccacgaacacc 
Verification of 5’-region of 
fogG 

prJN164 gaaactcgaatgcaagagc 
Verification of 3’-region of 
fogG 

prJN165 atggccgttacttttgacatc Partial fragment of fogG 

prJN166 ttacttggtgaggctatcaataatctc 

prJN167 cactggtaactccacgg Binding in AfpyrG facing 
outwards as complementary 
primer for up- and downstream 
verification prJN168 atcagtgcctcctctcag 

prJN171 atggctttacaaacgaccaatacatg Verification of 3’-region of fogI 

prJN202 ctcacatgttctttcctgcgttatcccctgccccgtctaggcgactcg for cloning of pJN31: 5’-region 
of fogA 

prJN203 acatatttcgtcagacacagaataactctccgactccaagccgacaacgc 

prJN204 cacgcatcagtgcctcctctcagacagaattatttttttccttgtagactctagtg for cloning of pJN31: 3’-region 
of fogA 

prJN205 cgtaatcatggtcatagctgtttcctgtgtttgcgcttagctgaaatg 

prJN216 gggagtgtcgacccatgaaggac Verification of 3’-region of fogA 

prJN249 gcactctggaaacgaactcc Verification of 5’-region of fogA 

prJN250 
tactatacgggacagacgaaccgcatgtgataattgaagtttgaacatagatg
gaagg 

for cloning of pJN041: 
amplification of cluster 
fragments 3 -5 leaving out 
fogEFH 

prJN251 ctatgttcaaacttcaattatcacatgcggttcgtctgtcccg 

prJN252 acatcacatttcccataatccatattttgacagataactgcttacgagctg 
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Table S3. (continued) 

prJN253 agctcgtaagcagttatctgtcaaaatatggattatgggaaatgtgatgtgg 

for cloning of pJN041: 
amplification of cluster 
fragments 3 -5 leaving out 
fogEFH 

prJN273 ctcacatgttctttcctgcgttatcccctggacgttgaacatgcgctg 

for cloning of pJN051: 5’-
region of fogG in A. nidulans 
JN020; used with prJN140 

prJN274 cgtaatcatggtcatagctgtttcctgtgtatagcctctgaagcgtc 

for cloning of pJN051: 3’-
region of fogG in A. nidulans 
JN020; used with prJN141 

prJN277 agctaccccgcttgagcagacatcaccggcatgcgcaggaacatcttgac for cloning of pJN052: 
amplification of fogF to clone 
into pJN017 prJN278 ctcaacaccatattttaatcccatgtgggcagcatttctcgtctgctgtg 

prJN280 ctcacatgttctttcctgcgttatcccctgaccgagtagttacggtgtacag for cloning of pJN53: 5’-region 
of fogI 

prJN281 acatatttcgtcagacacagaataactctcttcttcgttggctgtcaggaag 

prJN282 tcacgcatcagtgcctcctctcagacagaatatttaaaacaggggacacggg for cloning of pJN53: 3’-region 
of fogI 

prJN283 cgtaatcatggtcatagctgtttcctgtgtgcagctatctgttgacgggtc 

prJN287 gtgatggtgatggtgatgagatctggatctactactacgtccttcatagtccttg Amplification of fogC 

prJN291 tgtgagcggataacaatttcacacagaattatggccgaacaaaccgag 

prJN292 
cacgcatcagtgcctcctctcagacagaataacaattacctcaattctatgcac
g 

for cloning of pJN60: 3’-region 
of fogB 

prJN293 cgtaatcatggtcatagctgtttcctgtgtcacaagaagctagacatggg 

prJN294 ctcacatgttctttcctgcgttatcccctggccaaagacatctactaaaatggac for cloning of pJN61: 5’-region 
of fogC 

prJN295 acatatttcgtcagacacagaataactctctttgcttgtgtgtcacgtc 

prJN296 
tgtgagcggataacaatttcacacagaattatggatggaaaaacatacaaatt
ac 

Amplification of fogI 

prJN297 agtgatggtgatggtgatgagatctggatctactagggatcctgcctg 

vwRbPT3-f' cgcatgcctttacaaacgaccaa for cloning of pVW84: 
amplification of _530727 
without introns from cDNA vwRbPT3-r cggatcctaccgcagttttctgc 

152



S22 

Table S4. Plasmids used in this study 
Plasmid Genotype Description Reference 
pYWB2 URA3, wA flanking, AfRiboB, Amp Basic integration vector for 

A. nidulans

14

pQE-70 Amp, 6xHis Protein expression in E. coli Qiagen 
pYH-wA-AfpyrG URA3, wA flanking, AfpyrG, Amp Basic integration vector for 

A. nidulans

5

pJN012 gpdA(p)-fogA in pYWB2 Heterologous expression of fogA 
in A. nidulans 

This study 

pJN014 flavoglaucin-cluster + 500 bp 5’ of 
first and 3`of last gene in pYWB2 

Heterologous expression of 
flavoglaucin cluster in 
A. nidulans LO8030

This study 

pJN017 URA3, wA flanking, AfRiboB, Amp, 
gpdA(p) 

standard-vector for heterologous 
expression in A. nidulans 
LO8030 

15

pJN019 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogH 

Deletion of fogH (PT) in 
A. nidulans JN004

This study 

pJN020 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogE 

Deletion of fogE (CYP) in 
A. nidulans JN004

This study 

pJN022 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogD 

Deletion of fogD (SDR) in 
A. nidulans JN004

This study 

pJN023 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogF 

Deletion of fogF (OR) in 
A. nidulans JN004

This study 

pJN025 URA3, Amp, AfpyrG flanked by 1.1 
kb 5’ and 3’ of fogG 

Deletion of fogG (SDR) in 
A. nidulans JN004

This study 

pJN031 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogA 

Deletion of fogA (PKS) in 
A. nidulans JN004

This study 

pJN041 flavoglaucin-cluster + 500 bp 5’ of 
first and 3`of last gene without 
coding sequences of fogEFH in 
pYWB2 

Heterologous expression of 
flavoglaucin cluster without 
genes for CYP, OR3 & PT in 
A. nidulans LO8030

This study 

pJN051 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogG especially for 
JN020 

Deletion of fogG (SDR) in 
A. nidulans JN020

This study 

pJN052 fogF in pJN017 Heterologous expression of fogF 
(OR) in A. nidulans 

This study 

pJN053 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogI 

Deletion of fogI (TF) in 
A. nidulans JN004

This study 

pJN060 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogB 

Deletion of fogB (SDR) in 
A. nidulans JN004

This study 

pJN061 URA3, Amp, AfpyrG flanked by 1.2 
kb 5’ and 3’ of fogC 

Deletion of fogC (Cupin) in 
A. nidulans JN004

This study 

pVW84 fogH (without introns) in pQE-70 Heterologous Expression of 
fogH (PT) in E. coli 

This study 
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Supplementary Figures 

Figure S1. LC-MS analysis of A. nidulans with fog cluster, A. ruber, A. cristatus, and A. 

glaucus extracts. 
The strains were cultivated in PDB medium for 28 days at 25°C. Flavoglaucin (1a) and its congeners 
1b−1f were detected in all the extracts. 

154



S24 

Figure S2. Schematic representation of gene integration into the wA-PKS locus of A. nidulans 
LO8030. 
Verification of the integration mutants was performed via detection of the white phenotype 
indicating the integration into the wA-PKS-locus and a PCR with primers binding in the integrated 
gene(s) proving their presence. 
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Figure S3. Schematic representation of gene deletion from fog cluster in A. nidulans strains. 
Verification of deletion mutants was carried out by proving the absence of the gene(s) of interest with 
primers binding in the region which should be deleted. Additionally, the correct integration of the 5’- 
and 3’-regions were checked by PCR with primers binding in the marker and the unmodified DNA 5’ 
or 3’ of the up- or downstream region. Control PCRs were performed with gDNA of A. nidulans 
LO8030 and gDNA of the strain in which the deletion should be done. 
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Figure S4. Fragment sizes of the used DNA-marker, mutant verification via PCR amplification 
and phenotypes of integration mutants. 
As size standard for DNA fragments the GeneRuler DNA Ladder Mix by Thermo Fisher (Waltham, 
USA) was used. The verification of the correct plasmid in combination with the white phenotype of 
the mutant and control PCR for presence of the inserted gene/cluster confirmed the correct 
integration into the wA-PKS locus of the A. nidulans LO8030 genome. 
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Figure S5. PCR verification of single gene deletions from the fog cluster in A. nidulans JN004. 
Three control PCRs have been carried out to verify the absence of the gene of interest together with 
the correct site specific integration via amplification of the corresponding 5’- and 3’-regions. Genomic 
DNA of A. nidulans LO8030 was used for negative control PCR & genomic DNA of A. nidulans JN004 
was used as template for the positive control PCR. 
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Figure S6. LC-MS analysis of the fog cluster expression strain A. nidulans JN004. 
The chromatograms depicted in color are EICs for the cluster end products with different number of 
double bonds. 
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Figure S7. LC-MS analysis of fogA heterologous expression in A. nidulans JN001 
UV chromatogram of the extract and EICs of the PKS products (A). Compound 2d is the original 
product but can cyclize to 3d, 4d or 5d. [M-H]- for products with two (orange) and one (yellow) double 
bond could also be detected, proving FogA is also able to reduce at least two of the initial three 
ketide units completely. UV and mass spectrum of 2d (B). 
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Figure S8. EICs of 2d in the PKS expression strain and in the fogA, fogB, fogC, and fogD 
deletion strains 
2d was clearly detected in the ∆fogB and ∆fogC mutants. Small amounts of this compound were 
also present in the ∆fogD strain but not in the ∆fogA mutant. The high accumulation of 2d in fogA 
overexpression strain JN001 (Figures 4i and S8i) and low accumulation in the ∆fogB, ∆fogC, and 
∆fogD mutants (Figures 3v–vii and S8iii–v) could be due to the different expression level of fogA 
alone under a strong and in other strains under its native promotor. A higher abundance of the PKS 
would result in an increased amount of hydrolytic product, when it was not further converted by 
FogBCD.
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Figure S9. LC-MS analysis of the fogEFGH deletion strain A. nidulans JN029 
The chromatograms depicted in color are EICs for the accumulated intermediates 6a−6d. 
Hydroxylation by A. nidulans enzymes resulted in slight conversion to 7a and 7b. 
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Figure S10. LC-MS analysis of the fogEFH deletion strain A. nidulans JN020 

The chromatograms depicted in color are EICs for the accumulated intermediates 6a−6d, and 6d. 
Hydroxylation by A. nidulans enzymes resulted in slight conversion to 7a and 7b. 
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Figure S11. LC-MS analysis of the fogE deletion strain A. nidulans JN007. 
The chromatograms depicted in color are EICs for the accumulated intermediates 6a−6d, and 6d. 
Hydroxylation by A. nidulans enzymes resulted in slight accumulation of 1a and 1b. 
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Figure S12. LC-MS analysis of the fogG deletion strain A. nidulans JN013. 
The chromatograms depicted in color are EICs for the accumulated end products with different 
numbers of double bonds. 
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Figure S13. LC-MS analysis of the fogH deletion strain A. nidulans JN006. 
The chromatograms depicted in color are EICs for the accumulated or expected intermediates 7a–
7d series. 
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Figure S14. LC-MS analysis of the fogF deletion strain A. nidulans JN010 

The chromatograms depicted in color are EICs for the accumulated intermediates 9a−9d. Chemical 
conversion via the benzoquinones 10a is proposed to be responsible for moderate amounts of the 
end products 1a−1d (see Figure S17 for details). 
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Figure S15. SDS-PAGE of the purified FogH 
FogH with a C-terminal 6xHis-tag (~50 kDa) was purified from E. coli XLI-Blue cultures via Ni-NTA-
agarose with subsequent preparative gel filtration. 
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Figure S16. Stability test of 7a (A), 8a (B), 9a (C), and 10a (D) in water at 25°C. 
Slow oxidation of 7a to 8a and 9a to 10a was observed. The benzoquinone alcohols 8a/10a were 
converted in approximately equal amounts to the dihydroquinone alcohols 7a/9a and the 
dihydroquinone aldehydes 12a/1a. 
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S39 

Figure S17. Proposed mechanism of benzoquinone alcohol conversion to dihydroquinone 
alcohol and dihydroquinone aldehyde. 
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S40 

Figure S18. Chemical synthesis of the salicylaldehyde 12a 
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S41 

Figure S19. Determination of the kinetic parameters of FogH with the substrates 7a (A) and 
8a (B) 
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S42 

Figure S20. Intramolecular cyclization of 9b to the benzofuran derivative 13b 

173



S43 

Figure S21. Feeding of 7a to fogF-expression strain A. nidulans JN025 
The majority of 7a was oxidized to 8a in PDB and further converted to a low amount of 12a (i). No 
consumption of 7a was observed in the presence of the isogenic control (ii) and in the fogF 
expression strain (iii). 
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S44 

Figure S22. Feeding of 13b into fogF expression strain A. nidulans JN025 
13b was not converted in PDB (i) and in the isogenic control strain A. nidulans JN002 (ii). Conversion 
of 13b is detected in the fogF expression strain (iii). The product is not the expected aldehyde 11b 
and was not further identified yet. 
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S45 

Figure S23. UV and MS spectra of the identified compounds in this study 
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S46 

Figure S23. (continued) 

177



S47 

Figure S24. 1H NMR spectrum of compound 1a in CDCl3 (500 MHz) 

Figure S25. 1H NMR spectrum of compound 1b in CDCl3 (500 MHz) 
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S48 

Figure S26. 1H NMR spectrum of compound 1c in CDCl3 (500 MHz) 

Figure S27. 1H NMR spectrum of compound 1d in CDCl3 (500 MHz) 
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S49 

Figure S28. 1H NMR spectrum of compound 1e in CDCl3 (500 MHz) 

Figure S29. 1H NMR spectrum of compound 1f in CDCl3 (500 MHz) 
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S50 

Figure S30. 1H NMR spectrum of compound 3d in CD3COCD3 (500 MHz) 

Figure S31. 13C{1H} NMR spectrum of compound 3d in CD3COCD3 (125 MHz) 
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S51 

Figure S32. HSQC NMR spectrum of compound 3d in CD3COCD3

Figure S33. HMBC spectrum of compound 3d in CD3COCD3 
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S52 

Figure S34. 1H-1H COSY spectrum of compound 3d in CD3COCD3

Figure S35. 1H-1H NOESY spectrum of compound 3d in CD3COCD3 
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S53 

Figure S36. 1H NMR spectrum of compound 4d in CD3COCD3 (500 MHz) 

Figure S37. 13C{1H} NMR spectrum of compound 4d in CD3COCD3 (125 MHz) 
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S54 

Figure S38. HMBC spectrum of compound 4d in CD3COCD3

Figure S39. 1H-1H COSY spectrum of compound 4d in CD3COCD3  
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S55 

Figure S40. 1H-1H NOESY spectrum of compound 4d in CD3COCD3 

Figure S41. 1H NMR spectrum of compound 5d in CD3COCD3 (500 MHz) 
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S56 

Figure S42. 1H-1H COSY spectrum of compound 5d in CD3COCD3

Figure S43. 1H NMR spectrum of compound 6a in CDCl3 (500 MHz) 
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Figure S44. 13C{1H} NMR spectrum of compound 6a in CDCl3 (125 MHz) 

Figure S45. HSQC spectrum of compound 6a in CDCl3 
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S58 

Figure S46. 1H NMR spectrum of compound 6b in CDCl3 (500 MHz) 

Figure S47. 13C{1H} NMR pectrum of compound 6b in CDCl3 (125 MHz) 
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S59 

Figure S48. HMQC spectrum of compound 6b in CDCl3 

Figure S49. HMBC spectrum of compound 6b in CDCl3 
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S60 

Figure S50. 1H NMR spectrum of compound 6c in CDCl3 (500 MHz) 

Figure S51. 13C{1H} NMR spectrum of compound 6c in CDCl3 (125 MHz) 
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S61 

Figure S52. HSQC spectrum of compound 6c in CDCl3

Figure S53. 1H NMR spectrum of compound 6d in CDCl3 (500 MHz) 
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Figure S54. 13C{1H} NMR spectrum of compound 6d in CDCl3 (125 MHz) 

Figure S55. HSQC spectrum of compound 6d in CDCl3
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S63 

 

 
Figure S56. 1H NMR spectrum of compound 7a in CD3OD (500 MHz) 

 

 
Figure S57. 1H NMR spectrum of compound 7b in CD3OD (500 MHz) 
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S64 

Figure S58. 1H NMR spectrum of compound 8a in CD3COCD3 (500 MHz) 

Figure S59. 13C{1H} NMR spectrum of compound 8a in CD3COCD3 (125 MHz) 
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S65 

 

 

Figure S60. 1H NMR spectrum of compound 9a in CD3COCD3 (500 MHz) 

 

Figure S61. 13C{1H} NMR spectrum of compound 9a in CD3COCD3 (125 MHz) 
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S66 

Figure S62. HSQC spectrum of compound 9a in CD3COCD3 

Figure S63. 1H NMR spectrum of compound 10a in CD3COCD3 (500 MHz) 
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S67 

Figure S64. 13C{1H} NMR spectrum of compound 10a in CD3COCD3 (125 MHz) 

Figure S65. HMBC spectrum of compound 10a in CD3COCD3
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Figure S66. 1H NMR spectrum of compound 12a in CDCl3 (400 MHz) 

Figure S67. 13C{1H} NMR spectrum of compound 12a in CDCl3 (100 MHz) 
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Figure S68. HSQC NMR spectrum of compound 12a in CDCl3 

Figure S69. HMBC spectrum of compound 12a in CDCl3
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Figure S70. 1H NMR spectrum of compound 13b in CD3COCD3 (500 MHz) 

Figure S71. 13C{1H} NMR spectrum of compound 13b in CD3COCD3 (125 MHz) 
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S71 

Figure S72. 1H-1H COSY spectrum of compound 13b in CD3COCD3 

Figure S73. HMBC spectrum of compound 13b in CD3COCD3  
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Fungal benzene carbaldehydes with salicylaldehydes as predominant representatives carry usually hydroxyl

groups, prenyl moieties and alkyl side chains. They are found in both basidiomycetes and ascomycetes as

key intermediates or end products of various biosynthetic pathways and exhibit diverse biological and

pharmacological activities. The skeletons of the benzene carbaldehydes are usually derived from

polyketide pathways catalysed by iterative fungal polyketide synthases. The aldehyde groups are formed

by direct PKS releasing, reduction of benzoic acids or oxidation of benzyl alcohols.
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1. Introduction

Benzene carbaldehydes, from the simplest benzaldehyde to
structural features in relatively complex molecules, are widely
distributed in ascomycetes and also found in basidiomycetes
(Table 1 and Fig. 1). Their producers include terrestrial, sponge-
associated, marine- and mangrove-derived, plant endophytic
and pathogenic fungi. The compounds from this family exhibit
diverse biological and pharmacological properties. Cytotoxic,
antibacterial and antifungal activities have been detected for
a large number of benzene carbaldehydes, followed by anti-
inammatory and antioxidant activities (Table 2 and Fig. 2).
Since the rst report on avoglaucin and auroglaucin in the
fungus Aspergillus glaucus in 1934,1 at least 185 structures
including 36 alkylated, 59 prenylated (meroterpenoids) and 30
both alkylated and prenylated derivatives have been described
in the literature. 146 of them were isolated from ascomycetes,
32 from basidiomycetes and only three from both ascomycetes
and basidiomycetes (Fig. 1). Aspergillus strains with 49 metab-
olites are clearly the dominant producers of benzene carbalde-
hydes, followed by Pestalotiopsis, Stachybotrys and Penicillium
with 14, 13 and 13 metabolites, respectively (Table 1). Reports
on the elucidation of their biosynthetic pathways in fungi have
accumulated tremendously in recent years, especially on the
backbone assembly by iterative polyketide synthases and the
formation of the aldehyde group via different routes. The
benzene carbaldehydes act as critical intermediates or end
products of various biosynthetic pathways. Furthermore, key
pathway-specic enzymes have also been characterized. Up to
April 2020, more than 140 publications deal with the producers,
Nat. Prod. Rep.
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isolation and structural elucidation, biological activities and
applications as well as biosynthetic origin and pathways of
benzene carbaldehydes. However, no systematic review on this
natural product family is available in the literature. Therefore,
we summarize these data in the present review to ll this gap.
2. Occurrence, biological and
pharmacological activities
2.1. Simple benzene carbaldehydes

In this review, merely slightly modied like hydroxylated,
halogenated, methylated and/or ethylated benzaldehydes are
classied as simple benzene carbaldehydes accounting for 23
members (Fig. 3). Despite their simple structures, these
compounds also exhibit broad biological and pharmacological
activities such as antifungal (eight compounds), antibacterial
and cytotoxic activities (Table 2). Hydroxylated and methoxy-
lated simple benzaldehydes are also natural products of plant
origin.2 Eleven simple fungal benzene carbaldehydes were iso-
lated from ascomycetes and eight from basidiomycetes (Fig. 1).
The main producers are members of the genera Aspergillus,
Penicillium and Bjerkandera (Table 1).

The simplest member of this family is benzaldehyde 1 without
other additional substituents. It is one of the most industrial used
chemicals and can be found as a preservative in cosmetics and
food as well as in personal care and select car detailing products.
Its 4-hydroxylated derivative 2 was identied in plants2 and a wide
range of fungi such as the plant pathogens Botryosphaeria obtusa3

and Phaeoacremonium chlamydosporum,4 the endophytic fungi
Aspergillus sp. YL-6 5 and Penicillium thiomii6 as well as the brown-
rot fungi Tyromyces palustris and Gloeophyllum trabeum.7 In
addition to phytotoxicity,3 2 also possesses anti-angiogenic,8 anti-
inammatory8 and anti-nociceptive8 activities.

Compounds 3–8 are hydroxylated, methoxylated or chlori-
nated benzaldehyde derivatives. The dihydroxylated benzalde-
hyde, protocatechuic aldehyde 3, was identied in the
aforementioned brown-rot basidiomycetes T. palustris and G.
trabeum.7 2,5-Dihydroxylated benzaldehyde 4 and 6-
Huomiao Ran received her
Bachelor's degree in 2013 from
Hainan University and obtained
her Master's degree in 2016 from
Nanjing Agricultural University.
She is currently a PhD student at
the Philipps-Universität Mar-
burg. Her research focuses on
pathway elucidation of fungal
secondary metabolites and
characterisation of the involved
enzymes under the supervision
of Prof. Shu-Ming Li.
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formylsalicylic acid 15 were metabolites of Penicillium patulum.9

Biosynthetic study on the white-rot fungus Bjerkandera adusta
led to the identication of compounds 1, 5, 7 and 8.10 Another
congener syringaldehyde 6 was obtained from the plant endo-
phytic fungus Phoma sp. YN02-P-3.11

To understand the preventive mechanism of the root rot
biocontrol fungus Phlebiopsis gigantea, its chemical constitu-
ents were investigated, leading to identication of o-orselli-
naldehyde 9 with inhibitory activity against the pathogenic
fungi Heterobasidion occidentale and Fusarium oxysporum, and
the saprotrophic fungus Penicillium canescens12 as well as cyto-
toxic activity against the human carcinoma cell line Hep 3B and
the lung broblast cell line MRC-5.13 The highly decorated and
cytotoxic 2,4-dihydroxy-3,5,6-trimethylbenzaldehyde 10 was
obtained from the deep sea-derived fungus Aspergillus sydowi.14

o-Orsellinaldehyde derivatives 11–14 were identied as biosyn-
thetic precursors in genetically manipulated fungal strains.15,16

The dialdehyde avipin 16 from Aspergillus,17 Chaetomium18,19

and Epicoccum20,21 species was well documented for its anti-
bacterial,17 antifungal,22 antiproliferative18 and antioxidant19

activities as well as inhibitory effect on a-glucosidase, evenmore
potential than the clinically used drug acarbose.19

Benzene carbaldehydes 17 and 18 carrying ethyl groups were
isolated from a marine mangrove endophytic fungus.23 Gladi-
olic acid 19 from Penicillium gladioli24,25 and cyclopaldic acid 20
from Seiridium cupressi26 are hemiacetal lactones and differ
from each other just in a hydroxyl group. Chemical investiga-
tion on a co-culture broth extract of two marine mangrove
pathogenic fungi led to the isolation of the hydroxylated benz-
aldehyde 21 with both ethyl ether and ester bonds.27 The two
antifungal benzene carbaldehydes 22 and 23 with O-prenyl
moieties have been isolated from Peniophora polygonia and were
demonstrated to strongly inhibit the growth of the aspen decay
fungus Phellinus tremulae.28
2.2. Alkylated benzene carbaldehydes

Alkylated derivatives with 66 structures, i.e.more than one-third
of the known benzene carbaldehydes, constitute one of the
Shu-Ming Li is full professor of
Pharmaceutical Biology and
Biotechnology at the Philipps-
University in Marburg, Ger-
many. He studied pharmacy and
received his Bachelor's and
Master's degrees from Beijing
University, China. Shu-Ming Li
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natural product chemistry by the
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University in Bonn, Germany.
He has served as an associate

professor of Pharmaceutical Biology at the Heinrich-Heine-
University in Düsseldorf. Li's group is interested in the biosyn-
thesis of secondary metabolites in bacteria and fungi.
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Table 1 Taxonomic distribution of fungal benzene carbaldehydes

Fungal genera
Simple
derivatives

Alkylated
derivatives

Meroterpenoid
derivatives

Benzophenone
derivatives

Spirocyclic
derivatives

Miscellaneous
derivatives Total

Ascomycetes
Aspergillus 6 29 4 1 7 2 49
Pestalotiopsis — 10 1 — — 3 14
Stachybotrys — — 13 — — — 13
Penicillium 4 5 1 3 — 13
Acremonium — — 8 — — — 8
Fusarium — — 7 — — — 7
Torrubiella — — 7 — — — 7
Colletotrichum — — 6 — — — 6
Paraphaeosphaeria — 6 — — — — 6
Pyricularia — 5 — — — 1 6
Trichoderma — 5 — — — — 5
Diaporthe — — — — — 4 4
Epicoccum 1 — — — — 2 3
Neonectria — — 3 — — — 3
Chaetomium 1 2 — — — — 3
Ascochyta — 1 — — 1 1 3
Daldinia — — — 2 — — 2
Hymenoscyphus — 2 — — — — 2
Lasiodiplodia — — — — — 2 2
Pestalotia — — — 2 — — 2
Pyrenula — 2 — — — — 2
Nalanthamala — — 2 — — — 2
Zopella — 2 — — — — 2
Amniculicola — 1 — — — — 1
Cordyceps — 1 — — — — 1
Diplodia 1 — — — — — 1
Gelasinospora — 1 — — — — 1
Phaeomoniella 1 — — — — — 1
Phoma 1 — — — — — 1
Sordaria — 1 — — — — 1
Seiridium 1 — — — — — 1
Talaromyces 1 — — — — — 1

Basidiomycestes
Hericium — — 7 — — — 7
Heterobasidion — — 4 — — — 4
Albatrellus — — 3 — — — 3
Bjerkandera 3 — — — — — 3
Stereum — — 3 — — — 3
Bondarzewia — 1 1 — — — 2
Clitocybe — — — — — 2 2
Gloeophyllum 2 — — — — — 2
Peniophora 2 — — — — — 2
Sarcodontia — — — — — 2 2
Tyromyces 2 — — — — — 2
Russula — — 2 — — — 2
Agrocybe 1 — — — — — 1
Fomitiporia — — — — — 1 1
Phlebiopsis 1 — — — — — 1
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largest classes. In comparison to the simple benzene carbal-
dehydes, members from this class contain an additional
unmodied or modied alkyl chain, which is attached in most
cases (94%) to the ortho-position of the formyl group. With the
exception for 35 from the basidiomycete Bondarzewia montana,
all these fungal products are salicylaldehyde derivatives from
ascomycetes (Fig. 1). Their main producers belong to the genera
Aspergillus and Pestalotiopsis with 29 and 10 metabolites,
respectively (Table 1 and Fig. 1). In addition to their main
This journal is © The Royal Society of Chemistry 2020
209
activities like antibacterial, antifungal and cytotoxic activities,
most group members also exhibit anti-inammatory and anti-
oxidant effects, which were observed only for fewmembers from
other classes (Table 2).

Biosynthetically, alkylated benzene carbaldehydes are
derivatives of aromatic polyketides with different numbers of
malonyl-CoA as extension units.29,30 Their alkyl chains differ
consequently from each other by numbers of C2 units. Thus, the
members of this class can be conveniently subdivided
Nat. Prod. Rep.
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Fig. 1 Taxonomic distribution of different fungal benzene carbalde-
hyde classes.
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according to the length of the side chains, i.e. C3-, C5-, C7-, C9-
and C11-alkylated benzene carbaldehydes.

2.2.1. C3-alkylated benzene carbaldehydes. 12 benzalde-
hyde derivatives 24–35 bear modied C3-alkyl chains (Fig. 4). Six
of them, sporulosaldeins A–F 24–29, were identied in the
endophytic fungus Paraphaeosphaeria sp. F03.31 24–26 carry an
acetonyl group at C6 with different oxidative levels on the C3
substituents. It was proposed that cyclisation between the acetal
group on the benzene ring and the ketal group of the side chain
in the dialdehyde 26 leads to the formation of two chromene
aldehydes 27 and 28 as well as one chromane aldehyde 29. The
structurally similar redoxcitrinin 30 with two additional methyl
groups at C5 and C10, was obtained from a marine-derived
Penicillium strain and acts as a precursor in citrinin biosyn-
thesis.32,33 Investigation on the secondary metabolites of two
Pestalotiopsis species resulted in the isolation of the salicy-
laldehyde derivative 31 carrying a propanic acid residue and its
methyl ester 32, respectively.34,35 The two prenylated chromene-
5-carbaldehydes, 33 from the marine-derived fungi Eurotium
cristatum36 and 34 from Aspergillus sp. SF-5976,37 display
signicant anti-inammatory effect.

The only basidiomycete-derived metabolite in this group is
the dihydroxylated aldehyde 35 from the rare white-rot fungus
Bondarzewia montana.38 An alkenyl substitution at the meta-
position to the formyl group differs clearly from the ortho-
position of other members 24–34 from ascomycetes.

2.2.2. C5-alkylated benzene carbaldehydes. Compounds
36–46 are C5-alkylated metabolites with a formyl group at the
ortho-position (Fig. 5). Two 2,4-dihydroxy-3-
methylbenzaldehydes 36 and 37 with a modied C5-alkyl
chain were obtained from the deep sea-derived fungus Asper-
gillus versicolor SCSIO 41502.39 Chemical investigation of
another marine fungus Zopella marina BCC 18240 resulted in
the isolation of salicylaldehyde derivative 38 with a pentan-
diene carboxylic acid residue.40 Its derivative 39 with a 1,3-
pentan-diene moiety has also been isolated as a key biosyn-
thetic intermediate of sordarial.41 A set of oxidation products of
39 with 30,40-dihydroxyl group (40–44) were identied in several
ascomycetes. Sordariol 40 with an immunosuppressive activity
was isolated from Sordariol macrospora,42 Gelasinospora hetero-
spora43 and G. longispora43 and then identied in the same
Nat. Prod. Rep.
210
biosynthetic pathway with 39.41 Its isomer, agropyrenol 41, was
isolated as a phytotoxin from the plant pathogen Ascochyta
agropyrina var. nana.44 Its absolute conguration was deter-
mined as 30R and 40R by the Mosher ester method. Three
additional 30R,40R-dihydroxylated polyketide analogues with
adjunct prenyl unit or saturated alkyl chain, vaccinol G 42,
heterocornols A 43 and F 44, were obtained from the marine
sponge-associated fungus Pestalotiopsis heterocornis.35 Bioac-
tivity tests with 41–44 showed their cytotoxic and antibacterial
potentials against human cancer cell lines and Gram-positive
bacteria, respectively. The benzofuran aldehyde 45 with a satu-
rated C5-alkyl residue was isolated from the entomopathogen
Cordyceps annullata.45 It exhibits potent agonistic activity
towards the cannabinoid receptors CB1 and CB2. Moreover, the
antifungal and antibacterial metabolite anguillosporal 46 with
an ethyl and a branched C6-alkyl chain was isolated from the
freshwater fungus Anguillospora (also known as Amniculicola)
longissima CS-869-1A.46

2.2.3. C7-alkylated benzene carbaldehydes. This benzene
carbaldehyde class includes more than 30 structures (47–78)
and shares a salicylaldehyde scaffold mostly with a modied C7-
alkyl chains. The majority (56–78) bears an additional dime-
thylallyl (C5) moiety or structural feature derived thereof.
Various modications on the alkyl chains are found for deriv-
atives without a prenyl moiety (47–55, Fig. 6).

Four salicylaldehydes with a dihydroxyheptyl moiety 47–50
and their oxidised dicarbonyl derivative 51 were obtained from
the rice pathogen Magnaporthe grisea.47,48 Two similar metabo-
lites, heterocornol B 52 and pestalol D 53, were isolated from
Pestalotiopsis heterocornis and Pestalotiopsis sp. AcBC2, respec-
tively.35,49 Ginsenocin 54 with a substituted 2H-pyran ring
resulted from cyclisation on the C7-alkylatd chain was identied
as an anti-tumour metabolite in the endophytic fungus Peni-
cillium melinii Yuan-25.50 It shows potent cytotoxicity with IC50

values ranging from 0.49 to 5.03 mg mL�1 to six cell lines
including MKN45, LOVO, A549, MDA-MB-435, HepG2 and HL-
60. Pyrenulafuran 55, a 2H-benzofuran derivative, was isolated
from the cultured lichen mycobionts of Pyrenula sp.51

The majority of the C7-alkylated benzene carbaldehydes are
3,6-dihydroxybenzaldehydes with a dimethylallyl moiety at C3
(56–78, Fig. 7). These compounds belong to the groups of a-
voglaucins and auroglaucins and were obtained from different
Aspergillus/Eurotium species including several mangrove-
derived strains. One of the notable features is the presence of
a complete saturated (56) or unsaturated (57–63) C7-alkyl chains
at C6 of the benzene ring. This set of compounds show broad
bioactivities e.g. antioxidant,52–54 antibacterial55,56 and anti-
inammatory activities56,57 as well as binding affinity to
human opioid or cannabinoid receptors.58

In the cases of 64 and 65, the alkyl residues are further
modied by hydroxylation. Compound 64 with a 30,60-dihy-
droxyhepta-10,40-dienyl moiety was identied in the fruit-
associated fungus Aspergillus amstelodami.55 The C30-hydroxyl-
ated analogue 65 was isolated from the gorgonian-derived
fungus Eurotium sp.59

The alkyl chain has cyclised with the C5-hydroxyl group to
a 2H-benzopyran in 66–69, to a dihydrobenzopyran in 70–73,
This journal is © The Royal Society of Chemistry 2020
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Table 2 Biological activities of benzene carbaldehydes

Substance class Biological activities Compounds

Simple derivatives Antiviral activity —
Antifungal activity 1,155 4,156 9,12 16,22 19,25 21,27 22,28 23 28

Antibacterial activity 1,155 4,157 16,17 19 25

Antioxidant activity 1,155 2,158 16 19

Anti-inammatory activity 2 8 and 3 159

Anti-insect activity 1,155 4,160 20 26

Phytotoxic activity 2 3

Cytotoxic activity 4,161 9,13 10,14 16 18

Enzyme inhibitors, activators and receptors 2,162 3,163 16 19

Anti-nociceptive activity 2 8

Anti-angiogenic activity 2 8

Positive modulation of GABAergic neuromodulation 2 158

Alkylated derivatives Antiviral activity 53,49 79,49 80 49

Antifungal activity 24–29,31 41,35 42,35 46,46 82 64

Antibacterial activity 32,35 41–44,35 46,46 56,56 57,56 60,55,56 62,56 79,49

81,64 82,64 89 40

Antioxidant activity 30,32 56,53,54 57,53,54 58,53 60,53 62,53,54 73,53

75,52 76 52

Anti-inammatory activity 33,36 34,37 56,36,56,57 57,56,57 60,56 62,56 70,37

71,37 75 36,56

Anti-insect activity 47–50 47

Phytotoxic activity 41,44 49,164 51 48

Cytotoxic activity 28,31 32,35 41–44,35 52,35 54,50 73,62 78,63 79,49

80,49 81,64 82,64 84–86,69 89 40

Enzyme inhibitors, activators and receptors 45,45 56,58 63 58

Immunomodulatory activity 40 43

Antifouling activity 36 39

Antimalarial activity 85,69 86 69

Meroterpenoid derivatives Antiviral activity 119,87 134,92 135,92 137,93 138 93

Antifungal activity 98,79 99,79 112,79 126 79

Antibacterial activity 98,79 99,79 112,91 113,91 126,91 127,78,79,91 131,91

132,91 133,78 136,91 146 95

Antioxidant activity —
Anti-inammatory activity 126,87 127,87 132,87 136 87 and 141 87

Anti-insect activity —
Phytotoxic activity 90,76 95,77 97,38 98,79 99 79

Cytotoxic activity 97,38 99,78 127,78 129,92 131–134,92 136 92

Enzyme inhibitors, activators and receptors 98,78 99,78 114,85 127,78 134,78 133 78

Neuritogenic activity 106–111,83,84 116 86

Benzophenone Antibacterial activity 153 100

Enzyme inhibitors, activators and receptors 154 101

Anti-inammatory activity 149 97 and 150 97

Cytotoxic activity 153 100

Spirocyclic derivatives Antioxidant activity 155,104 157–160 105

Cytotoxic activity 160,106 162–164 107

Miscellaneous derivatives Antiviral activity 169 49 and 171 34

Antifungal activity 165,108 166,108 179,113 180,113 182,21 183 21

Antibacterial activity 167,109 182,21 183 21

Anti-inammatory activity 171,34 175–178 112

Anti-insect activity 168 47

Phytotoxic activity 168 48 and 170 4

Cytotoxic activity 179,113 180,113 181 114
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and to a benzofuran ring in 74–76, respectively. A spontaneous
intramolecular cyclisation of 65 to an enantiomer pair 66/67
with a 2H-chromene skeleton was observed when it was dis-
solved in CDCl3.60 Their derivatives 68 and 69 with an additional
C40 hydroxylated group were identied in a gorgonian-derived
fungus Eurotium sp. as well.60 Two chromane-5-carbaldehyde
isomers, 70 and 71, with opposite congurations of the C40
This journal is © The Royal Society of Chemistry 2020
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hydroxyl group, were characterized from the Antarctic marine-
derived fungus Aspergillus sp. SF-5976 and proven to have
anti-inammatory activity.37 Investigation on the chemical
constituents of the mangrove endophytic fungus Eurotium
rubrum led to the identication of compounds 72–76 and
eurotirumin 77 with a cyclopentabenzopyran ring system.61

Among them, chaetopyranin 73 exhibits cytotoxic activity
Nat. Prod. Rep.
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Fig. 2 Bioactivity distribution of fungal benzene carbaldehydes.

Fig. 3 Structures of simple aldehydes 1–23.

Fig. 4 Structures of C3-alkylated aldehydes 24–35.
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toward several tumour cell lines,62 while compounds 75 and 76
show antioxidant activity.52 The anti-proliferative prenylated
benzene carbaldehyde 78 with a rare endo peroxide bond was
isolated from the mangrove-derived fungus Aspergillus sp. AV-
2.63

Two rare examples of C5-prenylated and C7-alkylated salicy-
laldehydes, pestalols B 79 and C 80 (Fig. 8), were obtained from
the mangrove endophytic fungus Pestalotiopsis sp. AcBC2 and
show stronger anti-inuenza virus activity than the non-
prenylated precursor 53.49 The dimethylallyl moiety in 79 was
further modied by adjunction of two hydroxyl groups in 80.

2.2.4. C9- and C11-alkylated benzene carbaldehydes. Only
three C9- and six C11-alkylated benzene carbaldehydes are until
now reported (Fig. 9). All of the known members from these
classes are salicylaldehyde derivatives from ascomycetes. The
two antibiotics albiducins B 81 and A 82 were isolated from the
ash tree-associated saprotrophic fungus Hymenoscyphus albi-
dus.64 Hydroxylation at C5, 82 versus 81, enhances the
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Structures of C5-alkylated aldehydes 36–46.

Fig. 6 Structures of C7-alkylated aldehydes 47–55.

Fig. 7 Structures of C7-alkylated and at C3 prenylated aldehydes 56–78.

This journal is © The Royal Society of Chemistry 2020 Nat. Prod. Rep.
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Fig. 8 Structures of C7-alkylated at C5 prenylated aldehydes 79 and
80.
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antimicrobial and cytotoxic activities. Another C9-alkylated
salicylaldehyde 83 with modications of the alkyl chain by one
keto and two methyl groups was found to be one of the common
secondary metabolites in Penicillium species and as a key
precursor in the asperfuranone biosynthetic pathway (see
Section 3.1.2 for details).65–68

Two reports described the identication of C11-alkylated
benzene carbaldehydes. Bioassay-guided constituent investi-
gation of the wood-decay fungus, Hypocrea (syn. Trichoderma)
sp. BCC 14122, resulted in the isolation of the C11-alkylated
salicylaldehyde 84, gentisaldehyde 85, its isomer 86 with a cis-
congured double bond and two benzofuran derivatives 87
and 88.69 85 with an additional phenolic hydroxyl group shows
stronger cytotoxicity against tumour cell lines KB, BC and NCI-
H187 than its non-hydroxylated analogue 84. In 2018, a C70-
hydroxylated congener 89 was obtained from the marine-
derived fungus Zopella marina. It shows antibacterial activi-
ties against Mycobacterium tuberculosis and Bacillus cereus.40

In summary, alkylated benzene carbaldehydes with 66
members contribute not only signicantly to the structural
diversity, but also to the broad biological activities. They exhibit
all the described activities for benzene carbaldehydes with
antibacterial, antioxidant, anti-inammatory and cytotoxic
activities as their remarkable features (Table 2).

2.3. Meroterpenoids

Meroterpenoids are hybrid natural products of terpene and
other pathways.70 They generally contain a start molecule from
the polyketide, alkaloid or shikimate pathway, which is con-
nected with a prenyl moiety of various chain lengths. The
attachment of the prenyl moiety to different core structures is
Fig. 9 Structures of C9- and C11-alkylated aldehydes 71–89.

Nat. Prod. Rep.
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usually catalysed by prenyltransferases.71 Several related
reviews on meroterpenoids have been published
previously.70–74

Since the rst report on benzaldehyde-containing mer-
oterpenoids by Ellestad et al. in 1969,75 at least 86 metabolites
from this class have been isolated from fungal strains. These
include structures carrying a dimethylallyl moiety already dis-
cussed above, e.g. the simple aldehydes 22 and 23 (2.1), the C3-
alkylated benzene carbaldehydes 34 and 35 (2.2.1) and the C7-
alkylated derivatives 56–80 (2.2.3).

Therefore, meroterpenoids belong to one of the major
benzene carbaldehyde classes and contribute signicantly to
the structural diversity of these natural products. More than
30% of the mentioned products were isolated from basidio-
mycetes and 66% from ascomycetes (Fig. 1). The majority of the
fungal meroterpenoids have a C5, C10 or C15 terpenoid chain,
which is usually connected tometa-position of the formyl group
and ortho-position of at least one hydroxyl group or structural
feature derived thereof.

2.3.1. Meroterpenoids derived from C5- and C10-prenylated
precursors. Meroterpenoids 90–111 are benzaldehyde deriva-
tives with a C5- or C10-terpenoid chain (Fig. 10). Fomannoxin 90,
a benzene carbaldehyde from the shikimate pathway with
a fused isoprenyl dihydrofuran, was suggested to be involved in
the pathogenicity of the root rotting fungus Heterobasidion
annosum sensu lato.76 Compounds 91–93 were isolated and
characterized as key intermediates in the fomannoxin biosyn-
thesis.76 It was proposed that the prenylated precursor 93 was
oxidatively cyclised to benzofuran 92 and subsequently reduced
to 91 and 90. Grapevine disease-guided study led to the isolation
of three rare acetylenic benzene carbaldehydes 94–96 from the
plant pathogenic strain Stereum hirsutum.77 Sterehirsutinal 95
exhibits a high phytotoxicity and inhibits 100% of the plant
callus growth at 500 mM. Another dimethylallyl-carrying
benzene carbaldehyde, montadial A 97, was isolated from the
polypore Bondarzewia montana and shows strong cytotoxic
activities against tumour cells L1210 with MIC of 10 mg mL�1

and HL60 with MIC of 5 mg mL�1.38

Representatives of the geranylated (C10) meroterpenoids are
colletorin B 98 and its chlorinated derivative colletochlorin B
99. They were obtained from several fungi like Nectria galli-
gena,78 Fusarium sp.79 and Cephalosporium diospyri.80 98 and 99
This journal is © The Royal Society of Chemistry 2020
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Fig. 10 Structures of meroterpenoids 90–111.
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display moderate herbicidal, antifungal and antibacterial
activities against Chlorella fusca, Ustilago violacea and Fusarium
oxysporum as well as Bacillus megaterium, respectively.79 They
are also regarded as potential drugs for the treatment of Alz-
heimer's disease due to the inhibitory activities towards b-
glucuronidase and acetylcholinesterase (AChE).78 Five
structurally-related metabolites with a modied geranyl residue
(100–104) were isolated from Colletotrichum nicotianae. Colle-
tochlorins A 101 and C 103 are chlorinated derivatives of col-
letorins A 100 and C 102, respectively.81 Phytotoxicity tests
against Ambrosia artemisifolia and Sonchus arvensis with 100 and
101 as well as their analogues indicated the importance of the
stereochemistry at the hydroxylated geranyl chain and the
enhancing effect of chlorination.82 Six fatty acid esters her-
icenones C–H 106–111 bearing a 60-carbonyl geranyl moiety,
were isolated, together with their proposed precursor 105, from
the edible mushroom Hericium erinaceum.83,84 109–111 can be
considered as cyclisation products of 106–108, respectively.

2.3.2. Meroterpenoids derived from C15-prenylated
precursors. Benzene carbaldehydes carrying an unmodied or
modied farnesyl (C15) moiety with 35 members build the
largest group within meroterpenoids (Fig. 11). Compound 112,
a C3-farneylated o-orsellinaldehyde 9, can be considered as
prototype of these metabolites.

During a screening programme for interacting agents with
mammalian CNS receptors, three farnesylated benzene carbal-
dehydes, LL-Z1272 b 112, ovinal 114 and scutigeral 115, were
isolated from an extract of the edible mushroom Albatrellus
ovinus by bioassay-guided fractionation of the crude extracts.85
This journal is © The Royal Society of Chemistry 2020
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The antibiotic LL-Z1272 a 113, a chlorinated derivative of 112,
was isolated from the ascomycete Fusarium sp.75

Three benzene carbaldehydes 116–118 bear a hydroxylated
farnesyl moiety. Parvisporin 116 was isolated from the culture
broth of Stachybotrys parvispora F4708 and demonstrated to
have a weak neuritogenic activity.86 Its analogues chlorocylin-
drocarpol 117 and cylindrocarpol 118 were later obtained from
the sponge-derived fungus Acremonium sp.87 Recently, stachy-
bonoids A–C 119–121, with a benzopyran ring aer cyclisation
of the farnesyl chain with the salicylic hydroxyl group, were
isolated from the crinoid-derived fungus Stachybotrys chartarum
952.88 Compound 119 exhibits an inhibitory activity against the
replication of dengue virus.

Asperugin B 122 and A 123, two phthalaldehydes, carrying an
intact O-farnesyl moiety were identied as metabolites of
a mutated strain of Aspergillus rugulosus.89 Their derivatives 124
and 125 were obtained from a genetically engineered A. nidulans
strain as biosynthetic intermediates of aspernidine A 186 (see
3.1.1. for details).90

Structurally, 126–134 are meroterpenoids with a substituted
cyclohexone ring by cyclisation within a modied farnesyl
chain. To counter antibiotic-resistance bacteria, Mogi et al.
screened hundreds of natural products and identied a unique
set of active natural products LL-Z1272 b 112, 3 126, d 127, g 132,
z 133, which were isolated originally from Fusarium sp.75,91

Chlorination determines the biological activities. The non-
chlorinated derivatives 112 and 126 are active against cyto-
chrome bd, while the chlorinated derivatives 127, 132 and 133
are potent inhibitors of cytochrome bo and trypanosome
alternative oxidase.91 126 shows very strong antifungal activity
Nat. Prod. Rep.
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Fig. 11 Structures of meroterpenoids 112–146.
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against Eurotium repens.79 Compounds 127 and 133 display
moderate inhibitory activity towards the enzymes AChE and b-
glucuronidase as well as toxicity towards human lung
broblasts.78

Chemical investigation of the bioactive metabolites in the
pathogenic fungus Verticillium hemipterigenum and the
sponge-derived fungus Acremonium sp. led to the isolation of
deacetylchloronectrin 128,87,92 the glycoside vertihemipterin A
129,92 cylindrol B 130,87 80-hydroxyascochlorin 131,92
Nat. Prod. Rep.
216
compounds 132 and 133 87,92 as well as ilicicolin E 134.92

Compounds 129 and 131–134 possess remarkable cytotoxicity
to several cell lines such as KB, BC-1, NCI-H187 and vero with
IC50 values ranging from 0.36 to 19 mg mL�1.92 Two mer-
oterpenoids with a tetrahydrofuran ring at the modied far-
nesyl chain, ascofuranol 135 and ascofuranone 136, were
obtained also from the fungi Verticillium hemipterigenum and
Acremonium sp.87,92 135 has antiviral potential and
This journal is © The Royal Society of Chemistry 2020
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Fig. 12 Structures of meroterpenoids 147 and 148.
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cytotoxicity,91 while 136 shows signicant anti-inammatory
activity.87

Eight phenylspirodrimane derivatives 137–144 were iden-
tied in the fungus Stachybotrys chartarum.88,93 In their struc-
tures, a decahydronaphthalene ring system and a fused
spiroketal feature are formed within the farnesyl chain. Sta-
chybonoid A 141 exhibits moderate anti-inammatory activity
by inhibiting the production of nitric oxide in
lipopolysaccharide-activated RAW264.7 cells with an IC50

value of 27.2 mM.88 Stachybotrysins A 137 and B 138 display
antiviral activity.93 Kampanol C 145, a pentacyclic mer-
oterpenoid, was obtained from Stachybotrys kampalensis
Hansf.94 Dicarbaldehyde backbone makes it extremely
unstable in CD2Cl2, but reasonable stable in acetone. Pesta-
lotiopen A 146 was isolated from the Chinese mangrove-
endophytic fungus Pestalotiopsis sp. as an ether of altiloxin A
derived from a farnesyl moiety and a highly substituted
benzene carbaldehyde (cyclopaldic acid). It shows moderate
antibacterial activity against Enterococcus faecalis.95 The rare
acetylenic spirodioxolactone ochroleucin A1 147 was obtained
from the mushrooms Russula ochroleuca and R. viscida aer
treatment with aqueous KOH. The labile chromogen
undergoes easily rearrangement into the isomeric dilactone
ochroleucin A2 148 (Fig. 12).96

Taking together, meroterpenoid benzene carbaldehydes
contain usually C5-, C10-, C15-prenyl moiety or structures derived
thereof. Antiviral, antifungal, antibacterial, phytotoxic and
cytotoxic activities were determined for many members of this
substance class. Furthermore, six compounds act as enzyme
inhibitors, activators or receptors (Table 2).
Fig. 13 Structures of benzophenones 149–154.

This journal is © The Royal Society of Chemistry 2020
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2.4. Benzophenones

Natural products of this class share a diarylketone skeleton,
which can be further modied by hydroxylation, methylation,
methoxylation, halogenation or prenylation (Fig. 13). Six such
substances were identied in fungi. They are usually oxidative
ring opening products of anthrones (see Section 3.2.3 for
details).

Daldinals A 149 and B 150, benzophenones with two
bilateral methoxyl groups, differ from each other by just
a hydroxyl or methoxyl group and were isolated from the
fungus Daldinia childiae with anti-inammatory activity.97 The
diversity of this group is increased by prenylation on the
benzene ring, like the metabolites 151–154. Arugosins I 151
and H 152 with a dimethylallyl moiety at C2 are key interme-
diates in the shamixanthone biosynthesis and were isolated
from the endophytic fungi Penicillum sp. JP-1 and Emericella
nidulans var. acristata, respectively.98,99 Co-cultivation of
a marine-derived fungus Pestalotia sp. with a unicellular
antibiotic-resistant bacterium led to the identication of
a chlorinated benzophenone derivative, pestalone 153.100 It
shows antibiotic activity against resistant bacteria and
moderate cytotoxicity. Its demethylated analogue 154 has been
reported for Chrysosporium sp. with inhibitory activity against
testosterone-5a-reductase.101
2.5. Spirocyclic benzene carbaldehydes

10 spirocyclic benzene carbaldehydes have been found in
different Aspergillus, Eurotium and Penicillum species (Fig. 14).
The spirocyclic derivatives 155–160 are presumably head-to-tail
[4 + 2] Diels–Alder reaction products between the diene feature
of a prenylated C7-alkyl benzene carbaldehyde and an enone
group of a prenylated diketopiperazine derived from cyclo-Trp-
Ala. 155 and 156 have an olenic bond at C10 and 156 carries
an additional dimethylallyl chain at C6.

Cryptoechinuline D 155 and 7-isopentenylcryptoechinu-
line D 156 were rst reported in 1976 from Aspergillus
amstelodami and isolated later from the mangrove endo-
phytic fungus Eurotium rubrum.102–104 Eurotinoids A–C 157–
159 and dihydrocryptoechinulin D 160 were recently identi-
ed as enantiomeric pairs in the marine-derived fungus
Eurotium sp. SCSIO F452.105 Compounds 157 and 158 repre-
sent two “meta”, while 159 and 160 “ortho” structures,
regarding the relative position of the aryl-alkyl substitute to
the spiro centre. With the exception for 156, all of the
Nat. Prod. Rep.
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Fig. 14 Structures of spirocyclic benzene carbaldehydes 155–164.

Natural Product Reports Review

Pu
bl

is
he

d 
on

 1
1 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

bu
rg

 o
n 

8/
12

/2
02

0 
4:

51
:5

0 
PM

. 
View Article Online
spirocyclic compounds exhibit antioxidant activity.105

Compound 160 also displays cytotoxic activity against two
tumour cell lines.106

Four spiroketal benzene carbaldehydes have been until now
reported. Cristaldehyde B 161, a spiro dichromene derivative,
was isolated from the crinoid-associated fungus Eurotium cris-
tatum.36 Peniciketals A–C 162–164 with two spiroketal features
were isolated from the saline soil-derived fungus Penicillium
raistrichii and show a selective cytotoxity against HL-60 cell
line.107
2.6. Miscellaneous benzene carbaldehydes

More than 20 fungal benzene carbaldehydes with naphthalene,
chromanone or other skeletons cannot be grouped in the
classes described above and are listed in this section (Fig. 15).
They are usually events of strong rearrangements.

Bioactivity-guided fractionation led to isolation of two
volatile benzaldehyde derivatives 165 and 166 from an
extract of the basidiomycete Sarcodontia crosea (syn. S.
setosa).108 They exhibit weak activity against several phyto-
pathogenic fungi including Leptosphaeria maculans and
Botrytis cinerea. A biphenyl carbaldehyde 167 with
Nat. Prod. Rep.
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antibacterial activity was obtained from the endophytic
fungus Pestalotiopsis zonata.109

Two C6-alkylated salicylaldehydes, pyricuol 168 and pestalol
E 169, were obtained fromMagnaporthe grisea and Pestalotiopsis
sp., respectively.47,49,110 Pyricuol 168 shows a strong nematicidal
activity and killed 94.5% of Caenorhabditis elegans at 400 ppm
over 24 h. Obviously, the hydroxymethyl group at C30 in 168
enhances the nematicidal activity, compared to its C7-alkylated
analogues 47–50.47 Compound 169 carrying a sulfonic group at
C40 shows inhibitory activity against inuenza A and swine u
viruses.

Agropyrenal 170 and vaccinal A 171, two naphthalene car-
baldehydes, were isolated from the phytopathogen Ascochyta
agropyrina var. nana and the endogenic fungus Pestalotiopsis
vaccinii, respectively.34,44 Compound 171 displays anti-
enterovirus and anti-inammatory activities. Three 4/2-
chromanone carbaldehydes 172–174 were obtained from the
basidiomycetes Fomitiporia punctata and Clitocybe illudens.4,111

Four unusual 2,3-dihydro-1H-indene benzaldehydes bearing
a 1,4-benzodioxan moiety, diaporindenes A–D 175–178, were
identied in the endophytic fungus Diaporthe sp. SYSU-HQ3.112

They possess signicant anti-inammatory activity against
nitric oxide production.
This journal is © The Royal Society of Chemistry 2020
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Fig. 15 Structures of miscellaneous aldehydes 165–185.
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Depsidones 179–181 share a characteristic seven-member
ring formed by ester and ether bonds between two benzene
rings. They were isolated from the endophyte Botryosphaeria
rhodina and the endophytic fungus BCC 8616.113,114 Botryo-
rhodines A 179 and B 180 show cytotoxic and antifungal
activities, while compound 181 exhibits only cytotoxic
activity.

Secondary metabolite investigation of the endophytic fungus
Epicoccum sp. resulted in the isolation of a tetracyclic aromatic
benzene carbaldehyde 182 and a 2-phenylbenzofuran carbal-
dehyde 183, which show potent antibacterial and signicant
anti-phytopathogenic activities.21 It was proposed that epi-
coccolides A 182 and B 183 are presumably formed from two
molecules of avipin 16 via an unsymmetrical benzoin
condensation, which undergoes further modication.21 Two
benzene carbaldehydes were identied in the genetically
manipulated strains. Compound 184 with a diphenylmethane
skeleton, probably derived from o-osellinaldehyde 9, was iso-
lated from a non-reducing polyketide (NR-PKS) heterologous
expression host.115 Moreover, deletion of the down-regulator in
Aspergillus nidulans led to the discovery of compound 185,
a hemiacetal ether from two 3-methylosellinaldehyde 11
molecules.116
This journal is © The Royal Society of Chemistry 2020
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3. Formation of benzene
carbaldehydes and their involvement in
the biosynthesis of fungal metabolites

In the last years, signicant progress has been achieved for the
understanding of the formation of fungal benzene carbalde-
hydes. While some of them are formed by direct releasing from
non-reducing polyketide synthases (NR-PKSs) with a terminal
reductive domain or from highly reducing PKSs (HR-PKSs) by
involvement of additional enzymes, other derivatives are
formed via modication by tailoring enzymes, e.g. oxidoreduc-
tases and NRPS-like enzymes.
3.1. Direct releasing from backbone enzymes

Fungal benzene carbaldehydes are oen generated by NR-PKSs
with acetyl-CoA as the start and malonyl-CoA as the extender
unit. The start unit initiates precursor for polyketide synthesis,
while the extender units elongate the polyketide backbone to
completion.117 The number of extender units determines the
length of the polyketide size. A set of grouped catalytic domains
control the incorporation of changed or unchanged C2-units
into the polyketide backbone. A minimal fungal PKS consists of
Nat. Prod. Rep.
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Fig. 16 Genetic organisation of the pkf gene cluster in A. nidulans and the simplified postulated biosynthetic pathway of aspernidine A 186
(modified after Yaegashi et al.90). SAT: starter unit, ACP transacylase, CYP: cytochrome P450, SDR: short-chain dehydrogenase, PT: prenyl-
transferase, DH: dehydrogenase, NR-PKS: non-reducing polyketide synthase.
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a ketosynthase (KS), an acyltransferase (AT), and an acyl carrier
protein (ACP). Most PKSs also contain accessory domains, such
as b-ketoacyl reductase (KR), dehydratase (DH), enoyl reductase
(ER), product template (PT), C-methyltransferase (CMeT) and
terminal reductase (R).29,118

3.1.1. Releasing from non-reducing polyketide synthases.
The R domain in NR-PKSs is oen used as chain releasing
mechanism to form an aldehyde by NAD(P)H-dependent
reduction. In the case of aspernidine A 186 biosynthesis, the
responsible pkf cluster was identied in the genome of
Fig. 17 Genetic organisation of the trop gene cluster in T. stipitatus an
(modified after Davison et al.16). SAT: starter unit, ACP transacylase, DC
hydrolase, Tra: transport, DH: dehydrogenase, DO: dioxygenase, TF: tran

Nat. Prod. Rep.
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Aspergillus nidulans.90 Gene deletion experiments conrmed the
function of the involved genes. The simple o-osellinaldehyde 9
is released from the NR-PKS PkfA by its C-terminal R domain
(Fig. 16) and further converted to aspernidine D 124 with a far-
nesyl moiety by the UbiA-like prenyltransferase PkfE. Additional
tailoring enzymes catalyse hydroxylation, reduction and meth-
ylation steps to form the nal meroterpenoid 186.

Similarly, 3-methylosellinaldehyde 11 and redoxcitrinin 30
were detected as the direct releasing products of the NR-PKSs
TropA and CitS with R domains (Fig. 17 and 18). In
d the simplified postulated biosynthetic pathway of stipitatic acid 187
: decarboxylase, CYP: cytochrome P450, MO: monooxygenase. Hyd:
scription factor, NR-PKS: non-reducing polyketide synthase.

This journal is © The Royal Society of Chemistry 2020
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Fig. 18 Genetic organisation of the cit gene cluster in M. ruber and the simplified biosynthetic pathway of citrinin 190 (modified after He and
Cox33). SAT: starter unit, ACP transacylase, OR: oxidoreductase, Reg: regulator, SH: serine hydrolase, Tra: transporter, NR-PKS non-reducing
polyketide synthase.
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comparison to PkfA, TropA (also known as Tspks1) and CitS
(also known as PksCT) contain an additional CMeT domain
for methylation during the polyketide chain elongation
leading to the formation of the dimethylated benzene car-
baldehydes 11 and 30. Heterologous expression of the
intronless tropA in the fungal host Aspergillus oryzae led to the
Fig. 19 Genetic organisation of the ateafo gene cluster in A. terreus and
(modified after Chiang et al.120). SAT: starter unit, ACP transacylase, Reg:
MO: monooxygenase, Oxy: oxygenase, NR-PKS: non-reducing polyketid

This journal is © The Royal Society of Chemistry 2020
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identication of the benzaldehyde 11.16 Gene deletion and
heterologous expression experiments demonstrated stipitatic
acid 187 as the nal product of the trop cluster (Fig. 17). Cox
and He reported the reconstruction of the biosynthetic gene
cluster (BGC) for citrinin 190 from Monascus ruber in A. ory-
zae.33 The iterative NR-PKS gene citS codes for a redoxcitrinin
the simplified postulated biosynthetic pathway of asperfuranone 192
regulator, DH: dehydrogenasem Tra: transporter, OR: oxidoreductase,
e synthase, HR-PKS: highly reducing polyketide synthase.

Nat. Prod. Rep.
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synthase. Expression of citS alone led to low production of the
ketoaldehyde 30 evidently released from the PKS by its
terminal reductive R domain. Coexpression of citA coding for
a serine hydrolase with citS resulted in a much higher titre of
30. This indicates that cooperation of CitA with the R domain
of CitS serves as the release machinery in the native strain
(Fig. 18).

3.1.2. Releasing from dual polyketide synthases. The
majority of fungal PKS-derived metabolites uses only one PKS
for assembling the skeleton as exemplied above. However,
there are also numerous biosynthetic pathways, in which two
PKSs contribute to the complex fungal products.29,119 It was
reported that the BGC of asperfuranone 192 in A. terreus
contains one HR-PKS gene ateafoG and one NR-PKS gene
ateafoE. Co-expression of the two PKS genes under control of
a strong promoter each resulted in the formation of a shunt
product 191 and the C9-alkylated salicylaldehyde 83.120 The
HR-PKS AteafoG was demonstrated to synthesize a dimethy-
lated C8-chain start moiety, which is transferred to the NR-PKS
AteafoE for further extension with the facilitation of AteafoC
(Fig. 19).
Fig. 20 Genetic organisation of the aza gene cluster in A. niger and the si
after Zabala et al.121). SAT: starter unit, ACP transacylase, AT: acyltransfe
monooxygenase, CYP: cytochrome P450, Reg: regulator, DH: dehydroge
PKS: highly reducing polyketide synthase.

Nat. Prod. Rep.
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Yi Tang and coworkers reported a convergent model of
dual PKS-containing BGC from A. niger by activation of the
silent gene cluster.121 The two PKSs can function indepen-
dently in parallel to form precursors which can be ultimately
connected via accessory enzymes. The NR-PKS AzaA released
a C5-alkylated salicylaldehyde 193 by its R domain, which is
further reduced to the intermediate 36. The precursor 194
with a pyran ring was then afforded by involvement of the
monooxygenase AzaH. In parallel, 20,40-dimethylhexanoly CoA
195 as another precursor is synthesized by the HR-PKS AzaB
and is proposed to be transferred to the C4-hydroxyl group of
194 to form the key intermediate 196. Further modications
by several tailoring enzymes led to the end product azani-
gerone C 197 (Fig. 20).

3.1.3. Releasing from highly reducing polyketide synthases
by involvement of additional oxidoreductases. All the afore-
mentioned fungal benzene carbaldehyde-forming enzymes
belong to NR-PKS.29 Recently, two examples of HR-PKSs for
the involvement in the benzaldehyde biosynthesis were re-
ported for vir and fog clusters.122,123 Investigation on vir BGC
revealed the benzaldehyde releasing mechanism from the HR-
mplified postulated biosynthetic pathway of azanigerone 197 (modified
rase, KR: ketoreductase, ACL: acyl:CoA ligase, Oxy: oxygenase, MO:
nase, Tra: transporter, NR-PKS: non-reducing polyketide synthase, HR-

This journal is © The Royal Society of Chemistry 2020
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Fig. 21 Genetic organisation of the vir gene cluster in T. virens and the simplified postulated biosynthetic pathway of trichoxide 202 (modified
after Liu et al.122). SDR: short chain reductase, Cupin: cupin-domain containing protein, CYP: cytochrome P450, OR: oxidoreductase, HR-PKS:
highly reducing polyketide synthase.
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PKS with involvement of associated tailoring enzymes.122

Heterologous expression of virA alone led merely to an
aliphatic C18 product virensol C 198, which exists mostly as
a pair of hemiacetals. Two short-chain reductases (SDRs) VirB
and VirD catalyse dehydrogenation at C7 and C3 to b-ketone
aldehyde 199. The salicylaldehyde 200 is formed aer intra-
molecular aldol condensation between C2 and C7 and dehy-
dration likely catalysed by VirD. The nal pathway product
trichoxide 201 was afforded aer decoration by different
Fig. 22 Genetic organisation of the fog gene cluster in A. ruber and the
congeners (modified after Nies et al.123). SDR: short chain reductase, C
oxidoreductase, PT: prenyltransferase, TF: transcription factor, HR-PKS:

This journal is © The Royal Society of Chemistry 2020
223
tailoring enzymes (Fig. 21). The third known HR-PKS for the
formation of aromatic compounds is FogA, which releases
a salicyl alcohol derivative in the presence of additional
oxidoreductases (see 3.2.1. for details).
3.2. Modication by tailoring enzymes

3.2.1. Alcohol oxidation by oxidoreductases. We recently
identied a HR-PKS-containing fog cluster from Aspergillus
simplified postulated biosynthetic pathway of flavoglaucin 56 and its
upin: cupin-domain containing protein, CYP: cytochrome P450, OR:
highly reducing polyketide synthase.

Nat. Prod. Rep.
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Fig. 24 Genetic organisation of the stb gene cluster in Stachybotrys
bisbyi and the proposed biosynthetic pathway of LL-Z1272b 112
(modified after Li et al.125).
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ruber and proved its responsibility for the biosynthesis of the C7-
alkylated salicylaldehyde avoglaucin 56 and congeners
(Fig. 22).123 Heterologous expression of four genes including
fogA coding for a HR-PKS, two for SDRs FogB and FogD as well
as one for the cupin-domain-containing protein FogC led to the
accumulation of the alkylated salicyl alcohols 202–207, which is
a prerequisite for consecutive hydroxylation and prenylation to
form alcohol derivatives 208–213. Feeding experiment
conrmed that the FAD-binding oxidoreductase FogF oxidises
these alcohols to the nal aldehyde products.

In the citrinin biosynthetic pathway, the unstable dialdehyde
intermediate 189 was formed via alcohol oxidation catalysed by
the nicotinamide-dependent oxidoreductase CitC (also known
as Mrl7) (Fig. 18).33 Furthermore, in the biosynthesis of asper-
nidine A 186, the P450 PkfB introduces a hydroxyl group on the
methyl moiety to yield asoernidine E 125, which is proposed to
be further oxidised by the choline dehydrogenase PkfF to
a reactive dialdehyde 123 (Fig. 16).

3.2.2. Acid reduction by NRPS-like enzymes. Zhao and
coworkers reported that an aryl-acid produced by a NR-PKS
can be activated by a nonribosomal peptide synthase
(NRPS)-like protein with an A-ACP-R domain structure and
reduced to a benzene carbaldehyde.15 By cloning and heter-
ologous expression of both cryptic NR-PKS and NRPS-like
genes from Aspergillus terreus in Saccharomyces cerevisiae,
they detected 5-methylorsellinic acid 214 and 5-methyl-
osellinaldehyde 10 as the accumulated products. The puried
ATEG_03630 protein can convert 214 to 10 in vitro. Therefore,
they proposed that the aryl-acid 214 is activated by the ade-
nylation (A) domain of ATEG_03630 and transferred to its ACP
domain. Reduction of the thioester by the R domain led to the
releasing of the aldehyde product 10 (Fig. 23). Further
investigation of this NRPS-like protein showed that the ade-
nylation (A) domain acts as the rst “gate-keeper” to ensure
the activation and thioester formation of the correct mono-
mer onto the ACP.124 Abe and coworkers identied later
a NRPS-like enzyme StbB, which can catalyse the reduction of
a farnesylated benzoic acid agrifolic acid (also known as ili-
cicolinic acid B) 216 to the aldehyde LL-Z1272b (also known as
ilicicolin B) 112 (Fig. 24).125
Fig. 23 Genetic organisation of the ATEG gene cluster in A. terrus and
the proposed biosynthetic pathway of 5-methylosellinaldehyde 10
(modified after Wang et al.15).

Nat. Prod. Rep.
224
Investigation on asc cluster in Acremonium egyptiacum
shows the aforementioned reduction of 216 to 112 (3.2.2) can
also be catalysed by the NRPS-like enzyme AscB, which shares
a 59% identity to StbB. This was observed in the biosynthesis
of ascochlorin 132 and ascofuranone 136 in Acremonium
egyptiacum (Fig. 25).126 Both pathways share the same key
precursor ilicicolin A epoxide 217. Cyclisation of 218 catalysed
by the terpene cyclase AscF and further dehydrogenation by
AscG result in the nal product of the ascochlorin pathway.
Hydroxylation of 217 by AscH, cyclisation by AscI and oxida-
tion by AscJ complete the ascofuranone pathway. All genes for
the ascochlorin biosynthesis are located within the asc-1
cluster, which also contains responsible genes for the
common precursors. Additional genes required for the
formation of ascofuranone, i.e. ascHIJ were found on the
second locus asc-2 (Fig. 25).

3.2.3. Reductive or oxidative cleavage of ring systems. A
FAD-binding oxidoreductase CicC was proposed to catalyse
a ring opening reaction, leading to the formation of the putative
aldehyde intermediate 221 in the postulated cichorine 222
biosynthetic pathway (Fig. 26) in Aspergillus nidulans.127 Analysis
of the extracts from deletion strains indicated that the PKS PkbA
assembled the precursor 3-methylorsellinic acid 219, which
undergoes hydroxylation, methylation and lactonization to the
lactone intermediate 220. However, no experimental data are till
now available to support the denite CicC function and the
conversion of the lactone 220 to the nal lactam 222 also
remains speculative.

Oxidative cleavage of chrysophanol anthrone 223 was
observed in the formation of the benzophenone aldehydes 152
and 224 (Scheme 1). Subsequent intramolecular hemiacetal
formation or reduction and ether formation give the
This journal is © The Royal Society of Chemistry 2020
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Fig. 25 Genetic organisation of the asc gene cluster in A. egyptiacum and the simplified biosynthetic pathways of ascochlorin 132 and asco-
furanone 136 (modified after Araki et al.126). TF: transcription factor, PT: prenyltransferase, OR: oxidoreductase, Hal: halogenase, CYP: cyto-
chrome P450, TPC: terpene cyclase, DH: dehydrogenase, PKS: polyketide synthase.
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dibenzooxepinones 225–228.98,128,129 It is unclear whether
enzymes are involved in the transformation.
3.3. Spontaneous reactions

In our previous study, we observed the spontaneous oxidor-
eduction of the benzoquinone alcohol 229, leading to the
formation of the salicylaldehyde 56, the benzyl alcohol 230 and
Fig. 26 Genetic organisation of the cic gene cluster in A. nidulans and the
after Sanchez et al.127). Tra: transporter, OR: oxidoreductase, Reg: regu
synthase.

This journal is © The Royal Society of Chemistry 2020
225
the benzoquinone aldehyde 231.123 A proposed mechanism is
given in Scheme 2. Two 229 molecules can act as both oxidant
and reductant to form the hydroquinone alcohol 230 and the
instable benzoquinone aldehyde intermediate 231, which reacts
with a third 229 molecule to form the aldehyde 56. In addition,
a set of dimethyl sulfoxide (DMSO) induced oxidations of benzyl
alcohol to benzaldehyde were also described in the literature.130
simplified postulated biosynthetic pathway of cichorine 222 (modified
lator, MT: methyltransferase, CYP: cytochrome P450, PKS: polyketide

Nat. Prod. Rep.
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Scheme 1 Proposed biosynthesis of dibenzooxepinones 225–228.

Scheme 2 Proposed mechanism of benzoquinone alcohol 229 conversion to salicylaldehyde 56 (modified after Nies et al.123).
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4. Conclusions and future
perspectives

In this review, we summarized the structural features, distri-
bution, biological activities and applications as well as the
origin and biosynthesis of benzene carbaldehydes from fungi.
The topic compounds are mainly produced by ascomycetes
(79%) and occasionally by basidiomycetes (17%) (Fig. 1).
Approx. 51% of the ascomycetes-originated benzene carbalde-
hydes are from the genera of Aspergillus, Stachybotrys, Penicil-
lium and Pestalotiopsis. For basidiomycetes, the genus of the
edible mushroomHericium contributes to approximate a h of
benzene carbaldehydes (Table 1). The described biological
activities are grouped into eleven categories with cytotoxic,
antibacterial and antifungal activities as the top three (Fig. 2).

The backbones of the benzene carbaldehydes are usually
originated from polyketides assembled by iterative fungal pol-
yketide synthases, although other biosynthetic routes like
Nat. Prod. Rep.
226
shikimate or alkaloid pathways also serve as additional possi-
bilities. The key aldehyde functional group can be formed by
direct release from the polyketide chain, reduction of carboxylic
acids or oxidation of benzyl alcohols. Other procedures such as
oxidative ring opening also deliver aldehyde products. The
simplest member of these natural products, i.e. benzaldehyde,
can be decorated by hydroxylation, alkylation including meth-
ylation and ethylation, halogenation, prenylation at the
benzene ring. Further modications include oxidation, reduc-
tion and cyclisation. The majority of the compounds mentioned
in this review belongs to derivatives of salicylaldehyde from the
PKS pathway. Alkylated derivatives with different chain length
(C3, C5, C7, C9 or C11) at the ortho-position to the aldehyde group
and meroterpenoids containing structural features derived
from C5, C10 or C15 prenyl moiety constitute the two large
classes of benzene carbaldehydes. Benzene carbaldehydes are
accumulated as pathway nal products or serve as intermediate
for more complex natural products.
This journal is © The Royal Society of Chemistry 2020
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As aforementioned, a number of fungal benzene carbalde-
hydes with interesting biological activities have been discovered
in the past decades. However, the studies on structure–activity
relationship have been few reported. More information on
interactions of benzene carbaldehydes with biological targets
will enhance the application potential of these compounds.
Furthermore, it became a challenge to get new bioactive natural
products under conventional laboratory culture conditions.
Therefore, screening microorganisms from less explored or
untapped sources, e.g. fungi from extreme environments131–134

like saltern,135 sulfur-rich hydrothermal vents,136 in deep-sea
segments,137 hot springs138 and mine area139 becomes more
important for bioactive metabolite nding. Symbiotic systems
between fungi and bacteria, plants, insect, animals or inverte-
brate are also less studied promising sources of secondary
metabolites.140 Metabolite dereplication, e.g. by library-based
LC-MS analysis141,142 and comparative mass spectrometry-
based metabolomics143 have been successfully used in the
past and will also play an important role in the future to
accelerate novel metabolite discovery. Furthermore, the OSMAC
(One Strain – Many Compounds) approach144–146 by cultivation
under different conditions and co-cultivation with other
organisms has also been developed and successfully applied.
However, the most putative genes and gene clusters for natural
product biosynthesis still remain silent.147 It can be therefore
expected that reactivation of such genetic potentials by tran-
scriptional regulator manipulation, promoter engineering and
heterologous expression would deliver a large number of
structures hidden the silent biosynthetic machinery.148–150

Different new strategies have been published recently for the
identication of fungal metabolites and their gene clusters,
especially of large clusters. One of such approaches is the fungal
articial chromosomes and metabolic scoring (FAC-MS)
strategy, which allows scientists to identify metabolites from
complex mixtures aer heterologous expression of clusters.151

Metagenomics of uncultivable microbes and reconstruction of
biosynthetic pathways provide other possibilities to get new
metabolites.152–154 Elucidation of biosynthetic pathways and
characterisation of key enzymes would provide another way to
create designed molecules by synthetic biology.
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5 Conclusions and future prospects 

This thesis describes multiple approaches to increase the structural diversity of low-molecular 

molecules by post-modifications on the prenylated moieties. Various chemical transformations on the 

prenyl groups, such as hydroxylation, cyclisation, oxidation and rearrangement, can occur both 

enzymatically and nonenzymatically. Studies on chemoenzymatic synthesis, spontaneous reaction 

mechanisms and chemical logic of entire biosynthetic pathways provide examples for the chemical 

diversification of natural products. 

Inspired by the notable behaviour of the FeII/2-OG-dependent oxygenase FtmOx1, a homologous 

protein EAW25734 was identified in Neosartorya fischeri NRRL 181. Incubation of EAW25734 with 

tryprostatin B (8) in the presence of ascorbic acid, FeII and 2-OG led to a two-step reaction, i.e. an 

exceptional double bond migration and hydroxylation, to yield 22-hydroxylisotryprostatin B (9). 

Biochemical characterisation proved EAW25734 to be a nonheme FeII-2OG-dependent oxygenase. 

Secondary metabolite analysis in the native strain revealed that EAW25734 indeed hijacked the 

intermediate 8 from the fumitremorgin biosynthetic pathway to produce 9, but only with a low yield. 

This study highlighted the advantage and potential of in vitro enzyme characterisation for new 

biocatalyst finding, even for those of not clustered or low expressed genes in the host. 

In addition, a spontaneous oxidative cyclisation was investigated for 1,3-dihydroxy-4-

dimethylallylnaphthalene. Isolation and structure elucidation of the nonenzymatic products showed the 

rearranged tetrahydrobenzofuran and bicyclo[3.3.1]nonane scaffolds. Labelling experiments with an 

18O2-enriched atmosphere and in 18O2-enriched water confirmed that the two additional hydroxyl 

groups originated from oxygen. This allowed us to propose a radical mediated cyclisation mechanism 

with the reactive C4-peroxyl intermediate 17 as the “stimulating device” for the following radical 

rearrangement and intramolecular cyclisation. Here we provide one additional example that products 

of enzyme reactions could undergo further nonenzymatic rearrangements during the incubation 

process. 

A combination of in vitro enzymatic studies and heterologous expression in vivo, was used to 

understand how simple benzaldehyde scaffolds can be further diversified through enzymatic and 

nonenzymatic reactions. Flavoglaucin (24a) and congeners 24b−f are prenylated salicylaldehyde 

derivatives from different fungi including Aspergillus ruber with impressive biological activities. 

However, little is known about their biosynthesis and the involved enzymes prior to our study. With the 

assistance of genome mining, heterologous expression, feeding experiments and biochemical 

characterization, a nine-gene fog cluster was identified as the genetic information for the biosynthesis 

of flavoglaucin and analogues. The salicyl alcohol derivatives were released from the HR-PKS as the 

initial aromatic intermediates in cooperation with three oxidoreductases. The alcohol substituent 

served as an essential functional group for subsequent decorations. The cytochrome P450 FogE 
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converts the benzyl alcohols to C5-hydroxylated derivatives, which are then prenylated by the 

prenyltransferase FogH. After prenylation, the alcohol function was oxidized to the final aldehyde by 

the oxidase FogF. Therefore, this study demonstrated a highly efficient and programmed biosynthetic 

pathway to assemble a set of prenylated salicylaldehydes. 

For future prospects, the following works can be performed: 

 Investigation of the mechanistic details for the notable nonheme FeII/2-OG-dependent

oxygenase EAW25734 by X-ray crystal structure analysis will enrich our knowledge on the

structure–reactivity relationship. Further site-directed mutagenesis of this enzyme could

expand the catalytic potential for structure modifications.

 Although the biosynthetic pathway of flavoglaucin has been identified, initial aromatization

mechanism is still unclear. Biochemical characterization of the three tailoring enzymes, i.e.

FogB, FogC and FogD, may provide new insights into the unique aromatization involved in

this pathway.

 The prenyltransferase FogH belongs to the DMATS family and uses a benzyl alcohol as

substrate, differing clearly from other members of this family. Therefore, it would be interesting

to test its substrate specificity towards other aromatic compounds.

 Targeted protein engineering of the prenyltransferase FogH can also be performed to expand

the substrate specificity and regioselectivity as well as prenyl donor space.
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