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Summary 
 

Metabolism provides the essential biochemical intermediates and energy that enable life and 

its growth. In this thesis we studied robustness of Escherichia coli metabolism, by perturbing it 

with different methods and measuring the response at a molecular level. 

 

In Chapter 1, we introduce the latest insight into metabolic regulation and optimality in 

microbial model organisms. Overall, we identified and described two major gaps in knowledge: 

the limited amount of known metabolite-protein interactions and the unknown objectives 

towards which cells optimize their enzyme levels. Moreover, we provide a short introduction to 

the relevant methods utilized in this thesis. 

 

In Chapter 2, we describe a series of experiments which confirmed that CRISPRi is a reliable tool 

to specifically perturb metabolism in E. coli. We showcase the advantage of using a CRISPRi 

system integrated in the genome, which is suitable to apply inducible knockdowns of essential 

genes. We demonstrate this by characterizing growth for a library of over 100 strains and 

verifying inducibility and specificity with proteomics data. 

 

In Chapter 3 we applied the validated CRISPRi setup to perturb and study metabolism 

systematically. First, we used a pooled CRISPRi library to knock down all metabolic genes in E. 

coli. By following the appearance of growth defects with next generation sequencing, we show 

that metabolic enzymes are expressed at higher levels than strictly necessary. We then focused 

on a panel of 30 CRISPRi strains and characterize their response to lower enzyme levels with 

metabolomics and proteomics. We show that the metabolome can buffer perturbations of 

enzyme levels in two different stages: first, metabolites increase enzyme activity to maintain 

optimal growth and only later they activate gene regulatory feedbacks to specifically upregulate 

perturbed pathways. 

 

In Chapter 4 we employed a different approach to perturb bacterial metabolism, by growing E. 

coli in different environmental conditions and measuring the response at the metabolome level. 

We could show that in exponentially growing cells key biosynthetic products as amino acids and 

nucleotides are kept at relatively stable levels across different environments. We compared our 

dataset to a matching published proteomics dataset, showing that unlike the proteome, 

metabolite levels are independent from growth effects. 
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Zusammenfassung 
 

Der Stoffwechsel, oder auch Metabolismus, stellt die essentiellen Bausteine und die Energie 

bereit, die Leben und zelluläres Wachstum voraussetzen. In dieser Doktorarbeit wurde die 

Robustheit des Metabolismus von Escherichia coli untersucht, indem er mit verschiedenen 

Methoden perturbiert und die zelluläre Antwort auf molekularer Ebene verfolgt wurde.  

In Kapitel 1 werden die neuesten Erkenntnisse über die Regulation und Optimalität des 

Metabolismus in mikrobiellen Modellorganismen betrachtet. Zusammenfassend ließen sich 

zwei große Probleme feststellen: Zum einen die niedrige Zahl an nachgewiesenen Metabolit-

Protein Interaktionen und zum anderen die unbekannten Ziele, auf deren Grundlage Bakterien 

ihre Enzymlevel regulieren und einstellen. Darüber hinaus werden in diesem Kapitel die für diese 

Arbeit relevanten und verwendeten Methoden besprochen.  

In Kapitel 2 werden eine Reihe von Experimenten beschrieben, die bestätigen, dass CRISPRi eine 

zuverlässige Methode ist, um den Metabolismus in E. coli spezifisch zu perturbieren. Außerdem 

werden die Vorteile von einem genomisch integriertem CRISPRi-System gezeigt, das dazu 

verwendet werden kann die Expression von essentiellen Genen induzierbar zu reprimieren. Die 

Induzierbarkeit und Spezifität konnten durch ein Wachstumsscreening von 100 Stämmen und 

Proteom-Analysen belegt werden. 

In Kapitel 3 wird dargestellt, wie das im vorherigen Kapitel beschriebene CRISPRi- System 

verwendet wurde, um den Metabolismus systematisch zu perturbieren und zu untersuchen. 

Zunächst wurde das Wachstum von Stämmen in einer gepoolten CRISPRi-Library, welche alle 

Gene im zentralen Stoffwechsel von E. coli beinhaltete, mittels Next-Generation Sequencing 

verfolgt. Hierbei konnte gezeigt werden, dass Enzyme im zentralen Metabolismus in höheren 

Mengen von der Zelle hergestellt werden, als es für die Aufrechterhaltung des Wachstums nötig 

wäre. Es wurden 30 CRISPRi Stämme mit Hilfe von Metabolomics und Proteomics genauer 

untersucht, um die zelluläre Antwort auf niedrigere Enzymlevel zu studieren. Hierbei konnte 

festgestellt werden, dass das Metabolom die Störung von Enzymleveln auf zwei unterschiedliche 

Wege puffern kann. Zunächst erhöhen Metabolite die Aktivität von Enzymen, um optimales 

Wachstum zu gewährleisten, und erst später aktivieren sie genregulatorische Feedback-

Mechanismen, um perturbierte Stoffwechselwege spezifisch hochzuregulieren. 

In Kapitel 4 wird geschildert, wie eine alternative Methode, nämlich das Wachstum unter 

verschiedenen Bedingungen, genutzt wurde, um den Metabolismus zu perturbieren und 

anschließend die metabolische Antwort zu bestimmen. Hierbei konnte gezeigt werden, dass in 

exponentiell wachsenden Zellen unter verschiedenen Wachstumsbedingungen die 

Konzentrationen von Schlüsselbausteinen, wie Aminosäuren und Nukleotiden, stabil gehalten 

werden. Diese Daten wurden zudem mit einem passenden, bereits publizierten Proteomics 

Datensatz verglichen und es konnte gezeigt werden, dass Metabolitkonzentrationen, im 

Gegensatz zu Proteinkonzentrationen, unabhängig von Wachstumseffekten sind.  
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1 - Introduction 
 

1.1 - Crosstalk between transcription and metabolism: how 

much enzyme is enough for a cell? 

 

The function and structure of metabolic and transcriptional networks are well 

characterized. Transcription is the first step in the control of gene expression. 

Metabolism governs the supply of energy and cellular building blocks. Besides regulatory 

interactions within each of the two networks, mutual feedback is abundant between 

them. Already in the 1950s the discovery of the lac operon showed that transcription 

impacts metabolic operation (metabolic gene expression, Figure 1)1. A few years later, 

the discovery of allosteric metabolite-protein interactions provided a mechanism for 

metabolite driven transcription (metabolic feedback on transcription, Figure 1)2. In our 

view, the crosstalk between metabolism and transcription results from two 

interdependent processes: information from transcriptional networks to metabolism is 

transmitted by metabolic gene expression, while metabolic information is conveyed via 

metabolic feedback on transcription.  

In the past decade systems biology has mostly been focused on genomes, 

transcriptomes and proteomes due to the availability of advanced and sensitive 

technologies. Recent improvements in metabolomics methods have now enabled 

metabolites to become the focus of many studies 3–6. The fundamental challenge for 

understanding how metabolites regulate transcriptional programs lies in identifying 

metabolites that are key signals for transcriptional regulators. This is illustrated by the 

fact that the master regulatory metabolite of catabolic genes in E. coli – alpha-

ketoglutarate - was identified only recently 7, despite the fact that the regulatory 

mechanism has been known since the early 1950s (carbon catabolite repression). Recent 

findings suggest that such metabolic feedback on transcription could govern global gene 

regulation and metabolism. For example, a recent study in yeast discovered that 
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seemingly pathway specific amino acid auxotrophies change up to 80% of transcripts 

and affect almost all metabolism 8. 

The potentially widespread presence of cross-talk raises the question of what cellular 

function emerges from this interdependence between transcription and metabolism. 

Here, we reviewed the past five years of literature that addressed these questions in 

microbial model organisms (mainly Escherichia coli and yeast). We will discuss the 

putative function of crosstalk in optimizing enzyme levels, and focus on system-level 

studies that either used experimental transcript and metabolite data or took more 

theoretical approaches based on large metabolic and transcriptional networks.  

 

 

 

Figure 1: Schematic of the cellular processes that are involved in crosstalk between transcription and 
metabolism. Metabolic gene expression represents transcription and translation of a gene into a 
metabolic enzyme. Each enzyme catalyzes a certain reaction within the metabolic pathway (enzyme 
catalysis). Metabolic homeostasis implies that reaction rates A, B, and C are equal, that is, metabolite 
concentrations are constant and metabolic flux through the pathway is constant. Metabolites can interact 
with transcriptional regulatory proteins and modulate their activity (metabolic feedback on transcription). 
The example here shows an inhibition of a transcription factor (TF) by metabolite 4. The transcription 
rates of genes A, B, and C are then regulated by the activity of the transcription factor (transcription 
regulation). 
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1.1.1 - Metabolomics and transcriptomics studies indicate extensive 

crosstalk 
 

Intracellular metabolite concentrations are conserved between organisms. Absolute 

concentrations of primary metabolites in E. coli, yeast and mammalian cells are 

remarkably similar, with amino acids constituting the most abundant fraction of a cell’s 

metabolome 9. Despite such similarities, recent studies suggest that metabolite 

concentrations contain a high amount of information. Ralser and colleagues measured 

absolute amino acid concentrations in 4913 yeast strains, each bearing a different single 

gene deletion 10. For one third of these strains, the gene deletions caused significant 

changes in the levels of (individual) amino acids that were unexpectedly precise and 

specific. Each amino acid responded individually to gene perturbations, such that the 

signature of all 20 amino acids allowed functional annotation of genes as genes with 

similar amino acid signatures tended to be functionally related. The precision was so 

high that ribosomal genes, for instance, mapped to the ribosome structure. Similar to 

the case in yeast, a genome-wide study measuring 1,432 metabolites in E. coli showed 

that metabolite profiles were specific for gene deletions and enabled the inference of 

novel metabolism-related functions of many orphan genes 11.  Given that the 

metabolome holds such precise information on a cell’s status, to which extent is this 

information used by cells for gene regulation? The first evidence that metabolic 

information is extensively used in gene regulation networks comes from a 

comprehensive transcriptome analysis of yeast 12. In this study transcript profiles of 

1484 yeast strains with single gene deletions were measured using RNA sequencing. The 

gene regulation network inferred from these data indicated a striking number of 

metabolic feedback circuits, with many metabolic genes assigned as nodes in incoherent 

network motifs. The incoherent or “counter-intuitive” motifs were then interpreted as 

crosstalk between metabolism and transcription. A drawback of all three studies is the 

use of relatively extreme genetic perturbations. It would be important to address 

whether more subtle changes in gene expression yield similarly informative metabolite 

profiles. Combining CRISPR-based transcriptional perturbations of gene expression with 

high-throughput data has the potential to address such questions 13, but has not been 

applied to metabolite data so far.  
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1.1.2 - Information flow from transcription to metabolism 
 

Of the two aspects of cross-talk between transcription and metabolites, the expression 

of metabolic genes is the better characterized one as it follows the canonical flow of 

genetic information and has been studied extensively over the past decades. The 

comprehensive set of a cell’s metabolic reactions can be identified by combining whole 

genome sequencing, omics data and the abundant biochemical knowledge 14. The 

resulting set of metabolic reactions is then used to reconstruct genome-scale metabolic 

models (GSMs), where each reaction is associated to one or more proteins and the 

respective gene. These so-called gene-protein-reaction relationships are a holistic but 

static representation of metabolic gene expression. They list components, but do not 

allow the prediction of abundance or activity changes upon perturbations. The latest 

GSM of E. coli comprises 1366 genes and associates them to 2251 biochemical reactions 

and 1136 metabolites 15. The latest GSM of the yeast S. cerevisiae includes 904 genes, 

1412 reactions and 1228 metabolites 16. The static gene-protein-reaction relationships 

can be advanced with transcriptional regulation by assigning Boolean rules that define 

on/off states, as shown by Palsson and colleagues 17. In this framework, simple 

regulatory rules depending on environmental stimuli or internal metabolic flux 

distributions decide if a gene is expressed (on) or not (off), and therefore if a metabolic 

reaction can occur. Boolean rule–based methods have been extended to larger models 

18,1920  and were included in the first whole-cell model of a living organism 21. As these 

coarse binary rules can only define two states (on/off) they were later refined using 

probabilities to describe expression states 22. In this method, probabilistic weights were 

inferred from large datasets of gene expression, and then used to constrain metabolic 

fluxes based on the probability that a certain gene is transcribed.  

However, a caveat of the underlying metabolic models is that they are a purely 

stoichiometric representation of metabolism and therefore work with reaction rates 

(metabolic flux) instead of the potentially more informative metabolite concentrations.  

As a consequence, GSMs cannot evaluate how up- or down regulating an enzyme affects 

metabolite concentrations, and how these concentration changes propagate and alter 

metabolic fluxes. To address these questions, smaller dynamic metabolic models 
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including reaction-substrate relationships such as Michaelis-Menten kinetics, and 

allosteric regulation of enzymes have been developed 23. The currently most advanced 

kinetic model of E. coli metabolism comprises 457 reactions and 295 allosteric 

interactions 24, and was able to reproduce more than half of the measured metabolite 

concentrations. In conclusion, large genome-size metabolic models can - to some extent 

- evaluate the effect of gene expression on metabolic fluxes. However, evaluating the 

effect of gene expression on metabolite concentrations remains a fundamental 

challenge due to missing kinetic information.  

 

1.1.3 - Information flow from metabolism to transcription 
 

The transmission of metabolic feedback on transcription constitutes the reverse 

direction of information flow in cross-talk. Metabolic feedback is mediated by 

transcription regulation networks (TRNs), which describe the relationship between 

genes and their transcriptional regulators. Typical transcriptional regulators in 

prokaryotes are transcription factors (TFs), sigma factors and nucleoid proteins 25. In 

eukaryotic cells epigenetic DNA modifications, histone modifications and chromatin 

remodeling proteins constitute an additional layer of transcriptional regulation 26. TRNs 

have a hierarchical structure as transcriptional regulators can control other 

transcriptional regulators. The E. coli TRN was reconstructed using manually curated 

experimental data 27 and is the currently most complete TRN available. It covers 210 out 

of the ~300 predicted transcription factors and 3261 interactions between transcription 

factors and genes. In comparison, the S. cerevisiae TRN contains only 147 experimentally 

validated transcription factors out of a total of 250 predicted ones 28. Results from an E. 

coli study mapping physical DNA interactions for 116 transcription factors with SELEX 

indicate that transcription factors might have a wider DNA-binding spectrum than 

previously assumed 29. More than 80% of transcription factors were associated with 

more than 10 genes, with binding occurring in both noncoding and coding regions. 

However, even for the well-studied microbe E. coli the structure of the TRN is 

ambiguous, as topologies of TRNs depend on the method used to assign interactions of 

transcription factors and target genes. The total number of functional interactions can 
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be overestimated in pure binding-based methods, as false positive interactions arise 

from non-functional binding. Likewise, false negative interactions arise if regulation is 

condition-dependent, leading to an underestimation. Studies that assess TRNs with and 

without effectors, such as iron 30 or amino acids 31 enable mapping the condition 

dependent logic of TRNs.  

Once the structure of a TRN is defined the key challenge lies in identifying the most 

relevant input signals of transcriptional regulators. Previous findings in yeast show that 

many transcription factors are activated through post-transcriptional mechanisms 32. 

This observation was recently confirmed at the proteome-scale by absolute protein 

abundance data of E. coli in various environmental conditions 33. Indeed, transcriptional 

regulators were the most constant class of protein across all conditions. Post-

translational regulation mechanisms can be broadly divided into activity changes 

resulting from an upstream (externally stimulated) signaling cascade or from internal 

metabolic signals (e.g. reviewed in 34). While external signaling cascades and two 

component systems are well characterized, our knowledge on transcriptional regulators 

that sense internal metabolites is scarce. Even in the case of the arguably best-studied 

model microbe E. coli, direct interactions with metabolites have only been shown for 47 

out of the 210 transcription factors 35. This directly follows from the relative lack of 

scalable methods for identifying metabolite-protein interactions systematically. The 

gold standard for testing the effects of metabolites on transcriptional regulators are still 

low-throughput in vitro assays. Although new methods based on microarrays or affinity 

purification enable large-scale discovery of physical interactions between proteins and 

metabolites, they are limited to very stable interactions, which mostly occur with lipids 

and other hydrophobic metabolites 36,37. More recent methods to detect conformational 

changes by NMR 38 and proteomics 39 have so far focused on enzyme-protein 

interactions only. In summary, even though transcriptional circuits are well defined the 

lack of scalable methods for identifying metabolite-transcription factor interactions 

hinders the discovery of regulatory metabolites. An alternative to mapping physical 

interactions is the inference of cross-talk from multi-omics data, as discussed in the next 

section. 
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1.1.4 - Inference of cross-talk from multi-omics data 
 

Multi-omics datasets quantifying the abundance of transcripts, proteins and 

metabolites and the fluxes through metabolic networks across environments can 

theoretically be used to infer cross-talk. However, this requires systematic and often 

difficult integration of the different datatypes 40. Furthermore, experimental 

perturbations rapidly propagate within and between networks, which complicates 

inference of causal interactions. For this purpose, theoretical frameworks like Metabolic 

Control Analysis provide relationships between local and global responses in metabolic 

and transcriptional networks 41. In practice, however, these frameworks require very 

specific perturbations of single network components, such as up-and downregulation of 

single enzymes. This contrasts with the mostly very unspecific environmental 

perturbations, such as growth on different nutrients or stresses, used for generating the 

large majority of multi-omics datasets. However, in these cases other data-driven 

modeling approaches using either transcription rates or metabolic fluxes as starting 

points have been used, which will be discussed in the following two sections.  

Regulation of transcription rates  

To address whether metabolite levels are predictors of transcription rates, Kochanowski 

et al. measured metabolite concentrations and transcription rates of central metabolism 

promoters in 26 environmental conditions in E. coli 42. The study revealed that across 

environments about 30% of transcriptional changes were largely caused by activity 

changes of two transcription factors, Crp and Cra. Importantly, the authors were able to 

recover the known effector metabolites of both transcription factors, cyclic AMP and 

fructose-1-phosphate/fructose-1,6-phosphate, respectively, without prior knowledge. 

The remaining 70% of transcriptional changes in this study were caused by global 

growth-dependent regulation. Such large-scale transcriptional changes after 

environmental perturbations seem to be a general growth rate dependent effect in 

yeast and E. coli 43. So far only few other studies integrated metabolites with transcript 

data and focused mainly on coordinated responses in dynamic conditions 44,45.  

 



1 - Introduction 

 8   

Regulation of metabolic fluxes  

The majority of multi-omics studies use metabolic fluxes as starting points and search 

for correlation with other data types. The predominant conclusion from such studies is 

that transcripts are poor predictors of metabolic fluxes both in central carbon 

metabolism 46,4746 and on a genome-scale 4849. This is exemplified by flux and transcript 

changes between carbon and nitrogen limited yeast matching in just 53 out of 2194 flux-

transcript pairs 48. A systematic survey of computational methods arrived at the same 

conclusion 50, by showing that computational predictions of metabolic models were 

generally not improved by fitting measured transcript data. A recent multi-omics study 

in yeast by Rabinowitz and coworkers provided an explanation for this lack of correlation 

by showing that fluxes are mainly regulated at the post-transcriptional level 51. By 

systematically fitting enzymes, fluxes and metabolites to Michaelis-Menten type 

kinetics, the authors found that it was mostly substrates that controlled flux through 

their associated reaction. Substrate-dependent flux implies that most enzymes are not 

operating at their maximal possible velocity (vmax), but rather at sub-saturating 

conditions. This finding agrees with the tendency for overabundant enzymes in microbes 

as discussed in more detail in the next section and illustrated in Figure 2.  

In summary, recent studies show that is in principle possible to infer metabolite-

transcription factor interactions from multi-omics data 42. The scalability of this 

approach is an important aspect for enabling integration of large-scale transcriptional 

(e.g. Ref 52) and high-throughput metabolomics data 53. Moreover, the results from 

studies using metabolic flux as starting points for data integration support the prevailing 

opinion that fluxes are rarely controlled by abundance changes of enzymes 54. This raises 

the question why, if not for controlling metabolic flux, cells regulate enzyme levels. 
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Figure 2: Robust versus efficient enzyme levels. (a) Enzymes in the metabolic pathway are overabundant and 
not operating at their full catalytic potential. The size of the enzyme indicates abundance and the blue fill 
activity. For example, enzyme B operates at half‐maximal velocity (v max). Perturbations can be 
compensated without regulating enzyme abundance by transcription (e.g., changing substrate 
concentrations). (b) Enzymes in the metabolic pathway are expressed at the minimum level that allows the 
same metabolic flux as in (a). All enzymes operate at their full catalytic potential (v max) and are saturated 
with substrates (the size of metabolites indicates the concentration). Decreasing a single enzyme level 
results in a metabolic bottleneck and in flux limitations. Transcriptional feedback regulation can compensate 
such perturbations, but slower than in (a). 
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1.1.5 - Crosstalk regulates enzyme levels  

 

Proteome data suggests enzyme overabundance 

The studies in the previous section investigated regulation of transcription rates and 

metabolic flux. A series of recent studies has taken enzyme levels into consideration. A 

comparative study of predicted metabolic flux based on an E. coli GSM and quantitative 

proteomics data by Palsson and colleagues revealed that measured enzyme levels are 

for the most part higher than predicted 55. Noor et al. demonstrated that for central 

metabolism such enzyme overabundance can be explained by enzyme saturation and 

thermodynamic effects 56. Other approaches that compare enzyme abundance and 

enzyme kinetics were recently reviewed by Davidi and Milo 57.   

Several hypotheses have been proposed for explaining the existence of pervasive 

enzyme overabundance 54: On the one hand enzyme overabundance could simply be a 

result of imperfect regulatory mechanisms. However, there could also be an important 

functional role for this phenomenon, for example by providing a buffering mechanism 

against internal and external fluctuations or by enabling flux control via fast-acting 

allosteric interactions. In the latter case the unused enzyme fraction can be activated 

instantaneously, whereas expressing new enzymes would take time and result in a 

potential fitness cost. Such an fast acting allosteric mechanism can, for example, be 

observed in E. coli glycolysis: it allows unused glycolysis enzyme to be allosterically 

activated within 5 seconds of a shift from gluconeogenetic to glycolytic nutrients 58. 

Having established that cellular enzyme levels tend to be higher than absolutely 

required to explain flux we will in the following sections focus on the cellular objectives 

that define enzyme levels and on the role of cross-talk in regulating enzyme levels.  

Which cellular objectives define enzymes levels? 

From an evolutionary perspective we would expect that cells tune enzyme levels to 

optimize fitness parameters and overall physiology. However, to which degree enzyme 

levels have been optimized through the course of evolution is a fundamental and 

longstanding question 59. The most direct way to test optimality of enzyme levels for 
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fitness is to vary the levels of single enzymes in vivo and measure growth or other fitness 

parameters. In yeast, such a titration of the levels of enzymes and other proteins has 

recently been achieved using barcoded promoters with a 500-fold expression range 60. 

The study demonstrated that changing single enzyme levels below and above wild-type 

levels rarely improves growth, implying that enzyme levels of the wild type strain are 

already optimized for maximum growth in glucose. However, the observation that wild-

type expression was only optimal for growth on glucose, but not on galactose, indicates 

that it is difficult for cells to optimize enzymes levels in all possible conditions, as already 

suggested before 54. Similarly, Milo et al. show that in various conditions around 30% of 

the total enzyme pool in E. coli carries no metabolic flux, suggesting again imperfect 

regulation 57. Furthermore, optimality criteria of enzyme levels may involve multiple, 

even conflicting objectives that are not reflected by growth rates or metabolic flux 

alone.  This is illustrated by a study in B. subtilis , which used CRISPR-based repression 

of single essential genes, resulting on average in a three-fold down-regulation of protein 

levels 61 . While 80% of all strains with single gene knockdowns showed growth similar 

to wild-type, 95% had problems to resume growth after stationary phase (reflected by 

long lag-phases). This implies that expression of most genes may be optimized for 

dynamic conditions and to a lesser extent to achieve maximal growth rates. In a different 

approach, Alper and colleagues used a CRISPR-based system to gradually express 

enzymes in metabolically engineered yeast and test the sensitivity of metabolic flux 62. 

In a third approach Panke et al used ribosomal binding site libraries to unravel design 

principles of optimal enzyme levels in a synthetic metabolic pathway 63. In conclusion, 

novel genome engineering methods enable exploring the relationship between cellular 

fitness and enzyme levels at large-scale. These studies show that enzyme levels seem to 

be optimal for different fitness aspects in different species: for maximum growth on 

glucose in yeast 57 and for growth resumption after stationary phase in B. subtilis 61. 

Next, we searched for studies demonstrating that cross-talk between metabolism and 

transcription controls enzyme levels dynamically. 

Cross-talk enables self-optimization of enzymes levels 

As discussed in the last section, there seems to be optimization of enzyme levels to some 

extent. But how do cells achieve these optimal levels? A series of studies provide 
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evidence that cross-talk might be an important mechanism to “self-optimize” enzyme 

levels, meaning that optimal enzyme levels are an emergent property of cross-talk 

between transcription and metabolism. To test this hypothesis, cross-talk between 

metabolism and transcription can be disrupted by externally added regulatory 

metabolites. Alon and colleagues recently used such an approach to examine cross-talk 

between central carbon metabolism and transcription of catabolic genes 64. By supplying 

E. coli cells externally with the metabolite cyclic AMP (cAMP) the authors were able to 

gradually change transcription of catabolic genes. Their results demonstrate that 

expressing catabolic genes at wild-type levels is optimal for growth on some nutrients, 

but sub-optimal on others. Therefore, in some environments, crosstalk via carbon 

catabolite repression enables E coli to optimize levels of catabolic enzymes. The more 

detailed mechanism underlying cAMP regulation of carbon catabolite repression is 

described in Ref. 7. 

Self-optimization not only seems to occur for catabolic enzyme levels but also for 

ribosomes 61,65. Bruggeman and colleagues showed that optimal ribosome levels result 

from cross-talk between amino acids and transcription of ribosomal genes. To this end, 

they developed a small-scale model of amino acid and protein synthesis, which achieved 

self-optimization of ribosome levels 66. Mechanistically the model represented the well-

studied transcriptional program centered around the secondary messenger (p)ppGpp.  

A similar function of (p)ppGpp mediated cross-talk between amino acids and 

transcription of ribosomal genes was suggested by Scott et al. 67. Cross-talk functions as 

a “supply driven activation” of ribosomal gene transcription, which is a simple yet robust 

mechanism to optimize ribosome levels. However, “supply driven activation” alone 

could be sub-optimal in dynamic conditions. A small-scale model suggests that feedback 

inhibition by transcriptional repressors plays an important role during nutritional up- 

and downshifts 68. In this scenario strong transcriptional feedback would emulate an 

“on-off” control strategy, which enables additional optimization of the levels of amino 

acid biosynthesis enzymes in dynamic conditions. While the examples above show that 

cells optimize the larger fractions of their proteome by cross-talk (the sum of catabolic 

enzymes and the sum of ribosomal proteins), it is currently not clear if this happens for 

smaller fractions or individual enzymes as well. Some support for the presence of self-



1 - Introduction 
 

13 

optimization in smaller metabolic modules (between 150 and 250 enzymes per fraction) 

comes from clustering of quantitative proteome data 69. Finally, several studies provide 

evidence that E. coli optimizes a single bottle-neck enzyme in the methionine 

biosynthesis pathway 35, and that cross-talk in glycolysis may be geared towards optimal 

glycolysis flux 70. 

 

1.1.6 – Discussion 
 

Several lines of evidence have shown that microbial cells express more enzymes than 

they absolutely need for maintaining physiological flux 51,54,55. Given the potential 

burden resulting from overexpressing enzymes it seems likely that this overabundance 

has a functional role in microbial physiology. The prevailing opinion is that higher than 

needed enzyme levels prevent bottlenecks in metabolic pathways: by default, each 

enzyme operates at sub-maximal velocity (vmax), which allows metabolites to rapidly 

change the current reaction velocity (e.g. by substrate-saturation or allosteric feedback). 

However, an alternative hypothesis is that cells actively accumulate enzymes in nutrient 

rich conditions, to protect against potential stresses in future conditions.  

In the previous paragraphs we have summarized studies that support a role of crosstalk 

between transcription and metabolism in adjusting enzyme levels. There is evidence for 

both small (individual enzymes) and large-scale (catabolite repression) optimization. But 

there are more than 1000 distinct enzymes in an E. coli cell and it is unknown if of each 

of them is regulated individually. If the level of a single enzyme accidently falls below a 

flux limiting threshold this can be counteracted by two distinct mechanisms: global 

upregulation of all enzymes, which is probably more costly, and upregulation of just the 

critical flux-limiting enzyme. The current literature provides evidence for both scenarios. 

On one hand, recent findings based on metabolomics data indicate that metabolites 

carry very specific information about cellular processes 10,11. Such localized and specific 

changes in metabolite levels could enable highly precise crosstalk to control levels of 

each enzyme individually. On the other hand inference from multi-omics data has 

revealed only sparse crosstalk between metabolism and transcription 42,47. In fact, global 
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growth-rate dependent transcriptional regulation seems a major driver of gene 

expression 43. It will be important to clarify if these global effects result from the very 

unspecific environmental perturbations applied in the studies. Global regulation could 

be the main driver upon broad-ranging external perturbations, whereas more localized 

internal perturbations invoke more specific metabolite-driven gene regulation. 

We have focused on studies in microbial model organism, which leveraged the system-

level understanding about metabolism and transcriptional regulation in these cells. A 

direct benefit of such studies is that methods can be transferred and applied in medical 

and biotechnological research. For example, a novel proteomics-based method to 

detect metabolite-protein interactions in yeast was recently transferred to T-cells 71. The 

method allowed identification of transcription factors that interact with the amino acid 

L-arginine and thereby promote anti-tumor activity. It remains to be seen if regulatory 

principles in simple microbial model systems apply to higher, multicellular organisms. 

Given the strong conservation of core cellular processes across evolutionary scales it 

seems likely that at least the more general principles are conserved. We have discussed 

the central role of alpha-ketoglutarate as a master regulatory metabolite of catabolic 

genes in bacteria. The same signal plays an important role in other organisms: Alpha-

ketoglutarate concentrations control mTORC1 activity in mammalian cells 72, and 

increased alpha-ketoglutarate levels are associated with an extended life span in 

Caenorhabditis elegans 73. However, currently it still unclear if the same signal has the 

same function in these cells, or if its function has been altered in higher organism.  

Finally, biotechnological applications that utilize microbial model organism to produce 

chemicals will directly benefit from insights about regulatory cross-talk in these cells. 

Especially metabolic engineering applications require high enzyme levels to enforce high 

fluxes in synthetic metabolic pathways. However, strong overexpression of 

heterologous enzymes results in burden and instability in production strains 74. 

Understanding principles that optimize enzyme levels in natural pathways could serve 

as blue-print to control enzyme levels in synthetic pathways dynamically. The great 

challenge lies in designing synthetic cross-talk, but linking transcription factors to new 

metabolites is already possible (the lac repressor in this case) 75. 
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Finally, the answer to the question how much enzyme is enough certainly depends on 

the organism, the context and the metabolic function of the enzyme. Even in simple and 

well-studied model organisms we are just starting to be able to address this question 

systematically. In our view, the control of enzyme levels is intimately linked with 

crosstalk between transcription and metabolism, and therefore central to 

understanding the role of this cross-talk. It is likely that cells have acquired a certain 

“knowledge” of how much enzyme is enough in various environments. The question is 

to what extent single metabolite concentrations encode this knowledge. 

 

1.2 - Mass spectrometry-based methods for systems biology 

studies 
 

Systems biology is a holistic approach to biological research as it strives to understand 

biological complexity as a whole, rather than as the sum of its single entities. The key 

driving force of this approach has been the development of various omics methods to 

measure molecules in a high throughput manner and their eventual combination in 

multi-omics studies 76. In the context of metabolism, the two main molecular entities of 

interest are metabolites and enzymes. The comprehensive measurement of metabolites 

is defined as metabolomics. In order to study enzyme abundances, a direct measure of 

proteins through proteomics has been shown to be more suitable than indirect 

methods, as in example RNAseq. Comparative studies have shown that in various 

prokaryotic and eukaryotic organisms transcript levels do not correlate with levels of the 

respective protein 77,78. This is due to various reasons, such as different translational 

rates, post-translational modifications, different degradation rates, etc. The direct 

measurement of proteins and metabolites in a high throughput manner can be achieved 

through mass-spectrometry (MS), an analytical technique which relies on measuring the 

mass-to-charge ratio (m/z) of electrically charged molecules. 

MS-based proteomics enables to measure the composition of protein samples 79, and a 

typical method to measure such complex mixtures from biological samples is shotgun 

proteomics 80. Proteomic workflows (Figure 3) start with the extraction of proteins from 
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a biological sample and their digestion into peptides, using a protease with a defined 

proteolytic specificity. The digested samples can then be purified and run through a 

liquid chromatography (LC) column which separates peptides based on their interaction 

with the column. The eluting peptides are then ionized and by entering the mass-

spectrometer they are separated and detected based on their m/z. In tandem MS 

(MS/MS), the charged peptides exiting the first mass-spectrometer are further 

fragmented to undergo a second MS measurement, allowing the identifications of ions 

that had similar m/z ratios in the first mass spectrometer. The detected mass spectra 

can be used to identify peptide structures. The identified peptides, are then compared 

to a peptide list obtained by an in silico digestion of the theoretical proteome, inferred 

from the relative genome of the biological sample. Based on the mapped peptides, the 

relative protein abundance can be estimated 80. This methodology can be applied to 

obtain relative quantifications of protein levels between different samples. In order to 

measure protein concentrations in absolute terms, samples can be spiked with 

isotopically labeled standards before being measured. Such methods have been used to 

estimate absolute concentrations of thousands of proteins, effectively quantifying the 

proteome compositions of organisms 81. 

Due to the small mass of metabolites, MS-based metabolomics methods do not require 

fractioning of the collected samples, which is a lengthy procedure in MS-based 

proteomics. MS-based metabolomics methods can be performed in an untargeted 

manner, measuring known and unknown chemical species of a sample, or in a targeted 

manner, in which only a subset of well annotated metabolites is measured. Untargeted 

metabolomics is characterized by speed and throughput of measurements, rendering 

these methods powerful tools for large screenings of biological samples 82. On the other 

hand, targeted metabolomics focuses on analyzing a defined set of biochemically 

characterized molecules, enabling quantitative measurements of metabolites and 

estimation of their concentrations. Advancements in manufacturing of shorter LC 

columns with decreased particle sizes have considerably increased the speed at which 

metabolomics samples can be eluted into the mass-spectrometer. Novel targeted LC-

MS/MS methods can precisely measure hundreds of metabolites with run-times 

reduced from 30-60 minutes to few minutes 83,84. In a typical metabolomics LC-MS/MS 
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workflow (Figure 3) to measure intracellular metabolites, samples are first filtered to 

dispose of their cultivation media and then lysed using a variety of solvents. The 

utilization of cold acidic acetonitrile solvents for sample preparation can preserve 

unstable compounds as nucleotide triphosphates 85. Prepared samples are then eluted 

with LC to separate metabolites and subsequently measured by MS/MS in a similar 

manner as for proteomics. Measured m/z spectra can be then used to quantify in 

relative terms metabolite abundances. Higher precision of measurements can be 

obtained by spiking samples with isotopically labeled standards, improving peak 

identification throughout long series of measurements and enabling absolute 

quantification of metabolite concentrations 86,87.  

In this work, we employed shotgun proteomics and/or targeted metabolomics to 

measure thousands of proteins and hundreds of metabolites (Chapter 3-4). Moreover, 

we studied the response of the E. coli metabolome under different environmental 

conditions (Chapter 5). Analyzing omics data from a range of different strains/conditions 

allowed us to infer basic principles of microbial metabolism. 
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Figure 3: Scheme summarizing an MS-based multi-omics workflow. Shotgun proteomics is highlighted in 
blue and targeted metabolomics in orange.   

 

 

 

1.3 - CRISPR interference, a tool for the control of gene 

expression 
 

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and 

CRISPR associated proteins (Cas) has been a considerable breakthrough, with wide 

consequences for molecular biology and genetic engineering 88. CRISPR/Cas systems are 

originally found in archaea and bacteria 89. Most of them function as an immune 

adaptive defense mechanism against exogenous nucleic acids, as for example against 

phage infections 90. CRISPR/Cas immunity relies on the formation of a complex between 

Cas proteins and short RNAs expressed from CRISPR arrays (crRNAs). crRNAs contain a 
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short sequence (spacer) which allows the complex to recognize and bind by base pairing 

a complementary target DNA or RNA (protospacer). In order to be recognized and bound 

by the complex, protospacer sequences need to be followed by a short protospacer 

adjacent motive (PAM), which serves cells to distinguish between self and non-self DNA. 

Upon recognition and binding of a correct protospacer, the endonuclease domains of 

Cas proteins can cleave the bound target. CRISPR/Cas effector complexes are 

characterized by a high binding specificity thanks to base-pairing, which has led to the 

repurposing of these systems for a number of applications. 

In this context, the CRISPR/Cas effector complex from Streptococcus pyogenes is widely 

utilized, due to its stability in different organisms and its dependence on few elements: 

one single Cas protein (SpCas9) and two small RNAs. The crRNA contains the spacer 

sequence that guides the complex, while the trans-activating crispr RNA (tracrRNA) plays 

a role in the maturation of the crRNA 91. The CRISPR/Cas9 system cleaving activity has 

been exploited most notably for genome engineering of bacteria and eukaryotes 92. On 

the other hand, a successful application of the specific RNA-guided targeting has been 

the repurposing of SpCas9 to repress gene expression, technique known as CRISPR 

interference (CRISPRi) 93,94. CRISPRi relies on SpCas9 proteins with mutated nuclease 

domains (dead Cas9 or dCas9) and a synthetic small guide RNA (sgRNA), comprising a 

spacer sequence of 20 nucleotides (Figure 4A). Upon their expression and formation, 

the dCas9/sgRNA complexes can recognize and strongly bind a target DNA sequence, 

without cleaving the target. Directing the complexes to genes of interest, using 

specifically designed sgRNAs, can prevent their transcription causing gene expression 

knockdowns. The strongest interference effects were demonstrated for spacer 

sequences designed to bind protospacers located in the non-coding strand of a gene at 

their 5’ UTR or the coding region of a gene, in proximity to the translation initiation 

sequence (Figure 4B)95.  
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Figure 4: scheme of CRISPRi components and mechanism. (A) Components of a CRISPRi system. The 
scheme illustrates a dCas9/sgRNA complex. The spacer sequence is indicated in red. In orange, the 
protospacer sequence. In purple, the PAM. (B) Mechanism of a CRISPRi system. The dCas9/sgRNA complex 
scans the DNA to find a correct PAM and protospacer, and upon recognition binds the DNA. The scheme 
illustrates the strongest mode of interference, in which the complex is directed to stop RNA polymerases 
recruited to transcribe a gene into mRNA, and the spacer sequence binds the non-coding strand. 
Interrupting mRNA elongation effectively knocks down gene expression of the targeted gene.  

 

CRISPRi can be easily reprogrammed by changing the 20-nucleotide sequence of the 

sgRNA. This enables the creation of large strain libraries which have been used 

extensively for genome-scale functional screenings, both in prokaryotes 96–98 and 

eukaryotes 96,99,100. Moreover, CRISPRi has also been utilized in metabolic engineering 

studies to tune levels of enzymes and redirect flux towards production of particular 

compounds 101,102. In this work, we exploited CRISPRi to study robustness of microbial 

metabolism. We designed and prepared CRISPRi strains in which we could artificially 

enforce lower enzyme levels. We then studied the response of cells, by measuring 

growth, proteins and/or metabolites. The initial design of the strains and testing of the 

CRISPRi experimental setup is described in Chapter 2. In Chapter  we employed CRISPRi 

to perturb all metabolic genes in E. coli and to produce the biggest multi-omics dataset 

of CRISPRi strains to date. 
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2 – Characterization of CRISPRi-knockdowns of 

metabolic genes 
 

2.1 - Results 
 

2.1.1 - Comparison of different CRISPRi systems 
 

A key factor for perturbing and studying metabolism is the utilization of expression 

systems orthogonal to the metabolic network of an organism. For this reason, we tested 

expression systems inducible by anhydrotetracycline (aTc) 103, a tetracycline which does 

not bloc bacterial protein synthesis. We compared two CRISPRi systems, inducible by 

aTc: a plasmid based CRISPRi system (pCRISPRi)95 and a system relying on a dCas9 gene 

integrated in the genome of E. coli, with an optimized tetR promoter (YYdCas9)104(Figure 

5A). We transformed both strain with a plasmid expressing an empty control gRNA 

(control strain) or a plasmid containing a sgRNA with a spacer sequence targeting a gene 

(ilvC strain) encoding for the ketol-acid reductoisomerase. Upon growth on minimal 

medium with glucose, ilvC is known to be an essential gene 105. We cultivated the four 

strains in minimal medium with glucose, supplementing or not 200nM of the inducer 

aTc. For the pCRISPRi system, we could observe a slight reduction in growth for the 

induced control strain, compared to the uninduced culture (Figure 5B). This might be 

caused by a growth burden, due to leaky expression of dCas9. This leaky expression was 

further confirmed by the fact that the strain containing a functional sgRNA, experienced 

an even greater growth reduction in absence of the inducer. When adding the inducer 

of dCas9, growth of the ilvC strain was severily impacted. In contrast, the YYdCas9 strains 

performed as expected (Figure 5C). Addition or not of the inducer did not cause 

differences in growth for the control strain. Moreover, the ilvC strain in absence of 

inducer grew exactly as the control strain, indicating low or negligible levels of dCas9 

leaky expression. Finally, when cultivating the ilvC strain in presence of aTc, expression 

of dCas9 caused an expected growth reduction due to lower levels of the targeted ilvC 

gene and the relative essential enzyme. A YYdCas9 strain with gRNA targeting the 

essential cell division gene ftsZ confirmed the inducibility of the interference system 
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(Figure S1). Overall, these results suggest that the YYdCas9 system is more suitable for 

inducible CRISPRi experiments.  

 

Figure 5: Comparison of different CRISPRi systems. (A) Scheme representing the two compared CRISPRi 

expression systems. Plasmids pdCas9-bacteria and pgRNA-bacteria were transformed in E. coli 

BW25993. pgRNA-bacteria plasmids were transformed into YYdCas9. Upon addition of aTc in cultures of 

strains with a functional sgRNA, we expected to observe a gene expression knockdown, consequent 

lower enzyme levels and possibly a growth defect. (B) Results of the growth screening for the pCRISPRi 

system. OD600 in ln scale and growth rate over time, lines represent average of replicates (n=3), grey 

shadowed areas represent standard deviation. aTc was added at T=0. (C) Results of the growth 

screening for the pCRISPRi system. OD600 in ln scale and growth rate over time, lines represent average 

of replicates (n=3), grey shadowed areas represent standard deviation. aTc was added at T=0. 

 

 

2.1.2 - Screening of an arrayed library of CRISPRi strains 
 

We then set to investigate a larger number of YYdCas9 strains. We selected 110 genes 

in primary metabolism of E. coli and designed pgRNA plasmids with sgRNAs targeting 

the strongest theoretical PAM site on the open reading frame of the gene 94. The targets 

included genes encoding for enzymes in central carbon metabolism (25 enzymes), 
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biosynthesis of amino acids (34 enzymes), nucleotides (16 enzymes) and cofactors (31 

enzymes). Four enzymes were involved in other pathways (fatty acid biosynthesis, 

phospholipid biosynthesis, lipopolysaccharide biosynthesis, Autoinducer-2 synthesis). 

85 out of 110 chosen genes are essential for growth on glucose minimal medium (EcoCyc 

Database) 106. When possible, we avoided targets that are in operons: 73 of the 110 

target-enzymes are encoded by genes that are expressed singularly. The pgRNA 

plasmids were synthesised or cloned and transformed into YYdCas9 to obtain an arrayed 

library (Table S1). We measured growth 111 CRISPRi strains (110 + control strain) on 

glucose minimal medium, with and without induction of dCas9. All 110 CRISPRi strains 

grew similar to the control strain, when dCas9 was not induced (Figure 6A). To induce 

enzyme knockdowns, we added aTc at the start of cultivation and the induced cultures 

displayed a wide range of growth characteristics (Figure 6A). Knockdowns of 64 out the 

110 enzymes caused a growth defect during the first 8 hours of exponential growth. 

However, the growth phenotypes appeared with a time delay of at least 3 hours after 

induction of the knockdown. Even strains with a very strong growth phenotypes grew 

initially like the control. We assumed that enzyme-levels would decrease exponentially 

after induction of dCas9 expression. Thus, growth phenotypes would appear early if the 

target-enzyme is expressed near a critical (flux limiting) level in the wild-type. In 

contrast, late or no growth phenotypes would indicate enzymes that are overabundant 

in the wild-type. To test this hypothesis, we calculated a response time (tau) as the time 

point when growth phenotypes appeared in the induced cultures (Figure 6B), and we 

calculated tau values for all strains (Figure 6C). We observed the shortest response time 

for knockdowns of MetE in methionine biosynthesis (3 h) and PyrE in nucleotide 

biosynthesis (3.3 h). This is consistent with our expectation that critical enzymes have 

the shortest response times, because MetE is a large and slow protein that limits overall 

protein synthesis 107; and PyrE is sub-optimally expressed in K12-derived E. coli 108. In 

central carbon metabolism, we observed the strongest response for knockdowns of the 

PTS system (PtsH) and the enolase (Eno): PTS is essential for carbon transport on glucose 

as sole carbon source 109, while Eno is a key limiting step for glycolysis in cells grown on 

glucose 110. Finally, Idi is a known rate-limiting step for the synthesis of isoprenoids 

111,112. The median response time of all 110 target enzymes was 5.58 hours. Amino acid 

biosynthesis enzymes had the shortest response time (4.5 h). The higher sensitivity of 
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amino acid biosynthesis enzymes is expected, because their expression is tightly 

regulated by transcription factors and transcriptional attenuation 113. Targets in cofactor 

metabolism and nucleotide biosynthesis had longer response times (6 h). Cofactor 

metabolism was the category with the highest fraction of target-enzymes that caused 

no growth phenotype at all (16 out of 31). The high robustness of cofactor metabolism 

matches previous reports showing that cofactors are stable and that their concentration 

is higher compared to the actual requirements for growth 114. Overall, these results show 

that for a larger number of strains the chosen CRISPRi system is tight and inducible. 

Moreover, the delay between induction and appearance of growth phenotypes in 64 

strains, as well as the absence of growth phenotypes in the other 46 strain, shows that 

E. coli is robust against knockdowns of enzymes. The response time to enzyme 

knockdowns might reflect whether enzymes are expressed near a critical level or if they 

are made in excess.  
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Figure 6: Growth screening of an arrayed CRISPRi library of 110 strains. (A) Growth curves of 110 CRISPRi 
strains carrying different sgRNA targeting expression of enzymes in the E. coli primary metabolism. In 
black are shown growth curves without addition of aTc, in orange with addition of aTc at Time = 0. Growth 
curves represent means of n=3 cultures. (B) Growth curves of the pfkA CRISPRi strain. Colors of curves as 
in Figure 1C. Growth curves represent means of n=3 cultures. Response time (t) was calculated as the time 
in which the induced/un-induced curves would diverge by more than 20% at OD > 0.12. (C) Response time 
(t) for the 110 strains of the CRISPRi library, divided by metabolic subsystems. t was calculated as 
described in Figure 2B using data from Figure 1A. Strains that experienced a t in the first 8 hours of 
exponential growth are shown in the plot, strains that did not display a t in the first 8 hours of exponential 
growth are counted in the panel at the right. 

 

2.1.3 - Proteomics-based characterization of CRISPRi strains 
 

In order to setup a sampling protocol for multi-omics data gathering, we first wondered 

whether the initial number of cells could affect the time in which growth phenotypes 

would arise. We inoculated different YYdCas9 strains (targeting argA, argE, purM) at 

different starting optical densities, and measured growth (Table S2). We could observe 

that regardless of the initial concentration of cells in the culture, the response time 

would be comparable for all the three strains. Therefore, a similar CRISPRi response 

happens in strains that are inoculated at lower or higher initial concentrations. This 

result implies that the initial inoculum can be adjusted to obtain enough biomass in 

exponential growth for metabolomics/proteomics sampling. We then moved to verify 

how proteins are affected by the chosen CRISPR interference setup, before and after a 

growth reduction takes place. Sampling cells earlier than the observed phenotype might 

prevent to detect significant changes in gene expression triggered by the metabolite 

perturbation. On the other hand, cells sampled after growth reduction might undergo 

global stress responses. We chose three strains from the library that displayed a growth 

reduction phenotype when subject to CRISPRi. The chosen strains included guides 

targeting essential genes in amino-acid biosynthesis (metE), glycolisis (pfkA) and 

isoprene biosynthesis (ispH). MetE and PfKA are the most active isoforms for their 

reaction (respectively 2.1.1.14 and 2.7.1.11), and are encoded as single ORFs. IspH is the 

only enzyme predicted to carry a key reaction in isoprene synthesis (EC 1.17.7.4) and is 

encoded as the last gene of its operon. After a 16h pre-culture in m9 minimal medium, 

we inoculated the strains at a starting OD of 0.05 in 35mL of medium in flasks, in 

presence or absence of aTc, in duplicates. For each flask, we took samples for 

proteomics at two timepoints (5mL of culture at OD=0.2, 2mL of culture at OD=0.5) and 
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measured OD600. Unlike the metE and pfkA strains, the ispH strain did not experience 

a reduction in growth when inducing dCas9 expression and grew as the control strain 

(Figure 7A). 

Figure 7B displays the protein abundances of the interfered genes and of dCas9 for every 

strain, relative to the uninduced control. For all strains, when applying aTc, the dCas9 

abundance increased by c.ca 5 times. Interestingly, dCas9 was detected also in cultures 

without aTc induction, meaning that the optimized tetR expression cassette of YYdCas9 

permits a low basal level of expression. However, no strong reduction in the target 

proteins was detected in the strains cultivated without aTc. The low concentration of 

dCas9 might be insufficient to cause significant interference to the genes targeted by 

the dCas9-sgRNA complex. For all the tested strains cultivated with aTc expression of 

the targeted gene was reduced by more than 2-fold. We moved to verify how the rest 

of the proteome reacted to the CRISPRi induced bottlenecks.  

From the 1760 detected proteins, we trimmed proteins which had either a lower 

peptide count than 2 or variability between replicates higher than 20%. Calculating fold 

change of the data over the protein dataset available for the control strain, led to high 

variability of differentially expressed genes (DEGs) (Figure S2). In example, for the metE 

strain many flagellar related genes resulted to be up-regulated for both conditions and 

both time-points compared to the Cntrl strain. Probably the metE strain underwent a 

common transposon related mutation 115. Moreover, stress related proteins (as rpoS) 

appeared to be upregulated for strains sampled at T2. Therefore, we calculated the fold-

change for every strain to the relative uninduced strain at T1 reducing the number of 

DEGs. Then we calculated fold-change for every dataset to the relative un-induced strain 

at the same time point, reducing the DEGs even further (Figure S2). Therefore, it appears 

that comparing data from induced cultivation to the not induced cultivation for the same 

strain contributes to reduce significantly noise in the data. Figure 7C depicts proteome 

changes for the strains at T2, normalized to the relative un-induced control. For the 

Control strain only dCas9 displays a significant upregulation, highlighting that expression 

of dCas9 does not cause significant perturbations at the proteome level. For the metE 

strain, several genes related to methionine synthesis, salvage and transport appear to 

be upregulated. Many of these genes are normally repressed by the TF metJ in its active 
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form, when binding S-adenosylmethionine (SAM). A reduction in methionine 

biosynthesis could lead to a reduction in SAM, reducing repression from metJ. For the 

pfkA strain, glycolytic genes did not appear to be upregulated significantly. Genes 

related to the glyoxylate cycle (aceA, aceB), maltose uptake and utilization (malM, malE, 

malF) and glutamate degradation (gadB) appeared to be up-regulated. A malate 

dehydrogenase (mqo) was strongly downregulated. For the ispH strain only the fkpB 

gene was downregulated, possibly because of its position in the ispH operon. However, 

a proteome-wide response upon 2 fold lower levels of IspH could not be observed. 
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Figure 7: Characterization of 4 CRISPRi strains. (A) Growth curves for the 4 strains. Black lines represent 
growth of strains (n=2) without induction of dCas9 expression, orange lines represent strains growing in 
presence of aTc. Vertical dotted lines represent proteomics sampling timepoints (T1, T2). The control 
strain was sampled only at a single timepoint. (B) Bar plots representing abundance of selected proteins 
(n = 2), normalized to the proteome data of the uninduced control strain. Error bars represent the 
propagated error. (C) Volcano plots for proteomes of the CRISPRi strains, normalized to the proteome of 
the relative un induced strain at the same timepoint (T2). Red dotted lines represent cutoffs for fold 
change (FC>2, vertical lines) and significance (p-value>0.05, horizontal lines). 
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2.2 - Discussion 
 

Here, we set to characterize and optimize a setup to precisely perturb metabolic genes 

using CRISPRi. We show that a strain with a genomically integrated dCas9 cassette can 

obtain an inducible activation of CRISPRi, without affecting cell physiology due to burden 

or dCas9 toxicity, as it has been shown previously when overexpressing dCas9 116. 

Screening a large library of CRISPRi strains targeting metabolic genes confirmed 

inducibility of the strain. We could observe that interference of different genes enforces 

a wide range of response times. Known rate limiting enzymes as MetE and PyrE had the 

shortest response times, confirming the hypothesis that the degree of the response time 

might reflect whether enzymes are expressed near a critical level or if they are made in 

excess. Moreover, even for such rate-limiting enzymes the response occurred 3 hours 

after inducing CRISPRi, and for many other strains the response time was longer or 

absent. We then set a sampling experiment to verify the response of cells to CRISPRi at 

the molecular level. dCas9 levels increased in all induced cultures, while the targets of 

interference were correctly reduced in their concentrations in the relative conditions. 

We could observe that comparing data from induced and uninduced cultures sampled 

at the same time allows to avoid noise and identify specific responses caused by enzyme 

downregulation. When normalizing the data in such way, we could observe specific 

responses for 2 of the analyzed strains. In the case of the metE strain, we could observe 

a specific upregulation of related genes in methionine biosynthesis. When perturbing 

expression of pfkA we observed an upregulation of transporters and TCA cycle related 

genes. In both cases, the perturbation seemed to become stronger with time. In the case 

of the ispH strain, we could not observe a significant response in gene expression or in 

the metabolome. Interestingly, ispH is known to be an essential gene for E. coli in the 

tested cultivation conditions, as metE and pfkA. It could be speculated that an unknown 

isoenzyme or an enzyme with moonlighting activity 117 can compensate measured lower 

amounts of IspH. Alternatively, it could be possible that IspH does not function at full 

capacity and that therefore the enzyme was not diluted to a critical concentration. 

Overall, we show here that integrated dCas9 cassette integrated in the genome of E. coli 
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allows for precise and burdenless interference of gene expression, which can be 

exploited for large scale functional screenings and multi-omics studies. 
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3 - The metabolome buffers CRISPRi-knockdowns of 

enzymes in E. coli metabolism  
 

3.1 - Results 
 

3.1.1 - An inducible CRISPRi system identifies rate-limiting enzymes 
 

For dynamic knockdowns of enzymes, we used a CRISPRi system that consisted of an 

aTc-inducible dCas9 on the chromosome 104, and a constitutively expressed single guide 

RNA (sgRNA) on a plasmid 94 (Figure 8A). To evaluate dynamics of gene interference with 

this CRISPRi system, we targeted a YPet reporter protein inserted in the E. coli genome 

104. These experiments showed an exponential decrease of the YPet content per cell, 

indicating a constant dilution of the YPet protein by growth (Figure 8B). The 1-hour delay 

between inducer addition and decrease of YPet is probably occurring due to the time of 

dCas9 expression and its target search 118. Moreover, YPet expression was only 

repressed in the presence of the dCas9 inducer aTc, showing tight control of the CRISPRi 

system (Figure 8B). Thus, CRISPRi allowed us to dynamically decrease the abundance of 

proteins starting from unrepressed (wild-type) levels. 

To further test the dynamics of the CRISPRi system, we targeted genes encoding 

enzymes in pyrimidine nucleotide biosynthesis. All pyrimidine enzymes are essential for 

growth of E. coli on glucose minimal medium. Therefore, knockdowns of pyrimidine 

genes should cause a growth defect when enzyme-levels reach a critical threshold. At 

this threshold the target-enzyme limits biosynthesis of UMP, and eventually affects 

growth (Figure 8C). Expression of dCas9 was either induced by supplementing aTc at the 

start of the cultivation (induced cultures), or cells were grown without inducer (un-

induced cultures). A control strain without target grew similar in induced and un-

induced cultures, which means that dCas9 expression alone causes no growth burden 

(Figure 8D). Un-induced cultures of all pyrimidine knockdowns grew like the control, 

confirming that the CRISPRi system is tight. Induced cultures, in contrast, displayed a 

wide range of growth phenotypes: knockdown of the first two enzymes of the pathway 

(PyrB and PyrC) hardly affected growth, while the PyrE knockdown caused a strong 
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growth defect. Knockdown of PyrF and PyrD impaired growth as well, but the effect 

appeared relatively late after induction of CRISPRi (around 5 hours).  

In conclusion, CRISPRi allowed us to induce dynamic decreases of protein-levels (Figure 

8B). The 5-hour delay between inducer addition and appearance of growth defects in 

the PyrF and PyrD knockdowns, suggests that the target-protein is diluted by growth 

until it reaches a critical level. In contrast, the early growth defect in the PyrE strain 

indicates that this enzyme is already expressed at a critical-level in the wild-type. This is 

consistent with previous reports about sub-optimal expression of PyrE in K12-derived E. 

coli, due to a frameshift mutation upstream of the pyrE gene 108. The comparably weaker 

growth defects of the other pyrimidine knockdowns indicated that these enzymes do 

not operate at a critical level. In other words, these enzymes are expressed at higher 

levels than absolutely necessary for UMP biosynthesis and growth (enzyme 

overabundance). However, an alternative explanation is that the sgRNAs targeting these 

genes are weaker or not functional. Therefore, we next targeted genes with several 

sgRNAs, and designed sgRNAs for all metabolism-related genes in E. coli. 

 

 

Figure 8. Dynamic knockdowns of enzymes with CRISPR interference  

(A) The CRISPR interference system consisted of an E. coli strain (YYdCas9) that has dCas9 
integrated into the genome (Lawson et al., 2017), and a single guide RNA on a plasmid (Qi et al., 
2013). dCas9 is under control of an aTc inducible Ptet promoter. The sgRNA is under control of 
a constitutive promoter. (B) Dynamic knockdown of YPet, which is integrated into the genome 
of the YYdCas9 strain. YPet fluorescence is shown for cells that express either a control sgRNA 
(black) or a sgRNA that targets YPet (orange). YPet fluorescence per OD is normalized to an un-
induced culture with the control sgRNA. The YPet knockdown was induced at time = 0 h by 
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supplementing 200 nM of aTc. Data are represented as mean, and the grey areas are ± SD (n = 
3). (C) Knockdown of an enzyme impairs growth when its concentration reaches a critical level.  
The target-enzyme is the enzyme, which is encoded by the gene that is repressed with CRISPRi. 
(D) Growth of cells expressing the control sgRNA, or sgRNAs targeting genes that encode 
enzymes in pyrimidine nucleotide biosynthesis. Expression of dCas9 was induced by 
supplementing 200 nM of aTc (blue) or dCas9 was not induced (black). Cells grew on minimal 
glucose medium in microtiter plates. Means of n = 3 cultures are shown.  
 

 

3.1.2 - E. coli metabolism is robust against CRISPRi-knockdowns of 

enzymes  
 

The latest genome-scale model of E. coli metabolism, iML1515, includes 1515 genes 119 

and we constructed sgRNAs that target these genes using array-synthesized 

oligonucleotides (Figure 2A). Per gene we designed 4 to 6 sgRNAs that target different 

loci on the coding strand.  The resulting sgRNAs were cloned in a pooled approach and 

subsequently transformed into E. coli that carried dCas9 on the genome (Figure 9A). 

Sequencing of the CRISPRi library showed that 7177 unique sgRNAs were present in the 

library and they target 1513 of the 1515 genes in the iML1515 model (Figure S3). We 

cultured the library for 13 hours on glucose minimal medium without induction of 

dCas9, which hardly altered the composition of the library (Figure S3). The stable 

composition of the un-induced library confirms again tight control of the CRISPRi system. 

Subsequently, we induced dCas9 expression and followed the library composition by 

next generation sequencing for 14 hours in intervals of 1 hour (Figure 9A). To assess 

reproducibility, we used two independent cultivations. Every two hours, the cultures 

were back-diluted into fresh medium, to avoid limitations of oxygen and nutrients. 

Growth of single CRISPRi strains was quantified as fold-change of sgRNA abundances, 

which was reproducible between the two experiments (Figure S4).  

To explore dynamic patterns in sgRNA abundances, we performed k-means clustering 

with time profiles of fold-changes (Figure 9B). The abundances of 45% of the sgRNAs 

were constant for 14 hours (cluster A). Another 30% of the sgRNAs in cluster B showed 

a slight increase, suggesting that these guides produce a small fitness advantage. The 

remaining 25% of sgRNAs in cluster C and D caused fitness defects. Cluster C represents 

mild fitness defects (average fold-change 0.5 at 14h), and cluster D stronger fitness 
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defects (average fold-change 0.1 after 14h). Cluster C and D include 1789 sgRNAs, which 

target in total 748 genes. Out of these 748 genes, 387 genes have at least two sgRNAs 

in cluster C and D, and we considered these genes as potential metabolic-bottlenecks. 

According to simulations with the iML1515 model, 277 of the 387 metabolic-bottleneck 

genes (71%) encode enzymes that carry metabolic flux with glucose as sole carbon 

source. 218 of the metabolic-bottleneck genes (56%) are essential for growth on glucose 

medium (Figure 9C). 89 genes (23%) are neither essential nor encode for enzymes with 

metabolic flux. Phenotypes of 9 out of these 89 genes can be explained by polar effects, 

as an essential or flux-carrying gene is encoded downstream of the targeted gene in the 

same operon. What caused fitness defects of the remaining 80 genes is unclear and it 

seems likely that these genes have previously unrecognized functions that affect fitness 

(e.g. transporters). 

Next, we identified at which time point the knockdowns created a metabolic bottleneck 

and when they became growth limiting. Therefore, we estimated a “response-time” for 

the 387 metabolic-bottleneck genes. The response time was defined as the point when 

the fold-change of sgRNA abundance was 0.8. To obtain robust estimates of response 

times we fitted sigmoidal functions to the time-courses of fold-changes (Figure 9D). 

Genes that had the shortest response times and were therefore the most sensitive 

targets in our screen were: the nrdA/nrdB operon, ppc, the ilvE/ilvD operon and fbaA 

(Figure 9D). All enzymes encoded by these genes catalyze essential reactions in primary 

metabolism: biosynthesis of deoxyribonucleotides (NrdAB), branched chain amino acids 

(IlvE and IlvD), glycolysis (FbaA) and anapleurosis (Ppc). Notably, all sgRNAs that target 

these genes had similar dynamics, suggesting that the repression efficiency of sgRNAs 

has little influence on fitness defects of sensitive targets.  

In summary, only 6 out of 1513 metabolism-related genes were very sensitive to 

knockdowns, as they had response times below 2 h. Another 32 targets had response 

times below 3 h (Figure 9E). The majority of knockdowns, however, responded late to 

induction of CRISPRi (on average 6.5 hours). This suggests that E. coli is robust against 

reducing the abundance of most metabolic enzymes and that only few enzymes (like 

NrdAB) are expressed at critical levels. Next, we wondered how strongly the abundance 

of target-enzymes decreased and which mechanisms buffered low enzyme-levels. 
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Figure 9. Dynamic knockdowns of 1513 genes in the metabolic network of E. coli  

(A) A CRISPRi library targeting 1513 genes in the latest genome-scale reconstruction of E. coli 
metabolism (iML1515). Each gene was targeted with 4-6 sgRNAs, which are equally distributed 
on the coding strand. sgRNAs were cloned in a pooled approach on plasmid pgRNA-bacteria and 
YYdCas9 was transformed with the resulting plasmid library (see also Figure 8A). The library was 
induced with 200 nM aTc at time = 0 h, and cultured for 14 h in shaking flasks. The culture was 
back-diluted every 2 hours into fresh medium. Samples for next generation sequencing were 
collected every hour. (B) K-means clustering of fold-changes of 7177 sgRNAs. Time-course data 
was clustered into k = 4 clusters. Box plots represent the distribution of sgRNAs in each cluster 
per time point. (C) Venn diagram showing the overlap between 387 genes that caused fitness 
defects in the CRISPRi screen (blue, genes with at least 2 sgRNAs in cluster C and D), genes that 
are essential on glucose minimal medium (red), and genes that encode enzymes with metabolic 
flux (green). (D) Fold-changes of all sgRNAs targeting the 4 most sensitive targets in the CRISPRi 
library. Sigmoidal curves were fitted to the time-course of each sgRNA. The response time was 
defined as the time point when the fold-change of a sgRNA was 0.8.  (E) Response times of all 
387 genes that showed fitness defects in the CRISPRi screen. Shown is the average response 
time of the 2 strongest sgRNAs of each target-gene. Target-genes are grouped into metabolic 
categories according to the definition in iML1515. The name of the most sensitive target is 
shown for each category. 
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3.1.3 - CRISPRi achieves similar and specific decreases of enzyme-levels 
 

To probe how strongly CRISPRi decreases the abundance of target-enzymes, we 

measured the proteomes of 30 CRISPRi strains (Figure 10A, Figure S5). The 30 target-

enzymes included one of the most sensitive enzymes in our pooled screen, PEP 

carboxylase (Ppc) that converts PEP to oxaloacetate in E. coli. We also included PckA 

which catalyzes the reverse reaction and should have no relevance for growth on 

glucose. Other targets were distributed over the metabolic subsystems, like glycolysis 

(Pts, Pgi, PfkA, PfkB, FbaA, GapA, Eno, TpiA, PykA, PykF) and the oxidative pentose 

phosphate pathway (Zwf and Gnd). From the TCA cycle we selected the first step 

catalyzed by citrate synthase (GltA), as well as the succinate dehydrogenase complex 

(SdhABCD). Furthermore, 8 target-enzymes were in biosynthesis pathways of amino 

acids (AroA, IlvC, MetE, GdhA) and nucleotides (Adk, PyrF, PurB, PurC), or both (Prs and 

CarAB). The remaining targets were CysH in sulfur assimilation, GlmS in amino sugar 

biosynthesis and Dxs in the isoprenoid pathway. We cultured these strains in 12-well 

plates and measured their proteomes 4.5 hours after dCas9 induction, which is the time 

when growth phenotypes appeared in the first strains (Figure 10C). Each strain was 

cultured in triplicates with and without induction of dCas9, resulting in a total of 180 

proteome samples. CRISPRi downregulated specifically the target-enzymes, since 

target-enzymes decreased only in the respective knockdown and remained stable in the 

other strains (Figure 10B). The average decrease of target-enzymes was 5.1-fold, and 

decreases varied between 8-fold (PyrF) and 2.6-fold (MetE). Target-enzymes hardly 

decreased in un-induced cultures (Figure 10B), confirming that CRISPRi is tight and 

inducible. The degree of downregulation of the target-enzyme did not correlate with the 

reduction of the growth rate at the time point of sampling (Figure 10C, Figure S6), 

showing that different repression efficiencies of CRISPRi were not responsible for the 

different growth phenotypes. In summary, 4.5 h after induction of CRISPRi, target 

enzymes decreased on average 5-fold. Decreases of 19 target-enzymes caused no 

growth defect. For 10 target-enzymes growth rates declined just before the time point 

of sampling. Therefore, E. coli metabolism tolerates substantial decreases of enzyme-

levels and we next wondered which mechanisms enable this robustness. 
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Figure 10. Growth defects and abundances of target-enzymes in 30 CRISPRi strains 

(A) Metabolic map showing the target-enzymes of 29 CRISPRi strains. The control strain 
expressed a sgRNA without a spacer sequence. Operon structures of the targets are shown in 
Supplementary Figure S2. (B) The bar plot shows abundances of target-enzymes in cultures with 
inducer (blue) and without inducer (grey). Data is normalized to the average enzyme-level in un-
induced cultures. The heatmap shows fold-changes of target-enzymes between induced and un-
induced cultures. Data was calculated using the means of n = 3 samples per strain, error bars 
are propagated errors. (C) Growth curves of the 30 CRISPRi strains. Uninduced cultures are 
shown in black. Induced cultures are shown in orange (200 nM aTc was supplemented at time = 
0 h). Samples for proteomics were collected at the end of the cultivation (4.5 h). Growth curves 
show means of n = 3 cultures. Background colors indicate the reduction in growth rates at the 
time of sampling. Growth rates were estimated using linear regression with the last 4 time points 
of growth curves. 
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3.1.4 - Substrates and allosteric effectors buffer decreases of enzyme-

levels 
 

To understand how E. coli metabolism compensated the ~5-fold decrease of enzyme-

levels, we measured the metabolome of the 30 CRISPRi strains. Therefore, we collected 

samples for metabolomics at the same time point as proteomics samples (4.5 hours), 

and measured 119 intracellular metabolites by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Metabolites that responded most strongly to knockdowns of 

enzymes were often substrates of the respective reactions (Figure 11A). In 18 out of 29 

knockdowns, the substrate increased more than 2-fold and was one of the most 

abundant metabolites. Products, in contrast, were more stable than substrates (Figure 

11A, Figure S7). In the strains with strong substrate responses, the respective products 

decreased less than 2-fold, except of the Gnd-product ribose-P and the MetE-product 

methionine. The low methionine levels in the MetE strain imply that the growth defect 

of this strain is caused by a bottleneck in the methionine pathway. We hypothesized 

that the high concentration of substrates increases the active site occupancy of 

enzymes, which in turn increases their activity. Thereby, substrates could buffer 

knockdowns of enzymes by increasing their activity.    

To test the hypothesis that substrates buffer decreases of enzyme-levels, we measured 

metabolites in the PfkA strain dynamically after induction of CRISPRi (Figure 11B). PfkA 

catalyzes an essential rate-limiting step in glycolysis, which is the phosphorylation of 

fructose-6-phosphate into fructose-1,6-bisphosphate. If fructose-6-phosphate buffers 

the decrease of PfkA, then its concentration should increase slowly and early after 

induction of the PfkA knockdown (resembling dynamics of the target-enzyme). In 

contrast, a rapid and late response of fructose-6-phosphate would indicate that the 

substrate increases because glycolysis is blocked. Indeed, the pool of hexose-

phosphates (which include fructose-6-phosphate) increased early and slowly after 

induction of dCas9 (Figure 11B), supporting our hypothesis that substrates buffer 

enzyme knockdowns. The delay of 60 minutes between induction and increase of 

hexose-phosphates matches the activation time of CRISPRi that we measured with YPet 

(Figure 11B). Thus, as soon as PfkA levels decrease, the concentration of hexose-
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phosphate starts to increase, which maintains stable glycolysis and constant levels of 

the PfkA-product fructose-1,6-bisphosphate. Therefore, dynamic metabolite responses 

to knockdowns reveal the capacity of substrates to buffer changes in enzyme-levels.  

In 4 strains allosteric effectors of the target enzyme responded most strongly to the 

knockdown (CarAB, GlmS, Ppc and Zwf, Figure 11A). Ornithine, for example, is one of 

the many allosteric effectors of CarAB and ornithine increased more than 500-fold in the 

CarAB knockdown. Thus, allosteric activation of CarAB by ornithine seems to buffer the 

knockdown of the enzyme. Similarly, knockdown of Ppc resulted in a decrease of 

aspartate (13-fold) and malate (16-fold), which are allosteric inhibitors of Ppc. The 

decreases of aspartate and malate suggested that low abundance of Ppc is doubly 

compensated by relieving two negative allosteric feedbacks. The increase of the Ppc 

substrate PEP could additionally increase the activity of the enzyme. In the GlmS and 

Zwf strain we observed a similar relieve from allosteric inhibition, because their 

respective reaction product glucoseamine-P and NADPH decreased. NADPH is the 

allosteric inhibitor of Zwf 120, and glucoseamine-P is a potent inhibitor of GlmS activity 

121. 

To confirm that allosteric regulators buffer knockdowns, we measured again the 

dynamic response of metabolites in the CarAB knockdown (Figure 11C). Similar to the 

PfkA knockdown, ornithine responded slowly and early after induction of the CarAB 

knockdown, showing that ornithine compensated decreasing CarAB levels for ~2 hours. 

After 2 hours, the concentration of arginine decreased, which is the end-product of the 

arginine biosynthesis pathway and consumes the CarAB-product carbamoyl-phosphate. 

The other pathway that uses carbamoyl-phosphate is pyrimidine nucleotide 

biosynthesis, but the pyrimidine end-products CTP and UTP did not change in the CarAB 

knockdown. The higher robustness of pyrimidine over arginine biosynthesis is probably 

due to the higher demand for amino acids than for nucleotides. Therefore, CarAB 

reached a critical level after 160 minutes, when ornithine cannot compensate the CarAB 

knockdown anymore and arginine starts limiting cell growth.  

In summary, substrates and allosteric effectors buffer decreases of enzyme-levels by 

increasing their activity. This buffering effect of the metabolome explains why E. coli 

grows normally for 2-3 hours after induction of enzyme knockdowns. Once this buffer is 



3 - The metabolome buffers CRISPRi-knockdowns of enzymes in E. coli metabolism 

 40   

exhausted, the reaction-product of the target-enzyme (or end-products of the target-

pathway) decrease and will eventually limit growth. We then wondered how cells 

respond to such metabolic bottlenecks at the level of enzyme-level regulation, and we 

took a closer look at the proteome data. 

 

 

Figure 11. Metabolome of 30 CRISPRi strains and dynamic metabolite responses 

(A) Intracellular concentration of 119 metabolites in the 30 CRISPRi strains. Metabolite levels 
are shown as log2 fold-change between induced and un-induced cultures. Samples were 
collected at the end of the 4.5 hours cultivations (see Figure 10C). Data are represented as mean 
(n = 2). Substrates of the target enzyme are shown in orange, products in blue, allosteric 
inhibitors in magenta and allosteric activators are green. (B) Time-course of hexose-phosphate 
(f6p) and fructose-1,6-bisphosphate (fbp) in the PfkA knockdown. Metabolite levels are 
normalized to the time point before induction. The culture was induced with aTc at t = 0h. Black 
dots are measurements in n = 2 cultures and colored dots are the mean. (C) Same as in (B) for 
ornithine (orn), arginine (arg), utp and ctp in the CarAB knockdown. Note that isomers were not 
separated: g6p and f6p is the total pool of hexose-p, r5p is the total pool of pentose-p, dhap and 
gap is the total pool dhap/gap.  
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3.1.5 - Metabolites cause a compensatory upregulation of enzymes in 

the target-pathway  
 

Proteome data showed that CRISPRi achieves specific and in average 5-fold reduction of 

the abundance of target-enzymes (Figure 10B). In 20 of 29 knockdowns the target-

enzyme was the most strongly downregulated protein among all 1506 measured 

proteins (Figure 12A). The number of significantly changed proteins (2-fold, p-test<0.05) 

had a strong correlation with the reduction in growth of the respective knockdown 

(Figure 12B). This means that strains with a growth defect had stronger proteome 

changes, whereas the proteome was stable in strains without a growth defect. The latter 

group consisted of 19 strains with less than 20 significantly changed proteins, despite 

low levels of the target-enzymes. The constant proteome in these 19 strains confirmed 

that knockdowns are buffered at the metabolome level and not at the proteome level.  

We then analyzed if the 10 strains with stronger proteome changes showed a global 

growth-dependent proteome response 65 or if proteome changes were specific. Because 

the average similarity of proteome changes between pairs of CRISPRi strains was only 

6% (Figure S8), we concluded that each knockdown caused specific proteome changes. 

As expected, knockdowns of enzymes that are close in the metabolic network caused 

more similar proteome responses. For example, the most similar proteome changes 

occurred in knockdowns of neighboring enzyme pairs: Pgi and Gnd (40% similarity), 

GapA and FbaA (39% similarity) (Figure S6). Therefore, decreasing target-enzymes to a 

critical growth-limiting level enforces specific proteome changes, which affected 

different metabolic subsystems (Figure S9). 

In five metabolic pathways we noticed a compensatory upregulation, because enzymes 

within the metabolic pathway of the target-enzyme were upregulated (Figure 12C). For 

example, all enzymes in the arginine biosynthesis pathway increased in the CarAB strain, 

demonstrating that enzyme-level regulation responds to the arginine starvation in this 

strain (Figure 11A and Figure 11C). Similarly, the methionine starvation in the MetE 

strain (Figure S10) caused a compensatory upregulation of enzymes in the methionine 

pathway. In the IlvC strain, enzymes in valine and isoleucine biosynthesis were 

upregulated. Enzymes involved in sulfur assimilation increased in the CysH strain, and 



3 - The metabolome buffers CRISPRi-knockdowns of enzymes in E. coli metabolism 

 42   

enzymes in aromatic amino acid biosynthesis were upregulated in the AroA strain. All of 

these upregulated pathways include the target-enzyme (which is downregulated due to 

CRISPRi). However, we observed the same response for distal target-enzymes that are 

not in the upregulated pathway. For example, methionine enzymes increased also in the 

Ppc strain, thus indicating that limiting anapleurosis has the strongest effects on 

methionine biosynthesis. Aromatic amino acid biosynthesis was also upregulated in 

knockdowns of enzymes in lower glycolysis (Eno, FbaA, GapA and TpiA). The 

knockdowns in lower glycolysis consistently caused low levels of phosphoenolpyruvate 

(PEP)(Figure S10), which is a precursor for aromatic amino acids biosynthesis. Therefore, 

limited supply of PEP for aromatic amino acid biosynthesis pathway caused the same 

compensatory upregulation as a knockdown of AroA within the pathway. 

The compensatory upregulation occurred probably at the level of transcription, because 

expression of four pathways is regulated by related transcription factors: the arginine 

pathway by ArgR, the methionine pathway by MetJ, sulfur assimilation by CysB and 

aromatic amino acid biosynthesis by TrpR. We expected that these transcription factors 

responded to the knockdown because the concentration of their allosteric regulators 

changed accordingly. Indeed, the CarAB strain had the lowest levels of arginine across 

all 30 CRISPRi strains (Figure 12C). This reduces the activity of ArgR and thereby de-

repressed expression of arginine biosynthesis enzymes in the CarAB strain. Similarly, the 

MetE and Ppc strains had low levels of S-adenosylmethionine (SAM). Low SAM levels 

reduce MetJ activity and thereby caused the compensatory upregulation of the 

methionine pathway. Changes of acetyl-serine explained upregulation of sulfur 

assimilation, and low valine levels caused upregulation of the valine and isoleucine 

biosynthesis enzymes (in this case via transcriptional attenuation). Only the response of 

the TrpR regulator, tryptophan, did not match the upregulation of enzymes in aromatic 

amino acid biosynthesis: in most strains with a transcriptional response, tryptophan 

levels did not decrease more than 2-fold and they even increased for the GapA 

condition. This suggests that additional regulators might control expression of these 

enzymes.  

To obtain additional evidence that the compensatory upregulation occurs at the level of 

transcription, we used transcriptional fluorescent reporters 122 (Figure 12D). GFP 
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expression from a MetJ regulated promoter confirmed the compensatory upregulation 

in the MetE strain. Similarly, an ArgR regulated promoter was upregulated in the CarAB 

strain. Promoter activity increased with a 2-hour delay after inducer addition. This is also 

the time when growth defects appeared in these strains, thus indicating that the 

compensatory upregulation started when the target-enzyme reached a critical level. 

In conclusion, knockdowns without growth defect had a stable proteome despite a 5-

fold decrease of target enzymes. Stronger proteome changes occurred only in strains 

that had a reduction in growth at the time point of sampling. These proteome changes 

were specific, because different proteins changed in different knockdowns. In 9 

knockdowns the responses were remarkably precise: either enzymes within the target 

pathway were upregulated (MetE, CysH, IlvC, AroA strains) or enzymes that utilize the 

reaction product of the target were upregulated (CarAB, Ppc, Eno, FbaA, GapA and TpiA 

strains). Once more, metabolites were buffering the knockdowns, in these cases by 

allosteric interactions with transcription factors (MetJ, ArgR, CysB, TrpR) or 

transcriptional attenuation (valine and isoleucine). Thus, the metabolome buffers 

knockdowns both at the level of enzyme activity and enzyme abundance.  
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Figure 12. Localized proteome changes occur in CRISPRi strains with a growth defect 

 (A) Abundance of 1506 proteins in the 30 CRISPRi strains. Protein levels are shown as log2 fold-
change between induced and un-induced cultures. Data are shown as mean (n = 3). Strains are 
ordered based on the number of differentially expressed proteins (FC>2, p-value<0.05). Blue 
dots indicate target-enzymes. Colored boxes show the reduction in growth rates at the time of 
sampling (see also Figure 3). (B) Correlation between the number of differentially expressed 
proteins (FC>2, p-value<0.05) and the reduction in growth rates for the 29 CRISPRi strains. (C) 
Fold-changes of enzymes in pathways of arginine biosynthesis, methionine biosynthesis, sulfur 
assimilation (Cys), valine/isoleucine biosynthesis and aromatic amino acids biosynthesis. 10 
CRISPRi strains with a compensatory upregulation are shown in bold. (D) Concentration of 
metabolites that are allosteric effectors of transcription factors ArgR, MetJ, CysB and TrpR. 
Valine and isoleucine regulate enzyme expression via transcriptional attenuation. Colored dots 
highlight strains that showed a compensatory upregulation of the respective pathway (boxes in 
the heatmap). (E) The MetE and CarAB knockdowns were transformed with GFP reporter 
plasmids. CarAB expressed an ArgR regulated promoter (pUA66-argE-gfp). MetE expressed a 
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MetJ regulated promoter (pUA66-metB-gfp). The fold-change of GFP/OD between induced and 
un-induced cultures is shown in green. The fold-change of OD between induced and un-induced 
cultures is shown in orange. Curves are means of n=3 cultures, shadows represent standard 
deviation. aTc was added at t = 0 h.  

  

3.1.6 - 6-phosphogluconate buffers knockdowns in the pentose-

phosphate pathway 
 

Apart from compensatory responses at the level of the target-enzyme itself, we noticed 

a third compensatory mechanism. Knockdown of Gnd in the pentose-phosphate 

pathway activated an alternative pathway, the Entner-Doudoroff (ED) pathway. This is 

consistent with previous reports about increased flux through the ED pathway in a Gnd 

knockout 123,124. The ED pathway utilizes the Gnd substrate 6-phosphogluconate, which 

accumulated in the Gnd knockdown (Figure 13A). Thus, higher expression of the ED 

pathway in the Gnd knockdown might enable overflow of the excess of 6-

phosphogluconate.  

We wondered if upregulation of the ED pathway was also caused by a metabolite. 

Transcription of the ED pathway is regulated by the two transcriptional repressors KdgR 

and GntR. While KdgR controls only the two ED enzymes (Edd and Eda), GntR has 

additional targets in uptake of gluconate (Figure 13A). The increase of an additional 

GntR target (gntT) suggested that GntR responded to the knockdown of Gnd (Figure 

13B). The activity of GntR is allosterically inhibited by gluconate 125. Therefore, we 

assumed that accumulation of 6-phosphogluconate produced small amounts of 

gluconate, which inhibited GntR and de-repressed transcription of Edd and Eda (Figure 

13C). In the un-induced Gnd strain the concentration of gluconate was 50 µM, which is 

comparable to previous measurements in E. coli 126.  Induction of the Gnd knockdown, 

led to an increase of gluconate to 184 µM. This increase in gluconate concentrations was 

probably sufficient to inhibit GntR and increase expression of the ED pathway. The 

presence of gluconate in the GND knockdown and its regulatory role in bypassing the 

oxidative PPP, reveals that gluconate acts as regulatory metabolite, which does not 

participate in metabolism but in regulation. Thus, gluconate could sense imbalances 

between the oxidative and the non-oxidative PPP, and adapt expression of the ED 

pathway accordingly. We expected that we can alter this regulation by disrupting the 
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interconversion of 6-phosphogluconate to gluconate. Indeed, deletion of gluconate 

kinase (gntK) prevented re-phosphorylation of gluconate, such that gluconate levels 

increased even further: 246 µM in the un-induced Gnd knockdown and 620 µM in the 

induced Gnd knockdown. The high gluconate levels in the gntK strain upregulated 

again the ED pathway (with and without induction of the Gnd knockdown). ED enzymes 

were even stronger overexpressed in the ΔgntK strain than in the strain with only 

knockdown of Gnd. The higher expression of ED enzymes almost prevented the 

accumulation of 6-phosphogluconate in the Gnd knockdown, confirming that the ED 

pathway enables overflow of an excess of 6-phosphogluconate. 

In summary, 6-phosphogluconate levels are sensitive to imbalances in the oxidative 

pentose phosphate pathway. The ED pathway responds to 6-phosphogluconate via an 

indirect interaction with gluconate-GntR, and enables overflow of an excess of 6-

phosphogluconate. 

 

 

Figure 13. 6-phosphogluconate coordinates the Entner-Doudoroff pathway with the Pentose-
Phosphate pathway. 

(A) Metabolic map of the Entner-Doudoroff pathway (two enzymes Edd and Eda), and the 
oxidative Pentose-Phosphate pathway. GntK is a kinase that phosphorylates gluconate. 
Intracellular gluconate can derive from dephosphorylation of 6-phosphogluconate (6PG). (B) 
Fold-changes of the target-enzyme (Gnd), as well as fold-changes of all measured proteins that 
are regulated by the transcription factor GntR (Edd, Eda, GntT). Shown are induced (+) and un-

induced (-) knockdowns of Gnd in the YYsCas9 strain (blue) and the YYsCas9-gntK strain 
(green). Samples were collected after 4.5 hours cultivation in 12-well plates. Data is normalized 
to the un-induced Gnd strain. Data are means of n = 3 cultures, error bars are propagated errors. 
(C) Same as in (B) for intracellular metabolites (6PG: 6-phosphogluconate). 
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3.2 - Discussion 
 

Robustness is a fundamental feature of metabolism. A key requirement for metabolic 

robustness is that small changes in enzymes-levels have no global effects on overall 

metabolism. Otherwise, fluctuating enzyme-levels could limit metabolic flux and 

eventually cellular fitness. Theories like Metabolic Control Analysis predicted that 

metabolism is insensitive to the exact abundance of single enzymes 127–130, but have not 

measured this property at a system-level. Studies that measured flux-enzyme-

metabolite relationships at a system-level examined the impact of nutritional changes 

on metabolism of yeast 131 and E. coli 132.  But how changes of enzyme-levels affect 

metabolism is largely unexplored. In this study, we used CRISPRi to perturb the 

expression of enzymes and investigated the effects on metabolism and fitness 

systematically. 

First, we used CRISPRi to knockdown 1513 genes that are included in the latest genome-

scale model of E. coli metabolism, iML1515 119. We leveraged an inducible CRISPRi 

system for dynamic knockdowns of enzymes. Knockdown of 387 out of the 1513 

metabolism-related genes caused a fitness defect. However, fitness defects were 

delayed relative to the addition of inducer, on average 6.5 h. At this time point, enzyme-

levels should be markedly reduced, since proteome data for 29 strains showed a ~5-fold 

reduction of target-enzymes after 4.5 h. Thus, decreasing enzymes below endogenous 

levels had no immediate effect on cellular fitness. Previous reports that support this 

observation showed that metabolic enzymes are expressed in excess 133–135 and that E. 

coli keeps reserve capacities of enzymes 120,131.  

Yet, few enzymes affected fitness almost immediately after induction of CRISPRi (NrdAB, 

Ppc, IlvE and FbaA). A hypothesis is that these enzymes are rate-limiting control points 

in the metabolic network of E. coli. The most sensitive target was ribonucleoside-

diphosphate reductase (NrdAB), which seems a reasonable control point because it 

supplies deoxyribonucleotide triphosphates (dNTPs) for DNA replication. Previous work 

confirms a rate-limiting function of NrdAB, because its concentration is directly 

proportional to the rate of DNA synthesis 136. Similarly, PEP carboxylase (Ppc) supplies 

TCA-cycle precursors for biosynthesis of 10 out of the 20 amino acids (anapleurosis). 
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Thus, near-critical Ppc levels may limit overall protein synthesis. This hypothesis is 

supported by the observation that overexpression of Ppc increases the growth rate of 

E. coli 137. The high sensitivity of the ilvE/ilvD operon is probably due to the frameshift 

mutation upstream of ilvG, which causes suboptimal expression of the operon 138. 

In 30 CRISPRi strains, we measured the metabolome and proteome, in order to examine 

how decreases of enzyme-levels affected metabolism. In theory, metabolism could 

respond in two distinct ways to knockdown of an enzyme: either by global upregulation 

of the whole metabolic network, or by specific regulation of just the critical target-

enzyme. Here, we observed the latter case, since metabolome and proteome responses 

were specific and centered around the target-enzyme. For example, substrates or 

allosteric effectors of the target-enzyme were among the top responding metabolites. 

Dynamics of these local metabolite concentration changes support the hypothesis that 

they increased the activity of the target-enzymes, and that this buffered knockdowns. 

This observation matches reports about the concentration of intracellular metabolites, 

which are often near or even below binding constants of substrates or allosteric 

effectors 126,139. Moreover, the metabolome buffered knockdowns at the level of 

transcription. For example, allosteric regulators of transcription factors (arginine, SAM, 

acetyl-serine) and transcriptional attenuation by valine were responsible for a 

compensatory upregulation of enzymes in pathways that were most seriously affected 

by the knockdown. Thus, CRISPRi enforces strong responses of metabolites that interact 

with the target-enzyme directly or indirectly with regulators of the target-enzyme. From 

a methodological perspective, this highlights the large potential of CRISPR perturbations 

to infer functionally relevant interactions between metabolites and proteins, which are 

currently measured by spiking purified metabolites into cell extracts 140. 

In conclusion, our study shows that the metabolome can buffer decreases of enzyme-

levels, because enzyme-levels are higher than absolutely needed to maintain metabolic 

flux. This mechanism may ensure a high constancy of metabolic flux despite expression 

noise 141,142 or mutations that occur during the evolution of metabolic networks 143.   
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4 - Homeostasis of the Escherichia coli biosynthetic 

metabolome across different environments 
 

4.1 - Results  
 

4.1.1 - A comprehensive and systematic dataset of the E. coli 

metabolome 
 

In this work, we measured >100 hydrophilic intracellular metabolites across 16 

environmental conditions and in 3 E. coli reference strains grown on glucose, to explore 

the response of these compounds to different environments. For all conditions, we 

cultivated E. coli in three independent shake-flask batch-cultures. All cultures were 

sampled in mid-exponential phase when they reached an OD600 of 0.5, to ensure that 

oxygen and carbon sources were not limiting growth (Figure 14A, left panel). An 

exception were stationary cultures, which were sampled 1 and 2 days after entering 

stationary phase (sampling OD600 of 5.2 and 5.1, respectively). For all 19 conditions, fast 

filtration and extraction in cold acetonitrile (ACN) was used to obtain metabolite 

extracts, which we mixed with 13C internal standard and then measured by LC-MS/MS 

83,86. To obtain absolute metabolite concentrations, we first calibrated the 13C internal 

standard with authentic standards (Figure 14A, middle panel) and used the ratio of 12C 

and 13C signals in our samples for quantification. Additionally, we used the correlation 

of signals in the 12C and 13C channels to score the quality of LC-MS/MS signals. Out of 

the 147 metabolites targeted by our method, we retained for further analysis 124 

metabolites with high quality peaks (Figure 14A). For 67 metabolites we could 

determine absolute intracellular concentrations across all conditions.  

The median error between replicates was of 15 % (relative standard deviation, Figure 

14A, right panel), showing that measurements were robust and reproducible. 

Moreover, the energy charge (given as ([ATP]+0.5[ADP])/([ATP]+[ADP]+[AMP]) was high 

and remarkably constant in all growing cultures, ranging between 0.93 to 0.97 (Figure 

14A, right panel). This confirms that sampling was fast and efficient, because ineffective 

sampling and quenching would immediately affect ATP levels, which have a turn-over 
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time of few seconds 144. The low energy charge in stationary phase cells was expected 

and decreased from day 1 to day 2. Changes of the metabolomes between conditions 

were sufficient to group cells grown on minimal media, complex medium or in stationary 

phase (Figure S11). Metabolomes of cells grown under stresses as high temperature, 

low pH and high osmotic stress clustered together with metabolomes of cells grown in 

minimal media, suggesting that these conditions do not impact strongly metabolite 

concentrations. 

 

 

Figure 14. General overview of the experiments and data quality assessment. Cell cultures were grown 
aerobically, and sampled at OD600 of 0.5, or at 1 or 2 days of stationary phase. Quick filtration and 
quenching/extraction in ACN:methanol:H2O were applied to get the intracellular metabolites. Samples 
were analyzed by LC-MS. Median error between experiments was 15%. High energy charge (EC) values 
were calculated for all experiments, suggesting an efficient nucleotide extraction procedure.  

 

4.1.2 - The metabolome of growing cells is independent from growth 

effects 

 

Next, we compared intracellular concentrations measured in this study, with those from 

previous studies 86,145; intracellular levels of metabolites show a good match, especially 

with the more recent study, despite somewhat different cultivation conditions (Figure 

S12). After validating results from our measurments against published datasets, the next 

step was to compare it to a matching dataset of absolute protein levels of E. coli 146. In 

this case, cells were cultivated under identical cultivation conditions, resulting in 

strongly comparable growth rates (Figure S13). The key question in the comparison of 

the two datasets was whether metabolite levels are also affected by growth effects, as 
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it has been shown for protein levels. We compared metabolite levels to the relative 

growth rates for conditions with strains in exponential growth on minimal media: 13 

metabolites (out of 124, 10.5%) displayed a growth dependent tendency (R2>0.4) (Figure 

15A, Table S3), including the known regulator of catabolite repression, cAMP 145,147. 

Metabolites with the strongest correlation with growth rates were IMP and 5-Amino-1-

(5-phospho-D-ribosyl)imidazole (CAIR), which are both precursors for the biosynthesis 

of purines (Figure S14). Interestingly, data from Kochanowski et al. (2017), for cells 

grown on different carbon sources also suggests an overall independence between 

growth rates and metabolite levels (Figure S15).  

 

Figure 15: Analysis of the metabolome dataset and comparison with the matching proteome dataset 
from Schmidt et al. 2016. (A) histogram counting metabolites and their relative correlation coefficient 
between their levels and the relative growth rates. R2 indicates the squared Person correlation 
coefficient. Most metabolites display a very low growth-dependency. (B) First singular vector (SV1, 
explaining 73.78% of the total variance) for the proteome dataset plotted against the respective growth 
rate, colors represent the different conditions based on Figure 1 (right panel). R2 indicates the squared 
Person correlation coefficient between the first singular vector and the relative growth rates. (C) First 
singular vector (SV1, explaining 59.5% of the total variance) and third singular vector (SV3, explaining 
5.31% of the total variance) for the metabolome dataset, plotted against the respective growth rate. 
Colors represent the different conditions based on Figure 1 (right panel). R2 indicates the squared Person 
correlation coefficient between the relative singular vector and the relative growth rates. The first 
singular vector displays no correlation with the growth rate, while the third singular vector, albeit having 
a weak growth dependency, accounts for a small portion of the variability in the dataset. (D) 
Distributions of relative standard deviation (RSD) for each metabolite and each protein in the respective 
datasets. The median values in the distributions were respectively of 32.9% and 34.8%. (E) Detailed 
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overview of the relative metabolite levels for all conditions normalized (in log2) to the metabolite levels 
of E. coli BW25113 grown on M9 minimal medium with glucose as sole carbon source. 

We next applied singular value decomposition 148 to deconvolute the matching 

proteomics or metabolomics datasets, for the same growth conditions mentioned 

above. In particular, we looked at which component correlates most strongly with 

growth rate values. In the case of the proteome data, the first component correlated 

strongly with growth and could explain together 73.8% of the variance in the dataset 

(Figure 15B, Table S4). In the case of the metabolome data, the first component showed 

no correlation with growth rates (Figure 15C). The third component showed the highest 

growth dependency. However, this component could explain only 5.3% of the variation 

in the data. Therefore, unlike for proteins, metabolite concentrations do not seem to be 

affected by global effects caused by changes in the growth rate. We compared then the 

variation for all metabolites or proteins: the median variation was comparable (relative 

standard deviation, 32.9% and 34.8% respectively, Figure 15D) indicating that 

metabolites and proteins have a similar degree of variation in different conditions. 

However, this variation is not driven by the same factor: protein variation is mostly 

affected by growth, unlike metabolites. Metabolite levels relative to the glucose 

condition are shown with a high resolution in Figure 15E. Metabolomes of conditions 

grown in minimal media display a limited variability, and in particular biosynthetic end-

products like amino acids and nucleotides varied in almost all cases less than 2-fold. 

Thus, we took a closer look at amino acid and nucleotide metabolism. 

 

4.1.3 - Homeostasis of amino acid metabolism 

 

To visualize the variation and identify outliers, amino acid concentrations were 

normalized to the median value of all conditions, and log2 of these values were plotted 

as an expanded boxplot (Figure 16A). Values that fell within the whiskers of the boxplot 

were grey, and outliers were plotted in a color of the matching experimental condition. 

Among all conditions, the most stable amino acid was methionine (RSD of about 13%), 

and the most variable amino acid was aspartate (RSD of 65%). Variation of amino acids 
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between conditions did not correlate with the quality of MS signal, error between the 

replicates, or the absolute level of amino acids (R2 values <0.1, Figure S16).  

We noticed that, on particular carbon sources, the concentration of individual amino 

acids was especially high. This phenomenon could in many cases be explained by the 

proximity of the entry point of the carbon source. For example, pentose phosphate 

pathway (PPP) derived phenylalanine peaked in xylose-grown cells and several amino 

acids that come from TCA cycle precursors were particularly high on fumarate (lysine, 

asparagine, glutamine, aspartate, asparagine, arginine).  Histidine was high on mannose, 

suggesting that this carbon source supports high flux through PPP. Interestingly, high 

level of phenylalanine was reached on fumarate, which is not entering the metabolism 

near PPP. This effect in fumarate grown cells can be explained by increased availability 

of aspartate for the last transamination step in phenylalanine biosynthesis 149. Similar 

effect could be responsible for high tyrosine abundance on fumarate. 

Amino acids regulate their biosynthetic pathways in two different ways: 1) feedback 

inhibition via allosteric regulation of enzymes in the pathway by its end-product, or 2) 

control of expression levels of their biosynthetic pathway via transcriptional attenuation 

or through interaction with the specific transcription factors. To visualize the free amino 

acid concentrations in the context of their regulatory role, we plotted the intracellular 

concentrations together with the known inhibitory half-saturation constants (Ki) for 

allosteric enzymes involved in their biosynthesis, and with the dissociation constants 

(Kd) of the transcription factors that control their biosynthesis (Figure 16B). 

Interestingly, the 5 most abundant free amino acids in E. coli do not directly control their 

biosynthetic enzymes/pathways neither allosterically or transcriptionally. For the 

remaining amino acids, regulatory feedback loops are described, and strikingly, their 

intracellular concentrations match well with Ki or Kd values of the proteins involved in 

the regulation. This is in agreement with previous studies 86,150,151 which found that at 

physiologically relevant concentrations of metabolites, the majority of enzyme inhibitor 

sites are occupied but far from being saturated, in contrast to substrate binding sites 

which are at or near saturation. We show that the same applies to the amino acid 

binding sites of their transcription regulators.  
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Another factor which may have an influence on the levels of intracellular concentrations 

of amino acids is their biosynthetic cost on the same substrate, in this case, glucose (Fig 

16C). Remarkably, the abundance of free amino acids seems to weakly anticorrelate 

with their biosynthetic cost, similarly to what was found for amino acid concentrations 

in mammalian cells and serum by Zhang et al. (2018). Notably, all most abundant amino 

acids for which no allosteric or transcriptional feedback is known (Glu, Asp, Gly, Ala), are 

also among the amino acids with the lowest biosynthetic cost. Therefore, energetically 

cheaper amino acids might not require a tight control on their biosynthesis, which leads 

to higher concentrations and higher availability for proteins synthesis. 

   

Figure 16. Amino acid pools in E. coli. (A) Variation of 19 amino acids in E. coli strains growing in M9 
medium supplemented with 13 different carbon sources and under stress conditions. (B) Absolute 
intracellular concentrations of free amino acids plotted together with Ki values of the allosterically 
regulated enzymes in their biosynthetic pathway (orange), and Kd values for the transcriptional factors 
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involved in regulation of their biosynthesis (grey). (C) Absolute intracellular concentrations of free amino 
acids plotted against the energetic cost of their biosynthesis (calculated by Akashi and Gujobori 2002). 

4.1.4 - Nucleotide levels remain stable despite environmental or genetic 

perturbations 
 

Next, we examined the stability end products in the form of nucleotide mono-, di- and 

triphosphates, which were remarkably constant across all conditions (Fig 17A). In case 

of ATP there was a 14% variation among exponentially growing cells. Nucleotide 

concentrations remained stable with increase in growth rate 152,153. Some of the most 

obvious outliers in nucleotide concentrations were cells grown in synthetic complex 

medium, which points to the difference between de novo synthesis and salvaging of 

adenine and uracil. For example, high UMP levels on synthetic rich medium may have 

an impact on the initial steps of de novo synthesis, as UMP is an allosteric inhibitor of 

carbamoyl phosphate synthetase 154. Interestingly, UTP levels were constant and there 

was no evidence that transcriptional attenuation of the pyrBI operon was responsible 

for the regulation of protein abundance in de novo synthesis pathway. This means that 

changes in UMP levels from 0.03 mM to 0.07 mM, might decide between de novo 

synthesis and salvaging of purine nucleotides in E. coli. Such ultrasensitive regulation has 

been show for allosteric enzymes in glycolysis 86.  

Despite end product stability, nucleotide precursor levels differed in three E. coli strains 

BW25113, MG1655 and NCM3722 grown on glucose minimal medium. While BW25113 

and MG1655 had almost identical metabolite profiles, the NCM3722 strain showed 

some striking differences. In particular, intermediates in pyrimidine nucleotide 

biosynthesis (N-carbamoyl-L-aspartate, dihydroorotic acid and orotate) were more than 

10-fold lower in NCM3722 than in the other two strains (Fig 17B). We assumed that the 

high concentration of these metabolites reflects the known frameshift mutation in 

MG1655-derived E. coli strains that causes low expression of pyrE encoded orotate 

phosphoribosyltransferase 108. The proteome data confirms this pyrimidine bottleneck 

at pyrE, because BW25113 and MG1655 have less than 50 copies of the enzyme, 

compared to 500 copies in NCM3722 (Fig 17B, upper panel, data from Schmidt et al. 

2016). While expression of pyrE was reduced in MG1655 and BW25113, other enzymes 

were upregulated, indicating a compensatory response to the pyrE bottleneck. 
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Compared to NCM3722, the enzymes catalyzing the first committed reaction (PyrI and 

B) were particularly upregulated. We assume that the chronic overproduction of 

pyrimidine intermediates in MG1655 and BW25113 is a combined effect from the 

bottleneck in the middle of the pathway (pyrE) and high enzyme levels at the entry point 

(pyrBI) (Fig 17B, upper panel). This hypothesis is supported by metabolites and protein 

levels in synthetic rich medium that contains uracil. In this condition, pyrimidines are 

synthesized via uracil salvaging, and de novo synthesis is repressed. Consequently, N-

carbamoyl-L-aspartate, dihydroorotic acid and orotate in BW25113 on synthetic rich 

medium decreased to comparable levels as in the NCM3722 strain on glucose. We also 

noticed that the bottleneck in pyrimidine nucleotide biosynthesis of MG1655 and 

BW25113 spreads into biosynthesis of purines as well. For example, levels of purine 

intermediates xanthosine-5P, IMP, and adenylosuccinic acid were 3-4 times higher in 

NCM3722 than in the other two strains on glucose (Fig 17B, lower panel).  These 

differences may reflect the close coupling of the purine and pyrimidine nucleotide 

biosynthetic pathways. Such coupling can occur simply through the common precursor 

L-aspartate, or by crosstalk at the layer of transcriptional and allosteric regulation. In 

conclusion, nucleotide biosynthetic pathways are capable of maintaining stable 

concentrations of their final products against both environmental or genetic 

perturbations. 
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Figure 17. Nucleotide levels in E. coli. (A) Intracellular concentrations of nucletide mono-, di- and 
triphosphates remain stable across all conditions. Log2 was applied to median normalized values. Red line 
represents median of the 16 values, and grey box values that fall between 25th and 75th percentile. Outliers 
are depicted in color. Numbers associated to name of each metabolite represent RSD across presented 
conditions. (B) Purine and pyrimidine biosynthetic pathways. In the upper panel, protein data from 
Schmidt et al. 2016 are plotted as bars, and in the lower panel, relative intracellular concentrations are 
shown. BW25113 and MG1655 have a bottleneck caused by low levels of PyrE, which in turn results in 
upregulation of protein levels upstream and accumulation of upstream metabolites.  
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4.2 - Discussion 
 

This work investigated the intracellular metabolome of E. coli BW25113 growing on 

different substrates, under stress conditions, and in different stages of stationary phase. 

Additionally, the dataset includes the intracellular metabolome of three E. coli reference 

strains (BW25113, NCM3722 and MG1655) during exponential growth on glucose 

minimal medium. 

The type and extent of metabolome variability under steady-state growth conditions in 

substrate excess is revealed in this work. The vast majority of measured metabolites’ 

levels were not affected by a growth-rate dependency, in contrast to the proteome 

under matching conditions. A similar independence from the growth rate was observed 

for amino acids in yeast mutant libraries which grew at various rates 155. While the 

enzymatic machinery is adjusted in bulk during different growth conditions, metabolite 

levels do not change linearly with growth. The non-linear relationship between 

metabolite levels and growth/protein levels suggests that allosteric enzymes might be 

prevalent in the E. coli metabolism, as recently proposed 140. Enzymes are usually 

thought to follow Michealis-Menten kinetics, implying that reaction rates are linearly 

related to metabolite and enzymes concentrations, or only to the latter in case of high 

metabolite concentrations. Kinetics of allosteric enzymes follow instead sigmoidal 

relationships, in which small changes in concentrations of metabolites can strongly 

impact reaction rates. Previous theoretical studies have hypothesized that metabolic 

networks are insensitive to changes of enzyme concentrations 156,157, which underlines 

the importance of metabolites in control of enzymes activity, and thus in the regulation 

of the metabolic fluxes/networks. The overall degree of variation between the 

metabolome and the proteome was similar, with metabolites having a slightly higher 

variation than the proteome. A similar observation was made in a multi-omics study of 

yeast 158. In particular, key building blocks as amino acids and nucleotides showed a 

particularly low variation.  

Most of the variation in amino acids levels could be explained by the proximity of the 

entry point of the carbon source into the metabolic network. By measuring amino acids 
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concentrations systematically, we could also suggest that i) cellular bioenergetics (i.e., 

the cost of biosynthesis of a particular amino acid) may play a role in adjusting the levels 

of amino acids and determining the extent of regulation of their biosynthesis, and ii) 

highlight the importance of allosteric and “local” transcriptional control for amino acid 

biosynthesis. 

Bioenergetically cheaper amino acids, for which no allosteric or transcriptional control 

was shown, are the most abundant in the cell. It has been shown that the proteome of 

E. coli and B. subtilis has a bias towards less energetically costly amino acids 159. This 

appears to be a widely spread concept, as rapidly proliferating cancer cells optimize their 

proteome expression patterns to utilize amino acids more economically 160. In contrast, 

energetically expensive amino acids are present in low concentrations, and have tightly 

controlled de novo biosynthesis. Ki and Kd values of responsive enzymes and 

transcription factors that control amino acid biosynthesis show good match to levels of 

amino acids in the cells, pointing at the importance of combinatorial control of cellular 

metabolism 135.  

Similarly, levels of nucleotides, and in particular nucleotide triphosphates, were also 

remarkably conserved against environmental perturbations. We could show that 

despite perturbations of pathway intermediates due to mutations, end products were 

kept constant. In the case of the pyrimidine pathway, homeostasis could also be 

enforced by fluctuations in the levels of UMP, which strongly propagated at the level of 

gene expression. Interestingly, metabolites in the de novo biosynthesis of purine 

nucleotides (CAIR, IMP) showed the highest correlation with the growth rate. The purine 

de novo biosynthesis pathway plays a key role, as it is involved in the biosynthesis of 

adenylate nucleotides. ATP demand is coupled with glycolytic flux 161, and this has been 

recently confirmed by a study in which antibiotic-induced adenine starving increased 

purine biosynthesis and metabolic activity 162. While the adenylate charge ratio is kept 

constant among different growth rates and is a good indicator of metabolic activity 163, 

the absolute levels of adenylate nucleotides vary independently from the growth rate. 

This raises the question on whether intermediates upstream of AMP might be involved 

in coupling purine biosynthesis with growth. 
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In conclusion, our results shows the non-linear relationship between metabolite 

concentrations and growth in exponentially growing cells, which is not valid for 

enzymes. As the stoichiometry of metabolic enzymes of same pathways has been shown 

to be relatively conserved across evolution 164, metabolite concentrations might retain 

information on how reactions rates are adjusted at the molecular level. Precise 

measurements of larger portions of the metabolome coupled with novel methods to 

integrate multi-omics data, as machine learning 165, might help in the quest to unravel 

the large unknown network of metabolite-enzyme interactions. 
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5 - Conclusion and Outlook  

 

In this thesis, we focused on studying basic principles of metabolic robustness in the 

bacterial model organism Escherichia coli. We employed different methods to perturb 

metabolism and analyzed the response at the metabolite and protein level.  

First, we set to study how cells would respond to artificial localized perturbations of 

single enzymes. In Chapter 2 we explored whether CRISPRi could be a suitable method 

to cause specific perturbations of metabolism. Proteomics data supported our 

hypothesis, showing that relatively low levels of a heterologously expressed dCas9 do 

not affect cell physiology and can enforce specific and dynamic reductions in abundance 

of a targeted enzyme. In Chapter 3 we applied this methodology at different scales, in 

different experimental setups and with different readouts. We perturbed the whole 

metabolic network of E. coli, observing that the bacterium is remarkably robust against 

perturbations of single enzymes. Cells with progressively reduced enzyme levels could 

grow optimally for hours, before encountering a growth defect (response time). This 

result suggests that most enzymes are expressed at higher levels than strictly necessary 

for optimal growth (enzyme overabundance). This robustness principle was previously 

postulated in theoretical and computational studies 55,166 and proven for amino-acids 

biosynthesis pathways 135. Enzyme overabundance has probably evolved to allow cells 

to resist environmental perturbations. However, which optimization principles guide 

this phenomenon and how it differs between different enzymes remain as open 

questions. 

A thorough characterization of enzyme overabundance could be exploited for the 

construction of minimal cells from the perspective of gene expression. The E. coli 

proteome covers 55% of the whole dry weight of the cell 167, and metabolic enzymes 

cover 47.1% of the whole proteome 146. By artificially reducing these fractions to the 

minimum necessary, cells could consume less nutrients to maintain and grow their 

biomass under controlled conditions with limited environmental perturbations. This 

could have important applications for industrial biotechnology, as production yields of 
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such synthetic strains could be increased. In this context, investigating overabundance 

of other proteomic fractions could also be of interest. 

Another interesting observation derived from the CRISPRi experiments was that 

intracellular concentrations of substrates and allosteric effectors of the targeted 

enzymes were consistently strongly perturbed. By observing the composition of the 

metabolome over time, we hypothesize that these particular variations in metabolite 

concentrations, upon reduction of levels of an enzyme, might increase its activity 

maintaining optimal metabolic flux and cell growth. We could also observe that 

regulation of enzyme abundance, through known metabolite-transcriptional regulation 

feedbacks, was triggered only when the targeted enzyme reached a critically low level 

causing a growth phenotype (response time). Normally, cells should be able to increase 

levels of the critical enzymes due to these regulatory feedbacks. However, in our 

experimental setup, transcriptional upregulation could not overcome the knockdown 

enforced by the dCas9 complexes.  

These combined results suggest a further robustness principle of metabolism, in which 

the metabolome provides a buffering effect that can counter a certain range of 

perturbations of enzyme levels. When this range is crossed, or in other words, when the 

metabolome buffering effect is exhausted, then specific gene expression regulatory 

circuits are activated to restore optimal enzyme levels. As cells are already expressing 

higher enzyme levels than strictly needed, specific gene regulatory mechanisms 

probably serve the purpose of countering strong genetic or dynamic environmental 

perturbations. Interestingly, due to the metabolome buffering effect, CRISPRi mediated 

enzyme knockdowns could be exploited to identify, in vivo, metabolites that regulate 

enzyme activity as allosteric effectors. If such identification of allosteric effectors could 

be proven at a systems level, it could be argued that metabolite concentrations are a 

driving evolutionary force for the emergence of allosteric regulation. 

In Chapter 4 we perturbed microbial metabolism by growing cells in different conditions 

and measuring the metabolome at steady-state. We observed that, when cells grow 

exponentially, key metabolites as amino-acids and nucleotides are kept at constant 

levels. Robustness in levels of these key metabolites is achieved by combined activities 
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of allosteric and transcriptional regulatory feedbacks 135. We then compared our data 

with a matching published dataset of protein abundances in E. coli 146. Unlike for 

proteins, we could observe that metabolite levels are not affected by growth effects. 

This fact suggests that absolute concentrations of metabolites within cells follow 

different optimality principles than proteins. A hypothesis could be that the 

metabolome maintains its independence from growth to enforce its buffering effect. 

Enzyme levels are tuned in bulk at different growth rates, meaning that their 

stoichiometry is kept constant. In fact, enzyme stoichiometry is quantitatively conserved 

even across evolution 164. However, enzymes are known to possess a wide range of 

kinetic parameters 168 and their activity in vivo might generally not increase linearly with 

substrate concentrations, as most enzymes are thought to be heavily regulated at the 

allosteric level 140. Therefore, growth independent changes in metabolite concentrations 

could be necessary to enable the buffering effect for enzymes that have a different range 

of kinetic parameters, but are co-expressed in bulk. 

Measuring metabolite concentrations in large numbers of steady-state cultures could 

contain valuable information regarding enzyme kinetics. As an example, in yeast it has 

been shown that the precise measurement of amino acids levels in thousands of gene 

knockouts could lead to infer the deleted gene identity based on the metabolite 

signature 155. In this context, advancements in machine learning methods for multi-

omics data analysis and metabolic kinetic modeling will play a fundamental role in 

deconvoluting complex datasets 165,169. Being able to obtain kinetic information from 

steady-state omics data would be a considerable advantage, as the construction of large 

datasets of dynamic data is still experimentally challenging. To this end, further 

improvements in precision and coverage of MS-based metabolomics and automation of 

experimental procedures will play an important role. 

Overall, in this thesis we have applied a systems biology approach to investigate 

microbial metabolic robustness. We could observe two main mechanisms which render 

microbes robust against perturbations of metabolism: the constitutive overexpression 

of metabolic enzymes (overabundance) and specific changes in metabolite levels that 

prevent and precede specific regulation of enzyme abundance (metabolome buffering 

effect).  
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Metabolism is widely conserved among living beings. Therefore, it is possible that such 

principles could be conserved in more complex, fast growing living systems, in example 

cancer cells. Moreover, bacteria are extensively used in industrial biotechnology, and 

industrial strains often require the engineering of metabolic pathways. Hence, 

understanding metabolic robustness in this context, and how it can be possibly 

manipulated, could lead to more efficient industrial strains. In general, increasing our 

understanding of biological principles from a systems perspective has a fundamental 

role in enabling robust and reproducible biological engineering of synthetic organisms, 

known also as synthetic biology (Figure 18). In turn, the utilization of synthetic 

organisms for basic studies, can lead to insights on how biological systems function, as 

showcased in this thesis. Therefore, the combination of systems and synthetic biology 

approaches is of great importance for scientific discovery and technological 

advancement. In the context of industrial biotechnology, these combined 

methodologies will have an important impact for the transition towards a sustainable 

bio-based economy. 

 

Figure 18: Scheme highlighting the mutual relationship between systems and synthetic biology. Systems 

biology tries to reverse engineer living beings by understanding how the ensemble of biological parts 

function as a system. The insight provided, is used by synthetic biology to forward engineer organisms 

that can be studied by systems biology approaches. This mutual relationship can lead, from both sides, to 

novel scientific discoveries and technological advancements. 
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6 - Materials and Methods 
 

 

6.1 - Construction and cultivation of CRISPRi strains 
 

The following paragraphs (6.1) refer to strains and experimental procedures showcased 

in Chapters 2 and 3. 

 

6.1.1 - Construction of arrayed strains 
 

E. coli DH5α was used for plasmid construction. E. coli BW25933 was transformed with 

pdCas9-bacteria to obtain the pCRISPRi strain. sgRNA guide sequences were designed 

with Matlab scripts by searching for the first NGG PAM site on the coding strand for each 

gene of interest. Adjacent to PAM sites, 20 nt regions were selected. Most plasmids were 

synthesised (Doulix srl). Alternatively, 150 nt oligonucleotides were synthesized (Agilent 

Technologies). The 150 nt sequences contained the 20 nt sgRNA guide sequences and 

65 nt flanking regions homologous to the pgRNA-bacteria backbone. Oligonucleotides 

were amplified with 15 cycles of PCR amplification. The pgRNA-bacteria backbone 

(containing the nontargeting spacer sequence 5’-AACTTTCAGTTTAGCGGTCT-3’) was 

linearized by PCR and amplified oligonucleotides were inserted with Gibson assembly. 

All plasmids were verified by sequencing. pCRISPRi and E. coli YYdCas9 were then 

transformed with the relative pgRNA-bacteria plasmids. 

For CRISPRi of YPet,  the sgRNA targeted lacZ, the first gene of the operon that includes 

YPet 104. The plasmid pUA66 was used to measure promoter activity 122. The ΔgntK 

mutant was constructed by P1 Phage transduction of YYdCas9 using the donor strain 

JW3400 (ΔgntK) from the KEIO collection 170. The resulting strain was cured from the 

kanamycin resistance gene included in the transduction cassette. The deletion of gntK 

was confirmed by sequencing. The final YYdCas9_ΔgntK strain was transformed with the 

pgRNA-gnd plasmid. 
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6.1.2 - Construction of the CRISPRi pooled library 
 

sgRNA guide sequences were designed with Matlab scripts by searching for 4 to 6 

equally distributed NGG PAM sites on the coding strand of each gene in the iML1515 

model 119. Adjacent to PAM sites, 20 nt regions were selected. 150 nt oligonucleotides 

were synthesized (Agilent Technologies). The 150 nt sequences contained the 20 nt 

sgRNA guide sequences and 65 nt flanking regions homologous to the pgRNA-bacteria 

backbone. Oligonucleotides were amplified with 15 cycles of PCR amplification. The 

pgRNA-bacteria backbone (containing the nontargeting spacer sequence 5’-

AACTTTCAGTTTAGCGGTCT-3’) was linearized by PCR and amplified oligonucleotides 

were inserted with Gibson assembly. The Gibson assembly product was purified and 

subsequently transformed into electrocompetent E. coli YYdCas9 cells. Plating on four 

Petri dishes with 15 cm diameter resulted in approximately 9.9 × 107 colonies. Colonies 

were washed from the plates, pooled and stored as glycerol stocks. 

 

6.1.3 - Media 
 

Cultivations were performed with LB medium or M9 minimal medium with glucose as 

sole carbon source (5 g L-1). M9 medium was composed by (per liter): 7.52 g Na2HPO4 2 

H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following components were sterilized 

separately and then added (per liter of final medium): 1 mL 0.1 M CaCl2, 1 mL 1 M 

MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCl and 10 mL trace salts solution. 

The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2 2 H2O, 

120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. For strains transformed with pgRNA-bacteria 

plasmids, 100 μg mL-1 ampicillin (Amp) was added to the media. Additionally, pCRISPRi 

strains were cultivated in the presence of Chloramphenicol (35 μg mL-1). To induce 

expression of the dCas9 protein in the YYdCas9 strain, aTc was added to a final 

concentration of 200 nM. 
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6.1.4 - General Cultivation conditions 
 

Strains of interest were first recovered from glycerol stocks on fresh LB plates. Colonies 

were then inoculated into liquid LB cultures for 4-5 hours and then diluted 100x into 

5mL of m9 minimal medium overnight. Precultures were then diluted into 96-well plates 

or flasks at different starting concentrations. For induction of dCas9 expression 200nM 

of aTc were added at the start of the the relative cultures. 96-well plates were then 

incubated in a plate reader (Biotek Synergy) for 24 hours measuring OD600. Flasks were 

incubated in a shaking incubator and samples for proteomics were obtained by 

temporarily moving the cultures in a thermostatic hood. All cultivations were carried out 

under shaking conditions at 37°C. 

 

6.1.5 - Cultivation conditions for OD and YPet-, GFP-fluorescence 

measurements 
 

Single colonies on LB+Amp agar plates were transferred into 5 mL LB+Amp liquid 

cultures. The LB pre-cultures were used to inoculate a second pre-culture in M9 medium 

that was incubated overnight in 13 mL culture tubes under shaking at 37°C. M9 pre-

cultures were diluted in 150 L M9 medium (1:50) and incubated in 96-well plates. Every 

strain was cultured in triplicates with and without addition of aTc to the M9 main culture 

(aTc was not added to pre-cultures). For YPet fluorescence measurements, 0.1 mM IPTG 

was added to pre-cultures and main cultures to induce YPet expression. Optical density 

at 600 nm and YPet fluorescence (excitation 510 nm, emission 540 nm) was measured 

every 5 min using a plate reader (BioTek, Synergy). For GFP measurements, GFP 

fluorescence (excitation 490nm, emission 530nm) was measured in 10 min intervals 

using a plate reader (Tecan, Spark).  
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6.1.6 - Cultivation conditions for metabolome and proteome sampling 
 

Single colonies of strains of interest were transferred into liquid 5 mL LB+Amp from fresh 

LB+Amp plates, and then re-inoculated in M9 medium overnight in 13 mL culture tubes 

under shaking at 37 °C. For metabolomics and proteomics sampling, M9 pre-cultures 

were adjusted to a starting OD600 of 0.05 into 12-well plates, with 2 mL of medium in 

each well. Strains were cultivated in triplicates with or without aTc, added at the 

beginning of the culture. Optical density at 600nm was measured every 10 min using a 

plate reader (Tecan, Spark) for c.ca 4.5 h. Plates were then rapidly transferred to a 

thermostatically controlled hood at 37 °C and kept shaking during the sampling 

procedure. For dynamic metabolomics, M9 pre-cultures were adjusted to a starting 

OD600 of 0.05 in a beaker containing 50 mL of medium and a magnetic stirrer. Beakers 

were incubated with 400 rpm magnetic stirring in a thermostatically controlled hood at 

37 °C.  

 

6.1.7 - Cultivation conditions of the pooled CRISPRi library 

A preculture of 50 mL LB+Amp was inoculated with 500 µL of the pooled CRISPRi strain 

library from a glycerol stock and incubated at 37 °C for 5 hours. From the LB culture a 

second preculture in M9 was inoculated with a dilution of 1:10000 and incubated for 13 

hours. After 13 hours the M9 preculture was in exponential phase and it was used to 

inoculate two main cultures with an initial OD of 0.05 in shaking flasks containing 100 

mL of M9 with 200 nM of aTc to induce expression of dCas9. Every hour, OD was 

measured and samples for sequencing were collected. Every 2 hours, the culture was 

back-diluted to an OD of 0.05 with fresh and prewarmed M9 containing 200 nM of aTc. 

Samples were centrifuged to precipitate the cells and plasmids were extracted with the 

GeneJET Plasmid Miniprep Kit (ThermoFisher Scientific).   
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6.2 - Cultivation of E. coli under different environmental 

conditions 

 

The following paragraphs (6.2) refer to strains and experimental procedures showcased 

in Chapter 4. 

 

6.2.1 - Strains and growth conditions 
 

Escherichia coli strains BW25113, MG1655 and NCM3722 were used (Baba et al. 2006, 

Bachmann et al. 1996, Brown and Jun 2015). Experimental conditions were matching 

those from Schmidt et al. (2016). M9 minimal medium was prepared in the following 

way: to 800 ml of water, 200 ml of 5 × base salt solution (211 mM Na2HPO4, 110 mM 

KH2PO4, 42.8 mM NaCl, 56.7 mM (NH4)2SO4, in H2O, autoclaved), 10 ml of trace 

elements (0.63 mM ZnSO4, 0.7 mM CuCl2, 0.71 mM MnSO4, 0.76 mM CoCl2, in H2O, 

autoclaved), 1 ml 0.1 M CaCl2 solution, 1 ml 1 M MgSO4 solution, 2 ml of 500 × 

thiamine solution (1.4 mM) and 0.6 ml 0.1 M FeCl3 solution (all in in H2O) were added. 

The resulting solution was filled up to 1 l with water and filter sterilized. 40 x stock 

solutions of individual carbon sources were prepared in H2O and pH was set to 7 by 1 M 

NaOH or HCl. Final concentrations of individual carbon sources were: sodium acetate, 

3.5 g/L, disodium fumarate, 2.8 g/L, galactose 2.3 g/L, glucosamine 2.1 g/L, glycerol 

2.2 g/L, sodium pyruvate 3.3 g/L, disodium succinate hexahydrate, 5.7 g/L, glucose, 

fructose, mannose and xylose 5 g/L. For salt stress experiment, NaCl was added to M9 

to a concentration of 50 mM; for pH stress, M9 pH was set to 6.0 by titrating with HCl. 

Amino acids were dissolved in M9 to following concentrations: alanine 1.0 mg/L (0.0 

mM), adenine 10.2 mg/L (0.1 mM), arginine 51.1 mg/L (0.3 mM), asparagine 1.6 mg/L 

(0.01 mM), aspartic acid 81.8 mg/L (0.6 mM), cysteine 1.2 mg/L (0.01 mM), glutamate 

15.2 mg/L (0.1 mM), glutamine 13.9 mg/L (0.1 mM), glycine 0.4 mg/L (0.01 mM), 

histidine 20.5 mg/L (0.1 mM), isoleucine 51.1 mg/L (0.4 mM), leucine 102.3 mg/L (0.8 

mM), lysine 51.1 mg/L (0.4 mM), methionine 20.5 mg/L (0.14 mM), phenylalanine 

51.1 mg/L (0.3 mM), proline 5.2 mg/L (0.05 mM), serine 9.2 mg/L (0.1 mM), threonine 
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102.3 mg/L (0.9 mM), tryptophan 51.1 mg/L (0.3 mM), tyrosine 51.1 mg/L (0.3 mM), 

valine 143.2 mg/L (1.2 mM) and uracil 20.5 mg/L (0.2 mM). To this synthetic complex 

medium, glycerol was added (final concentration 2.2 g/L). All chemicals used were 

from Sigma-Aldrich. 

 

6.2.2 - Cultivation and growth rates 
 

Cryostocks kept at -80°C were streaked out on LB plates (Luria Miller, Carl Roth) and 

incubated overnight at 37°C. Single colony was picked and inoculated into M9 preculture 

(7.5 ml in 100-ml flask), which was grown 6 - 10h, to be subsequently diluted in another 

equal preculture. From the second preculture growing exponentially, main culture was 

inoculated at an approximate OD 0.05 in 35 ml in 500-ml non-baffled wide-neck shake 

flask, covered by a 38-mm silicone sponge closure (BellCo glass). Cultivations were 

performed at 37 °C, 200 rpm and 5-cm shaking diameter (Infors HT Minitron), except 

for the heat-stressed cells which were grown at 42 °C. Growth was monitored by 

measuring the OD600.  Specific growth rates (μ) were calculated through linear 

regression of the plots of ln(OD600) versus time during the exponential growth phase. 

Further information on the growth rates and comparison with the results from the 

proteomics study can be found in Supplementary Table S1. Stationary cells were 

cultivated 24 and 48 h after reaching stationary phase.  

 

6.2.3 - Sampling and sample preparation for metabolomics 
 

All growing cultures were sampled at an OD600 of approximately 0.5. Further information 

on the OD values and sampling volumes can be found in Supplementary Table S1. For 

the intracellular metabolites, 2 ml of whole cell broth was vacuum-filtered through filter 

membrane (Durapore 0.45 µM Whatmann). Filter containing cells was quickly immersed 

into 1 ml of ACN:methanol:H2O (40:40:20) at -20°C. Extraction was performed overnight 

at -20°C. Cell extracts were then centrifuged at –9°C, 13 000 rpm and 20 min 
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(HeraerusTM Pico 17TM ThermoScientific). An aliquot of the supernatant was 

immediately mixed with 13-C internal standard in equal proportion.  

 

6.2.4 - Next Generation Sequencing and Data Analysis 

 

To generate the DNA fragments of target regions, which are compatible with Illumina 

sequencing, a two-step PCR approach was used. First, a 300 bp fragment including the 

sgRNA sequence and the flanking regions has been amplified using Q5 polymerase (New 

England Biolabs, USA) and specific oligonucleotides binding at the target region 

(NGS_F2_adapter and NGS_R2_adapter, Supplementary Table 3). As template, 150 ng 

of the purified samples were used in a 50 μl PCR reaction with the following settings: 98 

°C for 30 s, 12 cycles of 98 °C for 10 s, 65 °C for 30 s and 72 °C for 15 s; final extension at 

72 °C for 5 min. Afterwards, the PCR products were purified with a NucleoSpin Gel and 

PCR Clean-up Kit (Macherey-Nagel, Germany) and eluted in 20 µL water. In the second 

PCR, when different pairs of indexes (i5 and i7) were added to each amplicon, Phusion 

High- Fidelity DNA Polymerase (New England BioLabs, USA) was used with the following 

conditions: 98 °C for 30 s; 12 cycles of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 20 s; 

final extension at 72 °C for 5 min. 4 ng of template was used in a final volume of 20 µL. 

Cleanup of the PCR products was done with AMPure XP beads (Beckman Coulter). All 

samples were run on a Bioanalyzer with an Agilent High Sensitivity DNA Kit (Agilent, USA) 

to analyze their composition. Next, 100 ng of each sample was pooled and the 

concentration of the pooled samples was measured using the Qubit dsDNA HS Assay on 

a Qubit 2.0 Fluorometer. The pooled samples were diluted, denatured and loaded on a 

MiniSeq High Output Cartridge following the manufacturer’s instructions. To guarantee 

sufficient sequence diversity, 50% PhiX was spiked into the samples. Single-end reads 

provided sequences, which were mapped to the sgRNAs in the CRISPRi library using a 

Matlab Script. Read counts were calculated with single-end sequencing reads that 

matched to sgRNA guide sequences in the CRISPRi reference library. Read counts per 

sgRNA (readsi) were normalized to the total number of read counts per sample 

(readstotal) to obtain frequencies of sgRNAs. Frequencies were normalized to the first 

time point (t = 0h) to calculate fold-changes. 
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6.3 - Metabolomics measurements 

 

Cultivations were performed as described above. Culture aliquots were vacuum-filtered 

on a 0.45 μm pore size filter (HVLP02500, Merck Millipore). Filters were immediately 

transferred into a 40:40:20 (v-%) acetonitrile/methanol/water extraction solution at -20 

°C. Filters were incubated in the extraction solution for at least 30 minutes. 

Subsequently, metabolite extracts were centrifuged for 15 minutes at 13,000 rpm at -9 

°C and the supernatant was stored at -80 °C until analysis. Metabolite extracts were 

mixed with a 13C-labeled internal standard in a 1:1 ratio. LC-MS/MS analysis was 

performed with an Agilent 6495 triple quadrupole mass spectrometer (Agilent 

Technologies) as described previously 83.  

Additionally, for measurments of strains cultivated under different environmental 

conditions, we applied 2 separate LC methods for nucleotide and keto-acids 

determination. Nucleotides in cell extracts were measured by dedicated basic 

conditions method, in which LC parameters were kept. Keto acids were derivatized prior 

to measurement, using 50 µM freshly prepared phenylhydrazine (Sigma-Aldrich) 

(Zimmermann et al. 2014). Reaction was left to proceed for 1 h at -20°C in 

ACN:methanol:H2O solvent (40:40:20). Since the concentration of oxaloacetate and 

glyoxylate was too low for MS detection, derivatized mixture was concentrated 

approximately 10 times by drying in speedvac (RVC 2-25 Cdplus, Martin Christ) and 

separated using the acidic method with standardized LC run settings.  

An Agilent 1290 Infinity II UHPLC system (Agilent Technologies) was used for liquid 

chromatography. Temperature of the column oven was 30°C, and the injection volume 

was 3 μL. LC solvents in channel A were either water with 10 mM ammonium formate 

and 0.1% formic acid (v/v) (for acidic conditions), or water with 10 mM ammonium 

carbonate and 0.2% ammonium hydroxide (for basic conditions). LC solvents in channel 

B were either acetonitrile with 0.1% formic acid (v/v) (for acidic conditions) or 

acetonitrile without additive (for basic conditions). LC columns were an Acquity BEH 

Amide (30 x 2.1 mm, 1.7 μm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 mm, 

5 μm) for basic conditions. The gradient for basic and acidic conditions was: 0 min 90% 

B; 1.3 min 40 % B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. The ratio of 12C and 13C 
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peak heights was used to quantify metabolites. 12C/13C ratios were normalized to OD at 

the time point of sampling. Absolute concentrations of gluconate were determined from 

12C peak heights and an external calibration with an authentic standard. A specific cell 

volume of 2 μL mg-1 was used to calculate the cell volume. 

Quantification of selected primary metabolites was performed by using 12C/13C ratio 

described by Bennett et al. (2008). The 13C internal standard was quantified by using 

metabolite standards of known concentration at 10 different dilutions (Figure S6). Data 

analysis was performed using Matlab 2016b and 2017b. Obtained MS data was 

converted into a text file using MSConvert (Chambers et al. 2012). Further data analysis 

was performed by in-house Matlab-based software (Guder et al. 2017).   

For normalization of intracellular metabolites, we followed an assumption that OD-

specific cell volume is constant 171. It is also worth to mention that in the case of 

metabolite being present in the medium, like in the case of amino acids in synthetic 

complex medium, the intracellular concentrations of these were not taken into account, 

because they are probably influenced by the extracellular amino acids. 

 

6.4 - Proteomics sample preparation and measurement 

 

Cultivations were performed as described above. Culture aliquots were transferred into 

2 mL reaction tubes and washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCl, 

1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets were resuspended in 300 μL lysis buffer containing 

100 mM ammonium bicarbonate, 0.5 % sodium laroyl sarcosinate (SLS). Cells were lysed 

by 5 minutes incubation at 95 °C and ultra-sonication for 10 seconds (Vial Tweeter, 

Hielscher). Cells were again incubated for 15 minutes with 5 mM Tris(2-

carboxyethyl)phosphine (TCEP) at 90°C followed by alkylation with 10 mM 

iodoacetamide for 15 minutes at 25 °C. To clear the cell lysate, samples were centrifuged 

for 10 minutes at 15,000 rpm and the supernatant was transferred into a new tube. 

Protein samples were quantified using a BCA Protein Assay kit (Thermo Fisher Scientific). 

For each sample, 50 μg of proteins was aliquoted to new tubes, volumes were adjusted 

and cell lysates were digested with 1 μg trypsin (Promega) overnight at 30°C. SLS was 
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removed by precipitation. Therefore, trifluoroacetic acid (TFA) was added to a final 

concentration of 1.5 % and incubated at room temperature for 10 minutes. After 

centrifugation (10 minutes at 10,000 rpm), the supernatant was used for C18 

purification of peptides using Micro SpinColumns (Harvard Apparatus). The purified 

peptide solutions were dried and resuspended in 0.1 % TFA. The concentration of 

peptides in the samples was measured with a colorimetric peptide assay (Pierce™ 

Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). Analysis of peptides 

was performed by with a Q-Exactive Plus mass spectrometer coupled to an Ultimate 

3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source (Thermo 

Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 μm 

x 42 cm) packed in-house with C18 resin (2.4 μm, Dr. Maisch GmbH, Germany). The 

following separating gradient was used: 96 % solvent A (0.15% formic acid) and 4 % 

solvent B (99,85 % acetonitrile, 0.15 % formic acid) to 30 % solvent B over 60 minutes at 

a flow rate of 300 nL/min. The data acquisition mode was set to obtain one high 

resolution MS scan at a resolution of 70,000 full width at half maximum (at m/z 200) 

followed by MS/MS scans of the 10 most intense ions. To increase the efficiency of 

MS/MS attempts, the charged state screening modus was enabled to exclude 

unassigned and singly charged ions. The dynamic exclusion duration was set to 30 

seconds. The ion accumulation time was set to 50 ms for MS and 50 ms at 17,500 

resolution for MS/MS. The automatic gain control was set to 3x106 for MS survey scans 

and 1x105 for MS/MS scans. Label-free quantification (LFQ) of the data was performed 

using Progenesis QIP (Waters), and for MS/MS searches of aligned peptide features 

MASCOT (v2.5, Matrix Science) was used. The following search parameters were used: 

full tryptic search with two missed cleavage sites, 10ppm MS1 and 0.02 Da fragment ion 

tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) as 

variable modification. Progenesis outputs were further processed with SafeQuant. The 

data was further processed with custom MATLAB scripts. 
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6.5 - Data analysis 
 

6.5.1 - Quantification and Statistical Analysis 
 

Statistical analysis was performed using custom Matlab scripts. The number of replicates 

(n) of each experiment can be found in the respective figure caption. In growth assays, 

n represents the number of independent microtiter plate cultures. For proteomics and 

metabolomics n represents the number of independent microtiter plate or shake flask 

cultures. Three replicates were used for metabolomics, and one of the three replicates 

was removed based on its Euclidean distance from the other two replicates. The 

remaining two replicates were used to calculate means. This removed outliers in the 

metabolome data set, which can occur due to the high sensitivity of the metabolome 

during sampling. In the proteomics datasets, proteins with an average variability 

between triplicates higher than 20% were removed. Significant proteins were defined 

with a two-fold cut-off and a p-value<0.05 for a two-sample t-test. Similarity of 

proteomes was obtained calculating the Jaccard index of significantly differentially 

expressed proteins.  

 

6.5.2 - Constraint-based modelling 
 

Genes that encode enzymes with metabolic flux during growth on glucose were 

determined with Flux Balance Analysis (FBA). The E. coli iML1515 metabolic model was 

downloaded from BiGG Models http://bigg.ucsd.edu/ 172 and FBA simulations were 

applied using COBRApy 173 with parameters as described in Monk et al., 2017. 

 

6.5.3 - Singular value decomposition 
 

Singular value decomposition 148 was applied as previously described 145, transforming 

the data into log space and using the svd function in Matlab. 

 

http://bigg.ucsd.edu/
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Supplementary Materials 
 

 

Figure S1: Behaviour of a YYdCas9 strain with interference of ftsZ, in comparison to the YYdCas9 control 

strain. OD600 in log scale and growth rate over time, lines represent average of replicates (n=3), grey 

shadowed areas represent standard deviation. Only when inducing interference, the ftsZ strain displays 

a growth phenotype, while in the uninduced state the strain grows comparably to the control. 
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Figure S2: Differences in proteome data when normalizing for fold-change against different 

conditions. The top plot showcases proteomes of all conditions normalized to the un-induced 

control strain. The middle plot showcases proteomes normalized to the relative un-induced 

strain at T1. The bottom plot represents proteomes normalized against the relative un-induced 

strain at the relative time-point. The tables on top of the plots represent the number of 

differentially expressed genes (FC>2, grey horizontal lines).  
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A             B 

 

 

Figure S3. Details of the raw deep-sequencing data. 

(A) Distribution of 7177 sgRNAs in the initial CRISPRi library. Shown are read counts after 
transformation of plasmid into E. coli YYdCas9 and cultivation on LB medium.  

(B) Fold-change between sgRNA abundances after 13 hours cultivation on M9 glucose medium 
(without induction), relative to the initial CRISPRi library. Fold-change is plotted against read 
counts of the initial library. 47 sgRNAs showed a fold-change higher than 2 (magenta). 
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log2 fold-change (replicate 2) 

 

Figure S4. Fold-changes of sgRNA abundances in the two competition experiments. Each plot 

shows data for one of the 14 time points. R2 is the correlation coefficient. 
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Figure S5. Related to Figure 10. 

(A) Operon structure of the 29 target-genes, based on the Ecocyc database (ecocyc.org). The 
approximate locus that is targeted by sgRNAs is indicated in red (the exact targeted sequences 
are available in Supp Table 9). The genes in grey encode proteins that were measured. (B) Fold-
changes of enzymes encoded by genes in the operons shown in (A). Data was calculated using 
the means of n = 3 samples per strain.  
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Figure S6. Related to Figure 10.  

Reduction in growth rates of 29 CRISPRi strains is shown on the y-axis. The reduction of the 
target protein is shown on the x-axes. 

 

 

Figure S7. Related to Figure 11.  

Fold-changes of substrates and products in CRISPRi strains (in which both metabolites were 

measured). MetE has two substrates. PurB catalyzes two reactions. Data are represented as 

mean (n = 2). 
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A            B 

 

 

Figure S8. Similarity between the differentially expressed proteins of the 30 measured 

proteomes. 

(A) Similarity matrix of differentially expressed proteins (FC=2, p-value<0.05) of the 30 measured 

proteomes. Similarity is defined as the Jaccard similarity index. Highest similarity was calculated 

for the pairs (in order) Gnd-Pgi (40%), FbaA-GapA (38.89%), Eno-Ppc (34.27%), AroA-CysH 

(33.33%), CysH-Eno (32.26%), AroA-Eno (30.51%). (B) Distribution of Jaccard similarity indexes 

between differentially expressed proteins in different strains. The median similarity for the 

distribution is 5.7%. 
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Figure S9. Related to Figure 12.  

Heatmaps show log2 fold-changes of proteins between induced and un-induced cultures. Data 

was calculated using the means of n = 3 samples per strain. Data is organized based on metabolic 

subsystems in iML1515.  
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Figure S10. Related to Figure 12. 

Fold-changes of methionine (met) and phosphoenolpyruvate (PEP) in the 30 different 
CRISPRi strains. Dots show means of n = 2 samples.  
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Figure S11: agglomerative hierarchical clustering of the condition-dependent metabolome 

dataset. Data matrix is normalized along rows (metabolites) and data clustered using average 

linkage, dendrograms are determined with pairwise Euclidean distance. Upper dendrogram 

highlights the separation of metabolomes of cells growing exponentially on minimal media, 

compared to the rich medium condition and non-growing cells (stationary 1d/2d). In the rich 

medium condition, the additional nutrients are, as expected, are strongly enriched and cluster 

together.  
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Figure S12: Comparison of absolute intracellular concentrations of metabolites with literature 

data. Only for conditions analyzed both in our study and in Bennett et al. 2009 (left) or and 

Kochanowski et al. 2017 (right). 

 

Figure S13: Comparison of growth rates for conditions analyzed both in our study and in 

Schmidt ed al. 2016. 
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Figure S14: Metabolites with the highest correlation between their concentrations and growth 

rates. Shown all conditions with exponential growth in minimal medium. IMP (inosine 

monophosphate) and CAIR (5-Amino-1-(5-phospho-D-ribosyl)imidazole) are both precursors in 

the biosynthesis of purines. R2 indicates the squared Person correlation coefficient. 

 

 

  

 

Figure S15: histogram representing correlation values between metabolite levels against the 

relative growth rate, data from Kochanowski et al. 2016. Correlations were plotted for all 

metabolites (27) which had a measured concentration among all 23 conditions. R2 indicates the 

squared Person correlation coefficient. The highest scoring metabolite is cAMP, which was 

found also in our data to be among metabolites with a tendency  to correlate with growth. 
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Figure S16: correlations between relative standard deviation (RSD) of amino-acids against the 

relative (A) fit of the raw signal peaks, (B) standard deviation between replicates and (C) the 

mean concentration between replicates across the 16 conditions. 
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Figure S17: Calibration curves for absolute metabolite concentration calculations. 10 different 

concentrations of standards were measured (blue dots), and sample metabolites (red dots) were 

calibrating by fitting the measured standards by linear regression. Regressions were performed 

using a range for which the measured standards would not diverge from the linear fit by 25%. 
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Table S1 Bacterial strains and identification sequence for the arrayed CRISPRi library. 
 

Number 
Background 

strain 
Plasmid Target Spacer Sequence 

1 E. coli YYdCas9 pgRNA accA CAATCGGCTGTTCAAAATCA 

2 E. coli YYdCas9 pgRNA acnB CACGCTCAGCTACGTGCTTA 

3 E. coli YYdCas9 pgRNA adk TGAGTCCCTTTCCCCGCGCC 

4 E. coli YYdCas9 pgRNA alaC TGCGCGTAAAGCGACGTTCA 

5 E. coli YYdCas9 pgRNA argA GTATTGATATAGGGAACCGAATGG 

6 E. coli YYdCas9 pgRNA argE TTTTTCATTGTTGACACACCTC 

7 E. coli YYdCas9 pgRNA aroA AGCGATGGGTTGTAACGTCA 

8 E. coli YYdCas9 pgRNA aroL CCCGAGGCCCGATCAGAAAAAG 

9 E. coli YYdCas9 pgRNA asd AACCATGCGTTGCATGAGAA 

10 E. coli YYdCas9 pgRNA asnA ACGTTGTTTGGCAATGTAAG 

11 E. coli YYdCas9 pgRNA aspC  AATCGGGTCGGCAGGAGCGG 

12 E. coli YYdCas9 pgRNA bioA CCAGATATGGCGTTGGTCAA 

13 E. coli YYdCas9 pgRNA bioH ATGAACATTCCCCTGACCTT 

14 E. coli YYdCas9 pgRNA carA TATGGCCCGACCGTGAAACT 

15 E. coli YYdCas9 pgRNA coaA TTGCGGTCAAACTGTAGGTA 

16 E. coli YYdCas9 pgRNA coaD GTAATGGGATCGAAAGTACC 

17 E. coli YYdCas9 pgRNA cyaA GTTTCAGAGTCTCAATATAG 

18 E. coli YYdCas9 pgRNA cysE CAGTCCGCCAGCGTTCTGGCTT 

19 E. coli YYdCas9 pgRNA cysH CAGGGCGTTTAGATCGAGTT 

20 E. coli YYdCas9 pgRNA dapB CGGCTCCCGCGATGGCAACG 

21 E. coli YYdCas9 pgRNA dapD ATCTCGGCACGGCGTTCAAAAG 

22 E. coli YYdCas9 pgRNA dfp GAACGATTTTTTTACCGGCC 

23 E. coli YYdCas9 pgRNA dxr CGAGCCGGTCGAGCCCAGAA 

24 E. coli YYdCas9 pgRNA dxs CAGTGCCAGGGTCGGGTATT 

25 E. coli YYdCas9 pgRNA eno ACCGATGATTTTTACGATTT 

26 E. coli YYdCas9 pgRNA fbaA TCATCACCAGTGATTACGCC 

27 E. coli YYdCas9 pgRNA folA TCGGCAGGCAGGTTCCACGGCA 
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28 E. coli YYdCas9 pgRNA gadA ACGTGAATCGAGTAGTTCTGAG 

29 E. coli YYdCas9 pgRNA gadB ACGTTTTGATTCTGCGATAG 

30 E. coli YYdCas9 pgRNA gapA GGAAAACAATGCGACCGATA 

31 E. coli YYdCas9 pgRNA gdhA CGCGCTTTTGGACATGGTTG 

32 E. coli YYdCas9 pgRNA glmS CAGACGACGTAAACCTTCAAGA 

33 E. coli YYdCas9 pgRNA glnA CATCGTCAGTACGTGTTCAG 

34 E. coli YYdCas9 pgRNA gltA AACAGCTGTATCCCCGTTGA 

35 E. coli YYdCas9 pgRNA glyA CCACAGTTCGGCATCATAAT 

36 E. coli YYdCas9 pgRNA gmk GGATTTACCCGCGCCACTGG 

37 E. coli YYdCas9 pgRNA gnd GACTACGCCGATCTGTTGCT 

38 E. coli YYdCas9 pgRNA gpsA CAGTCATTGAAGCATTACGT 

39 E. coli YYdCas9 pgRNA gshB GATGTTGATGTTTGCGATG 

40 E. coli YYdCas9 pgRNA guaB CGGTAGAGTGAGCAGGAACG 

41 E. coli YYdCas9 pgRNA hemB TGCGCAGGCGACGAGGGCGT 

42 E. coli YYdCas9 pgRNA hemG CAGTTCCGAAGCCAGGTAGG 

43 E. coli YYdCas9 pgRNA hemH CAGGTTTGCCAGCAGGATAC 

44 E. coli YYdCas9 pgRNA hisB TCACTCGGCGGTTCGCTAATCA 

45 E. coli YYdCas9 pgRNA hisG TGAGTCATCACTTAAACGGC 

46 E. coli YYdCas9 pgRNA icd GTGATCTTCTTGCCTTGTGC 

47 E. coli YYdCas9 pgRNA idi TACTTTTCCAGCGTACCCGT 

48 E. coli YYdCas9 pgRNA ilvA CCTTCCGGAGCACCGGACAG 

49 E. coli YYdCas9 pgRNA ilvC CGCGCCATCGGCGAATTCATCG 

50 E. coli YYdCas9 pgRNA ispB AACACCCGCCATATCTTGCG 

51 E. coli YYdCas9 pgRNA ispG TTCTACGTTGAATTGGAGCC 

52 E. coli YYdCas9 pgRNA ispH AACCACGCGGGTTGGCCAAC 

53 E. coli YYdCas9 pgRNA ispU GCTGGCAATTTTTCGCTAAG 

54 E. coli YYdCas9 pgRNA kdsA CGCCAAACAGTACGAACGGC 

55 E. coli YYdCas9 pgRNA leuA GCCTGTTCACCGTCGCGCAATG 

56 E. coli YYdCas9 pgRNA LuxS CGACTGTGAAGCTATCTAACAA 

57 E. coli YYdCas9 pgRNA LacZ GGCCAGTGAATCCGTAATCA 



Supplementary Materials 
 

101 

58 E. coli YYdCas9 pgRNA lysA TCGGTGCTGAACAGTGAATG 

59 E. coli YYdCas9 pgRNA menD GAATGACCGCCGCCCAGCGT 

60 E. coli YYdCas9 pgRNA metA AGCTCGTCCGGCACACGAAT 

61 E. coli YYdCas9 pgRNA metC ATTACGTGTCGCGTGTTTTT 

62 E. coli YYdCas9 pgRNA metE CAGGCCAACGCGAGGGAAACCG 

63 E. coli YYdCas9 pgRNA metK GGATGCCCTTCAGAGACGGACT 

64 E. coli YYdCas9 pgRNA nadA GGAAAGGATAAATCGCCGTGTC 

65 E. coli YYdCas9 pgRNA nadB ACACGTCACATGAATGTTCA 

66 E. coli YYdCas9 pgRNA nadC TCAGGGTTATAGCGGCGAGG 

67 E. coli YYdCas9 pgRNA nadE TCCTCTTCAGCATTAATCTG 

68 E. coli YYdCas9 pgRNA nadK TCAGTGCAGTGGGGTGCCGT 

69 E. coli YYdCas9 pgRNA nrdA TGCCGCCCAATCCAGAACGCGA 

70 E. coli YYdCas9 pgRNA pabA AATCGTAGTTATCTATAAGC 

71 E. coli YYdCas9 pgRNA panC TTGCTGACGCAGCAGCGGCA 

72 E. coli YYdCas9 pgRNA panD CATGAGTCACTTTCACGCGG 

73 E. coli YYdCas9 pgRNA pck  ATAAGCCTCGAGTTCTTGCG 

74 E. coli YYdCas9 pgRNA pfkA CGAATTGCGGCGTTCATGCC 

75 E. coli YYdCas9 pgRNA pfkB ATTGTTGCGCTATCGAGAGA 

76 E. coli YYdCas9 pgRNA pgi TGCCAGGCAGCGGTCTGCGT 

77 E. coli YYdCas9 pgRNA pgk TTTCCCAGCAAGATCCAGAT 

78 E. coli YYdCas9 pgRNA pheA TTTCTCTCGCAGCGCCAGTAAC 

79 E. coli YYdCas9 pgRNA ppc ACTGACATTACTACGCAATG 

80 E. coli YYdCas9 pgRNA proB GCCGAGTTTTACCACCAGCGTC 

81 E. coli YYdCas9 pgRNA proC GGCAATCAGACCGCCGAGAA 

82 E. coli YYdCas9 pgRNA prs CCAGCAAAAAGCTTCATATC 

83 E. coli YYdCas9 pgRNA ptsH  CGGTAATGGTAACTTCTTGC 

84 E. coli YYdCas9 pgRNA ptsI TTTACCGAAAGCGATACCCG 

85 E. coli YYdCas9 pgRNA purA TTTACCTTCGTCACCCCATT 

86 E. coli YYdCas9 pgRNA purB ACAGGGGAAACGGCGGTCAGTG 

87 E. coli YYdCas9 pgRNA purC CGGGTTTTCCGTGCTGTATA 
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88 E. coli YYdCas9 pgRNA purE GACACGCGCCGGATTATTGC 

89 E. coli YYdCas9 pgRNA purL ATTCGGAATGCCGACAGTGC 

90 E. coli YYdCas9 pgRNA pykA TTTTGTTCTGCGAAGCCTTC 

91 E. coli YYdCas9 pgRNA pykF TCCGATGGTGCAAACAATTT 

92 E. coli YYdCas9 pgRNA pyrB AAATGATATGTTTCTGATATAG 

93 E. coli YYdCas9 pgRNA pyrC CGGATCTTTAATACCTGGGA 

94 E. coli YYdCas9 pgRNA pyrD AAAGGGCTTTACGAACGAAG 

95 E. coli YYdCas9 pgRNA pyrE GCTAAGCGCAAATTCAATAAAC 

96 E. coli YYdCas9 pgRNA pyrF AGGAGAATTCGTAACAGCGC 

97 E. coli YYdCas9 pgRNA pyrG CAGAGAGGATACGACCCCGC 

98 E. coli YYdCas9 pgRNA ribA GCCCCATGGGGTTGGCAGTT 

99 E. coli YYdCas9 pgRNA ribB TTCGAAAGGCGTACCAAAAG 

100 E. coli YYdCas9 pgRNA ribC GTCAATCGACACCAGTTTTG 

101 E. coli YYdCas9 pgRNA sdhC GTCTGTAGGTCCAGATTAAC 

102 E. coli YYdCas9 pgRNA serA GAAGGCTTTCCAGCGCCTTT 

103 E. coli YYdCas9 pgRNA sucA GAGGTAAGAAGAGTCCAACC 

104 E. coli YYdCas9 pgRNA sucC CGGTGCTGGTAAGCCATAGC 

105 E. coli YYdCas9 pgRNA thyA AAAGCGTTCCGGTTCCGGTA 

106 E. coli YYdCas9 pgRNA tktA ATTGGCAAGCTCTTTACGTG 

107 E. coli YYdCas9 pgRNA tpiA  TTCCAGTTACCCATCACTAA 

108 E. coli YYdCas9 pgRNA trpA TTCTTTGCGCTCCTTCAACT 

109 E. coli YYdCas9 pgRNA tyrA ATCAATTTGATCGCGTAATG 

110 E. coli YYdCas9 pgRNA ubiD GCGTAAATCGTTATATTTCA 

111 E. coli YYdCas9 pgRNA zwf AATGACCAGGTCACAGGCCT 

 

pgRNA-bacteria plasmids for strains 4, 11, 29, 47, 72, 82, 105, 106 were cloned by Gibson 

assembly. All remaining strains were prepared with plasmids synthetized by Doulix. 
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Table S2: Occurrence of growth phenotypes at different starting optical densities (ODs). Data 

shown for three different YYdCas9 strains with gRNAs targeting purM (purine biosynthesis), argE 

and argA (arginine biosynthesis). Reported are the average (n=3) initial cell concentrations, the 

final OD at the time of occurrence of a growth defect, the time of occurrence of the defect and 

the number of OD duplications from the start of the culture.  

 

PurM 
Initial OD Final OD  Response Time Duplications 

0.08 0.1984 2.321 2.48 

0.038 0.0935 2.488 2.46 

0.021 0.0628 2.821 2.99 

ArgE 

Initial OD Final OD  Response Time Duplications 

0.082 0.216 2.321 2.63 

0.038 0.107 2.321 2.81 

0.0198 0.055 2.321 2.77 

ArgA 

Initial OD Final OD  Response Time Duplications 

0.0857 0.2616 2.321 3.05 

0.0405 0.1312 2.488 3.24 

0.0224 0.0726 2.654 3.24 

 

 

 

Table S3: Correlation between metabolite concentrations and growth rates in different 

environmental conditions. R2 indicates the squared Pearson correlation coefficient. 

Metabolite R2 

IMP 0.689534 

5-Amino-1-(5-phospho-D-ribosyl)imidazole 0.688144 

Dihydropteroate 0.570407 

(2R,3R)-2,3-Dihydroxy-3-methylpentanoate 0.568763 

Adenylosuccinic acid 0.551903 

UDP 0.493183 

cAMP 0.466123 

Pyridoxamine 0.462529 

N-acetylmuramate 0.458371 

GABA 0.457916 

Riboflavin 0.427516 

NAD 0.418199 

S-Adenosylmethionine 0.404423 
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Table S4: SVD of the metabolomics and proteomics datasets. The table displays, for each of 

the 14 singular vectors computed and the relative dataset, the correlation of each component 

to the growth rate values and how much each component contributes to explain the variance 

in the data. In bold, the 2 components for each dataset that had the highest correlation with 

the growth rate. 

 
proteome dataset metabolome dataset 

component R2 % variance R2 % variance 

SV1 0.88 73.78 0.12 59.50 

SV2 0.40 4.44 0.21 7.53 

SV3 0.07 3.10 0.41 5.31 

SV4 0.36 2.54 0.12 4.20 

SV5 0.07 2.05 0.02 3.88 

SV6 0.01 2.03 0.10 3.18 

SV7 0.00 1.86 0.02 2.95 

SV8 0.00 1.74 0.01 2.72 

SV9 0.01 1.64 0.01 2.48 

SV10 0.03 1.63 0.01 2.07 

SV11 0.00 1.54 0.05 1.95 

SV12 0.01 1.34 0.00 1.66 

SV13 0.00 1.26 0.01 1.34 

SV14 0.02 1.05 0.03 1.24 
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Table S5: strains and reagents 

REAGENT or RESOURCE Source IDENTIFIER 

Bacterial and Virus Strains 

NEB® 5-alpha Competent 
E. coli: fhuA2 Δ(argF-
lacZ)U169 phoA glnV44 
Φ80 Δ(lacZ)M15 gyrA96 
recA1 relA1 endA1 thi-1 
hsdR17 

New England Biolabs Cat#C2987 

YYdCas9: BW25993 
intC::tetR‐dcas9‐aadA 
lacY::ypet‐cat 

Lawson et al. 2017 N/A 

YYdCas9: BW25993 
CRISPRi-pgRNA_cntrl: 
intC::tetR‐dcas9‐aadA 
lacY::ypet‐cat  

This study N/A 

YYdCas9: BW25993 
CRISPRi-pgRNA_carAB: 
intC::tetR‐dcas9‐aadA 
lacY::ypet‐cat pUA66-
PargE-gfp 

This study N/A 

YYdCas9: BW25993 
CRISPRi-pgRNA_metE: 
intC::tetR‐dcas9‐aadA 
lacY::ypet‐cat pUA66-
PmetB-gfp 

This study N/A 

BW25113: F-, Δ(araD-
araB)567, 
ΔlacZ4787(::rrnB-3), λ-, 
ΔgntK768::kan, rph-1, 
Δ(rhaD-rhaB)568, 
hsdR514 

Baba et al. 2006 JW3400-1 

Genotypes and spacer 
sequences of arrayed 
CRISPRi strains are listed 
in Table S7. 

  

Chemicals,Peptides, and Recombinant Proteins 

Acetonitrile Honeywell Riedel-de Haën Cat#14261-2L 

Methanol VWR Cat#83638.320 

Anhydrotetracycline Sigma-Aldrich Cat#1035708-25MG 

IPTG Roth Cat#CN08.2 

Ampicillin Roth Cat#K029.2 

Kanamycin Roth Cat#T832.3 

Critical Commercial Assays 
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PierceTM Quantitative 
Colometric Peptide Assay
  

Thermo Fisher Scientific Cat#23275 

PierceTM BCA Protein 
Assay Kit 

Thermo Fisher Scientific Cat#23225 

Recombinant DNA 

pgRNA-bacteria  Qi et al. 2013 Addgene plasmid 
#44251 

pUA66-PargE-gfp: pPargE-
gfp 

Zaslaver et al. 2006 N/A 

pUA66-PmetB-gfp: 
pPmetB-gfp 

Zaslaver et al. 2006 N/A 

Software and Algorithms   

Matlab R2018b 
(9.5.0.944444) for 
analysis of experimental 
data 

mathworks.com N/A 

Python 3.7.4 python.org N/A 

COBRApy opencobra.github.io/cobrapy N/A 

Progenesis QIP (Waters) waters.com N/A 

MASCOT (v2.5, Matrix 
Science) 

matrixscience.com N/A 

SafeQuant https://cran.r-
project.org/web/packages/SafeQuant/index.html 

N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Materials 
 

107 

Table S6: oligonucleotides. 

Oligonucleotide Sequence (5’-3’) Description Origin 

psgRNAamp-F 
GTTTTAGAGCTAGAAATA
GCAAGTTAAAATAAGGC 

Amplification of pgRNA for Gibson Assembly with 
amplified spacer oligonucleotides  

This study 

 

psgRNAamp-R 
ACTAGTATTATACCTAGG
ACTGAGCTAGC 

Amplification of pgRNA for Gibson Assembly with 
amplified spacer oligonucleotides  

This study  

protoamp-F 
TTGACAGCTAGCTCAGTC
CTAGGTATAATACTAGT 

Amplification of spacer oligonucleotide This study  

protoamp-R 
GCCTTATTTTAACTTGCTA
TTTCTAGCTCTAAAAC 

Amplification of spacer oligonucleotide This study  

FWD_cassette_seq1 CCGAGTTGCTCTTGCC Sequencing of cloned CRISPRi plasmids This study  

Rev_pkD-
pgRNA_seq2 

GACTCGAGTAAGGATCCA
GTTC 

Sequencing of cloned CRISPRi plasmids This study  

OH_amp_fwd  
TAAGGATGATTTCTGGAA
TTCTAAAG  

Amplification of pooled oligonucleotides  This study  

OH_amp_rev  
GTGCCACTTTTTCAAGTTG
ATAAC  

Amplification of pooled oligonucleotides  This study  

EcF_forward  
GTTTTAGAGCTAGAAATA
GCAAGTTAAAATAAGGC  

Amplification of the pgRNA backbone for Gibson 
Assembly with amplified pooled oligonucleotides  

This study  

EcF_reverse  
ACTAGTATTATACCTAGG
ACTGAGCTAGC  

Amplification of the pgRNA backbone for Gibson 
Assembly with amplified pooled oligonucleotides  

This study  

NGS_F2_adapter  
TCGTCGGCAGCGTCAGAT
GTGTATAAGAGACAGCGC
AATAGGCGTATCACGAGG  

Amplification of a 300 bp fragment of pgRNA 
including the sgRNA  

This study  

NGS_R2_adapter  
GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGCG
ACGGCGCTATTCAGATCC  

Amplification of a 300 bp fragment of pgRNA 
including the sgRNA  

This study  

Custom_N705 
CAAGCAGAAGACGGCAT
ACGAGATGGACTCCTGTC
TCGTGGGCTCGG  

I7 oligo This study  

Custom_N706 
CAAGCAGAAGACGGCAT
ACGAGATTAGGCATGGTC
TCGTGGGCTCGG  

I7 oligo This study  

Custom_N721 
CAAGCAGAAGACGGCAT
ACGAGATTACGCTGCGTC
TCGTGGGCTCGG 

I7 oligo This study  

Custom_N503 
AATGATACGGCGACCACC
GAGATCTACACAGAGGAT
ATCGTCGGCAGCGTC  

I5 oligo This study  

Custom_N504 
AATGATACGGCGACCACC
GAGATCTACACAGAGTAG
ATCGTCGGCAGCGTC 

I5 oligo This study  

Custom_N511 
AATGATACGGCGACCACC
GAGATCTACACCGGAGA
GATCGTCGGCAGCGTC 

I5 oligo This study  

Custom_N513 
AATGATACGGCGACCACC
GAGATCTACACCTAGTCG
ATCGTCGGCAGCGTC 

I5 oligo This study  
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