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1. INTRODUCTION 

1.1. Asthma-allergy-atopy and farm environment 

Allergic diseases, such as asthma, allergic rhinitis and atopic dermatitis, whose 

prevalence have dramatically increased in the last decades, are a major public health 

issue in industrialized countries. Asthma is a chronic inflammatory airway disease 

characterized by recurrent episodes/attacks of breathlessness and wheezing, chest 

pain coughing especially in the night or in the morning (Kudo, Ishigatsubo and Aoki, 

2013).  

Asthma attacks occur when those symptoms are at their peak, which might begin 

suddenly and can range from mild to severe. The swelling of the airway can then 

completely block the oxygen supply through the lungs thus preventing the oxygen from 

reaching the vital organs, which can be fatal and requires urgent hospitalization (Mims, 

2015). 

According to the original hypothesis by Strachan made in 1989, the small family size 

and good hygiene could increase the prevalence of atopic diseases such as asthma in 

early childhood. This hypothesis provides us with initial views on how the 

environmental factors such as microbes, pollutants and life style or diet during early 

childhood could underlie the dramatic increase in the incidence of allergic diseases, 

especially asthma in industrialized countries (Brooks, Pearce and Douwes, 2013). 

Considering the low numbers of reported asthmatic patients in the rural or farm areas, 

living in a farming environment during early childhood was significantly associated with 

a decreased risk of atopy and allergic diseases during childhood which was also found 

to be able to extend into the adulthood. Various regulatory pathways are standing 

behind the protective effects of the farming environment (Burbank et al., 2017). It has 

been found that, the farm milk (raw milk), farm animals or farm bacteria in early 

childhood may protect from the development of allergic dieses such as asthma during 

childhood (Sozańska, 2019) (Schuijs et al., 2015).  

The protective effects of farming environment against atopy and asthma have been 

reported in many cohort studies to be related to the differences in the internal 

components of the exposome such as environmental microbes between children 

growing up in farming environment and their peers living in more urban environments 

(Pekkanen et al., 2018). Such an example is the farm homes’ dust microbiota which 

was defined with very high microbial richness and low-abundance compared to the 
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non-farm homes’ microbiota, for instance, a high availability of Bacteroidales, 

Clostridiales and Lactobacillales orders in farm environment which could mediated the 

protective effects against asthma development(Kirjavainen et al., 2019). On the other 

hand, the non-farm homes showed higher proportions of other microbes such as the 

Streptococcaceae family and Staphylococcus genus which may represent a risk factor 

for asthma development (Frati et al., 2019). Recent studies have demonstrated the 

role of cowshed bacteria like Acinetobacter lwoffii (A. lwoffii) or Lactococcus lactis (L. 

lactis) in modulating the allergic reactions by changing the capacity of DCs (dendritic 

cells) to polarize either Th-1 or Th-2 responses. Those bacteria were able to shift the 

adaptive immunity from Th-2 toward Th-1 reactions in response to a specific allergen 

and have been shown to prevent the development of allergies or asthma development 

in experimental mouse model; these findings strongly support the hygiene hypothesis 

(Debarry et al., 2007b).  

1.2. Asthma symptoms and diagnose 

Due to the heterogeneity of asthma, the peak of symptoms is quite different from 

patient to patient which leads to different treatment strategies (Bostantzoglou et al., 

2015).  

The most common symptoms are wheezing, shortness of the breath and coughing, 

children with asthma show the same symptoms as in adults, moreover, the pattern of 

symptoms is also differed leading to a better diagnosis, some of the symptoms 

occurred in the night or early in the morning, some of them during or after the exercise 

or in some seasons or after expose to specific triggers/allergens and so on (“Childhood 

Asthma | AAAAI” USA).  

Based on the disease severity, asthma can be classified into four different types, 

including the intermittent asthma if the symptoms occur less frequently than twice a 

week, mild persistent asthma when the symptoms persist two or more days a week, 

moderate persistent asthma if the symptoms are present at least every day, and severe 

persistent asthma if the symptoms are repeated during the day (Oksel et al., 2018) 

(Table. 1).  
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The physical examination is not enough to confirm the diagnose or the type of asthma, 

therefore, different lungs function tests are to be used, including spirometry, peak 

airflow, FeNO tests (exhaled nitric oxide) and provocation to measure the breathing 

pattern (Pavord et al., 2018). 

 

Table 1. Classification of asthma severity (Cheng et al., 2010) 

 

1.3. Epidemiology of asthma 

The recent substantial increase in the burden of asthma among children and adults 

has been reported worldwide (Figure 1.). Because the symptoms of asthma are not 

very specific to the disease, it makes difficult to differentiate between asthma and other 

respiratory diseases, particularly, in later life, chronic obstructive pulmonary disease 

(COPD). Therefore, there is no widely recognized single instrument that can be used 

to identify asthma. In epidemiologic studies, only questionnaires are applicable for 

statistical information (“Asthma vs. COPD | AAAAI” USA).  

Based on the statistical evaluation report published by the European Respiratory 

Society (ERS), in the whole of Europe, about 30 million children and adults under 45 

years of age suffer from asthma. The incidence of asthma has dramatically increased 

between 1950 and 2000 (“Epidemiology - ERS”). In Germany, 50% of the population 

reported with allergic sensitization. Furthermore, the survey conducted in children and 

adolescents between 2003 and 2006 through interviews and questionnaires (Children 

and Adolescent Health Survey; Kinder- und Jugend-Gesundheitssurvey, KiGGS) 

reported that 4.6%, 10.7%, and 13.2% of participants to be diagnosed with asthma, 
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hay fever, and atopic dermatitis, respectively. The fellow-up of this study between 2009 

and 2012 confirmed the figures from the past, with 6.3%, 12.6%, and 14.3% study 

participants to be diagnosed with asthma, hay fever, and atopic dermatitis, respectively 

(Karl-Christian Bergmann et al. 2015).  

On the other hand, the Centers for Disease Control and Prevention (CDC) reported 

that more than 25 million Americans are suffering from asthma, corresponding to 7.7% 

of adults and 8.4% of children. The incidence of the disease has been increasing since 

the early 1980s in all age, sex and racial groups (“Asthma Surveillance Data | CDC” 

USA). Currently, there are 6.2 million children under the age of 18 having asthma in 

USA (“Asthma Facts | AAFA.Org” USA). 

 

Figure 1.  Changes in prevalence of diagnosed asthma (A) and asthma symptoms (B) over time among 

children and young adults (Subbarao, Mandhane and Sears, 2009). 

1.4. Asthma risk factors 

A comprehensive multifactorial list of most common risk factors proposed to account 

for the increasing prevalence of asthma in childhood consistently reported among 

different studies including age, sex, gene-by-environment interactions, smoking, 

exposure to pollutions, allergens, and infections and microbial substances is 

graphically illustrated in (Figure 2.) (Beasley, Semprini and Mitchell, 2015). 
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Figure 2. Risk factors for asthma development 

 

1.4.1. Gene-by-Environment  

The heterogeneity of asthma makes it a complex genetic disorder. Gene-Environment 

interactions are factors that influence or shape the responses of immune system, thus 

modulating the clinical symptoms or manifestation of the disease and associated 

significantly to the inception, severity and the treatment of asthma (Vercelli, 2010).  

The response to the environmental changes is also different between genotypic 

backgrounds, with the investigations for novel genes in asthma among the genome-

wide studies suggested many other genes with minor roles rather than few genes with 

strong effects contribute to asthma development. Besides, based on those studies, it 

appears that genetics influences the susceptibility to allergic disorders but does not 

define any single genes directly responsible for (and/or genetic markers of) disease 

development (Holloway, Yang and Holgate, 2010).  

Among genes that have been consistently shown to be associated with asthma, its 

clinical features, or responses to the treatment include among others, genes involved 

in cytokine signaling related to Th-1 and Th-2 cell differentiation, such as interleukins 

13, 4 and 5 (IL-13, IL-4 and IL-5), interleukin 4 receptor (IL-4RA), interferon gamma 

(IFNG), STAT6, GATA3, TBX21, and the beta2 adrenergic receptor gene(Ortiz and 

Barnes, 2015). 
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1.4.2. Tobacco smoke  

Tobacco smoke is a complex mixture of over 5,000 different harmful chemicals. 

Nicotine, hydrocarbons, carbon monoxide, volatile organic compounds and other 

compounds are primary materials produced from tobacco (Talhout et al., 2011).  

The major effects of tobacco smoke occur locally, on the lungs, reaching however all 

immune and epithelial cells of the respiratory tract and causing an increase in epithelial 

permeability and weakening mucociliary clearance through increase in the release of 

IL-6, chemokine 8 (CXCL8) and other pro-inflammatory cytokines from the epithelial 

cells(Higham et al., 2018) (Spira et al., 2004). Besides, tobacco smoke has ability to 

suppress the Th-1 response and enhance Th-2 response, which disrupts Th-1/Th-2 

balance locally and systemically (Brown et al., 2016).   

Among studies a positive association was reported between smoking and an increased 

risk of asthma development in both children and adolescents (Mitchell et al., 2012). 

Exposure to maternal smoking during pregnancy was associated with the changes in 

the immune functioning through epigenetic modulations caused by nicotine; those 

changes were considered as significant triggers for the development of asthma among 

children later in life (Zacharasiewicz, 2016).  

Interestingly, in some countries like United Kingdom, a marked reduction in childhood 

asthma hospitalization was associated with a public smoking ban, suggesting a casual 

relation between smoking and asthma morbidity(Millett et al., 2013). 

 

1.4.3. Pollutants 

Over the last three decades and despite the attempts to reduce air pollution, exposure 

to indoor and outdoor air pollution still remains a significant risk factor for both asthma 

development and exacerbation. The most comment indoor pollutants are secondhand 

tobacco smoke (SHS), nitric oxide (NO2), and airborne particulate matter (PM) such 

as dust and diesel particulate matter (Burbank and Peden, 2018). Moreover, it has 

been shown that the concentration of indoor pollution is much higher in urban than in 

the non-urban homes which could also explain the high prevalence of asthma in 

children living in the cities compared to those living in the rural areas (Hulin, Caillaud 

and Annesi-Maesano, 2010).  

There is evident support for the hypothesis that early exposure to air pollution is an 

important predictor of respiratory morbidity among children. A systematic review and 

meta‐analyses showed that early or lately exposures to traffic‐related air pollution were 
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associated with the development of asthma in children, and asthma incidence was 

increased with age (Khreis et al., 2017) (Orellano et al., 2017). In addition to air 

pollution, other multiple environmental factors such as pollens or fungal spores could 

modify the response to traffic‐related air pollution (Reinmuth-Selzle et al., 2017). The 

same we find under the influence of socio‐economic factors, therefore, living in more 

polluted areas caused an increased in the incidence of asthma (Norbäck et al., 2018). 

Due to the complexity of the disease, more studies are required to fill the gap of 

pollutants exposure-age relation currently present in the literature. 

 

1.4.4. Obesity  

Obesity is defined by a body mass index (BMI) of 30 or higher. Over the past four 

decades, mean BMI and obesity have dramatically increased, especially among 

children living in urban areas. Overall, the clinical and epidemiological studies have 

clearly demonstrated a significant association between obesity and asthma 

development. It is most likely that obese patients suffer worse symptoms and are less 

able to control their asthma than non-obese asthmatic patients with an increase in 

asthma severity and worse quality of life (Peters, Dixon and Forno, 2018) (Jiang et al., 

2019). Due to chronic low-grade systemic inflammation, obese patients are more likely 

to suffer from asthma and asthma exacerbation. Low grade of inflammation in obese 

individuals have been accompanied with increase in the production of inflammatory 

mediators such as tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin 18 

(IL-18), C-reactive protein (CRP) etc.  (Carpaij and van den Berge, 2018). 

In addition, the adipocytes can also contribute to the production of IL-6 and TNFα 

constitutively, particularly in patients with abdominal obesity. High levels of IL-6 and 

TNF-α in obese patients with asthma could influence the expression of IL-4 and IL-5 

which consequently stimulate the eosinophils and mediate IgE production (Bolus and 

Hasty, 2018) (Liu et al., 2016). In more detail, both leptin and adiponectin are the 

hormones released by adipocytes of obese asthmatic patients. Leptin acts as a pro-

inflammatory mediator and it has the same structure as in IL-6. Increased the levels of 

leptin in serum were associated with enhancement of airway hyperresponsiveness. In 

contrast, adiponectin is an insulin sensitizing hormone released by adipocytes which 

enhances the interleukin 10 (IL-10) production by macrophages (Saltiel and Olefsky, 

2017).Giving adiponectin to mice attenuates the allergen-induced airway inflammation 

and hyperresponsiveness (Shore et al., 2006).  
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Increasing evidence of a relation between obesity and asthma eventually brings up 

these conditions together more frequently than before. Further research is needed in 

this field. 

1.4.5. Microbes  

Early sensitization is an important factor for the development of asthma later in life 

(Anderson and Jackson, 2017). Studies among the interactions between the host and 

microbes (viruses, bacteria, and fungi) give somehow explanation to both development 

and progression of asthma. According to the findings reported by the Copenhagen 

Prospective Study on Asthma in Childhood (COPSAC) high-risk birth cohort, early life 

airway asymptomatic bacterial colonization with Moraxella catarrhalis, Haemophilus 

influenzae, or Streptococcus pneumoniae in one-month-old infants was associated 

with development and exacerbation of asthma in childhood. Those pathogenic 

asymptomatic bacteria are also accused of increasing the severity of respiratory illness 

such as asthma exacerbations attributed to rhinovirus infection (Rahman Fink et al., 

2018).  

In another cohort study, the Childhood Asthma Study (CAS), which analyzed 

nasopharyngeal samples from infants, it has been shown that early colonization with 

Streptococcus was associated with asthma development at age of 5 (Teo et al., 2015). 

Sigurs et al. 2010 and Jackson et al. 2012 were also able to confirm the significant 

association between Respiratory Syncytial Virus (RSV) or Human Rhinovirus (HRV) 

infection in early life and the development of asthma later in life. Data showed that in 

HRV infection, the parental atopy and allergic sensitization of the child is a key factor 

to predict asthma development later in life. Similarly, RSV infection in the first year of 

life was associated with greatest risk of asthma development(Saglani, 2013) 

(Beigelman and Bacharier, 2013) (Jackson and Johnston, 2010).  

On the other hand, the early contact with farm-related microbes has been linked to 

protection against asthma and allergic diseases later in life, which strongly supporty 

the hygiene hypothesis. A number of bacterial species isolated from cowsheds such 

as A. lwoffii and L. lactis were able to significantly reduce the number of the eosinophils 

in the lung of the mice subjected to mouse model of experimental asthma using 

ovalbumin (Debarry et al. 2007).  
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1.5. Treatment 

The main goals of asthma treatment are reducing symptoms, maintaining normal 

pulmonary function, and minimizing the risk of future exacerbations (Papi et al., 2018). 

Understanding the molecular pathway and mechanism are required in order to 

determine new molecular targets which are amenable to both small-molecule and 

biological interventions. Inhaled corticosteroids, short- and long-acting B2-

adrenoceptor agonists (SABAs and LABAs) are now the major treatment option used 

for asthma management; some other options could be helpful as well such as 

phosphodiesterase inhibitors, anti-IL-5 and anti-histamines (“GLOBAL INITIATIVE 

FOR ASTHMA A GINA Pocket Guide For Health Professionals 2018) (“Short-Acting 

Beta Agonists (SABAs) | AAAAI” USA) (Tang, Sun and FizGerald, 2018). 

 

1.5.1. Corticosteroids 

Corticosteroids diffuse across the cell membrane to bind to the glucocorticoid receptors 

(GR) in the cytoplasm, and then such complex is translocated into the nucleus where 

it binds directly on the DNA and interferes with gene expression (Ferrara et al., 2019). 

Corticosteroids work through the inhibition or activation of the expression of cytokines, 

chemokines and adhesion molecules. For example, corticosteroids inhibit the 

expression of nuclear factor-κB (NF-κB) and activator protein 1 (AP1). Moreover, some 

inflammatory cytokines like IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, IL-13 and IL-15, TNF-α, 

and GM-CSF are also inhibited (Ferrara et al., 2019).  

On the other hand, corticosteroids could activate the expression of anti-inflammatory 

cytokines such as IL-10 and IL-12. At the cellular level, inhaled corticosteroids reduce 

the levels of eosinophils, mast cells, dendritic cells and other cells involved in asthma 

exacerbation (Liberman et al., 2018).  

Patients with severe asthma are less responsive to the high doses of inhaled 

corticosteroids (ICS) due to corticosteroid resistance. In children, corticosteroid 

resistance might be related to the allergen exposure via IL-2- and IL-4-dependent 

mechanisms (Barnes and Bush, 2012). Besides, subjects actively or passively 

exposed to cigarette smoke show high levels ICS resistance. Many studies 

demonstrated that also obesity could be a cause for steroid resistance (Bhatt et al., 

2018). 
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1.5.2. β 2-agonists 

Βeta (2) adrenergic agonists are used widely as bronchodilators together with inhaled 

corticosteroids for better control of asthma symptoms. It has been clarified that β2-

receptor activation is mediated by an increase in intracellular cyclic mono phosphate 

cAMP levels enhanced by the stimulation of adenylate cyclase that catalyzes the 

conversion of adenosine triphosphate into cAMP.It is not fully understood how cAMP 

leads to airway smooth muscle cell relaxation but it is believed that it catalyzes the 

activation of protein kinase A (PKA), which in turn phosphorylates key regulatory 

proteins involved in the control of muscle tone. Moreover, cAMP inhibits calcium ion 

(Ca2+) release from intracellular stores which subsequently leads to relaxation of the 

airway smooth muscles and that relieves bronchoconstriction in asthma (Cazzola et 

al., 2013) (Billington, Penn and Hall, 2016). 

The most common long acting beta 2 agonists (LABA) are formoterol and salmeterol, 

which induce bronchodilation for at least 12 hours. Besides, it has been observed that 

adding LABA to asthma treatment protocol increases the efficacy of ICS treatment in 

asthmatic patients (Buhl, FitzGerald and Busse, 2018). 

1.5.3. Phosphodiesterase inhibitors 

Theophylline is a bronchodilator used to treat asthma by antagonizing the 

bronchoconstriction. It has both, the activity of a phosphodiesterase (PDE) inhibitor 

and the properties of an adenosine-receptor antagonist. Furthermore, it has been 

noticed that theophylline has also some anti-inflammatory effect. Recently, its usage 

in asthmatic patients appears to be limited due to cardiac side effects (Barnes, 2013) 

(Mahemuti et al., 2018). 

 

1.5.4. Leukotriene modifiers (LM) or leukotriene antagonists 

Leukotriene antagonists are medicines which have been used in addition to ICS as a 

useful approach for uncontrollable asthma treatment. LM cause a greater improvement 

of the level of airway inflammation and pulmonary function in asthmatics patients when 

they are used as adjuvant therapy to ICS. It is not very clear how LM improve the 

pulmonary functions and airway liability but it seems to be mediated through the 

RANTES-pathway (Montuschi, 2010). 

Zafirlukast, montelukast, and zileuton are leukotriene modifiers available for asthma 

treatment, all of which are used to decrease the inflammatory chemicals released in 
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the lungs after the cells are encountering an allergen or allergy trigger (Sharma, 

Hashmi and Chakraborty, 2020). 

 

1.5.5. Antihistamine  

Histamine is an important mediator in allergic disease. It is elevated in the airway of 

asthmatic patients and involved in the etiology and pathophysiology of asthma 

(Yamauchi and Ogasawara, 2019). H1-antihistamines can bind to the histamine (H1) 

receptors mainly on the mast cells in the airway and block its activity (Thangam et al., 

2018). It could be an option to prevent asthma, especially the allergen-induced asthma. 

Furthermore, it has been proved that antihistamines such as azelastine, cetirizine, 

desloratadine, and fexofenadine have beneficial effects on the improvement of asthma 

symptoms and pulmonary function. Antihistamine could be used in a combination with 

other an asthmatic medications such as LM or ICS. Studies on asthmatic patients 

demonstrated beneficial effects of these combination in asthma prevention or 

treatment (Mener and Lin, 2015) (Scichilone et al., 2015). 

 

1.6. Asthma mechanism and pathophysiology 

Chronic airway inflammation and airway hyperresponsiveness (AHR) characterizing 

asthmatic disease lead to irreversible obstruction of the airway (Holgate, 2012). This 

mechanism of asthma is mediated by type 1 and type 2 immune response paradigm 

which is mainly regulated by subpopulations of CD4+ T cells underlying T helper 1 (Th-

1) and (Th-2) immune response. The type 2 immune reactions mediated by Th-2 cells 

play a major role in the development of asthma  (Lloyd and Snelgrove, 2018) (Fahy, 

2015). 

Generally, most of asthma starting in the childhood or in the adulthood is associated 

with sensitization to the environmental allergen such as house dust mites, 

cockroaches, animal, fungi, and pollens. Thus, although adult and child asthma have 

different presentations their environmental triggers are similar (Trivedi and Denton, 

2019). Simply, when the allergen is taken up by dendritic cells (DCs), they present it to 

the naïve T helper cells and subsequently, allergen-Th-2 cells reaction occurrs (Gill, 

2012).  
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This sequence of events stimulates proliferation of Th-2 cells which consequently 

produce high amounts of interleukins 4, 5 and 13 (IL-4, IL-5 and IL-13). These in turn 

recruit other cells, mainly the eosinophils and neutrophils. In addition, those cytokines 

could influence the release of other potent chemical mediators from inflammatory cells 

in the airway as it is shown in (Figure 3.).  

All those cellular and molecular players together shape the etiology and heterogeneity 

of the disease (Ling and Luster, 2016).  

 

 

Figure 3. Type 2 immune responses in asthma (Fahy, J, 2015). 

 

1.6.1.  Cell types involved in asthma 

The immunohistopathologic analysis of asthmatic airways shows the involvement of 

many types of inflammatory cells such as epithelial cells, dendritic cells, eosinophils, 

neutrophils, lymphocytes, and mast cells.  
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1.6.1.1. Epithelial cells 

Airway epithelial cells are the first line of defense against exposure of the airway to 

triggers or allergens. Epithelial cells activation is one of the asthma features which are 

significantly associated to allergic sensitization. As a part from the innate immune 

function in the lungs epithelial cells exhibit mucociliary escalator by taking up or 

removing the pathogens through the movement of cilia on the top of the epithelial cells 

(Whitsett and Alenghat, 2015).  

Epithelial cells are also very important player in the regulation of adaptive and innate 

immune cells by expression of soluble chemokines, cytokines and cell-surface 

molecules, which contributes to the eradication of the pathogens. Activation of the 

epithelial cells alters the function of DCs, T and B cells in the airway (Kim, 2012).  

Several studies have demonstrated the role of airway epithelial-derived cytokines, 

such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) in asthma pathogenesis 

and the recruitment or activation of inflammatory cells (Mitchell and O’Byrne, 2017). 

Furthermore, the disruption of the junctional complex of airway epithelial cells allow the 

allergens to enter to the respiratory tract submucosa which can influence the 

inflammatory process by directing dendritic cells (DCs) towards T helper 2 (Th-2) 

responses(Hammad and Lambrecht, 2015).  

Therefore, studying the regulatory function of the airway epithelial barrier can be 

considered as a critical checkpoint to understand the innate and adaptive immune 

responses associated with asthma and asthma exacerbation (Gon and Hashimoto, 

2018).  

1.6.1.2.  Eosinophils 

Eosinophils (EOSs) are granulocytes circulating in the healthy status at low levels, up 

to 3% of white blood cells. These cells are the major inflammatory cells recruited to the 

inflammatory site; their effects in asthma are related to the production of different toxic 

granule proteins, reactive oxygen species (ROS), cytokines, and lipid mediators 

(Nakagome and Nagata, 2018).  

EOSs are major contributors to the pathogenesis of asthma, such as airway epithelial 

cell damage, mucus hypersecretion, airway remodeling, and airway 

hyperresponsiveness (AHR) and dysfunction (HOLGATE, 2008). 

EOSs can also release different types of cytokines and of pro-inflammatory mediators, 

such as IL-5, IL-1, IL-2, IL-6, IL-8, and TNF-α. Those cytokines are mainly contributing 

to the hypersensitivity reaction triggered by allergens, with subsequent IgE production 
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and B-cell class switching. In addition, EOSs considered as a major defense against 

parasites  (McBrien and Menzies-Gow, 2017). 

1.6.1.3. Dendritic cells 

Among the cells involved in asthma pathophysiology, dendritic cells (DCs) are 

considered as a primary antigen presenting cells (APCs). They engulf the antigens, 

process and present them to the T cells lymphocytes. Different types of DCs are 

capable of polarizing CD4+ T lymphocytes towards Th-1, Th-2, Tregs or tolerance to 

antigen(Fedulov and Kobzik, 2011). 

The crosstalk between CD4+ T lymphocytes and DCs at different molecular levels 

through cytokines and chemokines induces and shapes the adaptive immune 

responses at the inflammatory site. In airway inflammation, together with epithelial 

cells, DCs process the type 2 immune response in which predominantly polarized Th-

2 type cells are involved. A various pro-inflammatory cell participate such as 

eosinophils, neutrophils, mast cells, basophils, plasma cells, and epithelial cells. These 

cells are able to produce different cytokines such as TSLP, IL-4, IL-5, IL-6, IL-9, IL-13, 

IL-17, IL-25, IL-33 and chemokines such as eotaxin, IL-8, Monocyte chemoattractant 

protein-1 (MCP-1), other pro-inflammatory mediators are also involved such as 

histamine, prostaglandins and leukotrienes (Lloyd and Snelgrove, 2018). Furthermore, 

the differences in the type of DC responses may result from the genetic and epigenetic 

factors which could regulate the immune hyperresponsiveness in allergic asthma. The 

human DCs are divided into two major type, the myeloid and plasmacytoid dendritic 

cells. These DCs have no precis location but they are different in the markers 

expressed on their surface (Collin and Bigley, 2018) (Table 2.). 

Human lung DCs Function Markers 

Myeloid DC (CD103+/BDCA3) 
Take up the antiges and present 

them to naïve Tcells 

CD11c+/int, BDCA3+ (CD141), and 

HLA-DR 

Myeloid DC (CD103+/BDCA1) 
Take up the antiges and present 

them to naïve Tcells 

CD11c+/hi, BDCA1+ (CD1c), and 

HLA-DR+ 

Plasmacytoid dendritic cells 

Take up the antiges and present 

them to naïve Tcells, block Th-2 

response through Foxp3+Tregs 

and induce tolerance. 

CD123+ (IL-3 receptor), CD11c−, 

BDCA2+ (CD303), BDCA4+ (CD304), 

HLA-DR+ 

Table 2. Lung DCs in human. Their functions vary depending upon their respective protein expression. 
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1.6.1.4. Mast cells 

Mast cells are considered as key players involved in asthma pathogenesis. Their 

chemical mediators such as histamine and bioactive lipids are observed in the acute 

phase of allergic reaction. In human, mast cell progenitors which observed to be 

predominantly highly in blood circulation of asthmatic patients have been developed 

by the influence of inflammatory stimuli into lung resident mast cells. In asthmatic 

patients, an activation of mast cells occurs via crosslinking of high affinity IgE receptors 

(FcεRI) with allergens (Méndez-Enríquez and Hallgren, 2019). Studies demonstrated 

that accumulation of activated mast cells in the lung functionally contributes to the 

etiology of the disease (Carroll, Mutavdzic and James, 2002a). The lung mast cells 

have been found to be increased together with EOSs in the airway smooth muscle of 

asthmatic patients, suggesting a major role of these highly activated lung mast cells in 

asthma exacerbation (Carroll, Mutavdzic and James, 2002b). 

1.6.1.5. Neutrophils 

Like EOSs, neutrophils are important plyers in asthma pathogenesis. Persistent 

increase in the lung neutrophils occurs mostly in uncontrolled or corticosteroid-

resistant asthma. High levels of interleukine-8 (IL-8), matrix metalloproteinase-9 

(MMP-9), leukotrienes-4 (LTB-4), and platelet-activating factor (PAF) in asthmatic 

patients have been found to be involved in the promoting the migration of neutrophils 

to the site of inflammation (Ito et al., 2008). Unlike eosinophilic asthma which is 

associated with Th-2 type of immune response, the neutrophilic asthma is most likely 

to correlate with the presence of Th-17 cells. Increase in the levels of interleukin -17 

(IL-17) production promotes the differentiation of CD34 progenitor cells into 

neutrophils, thus increasing the mucus production and resulting in airway remodeling 

process (Doe et al., 2010).  

Neutrophil elastase which is released from activated neutrophils can result in airway 

hyperresponsiveness, bronchospasm, gland hypersecretion, and airway remodeling, 

the latter leading to irreversible changes in airway structure (MacDowell and Peters, 

2007). In addition, neutrophils are considered as the first line of contact against 

respiratory pathogens such as microbes or viruses. Cross-talk between lymphocytes 

and neutrophils play a curial role in shaping adaptive immune responses (Han Gao et 

al. 2017). 
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1.6.1.6. Lymphocytes 

Lymphocytes are considered the major cell type in the pathogenesis of allergy and 

asthma (Figure 4.). Type 2 immune response which is provoked by allergens is 

characterized by the differentiation of naïve CD4+ T cells into Th-2 cells, which is 

associated with increasing levels of IgE, and activation of EOSs, mast cells and 

neutrophils. In asthmatic individuals, when DCs get in contact with soluble allergens, 

they move toward the draining lymph nodes, where antigens are presented to the naïve 

T cells and, through particular chemokines and other chemokine receptors expressed 

on the surface of Th-2 cells such as CCR3, CCR4, and CCR8 and the PG D2, polarize 

them into either adaptive Th-2 cells or T follicular cells (Tfh). Th-2 cells migrate to the 

site of inflammation in lungs to amplify the type 2 immune response by producing Th-

2 cytokines. The key cytokines which are involved in the allergic reaction include 

interleukin IL-4, IL-5, IL-9, and IL-13  (Caminati et al., 2018) (Friedmann et al., 2020).  

Accumulation of Th-2 cells in the lungs is required for the initiation and persistence of 

airway inflammation. Together with high IgE levels, those cytokines are the main 

orchestrators of type 2 adaptive immunity (Froidure et al., 2016). IL-4 and IL-13, which 

are located on genomic locus called Th-2 cytokine locus, are considered as major 

cytokines highly expressed in type 2 inflammatory responses, both triggered by 

parasite or allergen. Along with Th-2 cells, basophils, eosinophils mast cells and innate 

lymphoid cells type 2 (ILCs2) are able to produce IL-4 and IL-13 at the inflammatory 

site. Moreover, IL-4 is able to regulate Th-2 differentiation and B-cell IgG1 and IgE 

class switching. In contrast, IL-13 is regulating the contractility of smooth muscle and 

the secretion of gel-forming mucins in the respiratory tract through the epithelial goblet 

cells (Junttila, 2018) (Bao and Reinhardt, 2015) (Bagnasco et al., 2016).  

Despite possible role of other cytokines in eosinophilic asthma such as IL-13, IL-4 and 

IL-9, IL-5 seems to be the key cytokine involved in the recruitment, proliferation, 

activation and maturation of eosinophils. In a mouse model, the absence of IL-5 was 

able to abolish tissue eosinophilia, which shed light on the importance of IL-5 in the 

survival and maintenance eosinophilic asthma development(Kips, 2001) (Mould et al., 

1997). In spite of the fact that Th-2 cells are mostly predominant in allergic disease, 

other types of T cells are also intended to be important especially to the severity of the 

disease. Th9 cells are a distinct helper T cell subset that secretes IL-9 as a signature 

cytokine. IL-9 has been demonstrated to be involved in asthma development in murine 
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models of asthma; adoptive transfer of Th-9 cells to recipient mice was able to induce 

airway inflammation by recruiting eosinophils and increasing the mast cell numbers 

and serum levels of IgE (Jones et al., 2012).  

Th-9 cells themselves were able to enhance Th-2 cytokines production from Th-2 cells 

(Temann, Ray and Flavell, 2002). Mice treated with anti-IL-9 antibody demonstrated 

significant decreases in the inflammatory features (Staudt et al., 2010). Altogether, 

these findings indicate the role of Th-9 and IL-9 production in maturation of mast cells 

and eosinophil accumulation leading consequently to enhance Th-2 inflammatory 

response, AHR and mucus production in the lungs. Regarding the light of other types 

of T cells involved in asthma pathogeneses, Th-17 cells are a subset of CD4+ T cells 

characterized mainly by secretion of IL-17, a cytokine that was associated with the 

more severe phenotypes of asthma characterized by resistance to the treatment with 

inhaled corticosteroids(Banuelos et al., 2017).  

Th-17 asthmatic phenotype is positively correlated with high numbers of neutrophils in 

sputum (Barczyk, Pierzcha and Sozañska, 2003). 

Moreover, Th-17 responses have been associated with airway inflammation triggered 

with viral infection. Further studies are needed to fully understand the role of Th-17 

immunity in the allergic airway inflammation.Regulatory T cells (Tregs) represent a 

major subtype of CD4+ T cells which play an important role in suppressing allergic 

inflammation and inducing peripheral tolerance (Holt et al., 2008). IL-10, the anti-

inflammatory mediator, is the major cytokine expressed from both innate and adaptive 

immune cells in which it is markedly suppressed IgE and Th-2 cytokines production in 

the lungs promoting tolerance against repeated exposure to the allergens(Lloyd and 

Hawrylowicz, 2009). Inhaled transfer of IL-10 has failed to influence pulmonary 

homeostasis in human asthmatic patients but not in asthmatic mouse models (Ali et 

al., 2004). 
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Figure 4. The classical monolithic view: lineages and master regulators (Noelle and Nowak, 2010).  

 

1.6.2.  Epigenetic modifications 

The term epigenetics refers to inheritable or non-inheritable phenotypic changes in the 

cell that lead to the modified gene expression without alteration of the DNA sequence. 

There have been remarkable advances in describing of the “central dogma” of the 

transcription machinery transferring the genetic information embedded in DNA to RNA 

and subsequently to proteins (Lacal and Ventura, 2018).  

In the human genome, 80% of the DNA is packed into nucleosomes and the rest is 

providing linkers between nucleosomes. The nucleosomes are further packed to into 

three-dimensional (3D) structure so called chromosomes (Albert A et al. 2008). The 

core components of the nucleosome are the histones, which are accessible to different 

types of posttranslational modifications (PTMs) such as acetylation, methylation, 

phosphorylation, sumoylation, and ubiquitination. PTMs are able to change the 

accessibility of the DNA to transcription factors, especially in regulatory genomic 

regions such as enhancers or promoters, which is subsequently associate with active, 

poised, or silenced transcriptional status (Figure 6.) (Alaskhar Alhamwe et al., 2018).  
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DNA methylation is another type of the epigenetic change, in which a methyl (CH3) 

group is enzymatically added by DNA methytransferases (DNMTs) onto the cytosine 

rings of DNA.  

This molecular change can be also reverted by during DNA demethylation, which is 

mediated by ten-eleven translocation methylcytosinedioxygenase (TET) family 

proteins. The external or environmental stimuli can disturb the balance between DNA 

methyltransferases and DNA demethylases which lead to DNA methylation or 

demethylation at the promoter regions of the gene that can further suppress or activate 

the expression of the respective locus  (Figure 5.) (Potaczek et al., 2017a) (Alhamwe 

et al., 2019).  

 

 

 

 

 

Figure 5. DNA de/methylation mechanism (Alhamwe et al., 2019) 
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Figure 6. Histone modifications mechanism (Alhamwe et al., 2019) 
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1.6.2.1. T- Cell epigenetics 

Naïve CD4+ T cells differentiation in allergic disease such as asthma is strictly 

controlled by epigenetic modifications (Figure 7.) (Potaczek et al., 2017b). Gene-

environment interactions might be associated positively or negatively with the 

development of asthma (Pfefferle and Renz, 2014). In other words, these 

environmental exposures are considered as risk-increasing or risk-reducing factors 

(Harb et al., 2016). Moreover, naïve CD4+ T cells differentiation is triggered by defined 

cytokine environment at the site of inflammation, which influences the expression of 

lineage-specific transcription factors (TFs) (Alaskhar Alhamwe et al., 2018). 

Furthermore, the crosstalk between the innate immune cells such as epithelial or 

dendritic cells is also an important driver towards a specific subpopulation of naïve 

CD4+ T cells such as Th-1, Th-2 (and Th-9), regulatory T cells (Treg cells), and Th-17 

(Kabesch, Michel and Tost, 2010) (Fontenot, Gavin and Rudensky, 2017) (Kaplan, 

Hufford and Olson, 2015).  

In Th-1 cells which differentiated from naïve CD4+T cells under the influence of 

interferon-γ (IFN-γ) together with IL-12, the expression of T-box 21, an essential TF of 

Th-1 cell subpopulation development, so called Th-1 master transcription factor, 

occurs (Chen et al., 2000) (Leung et al., 2010). 

In contrast, the transcription factor GATA binding protein 3 (GATA3) is required for the 

differentiation of naïve CD4+ T cells into Th-2 lineage in the presence of IL-4.  GATA3 

binds to the Th-2 cytokine gene locus to stimulate the expression of different Th-2 

cytokines such as IL-4, IL-5 and IL-13. These cytokines are subsequently essential for 

the maintenance of Th-2 differentiation and further activation/stimulation of the asthma-

involved cells such as eosinophils, neutrophils and mast cells(Nemtsova et al., 2019) 

(Tumes et al., 2017) (Ling and Luster, 2016). Besides, they are involved in the 

inflammatory clinical and pathophysiological hallmarks of asthma like mucus 

production, AHR, ILC2 survival, and B cells class switching into IgE (Suarez-Alvarez 

et al., 2012) (Lambrecht and Hammad, 2015).  

There is no master transcription factor for Th-9 development; both IL-4 and 

transforming growth factor-β (TGF-β) are required for the naïve T cell in order to 

develop Th-9 phenotype. However, two TFs are also needed for Th-9 development 

such as interferon regulatory factor 4 (IRF4) and PU.1 but none of them is considered 
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as master regulatory TF (Goswami and Kaplan, 2011) (Kaplan, 2013). On the other 

hand, under the influence of TGF-β together with IL-6, naïve CD4+ T cells can develop 

Th-17 phenotype. RAR related orphan receptor C isoform 2 (RORC2) is considered as 

a master TF for Th-17 differentiation. Th-17 cells are capable of producing high 

amounts of IL-17A/F, which is typical for the neutrophilic asthma phenotype (Cosmi et 

al., 2011). TGF-β alone can induce the expression of the forkhead box protein 3 

(FOXP3), a master TF which differentiates naïve CD4+ T cells towards IL-10 producing 

Treg cells. IL-10 plays an important role in the suppression of inflammation and 

induction of airway remodeling in asthma (Sharma and Rudra, 2018) (Sharabi et al., 

2018). 

The classical epigenetic changes such as DNA methylation and histone modifications 

play a crucial role in determining the T cell lineage (Potaczek et al., 2017b). For 

instance, DNA demethylation of IFNG gene is essential in the development of Th-1 

cells but this is not required in Th-2 or Th-17 development (Aune, Collins and Chang, 

2009). In addition, DNA hypomethylation of IL-4 and IL-13 gene locus is required in 

Th-2 cells development. In Treg cells FOXP3 gene undergoes demethylation in order 

to develop Treg cells, while RORC remains methylated (Hirahara et al., 2011)(Tumes 

et al., 2017). In an opposite manner, demethylation of RORC and methylation of the 

FOXP3 locus are known to be required for Th-17 development. Not much is known on 

epigenetic regulation of Th-9 cells development. Histone modifications such a 

methylation and acetylation are also an important factor controlling the development of 

T cell lineage. Histone modifications in Th-1 and Th-2 cell differentiation have been 

well analyzed at the Th-1 (IFN-γ) and Th-2 (IL-4, IL-5 and IL-13) genes cytokine loci 

(Hirahara et al. 2016.). Positive correlation between histone modifications, such as 

acetylation of H4 (H4Ac) and H3K4me3 have been observed at the IFNG locus and 

IFNG expression, while the opposite manner has been reported for the histone 

modifications silencing the expression of the Th-2 cytokine (IL4 and IL13) gene loci 

(Kondilis-Mangum and Wade, 2013) (Koyanagi et al., 2005). 

Furthermore, it has been observed that histone methylase SUV39H1 is involved in the 

trimethylation of H3K9 (H3K9me3), which is able to silence Th-1 gene loci and 

stabilize/trigger Th-2 cytokine expression (Allan et al., 2012).  Generally, high levels of 

H3K4me3 and, to a lesser extent, of H3K27me3 were demonstrated at the promoter 

regions of IL4 in Th-2, IFNG in Th-1, IL17A and IL17F in Th17, RORC in Th-17, and 
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FOXP3 in Treg cells (Chang and Aune, 2007) (Wei et al., 2009) (Rodriguez, Lopez-

Larrea and Suarez-Alvarez, 2015). 

 

Figure 7. Major types of Th cells, their differentiation and its epigenetic regulation, and their crucial 

allergy-related functions (Potaczek et al., 2017b). 
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1.7. Microbiome 

Human microbiome, especially the gut microbiota, were found to be essential for the 

human beings. This microbiota are considered as major player in catalyzing or 

mediating many chemical and biological processes regulating human metabolism or 

mediating the epithelial and mucosal development. They are also crucial for shaping 

and educating innate and adaptive immune system. 

Over the past decades microbiome has drawn an increasing amount of attention, 

tremendous amounts of evidence have strongly correlated the human microbiota to 

the development of diseases through complex mechanisms. Changing the microbiome 

diversity has a specific impact on the development of diseases; many factors could 

influence those changes in the gut microbiota, which is summarized in (Figure 8.). 

 

Figure 8. Factors influnce the gut microbiota changes (Quigley, 2017) 
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Large number of microbes with high alpha-diversity colonizes the mammalian gut, with 

most of them being Firmicutes and Bacteroidetes (Ley et al., 2008). Furthermore, three 

genera, specifically Bacteroides, Prevotella and Ruminococcus, have been identified 

to be the major genera colonizing the human gut. Of importance, the same genera 

were also identified in the gut microbiota of mice (Arumugam et al., 2011) (Hildebrand 

et al., 2013).  

In addition to their role in metabolisms, gut microbiota are able to modulate the immune 

system via different pathways, for example, the gram negative bacteria which are able 

to produce high amounts of lipopolysaccharide (LPS). LPS has been demonstrated to 

be a strong stimulator of the innate immune response; a positive correlation was 

detected between the LPS in plasma and the levels of serum C-reactive protein and 

this correlation negatively associated with the survival rates (Ghoshal et al., 2009) 

(Kwan et al., 2013). 

Small chain fatty acids (SCFAs) such as butyric acid, propionic acid and acetic acid 

are also produced by gut microbiota via the fermentation of the dietary fibers. These 

SCFAs can bind to the G protein-coupled receptors (GPCRs) on the surface of 

epithelium, and thus translocate them into the host cells where they are able to inhibit 

the activity of histone deacetylases (HDACs). Inhibition of HDACs enhances the foxp3 

expression and promotes the priming of the naïve T cells into Treg cells(Vinolo et al., 

2011) (Chang et al., 2014). Increased number and function of gut regulatory Treg cells 

can initiate an immune tolerance and maintain the epithelial barrier function by 

increasing mucus productions by intestinal goblet cells. The SCFAs can transfer 

through the blood into brain and lung where they can decrease inflammatory 

responses that are associated with neuroinflammation and allergic airway disease, 

respectively (Furusawa et al., 2013) (Smith et al., 2013). 
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1.7.1.  Lung microbiome and asthma 

It has been indicated that the composition and diversity of the microbiota were changed 

in samples collected from asthmatic compared with healthy individuals (Abdel-Aziz et 

al., 2019). The severity of asthma also correlated with this dysbiosis. Airway bacterial 

studies have shown that Bacteroidetes and Actinobacteria are more common in 

healthy controls and Proteobacteria, particularly Haemophilus species, are more 

common in asthmatic patients (Lee et al., 2019).  The diversity of lung microbiota 

seems to be higher in asthmatic patients compared with the healthy controls; some 

studies observed, however, no differences in microbiome diversity of lung or gut 

microbiome between asthmatics and non-asthmatics (Depner et al., 2017) (Pang et 

al., 2019). 

Not only airway inflammation could influence the diversity of the lung microbiome. 

Inhaled corticosteroids are also able to influence the composition and diversity of the 

airway microbiota by suppressing the immune system and decreasing the mucus 

production which allows for some of the airway bacteria to overgrowth, thus increasing 

the diversity of the lung microbiota in asthmatics compared to healthy controls (Jung 

et al., 2016). Furthermore, the lung microbiota are differentially clustering between 

eosinophilic and neutrophilic/non-eosinophilic asthma. It has been reported that 

Proteobacteria phylum, especially Moraxella and Haemophilus, are more abundant 

and Actinobacteria phylum is less abundant in neutrophilic/non-eosinophilic asthma 

compared with eosinophilic asthma.  Another important study showed that, compared 

to those from more urbanized Finnish Karelia, children from less westernized Russian 

Karelia had higher overall bacterial diversity and abundance of genus Acinetobacter 

and were less likely to have allergic disorders including asthma (Ruokolainen et al., 

2017). These findings seem to be in line with the protective effects of A. lwoffii against 

asthma and allergic disease development observed in asthmatic mouse model 

(Debarry et al., 2007a). Infections can also modulate the microbiota of the lungs; 

infants infected at 1 month of age with Streptococcus pneumoniae, Haemophilus 

influenzae or Moraxella catarrhalis showed an increase in the risk for recurrent wheeze 

and asthma at 5 years of age (Bisgaard et al., 2007).  In conclusion, there is no distinct 

lung or gut microbiome profile for healthy individuals since these the microbiota might 

be clustered in different ways based on different factors such as age, drugs and diet. 
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1.7.2.  Gut-lung / lung- gut axis and A. lwoffii protective effects against 

asthma 

The studies have shown that intestinal microbiome plays a role in influencing and 

shaping immune functions. The underlying inflammation and the serious problem of 

breathing disorder in asthma appear to be related to the composition or diversity of 

lung or intestinal microbiota (Frati et al., 2019) (Pascal et al., 2018).  The interaction 

between different mucosal barriers, including the effect of the intestine on lung 

immunity (the gut-lung axis), is likely to be mediated by local microbes and circulating 

immune cells. For example, some intestinal bacteria are known to produce SCFA that 

modulate the development of T cells and thus allergic and asthmatic responses (Anand 

and Mande, 2018).  

 

Although the lung intestinal axis has been much less studied, it is also possible that 

environmental bacteria such as A. lwoffii, which enter the human organism via the 

respiratory tract, may affect the microbial composition of the lung, which in turn would 

affect the composition of the intestinal microbiome. The changes in the intestinal 

microbiome would affect the immunity of the lung and the development of asthma. It 

has also been reported that the dysbiosis in the respiratory microbiota resulting from 

the intra-tracheal single dose of lipopolysaccharide leads to the movement of lung 

bacteria into the bloodstream. This leads in turn to an increase in the bacterial load in 

the intestine and thus to a disturbance of the microbial intestinal community. This 

dysbiosis could also be due to the interaction between translocated lung immune cells 

and intestinal microbiota(Sze et al., 2014).  

 

 

 

 

 

 

 



[37] 

 

 

2. Hypothesis and aims 

 

Early childhood or even prenatal exposures to farm bacteria such as Acinetobacter 

lwoffii have been demonstrated to predict a decreased incidence of allergies and 

asthma later in life. Studies in mouse models demonstrated that intranasal application 

of A. lwoffii stimulates local and systemic innate immunity as reflected by increased 

levels of pro-inflammatory cytokines, especially IL-6 levels in lungs and serum.  

The goal of the study was to understand the underlying molecular mechanism of the 

A. lwoffii protective effect against asthma and to prove the hypothesis listed above, we 

aimed in our investigation to address the following points, (1). The potential role of  

IL-6 in A. lwoffii-induced protection against asthma/allergy development. (2). The first 

contact happened up on A. lwoffii intranasal application. (3). To check whether the 

activation of innate immune system up on contact with A. lwoffii can skew the function 

of the adaptive immune system towards mechanisms know to favor lower asthma 

and/or allergy susceptibility. (4). Further assessments in mouse model to reveal the 

role of other cytokines which secreted from T cells after culturing the naïve T cells with 

supernatant from A. lwoffii-exposed macrophages, such as IL-17 and IL-10 KO mice. 

(5). Moreover, to figure out whether the microbiota might contribute to the protective 

effects induced by A. lwoffii in the IL-6 KO mice and WT littermate via a possible 

interaction between IL-6 and the changes in the taxa abundance of the cecum 

microbiome, thus we speculated that A. lwoffii pretreatment might induce changes in 

the cecum microbiome which is mediated the asthma protective effect through a (Lung-

Gut axis). 
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3. MATERIALS AND METHODS 

 

3.1. Materials tables  

BALB/c WT Jackson Laboratory, USA 

BALB/c Il17af−/−  Prof. Steinhoff lab BMFZ 

Backcrossed BALB/c Il6tm1Kopf/J  Prof. Manfred Kopf, Zürich 

BALB/c il10−/− Prof. Francis Crick, London 

Fresh Acinetobacter lwoffii F78 BMFZ, Marburg.  

Lyophilized Acinetobacter lwoffii Prof. Dr. Holger Heine Lab, Borstel 

Table 3. Animal experiment 

Aceton Roth, Karlsruhe, D 

Albumin bovine Fraction V (BSA) Serva, Heidelberg, D 

Anti-mouse-CD3e clone 145-2C11, BioLegend, USA 

Anti-mouse-CD28 clone 37.5, BioLegend, USA 

Brefeldin A eBiosciences, San Diego, USA 

CASY® Ton Schärfe Systems, Reutlingen, D 

CellFix BD, Heidelberg, D 

Complete Protease-Inhibitor Tablette Roche, Mannheim, D 

DAPI BioLegend, San Diego, USA  

Diff-Quick®-Solution Dade-Behring, Marburg, D 

Dithiothreitol (DTT) PJK GmbH, Kleinblittersdorf, D 

Dimethylsulfoxid Sigma-Aldrich, Taufkirchen, D 

EDTA ethylenediaminetetraacetic acid-

disodium salt (Na2EDTA) 

Roth, Karlsruhe, D 

Eosin G Merck, Darmstadt, D 

Ethanol Roth, Karlsruhe, D 

Ethidium bromide soluation Roth, Karlruhe, D 

FACS Clean BD, Heidelberg, D 

FACS Flow TM BD, Heidelberg, D 

FACS Rinse BD, Heidelberg, D 

FCS Gold PAA LaboratoriesGmbH, Cölbe, D 

Hematoxilin II nach Gill Merck, Darmstadt, D 
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HEPES Sigma, Taufkirchen, D 

Ionomycin Calcium Salz Sigma, Taufkirchen, D 

Ketamin Inresa, Freiburg, D 

L-Glutamin PAA LaboratoriesGmbH, Cölbe, D 

Natrium pyruvate PAA LaboratoriesGmbH, Cölbe, D 

Non essential amino acids PAA LaboratoriesGmbH, Cölbe, D 

PanColl Mouse PAN Biotech, Aidenbach, D 

Paraformaldehyde Merck, Darmstadt, D 

PAS staining kit Merck, Darmstadt, D 

PBS Dulbeccos (1x) ohne Ca. u. Mg. PAA LaboratoriesGmbH, Cölbe, D 

Penicillin/streptomycin PAA LaboratoriesGmbH, Cölbe, D 

Phorbol 12-myristate 13-acetate (PMA) Sigma, Taufkirchen, USA 

 Polyethylene glycol 6000 Sigma-Aldrich, Taufkirchen, D 

QuantitTectTMSYBR®Green PCR 

MasterMix 

Qiagen, Hilden, DE 

Recombinant murine IL-6 Peprotech Inc, Rocky Hill, USA 

Recombinant murine IL-2 Peprotech Inc, Rocky Hill, USA 

GM-CSF proteins BMFZ (Homemade)  

M-CSF proteins BMFZ (Homemade) 

FLT3L proteins BMFZ (Homemade) 

RNAse free water  Eppendorf, Hamburg, D 

Rnase ERASE MP Biomedical, Illkirch, F 

Rompun 2% (Xylazin) Bayer Health Care, Leverkusen, D 

ROTI®Agarose ultra-quality Roth, Karlruhe, D 

Roticlear (Xylolersatz) Roth, Karlsruhe, D 

RPMI 1640 (1x) ohne L-Glutamin PAA LaboratoriesGmbH, Cölbe, D 

Saponin Sigma-Aldrich, Taufkirchen 

Sulphuric acid 95-97% (H2SO4) Merck, Darmstadt, D 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe, D 

Sodium pyruvat PAA LaboratoriesGmbH, Cölbe, D 

Streptavidin-peroxidase Sigma, Taufkirchen, D 

Streptavidin Promega, D 

Tris-HCl-solution 1M Invitrogen, Karlsruhe, D 
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Trypan blue Gibco, Karlsruhe 

Tween®20 Roth, Karlsruhe, D 

β-Mercaptoethanol Roth, Karlsruhe, D 

Ketamin 10% Medistar GmBH, Germany 

OVA (ovalbumine) grade VI, Sigma, Germany 

Micro 1.3ml lithium heparin tubes Sarstedt, Germany 

2 % agar Carl Roth, Germany 

Histocrom Thermo Fisher, USA 

Histomount Merck, KGaA, Germany 

LPS Sigma, Germany 

3 % Brewer thioglycollate Brewers, Sigma-Aldrich, Germany 

Heat-inactivated fetal bovine serum PAA Laboratories, Germany 

RBCs lysis buffer Sigma, Germany 

Pre-separation filters (30 µm) Miltenyi Biotec, Germany 

CD4+T Cell Isolation Kit mouse Miltenyi Biotec, Germany 

LS Columns Miltenyi Biotec, Germany 

CD62L MicroBeads Miltenyi Biotec, Germany 

MS Columns Miltenyi Biotec, Germany 

2-mercaptoethanol  Roth, Germany 

RLT buffer RNeasy Mini Kit, Qiagen, Germany 

Table 4. Chemical materials 

FITC -anti mouse CD45 0,5 mg/mL 

APC-anti mouse F4/80 1 mg/mL 

FITC -anti mouse CD45 isotype 0,5 mg/mL 

APC-anti mouse F4/80 isotype 0,2 mg/mL 

APC anti-mouse CD4 0,5 mg/mL 

PE anti-mouse CD62L 0,5 mg/mL 

APC-anti mouse CD4 isotype 0,5 mg/mL 

PE-anti mouse CD62L isotype 0,2 mg/mL 

anti-MHCII 0,5 mg/mL  –dilution factor 1/300 

anti-CD11c 0,5 mg/mL  –dilution factor 1/300 

anti-B220 0,5 mg/mL  –dilution factor 1/300 

Table 5. FACS-Reagents- All FACS reagents are from BioLegend or Thermo Fisher, San Diego, USA 
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IL-1β  Duo Set R&D Systems, Wiesbaden, D 

TNFa Duo Set R&D Systems, Wiesbaden, D 

IL-6   Duo Set R&D Systems, Wiesbaden, D 

Table 6. ELISA-Reagents 

 

CD4+ T Cell Isolation Kit, mouse Miltenyi, USA 

DNeasy PowerSoil HTP 96 Kit Qiagene, Germany 

Table 7. Kits 

 

24-well-plate (steril) Nunc, Roskilde, Dänemark 

48-well-plate (steril) Nunc, Roskilde, Dänemark 

96-well-plate, Opaque plate Costar, Cambridge, USA 

96- well-plate black, opaque plate Costar, Cambridge, USA 

96- well-microtiter plate Maxisorp-Flat 

bottom 

Nunc, Roskilde, Dänemark 

Casy® Cups Schärfe Systems, Reutlingen, D 

Eppendorf Research 10 pipette Eppendorf, Hamburg, D 

Eppendorf Research 100 pipette Eppendorf, Hamburg, D 

Eppendorf Research 1000 pipette Eppendorf, Hamburg, D 

FACS-tube BD Falcon™ BD, Heidelberg, D 

Filter tips 0,1-10 µL Sarstedt, Nümbrecht, D 

Filter tips 2-100 µL Sarstedt, Nümbrecht, D 

Filter tips 1000 µL Sarstedt, Nümbrecht, D 

Pasteur pipettes Brand, Wertheim 

Pipettes 5 mL, 10 mL und 20 mL Greiner bio-one, Frickenhausen, D 

Eppendorf  Tubes (0,5 mL) Biozym, Hess. Oldendorf, D 

Eppendorf  Tubes (1,5 mL) Eppendorf, Hamburg, D 

Eppendorf  Tubes (2 mL) Eppendorf, Hamburg, D 

Nylon mesh 100 μm BD Falcon, Bedford, USA 

Table 8. Consumed materials 
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BD FACS Canto™ II BD, Heidelberg, D 

CASY®Model TT (Cell-Counter)  Schärfe Systems, Reutlingen, D 

Counter AC-8 Assistent, Sondheim, D 

Freezer Liebherr, Ochsenhausen, D 

Centrifuge- BIOFUGE fresco  Kendro, Langenselbold, D 

Microscope Olympos BX51 Olympus, Hamburg, D 

Micro plate reader- Sunrise  Tecan, Crailsheim, D 

Neubauer-Cell chamber Assistent, Sondheim, D 

Rotator LaBinco BV, Breda, NL 

Vibrational incubator GFL 3031 GFL, Burgwedel, D 

Thermo cell Cooling & Heating Block Biozym, Hess. Oldendorf, D 

Vortexer- MS1 Mini IKA, Staufen 

Water bad GFL, Burgwedel, D 

Centrifuge- Megafuge 1.0R Heraeus, Osterode, D 

Cytocentrifuge Cytospin 3 Shandon, Frankfurt, D 

Bioruptor® Pico sonication Diagenode, Denamark 

Cytometric Bead Array-CBA Bio-Plex® 200, Bio-Rad, USA 

Fluorescence microscopy Zeiss Axio, Germany 

Microscope-Olympus IX81, Jaban Hamburg, Germany 

Table 9. Instruments  

 

Magellan Tecan, Crailsheim, D 

BD FACS Diva6 BD, Heidelberg, D 

CellF Imaging Olympus, Hamburg, D 

GraphPad Prism® GraphPad Software, La Jolla (CA),USA 

QIIME 2 pipeline USA 

Table 10. Software 
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3.2. Buffers and medium 

 

β-Mercaptoethanol (ME) for cell culture 

35 µL 2-Mercaptoethanol in 50 mL PBS solution (10 mM), steril filters 

1% β-Mercaptoethanol in RLT buffer for RNA isolation 

500 µL β-Mercaptoethanol in 50 mL RLT buffer  

ELISA-Coating buffer:  

4,2 g NaHCO3 0.1 M auf 500 mL H2O, pH 8,3  

ELISA-blocking und dilution buffer  

PBS, 1 % BSA (m/v) 

ELISA-wasch buffer:  

PBS, 0,1 % Tween 20 (v/v) 

Lung digestion medium 

Each10 mL medium: 10 mL cell culture medium + 100 µL Na pyruvat + 200 µL 

DNAse. 

Cell culture medium:  

RPMI 1640, 10% (v/v) FCS, 1 % L-Glutamin (v/v), 1 x NEAA, 100 mg/mL Penicillin G, 

60 mg/mL Streptomycin, 50 µM β-Mercaptoethanol 
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3.3. In vivo experiments 

 

3.3.1. Animals  

Pathogen-free 6- to 8-weeks-old female mice were used throughout the study. All mice 

were on BALB/c genetic background. Wild-type, Il17af−/−, il6−/− and il10−/− mice were 

generated locally in the animal facility of the Faculty of Medicine of the Marburg-

University. Il17af−/− C57BL/6 was provided by Prof. Ulrich Steinhoff then we 

backcrossed them into BALB/c genetic background. The C57BL/6.129S2-Il6tm1Kopf/J 

were originally mutated by Manfred Kopf, ETH Zurich and then they were backcrossed 

locally into BALB/c genetic background. The BALB/c il10−/− mice were provided by 

Prof. Anne O’Garra, the Francis Crick Institute, London, with approval by Prof. Anne 

O’Garra. All mice were kept under specific pathogen-free housing conditions and they 

were supplied with water and an OVA-free diet ad libitum. All animal experiments were 

performed in accordance with German and international guidelines and were approved 

by local authorities (Regierungspräsidium Gießen). 

3.3.2. Bacteria 

Gram-negative, facultative pathogenic bacterium Acinetobacter lwoffii F78 (A. lwoffii) 

isolated from cowshed dust samples by Prof. H. Heine, Borstel. Thereafter, it has been 

cultured by our microbiology facility (BMFZ) and delivered in PBS at 4°C to be used 

for the pretreatment of the animal as a potential allergy-protective agent. For in vivo 

experiments, 108 CFU of A. lwoffii were reconstituted in 50 μl PBS. For the in vitro 

experiments, 106 CFU of A. lwoffii was used for each well. The lyophilized bacteria 

were got it from Prof. Dr. Holger Heine Lab Borstel. 

3.3.3. Pre-treatment, sensitization and challenge 

Wild-type (WT), Il17af−/−, il6−/− and il10−/ knockout mice were anesthetized with 36 

mg/kg of ketamine (a low dose; Ketamin 10% Medistar GmBH, Germany) plus 4 mg/kg 

rompun ( Rompun 2% Bayer, Germany). The mice received intranasally 108 CFU of  

A. lwoffii F78 in a final volume of 50 µl PBS, or PBS as a negative control for 17 times 

every second day. The treatment was stopped one day prior to the first sensitization. 

After the completion of A.lwoffii pretreatment, the mice were sensitized to ovalbumin 

(OVA) by three adjuvant-free subcutaneous (s.c.) injections of 10 µg OVA (grade VI, 

Sigma, Germany) on days 36, 43 and 50 of the experimental protocol.  
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Then, on days 62, 63 and 64, the mice were challenged through inhalation of 

aerosolized OVA (1% wt/vol diluted in PBS) for 20 minutes. The mice were sacrificed 

after 48 hours from the last aerosol challenge. For the A. lwoffii treatment the mice 

were anesthetized with a low dose of ketamine and rompun. To sacrificy the mice a 

high dose of ketamine 180 mg/kg (Ketamin 10% Medistar GmBH, Germany) plus 

rompun 20 mg/kg (Rompun 2% Bayer, Germany) were given, the experimental plan 

was clarified in (Figure 10. A) (Figure 12. A) (Figure 17. A) (Figure 18. A). 

3.3.4. Serum samples 

After scarifying the animal, blood samples were collected from the axillary vessels in 

Micro 1.3ml lithium heparin tubes (Sarstedt, Germany) and then gently mixed up and 

down at room temperature. The samples were centrifuged for 30 min at 2000x g at  

4 °C and, afterwards, the serum supernatants carefully collected and stored at -20 °C 

for further analyses.  

3.3.5. BAL preparation and differential cell counts 

BAL was collected after 48 h from the last challenge with aerosolized OVA. The mice 

were sacrificed at day 67 and a tracheal cannula was used in order to collect the 

bronchoalveolar lavage (BAL). BAL was performed once using 1 ml PBS containing 

1× protease inhibitor cocktail (Roche, Germany). The BAL was centrifuged for 10 min 

at 350x g; the cell-free BAL supernatant was removed and stored at -20 °C for further 

cytokines or microbiome analysis. The pellet was re-suspended in 1 mL PBS plus 1% 

BSA (Bovine serum albumin, Sigma, Germany) and total leukocytes were counted with 

an automated cell counter CASY®ton (Casy TT; Schaerfe Systems). For cytospine 

measurement, 50 μl of the BAL cells in PBS/1 % BSA was pipetted into the cell funnel 

of the cytocentrifuge (Cytospine 3, Shadan, Germany). After centrifugation for 5 min at 

225x g at room temperature, the cells were distributed on a slide and the liquid was 

absorbed through a filter paper. The slides were dried for 1 hour at room temperature 

and then stained with Diff-Quick solution (Merz & Dade AG). The differentiation of the 

cells was performed under the light microscope (Olympus microscope CX23, Japan) 

at 400x magnification using the standard morphological criteria of the individual cell. 

Cell subtypes was identified. One hundred cells were counted per cytospin. 
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3.3.6. Lung histology 

In order to examine mucus production and infiltration of the airways by the 

inflammatory cells, lungs were used for histology analysis. After isolating the trachea 

from the heart, to get red from the blood, the lungs were washed by pushing 5 ml of 

0.9% normal saline into the tracheal cannula directly after the BAL. Then lungs were 

fixed using 10% formalin (Paraformaldehyde, Carl Roth, Germany) at room 

temperature; the fixed lungs tissue was moved into warm solution of 2% agarose 

(Agarose NEEO, ultra-quality, Carl Roth, Germany) and 2% agar (Agar, Carl Roth, 

Germany) dissolved in aqua destillata at (37 °C) and then cooled for 1 hour at room 

temperature. This agarose block was then transferred to an embedding cassette and 

paraffined. The embedding of the lungs in paraffin took place in the Institute of 

Pathology of the University. Sections with a thickness of 3 μm were made from these 

paraffin blocks using a Histocrom (Microm, HM 3555, Thermo Fisher Scientific, USA). 

The slides were dried for 1 day at room temperature and. Afterwards, the sections went 

through a staining protocol starting with immersing those sections in xylene (Carl Roth, 

Germany), substituting for 2 x 10 min and rehydrating using descending alcohol series 

(2 x 5 min 100%, 5 min 96%, 5 min 70% ethanol each, rinsed in aqua distilled water). 

For the hematoxylin-eosin (HE) staining, the slices were first made in hematoxylin (Carl 

Roth, Germany) according to Gill III for 5 min, then blue-stained with warm tap water 

for 5 min, and then rinsed with distilled water. The eosin (Carl Roth, Germany) staining 

was then performed for 2 min and followed by rinsing with distilled water. The slices 

went through ascending alcohol series to dehydrate the samples (1 min 96%, 2 x 3 

min 100% ethanol and 2 x 10 min xylene substitute). Finally, the samples were covered 

with Histomount (HX, Merck, KGaA, Germany).  

3.3.7. Lung histology analysis 

Periodic acid–Schiff (PAS) stained sections were analyzed under the microscope 

(Olympus, BX51 and Olympus IX81, Japan). The images were randomly selected 

under the ×10 objective per slide. The numbers of PAS+ mucus-producing goblet cells 

in the bronchial epithelium were recorded and expressed per millimeter of the 

basement membrane. Inflammation scores were also identified by the average number 

of inflammatory cells on an external tangent line between 2 neighboring airway and 

blood vessel sections. 
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3.3.8. Fluorescence microscopy  

This animal part of this experiment was done by Dr. Hani Harb and the fluorescent 

microscopy and the analysis were done at the lab of Prof. Dr. Peter Graumann by  

Dr. Jihad El andari. Here, the A. lwoffii cells were stained with DAPI prior to animal 

inoculation. After collecting the nasopharyngeal sample 4 hours after the A. lwoffii 

application as depicted in PBS into 1.5 ml eppendorf tubes, each tube was poured into 

60 µ-Dish, 35 mm high with glass bottom (ibidi) used for microscopy. On the other 

hand, tissue samples were placed between two glass slides to achieve thinner layers 

that allow penetration of photons. PBS buffer (20 µl) was added on top of sample to 

keep the sample hydrated. Images were acquired from the tissue edges and 

specifically at the thinner layers. All images were acquired here using Zeiss Axio 

Imager A1 with a TIRF objective having an aperture of 1.45. The microscope is 

equipped with an EVOLVE EMCCD camera (Photometrics). The operating system 

used was VisiView (2.1.2). Exposure time set for all images was 500 ms which were 

subjected to filters DAPI (Figure 13). ImageJ (National Institutes of Health, Bethesda, 

MD) was employed for processing and analyzing the acquired images.  

3.4. In vitro experiments 

 

3.4.1. Isolation and in vitro stimulation of primary macrophages, myeloid 

dendritic cells and plasmacytoid dendritic cells 

The isolation was done in the BMFZ at Prof. Stefan Bauer lab, Dr. Andreas Kaufmann 

helps in isolation and differentiation of the cells according to a protocol established in 

his lab, shortly, for the macrophages the cells were isolated from the bone marrow 

(BM) of the BALB/c WT mice, erythrocytes are lysed and 5 x 106 BM cells were 

suspended in 10 ml RPMI medium, cells were cultured in 10 cm culture dish (Becton 

353003; blue lettering) and M-CSF (Homemade) added to a final concentration of 20 

ng/ml. Cells were incubated for 5 days at 37°C; 5% CO2; 100% humidity, at day 3 the 

M-CSF (Homemade) 20 ng/ml was added again. After day 5 cells were tested by FACS 

FITC and APC color were used to the analysis the surface marker F4/80 and CD11b, 

respectively, indicating purity of 48.5 % (Figure. 1A Suppl). For the mDCs, the same 

protocol for the isolation but we culture the cells with 15% GM-CSF (Homemade) for 

each 6x106 cells/plate or 10% for each 3x106. Culture incubate for 7 days in incubator 

(37°C, 5%CO2), at day 7 the medium was carefully removed and the plate was rinsed 
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with fresh medium without suspending it, the macrophages are recognizable as white 

coverings of the panel floor and the floating cell clusters should be visible by 

microscope are the mDCs, supernatant containing the mDCs was centrifuge and re-

suspend then cells were counted for the stimulation, purity was tested by FACS using 

the CD11c und MHCII antibodies double staining indicating purity of 40.6% (Figure. 

1B Suppl). For pDCs, the cells were isolated from the BM, 15x106 cells in 10 ml of the 

RPMI medium then the FMS-like tyrosine kinase 3 ligand (Flt3L) with end concentration 

(35 ng/ml) (Homemade) added, cells were incubated for 8 days in incubator (37°C, 

5%CO2), at day 8 cells were harvested and tested by FACS using FITC-B220 and 

APC-CD11c antibodies double staining indicating purity of 37.8 %, pDCs should 

express both on the surface (Figure. 1C Suppl). After the isolation, those murine cells 

were washed in 5 ml PBS, centrifuged for 10 minutes at 400× g and then the 

supernatant was discarded. The cells were re-suspended at a density of 106 cells/ml 

and re-cultured in 24-well plates (Sarstedt, Germany) with medium (RPMI-1640; PAA 

Laboratories) supplemented with 10% heat-inactivated fetal bovine serum (PAA 

Laboratories), L-Glutamine, 100 U/ml penicillin G and 100 mg/ml streptomycin (PAA 

Laboratories). The murine cells were stimulated with microbial stimuli (106 CFU freshly 

live isolated A. lwoffii) or LPS (10 ng/mL; from E. coli; Sigma, Germany) as positive 

control or with medium as negative control (Figure 14. A). After 24 hours the 

supernatant was harvested and the cytokines were measured using Cytometric Bead 

Array-CBA (Bio-Plex® 200, Bio-Rad, USA) (Figure 14. B).  

3.4.2. Isolation of murine peritoneal macrophages and in vitro stimulation 

Peritoneal macrophages were isolated from six-week-old female wild-type BALB/c 

mice. Briefly, mice were injected in the peritoneal cavity with 5-ml syringe (23-G) filled 

with 1-ml of 3% Brewer thioglycollate medium (Brewers, Sigma-Aldrich, Germany). 

The inflammatory response was allowed to proceed for 72 hours after the i.p. injection 

and then peritoneal exudate cells were isolated by washing the peritoneal cavity with 

5-7 ml of ice-cold PBS without puncturing the intestine. If the intestine was accidentally 

punctured, then the mouse was excluded from further processing (Figure. 15 A). The 

purity of the macrophages was detected using FACS analysis, indicating purity of 85% 

(Figure. 2 Suppl). Cells were stained with individual mAbs, and the optimal 

concentrations of antibody indicated by the manufacturer were optimized. 1 µl of Fc-

receptor blocking biomaterial such as mouse serum was added to each sample to 

prevent the nonspecific binding of the mAbs. Then, the samples were incubated on ice 
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for 15 min. After that, 2 µl of anti-F4/80-APC (APC-anti mouse F4/80 antibody, 

BioLegend, USA) and anti-CD45-FITC (FITC -anti mouse CD45 antibody, BioLegend, 

USA) were added to the sample and 2 µl from the isotype APC (APC -anti mouse F4/80 

isotype, BioLegend, USA) and FITC (FITC -anti mouse CD45 isotype, BioLegend, 

USA) were added to the isotype negative control tube. The samples were incubated 

with the mAbs for 30 min to 1 hour and then samples were centrifuge for 5 to 10 min 

at 400 × g, 4°C. Afterwards, the supernatants were gently discarded from the tube. 

Finally, samples were vortex and 150 µl of MACS buffer (PBS + 0.5% BSA) were 

added to each to be measured using the BD FACS (FACSCanto™ II system, BD, 

USA). 

For the in vitro purposes, murine macrophages were centrifuged for 10 minutes at  

400 × g and then the supernatant was discarded and the cells were re-cultured in 24-

well plates (Sarstedt, Germany) with medium (RPMI-1640; PAA Laboratories) 

supplemented with 10% heat-inactivated fetal bovine serum (PAA Laboratories), L-

Glutamine, 100 U/ml penicillin G and 100 mg/ml streptomycin (PAA Laboratories) at 

the density of 106 cells/ml and stimulated with microbial stimuli (106 CFU freshly live 

isolated A. lwoffii), LPS (10 ng/mL; from E. coli; Sigma, Germany) as a positive control, 

or medium as a negative control. After 24 hours of incubation, supernatants were 

harvested and the analysis of cytokines was performed using an ELISA specific for  

IL-6 (R&D Systems, USA), IL-1β, (R&D Systems, USA) and TNF-a (R&D Systems, 

USA) according to the manufacturer’s instructions (Figure. 15 B). These supernatants 

were used later to stimulate naïve CD4+CD62L T cells isolated from murine spleen. 

3.4.3. Isolation of naïve CD4+CD62L+ T cells from mouse spleen 

Mouse was killed by cervical dislocation. Then the abdominal cavity was opened, and 

the spleen was isolated and transferred into the nylon mesh (orange mesh) on the 

culture dish. Cells were homogenized using syringe and then the cell suspension was 

transferred into 15 ml Falcon (15 ml Falcon, BD, USA) the dish & the mesh were 

washed with 3 ml MACS buffer to ensure that all cells were collected. The cells 

suspension was centrifuged 450x g for 3 minutes at 4 °C. After discarding the 

supernatant, 1-2 ml of RBCs lysis buffer (Red blood cells, Hypri Max, Sigma, Germany) 

was added and the cells were incubated for 2 minutes at room temperature. Then the 

reaction was stopped by adding MACS buffer up to10 ml to each Falcon. The sample 

was centrifuged again at 450x g for 3 minutes at 4 °C and then the supernatant was 
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discarded. The cell pellets was re-suspend in 2-5 ml of MACS buffer and then counted 

by CASY®ton machine (Casy TT; Schaerfe Systems). 

3.4.4. Magnetic Cell Sorting-MACS (Miltenyi) 

The cell suspension was first filtered through the MACS Pre-seperation filter (Pre-

Separation Filters [30 µm] Miltenyi Biotec, Germany). Then the cells were counted 

using CASY®ton (Casy TT; Schaerfe Systems) and centrifuged 450x g for 5 minutes 

at 4 °C. After that cells were re-suspended in 400 µL of MACS buffer per 1 x 108 cells 

and 10 μL of CD4+ T Cell Biotin-Antibody Cocktail per 108 total cells (CD4+T Cell 

Isolation Kit mouse, Miltenyi Biotec, Germany) were added. This preparation was 

incubated for 15 minutes at 4 °C in the dark. Then the mixture was further diluted with 

300 μL of MACS cold buffer and 200 μL of Anti-Biotin Micro Beads per 108 total cells 

(CD4+T Cell Isolation Kit mouse, Miltenyi Biotec, Germany). After that, the mixture was 

incubated for additional 10 minutes in the refrigerator (2−8 °C). Then, after rinsing each 

column with 3 mL of MACS buffer, the mixture was applied onto the large column (LS 

Columns, Miltenyi Biotec, Germany) under a magnetic field. The flow-through 

containing unlabeled cells, representing the enriched CD4+ T cells, was collected and 

the column was washed with 5 ml buffer. Flow-through was centrifuged at 450x g for 

10 minutes at 4 °C and then the supernatant was discarded and the pellet re-

suspended in 800 μL of MACS buffer and 200 μL of CD62L (L-selectin) Micro Beads 

(CD62L MicroBeads, mouse, Miltenyi Biotec, Germany) was added to the mixture. The 

mixture was mixed gently and incubated for 10 minutes at 4 °C in the dark, and then it 

was washed with 10 ml MACS buffer and centrifuged at 450x g for 10 minutes at 4 °C. 

The supernatant was discarded, and the pellet was re-suspended in 500 μL of the 

buffer. The mixture was applied onto the medium column (MS Columns, Miltenyi 

Biotec, Germany) under a magnetic field and after rinsing each column with 500 μL of 

buffer. The columns were washed twice with 500 μL of buffer and then removed from 

the magnetic separator and placed on a suitable collection tube or 15 ml Falcon and 1 

mL of MACS buffer was pipetted onto the column and immediately flush with the 

magnetically labeled cells by firmly pushing the plunger into the column. The cells were 

centrifuged at 450x g for 10 minutes at 4 °C and the pellet of naïve CD4+CD62L+ T 

cells was re-suspended in 1 ml of medium and counted using CASY®ton (Casy TT; 

Schaerfe Systems). 
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Cells were maintained in medium (RPMI-1640; PAA Laboratories) supplemented with 

10% heat-inactivated fetal bovine serum (PAA Laboratories), 1% NEAA (PAA 

Laboratories), 50 µM 2-mercaptoethanol (Roth), L-Glutamine, 100 U/ml penicillin G 

and 100 mg/ml streptomycin (PAA Laboratories) at the density of 2x106 cells/ml. The 

purity of the cells was tested using FACS analysis, indicating purity of 74% (Figure. 3 

Suppl); two Abs were used, APC anti-mouse CD4 Antibody and PE anti-mouse CD62L 

Antibody) (both BioLegend, USA). 2 µl of each mAbs were used for the samples and 

2 µl of the isotype PE (PE-anti mouse CD62L+ isotype, BioLegend, USA) and APC 

(APC-anti mouse CD+ isotype, BioLegend, USA) was added to the isotype negative 

control tube. Subsequently, cells were primed with αCD3 (0.5 µg/ml; clone 145-2C11, 

BioLegend, USA) in pre-coated 48 well-plate and soluble αCD28 mAb (1 µg/ml; clone 

37.5, BioLegend, USA) was also added. The naïve T cells were cultured in the 

presence of the supernatant of macrophages exposed to A. lwoffii (50% of 

macrophage derived supernatant and 50% fresh medium), recombinant murine IL-6 

(end concentration of 50 ng/ml, PeproTech, USA), or in medium as a negative control. 

After seventy-two hours, the medium was replaced in the presence of recombinant 

murine IL-2 (end concentration of 50 U/ml, PeproTech, USA). Then, the cells were 

incubated for further 48 hours. Afterwards, the medium was changed again and the 

cells were re-stimulated with αCD3 (5 µg/ml; clone 145-2C11, BioLegend, USA) in pre-

coated 48-plate and after 24 hours the supernatant was collected for cytokine 

measurement using Cytometric Bead Array-CBA (Bio-Plex® 200, Bio-Rad, USA) as it 

is showed in (Figure. 16 B) 

3.4.5. Extracellular staining (FACS) 

Extracellular staining is a method used to identify or differentiate the cells based on the 

specific protein or proteins expressed on their surface.  Cells were washed with 2 ml 

MACS buffer and then centrifuged at 450x g for 3-5 minutes at 4°C. The supernatant 

was then discarded, and the pellet re-suspended in 1ml MACS buffer. After that, anti-

bodies or isotype mixtures were added for the surface staining. Then, the sample was 

incubated for 30-45 minutes and washed again with 5 ml MACS buffer and centrifuged 

at 450x g for 3-5 minutes. The supernatant was discarded, and the pellet re-suspended 

in 120-200 µl MACS buffer and then measured using FACS machine. 
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3.4.6. TNF alpha, IL-1β, IL-6, IgE, IgG2a, IgG1 ELISA (enzyme-linked 

immunosorbent assay) 

ELISA is a plate-based assay technique designed for detecting and quantifying 

substances such as peptides, proteins, antibodies and cytokines.  To measure TNFa, 

IL-1β, IL-6 and serum immunoglobulins, the ELISA plate was coated with the 

corresponding coating antibody (50 µL/well) and incubated overnight at 4 °C. Then, 

the plate was washed four times with the wash buffer (WB; PBS + 0.1 % Tween 20). 

Afterwards, 100 µL of blocking buffer was applied per each well to block the unspecific 

binding. The plate was incubated for 2 hours at room temperature on a shaker. 

Thereafter the plate was washed again four times with the wash buffer (WB; PBS + 0.1 

% Tween 20) and 50 µL of the second anti-body was added per well. The plate was 

incubated for another 2 hours at room temperature and then washed again four times. 

Then, 25 µL of Streptavidin HRP were added to each well and incubated again for 20-

30 minutes in the dark. The plate was washed again eight times and, after that, 100 µL 

of substrate solution (peroxidase, POD) per well were added, and then, the plate was 

incubated for 20 minutes. Afterwards, the reaction was stopped by adding 50 µL of 2 

M sulfuric acid to each well, changing their color to yellow. The plate was then 

measured at 450 nm with the Tecan Reader and analyzed with the Magellan 3 

software. 
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3.4.7. Cytometric Bead Array (CBA) 

CBA is a new and innovative technology that enables to quantitatively determine the 

concentration of the cytokines or chemokines from a small amount of sample material 

(50 μL). This method uses Luminex magnetic beads for the quantification of over 450 

biologically relevant targets. Assays specific for inflammation, disease, cancer, cell 

signaling and growth, apoptosis, toxicity, and more are available. Like ELISA, the 

assays are based on a capture sandwich immunoassay format. Briefly, the capture 

antibody-coupled beads are first incubated with samples for a specific time. The plate 

is then washed, which is followed by an incubation with biotinylated detection 

antibodies. After another washing step for the unbound biotinylated antibodies, a 

reporter streptavidin-phycoerythrin conjugate (SA-PE) was added and incubated with 

the samples. Another washing to remove the unnecessary SA followed, and then, the 

beads were passed through the array reader measuring the fluorescence of the bound 

SA-PE (Figure 9.). Mouse cytokine flex sets used by Bio-Rad was able to measure 

IFN-g, IL-4, IL-5, IL-6, IL-9, IL-10, IL17A, IL-2, TNFa and IL-12p and other cytokines. 

 

Figure 9. The workflow of the luminex magnetic beads assay (CBA) (graph was taked from 

Bio-Rad company website)  
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3.4.8. Statistical Analysis 

The graphical representation of the data is conducted using software GraphPadPrism® 

(version 6, company: Graph Pad Software). For the BAL cytology, BAL cytokine, serum 

immunoglobulins and histology parameter (Goblet cells and inflammatory score) the 

two-sided T-test was used to calculate the significance differences between the 

comparison groups. Bars represent means ± SEMs (n = 6-8 per group),  

*P < .05, **P < .01, and ***P < .001. 

3.5. Microbiome analysis  

The samples were collected from the IL-6 KO and WT littermate animals and then 

transferred to Prof. Martin Blaser lab in USA for the microbiome analysis.  

The methods were used at Blaser lab are clarified in the paragraphs, 3.5.2, 3.5.3, 

3.5.4 

3.5.1. Faecal samples collections 

The contents of cecum were collected from the IL-6 KO and the WT littermate mice in 

cryopreservative tubes then the tubes were snap freezed in liquid nitrogen, then stored 

at -80 °C for further analysis. The samples were collected at the end of the experiment 

on day 67 i.e. after the mice pretreated w/o A. lwoffii (17 time every second day) and 

subjected or not subjected to the OVA model of asthma.  

3.5.2. Microbial DNA isolation  

DNA was extracted using the DNeasy PowerSoil HTP 96 Kit from Qiagen, which can 

be used for up to 0.25 g of cecum content to each sample. The square well mat from 

a PowerBead plate was removed then the samples were added to the well plate.  

After that, 750 μl of PowerBead solution was added to the each well followed by 60 μl 

of solution C1; the plate was secured tightly and placed on the plate’s shaker at speed 

20 Hz for 10 minutes. The plate then centrifuge at room temperature for 6 minutes at 

4500 x g, and the supernatant moved to a new clean 1 ml collection plate.  

To the collection plate, 250 μl of solution C2 was added then the plate was vortexed 

gently and centrifuged at room temperature for 6 minutes at 4500 x g.  

In the next step, the supernatant was transferred carefully to a new clean 1 ml 

collection plate then 200 μl of solution C3 was added, and again the plate was vortexed 

and centrifuged for 6 minutes at 4500 x g. 
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For the DNA isolation, only 650 μl of supernatant moved to a new 2 ml collection plate 

and 650 μl of solution C4 was added then the samples pipet up and down to mix.  

650 μl of the mixture was loaded to each well of the spin plate, the spin plate was 

centrifuged at room temperature for 3 minutes at 4500 x g, the supernatant was 

discarded then the second 650 μl of the supernatant loaded to the spin plate and we 

repeated the centrifugation step. After that, the supernatant was discarded, and 500 μl 

of solution C5-D was added to the spin plate. The plate was centrifuged at room 

temperature for 3 minutes at 4500 x g, the supernatant was discarded and the plate 

centrifuged again for 5 minutes at 4500 x g. The supernatant was discarded again and 

the spin plate allowed to air dry for 10 minutes at room temperature.  

In the last step, 100 μl of solution C6 was added to the center of each well, and then 

we centrifuged at room temperature for 3 minutes at 4500 x g. The DNA was isolated 

and ready in the bottom of the spin plate and it was collected and frozen at –80°C to 

be used for downstream applications.  

3.5.3. DNA sequencing and OTUs table 

After the DNA was extracted using the MoBio PowerSoil DNA Extraction Kit, the 

microbial 16S rRNA gene was amplified with barcoded fusion primers, targeting either 

the V1-2 (Fierer et al., 2008) or the V4 (Caporaso et al., 2012) region of the ribosomal 

DNA. MiSeq platforms protocol from illumine company was applied to sequence the 

cecum extracted DNA, the average number of the reads after sequencing was 50.949 

with minimum number of reads 33.279 and maximal number of reads 65.240. 

The QIIME 2 pipeline (Caporaso et al., 2010) was used for quality filtering of DNA 

sequences, demultiplexing (sorting out the barcodes for each sample), and taxonomic 

assignment in order to create the OTU table.  

OTU table contains the number of sequences that are observed for each taxonomic 

unit (OTUs) in each sample. Columns usually represent samples and rows represent 

genera or species taxonomic units (OTUs). OTU file was uploaded and processed by 

QIIME 2 program in order to create LEfSe (Linear discriminant analysis effect size) 

graphs for different comparisons to determine the differences in the enriched taxa 

under the influence of four conditions, first, the influence of A. lwoffii pretreatment 

alone, second, the influence of OVA sensitization alone, third, the influence of A. lwoffii 

pretreatment in OVA-sensitized mice and fourth, the influence of the genotype, in 
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presence/absence of both A. lwoffii and OVA sensitization, or in presence of A. lwoffii 

pretreatment alone, or in presence of OVA alone. 

3.5.4. Taxonomic analysis 

The LEfSe (Linear discriminant analysis effect size) tool was used to compare relative 

taxa abundance between two groups. LEfSe results showing significant differences 

between two groups are plotted as a graph that has bars which represent the effect 

size (LDA) for a particular taxa in a certain group. The length of the bar represents a 

log10 transformed LDA score for the phylogenetic sequence data, in simple words, the 

LDA represent the number of the reads per organism in the sample. The colors 

represent which group that taxa are found to be more abundant compared to the other 

group, this code color was clarified in the legend of each graph. 

(https://twbattaglia.gitbooks.io/introduction-to-qiime/content/lefse.html) 
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4. Results 

 

4.1. Protective effects induced by A. lwoffii against asthma in 

mouse model are slightly different between the lyophilized or live 

bacteria  

 

 

 

 

Figure 10. A)  Comparison between live and lyophilized A. lwoffii  on the protective effect against 

asthma development. In vivo experiment layout in which live or lyophilized A. lwoffii was applied 17 

times every second day. After the last application, mice were three times sensitized with OVA once per 

week, and then, challenged for three days with 1% OVA through a nebulizer, once per day. The analysis 

was conducted 48 hours from the last challenge at day 67. 

A) 



[58] 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

A. lwoffii - Live + Lyoph + - Live + Lyoph +

Genotype WT WT WT WT WT WT

Sensitiziation PBS PBS PBS OVA OVA OVA

*
***

EOS

0.0

1.0

2.0

3.0

4.0

5.0

A. lwoffii - Live + Lyoph + - Live + Lyoph +

Genotype WT WT WT WT WT WT

Sensitiziation PBS PBS PBS OVA OVA OVA

n.s.

n.s.

Total BAL cells

A. lwoffii - Live + Lyoph + - Live + Lyoph +

Genotype WT WT WT WT WT WT

Sensitiziation PBS PBS PBS OVA OVA OVA

A. lwoffii - Live + Lyoph + - Live + Lyoph +

Genotype WT WT WT WT WT WT

Sensitiziation PBS PBS PBS OVA OVA OVA

A. lwoffii - Live + Lyoph + - Live + Lyoph +

Genotype WT WT WT WT WT WT

Sensitiziation PBS PBS PBS OVA OVA OVA

 

Figure 10. B)  Comparison between live and lyophilized A. lwoffii  on the protective effect against 

asthma development. BAL cell analysis for OVA and PBS groups treated with live or lyophzlized  

A. lwoffii; PBS used as control; Bars represent means ± SEMs (n = 6 per group), *P < .05, **P < .01, 

and ***P < .001. 

B) 
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In this experiment, we aimed to determine if the protection effect against asthma 

induced by A. lwoffii is stronger or weaker when applying live or lyophilized bacteria 

intranasally to the mice subjected later to OVA-experimental asthma model. Every 

second day, the mice were repeatedly internasally treated with 108 CFU of living or 

dead A. lwoffii in a final volume of 50 µl PBS; in total, 17 intranasal application were 

performed. The control group was treated with PBS as a negative control. The 

treatment was stopped one day before the starting with three subcutaneous (s.c) 

ovalbumin (OVA) sensitization steps performed once per week, on the days 36, 43 and 

50. The sensitization was followed by an inhaled challenge with aerosolized OVA (1% 

wt/vol diluted in PBS) for 20 minutes, performed once daily on the days 62, 63 and 64 

(Figure 10. A). Forty-eight hours from the last challenge, the mice were sacrificed and 

the bronchoalveolar lavage was collected for differentiation analysis under the confocal 

microscope. The evaluation of the data from the BAL cytology clearly indicated that 

live A. lwoffiii has a stronger effect against eosinophilic asthma than the lyophilized 

one, as the reduction in eosinophils was much higher in the group treated with live  

A. lwoffi compared with the reduction in the group treated with lyophilized A. lwoffiii. 

On the other hand, neutrophils and lymphocytes were induced in both live and 

lyophilized A. lwoffii groups but no changes on the levels of the macrophages were 

observed (Figure 10. B).  
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4.2. Intranasal exposure to A. lwoffii indicates a strong increase of 

interleukin 6 (IL-6) locally and systemically, with no tolerance 

developed 

 

 

A) 

B) 
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Figure 11.  Chronic intranasal exposure to A. lwoffii influnces an innate immune response, IL-6 

was mostly recognized. WT Mice were treated with A. lwoffii every second day from day 1 until day 

23, comprising 12 different applications. On days 1, 3, 5, 7, 11, 15 and 23, blood and BAL have been 

collected from 2-3 mice at different time points (8, 12 and 24 hours) for the analysis of the pro-

inflammatory cytokines IL-6, TNFa and IL-1b . (A). BAL cytokines IL-1b, IL-6 and TNF-a were measured 

using R&D ELISA Kit. (B). The sum of the BAL cytokine peaks-concentrations (8 hours) before and after 

the 5th  application of A. lwoffii; no tolerance was detected for IL-6 levels, while it was observed for  

IL-1b and TNF-a levels.  (C). Serum cytokines IL-1b, IL-6 and TNF-a were measured using R&D ELISA 

Kit. (D). The sum of the serum cytokine peaks-concentrations (8 hours) before and after the  

5th application of A. lwoffii; no tolerance was detected for IL-6 levels, while a further induction was 

observed for IL-1b and same levels for TNF-a . 

C) 

D) 
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In order to investigate the pattern in which A. lwoffii stimulates the innate immune 

system, mice were repeatedly intranasally treated with 108 CFU of living A. lwoffii in a 

final volume of 50 µl PBS for each application. The A. lwoffii was applied for 23 days, 

every second day. Blood and BAL were collected from the scarified mice (2-3 mice) at 

different time points (8, 12 and 24 hours) after each application for 12 applications.  

Pro-inflammatory cytokines (IL-6, TNFa and IL-1b) in serum and BAL were measured 

using R&D ELISA Kit.  

The data indicates a decrease in the response of TNF-a and IL-1b in the BAL after  

5th application of the A. lwoffii (Figure 11. A& B). Both cytokines achieved a tolerance 

locally in the lungs (BAL) after the 5th application of the A. lwoffii as it is presented in 

(Figure 11. B). On the other hand, the serum IL-1b levels were increased after the  

5th application of A. lwoffii (Figure 11. C) but the serum TNFa levels stay similar before 

and after or the 5th application of A. lwoffii (Figure 11. C). 

Interestingly, a very pronounced, fast and transient but repeated inflammatory 

response was observed for the IL-6 locally in lungs (BAL); IL-6 was increased to the 

peak 8 hours after the application and then transiently decreased till 24 hours. The 

effects pattern observed for the IL-6 levels in the lungs were similar to those in serum.  

The pattern of innate immune responses assessed locally and systemically after an 

intranasal application of A. lwoffii shed some light on the important role of IL-6 in 

mediating the effects of A. lwoffii. 
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4.3. IL-6 knockout abolishes the protective effect of A. lwoffii 

against eosinophilic asthma in a mouse model 

 

 

 

 

Figure 12. A)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-6 KO mice. Layout of the in vivo experiment in which A. lwoffii was applied 17 times every 

second day. After the last application, mice were three times sensitized with OVA once per week, 

andthen, challenged once per day with 1% OVA through a nebulizer for three days. The analyses were 

conducted 48 hours from the last challenge at day 67.  
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Figure 12. B)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-6 KO mice. BAL cell analysis for OVA and PBS groups treated w/o A. lwoffii. Bars represent 

means ± SEMs (n = 8 per group), *P < .05, **P < .01, and ***P < .001. 

B) 
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Figure 12. C&D) The protective effects of A. lwoffii against asthma development in WT compared 

with IL-6 KO mice. (C). BAL cytokines IL-5 and IL-13 measurement for OVA and PBS groups treated 

w/o A. lwoffii.  (D). Representative microphoto-graphs of airways from mice after PAS staining of goblet 

cell and the calculations of the inflammation score and Goblet cell score for OVA and PBS groups treated 

w/o A. lwoffii, NOT enough biomaterials were available from the IL-6 KO PBS group treated w/o A. lwoffii 

to conduct lung histology . Bars represent means ± SEMs (n = 8 per group), *P < .05, **P < .01, and 

***P < .001. 

C) 

D) 
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Figure 12. E) The protective effects of A. lwoffii against asthma development in WT compared 

with IL-6 KO mice. OVA-specific serum antibody levels for OVA and PBS groups treated w/o A. lwoffii, 

the serum from the IL-6 KO PBS group treated w/o A. lwoffii were not enough to measure the 

immunoglobulins. Bars represent means ± SEMs (n = 8 per group), *P < .05, **P < .01, and ***P < .001.   
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In 2009, Melanie Conrad and her colleagues (Conrad et al., 2009), first observed 

increased levels of IL-6 in BAL obtained from mice treated with A. lwoffii. Those results 

together with own observation of the pronounced pattern of increased IL-6 levels after 

each of multiple applications of A. lwoffii suggested a mechanistic role of this pro-

inflammatory cytokine in the protective effects of A. lwoffii against asthma. 

Based on own observations and the previous data, it seems that IL-6 is potentially 

induced by intranasal application of A. lwoffii in WT (wild-type) mice, with no tolerance 

and it might be crucial for the protective effects against asthma development. 

Therefore, we hypothesized that IL-6 functionally contributes to the protective effects 

induced by A. lwoffii against allergic airway inflammation. To test own hypothesis, mice 

with WT and IL-6 KO (IL-6 knockout) background were intranasally treated with 108 

CFU of living A. lwoffii in a final volume of 50 µl PBS, or with PBS as a negative control, 

17 times, every second day. Then, the mice were subjected to OVA-Th-2 experimental 

asthma model. The treatment with A. lwoffii stopped one day prior to (s.c.) ovalbumin 

(OVA) sensitization, performed three times, on the days 36, 43 and 50. Afterwards, at 

days 62, 63 and 64, the mice were exposed to aerosolized OVA (1% wt/vol diluted in 

PBS) for 20 minutes (Figure 12. A) 

Forty-eight hours after the last inhaled challenge with OVA, the mice were sacrificed 

and the bronchoalveolar lavage (BAL) fluid was collected for the cell differentiation 

analysis conducted with a confocal microscope as it is described in detail in the 

methodological section.  

The protective effects were observed only in the WT animal pre-treated with A. lwoffii 

and subsequently subjected to OVA-Th-2 experimental asthma model but not in mice 

subjected to OVA-Th-2 experimental asthma but first pre-treated with PBS only. 

Attractively, these protective effects were abolished in IL-6 KO mice pre-treated with 

A. lwoffii.  

The data demonstrated a significant decrease in the number of eosinophils, a hallmark 

of eosinophilic asthma, in the BAL fluid from the WT mice subjected to OVA-Th-2 

experimental asthma model and pre-treated with A. lwoffii compared to the OVA-

sensitized WT mice but not treated with A. lwofii. The reduction in eosinophil counts 

was, however, absent in the IL-6 KO mice subjected to OVA model of asthma, 

regardless of A. lwoffii pretreatment (Figure 12. B).  
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Interestingly, it was also noticed that the asthmatic phenotype was much stronger in 

OVA-sensitized IL-6 KO mice compared with the asthmatic phenotype in OVA-

sensitized WT mice. The eosinophil numbers were much higher in both IL-6 KO mice 

groups (pre-treated or not pre-treated with A. lwoffii and subjected to OVA-Th-2 

experimental asthma model) compared with the WT mice not treated with A. lwoffii 

although subjected to OVA-Th-2 experimental asthma model.  

In contrast, the numbers of neutrophils and macrophages were significantly induced in 

OVA-sensitized WT and IL-10 KO mice after pretreatment with A. lwoffii compared with 

the not treated mice. In addition, neutrophils, macrophages, and lymphocytes were 

induced in the PBS sensitized WT mice after the treatment with A. lwoffii. 

The number of lymphocytes was significantly increased in the OVA-sensitized IL-6 KO 

mice after the treatment with A. lwoffii, but it was not changed in the OVA-sensitized 

WT mice, after the treatment with A. lwoffii (Figure 12. B).  

The cytokine measurements performed in the BAL demonstrated a reduction in the  

IL-5 and IL-13 levels in the OVA-sensitized WT animals pretreated with A. lwoffii 

compared with the not treated. This reduction in the IL-13 and IL-5 was not observed 

in the OVA-sensitized IL-6 KO mice pretreated with A. lwoffii (Figure 12. C), 

additionally, the IL-13 was induced in the non-OVA-sensitized IL-6 KO and WT mice 

after the treatment with A. lwoffii compared to PBS control.  

The lung histology revealed a reduction in peri-bronchial and peri-vascular 

inflammatory cell infiltration (inflammatory score) in the OVA-sensitized WT mice after 

the treatment with A. lwoffii compared with the OVA-sensitized WT but not treated with 

A. lwoffii. This reduction was completely absent in OVA-sensitized IL-6 KO mice, 

regardless of A. lwoffii pretreatment.  

On the other hand, A. lwoffii treatment almost completely hindered the development of 

mucus-producing goblet cells in OVA-sensitized WT mice after the completion of  

A. lwoffii treatment, here, we observed the same effect for the OVA-sensitized IL-6 KO 

mice (Figure 12. D). The microphoto-graphs of airways from mice after PAS staining 

were comparable with the lung histology calculation.  

Here, NOT enough biomaterials (lungs) from the IL-6 KO PBS group treated w/o  

A. lwoffii were available to conduct lung histology (Figure 12. D). 
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Furthermore, IgE, IgG2a, and IgG1 were significantly higher in the OVA-sensitized  

IL-6 KO mice treated with A. lwoffii compared with the OVA-sensitized WT mice treated 

with A. lwoffii. The protective effects of A. lwoffii in WT mice was only noticed for the 

IgG2a which is significantly decreased in the OVA-sensitized WT mice pre-treated with 

A. lwoffii compared with OVA-sensitized WT mice not treated with A. lwoffii. The rest 

of comparisons in OVA-sensitized animals did not reach statistical significance.  

Here, the serum from the IL-6 KO PBS group treated w/o A. lwoffii were not enough to 

measure the immunoglobulins (Figure 12. E). 

 

4.4. In vivo A. lwoffii first contact cells 

 

 

Figure 13. DAPI-pre-stained, intranasally applied A. lwoffii. The mouse was killed 4 hours from the 

A. lwoffii application. The data showed that the A. lwoffii was taken up by BAL macrophages but not 

tracheal epithelial cells. 
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To identify the first contact cells for A. lwoffii, the tracheal epithelial cells and alveolar 

macrophages was studied. To this experiment the animal part was done by Dr. Hani 

Harb and the fluorescent microscopy and the analysis were done at the lab of Prof. Dr. 

Peter Graumann by Dr. Jihad El andari. The A. lwoffii bacterium was stained with DAPI 

prior to animal inoculation. DAPI (4,6-diamidino-2-phenylindole), a DNA-specific 

fluorochrome, was used to detect the presence of the bacteria in the host cells. DAPI 

specifically binds to double-stranded DNA, emitting a blue fluorescence when excited 

by 365-nm UV light. After the bacteria stained with DAPI, it was introduced intranasally 

to the mice and, after 4 hours from the treatment, the mice were sacrificed, and the 

nasopharyngeal and bronchial epithelial cells were collected for further fluorescent 

microscopy analysis. The procedure of tissue fluorescent microscopy was conducted 

as it is clarified in detail in the methodological section. The samples were analyzed 

using Zeiss Axio Imager A1 with a TIRF objective having an aperture of 1.45. The 

microscope is equipped with an EVOLVE- EMCCD camera (Photometrics). The 

operating system used was VisiView (2.1.2). The DAPI-stained A. lwoffii bacterium was 

detected in the alveolar macrophages but not in the epithelial tracheal cells as it is 

clearly visible in the figure (Figure 13.).  

The data demonstrated that the macrophages play a key role as the front line of host 

contact with A. lwoffii. Here, it seems that the macrophages can engulf and digest of 

A. lwoffii, which might be ended by presenting of the A. lwoffii antigens to CD4+ T cells.  

On the other hand, the stimulation the macrophages with A. lwoffii bacteria could 

polarize the macrophages to secret of different cytokines once the crosstalk is started. 

In contrast, we were not able to detect DAPI-stained A. lwoffii in the tracheal respiratory 

epithelial cells. Thus, tracheal respiratory epithelial cells seem not to be the point of 

the initial contact between A. lwoffii and host cells. The finding of a crosstalk between 

the A. lwoffii and macrophages was further investigated in in vitro model. 
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4.5. In vitro stimulation of primary macrophages, plasmacytoid 

dendritic cells and myeloid dendritic cells with A. lwoffii 

 

 

Figure 14. In vitro stimualtion of innate immune cells with A. lwofii (A). Primary macrophages (Mϕ), 

plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells (mDCs) were isolated, and then, 

stimulated for 24 hours with either LPS (10 ng/ml), 1X106 CFU of A. lwoffii or medium as a negative 

control, as it is described in detail in the methodological section.  (B). the supernatant was collected and 

cytokines were measured using CBA-Bio-Plex® 200, Bio-Rad, USA. A. lwoffii was able to stimulate Mϕ, 

pDCs and mDCs to secrete huge amounts of IL-6, the data generated from 3 experiment in triplicate.  
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The aim of this experimental part was to analyze the innate immune response 

generated by primary macrophages, plasmacytoid dendritic cells and myeloid dendritic 

cells. Cells were isolated and differentiated by Dr. Andreas Kaufmann in the BMFZ, 

Marburg, then tested by FACS as described in the methodology and in (Figure. 1 

Suppl).  

The cells were stimulated with 106 CFU freshly live isolated A. lwoffii, LPS (10 ng/ml) 

as a positive control, or medium as a negative control. After 24 hours of incubation, the 

supernatant was harvested. The cytokine profile was measured using Cytometric Bead 

Array-CBA (Bio-Plex® 200, Bio-Rad, USA), as it is clarified in the (Figure 14. A).  

Primary macrophages and plasmacytoid and myeloid dendritic cells cultured in vitro in 

the presence of A. lwoffii secreted huge amounts of IL-6 and generally smaller amounts 

of several other classical cytokines of professional non-B-cell antigen-presenting cells 

such as IL-12, IL-10 and IL-1b. Our investigations in vitro demonstrated IL-6 to be the 

major first line, innate immunity cytokine secreted in response to the contact with  

A. lwoffii, which is at the same in line with the crucial role of IL-6 in mediating the effects 

of A. lwoffii against allergic asthma (Figure 14. B). 
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4.6. In vitro isolation of murine peritoneal macrophages and their 

stimulation with A. lwoffii  
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Figure 15.  In vitro A.lwoffi-stimulation of the murine peritoneal macrophages. (A). Murine 

peritoneal macrophages were isolated from the peritoneal cavity of WT mice after 72 hours of stimulation 

using peritoneal injection of the 3% Brewer thioglycollate; FACS was used to determine the purity of 

isolation (Figure. 2 Suppl ). (B). Murine peritoneal macrophages were stimulated with A. lwoffii for 24 

hours; the supernatant was collected for further experiments and pro-inflammatory IL-6, IL1b and TNFa 

cytokines were measured using R&D Kit, data for the cytokines are generated from two independent 

experiments ̇in triplicate. 
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Murine peritoneal macrophages were isolated from the peritoneal cavity of (5-6) WT 

mice after 72 hours of intraperitoneal injection with 3% Brewer thioglycollate (Figure 

15. A). The purity of macrophages was tested with FACS machine using anti-F4/80-

APC (APC-anti mouse F4/80 anti-body, BioLegend, USA) and anti-CD45-FITC (FITC 

-anti mouse CD45 anti-body, BioLegend, USA) (Figure. 2 Suppl). 

The murine macrophages were cultured in the presence of 106 CFU live A. lwoffii, LPS 

(10 ng/ml) as a positive control, or medium as a negative control. After 24 hours of 

incubation, the supernatant was collected and pro-inflammatory IL-6, IL1b and TNFa 

cytokines were measured, huge amounts of IL-6 was produced from the A. lwoffii 

stimulated with peritoneal macrophages compared with the LPS stimulated 

macrophages, less amounts from TNFa were observed (Figure 15. B). Moreover, the 

supernatant from macrophages exposed A. lwoffii or to medium were used for further 

stimulation of naïve mouse T cells. 
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4.7. In vitro stimulation of naïve CD4+T cells with the supernatant 

from A. lwoffii-exposed macrophages or recombinant IL-6 

 

 

 

Figure 16.  In vitro stimulation of naïve CD4+T cells with the supernatant from A. lwoffii-exposed 

macrophages or recombinant IL-6. (A). Layout of the in vitro naïve T cell stimulation; the naïve 

CD4+CD62L+ Tcells isolated from the spleen of wide type mice were cultured in an a-CD3 (0.5 µg/ml) 

48-coated plate plus a-CD28 (1 µg/ml). The supernatant from primary macrophages (Mϕ) exposed to  

A. lwoffii, recombinant IL-6 (50 µg/ml), or medium as a negative control were added to naïve T cells.  

(B). The cytokine profile of T cells was measured using Bio-Plex® 200 system. Supernatant from 

macrophages exposed to A. lwoffii was able to stimulate IL-10 secretion from T cells, and the 

recombinant IL-6 mimicked the same effect. 
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CD4+CD62L + T cells were isolated from the spleen of WT mice as it is described in 

the methodological section. The purity of the CD4+T cells was tested with FACS 

machine, indicating a purity of 76%, (APC anti-mouse CD4 Antibody, BioLegend, USA) 

and (PE anti-mouse CD62L Antibody, BioLegend, USA) were used (Figure. 3 Suppl).  

The naïve T cells were cultured in the presence of the supernatant from the 

macrophages exposed to A. lwoffii (50% of macrophage-derived supernatant and 50% 

medium), recombinant murine IL-6 (end concentration of 50 ng/ml, PeproTech, USA), 

or in medium used as negative control. After seventy-two hours, the medium was 

replaced in the presence of recombinant murine IL-2 (end concentration of 50 U/ml, 

PeproTech, USA). The cells were then incubated for further 48 hours. Afterwards, the 

medium was changed again, and the cells were re-stimulated with αCD3 (5 µg/ml; 

clone 145-2C11, BioLegend, USA) in a pre-coated 48-plate. After 24 hours the 

supernatant was collected for cytokine measurement (Figure 16. A& B). 

The data demonstrated that culturing naïve mouse T cells with supernatant from  

A. lwoffii-exposed macrophages or rIL-6 led to production of high amounts IL-10 and 

IL-17A or only IL-10, respectively. Both, supernatant from A. lwoffii-exposed 

macrophages and rIL-6, induced production of IL-10. 
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4.8.  IL17 knock out plays no role in the protective effect of  

A. lwoffii against eosinophilic asthma in a mouse model 

 

 

 

 

 

Figure 17. A)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-17 KO mice. Layout of the in vivo experiment in which A. lwoffii was applied 17 times every 

second day. After the last application, mice were sensitized with OVA once per week for three times, 

and then, challenged once per day with 1% OVA through a nebulizer for three days. The analyses were 

conducted 48 hours from the last challenge at day 67. 
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Figure 17. B)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-17 KO mice. BAL cell analysis for OVA and PBS groups treated w/o A. lwoffii. Bars represent 

means ± SEMs (n = 8 per group), *P < .05, **P < .01, and ***P < .001.   
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Figure 17. C& D)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-17 KO mice. (C). BAL cytokines IL-5 and IL-13 measurement for OVA and PBS groups treated 

w/o A. lwoffii. (D). OVA-specific serum antibody levels for OVA and PBS groups treated w/o A. lwoffii, 

the serum from the IL-17 KO PBS group treated w/o A. lwoffii was not enough to measure the 

immunoglobulins. Bars represent means ± SEMs (n = 8 per group), *P < .05, **P < .01, and ***P < .001.   
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A crucial role of IL-6 as the first response to the A. lwoffii application was shown in 

mice. Moreover, the IL-6 might play an important role in modulating of the adaptive 

immune system towards non-/anti-allergic direction. On the top of that, our 

investigations demonstrated that IL-17 production is thought to arise from naïve T cells 

primed with IL-6. Therefore, we sought to get further insights into the underlying 

mechanism downstream of IL-6 production and to understand the role of IL-17 in the 

protective effects against asthma induced by A. lwoffii.  

WT (wild-type) and IL-17 KO (IL-17 knockout) mice received intranasally 108 CFU of 

living A. lwoffii in a final volume of 50 µl PBS or PBS as a negative control 17 times 

every second day. Then the mice were subjected to OVA-Th-2 experimental asthma 

model; the A. lwoffii pre-treatment stopped one day prior to the first ovalbumin (OVA) 

sensitization, performed subcutaneously three times on the days 36, 43 and 50.  On 

days 62, 63 and 64, the mice were exposed to aerosolized OVA (1% wt/vol diluted in 

PBS), always for 20 minutes (Figure 17. A).  

Forty-eight hours from the last inhaled challenge with OVA, the mice were sacrificed 

and the bronchoalveolar lavage (BAL) fluid as collected for the cell differentiation 

analysis conducted using the confocal microscope, as it is described in detail in the 

methodological section.  

In OVA-sensitized WT and IL-17 KO mice, the pretreatment with A. lwoffii was able to 

reduce the counts of eosinophils in the BAL compared with the OVA-sensitized WT 

and IL-17 KO mice which were not treated with A. lwoffii. The reductions in eosinophil 

counts in both WT and IL17 KO animals, demonstrating that IL17 plays no role in the 

protective effects induced by A. lwoffii (Figure 17. B).  

In contrast, the numbers of BAL macrophages were influenced in the WT and IL-17 

KO mice after the treatment with A. lwoffii compared with those were not treated with 

A. lwoffii, regardless of the OVA or non-OVA-sensitization.  

Besides, in the WT mice, the neutrophils were induced due to the treatment with  

A. lwoffii compared with the A. lwoffii not-treated mice, regardless of the OVA or non-

OVA-sensitization. But in the OVA-sensitized IL-17 KO mice it was observed that the 

treatment with A. lwoffii reduced the number of the neutrophils compared with the  

not-treated OVA-sensitized IL-17 KO.  
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On the other hand, in the non-OVA sensitized IL-17 KO mice, no change was observed 

on the number of the neutrophils if the mice treated w/o A. lwoffii. 

For the lymphocytes, not much were observed for many comparisons in the WT or in 

the IL-17 KO regardless of the A. lwoffii pretreatment or OVA sensitization (Figure 17. 

B). 

The cytokine measurements performed in the BAL demonstrated the same reduction 

in the IL-5 of the OVA-sensitized WT or IL-17 KO mice pretreated with A. lwoffii 

compared with the OVA sensitized WT or IL-17 KO mice not treated with A. lwoffii.  

IL-13 levels were significantly reduced in OVA-sensitized WT animals pretreated with 

A. lwoffii compared with the not treated mice. This effect was weaker or not significant 

in OVA-sensitized IL-17 KO animals pretreated with A. lwoffii compared with the not 

treated mice (Figure 17. C). The IL-13 and IL-5 levels were induced in the non-OVA 

sensitized WT mice after the treatment with A. lwoffii. 

The differences in concentrations of the OVA-specific serum antibodies (IgE, IgG2a, 

and IgG1) did not reach statistical significance, with the immunoglobulin concentrations 

being similar within and between the OVA-sensitized WT and IL-17 KO mice 

regardless of A. lwoffii pretreatment (Figure 17. D).  

Here, the serum from the IL-17 KO PBS group treated w/o A. lwoffii was not enough to 

measure the immunoglobulins, and the lung histology was not conducted while the 

lungs were preserved in RNA later -80 C for future microbiome analysis. 
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4.9.  IL10 knock out abolishes the protective effects of  

A. lwoffii against eosinophilic asthma in a mouse model 

 

 

 

 

 

Figure 18. A)  The protective effects of A. lwoffii against asthma development in WT compared 

with IL-10 KO mice. Layout of the in vivo experiment in which A. lwoffii was applied 17 times every 

second day. After the last application, mice were sensitized with OVA once per week for three times, 

and then, challenged once per day with 1% OVA through a nebulizer for three days. The analyses were 

conducted 48 hours from the last challenge at day 67. 
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Figure 18. B) The protective effects of A. lwoffii against asthma development in WT compared 

with IL-10 KO mice. BAL cell analysis for OVA and PBS groups treated w/o A. lwoffii. Bars represent 

means ± SEMs (n = 6 per group), *P < .05, **P < .01, and ***P < .001. 

B) 



[84] 

 

 

Current in vitro data showed a huge production of IL-10 from the naïve T cells primed 

with supernatant from macrophages exposed to A. lwoffii. To analyze whether IL-10 

functionally contributes to the protective effects of A. lwoffii against allergic asthma 

development, WT (wild-type) and IL-10 KO (IL-10 knockout) mice received intranasally 

108 CFU of living A. lwoffii in a final volume of 50 µl PBS or PBS as a negative control, 

17 times, every second day. Then, the mice were subjected to OVA-Th-2 experimental 

asthma model. The pre-treatment with A. lwoffii stopped one day prior to the first 

ovalbumin (OVA) sensitization, performed subcutaneously three times on the days 36, 

43 and 50. Then, the mice were exposed to aerosolized OVA (1% wt/vol diluted in 

PBS) for 20 minutes at days 62, 63 and 64 (Figure 18. A). Forty-eight hours after the 

last inhaled challenge with OVA, the mice were sacrificed and the bronchoalveolar 

lavage (BAL) fluid was collected for the cell’s differentiation analysis conducted using 

the confocal microscope, as described in detail in the methodological section.  

The protective effects of A. lwoffii against asthma development were observed only in 

the OVA-sensitized WT mice pre-treated with A. lwoffii compared with the not treated 

mice. The protective effects were abolished in the OVA-sensitized IL-10 KO mice if the 

mice treated or not treated with A. lwoffii.   

The data demonstrated a significant decrease in the number of eosinophils in the BAL 

fluid from the OVA-sensitized WT mice pre-treated with A. lwoffii compared with the 

OVA-sensitized WT not-treated with A. lwoffii, but the reduction in eosinophils counts 

was disappeared in the OVA-sensitized IL-10 KO mice pre-treated with A. lwoffii 

compared with the not treated (Figure 18. B).  

Besides, it was noticed that the asthmatic phenotype was much stronger in the OVA-

sensitized IL-10 KO mice (regardless of A. lwoffii pretreatment) compared with the 

asthmatic phenotype in OVA-sensitized WT mice not treated with A. lwoffii .  

Eosinophil counts were much higher in both OVA-sensitized IL-10 KO mice groups 

(pre-treated or not pre-treated with A. lwoffii) compared with the WT animals not treated 

with A. lwoffii although subjected to OVA-Th-2 experimental asthma model.  

On the other hand, the numbers of lymphocytes were decreased in OVA-sensitized 

WT mice pretreated with A. lwoffii compared with the not-treated mice.  

In the OVA-sensitized IL-10 KO group, the number of the lymphocytes was not different 

if the mice were treated w/o A. lwoffii, but in absence of OVA-sensitization the 

lymphocytes were highly induced after the treatment with A. lwoffii (Figure 18. B).  
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In absence of OVA sensitization macrophages were increased in the WT mice but 

decreed in the IL-17 KO mice after the pretreatment with A. lwoffii. In presence of OVA 

the macrophages were not changes after the treatment with A. lwoffii but in the IL-17 

KO mice they were significantly increased under the influence of A. lwoffii treatment.  

Besides, the macrophages in the PBS control groups were higher than the 

macrophages in the OVA control groups of the WT or IL-10 KO mice. The neutrophils 

significantly increased in the IL-10 KO mice after the treatment with A. lwoffii, 

regardless of the OVA sensitization (Figure 18. B).  

The difference was not significant in presence/absence of OVA of the WT mice if we 

compared the A. lwoffii treated mice with the not treated mice. For this experiment the 

lungs and serum were preserved for future microbiome analysis. 

 

 

 

 

 

 

 



[86] 

 

 

4.10. Genotype effect on the relative abundance of taxa in cecum 

microbiota in absence of both A. lwoffii pre-treatment and 

OVA-sensitization (IL-6 KO versus WT) 

 

Figure 19. Genotype effect on the taxa abundance of the cecum microbiota, 

in absence of both A. lwoffii pre-treatment and OVA (IL-6 KO versus WT). LEfSe 

(Linear discriminant analysis effect size) was used to compare relative abundance of taxa 

between the two groups. LEfSe are plotted as a graph that has bars which represent the 

effect size (LDA) for a particular taxa in a certain group. The length of the bar represents a 

log10 transformed LDA score. The colors represent which group that taxa was found to be 

more abundant compared to the other group. GREEN bars, significant higher in WT mice, 

RED bars, significant higher in IL-6 KO mice. All mice were not treated with A. lwoffii and not 

subjected to OVA model of asthma, (UN_g2) unclassied genus. 

Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67 (Figure 12. A). The animals were 

neither pretreated with A. lwoffii nor subjected to OVA sensitization. Moreover, the 

differences in phylum-, class-, order-, family- and genus-level relative abundance 

between IL-KO and WT littermate were determined using LEfSe and plotted as a bars 

graph. The length of the bar represents a log10 transformed LDA score (Figure 19). 

In the WT littermate the relative abundance of S24_7.UN_g and Sutterella were 

significantly higher (GREEN bars) compared with IL-6 KO mice. And the relative 

abundance of Lachnospiraceae.UN_g1, Lachnospiraceae.UN_g2, Ruminococcus and 

Anaeroplasma were significantly higher in the IL-6 KO mice (RED bars) compared with 

WT littermate, as it is described in (Figure 19). 



[87] 

 

 

4.11. Genotype effect on the relative abundance of taxa in cecum 

microbiota in presence of A. lwoffii pre-treatment but no OVA-

sensitization (IL-6 KO versus WT) 

 

Figure 20. Genotype effect on the taxa abundance of the cecum microbiota, 

in presence of A. lwoffii pretreatment but No OVA (IL-6 KO versus WT). LEfSe (Linear 

discriminant analysis effect size) was used to compare relative abundance of taxa between 

the two groups. LEfSe are plotted as a graph that has bars which represent the effect size 

(LDA) for a particular taxa in a certain group. The length of the bar represents a log10 

transformed LDA score. The colors represent which group that taxa was found to be more 

abundant compared to the other group. GREEN bars, significant higher in WT mice, RED 

bars, significant higher in IL-6 KO mice. All mice were pretreated with A. lwoffii and not 

subjected to OVA model of asthma, (UN_f) unclassied family, (UN_g) unclassied genus. 

Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67, i.e. after the completion of the 

intranasal treatment with A. lwoffii comprising 17 applications performed every second 

day, the animals were not subjected to OVA model of asthma (Figure 12. A).  

The differences in phylum-, class-, order-, family- and genus-level relative abundance 

between IL-KO and WT littermate were determined using LEfSe and plotted as a bars 

graph. The length of the bar represents a log10 transformed LDA score (Figure 20). 

In the WT littermate mice, the relative abundance of Mogibacteriaceae.UN_g, 

Clostridiales.UN_f1.UN_g and Dorea were significantly higher (GREEN bars) 

compared with the IL-6 KO mice. And the relative abundance of 

Clostridiales.UN_f2.UN_g was significantly higher in the IL-6 KO mice (RED bars) 

compared with the WT littermate, as it is described in (Figure 20). 
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4.12. Genotype effect on the relative abundance of taxa in cecum 

microbiota in absence of A. lwoffii pre-treatment but with OVA-

sensitization (IL-6 KO versus WT) 

 

Figure 21.  Genotype effect on the taxa abundance of the cecum microbiota, 

in absence of A. lwoffii pretreatment but with OVA (IL-6 KO versus WT). LEfSe (Linear 

discriminant analysis effect size) was used to compare relative abundance of taxa between 

the two groups. LEfSe are plotted as a graph that has bars which represent the effect size 

(LDA) for a particular taxa in a certain group. The length of the bar represents a log10 

transformed LDA score. The colors represent which group that taxa was found to be more 

abundant compared to the other group. GREEN bars, significant higher in WT mice (no taxa 

were detected to be higher in the WT compared with IL-6 KO), RED bars, significant higher 

in IL-6 KO mice. All mice were subjected to OVA model of asthma and not treated with  

A. lwoffi,i (UN_f) unclassied family, (UN_g) unclassied genus. 

Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67 (Figure 12. A), the animals were 

subjected to OVA model of asthma and not pre-treated with A. lwoffii. The differences 

in phylum-, class-, order-, family- and genus-level relative abundance between IL-6 KO 

and WT littermate mice were determined using LEfSe and plotted as a bars graph.  
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The length of the bar represents a log10 transformed LDA score, the absence of the 

GREEN bars is indicating that no taxa were detected to be higher in the WT compared 

to IL-6 KO (Figure 21).  

In the WT littermate, no taxa were detected to be higher compared with the IL-6 KO 

(GREEN bars are absence) but in the IL-6 KO mice the relative abundance of 

Ruminococcaceae.UN_g2,Prevotella,Sutterella,Anaerostipes,Dorea,Parabacteroides, 

Peptococcaceae.UN_g, and RF32.UN_f.UN_g were higher (RED bars) compared with 

WT littermate (Figure 21). 
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4.13.  Genotype effect on the relative abundance of taxa in cecum 

 microbiota in presence of both A. lwoffii pre-treatment and 

 OVA-sensitization (IL-6 KO versus WT) 

 

Figure 22. Genotype effect on the taxa abundance of the cecum microbiota  

in presence of A. lwoffii pretreatment and OVA sensitization (IL-6 KO versus WT). 

LEfSe (Linear discriminant analysis effect size) was used to compare relative abundance of 

taxa between the two groups. LEfSe are plotted as a graph that has bars which represent 

the effect size (LDA) for a particular taxa in a certain group. The length of the bar represents 

a log10 transformed LDA score. The colors represent which group that taxa was found to be 

more abundant compared to the other group. GREEN bars, significant higher in WT mice, 

RED bars, significant higher in IL-6 KO mice. All mice were pretreated with A. lwoffii and 

subjected to OVA model of asthma, (UN_g2) unclassied genus. 

Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67, i.e. after the completion of the 

intranasal treatment with A. lwoffii comprising 17 applications performed every second 

day and subjecting the mice to OVA model of asthma (Figure 12. A). 

The differences in phylum-, class-, order-, family- and genus-level relative abundance 

between IL-KO and WT littermate were determined using LEfSe and plotted as a bars 

graph. The length of the bar represents a log10 transformed LDA score (Figure 22). 

In the WT littermate mice, the relative abundance of Clostridiales.UN_f1.UN_g and 

Bilophila were significantly higher (GREEN bars) compared with the IL-6 KO mice. And 

the relative abundance of Lactobacillus and Desulfovibrio were significantly higher in 

the IL-6 KO mice compared with WT littermate (RED bars), as it is described in  

(Figure 22). 
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4.14. Effect A. lwoffii pre-treatment (alone) on the relative 

abundance of taxa in cecum microbiota of the WT and IL-6 KO 

mice (no A. lwoffii versus A. lwoffii) 

 

 

 

Figure 23. Effect of A .lwoffii pretreatment alone on the relative abundance of taxa in 

cecum microbiota of the WT and IL-6 KO mice (No A. lwoffii versus A. lwofii). LEfSe 

(Linear discriminant analysis effect size) was used to compare relative abundance of taxa in 

presence/absence A. lwoffii in (A). WT mice and (B). IL-6 KO mice. LEfSe are plotted as a 

graph that has bars which represent the effect size (LDA) for a particular taxa in a certain 

group. The length of the bar represents a log10 transformed LDA score. The colors 

represent which group that taxa was found to be more abundant compared to the other 

group. GREEN bars, significant higher in absence of A. lwoffii (no taxa were detected to be 

higher in the absence of A. lwoffii pretreatment in both the WT and the IL-6 KO mice), RED 

bars, significant higher in presence of A. lwoffii, (UN_f) unclassied family, (UN_g) unclassied 

genus. 

Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67 (Figure 12. A), here we compared the 

presence of A. lwoffii pretreatment with the absence of the A. lwoffii pretreatment, first 

in the WT (Figure 23. A) and second, in the IL-6 KO mice (Figure 23. B), all animals 

were NOT subjected to OVA model of asthma. 

A) 

B) 
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The differences in phylum-, class-, order-, family- and genus-level of the relative 

abundance in presence or absence of A. lwoffii pretreatment were determined in  

IL-6 KO and WT mice using LEfSe and plotted as a bars graph. The length of the bar 

represents a log10 transformed LDA score. 

The absence of the GREEN bars is indicating that no taxa were detected to be higher 

in the absence of A. lwoffii pretreatment in both the WT and the IL-6 KO mice, 

compared with the presence of A. lwoffii pretreatment (Figure 23. A& B). 

In the WT littermate, pretreatment with A. lwoffii results in higher of the relative 

abundance of Odoribacter, Ruminococcus, Erysipelotrichaceae.UN_g2, 

Anaeroplasma, Ruminococcaceae.UN_g1 and Lachnospiraceae.UN_g2 (RED bars), 

compared with the absence of A. lwoffii (Figure 23. A).  

On the other hand, in the IL-6 KO mice the pretreatment with A .lwoffii results in higher 

of the relative abundance of S24_7.UN_g (RED bars) compared with the absence of 

A. lwoffii (Figure 23. B). 
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4.15. Effect of OVA sensitization (alone) on the relative abundance 

of taxa in cecum microbiota of the WT and IL-6 KO mice  

(no OVA versus OVA) 

 

 

Figure 24. Effect of OVA sensitization alone on the relative abundance of taxa in 

cecum microbiota of the WT and IL-6 KO mice (No OVA versus OVA). LEfSe (Linear 

discriminant analysis effect size) was used to compare relative abundance of taxa in 

presence/absence of OVA sensitization in (A). WT mice and (B). IL-6 KO mice. LEfSe are 

plotted as a graph that has bars which represent the effect size (LDA) for a particular taxa in 

a certain group. The length of the bar represents a log10 transformed LDA score. The colors 

represent which group that taxa was found to be more abundant compared to the other 

group. GREEN bars, significant higher in absence of OVA sensitization (no taxa were 

detected to be higher in absence of OVA-sensitization in the WT mice), RED bars, 

significant higher in presence of OVA sensitization, (UN_f) unclassied family, (UN_g) 

unclassied genus. 

A) 

B) 
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Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67 (Figure 12. A), here we compared the 

effect of presence of absence of the OVA sensitization. First in the WT (Figure 24. A) 

and second, in the IL-6 KO mice (Figure 24. B), all animals were NOT pretreated with 

A. lwoffii.  

The differences in phylum-, class-, order-, family- and genus-level of the relative 

abundance in presence or absence of OVA sensitization were determined in IL-6 KO 

and WT mice using LEfSe and plotted as a bars graph. The length of the bar represents 

a log10 transformed LDA score (Figure 24. A& B).  

The absence of the GREEN bars in the WT mice is indicating that no taxa were 

detected to be higher in absence of OVA-sensitization in the WT mice (Figure 24. A). 

In the WT littermate, OVA sensitization results in higher of the relative abundance of 

Odoribacter, Ruminococcus and Anaeroplasma (RED bars) compared with  

the non-OVA sensitized WT mice (Figure 24. A). 

In the IL-6 KO, first, the OVA sensitization results in higher of the relative abundance 

of Prevotella, S24_7.UN_g, Anaerostipes, Peptococcaceae.UN_g, Dorea, 

Ruminococcaceae.UN_g2, Sutterella and RF32.UN_f.UN_g (RED bars) compared 

with the non-OVA sensitized IL-6 KO mice, second, the absence of OVA sensitization 

results in higher of the relative abundance of Bacillales.UN_f.UN_g and Clostridiales 

(GREEN bars) compared with the non-OVA sensitized IL-6 KO mice (Figure 24. B). 
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4.16. Effect of A. lwoffii pre-treatment on the relative abundance of 

taxa in cecum microbiota of OVA-sensitized WT and IL-6 KO 

mice (no A. lwoffii versus A. lwoffii) 

 

 

 

 

Figure 25. Effect of A .lwoffii on the relative abundance of taxa in cecum microbiota of 

OVA-sensitized WT and IL-6 KO mice (No A. lwoffii versus A. lwoffii). LEfSe (Linear 

discriminant analysis effect size) was used to compare relative abundance of the taxa in 

presence/absence A. lwoffii pretreatment of the (A). OVA-sensitized WT mice and  

(B). the OVA-sensitized IL-6 KO mice. LEfSe are plotted as a graph that has bars which 

represent the effect size (LDA) for a particular taxa in a certain group. The length of the bar 

represents a log10 transformed LDA score. The colors represent which group that taxa was 

found to be more abundant compared to the other group. GREEN bars, significant higher in 

presence of A. lwoffii pretreatment (no taxa were detected to be higher in presence of  

A. lwoffii pretreatment of the OVA-sensitized WT mice), RED bars, significant higher in 

absence of A. lwoffii pretreatment. All animals from IL-6 KO or WT mice subjected to OVA 

model of asthma, (UN_f) unclassied family, (UN_g) unclassied genus. 

 

 

B) 

A) 
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Microbiome analysis conducted on the cecum contents of the samples which were 

collected from WT and IL-6 KO mice on day 67 (Figure 12. A), here we compared the 

effect of presence or absence of A. lwoffii pretreatment in OVA-sensitized mice.  

First in the OVA-sensitized WT mice (Figure 25. A) and second, in the OVA-sensitized 

IL-6 KO mice (Figure 25. B). All animals were subjected to OVA model of asthma.  

The differences in phylum-, class-, order-, family- and genus-level of the relative 

abundance in presence or absence of A. lwoffii in OVA-sensitized mice were 

determined in IL-6 KO and WT mice using LEfSe and plotted as a bars graph.  

The length of the bar represents a log10 transformed LDA score (Figure 25. A& B). 

The absence of the GREEN bars in the OVA-sensitized WT mice is indicating that no 

taxa were detected to be higher in presence of A. lwoffii pretreatment. 

In the OVA-sensitized WT littermate and in the absence of A. lwoffii pretreatment the 

relative abundance of Oscillospira (RED bars) was higher compared with the  

A. lwoffii pretreated OVA-sensitized WT (Figure 25. A). 

In the OVA-sensitized IL-6 KO mice the presence of A. lwoffii pretreatment results in 

higher of the relative abundance of Desulfovibrio and Lactobacillus (GREEN bars) 

compared with the OVA-sensitized IL-6 KO mice not treated with A. lwoffii. 

In contrast, the absence of A. lwoffii pretreatment in the OVA-sensitized IL-6 KO mice 

results in higher of the relative abundance of Peptococcaceae.UN_g, Bilopila, 

Anaerostipes, Prevotella and Parabacteroides (RED bars) compared with the 

presence of A. lwoffii in the OVA-sensitized IL-6 KO mice (Figure 25. B). 
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5. DISCUSSION  

Epidemiologic studies has identified natural microbial exposure as an important 

environmental exposome factor that provides allergic and asthma protection in a 

prenatal window of opportunity (Brand et al., 2011) (Braun-Fahrländer et al., 2002). 

Furthermore, although it has been suggested that early exposure to a farming 

environment reduces the risk of development of allergic diseases and asthma later in 

life (Von Mutius, 2016), not much is known on the underlying mechanisms. The key 

findings among the cohort studies examining both endogenous and exogenous 

microbial exposures report an inverse correlation between the increase of the microbial 

exposure and asthma development, which is in line with the basis of the hygiene 

hypothesis (Von Mutius, 2016). This protective effect against allergic disease and 

asthma is sustained into adulthood and has been reproduced in numerous studies 

comparing between the children growing up in farm and nonfarm environment (Von 

Mutius and Vercelli, 2010) (Radon et al., 2004). It has been previously demonstrated 

that the bacteria isolated from the cowshed microflora such as L. lactis or A. lwoffii are 

able to produce a protective effect against asthma development in mice. A. lwoffii is 

one of the Gram-negative bacteria that have been identified in the Bavarian farms 

because of their relative abundance in cowshed microflora (Debarry et al., 2007a).  

The purpose of this work is to demonstrate the underlying mechanism of the protective 

effect induced by A. lwoffii against the development of asthma in the mouse model of 

Th2-eosinophilic asthma, to highlight the role of innate and adaptive immune system 

responses to A. lwoffii, and also to figure out how cytokine environment produced by 

innate immune system upon contact with A. lwoffii is shaping the adaptive immune 

system responses towards the protective effect against asthma development. 

Furthermore, the goal is to get further insights into the role of the cecum microbiome 

in mediating this protective effect and to determine the changes occurring in the gut 

microbiota after chronic intranasal exposure of A. lwoffii.  

Our findings in mice demonstrated that chronic exposure to A. lwoffii stimulates local 

and systemic innate immunity as reflected by increased levels of interleukin-6 in lungs 

and serum. Further investigations in mice showed that wild-type but not IL-6 knockout 

mice pretreated with A. lwoffii develop much less severe allergic airway inflammation 

in the ovalbumin (OVA) model, as shown by no reduction in the number of the 

eosinophils, peribronchial and perivascular inflammatory cell infiltration, thus 
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demonstrating the cruel role of IL-6 to the protective effect of A. lwoffii. The data also 

demonstrated that the in vitro macrophages exposed to A. lwoffii secrete huge amount 

of IL-6, which in turn stimulates synthesis of IL-10 by T cells after culturing the naïve T 

cells with supernatant from A. lwoffii-exposed macrophages. Further assessments in 

mice revealed that IL-10 but not IL-17 KO mice pretreated with A. lwoffii have failed to 

show protective effects against allergic airway inflammation in the ovalbumin (OVA) 

model, no evidence for reduction in the eosinophilia of the lung; therefore, IL-10 seems 

to play an important role in downstream the protective effect of A. lwoffii on adaptive 

immunity. On the top of that, the microbiota might also contribute to the protective effect 

induced by A. lwoffii via possible interaction between IL-6 or IL-10, the changes in the 

relative abundance of taxa in the cecum microbiome abundance were studied in the 

IL-6 KO and WT littermate mice to figure how the cecum microbiome might contribute 

to the protective effect of A. lwoffii through determining of specific taxa. Our 

investigations demonstrated that Ruminococcaceae family maybe underlying the 

immunological/anti-allergic phenotypes in the IL-6 KO and A. lwoffii is having its 

immunological effects through the inhibition of these organisms.   

Due to differences in the properties, activity and survival rate between the live and 

lyophilized bacteria (Conde-Islas et al., 2019), it was aimed to determine if the 

protective effect differs between live and lyophilized A. lwoffii in mouse model of Th2-

eosinophilic asthma. The mice were chronically exposed to 108 CFU of both lyophilized 

and live A. lwoffii intranasally which is followed by OVA-model of asthma (Figure 10. 

A). Two days after the last challenge with OVA, the mice were sacrificed, and cell 

cytology of the BAL was studied.  The results from the bronchoalveolar lavage cytology 

were demonstrated that the reduction in eosinophilic counts was significantly much 

higher in the group treated with a live A. lwoffii compared with those which were treated 

with lyophilized A. lwoffii. The neutrophils and lymphocytes were induced in both live 

and lyophilized A. lwoffii groups but no changes on the levels of the macrophages were 

observed (Figure 10. B).  

Altogether, those findings clearly demonstrated that the protective effect of live  

A. lwoffii was much stronger compared with the lyophilized one. Thus, the decision was 

made to apply a live A. lwoffii for the future in vivo or in vitro experiments.  

Since the innate immune system plays an essential role in the initial immune activation 

and recognition of A. lwoffii, which subsequently modulates the adaptive immune 

responses, it was decided to investigate the pattern in which A. lwoffii stimulates the 
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innate immune system by measuring three of the major pro-inflammatory cytokines  

(IL-6, IL1b and TNFa) locally in the lung (BAL) and systemically in the blood (serum) 

of the mice. The measurements were done at different time points in relation to the 

intranasal treatment with (108 CFU) of live A. lwoffii. The mice were received A. lwoffii 

12 times, every second day. Blood and BAL were collected directly after the first 

application then every 8, 12 and 24 hours from each application, and the cytokines 

were measured using R&D ELISA kit. TNF-a and IL-1b were increased to the peak 

after 8 hours and then decreased after 12 and 24 hours from each application (Figure 

11. B& D). This pattern was reproduced till the fifth A. lwoffii application, and then, both 

cytokines (TNF-a and IL-1b) achieved a tolerance locally in the lung (Figure 11. A) but 

not systemically in the serum, in which the levels IL-1b was increased and TNF-a was 

the same (Figure 11. C). In contrast, IL-6 has a different pattern from TNF-a and IL-

1b; the levels of IL-6 increased to the peak after 8 hours from A. lwoffii application and 

decreased after 12 and 24 hours from each application locally and systemically (Figure 

11. B& D). Interestingly, the fast and transient inflammatory response of IL-6 to each 

of the single-doses of bacteria had the same pattern after each application of A. lwoffii, 

so no tolerance developed (Figure 11. A &C). It was thus speculated that an endotoxin 

tolerance or LPS desensitization might develop after multiple applications of the gram-

negative A. lwoffii bacteria, and the two of the earliest cytokines secreted upon A. lwoffii 

stimulation, TNF-a and IL-1b, were able to set up an LPS-like tolerant state in mice 

(Morrison and Ryan, 1987) (Epstein and Parrillo, 1993) (van der Poll and van Deventer, 

1999). Many studies reported in the past were able to demonstrate that giving IL-1b to 

the mice in different concentration was able to produce a tolerance to LPS and, 

besides, a low production of TNF-a was observed in these mice(Alves-Rosa et al., 

2002). Additionally, the mice which were treated with TNF-a alone were not able to 

develop endotoxin tolerance, but this effect was completely abolished when TNF-a and 

IL-1b were administered simultaneously. The chronic exposure to A. lwoffii might be 

able to educate the innate immune cells by priming innate immune cells, which 

appeared to limit the amount of active TNF-a and IL-1b produced by tissue 

macrophages in response to a bacterial challenge (Figure 11. A) but not systemically 

in the serum, while the TNF-a and IL-1 b levels were significantly increased (Figure 

11. C) (Netea, Quintin and Van Der Meer, 2011) (Gardiner and Mills, 2016).  

The exhibited unusual response of IL-6 was very pronounced locally and systemically 

and, besides, the mice did not show any signs of systemic inflammation such as weight 
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loss or lethargy throughout the experiment. This findings indicate that the IL-6 response 

to A. lwoffii application seems to be at least partially crucial for the protective effect 

against asthma development induced by A.lwoffii application. Therefore, it was further 

sought to investigate the role of IL-6 to the protective effect against asthma induced by 

chronic exposure of intranasal A. lwoffii. 

To elaborate the role of IL-6, the IL-6 KO (IL-6 knockout) and WT (wild-type) mice 

received intranasally 108 CFU of living A. lwoffii or PBS as control every second day 

for which followed by OVA model of asthma as it is described in (Figure 12. A).   BAL 

was collected and centrifuged; the cytokines IL-5 and IL-13 were measured in the 

supernatant and the cell pellet was re-suspended in PBS for cytology analysis. Lung 

was also collected for lung histology analysis, here the IL-6 KO PBS control mice 

treated w/o A. lwoffii were missed. The serum was also collected for serum 

immunoglobulins measurements (IgE, IgG1 and IgG2a), we also missed the IL-6 KO 

PBS control treated w/o A. lwoffi. and serum.  The chronic exposure to A. lwoffii was 

able to induce a very weak inflammatory response to OVA in WT mice, as shown by a 

significant decreases in the number of eosinophils in the BAL fluid but this effects was 

absent in the OVA-sensitized IL-6 KO mice, regardless of the A. lwoffii pretreatment.  

Besides, the asthmatic phenotype was much stronger in IL-6 KO mice compared with 

the asthmatic phenotype in WT mice (Figure 12. B). The IL-5 and IL-13 cytokine 

measurements from the BAL are also indicated pronounced protective effects of A. 

lwoffii, as the treatment with A. lwoffii was able to reduce the levels of IL-5 and IL-13 

measured in the BAL fluid of OVA-sensitized WT animals, as shown in (Figure 12. C). 

These protective effect was abolished in the OVA-sensitized IL-6 KO mice treated w/o 

A. lwoffii.  

In addition, lung histology revealed an effect similar to that observed in the cytospine 

analysis of the OVA-sensitized WT mice pretreated with A. lwoffii; a reduction was 

seen in the inflammatory cell infiltration in WT mice after the completion of A. lwoffii 

treatment followed by OVA model. This reduction was completely absent in OVA-

sensitized IL-6 KO mice, independently of the fact if the mice were treated or not 

treated with A. lwoffii. Consistently, A. lwoffii treatment almost completely hindered the 

development of mucus-producing goblet cells in WT mice after the completion of A. 

lwoffii treatment followed by OVA model in OVA-sensitized WT and IL-6 KO mice. The 

microphoto-graphs of airways from mice after PAS staining were comparable with the 

lung histology calculation (Figure 12. D). 
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Furthermore, IgE, IgG2a, and IgG1 were significantly higher in the OVA-sensitized  

IL-6 KO mice treated with A. lwoffii compared with the OVA-sensitized WT mice treated 

with A. lwoffii. The protective effects of A. lwoffii in WT mice was only noticed for the 

IgG2a which is significantly decreased in the OVA-sensitized WT mice pre-treated with 

A. lwoffii compared with OVA-sensitized WT mice not treated with A. lwoffii. The rest 

of comparisons in OVA-sensitized animals did not reach statistical significance. Here, 

the serum from the IL-6 KO PBS group treated w/o A. lwoffii were not enough to 

measure the immunoglobulins (Figure 12. E). 

Several possible reasons may explain the finding of the serum immunoglobulins in 

OVA-sensitized WT mice pretreated with A. lwoffii. It might be that the protective effect 

of A. lwoffii are not strong enough to override the high concentrations of serum 

immunoglobulins and the protective effect was located in the lung and do not expand 

systemically. One might also speculate that the protective effect of A. lwoffii occurs in 

a B cell–independent manner, in other words, A. lwoffii chronic exposure was not able 

to reduce the sensitization but rather decrease the inflammatory responses in the 

airways.  

Taken together, the data are supporting the concept that IL-6 is crucial for the 

development of the protective effect against asthma induced by A. lwoffii treatment.  

According to our current knowledge on the innate immune system, it constitutes the 

first line of host defense against infectious or non-infectious pathogens, and therefore, 

it plays a crucial role in the early recognition and subsequent triggering of a pro-

inflammatory response to bacteria (Mogensen, 2009).  

Epithelial cells are providing a mucosal barrier against infectious or not infectious 

bacteria and contribute to the mucociliary clearance function. There is growing 

evidence that epithelial cells are of particular relevance as initial sensors of danger 

through phagocytosis used by epithelial cells to maintain homeostasis in lung (Günther 

and Seyfert, 2018). It has been also demonstrated that the epithelial cells are also able 

to recruit inflammatory cells such as DCs, which otherwise lie above and below the 

basement membrane in a resting or immature state. These DCs derived from blood 

are able to uptake the antigens of the bacteria and present them to the adaptive 

immune cells on their surface (Allard, Panariti and Martin, 2018).  

Inoculation of the DAPI-stained A. lwoffii into the lung of the mice and the assessment 

of the nasopharyngeal and bronchial epithelial cells after four hours from A. lwoffii 

application were revealed that A. lwoffii was detectable inside the macrophages, 
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demonstrating them to be the front line of the host contact with A. lwoffii. At the same 

time, A. lwoffii was not detectable in the tracheal respiratory epithelial cells (Figure 

13.). These findings suggested an important role of macrophages in the recognition 

and phagocytose of A. lwoffii upon the intranasal application to the animal, resulting 

subsequently in a polarization of the macrophages to produce cytokines once the 

contact occurred. 

Innate immunity is maintained in part by antigen presenting cells (APCs) including 

dendritic cells and macrophages, as listed before. To better understand of the pattern 

of the innate immune response to A. lwoffii, the in vivo experiment was followed by an  

in vitro model in which, three major types of innate immune cells or antigen presenting 

cells which were targeted. The bone marrow cells were isolated from the BALB/c mice 

and differentiated into primary macrophages (PM), plasmacytoid dendritic cells (pDCs) 

and myeloid dendritic cells (moDCs) by Dr. Andreas Kaufmann. The cells were 

subsequently incubated for 24 hours with 106 CFU freshly prepared live A. lwoffii, LPS 

(10 ng/ml) as a positive control, or medium as negative control (Figure 14. A). 

Afterwards, the supernatants were collected, and cytokines were measured using 

Cytometric Bead Array-CBA (Bio-Plex® 200, Bio-Rad, USA) (Figure 14. B). 

Consistently with our previous in vivo experiment, the primary macrophages, 

plasmacytoid and myeloid dendritic cells cultured in vitro in the presence of A. lwoffii 

secreted huge amounts of IL-6 and generally smaller amounts of several other 

classical cytokines of professional non-B-cell antigen-presenting cells such as IL-12, 

IL-10 and IL-1b (Figure 14. B). Taken together, the data strongly supported the original 

hypothesis suggesting the crucial role of IL-6 as the first player from the innate immune 

system possibly modulating subsequent responses of the adaptive immune system, 

resulting in the protective effect against asthma development induced in mice by  

A. lwoffii exposure. 

Further experiment were done to figure out the role on the innate immune system in 

shaping the adaptive immune responses, and  to determine the crosstalk between the 

innate and adaptive immune system upon the A. lwoffii treatment. It has been 

demonstrated that the crosstalk between APCs and T cells shapes the innate and 

adaptive immune responses to pathogenic or non-pathogenic bacteria. On their 

surface, APCs can present the LPS of the bacteria to the T cells and then directly 

influence T cell activation and differentiation (Gaudino and Kumar, 2019) (Jain and 

Pasare, 2017).  
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For better understanding of the downstream effects of A. lwoffii on adaptive immunity, 

an in vitro experiment was conducted, in which the murine peritoneal macrophages 

were isolated from the peritoneal cavity of BALB/c WT mice after stimulation with 3% 

Brewer thioglycolate to increase the yield of elucidated macrophages. Then, these 

macrophages were cultured in the presence of A. lwoffii for 24 hours to, LPS (10 ng/ml) 

as a positive control, or medium as negative control, i.e. the same conditions as in 

previous in vitro experiment (Figure 15. B).  

The supernatants from A. lwoffii- exposed macrophages were used for subsequent 

stimulation of the CD4+CD62L+ T cells (naïve T helper cells) isolated from the spleen 

of the WT mice. The naïve CD4+ T cells were cultured on anti-CD3 (0.5 µg/ml) coated 

plate together with of anti-CD28 (1µg/ml). Afterwards, the supernatant from A. lwoffii-

exposed macrophages, recombinant IL-6 (rIL-6), or pure medium as negative control 

were added to the cells. The plate was incubated for 72 hours at 37°C, and then, the 

medium was replaced, and recombinant IL-2 was added to further expand T cells. Cells 

were incubated for another 48 hours. Thereafter, they were washed and cultured again 

on anti-CD3 coated plate for 24 hours. Finally, the supernatants were collected for 

cytokines measurements performed using Cytometric Bead Array-CBA (Bio-Plex® 

200, Bio-Rad, USA) (Figure 16. A& B). It was observed that naïve T cells produced 

huge amounts of IL-10 under influence of either the supernatant from A. lwoffii-

exposed macrophages or recombinant IL-6 (rIL-6) (Figure 16. B). Moreover, the 

supernatant from A. lwoffii-exposed macrophages was able to stimulate the secretion 

of IL-17 from naïve T cells. These findings suggested an important role of IL-10 and 

IL-17 in mediating the protective effect against asthma induced by A. lwoffii 

downstream of IL-6. The positive correlation between Acinetobacter species and IL-10 

production has been studied in human PBMCs of healthy or atopic subjects; the data 

indicated that Acinetobacter species influenced most strongly the production of IL-10 

in healthy subjects but not in atopic individuals (Fyhrquist et al., 2014).  

Our data from the in vitro stimulation of the naïve T cells with supernatant from  

A. lwoffii-exposed macrophages point toward a potential role of the IL-10 and IL-17 in 

the protective effects against asthma development induced by A. lwoffii. Therefore, it 

was hypothesized that IL-17 and/or IL-10 are involved in this protective effect 

downstream of IL-6.To test the hypothesis, two independent in vivo experiments were 
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conducted using either IL-17 KO or IL-10 KO mice. The experimental layout was 

described in the (Figure 17. A) (Figure 18. A).  

In the IL-17 KO versus littermate WT in vivo experiment, the chronic exposure to  

A. lwoffii was able to reduce an inflammatory response induced by OVA independently 

of the genotype, as evidenced by significant decrease in the numbers of eosinophils in 

the BAL fluid in both WT and IL-17 KO mice pre-exposed to A. lwoffii and subsequently 

subjected to the OVA-Th-2-eisonoplilic asthma model compared with the not treated 

mice (Figure 17. B).  

Furthermore, the IL-5 was indicated a pronounced protective effect of A. lwoffii 

regardless of the genotype, IL-5 levels in the BAL was decreased after the treatment 

with A. lwoffii in OVA-sensitized WT and IL-17 KO mice compared with the not treated 

mice (Figure 17. C). The IL-13 was significantly decreased in OVA-sensitized WT mice 

pretreated with A. lwoffii and has a tendency to decrease in the OVA-sensitized IL-17 

KO mice under the effect of A. lwoffii (Figure 17. C).  

The IgE, IgG2a, and IgG1 immunoglobulin measurements in the serum of OVA-

sensitized WT or IL-17 KO pre-treated w/o A. lwoffii demonstrated no significant 

differences between the groups but here, the biomaterials were not enough to measure 

the serum immunoglobulins in IL-17 KO PBS mice treated w/o A. lwoffii (Figure 17. 

D).  In the OVA-sensitized WT mice littermate to IL-10 KO mice, the chronic exposure 

to A. lwoffii was able to strongly reduce the inflammatory response induced by OVA 

(Figure 18. B) in a manner similar to that observed in “IL-6 KO experiment”  

(Figure 12. B) as shown by significant decreases in the numbers of eosinophils in the 

BAL fluid while in contrast, the protective effect was completely abolished in the  

IL-10 KO mice with no reduction in the number of the eosinophils in OVA-sensitized 

IL-10 KO mice after the treatment with A. lwoffii (Figure 18. B). Besides, the allergic 

phenotype was much stronger in terms of lung eosinophilia in the IL-10 KO mice 

compared with the WT, independently if the mice were pre-exposed to A. lwoffii or not 

The data from both genotypes clearly proved the essential role of IL-10 but not IL-17 

in mediating the protective effect against asthma development induced by A. lwoffii.  
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The bacterial biomass of the lung is considered relatively less than the bacterial 

biomass of the gastrointestinal trac (Arumugam et al., 2011). Generally, the 

composition of the bacteria in the lung is determined through the elimination and 

immigration mechanisms via the epithelium and mucociliary clearance of the lung. The 

dysbiosis or the disturbance of this physiological system can influence the shape and 

responses of both the innate and adaptive immune system, which in turn contribute to 

the development of respiratory disease such as allergy and asthma (Abrahamsson et 

al., 2012) (Inagaki et al., 1996).  

Different conditions may influence the bacterial proliferation in the lung or cecum such 

as oxygen tension, pH, temperature, effector inflammatory cell disposition, and 

epithelial cell but, most importantly, the environmental exposure such as microbes.  

A. lwoffii is one among those microbes that could influence the lung or gut microbiota 

(Martin et al., 2015) (Wilson and Hamilos, 2014).  

Growing evidence suggests that the gut commensal microbiota is an important 

regulator of the innate immune system which seems to be crucial in early period during 

life where intestinal microbiome development is important for the regulation of an 

appropriate immune response in the lung through the gut-lung axis (Clarke, 2014) 

(Sassone-Corsi and Raffatellu, 2015). The chronic inflammatory disease of the lung 

such as asthma seems to be influenced via the shifts in the composition or diversity of 

the gut microbiome especially in the cecum where most of the bacterial fermentation 

processes take place (Den Besten et al., 2013). Based on all the facts listed above, it 

was speculated that the chronic exposure to A. lwoffii may induces changes in the gut 

microbiota which is might partially contributed to the A. lwoffii-induced protective effect 

of the cytokines against asthma development.  

Therefore, the efforts were made to get further insights into the interaction between  

IL-6 and microbiome changes in the cecum and its role in mediating the protective 

effects of A. lwoffii. It was speculated that the changes of the lung microbiota due to A. 

lwoffii application might be somehow translocated into the gut thus influencing the 

relative abundance of some taxa of the gut microbiota. The indirect regulation of the 

gut microbiome by the changes in the lung microbiome would be referred to so-called 

a lung-gut axis. The goal of the preliminary investigations reported here was to assess 

(1) the influence of chronic A. lwoffii application on the relative abundance of the taxa 

in the gut microbiota of the WT and IL-6 KO mice, (2) the influence of OVA-sensitization 

on the relative abundance of the taxa in gut microbiota of the WT and IL-6 KO mice,  
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(3) how the A. lwoffii pretreatment may change the abundance of specific taxa in the 

gut of the OVA-sensitized WT and IL-6 KO mice (4). the influence of the genotype on 

the taxa of the cecum in IL-6 KO compared with WT littermate mice in presence or 

absence of both A. lwoffii pretreatment and OVA sensitization, or in presence of  

A. lwoffii alone or in presence of OVA-sensitization alone. 

The samples for the analysis of the microbiome were obtained from the IL-6 KO and 

WT littermate (IL-6 experiment).The biomaterials for the microbiome analysis were 

collected on day 67, after the end of the experiment. In order to obtain the microbiome 

sequencing data of the cecum content, the samples were transferred to an external 

partner in USA, Prof. Martin Blaser lab. Prof. Blaser performed next-generation 

sequencing and bioinformatics, which made it possible to generate a graphical 

representation of the taxa which is sent back to Marburg for the interpretation and 

analysis. The cecum content samples were used to generate the taxa comparisons 

due to the importance of the cecum in the bacterial fermentation and the high diversity 

of the bacteria which is observed for the cecum.  

By comparing the IL-6 KO with WT littermate without A. lwoffii pretreatment or OVA 

sensitization, the Lachnospiraceae.UN_g1/g2 and Ruminococcus were higher in the 

IL-6 KO mice (Figure 19) this might indicating their susceptibility to immune control. 

The families Lachnospiraceae and Ruminococcaceae have been described to be able 

to modulate the adaptive immune responses by increasing Foxp3 and IL-10 producing 

T cells and maintaining the balance of Treg/Th-17 in mesenteric lymph node (MLN) 

cells (Lindenberg et al. 2019) (Atarashi et al., 2013) (Atarashi et al., 2011) (Norbäck et 

al., 2018) (Sun et al., 2015). On the other hand, the S24_7.UN_g and Sutterella 

indicate less abundance in the IL-6 KO mice, either that they need the immune milieu, 

or they are out-competed by organisms that had been suppressed by the cytokines 

(e.g. Ruminococcus).  

It could be speculated that the increase in the Lachnospiraceae.UN_g1/g2 and 

Ruminococcus maybe underlying the immunological/anti-allergic phenotypes in the  

IL-6 KO and A. lwoffii is having its immunological effects through the inhibition of 

theRuminococcaceae family. Ruminococcaceae was not only higher in the IL-6 KO 

mice but also in the OVA-sensitized IL-6 KO mice (Figure 21). Additionally, in the 

absence of A. lwoffii Ruminococcaceae> Oscillospira were increased in the OVA-

sensitized WT mice (not protected group) compared with the A. lwoffii pre-treated WT 

mice where it was less abundance due to A. lwoffii pretreatment (Figure 25. A), further 
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assessment is required in germ free mice by inoculate 10 microbe consortium versus 

8 microbes and then study the phenotypes.  

Moreover, in the combined model of A. lwoffii pretreatment and OVA-sensitization, 

Lactobacillus and Desulfovibrio were higher in the IL-6 KO mice compared with WT 

(Figure 22). The relative abundance Desulfovibrio and Lactobacillus were also higher 

in the OVA-sensitized IL-6 KO mice pretreated with A. lwoffii (Figure 25. B).Studies 

on mice showed that some genus of the Lactobacillus can induced the 

proliferation/expansion of Treg cells in the circulation, spleen, lung and lymph nodes, 

and reduced inflammatory parameters induced by OVA challenge in sensitized mice 

(Karimi et al., 2009), our investigations indicate an higher abundance  of the 

Lactobacillus in the not protected IL-6 KO mice and decrees in the WT protected mice 

(Figure 22).However, not much was observed by comparing the IL-6 KO with WT 

littermate after pretreatment with A. lwoffii alone. Mogibacteriaceae_.UN_g, Dorea and 

Clostridiales.UN_f1.UN_g were higher in WT and lower in the IL-6 KO (Figure 20). 

Here, it seems that A. lwoffii pretretament override the genotype effect.  

In the WT pretreated with A. lwoffii the relative abundance of Odoribacter, 

Ruminococcus, Erysipelotrichaceae.UN-g2, Anaeroplasma, Ruminococcaceae.UN-g1 

and Lachnospiraceae.UN-g2 were higher compared with the absence of  

A. lwoffii (Figure 23. A). Not much was observed in the IL-6 KO mice where only 

S24_7.UN_g was increased in presence of A. lwoffii (Figure 23. B). 

In addition, the effects of OVA sensitization on the relative abundance of cecum taxa 

were studied in WT and IL-6 KO mice by comparing the non-OVA-sensitized with the 

OVA-sensitized mice. The OVA sensitization in WT mice enhances the relative 

abundance of Odoribacter, Ruminococcus and Anaeroplasma (Figure 24. A).  

More changes were determined in the IL-6 KO mice. The OVA sensitization of the  IL-

6 KO mice results in higher abundance of the  Prevotella, S24_7.UN_g, Anaerostipes, 

Peptococcaceae.UN_g, Dorea, Ruminococcaceae.UN_g2, Sutterella and 

RF32.UN_f.UN_g. On the other hand, the absence of OVA sensitization results in 

higher abundance of the Bacillales.UN_f.UN_g and Clostridiales (Figure 24. B). 

In the OVA-sensitized WT mice, the absence of A. lwoffii pretreatment (not protected 

group) results in higher abundance of Oscillospira (Figure 25. A) which is decreased 

in presence of A. lwoffii (protected group), human studies demonstrate the opposite 
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where the Oscillospira have been inversely associated with atopy and asthma 

(Fujimura et al., 2016) (Arrieta et al., 2015) (Savage et al., 2018). 

In the OVA-sensitized IL-6 KO mice, the presence of A. lwoffii pretreatment results in 

increase of the relative abundance of Desulfovibrio and Lactobacillus and decrees of 

the relative abundance of Peptococcaceae.UN_g, Bilopila, Anaerostipes, Prevotella 

and Parabacteroides (Figure 25. B). Several previously published studies 

demonstrated that the abundance of Prevotella was reduced in the lung of the 

asthmatic patients. Hence, many speculations can be made as to the role of Prevotella 

in the gut microbiota of healthy individuals but the homeostatic role of Prevotella 

remains largely unknown in asthma  (Yadava et al., 2016) (Neff et al., 2016).  

As a conclusion, the protective effects of A. lwoffii against the development of 

eosinophilic airway inflammation seem to be mediated by IL-6. Thus IL-6 might be an 

important modulator of adaptive immune system towards non-/anti-allergic direction. 

Since IL-17 knockout mice showed same results as in wild-type (WT), therefore,  

IL-17 is not important and play no role in this protective effect. 

On the other hand, the protective effect is abolished in IL-10 knockout mice, which 

indicate a fundamental role of IL-10 in the protective effect of A. lwoffii against asthma 

development. On the top of that, the higher abundance of the Ruminococcaceae family 

is indicating their susceptibility to immune control which is maybe underlying the 

immunological/anti-allergic phenotypes in the IL-6 KO mice, the  A. lwoffii is having its 

immunological effects through the inhibition of the Ruminococcaceae family. Further 

investigations in germ free mice are required to address the role Ruminococcaceae in 

immune control and additional analysis would be also necessary to determine the 

microbiota changes in the cecum of the IL-10 KO and WT littermate mice, which is 

ongoing.  
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7. Supplementary data. 

 

Figure. 1 Suppl.  FACS analysis of the murin differentiated PM, mDCs and pDCs. Cells were 

isolated from (BM) then diffrentaied within indicated time into PM, mDCs or pDCs. FACA analysis was 

done to asses the cells differentiation (A). differentiated macrophages using double staing with FITC-

F4/80 and APC-CD11b antibidies, indicating prurity of 48.5%. (B). differentiated mDCs using douple 

staining with APC-CD11b and PE-MHCII, indicating prurity of 40.6%. (C). differentiated pDCs using 

douple staining with FITC-B220 and APC-CD11c, indicating prurity of 37.8%. Unsatined cells were used 

as negative control in all experiments A, B and C. 
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Figure. 2 Suppl.  Purity of the murine peritoneal macrophages.  Murine peritoneal macrophages 

isolated from the peritoneal cavity of WT mice after 72 hours of intraperitoneal injection with 3% Brewer 

thioglycollate. The purity of macrophages was tested with FACS machine using anti-F4/80-APC (APC-

anti mouse F4/80 anti-body, BioLegend, USA) and anti-CD45-FITC (FITC -anti mouse CD45 anti-body, 

BioLegend, USA), indicating purity of 85%. 

 

Figure. 3 Suppl.  Purity of the naïve CD4 T cell by FACS analysis. APC anti-mouse CD4 Antibody 

and PE anti-mouse CD62L Antibody (both BioLegend, USA). 2 µl of each mAbs were used for the 

samples and 2 µl of the isotype PE (PE-anti mouse CD62L+ isotype, BioLegend, USA) and APC (APC-

anti mouse CD+ isotype, BioLegend, USA), indicating purity of 74%.. 
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9. SUMMARY  

BACKGROUND: Early childhood or even prenatal exposures to farm bacteria such as 

Acinetobacter lwoffii have been demonstrated an association with a decreased 

incidence of allergy and asthma later in life. Studies in mouse models demonstrated 

that intranasal application of A. lwoffii stimulates local and systemic innate immunity 

as reflected by increased the levels of the pro-inflammatory cytokines, especially 

interleukin-6 (IL-6) levels in lungs and serum. 

AIMS AND HYPOTHESIS: The key concept of this study was to understand different 

mechanistic pathways of the A. lwoffii protective effect against asthma. We 

hypothesized that interleukin-6 (IL-6) might contributes to the protective effect of  

A. lwoffii against asthma/allergy development. We further supposed that treatment with 

A. lwoffii stimulates the innate immune system in which it can skew the function of the 

adaptive immune system towards mechanisms know to favor lower asthma and/or 

allergy susceptibility. Furthermore, we expand our hypothesis to highlight the role of 

the cecum microbiota changes in mediating the protective effects of the  

A. lwoffii against asthma in the WT and IL-6 KO mice.  

METHOD AND RESULTS: We first investigate the innate immune response up on 

contact with A. lwoffii, the mouse was chronically treated with A. lwoffii and then the 

blood and bronchial lavage were collected for pro-inflammatory cytokines 

measurement, TNFa and IL-1b developed tolerance after the 5th application but the  

IL-6 exhibit unusual response with no tolerance during the repeated treatment.  

Further assessments in Wild-type and IL-6 knockout mice pre-exposed to A. lwoffii and 

subjected to the OVA model of airway inflammation demonstrate a pivotal role of IL-6 

in mediating the protective effects of A. lwoffii. This data was supported with the in vitro 

data where the mouse primary macrophages (PM), plasmacytoid dendritic cells (pDCs) 

and myeloid dendritic cells (mDCs) exposed to A. lwoffii secreted huge amounts of  

IL-6, as measured in the culture supernatants. Culturing of naïve murine T cells with 

supernatant from A. lwoffii-exposed macrophages or recombinant IL-6 induce the 

secretion of high levels of IL-10 and less extend of IL-17. Subsequent animal 

experiment revealed that IL-10 but not IL-17 deficient mice pretreated with A. lwoffii 

failed to develop a protection against airway inflammation, suggesting that IL-10 but 

not IL-17 plays an important role in mediating the effects of A. lwoffii downstream of  

IL-6.  
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On the top of that, the microbial DNA from the cecum content of the IL-6 KO and WT 

littermate mice were isolated and sequenced to investigate the changes in the relative 

abundance of taxa in the cecum microbiome. The genotype effect, the A. lwoffii effect, 

the OVA sensitization effect and the A. lwoffii effect in OVA sensitized mice were 

studied in IL-6 KO and WT littermate animal. The data demonstrated an important role 

of Ruminococcaceae family which is indicating their susceptibility to immune control 

which is maybe underlying the immunological/anti-allergic phenotypes in the IL-6 KO 

mice, the A. lwoffii is having its immunological effects through the inhibition of the 

Ruminococcaceae family.  

CONCLUSION: Protective effects of A. lwoffii against asthma development seem to 

be at least partly mediated by IL-6. Thus IL-6 might be an important modulator of 

adaptive immune system towards non-/anti-allergic direction. The in vitro macrophages 

exposed to A. lwoffii secrete huge amount of IL-6, which in turn stimulates synthesis of 

IL-10 and IL-17 by T cells after culturing the naïve T cells with supernatant from  

A. lwoffii-exposed macrophages. Subsequent experiment in mouse model 

demonstrates that IL-10 but not IL-17 play an important role in downstream the 

protective effects of A. lwoffii on adaptive immunity. Furthermore, the microbiome 

analysis in the IL-6 KO and WT littermate indicates a possible immune regulation via 

Ruminococcaceae family which is maybe underlying the immunological/anti-allergic 

phenotypes in the IL-6 KO mice, the A. lwoffii is having its immunological effects 

through the inhibition of the Ruminococcaceae family. Further investigations in germ 

free mice are required to address the role Ruminococcaceae, and additional in-depth 

investigations, including those on the possible interaction with IL-10, are ongoing. 
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