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Summary 

Secondary metabolites originated from plants, bacteria and fungi constitute a large group of 

compounds, which are not essential for the growth, development and reproduction of the organism, 

but necessary for protection, competition and species interactions. Microbes, e.g. fungi and bacteria, 

have been more important sources of natural products since the discovery of penicillin in 1928. With 

advanced isolation and characterization techniques for secondary metabolites from crude biological 

samples, diverse compounds from different groups including polyketides, nonribosomal peptides, 

alkaloids and terpenes have been identified. Producing organisms utilize a limited set of primary 

metabolic building blocks to produce different natural product skeletons, which are further modified 

by a number of tailoring enzymes to form a variety of end products. For example, a core structure of 

polyketide can be derived from acyl-CoAs by polyketide synthase(s) (PKS(s)) and catalyzed by a 

series of tailoring enzymes such as nonheme FeII/2-OG-dependent oxygenases, flavin-containing 

oxidoreductases, cytochrome P450s and prenyltransferases to create an amazing diversity of 

natural product architectures. To facilitate the biosynthetic mechanism, advanced bioinformatics, 

biological technologies and biochemical tools have been utilized to investigate the coding genes of 

these enzymes, which are usually located together as a biosynthetic gene cluster (BGC). However, 

post-biosynthetic non-enzymatic events can also be involved in natural product formation. 

In this thesis, biosynthesis of secondary metabolites from a fungal strain, Penicillium crustosum 

PRB-2, was investigated in cooperation with Ge Liao. Penilactones A, B and D, as well as 

peniphenone D, structurally comprising clavatol and -butyrolactone moieties, were identified from 

the wild type. Two separate gene clusters were functionally characterized as building blocks of the 

complex penilactone and peniphenone structures by gene disruption in the native PRB-2 strain, 

heterologous expression in Aspergillus nidulans and precursor feeding experiment in the available 

deletion mutants. A non-reducing (NR) PKS ClaF from the clavatol cluster is responsible for the 

formation of clavatol. A hybrid PKS-NRPS TraA from the terrestric acid cluster is involved in the 

biosynthesis of crustosic acid and terrestric acid, which undergo C-C bond cleavage to give -

butyrolactone moieties in penilactones and peniphenones. Oxidation of clavatol to hydroxyclavatol 

by a nonheme FeII/2-OG-dependent oxygenase ClaD and its spontaneous dehydration to an 

intermediate ortho-quinone methide initiate the non-enzymatic 1,4-Michael additions with -

butyrolactones. Therefore, the cross-coupling of two moieties from two separate gene clusters leads 

to the formation of peniphenone D and penilactone D, which undergo a second Michael addition with 

ortho-quinone methide to give penilactones A and B. Our findings represent rare examples of 

complex structures derived from two separate clusters and formed through enzymatic and non-

enzymatic approaches. 

Afterwards, the investigation on terrestric acid formation was extended by using similar strategies. 

The hybrid PKS-NRPS TraA and the enoyl reductase TraG were demonstrated to be responsible for 
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the accumulation of the tetronate core structure carboxylcrustic acid and viridicatic acid as 

precursors of crustosic acid in PRB-2. Biochemical characterizations proved that the conversion of 

crustosic acid to terrestric acid was achieved via oxidative decarboxylation catalyzed by a nonheme 

FeII/2-OG-dependent oxygenase TraH and subsequent stereospecific C-C double bond reduction by 

a flavin-containing oxidoreductase TraD. Among the two-step oxidative decarboxylation and 

stereospecific reduction, the mechanism with FeIV=O species as important intermediates was 

postulated for TraH-catalyzed olefination with or without CO2 elimination. Results on the biosynthesis 

of terrestric acid also provide a valid experimental basis for understanding the formation of the fungal 

acyltetronates with different stereochemistry involving sequential redox-assisted decarboxylation and 

stereoisomerization. 

In addition to penilactones and peniphenones, there are more clavatol-containing natural products 

from fungi. We wondered that these compounds are very likely synthesized from different precursors 

by nucleophilic attacking ortho-quinone methide derived from hydroxyclavatol. This hypothesis 

triggered our interest to screen the reactivity of ortho-quinone methide with diverse natural products 

or natural product-like compounds. Coincubation of 102 selected reactants with hydroxyclavatol 

under mild conditions (in nearly pH neutral aqueous solution) led to the detection of clavatol coupling 

products in 86 cases. As a result, 32 new clavatol-containing compounds were identified after 

isolation and structural elucidation. The conjugation between clavatol and the nucleophiles occurs 

mainly with the C-C bond formation at para- or ortho-positions of hydroxyl/amino group at the 

benzene ring and C-2 position of the indole skeleton. This study confirmed the activity of the ortho-

quinone methide which is spontaneously derived from hydroxyclavatol in an aqueous system and 

increased significantly the diversity of clavatol-containing products in nature. 
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Zusammenfassung 

Die von Pflanzen, Bakterien und Pilzen stammenden Sekundärmetabolite bilden eine große Gruppe 

von Verbindungen, die nicht direkt mit dem Wachstum, der Entwicklung und der Vermehrung des 

Organismus zusammenhängen. Seit der Entdeckung des Penicillins im Jahr 1928 sind Mikroben, v.a. 

Pilze und Bakterien, wichtige Quellen für Naturstoffe. Durch verbesserte Isolierungs- und 

Charakterisierungsmethoden konnten diverse Sekundärmetabolite verschiedener Gruppen, wie z. B. 

Polyketide, nicht-ribosomale Polypeptide, Alkaloide und Terpene aus biologischen Proben 

identifiziert werden. Die Produzenten verwenden eine begrenzte Anzahl von Bausteinen aus dem 

Primärstoffwechsel, um verschiedene Naturstoffgerüste zu konstruieren. Diese können durch 

weitere Enzyme modifiziert werden, um eine Vielzahl von Endprodukten herzustellen. Eine 

Polyketid-Kernstruktur, die durch eine oder mehrere Polyketidsynthasen (PKSs) aus Acyl-CoAs 

zusammengebaut wird, kann durch eine Reihe von Enzymen, wie z.B. nonheme-FeII/2-OG-

abhängige Oxygenasen, flavin-haltige Oxidoreduktasen, Cytochrom P450s und Prenyltransferasen 

modifiziert werden, so dass eine erstaunliche Vielfalt von Naturstoffen erzielt wird. Um die 

Biosynthese von Naturstoffen aufzuklären werden verschiedene Methoden, wie z.B. die 

Bioinformatik oder molekularbiologische und biochemische Verfahren angewandt. Somit können 

Funktionen der kodierenden Gene, die sich normalerweise zusammen in einem biosynthetisches 

Gencluster (BGC) befinden, genau untersucht werden. Dennoch können auch nicht-enzymatische 

Reaktionen nach der Biosynthese an der Naturstoffentstehung beteiligt sein. 

In dieser Arbeit wurde die Sekundärmetabolit-Biosynthese in einem Pilzstamm, Penicillium 

crustosum PRB-2, in Zusammenarbeit mit Ge Liao untersucht. Penilactone A, B und D sowie 

Peniphenon D, die strukturell Clavatol- und -Butyrolacton-Einheiten enthalten, wurden in dem 

Wildtyp identifiziert. Zwei unterschiedliche DNA-Abschnitte wurden durch Geninaktivierung in dem 

PRB-2-Stamm, heterologe Expression in Aspergillus nidulans und Fütterungsexperimente in den 

Deletionsmutanten als verantwortliche Gencluster für die Produktion von Penilactone und 

Peniphenone identifiziert. Die nicht-reduzierende (NR) PKS ClaF aus dem Clavatol-Cluster ist für die 

Bildung von Clavatol verantwortlich. Die hybride PKS-NRPS TraA aus dem Terrestric acid-Cluster ist 

an der Biosynthese von Crustosic acid und Terrestric acid beteiligt, indem eine Spaltung der C-C-

Bindung unter Bildung von -Butyrolactonen stattfindet. Die Oxidation von Clavatol zu 

Hydroxyclavatol durch die nonheme-FeII/2-OG-abhängige Oxygenase ClaD und dessen spontane 

Dehydratisierung zu einem Orthochinon-methid-Intermediat initiieren eine nicht enzymatische 1,4-

Michael-Addition zu -Butyrolacton. Die Kreuzkupplung dieser zwei Einheiten aus zwei getrennten 

Genclustern führt zur Bildung von Peniphenon D und Penilacton D , die eine zweite Michael-Addition 

mit Orthochinonmethid zur Bildung von Penilacton A und B eingehen. 

Die verwendeten Strategien wurden anschließend mit detaillierten Untersuchungen zur Biosynthese 

von Terrestric acid erweitert. Es wurde gezeigt, dass die hybride PKS-NRPS TraA und die 



ZUSAMMENFASSUNG 

4 
 

Enoylreduktase TraG für die Entstehung der Carboxycrustic acid und Viridicatic acid mit der 

Tetronat-Grundstruktur als Vorläufer von Crustosic acid in Penicillium Crustosum PRB-2 

verantwortlich sind. Biochemische Charakterisierungen haben gezeigt, dass die Umwandlung von 

Crustosic acid in Terrestric acid durch eine oxidative Decarboxylierung von der nonheme-FeII/2-OG-

abhängigen Oxygenase TraH und die anschließende stereospezifische C-C-

Doppelbindungsreduktion von der Flavin-haltigen Oxidoreduktase TraD erfolgte. Ein 

Reaktionsmechanismus mit FeIV=O-Intermediaten wurde für die TraH-katalysierte Olefinierung mit 

oder ohne CO2-Eliminierung postuliert. Unsere Ergebnisse zeigen, dass komplexe Strukturen von 

Genen aus zwei getrennten Clustern hergestellt und enzymatische und nicht-enzymatische 

Reaktionen involviert werden können. Die Ergebnisse zur Biosynthese von Terrestric acid liefern 

auch eine solide experimentelle Grundlage für die Entstehung pilzlicher Acyltetronate mit 

unterschiedlicher Stereochemie. 

Neben Penilatonen und Peniphenonen sind weitere clavatol-haltige Naturstoffe bekannt. Wir 

vermuten, dass diese Verbindungen höchstwahrscheinlich auch durch den nucleophilen Angriff von 

aus Hydroxyclavatol stammendem Orthochinonmethid synthetisiert werden. Diese Hypothese hat 

unser Interesse geweckt, die Reaktivität von Orthochinonmethid mit verschiedenen Naturstoffen zu 

untersuchen. Von 102 getesteten Substanzen führte die Coinkubation mit Hydroxyclavatol unter 

milden Bedingungen in 86 Fällen zu nachweisbaren Clavatol-Kupplungsprodukten. Nach Isolierung 

und Strukturaufklärung wurden 32 neue clavatol-haltige Verbindungen identifiziert. Die 

Konjugationen zwischen Clavatol und den Nucleophilen erfolgt hauptsächlich mit Bildung einer C-C-

Bindung an den para- oder ortho-Positionen der Hydroxyl-/Aminogruppe am Benzolring sowie der 

C2-Position des Indolrings. Diese Studie bestätigte die Reaktivität des aus Hydroxyclavatol spontan 

entstandenen Orthochinonmethids in einem wässrigen System und erhöhte die Vielfalt der clavatol-

haltigen Produkte in Natur.  
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1 Introduction 

1.1 Ascomycota: rich source of diverse natural products 

Ascomycota, comprising more than 33,000 named and a vast number of undescribed species, is the 

largest phylum of the fungal kingdom.1,2 Its members are commonly known as the sac fungi or 

ascomycetes. Many species are known as asexual fungi, called anamorphs, which produce asexual 

spores (conidia) on stalks.3 Correspondingly, their sexual phases, called teleomorphs, produce 

fruiting bodies for ascospore formation. The phylum of Ascomycota can be subdivided into three 

subphyla, the Pezizomycotina, the Saccharomycotina and the Taphrinomycotina.4 Ten or more 

classes are designated within the Pezizomycotina. This subphylum includes saprotrophs that grow 

on woody and non-woody plant tissues, as well as on herbivore dung, parasites of plants and 

animals (particularly invertebrates), and partners in lichen and mycorrhizal symbioses. In order to 

survive and reproduce, they compete with other organisms and have developed a number of 

strategies for protection and communication, one of which is the production of a variety of secondary 

metabolites (SMs), also known as natural products (NPs).5 

So far, most of the described SMs are produced by ascomycetes in the asexual stage, especially 

Aspergillus and Penicillium as typical members of Pezizomycotina grown as filamentous fungi.6 Their 

conidial phases are crucial in biotechnological applications including fermentation, food, enzyme and 

antibiotic production. Structurally, SMs produced by Ascomycota mainly belong to polyketides,7 

nonribosomal peptides,8 terpenes,9 alkaloids10 and even hybrid products like hybrid polyketide-

nonribosomal peptides11 (Figure 1). These chemical classes are defined by the type of starter 

substrates from the primary metabolism incorporated into their core structures by specialized 

backbone enzymes, i.e. polyketide synthases (PKSs), nonribosomal peptide synthetases (NRPSs), 

terpene cyclases (TCs) and hybrid polyketide synthase-nonribosomal peptide synthetases (hybrid 

PKS-NRPSs). 

Correspondingly, primary metabolites are the molecules that influence the pathways essential for life, 

generation and storage of energy. Polyketides are generally derived from their central metabolic 

pathways and primary metabolite pools with acyl-CoAs as critical initial building blocks (Figure 1).12 

With an increasing number of acyl-CoAs as starter units or extender units identified and elucidated 

for their novel mechanisms, structural diversity of polyketide scaffolds have been represented.13 

Examples are acetyl-CoA, propionyl-CoA, malonyl-CoA, benzoyl-CoA and 4-coumaroyl-CoA as 

starter units, and malonyl-CoA, methylmalonyl-CoA, ethylmalonyl-CoA and chloroethylmalonyl-CoA 

as extender units.14 6-methylsalicylic acid (6-MSA) is a well-characterized fungal aromatic polyketide 

identified from Penicillium patulum Bainier (anamorph P. griseofulvum Dierckx).15 A natural 

polyketide citrinin, first isolated from Penicillium citrinum, was also further identified from other 

Penicillium species, Monascus species and Aspergillus species.16,17 Other prominent 
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representatives of the pathology related polyketides are aflatoxin B1
18-20 from Aspergillus flavus and 

Aspergillus parasiticus with highly hepatotoxic activity and lovastatin from Aspergillus terreus as a 

cholesterol-lowering drug (Figure 1).21 In addition, acetyl-CoA is also a building block for the 

biosynthesis of dimethylallyl and isopentenyl diphosphates (DMAPP and IPP) as fundamental 

metabolic precursors of terpenes and steroids, such as aristolochene and gibberellin A3 (Figure 1) 

via the mevalonic acid (MVA) pathway.22-26 This subgroup of compounds comprise about 60 % of 

known NPs.27 An alternative pathway for terpene biosynthesis was derived from pyruvate and 

glycerol aldehyde-3 phosphate to construct the C5 skeleton for isoprenoid biosynthesis.28 

Figure 1. Diverse natural products identified in microorganisms 

On the other hand, both proteinogenic and non-proteinogenic amino acids are used as building 

blocks for complex structures of peptides and amino acid-derived compounds (Figure 1). 

Nonribosomal peptides are mainly found in microorganisms with 2-48 amino acid residues in 

length.29 The well-known representative is the antibiotic penicillin G produced by Penicillium rubens 

(formerly known as Penicillium chrysogenum).30-35 Gliotoxin, belonging to epipolythiodioxopiperazine 
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class of toxins, is synthetized by NRPS and has various biological activities.36 Cyclosporin A is a 

cyclic undecapeptide with a variety of biological activities including immunosuppressive, anti-

inflammatory, antifungal and antiparasitic activities.37 Alkaloids also utilize primary proteinogenic 

amino acids as metabolic building blocks, e.g. fumigaclavine C derived from L-tryptophan (L-Trp) and 

ergotamine derived from L-Trp, L-alanine (L-Ala), L-phenylalanine (L-Phe), as well as L-proline (L-

Pro).38,39 In addition, the non-proteinogenic amino acid L-ornithine was also proposed to be involved 

in the formation of mangrovamide A from Penicillium sp. (Figure 1).40 

Overall, a wide variety of NPs, which became therapeutic agents or inspired design of structural 

mimics, have attracted attention of researchers over the past 150-200 years on the basis of their 

diverse biologic activities, although 50 % of them have no synthetic counterparts yet. Tools with 

advanced version for metabolome analysis, such as mass spectroscopy (MS), single crystal X-ray 

diffraction, and nuclear magnetic resonance (NMR) spectrometry with increasingly sophisticated 

methods of chromatography, have made possible continuing discovery of more fungal metabolites 

and novel drugs. 

1.2 Biosynthesis of fungal natural products 

In the past decades, the development of genome, transcriptome, proteome, and metabolome 

analyses help researchers to better understand fungal biology, especially to exploit genes involved 

in the biosynthetic pathway of SMs. The genes required for modification of the chemical scaffold, 

transport of substrates and products, as well as specific regulatory genes are usually contiguously 

aligned in the genome leading to the concept of secondary metabolite biosynthetic gene clusters 

(BGCs).41,42 Diverse backbone enzymes, for instance, PKSs, NRPSs and TCs, are responsible for 

the core structures of SMs in fungi. The carbon skeletons are further modified by various tailoring 

enzymes, including oxidoreductases and transferases, which are encoded by genes located in 

BGCs. For example, the first fungal gene cluster identified was the penicillin cluster in Penicillium 

rubens and Aspergillus nidulans containing a NRPS (PcbAB) and two tailoring enzymes (PcbC and 

PenDE).31-33  

To identify BGCs and their products in fungi, the prerequisite is the cultivability of the targeted 

microorganisms to produce compounds of interest under laboratory conditions. The culture 

conditions, including nutrient source, redox status, pH, light, and temperature, can mimic the original 

natural environment to form SMs and even impact the metabolome significantly. Representatives are 

the pH-dependent expression of penicillin gene clusters and nitrogen-dependent expression of 

gibberellin gene cluster.22,34,35 Further genetic manipulation, such as replacement of the gene of 

interest with a hygromycin resistance cassette (hph) in the wild type strain enables the identification 

of more SMs, especially biosynthetic precursors (Table 1, Figure 2). Microbial cocultivation of two or 

more microorganisms in the same confined environment is another strategy for the expression of 

other cryptic genes, leading to the production of new microbial SMs (Table 1). It can be considered 
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as an experimental imitation of the competition within natural microbe communities via signaling 

molecules and metabolic precursors produced by either one or both cultivated species. This 

approach has been utilized in the cocultivation of fungus with fungus or bacteria to produce luteoride 

D, pseurotin G, and subenniatins A and B (Table 1).43,44 

 

Figure 2. The strategy for the biosynthetic pathway identification of fungal secondary metabolites  

Table 1. Methods used to identify secondary metabolite clusters and their products in fungi 

metabolite organism references 

conditional culture   

nidulanin A A. nidulans 45 

lovastatin A. terreus, P. citrinum 46 

penicillin/cephalosporin P. rubens, A. nidulans 34,35 

gibberellin F. fujikuroi 22 
bikaverin F. fujikuroi 47 

pleuromutilin Clitopilus passeckerianus 48 

co-cultivation   

luteoride D A. fumigatus and S. leeuwenhoekii 43 

pseurotin G A. fumigatus and S. leeuwenhoekii 43 

subenniatins A and B F. tricinctum and F. begoniae 44 

cluster-specific activation  

agglomerin F A. niger 49 
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monodictyphenone A. nidulans 50 

fumicyclines A and B A. fumigatus 51 

fusarielins F, G and H F. graminearum 52 

neosartoricin N. fischeri 53 

global regulator activation  

hexadehydroastechrome A. fumigatus 54 

endocrocin A. fumigatus 55 

tyrosine-derived alkaloids A. flavus 56 

terrequinone A A. nidulans 57 

ML-236B P. citrinum 58 

epigenetic modification   

meromusides A-H Metarhizium robertsii 59 

meromutides A and B Metarhizium robertsii 59 

asperthecin A. nidulans 60 

chladochromes F and G Cladosporium cladosporioides 61 

pestaloficins A-E Pestalotiopsis fici 62 

heterologous expression   

 donor organism heterologous host  

asperfuranone A. terreus A. nidulans 63 

leporin B A. flavus A. nidulans 64 

citrinin Monascus purpureus, Monascus ruber A. oryzae 17,65 

chrodrimanin B P. verruculosum A. oryzae 66 

15 compounds 
7 different strains from Aspergillus, 

Trichoderma, Hypomyces etc. 
S. cerevisiae 67 

Although both strategies mentioned above are easy and efficient to exploit metabolites, a vast 

number of BGCs have not been correctly assigned to their relative metabolites. One notable reason 

is that most BGCs are silent or only low expressed under laboratory cultivation. To activate these 

BGCs, genome mining strategies, including transcriptional regulator exploitation and heterologous 

expression (HE), have been developed for novel metabolite discovery and their biosynthetic analysis 

(Figure 2).12,68,69 About 50 % of fungal BGCs contain a putative cluster-specific regulator gene, 

which impacts the transcription of single BGC in quite a direct pattern. To date, several novel 

metabolites and their biosynthetic pathways have been identified by deletion or overexpression of 

cluster-specific regulators (Table 1). Zn(II)2CyS6 proteins and Cys2His2 zinc-finger proteins, for 

instance, AflR70 identified in Aspergillus nidulans and TRI6 as well as TRI1071 identified in Fusarium 

graminearum, are common types of cluster-specific regulators. Agglomerin F, as a fungal 

acyltetronate, was identified in Aspergillus niger together with its precursor carlosic acid by a 

regulator overexpression.49 On the other hand, global regulators represent another higher level of 

regulatory modulation of secondary metabolism. The discovery of the complex proteins LaeA with 

VeA as well as VelB first identified in Aspergillus nidulans explained the connection of fungal 

development to secondary metabolism.72,73 Subsequent identification of LaeB,74 McrA,75 and other 

regulators led to more novel secondary metabolism by up-regulating or down-regulating gene 

clusters (Table 1). Moreover, deletion of epigenetic factors such as histone acetyltransferase Hat1 

from Metarhizium robertsii resulted in characterizations of 10 new polyketides, meromusides A-H, as 

well as meromutides A and B (Table 1).59 Due to the limitation of laboratory cultivation and 
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genetically manipulation in native strain, heterologous expression in other microorganisms is another 

approach to survey cryptic fungal BGCs. In addition to Escherichia coli, fungi including 

Saccharomyces cerevisiae, Aspergillus nidulans and Aspergillus oryzae have been engineered to be 

synthetic biology tools to assemble and express synthetic DNAs (Table 1, Figure 2).17,63-67 More 

exploitation is in progress on other potential organisms, such as Penicillium crustosum.76 Taken 

together, with the improvement of genome sequencing, particularly the third-generation sequencing, 

cooperation of different strategies has been developed to investigate the biosynthesis of fungal 

natural products (Figure 2). In the near future, more and more compounds with bioactivities, as well 

as their biosynthetic pathways, would be found and proved, which will provide new candidates for 

drug-development. 

1.2.1 Polyketide synthase 

Polyketide natural products are a remarkable class of compounds with complex structure diversity 

and medicinally important activities. Five structurally distinct subclasses of polyketides have been 

described, i.e. polycyclic aromatic polyketides, macrolactones, decalin-containing scaffolds, 

polyenes, and polyethers. All of them are built with equivalent logic, which borrows the chemical and 

protein precepts from fatty acid biosynthesis.77 A polyketide synthase (PKS) consists of 

acyltransferase (AT), -ketoacyl synthase (KS), as well as acyl carrier protein (ACP) as basic 

domains, and -ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), 

methyltransferase (MeT), thioesterase (TE), as well as product template (PT) as accessory domains 

for the architecture of polyketide products. Generally, PKSs are classified into three distinct types 

depending upon their product structures and biochemistry (Figure 3). Type I PKSs are 

multifunctional enzymes that are organized structurally into modules. The catalytic domains of type II 

PKSs required for polyketide chain assembly are encoded within discrete proteins that are used in 

an iterative manner such as the biosynthesis of oxytetracycline.78,79 Type III PKS exampled by 

naringenin uses a single KS-like active site to catalyze the repetitive condensation of acetate units to 

a CoA-derived starter molecule, typically yielding mono- and bi-cyclic aromatic products.80  

In bacteria, type I PKS with best known modular system is exemplified by the PKS responsible for 

the 6-deoxyerythronolide B (6-DEB) scaffold of erythromycin A.81 In modular type I PKS, the AT 

domain is the “gatekeeper” of the module for an appropriate acyl-CoA starter unit selection and 

recognizes the specific extender unit to be incorporated into the growing polyketide chain. After 

tethering the extender unit onto the sulfhydryl group of the ACP domain, the KS domain catalyzes 

the decarboxylative Claisen condensation to extend the polyketide chain (Figure 4A).82-84 Finally, 

the TE domain located at the C-terminal of the assembly line leads to the release of polyketide 

product. 
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Figure 3. Polyketides derived from different types of PKS 

Figure 4. Biosynthetic cycles within modular type I PKS and NRPS 

In comparison, iterative type I PKSs, commonly found in fungi, contain a single module that 

catalyzes polyketide chain elongation and modification iteratively to synthesize both aromatic and 

non-aromatic polyketides. They can be further divided into highly-reducing PKSs (HR-PKSs), 

partially-reducing PKSs (PR-PKSs), and non-reducing PKSs (NR-PKSs) depending on the presence 

or absence of reducing domains (Figure 5). 
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HR-PKSs contain the full spectrum of possible reduction states in one molecule. In the case of 

lovastatin biosynthetic PKS LovB, the elongation intermediate was methylated by SAM-dependent 

MeT domain and subsequently reduced by the KR domain to form a hydroxyl group. Further 

reduction steps are achieved by DH domain and NADPH-dependent trans-ER domain consequently 

leading to a fully saturated product (Figure 5A).85-87 In contrast, releasing products of PR-PKSs 

differ from the fully reduction mechanism due to the absence of ER domain, such as 6-

methylsalicylic acid (6-MSA) as the PR-PKS MSAS product (Figure 5B).15,88  

 
Figure 5. Representatives of HR-, PR-, and NR-PKS involved in the secondary metabolite 

biosynthesis 

Unique to the NR-PKS family, the N-terminus is identified as a starter unit acyltransferase (SAT) 

domain, which accounts for the prime loading of polyketide extension and starter unit selection 

(Figure 5C).85,89 In most cases, the SAT domain is selective for acetyl-CoA, a fundamental 

metabolic building block.12,14 However, in the biosynthetic pathway of aflatoxin B1, the SAT domain 

of PksA accepts a hexanoyl starter unit from a specialized fatty acid synthase subunits HexA/HexB 

and attached acetyl units onto either ACP domain or KS domain. Iterative rounds of decarboxylative 

Claisen condensation by KS domain are responsible for the linear poly--ketone intermediate 

formation. Afterward, the regiospecificity and timing of cyclization involve two successive aldol 

condensations by the PT domain, between C4-C9 and then C2-C11. The TE domain then mediates 

the C14-C1 thioclaisen-type of chain cyclization and release to yield norsolorinic acid anthrone 

(Figures 5C and 6).19,90 Instead, other cyclization patterns, including C2-C7 and C6-C11 aldol 

condensations, have been observed in the formation of aromatic polyketides.91-93 The first ring of the 

naphthopyrone YWA1 is formed through the C2-C7 cyclization by the PT domain in the WA PKS 
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(Figure 6).94,95 C6-C11 first ring cyclization is involved in the biosynthesis of tricyclic fungal 

anthraquinones, such as endocrocin anthrone (Figure 6).96,97 In addition, several NR-PKSs, such as 

the well-studied 5-methylorsellinic acid synthase, also harbor a MeT domain catalyzing the 

methylation of the growing polyketide chain.98 

 

Figure 6. Three distinct regiospecificities for first ring formation by a protein template (PT) domain in 

fungal aromatic polyketides 

With the help of advanced genetic, chemical and computational tools, structure insights into PKS 

architectures have been intensively studied to explain the complex diversity of polyketides in nature. 

Although recent progress has provided so many evidences for the formation of polyketides, there are 

still some questions remaining, for example, the complex interactions between the polyketide chain 

elongation and different domains as well as PKS docking-molecular dynamics.  

1.2.2 Polyketide synthase-nonribosomal peptide synthetase 

Given that polyketides built on assembly lines that tether elongating chains as phosphopanteteinyl-

thioesters covalently attached to ACP domain, it is easy to understand that nonribosomal peptide 

synthetase (NRPS) assembly lines use a parallel chemical logic with amino acids as starters and 

peptidyl carrier protein (PCP) domain as covalent way station (Figure 4B).99,100 When a NRPS 

module is located upstream of a PKS module, the KS domain of PKS receives the aminoacyl group 

that is attached to the PCP domain followed by decarboxylative condensation with the malonyl-type 
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extender bound to ACP domain. As a result, a new C-C bond is formed as an aminoacyl-acyl hybrid 

chain (Figure 7A).101 Instead, when a PKS module is located upstream of a NRPS module, the 

condensation (C) domain of NRPS accommodates the acyl group, that is bound to the PKS ACP 

domain. Therefore, an acyl-aminoacyl hybrid chain is achieved by the N-C amide bond formation 

(Figure 7B).101 The molecules sometimes are on two distinct proteins within complex protein-protein 

interaction to guide the specific products. There are also single proteins with both PKS and NRPS 

domains, called hybrid polyketide synthase-nonribosomal peptide synthetase (hybrid PKS-NRPS) or 

hybrid NRPS-PKS. 

 

Figure 7. The mechanism of hybrid NRPS-PKS (A) and PKS-NRPS (B) module interfaces 

Both hybrid PKS-NRPS and hybrid NRPS-PKS products are distributed in bacteria. In Paenibacillus 

larvae, a remarkably complex hybrid NRPS-PKS gene cluster (pam) was identified for the formation 

of the antibiotic paenilamicin B1 (Figure 8).102 Multi-module systems of hybrid NRPS-PKS were also 

characterized in the althiomycin and didemnin B biosynthetic pathways.103,104 Polycyclic tetramate 

macrolactams, such as heat-stable antifungal factor dihydromaltophilin (HSAF) and frontalamdie A, 

are representative examples of bacterial hybrid PKS-NRPS products (Figure 8).11,105,106 In the case 

of HSAF, the PKS module is responsible for the biosynthesis of two different polyene hexaketide 

chains. Subsequently, the first polyene chain is transferred to the NRPS module and utilized for a 

condensation reaction with the -amino group of L-ornithine. Then the second polyene chain with -

keto group is condensed with the -amino group of L-ornithine to result in the polyene-ornithine-

polyene structure. 
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Figure 8. Natural products of hybrid PKS-NRPS or NRPS-PKS from microorganisms 

In contrast, hybrid with N-terminal iterative PKS module tethered a C-terminal NRPS module is the 

popular architectural feature in fungi with an exception of tenuazonic acid. Tenellin,107 

aspyridone,108,109 equisetin,110 xyrrolin,111 and dihyoisoflavipucine112 have been well studied involving 

iterative hybrid PKS-NRPS catalysis (Figure 8). All these enzymes contain an inactive enoyl 

reductase (ER) domain, i.e. ER0, and an extra trans-acting ER protein involved in the polyketide 

programming.11,113 For example, without coexpression of the ER gene tenC, heterologous 

expression of the hybrid PKS-NRPS tenS in Aspergillus nidulans led to the production of mis-

programmed polyketides with low amount instead of pretenellin A (Figure 9A).114 Unlike the NRPS 

module of TenS accepting L-tyrosine, agglomerin F was proposed to involve L-malic acid activation 

by A domain of NRPS module. It is an exception for hybrid PKS-NRPS to accept an organic acid 

instead of proteinogenic or non-proteinogenic amino acids (Figure 9B).49 More interestingly, TAS1, 
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involved in tenuazonic acid biosynthesis, is a unique fungal hybrid NRPS-PKS enzyme that contains 

an NRPS module at its N-terminus (Figure 9C). The C-terminal PKS module contains only a KS 

domain, which is proposed to function in the cyclization and product release steps.115 With structural 

and biological approaches to understand the biosynthesis of hybrid polyketide-nonribosomal 

peptides, further studies on the connection and interaction within PKS and NRPS modules will 

provide a new approach to create novel and unusual compounds. 

Figure 9. The mechanism of hybrid PKS-NRPS and NRPS-PKS reactions in fungi 

1.3 Enzymatic oxidations and reductions in natural product biosynthesis 

In the biosynthesis of natural products discussed before, the backbone enzymes are responsible for 

scaffold complexity of secondary metabolites. Further processing of the nascent scaffolds can occur 

in a set of post-assembly enzymatic tailoring steps, including acylations, glycosylations, methylations, 

prenylations, and redox reactions.116-118 Redox reactions involve electron transfers between two 

chemical species to trigger out reactions represented by hydroxylation, epoxidation, oxidation, 

desaturation and reduction. Enzymes being responsible for redox reactions show obligate 
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requirements for either an organic coenzyme to act as an electron acceptor/donor or a redox-active 

transition metal to transmit electrons to another acceptor/donor (Table 2).119 For example, iron and 

copper between different redox states (FeII, FeIII, and FeIV, CuI and CuII) can circulate by transferring 

one electron to O2 to initiate radical reactions. Iron and heme-dependent cytochrome P450s form 

iron-porphyrin complexes to oxidize a vast multitude of different substrates using molecular 

oxygen.120,121 Nonheme FeII/2-oxoglutarate (FeII/2-OG)-dependent oxygenases require the extra FeII 

and -ketoglutarate (-KG) to fulfill multiple oxidative reactions.122-125 

Table 2. Cofactors participating in enzymatic redox reactions 

cofactors/prosthetic group 
(enzyme example) 

reduced form → oxidized form 

nicotinamide adenine 
dinucleotides (NAD(P)H) 
(lactate dehydrogenase) 

biopterin  
(phenylalanine hydroxylase) 

glutathione  
(glutathione peroxidase) 

lipoamide 
(dihydrolipoyl dehydrogenase) 

flavins (FAD and FMN) 
(succinate dehydrogenase) 

ascorbic acid (vitamin C) 
(nonheme FeII/2-OG-dependent 
oxygenase) 

iron / 2-oxoglutarate 
(nonheme FeII/2-OG-dependent 
oxygenase) 

iron-sulfur clusters (Fe-S)n 

(ferredoxins) 
n = 2 or 4 
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heme 
(cytochrome oxidase) 

 
transition metal ions 
(laccase, catechol dioxygenase) 

 
Groups/atoms relevant to oxidation are marked in blue. NADP+ differs from NAD+ in having a phosphate group on 
OH marked in green (shown as (P)). Amino acid side chains, water, O2, etc. provide the fifth and sixth ligands (X 
and Y) to heme iron. 

1.3.1 Nonheme FeII/2-oxoglutarate-dependent oxygenases 

Mononuclear nonheme FeII/2-oxoglutarate (FeII/2-OG)-dependent oxygenases comprise a large 

family of oxidative enzymes that are widely distributed in viruses,126 bacteria,127 fungi,128  plants129 as 

well as animals.130 These enzymes activate molecular oxygen by FeII as the metallo-cofactor and 

mostly utilize -KG as co-substrate to catalyze various types of oxidations (Figure 10). For example, 

AmbO5 is an example of nonheme FeII/2-OG-dependent halogenase catalyzing the chlorination of 

ambiguines H, C, I, and L in analogy to WelO5.131 Hydroxylation is a common reaction catalyzed by 

nonheme FeII/2-OG-dependent oxygenases, such as the L-proline hydroxylase AlP4H catalyzing the 

formation of trans-4-hydroxy-L-proline132 and CitB installing a hydroxyl group in the biosynthesis of 

citrinin.17 O-demethylation of thebaine in morphinan alkaloid biosynthesis by the codeine O-

demethylase CODM represents another subfamily of oxidative reactions catalyzed by the nonheme 

FeII/2-OG-dependent oxygenases.133 Related to the development of plants, the dioxygenase for 

auxinoxidation (DAO) is responsible for the oxidation of a tryptophan derivative to form 2-oxindole-3-

acetic acid (oxIAA).134,135 Notably, several nonheme FeII/2-OG-dependent oxygenases have been 

proven to catalyze multifunctional steps in secondary metabolite biosynthesis. CarC is a bifunctional 

nonheme FeII/2-OG-dependent enzyme catalyzing epimerization and desaturation.136-138 As a 

representative, AsqJ was well studied for the desaturation and epoxidation to produce cyclopepnin, 

which undergoes non-enzymatic rearrangement to viridicatin.139,140 FtmOx1 is an excellent example 

of an endoperoxidase to form verruculogen.141-143 Three distinct steps including hydroxylation, ring 

formation and desaturation in the biosynthesis of clavulanic acid were observed for the nonheme 

FeII/2-OG-dependent clavaminic acid synthase (CAS) from Streptomyces clavuligerus.144-146 

DAOCS/DACS is a bifunctional nonheme FeII/2-OG-dependent enzyme in Cephalosporium 

acremonium and catalyzes ring expansion and hydroxylation of penicillin N to form 

deacetylcephalosporin C.146,147 In addition, oxidative decarboxylation by nonheme FeII/2-OG-

dependent enzymes have been also reported in recent years, e.g., IsnB and AmbI3 involved in the 

biosynthesis of isonitrile derivatives.148-151 These oxidative transformations play crucial roles in 

biochemical processes and highlight their importance in nature. Therefore, extensive mechanism 

investigations on nonheme FeII/2-OG-dependent oxygenases have been reported.123 
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Figure 10. Reactions catalyzed by nonheme FeII/2-OG-dependent oxygenases 
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Figure 11. Reaction mechanism of the nonheme FeII/2-OG-dependent oxygenase-mediated 

hydroxylation  

Crystallographic studies show that nonheme FeII/2-OG-dependent oxygenases comprise a double-

stranded -helix core fold composed of eight antiparallel -strands forming a -sandwich structure, 

which shares distinctive features of two His residues and a carboxylate Glu or Asp residue.152 As 

shown in Figure 11 using a common hydroxylation reaction as an example, FeII is coordinated by 

conserved 2-His-1-carboxylate facial triad ligand and three water molecules (Figure 11, I).124,125 

Binding of -KG to the FeII center displaces two of the three metal-bound water molecules (Figure 

11, II). Subsequently, the remaining water molecule is displaced to vacate a site for binding with the 

O2 molecule and to generate the FeIII-superoxo intermediate (Figure 11, III→IV). The distal oxygen 

atom of the FeIII-superoxo species can attack carbon of -KG to yield a peroxohemiketal bicyclic 

intermediate, which is abolished via an oxidative decarboxylation to construct a high valence FeIV=O 

(ferryl) intermediate (Figure 11, IV→VI). This ferryl species as a key intermediate can abstract a 

hydrogen atom from the substrate (R-H) to reduce the iron to the FeIII-OH state accompanied by the 

substrate radical (R•) formation (Figure 11, VII). To complete the catalytic cycle, the hydroxylated 

product (R-OH) is formed due to the rebound of hydroxyl radical with the substrate radical, returning 

the iron back to the FeII species with concomitant formation of succinate release (Figure 11, VIII→I). 

Based on the generic mechanism mentioned above, more mechanisms of other reactions by 

nonheme FeII/2-OG-dependent oxygenases are studied with the help of in vitro investigations, site-

specific mutagenesis, 18O labeling experiment and crystallographic analysis. In the cases of the 

oxidative decarboxylases IsnB and AmbI3, Huang et al. first proposed three different pathways, 

including the hydroxyl group formation, radical or cation intermediate pathway and O-H bound 

activation.148 Finally, the mechanism involving radical or cation intermediate was proved to be more 

reasonable. A hydrogen atom from -position of COOH is abstracted by FeIV=O species to generate 

the substrate radical. Subsequent radical-mediated electron transfer and C-C bond cleavage 
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eventually install the olefination accompanied by CO2 elimination.149 With advanced biochemical 

tools and the well-known mechanism study, more and more structural information and novel 

reactions are discovered for nonheme FeII/2-OG-dependent enzymes. Therefore, an increasing 

structure-function and structure-reactivity relationship will further enrich our knowledge on this 

enzyme family. 

1.3.2 Flavin-containing oxidoreductases 

In contrast to iron-based enzymes, flavin-containing enzymes utilize a flavin adenine dinucleotide 

(FAD) or flavin mononucleotide (FMN) as cofactor to undergo the catalytic cycle by two half 

reactions (Table 2, Figure 12).153 In the reductive half reaction, four types of substrates with ester 

groups, alcohol, amine, thiol and dithiols are typically oxidized by the oxidized flavin (Flox) coenzyme 

via two-electron pathway (Figure 12A). Representatively, the oxidase AknOx is a bifunctional 

enzyme, converting the alcohol group of aclacinomycin N (AclN) to the ketone group and thereby 

acting as a typical flavin-dependent desaturase to yield aclacinomycin Y (AclY) (Figure 13A).154 The 

gliotoxin dithiol oxidase GliT is the last enzyme in the toxin assembly line and has recently been 

shown to play a self-protective role in the producer Aspergillium fumigatus (Figure 13B).155,156 For 

most flavin-containing enzymes, the second half reaction includes a directed reoxidation of a bound 

reduced dihydroflavin (FlH2, i.e. FADH2/FMNH2) generated by the reductive half reactions. In this 

case, the oxygenating agent hydroperoxyflavin (Fl-4a-OOH) functions as an electrophile in most 

examples to deliver an OH+ equivalent to a nucleophilic substrate and the peroxyflavin (Fl-4a-OO-) 

serves as a nucleophile. The resultant Fl-4a-OH can decompose intramolecularly to give one 

molecule of water and regenerate the oxidized state Flox in the enzyme active site (Figure 12B). For 

example, in the biosynthesis of gaudimycin C, the flavin-containing enzyme PgaE is responsible for 

the hydroxylation at C12-position.157,158 Analogously, NotB in the notoamide pathway is proposed to 

generate an indole epoxide intermediate from notoamide E (Figure 13C and D). Taken together, 

flavin-containing enzymes catalyze a large variety of oxidations including dehydrogenation, 

hydroxylation, epoxidation, Baeyer-Villiger oxidation and sulfoxidation.159,160 

Another major group of flavin-containing enzymes oxidizes NADPH to NADP by hydride transfer 

from the reduced nicotinamide coenzymes to N5 of the bound FAD.121,161 Most of the NADPH-

oxidizing flavin-containing enzymes found in the biosynthetic pathways are involved in co-substrate 

oxygenations by reoxidative half reactions from FlH2. However, reduction/hydrogenation of this 

enzyme family was also reported. Representatively, the FAD-enzyme MurB utilizes NADPH as a 

hydride transfer agent to generate FADH2 in the reductive half reaction. Subsequently, FADH2 in the 

MurB active site is responsible for the hydride transfer to the olefinic terminus of the enol ether link in 

the substrate UDP-enoylpyruvyl-GlcNAc (Figure 13E).162-165 In summary, FAD and FMN use one- or 

two-electron transfer to yield different forms in redox reactions. They are electrophilic in the oxidized 
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state and nucleophilic in the reduced state. Therefore, it is comprehensible that this enzyme family is 

responsible for a large number of crucial reactions in biosynthetic pathways. 

 

Figure 12. Mechanism of flavin-containing enzyme redox transformations. (A) Reductive half 

reaction and reoxidative half reaction between the oxidized flavin (Flox) and reduced flavin (FlH2). (B) 

Reoxidative half reaction of FlH2 with O2 via one-electron transfer. 

 

Figure 13. Reactions catalyzed by flavin-containing enzymes 
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1.4 Non-enzymatic reactions in natural product formation 

Molecular biological and biochemical investigations showed that complex enzymatic reactions are 

performed in a sequential order in the biosynthesis of natural products.166,167 Although such multi-

enzyme cascade reactions provide many advantages for compound design, there are a lot of non-

enzymatic reactions observed during extraction, fractionation, analysis, handling and even 

storage.168 These reactions can be induced by many stimuli including common organic solvents (e.g. 

alcohol, methanol, acetone and dichloromethane), slight changes on pH or temperature, exposure to 

light or air (i.e. oxygen) and even chromatography media. As a result, natural products can be 

converted to unexpected pseudo-natural products by ester formation, etherification, hydroxylation, 

cycloaddition, isomerization, or rearrangement. On the other hand, there are also diverse active 

intermediates spontaneously formed and undergoing miscellaneous chemical reactions in natural 

product formation. 

Quinone methides (QMs) are highly reactive intermediates observed in complex natural product 

biosynthesis and have been extensively utilized in chemical synthesis.169-173 Diverse strategies, e.g. 

thermally driven,174,175 photolytically induced tautomerization176,177 and benzylic oxidation,178,179 have 

been developed to generate QMs. However, QMs can also be formed by spontaneous elimination of 

a stable molecule with concomitant dearomatization.180,181 They are susceptible to nucleophilic 

attack to form unexpected natural products by inverse electron-demand Diels-Alder (IEDDA) 

reactions or 1,4-Michael additions. For example, the para-quinone methide (p-QM) puupehenone, 

isolated from a Caledonian sponge Hyrtios sp., yielded 15-methoxypuupehenone in methanol with 

asymmetric induction from adjacent chiral centers, and vice versa (Figure 14A).182,183 Pestapyrone 

B, isolated from the mangrove-derived fungus Pestalotiopsis clavispora, undergoes dehydration 

spontaneously to form an ortho-quinone methide (o-QM) intermediate, which is methylated 

spontaneously to deliver pestapyrone C (Figure 14B).184 The p-QM elansolid A3 acts as a key 

intermediate in the biosynthesis of elansolids A1/A2 in Chitinophaga sancti (Figure 14C).185,186 

Another p-QM intermediate derived from acyl-fluostatins (acyl-FSTs), such as FST D, is proposed to 

be responsible for the formation of FST C in water or methanol and involved in the dimerization of 

benzofluorene-containing difluostantin B via Michael addition (Figure 14D).181 The o-QM 

intermediates spontaneously lead to the formation of leprin C by hetero-Diels−Alder (HDA) reaction 

and its derivative by intramolecular Diels-Alder reaction (IMDA) (Figure 14E).64 Chaetophenol E is 

produced through the acid-prompted generation of an o-QM from chaetophenol B, which is followed 

by an inverse-demand HDA reaction or a stepwise Michael addition (Figure 14F).187 In summary, 

quinone methides as active intermediates are spontaneously involved in diverse natural product 

formation. This is likely to inspire the development of future methodology involving non-enzymatic 

reactions, which will be used not only in natural product synthesis but also in all fields of organic 

chemistry.
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Figure 14. Biosynthesis of natural products via the active quinone methide intermediates 

  



AIMS OF THIS THESIS 

25 
 

2 Aims of this thesis 

The following issues have been addressed in this thesis: 

Formation of peniphenones and penilactones in Penicillium crustosum requires coupling of 

products from two separate gene clusters via non-enzymatic 1,4-Michael additions 

Penilactones A and B are rare fungal metabolites containing clavatol and -butyrolactone moieties. It 

was proposed that they are formed by 1,4-Michael additions of two clavatol molecules in its active 

form ortho-quinone methide with a -butyrolactone (tetronic acid), i.e. (5R)-methyl or (5S)-

carboxylmethyltetronic acid. Although this hypothesis was confirmed by a biomimetic synthesis, no 

genetic investigation on penilactones A and B biosynthesis was available prior to this study. The aim 

of this project is to find the biosynthetic origin of clavatol and -butyrolactone, as well as their 

coupling mechanism to yield the end products penilactones A and B in Penicillium crustosum PRB-2. 

The following experiments were carried out: 

➢ Isolation and structural elucidation of secondary metabolites related to clavatol or -

butyrolactone from Penicillium crustosum PRB-2 

➢ Identification of the putative NR-PKS ClaF and hybrid PKS-NRPS TraA by sequence 

comparison 

➢ Verification of the involvement of clavatol and terrestric acid gene clusters in the biosynthesis 

of penilactones A and B by gene deletion, feeding experiments, and heterologous expression 

➢ Characterization of the nonheme FeII/2-OG-dependent oxygenase ClaD by biochemical 

investigation in vitro 

➢ Detection of o-quinone methide derived from hydroxyclavatol 

➢ Proof of the penilactone and peniphenone formation via non-enzymatic 1,4-Michael addition 

Formation of crustosic acid and its stereospecific conversion to terrestric acid in Penicillium 

crustosum 

Fungus-originated tetronates carry usually different acyl moieties at C3-position and differ from each 

other often in substituents at C5-position by an -methyl, a -carboxylmethyl or an olefinic 

methylene group. Despite the occurrence of a number of such compounds in fungi, no detailed 

investigations on their biosynthesis were available prior to this study. The involvement of terrestric 

acid gene cluster in Penicillium crustosum PRB-2 was proposed in the formation of crustosic acid 

and terrestric acid in our previous efforts. In this study, we elucidated the biosynthetic pathway of 

crustosic acid with a -carboxylmethyl group and its stereospecific conversion to terrestric acid with 

an -methyl group. The following experiments were carried out:  
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➢ Heterologous expression of the hybrid PKS-NRPS traA with or without the enoyl reductase 

traG in Aspergillus nidulans LO8030 

➢ Identification of traG by gene deletion in Penicillium crustosum PRB-2 

➢ Isolation and structural elucidation of crustosic acid precursors 

➢ Overproduction of the recombinant flavin-containing oxidoreductase TraD and the nonheme 

FeII/2-OG-dependent oxygenase TraH in E. coli 

➢ Performance of enzyme assays with TraD and TraH, as well as subsequent analysis by LC-

MS 

➢ Extraction, isolation and structural elucidation of enzyme products 

➢ Determination of the kinetic parameters of the corresponding enzymes 

➢ Postulation of a catalytic mechanism for TraH reaction 

Application of ortho-quinone methide derived from hydroxyclavatol for increasing structural 

diversity of clavatol-containing pseudo-natural products under mild condition  

A number of natural products containing a clavatol unit are found in fungi, especially in Penicillium 

species. In our previous study, we demonstrated that the formation of penilactones A and B requires 

two-step non-enzymatic 1,4-Michael additions between a -butyrolactone and two ortho-quinone 

methide molecules derived from hydroxyclavatol. Ortho-quinone methides, as transient 

intermediates with remarkable reactivity, have been utilized as useful reactants in chemical 

synthesis. Inspired by post-biosynthetic non-enzymatic event in the biosynthesis of penilactones A 

and B, ortho-quinone methide derived from hydroxyclavatol was used for increasing structural 

diversity of clavatol-containing products. The following experiments were carried out: 

➢ Chemical synthesis of hydroxyclavatol (carried out by Lena Ludwig-Radtke) 

➢ Incubation of hydroxyclavatol with 102 different reactants at 25 °C for 16 h or at 95 °C for 30 

min without pH adjustment 

➢ LC-MS analysis of incubation mixtures 

➢ Isolation and structural elucidation of 32 selected clavatol-containing products 

➢ Screen of isolated clavatol-containing products for their antibacterial, acetylcholinesterase, 

and -glucosidase inhibition activities 

The designed experiments of all the three projects have been successfully finished in cooperation 

with Ge Liao. 
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3 Results and discussion 

3.1 Peniphenone and penilactone formation in Penicillium crustosum via 1,4-

Michael additions of ortho-quinone methide from hydroxyclavatol to -

butyrolactones from tetronic acids 

Diverse penilactone and peniphenone natural products were identified in fungi, especially in 

Penicillium species.188-191 Penilactones A (1) and B (2), together with their putative precursors 

peniphenone D (3) and penilactone D (4), were isolated from Penicillium crustosum PRB-2. They 

harbor structurally clavatol (5) and -butyrolactone (tetronic acid) moiety.188 Biomimetic synthesis of 

1, 2, and 4 were achieved by using an active intermediate ortho-quinone methide (6) and (5R)-

methyl (7) or (5S)-carboxylmethyltetronic acid (8) as reactants via Michael addition.174,175 However, 

their biosynthetic pathway still remained unknown prior to this study. Likewise, neither the 

biosynthesis nor the involvement of clavatol and -butyrolactones have been investigated before. 

After optimization of culture conditions for secondary metabolite  production in Penicillium crustosum 

PRB-2, two dominant peaks detected in 7 days-old PD shaking culture were identified as 

hydroxyclavatol (9) and hydroxyclavatol methyl ether (10)192 by isolation, NMR elucidation and X-ray 

diffraction. 5 and another clavatol-containing metabolite, hydroxyclavatol ethyl ether (11)192 as well 

as terrestric acid (12)193 were also obtained from PRB-2 from 7 days-old PD shaking culture by 

isolation and structural elucidation. 1 – 4 were clearly accumulated in a 14 days-old PD surface 

culture and a 30 days-old rice culture.188,191 Another new peak was proven to be a carboxylated 

derivative of 12, termed crustosic acid (13). The CD spectra of 1 and 2 correspond very well to those 

reported previously.188 The stereochemistry of 3 and 4 were determined by chemical synthesis from 

7 and 8 with known configuration at C-5 respectively.174,175,194,195 The configurations of 12 and 13 

were assigned by comparison with the optical rotation data of fungal acyltetronic acids.196  

To investigate the biosynthetic pathway, the genome of Penicillium crustosum was sequenced and 

analyzed, leading to the prediction of 56 putative gene clusters by using AntiSMASH analysis.197 

Based on its aromatic character, 5 is expected to be assembled by a non-reducing PKS (NR-PKS).84 

Pcr3094, termed ClaF, was considered as the top candidate due to its sequence identity of 57.7 % 

with CitS from Monascus ruber (Figure 15).17 The disruption of claF from clavatol gene cluster by 

replacement with a hygromycin B cassette (hph) completely abolished the accumulation of 1 – 5 and 

9 – 11, which indicated that ClaF is responsible for the biosynthesis of 5 in PRB-2 (Figure 17). 

Feeding 5 to the ∆claF mutant restored the production of 1 – 4 and 9 – 11. Further heterologous 

expression of claF in Aspergillus nidulans LO8030 confirmed the function of NR-PKS ClaF as 

clavatol synthase. 
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Figure 15. Schematic representation of clavatol and terrestric acid clusters in P. crustosum PRB-2 

To identify the genetic potential for the formation of 7 and 8, hybrid PKS-NRPS gene pcr11009 from 

terrestric acid gene cluster, termed traA, was disrupted in the similar way as for claF, because its 

sequence homologue caaA was speculated for the formation of carlosic acid (Figure 15).49 As 

expected, LC-MS analysis of the ∆traA mutant revealed the abolishment of 1 – 4 and the 

accumulation of 5 and 9 – 11. Notably, the predominant peak of 12 observed in PRB-2, together with 

its carboxylated derivative 13, were completely disappeared in the ∆traA mutant. Feeding 7 and 12 

into the ∆traA mutant both restored the production of 1 and 3, but not 2 and 4. Instead, 2 and 4 were 

accumulated in the ∆traA mutant after feeding with 8. Interestingly, feeding 13 into ∆traA mutant 

restored the production of 1 – 4. This proved that TraA is involved in the biosynthesis of the γ-

butyrolactone (tetronic acid) moiety. In addition, 12 and 13 are the precursors of 7 and 

8, respectively. 13 can be converted to 12, which is further confirmed by inactivation of the 

encoding gene of the nonheme FeII/2-OG-dependent oxygenase (traH). 

Having identified the backbone enzymes involved in building blocks, we intended to investigate the 

metabolism of 5 to 9, 12 to 7, as well as 13 to 12 and 8. In the deletion mutants of the cytochrome 

P450 traB and the flavin-containing oxidoreductase traD, no accumulation of 12, 13, or 1 – 4 was 

detected, proving their roles in the 13 formation. In the deletion mutant of nonheme FeII/2-OG-

dependent oxygenase claD, 1 – 4 and 9 were completely abolished, whereas 5 was clearly 

accumulated. Feeding 9 in the ∆claD mutant restored the production of 1 – 4, proving its role in the 

conversion of 5 to 9. Subsequently, the recombinant enzyme ClaD was incubated with 5 in the 
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presence of ascorbic acid, Fe[(NH4)2(SO4)2] and 2-oxoglutarate. HPLC analysis confirmed the 

hydroxylation of 5 to 9.  

Regarding Michael addition, an active intermediate ortho-quinone methide (6) was speculated for the 

formation of 1 – 4. To prove the conversion between 9 and 6, 9 was incubated in H2O and H2
18O at 

25°C for 16 h. MS data in positive and negative modes confirmed the incorporation of 18O into 9 and 

therefore the equilibration (Figures 16). 6 was also detected in extracted ion chromatograms (EICs) 

in the incubation of 9 in different alcohols, which resulted in the formation of 10 and 11. 

Figure 16. Determination of equilibration between hydroxyclavatol (9) and ortho-quinone methide 

(6) 

Deletion of cytochrome P450 claJ resulted in the abolishment of 1 – 4, but still retained 

the production of 5, 9, 12 and 13. This suggested its role in the connection of the two building blocks 

via Michael addition. Therefore, we intended to feed the precursors in claJ heterologous 

expression mutant. Surprisingly, 1 as a minor product and 3 as a major product were detected 

in the control incubation of 7 with 9 in water at 25 °C for overnight. In contrast, the incubation 

mixture of 8 with 9 in water led to the formation of 2 and 4. When 3 and 4 were incubated with 9, 1 

and 2 were detected, respectively. It is obvious that the active intermediate 6 can be easily 

formed from 9 in aqueous system and initiates the non-enzymatic Michael additions by the 

intermolecular nucleophilic attacking under very mild condition (Figure 17). Consequently, these 

results indicate that ClaJ is responsible for other reactions instead of Michael addition. 

Taken together, 1 – 4 are formed by enzymes from independent pathways of two separate 

gene clusters (Figure 17). Gene deletion, feeding experiments and biochemical investigations 

proved that a NR-PKS ClaF is responsible for the formation of 5 and the hybrid PKS-NRPS TraA is 

involved in the formation of 13, which undergoes decarboxylation and isomerization to 12. Both 

acids deliver the two γ-butyrolactones 7 and 8. Oxidation of 5 to 9 by ClaD and its spontaneous 

dehydration form 6 initiate the two non-enzymatic Michael addition steps to yield 1 and 2. This 

study provides an excellent example for natural products with complex structures by 

combination of enzymatic and non-enzymatic reactions. Thus, more clavatol-containing products 

reported before would also be formed in similar way via the active intermediate 6.189,190,198-200 



RESULTS AND DISCUSSION 

30 

Figure 17. Proposed biosynthetic pathways of penilactones, peniphenone and terrestric acid in P. 

crustosum PRB-2 

For details on this work, please see the publication (section 4.1) 

Jie Fan*, Ge Liao*, Florian Kindinger, Lena Ludwig-Radtke, Wen-Bing Yin, and Shu-Ming Li (2019), 
Peniphenone and penilactone formation in Penicillium crustosum via 1,4-Michael additions of ortho-

quinone methide from hydroxyclavatol to γ-butyrolactones from crustosic acid. Journal of 

the American Chemical Society, 141 (10), 4225–4229, DOI: 10.1021/jacs.9b00110. (*equal 

contribution) 
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3.2 Terrestric acid formation in Penicillium crustosum requires redox-assisted 

decarboxylation and stereoisomerization 

Natural products of the tetronate family with over 100 members display a wide variety of biological 

activities. Tetronate compounds mainly found in Actinomycetes consist of a linear fatty acid or 

polyketide backbone, decorated on one end with a characteristic -butyrolactone (tetronic acid) ring 

system (Figure 18).201,202 Fungus-originated tetronates carry different acyl moieties at C3-position 

and differ from each other often in substituents at C5-position by an -methyl, a -carboxylmethyl or 

an olefinic methylene group.49,180,193,196,203-205 Representatives are terrestric acid (12) and crustosic 

acid (13) from Penicillium crustosum, as well as dehydroterrestric acid (14) from Aspergillus 

hancockii (Figure 17). Despite the interesting structural features of fungal acyltetronates, no detailed 

investigations on the biosynthesis of fungal tetronates were reported prior to this study. An hybrid 

PKS-NRPS CaaA responsible for the biosynthesis of carlosic acid with a -carboxylmethyln group 

was proposed after a regulator activation in Aspergillus niger, but without genetic and biochemical 

data.49 As mentioned in section 3.1, the involvement of terrestric acid cluster was proposed in the 

formation of 12 and 13.180 A nonheme FeII/2-OG-dependent oxygenase TraH was involved in the 

conversion of 13 to 12. In this study, we continued the investigation on the formation of 13 in 

Penicillium crustosum PRB-2 and its conversion to 12. 

 

Figure 18. Tetronic acid tautomers 

Based on the identification of TraA responsible for the core structure of 12 and 13 by gene deletion 

in Penicillium crustosum, its genome sequence traA was further introduced into Aspergillus nidulans 

LO8030. LC-MS analysis of the transformant JF15 harboring traA revealed the production of a new 

carboxylmethyltetronic acid derivative with an unsaturated acyl chain, termed carboxylcrustic acid 

(15) (Figure 17). This proved that the hybrid PKS-NRPS TraA alone acts as a carboxylcrustic acid 

synthase and differs from other PKS-NRPS enzymes requiring a trans-enoyl reductase (ER). 

Subsequently, heterologous expression of traA with the putative ER traG in Aspergillus nidulans led 

to accumulation of 16 as a predominant product and 15 as a minor product. Isolation and structural 

elucidation proved 16 to be viridicatic acid, which was also identified in Penicillium crustosum PRB-2. 

Structurally, 16 is a derivative of 15 with a saturated acyl chain, proving TraG for the reduction of C-

C double bonds. Further disruption of traG in Penicillium crustosum showed completely abolishment 

of 12, 13 as well as 16, and accumulation of 15 as a main product in comparison with the wild type 

PRB-2. An additional product was identified as a decarboxylated stereoisomer of 15, termed crustic 

acid (17), by comparing their optical rotation values and CD spectra (Figure 19). This result 
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suggested that the enzymes involved in the conversion of 13 to 12 also catalyzed the conversion of 

15 to 17 (Figures 17 and 19). 

To prove the metabolism of 15 and 16 in the formation of 12 and 13, they were fed in the available 

∆traA and ∆traG mutants. LC-MS analysis of the EtOAc extracts revealed 15 can be converted to 12 

and 17 in ∆traA mutant. 16 can be metabolized to 12 as the predominant product in both ∆traA and 

∆traG mutants. In this way, 15 and 16 were confirmed to be precursors of 13 in the biosynthesis. 

Structural comparison revealed that 13 is an anhydrous form of a hydroxylated derivative of 16. 

Incubation of 13 in D2O proved the existence of its hydrous form, suggesting that an additional 

enzyme would be responsible for the hydroxylation of 16. However, the responsible enzyme has not 

been identified yet. 

Having identified the formation of 13, we proceeded to investigate its conversion to 12. Depending 

on the proposed involvement of the nonheme FeII/2-OG-dependent oxygenase TraH in this 

conversion in section 3.1, the recombinant TraH was first overproduced in E. coli and purified to near 

homogeneity as confirmed on SDS-PAGE (Figure 19). Surprisingly, incubation of TraH with 13 in 

the presence of ascorbic acid (AA), Fe[(NH4)2(SO4)2] (FeII), 2-oxoglutarate and dithiothreitol (DTT) 

revealed a product peak 14, but not 12. 14 was further identified as dehydroterrestric acid with an 

exocyclic double bond at C5-position after isolation and structure elucidation (Figure 19). This result 

proved that TraH catalyzes an oxidative decarboxylation of 13 to 14 instead of 12. 

 

Figure 19. Analysis of the recombinant TraD and TraH on SDS-PAGE (A) and their enzymatic 

reactions (B) 
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Biochemical investigation of TraH implies the requirement of another enzyme responsible for the 

reduction of 14 to 12. The flavin-containing oxidoreductase TraD from the terrestric acid gene cluster 

was considered as a top candidate. Subsequently, the recombinant TraD was overproduced in E. 

coli in similar way to TraH and proved on SDS-PAGE (Figure 19). The enzyme assay of TraD with 

14 was carried out in the presence of NADPH at 30 °C. LC-MS analysis revealed that 0.5 mM of 14 

was completely converted to 12 by 0.6 M TraD in 10 min. As speculated, the flavin-containing 

enzyme TraD catalyzed the reduction of the exocyclic double bond at C5-position of 14 to give 12. 

Subsequently, coincubation of 13 with TraH and TraD at different ratios in the presence of ascorbic 

acid (AA), Fe[(NH4)2(SO4)2] (FeII), 2-oxoglutarate, dithiothreitol (DTT) and NADPH revealed 

sequential production of 14 and 12. The integrity of 12 isolated from the enzyme assay was 

confirmed by comparison with that isolated from Penicillium crustosum PRB-2. Therefore, the 

conversion of 13 to the stereospecific 12 requires an oxidative decarboxylation catalyzed by the 

nonheme FeII/2-OG-dependent oxygenase to give an exocyclic double bond and a sequent 

reduction by the flavin-containing oxidoreductase TraD. Incubation of 15 with TraH and TraD led to 

detection of 17 as a minor peak, proving the accumulation of 15 as a major and 17 as a minor 

product in ∆traG mutant. In analogy to the conversion of 13 to 12, an intermediate dehydrocrustic 

acid (18) with an olefinic methylene group is likely involved in the conversion of 15 to 17. 

Regarding the TraH-catalyzed oxidative decarboxylation, we proposed that a hydrogen atom from -

position of COOH was abstracted by FeIV-oxo species to generate the substrate radical in analogy to 

the reported mechanisms.148-151,206-210 Subsequent radical-mediated electron transfer and C-C bond 

cleavage eventually install the exocyclic double bond in 14 accompanied by CO2 elimination (Figure 

20). To probe whether the decarboxylation is required for the olefination by TraH, crustosic acid 

methyl ester (19) was prepared by a spontaneous methylation of 13 in methanol. Incubation of TraH 

with 19 revealed a new product peak, termed dehydrocrustosic acid methyl ester (20), proving the 

sole olefination catalyzed by TraH when the carboxyl group was blocked. In comparison to the TraH-

catalyzed oxidative decarboxylation of 13, olefination of 19 by TraH seems to proceed via a second 

hydrogen abstraction from the -position of COOCH3 by FeIII-OH species, resulting in two 

consecutive scissions of C-H bond to install the olefin group (Figure 20). 

Taken together, the hybrid PKS-NRPS TraA and the ER TraG were assigned in the formation of 13. 

Its conversion to 12 was proved by biochemical characterization of the nonheme FeII/2-OG-

dependent oxygenase TraH and flavin-containing enzyme TraD. Differing from other nonheme 

FeII/2-OG-dependent oxygenases being responsible for decarboxylation-assisted olefination, TraH 

can catalyze the olefination with or without CO2 elimination. In total, the redox-assisted 

decarboxylation and stereoisomerization provide new insights into the biosynthesis of fungal 

acyltetronates, especially their biosynthetic relationships with different stereochemistry in the three 

groups. 
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Figure 20. Mechanism of TraH-catalyzed olefination 

For details on this work, please see the publication (section 4.2) 

Jie Fan*, Ge Liao*, Lena Ludwig-Radtke, Wen-Bing Yin, and Shu-Ming Li (2020), Formation 

of terrestric acid in Penicillium crustosum requires redox-assisted decarboxylation 

and stereoisomerization. Organic Letters, 22 (1), 88-92, DOI: 10.1021/acs.orglett.9b04002. 

(*equal contribution) 
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3.3 Increasing structural diversity of natural products by Michael addition with 

ortho-quinone methide derived from hydroxyclavatol 

Ortho-quinone methides (o-QMs) are utilized in chemical synthesis due to its remarkable reactivity. 

Different synthetic strategies have been developed to generate o-QMs including spontaneous 

elimination of a stable molecule with concomitant dearomatization as an easier one.174-181 o-QMs 

have been implicated in the formation of several natural products, as these versatile intermediates 

can readily participate in inverse electron-demand Diels-Alder (IEDDA) or 1,4-Michael 

additions.64,180,181,185,186,211 As described in section 3.1, penilactones A (1) and B (2) are formed via 

non-enzymatic 1,4-Michael addition of the o-QM (6) derived from hydroxyclavatol (9). Inspired by 

this non-enzymatic event, we wondered more coupling products of clavatol with lactones, phenols, 

indole derivatives and quinones found in fungi were assembled in a similar way.188-190,198-200,212  

To extend the activity of the o-QM intermediate (6) with diverse natural products, we incubated the 

chemical synthesized hydroxyclavatol (9) with 102 reactants from different substance classes (Table 

3).174,213 Both hydroxyclavatol and reactants at a final concentration of 0.4 mM in 50 L H2O were 

incubated at 25 °C for 16 h without pH adjustment. Encouraged by the clavatol-flavanone adduct 

isolated from Penicillium griseoroseum,199 sixteen flavonoids including catechin were first screened 

with 9 under mild conditions. Fifteen of them revealed product peaks with [M+H]+ ions being 178 Da 

larger than the corresponding reactants. Masses of products harboring two clavatol units were also 

detected in eight cases. Subsequently, incubation of hydroxyclavatol with other phenolic substances 

including hydroxynaphthalenes, coumarins, xanthones, anthraquinones, phloroglucinol derivatives 

and phenolic acids were carried out in similar way as mentioned above. Products were detected in 

incubation mixtures of nine of the eleven tested hydroxynaphthalenes, proving hydroxynaphthalenes 

to be suitable partners for coupling with the o-QM. Five of the tested coumarins with 4-

hydroxycoumarin as an exception, six xanthones and four anthraquinones were relatively poor 

Michael donors to couple with the o-QM and gave no product or only trace amount of products in 

their reaction mixtures. Clavatol-containing products with 10 % to 55 % conversion were detected in 

incubation mixtures of most selected phloroglucinol derivatives except for chalcone butein, 

suggesting that phloroglucinols are the most favorable nucleophiles to o-QM. Among selected 

phenolic acids, products were detectable in three of the nine selected nitrogen-free benzoic acids. 

No product from hydroxyphenyl acetic acids, propionic acids and acrylic acids as reactants was 

observed by LC-MS analysis. 
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Table 3. Structures of tested reactants with hydroxyclavatol (9) from diverse subgroups 

groups of reactants 
total 
tested 
numbers 

reactant numbers with detectable clavatol-
containing products 

no 

detectable 

product 
conversions 
10%-55% 

conversions 
1%-10% 

detected 
only by EIC 

flavonoids 
including catechin 

 

16 7 5 3 1 

hydroxynaphthalenes 
 

11 5 4 0 2 

coumarins 

 

5 1 0 2 2 

xanthones 

 

6 0 5 0 1 

anthraquinones 

 

4 0 0 2 2 

phloroglucinol 
derivatives 

 

9 8 0 1 0 

phenolic acids 

 

10 3 1 0 6 

indole derivatives 

 

12 9 1 2 0 

tryptophan-
containing cyclic 
dipeptides 

 

8 7 1 0 0 

tyrosine-containing 
cyclic dipeptides 

 

2 0 0 0 2 

tyrosine analogues 

 

8 3 0 5 0 

quinolines 
 

9 4 1 4 0 

other tested reactants conversion (%) 

2-aminobenzyl 
alcohol  

 

28 

tris(hydroxymethyl)a
minomethane (Tris) 
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Afterwards, the identification of the clavatol-indole adduct communol B triggered our interest to 

probe the reactivity of o-QM (6) with indole derivatives. The incubation mixture of hydroxyclavatol 

with indole derivatives showed the coupling products of up to 49 % conversion, while the 

replacement of nitrogen of the indole ring by sulfur or the methylation at N1-position reduced the 

activity (Table 3). Other nitrogen-containing reactants including cyclic dipeptides, tyrosine analogues 

and quinolines were also incubated with hydroxyclavatol (9) under mild conditions. In the cases of 

eight tested tryptophan-containing cyclic dipeptides, all incubation mixtures showed coupling product 

formation with 9 to 29 % conversion. However, no product was detected in the incubation mixtures 

with cyclo-L-Tyr-L-Tyr and cyclo-L-Ser-L-Tyr as reactants. Furthermore, L-tyrosine and its analogues 

are relatively poor reaction partners coupling with clavatol. All quinolines serve as Michael donors to 

couple with the o-QM (6). In addition, a nitrogen-containing phenolic acid, 2-aminobenzoic acid, 

showed clavatol coupling product with the conversion of 42 %. Product peaks of hydroxyclavatol with 

2-aminobenzyl alcohol and tris(hydroxymethyl)aminomethane (Tris) were also observed by LC-MS 

analysis with conversion of up to 35 %. 

Taken together, among the 102 tested reactants from diverse groups (Table 3), clavatol coupling 

products were detected in 86 cases under mild conditions. Product formation with 10 to 55 % 

conversion was observed for 49 reactants at 25 °C for 16 h. To facilitate the product isolation for 

structural elucidation, reactions mentioned above were carried out at 95 °C for 30 min, leading to 

generally 2 to 10-fold higher accumulation of the coupling products. Product formation with 30 to 

99 % conversion was achieved for 58 reactants. Therefore, large scaled reactions of hydroxyclavatol 

(9) with 23 reactants were further carried out at either 25 °C or 95 °C, resulting in the isolation of 32 

products (Figure 21). 

Structural elucidation proved that the majority of the coupling products are with a clavatol unit 

attached to the ortho- or para-position of a phenolic hydroxyl group at the benzene ring and or C2 or 

C3-position of the indole skeleton (Figure 21). Representatively, 24a and 41 are examples for the 

attachment of a clavatol moiety onto the para-position of a hydroxyl group. Correlations of the 

methylene group to different aromatic carbons in the HMBC spectra supported the linkage between 

the clavatol part and meta-dihydroxylated benzene ring, such as flavonoids with a 5,7-dihydroxyl 

feature mainly leading to C8-adducts (21, 22a, and 23a). The C6-adduct 23b as a byproduct from the 

reaction mixture of (+)-catechin with hydroxyclavatol is an analogue of isopilosanols A–C.214,215 In 

analogy, 25 and 27 were identified as products of hydroxyclavatol with 1,3-

dihydroxynaphthalene/xanthone. These structures suggest that the clavatol-containing flavanone 

formation from P. griseoroseum might be the non-enzymatic event of incorporation of a clavatol unit 

into the exogenously fed flavanone.199 Additionally, formation of 26 by the linkage between the 

clavatol unit and the -pyrone moiety suggests that communol A from P. commune could be formed 

in a similar way.200 Anthraquinone and phloroglucinol derivatives harboring three hydroxyl groups at 

the benzene ring conjugated with a clavatol also via C-C bonds (28, 29, 30, 31, and 32). Indole 
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derivatives including tryptophan-containing cyclic dipeptides linked with clavatol moiety mainly via 

C2-position of the indole skeleton to o-QM (33, (±)34a, 35, 36, 37, 38a and 39a), indicating similar 

conjugation of communol B.200 C3-adducts were found in the case of cyclo-L-Trp-L-Trp and (R)-

benzodiazepinedione, resulting in 38b and 39b. Only a few coupling products including (±)34b, 

42b, 42c, and 43 were obtained via C-N bond formation. In addition, a cyclo-L-Trp-L-Trp derivative 

and a 2-aminobenzoic acid derivative carrying two clavatol units (38c and 42c) were also identified. 

After structural elucidation, the obtained clavatol-containing products were screened for their 

biological activities. Detailed evaluation of the -glucosidase inhibitory activity revealed the clavatol-

coupling products 21, 24a, 25, 27, 35 and 40 showed clear inhibition, while their precursors showed 

no activity.  

 

Figure 21. Isolated structures of diverse reactants coupling with o–QM intermediate 
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Figure 22. Reaction mechanisms of different nucleophile additions to the o-QM intermediate 

In summary, the active form of clavatol, o-QM (6), generated from hydroxyclavatol in an aqueous 

system was proposed to act as the Michael acceptor to initiate the non-enzymatic additions (Figure 

22). It was demonstrated that the o-QM (6) can accept diverse natural or natural product-like 

compounds as nucleophiles under mild conditions to yield more clavatol-containing products. The 

clavatol moiety was mainly attached via C-C bonds to the ortho- or para-position of phenolic 

hydroxyl/amino groups. Represented by 1-napthol, the incorporation of clavatol moiety was 

completed via 1,4-Michael addition to the para-position of hydroxyl group (Figures 22A). The 

conjugation between the clavatol unit and indole skeleton indicates that the electron transfer in the 

indole ring enabled the Michael addition mainly from C2 to the electrophilic methylene group of the 

o-QM (6) (Figure 22B). Additional C-N bond formation was also found in a few cases. It can be 

concluded that the cross-coupling between the nucleophiles and the o-QM (6) occurs preferentially 

via C-C bond formation. These results provide new insight into the non-enzymatic events in the 

natural product formation. It can be expected that more clavatol-containing compounds will be found 

in the near future from natural sources. 

For details on this work, please see the publication (section 4.3) 

Ge Liao*, Jie Fan*, Lena Ludwig-Radtke, Katja Backhaus, and Shu-Ming Li (2020), Increasing 

structural diversity of natural products by Michael addition with ortho-quinone methide as the 

acceptor. Journal of Organic Chemistry, 85 (2), 1298-1307, DOI: 10.1021/acs.joc.9b02971 (*equal 

contribution) 
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ABSTRACT: Penilactones A and B consist of a γ-
butyrolactone and two clavatol moieties. We identified
two separate gene clusters for the biosynthesis of these
key building blocks in Penicillium crustosum. Gene
deletion, feeding experiments, and biochemical inves-
tigations proved that a nonreducing PKS ClaF is
responsible for the formation of clavatol and the PKS-
NRPS hybrid TraA is involved in the formation of
crustosic acid, which undergoes decarboxylation and
isomerization to the predominant terrestric acid. Both
acids are proposed to be converted to γ-butyrolactones
with involvement of a cytochrome P450 ClaJ. Oxidation of
clavatol to hydroxyclavatol by a nonheme FeII/2-
oxoglutarate-dependent oxygenase ClaD and its sponta-
neous dehydration to an ortho-quinone methide initiate
the two nonenzymatic 1,4-Michael addition steps.
Spontaneous addition of the methide to the γ-
butyrolactones led to peniphenone D and penilactone
D, which undergo again stereospecific attacking by
methide to give penilactones A/B.

Penilactones A (1) and B (2) (Figure 1A) are rare fungal
metabolites and were first isolated from Penicillium

crustosum PRB-2.1 Together with their putative precursors
peniphenone D (3) and penilactone D (4) (Figure 1A), they
were also identified in other Penicillium species.2−4 Feeding
experiments suggested that 1 and 2 are derived from acetyl-CoA
and L-malic acid (Figure 1B).1 It was proposed that 1 and 2 are
formed by 1,4-Michael additions of two clavatol (5) molecules
in its active form ortho-quinone methide (6) with a γ-
butyrolactone (tetronic acid), i.e. (R)-5-methyl (7) or (S)-5-
carboxylmethyltetronic acid (8).1,2 This hypothesis was
confirmed by a biomimetic synthesis.5−7 Acetate of hydrox-
yclavatol (9) instead of 5 was used at 110 °C for the synthesis.
Hydroxyclavatol methyl ether (10) was also isolated from P.
crustosum.3

5 can be considered as a polyketide synthase (PKS) product.
However, the responsible enzyme is unknown before. Neither
the direct precursor nor the biosynthesis of 7 and 8 has been
reported. Michael addition as a thermodynamically controlled
1,4-addition of active methylenes to activated olefins such as
α,β-unsaturated carbonyl derivatives8 are widely used in the

chemical synthesis9−12 and also involved in the biosynthesis of
natural products.13 However, the substrates, enzymes and
conditions for Michael addition involved in the formation of
1−4 in nature have not been reported yet.
For secondary metabolite (SM) production in PRB-2, several

culture conditions were tested and the extracts were analyzed on
HPLC (Figure S1 in the Supplement Information (SI)). Three
dominant peaks were detected in a 7 days-old PD culture
(Figure S1), which were identified as 9, 10,14 and terrestric acid
(11)15 after isolation and structure elucidation (see SI for
details, NMR data and spectra are given in Tables S6−S10 and
Figures S28−S45). The stereochemistry of 11 was confirmed by
determination of its optical rotation and comparison with the
published data.15 9 has not been described before and therefore
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Figure 1. Metabolites from PRB-2 (A) and proposed biosynthetic
routes to 1 and 2 (B).1
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was confirmed by X-ray analysis (Table S11). Two additional
minor peaks were proven to be 5 and hydroxyclavatol ethyl ether
(12) (Figures 1A and S1).14

However, peniphenones and penilactones could only be
detected in extracted ion chromatograms (EICs, data not
shown). To increase their productivity, PRB-2 was cultivated in
PD surface culture for 14 days. LC-MS analysis revealed clear
accumulation of 1−4 (Figures 2, S1, and S2). A 30 days-old rice
culture also accumulated 1−4 and was therefore used for
isolation and structure elucidation by MS, NMR (Tables S6−S7
and Figures S28−S31), optical rotation, and CD spectra
(Figures S46−S49).1,3 The CD spectra of 1 and 2 (Figures
S46 and S47) correspond very well to those reported
previously.1 The stereochemistry of 3 and 4 was determined
by chemical synthesis from 7 and 8 with known configuration at
C-5 (Figure S21, see below for the formation of 3 from 7 and 4
from 8). Under these conditions, the production of 9 and 10was
strongly reduced. In comparison, 11 was detected as the
predominant peak. Furthermore, a new peak was identified as
carboxylated derivative of 11, termed crustosic acid (13)
hereafter (Figures 1A, S44, and S45). 13 has an [α]D

20 value of
−164.1, while that of 11 at +37.1. The configuration of 13 was
assigned by comparison with the optical rotation data of 5-
methyl- and 5-carboxylmethyltetronic acids.16

For biosynthetic studies on 1 and 2, the genome of PRB-2 was
sequenced and the draft genome sequence was used for
prediction of putative gene clusters by using AntiSMASH.17

For gene inactivation, we established a gene replacement
protocol using the split marker strategy and hygromycin B as
selection marker, which significantly enhances the homologous
recombination events at the target gene (Figure S3).18

Based on its aromatic character, 5 is expected to be assembled
by a nonreducing PKS (NR-PKS).19 One of the six NR-PKS
genes pcr3094 within a 36.2 kbp large cluster (Figure 2A and
Table S4) has a SAT-KS-AT-PT-ACP-MeT-TE domain
structure (Abbreviations for PKS and NRPS domains as given
before19,20). It shares a sequence identity of 57.7% with CitS
from Monascus ruber21 and 64.4% with EAW12049.1 from
Aspergillus clavatus (Table S4). Deletion of pcr3094, termed claF
(from the clavatol cluster) hereafter, completely abolished the
production of 1−5, 9, and 10 (see SI for manipulation). The two
tetronic acids 11 and 13 accumulated with much higher yields in
the ΔclaF mutant than in PRB-2 (Figures 2B, S4, and S6).
Feeding 5 to the mutant restored the production of 1−4 and 9
(Figure S15).
To provide more evidence for the function of ClaF as a

clavatol synthase, pcr3094 was cloned into pYH-wA-pyrG and
expressed in A. nidulans.22−24 The formation of 5 in the
transformant JF11 was confirmed by LC-MS (Figure S20) and
1HNMR analyses after isolation. These results proved that ClaF
is responsible for 5 formation in the biosynthesis of 1−4
(Scheme 1).
To identify the genetic potential for 7 and 8, we focused on

PKS-NRPS hybrid enzymes, because tetronic acids like carlosic
acid are usually assembled by such enzymes.25 Analysis of the
draft sequence revealed the presence of a candidate gene
pcr11009, termed traA (from the terrestric acid cluster), within a
33.6 kbp large cluster. TraA with a domain structure KS-AT-
DH-MeT-KR-ACP-C-A-PCP (Figure 2A) shares a sequence
identity of 69.6% with CaaA in the carlosic acid biosynthesis
(Table S5).25 Deletion of traA completely abolished the
production of 1−4, indicating its involvement in the biosyn-
thesis. As expected, 5, 9, and 10 were accumulated in the ΔtraA

Figure 2. Schematic representation of clavatol and terrestric acid
clusters in PRB-2 (A) and LC-MS results of deletionmutants (B andC)
as well as ofΔtraAmutant fed with putative precursors (D). EICs refer
[M + H]+ ions of 1−6 and 11, 13 or [M + Na]+ of 9 and 10 with
tolerance ranges of ±0.005.
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mutant (Figures 2C and S8). Surprisingly, the production of 11
and 13 were also totally blocked. To restore the production of
1−4, we chemically synthesized 7 and 8 (Figure S21)5,7,26,27 and
fed them to the ΔtraA mutant. LC-MS analysis revealed that
feeding 7 restored the production of 1 and 3, but not 2 and 4. In
contrast, 2 and 4, but not 1 and 3 were detected in the culture of
ΔtraA mutant fed with 8 (Figures 2C, S16, and S17). This
proved that TraA is involved in the formation of 7 and 8, which
cannot be converted to each other (Scheme 1).
For understanding the role of 11 and 13 for 1−4, they were

isolated fromΔclaFmutant and fed intoΔtraAmutant. Feeding
11 only restored 1 and 3 production, while 1−4 were detected
after feeding with 13 (Figures 2C, S18, and S19). More
interestingly, 11 was also restored after feeding with 13, but not
vice versa (Figure 2D). This proved that 13 is the precursor of
both 8 and 11. 11 serves then as a precursor of 7 (Scheme 1).
It can be concluded that 13 is the product of TraA with or

without other enzymes and mainly converted to the

predominant product 11 in PRB-2. Only small amounts of 11
and 13 undergo degradation to 7 and 8 for the formation of 1−4
(Figure 2D and Scheme 1).
Having the both backbone genes/enzymes identified, we

intended to investigate the conversion of 13 to 8 and 11, 11 to 7,
and the metabolism of 5. Inactivation of the oxygenase gene
traH abolished the production of 1, 3, and 11, confirming its
involvement in the decarboxylation and isomerization of 13 to
11 (Figures 2C and S13). In the deletion mutants of the
cytochrome P450 traB and the dehydrogenase traD, no
accumulation of 11, 13, or 1−4 was detected (Figures S9 and
S10), proving their roles in the 13 formation (Scheme 1).
Deletion of traE and traF did not result in significant changes in
SM production (Figures S11 and S12).
Regarding Michael addition, we presumed a more active

intermediate than 5 for the formation of 6. Detailed inspection
of the cla cluster (Figure 2A, Table S4) revealed the presence of
genes coding for an oxygenase (claD) and a cytochrome P450
(claJ). ClaD comprises 338 amino acids and shares a sequence
identity of 53.8% with CitB in the citrinin biosynthesis.21 It also
contains the typical conserved 2-His-1-Asp ion-binding triad
(His184, His202 and Asp187) of nonheme FeII/2-oxoglutarate-
dependent oxygenases (Figure S22). Deletion of claD abolished
the production of 1−4 and 9, whereas 5was clearly accumulated
(Figures 2B and S5). Feeding 9 in the ΔclaD mutant restored
the production of 1−4 (Figure S14), proving its role in the
conversion of 5 to 9.
For biochemical characterization, claD was amplified and

cloned into pET28a (+). The purified ClaD (Figure S23) was
used for incubation with 5 in the presence of ascorbate (AA),
Fe[(NH4)2(SO4)2], and 2-oxoglutarate (2OG).28,29 HPLC
analysis confirmed the oxidation of 5 to 9 with a conversion
yield of 22.5% after incubation with 2 μg protein at 37 °C for 30
min (Figure 3A). Nearly no consumption of 5 was detected in
the assays without ascorbate or 2-oxoglutarate. Replacing
ascorbate by dithiothreitol (DTT) or without additional FeII

reduced the activity significantly. These results proved that ClaD
acts as a nonheme FeII/2-oxoglutarate-dependent oxygenase
and oxidizes 5 to yield 9. Determination of kinetic parameters

Scheme 1. Proposed Biosynthetic Pathways of Penilactones and Peniphenones in P. crustosum

Figure 3. Functional proof of ClaD as a nonheme FeII/2-oxoglutarate-
dependent clavatol oxidase (A and B) and determination of the
equilibration between 9 and 6 (C).
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gave a KM of 0.30 mM toward 5 and a turnover number (kcat) of
0.26 s−1 (Figure 3B).
To prove the conversion between 9 and 6, 9 was incubated in

H2O and H2
18O at 25 °C for 16 h. MS data in positive and

negative modes confirmed the incorporation of 18O into 9 and
therefore the equilibration (Figures 3C and S24).
ClaJ shares clear sequence homology with fungal cytochrome

P450 enzymes, e.g. 42.0% identity with BAJ04372.1 from
Aspergillus oryzae.30 Deletion of claJ resulted in the abolishment
of 1−4 (Figures 2B and S7), but still retained the production of
5, 9, 11, and 13. This indicates its role in the C−C double bond
cleavage of 11 and 13 (Scheme 1). However, ClaJ could also
catalyze the connection of the two building blocks via Michael
addition.
For preparing feeding experiments in ΔclaJ, we carried out

control incubations of 7 with 9 and 8 with 9 in water at 25 °C,

which delivered surprising results, i.e. the nonenzymaticMichael
addition under these mild conditions (Figure 4A). In the first
combination, 3 was detected as the major and 1 as a minor
product, while 4 as the major and 2 as a minor product in the
case of 8 with 9. When 3 and 4 were incubated with 9, 1 and 2
were detected (Figure 4A). Formation of 3 and 4 is time- and
pH-dependent (Figures S25 and S26). 3 and 4 are formed under
neutral or acidic conditions. When pH values were higher than
5.0, diclavatol3 was also detected (Figure S26). It is obvious that
the active intermediate 6 can be easily formed from 9 in aqueous
system and initiates the Michael additions (Figure 4B), which
was confirmed by incubation of 9, 10, and 12 in different
solvents. They are stable in acetonitrile. Alcohols determined the
end products of 6 (Figure S27, Scheme 1). All these results
indicate that ClaJ is likely not involved in the Michael addition,
probably in the conversion of 11 to 7 and 13 to 8 (Scheme 1).
Taken together, 1−4 are formed by enzymes from

independent pathways of two separate gene clusters (Scheme
1). The tra cluster assembles 13, which is converted to 11. Both
acids deliver the two γ-butyrolactones 7 and 8. The cla cluster
provides the highly active 6 by a spontaneous dehydration of 9.
This initiates the two step nonenzymatic Michael additions by
the intermolecular nucleophile attacking of 6 to 7 or 8 and
subsequent reaction with 3 and 4. Thus, this study provides an
excellent example for SMs with complex structures that are
formed by enzymes from different pathways and by combination
of enzymatic and nonenzymatic reactions.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.9b00110.

Materials, experimental procedures, physiochemical
properties and spectroscopic data (PDF)

Data for C10H12O4 (CIF)

■ AUTHOR INFORMATION

Corresponding Author
*S.-M. Li. E-mail: shuming.li@staff.uni-marburg.de.

ORCID
Wen-Bing Yin: 0000-0002-9184-3198
Shu-Ming Li: 0000-0003-4583-2655
Author Contributions
§These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Tianjiao Zhu (Ocean University of China, Qingdao)
for providing strain PRB-2, Rixa Kraut, Stefan Newel, and
Andreas Heine (University of Marburg) for taking MS, NMR
spectra and X-ray crystal analysis, respectively. This project was
financially funded in part by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation)− Li844/11-1 and
INST 160/620-1 as well as the National Natural Science
Foundation of China− 31861133004. Jie Fan (201507565006)
and Ge Liao (201607565014) are scholarship recipients from
the China Scholarship Council.

Figure 4. Nonenzymatic formation of penilactones and peniphenone.
(A) LC-MS analysis of 48 h-incubation mixtures. Absorptions at 254
nm (1−4, 9) or EICs (7 and 8) are illustrated. (B) Proposed
mechanism of nonenzymatic formation of 1−4 via Michael addition.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b00110
J. Am. Chem. Soc. 2019, 141, 4225−4229

4228

46

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.9b00110
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b00110/suppl_file/ja9b00110_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b00110/suppl_file/ja9b00110_si_002.cif
mailto:shuming.li@staff.uni-marburg.de
http://orcid.org/0000-0002-9184-3198
http://orcid.org/0000-0003-4583-2655
http://dx.doi.org/10.1021/jacs.9b00110


■ REFERENCES
(1)Wu, G.;Ma, H.; Zhu, T.; Li, J.; Gu, Q.; Li, D. Penilactones A and B,
two novel polyketides from Antarctic deep-sea derived fungus
Penicillium crustosum PRB-2. Tetrahedron 2012, 68, 9745.
(2) Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu,
Y.; She, Z. Peniphenones A-D from the mangrove fungus Penicillium
dipodomyicola HN4−3A as inhibitors of Mycobacterium tuberculosis
phosphatase MptpB. J. Nat. Prod. 2014, 77, 800.
(3) Wu, G. Studies on secondary metabolites of three different marine
environment-derived fungi: structures and bioactivities. Dissertation,
Ocean University of China, 2014.
(4) Sun, W.; Chen, X.; Tong, Q.; Zhu, H.; He, Y.; Lei, L.; Xue, Y.; Yao,
G.; Luo, Z.; Wang, J.; Li, H.; Zhang, Y. Novel small molecule 11beta-
HSD1 inhibitor from the endophytic fungus Penicillium commune. Sci.
Rep. 2016, 6, 26418.
(5) Spence, J. T.; George, J. H. Biomimetic total synthesis of ent-
penilactone A and penilactone B. Org. Lett. 2013, 15, 3891.
(6) Pantin, M.; Brimble, M. A.; Furkert, D. P. Total synthesis of
(−)-peniphenone A. J. Org. Chem. 2018, 83, 7049.
(7) Spence, J. T.; George, J. H. Total synthesis of peniphenones A-D
via biomimetic reactions of a common o-quinonemethide intermediate.
Org. Lett. 2015, 17, 5970.
(8) Tokoroyama, T. Discovery of the Michael reaction. Eur. J. Org.
Chem. 2010, 2010, 2009.
(9) Wadhwa, P.; Kharbanda, A.; Sharma, A. Thia-Michael addition:
An emerging strategy in organic synthesis. Asian J. Org. Chem. 2018, 7,
634.
(10) Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E.
Michael addition reactions in macromolecular design for emerging
technologies. Prog. Polym. Sci. 2006, 31, 487.
(11) Zhang, Y.; Wang, W. Recent advances in organocatalytic
asymmetric Michael reactions. Catal. Sci. Technol. 2012, 2, 42.
(12) Nising, C. F.; Bras̈e, S. The oxa-Michael reaction: from recent
developments to applications in natural product synthesis. Chem. Soc.
Rev. 2008, 37, 1218.
(13) Miyanaga, A. Michael additions in polyketide biosynthesis. Nat.
Prod. Rep. 2019, DOI: 10.1039/C8NP00071A.
(14) Astudillo, L.; Schmeda-Hirschmann, G.; Soto, R.; Sandoval, C.;
Afonso, C.; Gonzalez, M. J.; Kijjoa, A. Acetophenone derivatives from
Chilean isolate of Trichoderma pseudokoningii Rifai. World J. Microbiol.
Biotechnol. 2000, 16, 585.
(15) Nukina, M. Terrestric acid as a phytotoxic metabolite from
Pyricularia oryzae Cavara. Agric. Biol. Chem. 1988, 52, 2357.
(16) Clutterbuck, P. W.; Haworth, W. N.; Raistrick, H.; Smith, G.;
Stacey, M. Studies in the biochemistry of micro-organisms: The
metabolic products of Penicillium charlesii G. Smith. Biochem. J. 1934,
28, 94.
(17)Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim,H.U.; Bruccoleri,
R.; Lee, S. Y.; Fischbach,M. A.;Müller, R.;Wohlleben,W.; Breitling, R.;
Takano, E.; Medema, M. H. antiSMASH 3.0 - a comprehensive
resource for the genome mining of biosynthetic gene clusters. Nucleic
Acids Res. 2015, 43, W237.
(18) Goswami, R. S. Targeted gene replacement in fungi using a split-
marker approach. Methods Mol. Biol. 2012, 835, 255.
(19) Cox, R. J. Polyketides, proteins and genes in fungi: programmed
nano-machines begin to reveal their secrets.Org. Biomol. Chem. 2007, 5,
2010.
(20) Miyanaga, A.; Kudo, F.; Eguchi, T. Protein-protein interactions
in polyketide synthase-nonribosomal peptide synthetase hybrid
assembly lines. Nat. Prod. Rep. 2018, 35, 1185.
(21) He, Y.; Cox, R. J. The molecular steps of citrinin biosynthesis in
fungi. Chem. Sci. 2016, 7, 2119.
(22) Yin, W. B.; Chooi, Y. H.; Smith, A. R.; Cacho, R. A.; Hu, Y.;
White, T. C.; Tang, Y. Discovery of cryptic polyketide metabolites from
dermatophytes using heterologous expression in Aspergillus nidulans.
ACS Synth. Biol. 2013, 2, 629.
(23) Li, W.; Fan, A.; Wang, L.; Zhang, P.; Liu, Z.; An, Z.; Yin, W.-B.
Asperphenamate biosynthesis reveals a novel two-module NRPS

system to synthesize amino acid esters in fungi. Chem. Sci. 2018, 9,
2589.
(24) Chiang, Y. M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.; Asokan,
A.; Zutz, C.; Wang, C. C.; Oakley, B. R. Development of genetic
dereplication strains in Aspergillus nidulans results in the discovery of
aspercryptin. Angew. Chem., Int. Ed. 2016, 55, 1662.
(25) Yang, X. L.; Awakawa, T.; Wakimoto, T.; Abe, I. Three
acyltetronic acid derivatives: noncanonical cryptic polyketides from
Aspergillus niger identified by genome mining. ChemBioChem 2014, 15,
1578.
(26) Adrian, J.; Stark, C. B. Total synthesis of muricadienin, the
putative key precursor in the solamin biosynthesis. Org. Lett. 2014, 16,
5886.
(27) Stebbins, N. D.; Yu, W.; Uhrich, K. E. Enzymatic polymerization
of an ibuprofen-containing monomer and subsequent drug release.
Macromol. Biosci. 2015, 15, 1115.
(28) Ran, H.; Wohlgemuth, V.; Xie, X.; Li, S.-M. A non-heme FeII/2-
oxoglutarate-dependent oxygenase catalyzes a double bond migration
within a dimethylallyl moiety accompanied by hydroxylation. ACS
Chem. Biol. 2018, 13, 2949.
(29) Steffan, N.; Grundmann, A.; Afiyatullov, A.; Ruan, H.; Li, S.-M.
FtmOx1, a non heme Fe(II) and alpha-ketoglutarate-dependent
dioxygenase, catalyses the endoperoxide formation of verruculogen in
Aspergillus fumigatus. Org. Biomol. Chem. 2009, 7, 4082.
(30) Nazir, K. H. M. N. H.; Ichinose, H.; Wariishi, H. Molecular
characterization and isolation of cytochrome P450 genes from the
filamentous fungus Aspergillus oryzae. Arch. Microbiol. 2010, 192, 395.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b00110
J. Am. Chem. Soc. 2019, 141, 4225−4229

4229

47

http://dx.doi.org/10.1039/C8NP00071A
http://dx.doi.org/10.1021/jacs.9b00110


S1 
 

SUPPORTING INFORMATION 

 

Peniphenone and penilactone formation in Penicillium crustosum 

via 1,4-Michael additions of ortho-quinone methide from 

hydroxyclavatol to γ-butyrolactones from crustosic acid 

 

 

Jie Fan,1,† Ge Liao,1,† Florian Kindinger,1 Lena Ludwig-Radtke,1 Wen-Bing Yin,2 and Shu-Ming 

Li1,* 

 

1 Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 

Robert-Koch-Strasse 4, Marburg 35037, Germany  
2 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 

Beijing 100101, China 

†These authors contributed equally to this work. 

  

48



S2 
 

Table content 

Experiment Procedures .......................................................................................................... S5 

1. Strains, media and growth conditions ....................................................................... S5 

2. Genomic DNA isolation ............................................................................................... S5 

3. RNA isolation and cDNA synthesis ............................................................................ S5 

4. Genome sequencing and sequence analysis ........................................................... S5 

5. PCR amplification, gene cloning and plasmid construction................................... S6 

6. Genetic manipulation in P. crustosum and cultivation of deletion mutants ......... S6 

7. Heterologous expression of claF in A. nidulans ...................................................... S7 

8. Precursor feeding in ∆claD, ∆claF, and ∆traA–mutants ........................................... S7 

9. Chemical synthesis of tetronic acids 7 and 8 ........................................................... S7 

10. Overproduction and purification of ClaD ................................................................ S7 

11. In vitro assays of ClaD ............................................................................................... S8 

12. Proof of the existence of ortho-quinone methide .................................................. S8 

13. Non-enzymatic formation of penilactones and peniphenones ............................. S8 

14. Large-scale fermentation, extraction and isolation of secondary metabolites .. S8 

15. HPLC and LC-MS analysis of secondary metabolites ........................................... S9 

16. NMR analysis .............................................................................................................. S9 

17. Measurement of optical rotations .......................................................................... S10 

18. Circular dichroism (CD) spectroscopic analysis.................................................. S10 

19. X-ray crystallographic analysis .............................................................................. S10 

20. Physiochemical properties of the compounds described in this study ............ S10 

Supplementary Tables .......................................................................................................... S12 

Table S1. Strains used in this study ............................................................................. S12 

Table S2. Plasmids used and constructed in this study ............................................ S13 

Table S3. Primers used in this study ........................................................................... S14 

Table S4. Putative functions of the genes from clavatol gene cluster ..................... S17 

Table S5. Putative functions of the genes from terrestric acid gene cluster .......... S18 

Table S6. 1H NMR data of compounds 1 and 2 ........................................................... S19 

Table S7. 1H NMR data of compounds 3 and 4 ........................................................... S20 

Table S8. 1H NMR data of compounds 5, 10 and 12 ................................................... S21 

Table S9. NMR data of compound 9 ............................................................................. S22 

Table S10. NMR data of 11 and 13 ................................................................................ S23 

Table S11. Crystal data and structure refinement of 9 ............................................... S24 

Figure S1. HPLC analysis of secondary metabolite profiles of P. crustosum. ....... S25 

Figure S2. LC-MS analysis of secondary metabolites from a 14 days-old liquid PD 

surface culture of P. crustosum. .................................................................................. S26 

Figure S3. Schematic representation of the gene deletion strategy in P. crustosum.

 .......................................................................................................................................... S27 

Figure S4. PCR verification of deletion mutants of P. crustosum. ........................... S28 

Figure S5. LC-MS analysis of the metabolite profile of the △claD-mutant. ............. S29 

Figure S6. LC-MS analysis of the metabolite profile of the △claF-mutant. ............. S30 

Figure S7. LC-MS analysis of the metabolite profile of the △claJ-mutant. ............. S31 

Figure S8. LC-MS analysis of the metabolite profile of the △traA-mutant. ............. S32 

49



S3 

Figure S9. LC-MS analysis of the metabolite profile of the △traB-mutant. ............. S33 

Figure S10. LC-MS analysis of the metabolite profile of the △traD-mutant. ........... S34 

Figure S11. LC-MS analysis of the metabolite profile of the △traE-mutant. ............ S35 

Figure S12. LC-MS analysis of the metabolite profile of the △traF-mutant. ............ S36 

Figure S13. LC-MS analysis of the metabolite profile of the △traH-mutant. ........... S37 

Figure S14. LC-MS analysis of the metabolite profile of the △claD-mutant with and 

without feeding with 9. .................................................................................................. S38 

Figure S15. LC-MS analysis of the metabolite profile of the △claF-mutant with and 

without feeding with 5. .................................................................................................. S39 

Figure S16. LC-MS analysis of the metabolite profile of the △traA-mutant with and 

without feeding with 7. .................................................................................................. S40 

Figure S17. LC-MS analysis of the metabolite profile of the △traA-mutant with and 

without feeding with 8. .................................................................................................. S41 

Figure S18. LC-MS analysis of the metabolite profile of the △traA-mutant with and 

without feeding with 11. ................................................................................................. S42 

Figure S19. LC-MS analysis of the metabolite profile of the △traA-mutant with and 

without feeding with 13. ................................................................................................ S43 

Figure S20. LC-MS analysis of the metabolite profile of different A. nidulans strains

 .......................................................................................................................................... S44 

Figure S21. Chemical synthesis of the tetronic acids 7 and 8. ................................. S45 

Figure S22. Sequence alignments of 2-OG-dependent oxygenases. ....................... S46 

Figure S23. Analysis of ClaD on SDS PAGE. .............................................................. S47 

Figure S24. MS analysis of 9 after incubation in H2O and in 18O-enriched H2
18O. .. S48 

Figure S25. Time dependence of Michael addition reaction of 9 with 7 (A) or 8 (B).

 .......................................................................................................................................... S49 

Figure S26. pH dependence on Michael addition reactions forming 3 and 4. ........ S50 

Figure S27. HPLC analysis of 9, 10, and 12 after incubation in different solvents.S51 

Figure S28. 1H NMR spectrum of compound 1 in DMSO-d6 (500 MHz). ................... S52 

Figure S29. 1H NMR spectrum of compound 2 in DMSO-d6 (500 MHz). ................... S53 

Figure S30. 1H NMR spectrum of compound 3 in CDCl3 (500 MHz). ......................... S54 

Figure S31. 1H NMR spectrum of compound 4 in DMSO-d6 (500 MHz). ................... S55 

Figure S32. 1H NMR spectrum of compound 5 in CDCl3 (500MHz). .......................... S56 

Figure S33. 1H NMR spectrum of compound 5 in DMSO-d6 (500MHz). .................... S57 

Figure S34. 1H NMR spectrum of compound 7 in DMSO-d6 (400MHz). .................... S58 

Figure S35. 1H NMR spectrum of compound 8 in CD3OD (500MHz). ........................ S59 

Figure S36. 1H NMR spectrum of compound 9 in CDCl3 (500MHz). .......................... S60 

Figure S37. 1H NMR spectrum of compound 9 in DMSO-d6 (500MHz). ................... S61 

Figure S38. 13C NMR spectrum of compound 9 in CDCl3 (125MHz). ........................ S62 

Figure S39. HSQC spectrum of compound 9 in CDCl3. ............................................. S63 

Figure S40. HMBC spectrum of compound 9 in CDCl3. ............................................. S64 

Figure S41. 1H NMR spectrum of compound 10 in CDCl3 (500MHz). ........................ S65 

Figure S42. 1H NMR spectrum of compound 11 in CDCl3 (500 MHz). ....................... S66 

Figure S43. 1H NMR spectrum of compound 12 in CDCl3 (500 MHz). ....................... S67 

Figure S44. 1H NMR spectrum of compound 13 in CDCl3 (500MHz). ........................ S68 

50



S4 
 

Figure S45. 13C NMR spectrum of compound 13 in CDCl3 (125MHz). ...................... S69 

Figure S46. CD spectrum of penilactone A (1). ........................................................... S70 

Figure S47. CD spectrum of penilactone B (2). .......................................................... S70 

Figure S48. CD spectrum of peniphenone D (3). ........................................................ S71 

Figure S49. CD spectrum of penilactone D (4). .......................................................... S71 

Figure S50. CD spectrum of (R)-5-methyltetronic acid (7). ....................................... S72 

Figure S51. CD spectrum of terrestric acid (11). ........................................................ S72 

Figure S52. CD spectrum of crustosic acid (13) ………………………………………………………….S73 

Supplementary References .................................................................................................. S74 
 

51



S5 
 

Experiment Procedures 
1. Strains, media and growth conditions 

The fungal strains used in this study are summarized in Table S1. Penicillium crustosum strain 

PRB-2 was isolated from a deep-sea sediment collected in Prydz Bay at a depth of -526 m.1 

For detection of secondary metabolites (SMs), the strain PRB-2 was cultivated in PD medium 

(potato dextrose broth, Sigma) at 25°C. Aspergillus nidulans strains were grown at 37°C on 

GMM medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L trace element solution, 1.6% agar) 
for sporulation and transformation with appropriate nutrition as required.2-4 The salt solution 

comprises (w/v) 12% NaNO3, 1.04% KCl, 1.04% MgSO4∙7H2O, and 3.04% KH2PO4. The trace 

element solution contains (w/v) 2.2% ZnSO4∙7H2O, 1.1% H3BO3, 0.5% MnCl2∙4H2O, 0.16% 

FeSO4∙7H2O, 0.16% CoCl2∙5H2O, 0.16% CuSO4∙5H2O, 0.11% (NH4)6Mo7O24∙4H2O, and 5% 

Na4EDTA. Escherichia coli DH5α and BL21(DE3) were grown in LB medium (1% NaCl, 1% 

tryptone, and 0.5% yeast extract) for standard DNA manipulation. 50 µg/mL carbenicillin or 

kanamycin were supplemented for cultivation of recombinant E. coli strains.  

2. Genomic DNA isolation 

The mycelia of P. crustosum and A. nidulans were collected in 2 mL Eppendorf tubes by 

centrifugation (13,000 rpm, 10 min). Four glass beads (2.85 mm in diameter) and 400 μL of 

LETS buffer (10 mM Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 0.5% SDS, and 0.1 M LiCl) were 

added to the tubes. After vigorous mixing for 4 min, 300 μL LETS buffer was added, and then 

the solution was treated with 700 μL phenol: chloroform: isoamyl alcohol (25: 24: 1). The 

genomic DNA was precipitated by addition of 900 μL absolute ethanol. After centrifugation at 

13,000 rpm for 30 min and washing with 70% ethanol, the obtained DNA was dissolved in 50 

μL distillated H2O. 

3. RNA isolation and cDNA synthesis 

For isolation of RNA from P. crustosum PRB-2, the fungus was cultivated in liquid PD medium 

for 7 d and the cells were collected by centrifugation. RNA extraction was performed by using 

Fungal RNA Mini kit (VWR OMEGA bio-tek E.Z.N.A) according to the manufacturer´s 

instruction. The ProtoScript II First Strand cDNA Synthesis kit (BioLabs) was used for cDNA 

synthesis with Oligo-dT primers. 

4. Genome sequencing and sequence analysis  

The genome of P. crustosum PRB-2 was sequenced by BerryGenomics (Beijing, China) using 

Nova-seq6000/X-ten (Illumina). Initial prediction and analysis of the clavatol and terrestric acid 

biosynthetic gene clusters were carried out by using antiSMASH 

(http://antismash.secondarymetabolites.org/). Prediction of the open reading frames (ORFs) 

was performed with the online BLAST approaches (http://blast.ncbi.nlm.nih.gov). Detailed 

prediction for domain structures of PKS and PKS-NRPS hybrid enzymes was performed with 

the PKS/NRPS analysis tool (http://nrps.igs.umaryland.edu/). The genes in clavatol and 

terrestric acid clusters were named as claA-J and traA-H, respectively (Figure 2A, Tables S4 

and S5). The genomic DNA sequences of the clavatol and terrestric acid clusters from P. 

crustosum PRB-2 reported in this study are available at GenBank under accession numbers 

MK360918 and MK360919, respectively. 
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5. PCR amplification, gene cloning and plasmid construction 

Plasmids used in this study are listed in Table S2. The oligonucleotide sequences for PCR 

primers are given in Table S3. Primers were designed as described for gene deletion strategy 

(Figure S3) and synthesized by Seqlab GmbH (Göttingen, Germany). PCR amplification was 

carried out by using Phusion® High-Fidelity DNA polymerase from New England Biolabs (NEB) 

on a T100TM Thermal cycler from Bio-Rad. PCR reaction mixtures and thermal profiles were 

set as recommended by the manufacturer´s instruction.  

To identify the clavatol and terrestric acid biosynthetic gene clusters, we deleted genes of 

interest by using split-marker approach, which significantly enhances the homologous 

recombination events at the target genes.5 In this approach, two DNA fragments are 

constructed. One fragment comprises the upstream DNA region of the target gene and the 

two-third of the sequence of the selection marker at its 5´-end, e.g. the hygromycin B 

resistance gene in this study. The second fragment consists of two-third at the 3´-end of the 

selection marker and the downstream region of the target gene (Figure S3). 1.0–1.5 kbp 

upstream and downstream fragments of claD, claF, claJ, traA, traB, traD, traE, traF and traH 

were amplified from P. crustosum genomic DNA using the designed primers listed in Table S3. 

To construct the plasmid for heterologous expression of claF in A. nidulans, an assembly 

approach based on the homologous recombination in E. coli was used.6 claF including its 

terminator of 480 bp was amplified from genomic DNA of P. crustosum by using primers 

A.n-claF-For/Rev (Table S3) and inserted into the corresponding sites of pYH-wA-pyrG with 

homologous flanking sequences of the wA gene.4 To construct the plasmid for expressing claD 

in E. coli, the coding region of claD was amplified by PCR from cDNA with the primers 

ClaD-28-For/Rev (Table S3). The DNA fragment was digested with BamHI and EcoRI and 

ligated into the same site of the expression vector pET-28a (+), yielding the expression plasmid 

pJF37, which was confirmed by sequencing (Seqlab GmbH). 

6. Genetic manipulation in P. crustosum and cultivation of deletion mutants 

Fresh spores of P. crustosum were inoculated into 30 mL LMM medium (1.0% glucose, 50 

mL/L salt solution, 1 mL/L trace element solution, and 0.5% yeast extract) in 100 mL flask and 

incubated at 25°C and 230 rpm for germination. Mycelia were harvested after 11 h by 

centrifugation at 5,000 rpm for 10 min, and washed with distillated H2O. The mycelia were then 

transferred into a 50 mL flask with 10 mL of osmotic buffer (1.2 M MgSO4 in 10 mM sodium 

phosphate, pH 5.8) containing 50 mg lysing enzyme from Trichoderma harzianum (Sigma) and 

20 mg yatalase from Corynebacterium sp. OZ-21 (OZEKI Co., Ltd.). After shaking at 30°C and 

100 rpm for 2.5 h, the cells were transferred into a 50 mL falcon tube and overlaid gently with 

10 mL of trapping buffer (0.6 M sorbitol in 0.1 M Tris-HCI, pH 7.0). After centrifugation at 4°C 

and 5,000 rpm for 10 min, the protoplasts were collected from the interface of the two buffer 

systems. The protoplasts were then transferred to a sterile 15 mL falcon tube and resuspended 

in 200 μL of STC buffer (1.2 M sorbitol, 10 mM CaCl2, and 10 mM Tris-HCI, pH 7.5) for 

transformation. 

The via PCR constructed gene deletion cassettes mentioned above were transformed into P. 
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crustosum by polyethylene glycol (PEG) mediated protoplast transformation. The DNA 

fragments were incubated with 100 μL of the protoplasts for 50 min on ice. 1.25 mL of PEG 

solution (60% PEG 4000, 50 mM CaCl2, 50 mM Tris-HCI, pH 7.5) was then added and gently 

mixed. After incubation at room temperature for 30 min, the mixture was transferred in 5 mL 

STC buffer and spread on plates with SMM bottom medium (1.0% glucose, 50 mL/L salt 

solution, 1 mL/L trace element solution, 1.2 M sorbitol, and 1.6% agar) containing 200 µg/mL 

hygromycin B. SMM top medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L trace element 

solution, 1.2 M sorbitol, and 0.8% agar) containing 100 µg/mL hygromycin B was overlaid softly 

on the plates. Three days later, the transformants were transferred onto fresh PDA plates (PD 

medium with 1.6% agar) containing 200 µg/mL hygromycin B for second selection. The 

obtained transformants were inoculated in PD medium for isolation of genomic DNA to verify 

the integrity, which was carried out by PCR amplification (Figure S4). After cultivation in PD 

liquid medium at 25°C for 14 days, the secondary metabolites of the deletion mutants were 

extracted with ethyl acetate, dissolved in MeOH and analyzed on LC-MS.  

7. Heterologous expression of claF in A. nidulans 

A. nidulans strain LO8030 was used as the recipient host.3 Fungal protoplast preparation and 

transformation were performed according to the method described previously.3 pJF18 

containing the PKS gene claF was transformed into A. nidulans strain LO8030 to create the 

claF expression strain JF11. Potential transformants were verified by PCR using the primers 

claF-F/R (Table S3). Rice medium was used to cultivate the transformants (25°C, 7d) for 

LC-MS analysis of the secondary metabolite production. 

8. Precursor feeding in ∆claD, ∆claF, and ∆traA–mutants 

For feeding experiments, the precursors were dissolved in DMSO to give 1 M stock solutions. 

Adequate volumes of such solutions were then added to 10 mL of liquid PD cultures of 

respective deletion mutant, △claF, △claD or △traA, leading to final concentrations of 0.5 mM 

for clavatol (5) and hydroxyclavatol (9), 0.2 mM for terrestric acid (11), crustosic acid (13), 

(R)-5-methyltetronic acid (7), and (S)-5-carboxylmethyltetronic acid (8). After further cultivation 

at 25°C for 14 d, the secondary metabolites were extracted with ethyl acetate, dissolved in 

MeOH and analyzed on LC-MS. 

9. Chemical synthesis of tetronic acids 7 and 8 

For feeding experiments in deletion mutants, two tetronic acids (R)-5-methyltetronic acid (7) 

and (S)-5-carboxylmethyltetronic acid (8) were synthesized chemically according to the 

published methods (Figure S21). 7 was synthesized in two steps from (R)-ethyl lactate7 and 8 

in three steps from L-malic acid.8,9 

10. Overproduction and purification of ClaD 

The expression plasmid pJF37 was constructed for claD expression in E. coli as mentioned 

above. The recombinant E. coli BL21(DE3) strain was cultivated in Terrific Broth medium (TB 

medium, with 2.4% yeast extract, 2.0% tryptone, 0.4% glycerol, 0.1 M phosphate buffer, pH 7.4) 

and claD expression was induced with 0.5 mM IPTG at 30°C for 6 h. The recombinant 

histidine-tagged ClaD was purified on Ni-NTA agaroses (Qiagen, Hilden) and proven on 
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SDS-PAGE (Figure S23). 

11. In vitro assays of ClaD 

To determine the enzyme activity toward clavatol (5), the enzyme assays (50 μL) contained 

phosphate buffer (20 mM, pH 7.4), ascorbic acid (1 mM), clavatol (1 mM), Fe[(NH4)2(SO4)2] (1 

mM), 2-oxoglutarate (1 mM), glycerol (0.5−5%), DMSO (5%), and the purified recombinant 

ClaD (2 µg). The enzyme assays were incubated at 37 °C for 30 min and terminated with one 

volume of acetonitrile. The reaction mixtures were centrifuged at 13,000 rpm for 30 min before 

further analysis on HPLC.  

12. Proof of the existence of ortho-quinone methide  

In order to provide evidence for the existence of ortho-quinone methide (6), hydroxyclavatol (9) 

isolated from the fungal culture was dissolved in both H2O and in 18O-enriched H2
18O. After 

incubation at room temperature for 16 h, the samples were analyzed by MS on positive and 

negative modes.  

To prove their conversion via 6, hydroxyclavatol (9), hydroxyclavatol methyl ether (10), and 

hydroxyclavatol ethyl ether (12) were incubated in different solvents such as H2O, acetonitrile, 

MeOH and EtOH at room temperature for 12 h. The mixtures were analyzed on HPLC by using 

method B. 

13. Non-enzymatic formation of penilactones and peniphenones 

To determine the non-enzymatic formation, hydroxyclavatol (9) was incubated with 

(R)-5-methyltetronic acid (7) or (S)-5-carboxylmethyltetronic acid (8) in H2O at room 

temperature for 16 h. The dependence of the product formation on time (0, 5, 15, 30, 60, 120 

min, and 24 h) was monitored on HPLC (method A) (Figure S25). pH dependence of the 

product formation was carried out by incubation in phosphate buffer saline (PBS, pH 3−10) for 

12 h (Figure S26). 

14. Large-scale fermentation, extraction and isolation of secondary metabolites 

To isolate 5, 9, and 10–12, P. crustosum PRB-2 spores were inoculated into 60x 250-mL flask 

containing 100 mL PD liquid medium each and incubated on a rotary shaker at 220 rpm and 

25 °C for 7 d. The supernatant and mycelia were separated by filtration. The supernatant was 

extracted with equal volume of ethyl acetate for three times, and the mycelia were extracted 

with acetone. The acetone extract was concentrated under reduced pressure to afford an 

aqueous solution, and then extracted with ethyl acetate. The two ethyl acetate extracts were 

combined and evaporated under reduced pressure to give a crude extract (1.8 g). The crude 

extract was subjected to silica gel column chromatography by using stepwise gradient elution 

with the mixtures of CH2Cl2/MeOH (100:1 to 20:1, v/v) to give eleven fractions (1–11). Fraction 

3 eluted with CH2Cl2/MeOH (80:1) was further purified on semi-preparative HPLC (ACN/H2O 

(70:30)) to yield clavatol (5) (15 mg), hydroxyclavatol methyl ether (10) (7 mg) and 

hydroxyclavatol ethyl ether (12) (4 mg). Hydroxyclavatol (9) (17 mg) was obtained from fraction 

7, which was eluted with CH2Cl2/MeOH (40:1), by semi-preparative HPLC (ACN/H2O (60:40)). 

Fraction 8 eluted with CH2Cl2/MeOH (20:1) was chromatographed over Sephadex LH-20 
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column and eluted with MeOH, resulting in terrestric acid (11) (40 mg).  

To isolate 1–4, P. crustosum PRB-2 was cultivated in 300x 250-mL flasks each containing 20 g 

rice, 30 mL H2O, and 0.75 g soy flour at 25 °C for 30 days. The rice cultures were extracted 

with 15 L ethyl acetate and concentrated under reduced pressure to obtain a crude extract (35 

g). The crude extract was applied to silica gel column chromatography and eluted with a 

stepwise gradient CH2Cl2/acetone (100:1, 50:1, 25:1, 19:1, and 1:1), yielding eight fractions (1–

8). Subsequent elution with methanol gave 10 additional fractions (9−18). Fraction 4 was 

separated by repeated silica gel column chromatography with CH2Cl2/MeOH (50:1) and 

petroleum ether/EtOAc (1:1 and 1:6) as solvents to afford pure peniphenone D (3) (12 mg). 

Penilactone A (1) (7 mg) was obtained from fraction 7 by silica gel and Sephadex LH-20 

column chromatography as well as by final purification on a semi-preparative HPLC 

(MeOH/H2O (70:30) with 0.1% trifluoroacetic acid). In analogy, penilactone B (2) (5 mg) and 

penilactone D (4) (6 mg) were purified from fractions 12 and 18, respectively. 

To isolate 13, the △claF-mutant was cultivated in PD medium at 25°C for 14 d. The culture was 

extracted with ethyl acetate using the same procedure as mentioned above. 1.0 g crude extract 

was obtained from 4 L culture, and subjected to silica gel column chromatography by using 

petroleum ether/EtOAc (10:1, 3:1, 1:1, 1:3, 1:6) as elution solvents, giving 5 fractions (1−5). 

Pure 13 (20 mg) was obtained from fraction 5 after purification on Sephadex LH-20 column 

using MeOH as eluent. 

15. HPLC and LC-MS analysis of secondary metabolites 

Analysis of secondary metabolites was performed on an Agilent series 1200 HPLC (Agilent 

Technologies, Böblingen, Germany) with an Agilent Eclipse XDB-C18 column (150 × 4.6 mm, 5 

μm). Water (A) and acetonitrile (B), both with 0.1% (v/v) formic acid, were used as solvents at 

flow rate of 0.5 mL/min. The substances were eluted with a linear gradient from 5–100% B in 

15 min, then washed with 100% (v/v) solvent B for 5 min and equilibrated with 5% (v/v) solvent 

B for 5 min (method A) or with a linear gradient from 5–100% B in 40 min, then washed with 

100% (v/v) solvent B for 5 min and equilibrated with 5% (v/v) solvent B for 10 min (method B). 

Absorptions at UV 280 nm were illustrated. Semi-preparative HPLC was performed on the 

same equipment with an Agilent Eclipse XDB-C18 column (9.4 × 250 mm, 5 μm) column and a 

flow rate of 2.5 mL/min. 

LC-MS analysis was performed on an Agilent 1260 HPLC system equipped with a microTOF-Q 

III spectrometer (Bruker, Bremen, Germany) by using Multospher 120 RP18-5µ column (250 × 

2 mm, 5 μm) (CS-Chromatographie Service GmbH) and method B for separation at flow rate of 

0.25 mL/min. Electrospray positive or negative ionization mode was selected for determination 

of the exact masses. The capillary voltage was set to 4.5 kV and a collision energy of 8.0 eV. 

Sodium formate was used in each run for mass calibration. The masses were scanned in the 

range of m/z 100–1500. Data were evaluated with the Compass DataAnalysis 4.2 software 

(Bruker Daltonik, Bremen, Germany). 

16. NMR analysis  

NMR spectra were recorded on a JOEL ECA-500 MHz spectrometer (JEOL, Tokyo, Japan). All 
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spectra were processed with MestReNova 6.1.0 (Metrelab). Chemical shifts are referenced to 

those of the solvent signals. NMR data are given in Tables S6–S10 and spectra in Figures 

S28–S45. 

17. Measurement of optical rotations 

The optical rotation was measured with the polarimeter Jasco DIP-370 at 20°C using the D-line 

of the sodium lamp at λ=589.3 nm. Prior to the measurement, the polarimeter was calibrated 

with methanol as solvent. 

18. Circular dichroism (CD) spectroscopic analysis 

CD spectra were taken on a J-815 CD spectrometer (Jasco Deutschland GmbH, Pfungstadt, 

Germany). The samples were dissolved in methanol and measured in the range of 200–400 

nm by using a 1 mm path length quartz cuvette (Hellma Analytics, Müllheim, Germany). The 

CD spectra are given in Figures S46–S52. 

19. X-ray crystallographic analysis 

Colorless crystals of hydroxyclavatol (9) were obtained in CH2Cl2/MeOH. Crystallographic data 

for 9 (Cu Ka radiation) has been deposited in the Cambridge Crystallographic Data Centre with 

the deposition number CCDC 1883090 (Table S11). These data can be obtained free of charge 

via www.ccdc.cam.ac.uk/data_request/cif. 

20. Physiochemical properties of the compounds described in this study 

Penilactone A (1): Colorless solid; [α]20 
D  = -14.8 (c 0.25, MeOH); CD (MeOH) λ max (∆ε) 333 

(-13.1), 295 (+28.2), 271 (-25.0), 240 (+17.2), 226 (-27.4) nm; HRMS (m/z): (ESI/[M + H]+) 

calcd. for C25H27O9, 471.1650, found 471.1652. 

Penilactone B (2): Colorless solid; [α]20 
D  = +12.6 (c 0.25, MeOH); CD (MeOH) λ max (∆ε) 335 

(+9.6), 292 (-28.7), 270 (+18.9), 240 (-10.5), 227 (+11.4) nm; HRMS (m/z): (ESI/[M + H]+) calcd. 

for C26H27O11, 515.1548, found 515.1570. 

Peniphenone D (3): Colorless solid; [α]20 
D  = +10.6 (c 0.25, MeOH); CD (MeOH) λ max (∆ε) 254 

(+2.4), 232 (-2.1), 200 (-3.0) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C15H17O6, 293.1020, 

found 293.1040.  

Penilactone D (4): Colorless solid; [α]20 
D  = -15.9 (c 0.20, MeOH); CD (MeOH) λ max (∆ε) 280 

(-1.2), 242 (-3.0), 211 (+4.9) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C16H17O8, 337.0918, 

found 337.0932. 

Clavatol (5): Colorless solid; HRMS (m/z): (ESI/[M + H]+) calcd. for C10H13O3, 181.0859, found 

181.0860. 

(R)-5-Methyltetronic acid (7): Yellow solid; 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H, 

4-OH), 4.87 (s, 1H, H-3), 4.85 (q, J = 6.7 Hz, 1H, H-5), 1.33 (d, J = 6.7 Hz, 3H, H-6); [α]20 
D  = 

-22.8 (c 0.5, H2O); CD (H2O) λ max (∆ε) 309 (-9.3), 247 (+19.4) nm; HRMS (m/z): (ESI/[M + H]+) 

calcd. for C5H7O3, 115.0390, found 115.0369. 
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(S)-5-carboxylmethyltetronic acid (8): Yellow solid; 1H NMR (500 MHz, CD3OD) δ 5.18 (dd, J = 

8.8, 3.6 Hz, 1H, H-5), 2.94 (dd, J = 16.5, 3.6 Hz, 1H, H-6a), 2.53 (dd, J = 16.5, 8.8 Hz, 1H, 

H-6b); [α]20 
D  = -0.8 (c 1.4, MeOH). HRMS (m/z): (ESI/[M + H]+) calcd. for C6H7O5, 159.0288, 

found 159.0272. 

Hydroxyclavatol (9): Colorless crystal; HRMS (m/z): (ESI/[M + Na]+) calcd. for C10H12NaO4, 

219.0628, found 219.0626. Crystallographic data for 9 (Cu Ka radiation) has been deposited in 

the Cambridge Crystallographic Data Centre with the deposition number CCDC 1883090.  

Hydroxyclavatol methyl ether (10): Colorless solid; HRMS (m/z): (ESI/[M + Na]+) calcd. for 

C11H14NaO4, 233.0784, found 233.0778. 

Terrestric acid (11): Yellow oil; [α]20 
D  = +37.1 (c 0.80, MeOH); CD (MeOH) λ max (∆ε) 282 (+1.0), 

234 (+2.8), 212 (+8.2) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C11H15O4, 211.0965, found 

211.1003. 

Hydroxyclavatol ethyl ether (12): Colorless solid; HRMS (m/z): (ESI/[M + Na]+) calcd. for 

C12H16NaO4, 247.0941, found 247.0959. 

Crustosic acid (13): Yellow oil; [α]20 
D  = -164.1 (c 0.50, MeOH); CD (MeOH) λ max (∆ε) 272 (-11.2), 

207 (-12.4) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C12H15O6, 255.0863, found 255.0876. 
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Supplementary Tables 

Table S1. Strains used in this study 

Strains Genotype 

Wild type Penicillium crustosum PRB-2 

ΔclaD ΔclaD::hph in P. crustosum PRB-2 

ΔclaF ΔclaF::hph in P. crustosum PRB-2 

ΔclaJ ΔclaJ::hph in P. crustosum PRB-2 

ΔtraA ΔtraA::hph in P. crustosum PRB-2 

ΔtraB ΔtraB::hph in P. crustosum PRB-2 

ΔtraD ΔtraD::hph in P. crustosum PRB-2 

ΔtraE ΔtraE::hph in P. crustosum PRB-2 

ΔtraF ΔtraF::hph in P. crustosum PRB-2 

ΔtraH ΔtraH::hph in P. crustosum PRB-2 

Aspergillus nidulans 

LO8030
2,3

 

pyroA4, riboB2, pyrG89, nkuA::argB,  

sterigmatocystin cluster (AN7804-AN7825)Δ, 

emericellamide cluster (AN2545-AN2549)Δ, 

asperfuranone cluster (AN1039-AN1029)Δ, 

monodictyphenone cluster (AN10023-AN10021)Δ, 

terrequinone cluster (AN8512-AN8520)Δ, 

austinol cluster part 1 (AN8379-AN8384)Δ, 

austinol cluster part 2 (AN9246-AN9259)Δ, 

F9775 cluster (AN7906-AN7915)Δ,  

asperthecin cluster (AN6000-AN6002)Δ 

JF10 pYH- wA -pyrG in A. nidulans LO8030 

JF11 gpdA::claF::AfpyrG in A. nidulans LO8030 
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Table S2. Plasmids used and constructed in this study 

Plasmids Description 

pESC-URA Saccharomyces cerevisiae shuttle vector. 

pUChph vector with hygromycin B (hph) resistance originate. 

pET28a(+) vector with T7 promoter, 6xHis tag, T7 terminator, kanamycin resistance.  

p5HY Two-third of the hph resistance gene at the 5´-end, originated from the pUChph and inserted into 

pESC-URA. For gene replacement using hph as selection marker. 

p3YG Two-third of the hph resistance gene at the 3´-end, originated from the pUChph and inserted into 

pESC-URA. For gene replacement using hph as selection marker. 

pJF19 (p5HY-claD) a 1012 bp US PCR fragment of claD from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF20 (p3YG-claD) a 1008 bp DS PCR fragment of claD from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF40 (p5HY-claF) a 1560 bp US PCR fragment of claF from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF41 (p3YG-claF) a 1426 bp DS PCR fragment of claF from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF21 (p5HY-claJ) a 1367 bp US PCR fragment of claJ from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF22 (p3YG-claJ) a 1259 bp DS PCR fragment of claJ from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF38 (p5HY-traA) a 1500 bp US PCR fragment of traA from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF39 (p3YG-traA) a 1496 bp DS PCR fragment of traA from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF56 (p5HY-traB) a 1388 bp US PCR fragment of traB from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF57 (p3YG-traB) a 1067 bp DS PCR fragment of traB from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF54 (p5HY-traD) a 1170 bp US PCR fragment of traD from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF55 (p3YG-traD) a 1139 bp DS PCR fragment of traD from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF52 (p5HY-traE) a 1130 bp US PCR fragment of traE from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF53 (p3YG-traE) a 1027 bp DS PCR fragment of traE from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF50 (p5HY-traF) a 977 bp US PCR fragment of traF from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF51 (p3YG-traF) a 1031 bp DS PCR fragment of traF from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pJF48 (p5HY-traH) a 1101 bp US PCR fragment of traH from genomic DNA of P. crustosum PRB-2 inserted in p5HY. 

pJF49 (p3YG-traH) a 1114 bp DS PCR fragment of traH from genomic DNA of P. crustosum PRB-2 inserted in p3YG. 

pYH-wA-pyrG URA3, wA flanking, AfpyrG, Amp 

pJF18 pYH-wA-claF; a 8119 bp fragment of claF with its terminator from genomic DNA of P. crustosum 

PRB-2 inserted in pYH-wA 

pJF37 pET-28a(+)-claD; a 1017 bp fragment of claD from cDNA of P. crustosum PRB-2 inserted in 

pET28a(+) 

US: upstream; DS: downstream 
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Table S3. Primers used in this study 

Primers Sequence 5’-3’ Targeted amplification 

P5HY-1 TGCGGCCGCCCTTTAGTGAGGGTTGAATTAGCTCTCCAAAGGGCG Two-third of the hph resistance 

gene at the 5´-end from pUChph to 

construct p5HY 

P5HY-2 CCTATAGTGAGTCGTATTACGGATCCAAGACCAATGCGGAGCATATAC 

P3YG-1 TGCGGCCGCCCTTTAGTGAGGGTTGAATTGATTCCGGAAGTGCTTGAC Two-third of the hph resistance 

gene at the 3´-end from pUChph to 

construct p3YG 

P3YG-2 CCTATAGTGAGTCGTATTACGGATCTCGCGTGGAGCCAAG 

5F-R GCTGAAGTCGATTTGAGTCCAC US of hph to verify 5F of P. 

crustosum mutant 

3F-F GCATTAATGCATTGGACCTCGC DS of hph to verify 3F of P. 

crustosum mutant 

claD-up-F AAGAATTGTTAATTAAGAGCTCAGATCTGTAGAGCAGGCTGGCGGATAC 1012 bp US fragment of claD to 

construct pJF19 claD-up-R AACCCTCACTAAAGGGCGGCCGCACTAGTGTCTTTCGCGGATGATAAAC 

claD-down-F ATACGACTCACTATAGGGCCCGGGCGTCGACCTGGAAGGGGGAGCCTTG 1008 bp DS fragment of claD to 

construct pJF20 claD-down-R GCTAGCCGCGGTACCAAGCTTACTCGAGCGGTGCTGGTGGTACCTATC 

claD-F ATGCCTGTTCTAAGCAATCC 1017 bp partial fragment of claD 

claD-R TTAAATGGCATAACTCGCCGTC 

claD-5F-F CTCGCAATCCATGGACGTG US of hph to verify △claD mutant 

claD-3F-R GCGCTTTGGTTATTGCGAG DS of hph to verify △claD mutant 

claF-up-F AAGAATTGTTAATTAAGAGCTCAGATCAGAGAACTGAGCTTTAGATTGG 1560 bp US fragment of claF to 

construct pJF40 claF-up-R CCTCACTAAAGGGCGGCCGCACTAGCGATTGCAGCTATACCCG 

claF-down-F ACTCACTATAGGGCCCGGGCGTCGAGCCTGATGGCCTATTGTAC 1426 bp DS of claF to construct 

pJF41 claF-down-R TAGCCGCGGTACCAAGCTTACTCGAGATGCAGGATATACGTTTCCAC 

claF-F GCGAATGACTGATGCAGTG 1845 bp partial fragment of claF 

claF-R GAAGTTCACTCGGCAGAGC 

claF-5F-F CATCGCTATAGATGTCTGGTCC US of hph to verify △claF mutant 

claF-3F-R CAACCCACAACTGGATCG DS of hph to verify △claF mutant 

claJ-up-F GAATTGTTAATTAAGAGCTCAGATCTCTTGTGTAATGCCCAAATGCC 1367 bp US fragment of claJ to 

construct pJF21 claJ-up-R CCCTCACTAAAGGGCGGCCGCACTAGTCCGTCATAGTTGAAGCGCAG 

claJ-down-F CTCACTATAGGGCCCGGGCGTCGACATATTAAATTTCAGGTAGCACGAG 1259 bp DS fragment of claJ to 

construct pJF22 claJ-down-R CTAGCCGCGGTACCAAGCTTACTCGAGGCTATTGCTAGGATGTCACGC 

claJ--F ATGAAAGGTCCAATTGTCCGC 
867 bp partial fragment of claJ 

claJ-R AAGGTATGGAAGCTTCTGGGC 

claJ-5F-F CTAGTTAGCAGCACTCGTC  US of hph to verify △claJ mutant 

claJ-3F-R CTATAGCAGTGGTCTCAACGGC DS of hph to verify △claJ mutant 

traA-up-F AAGAATTGTTAATTAAGAGCTCAGATCTTCGTGGTTTGTAACAACTGC 1500 bp US fragment of traA to 

construct pJF38 traA-up-R CCTCACTAAAGGGCGGCCGCACTAGATCTTTTGAGGGTTATCTTACAGC 

traA-down-F ACTCACTATAGGGCCCGGGCGTCGAGTTAGTTGTAGTAGCACTACTGC 1496 bp DS fragment of traA to 

construct pJF39 traA-down-R TAGCCGCGGTACCAAGCTTACTCGACCACGTACCGTAAATATCTGG 
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Table S3. Primers used in this study (continued) 

traA-F TGCATCTTGTAGAGCTCGC 
1819 bp partial fragment of traA 

traA-R GAGGGCGGTTTTAGAATCAATTG 

traA-5F-F GGACACACAGTTAAATGCAG US of hph to verify △traA mutant 

traA-3F-R CCTAGGCCATGTTAGATTGC DS of hph to verify △traA mutant 

traB-up-F GAATTGTTAATTAAGAGCTCAGATCTCTGACGAATGAGGCATTCAATG 1388 bp US fragment of traB to 

construct pJF56 traB-up-R ACCCTCACTAAAGGGCGGCCGCACTAGCATGGCTTGACAGCGCTCTC 

traB-down-F GACTCACTATAGGGCCCGGGCGTCGACGGGCCTCCCCTTGTCTATTC 1067 bp DS fragment of traB to 

construct pJF57 traB-down-R CTAGCCGCGGTACCAAGCTTACTCGAGCGTCCGACGATCATGATCCC 

traB-F GAATGCGTATTGCACTAGTATG 
1037 bp partial fragment of traB 

traB-R CCAGTTATACCACGACACC 

traB-5F-F CCTGCTGTACCTTCTGTATGC US of hph to verify △traB mutant 

traB-3F-R GTGGCTACGGTTACCACTG DS of hph to verify △traB mutant 

traD-up-F GAATTGTTAATTAAGAGCTCAGATCTGGCTCAGATCTTCCAGTGAAC 1170 bp US fragment of traD to 

construct pJF54 
traD-up-R CAACCCTCACTAAAGGGCGGCCGCACTAGGTTGCAGCTAGGTGGGTG 

traD-down-F CTCACTATAGGGCCCGGGCGTCGACCTACCATACCTGCCTTTTCTGAC 1139 bp DS fragment of traD to 

construct pJF55 traD-down-R GCTAGCCGCGGTACCAAGCTTACTCGAGGGACCGCTCTGCTCTCATAC 

traD--F ATGAAAGTTTTGATTATTTTTGCCCACC 
942 bp partial fragment of traD 

traD-R TCACGCTTCTTTGACGTCGG 

traD-5F-F GGTAGAGCAGCGCGGTCTA US of hph to verify △traD mutant 

traD-3F-R CAAAGGCTGAGCCAGAGACTC DS of hph to verify △traD mutant 

traE-up-F GAATTGTTAATTAAGAGCTCAGATCTCCGCATATGCTTCAGCTGAC 1030 bp US fragment of traE to 

construct pJF52 
traE-up-R CCCTCACTAAAGGGCGGCCGCACTAGCAAATTATGCAGTGGTGCACG 

traE-down-F CTCACTATAGGGCCCGGGCGTCGACGATAGTATGAGAGCAGAGCGGTC 1027 bp DS fragment of traE to 

construct pJF53 traE-down-R GCTAGCCGCGGTACCAAGCTTACTCGAGGGCAGTATTCTGATGCCTGC 

traE-F ATGGCCGCACCAGCACTTC 
471 bp partial fragment of traE 

traE-R CTATTTGCCGAAAACTGCCCAG 

traE-5F-F CAATGTTCCTTCTCCGTATCGGTC US of hph to verify △traE mutant 

traE-3F-R CTGTTGACGCTGTACATGGG DS of hph to verify △traE mutant 

traF-up-F GAAGAATTGTTAATTAAGAGCTCAGATCTCAACCGCATATCGCCAAG 977 bp US fragment of traF to 

construct pJF50 traF-up-R CCCTCACTAAAGGGCGGCCGCACTAGCACGACAGCCTTTGTCCG 

traF-down-F GACTCACTATAGGGCCCGGGCGTCGACAGCAATCGTCGATTTTGCAAAC 1031 bp DS of traF to construct 

pJF51 traF-down-R CTAGCCGCGGTACCAAGCTTACTCGAGCGTATTCGGCCCCATTGAAAC 

traF-F ATGACCTCCGGCACTGAG 
1795 bp partial fragment of traF 

traF-R CTAATGCGCTGTAAACTTGCTC 

traF-5F-F CAGCCAATCGAAGATCCTTGC US of hph to verify △traF mutant 

traF-3F-R CATGTTTGCCTTGGAGCAGG DS of hph to verify △traF mutant 
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Table S3. Primers used in this study (continued) 

traH-up-F GAATTGTTAATTAAGAGCTCAGATCTCCCATCCATGGTCCGATTGAG 1101 bp US fragment of traH to 

construct pJF48 traH-up-R CCTCACTAAAGGGCGGCCGCACTAGGATTGCTTATGTGACGTGCTTTTG 

traH-down-F CTCACTATAGGGCCCGGGCGTCGACCGTTACAGCCAAGACATTGATG 1114 bp DS fragment of traH to 

construct pJF49 traH-down-R CTAGCCGCGGTACCAAGCTTACTCGAGCGCAGGACTCGACATGGATC 

traH-F GCGAAGGTCATTGAGCAAGTG 
1097 bp partial fragment of traH 

traH-R CACTACATACTGTGAATGCTATCACC 

traH-5F-F GCGGTGGAGTTGACGGTAAG US of hph to verify △traH mutant 

traH-3F-R GTCTCTCTCGCCCACCAC DS of hph to verify △traH mutant 

A.n-claF-For TATTCATCTTCCCATCCAAGAACCTTTAATCATGCCGTCTGAGTCTTAC DNA of claF with its 480 bp 

terminator from P. crustosum to 

construct pJF18 
A.n-claF-Rev CATATTTCGTCAGACACAGAATAACTCTCCATGTTATTAGGGACCATGG 

ClaD-28-For GTGGACAGCAAATGGGTCGCGGATCCATGCCTGTTCTAAGCAATCCATC 1017 bp fragment of claD to 

construct pJF37 ClaD-28-Rev CAAGCTTGTCGACGGAGCTCGAATTCTTAAATGGCATAACTCGCCGTCA 

US: upstream; DS: downstream 
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Table S4. Putative functions of the genes from clavatol gene cluster 

 

Protein No. in 

genome 

Size 

(AA) 

Homologous known protein  Identity 

(%) 

Putative function 

ClaA Pcr3099 476 C6 transcription factor (ANF07281) from 

Byssochlamys fulva 10 

53.1 transcription activator 

ClaB Pcr3098 214 hypothetical protein AUD_9432 (GAO90472) from 

Aspergillus udagawae 11 

38.8 hypothetical protein 

ClaC Pcr3097 878 enoyl-CoA hydratase/isomerase family protein  

(OCK96737) from Cenococcum geophilum 12 

53.6 enoyl-CoA 

hydratase/isomerase 

ClaD Pcr3096 338 FeII/2-oxoglutarate-dependent oxygenase CitB 

(ALI92653) from Monascus ruber M7 13 

53.8 clavatol oxidase 

ClaE Pcr3095 265 citrinin biosynthesis protein CitA (ALI92654) from 

Monascus ruber M7 13 

64.8 hypothetical protein 

ClaF Pcr3094 2587 citrinin polyketide synthase CitS (ALI92655) from 

Monascus ruber M7 13 

57.7 clavatol synthase 

ClaG Pcr3093 743 hypothetical protein (XP_020058556.1) from 

Aspergillus aculeatus ATCC 16872 

47.0 hypothetical protein 

ClaH Pcr3092 308 thiohydrolase in the brefeldin A biosynthesis 

(A0A068ACU9.1) from Penicillium brefeldianum 14 

44.0 hydrolase 

ClaI Pcr3091 2346 polyketide synthase (AFP89392) from 

Cladosporium phlei 15 

42.8 polyketide synthase 

ClaJ Pcr3089 438 cytochrome P450 monooxygenase (BAJ04372.1) 

from Aspergillus oryzae 

42.0 cytochrome P450 
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Table S5. Putative functions of the genes from terrestric acid gene cluster 

 

Protein No. in 

genome 

Size 

(AA) 

homologous known protein  Identity 

(%) 

Putative Function 

TraA Pcr11009 3856 NRPS/PKS hybrid enzyme 

(XP_001392496) from Aspergillus niger 

CBS 513.88 16 

69.6 PKS-NRPS hybrid enzyme  

TraB Pcr11010 509 cytochrome P450 monooxygenase 

(XP_001392495) in toxin biosynthesis in 

Aspergillus niger CBS 513.88 16 

65.5 cytochrome P450 

TraC Pcr11011 417 hypothetical protein (OQD61093) from 

Penicillium polonicum 

81.0 hypothetical protein 

TraD Pcr11012 267 NAD(P)H dehydrogenase (AEO48230) 

from Rhodospirillum rubrum F11 17 

63.4 flavodoxin family protein 

TraE Pcr11013 156 hypothetical protein (XP_001392493) from 

Aspergillus niger CBS 513.88 16 

49.0 hypothetical protein 

TraF Pcr11014 482 MFS multidrug transporter 

(XP_001392492) from Aspergillus niger 

CBS 513.88 16 

68.9 transporter 

TraG Pcr11015 364 enoyl reductase (XP_001392491) from 

Aspergillus niger CBS 513.88 16 

68.9 enoyl reductase 

TraH Pcr11016 327 2-oxoglutarate-dependent oxygenase 

(XP_001392490) from Aspergillus niger 

CBS 513.88 16 

66.0 2-oxoglutarate-dependent 

oxygenase 
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Table S6. 1H NMR data of compounds 1 and 2 

Compound 

 
Penilactone A (1, DMSO-d6) 

 

Penilactone B (2, DMSO-d6) 

Position δH, multi., J in Hz δH, multi., J in Hz 

5 5.00, q, 6.4, 1H 5.22, dd, 9.6, 2.1, 1H 

6 1.51, d, 6.4, 3H 3.18, t, 9.6, 1H 

 - 2.66, dd, 16.9, 9.6, 1H 

6´ 7.57, s, 1H 7.59, s, 1H 

8´ 2.55, s, 3H 2.56, s, 3H 

9´ 2.97, d, 17.0, 1H 2.96, d, 17.4, 1H 

 2.79, d, 17.0, 1H 2.82, d, 17.4, 1H 

10´ 2.13, s, 3H 2.13, s, 3H 

6´´ 7.61, s, 1H 7.62, s, 1H 

8´´ 2.52, s, 3H 2.53, s, 3H 

9´´ 3.25, d, 12.3, 1H 3.25, d, 13.8, 1H 

 3.13, d, 12.3, 1H 3.17, d, 13.8, 1H 

10´´ 2.16, s, 3H 2.16, s, 3H 

4-OH 8.15, s, 1H 8.32, s, 1H 

2´-OH 12.82, s, 1H 12.81, s, 1H 

2´´-OH 13.01, s, 1H 13.03, s, 1H 

4´´-OH 9.78, s, 1H 9.84, s, 1H 
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Table S7. 1H NMR data of compounds 3 and 4 

Compound 

 

Peniphenone D (3, CDCl3) 

 

Penilactone D (4, DMSO-d6) 

Position δH, multi., J in Hz δH, multi., J in Hz 

5 4.83, q, 6.8, 1H 4.96, dd, 9.6, 3.0, 1H 

6 1.46, d, 6.8, 3H 2.89, dd, 16.2, 3.0, 1H 

 - 2.25, dd, 16.2, 9.6, 1H 

6´ 7.40, s, 1H 7.53, s, 1H 

8´ 2.56, s, 3H 2.52, s, 3H 

9´ 3.47, d, 15.1, 1H 3.41, d, 14.5, 1H 

 3.42, d, 15.1, 1H 3.37, d, 14.5, 1H 

10´ 2.20, s, 3H 2.13, s, 3H 

2´-OH 13.98, s, 1H 12.94, s, 1H 
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Table S8. 1H NMR data of compounds 5, 10 and 12 

Compound 

 

Clavatol (5) 

 

 

Hydroxyclavatol methyl 

ether (10, CDCl3) 

 

Hydroxyclavatol ethyl ether 

(12, CDCl3) 

Position 
δH, multi., J in Hz  

(CDCl3) 

δH, multi., J in Hz  

(DMSO-d6) 
δH, multi., J in Hz δH, multi., J in Hz 

1 2.56, s, 3H 2.56, s, 3H 2.54, s, 3H 2.54, s, 3H 

6´ 7.37, s, 1H 7.56, s, 1H 7.41, s, 1H 7.41, s, 1H 

7´ 2.14, s, 3H 2.05, s, 3H 2.16, s, 3H 2.16, s, 3H 

8´ 2.21, s, 3H 2.18, s, 3H 4.84, s, 2H 4.88, s, 2H 

9´ - - 3.50, s, 3H 3.67, q, 7.1, 2H 

10´ - - - 1.31, t, 7.1, 3H 

2´-OH 12.89, s, 1H 12.94, s, 1H 12.95, s, 1H 12.95, s, 1H 

4´-OH - 9.48, s, 1H 9.15, s, 1H 9.44, s, 1H 
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Table S9. NMR data of compound 9 

Compound 

 

Hydroxyclavatol (9) 
 

Position 
δH, multi., J in Hz 

(CDCl3) 

δH, multi., J in Hz 

(DMSO-d6) 
δC (CDCl3) Key HMBC correlations 

1 2.53, s, 3H 2.53, s, 3H 26.4 C-2 

2 - - 203.0  

1´ - - 112.6  

2´ - - 159.8  

3´ - - 110.3  

4´ - - 162.4  

5´ - - 117.2  

6´ 7.40, s, 1H 7.61, s, 1H 131.9 C-2, C-2´, C-4´ 

7´ 2.17, s, 3H 2.11, s, 3H 15.5 C-4´, C-5´, C-6´ 

8´ 5.07, s, 2H 4.70, s, 2H 58.9 C-3´ 

2´-OH 12.93, s, 1H 12.98, s, 1H - C-1´, C-2´ 

4´-OH 9.13, s, 1H 10.23, s, 1H - C-4´ 

8´-OH - 5.75, s, 1H -  

 

  

69



S23 
 

Table S10. NMR data of 11 and 13 

Compound 

 

Terrestric acid (11, CDCl3) 

 

Crustosic acid (13, CDCl3) 

Position δH, multi., J in Hz δH, multi., J in Hz δC 

2 - - 167.5/170.7 

3 - - 95.2/95.6 

4 - - 197.4/193.8 

5 4.61, q, 7.0, 1H 4.81, dd, 6.4, 4.0, 1H 78.6/78.3 

6 1.46, d, 7.0, 3H 3.00, ddd, 17.2, 9.3, 4.0, 1H 35.8/35.7 

 - 2.82, td, 17.2, 6.4, 1H - 

7 - - 173.8/173.6 

2´ - - 187.6/187.0 

3´ 3.60, ddd, 20.1, 9.3, 1.5, 1H 3.58, ddd, 19.9, 9.3, 4.1, 1H 33.9/34.2 

 3.27, ddd, 20.1, 9.7, 8.5, 1H 3.26, ddd, 19.9, 9.6, 9.0, 1H - 

4´ 2.36, m, 1H 2.37, m, 1H 27.7/27.7 

 1.87, m, 1H 1.86, m, 1H - 

5´ 4.93, m, 1H 4.94, m, 1H 93.0/93.6 

6´ 1.96, m, 1H 1.94, m, 1H 26.5/26.4 

 1.79, m, 1H 1.77, m, 1H - 

7´ 1.06, t, 7.5, 3H 1.04, t, 7.4, 3H 9.6/9.5 

7-OH - 8.59, s, 1H - 
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Table S11. Crystal data and structure refinement of 9 

 

Perspective drawing of the X-ray structure of 9 

Name Hydroxyclavatol  

Identification code CCDC 1883090  

Empirical formula C10H12O4  

Formula weight 196.20  

Temperature 113(2) K  

Wavelength 1.54178 Å  

Crystal system Triclinic  

Space group P -1  

Unit cell dimensions a = 7.7553(9) Å = 77.750(5)°. 

 b = 8.2119(10) Å = 69.610(4)°. 

 c = 8.3575(10) Å = 66.847(5)°. 

Volume 456.97(10) Å3  

Z 2  

Density (calculated) 1.426 mg/m3  

Absorption coefficient 0.929 mm-1  

F(000) 208  

Crystal size 0.900 x 0.500 x 0.200 mm3  

Theta range for data collection 5.669 to 64.115°.  

Index ranges -8<=h<=9, -9<=k<=9, -9<=l<=9  

Reflections collected 3969  

Independent reflections 1409 [R(int) = 0.0585]  

Completeness to theta = 64.115° 92.6%  

Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 1409 / 8 / 134  

Goodness-of-fit on F2 1.589  

Final R indices [I>2sigma(I)] R1 = 0.0535, wR2 = 0.1801  

R indices (all data) R1 = 0.0542, wR2 = 0.1834  

Extinction coefficient 0.044(8)  

Largest diff. peak and hole 0.391 and -0.328 e.Å-3  
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Supplementary Figures 

 

Figure S1. HPLC analysis of secondary metabolite profiles of P. crustosum 

(A) in 7 days-old PD liquid shaking culture at 230 rpm. (B) in 14 days-old PD liquid surface 

culture. Absorptions at 280 nm are illustrated. 
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Figure S2. LC-MS analysis of secondary metabolites from a 14 days-old liquid PD surface 

culture of P. crustosum 

EICs of 1–5, 9, 10, 11, and 13 are selected with a tolerance range of ± 0.005. UV spectra are 

shown in blue. 
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Figure S3. Schematic representation of the gene deletion strategy in P. crustosum 
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Figure S4. PCR verification of deletion mutants of P. crustosum 

PCR amplification for three different fragments from genomic DNA of WT and deletion mutants 

was used to prove the presence/absence of the gene of interest and its site specific integration 

with the help of up- and downstream regions. The PCR primers are given in Table S3. 
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Figure S5. LC-MS analysis of the metabolite profile of the △claD-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively.  
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Figure S6. LC-MS analysis of the metabolite profile of the △claF-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C-J), respectively.  
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Figure S7. LC-MS analysis of the metabolite profile of the △claJ-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C-J), respectively. The peak at 29.3 min, which is very likely derived from the 

cyclodipeptide of tyrosine and glycine (cYG), was isolated and identified as the enantiomer of 

cis-Bis(methylthio)silvatin18 (data not shown). The peak at 33.5 min was also detected in the 

control chromatogram with methanol as a sample. 

78



S32 
 

 
Figure S8. LC-MS analysis of the metabolite profile of the △traA-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively. 
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Figure S9. LC-MS analysis of the metabolite profile of the △traB-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively. 
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Figure S10. LC-MS analysis of the metabolite profile of the △traD-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively.  
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Figure S11. LC-MS analysis of the metabolite profile of the △traE-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively. 
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Figure S12. LC-MS analysis of the metabolite profile of the △traF-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively. 
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Figure S13. LC-MS analysis of the metabolite profile of the △traH-mutant  

Absorptions at 280 nm are illustrated in black (A). EICs in dark green (B) refer total [M+H]+ ions 

of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer [M+H]+ ions of 1–

6, 11, and 13 (C−J), respectively. 
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Figure S14. LC-MS analysis of the metabolite profile of the △claD-mutant with and without 

feeding with 9  

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green (B and D) refer 

total [M+H]+ ions of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer 

[M+H]+ ions of 1–4 and 6 (E−I), respectively. 
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Figure S15. LC-MS analysis of the metabolite profile of the △claF-mutant with and without 

feeding with 5  

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green (B and D) refer 

total [M+H]+ ions of 1–6, 11, and 13 with a tolerance range of ± 0.005, and in other colors refer 

[M+H]+ ions of 1–5 (E−I ) or [M+Na]+ ion of 9 (J).  
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Figure S16. LC-MS analysis of the metabolite profile of the △traA-mutant with and without 

feeding with 7 

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green (B and D) refer 

total [M+H]+ ions of 1–6, 11, and 13 with a tolerance range of ± 0.005, in other colors refer 

[M+H]+ ions of 1–4, 11, and 13 (E–J), respectively. 
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Figure S17. LC-MS analysis of the metabolite profile of the △traA-mutant with and without 

feeding with 8  

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green refer [M+H]+ ions of 

1–6, 11, and 13 (B and D) with a tolerance range of ± 0.005, and in other colors refer [M+H]+ 

ions of 1 –4, 11, and 13 (E–J), respectively. 
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Figure S18. LC-MS analysis of the metabolite profile of the △traA-mutant with and without 

feeding with 11  

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green refer [M+H]+ ions of 

1–6, 11, and 13 (B and D with a tolerance range of ± 0.005, and in other different colors refer 

[M+H]+ ions of 1 –4, 11, and 13 (E–J), respectively. 
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Figure S19. LC-MS analysis of the metabolite profile of the △traA-mutant with and without 

feeding with 13  

Absorptions at 280 nm are illustrated in black (A and C). EICs in dark green refer [M+H]+ ions of 

1– 6, 11, and 13 (B and D) with a tolerance range of ± 0.005, and in other different colors refer 

[M+H]+ ions of 1–4, 11, and 13 (E–J), respectively. 
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Figure S20. LC-MS analysis of the metabolite profile of different A. nidulans strains  

Absorptions at 280 nm and [M+H]+ of (5) m/z 181.0859 are illustrated. JF11 carries the 

expression construct for claF in A. nidulans LO8030 and JF10 the empty vector pYH-wA-pyrG. 
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Figure S21. Chemical synthesis of the tetronic acids 7 and 8 
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Figure S22. Sequence alignments of 2-OG-dependent oxygenases  

CitB (ALI92653), CtnA (BAE95338), and KGO36755 are from Monascus ruber M7, Monascus 

purpureus, and Penicillium expansum and share sequence identities of 53.8, 53.8, and 53.6% 

with ClaD, respectively. ClaD also contains the typical conserved 2-His-1-Asp ion-binding triad 

of non-heme FeII/2-oxoglutarate-dependent oxygenases (His184, His202 and Asp187) (marked 

with *).13 Protein sequence alignments were carried out by using the sequence alignment 

function of MEGA 5.2 and visualized with ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/). 
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Figure S23. Analysis of ClaD on SDS PAGE 

(A) claD was inserted into pET28a(+) with 6xHis at its N-terminal. (B) The recombinant 

histidine-tagged ClaD was purified and separated on a 12% gel after induction with 0.5 mM 

IPTG at 30℃ for 6 h in TB medium. 
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Figure S24. MS analysis of 9 after incubation in H2O and in 18O-enriched H2
18O 

Hydroxyclavatol (9) was dissolved in H2O and 18O-enriched H2
18O and incubated at room 

temperature for 16 h. MS data of two samples were collected in both positive and negative 

modes. 
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Figure S25. Time dependence of Michael addition reaction of 9 with 7 (A) or 8 (B) 

The incubations were carried out at room temperature in distillated H2O. Absorptions at 254 

nm are illustrated. 
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Figure S26. pH dependence on Michael addition reactions forming 3 and 4 

HPLC analysis of mixtures of 9 with 7 (A), 8 (B) or alone (C) in phosphate saline buffer with 

different pH values at room temperature for 12 h. Absorptions at 254 nm are illustrated. 
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Figure S27. HPLC analysis of 9, 10, and 12 after incubation in different solvents 

Incubation of hydroxyclavatol (9), hydroxyclavatol methyl ether (10), and hydroxyclavatol ethyl 

ether (12) in H2O, acetonitrile, MeOH and EtOH at room temperature for 12 h. Absorptions at 

280 nm are illustrated.  
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Figure S28. 1H NMR spectrum of compound 1 in DMSO-d6 (500 MHz) 
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Figure S29. 1H NMR spectrum of compound 2 in DMSO-d6 (500 MHz) 
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Figure S30. 1H NMR spectrum of compound 3 in CDCl3 (500 MHz) 
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Figure S31. 1H NMR spectrum of compound 4 in DMSO-d6 (500 MHz) 
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Figure S32. 1H NMR spectrum of compound 5 in CDCl3 (500MHz) 
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Figure S33. 1H NMR spectrum of compound 5 in DMSO-d6 (500MHz)  
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Figure S34. 1H NMR spectrum of compound 7 in DMSO-d6 (400MHz) 
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Figure S35. 1H NMR spectrum of compound 8 in CD3OD (500MHz) 
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Figure S36. 1H NMR spectrum of compound 9 in CDCl3 (500MHz) 
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Figure S37. 1H NMR spectrum of compound 9 in DMSO-d6 (500MHz) 
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Figure S38. 13C NMR spectrum of compound 9 in CDCl3 (125MHz) 
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Figure S39. HMQC spectrum of compound 9 in CDCl3 
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Figure S40. HMBC spectrum of compound 9 in CDCl3 
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Figure S41. 1H NMR spectrum of compound 10 in CDCl3 (500MHz) 
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Figure S42. 1H NMR spectrum of compound 11 in CDCl3 (500 MHz) 
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Figure S43. 1H NMR spectrum of compound 12 in CDCl3 (500 MHz) 
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Figure S44. 1H NMR spectrum of compound 13 in CDCl3 (500MHz) 
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Figure S45. 13C NMR spectrum of compound 13 in CDCl3 (125MHz) 
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Figure S46. CD spectrum of penilactone A (1) 

 

 
Figure S47. CD spectrum of penilactone B (2) 
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Figure S48. CD spectrum of peniphenone D (3) 

 

 
Figure S49. CD spectrum of penilactone D (4) 
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Figure S50. CD spectrum of (R)-5-methyltetronic acid (7) 

 
Figure S51. CD spectrum of terrestric acid (11) 
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Figure S52. CD spectrum of crustosic acid (13)  

 

  

-20

-15

-10

-5

0

5

200 250 300 350 400

CD
 [m

de
g]

Wavelength {nm}

120



S74 
 

Supplementary References 
(1) Wu, G.; Ma, H.; Zhu, T.; Li, J.; Gu, Q.; Li, D. Penilactones A and B, two novel polyketides from 

Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 2012, 68, 9745. 

(2) Li, W.; Fan, A.; Wang, L.; Zhang, P.; Liu, Z.; An, Z.; Yin, W.-B. Asperphenamate biosynthesis reveals 

a novel two-module NRPS system to synthesize amino acid esters in fungi. Chem. Sci. 2018, 9, 2589. 

(3) Chiang, Y. M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C. C.; Oakley, B. R. 

Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of 

aspercryptin. Angew. Chem. Int. Ed. Engl. 2016, 55, 1662. 

(4) Yin, W. B.; Chooi, Y. H.; Smith, A. R.; Cacho, R. A.; Hu, Y.; White, T. C.; Tang, Y. Discovery of cryptic 

polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. 

ACS Synth. Biol. 2013, 2, 629. 

(5) Goswami, R. S. Targeted gene replacement in fungi using a split-marker approach. Methods Mol. 

Biol. 2012, 835, 255. 

(6) Jacobus, A. P. and Gross, J. Optimal cloning of PCR fragments by homologous recombination in 

Escherichia coli. PLoS. One. 2015, 10, e0119221. 

(7) Adrian, J. and Stark, C. B. Total synthesis of muricadienin, the putative key precursor in the 

solamin biosynthesis. Org. Lett. 2014, 16, 5886. 

(8) Spence, J. T. and George, J. H. Biomimetic total synthesis of ent-penilactone A and penilactone B. 

Org. Lett. 2013, 15, 3891. 

(9) Stebbins, N. D.; Yu, W.; Uhrich, K. E. Enzymatic polymerization of an ibuprofen-containing 

monomer and subsequent drug release. Macromol. Biosci. 2015, 15, 1115. 

(10) Williams, K.; Szwalbe, A. J.; Mulholland, N. P.; Vincent, J. L.; Bailey, A. M.; Willis, C. L.; Simpson, T. 

J.; Cox, R. J. Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in 

their biosynthesis. Angew. Chem. Int. Ed Engl. 2016, 55, 6784. 

(11) Kusuya, Y.; Takahashi-Nakaguchi, A.; Takahashi, H.; Yaguchi, T. Draft genome sequence of the 

pathogenic filamentous fungus Aspergillus udagawae strain IFM 46973T. Genome Announc. 2015, 3, 

e00834-15. 

(12) Peter, M.; Kohler, A.; Ohm, R. A.; Kuo, A.; Krutzmann, J.; Morin, E.; Arend, M.; Barry, K. W.; 

Binder, M.; Choi, C.; Clum, A.; Copeland, A.; Grisel, N.; Haridas, S.; Kipfer, T.; LaButti, K.; Lindquist, E.; 

Lipzen, A.; Maire, R.; Meier, B.; Mihaltcheva, S.; Molinier, V.; Murat, C.; Pöggeler, S.; Quandt, C. A.; 

Sperisen, C.; Tritt, A.; Tisserant, E.; Crous, P. W.; Henrissat, B.; Nehls, U.; Egli, S.; Spatafora, J. W.; 

Grigoriev, I. V.; Martin, F. M. Ectomycorrhizal ecology is imprinted in the genome of the dominant 

symbiotic fungus Cenococcum geophilum. Nat. Commun. 2016, 7, 12662. 

(13) He, Y. and Cox, R. J. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. 2016, 7, 

2119. 

(14) Zabala, A. O.; Chooi, Y. H.; Choi, M. S.; Lin, H. C.; Tang, Y. Fungal polyketide synthase product 

chain-length control by partnering thiohydrolase. ACS Chem. Biol. 2014, 9, 1576. 

(15) So, K. K.; Kim, J. M.; Nguyen, N. L.; Park, J. A.; Kim, B. T.; Park, S. M.; Hwang, K. J.; Kim, D. H. 

Rapid screening of an ordered fosmid library to clone multiple polyketide synthase genes of the 

phytopathogenic fungus Cladosporium phlei. J. Microbiol. Methods 2012, 91, 412. 

(16) Yang, X. L.; Awakawa, T.; Wakimoto, T.; Abe, I. Three acyltetronic acid derivatives: noncanonical 

cryptic polyketides from Aspergillus niger identified by genome mining. Chembiochem. 2014, 15, 

1578. 

(17) Lonjers, Z. T.; Dickson, E. L.; Chu, T. P.; Kreutz, J. E.; Neacsu, F. A.; Anders, K. R.; Shepherd, J. N. 

121



S75 
 

Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. 

J. Bacteriol. 2012, 194, 965. 

(18) Usami, Y.; Aoki, S.; Hara, T.; Numata, A. New dioxopiperazine metabolites from a Fusarium 

species separated from a marine alga. J. Antibiot. (Tokyo) 2002, 55, 655. 

 

 

122



PUBLICATIONS 
 

123 
 

 

 

4.2 Formation of terrestric acid in Penicillium crustosum requires 

redox-assisted decarboxylation and stereoisomerization. 
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ABSTRACT: Crustosic acid (1) differs from terrestric acid (2) by
a 5β-carboxylmethyl at the tetronate ring instead of a 5α-methyl
group in Penicillium crustosum. The formation of 1 via carbox-
ylcrustic and viridicatic acid was confirmed by gene deletion and
heterologous expression. The conversion of 1 to 2 requires a
decarboxylation-mediated olefination by TraH and subsequent
reduction by TraD. The redox-assisted decarboxylation and
stereoisomerization proved the biosynthetic relationships of fungal
acyltetronates with different stereochemistry.

Natural products of the tetronate family with over 100
members contain a characteristic γ-butyrolactone ring

and are mainly found in Actinomycetes.1,2 Fungus-originated
tetronates carry different acyl moieties at C3 and differ from
each other often in substituents at C5. Representatives are
crustosic acid (1), carlic acid, and carlosic acid with a 5β-
carboxylmethyl moiety, terrestric acid (2), carolic acid, and
carolinic acid with a 5α-methyl group, as well as
dehydroterrestric acid (3), dehydrocarolic acid, and agglom-
erin F with an olefinic methylene group at the corresponding
position (Figure 1A).3−9 Despite the interesting structural
features of these fungal tetronates, no detailed investigation on
their biosynthesis was reported prior to this study. The
biosynthesis of agglomerin F in Aspergillus niger was proposed
after a regulator activation and product isolation (Figure 1B).7

In this pathway, the hybrid polyketide synthase−nonribosomal
peptide synthetase (PKS−NRPS) CaaA should be responsible
for the formation of carlosic acid and the P450 oxygenase
CaaC for the oxidative decarboxylation to install the exocyclic
double bond. The nonheme FeII/2-oxoglutarate (FeII-2OG)-
dependent oxygenase CaaD was speculated for the oxidation of
the terminal methyl group at the acyl chain. However, no
genetic and biochemical data support the hypothesis.
We recently identified the terrestric acid biosynthetic gene

cluster (traA-H, pcr11009-pcr11016) in Penicillium crustosum
PRB-2 and proved the involvement of the hybrid PKS−NRPS
TraA in the formation of 1. The nonheme FeII-2OG-
dependent oxygenase TraH was proposed for the conversion
of 1 to 2 (Figure S1, see Supporting Information (SI)).9 In this
study, we report the functions of TraA and the enoyl reductase
TraG to give precursors of 1. Biochemical investigations
proved that the conversion of 1 to 2 was achieved via an

oxidative decarboxylation catalyzed by TraH and a subsequent
stereospecific reduction with the flavin-containing oxidoreduc-
tase TraD.
To identify its function, the genomic sequence of traA was

introduced into Aspergillus nidulans LO8030 by PEG-mediated
protoplast transformation (Tables S1−S3 and Figure S2).10−12
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Figure 1. Representatives of acyltetronic acids in fungi (A) and
proposed biosynthetic pathway of agglomerin F in A. niger (B).
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A transformant JF15 harboring traA was cultivated as a PD
surface culture for 7 days. LC-MS analysis of the EtOAc extract
revealed the presence of two new product peaks 4 and 4* with
[M + H]+ ions at m/z 253.071 ± 0.005 and almost the same
UV spectra (Figures 2A and S3). Both peaks were

interchangeable, which was observed during the isolation
procedure. Isolation and structure elucidation (Table S5 and
Figures S23−S26) proved 4 as the stable form in CD3OD and
identified to be a carboxylmethyltetronic acid derivative with
an unsaturated acyl chain, termed carboxylcrustic acid. We
proposed 4* as a tautomer of 4 (Figures 2A and S3).
Therefore, TraA, sharing 59.5% sequence identity with CaaA
on the amino acid level, functions alone as a tetronate synthase
and differs from other known PKS−NRPS enzymes, requiring
a trans-acting enoyl reductase (ER) for product releasing.13,14

Subsequently, coexpression of traA and the putative ER traG
in LO8030 led to accumulation of a predominant peak 5 with
an [M + H]+ ion at m/z 257.1038 in the obtained transformant
JF45, together with the PKS−NRPS product 4 as a minor
product (Figures 2A and S3). Isolation and NMR analysis
proved 5 to be viridicatic acid, which was also identified in the
wild-type PRB-2 (Table S6 and Figures S5 and S27−S31).15
Obviously, TraG, with sequence identity of 68.9% with CaaB,
acts as an enoyl reductase for the reduction of the two double
bonds at the acyl chain. This was further confirmed by
replacing traG with a hygromycin B cassette in PRB-2 (Figures
2B, S4, and S7).9,16 In comparison to PRB-2, the production of
1, 2, and 5 was completely abolished in the ΔtraG mutant,

whereas 4 as the putative substrate of TraG was accumulated
and confirmed by 1H NMR analysis. One additional minor
peak with an [M + H]+ ion at m/z 209.0827 was identified as a
decarboxylated stereoisomer of 4, termed crustic acid (6), by
comparing their optical rotation values and CD spectra (Table
S7 and Figures S32−S34 and S38). Detection of 6 as a minor
metabolite indicates that the enzyme(s) for the conversion of 1
to 2 can also use 4 as substrate, but with low activity.
To identify their metabolism in the biosynthesis, 4 and 5

were fed in the available ΔtraA and ΔtraG mutants,
respectively (Figures S6−S9). LC-MS analysis revealed that
4 was metabolized to 2 and 6 in the ΔtraA mutant. Feeding 5
also restored the accumulation of 2 as the predominant
product in both ΔtraA and ΔtraG mutants, suggesting their
involvement in the biosynthesis of 2.
Structural comparison revealed that 1 is an anhydrous form

of a hydroxylated derivative of 5. Existence of the open form of
1 was confirmed by LC-MS analysis after incubation in D2O
(Figure S10). The equilibrium between the open and closed
forms explains well the presence of broad peaks in the LC-MS
chromatograms of 1 and 2 (Figures 2B and S5). The
responsible enzyme for the hydroxylation of 5 has not been
identified yet. It cannot be excluded that the responsible
structure gene is located outside the tra cluster.
Having identified the formation of 1 with 4 and 5 as

precursors, we proceeded to investigate its conversion to 2. In
our previous study, the involvement of the putative FeII-2OG-
dependent oxygenase TraH in the conversion of 1 to 2 was
proved by the accumulation of 1 in a ΔtraH mutant.9 TraH
comprises 327 amino acids and shares a sequence identity of
66% with the aforementioned CaaD (Figure 1B). Sequence
alignments showed the typical conserved 2-His-1-Asp ion-
binding triad (His198, His211, and Asp112) in TraH (Figure
S11).17,18 For biochemical characterization, the coding
sequence of traH was amplified from cDNA and cloned into
pET28a (+) for overexpression in Escherichia coli.19,20 The
recombinant N-terminally His6-tagged protein was purified to
near homogeneity as confirmed on SDS-PAGE, yielding 4.5
mg of purified TraH per liter of bacterial culture (Figure S12).
TraH (5.4 μM) was then incubated with 0.5 mM of 1 in the
presence of ascorbic acid (AA), Fe[(NH4)2(SO4)2] (Fe

II), 2-
oxoglutarate (2OG), and dithiothreitol (DTT) at 37 °C for 30
min.21 Surprisingly, LC-MS analysis of the full assay showed a
product peak with an [M + H]+ ion at m/z 209.0806,
corresponding to the molecular formula of C11H13O4, but not
the expected C11H15O4 for 2 (Figures 3A and S13).
Subsequent incubation of TraH with 1 in a large scale enabled
us to identify this product as dehydroterrestric acid (3) with an
exocyclic double bond at the C5-position, which had been
identified in Aspergillus hancockii (Table S4 and Figure S22).8

Detailed investigations demonstrated that the activity of TraH
is strictly dependent on the presence of 2OG and can be
enhanced by externally added FeII (Figure S14). A KM value at
0.49 mM and a turnover number (kcat) at 0.02 s−1 were
determined for TraH reaction with 1 (Figure S13). These
results proved that TraH catalyzes an oxidative decarboxylation
of 1 to yield 3 instead of 2 (Scheme 1A).
Differing slightly from the previous hypothesis, conversion

of 1 to 3 by TraH implies one additional enzyme required for
the reduction of 3 to 2. We took the flavin-containing
oxidoreductase TraD as a top candidate for the reduction of
the double bond of 3 to the α-methyl group of 2. TraD
comprises 267 amino acids with a well-known conserved FAD-

Figure 2. LC-MS analysis of extracts from A. nidulans (A) and P.
crustosum (B). UV absorptions at 280 nm are illustrated. Extracted ion
chromatograms (EICs) for [M + H]+ ions of 1−6 are given with a
tolerance range of ± 0.005.
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binding motif (GXXXGXG).22−24 To verify its function in
vitro, TraD was successfully overproduced in E. coli BL21-
(DE3) in a similar way to TraH. With the aid of Ni-NTA resin,

TraD was obtained in a yellow color with a yield of 10.6 mg
per liter of bacterial culture (Figure S12). The enzyme assay
with 0.6 μM of TraD and 0.5 mM of 3 was carried out in the
presence of NADPH at 30 °C. LC-MS analysis revealed that 3
was completely converted to 2 in 10 min (Figure 3A). The
high efficiency of the TraD reaction was confirmed by
incubation of 3 with different protein amounts. An amount
of 23% of a 0.5 mM solution of 3 was consumed by 6 nM of
TraD in 10 min (Figure S15). This proved that the reduction
of the exocyclic double bond at the C5-position by TraD was
much more efficient than the oxidative decarboxylation of 1 by
TraH, which was also confirmed by coincubation of 1 with
TraH and TraD.
Incubations of 0.5 mM of 1 with TraH and TraD at different

ratios in the presence of AA, FeII, 2OG, and NADPH at 30 °C
for 30 min showed sequential formation of the intermediate 3
and final product 2 (Figures 3A and S16). The integrity of 2
from the enzyme assay was confirmed by isolation and
comparison of its 1H NMR and CD spectra with those of 2
from PRB-2 (Table S4 and Figures S17 and S21).9 Therefore,
it can be concluded that the flavin-containing oxidoreductase
TraD is responsible for the stereospecific reduction of 3 to
yield 2 with a 5α-methyl group. The product yields of 2 and 3
in different assays confirmed the high efficiency of TraD
toward 3, which was only detected at very low TraD
concentration. This proved that the conversion of 1 to 2 was
controlled by the TraH-catalyzed oxidative decarboxylation of
1 and provides evidence for the absence of 3 in the wild-type
PRB-2.
Incubation of 4 with TraH and TraD led to the detection of

a very weak peak with the same retention time and
fragmentation pattern as those of 6. The proposed
intermediate dehydrocrustic acid with an [M + H]+ at m/z

Figure 3. LC-MS analysis of enzyme assays of TraH without or
together with TraD with 1, TraD with 1 or 3 (A), TraH with 7, and
TraD with 8 (B). UV absorptions at 280 nm are illustrated. EICs refer
to [M + H]+ of 7 at m/z 269.102 and [M + Na]+ of 8 at m/z 289.068
with a tolerance range of ± 0.005.

Scheme 1. Proposed Terrestric Acid Biosynthetic Pathway in P. crusotusm PRB-2 (A) and Mechanisms of TraH-Catalyzed
Olefination (B)
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207.0662 was also detected in the TraH assay with 4 (Figure
S18). These results proved that TraH and TraD can also
convert 4 to 6, but only with very low efficiency, as observed in
the ΔtraG mutant (Scheme 1A).
Taken together, our results proved that the conversion of 1

to 2 required sequential two-step reactions, i.e., oxidative
decarboxylation by the nonheme FeII-2OG-dependent oxygen-
ase TraH and double-bond reduction by the flavin-containing
oxidoreductase TraD (Scheme 1A). Oxidative decarboxyla-
tions have been reported for enzymes from different families,
e.g., the cytochrome P450 OleT,25 the FAD-dependent
decarboxylase CndG,26 and the radical S-adenosyl-L-methio-
nine (SAM) enzyme HemN,27 as well as the nonheme iron
oxidase UndA28,29 and the nonheme FeII-2OG-dependent
oxygenases IsnB, AmbI3, and ScoE.30−33 Differing from IsnB,
AmbI3, and ScoE with indole vinyl isonitriles as final products,
TraH provides a transient intermediate for further reduction,
which accomplishes decarboxylation and stereoisomerization
in the biosynthesis of fungal acyltetronates with different
stereochemistry. In analogy to IsnB, the oxidative decarbox-
ylation by TraH would very likely undergo the abstraction of a
hydrogen atom from the β-position of COOH by FeIV-oxo
species to generate the substrate radical. Subsequent radical-
mediated electron transfer and C−C bond scission eventually
install the exocyclic double bond in 3 accompanied by CO2
elimination (Scheme 1B).
To probe whether the decarboxylation is required for the

olefination by TraH, crustosic acid methyl ester (7) was
prepared by spontaneous methylation of 1 in methanol (Table
S8 and Figures S19, S35, and S36). The enzyme assay of 7 with
TraH was carried out in a similar way as 1 with TraH. LC-MS
analysis revealed the presence of an enzyme product with
almost the same retention time as 7 (Figures 3B and S20).
Subsequent isolation and structure elucidation by comparison
of its 1H NMR data with that of 7 (Tables S8 and S9 and
Figures S35 and S37)) led to the unequivocal identification of
dehydrocrustosic acid methyl ester (8) as the enzyme product,
although no 13C NMR data of 8 could be obtained due to low
conversion. In comparison to the reported oxidative decar-
boxylations catalyzed by nonheme FeII-2OG-dependent oxy-
genases,30−32 methylation of 1 redirected the TraH reaction
from oxidative decarboxylation of 1 to the sole olefination of 7.
Conversion of 7 to the dehydrogenated product 8 by TraH
seems to proceed via a second hydrogen abstraction from the
α-position of COOCH3 by FeIII−OH species. In total, two
consecutive cleavages of the C−H bond with H2O elimination
completed the olefin installation (Scheme 1B). 7 with a KM at
0.11 mM and kcat at 0.03 s

−1 seem to be even a better substrate
for TraH than 1 (Figure S20). However, neither 7 nor 8 was
detected in P. crustosum PRB-2. Further incubation of TraD
with 8 showed no product formation, indicating the necessity
of the terminal double bond for the reduction by TraD.
In summary, our study provides new insights into the

biosynthesis of fungal acyltetronic acids, especially the
formation of the skeleton and the relationships between
different stereoisomers. Heterologous expression and feeding
experiments suggested that 4 and 5, as the products of TraA
and TraG, respectively, serve as precursors of 1, carrying a 5β-
carboxylmethyl group. Chemically, the conversion of 1 to 2 is a
decarboxylation with epimerization. We demonstrated that 1
was first converted by the nonheme FeII-2OG-dependent
oxygenase TraH, via an oxidative decarboxylation, to a
transient intermediate 3 carrying an exocyclic double bond.

Subsequent stereospecific reduction by the flavin-containing
oxidoreductase TraD led to the formation of the final product
2 bearing a 5α-methyl group. Among the two-step conversion,
the oxidative decarboxylation seems to be the rate-controlling
reaction, and its product 3 was immediately consumed by
TraD with high efficiency. Differing from other nonheme FeII-
2OG-dependent oxygenases being responsible for decarbox-
ylation-assisted olefination,30−32 TraH is capable of catalyzing
dehydrogenation with or without simultaneous decarboxyla-
tion, as demonstrated with 1 and 7 as substrates. It can be
speculated that other fungal stereospecific acyltetronic acids
mentioned in Figure 1A are very likely biosynthesized in a
similar way.
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Experiment Procedures 

1. Computer-assisted sequence analysis 

Sequence analysis of terrestric acid gene cluster was carried out by antiSMASH 

(http://antismash.secondarymetabolites.org/) and by comparison with known entries in database. 

The genomic DNA sequence of the terrestric acid cluster from P. crustosum PRB-2 reported in 

this study is available at GenBank under the accession number MK360919. Multiple sequence 

alignments for TraH and analogues were carried out with the program ClustalW and visualized 

with ESPript 3.2 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) to identify strictly conserved 

amino acid residues. 

2. Strains, media and growth conditions 

The fungal strains used in this study are summarized in Table S1. Penicillium crustosum strain 

PRB-2 was isolated from a deep-sea sediment collected in Prydz Bay at a depth of -526 m.1 The 

wild type strain PRB-2 and deletion mutants ∆traA and ∆traG were cultivated on PDA plates 

(potato dextrose broth, Sigma) with 1.6% agar at 25°C for sporulation and in PD surface culture 

at 25°C for 7 days for detection of secondary metabolites (SMs).  

Aspergillus nidulans strains were grown at 37°C on GMM medium (1.0% glucose, 50 mL/L salt 

solution, 1 mL/L trace element solution, 1.6% agar) for sporulation and transformation with 

appropriate nutrition as required, and incubated at 25°C in PD medium for 7 days for SM 

detection.2-4 The salt solution contains (w/v) 12% NaNO3, 1.04% KCl, 1.04% MgSO4∙7H2O, and 

3.04% KH2PO4. The trace element solution comprises (w/v) 2.2% ZnSO4∙7H2O, 1.1% H3BO3, 

0.5% MnCl2∙4H2O, 0.16% FeSO4∙7H2O, 0.16% CoCl2∙5H2O, 0.16% CuSO4∙5H2O, 0.11% 

(NH4)6Mo7O24∙4H2O, and 5% Na4EDTA. 

Escherichia coli DH5α and BL21(DE3) were grown in liquid or on solid Luria-Bertani (LB) 

medium (1% NaCl, 1% tryptone, and 0.5% yeast extract) for standard DNA manipulation. 50 

g/mL carbenicillin or 25 g/mL kanamycin were supplemented for cultivation of recombinant E. 

coli strains.  

3. Genomic DNA isolation 

The mycelia of P. crustosum and A. nidulans were collected on sterilized filter paper and then 

suspended in 400 L of LETS buffer (10 mM Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 0.5% SDS, 

and 0.1 M LiCl) in 2 mL Eppendorf tubes and vigorous vortexed with four glass beads (2.85 mm 

in diameter). 300 L LETS buffer were added in the solution, which was subsequently treated 

with 700 μL phenol: chloroform: isoamylol (25:24:1). The genomic DNA (gDNA) was precipitated 

by addition of 900 L absolute ethanol and centrifugation at 17,000 x g for 30 min. After washing 

with 70% ethanol and drying, the obtained DNA was dissolved in 50 L distillated H2O. 

4. RNA isolation and cDNA synthesis 

For isolation of RNA from P. crustosum PRB-2, the fungus was cultivated in liquid PD medium 

shaking at 230 rpm for 7 days and the cells were collected by centrifugation. RNA extraction was 

performed by using Fungal RNA Mini kit (VWR OMEGA bio-tek E.Z.N.A) according to the 

standard manufacturer´s instruction. The ProtoScript II First Strand cDNA Synthesis kit (BioLabs) 

was used for cDNA synthesis with Oligo-dT primers. 
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5. PCR amplification, gene cloning and plasmid construction 

Plasmids used in this study are listed in Table S2. The oligonucleotide sequences for PCR 

amplification are given in Table S3. Genetic manipulation in E. coli was carried out according to 

the protocol by Sambrook and Russell.5 All primers were synthesized by Seqlab GmbH 

(Göttingen, Germany). PCR amplification was carried out by using Phusion® High-Fidelity DNA 

polymerase from New England Biolabs (NEB) on a T100TM Thermal cycler from Bio-Rad. PCR 

reaction mixtures and thermal profiles were set as recommended by the manufacturer´s 

instruction. 

To construct pJF80 and pJF81 for traG deletion, primers were designed with split-marker 

strategy by using p5HY and p3YG vectors (Figure S4).6,7 To construct the plasmids for 

heterologous expression of traA and traAG in A. nidulans, an assembly approach based on the 

homologous recombination in E. coli was used (Figure S2).8 Full length of traA including its 

terminator of 497 bp was amplified from gDNA of P. crustosum PRB-2 as the template by PCR 

with primer pairs A.n-traA-1F-For/1F-Rev and A.n-traA-2F-For/2F-Rev (Table S3) and inserted 

into the corresponding sites of pYH-wA-pyrG with homologous flanking sequences of the wA 

gene to create pJF27.4 For co-expression of traA and traG, traA including gpdA promoter and its 

terminator of 497 bp from pJF27, and traG with its 778 bp promoter and 568 bp terminator from 

P. crustosum PRB-2 were cloned into pYWB2 by homologous recombination with flanking 

sequences of the wA gene to create pJF91.9 Herein, primers A.n-traAG-1F-For/traA-1F-Rev, 

A.n-traA-2F-For/traAG-1F-Rev and A.n-traAG-2F-For/2F-Rev (Table S3) were used for PCR 

amplification.  

To construct the plasmid for expressing traD and traH in E. coli, the coding region of traD and 

traH were amplified by PCR from cDNA with the primer pairs TraD-28-For/Rev and 

TraH-28-For/Rev (Table S3). The expression vector pET-28a (+) was digested with BamHI and 

EcoRI, and ligated with DNA fragments by homologous recombination yielding the expression 

plasmid pJF72 for TraD and pJF74 for TraH, which were confirmed by sequencing (Seqlab 

GmbH). 

6. Deletion of traG in P. crustosum and cultivation of deletion mutants. 

Fresh conidia from 7-day PDA culture of P. crustosum PRB-2 were inoculated into 30 mL LMM 

medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L trace element solution, and 0.5% yeast 

extract) in 100 mL flask and incubated at 25°C and 230 rpm for germination. Mycelia were 

harvested after 11 h by centrifugation at 2,800 x g for 10 min, and washed with distillated H2O. 

The mycelia were then transferred into a 50 mL flask with 10 mL of osmotic buffer (1.2 M MgSO4 

in 10 mM sodium phosphate, pH 5.8) containing 50 mg lysing enzyme from Trichoderma 

harzianum (Sigma) and 20 mg yatalase from Corynebacterium sp. OZ-21 (OZEKI Co., Ltd.). 

After shaking at 30°C and 100 rpm for 2.5 h, the cells were transferred into a 50 mL falcon tube 

and overlaid gently with 10 mL of trapping buffer (0.6 M sorbitol in 0.1 M Tris-HCI, pH 7.0). After 

centrifugation at 4°C and 2,800 x g for 10 min, the protoplasts were collected from the interface 

of the two buffer systems. The protoplasts were then transferred to a sterile 15 mL falcon tube 

and resuspended in 200 L of STC buffer (1.2 M sorbitol, 10 mM CaCl2, and 10 mM Tris-HCI, pH 

7.5) for transformation.  
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The via PCR constructed gene deletion cassettes mentioned above were transformed into P. 

crustosum by polyethylene glycol (PEG) mediated protoplast transformation. The DNA 

fragments (2 g) were incubated with 100 L of the protoplasts for 50 min on ice. 1.25 mL of 

PEG solution (60% PEG 4000, 50 mM CaCl2, 50 mM Tris-HCI, pH 7.5) was then added and 

gently mixed. After incubation at room temperature for 30 min, the mixture was transferred in 5 

mL STC buffer and spread on plates with SMM bottom medium (1.0% glucose, 50 mL/L salt 

solution, 1 mL/L trace element solution, 1.2 M sorbitol, and 1.6% agar) containing 200 g/mL 

hygromycin B. SMM top medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L trace element 

solution, 1.2 M sorbitol, and 0.8% agar) containing 100 g/mL hygromycin B was overlaid softly 

on the plates. Three days later, the transformants were transferred onto fresh PDA plates 

containing 200 g/mL hygromycin B for second round selection. The obtained transformants 

were inoculated in PD medium for isolation of genomic DNA to verify the integrity, which was 

carried out by PCR amplification (Figure S4). The obtained ∆traG mutant was cultivated in PD 

liquid medium at 25 °C for 7 days, together with ∆traA mutant in a previous study.6 For SM 

detection of the deletion mutants, cultures were extracted with ethyl acetate, dissolved in a 

mixture of MeOH and H2O (8 : 2) and analyzed on LC-MS by method B (see below for methods 

of HPLC and LC-MS analysis).  

7. Heterologous expression of traA and traG in A. nidulans 

A. nidulans strain LO8030 was used as the recipient host.3 Fungal protoplast preparation and 

transformation were performed according to the method described previously.3 pJF27 containing 

the PKS-NRPS gene traA was transformed into LO8030 to create the traA expression strain 

JF15. pJF91 containing both traA and traG was transformed into LO8030 to create the traAG 

expression strain JF45. Potential transformants were verified by PCR using the primers traA-F/R 

or traG-F/R (Table S3). Differing from P. crustosum, germination condition was at 37°C with 

appropriate nutrition as supplements (0.75 M riboflavin and 0.5 M pyridoxine for JF15, 5% 

uracil, 6% uridine and 0.5 M pyridoxine for JF45) for 6 h. Protoplastation condition was at 37°C 

for 2.5 h. A. nidulans strains were cultivated in PD liquid medium at 25°C for 7 days for LC-MS 

analysis (method B) of the SM production. 

8. Precursor feeding in P. crustosum deletion mutants 

For feeding experiments, the precursors (5S)-carboxylcrustic acid (4) and (5S)-viridicatic acid (5) 

were dissolved in DMSO to give 1 M stock solution, and added to 10 mL of PD cultures of 

respective deletion mutants, 4 to ∆traA mutant, and 5 to ∆traA and ∆traG, leading to final 

concentrations of 0.4 mM. After further cultivation at 25°C for 7 d in PD medium, the secondary 

metabolites were extracted with ethyl acetate, dissolved in a mixture of MeOH and H2O (8 : 2) 

and analyzed on LC-MS by method B (see below for methods of HPLC and LC-MS analysis). 

9. Overproduction and purification of TraD and TraH 

The expression plasmids pJF72 and pJF74 were constructed for TraD and TraH expression in E. 

coli as mentioned above. The recombinant E. coli BL21(DE3) strains were cultivated in Terrific 

Broth (TB) medium (2.4% yeast extract, 2.0% tryptone, 0.4% glycerol, 0.1 M phosphate buffer, 

pH 7.4). TraH expression was induced with 0.5 mM IPTG at 20°C for 16 h and TraD at 16°C for 

16 h. The recombinant His6-tagged protein were purified on Ni-NTA affinity chromatography 
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(Qiagen, Hilden) using the published procedures.10,11 The purity for TraH and TraD were 

confirmed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 

S12). The protein concentration was determined on Nanodrop 2000c spectrophotometer 

(Thermo Scientific, Braunschweig, Germany). 4.5 mg/L of protein can be obtained for TraH, 10.6 

mg/L of protein can be obtained for TraD from the bacterial culture. 

10. In vitro assays of TraD and TraH 

To determine the enzyme activity of TraH toward (5S, 5'S)-crustosic acid (1) or (5S, 

5'S)-crustosic acid methyl ester (7), the enzyme assays (50 L) contained phosphate buffer (20 

mM, pH 7.4), ascorbic acid (1 mM), (5S, 5'S)-crustosic acid (1, 0.5 mM) or (5S, 5'S)-crustosic 

acid methyl ester (7, 0.5 mM), DTT (1 mM), Fe[(NH4)2(SO4)2] (1 mM), 2-oxoglutarate (1 mM), 

glycerol (0.5 − 5%), DMSO (5%), and the purified recombinant TraH (5.4 M). The enzyme 

assays were carried out at 37 °C for 30 min and terminated with one volume of acetonitrile. The 

reaction mixtures were centrifuged at 17,000 x g for 30 min before further analysis on HPLC and 

LC-MS by method A (see below for methods of HPLC and LC-MS analysis). 

To determine the enzyme activity of TraD toward dehydroterrestric acid (3), the enzyme assays 

(50 L) contained phosphate buffer (20 mM, pH 7.4), NAD(P)H (2 mM), glycerol (0.5 − 5%), 

DMSO (5%), dehydroterrestric acid (3, 0.5 mM), and the purified recombinant TraD (0.6 M). 

The enzyme assays were incubated at 30 °C for 10 min and terminated with one volume of 

acetonitrile. The reaction mixtures were centrifuged at 17,000 x g for 30 min before further 

analysis on HPLC and LC-MS by method A. The same reaction condition was used for the 

enzyme assay of TraD with (5'S)-dehydrocrustosic acid methyl ester (8). 

To prove the conversion of (5S, 5'S)-crustosic acid (1) by TraH and TraD, the enzyme assays 

(50 L) contained phosphate buffer (20 mM, pH 7.4), ascorbic acid (1 mM), (5S, 5'S)-crustosic 

acid (1, 0.5 mM), Fe[(NH4)2(SO4)2] (1 mM), 2-oxoglutarate (1 mM), NADPH (2 mM), glycerol (0.5 

− 5%), DMSO (5%), and the purified recombinant TraH (5.4 M) and TraD (0.6 M). The 

enzyme assays were incubated at 30 °C for 30 min and terminated with one volume of 

acetonitrile. The reaction mixtures were centrifuged at 17,000 x g for 30 min before further 

analysis on HPLC and LC-MS by method A. 

To prove the conversion of (5S)-carboxylcrustic acid (4) to (5R)-crustic acid (6) by TraH and 

TraD, the enzyme assays (50 L) containing phosphate buffer (20 mM, pH 7.4), ascorbic acid (1 

mM), (5S)-carboxylcrustic acid (4, 0.5 mM), DTT (1 mM), Fe[(NH4)2(SO4)2] (1 mM), 

2-oxoglutarate (1 mM), NAD(P)H (2 mM), glycerol (0.5 − 5%), DMSO (5%), and the purified 

recombinant TraH (12 M) and TraD (6 M) were incubated at 30°C for 16 h and terminated with 

one volume of acetonitrile. The reaction mixtures were centrifuged at 17,000 x g for 30 min 

before further analysis on HPLC and LC-MS by method A. In addition, (5S)-carboxylcrustic acid 

(4, 0.5 mM) was incubated with TraH (12 M) in the presence of ascorbic acid (1 mM), DTT (1 

mM), Fe[(NH4)2(SO4)2] (1 mM), 2-oxoglutarate (1 mM) at 37°C for 16 h. After terminated with 

acetonitrile and centrifugation, the enzyme assay was further analyzed on HPLC and LC-MS by 

method A. 

136



SUPPORTING INFORMATION 

S8 
 

11. Large-scale fermentation, extraction and isolation of secondary metabolites 

To isolate 4 from A. nidulans carrying traA, the transformant JF15 was cultivated in 60 x 250 mL 

flasks each containing 50 mL PD liquid medium with appropriate nutrition as supplement at 25°C 

for 7 days. The supernatant and mycelia were separated, and extracted with ethyl acetate and 

acetone, separately. The acetone extract was concentrated under reduced pressure to afford an 

aqueous solution, and then extracted with ethyl acetate. The two ethyl acetate extracts were 

combined and evaporated under reduced pressure to give a crude extract (0.8 g). The crude 

extract was applied to Sephadex LH-20 column eluted with methanol, yielding twenty fractions 

(1 – 20). Fraction 8 was purified on a semi-preparative HPLC (acetonitrile / H2O (40 : 60) with 

0.1% trifluoroacetic acid) yielding compound 4 (8 mg). 

To isolate 5 from A. nidulans carrying traA and traG, the transformant JF45 was cultivated in 10 

x 1 L flasks each containing 100 g rice and 150 mL H2O (with appropriate nutrition as 

supplement) at 25°C for 7 days. After extracting with 15 L ethyl acetate and concentrated under 

reduced pressure, the crude extract (2.5 g) obtained from JF45 cultivation was applied to silica 

gel column chromatography by using petroleum ether / EtOAc (1 : 1, 1 : 3, and 1 : 5, v/v) as 

elution solvents, giving fractions 1 − 10. 5 (15 mg) was obtained from fraction 3 after purification 

on Sephadex LH-20 column using MeOH as eluent. 

To isolate 5 from P. crustosum PRB-2, spores were inoculated in 4 L PD liquid medium and 

cultivated at 25°C for 14 days. 1.0 g crude extract was obtained after extraction, and subjected 

to silica gel column chromatography by using petroleum ether / EtOAc (10 : 1, 3 : 1, 1 : 1, 1 : 3, 

1 : 6, v/v) as elution solvents, giving fractions 1 − 5. 5 (3 mg) was obtained from fraction 3 by 

applying to Sephadex LH-20 column using MeOH as eluent. 

To isolate the accumulated products 4 and 6 from ∆traG mutant, the strain was cultivated in 6 L 

PD liquid medium at 25°C for 14 days and extracted as mentioned above. The resulted crude 

extract (2.5 g) was subjected to silica gel column chromatography by using stepwise gradient 

elution with the mixtures of petroleum ether / EtOAc (10 : 1, 5 : 1, 3 : 1, and 1 : 1, v/v) to give 25 

fractions. Subsequent purification on semi-preparative HPLC with isocratic elution using 

acetonitrile / H2O (40 : 60) supplied with 0.1% trifluoroacetic acid yielded 3 mg of 4, using 

acetonitrile / H2O (70 : 30) with 0.1% trifluoroacetic acid yielded 5 mg of 6.  

To prepare the enzyme products for structural elucidation, assays were carried out in large 

scales (10 − 20 mL) using the reaction conditions mentioned above. The reaction mixtures were 

extracted with double volume of ethyl acetate for three times. The organic phases were 

combined and concentrated under vacuum. The resulted residues were dissolved in acetonitrile 

and centrifuged at 17,000 x g for 20 min. After isolation on semi-preparative HPLC eluted with 

40% acetonitrile containing 0.1% trifluoroacetic acid, compound 2 from the incubation mixture of 

TraH, TraD and 1, compound 3 from TraH and 1, and 5 from TraH and 4, were obtained. 

12. Determination of kinetic parameters 

For determination of kinetic parameters of TraH toward 1 or 7, the enzyme assays were carried 

out in a similar way as mentioned above, excepting that substrates at final concentrations of 
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0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 mM, respectively. The enzyme assays were incubated at 

37°C for 30 min and terminated with one volume of acetonitrile. The supernatants were 

subjected to HPLC analysis by method A after centrifuging at 17,000 x g for 30 min. The KM and 

kcat values were obtained by analysis with GraphPad Prism 8. 

13. HPLC and LC-MS analysis of secondary metabolites 

Analysis of SMs was performed on an Agilent series 1200 HPLC (Agilent Technologies, 

Böblingen, Germany) with an Agilent Eclipse XDB-C18 column (150 × 4.6 mm, 5 m). Water (A) 

and acetonitrile (B), both with 0.1% (v/v) formic acid, were used as solvents at flow rate of 0.5 

mL/min. The substances were eluted with a linear gradient from 5 – 100% B in 15 min, then 

washed with 100% (v/v) solvent B for 5 min and equilibrated with 5% (v/v) solvent B for 5 min 

(method A) or with a linear gradient from 5 – 100% B in 40 min, then washed with 100% (v/v) 

solvent B for 5 min and equilibrated with 5% (v/v) solvent B for 10 min (method B). UV 

absorptions at 280 nm were illustrated in this study. Semi-preparative HPLC was performed on 

the same equipment with an Agilent Eclipse XDB-C18 column (9.4 × 250 mm, 5 m) column and 

a flow rate of 2 mL/min. 

LC-MS analysis was performed on an Agilent 1260 HPLC system equipped with a microTOF-Q 

III spectrometer (Bruker, Bremen, Germany) by using Multospher 120 RP18-5 column (250 × 2 

mm, 5 m) (CS-Chromatographie Service GmbH) and method A or method B for separation at 

flow rate of 0.25 mL/min. Electrospray positive or negative ionization mode was selected for 

determination of the exact masses. The capillary voltage was set to 4.5 kV and a collision 

energy of 8.0 eV. Sodium formate was used in each run for mass calibration. The masses were 

scanned in the range of m/z 100 – 1500. Data were evaluated with the Compass DataAnalysis 

4.2 software (Bruker Daltonik, Bremen, Germany). 

14. NMR analysis  

NMR spectra were recorded on a JEOL ECA-500 MHz spectrometer (JEOL, Tokyo, Japan). The 

spectra were processed with MestReNova 6.1.0 (Metrelab) or Delta 5.0.4 (JEOL). Chemical 

shifts are referenced to those of the solvent signals. NMR data are given in Tables S4 – S8 and 

spectra in Figures S21 – S35. 

15. Circular dichroism (CD) spectroscopic analysis 

CD spectra were taken on a J-815 CD spectrometer (Jasco Deutschland GmbH, Pfungstadt, 

Germany). The samples were dissolved in methanol and measured in the range of 200–400 nm 

by using a 1 mm path length quartz cuvette (Hellma Analytics, Müllheim, Germany). The CD 

spectra are given in Figures S36. 

16. Measurement of optical rotations 

The optical rotation was measured with the polarimeter Jasco DIP-370 at 20°C using the D-line 

of the sodium lamp at =589.3 nm. Prior to the measurement, the polarimeter was calibrated 

with methanol or ethanol as solvent. 

17. Physiochemical properties of the compounds described in this study 

(5R, 5'S)-terrestric acid (2): Yellow oil; CD (MeOH): max () 282 (+0.9) nm, 228 (+2.8), 212 
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(+7.5); HRMS (m/z): (ESI/[M+H]+) calcd. for C11H15O4, 211.0965, found 211.0963. 

(5'S)-dehydroterrestric acid (3): White powder; HRMS (m/z): (ESI/[M+H]+) calcd. for C11H13O4, 

209.0808, found 209.0806. 

(5S)-carboxylcrustic acid (4): Yellow oil; [α]20 
D  = -46.5 (c 0.40, MeOH); HRMS (m/z): (ESI/[M+H]+) 

calcd. for C12H13O6, 253.0707, found 253.0719 

CD spectrum (MeOH) of sample isolated from a A. nidulans strain JF15 harboring traA: max () 
332 (-1.9), 268 (-1.7), 228 (-4.1) nm . 

CD spectrum (MeOH) of sample isolated from ∆traG mutant of P. crustosum: max () 346 (-2.8), 

279 (-3.9), 223 (-6.0) nm. 

(5S)-viridicatic acid (5): Yellow oil; [α]20 
D  = -73.6 (c 1.0, EtOH); HRMS (m/z): (ESI/[M+H]+) calcd. 

for C12H17O6, 257.1020, found 257.1038. 

CD spectrum (MeOH) of sample isolated from a A. nidulans strain JF45 harboring traA and traG: 

max () 258 (-11.4), 230 (-11.3) nm. 

CD spectrum (MeOH) of sample isolated from P. crustosum PRB-2: max () 259 (-7.0), 230 

(-7.6) nm. 

(5R)-crustic acid (6): Yellow oil; [α]20 
D  = +19.1 (c 0.25, MeOH); CD (MeOH) max () 317 (+0.2), 

258 (+2.1), 228 (+5.2) nm; HRMS (m/z): (ESI/[M+H]+) calcd. for C11H13O4, 209.0808, found 

209.0827. 

(5S, 5'S)-custosic acid methyl ester (7): Yellow oil; HRMS (m/z): (ESI/[M+H]+) calcd. for 

C13H17O6, 269.1020, found 269.1037. 

(5'S)-dehydrocrustosic acid methyl ester (8): White powder; HRMS (m/z): (ESI/[M+Na]+) calcd. 

for C13H14NaO6, 289.0683, found 289.0700. 
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Supplementary Tables 

Table S1. Strains used in this study 

Strains Genotype Source/Ref. 

Penicillium crustosum   

 PRB-2 Wild type 1 

 ΔtraA ΔtraA::hph in P. crustosum PRB-2 6 

 ΔtraG ΔtraG::hph in P. crustosum PRB-2 This study 

Aspergillus nidulans   

 LO8030 pyroA4, riboB2, pyrG89, nkuA::argB,  

sterigmatocystin cluster (AN7804-AN7825), 

emericellamide cluster (AN2545-AN2549), 

asperfuranone cluster (AN1039-AN1029), 

monodictyphenone cluster (AN10023-AN10021), 

terrequinone cluster (AN8512-AN8520), 

austinol cluster part 1 (AN8379-AN8384), 

austinol cluster part 2 (AN9246-AN9259), 

F9775 cluster (AN7906-AN7915),  

asperthecin cluster (AN6000-AN6002) 

2,3 

 JF15 gpdA::traA::AfpyrG in A. nidulans LO8030 This study 

 JF45 gpdA::traA::traG::Ribo in A. nidulans LO8030 This study 
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Table S2. Plasmids used and constructed in this study 

Plasmids Description Source/Ref. 

p5HY Two-third of the hph resistance gene at the 5´-end, originated from the 

pUChph and inserted into pESC-URA. For gene replacement using hph 

as selection marker. 

6
 

p3YG Two-third of the hph resistance gene at the 3´-end, originated from the 

pUChph and inserted into pESC-URA. For gene replacement using hph 

as selection marker. 

6
 

pJF80 A 1054 bp US PCR fragment of traG from genomic DNA of P. 

crustosum PRB-2 inserted in p5HY. 

This study 

pJF81 A 939 bp DS PCR fragment of traG from genomic DNA of P. crustosum 

PRB-2 inserted in p3YG. 

This study 

pYH-wA-pyrG URA3, wA flanking, AfpyrG, Amp 4  

pYWB2 URA3, wA flanking, Afribo, Amp 9 

pJF27 pYH-wA-traA; a 12068 bp fragment of traA with its terminator from 

genomic DNA of P. crustosum PRB-2 inserted in pYH-wA-gpdA 

This study 

pJF91 pYH-wA-traAG; a 12788 bp fragment of traA with gpdA promoter and 

its terminator from pJF27, and a 2528 bp fragment of traG with its 

promoter and terminator from genomic DNA of P. crustosum PRB-2 

inserted in pYWB2 

This study 

pJF72 pET-28a(+)-traD; a 804 bp fragment of traD from cDNA of P. crustosum 

PRB-2 with BamHI and EcoRI inserted in pET28a(+) 

This study 

pJF74 pET-28a(+)-traH; a 984 bp fragment of traH from cDNA of P. crustosum 

PRB-2 with BamHI and EcoRI inserted in pET28a(+) 

This study 

US: upstream; DS: downstream 
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Table S3. Primers used in this study 

Primers Sequence 5’-3’ Targeted amplification 

5F-R GCTGAAGTCGATTTGAGTCCAC 
US of hph to verify 5F of P. crustosum 

mutant 

3F-F GCATTAATGCATTGGACCTCGC 
DS of hph to verify 3F of P. crustosum 

mutant 

traA-F TGCATCTTGTAGAGCTCGC 
1819 bp partial fragment of traA 

traA-R GAGGGCGGTTTTAGAATCAATTG 

traG-up-F GAATTGTTAATTAAGAGCTCAGATCTCTAGCAGGACTCATCACAGACG 1054 bp upstream fragment of traG to 

construct pJF80 traG-up-R CAACCCTCACTAAAGGGCGGCCGCACTAGCCGGGCTTCAGGGAAATTC 

traG-down-F CGACTCACTATAGGGCCCGGGCGTCGACCCATGGTCCGATTGAGCTGG 939 bp downstream fragment of traG to 

construct pJF81 traG-down-R CTAGCCGCGGTACCAAGCTTACTCGAGGCATGATTTGCCTCTAGACCCC 

traG-F CAACACAATGTCACGGTACC 
1071 bp partial fragment of traG 

traG-R CAGACATGGCCTGGGTACG 

traG-5F-F CCGACAGACGAATATGGTGGC US of hph to verify ∆traG mutant 

traG-3F-R CAGACATGCTTTCCGCAC DS of hph to verify ∆traG mutant 

A.n-traA-1F-For CATCTTCCCATCCAAGAACCTTTAATCATGGTTCTACCCCAGCCC DNA of 1st traA fragment 5442 bp from P. 

crustosum to construct pJF27 A.n-traA-1F-Rev CTCATCAAGCCCGTGGACGAGCAAATGACTGTGAGCAACCACCATAG 

A.n-traA-2F-For CTATGGTGGTTGCTCACAGTCATTTGCTCGTCCACGGGCTTGATGAG DNA of 2nd traA fragment 6176 bp with 

its 497 bp terminator from P. crustosum 

to construct pJF27 
A.n-traA-2F-Rev GACACAGAATAACTCTCGCTAGCGTAGCTGGCAAATATAGTTACCT 

A.n-traAG-1F-For CTTGACTCTCCTTCTCCTGATCGGATCCCATGCGGAGAGACGGACG 
DNA of 6190 bp from pJF27 with 

A.n-traA-1F-Rev to construct pJF91 

A.n-traAG-1R-Rev TTAGTTTGCAAAATCGACGATTGCTGTAGCTGGCAAATATAGTTACCTA 
DNA of 6673 bp from pJF27 with 

A.n-traA-2F-For to construct pJF91 

A.n-traAG-2F-For GATAGGTAACTATATTTGCCAGCTACAGCAATCGTCGATTTTGCAAAC DNA of traG with its 788 bp promoter and 

568 bp terminator from P. crustosum to 

construct pJF91 
A.n-traAG-2R-Rev CAACACCATATTTTAATCCCATGTGCATGGATACTCAGGTGGTATAATT 

TraD-28-For GTGGACAGCAAATGGGTCGCGGATCCATGAAAGTTTTGATTATTTTTGC 804 bp fragment of traD to construct 

pJF72 TraD-28-Rev GCAAGCTTGTCGACGGAGCTCGAATTCTCACGCTTCTTTGACGTCG 

TraH-28-For CTGGTGGACAGCAAATGGGTCGCGGATCCATGTCTGTCGATGCGGCC 984 bp fragment of traH to construct 

pJF74 TraH-28-Rev CAAGCTTGTCGACGGAGCTCGAATTCCTACAATGAAGTATCATCCGTCA 

US: upstream; DS: downstream 
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Table S4. 1H NMR data of compounds 2 and 3 

Compound 

 

(5R, 5'S)-terrestric acid (2, CDCl3)
12 

 

(5'S)-dehydroterrestric acid (3, DMSO-d6)
13 

Position δH, multi., J in Hz δH, multi., J in Hz 

5 4.62, q, 7.0, 1H  - 

6 1.48, d, 7.0, 3H 5.18, d, 2.5, 1H 

 - 5.01, d, 2.5, 1H 

3´ 3.60, ddd, 20.0, 9.6, 4.5, 1H 3.56, ddd, 19.9, 9.4, 4.2, 1Ha 

 3.27, ddd, 20.0, 9.6, 5.1, 1H 3.48, ddd, 19.9, 9.4, 4.2, 1Ha 

4´ 2.36, m, 1H 2.33, m, 1H 

 1.87, m, 1H 1.84, m, 1H 

5´ 4.93, m, 1H 5.02, m, 1H 

6´ 1.97, m, 1H 1.81, m, 1H 

 1.79, m, 1H 1.74, m, 1H 

7´ 1.07, t, 7.5, 3H  0.97, t, 7.4, 3H 

Note: Due to the Z/E isomerization, there were two sets of signals in a ratio of 1:1 showed in the 1H NMR spectra. 

The corresponding signals are overlapping in most cases with each other. Therefore, only one set of the NMR 

data was listed in the table. The Z/E isomerization was proved by
 
deuterium incorporation after incubation of (5S, 

5'S)-crustosic acid (1) in D2O-enriched milieu (Figure S10).
 

a 
signals overlapped with those of water. 

Compounds 3 and 2 were isolated from incubation mixtures of 1 with TraH alone and with TraH and TraD, 

respectively. Their NMR data correspond very well to those reported previously.
12,13
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Table S5. NMR data of compound 4 

Compound 

 
(5S)-carboxylcrustic acid (4, CD3OD) 

 

Position δH, multi., J in Hz δC Key HMBC correlations 

2 - 167.8a  

3 - n.d.b  

4 - n.d.b  

5 4.95, dd, 5.9, 4.1, 1H 80.2 C-2, C-13 

6 - 178.5  

7 7.10, d, 15.3, 1H 119.0 C-6, C-9 

8 7.68, dd, 15.3, 9.9, 1H 149.5 C-6, C-10 

9 6.50, m, 1H 132.2 C-8, C-11 

10 6.50, m, 1H 146.5 C-8, C-11 

11 1.96, d, 5.5, 3H 19.3 C-9, C-10 

12 2.99, dd, 17.4, 4.1, 1H 35.8 C-5, C-13 

 2.88, dd, 17.4, 5.9, 1H -  

13 - 172.2  

Note: a Signals acquired from HMBC correlations.  
b Signals not detected in neither 13C NMR nor HMBC spectrum. 

Compound 4 was isolated from A. nidulans JF15 harboring pJF27 with traA. 
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Table S6. NMR data of compound 5 

Compound 

 
(5S)-viridicatic acid (5, DMSO-d6) 

 

Position δH, multi., J in Hz δC Key HMBC correlations 

2 - 174.2  

3 - 94.2  

4 - 171.8  

5 4.37, dd, 9.3, 3.5, 1H 75.7 C-2, C-4, C-13 

6 - 194.2  

7 2.61, dd, 8.5, 6.9, 2H 40.1a C-6, C-8, C-9 

8 1.45, m, 2H 24.2 C-6, C-9, C-10 

9 1.25, m, 2H 31.3 C-10 

10 1.25, m, 2H 22.0 C-9 

11 0.85, t, 7.0, 3H 13.9 C-9, C-10 

12 2.69, dd, 16.0, 3.5, 1H 37.6 C-5, C-13 

 2.20, dd, 16.0, 9.3, 1H -  

13 - 193.7  

13-OH 12.44, s, 1H -  

Note: 
a 

signals overlapped with those of solvents. 

Compound 5 was isolated from A. nidulans JF45 harboring pJF91 with traA and traG. 
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Table S7. NMR data of compound 6 

Compound 

 
(5R)-crustic acid (6, CD3OD) 

 

Position δH, multi., J in Hz δC Key HMBC correlations 

2 - 173.7  

3 - 96.8  

4 - 201.4a  

5 4.79, q, 7.0, 1H 80.8 C-2, C-4 

6 - 179.4  

7 7.11, d, 15.2, 1H 119.0 C-6, C-9 

8 7.69, dd, 15.2, 9.9, 1H 149.9 C-6, C-10 

9 6.50, m, 1H 132.2 C-7, C-11 

10 6.50, m, 1H 146.9 C-8, C-11 

11 1.96, d, 5.6, 3H 19.4 C-9, C-10 

12 1.45, d, 7.0, 3H 17.0 C-4, C-5 

Note: a Signal acquired from HMBC correlations.  

Compound 6 was isolated from a traG-mutant. 
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Table S8. NMR data of compound 7 

Compound 

 
(5S, 5'S)-crustosic acid methyl ester (7, CDCl3) 

Position δH, multi., J in Hz δC 

2 - 170.6/167.2 

3 - 95.8/95.3 

4 - 197.5/193.7 

5 4.83, dd, 6.9, 4.1, 1H 78.8/78.6 

6 3.00, dd, 9.0, 4.1, 1H 35.9/35.9 

 2.85, dd, 9.0, 6.9, 1H - 

7 - 169.8/169.8 

8 3.70, s, 3H 52.3/52.3 

9 - - 

10 - - 

11 - - 

12 - - 

2´ - 187.0/186.3 

3´ 3.61, ddd, 14.0, 8.7, 4.2, 1H 34.1/33.8 

 3.28, ddd, 14.0, 9.5, 8.6, 1H - 

4´ 2.37, m, 1H 27.9/27.8 

 1.87, m, 1H - 

5´ 4.93, m, 1H 93.3/92.8 

6´ 1.98, m, 1H 26.6/26.6 

 1.79, m, 1H - 

7´ 1.06, t, 7.5, 3H 9.7/9.5 

Note: due to the Z/E isomerization, there were two sets of signals in a ratio of 1:1 showed in the 1H NMR spectra. 

The corresponding signals are overlapping in most cases with each other. Therefore, only one set of the NMR 

data was listed in the table. 

Compound 7 was isolated from a methanol solution of 1. 
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Table S9. 1H NMR data of compound 8 

Compound 

(5'S)-dehydrocrustosic acid methyl ester (8, CDCl3) 

Position δH, multi., J in Hz 

6 5.91, s, 1H 

8 3.81, s, 3H 

3´ 3.68, ddd, 20.3, 9.4, 4.0, 1H 

 3.35, m, 1H 

4´ 2.43, m, 1H 

 2.01, m, 1Ha 

5´ 5.02, m, 1H 

6´ 1.93, m, 1Ha 

 1.83, m, 1H 

7´ 1.08, t, 7.4, 3H 

Note: due to the Z/E isomerization, there were two sets of signals in a ratio of 1:1 showed in the 1H NMR spectra. 

The corresponding signals are overlapping in most cases with each other. Therefore, only one set of the NMR 

data was listed in the table. 
a 

signals overlapped with those of water. 

Compound 8 was isolated from incubation mixture of 7 with TraH. 
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Supplementary Figures 

 

Protein Putative function 

TraA carboxylcrustic acid synthase  

KS-AT-DH-MeT-KR-ACP-C-A-PCP 

TraB cytochrome P450 

TraC hypothetical protein 

TraD flavin containing dehydroterrestric acid hydrogenase 

TraE hypothetical protein 

TraF transporter 

TraG crustic acid reductase 

TraH 2-oxoglutarate-dependent crustosic acid decarboxylase 

The domain organization of TraA was deduced as ketosynthase (KS), acyltransferase (AT), 

dehydratase (DH), methyltransferase (MeT), ketoreductase (KR), and acyl carrier protein (ACP) 

domains of PKS, and the condensation (C), adenylation (A), peptidyl carrier protein (PCP) domains 

of NRPS.14,15 
 

Figure S1. Deduced functions of ORFs in terrestric acid gene cluster of P. crustosum PRB-26 
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Figure S2. Constructs used for heterologous expression of traA and traAG in A. nidulans 
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Figure S3. LC-MS analysis of the metabolite profile of different A. nidulans strains  

LO8030 as an expression host in (A), JF15 carrying the expression construct for traA (B), JF45 

for co-expression of traA and traG (C) were cultivated in PD medium at 25 °C for 7 days. UV 

absorptions at 280 nm, [M+H]+ of 4 at m/z 253.071 ± 0.005 and [M+H]+ of 5 at m/z 257.102 ± 

0.005 are illustrated. Structures, mass, and UV spectra of 4, 4* and 5 are shown in (D). 
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Figure S4. Verification of ∆traG-mutant from P. crustosum PRB-2 

Gene deletion strategy in P. crustosum was schematically represented in (A). PCR amplification 

for three different fragments from genomic DNA of WT and traG-mutant was used to prove the 

presence/absence of traG and its site specific integration with the help of up- and downstream 

regions (B). The PCR primers are given in Table S3. 
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Figure S5. LC-MS detection of secondary metabolites from a 7 days-old liquid PD surface 

culture of P. crustosum PRB-2 

UV absorptions at 280 nm are illustrated in (A). EICs in dark green refer total [M+H]+ ions of 1 –

6 with a tolerance range of ± 0.005 (B), and in black refer [M+H]+ ions of 1 – 6 (C – G), 

respectively. Standards of 1, 2, 4 – 6 are shown in H – L. 
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Figure S6. LC-MS detection of the metabolites in the terrestric acid biosynthesis in ∆traA-mutant 

obtained from a previous study6 

UV absorptions at 280 nm are illustrated in (A). EICs in dark green refer total [M+H]+ ions of 1 –

6 with a tolerance range of ± 0.005 (B), and in black refer [M+H]+ ions of 1 – 6 (C − G), 

respectively.  
  

154



SUPPORTING INFORMATION 

S26 
 

 

Figure S7. LC-MS detection of the metabolites in the terrestric acid biosynthesis in ∆traG-mutant  

UV absorptions at 280 nm are illustrated in (A). EICs in dark green refer total [M+H]+ ions of 1 –

6 with a tolerance range of ± 0.005 (B), and in black refer [M+H]+ ions of 1 – 6 (C−G), 

respectively. 
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Figure S8. LC-MS detection of the metabolite profile of traA mutant after feeding with 4 

traA culture were fed with 4 and maintained for 7 days (A) and 14 days (B). UV absorptions at 

280 nm are illustrated. EICs refer [M+H]+ ions of 1, 2, 4, 5 and 6 with a tolerance range of ± 

0.005. 
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Figure S9. LC-MS detection of the metabolite profile of traA and traG mutants after feeding 

with 5 

traA (A) and traG (B) cultures were fed with 5 and maintained for 7 days. UV absorptions at 

280 nm are illustrated. EICs refer [M+H]+ ions of 1, 2 and 5 with a tolerance range of ± 0.005. 
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Figure S10. Incorporation of deuterium in 1 via E/Z-isomerization in D2O-enriched milieu 
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Figure S11. Sequence alignments of non-heme FeII-2OG-dependent decarboxylases  

CaaD (XP_001392490), IsnB (CEK22194.1), and AmbI3 (AIJ28554.1) are from Aspergillus 

niger, Xenorhabdus nematophila, and Fischerella ambigua, respectively.16-18 TraH also contains 

the typical conserved 2-His-1-Asp ion-binding triad of non-heme FeII/2-oxoglutarate-dependent 

enzyme (His198, His211 and Asp112) (marked with *). Protein sequence alignments were carried 

out by using the sequence alignment function of ClustalW and visualized with ESPript 3.0 

(http://espript.ibcp.fr/ESPript/ESPript/). 

  

159



SUPPORTING INFORMATION 

S31 
 

 

 

Figure S12. Analysis of recombinant TraD and TraH on SDS-PAGE 

TraD and traH were separately inserted into pET28a(+) with 6xHis-tag at its N-terminal (A). The 

purified recombinant histidine-tagged TraD and TraH were separated on a 12% SDS-PAGE (B). 
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Figure S13. Oxidative decarboxylation of 1 catalyzed by TraH 

LC-MS analysis of incubation mixture of 1 with TraH (A), determination of kinetic parameter of 

the TraH toward 1 (B). 
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Figure S14. HPLC analysis of the incubation mixtures of 1 with TraH 

5.4 µM TraH in the full assay with ascorbic acid (AA), dithiothreitol (DTT), Fe[(NH4)2(SO4)2] (FeII) 

and 2-oxoglutarate (2OG) (A); full assay without AA (B); full assay without DTT (C); full assay 

without AA and DTT (D); full assay without exogenous FeII (E); full assay without 2OG (F), 

standards of 1 (G) and 3 (H). UV absorptions at 280 nm are illustrated. 
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Figure S15. HPLC analysis of incubation mixtures of 3 with TraD at different concentrations 
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Figure S16. HPLC analysis of sequential reaction products in enzyme assays of TraH and TraD 

with 1  
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Figure S17. Comparison of CD spectra of two terrestric acid samples 
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Figure S18. LC-MS analysis of enzyme assays of 4 with TraH without or together with TraD 

Incubation mixtures of 4 with TraH (A), 4 with denat TraH (B) at 37℃ for 16 h, 4 with TraH and 

TraD (C), and 4 with denat TraH and TraD (D) at 30℃ for 16 h. EICs refer [M+H]+ ions of 4, 6 

and dehydrocrustic acid with a tolerance range of ± 0.005.  
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Figure S19. LC-MS analysis of spontaneous ester formation of 1 with different alcohols 

0.4 mM solutions of crustosic acid (1) in ACN, MeOH, EtOH or n-propanol were kept at 25℃ for 

24 h and subjected directly to LC-MS analysis. UV absorptions at 280 nm are illustrated. EIC at 

m/z 255.086 ± 0.005 refer [M+H]+ ion of (5S, 5'S)-crustosic acid (1), EICs at m/z 291.084 ± 

0.005, 305.010 ± 0.005, 319.115 ± 0.005 refer [M+Na]+ ion of its methyl ester (7), ethyl ester, 

propyl ester, respectively. 
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Figure S20. Conversion of 7 to 8 catalyzed by TraH 

LC-MS analysis of incubation mixture of 7 with TraH (A), determination of kinetic parameter of 

the TraH toward 7 (B). 
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Figure S21. 1H NMR spectrum of compound 2 isolated from an incubation mixture of 1 with TraH and TraD in CDCl3 (500MHz) 
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Figure S22. 1H NMR spectrum of compound 3 in DMSO-d6 (500MHz) 
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Figure S23. 1H NMR spectrum of compound 4 isolated from A. nidulans JF15 harboring traA in CD3OD (500MHz) 

  

171



SUPPORTING INFORMATION 

S43 
 

 
Figure S24. 1H NMR spectrum of compound 4 isolated from ∆traG-mutant in CD3OD (500MHz)  
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Figure S25. 13C NMR spectrum of compound 4 isolated from A. nidulans JF15 harboring traA in CD3OD (125MHz)  
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Figure S26. HMBC spectrum of compound 4 isolated from A. nidulans JF15 harboring traA in CD3OD 
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Figure S27. 1H NMR spectrum of compound 5 isolated from P. crustosum PRB-2 in DMSO-d6 (500MHz) 
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Figure S28. 1H NMR spectrum of compound 5 isolated from A. nidulans JF45 harboring traAG in DMSO-d6 (500MHz) 
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Figure S29. 13C NMR spectrum of compound 5 isolated from A. nidulans JF45 harboring traAG in DMSO-d6 (125MHz) 
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Figure S30. HMBC spectrum of compound 5 isolated from A. nidulans JF45 harboring traAG in DMSO-d6 
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Figure S31. 1H-1H COSY spectrum of compound 5 isolated from A. nidulans JF45 harboring traAG in DMSO-d6 
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Figure S32. 1H NMR spectrum of compound 6 in CD3OD (500MHz) 
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Figure S33. 13C NMR spectrum of compound 6 in CD3OD (125MHz) 
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Figure S34. HMBC spectrum of compound 6 in CD3OD  
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Figure S35. 1H NMR spectrum of compound 7 in CDCl3 (500MHz) 

  

183



SUPPORTING INFORMATION 

S55 
 

 

Figure S36. 13C NMR spectrum of compound 7 in CDCl3 (125MHz) 
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Figure S37. 1H NMR spectrum of compound 8 in CDCl3 (500MHz) 
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Figure S38. CD spectra of compounds 4 – 6 
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ABSTRACT: The active form of clavatol, ortho-quinone
methide, can be generated from hydroxyclavatol in an aqueous
system and used as a highly reactive intermediate for coupling
with diverse natural products under very mild conditions. These
include flavonoids, hydroxynaphthalenes, coumarins, xanthones,
anthraquinones, phloroglucinols, phenolic acids, indole deriva-
tives, tyrosine analogues, and quinolines. The clavatol moiety
was mainly attached via C−C bonds to the ortho- or para-
positions of phenolic hydroxyl/amino groups and the C2-
position of the indole ring.

Ortho-quinone methides (o-QMs), as transient intermediates
with remarkable reactivity, have been utilized as useful
reactants in chemical synthesis.1−5 A wide range of strategies,
e.g., thermally driven,6,7 photolytically induced tautomeriza-
tion,8,9 and benzylic oxidation,10,11 were developed to generate
o-QMs. However, o-QMs can also be formed by spontaneous
elimination of a stable molecule with concomitant dearoma-
tization.12,13

Recently, we reported the formation of penilactones A and B
by two-step nonenzymatic Michael additions between a γ-
butyrolactone and two o-QM molecules. The key precursor
hydroxyclavatol was the oxidation product of clavatol by the
nonheme FeII/2-oxoglutarate dependent oxygenase ClaD and
undergoes spontaneous water elimination, resulting in the
active o-QM intermediate (Figure 1i).12

In addition to penilactones A and B from Penicillium
crustosum,14 a number of natural products containing a clavatol
unit are found in fungi, especially in Penicillium species.14−20

These include a clavatol−flavanone adduct from Penicillium
griseoroseum16 as well as coupling products of clavatol with α-
pyrone (communol A) and indole (communol B) from
Penicillium commune17 (Figure 1ii). More coupling products
of clavatol with diverse lactones, phenols, and quinones are
listed in Figure S1 (see Supporting Information (SI)).
The occurrence of these natural products implies the

involvement of clavatol, very likely via the o-QM intermediate,
in their formation. Inspired by the postbiosynthetic non-
enzymatic event in the formation of penilactones A and B, we
wondered whether these clavatol-containing compounds are
also pseudonatural products.
This hypothesis triggered our interest to prove the reactivity

of the o-QM intermediate derived from hydroxyclavatol with

diverse natural products. Encouraged by accumulation of the
clavatol−flavanone adduct in P. griseoroseum,16 we synthesized
hydroxyclavatol chemically (Scheme S1)6,21 and screened its
reactivity with 16 flavonoids including catechin (1a−16a)

Received: November 1, 2019
Published: December 20, 2019

Figure 1. Formation of hydroxyclavatol and its equilibration with the
o-QM intermediate (i). Representative examples of clavatol-
containing natural products (ii). See Figure S1 for more examples.
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under mild conditions (Figures S2−S4). Both hydroxyclavatol
and reactants at a final concentration of 0.4 mM in 50 μL of
H2O were incubated at 25 °C for 16 h without pH adjustment.
LC−MS analysis of the incubation mixtures showed that, with
the exception for 10a, [M + H]+ ions being 178 Da larger than
the corresponding reactants were detected. These proved the
formation of the coupling products of flavonoids with clavatol.
Masses of products harboring two clavatol units were also
detected when using 4a, 5a, 8a, 9a, and 12a−15a as reactants.
Subsequent assays of hydroxyclavatol with other phenolic

substances, including hydroxynaphthalenes (17a−27a), cou-
marins (28a−32a), xanthones (33a−38a), anthraquinones
(39a−42a), phloroglucinol derivatives (43a−51a), and
phenolic acids (52a−60a) were carried out in a similar way
as mentioned above. Products were detected in incubation
mixtures of hydroxyclavatol with 9 of 11 tested hydroxynaph-
thalenes. This proved hydroxynaphthalenes as suitable
reactants for coupling with the o-QM (Figures S2−S4).
Coumarins with 29a as an exception, xanthones, and
anthraquinones were relatively poor reaction partners for the
o-QM and gave no product or only trace amount of products
in their reaction mixtures (Figures S2−S5). Among all the
tested phenolic substances, phloroglucinol derivatives were
found to be the most favorable Michael donors for the o-QM
intermediate, with 10 to 55% conversion (Figures S2 and S6).
In addition, coupling products of benzoic acids (52a−54a)
were also observed by LC−MS analysis, while products from
hydroxyphenyl acetic acid (55a), propionic acids (56a and
57a), and acrylic acids (58a − 60a) were not detectable
(Figures S2−S4).
We speculated that the formation of the clavatol−indole

adduct communol B from P. commune17 was also a non-
enzymatic event and therefore investigated the reaction activity
of hydroxyclavatol with indole derivatives (61a−72a). The
incubation mixture of L-tryptophan (61a) with hydroxyclavatol
showed a coupling product with a conversion of 20%, while
replacement of the nitrogen of the indole ring by sulfur (62a)
and methylation at the N1 position (63a) significantly reduced
the activity. Other indole derivatives carrying different side
chains at C3 coupled with clavatol with up to 49% conversion
(Figures S2, S3, and S7).
Subsequently, cyclic dipeptides (73a−82a) were tested by

coincubation with hydroxyclavatol. All tryptophan-containing
cyclic dipeptides (73a−80a) showed UV detectable product
formation with 9 to 29% conversion. No product formation
was detected for the incubation mixtures of cyclo-L-Tyr−L-Tyr
(81a) and cyclo-L-Ser−L-Tyr (82a) (Figures S2−4, S7, and
S8). In contrast to the easy coupling of L-tryptophan with the
o-QM, L-tyrosine and its analogues (83a − 87a) were generally
poorly converted to their clavatol adducts. 88a−90a with an
amino group at the benzene ring showed UV detectable
product formation (Figures S2 and S3). All selected quinolines
(91a−99a) served as Michael donors to couple with the o-
QM, especially 92a, 94a, 95a, and 98a with obvious product
peaks in UV chromatograms (Figures S2, S3, and S8).
In addition, clear product formation was also detected for

the o-QM with other nitrogen-containing reactants, including
2-aminobenzyl alcohol (100a), 2-aminobenzoic acid (101a),
and even tris(hydroxymethyl)aminomethane (Tris, 102a)
prepared as Tris−HCl buffer (pH 7.5) (Figures S2 and S8).
In summary, we demonstrated in a previous study that

Michael additions between the o-QM and γ-butyrolactones
took place easily under neutral or acidic conditions.12

Therefore, hydroxyclavatol was incubated in this study with
101 natural products or natural-product-like compounds at 25
°C and a nearly neutral pH value, which led to the detection of
coupling products in 85 cases. Product formation with 10 to
55% conversion was detected for 49 reactants (Schemes 1 and
2 and Figures S5−S10). To facilitate the isolation of the

Scheme 1. Reactions of Hydroxyclavatol with Nitrogen-Free
Reactants
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products for structural elucidation, we changed the reaction
temperature for all the incubations to 95 °C for 30 min to
improve the product yields. As shown in Figures S5−S10, the
majority of the reactions was promoted by increased
temperature, leading to generally 2 to 10-fold higher
accumulation of the coupling products. Taking purpurin
(41a) as an example, its coupling with clavatol was improved
dramatically from a trace amount to 86%. In total, product
formation with 30 to 99% conversion was achieved for 58
reactants at 95 °C for 30 min. However, in a few cases, no
significant change was observed for reactions performed at 25

and 95 °C (Figures S5−S10). Therefore, large scaled reactions
of hydroxyclavatol with 23 reactants of different structural
skeletons were carried out at either 25 or 95 °C, resulting in
the isolation of 32 products, which were further subjected to
HR-ESI-MS and NMR analyses (Figures S12−S86).
Structural elucidation of the coupling products of phenolic

reactants confirmed the attachment of the clavatol unit to the
ortho- or para-positions of the hydroxyl group at the benzene
ring. Herein, the o-QM formed from hydroxyclavatol in an
aqueous system was proposed to act as the Michael acceptor
for the phenolic substances (Figure S11i,ii). The formation of
17b and 98b represents examples for the attachment of a
clavatol moiety onto the para-position of the hydroxyl group
(Schemes 1 and 2 and Figures S5 and S8). For flavan
derivatives with a 5,7-dihydroxyl feature (2a, 6a, and 14a), C8-
adducts (2b, 6b, and 14b) were identified as main products,
and the C6-adduct (14c) was identified as a byproduct
(Scheme 1 and Figure S5). The clavatol-containing flavanone
from P. griseoroseum (Figure 1) was identified by feeding
5,7,3′,4′,5′-pentamethoxyflavanone into the culture.16 The
incorporation of the clavatol unit into the exogenous flavanone
might be also a nonenzymatic product. In analogy, 18b and
35b were identified as products of hydroxyclavatol with 1,3-
dihydroxynaphthalene (18a) and 1,3-dihydroxyxanthone
(35a) (Scheme 1 and Figures S5 and S6). Additionally,
formation of 29b by the linkage between the clavatol unit and
the α-pyrone moiety of 29a suggests that communol A from P.
commune could be formed in a similar way (Scheme 1 and
Figure S5). Phloroglucinol derivatives harboring three hydroxyl
groups at the benzene ring conjugated with a clavatol also via
C−C bonds (44b, 45b, 47b, and 50b) (Scheme 1 and Figure
S6).
The indole ring in the tryptophanyl moiety contributes

greatly to structural complexity by enzymatic modifications
and spontaneous rearrangement.22,23 Communol B mentioned
above represents a coupling example of a clavatol moiety with
an indole skeleton.17 Accordingly, incubation of L-tryptophan
(61a) with hydroxyclavatol enabled us to obtain the product
(61b) with a similar structure to communol B (Scheme 2 and
Figure S7). Subsequent isolation of clavatol adducts with
different indole derivatives ((±)-65b and 72b) confirmed the
spontaneous addition of the indole moiety via C2 to the o-QM
(Scheme 2 and Figure S7). Furthermore, a number of coupling
products of clavatol with tryptophan-containing cyclic
dipeptides were also identified. Among them, C2-adducts
were obtained as main products (76b, 77b, 79b, and 80b), and
C3-adducts (79c and 80c) were obtained as byproducts
(Scheme 2 and Figures S7 and S8). In addition, a cyclo-L-Trp−
L-Trp derivative carrying two clavatol units (79d) was also
identified (Scheme 2 and Figure S7). The conjugation between
the clavatol unit and indole skeleton indicates that the electron
transfer in the indole ring enabled the Michael addition from
C2 to the electrophilic methylene group of the o-QM (Figure
S11iii).
Steinmetz et al.24 reported C−N coupling compounds as

Michael addition products of different nucleophiles via their
amino groups to the p-quinone methide, i.e., elansolid A3.
However, only a few coupling products were obtained via C−
N bond formation in this study. Examples are (±)-65c as a
byproduct from the incubation of hydroxyclavatol with N-
acetyl-DL-tryptophan ((±)-65a), 101c, and 101d from 2-
aminobenzoic acid (101a) and 102b from Tris (102a)
(Scheme 2 and Figures S7, S8, and S11iv). It can be concluded

Scheme 2. Reactions of Hydroxyclavatol with Nitrogen-
Containing Reactants
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that the cross-coupling between the nucleophiles tested above
and the o-QM from hydroxyclavatol occurs preferentially via
C−C bond formation. In addition, the C−N bond in 101d
seems unstable and can be easily hydrolyzed, which was
observed by inspection of the 1H NMR spectrum of 101d
(Figure S83) and comparison of the impurity signals with
those of 101b (Figure S79).
After structure elucidation, the obtained clavatol-containing

products were screened for their antibacterial, acetylcholines-
terase, and α-glucosidase inhibition activities. Detailed
evaluation of the α-glucosidase inhibitory activity revealed
the clavatol-coupling products 2b, 17b, 18b, 35b, 72b, and
95b showed clear inhibition with IC50 values ranging from 43.8
± 1.0 to 231.0 ± 7.5 μM, while their precursors showed no
activity. These concentrations are significantly lower than that
of the control substance acarbose with an IC50 at 766.2 ± 37.8
μM (Table 1), indicating that conjugation of low-molecular-
weight compounds with clavatol has the potential to increase
the biological activity.

In summary, our extended study on the utility of
hydroxyclavatol proved that the o-QM generated from
hydroxyclavatol can be considered as an excellent Michael
acceptor for a variety of substances. The coupling reactions
occurred under very mild conditions, i.e., overnight incubation
at 25 °C in water. Increasing the reaction temperature can
accelerate the reaction rate and promote the product
accumulation. Diverse clavatol-containing products were
identified in this study by incorporation of a clavatol unit
onto the ortho- or para-positions of the hydroxyl group of
different phenolic compounds as well as connection between
the methylene group of the clavatol unit and the C2 of indole
skeletons. Additional C−N bond formation of clavatol-
coupling products was also observed in a few cases.
Despite of the wide application of QMs in chemical

synthesis,1−5 QMs have also been reported to be involved in
the assembly of natural products in recent years. For example,
elansolid A3 acts as a key intermediate in the biosynthesis of
elansolids.25,26 Spontaneous Diels−Alder addition via an o-QM
intermediate was suggested for the formation of leprins.27

Another QM-like intermediate is likely responsible for the
dimerization of benzofluorene-containing angucyclines.13 In
analogy, it is plausible that the clavatol-containing natural
products listed in Figures 1 and S1 are formed by
nonenzymatic Michael addition with involvement of the o-
QM derived from hydroxyclavatol. Furthermore, it can be
expected that more clavatol-coupling natural products will be
discovered in the near future.

■ EXPERIMENTAL SECTION
Chemicals. 35a−38a, 46a−48a, 73a, 75a, 79a, and 80a were

chemically synthesized as previously reported.28−34 Other chemicals
used in this study were purchased from Bachem (Bubendorf,
Switzerland), ABCR (Karlsruhe, Germany), TCI Europe (Zwijn-
drecht, Belgium), Alfa Aesar (Kandel, Germany), Carl Roth
(Karlsruhe, Germany), Sigma-Aldrich (St. Louis, USA), or Acros
(Merelbeke, Belgium).

Reaction Conditions of Hydroxyclavatol with the Tested
Aromatic Compounds. Stock solutions of the tested compounds
were prepared at 20 mM in DMSO or DMSO/H2O (v/v, 1:1).
Reactions were initiated by adding hydroxyclavatol (0.4 mM) and
reactants (0.4 mM) into 50 μL of distilled H2O without pH
adjustment. As a result, the reactions generally took place in the pH
environment of 5.0−7.5. After incubation at 25 °C for 16 h, 50 μL of
ACN was added into the reaction mixture. A 5 μL aliquot of
supernatant was injected into LC−MS for analysis after centrifugation
at 13 000 rpm for 30 min. Conversions were calculated from peak
areas of products and reactants with UV detection. Two independent
experiments were performed. In addition, reactions of all reactants
were also carried out at 95 °C for 30 min.

LC−MS Analysis of Reaction Mixtures. LC−MS analysis was
performed on a microTOF-Q III spectrometer (Bruker, Bremen,
Germany) with an Agilent 1260 HPLC system (Agilent Technologies,
Böblingen, Germany), using the Multospher 120 RP18-5μ column
(250 × 2 mm, 5 μm) (CS-Chromatographie Service GmbH). H2O
(A) and ACN (B), both with 0.1% (v/v) HCOOH, were used as
solvents at flow rate of 0.25 mL/min. The substances were eluted with
a linear gradient from 5−100% (v/v) B in 15 min. The column was
then washed with 100% (v/v) solvent B for 5 min and equilibrated
with 5% (v/v) solvent B for 5 min. Detection was carried out on a
photodiode array detector, and UV absorptions at 280 nm are
illustrated in this study. Electrospray ionization in positive or negative
mode was set for the determination of the accuracy masses.
HCOONa was used in each run for mass calibration. The capillary
voltage was set to 4.5 kV, and collision energy was set to 8.0 eV. Data
were evaluated with the Compass DataAnalysis 4.2 software (Bruker
Daltonik, Bremen, Germany). The masses were scanned in the range
of m/z 100−1500.

Isolation and Identification of the Reaction Products. To
isolate the reaction products for structural elucidation, reactions were
carried out in large scaled incubations (40 or 200 mL) containing
hydroxyclavatol (0.4 mM), different reactants (0.4−0.8 mM), and up
to 2% (v/v) DMSO. After incubation at 25 °C for 16 h or heating at
95 °C for 30 min, the reaction mixtures were extracted with a double
volume of EtOAc three times. The organic phases were combined and
concentrated under vacuum. The resulted residues were dissolved in
MeOH and centrifuged at 13 000 rpm for 20 min. The products were
then purified by silica gel column chromatography with a stepwise
gradient of petroleum ether/EtOAc or on a Sephadex LH20 column
with MeOH as elution solvent. A semipreparative HPLC equipped
with an Agilent ZORBAX Eclipse XDB-C18 HPLC column (250 ×
9.4 mm, 5 μm) was also applied for purification by using isocratic
elution with H2O and ACN containing 0.1% trifluoroacetic acid
(TFA). NMR spectra were recorded on a JEOL ECA-500 MHz
spectrometer (JEOL, Tokyo, Japan). The spectra were processed with
MestReNova 6.1.0 (Metrelab). Chemical shifts are referenced to
those of the solvent signals.

Structural Elucidation. Characteristic signals of the clavatol
moiety were observed in 1H NMR spectra of all the isolated products
as a set of signals for an aromatic proton at approximately 7.5 ppm, a
singlet between 12−14 ppm, a methylene group mostly between 3−4
ppm, and two methyl groups at around 2.5 and 2.1 ppm. The clavatol-
coupling products generally belong to two major groups. The majority
is with the clavatol unit attached to the ortho- or para-position of a
phenolic hydroxyl group at the benzene ring and other products
carrying clavatol moieties attached to C2 or C3 of the indole skeleton.

In the cases of 17b and 98b, the linkage between the methylene
group of the clavatol unit and the para-position of the hydroxy group

Table 1. Inhibitory Effects of the Selected Compounds
against α-Glucosidase

reactants IC50 (μM) products IC50 (μM)

2a n.i. 2b 60.1 ± 0.6
17a n.i. 17b 167.8 ± 2.3
18a n.i. 18b 231.0 ± 7.5
35a n.i. 35b 43.8 ± 1.0
72a n.i. 72b 140.1 ± 1.3
95a n.i. 95b 52.0 ± 2.4
acarbosea 766.2 ± 37.8

aPositive control. n.i.: no inhibition. The IC50 data with standard
deviation are mean values of three independent experiments.
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was proven by HMBC correlations (Figures S27−S30 and S76−S78).
In analogy, correlations of the methylene group to different aromatic
carbons in the HMBC spectra supported the linkage between the
clavatol part and meta-dihydroxylated benzene ring, such as 2b
(Figures S12−S14), 6b (Figures S15−S17), 6c (Figures S18−S20),
14b (Figures S21−S25), 18b (Figures S32−S34), 35b (Figures S38−
S40), and 41b (Figures S41−S43). 14c obtained as the byproduct
from the reaction mixture of (+)-catechin (14a) with hydroxyclavatol
is an analogue of isopilosanols A−C. Its structure was confirmed by
comparison of 1H NMR spectra with those of reported data (Figure
S26).35,36 Since 44b, 45b, 47b, and 50b are formed via coupling of
clavatol unit with phloroglucinol derivatives, the attachment of
clavatol to the phloroglucinol moiety in 44b and 47b was proven by
HMBC correlations as examples (Figures S44−S46 and S48−S50).
The structures of 45b and 50b are deduced according to their
molecular weight and 1H NMR data (Figures S47 and S51). 29b and
95b showed two sets of signals in their 1H NMR, one set for the
clavatol subunit and one set of four coupling aromatic protons for the
ortho-disubstituted benzene ring, suggesting the attachment of the
clavatol unit to the α-pyrone ring in 29b (Figures S35−S37) and to
the pyridine ring in 95b (Figures S73−S75).
61b, (±)-65b, and 72b are indole derivatives with the clavatol unit

linked at C2-position and differ only at the side chain of the C3-
position. Therefore, their structures were determined by comparison
of the NMR data (Figures S52−S54 and S60) with the known
compound communol B.17 (±)-65c is an example of C−N bond
formation between the clavatol moiety and the indole skeleton, which
was confirmed by HMBC correlations (Figures S55−S59). 76b, 77b,
79b, 79c, 79d, 80b, and 80c are coupling products of clavatol with
tryptophan-containing cyclic dipeptides (Figures S61−S72). The
structures of 79b and 80b were unequivocally confirmed by 1H and
13C NMR data as well as HMBC correlations (Figures S63−S66 and
S69−S71). Other products are analogues of 79b, and their structures
were determined according to the C2- and C3-substitution patterns of
the indole ring as reported before.37

In the cases of 101b−101d obtained from 2-aminobenzoic acid
(101a), detailed inspection of the 1H NMR revealed that 101b and
101c are products with one clavatol moiety, and 101d is a product
harboring two clavatol units. The presence of one set of characteristic
signals for an ABX system in the 1H NMR spectrum of 101b revealed
a para-substitution of the amino group at the benzene ring. The
structure of 101b was further confirmed by 13C NMR and HMBC
analyses (Figures S79−S81). In the 1H NMR spectrum of 101c, the
coupling pattern consisting of four protons at the benzene ring, and a
downfield shift of the methylene group from 3.95 to 4.51 ppm (Figure
S82) indicated clavatol attachment to the amino group of 101a.
Similarly, one clavatol at the para-position of the amino group and
one at the amino group can be concluded for the structure of 101d
(Figure S83). 102b is another clavatol-coupling derivative via a C−N
linkage, which was supported by the slightly downfield shifts of the
methylene group at 4.49 ppm in the 1H NMR spectrum and
confirmed by HMBC correlations (Figure S84−S86).
Characterization Data. 8-(3-Acetyl-2,6-dihydroxy-5-methyl-

benzyl)-5,7-dihydroxy-2-phenyl-4H-chromen-4-one (2b). The title
compound was prepared using 2a (0.106 mmol, 32.0 mg) and
hydroxyclavatol (0.102 mmol, 20.0 mg) as reactants. The product was
isolated in 39% yield (17.3 mg) as yellow amorphous solid. Eluent:
petroleum ether/EtOAc (5:1, v/v). 1H NMR (500 MHz, DMSO-d6)
δ 13.00 (s, 1H), 8.00 (dd, J = 8.4, 1.5 Hz, 2H), 7.59 (tt, J = 7.5, 1.5
Hz, 1H), 7.54−7.49 (m, 2H), 7.52 (s, 1H), 6.91 (s, 1H), 6.25 (s, 1H),
4.10 (s, 2H), 2.49 (s, 3H), 2.11 (s, 3H). 13C{1H} NMR (125 MHz,
DMSO-d6) δ 203.2, 182.2, 163.4, 162.2, 160.9, 160.9, 159.1, 155.0,
131.8, 131.1, 130.8, 128.9, 128.9, 126.5, 126.5, 115.8, 113.1, 112.1,
105.5, 104.8, 103.8, 98.4, 26.1, 16.6, 16.2. HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C25H21O7 433.1282; Found 433.1272.
8-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2-(2,4-dihydroxy-

phenyl)-3,5,7-trihydroxy-4H-chromen-4-one (6b). The title com-
pound was prepared using 6a (0.108 mmol, 32.9 mg) and
hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants. The product
was isolated in 17% yield (5.5 mg) as yellow amorphous solid. Eluent:

ACN/H2O (55:45, v/v) supplied with 0.1% TFA. 1H NMR (500
MHz, DMSO-d6) δ 12.82 (s, 1H), 12.64 (s, 1H), 9.74 (s, 1H), 7.48
(s, 1H), 7.09 (d, J = 8.5 Hz, 1H), 6.37 (d, J = 2.3 Hz, 1H), 6.30 (dd, J
= 8.5, 2.3 Hz, 1H), 6.20 (s, 1H), 3.95 (s, 2H), 2.49 (s, 3H), 2.07 (s,
3H). 13C{1H} NMR (125 MHz, DMSO-d6) δ 202.8, 176.3, 160.9,
160.9, 160.4, 160.4, 158.4, 156.5, 154.5, 148.7, 135.4, 131.1, 130.5,
115.6, 113.1, 112.0, 109.5, 107.0, 104.7, 103.4, 102.9, 97.5, 26.1, 16.2,
16.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H21O10
481.1129; Found 481.1151.

2-(5-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2,4-dihydroxy-
phenyl)-3,5,7-trihydroxy-4H-chromen-4-one (6c). The title com-
pound was prepared using 6a (0.108 mmol, 32.9 mg) and
hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants. The product
was isolated in 21% yield (6.7 mg) as yellow amorphous solid. Eluent:
ACN/H2O (55:45, v/v) supplied with 0.1% TFA. 1H NMR (500
MHz, DMSO-d6) δ 12.95 (s, 1H), 10.66 (s, 1H), 7.58 (s, 1H), 6.79
(s, 1H), 6.50 (s, 1H), 6.18 (d, J = 2.2 Hz, 1H), 6.14 (d, J = 2.2 Hz,
1H), 3.78 (s, 2H), 2.52 (s, 3H), 2.15 (s, 3H). 13C{1H} NMR (125
MHz, DMSO-d6) δ 203.2, 176.0, 163.6, 160.9, 160.7, 160.6, 157.4,
156.7, 154.4, 148.9, 136.0, 131.1, 129.9, 117.6, 116.0, 113.2, 112.3,
109.0, 103.4, 102.6, 98.0, 93.1, 26.1, 21.1, 16.1. HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C25H21O10 481.1129; Found 481.1147.

1-(3-(((2R,3S)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychro-
man-8-yl)methyl)-2,4-dihydroxy-5-methylphenyl)ethan-1-one
(14b). The title compound was prepared using 14a (0.106 mmol, 30.8
mg) and hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants. The
product was isolated in 28% yield (8.6 mg) as brown oil. Eluent:
ACN/H2O (55:45, v/v) supplied with 0.1% TFA. 1H NMR (500
MHz, acetone-d6) δ 14.26 (s, 1H), 7.59 (s, 1H), 6.99 (d, J = 1.2 Hz,
1H), 6.86 (s, 1H), 6.86 (s, 1H), 6.11 (s, 1H), 4.81 (d, J = 7.8 Hz,
1H), 4.15 (ddd, J = 8.5, 7.8, 5.5 Hz, 1H), 3.81 (d, J = 15.6 Hz, 1H),
3.77 (d, J = 15.6 Hz, 1H), 2.97 (dd, J = 16.3, 5.5 Hz, 1H), 2.61 (dd, J
= 16.3, 8.5 Hz, 1H), 2.53 (s, 3H), 2.09 (s, 3H). 1H NMR (500 MHz,
pyridine-d6) δ 7.62 (d, J = 2.1 Hz, 1H), 7.47 (s, 1H), 7.30 (d, J = 8.1
Hz, 1H), 7.25 (dd, J = 8.1, 2.1 Hz, 1H), 6.67 (s, 1H), 5.31 (d, J = 7.7
Hz, 1H), 4.57 (ddd, J = 8.4, 7.7, 5.4 Hz, 1H), 4.47 (d, J = 15.1 Hz,
1H), 4.35 (d, J = 15.1 Hz, 1H), 3.63 (dd, J = 16.1, 5.4 Hz, 1H), 3.31
(dd, J = 16.1, 8.4 Hz, 1H), 2.46 (s, 3H), 2.20 (s, 3H). 1H NMR (500
MHz, DMSO-d6) δ 12.90 (s, 1H), 9.67 (s, 1H), 9.11 (s, 1H), 8.95 (s,
1H), 7.48 (s, 1H), 6.66 (d, J = 2.0 Hz, 1H), 6.60 (d, J = 8.1 Hz, 1H),
6.46 (dd, J = 8.1, 2.0 Hz, 1H), 6.03 (s, 1H), 4.54 (d, J = 7.1 Hz, 1H),
3.82−3.78 (m, 1H), 3.76 (d, J = 14.8 Hz, 1H), 3.68 (d, J = 14.8 Hz,
1H), 2.62 (dd, J = 16.2, 5.3 Hz, 1H), 2.49 (s, 3H), 2.37 (dd, J = 16.2,
7.7 Hz, 1H), 2.04 (s, 3H). 13C{1H} NMR (125 MHz, DMSO-d6) δ
202.6, 160.6, 160.4, 154.0, 153.0, 152.8, 144.6, 144.5, 130.3, 130.2,
117.9, 115.6, 114.9, 114.4, 113.5, 112.2, 103.2, 99.8, 94.8, 81.2, 66.0,
30.6, 27.7, 26.2, 15.8. [α]D

20 = +25 (c 0.1, MeOH); HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C25H25O9 469.1493; Found
469.1493.

1-(3-(((2R,3S)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychro-
man-6-yl)methyl)-2,4-dihydroxy-5-methylphenyl)ethan-1-one
(14c). The title compound was prepared using 14a (0.106 mmol, 30.8
mg) and hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants. The
product was isolated in 6% yield (1.8 mg) as brown oil. Eluent: ACN/
H2O (55:45, v/v) supplied with 0.1% TFA. 1H NMR (500 MHz,
acetone-d6) δ 14.5 (s, 1H), 7.67 (s, 1H), 6.85 (d, J = 2.0 Hz, 1H),
6.77 (d, J = 8.1 Hz, 1H), 6.71 (dd, J = 8.1, 2.0 Hz, 1H), 6.10 (s, 1H),
4.57 (d, J = 7.5 Hz, 1H), 3.98 (ddd, J = 8.5, 7.5, 5.3 Hz, 1H), 3.86 (s,
2H), 2.87 (dd, J = 16.2, 5.3 Hz, 1H), 2.60 (s, 3H), 2.54 (dd, J = 16.2,
8.5 Hz, 1H), 2.15 (s, 3H). [α]D

20 = +23 (c 0.1, MeOH); HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C25H25O9 469.1493; Found
469.1496.

1-(2,4-Dihydroxy-3-((4-hydroxynaphthalen-1-yl)methyl)-5-
methylphenyl)ethan-1-one (17b). The title compound was prepared
using 17a (0.179 mmol, 25.9 mg) and hydroxyclavatol (0.076 mmol,
14.9 mg) as reactants. The product was isolated in 21% yield (5.0 mg)
as yellow amorphous solid. Eluent: ACN/H2O (70:30, v/v). 1H NMR
(500 MHz, acetone-d6) δ 13.09 (s, 1H), 8.28 (dd, J = 8.6, 1.5, Hz,
1H), 8.23 (dd, J = 8.6, 1.5, Hz, 1H), 7.71 (s, 1H), 7.56 (ddd, J = 8.6,
7.0, 1.5 Hz, 1H), 7.48 (ddd, J = 8.6, 7.0, 1.5 Hz, 1H), 6.71 (s, 2H),
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4.38 (s, 2H), 2.60 (s, 3H), 2.25 (s, 3H). 1H NMR (500 MHz, DMSO-
d6) δ 12.95 (s, 1H), 9.78 (s, 1H), 9.54 (s, 1H), 8.22 (d, J = 8.5 Hz,
1H), 8.16 (d, J = 8.5 Hz, 1H), 7.66 (s, 1H), 7.55 (dd, J = 8.5, 6.8 Hz,
1H), 7.46 (dd, J = 8.5, 6.8 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.63 (d,
J = 8.0 Hz, 1H), 4.26 (s, 2H), 2.57 (s, 3H), 2.19 (s, 3H). 13C{1H}
NMR (125 MHz, DMSO-d6) δ 203.2, 161.1, 160.9, 151.4, 132.8,
131.3, 125.8, 125.6, 124.8, 124.1, 124.0, 123.6, 122.4, 116.0, 113.1,
112.3, 107.3, 26.2, 24.3, 16.2. HRMS (ESI-TOF) m/z: [M − H]−

Calcd for C20H17O4 321.1132; Found 321.1159.
1,1′-(((4-Hydroxynaphthalene-1,3-diyl)bis(methylene))bis(2,4-di-

hydroxy-5-methyl-3,1-phenylene))bis(ethan-1-one) (17c). The title
compound was prepared using 17a (0.179 mmol, 25.9 mg) and
hydroxyclavatol (0.076 mmol, 14.9 mg) as reactants. The product was
isolated in 6% yield (1.5 mg) as yellow amorphous solid. Eluent:
ACN/H2O (70:30, v/v). 1H NMR (500 MHz, acetone-d6) δ 13.11 (s,
1H), 13.00 (s, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H),
7.69 (s, 1H), 7.54 (s, 1H), 7.50 (dd, J = 8.4, 6.8 Hz, 1H), 7.47 (dd, J
= 8.4, 6.8 Hz, 1H), 7.00 (s, 1H), 4.30 (s, 2H), 3.98 (s, 2H), 2.63 (s,
3H), 2.55 (s, 3H), 2.24 (s, 3H), 2.15 (s, 3H). HRMS (ESI-TOF) m/
z: [M − H]− Calcd for C30H27O7 499.1762; Found 499.1773.
1-(3-((2,4-Dihydroxynaphthalen-1-yl)methyl)-2,4-dihydroxy-5-

methylphenyl)ethan-1-one (18b). The title compound was prepared
using 18a (0.161 mmol, 25.9 mg) and hydroxyclavatol (0.089 mmol,
17.4 mg) as reactants. The product was isolated in 24% yield (7.3 mg)
as white amorphous solid. Eluent: ACN/H2O (65:35, v/v) supplied
with 0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ 13.66 (s, 1H),
10.11 (s, 1H), 8.32 (d, J = 8.9 Hz, 1H), 8.00 (d, J = 8.9 Hz, 1H), 7.55
(s, 1H), 7.37 (dd, J = 8.9, 6.7 Hz, 1H), 7.19 (dd, J = 8.9, 6.7 Hz, 1H),
6.71 (s, 1H), 4.18 (s, 2H), 2.54 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR
(125 MHz, DMSO-d6) δ 203.4, 160.9, 159.9, 153.1, 150.9, 134.1,
131.0, 126.6, 123.5, 122.2, 121.5, 120.8, 116.1, 113.3, 112.1, 107.9,
99.6, 26.2, 17.1, 15.7. HRMS (ESI-TOF) m/z: [M − H]− Calcd for
C20H17O5 337.1081; Found 337.1097.
3-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-4-hydroxy-2H-chro-

men-2-one (29b). The title compound was prepared using 29a
(0.173 mmol, 28.1 mg) and hydroxyclavatol (0.076 mmol, 14.9 mg)
as reactants. The product was isolated in 43% yield (11.2 mg) as
white amorphous solid. Eluent: ACN/H2O (90:10, v/v) supplied with
0.1% TFA. 1H NMR (500 MHz, CDCl3) δ 14.70 (s, 1H), 10.28 (s,
1H), 10.23 (s, 1H), 7.93 (dd, J = 8.5, 1.6 Hz, 1H), 7.56 (ddd, J = 8.5,
7.0, 1.6 Hz, 1H), 7.43 (s, 1H), 7.35 (dd, J = 8.5, 1.6 Hz, 1H), 7.33
(ddd, J = 8.5, 7.0, 1.6 Hz, 1H), 3.87 (s, 2H), 2.58 (s, 3H), 2.21 (s,
3H). 13C{1H} NMR (125 MHz, CDCl3) δ 203.6, 168.4, 163.4, 162.0,
158.9, 152.3, 132.6, 131.1, 124.8, 123.9, 119.8, 116.7, 116.3, 112.6,
112.3, 103.5, 26.0, 18.2, 16.2. HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C19H17O6 341.1020; Found 341.1013.
4-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1,3-dihydroxy-9H-

xanthen-9-one (35b). The title compound was prepared using 35a
(0.122 mmol, 27.9 mg) and hydroxyclavatol (0.071 mmol, 13.9 mg)
as reactants. The product was isolated in 31% yield (9.1 mg) as white
amorphous solid. Eluent: ACN/H2O (80:20, v/v) supplied with 0.1%
TFA. 1H NMR (500 MHz, DMSO-d6) δ 13.04 (s, 1H), 12.76 (s, 1H),
8.08 (dd, J = 8.0, 1.6 Hz, 1H), 7.83 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H),
7.52 (s, 1H), 7.42 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 7.39 (dd, J = 8.0, 1.6
Hz, 1H), 6.28 (s, 1H), 4.06 (s, 2H), 2.50 (s, 3H), 2.16 (s, 3H).
13C{1H} NMR (125 MHz, DMSO-d6) δ 203.1, 179.9, 161.0, 161.0,
160.3, 160.3, 155.3, 154.8, 135.5, 130.7, 125.1, 124.1, 119.4, 117.3,
115.7, 113.4, 112.0, 105.5, 102.1, 97.5, 26.1, 16.3, 16.2. HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C23H19O7 407.1125; Found
407.1116.
2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1,3,4-trihydroxyan-

thracene-9,10-dione (41b). The title compound was prepared using
41a (0.094 mmol, 24.1 mg) and hydroxyclavatol (0.058 mmol, 11.4
mg) as reactants. The product was isolated in 33% yield (8.3 mg) as
red amorphous solid. Eluent: ACN/H2O (75:25, v/v) supplied with
0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ 14.24 (s, 1H), 13.46 (s,
1H), 12.95 (s, 1H), 8.27 (dd, J = 7.6, 1.3 Hz, 1H), 8.26 (dd, J = 7.6,
1.3 Hz, 1H), 7.93 (td, J = 7.6, 1.3 Hz, 1H), 7.89 (td, J = 7.6, 1.3 Hz,
1H), 7.51 (s, 1H), 3.99 (s, 2H), 2.50 (s, 3H), 2.11 (s, 3H). 13C{1H}
NMR (125 MHz, DMSO-d6) δ 202.9, 184.8, 181.8, 161.2, 160.9,

160.9, 155.8, 134.7, 133.7, 133.6, 132.4, 130.7, 126.3, 126.2, 123.2,
115.8, 112.5, 112.2, 112.0, 109.8, 26.2, 17.5, 16.2. HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C24H19O8 435.1074; Found 435.1069.

1-(2,4-Dihydroxy-5-methyl-3-((2,3′,4,5′,6-pentahydroxy-[1,1′-bi-
phenyl]-3-yl)methyl)phenyl)ethan-1-one (44b). The title compound
was prepared using 44a (0.128 mmol, 30.0 mg) and hydroxyclavatol
(0.076 mmol, 14.9 mg) as reactants. The product was isolated in 28%
yield (8.9 mg) as brown oil. Eluent: ACN/H2O (60:40, v/v) supplied
with 0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ 13.96 (s, 1H),
8.90 (s, 1H), 8.87 (s, 1H), 7.64 (s, 1H), 6.10 (s, 1H), 6.06−6.04 (m,
3H), 3.73 (s, 2H), 2.56 (s, 3H), 2.12 (s, 3H). 13C{1H} NMR (125
MHz, DMSO-d6) δ 203.8, 160.6, 158.7, 157.4, 157.4, 154.2, 152.9,
152.8, 136.3, 131.1, 117.2, 113.2, 112.2, 110.1, 109.4, 109.4, 103.4,
100.5, 94.9, 48.6, 26.1, 15.7. HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C22H21O8 413.1231; Found 413.1242.

3-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2,4,6-trihydroxyben-
zoic acid (45b). The title compound was prepared using 45a (0.024
mmol, 4.2 mg) and hydroxyclavatol (0.016 mmol, 3.1 mg) as
reactants. The product was isolated in 44% yield (2.5 mg) as white
amorphous solid. Eluent: ACN/H2O (60:40, v/v) supplied with 0.1%
TFA. 1H NMR (500 MHz, acetone-d6) δ 14.42 (s, 1H), 7.64 (s, 1H),
6.04 (s, 1H), 3.82 (s, 2H), 2.59 (s, 3H), 2.13 (s, 3H). HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C17H17O8 349.0918; Found
349.0925.

1-(3-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2,4,6-trihydroxy-
phenyl)-3-methylbutan-1-one (47b). The title compound was
prepared using 29a (0.142 mmol, 30.0 mg) and hydroxyclavatol
(0.076 mmol, 14.9 mg) as reactants. The product was isolated in 31%
yield (9.1 mg) as yellow amorphous solid. Eluent: ACN/H2O (90:10,
v/v) supplied with 0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ
13.09 (s, 1H), 10.69 (s, 1H), 7.51 (s, 1H), 5.96 (s, 1H), 3.74 (s, 2H),
2.87 (d, J = 6.7 Hz, 1H), 2.51 (s, 3H), 2.14 (m, 1H), 2.08 (s, 3H),
0.90 (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H). 13C{1H} NMR
(125 MHz, DMSO-d6) δ 205.1, 203.0, 163.4, 162.3, 160.8, 160.7,
160.3, 130.4, 115.7, 113.3, 112.0, 104.4, 103.7, 94.4, 51.8, 48.6, 26.1,
24.8, 22.6, 22.6, 15.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C21H25O7 389.1595; Found 389.1597.

1-(3-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2,4,6-trihydroxy-
phenyl)-3-(4-hydroxyphenyl)propan-1-one (50b). The title com-
pound was prepared using 50a (0.028 mmol, 7.9 mg) and
hydroxyclavatol (0.024 mmol, 4.7 mg) as reactants. The product
was isolated in 19% yield (2.0 mg) as white amorphous solid. Eluent:
ACN/H2O (80:20, v/v) supplied with 0.1% TFA. 1H NMR (500
MHz, acetone-d6) δ 14.53 (s, 1H), 7.66 (s, 1H), 7.10 (d, J = 8.6 Hz,
2H), 6.75 (d, J = 8.6 Hz, 2H), 6.08 (s, 1H), 3.85 (s, 2H), 3.39 (t, J =
7.5 Hz, 2H), 2.90 (t, J = 7.5 Hz, 2H), 2.59 (s, 3H), 2.14 (s, 3H).
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H25O8 453.1544;
Found 453.1561.

(S)-3-(2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-3-yl)-
2-aminopropanoic acid (61b). The title compound was prepared
using 61a (0.160 mmol, 44.0 mg) and hydroxyclavatol (0.102 mmol,
20.0 mg) as reactants. The product was isolated in 27% yield (10.4
mg) as yellow amorphous solid. Eluent: CH2Cl2.

1H NMR (500 MHz,
DMSO-d6) δ 10.19 (s, 1H), 7.56 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H),
7.26 (d, J = 8.0 Hz, 1H), 6.94 (dd, J = 8.0, 6.8 Hz, 1H), 6.90 (dd, J =
8.0, 6.8 Hz, 1H), 4.14 (d, J = 15.2 Hz, 1H), 4.07 (d, J = 15.2 Hz, 1H),
3.41 (dd, J = 6.8, 5.8, 1H), 3.18 (dd, J = 14.7, 5.8 Hz, 1H), 3.03 (dd, J
= 14.7, 6.8 Hz, 1H), 2.52 (s, 3H), 2.11 (s, 3H). 13C{1H} NMR (125
MHz, DMSO-d6) δ 202.1, 171.2, 161.5, 136.1, 134.9, 130.8, 128.4,
119.8, 118.2, 118.0, 117.2, 111.9, 111.4, 110.9, 105.1, 55.0, 26.1, 25.9,
20.0, 16.5. [α]D

20 = −6 (c 0.2, acetone); HRMS (ESI-TOF) m/z: [M
+ H]+ Calcd for C21H23N2O5 383.1601; Found 383.1609.
2-Acetamido-3-(2-(3-acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-

indol-3-yl)propanoic acid ((±)-65b). The title compound was
prepared using (±)-65a (0.178 mmol, 44.0 mg) and hydroxyclavatol
(0.069 mmol, 13.5 mg) as reactants. The product was isolated in 29%
yield (8.6 mg) as brown oil. Eluent: ACN/H2O (55:45, v/v) supplied
with 0.1% TFA. 1H NMR (500 MHz, acetone-d6) δ 13.26 (s, 1H),
7.66 (s, 1H), 7.53 (d, J = 7.4 Hz, 1H), 7.23 (d, J = 7.4 Hz, 1H), 6.96
(t, J = 7.4 Hz, 1H), 6.92 (t, J = 7.4 Hz, 1H), 4.81 (ddd, J = 8.2, 7.7,
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6.0 Hz, 1H), 4.21 (d, J = 15.0 Hz, 1H), 4.18 (d, J = 15.0 Hz, 1H),
3.45 (dd, J = 14.7, 6.0 Hz, 1H), 3.33 (dd, J = 14.7, 7.7 Hz, 1H), 2.57
(s, 3H), 2.26 (s, 3H), 1.85 (s, 3H). HRMS (ESI-TOF) m/z: [M +
H]+ Calcd for C23H25N2O6 425.1707; Found 425.1713.
Na-Acetyl-1-(3-acetyl-2,6-dihydroxy-5-methylbenzyl)tryptophan

((±)-65c). The title compound was prepared using (±)-65a (0.178
mmol, 44.0 mg) and hydroxyclavatol (0.069 mmol, 13.5 mg) as
reactants. The product was isolated in 14% yield (4.3 mg) as brown
oil. Eluent: ACN/H2O (55:45, v/v) supplied with 0.1% TFA. 1H
NMR (500 MHz, acetone-d6) δ 13.31 (s, 1H), 7.71 (s, 1H), 7.70 (d, J
= 8.2 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.29 (s, 1H), 7.09 (dd, J =
8.2, 7.0 Hz, 1H), 6.97 (dd, J = 8.2, 7.0 Hz, 1H), 5.33 (s, 2H), 4.68
(ddd, J = 8.2, 7.5, 5.6 Hz, 1H), 3.27 (dd, J = 14.7, 5.6 Hz, 1H), 3.10
(dd, J = 14.7, 7.5 Hz, 3H), 2.56 (s, 3H), 2.27 (s, 3H), 1.83 (s, 3H).
1H NMR (500 MHz, DMSO-d6) δ 13.19 (s, 1H), 8.06 (d, J = 8.4 Hz,
1H), 7.69 (s, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H),
7.15 (s, 1H), 7.10 (dd, J = 8.2, 7.0 Hz, 1H), 6.98 (dd, J = 8.2, 7.0 Hz,
1H), 5.25 (s, 2H), 4.38 (td, J = 9.2, 5.1 Hz, 1H), 3.11 (dd, J = 15.0,
5.1 Hz, 1H), 2.90 (dd, J = 15.0, 9.2 Hz, 1H), 2.54 (s, 3H), 2.17 (s,
3H), 1.75 (s, 3H). 13C{1H} NMR (125 MHz, DMSO-d6) δ 203.4,
173.4, 169.0, 161.0, 161.0, 136.0, 133.1, 127.3, 127.2, 120.8, 118.3,
118.1, 116.1, 112.4, 111.1, 110.2, 109.1, 52.8, 37.5, 26.9, 26.2, 22.2,
16.2. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C23H25N2O6
425.1707; Found 425.1708.
4-(2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-3-yl)-

butanoic acid (72b). The title compound was prepared using 72a
(0.008 mmol, 1.6 mg) and hydroxyclavatol (0.008 mmol, 1.6 mg) as
reactants. The product was isolated in 46% yield (1.4 mg) as brown
oil. Eluent: ACN/H2O (65:35, v/v) supplied with 0.1% TFA. 1H
NMR (500 MHz, CDCl3) δ 13.30 (s, 1H), 8.57 (s, 1H), 7.49 (d, J =
8.0 Hz, 1H), 7.40 (s, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.08 (dd, J = 8.0,
7.0 Hz, 1H), 7.03 (dd, J = 8.0, 7.0 Hz, 1H), 4.14 (s, 2H), 2.95 (t, J =
7.0 Hz, 2H), 2.57 (s, 3H), 2.50 (t, J = 7.0 Hz, 2H), 2.18 (s, 3H),
2.07−2.01 (m, 2H). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C22H24NO5 382.1649; Found 382.1662.
(3S,6S)-3-((2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-

3-yl)methyl)-6-isobutylpiperazine-2,5-dione (76b). The title com-
pound was prepared using 76a (0.016 mmol, 4.8 mg) and
hydroxyclavatol (0.016 mmol, 3.2 mg) as reactants. The product
was isolated in 13% yield (1.0 mg) as white amorphous solid. Eluent:
ACN/H2O (60:40, v/v). 1H NMR (500 MHz, CDCl3) δ 13.40 (s,
1H), 8.77 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.46 (s, 1H), 7.25 (d, J =
8.0 Hz, 1H), 7.12 (dd, J = 8.0, 7.1 Hz, 1H), 7.07 (dd, J = 8.0, 7.1 Hz,
1H), 6.39 (s, 1H), 5.99 (s, 1H), 4.40 (d, J = 8.9 Hz, 1H), 4.16 (d, J =
15.0 Hz, 1H), 4.13 (d, J = 15.0 Hz, 1H), 3.94 (d, J = 10.0 Hz, 1H),
3.65 (dd, J = 14.8, 3.2 Hz, 1H), 3.28 (dd, J = 14.8, 8.9 Hz, 1H), 2.60
(s, 3H), 2.23 (s, 3H), 1.68−1.60 (m, 1H), 1.61−1.56 (m, 1H), 1.17
(ddd, 13.7, 10.0, 4.5 Hz, 1H), 0.86 (d, J = 6.2 Hz, 1H), 0.85 (d, J =
6.2 Hz, 1H). [α]D

20 = −41 (c 0.1, CHCl3); HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C27H32N3O5 478.2336; Found 478.2339.
(3S,6S)-3-((2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-

3-yl)methyl)-6-benzylpiperazine-2,5-dione (77b). The title com-
pound was prepared using 77a (0.032 mmol, 10.7 mg) and
hydroxyclavatol (0.016 mmol, 3.1 mg) as reactants. The product
was isolated in 24% yield (2.0 mg) as white amorphous solid. Eluent:
ACN/H2O (55:45, v/v). 1H NMR (500 MHz, DMSO-d6) δ 13.04 (s,
1H), 9.96 (s, 1H), 9.63 (s, 1H), 7.94 (d, J = 3.0 Hz, 1H), 7.64 (d, J =
3.3 Hz, 1H), 7.62 (s, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6
Hz, 1H), 7.16−7.10 (m, 3H), 6.95 (dd, J = 7.6, 6.5 Hz, 1H), 6.92 (dd,
J = 7.6, 6.5 Hz, 1H), 6.62 (dd, J = 7.5, 2.3 Hz, 2H), 4.05 (d, J = 15.7
Hz, 1H), 4.07−4.04 (m, 1H), 4.01 (d, J = 15.7 Hz, 1H), 3.80−3.76
(m, 1H), 3.05 (dd, J = 14.7, 4.7 Hz, 1H), 2.98 (dd, J = 14.7, 5.4 Hz,
1H), 2.55 (s, 3H), 2.47 (m, 1H), 2.18 (s, 3H), 1.61 (dd, J = 13.7, 7.9
Hz, 1H). [α]D

20 = −49 (c 0.2, MeOH); HRMS (ESI-TOF) m/z: [M
+ H]+ Calcd for C30H30N3O5 512.2180; Found 512.2200.
3-((1H-Indol-3-yl)methyl)-6-((2-(3-acetyl-2,6-dihydroxy-5-meth-

ylbenzyl)-1H-indol-3-yl)methyl)piperazine-2,5-dione (79b). The
title compound was prepared using 79a (0.040 mmol, 14.9 mg)
and hydroxyclavatol (0.033 mmol, 6.5 mg) as reactants. The product
was isolated in 30% yield (5.4 mg) as white amorphous solid. Eluent:

ACN/H2O (65:35, v/v). 1H NMR (500 MHz, CDCl3) δ 13.40 (s,
1H), 8.74 (s, 1H), 8.01 (s, 1H), 7.48 (s, 1H), 7.47 (d, J = 8.0, 1H),
7.46 (d, J = 8.2, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.24 (d, J = 8.0 Hz,
1H), 7.17 (dd, J = 8.2, 7.2 Hz, 1H), 7.11 (dd, J = 8.2, 7.2 Hz, 1H),
7.08 (dd, J = 8.0, 7.1 Hz, 1H), 7.05 (dd, J = 8.0, 7.1 Hz, 1H), 6.58 (s,
1H), 6.48 (s, 1H), 5.84 (s, 1H), 4.36 (d, J = 7.7 Hz, 1H), 4.20 (d, J =
10.1 Hz, 1H), 4.08 (d, J = 15.1 Hz, 1H), 4.04 (d, J = 15.1 Hz, 1H),
3.45 (dd, J = 14.7, 3.2 Hz, 1H), 3.30 (dd, J = 14.5, 3.2 Hz, 1H), 3.08
(dd, J = 14.5, 7.7 Hz, 1H), 2.61 (s, 3H), 2.27−2.24 (m, 1H), 2.23 (s,
3H). 1H NMR (500 MHz, DMSO-d6) δ 13.04 (s, 1H), 10.75 (d, J =
1.9 Hz, 1H), 9.92 (s, 1H), 9.61 (s, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.62
(s, 1H), 7.60 (d, J = 2.7 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.27 (d, J =
8.2 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.98
(dd, J = 8.0, 7.0 Hz, 1H), 6.93 (dd, J = 8.0, 7.0 Hz, 1H), 6.90 (dd, J =
8.0, 7.0 Hz, 1H), 6.88 (dd, J = 8.0, 7.0 Hz, 1H), 6.37 (d, J = 2.1 Hz,
1H), 4.02 (dd, J = 8.1, 3.8 Hz, 1H), 3.97 (d, J = 15.4 Hz, 1H), 3.91
(d, J = 15.4 Hz, 1H), 3.81−3.76 (m, 1H), 2.99 (dd, J = 14.4, 4.6 Hz,
1H), 2.88 (dd, J = 14.4, 5.4 Hz, 1H), 2.71 (dd, J = 14.4, 3.8 Hz, 1H),
2.55 (s, 3H), 2.17 (s, 3H), 1.85 (dd, J = 14.4, 8.1 Hz, 1H). 13C{1H}
NMR (125 MHz, DMSO-d6) δ 203.1, 167.0, 166.5, 160.7, 160.6,
136.1, 136.1, 135.2, 131.4, 128.4, 127.0, 124.2, 120.7, 119.8, 119.4,
118.2, 118.1, 118.0, 115.9, 112.5, 112.5, 111.1, 110.8, 108.8, 104.9,
55.9, 55.3, 30.6, 30.6, 26.2, 19.3, 16.2. [α]D

20 = −38 (c 0.1, CHCl3);
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H31N4O5 551.2289;
Found 551.2313.

(3S,5aS,10bS,11aS)-3-((1H-Indol-3-yl)methyl)-10b-(3-acetyl-2,6-
dihydroxy-5-methylbenzyl)-2,3,6,10b,11,11a-hexahydro-4H-
pyrazino[1′,2′:1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (79c). The
title compound was prepared using 79a (0.040 mmol, 14.9 mg)
and hydroxyclavatol (0.033 mmol, 6.5 mg) as reactants. The product
was isolated in 3% yield (0.6 mg) as white amorphous solid. Eluent:
ACN/H2O (65:35, v/v). 1H NMR (500 MHz, CDCl3) δ 13.01 (s,
1H), 8.11 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.38 (d, J =
8.0 Hz, 1H), 7.21 (dd, J = 8.0, 7.0 Hz, 1H), 7.15 (dd, J = 8.0, 7.0 Hz,
1H), 7.11 (d, J = 8.0 Hz, 1H), 7.10 (dd, J = 8.0, 7.0 Hz, 1H), 7.06 (s,
1H), 6.82 (dd, J = 8.0, 7.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.60 (s,
1H), 5.47 (s, 1H), 4.29 (d, J = 11.0 Hz, 1H), 3.92 (dd, J = 11.3, 5.8
Hz, 1H), 3.69 (dd, J = 15.0, 3.5 Hz, 1H), 3.21 (d, J = 14.0 Hz, 1H),
2.97 (d, J = 14.0 Hz, 1H), 2.90 (dd, J = 15.0, 11.0 Hz, 1H), 2.74 (dd, J
= 13.2, 5.8 Hz, 1H), 2.57 (s, 3H), 2.37 (dd, J = 13.2, 11.3 Hz, 1H),
2.18 (s, 3H). [α]D

20 = −58 (c 0.06, CHCl3); HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C32H31N4O5 551.2289; Found 551.2314.

(3S,5aS,10bS,11aS)-10b-(3-Acetyl-2,6-dihydroxy-5-methylben-
zyl)-3-((2-(3-acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-3-yl)-
methyl)-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1′,2′:1,5]pyrrolo-
[2,3-b]indole-1,4(5aH)-dione (79d). The title compound was
prepared using 79a (0.040 mmol, 14.9 mg) and hydroxyclavatol
(0.033 mmol, 6.5 mg) as reactants. The product was isolated in 4%
yield (1.0 mg) as white amorphous solid. Eluent: ACN/H2O (65:35,
v/v). 1H NMR (500 MHz, CDCl3) δ 12.98 (s, 1H), 12.92 (s, 1H),
8.18 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.40 (d, J = 8.0
Hz, 1H), 7.24−7.21 (m, 1H), 7.19 (t, J = 7.5, 1H), 7.12 (dd, J = 8.0,
7.0 Hz, 1H) 7.12 (s, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.79 (d, J = 7.5
Hz, 1H), 6.71 (t, J = 7.5 Hz, 1H), 5.69 (s, 1H), 5.52 (s, 1H), 4.76 (d,
J = 15.2 Hz, 1H), 4.54 (d, J = 15.2 Hz, 1H), 4.46 (dd, J = 10.0, 3.4
Hz, 1H), 3.99 (dd, J = 11.9, 5.5 Hz, 1H), 3.70 (dd, J = 15.0, 3.4 Hz,
1H), 3.12 (dd, J = 15.0, 10.0 Hz, 1H), 2.78 (s, 2H), 2.69 (dd, J = 13.0,
5.5 Hz, 1H), 2.55 (s, 3H), 2.51 (s, 3H), 2.28 (s, 3H), 2.04 (dd, J =
13.0, 11.9 Hz, 1H), 1.99 (s, 3H). [α]D

20 = −63 (c 0.1, CHCl3);
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C42H41N4O8 729.2919;
Found 729.2932.

(R)-3-((2-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-1H-indol-3-
yl)methyl)-3,4-dihydro-1H-benzo[e][1,4]diazepine-2,5-dione (80b).
The title compound was prepared using 80a (0.080 mmol, 24.5 mg)
and hydroxyclavatol (0.051 mmol, 10.0 mg) as reactants. The product
was isolated in 21% yield (5.3 mg) as white amorphous solid. Eluent:
ACN/H2O (55:45, v/v). 1H NMR (500 MHz, acetone-d6) δ 13.30 (s,
1H), 9.71 (s, 1H), 9.52 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.62 (s,
1H), 7.52 (dd, J = 8.0, 7.2 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.23 (d,
J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.20 (dd, J = 8.0, 7.2 Hz,
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1H), 6.93 (dd, J = 8.0, 7.0 Hz, 1H), 6.84 (dd, J = 8.0, 7.0 Hz, 1H),
4.28 (d, J = 15.0 Hz, 1H), 4.25 (dd, J = 9.0, 5.9 Hz, 1H), 4.22 (d, J =
15.0 Hz, 1H), 3.51 (dd, J = 15.0, 5.9 Hz, 1H), 3.34 (dd, J = 15.0, 9.0
Hz, 1H), 2.56 (s, 3H), 2.24 (s, 3H). 13C{1H} NMR (125 MHz,
acetone-d6) δ 203.9, 172.7, 168.5, 161.4, 161.4, 137.5, 136.6, 136.5,
133.3, 132.4, 131.8, 128.9, 127.1, 125.1, 121.9, 121.6, 119.5, 118.5,
117.0, 114.2, 113.8, 111.7, 106.3, 53.2, 26.4, 24.4, 20.2, 16.3. [α]D

20 =
−52 (c 0.1, acetone); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C28H26N3O5 484.1867; Found 484.1870.
(5aS,13aR,14aS)-14a-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-

5a,13a,14,14a-tetrahydrobenzo[5′,6′][1,4]diazepino[1′,2′:1,5]-
pyrrolo[2,3-b]indole-7,13(5H,12H)-dione (80c). The title compound
was prepared using 80a (0.080 mmol, 24.5 mg) and hydroxyclavatol
(0.051 mmol, 10.0 mg) as reactants. The product was isolated in 4%
yield (1.0 mg) as white amorphous solid. Eluent: ACN/H2O (55:45,
v/v). 1H NMR (500 MHz, acetone-d6) δ 13.14 (s, 1H), 9.54 (s, 1H),
8.63 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 7.48 (dd, J = 8.0,
7.3 Hz, 1H), 7.20 (dd, J = 8.0, 7.3 Hz, 1H), 7.16 (dd, J = 8.2 Hz, 1H),
7.12 (d, J = 8.0 Hz, 1H), 6.97 (dd, J = 8.2, 7.7 Hz, 1H), 6.67 (d, J =
8.2 Hz, 1H), 6.61 (dd, J = 8.2, 7.7 Hz, 1H), 6.31 (s, 1H), 5.65 (s,
1H), 4.01 (dd, J = 8.2, 7.0 Hz, 1H), 3.22 (d, J = 14.0 Hz, 1H), 3.17
(d, J = 14.0 Hz, 1H), 3.17 (dd, J = 14.0, 7.0 Hz, 1H), 2.56 (s, 3H),
2.47 (dd, J = 14.0, 8.2 Hz, 1H), 2.25 (s, 1H). [α]D

20 = −47 (c 0.1,
acetone); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C28H26N3O5
484.1867; Found 484.1874.
1-(3-((2-Amino-4-hydroxyquinolin-3-yl)methyl)-2,4-dihydroxy-5-

methylphenyl)ethan-1-one (95b). The title compound was prepared
using 95a (0.128 mmol, 20.6 mg) and hydroxyclavatol (0.058 mmol,
11.3 mg) as reactants. The product was isolated in 46% yield (9.0 mg)
as brown amorphous solid. Eluent: ACN/H2O (75:25, v/v) supplied
with 0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ 13.93 (s, 1H),
11.52 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.56 (s, 1H), 7.55 (dd, J = 8.2,
7.1, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.25 (dd, J = 8.2, 7.1 Hz, 1H), 6.67
(s, 2H), 3.70 (s, 2H), 2.53 (s, 3H), 2.08 (s, 3H). 13C{1H} NMR (125
MHz, DMSO-d6) δ 202.9, 174.0, 164.1, 159.4, 153.0, 136.9, 130.9,
130.8, 124.4, 122.3, 120.6, 117.7, 116.3, 113.1, 111.0, 101.0, 25.8,
17.6, 15.9. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C19H19N2O4
339.1339; Found 339.1357.
1-(2,4-Dihydroxy-3-((5-hydroxyquinolin-8-yl)methyl)-5-methyl

phenyl)ethan-1-one (98b). The title compound was prepared using
98a (0.157 mmol, 22.9 mg) and hydroxyclavatol (0.059 mmol, 11.5
mg) as reactants. The product was isolated in 38% yield (7.1 mg) as
yellow amorphous solid. Eluent: ACN/H2O (80:20, v/v) supplied
with 0.1% TFA. 1H NMR (500 MHz, DMSO-d6) δ 13.19 (s, 1H),
10.59 (s, 1H), 9.01 (dd, J = 4.5, 1.7 Hz, 1H), 8.69 (dd, J = 8.4, 1.7 Hz,
1H), 7.75 (d, J = 8.0 Hz, 1H), 7.63 (dd, J = 8.4, 4.5 Hz, 1H), 7.55 (s,
1H), 6.96 (d, J = 8.0 Hz, 1H), 4.23 (s, 2H), 2.51 (s, 3H), 2.12 (s,
3H). 13C{1H} NMR (125 MHz, DMSO-d6) δ 203.1, 161.2, 160.9,
152.0, 148.6, 144.4, 133.7, 132.1, 130.7, 126.9, 120.2, 120.1, 117.3,
114.1, 112.0, 109.0, 26.1, 24.5, 15.9. HRMS (ESI-TOF) m/z: [M +
H]+ Calcd for C19H18NO4 324.1230; Found 324.1235.
5-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2-aminobenzoic acid

(101b). The title compound was prepared using 101a (0.167 mmol,
23.0 mg) and hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants.
The product was isolated in 23% yield (4.7 mg) as brown amorphous
solid. Eluent: ACN/H2O (65:35, v/v) supplied with 0.1% TFA. 1H
NMR (500 MHz, acetone-d6) δ 13.08 (s, 1H), 7.72 (d, J = 2.1 Hz,
1H), 7.62 (s, 1H), 7.37 (dd, J = 8.4, 2.1 Hz, 1H), 6.68 (d, J = 8.4 Hz,
1H), 3.95 (s, 2H), 2.56 (s, 3H), 2.24 (s, 3H). 13C{1H} NMR (125
MHz, acetone-d6) δ 204.0, 163.7, 162.0, 161.6, 146.0, 136.8, 132.2,
132.1, 129.8, 116.4, 115.5, 114.0, 114.0, 112.6, 27.9, 26.4, 16.3.
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H18NO5 316.1179;
Found 316.1169.
2-((3-Acetyl-2,6-dihydroxy-5-methylbenzyl)amino)benzoic acid

(101c). The title compound was prepared using 101a (0.167 mmol,
23.0 mg) and hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants.
The product was isolated in 6% yield (1.2 mg) as brown amorphous
solid. Eluent: ACN/H2O (65:35, v/v) supplied with 0.1% TFA. 1H
NMR (500 MHz, acetone-d6) δ 13.23 (s, 1H), 7.89 (d, J = 8.0 Hz,
1H), 7.68 (s, 1H), 7.37 (dd, J = 8.0, 7.1 Hz, 1H), 7.05 (d, J = 8.0 Hz,

1H), 6.59 (dd, J = 8.0, 7.1 Hz, 1H), 4.51 (s, 2H), 2.56 (s, 3H), 2.21
(s, 3H). HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H18NO5
316.1179; Found 316.1181.

5-(3-Acetyl-2,6-dihydroxy-5-methylbenzyl)-2-((3-acetyl-2,6-dihy-
droxy-5-methylbenzyl)amino)benzoic acid (101d). The title com-
pound was prepared using 101a (0.167 mmol, 23.0 mg) and
hydroxyclavatol (0.066 mmol, 12.9 mg) as reactants. The product was
isolated in 3% yield (0.9 mg) as yellow amorphous solid. Eluent:
ACN/H2O (65:35, v/v) supplied with 0.1% TFA. 1H NMR (500
MHz, acetone-d6) δ 13.21 (s, 1H), 13.06 (s, 1H), 7.89 (d, J = 2.1 Hz,
1H), 7.64 (s, 1H), 7.59 (s, 1H), 7.32 (dd, J = 8.6, 2.1 Hz, 1H), 6.92
(d, J = 8.6 Hz, 1H), 4.49 (s, 2H), 3.91 (s, 2H), 2.55 (s, 3H), 2.54 (s,
3H), 2.22 (s, 3H), 2.17 (s, 3H). HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C27H28NO8 494.1809; Found 494.1823.
1-(3-(((1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)-

methyl)-2,4-dihydroxy-5-methylphenyl)ethan-1-one (102b). The
title compound was prepared by using 102a (1.0 mmol, 122.0 mg,
prepared as Tris−HCl buffer, pH 7.5) and hydroxyclavatol (0.066
mmol, 12.9 mg) as reactants. The product was isolated in 16% yield
(3.2 mg) as brown oil. Eluent: ACN/H2O (70:30, v/v) supplied with
0.1% TFA. 1H NMR (500 MHz, CD3OD) δ 7.72 (s, 1H), 4.49 (s,
2H), 3.82 (s, 6H), 2.56 (s, 3H), 2.22 (s, 3H). 13C{1H} NMR (125
MHz, CD3OD) δ 204.9, 162.5, 162.4, 135.5, 117.3, 114.4, 107.3, 67.5,
59.7, 59.7, 59.7, 36.5, 26.3, 16.1. HRMS (ESI-TOF) m/z: [M + H]+

Calcd for C14H22NO6 300.1442; Found 300.1445.
α-Glucosidase Inhibition Assay. The α-glucosidase inhibition

activity was evaluated by modified procedures reported previ-
ously.38,39 The assays contained 100 mM phosphate buffer (pH
6.8), α-glucosidase (1.3 U/mL) (Sigma-Aldrich, St. Louis, USA), and
10 μL of a 2 mM DMSO solution of compounds to be tested. After
preincubation at 37 °C for 15 min, the assays were initiated by
addition of 40 μL of 2.5 mM p-nitrophenyl-α-D-glucopyranoside
solution (Sigma-Aldrich, St. Louis, USA) to a final volume of 150 μL.
After incubation at 37 °C for a further 15 min, the absorbance at 405
nm was recorded on a microplate reader (BMG Labtech, Offenburg,
Germany). DMSO was used as a negative control, and acarbose (TCI
Europe, Zwijndrecht, Belgium) was used as positive control. All assays
were performed in triplicate. The IC50 value was determined by
regression analysis.40,41
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Scheme S1. Chemical synthesis of hydroxyclavatol.  

 
4-Methyl-6-acetylresorcinol was firstly synthesized by a Friedel-Craft acylation of 4-methylbenzene-1,3-diol 
(BLDpharm, Shanghai, China) as reported.1 Introducing the hydroxymethylene group onto 4-methyl-6-
acetylresorcinol was achieved by using a modified method reported for the synthesis of luminacin D.2 
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Figure S1. Examples of fungal clavatol-containing natural products.3-9 
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Figure S2. Structures of tested reactants with conversions between 10% – 55%. 

Products of reactants in green were further identified by NMR after isolation. Products of reactants in orange 

were only identified by LC-MS analysis. Products with two clavatol moieties were detected from reactants labled 

with *. Reaction mixtures (50 L) containing 0.4 mM hydroxyclavatol and 0.4 mM reactants were incubated at 

25 °C for 16 h before sent to LC-MS analysis. The conversion (%) was calculated by peak areas with UV 

detection. 
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Figure S3. Structures of tested reactants with conversions between 1% – 10% (A), and only detected by EIC of 

[M+H]+/[M-H]- ions (B). 

Reaction mixtures (50 L) containing 0.4 mM hydroxyclavatol and 0.4 mM reactants were incubated at 25 °C for 

16 h before sent to LC-MS analysis. Products of reactants in green were isolated from incubations at 95 °C for 30 

min. Products of reactants in orange were only identified by LC-MS analysis. Products with two clavatol moieties 

were detected from reactants labled with *. The conversion (%) was calculated by peak areas with UV detection. 
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Figure S4. Structures of tested reactants with no detectable product by EIC of [M+H]+/[M-H]- ions. 

Reaction mixtures (50 L) containing 0.4 mM hydroxyclavatol and 0.4 mM reactants were incubated at 25 °C for 

16 h before sent to LC-MS analysis. 
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Figure S5. LC-MS analysis of reaction mixtures of hydroxyclavatol with different reactants. 

HC: hydroxyclavatol, UV absorptions at 280 nm (black) are illustrated. EICs in blue or green refer [M+H]+ of 

products with one or two clavatol moieties with a tolerance range of ± 0.005. EICs refer [M-H]- of 17b, 17c, and 

18b.. 
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Figure S6. LC-MS analysis of reaction mixtures of hydroxyclavatol with different reactants. 

HC: Hydroxyclavatol, UV absorptions at 280 nm (black) are illustrated. EICs in blue or green refer [M+H]+ of 

products with one or two clavatol moieties with a tolerance range of ± 0.005. 
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Figure S7. LC-MS analysis of reaction mixtures of hydroxyclavatol with different reactants. 

HC: hydroxyclavatol, UV absorptions at 280 nm (black) are illustrated. EICs in blue or green refer [M+H]+ of 

products with one or two clavatol moieties with a tolerance range of ± 0.005. 
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Figure S8. LC-MS analysis of reaction mixtures of hydroxyclavatol with different reactants. 

HC: hydroxyclavatol, UV absorptions at 280 nm (black) are illustrated. EICs in blue or green refer [M+H]+ of 

products with one or two clavatol moieties with a tolerance range of ± 0.005.
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Figure S9. Conversions of hydroxyclavatol reactions with nitrogen-free reactants at 25 °C (left) or 95 °C (right). 
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Figure S10. Conversions of hydroxyclavatol reactions with nitrogen-containing reactants at 25 °C (left) or 95 °C 

(right). 
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Figure S11. Reaction mechanisms of different nucleophile additions to the ortho-quinone methide intermediate.  
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Figure S12. 1H NMR spectrum of 2b in DMSO-d6 (500 MHz). 

Figure S13. 13C{1H} NMR spectrum of 2b in DMSO-d6 (125 MHz).  
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Figure S14. HMBC spectrum of 2b in DMSO-d6. 

Figure S15. 1H NMR spectrum of 6b in DMSO-d6 (500 MHz).  
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Figure S16. 13C{1H} NMR spectrum of 6b in DMSO-d6 (125 MHz). 

Figure S17. HMBC spectrum of 6b in DMSO-d6. 
  

219



 

SUPPORTING INFORMATION          

S20 

 

Figure S18. 1H NMR spectrum of 6c in DMSO-d6 (500 MHz). 

Figure S19. 13C{1H} NMR spectrum of 6c in DMSO-d6 (125 MHz).  
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Figure S20. HMBC spectrum of 6c in DMSO-d6. 

Figure S21. 1H NMR spectrum of 14b in acetone-d6 (500 MHz).  
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Figure S22. 1H NMR spectrum of 14b in pyridine-d5 (500 MHz). 

Figure S23. 1H NMR spectrum of 14b in DMSO-d6 (500 MHz).
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Figure S24. 13C{1H} NMR spectrum of 14b in DMSO-d6 (125 MHz). 

Figure S25. HMBC spectrum of 14b in DMSO-d6.
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Figure S26. 1H NMR spectrum of 14c in acetone-d6 (500 MHz). 

Figure S27. 1H NMR spectrum of 17b in DMSO-d6 (500 MHz). 
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Figure S28. 13C{1H} NMR spectrum of 17b in DMSO-d6 (125 MHz). 

Figure S29. HMBC spectrum of 17b in DMSO-d6.  
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Figure S30. 1H NMR spectrum of 17b in acetone-d6 (500 MHz). 

Figure S31. 1H NMR spectrum of 17c in acetone-d6 (500 MHz).
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Figure S32. 1H NMR spectrum of 18b in DMSO-d6 (500 MHz). 

Figure S33. 13C{1H} NMR spectrum of 18b in DMSO-d6 (125 MHz).  
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Figure S34. HMBC spectrum of 18b in DMSO-d6. 

Figure S35. 1H NMR spectrum of 29b in CDCl3 (500 MHz).  
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Figure S36. 13C{1H} NMR spectrum of 29b in CDCl3 (125 MHz). 

Figure S37. HMBC spectrum of 29b in CDCl3.  
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Figure S38. 1H NMR spectrum of 35b in DMSO-d6 (500 MHz). 

Figure S39. 13C{1H} NMR spectrum of 35b in DMSO-d6 (125 MHz).  
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Figure S40. HMBC spectrum of 35b in DMSO-d6. 

 

Figure S41. 1H NMR spectrum of 41b in DMSO-d6 (500 MHz).  
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Figure S42. 13C{1H} NMR spectrum of 41b in DMSO-d6 (125 MHz). 

Figure S43. HMBC spectrum of 41b in DMSO-d6. 

232



 

SUPPORTING INFORMATION          

S33 

 

Figure S44. 1H NMR spectrum of 44b in DMSO-d6 (500 MHz). 

Figure S45. 13C{1H} NMR spectrum of 44b in DMSO-d6 (125 MHz).  
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Figure S46. HMBC spectrum of 44b in DMSO-d6. 

Figure S47. 1H NMR spectrum of 45b in acetone-d6 (500 MHz).  
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Figure S48. 1H NMR spectrum of 47b in DMSO-d6 (500 MHz). 

Figure S49. 13C{1H} NMR spectrum of 47b in DMSO-d6 (125 MHz).  
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Figure S50. HMBC spectrum of 47b in DMSO-d6. 

Figure S51. 1H NMR spectrum of 50b in acetone-d6 (500 MHz).  
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Figure S52. 1H NMR spectrum of 61b in DMSO-d6 (500 MHz). 

Figure S53. 13C{1H} NMR spectrum of 61b in DMSO-d6 (125 MHz).  
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Figure S54. 1H NMR spectrum of (±)-65b in acetone-d6 (500 MHz). 

Figure S55. 1H NMR spectrum of (±)-65c in DMSO-d6 (500 MHz).  
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Figure S56. 13C{1H} NMR spectrum of (±)-65c in DMSO-d6 (125 MHz). 

Figure S57. HMBC spectrum of (±)-65c in DMSO-d6.  
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Figure S58. HSQC spectrum of (±)-65c in DMSO-d6. 

Figure S59. 1H NMR spectrum of (±)-65c in acetone-d6 (500 MHz).  
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Figure S60. 1H NMR spectrum of 72b in CDCl3 (500 MHz). 

Figure S61. 1H NMR spectrum of 76b in CDCl3 (500 MHz).  
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Figure S62. 1H NMR spectrum of 77b in DMSO-d6 (500 MHz). 

Figure S63. 1H NMR spectrum of 79b in CDCl3 (500 MHz). 
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Figure S64. 1H NMR spectrum of 79b in DMSO-d6 (500 MHz). 

Figure S65. 13C{1H} NMR spectrum of 79b in DMSO-d6 (125 MHz).
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Figure S66. HMBC spectrum of 79b in DMSO-d6. 

Figure S67. 1H NMR spectrum of 79c in CDCl3 (500 MHz).  
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Figure S68. 1H NMR spectrum of 79d in CDCl3 (500 MHz). 

Figure S69. 1H NMR spectrum of 80b in acetone-d6 (500 MHz).  
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Figure S70. 13C{1H} NMR spectrum of 80b in acetone-d6 (125 MHz). 

Figure S71. HMBC spectrum of 80b in acetone-d6.
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Figure S72. 1H NMR spectrum of 80c in acetone-d6 (500 MHz). 

Figure S73. 1H NMR spectrum of 95b in DMSO-d6 (500 MHz).  
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Figure S74. 13C{1H} NMR spectrum of 95b in DMSO-d6 (125 MHz). 

 
Figure S75. HMBC spectrum of 95b in DMSO-d6. 
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Figure S76. 1H NMR spectrum of 98b in DMSO-d6 (500 MHz). 

Figure S77. 13C{1H} NMR spectrum of 98b in DMSO-d6 (125 MHz).  
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Figure S78. HMBC spectrum of 98b in DMSO-d6. 

Figure S79. 1H NMR spectrum of 101b in acetone-d6 (500 MHz).   
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Figure S80. 13C{1H} NMR spectrum of 101b in acetone-d6 (125 MHz). 

Figure S81. HMBC spectrum of 101b in acetone-d6. 
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Figure S82. 1H NMR spectrum of 101c in acetone-d6 (500 MHz). 

Figure S83. 1H NMR spectrum of 101d in acetone-d6 (500 MHz).  

Peaks labelled with * are signals belong to 101b.  
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Figure S84. 1H NMR spectrum of 102b in CD3OD (500 MHz). 

Figure S85. 13C{1H} NMR spectrum of 102b in CD3OD (125 MHz).
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Figure S86. HMBC spectrum of 102b in CD3OD. 
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5 Conclusions and future prospects 

This thesis presented multiple approaches to study the biosynthetic pathways of fungal secondary 

metabolites. Historically, characterization of the inventory of natural products from fungi by isolation 

and structural elucidation has spurred many of the conceptual and practical advances in natural 

product discovery. Developed bioinformatic tools and genetic manipulation strategies supplied the 

availability to explain the enzymatic assembly lines of different product scaffolds. 

In the course of biosynthetic machinery in Penicillium crustosum, two separate gene clusters 

containing NR-PKS ClaF and hybrid PKS-NRPS TraA were identified by gene deletion, heterologous 

expression, and precursor feeding experiments for the biosynthesis of key building blocks, i.e. 

clavatol and -butyrolactone (tetronic acid) moieties, of the rare natural products penilactones and 

peniphenones. The biochemical characterization of enzymes with respect to their specific reaction 

conditions, substrates and cofactors proved the oxidation of clavatol by a nonheme FeII/2-OG-

dependent oxygenase ClaD to yield hydroxyclavatol, the oxidative decarboxylation of crustosic acid 

by another nonheme FeII/2-OG-dependent oxygenase TraH to yield dehydroterrestric acid, and its 

stereospecific C-C double bond reduction by a flavin-containing oxidoreductase TraD to produce the 

predominant metabolite terrestric acid. Subsequently, hydroxyclavatol spontaneously undergoes the 

dehydration to an active intermediate ortho-quinone methide. The cross-cluster coupling to form 

penilactones A and B was further demonstrated by nucleophilic attack of -butyrolactones derived 

from terrestric acid and crustosic acid to ortho-quinone methide via non-enzymatic 1,4-Michael 

additions. The formation of penilactones and peniphenones provided new example for complex 

natural product biosynthesis by separate clusters through both enzymatic and non-enzymatic 

strategies. The conversion of crustosic acid to terrestric acid represents the stereochemistry 

relationships in biosynthetic pathway of fungal acyltetronates. 

Inspired by the post-biosynthetic non-enzymatic reactivity of the ortho-quinone methide derived from 

hydroxyclavatol, more natural or natural like-products from 11 subgroups were screened and 

incubated with hydroxyclavatol to produce more clavatol-containing products. As a result, 32 new 

coupling products were identified by isolation and structural elucidation, proving that the ortho-

quinone methide can be used as a Michael acceptor to increase structural diversity via spontaneous 

1,4-Michael additions under mild conditions. The conjugation between clavatol moiety with diverse 

nucleophiles occurs preferentially with C-C bond formation via para- or ortho-positions of phenolic 

hydroxyl/amino groups and C2-position of the indole skeleton. Non-enzymatic C-N formation was 

also identified in a few cases. Encouraged by the increasing structures, more clavatol-containing 

products might be synthesized in a similar way in nature. Although chemical synthesis and 

chemoenzymatic synthesis are developed these days, the reactivity of ortho-quinone methide 

supplied a faster and easier route to synthesize products with complex structures. 
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For future prospects, the following works can be performed: 

➢ Ongoing the biosynthetic machinery of other clavatol-containing metabolites from other 

Penicillium strains 

➢ Targeted mechanism of other tailoring enzyme(s) responsible for the hydroxylation at the 

acyl chain of viridicatic acid to form crustosic acid 

➢ Investigation of other enzymes in clavatol and terrestric gene clusters by heterologous 

expression, overexpression, activation or biochemical characterization 

➢ Analysis of other fungal acyltetronates with different stereochemistry and substituent groups 

➢ Further characterization of more nonheme FeII/2-OG-dependent oxygenases to expand the 

structural diversity by chemoenzymatic strategy 

➢ Improving the applicability of ortho-quinone methide to produce more clavatol-containing 

products 
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