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Summary 

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) is an 

adaptive immune system of Archaea and Bacteria. It is able to target and destroy foreign genetic 

material with ribonucleoprotein complexes consisting of CRISPR RNAs (crRNAs) and certain Cas proteins. 

CRISPR-Cas systems are classified in two major classes and multiple types, according to the involved Cas 

proteins. In type I systems, a ribonucleoprotein complex called Cascade (CRISPR associated complex for 

antiviral defence) scans for invading viral DNA during a recurring infection and binds the sequence 

complementary to the incorporated crRNA. After target recognition, the nuclease/helicase Cas3 is 

recruited and subsequently destroys the viral DNA in a step termed interfere nce.  

Multiple subtypes of type I exist that show differences in the Cascade composition. This work focuses on 

a minimal Cascade variant found in Shewanella putrefaciens CN-32. In comparison to the well-studied 

type I-E Cascade from Escherichia coli, this complex is missing two proteins usually required for target 

recognition, yet it is still able to provide immunity. Recombinant I-Fv Cascade was previously purified 

from E. coli and it was possible to modulate the complex by extending or shortening the backbone, 

resulting in synthetic variants with altered protein stoichiometry.  

In the present study, I-Fv Cascade was further analyzed by in vitro methods. Target binding was 

observed and the 3D structure revealed structural variations that replace the missing subunits, 

potentially to evade viral anti-CRISPR proteins. The nuclease/helicase of this system, Cas2/3fv, is a fusion 

of the Cas3 protein with the interference-unrelated protein Cas2. A standalone Cas3fv was purified 

without the Cas2 domain and in vitro cleavage assays showed that Cas3fv degrades both free ssDNA as 

well as Cascade-bound substrates. The complete Cas2/3fv protein forms a complex with the protein 

Cas1 and was shown to reduce cleave of free ssDNA, potentially as a regulatory mechanism against 

unspecific cleavage. 

Furthermore, we established a process termed “RNA wrapping”. Synthetic Cascade assemblies can be 

created by directing the general RNA-binding ability of the characteristic Cas7fv backbone protein on an 

RNA of choice such as reporter gene transcripts. Specific complex formation can be initiated in vivo by 

including a repeat sequence from the crRNA upstream a given target sequence and binding of the 

Cas5fv protein. The created complexes contain the initial 100 nt of the tagged RNA which can be 

isolated afterwards. While incorporated in complexes, RNA is stabilized and protected from degradation 

by RNases. Complex formation can be used to silence reporter gene transcripts. Furthermore, we 

provided initial indications that the backbone of synthetic complexes can be modified by addition of 

reporter proteins.  
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Zusammenfassung 

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR assoziiert) ist ein 

adaptives Immunsystem in Archaeen und Bakterien, das fremdes genetisches Material mit Hilfe von 

Ribonukleoprotein-Komplexen erkennt und zerstört. Diese Komplexe bestehen aus einer CRISPR RNA 

(crRNA) und Cas Proteinen. CRISPR-Cas Systeme sind in zwei Hauptklassen und mehrere Typen 

unterteilt, abhängig von den beteiligten Cas Proteinen. In Typ I Systemen sucht ein Komplex namens 

Cascade (CRISPR associated complex for antiviral defence) nach eingedrungener viraler DNA während 

einer Folgeinfektion und bindet die zu der eingebauten crRNA komplementäre Sequenz. Anschließend 

wird die Nuklease/Helikase Cas3 rekrutiert, welche die virale DNA degradiert (Interferenz).  

Das Typ I System wird in mehrere Subtypen unterteilt, die Unterschiede im Aufbau von Cascade 

vorweisen. Im Fokus dieser Arbeit steht eine minimale Cascade-Variante aus Shewanella putrefaciens 

CN-32. Im Vergleich zur gut untersuchten Typ I-E Cascade aus Escherichia coli fehlen in diesem Komplex 

zwei Untereinheiten, die gewöhnlicher Weise für die Zielerkennung benötigt werden. Dennoch ist der 

Komplex aktiv. Rekombinante I-Fv Cascade wurde bereits aus E. coli aufgereinigt und es war möglich, 

den Komplex zu modifizieren, indem das Rückgrat entweder verlängert oder verkürzt wurde. Dadurch 

wurden synthetische Varianten mit veränderter Protein-Stöchiometrie erzeugt. 

In der vorliegenden Arbeit wurde I-Fv Cascade weiter mit in vitro Methoden untersucht. So wurde die 

Bindung von Ziel-DNA beobachtet und die 3D Struktur zeigt, dass strukturelle Veränderungen im 

Komplex die fehlenden Untereinheiten ersetzen, möglicherweise um viralen Anti-CRISPR Proteinen zu 

entgehen. Die Nuklease/Helikase dieses Systems, Cas2/3fv, ist eine Fusion des Cas3 Proteins mit dem 

Interferenz-unabhängigen Protein Cas2. Ein unabhängiges Cas3fv ohne Cas2 Untereinheit wurde 

aufgereinigt und in vitro Assays zeigten, dass dieses Protein sowohl freie ssDNA als auch Cascade-

gebundene Substrate degradiert. Das komplette Cas2/3fv Protein bildet einen Komplex mit dem Protein 

Cas1 und zeigt eine reduzierte Aktivität gegenüber freier ssDNA, möglicherweise als 

Regulationsmechanismus zur Vermeidung von unspezifischer Aktivität.  

Weiterhin wurde ein Prozess namens „RNA wrapping“ etabliert. Synthetische Cascade-Komplexe 

wurden erzeugt, in denen die grundlegende RNA-Bindung des charakteristischen Cas7fv Rückgrat-

Proteins auf eine ausgewählte RNA gelenkt wird. Diese spezifische Komplexbildung kann in vivo durch 

eine Repeat-Sequenz der crRNA stromaufwärts der Zielsequenz und durch Bindung des Cas5fv Proteins 

initiiert werden. Die erzeugten Komplexe beinhalten die ersten 100 nt der markierten RNA, die 

anschließend isoliert werden kann. Innerhalb der Komplexe ist die RNA stabilisiert und geschützt vor 

Degradation durch RNasen. Komplexbildung kann außerdem genutzt werden, um Reportergen-

Transkripte stillzulegen. Zusätzlich wurden erste Hinweise geliefert, dass das Rückgrat der synthetischen 

Komplexe durch Fusion mit weiteren Reporterproteinen modifiziert werden kann. 
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1. Introduction 

1.1 The CRISPR-Cas adaptive immune system 

Bacteria and Archaea are under constant attack by foreign genetic material. These mobile genetic 

elements (MGE) are most commonly introduced by viral infections but can also be transmitted by 

conjugation, transformation, transduction or transposition (Koonin & Dolja, 2013, Moreira & Lopez-

Garcia, 2009). Consequently, Bacteria and Archaea have evolved numerous defence mechanisms that 

are either based on preventing the entry of invading DNA into the cell, inactivating foreign DNA after 

entry or induced cell death to protect the population (Koonin et al., 2017). Most of these mechanisms 

are described as innate immune systems, such as restriction-modification-systems, abortive infection 

systems and the modification of virus receptors (Samson et al., 2013). 

Among the prokaryotic defence mechanisms, CRISPR (clustered regularly interspaced short palindromic 

repeats)-Cas (CRISPR associated) has been characterized as an adaptive immune system, capable of 

storing genetic information of previously encountered MGEs. This defence system utilizes short RNA 

molecules, called CRISPR RNAs (crRNAs), to degrade foreign DNA or RNA from invading viruses (Mojica 

et al., 2005, Barrangou et al., 2007). These crRNAs are stored in the CRISPR locus, which consists of 

arrays of unique sequences called spacers that are flanked by short palindromic repeat sequences. 

Additionally, a cluster of cas genes is usually located in close proximity (Makarova et al., 2011). CRISPR-

Cas systems are widely distributed and were found in 45 % of bacterial and in 84 % of archaeal genomes 

(Grissa et al., 2007). 

Fragments of viral genomes termed protospacers, can be inserted into the CRISPR locus in a process 

called adaptation. This process is carried out by the universal Cas proteins Cas1 and Cas2 and depends 

on a short sequence of 2-5 bp, the PAM sequence (protospacer adjacent motif). If this sequence is 

present and recognized, a complex of Cas1 and Cas2 binds and cleaves the neighbouring protospacer 

sequence to insert it as a new spacer in the extended CRISPR locus with the addition of an upstream 

repeat region (Nunez et al., 2014).  

The CRISPR locus is first transcribed into a long precursor crRNA (pre-crRNA), consisting of multiple 

spacer and repeat sequences. Subsequently, this transcript is processed into mature crRNAs by either 

endogenous RNase III or specific Cas proteins with an endoribonuclease function, depending on the type 

of CRISPR-Cas system. Mature crRNAs consist of one spacer sequence flanked by the remnants of the 

repeats and form a CRISPR ribonucleoprotein complex (crRNP) with Cas proteins. This complex can 

target foreign nucleic acids and mediate interference during a recurring infection. The crRNPs are able 

to distinguish between self and non-self DNA by recognition of the PAM sequence (Westra et al., 2013). 

Target binding is followed by degradation of the foreign genetic material either by the crRNP itself or by 
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recruitment of an additional Cas protein with nuclease function (Barrangou et al., 2007, Brouns et al., 

2008). 

 

 

Figure 1.1: The three stages of CRISPR-Cas interference. During adaptation, the Cas1-Cas2 complex selects a part of the foreign 
DNA and integrates i t into the host’s CRISPR array. In the next stage (crRNA maturation), the CRISPR array i s transcribed int o a  
long pre-crRNA that is further processed by Cas proteins or, in some cases, by cellular RNases . In the interference s tage, the 

mature crRNAs guide Cas nucleases to the cognate foreign DNA. The Cas proteins cleave the foreign nucleic acid upon binding 
of the crRNA to the matching target sequence. Inference and a daptation depend on recognition of a PAM sequence (in yel low) 
to dis tinguish self from non-self DNA. In class 1 systems, the interference machinery i s a multi-Cas-protein complex, whereas  
class  2 systems uti l i ze a  s ingle Cas  protein for target cleavage. Fi gure modified from Hi l le  et al., 2018. 
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The arms race between viruses and prokaryotes promotes the evolution of viral counter-measures 

against CRISPR-Cas systems (Koonin & Dolja, 2013). Recently, small viral Anti-CRISPR (Acr) proteins were 

discovered that are able to inhibit CRISPR-Cas systems by blocking various positions in the effector 

complexes (Bondy-Denomy et al., 2013, Pawluk et al., 2014, Pawluk et al., 2016). Alternatively, viruses 

are capable of mutating their PAM sequence to escape CRISPR-Cas interference which in turn is required 

to take up more spacers (Cady et al., 2012). 

 

1.2 Classification of CRISPR-Cas systems 

Multiple types of CRISPR-Cas systems have been discovered, which are defined by the Cas proteins 

involved. To this date, two classes of CRISPR-Cas systems with multiple types and subtypes are 

described. The two classes are defined by a multisubunit protein complex ( class 1) or a single protein 

(class 2) as effector units and are further separated into six main types with different signature Cas 

proteins responsible for target cleavage (Figure 1.2). Multiple subtypes exist in these types that have 

evolved different ways of crRNA processing, effector complex formation and PAM recognition (Koonin et 

al., 2017). 

 

Figure 1.2: The two classes and six main types in CRISPR-Cas classification. CRISPR-Cas systems are class i fied based on the 
involved Cas proteins and their function. CRISPR arrays and the adaptation proteins Cas1 and Cas2 are conserved in a ll system s 
whi le in some types, the additional Cas4 protein is involved in trimming of protospacers . In class  1 systems, multiple Cas  
proteins (namely Cas6 for crRNA processing, Cas7, Cas5 and small (SS) and large subunits (LS)) are forming the effector compl ex 
on a  crRNA for target binding. Target cleavage is performed by an additional nuclease Cas3 (sometimes split into two proteins  

or part of the large subunit in type III systems). In class 2 systems, a single Cas protein achieves  interference. For the CRISPR -
Cas9 system, endogenous RNase III is required for crRNA processing. In some systems, associated anci l lary protei ns  have a  
helper function such as the DinG helicase or the Csn2 for coordination of adaptation and interference. Class 1 type II I  systems 
a lso encode proteins for s ignal transduction, further explained in the following section. Genes  s tated to be dispensable for 
immediate immunity are indicated by dashed outl ines . Figure adapted from Koonin & Makarova, 2019.  
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The CRISPR-Cas9 system is the best characterized among class 2 systems and relies on the single effector 

protein Cas9 in combination with an additional trans-activating crRNA (tracrRNA) for target interference. 

In synthetic systems, tracrRNA and crRNA can be fused to a single-guide RNA (sgRNA) construct. Since its 

discovery, the CRISPR-Cas9 system has revolutionized genome-editing, CRISPR interference, and 

transcription regulation approaches (Jinek et al., 2012, Ran et al., 2013, Qi et al., 2013, Larson et al., 

2013, Maeder et al., 2013, Cheng et al., 2013).  

Due to the high diversity of CRISPR-Cas systems, novel effector Cas proteins are continuously evaluated 

for their applicability. Examples are class 2 systems other than type II, such as the type V system, 

defined by its signature protein Cas12 (Zetsche et al., 2015) and the type VI system with the single-

effector RNA-guided RNase Cas13 (Abudayyeh et al., 2016, Smargon et al., 2017).  

In class 1 systems, DNA interference is achieved by complexes of multiple proteins (Koonin et al., 2017). 

Type I systems utilize a crRNP called Cascade (CRISPR associated complex for antiviral defence) (Brouns 

et al., 2008) and a separate Cas3 helicase/nuclease protein for target degradation after recruitment by 

the complex (Huo et al., 2014). This subtype will be discussed in more detail in the next section.  

The effector complexes of type III systems are termed Csm or Cmr and are capable of targeting ssRNA in 

a transcription-coupled and PAM-independent manner, resulting in non-specific degradation of proximal 

DNA (Elmore et al., 2016, Estrella et al., 2016, Kazlauskiene et al., 2016, Samai et al., 2015). 

Interestingly, type III systems have also been shown to be involved in a cyclic oligoA (cOA) signalling 

pathway with allosteric regulation. Target binding of the effector complex stimulates the polymerase 

activity of the signature protein Cas10 for cOA synthesis. The produced cOA activates the promiscuous 

RNase activity of the Csm6 protein that indiscriminately degrades both target RNA and other random 

RNA molecules in proximity (Niewoehner et al., 2017, Athukoralage et al., 2018).  

Much less is known about the type IV system, in which the absence of the usually conserved adaptation 

module and the apparent lack of an associated nuclease suggest novel functions of this system (Koonin 

& Makarova, 2019). Effector complex formation was shown by recombinant expression and purification 

in E. coli but its biological function remains uncertain (Ozcan et al., 2019).  

 

1.3 Interference mechanism of type I CRISPR-Cas systems  

Type I systems are the most widespread in nature and while the general architecture of the Cascade 

effector complex is shared, its composition differs between the known eight subtypes (A -F, I-Fv, U) 

(Koonin et al., 2017). 
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Figure 1.3: Schematic overview of type I CRISPR-Cas systems. cas genes encoding proteins forming the effector complex are 
marked, including cas6, cas7, cas5 as  well as genes encoding small (SS) and large subunits (LS). Adaptation proteins  Cas1 and 

Cas2 are conserved in a ll types. Type I systems are defined by the s ignature protein Cas3, an additional helicase/nuclease that is 
recrui ted for target degradation. Helicase and nuclease domains of cas3 are split into multiple genes and/or fused to other cas 
genes  in some subtypes . Figure adapted from Koonin et al., 2017. 

 

The earliest characterized subtype is the type I-E system from E. coli with multiple available crystal 

structures of the Cascade complex (Jackson et al., 2014, Mulepati et al., 2014, Zhao et al., 2014). Type I-

E Cascade consists of a 61 nt mature crRNA and five Cas proteins with an uneven stoichiometry ((Cse1)1-

(Cse2)2-(Cas5)1-(Cas7)6-(Cas6)1) and is described to have a “seahorse-like” shape with a mass of 405 kDa 

(Jore et al., 2011). The mature crRNA consists of a 32 nt long spacer sequence flanked by an 8 nt long 

handle-region and a 21 nt long hairpin-region at the 5′- and 3′-end, respectively. These regions are 

generated from the repeats during crRNA maturation by Cas6. The endonuclease Cas6 stays tightly 

associated with the 3′-hairpin after processing while another Cas protein, Cas5, binds to the 5′-handle 

(Jore et al., 2011, Carte et al., 2010). The backbone of the structure is formed by the addition of multiple 

subunits of the protein Cas7, which binds in increments of 6 nt along the spacer sequence. The 

intertwined interaction of the Cas proteins in this backbone is due to distinct domains termed “fingers”, 

“palm” and “thumb” in an overall right-hand analogy. The palm contains a modified RNA recognition 

motif (RRM) plus two small loops and is responsible for crRNA binding, splaying out of every sixth base. 

Various interactions of the thumb domains with finger and palm domains of adjacent subunits connect 

all Cas proteins of the backbone (Mulepati et al., 2014). The full complex is formed by the two additional 

proteins Cse1 (also known as the large subunit) and Cse2 (or small subunit). The former is responsible 

for PAM recognition and recruitment of the target nuclease Cas3, while the latter one forms a dimer 

that stabilizes the non-target strand of the foreign DNA during target binding (Jore et al., 2011, Sashital 

et al., 2012).  
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Figure 1.4: Assembly and structure of type I-E Cascade from E. coli. Type I-E Cascade consists of 11 protein subunits  binding 

a longside the mature crRNA. Cas6 binds the 3′-hairpin after crRNA-processing while Cas5 binds the 5′-handle. Six subunits  of 
Cas7 bind the spacer sequence in increments of 6 nt s tarting with position -1 in the 5′-handle as indicated by arrows. The large 

subunit and a dimer of the small subunit bind alongside the “belly” of the structure, stabilizing i t (Jackson et al., 2014, Zhao et 
al., 2014, Mulepati  et al., 2014). PDB: 4TVX, Figure from Plagens  et al., 2015. 

 

PAM recognition by the large subunit leads to destabilization of the DNA duplex and crRNA -directed 

strand invasion (Sashital et al., 2012, Tay et al., 2015). The complex forms a crRNA:target hybrid with a 

ribbon-like structure, termed R-loop. The displaced non-target strand is stabilized and guided along a 

groove at the belly of the complex by the large and small subunits upon structural rearrangements of 

these proteins (Mulepati et al., 2014, Tay et al., 2015).  

Notable variants in this general Cascade composition exist that include less subunits, such as the 

minimal type I-C system in which the Cas5 protein also functions as an endoribonuclease for crRNA 

processing (Hochstrasser et al., 2016) or the I-F system in which small subunits are compensated by 

structural variations in Cas7 (Cady et al., 2012, Rollins et al., 2015). The type I-F system will be further 

discussed in a later section. 

R-loop formation is accompanied by further structural rearrangements that enable the recruitment of 

the signature protein Cas3 for target degradation (Hochstrasser et al., 2014, Sinkunas et al., 2011, 

Westra et al., 2012). Type I-E Cas3 has been extensively studied with multiple available 3D structures in 

different states. Cas3 consist of an N-terminal metal-dependent histidine-aspartate (HD) nuclease 

domain, a C-terminal superfamily 2 helicase domain and a C-terminal accessory domain (CTD) (Gong et 

al., 2014, Huo et al., 2014, Jackson et al., 2014, Mulepati & Bailey, 2013, Sinkunas et al., 2011).  

The helicase domain contains highly conserved residues of superfamily 2 (SF2) helicases including NTP-

binding Walker A and B motifs (Makarova et al., 2002, Jansen et al., 2002). These domains consist of a 

tandem RecA-like fold, forming a channel with coordinated amino acids responsible for the binding of 
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NTP, divalent metal cations and nucleic acid substrates (Cordin et al., 2006, Fairman-Williams et al., 

2010). The helicase enables the ATP-dependent unwinding of duplex DNA in 3’-5’ direction (Mulepati & 

Bailey, 2013, Sinkunas et al., 2011). 

The HD nuclease is characterized as an exo- and endonuclease in the presence of divalent cations which 

are coordinated by the active site HD motif (Beloglazova et al., 2011, Mulepati & Bailey, 2013, Sinkunas 

et al., 2011). In some subtypes, the HD nuclease domain is separated from the helicase in an extra gene 

or fused to another cas gene (types I-A, I-B and I-D) (Koonin et al., 2017). The ssDNase activity of Cas3 is 

commonly observed in the presence of a broad range of divalent cations (Mulepati & Bailey, 2011, 

Sinkunas et al., 2011, Gong et al., 2014, Huo et al., 2014). 

The CTD contacts both RecA-like domains, forming a closed channel for ssDNA and is suggested to be 

involved in loading of the helicase (Huo et al., 2014, Gong et al., 2014). The CTD domain is also 

suggested to connect Cas3 and Cascade (Gong et al., 2014, Huo et al., 2014). In fact, deletion of the CTD 

domain showed decreased Cascade binding affinity (Huo et al., 2014). 

 

 

 

Figure 1.5: Structure of the DNA nuclease/helicase Cas3. The type I -E Cas3 crystal structure of Th. fusca (PDB: 4QQW) contains  

two tandem RecA-like domains, one HD-type nuclease domain and a CTD on top of the structure. The helicase core, cons is ting 
of the two RecA-like domains, forms a  cleft that locates the re sidues for the binding of NTP, Mg2+ ions and the ssDNA substrate. 

Two Fe(II) ions are present at the catalytic centre's HD motif in this s tructure. The 5′ end of the ssDNA enters  Cas3 from the 

RecA2 s ide and is further threaded to RecA1 and the HD-type nuclease domain (indicated by a  scissor). The CTD is proposed to 
close the ssDNA channel  and to contact the Cascade complex. Figure from: Plagens  et al., 2015. 
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Cas3 specifically recognizes the fully formed Cascade/R-loop complex instead of partially bound 

substrates to avoid mistargeting and partial cleavage (Xiao et al., 2017). Target degradation starts with 

nicking of the displaced non-target strand in the R-loop by the nuclease domain, followed by ATP-

dependent unwinding of the remaining dsDNA in 3′-5′ direction by the helicase domain of Cas3 and 

processive degradation of the produced ssDNA. Recent cryo-EM structures have captured the 

Cascade/R-loop/Cas3 complex in pre- and post-nicking states. The nuclease domain recruits the non-

target strand at a flexible bulged region for nicking of single -stranded DNA, bypassing the helicase 

domain (Xiao et al., 2018). Single-molecule fluorescence analysis has been used to describe the helicase 

unwinding as a repetitive DNA-reeling mechanism due to the reeling of the target DNA 3 bp at a time, 

underlined by three successive unwinding events of individual nucleotides (Loeff et al., 2018).  

Viruses are able to mutate the PAM or protospacer sequence to escape CRISPR-Cas immunity (Deveau 

et al., 2008, Vercoe et al., 2013). Cas3 cleavage generates products close to spacer length and enriched 

for PAM-like sequences that are suitable for integration into the CRISPR-locus as new spacers. This 

interference-driven adaptation, also called primed adaptation allows the host to quickly restore 

immunity against viral escape mutants (Kunne et al., 2016, Fineran et al., 2014). Remaining ssDNA can 

also be degraded by a standalone Cas3 (Mulepati & Bailey, 2013, Sinkunas et al., 2013). 

Overall, the type I interference mechanism consists of the following steps: (1) Cascade assembly, (2) 

target screening and R-loop formation, (3) Cas3 recruitment and (4) target DNA cleavage (Figure 1.6).  
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Figure 1.6: Mechanism of type I Cascade-mediated DNA interference. After the assembly of the crRNA-loaded Cascade, the 
surveillance complex (SSU: small subunits, LSU large subunit) scans DNA sequences. Potential  DNA targets  are identi f ied via  
PAM recognition. This event triggers the destabilization of the DNA duplex and a l lows  for the crRNA to pa ir with the target 
s trand, while the non-target s trand is displaced and spanned via the large and smal l  subunit. Fol lowing R -loop formation, 
interaction s ites at the base of the large subunit enable a  stable interaction with Cas3. The HD domain of Cas3 nicks  the DNA 
strand downstream of the PAM and the duplex is further unwound in 3 ′-5′ di rection and degraded. The remaining s ingle -
s tranded target DNA can be cleaved by the s tand-a lone Cas3 enzyme. Figure modified: (Plagens  et al., 2015). 

 

1.4 Variations in type I-F CRISPR-Cas systems 

Another closely studied Cascade belongs to the type I-F system (e.g. present in Pseudomonas 

aeruginosa) which also targets foreign DNA in a PAM-dependent manner. In contrast to type I-E 
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Cascade, this complex is missing the small subunits and thus consists of only four proteins (Cady et al., 

2012, Rollins et al., 2015).  

The large subunit, here termed Cas8f, is responsible for recognition of a GG PAM se quence by specific 

amino acid interactions from the minor groove of the DNA. Opening of the dsDNA at this position is 

achieved by employing a “lysine wedge” of Cas8f, leading to hybridization of crRNA and target strand. 

The non-target strand of the opened dsDNA is stabilized with the help of Cas7f instead of small subunits, 

presumably by additional loops, termed “extended web”, forming a prominent positively charged 

channel (Chowdhury et al., 2017, Rollins et al., 2019, Guo et al., 2017). Cas8f adopts a conformational 

change during full R-loop/Cascade complex formation and rotates by 180°, which exposes the 

recruitment site for the Cas3 protein (Rollins et al., 2019). 

Additionally, the Cas3 nuclease/helicase is fused to the adaptation protein Cas2 in this system. This 

Cas2/3 fusion was shown to form a complex with the Cas1 adaptation protein, resulting in a 

supercomplex that is capable of integrating new spacers during adaptation but inhibits Cas3 nuclease 

activity unless it is recruited by a target-bound Cascade complex (Figure 1.7) (Rollins et al., 2017, 

Fagerlund et al., 2017). In contrast to type I-E Cas3, Cas3f degrades both strands of the target DNA 

efficiently instead of primarily the non-target strand (Rollins et al., 2017). This leads to spacer uptake 

from both foreign DNA strands in type I-F systems (Vorontsova et al., 2015, Richter et al., 2014, Staals et 

al., 2016). 

 

 

Figure 1.7: 3D structure of the "propeller-shaped" Cas1-Cas2/3 supercomplex from type I-F. Negative s tain EM reconstruction 
of Cas1–2/3 complex (EMD 8558). A pseudoatomic model was generated by docking crysta l  s tructures  of Cas1 (PDB I D code 
3GOD) and Cas2/3 (PDB ID code 5B7I) into the EM density using Chimera (CC = 0.9) . Figure modified from Rol l ins  et al., 2017. 

 

14 Acr proteins are known to inhibit interference in type I-F systems while the mechanism of counter-

defence has been discovered for three of them (AcrF1-3). AcrF1 and AcrF2 inhibit DNA recognition by 
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interacting with Cas7f and Cas8f (Chowdhury et al., 2017, Guo et al., 2017), while AcrF3 blocks Cas2/3 

recruitment by mimicking a domain of Cas8f (Rollins et al., 2019). 

 

1.5 The minimal type I-Fv CRISPR-Cas system and its synthetic variants 

Recent work in our group has studied a minimal variant of the type I-F system from Shewanella 

putrefaciens CN-32, in which not only the small but also the large subunit is missing. Furthermore, Cas7 

and Cas5 are replaced by two new proteins which display no sequence similarity to other proteins of the 

type I systems and were initially uncharacterized. These proteins, now termed Cas7fv and Cas5fv, were 

confirmed to be the functional homologs of Cas7 and Cas5 in this variant system (Dwarakanath et al., 

2015) (Figure 1.8). 

The Cas3 protein of the I-F variant system is fused to the Cas2 adaptation protein and bioinformatical 

predictions have identified an HD nuclease and a helicase domain (Dwarakanath, 2015). However, the 

lack of sequence similarity between the Cas3fv and its I-F counterpart suggests structural variations.  

In vivo assays have shown that the I-Fv system is active and confers interference  (Dwarakanath et al., 

2015, Gleditzsch et al., 2016). However, it was unclear how this system is able to substitute  the missing 

large and small subunits for target recognition and how Cas2/3fv is recruited and achieves interference.   

 

 

Figure 1.8: Schematic comparison of the type I-Fv and type I-F CRISPR-Cas systems from Shewanella. Arrows  indicate the 
respective cas genes  with the Cascade genes  cas5, cas7, cas6f and cas8f colored in dark red, blue, green and orange, 

respectively. The CRISPR arrays are indicated as alternating rhombi (orange, crDNA repeat) and squares  (grey, crDNA spacer). 
Grey emphasized areas indicate sections of high protein sequence similarity. No significant protein sequence similarity is fo und 
between the components, which are required for effector formation and Cascade mediated interference, except for Cas6f. 
Figure from Pausch et al., 2017. 

 

Previous work in our group has shown that only Cas7fv, Cas5fv and Cas6f are required to form a 

complex with mature crRNA (Dwarakanath et al., 2015). The minimal recombinant Cascade complex can 

be produced in E. coli and purified (Figure 1.9 A). Initial structural analyses by transmission electron 

microscopy (TEM) showed that the complex adopts a similar crescent shape compared to other related 

Cascade complexes but with a more open configuration, likely due to the absence of additional subunits 

(Figure 1.9 B right). Unique filamentous structures of Cas7fv with a length of multiple hundred nm are 

consistently purified as byproducts (Figure 1.9 B left). 



Introduction 

17 
 

 

Figure 1.9: Purification of type I-Fv Cascade and Cas7fv filaments in E. coli. (A) Puri fication of recombinant type I -F variant 

Cascade complex. SDS-PAGE (top right) and 8M urea PAGE (bottom right) were used to separate the protein and RNA content 
of the peak fractions from size-exclusion chromatography (left). His-tagged Cas7fv co-eluted with Cas5fv, Cas6f and mature 
crRNA (fractions 4 and 5) which verified Cascade complex formation. Cas7fv fi laments  were observed in the void volume 
(fractions 1 and 2) and dimers of Cas7fv and Cas5fv (fraction 8) were identified. (B) TEM analysis verified filamentous s tructures 
of Cas7fv (left) and the crescent-shape of I-Fv Cascade (middle and right). Figure modified from Dwarakanath et al., 2015 and 
Dwarakanath, 2015. 

 

During my master thesis preceding this work, we were able to show that the backbone of I-Fv Cascade 

can be altered by co-producing the Cas proteins with crRNAs featuring elongated or truncated spacer 

sequences. Subsequent purification by size-exclusion yielded stable synthetic complexes with altered 

mass due to the binding of more or fewer subunits of the backbone-forming protein Cas7fv along the 

altered spacer sequence (Figure 1.10) (Gleditzsch et al., 2016).  
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Figure 1.10: Recombinant production and purification of wild-type and synthetic Cascade variants. Variants  of crRNAs  with 
wi ld type (WT) spacer (32 nt), short spacer length (14 nt) and long spacer length (50 nt) were designed and co -produced with  

the Cas  proteins in E. coli. Recombinant Cascade complexes were puri fied via  Ni -NTA and s ize-exclus ion chromatography. 
Cas7fv fi laments (peak 1) and Cas5fv-Cas7fv dimers  (peak 3) were observed and the middle peak corresponded to ful ly 
assembled Cascade ribonucleoproteins (peak 2). The relative shift of this peak during identical size-exclusion chromatography 

runs  and SDS-PAGE revealed that additional spacer nucleotides result in additional Cas7fv subunits  whereas  a  shorter crRNA 
results  in fewer Cas7fv subunits  in the Cascade complex. Figure from Gleditzsch et al., 2016. 

 

The structure of these synthetic Cascade variants was analyzed by small -angle X-ray scattering (SAXS) 

which revealed that they retain the characteristic crescent shape but differ in terms of flexibility ( Figure 

1.11). While the short Cascade variant with a small spacer was contracted and less flexible, the long 

Cascade with an elongated spacer exhibited more flexibility than the wild-type as indicated by the 

random coil likeliness, which is a measure for the degree of freedom of the different proteins within the 

complex (Figure 1.11 A).  
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Figure 1.11: Small-angle X-ray scattering (SAXS) analyses of synthetic Cascade assemblies. (A) SAXS of the short (red), WT 

(black) and long (blue) Cascade constructs. Left: scattering curve, normalized to max I; middle: Kratky plot, normal ized to m ax 

q2I , i llustrating the ‘random coil likeliness’ differences in the high q-range; right: P(r) distance distribution curve, normal ized to 

max P(r), highlighting the different domain organization. (B) Surface grid representations of averaged and filtered ab initio bead 

models  ca lculated by Dammif (Konarev et al., 2003). Figure from Gleditzsch et al., 2016. 

 

Overall, these experiments gave insight into the general structure of the minimal I -Fv Cascade. Wild-type 

and synthetic variants of I-Fv Cascade retain the typical crescent-shape known from other Cascade 

structures but exhibit increased flexibility due to the absence of additional subunits. The minimal 

complex backbone consisting of various Cas7fv subunits can be easily modified by increasing or 

decreasing the length of the spacer sequence in the provided crRNA. The formation of filament 

structures appears to be a consequence of this flexibility and Cas7fv filaments are consistently obtained 

as byproducts during Cascade purification. It was assumed that these structures originate from the 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4937334_gkw469fig5.jpg
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inherent RNA-binding ability of Cas7fv that enables the CRISPR-Cas system to work with varying spacer 

sequences in the first place.  

In continuation of the described research on the type I-F variant systems, this thesis aims to follow two 

objectives. The first objective is to further analyze the recombinant minimal type I-Fv CRISPR-Cas system 

in vitro. Specifically, it is of interest (i) how I-Fv Cascade replaces the large subunit (and small subunits) 

present in other subtypes, (ii) how the PAM sequence is recognized and (iii) how target DNA is bound. In 

vitro binding assays will be performed to study the target binding ability of the complex in the presence 

or absence of a correct PAM.  

We will also attempt to crystallize the recombinant I-Fv Cascade to obtain the 3D structure and 

elucidate the function of the novel Cas proteins in this effector complex. To study the novel Cas3fv 

protein on R-loop substrates and free DNA, it is required to optimize the previously used purification 

protocols for this protein. Purified Cas3fv will be used to study the cleavage mechanism of this novel 

protein. Additionally, we will investigate if the fusion of Cas3fv to Cas2 in the I-Fv system leads to the 

creation of a similar supercomplex known from type I-F and if this influences DNA cleavage. 

The second part of this work focuses on the further synthetic modulation of I-Fv Cascade. In addition to 

the relative backbone-flexibility that has been shown by producing synthetic Cascade complexes with 

longer crRNA, the observation of filament structures on seemingly random RNA has led to the theory 

that the Cascade backbone can be formed on even longer RNA molecules, creating filame nts in the 

process. We wondered if this assembly can be specifically directed on RNA and investigated this by 

placing a repeat region for initiation of backbone formation upstream of desired reporter gene 

sequences. It is anticipated that Cas7fv filament formation can be utilized for specific gene silencing and 

target RNA stabilization.  
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2. Results 
 

2.1 In vitro analysis of the minimal I-Fv CRISPR-Cas system 

The first part of this work focused on the detailed analysis of recombinant I-Fv CRISPR-Cas interference complexes in 

vitro. The initial purification and analysis of the I-Fv Cascade complex allowed for the characterization of the Cas5fv 

and Cas7fv proteins as functional homologs of Cas5 and Cas7 (Dwarakanath et al., 2015). Further experiments were 

required to investigate how this minimal complex provides PAM-dependent interference without large and small 

subunits. Additionally, the novel Cas3fv nuclease is investigated because it shares no significant sequence similarity 

with the related Cas3 proteins of other systems and might provide interference by a different mechanism. The only 

similarity to the I-F system hereby is the fusion of Cas3 nuclease to the conserved adaptation protein Cas2.  

 

2.1.1 Optimized purification of I-Fv Cascade  

For in vitro analyses and later crystallization attempts, large amounts of pure Cascade were required, which 

necessitated optimization of the purification protocols. Therefore, we first switched the His-tag from the Cas6f 

protein and fused it to the C-terminus of the Cas5fv protein. The purification of wild-type I-Fv Cascade with this 

construct yielded fewer by-products than previous variants with the His-tag on the Cas7fv or Cas6f, especially in 

aggregated form, and Cascade eluted as a single distinct peak at an elution volume corresponding to the correct 

molecular weight of the complex during size-exclusion chromatography (Figure 2.1). This fraction containing 

Cascade was then used for all further experiments. 
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Figure 2.1: Purification of recombinant type I-Fv Cascade interacting with His-Cas5fv. UV chromatogram of s ize -exclus ion 

puri fication of I -Fv Cascade with a  His-tag on Cas5fv (left). The Cascade components Cas7fv, Cas5fv, Cas6f as  wel l  as  mature 
crRNA eluted as a single peak (peak 2). Dimers of Cas7fv and Cas5fv (peak 3) were observed as  wel l  as  minimal  amounts  of 
aggregates of Cas7fv in the void volume (peak 1). SDS-PAGE (top right) confirmed the protein content and 8 M Urea -PAGE with 

toluidine blue staining (bottom right) was used to confirm the presence of a  wi ld-type crRNA in the Cascade peak. For by-
products  see Figure 1.9 in the introduction. 

 

2.1.2 In vitro analysis of target binding 

Initial purification and characterization of the I-Fv Cascade complex already provided hints at the 

function of the novel Cas5fv and Cas7fv proteins. In vivo interference analysis by our group also shows 

that the complex is active and enables interference against phages and plasmids when produced in E. 

coli. To better understand this mechanism, it was necessary to show in vitro interference. As a first step, 

we attempted in vitro binding of the complex to a target DNA. Target binding by hybridization of a 

matching sequence to the spacer in the crRNA would form an R-loop structure necessary for subsequent 

degradation of target DNA. Target binding was performed for both ssDNA and dsDNA by incubating the 

complex with radioactively labeled target DNA molecules. These samples were then subjected to 

electrophoretic mobility shift assays (EMSAs) (Figure 2.2). Recombinant type I-Fv Cascade was capable 

of binding ssDNA with a complementary sequence to the spacer in the crRNA of the complex but no 

PAM-dependency or significant binding of a completely hybridized dsDNA was observed.  
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Figure 2.2: Electrophoretic mobility shift assays of type I-Fv Cascade with radioactively labeled ssDNA (A) or dsDNA (B).  

Increasing amounts of recombinant I -Fv Cascade were incubated with radioactively labeled DNA molecules . Target DNA 
conta ined either a sequence matching the sequence in the crRNA (sp4-GG), a non-complementary sequence (sp1-GG), or a  
matching sequence with a  wrong PAM (sp4-TT). For ssDNA, a control was performed in which samples were heated at 95°C for 
5 min. For B, an ssDNA-control  was  included with (+) or without ( -) Cascade to confi rm Cas cade s tabi l i ty. 

 

EMSA analysis shows that recombinant Cascade binds to complementary ssDNA in vitro. There seems to 

be no special target recognition in this reaction and binding only occurs due to Watson-Crick-base 

pairing during incubation. For this reason, it was also possible to see a duplex of crRNA and ssDNA 

without the complex which is especially apparent after a heated control. PAM-recognition could not be 

shown since the same gradient shift was observed for target ssDNA with a matching spacer sequen ce 

but a wrong PAM (TT). As target binding is based on hybridization of the crRNA to the protospacer, no 

target binding is possible for Cascade containing a non-matching crRNA (sp1). 

Binding of dsDNA could not be clearly identified by EMSA. Only a faint band can be seen for the dsDNA 

substrate with the matching spacer sequence and the correct PAM which could indicate dsDNA binding 

with lower efficiency. A possible explanation for this difference is that type I-Fv Cascade evolved to 

exclusively target ssDNA, meaning that it might be coupled to processes in which ssDNA is formed. 

To test this hypothesis and to otherwise provide a fully bound dsDNA target, a construct was designed 

that mimics a dsDNA strand unwound by a helicase or by R-loop formation during interference of other 

Type I systems (Figure 2.3 A). Specifically, two DNA oligonucleotides (i.e. target and non-target) were 

designed with the target containing the protospacer sequence matching the spacer of the crRNA. The 

upstream region of the 3′-sequence of the target strand was complementary to the radioactively labeled 

non-target strand to allow duplex formation. The remaining nucleotides of the non-target strand were 

not complementary to the target strand to not allow hybridization. Increasing amounts of Cascade were 

incubated with this molecule and analysed by EMSA (Figure 2.3 B). 
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Figure 2.3: Electrophoretic mobility shift assays of type I-Fv Cascade with a radioactively labeled target mimicking opened 
dsDNA. (A) Schematic representation of the target constructs. The upper sequence shows the crRNA in the complex, below is  

the target sequence used in previous  EMSAs. The bottom sequence shows the radioactively labeled non-target s trand 
hybridized by the first nucleotides. Nucleotides in yellow are non-complementary to the spacer sequence (green, with an actual 

length of 32 nt) of the target s trand. The PAM sequence is shown in red. (B) EMSA analysis of increasing amounts  of type I-Fv 
Cascade with either matching sequence (sp4-GG), a non-complementary sequence (sp1-GG) in the target s trand or a  matching 
sequence with a wrong PAM (sp4-TT). The non-target strand was labeled instead of the target-strand to rule out ssDNA binding. 

An ssDNA-control  was  included with (+) or without (-) Cascade to confi rm Cascade s tabi l i ty. 

 
It is possible to see that target binding still occurs when a complementary sequence in the target strand 

is available, even if the upstream sequence is dsDNA. This suggests that binding of dsDNA molecules is 

possible if an opening is provided e.g. by a helicase. The potential connection to ssDNA -generating 

processes and the question of how the complex achieves R-loop formation without the missing subunits 

remains to be investigated. Target binding was again not observed for a non-complementary target 

sequence. PAM discrimination could also not be observed for this construct, as the band shift indicating 

target binding was still observed for the construct with the matching sequence and a wrong PAM (TT) as 

was the case for ssDNA. It remains to be shown how the complex is able to differentiate between PAMs 

in vivo.  
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2.1.3 3D Structure of small synthetic I-Fv Cascade  

The major differences of type I-Fv Cascade compared to other Cascades from type I systems are the 

absence of large or small subunits and the lack of sequence similarity between Cas5fv and Cas7fv wi th 

their functional homologues (Dwarakanath et al., 2015). To understand how this minimal type I-Fv 

Cascade and the highly divergent Cas5fv and Cas7fv proteins function and still provide interference, we 

aimed to determine the 3D structure of the complex by crystallization and X-ray diffraction in 

collaboration with Dr. Patrick Pausch from the research group of Prof. Dr. Bange. Crystals of wild-type 

Cascade diffracted poorly and we were unable to solve the 3D structure of the complex. As an 

alternative, we used the small synthetic Cascade variant that was previously analysed by size-exclusion 

chromatography and small-angle X-ray scattering (Gleditzsch et al., 2016). In this synthetic variant, the 

complex assembles around the reduced spacer with three instead of six subunits of the backbone-

forming protein Cas7fv as well as one subunit of Cas5fv and Cas6f , respectively. Crystals of this 

condensed and less flexible variant were of sufficient quality to solve the 3D structure of the complex at 

a resolution of 3 Å (Table 6.1). The structure of type I-Fv Cascade revealed an elongated and crescent-

shaped complex with a length of 130 Å along the crRNA axis (Figure 2.4). 

 

 

Figure 2.4: 3D structure of short I-Fv Cascade from S. putrefaciens CN-32. Cartoon representation of the short I -Fv Cascade X-
ray crysta l  structure from S. putrefaciens CN-32 in two, 90° rotated orientations . Short crRNA, Ca s5fv, Cas7fv and Cas6f are 

colored in orange, dark red, blue and green, respectively. The crRNA 3′-ha irpin and 5′-end are indicated and the Cascade 
subunits are labeled. Disordered sections are labeled and indicated by thin dotted l ines. The two parallel right-handed wrist and 

palm/thumb helices are labeled accordingly and are indicated by thick dotted l ines. Right: scale bar illustrating the total  height 
of 130 Å.  Figure from Pausch et al., 2017. 
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As expected, Cas6f binds one end of the structure by recognizing the 20 nt long crRNA 3′-hairpin tag. 

The backbone of Cas7fv assembles along the spacer sequence of the shortened crRNA with three 

subunits binding in increments of 6 nt. Cas5fv caps the other end of the structure at the 5’-end of the 

crRNA by interacting with the 8 nt long 5′-handle.  

While the overall shape of I-Fv Cascade appears similar to related structures from other systems, certain 

aspects are drastically different. For reference, we compared the obtained structure of I-Fv Cascade to 

the related I-F Cascade from Pseudomonas aeruginosa (also termed crRNA-guided surveillance complex 

(Csy) complex) that was published a few weeks earlier (Chowdhury et al., 2017). The absence of the 

additional subunits at the belly of the complex results in a more open configuration compared to its I-F 

counterpart (Figure 2.5 A) that is more reminiscent to the further related type I-E systems 

(Supplementary Figure 1). 

The Cas6f protein of I-Fv Cascade is highly similar to its I-F counterpart as both are bound to the 20 nt 

long hairpin at the 3′-end of the crRNA and interact with the adjacent Cas7 protein (Figure 2.5 B & C). 

While the ferredoxin-like domain of Cas6f interacts with the palm domain of Cas7f in the type I-F 

system, the crRNA-binding α-helical hairpin establishes a similar interaction in type I-Fv (Figure 2.5 B & 

C). In comparison, this rearrangement leads to an approximately 90° tilted reorientation for the 3′-

hairpin (Figure 2.5  D). 

Both the palm and the thumb domain are present in the type I-Fv Cas7 protein but the fingers are 

strongly reduced and instead, two extensive loops (aa 25-77) are present next to thumb at bottom of 

palm (Figure 2.5 B). In accordance with the right-hand analogy of these domains, we termed them wrist-

loops (WL1 and 2). WL1 and 2 are connected with each other and form a unique helical filament at the 

concave side of the complex, where small subunits are located in type I-E Cascade. This wrist helix runs 

parallel to the helix formed by the palm and thumbs, the palm/thumb helix (Figure 2.4, Figure 2.5 B). 

Cas5fv interacts with the 8 nt long S-shaped 5′-handle at the opposite end of the crRNA and encases it 

via the RRM domain in the palm (Figure 2.5 B & D), as is the case for type I-E and I-F (Chowdhury et al., 

2017). However, Cas5fv also contains a wrist that connects to the wrist helix formed by the Cas7fv 

backbone (Figure 2.4 and Figure 2.5 B). The most striking difference is the presence of an additional 

domain that consists of six α-helices (AH, residues: 110 – 266; Figure 2.5 A & B) and extrudes from the 

convex side of the complex, where the tip of the thumb pins the crRNA against the palm of the adjacent 

Cas7fv (Figure 2.5 B). The position of this domain at the location of the large subunit in type I-F and I-E 

suggests that it might compensate for its absence. 

Overall, type I-Fv drastically differs from its homologues in type I-F. Structural alterations are present in 

the Cas7 and Cas5 proteins at positions where the small and large subunits are located  in other 

Cascades of type I. Thus, large and small subunits that are usually essential for DNA recruitment and 

interference, are replaced. 
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Figure 2.5: Structural comparison of type I-F and type I-Fv Cascade. (A) Left: X-ray crysta l s tructure of the short S. putrefaciens 

I-Fv Cascade shown in a  cartoon representation. Color scheme and label ing are as  in Figure 2.4. Middle: crRNA spine 
superimposition of the short I -Fv (orange) and I -F (grey) crRNA on the basis of a  5′-handle a l ignment. Nucleotide pos i tions  
upstream of the first spacer nucleotide are labeled with negative va lues and the pos i tions  of downstream nucleotides  are 

indicated by positive values. The angle of 24° between nucleotide position -6 and 12 i llustrates the different crRNA spine pi tch. 
Right: cryo-EM structure of the AcrF1/2 bound P. aeruginosa I-F Cascade (PDB ID: 5ZU9; (Chowdhury et al., 2017)). Components 
are labeled according to the current nomenclature for type I -F. Color scheme of the I -F Cas homologs i s  according to I -Fv. The 

additionally present large subunit protein Cas8f is shown in yellow and the activity inhibiting AcrF1/2 proteins  are shown in  a  
grey surface representation. (B) and (C): Side-by-side comparison of the I -Fv (B) and I-F (C) Cascade subunits. Color i s according 
to Figure 2.4. The Cas6f proteins are compared in the left panel, Cas7 homologs in the middle panel and Cas5 homologs  in the 
right panel. Adjacent Cascade subunits are shown as transparent surfaces  and labeled respectively. Grey ci rcles  indicate 
disordered regions. N and C indicate N- and C-termini, respectively. (D) crRNA spine comparison of I-F (orange) and I -Fv (grey). 
Left: crRNA arrangement at the tilted head structure. Superimposition according to I -Fv nucleotides  6 to 12. Middle: crRNA 

architecture of the Cas7 backbone bound segment. Superimpos ition according to I -Fv nucleotides  -1 to -4. At every s ixth 

pos ition, the nucleotide is splayed out from the base s tacking segments (‘kink’). Right: Superimposi tion of the similar S-shaped 
5′-handles . Figure from Pausch et al., 2017. 
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2.1.4 3D structure of I-Fv Cascade bound to target DNA 

Next, we aimed to understand how the minimal I-Fv Cascade achieves PAM-dependent recognition of 

foreign DNA without small and large subunits. For this, we reconstituted and co-crystallized I-Fv Cascade 

bound to the previously used DNA target duplex (Figure 2.3) with minor modifications in terms of 

nucleotide length (Figure 2.6 B). 

The target bound structure (3.25 Å) shows that Cas5fv directly recognizes the GG-PAM motif via the AH 

domain. The dsDNA section downstream of the GG-PAM is pinched in between the RRM fold and the AH 

domain of Cas5fv (Figure 2.6 A). In the section upstream of the PAM, the split target and non-target 

strand are guided along the Cas7fv backbone in two different routes (Figure 2.6 A) with a maximum 

distance of approximately 25 Å (non-target strand T22/ target strand A7). The target strand protospacer 

region is hybridized with the crRNA spacer while the non-target strand is aligned to the wrist helix.  

Further upstream, the 5′-region of the target DNA protospacer pinches the thumb of Cas7fv.2 in 

between the crRNA and the target strand (Figure 2.6 A & C).  The thumb of Cas7fv.2 is stabilized by this 

and establishes a salt bridge interaction of R155 to E17 of the ferredoxin-like domain of Cas6f, which 

rotates it by approximately 7 Å and stabilizes it in turn (Figure 2.6 A, Figure 2.7 A). These conformational 

rearrangements might be relevant for target DNA association and Cascade stalling by R-loop retention.  

The separated target and non-target strands are recruited by the two parallel helices on each side of I-Fv 

Cascade. Association of the target strand in the positively charged central channel by the palm/thumb 

helix is similar to type I-E Cascade (Hayes et al., 2016, Mulepati et al., 2014) and relies on a set of 

sequence-independent DNA interactions. The thumbs of Cas7fv splay out every sixth nucleotide of the 

protospacer, while the nucleotides in between are hybridized with the crRNA. Aromatic residues 

emanating from the Cas7fv thumb (Y149, F160, F161) further stabilize this interaction and stack the 

nucleobases in place that lie 5′-adjacent to crRNA and DNA kinks (Figure 2.6 D). R155 at the thumb tip 

forms a salt-bridge with the adjacent Cas7fv D192, similar to the ferredoxin-like fold of Cas6f and the 

thumb of Cas7fv.2 (Figure 2.6 D). Surprisingly, Cas7fv not only interacts with the target strand but also 

guides the non-target strand in parallel via the wrist helix at the opposite side of the complex (Figure 2.6 

A, E). The non-target strand passes along a path formed by WL1 and Wl2 and is stabilized by sequence 

unspecific interactions via tyrosine 62 and 64 (Figure 2.6 E). Thus, the wrist helix establishes the trench 

route for the non-target strand and compensates for the loss of the large and small subunits. 

The PAM containing DNA duplex is pinched between the AH domain and a small helix (SH) at the wrist of 

Cas5fv and recruited by a set of polar interactions (Figure 2.6 A, F). Contrary to type I-E Cascade, the GG-

PAM in type I-Fv is recognized in duplex form from the major groove side by the N-terminal linker and α-

helix 6 of the AH domain (Figure 2.6 A, F). In the centre, E113 distorts the first PAM bases guanosine 

(G15) of the target and the corresponding cytosine of the non-target strand (C14) (Figure 2.6 F, G). 
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Guanosine G15 interacts with lysine 252, while the second base pair of the PAM, guanosine/cytosine 

(G16/C13), interacts with lysine 252 and aspartate 253 of the C-terminal helix of the AH domain, 

respectively (Figure 2.6 F, G). These central residues recognizing the GG-PAM are flanked at the AH 

domain by the side-chains threonine 251 and aspartate 254 of α-helix 6, possibly also contributing to 

PAM recognition (Figure 2.6 F, G). 
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Figure 2.6: X-ray crystal structure of the short I-Fv Cascade R-loop complex. (A) Overview of the R-loop Cascade crysta l  

s tructure. Components are shown in cartoon representation and colored and labeled according to Figure 2.4 and Figure 2.5. 
Nucleic acid components are highlighted for clarity by transparent surfaces (orange: short crRNA; red: DNA target s trand; violet: 
non-target s trand). Important regions for nucleic acid interaction, detailed subfigures C to G, are tagged with numbers in white 

ci rcles (1-4) for orientation. (B) Design of target and non-target pri mers  for the reconsti tution of the R-loop/ I -Fv Cascade 
complex. The blue, red and green lines indicate the interface between Cas7fv, Cas5fv and Cas6f and the nucleic acids  as  
observed in the R-loop/ I-Fv Cascade s tructure. Arrows indicate amino acids of Cas5fv interacting with the GG-PAM. Grey letters 

indicate disordered nucleotides. (C) to (F) Close up view of the DNA interacting regions close to the Cas6f head structure (C), at 

the thumb of Cas7fv.3 (D), the base of the wrist helix (E) and the PAM recognition site in between the AH and SH of Cas5fv (F). 
Amino acid side chains in close proximity to nucleic acids are shown as s ticks and are labeled according to their identi ty and 
pos ition. Nucleic acids are labeled according to subfigure B. (G) Detailed view on the GG-PAM, shown in s tick representation. 
Adjacent nucleotides  were removed for clari ty. Figure from Pausch et al., 2017. 
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Superimposition of apo-Cascade and target-bound Cascade reveals a conformational shift of the AH 

domain by 12.5 Å towards the complex body, which inserts α-helix 3 against the first G-C base pair of 

the PAM (Figure 2.7 A). This “wedge” helix locks the target in position by not allowing re-association of 

the target and non-target strand at the seed region, as shown by an ideal B-form dsDNA aligned to the 

dsDNA PAM downstream region (Figure 2.7 B). The polar side-chains (N178-K178) might assist in DNA 

strand separation (Figure 2.7 C). Residues T251, K253 and D254 are predicted to interact directly with 

the PAM either at the target (K253) or at the non-target strand (T251). In vivo assays conducted in our 

laboratory by Dr. Hanna Müller have shown that single exchanges of these amino acids to alanine have 

only a mild effect on interference, while a triple exchange completely abolished interference.  

 

 

Figure 2.7: Structural reorganization of type I-F Cascade upon R-loop formation. (A) Superimposition of the short Apo Cascade 
(grey cartoon) and the R-loop associated short Cascade (colored cartoon). I-Fv Cascade undergoes s tructural rearrangements at 
the Cas6f head and Cas5fv AH domain, indicated by arrows and distances. (B) Superimposition a long dsDNA segment of the 

a l igned apo (grey) and R-loop bound (colored) short Cascades  with an ideal  B-form DNA (l ight blue). The PAM region is  
highlighted with a  dashed line. (C) Close up on the superimposition with an ideal B-form DNA (shown in subfigure B) upstream 

of the GG-PAM, emphasizing steric clashes that would occur between the target strand DNA and α-helix 3 (wedge hel ix) of the 
Cas5fv AH domain upon target and non-target s trand association. Residues are labeled according to their identity and position. 
Figure from Pausch et al., 2017. 

 

In conclusion, type I-Fv Cascade recognizes target DNA from the major groove side by Cas5fv. Cas5fv is 

not only responsible for capping the 5′-end of the crRNA but also for target recognition, compensating 

for the loss of the large subunit. 

 

2.1.5 Requirement of AH and WL domains for complex formation 

The impact of the described wrist helix domain of Cas7fv and the AH domain of Cas5fv on the formation 

and stability of I-Fv Cascade was investigated by replacing these domains with a flexible linker 

(GGSGGS). Both truncated constructs were co-expressed with the wild-type crRNA and used for Cascade 

production in E. coli. Cas proteins were purified by Ni-NTA followed by size-exclusion chromatography. 
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Recombinant I-Fv Cascade was still able to assemble with a deleted AH domain (Figure 2.8 A) but not 

without the wrist helix (Figure 2.8 B). 

 

 

 

Figure 2.8: Requirements of Cas5fv and Cas7fv domains for I-Fv Cascade. (A) Truncated Cas5fv, miss ing the AH domain  i s  
incorporated into a s table Cascade complex. His-tagged ΔAH-Cas5fv co-elutes with Cas7fv and Cas6f as  a  s ingle peak during 
s ize-exclusion chromatography (blue) but with a  later elution volume, corresponding to the smaller size, in comparison  to wt-

Cascade (black). (B) No stable Cascade complex is formed with Δwrist-Cas7fv. Al l three Cas proteins still elute in one peak (red), 
but without overrepresentation of Cas7fv and without incorporation of crRNA.  

 

This further supports the hypothesis that the AH domain evolved to directl y replace the large subunit 

and rules out misassembled complexes as a reason for the loss of interference in the conducted in vivo 

assays. No stable Cascade complex was obtained in the construct where the wrist loops of Cas7fv were 

deleted and only minor peaks were visible in the size-exclusion chromatogram (Figure 2.8 B). All three 

Cas proteins, Cas5fv, Cas6f and a truncated Cas7fv eluted at the same posi tion and were detected by 

SDS-PAGE. However, the Δwrist-Cas7fv is not overrepresented in comparison to Cas5fv and Cas6f and 

separation on Urea-PAGE did not reveal crRNA to be incorporated in these samples, further arguing 

against Cascade formation. Separating both loops individually might produce a stable Cascade complex 

without the wrist helix in future attempts. Otherwise, this result suggests that the wrist helix is required 

for Cascade assembly or stabilization. 

 

2.1.6 Investigation of the Cas3fv nuclease activity  

Previous analysis of the Cas2/3 fusion protein of the I-Fv system with bioinformatics tools suggested 

that this protein is a typical metal-dependent ssDNA nuclease responsible for target degradation. 

Previous work in our group showed that the deletion of these proteins both in the native host S. 

putrefaciens, as well as in E. coli abolished the activity of the CRISPR-Cas system in vivo. Recombinant 

production of Cas2/3fv turned out to be problematic and the fusion of a SUMO-tag increased solubility.  
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To optimize the purification procedure, we first attempted to purify the protein fused to an MBP-tag 

(maltose-binding protein) as this was described to assist in Cas3 protein production for related CRISPR-

Cas systems. While good amounts could be purified via Ni-NTA, size-exclusion purification revealed that 

the protein eluted exclusively in the void volume and thus most likely in aggregated form. Indeed, no 

nuclease activity of these samples was observed on ssDNA. 

For easier crystallization of the Cas3fv protein, we deleted the Cas2 domain from the Cas2/3fv fusion 

protein and were able to purify a stable standalone Cas3fv protein. This purification has been 

established by Dr. Patrick Pausch for higher yield by using a wash buffer with higher salt concentration 

(0.75 M NaCl) and immediate size-exclusion chromatography after Ni-NTA elution. With this, Cas3fv 

elutes both in the void volume, presumably in either an aggregated form or bound to nucleic acids, but 

also in monomeric form at the appropriate elution volume during size-exclusion chromatography (Figure 

2.9 A).  

The activity of the standalone Cas3fv protein was first investigated with ssDNA substrates by incubation 

for various time points in a buffer containing Mg2+ and Ca2+ ions as well as ATP. It was not possible to 

purify the catalytically dead HD-mutant of Cas3fv for control purposes because it remained insoluble. 

Instead, EDTA was added in a control reaction to quench the metal-dependent reaction. This assay 

showed that Cas3fv was able to degrade ssDNA over time (Figure 2.9 B).  

During natural immunity in the host organism, Cas3 is recruited by the target-bound Cascade complex 

where an R-loop structure is formed. Thus, we tested Cas3fv activity on Cascade-bound target DNA. 

R-loop formation by Cascade was investigated by incubating Cascade with a dsDNA construct containing 

a 10 nt bubble adjacent to the PAM sequence. By EMSA analysis, Cascade was shown to be able to bind 

to this construct as increasing amounts of Cascade resulted in a band shift of the dsDNA substrate to a 

full R-loop substrate (Figure 2.9  C). The small 10 nt opening of the target dsDNA was apparently 

sufficient for the unwinding of the following dsDNA by Cascade and allowed full binding of the crRNA 

spacer to the matching sequence. The requirements for R-loop formation, the opening of dsDNA targets, 

and target recognition are open questions that require further investigation.  

The nuclease activity of Cas3fv was analysed on radioactively labeled substrate bound to Cascade or the 

empty “bubble” construct. Cleavage on both substrates was observed when they were further 

incubated with Cas3fv for 2h. To observe the cleavage pattern, samples were separated via denaturating 

Urea-PAGE (Figure 2.9 D). Incubation with Cas3fv (500 nM) removed the 90 nt substrate completely and 

resulted in a prominent band with a size smaller than 10 nt, corresponding to shredded DNA.  It should 

be noted that the substrate quality on the nuclease assays is improvable considering the smear it 

produces on the gel unless degraded by Cas3fv. Additionally, the HD-mutant would be the best control 

to rule out unspecific cleavage. Due to a control in which substrate alone was incubated for the full-time 
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period without protein and EDTA, additional contaminants in the Cas3 purification sample that are able 

to cleave DNA can be ruled out. 

 

 

Figure 2.9: Purification and nuclease activity of standalone Cas3fv. (A) Puri fication of s tandalone Cas3fv without the Cas2 
domain. Schematic representation in the top. UV chromatogram of the final size-exclusion purification step shows two peaks of 

Cas3fv. SDS-PAGE analysis confirms the presence of ΔCas2-Cas3fv with a  reduced s ize of 100 kDa in both peaks . (B) s sDNA 
cleavage activity of Cas3fv observed on agarose gel electrophoresis. 500 nM of Cas3 were incubated with substrate for various  
time points (0, 2, 5, 10, 20, 30 and 60 min). Increased incubation time results in degradation of the ssDNA unless  the reaction 
was  inhibited by EDTA. (C) EMSA of radioactively labeled dsDNA containing a small 10 nt opening (“bubble”) with increas ing 
amounts of Cascade. Cascade is able to bind the substrate and unwind the fol lowing dsDNA secti on, forming an R-loop 
s tructure in the process. (D) Nuclease activity of Cas3fv on empty bubble dsDNA and R-loop substrates. Substrates were ei ther 
incubated without Cas3fv (-) with Cas3fv (+) or with Cas3fv but also EDTA (C) for 2 h at 30 °C. Incubation with Cas3fv resulted in 

degradation of both label ed non-target s trands  to smal l  fragments  below 10 nt. 
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With the optimized purification, enough sample could be obtained to initiate structural analysis by HDX -

MS and crystallization. Preliminary HDX-MS data suggests that Cas3fv binds the non-target strand as it 

exhibits increased protection from hydrogen deuterium exchange  (data not shown). So far, 

crystallization of Cas3fv was not successful. 

 

2.1.6.1 Interaction of Cas1 and the Cas2/3fv fusion protein  

Another characteristic of type I-F Cas2/3 effector proteins is the fusion of the adaptation protein Cas2 to 

the nuclease Cas3 and the assembly of two Cas2/3 proteins with two dimers of Cas1, the second protein 

of the acquisition machinery (Rollins et al., 2017).  

Structural analysis of the Cas1-Cas2/3 complex from the type I-F system of Pseudomonas aeruginosa 

showed that the complex adopts a four-lobed propeller-shaped structure (Rollins et al., 2017, Fagerlund 

et al., 2017). This complex was shown to have a regulatory role in interference as Cas3 nuclease activity 

is significantly decreased for the Cas1-Cas2/3 complex and only restored on R-loop substrates due to 

recruitment by Cascade. 

To study if this regulatory feature also exists in the I-Fv system, we purified the Cas1-Cas2/3 complex of 

this system by fusing a Strep-tag to the N-terminus of Cas1 and co-producing Cas1 with Cas2/3fv 

followed by size-exclusion chromatography (Figure 2.10 A). The complex elutes at a volume 

corresponding to a molecular weight of ~ 400 kDa, which indicates the presence of two subunits of 

Cas2/3 and two dimers of Cas1. In accordance with this, SDS-PAGE revealed similar band intensities for 

both Cas2/3fv and Cas1. Cas1 also elutes in the void volume as well as during late elution with a size that 

corresponds to a dimer of Cas1.  

The ssDNA cleavage activity of the complex was investigated and compared to ssDNA cleavage by Cas3fv 

(Figure 2.10 B). While Cas3fv effectively processed and completely degraded ssDNA, only a much higher 

concentration of the Cas1-2/3 complex was able to degrade the substrate. This might be due to partial 

sample inhomogeneity by complex breakdown or a generally reduced activity. Overall, ssDNA cleavage 

activity of Cas2/3fv is reduced by the complex formation with Cas1 which is in agreement with studies 

performed with type I-F Cascade (Rollins et al., 2017).  

The nuclease activity of the Cas1-Cas2/3fv complex was then investigated with the radioactively labeled 

bubble dsDNA and R-loop substrates previously used to study Cas3fv nuclease activity (Figure 2.10 C). 

Unlike nuclease activity by standalone Cas3fv, cleavage by the Cas1-Cas2/3fv complex produced a 

prominent band at ~ 40 nt for both open dsDNA as well as R-loops, although not all substrate was 

processed. Incubation of Cas1-Cas2/3fv with ssDNA in this assay also partially removed the substrate 

and produced the prominent 40 nt band as well as completely degraded DNA below 10 nt. A control in 
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which EDTA has been added shows that Cas1-Cas2/3fv activity depends on divalent metal cations, which 

is in agreement with observations for Cas3fv nuclease activity.  

Full cleavage of the substrates might be achieved by a higher input concentration of Cas1-2/3fv or 

longer incubation time. The distinct band of ~ 40 nt could represent the position at which Cas3fv initially 

nicks the target DNA before unwinding and degrading the adjacent dsDNA segments. It is unclear why 

this nicking is more prominent than for the Cas3fv experiment and repetition of this experiment is 

necessary to confirm these results. The cleavage products of the empty bubble construct were 

unexpected in general, considering that the complex was shown to have a decreased cleavage activity 

on ssDNA and the complex from the I-F system inhibited activity unless it was recruited by Cascade. This 

activity could be due to a mechanistic difference in Cas3fv compared to Cas3f or due to complex 

breakdown during the long incubation time in this assay. More experiments are required to confirm 

these results and investigate the function of the Cas1-Cas2/3fv supercomplex. 
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Figure 2.10: Purification and nuclease activity of the Cas1-Cas2/3fv complex. (A) UV chromatogram of Cas1-2/3fv complex 
puri fication by s ize-exclusion (left) and a  schematic view of the proteins  (top). The Cas1-Cas2/3fv complex was  puri fied by 

Strep-tagged Cas1 and all purified proteins were separated by s ize-exclusion chromatography. Cas1-2/3fv complex elutes  in a  
peak at ~400 kDa, flanked by two peaks of aggregated Cas1 and a  Cas1 dimer. SDS-PAGE analysis of peak fractions  from s ize -
exclusion shows Cas1 and Cas2/3fv proteins (right). (B) Comparison of ssDNA cleavage activi ty of Cas3fv and Cas1-Cas2/3fv 

complex. M13mp18 ssDNA target substrate was  incubated with increas ing concentration of ei ther Cas3fv or Cas1 -2/3fv 
complex (0, 50, 100, 200 and 500 nM) and separated by agarose gel electrophoresis. Only the highest concentration (500 nM) 

of Cas1-2/3fv removed the substrate in comparison to much less concentration needed for just Cas3fv (100 nM). EDTA inhibited 
the cleavage for both proteins. (C) Nuclease assay of Cas1-2/3fv with dsDNA substrates  conta ining a  bubble in the spacer 
sequence, a full R-loop substrate by incubation with Cascade and a ssDNA substrate. Cleavage products  were analysed by 

separation on Urea-PAGE, after incubation of Cas1-2/3 complex with the 5’-end non-target label ed substrates  (+) or only 
substrate (-). EDTA was  added as  a  negative control  (C) to quench the reaction.  
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To compare the structure of the type I-Fv complex to the published I-F “propeller” shaped complex, we 

initiated SAXS analysis to model the general shape of the structure. High amounts of sample were 

purified and scattering data was recorded but the obtained data did not provide the structure and these 

experiments need to be repeated. Structural analysis of the Cas1-2/3fv complex and comparison to the 

I-F system could be useful to understand the general interference mechanism of this system, in addition 

to solving the 3D structure of Cas3fv.  

 

2.2 Synthetic Cascade assembly and RNA wrapping 
 

Previous experiments have investigated how the minimal I-Fv CRISPR-Cas system achieves interference 

by purification and analysis of the involved Cas proteins. A curious observation during these 

experiments was the formation of extended filaments by the Cascade backbone protein Cas7fv. These 

long helical structures are always by-products during purification when utilizing a His-tag on Cas7fv 

(Dwarakanath et al., 2015). It thus seems that Cas7fv has the ability to bind RNA in general, which is 

essential for the formation of Cascade complexes assembled on varying spacer sequences from different 

sources in nature. If no crRNA is present, Cas7fv seems to bind unspecific RNAs present in the cell 

instead. The flexible backbone formed by Cas7fv subunits without any small or large subunits also makes 

it possible to cover longer sequences of RNA. We utilized this ability to artificially extend natural 

occurring spacers in the crRNA to produce synthetic Cascade variants. 

With these observations in mind, we proposed to utilize the general RNA binding ability of Cas7fv for 

complex formation on specific RNA of choice, potentially providing a variety of useful applications that 

will be investigated in the following part of this work. We have termed this complex formation “RNA 

wrapping” and will refer to this term from this point on. 

 

2.2.1 In vitro RNA wrapping with I-Fv Cas proteins 
 

We first attempted to form complexes on provided RNA with purified Cas7fv in vitro. This process could 

be useful for the specific stabilization of extracted RNA. To achieve this in vitro RNA wrapping, it was 

first required to obtain the Cas7fv protein in an RNA-free state and not assembled to a complex. In 

theory, complexes could then be created by mixing this protein with RNA provided by extraction or in 

vitro transcription (Figure 2.11). 
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Figure 2.11: Schematic of the in vitro RNA wrapping process. Unbound RNA (extracted RNA or in vitro transcribed) i s  mixed 

and incubated with unassembled apo-Cas7fv, forming a  Cas7fv-RNA complex in the process . 

 

To obtain apo-Cas7fv, we used a variety of methods. First, we used the Cas5fv-Cas7fv dimer that is a 

consistent by-product during purifications because this dimerization stabilizes the otherwise insoluble 

proteins. We also theorized that the dimer form is required to deliver Cas7fv to the crRNA during natural 

Cascade assembly. To mimic this assembly process as closely as possible, we produced a target RNA with 

a 5′-handle sequencing by in vitro transcription and dephosphorylated it to create an OH-group at the 5′-

end as is the case after processing by Cas6f. This was also considered to be potentially necessary, in case 

that assembly does require Cas5fv binding for initiation. In theory, the Cas5fv-Cas7fv dimer could also be 

used on a random RNA without repeat-tag for general RNA-binding without Cas5fv for target specificity 

but the properly processed repeat-tag should work for both eventualities if this process works in 

general. Fresh Cas5fv-Cas7fv dimer was taken from a I-Fv Cascade purification and mixed with the target 

RNA. After incubation for 1h at RT precipitation was noticeable. The supernatant was then loaded on an 

analytic size-exclusion column and separated to look for formed complexes. Unfortunately, no 

assembled complexes could be detected and the fractions corresponding to the only size -exclusion peak 

contains the Cas5fv-Cas7fv dimer as shown by SDS-PAGE (Figure 2.12).  
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Figure 2.12: In vitro RNA wrapping with the Cas5fv-Cas7fv dimer. (A) Schematic principle of the experiment. Puri fied Cas5fv-
Cas7fv dimer i s incubated with in vitro transcribed sfgfp for 1h at RT. Precipitated protein is removed and the supernatant i s  
then separated by analytic size-exclusion chromatography. (B) Gel electrophores is  of in vitro transcribed sfgfp RNA used a s  
template for RNA binding. (C) UV chromatogram of analytic size-exclusion chromatography (left) and analys is  by SDS-PAGE 
(right) of RNA incubated with the dimer. Complex assembly was not detected, and only a  peak of the Cas5fv-Cas7fv dimer i s  

eluting. 

 

A possible explanation for the inability of the dimer to form a complex on the provided RNA could be 

that the interaction of both proteins in the dimer is too strong. In addition, precipitation was noticeable 

after incubation, presumably of the entire Cas5fv-Cas7fv dimer. This is commonly observed for the 

Cas5fv-Cas7fv dimer and indicates it could not bind to RNA which would have stabilized the protein.  

As an alternative, we decided to use Cas7fv alone for in vitro RNA wrapping instead of the Cas5fv-Cas7fv 

dimer. The first investigated way to produce Cas7fv was to repeat the crystallisation of I-Fv Cascade 

which has been shown to produce Cas7fv crystals as a by-product under some conditions. Crystals were 

created in drop format by addition of a screening solution and various concentrations of purified I-Fv 

Cascade. After overnight incubation at 18 °C, crystals were visible under light microscopy. To obtain 

sufficient amounts, we attempted to switch from the drop format for crystallization to crystallization in  
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a batch format (i.e. a micro-tube). Under all tested conditions, including those that worked for the drop 

format, protein precipitated overnight and no crystals were obtained.  

Because high-yield crystallization proved to be problematic and beyond the scope of this work, we 

purified monomeric RNA-free Cas7fv fused to a SUMO-tag for solubility following a previously 

established protocol that includes a high salt wash step to remove all bound RNA during Ni-NTA. 

Afterwards, monomeric Cas7fv was separated by size-exclusion chromatography and incubated with 

RNA to form complexes (Figure 2.13 A). SUMO protease was added in the mixture to remove the SUMO-

tag and to exclude possible steric clashes during complex formation. We performed this experiment 

with both small RNAs and in vitro transcribed full length sfgfp RNA (Figure 2.13 B). Unfortunately, a 

second size-exclusion chromatography purification after incubation with RNA did not result in an 

additional peak at an earlier elution volume (Figure 2.13 D). 
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Figure 2.13: In vitro RNA wrapping with SUMO-tagged Cas7fv. (A) Schematic principle of the experiment. Puri fied SUMO-
Cas7fv i s incubated with either small RNA or in vitro transcribed sfgfp as  wel l  as  SUMO protease for 1h at RT fol lowed by 

overnight at 4°C. The sample i s then separated by analytic s ize-exclusion chromatography. (B) Gel electrophores is  of ei ther in 
vitro produced RNA or extracted smal l  RNA used for experiments . (C) Puri fication of SUMO-Cas7fv by s ize-exclus ion 
chromatography (left) and analysis by SDS-PAGE (right). SUMO-Cas7fv was eluted at the corresponding elution volume and 
showed a  matching signal on SDS-PAGE, although some partially degraded SUMO-Cas7fv is present. (D) UV chromatogram of 
analytic size-exclusion chromatography (left) and analysis by SDS-PAGE (right) of incubated protein and the extracted smal l  
RNA. Complex assembly was  not detected, cons idering the same peaks  of SUMO-Cas7fv are present. 

 

Some aggregated SUMO-Cas7fv, presumably still bound to nucleic acids, elutes in the void volume of the 

first size-exclusion chromatography step. This is supported by the high 260 nm UV absorbance in this 

peak and a faint signal matching the size of Cas7fv during SDS-PAGE. Monomeric SUMO-Cas7fv elutes 
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either intact in peak 2 or mostly degraded in peak 3. The bands of these smaller products are also visible 

in the sample from the Ni-NTA step before size-exclusion chromatography and could be due to either 

unspecific interactions or by fragments created by the 1M NaCl wash step. The UV absorbance ratio of 

280 nm compared to 260 nm indicates that mostly protein is eluted in this peak and RNA was indeed 

removed. In accordance with this, no RNA was detected by Urea-PAGE. All fractions of peak 2 and 3 with 

a signal of SUMO-Cas7fv were concentrated and mixed with the small RNA (3.5 µg of small RNA and 1 

mg of SUMO-Cas7fv corresponding to a 160x molar excess of protein). 

In vitro assembly and RNA wrapping by this method was apparently not successful and thus the same 

peaks are present in the UV chromatogram of the second size-exclusion purification step. SUMO 

protease treatment was partially effective considering that the intensity of the band of SUMO-Cas7fv 

was drastically reduced and a band at the size of monomeric Cas7fv was present instead. Due to the 

small size of the SUMO-tag, a shifted elution volume in this size-range is not distinguishable. The same 

result was obtained with the in vitro transcribed sfgfp RNA. 

Overall, no method proved successful for in vitro RNA wrapping. The most promising method seems to 

be the purification of SUMO-tagged Cas7fv. While good amounts of monomeric Cas7fv were produced 

via SUMO-tag and the high salt wash removed all bound RNA, in vitro RNA binding was not observed. 

Complex formation might need to occur much faster as is the case for in vivo conditions. It could also be 

possible that still not enough RNA was provided (even though multiple µg should be in the detectable 

range).  

 

2.2.2 Directed in vivo RNA wrapping by I-Fv CRISPR-Cas repeat sequences 

As an alternative approach to in vitro wrapping of RNA, we attempted to create complexes in vivo by 

mimicking the natural Cascade assembly in the cell. During Cascade assembly, Cas5fv and Cas6f serve as 

roadblocks to limit RNA binding and to form a stable and specific Cascade complex. This assembly is 

likely initiated by crRNA-processing of Cas6f, which makes the 5′-handle available for binding of Cas5fv. 

The binding of this protein possibly initiates the rapid backbone formation of the Cascade complex 

instead of minor unspecific interaction on random RNA. 

To investigate if this process works in vivo, we fused the 8 nt repeat sequence of the I-Fv CRISPR-Cas 

system upstream of a ribosome-binding site and the sequence of a reporter gene. Producing the repeat-

tagged transcript in combination with the Cas proteins should lead to the initial stages of Cascade 

assembly and specific RNA wrapping by Cas7fv. A schematic representation of this process is shown in 

Figure 2.14. 
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Figure 2.14: Schematic representation of directed RNA wrapping by I-Fv repeat sequences and Cas proteins. (1) Targeted RNA 

wrapping starts with crRNA-processing as is the case in the assembly of type I-Fv Cascade. Cas6f produces  the 5′-handle by 
cleaving the full repeat sequence. (2) Cas5fv interacts with the 5′-handle which leads to (3) the subsequent backbone formation 

on the following sequence (in this case the sequence of a reporter gene instead of a  crRNA spacer sequence). During Cascade 
assembly, this process is stopped by Cas6f bound to the 3′-hairpin, serving as a roadblock for backbone formation. Without this, 
long hel ica l  s tructures , poss ibly covering the enti re transcript, are formed.  
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2.2.2.1 Purification of directed RNA wrapping complexes 

 

To test if the hypothetical process works, we first attempted to purify the formed complexes and study 

the wrapped RNA for specificity. For the first experiments, superfolder GFP (sfGFP) was chosen as a 

reporter construct. In the experimental setup, the sequence of sfGFP tagged with a repeat sequence 

was cloned in the pBAD vector under control of the arabinose promoter. Thus, independent expression 

of the cas genes under control of the T7 promoter is possible. To study the specificity of this RNA 

wrapping process, a control construct was utilized that contained only sfgfp and the necessary RBS 

sequence but no upstream repeat sequence. 

Both the transcript and Cas proteins were produced in E. coli expression cultures by overnight growth at 

18 °C after induction at ~ OD600nm 0.6. The next day, cells were lysed and proteins were purified via Ni-

NTA utilizing the His-tag on Cas5fv. Due to an additional His-tag on sfGFP, this protein was co-purified 

from both cultures. Production of sfGFP was already visibly reduced in case of the repeat-tagged 

construct as indicated by the color of the cell pellet when compared to the control construct. Purified 

complexes were then analysed by SDS-PAGE, which visualized the Cas proteins and sfGFP (Figure 2.15 A 

& B). Afterwards, protein samples were pooled and RNA was extracted via phenol/chloroform followed 

by ethanol precipitation (Figure 2.15 C). 
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Figure 2.15: Ni-NTA purification of sfgfp constructs wrapped by Cas proteins. Puri fication and SDS-PAGE analys is  of the 
repeat-tagged construct (A) and the control construct (B). Schematic representation of used plasmids  (top): The sequence of 
sfgfp and the RBS was either tagged with a I -Fv repeat sequences or not tagged. In both constructs, a  C-terminal  His -tag was  
fused to the sequence of sfgfp for co-purification. Plasmid 2 used in both setups contains the cas genes, with a  His-tag fused to 
the C-terminus of Cas5fv. Cell pellets of harvested expression cultures (right side) show a  clear color difference due to reduced 

s fGFP production for the repeat-tagged construct. SDS-PAGE analysis (bottom) shows the presence of all three Cas proteins  as  
wel l as s fGFP. (C) RNA was extracted from Ni-NTA purified samples of the control (C) and the repeat construct (R) and visualized 
by gel  electrophoresis. Left: separation on 1% agarose 1xTBE gel and ethidium bromide staining, Right: separation on 10% PAA-

gel  with 8 M Urea  and SYBR-Gold s ta ining.  
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Cas proteins were purified in both cases, showing a prominent band corresponding to Cas7fv, indicating 

the presence of numerous subunits of this protein. A weaker band corresponding to Cas5fv was purified 

as well, most likely by the one subunit starting the initiation of RNA wrapping as well as Cas5fv-Cas7fv 

dimer by-products which could be removed via size-exclusion chromatography.  

Due to the His-tag on sfGFP, this protein was co-purified in both cases. SDS-PAGE analysis showed a 

significantly more intense sfGFP band for the control than for the repeat construct. This reduced sfGFP 

production by blocking translation on the transcript serves as another indication for specific complex 

formation on the tagged RNA construct. The extracted RNA from both the repeat as well as the control 

construct show multiple bands as well as a smear in both cases. Two clear bands with an approximate 

size corresponding to 1200 and 1000 bp of the dsDNA ladder are visible as well as an accumulation of 

signals below the 500 bp band of the ladder. An entire repeat-tagged sfgfp transcript would have a 

length of 800 nt (or 1000 nt including the transcription terminator). This estimated length does not fit 

completely to the observed. It should be noted, however, that the marker used for size comparison is 

dsDNA and single-stranded RNA runs usually lower on these gels. The extracted RNA was closely 

examined for small sizes, by loading the sample on a high percentage and denaturating PAA-gel (10%, 

8M Urea) which shows a consistent smear due to the large size of the extracted RNA. The two distinct 

bands at a higher position were later identified as rRNA (see section 2.2.2.5). 

 

2.2.2.2 RNA-seq analysis reveals specificity of RNA wrapping  

To analyse the specificity of the RNA wrapping process, we subjected the extracted RNA of the purified 

complexes to Next-Generation Sequencing by Illumina. Prior to this, the RNA samples were treated with 

DNase I to remove potential DNA contamination. The extracted RNA was then fragmented by 10 min 

incubation at 95 °C and addition of 100 mM ZnCl2 and libraries were created for Illumina sequencing 

with the NEBNext Small RNA Library Prep Set.  

The obtained reads were then mapped against the genome of E. coli BL21 (DE3) as well as the pBAD 

plasmid harbouring the sequence of the repeat-tagged sfgfp (Figure 2.16 A). The mapped reads were 

almost exclusively mapping to sfgfp as compared to other parts of the plasmid and the host genome, 

confirming the specificity of this reaction. Reads originating from the sequenced RNA started directly 

with the Cas5fv-binding site upstream of the RBS followed by sfgfp, resulting in a peak in the mapping 

profile with a maximum of ~ 800,000 reads from a total of ~ 1,300,000 reads. However, not the entire 

sequence of sfgfp is covered as the peak has a clear edge and significantly fewer reads are present after 

~ 100 nt of the sfgfp sequence. 

RNA molecules extracted from the control construct (without the repeat-tag upstream of sfgfp) were 

analysed with RNA-seq in parallel (Figure 2.16 B). In this case, minor amounts of reads (a maximum of 
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25,000 reads compared to 4 million reads in total) could be mapped over the entire genome and some 

parts of the plasmid. The mapping profile thus resembles an overall transcriptome representation, with 

the highest coverage originating from transcripts of highly expressed genes.  

 

 
 
Figure 2.16: RNA-seq analysis of RNA wrapping of sfGFP-Repeat and sfGFP-Control. (A) RNA wrapping of sfGFP-Repeat with a  

schematic representation of the expressed constructs from both plasmids  (top).  The obta ined reads  from RNA-seq were 

mapped against the genome of E. coli BL21 (DE3) as well as the plasmid with the s fGFP-Repeat sequence (bottom). The reads  

were mapped almost exclusively to the start of the sequence of sfGFP, confirming specificity. Only the first part of the sequence 

of s fGFP is covered (arrow). (B) RNA wrapping on s fGFP-Control with a  schematic representation of the expressed constructs  
from both plasmids (top). Mapping of the obtained reads from RNA-Seq against the genome of E. coli BL21 (DE3) (middle) and 

the plasmid with the sfGFP sequence (bottom). Matching reads were detected from a l l  over the genome and the plasmid.  

 

Overall, the RNA-seq analysis and the vast overrepresentation of reads mapping to the tagged sfgfp 

shows that the wrapping process can be directed by utilizing a I-Fv repeat sequence. However, it was 

apparently not possible to wrap and extract an entire sfgfp transcript as only minor amounts of reads 

are present beyond approximately 100 nt. These results are in contrast to the clearly visible two bands 

on agarose gel electrophoresis indicating the presence of larger nucleic acids.  

To investigate why not the entire sequence of sfGFP is wrapped and to prove the applicability of this 

process on different kinds of reporter genes, we created a construct with a I -Fv repeat tagged gene 

encoding the lacZ-α subunit. Directed RNA wrapping complexes were produced and purified as before 

and the extracted RNA was sequenced. SDS-PAGE analysis of the purification and the subsequent RNA 
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extracted looked similar to sfGFP-Repeat (Supplementary Figure 2). The obtained reads were mapped 

against the host genome and the lacZ-Repeat plasmid (Figure 2.17). Similar to RNA wrapping of the 

sfGFP-Repeat construct, a significant peak in the mapping profile was only present for the initial 

sequence of lacZ-α. This peak starts again with the repeat sequence upstream of lacZ-α but falls off 

drastically after ~ 100 nt. A smaller additional peak is present after this, but no significant amount of 

reads could be mapped after ~ 150 nt of the lacZ-α sequence. 

 

 

Figure 2.17: RNA wrapping of lacZ-Repeat constructs. RNA wrapping of the lacZ-Repeat construct with a  schematic 
representation of the expressed constructs from both plasmids (top). The obtained reads from RNA-seq were mapped against 
the genome of E. coli BL21 (DE3) and the plasmid with the lacZ-Repeat sequence (bottom). The vast majori ty of reads  were 
mapped to the fi rs t part of the sequence of lacZ (arrow). 

 

The similar limits of read coverage for both investigated reporter genes speak against intrinsic factors, 

such as secondary structures, that might terminate the wrapping process. The apparent limit of RNA 

stabilization is thus more likely a limitation of the wrapping process itself. This is plausible, considering 

no regions leading to strong secondary structures were found on either sfGFP or lacZ-α sequences. 

Nonetheless, this result confirms the possibility to wrap the initial 5′-terminal region of a tagged RNA. 

 

2.2.2.3 Structural analysis of filament structures 

To analyse the structure of the purified complexes and to compare them to the previously observed 

Cas7fv filaments, we attempted to visualize these structures by transmission electron microscopy (TEM). 

To do this, the Ni-NTA purified complexes with the sfGFP-repeat construct were further purified by size-

exclusion chromatography (Figure 2.18 A). The UV chromatogram shows two major peaks with the first 

one in the void volume of the column and the latter at the position of the Cas5fv-Cas7fv dimers. The 

protein content of these peaks was visualized by SDS-PAGE and revealed a band corresponding to 

Cas7fv while Cas6f or Cas5fv were not observed. Cas5fv is perhaps not visible due to its 

underrepresentation compared to Cas7fv considering that only one subunit is necessary for initiation. 

Alternatively, an overlap with the band of Cas7fv is often observed during SDS-PAGE. A complex of the 
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first 100 nt transcript plus approximately 16 subunits of Cas7fv (1 subunit per 6 nt) would be eluted in 

the void volume of the HiLoad Superdex 200 SEC column that was used for this experiment.  

Sample fractions of the void volume of size-exclusion purification were then handed to analysis by 

transmission electron microscopy (TEM) by Dr. Thomas Heimerl. Samples contained long helical 

filaments with a size of approximately 100-200 nm with a turn at every ~ 10 nm. (Figure 2.18 B). Similar 

structures were also purified from the lacZ-Repeat construct (Supplementary Figure 3). 

 

 

Figure 2.18: Structural analysis of filamentous Cas7fv structures with sfGFP-repeat constructs. (A) UV chromatogram of s ize -
exclusion chromatography (left) and SDS-PAGE analysis (right). The UV chromatogram reveals  two major peaks , in the void 
volume and at the elution volume of the Cas 5fv-Cas7fv dimer that both show a  dis tinct band of Cas7fv on SDS -PAGE. (B) 
Transmission electron microscopy of peak sample in the void volume (right) and 2D class averaging of filamentous  complexes . 

 

This indicates that the formed structures in the expression cultures are similar to the observed filament 

by-products of Cascade purification. It should be noted that these filaments seem smaller compared to 

the sometimes extremely long filaments observed as by-products during earlier Cascade purification 

that exhibited a size of multiple hundreds of nm (Dwarakanath et al., 2015).  
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While attempting to solve the 3D structure of I-Fv Cascade, Dr. Patrick Pausch was able to crystallize and 

solve the structure of Cas7fv. These crystals were produced as fragments during crystallization of I-Fv 

Cascade and did not contain RNA. In this crystal structure, the Cas7fv molecules form a helix similar to 

the observed filaments (Figure 2.19). This 3D structure highlights the helical nature of the filament in 

which 8 Cas7fv subunits are required for one full rotation. Surface charge visualization highlights the 

positively charged wrist helix on the side of the structure (Figure 2.19 B, in blue).  

A model of a segment of helixes seen by TEM was also created by 2D class averaging (Supplementary 

Figure 4) that matches the 3D structure. 
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Figure 2.19: 3D structure of Cas7fv filaments in (A) Ribbon cartoon representation and (B) surface charge representation with 
color according to electric charge (electrostatic surface potential ca lculated in arbitrary units ). The s tructure was  created by 
elongation of consecutive Cas7fv dimer subunits. 8 Cas7fv subunits are required for one full rotation  over a  dis tance of 300 Å. 

 

With the structural data, a calculated estimation can be made about how much of the transcript would 

be incorporated in the filaments. A full rotation consisting of 8 Cas7fv subunits has a length of ~ 30 nm 

(300 Å) which equals 3.75 nm per bound Cas7fv subunit. Each Cas7fv subunit binds 6 nt in the crystal 

structure of I-Fv Cascade, which calculates as ~ 0.625 nm/nt.  If the ~ 800 nt long sfgfp transcript is 

completely covered by subunits of Cas7fv, this would generate a length of up to 550 nm which is longer 
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than the observed structures ranging from approximately 100 to 200 nm. If smaller fragments of the 

targeted RNA are wrapped by Cas proteins, such as the ~ 100 nt 5′-terminal portion that is 

overrepresented in RNA-seq, they could fit inside the observed filament structures. By this calculation, a 

100 nt RNA wrapped by the appropriate number of Cas7fv subunits would have a length of only 62.5 

nm. Most observed structures are 100-200nm in size and by calculation, these should encase 160-

320 nt. While some smaller fragments are indeed visible on TEM, they are almost all longer than 60 nm. 

It remains to be investigated how much RNA is indeed bound by Cas7fv in these structures.  

 

2.2.2.4 Attempts to increase the length of wrapped RNA 

2.2.2.4.1 Attempted purification of complexes on entire reporter gene transcripts with two repeat 

sequences 

While investigating the extent of complex formation and the maximum length of RNA wrapping, an 

alternative approach was pursued that involved putting a second repeat region at the 3′-end of the 

transcript. After processing, Cas6f would bind this region as it does in the natural Cascade complex. The 

created structure would resemble a massively elongated Cascade complex, with the reporter gene 

transcript as its crRNA. By putting a second affinity tag (e.g. a Strep-tag) on Cas6f, it would be possible to 

separate this complex wrapping the entire RNA molecule with two adjacent purification steps (Figure 

2.20 A). The plasmid for cas gene expression was co-produced with the repeat-tagged sfgfp construct in 

E. coli in the same fashion as for previous cultures. The produced proteins were purified by Strep -tag 

affinity and the elution fractions were analysed by SDS-PAGE (Figure 2.20 B). Only Cas6f could be 

purified in this purification step as visible on the gel. Bands of Cas5fv and Cas7fv could be detected in 

the flow-through of the purification. This result further indicates that the complex is not formed on the 

entire transcript, as indicated by previous experiments.  
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Figure 2.20: RNA wrapping of entire reporter gene transcripts flanked by two repeat sequences. (A) Schematic principle of 

RNA wrapping including a second repeat sequence at the 3’-end of the reporter gene. Cas6f binds the repeat sequence after 
processing, as is the case in a  natural crRNA. By fusing a C-terminal Strep-tag with Cas6f in addition to the His-tag on Cas5fv, the 
formed structure could be purified with two adjacent affini ty puri fication s teps . The number of Cas7fv subunits  on the 

backbone is simplified for visualization and not representative of the number of subunits  required (~ 123). (B) SDS-PAGE 
analysis after Strep-tag affinity purification. Only Cas6f can be observed in elution samples  (Strep -E), whi le Cas7fv can be 
observed in the flow-through (F).  

 

2.2.2.4.2 Investigation of expression condition factors for improved RNA wrapping 

All results so far indicated that filament structures can be specifically formed on a repeat-tagged RNA. 

We presumed that this RNA is somehow located in the observed filaments.  While RNA-seq results 

seemed to confirm that only the initial 5′-terminal portion of the tagged transcript can be wrapped and 

isolated, additional rRNA was always present in the RNA extractions and it remained unclear where this 

RNA is located or more specifically if it is also located in the filaments.  

To study if the length of the filaments changes on different reporter constructs, we created an 

sfGFP-repeat construct in which the second half of the coding sequence was removed (sfGFP-Half). The 

transcribed RNA up to the transcription terminator should be thus approximately half the size of the 

normal sfGFP-Repeat transcript. We then purified protein complexes wrapping this RNA and analysed 

the void volume fractions from size-exclusion chromatography with TEM to see if the typical 100-

200 nm filaments are still created or if they are decreased in size (Figure 2.21 A).  

Another possible explanation for the incomplete wrapping was that translation could impact the 

wrapping process. The limited wrapping would be dependent on the time of Cas7fv production and the  

wrapping of ~ 100 nt might reflect the distance the RNA polymerase allows for binding. To disable 

translation on the produced transcript, we removed the RBS from the sfGFP-repeat construct (-RBS). No 

ribosome binding and translation should be possible on these transcripts. Protein complexes wrapping 

this RNA construct were purified in the same way and void volume fractions were analysed by TEM 

(Figure 2.21 B). 

 

 

B 
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Figure 2.21: Purification and transmission electron microscopy (TEM) of filaments formed with sfGFP-Half (A) or with -RBS 
constructs (B). Schematic representation of the repeat-tagged target constructs (top) and size-exclusion puri fication (bottom 

left), including UV chromatogram and SDS-PAGE. Samples marked with an arrow were analysed with TEM (bottom right). Both 
puri fications show a broad void volume fraction and a  distinct peak of the Cas5fv-Cas7fv dimer. The void volume fraction of 

s fGFP-half shows the typical sized filaments with a length of up to ~200 nm. In the sample of constructs produced without RBS, 
some longer s tructures  are vis ible but a  majori ty s ti l l  s hows  the typica l  s i ze of ~ 100-200 nm. 
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Both purifications delivered a similar UV chromatogram with a very broad peak starting in the void 

volume that contains mostly Cas7fv as well as some minor amount of Cas5fv. A second and more 

distinct peak of the Cas5fv-Cas7fv dimer is present as well. 

Fractions of the void volume were analysed with TEM and both fractions contained the observed 

filament structures. The structures produced on the GFP-half construct had a similar length to the 

previously purified filaments, so the length of the construct did not influence the length of the filament 

structures. This further confirms the RNA-seq results which show only the first ~ 100 nt are wrapped.  

On the GFP construct without RBS, some structures with a size of more than 200 nm are visible, with 

some going up to ~ 500 and even 800 nm. However, it is not clear if these structures are formed on 

multiple RNA molecules or if they are overlapping smaller filaments.  Additionally, most structures still 

show the usual size of ~ 200 nm. Nonetheless, this could indicate an effect of translation on RNA 

wrapping. RNA extracted from the void volume fractions was analysed via Urea-PAGE and showed a 

smear through the entire lane of the gel. 

So far, for all expression cultures, the three cas genes were produced in equal amounts regardless of the 

massive overrepresentation of Cas7fv in a potential filament structure that wraps an entire sfgfp 

transcript (>100 Cas7fv subunits compared to one subunit of Cas5fv). Even when only the first 100 nt of 

the 5′-terminal portion is covered, this would require at least 16 Cas7fv subunits compared to one 

Cas5fv. To address this, we recloned cas5fv and cas6f and placed them on another plasmid with a lower 

copy number (~20 copies of pACYC compared to >100 of pRSF).  Additionally, we created one plasmid 

with one cas7fv in each of the two multiple cloning sites to increase the production of Cas7fv. We 

produced these new constructs in E. coli expression cultures with initial expression conditions and 

overnight incubation at 18 °C after induction. Complexes were purified as usual via the His-tag on Cas5fv 

followed by RNA extraction. The extracted RNA was fragmented and RNA-seq analysis by Illumina was 

performed (Figure 2.22). For both constructs, again, only the initial 5′-terminal portion could be 

detected.  
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Figure 2.22: RNA-seq analysis of RNA wrapping with Cas7fv overproduction compared to Cas5fv and Cas6f. Cas7fv was ei ther 
expressed from one MCS (A) or by one copy in each of the two multiply cloning of the high-copy plasmid (B). Cas5fv and cas6f  

were expressed  from the low copy plasmid. Schematic representations  in the top show the plasmids  used for cas gene 
expression. Mapping of the obtained reads to the target plasmid reveals an overabundance of reads matching the fi rs t ~100 nt 
of the repeat-tagged sfgfp. (C) RNA extraction on separated on agarose gel electrophoresis shows the typical bands of rRNA for 

both constructs .  
 

To confirm the previous TEM analysis of complexes on repeat-tagged RNA without ribosome binding 

site, we performed RNA-seq. For this, we created a construct where we not only removed the RBS 

between the repeat region and the reporter gene but also exchanged the reporter gene itself with a 

sequence containing no start-codon. On this non-coding construct, absolutely no translation should be 

possible that could interfere with the wrapping process. Considering the newly used target sequence, 

we also created a control construct where the RBS was re-added upstream of the sequence as well as an 
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ATG start codon. Expression cultures for both constructs were grown as before with the cas genes split 

into two plasmids and proteins were purified via His-tagged Cas5fv. The extracted RNA was then 

sequenced with Illumina (Figure 2.23).  

 

 

Figure 2.23: RNA-seq analysis of RNA wrapping on a repeat-tagged non-coding construct and the control construct. (A) 
Schematic representation of the used plasmid for RNA wrapping of the repeat-tagged non-coding construct (top) and mapping 
of the obtained reads from to the sequence of the target plasmid (bottom). Similar to previous  experiments , the majori ty of 

reads were mapped to the initial 5′-terminal portion of the tagged construct. (B) Schematic representation of the used plasmid  
for RNA wrapping of the repeat-tagged control construct (top) and mapping of the obtained reads from to the sequence of the 
target plasmid (bottom). (C) RNA extraction on separated on agarose gel  electrophores is  shows the typica l  band pattern 
including rRNA for both the non-coding as well as the control construct. A control sample of in vitro produced sfgfp RNA was  
loaded for s ize di fferentiation  (ivT). 
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Overall, the RNA-seq results show no drastic difference to the previous experiments. Again, only the 

initial 5′-terminal portion is detected with significant reads resulting in a clear peak. A smaller peak is 

visible adjacent to the first one with a maximum read count of ~40,000 reads for the non-coding 

sequence and covering a sequence of up to 200 nt. For the complete non-coding construct, a higher 

baseline of reads mapped to the rest of the sequence can be seen that reaches the end of the 

transcription terminator, but the overall read count in this area is much lower than for the initial peak. 

This could be explained by an increased presence of transcript due to it not being converted to protein 

and is either wrapped or somehow co-purified with actually wrapped RNA. The few larger filament 

structures observed with TEM for the GFP-construct without RBS could be related to this. 

 

2.2.2.5 Identification of co-purified ribosomal RNA by Nanopore Sequencing  

The second major problem with the wrapping process so far was the inconsistency of the observed band 

pattern of extracted RNA and the RNA-seq results detecting only a small RNA. To identify what the 

higher sized extracted RNA really is, the newly extracted RNA samples were analysed by Nanopore 

sequencing. This technique allows the sequencing of full strands without fragmentation. The obtained 

reads were mapped against the sequence of the sfgfp target plasmid (Figure 2.24 B). Unmapped reads 

were mapped against the genome of the E. coli expression strain (Figure 2.24 C). This mapping revealed 

that about 80% of the total reads belong to 16S rRNA. Upon closer inspection, a very minor amount of 

reads (~30) were mapped to 23S rRNA.  
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Figure 2.24: Nanopore-sequencing of extracted RNA. (A) Schematic representation of the plasmids  used for express ion 
cul tures prior to Ni-NTA purification and RNA extraction. (B) Mapping of the obta ined reads  to the sequence of the target 

plasmid reveals an overabundance of reads matching the first part of the target sequence. (C) Mapping of the obtained reads to 
the genome of the E. coli expression strain reveals that a  majority of reads match the genes encoding ribosomal RNA. Reference 

track with the seven rRNA gene cl usters  in the bottom. 
 

Mapping of reads to the plasmid containing the sequence of the repeat-tagged sfgfp presents the same 

pattern as seen in previous data. However, fewer reads were obtained (~ 1.600 reads) due to the 

generally lower read output of this sequencing compared to Illumina sequencing (only ~ 114.000 reads). 

The peak of the 5′-terminal portion in the mapping profile appears to be slightly broader and stretches 

to up to ~ 250 nt after the 5′-handle sequence. Few reads are mapped that match the whole sfgfp 

sequence (~ 150 reads). This is in contrast to the previous Illumina sequencing in which no significant 

reads were mapped after ~ 100 nt, possible due to the absence of fragmentation in Nanopore 
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sequencing. In this case, Nanopore sequencing would suggest that the extracted repeat-tagged RNA is 

moderately longer than previously thought. 

The mapping of reads to the genome of E. coli delivered a clear explanation for the unexpected bands 

close to the 1000 and 1200 bp band of the DNA ladder, seen in all previous RNA extractions on agarose 

gel electrophoresis (e.g. Figure 2.15). Since the majority of reads correspond to 16S rRNA, the minor 

amount of purified and extracted repeat-tagged target RNA is less visible when analysed on an agarose 

gel. In the RNA extraction that was used for this sequencing, mostly the 1000 bp band is visible on gel 

electrophoresis and only a faint band running close to the 1200 bp ladder band can be seen (see Figure 

2.22 C), which explains the presence of more reads matching 16S rRNA compared to 23S rRNA. The 

reason for this contamination of rRNA remains unclear. Sequence analysis did not show any sequences 

similar to repeats that could trigger RNA wrapping. Additionally, proper 5′-ends on repeat-similar 

sequences by Cas6f processing would be necessary for initiation of backbone formation as well . 

 

2.2.2.6 Increased target RNA production by T7 RNA polymerase  

At this point, we investigated the possibility that coupling of transcription and translation is the reason 

for rRNA contamination. In the current set up, the target construct was produced by E. coli RNA 

polymerase (RNAP) under control of the arabinose promoter, contrary to the Cas proteins produced by 

T7 RNAP. The Cas proteins could potentially “bump” into ribosomes attached to E. coli RNAP during the 

wrapping process which would lead to their co-purification. To counter this, we exchanged the 

promoter for control of the target construct to a T7 promoter (Figure 2.25 A). Target RNA produced by 

T7 RNAP would ensure that no coupling of E. coli RNAP and rRNA interferes with wrapping of the target 

construct and leads to co-purification of rRNA.  

Complexes were then created as previously described and RNA was extracted from Ni-NTA purified 

protein samples. Extracted RNA was visualized by agarose gel electrophoresis and compared to the 

previously purified RNA with the transcript produced by E. coli RNA polymerase (Figure 2.25 B). The 

extracted RNA was sequenced with Illumina and the obtained reads mapped against the sequence of 

the target plasmid (Figure 2.25 C). 

Although rRNA was still co-purified with small RNA produced with T7 RNAP, more full-length transcript 

was produced. 
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Figure 2.25 RNA wrapping of repeat-tagged RNA produced by T7 RNAP. (A) Schematic representation of the used express ion 

plasmid. The repeat-tagged sfgfp construct is expressed from the pETDuet-1 vector under control  of aT7 promoter. (B) RNA 
extraction after Ni-NTA was visualized by agarose gel electrophoresis. Samples produced with the T7 promoter were compared 
to previously purified samples where the target construct was purified with E. coli RNA polymerase (RNAP). (C) I l lumina RNA-
seq analysis of the T7 produced target RNA. The obtained reads were mapped against the sequence of the target plasmid 
conta ining the repeat-tagged sfgfp. 
 

The newest RNA extraction of transcript produced by T7 shows a strong smear below the 1000 bp band 

of the ladder as well as the usual bands at a position of approximately 1000 and 1200 bp. For previously 

extracted RNA produced by RNA polymerase, a moderate and smeared signal can be seen from 200 to 

400 bp that is similar to early extractions. The strong increase in RNA with a size below  1000 bp 

indicates a positive effect of increased target transcription rate by T7 RNA polymerase. RNA -seq 

analysis, again, shows only a strong peak corresponding to the initial 5′-terminal portion with 

approximately 500,000 reads. For the remaining sequence corresponding to the rest of the transcript, 

only ~12,000 to 15,000 reads were mapped. One additional peak of up to ~ 100,000 reads in the middle 

of the sequence is also visible which might be explained by the “CTTTCAAA” sequence at the beginning 

of this peak, which is partially similar to the “CTTAGAAA” sequence of the 5′-handle. This sequence is 

only present on the slightly different coding sequence for sfGFP on the new vector used for T7 RNAP 

target production. Additional binding of Cas5fv might lead to the wrapping of the following ~ 100 nt, 

resulting in the observed peak. Perhaps, this is only noticeable due to the higher transcript production 

by T7 RNAP in this case. In previously used transcripts, we could not find a sequence similar to the 8 nt 

5′-handle. Sequences with two nucleotide mismatches did not result in an extra peak.  

While not necessarily visible by RNA-seq analysis due to the vast overabundance of the 5′-terminal 

portion, the RNA extraction indicates that T7 RNAP produces more transcripts. However, it is unclear if 

Cas proteins wrap this RNA. The synthetic RNA wrapping complexes still seem to only contain the first ~ 

100 nt of the repeat-tagged target due to the clear peak on the RNA-seq mapping. 
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2.2.2.7 Purification of small synthetic Cascade assemblies for RNA wrapping and removal of co-

purified rRNAs 

When it became clear that the purified samples were contaminated by rRNA, we focused on trying to 

eliminate this problem. It was also necessary to investigate where exactly the rRNA is located and 

thereby co-purified. One possibility was that the rRNA is unspecifically wrapped and thus located inside 

of the complex. The other possibility was that these highly abundant nucleic acids are sticking to the 

outside of the complexes and are pulled down with them, perhaps by the positively charged wrist helix.  

For the latter possibility, we tried a variety of methods to clean the wrapping complexes during or after 

purification (Table 2.1). 

 

Table 2.1: Various methods used for clean-up of purified complexes to remove rRNA. 

Clean-up Methods  

RNase If treatment of protein samples before RNA extraction 

Washing samples bound to the Ni-NTA column with a high molarity salt buffer 

Purification by Strep-affinity instead of Ni-NTA 

Size-exclusion purification 

Neutralization of the positively charged wrist helix by amino acid exchange to alanine 

 

None of these methods effectively removed rRNA, considering that after purification and RNA 

extraction, both corresponding bands were highly visible on gel electrophoresis.  

In the end, the contamination problem was apparently solved by simply omitting MgCl2 from the wash 

buffer for affinity purification. The repeat-tagged non-coding RNA was produced together with the Cas 

proteins and the isolated RNA after Ni-NTA and size-exclusion purification contained mostly small RNA 

around ~100 nt or full transcript that is most likely co-purified (Figure 2.26). 
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Figure 2.26: Purification of Cas proteins with repeat-tagged non-coding RNA without MgCl2 in the purification buffer. UV 
chromatogram of s ize-exclusion after Ni-NTA (left) shows one broad peak and minimal  aggregates  in the void volume. SDS-
PAGE analysis (top right) of a  fraction from the void volume (1) as well as various fractions  of the broad peak (2-4) show the 

presence of mostly Cas7fv and Cas5fv. His: Sample of Ni-NTA prior to s ize-exclusion. Mostly small-sized RNA can be detected by 
agarose gel electrophoresis of the extracted RNA from the elution fractions, except for the sample of the void volume  where a  

fa int and smeared s ignal  band in the range of ful l -length transcript can be detected.  

  

Separation of the Ni-NTA purified sample by size-exclusion chromatography features no distinct peak in 

the void volume contrary to previous purifications. For this purification, we used a newly acquired 

Superpose 6 Increase column capable of separating proteins and complexes up to a molecular weight of 

1000 kDa. Compared to the fractionation range of the before used Superdex column of 600 kDa, this 

means that complexes and aggregates with high molecular weight are more spread out on the UV 

chromatogram instead of eluting as one single peak in the void volume. 

For the very initial eluted fraction (1), only a faint signal of Cas7fv can be seen on SDS-PAGE. However, 

the minor amount of RNA extracted from this sample seems to match a full-length transcript of the 

repeat-tagged non-coding RNA. Considering that in the RNA extraction prior to Ni-NTA purification, only 

the small RNA can be clearly seen, the relative amount of full-length transcript seems to be very minor. 

This observation fits previous RNA-seq analyses with a massive overabundance of reads for the initial 5′-

terminal portion. The remaining purified protein complexes are eluted at a later position in a very broad 

peak with an estimated molecular weight of ~ 400 kDa to as low as ~ 50 kDa. From a sample on the side 

of this peak (2), small RNA can be extracted. Protein content and elution volume of this fraction could 

indicate a smaller complex that consists mostly of Cas7fv and one Cas5fv subunit. A similar small-sized 

RNA can be extracted from samples eluting later (3). Here, Cas7fv and Cas5fv can be detected in an 

equal ratio on SDS-PAGE, with some Cas6f pulled down additionally. This by-product could represent 

something similar to a Cascade complex but without a fully formed backbone. The fraction at the left 

side of the peak (4) contains only Cas7fv and Cas5fv in an equal ratio but no RNA, which most likely 

represents the Cas5fv-Cas7fv dimer in accordance to the elution volume. 
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However, in no RNA extraction sample of this purification, the typical 16S rRNA or sometimes 23S rRNA 

bands can be observed. The effect of Mg2+ ions on structured RNA could have had a stabilizing effect on 

these and led to their co-purification. It also seems that no filaments were co-purified in this case as no 

distinct peak appeared in the void volume of this purification. 

In addition, we attempted to use anion-exchange chromatography to remove additional bound nucleic 

acids such as rRNA. While the omission of MgCl2 from the purification buffer apparently removed the 

rRNA contamination, we were able to remove full-length transcript from other Cascade-like assemblies 

containing small RNA by this method. The most efficient purification protocol now included the omission 

of MgCl2, use of T7 RNAP for production of the repeat-tagged target RNA and loading of the 

concentrated sample after the Ni-NTA purification on a MonoQ column. The bound sample was then 

separated along a salt gradient followed by SDS-PAGE analysis and RNA extraction (Figure 2.27 A). 

Complexes free of unspecifically bound nucleic acids were then further purified and analysed by size -

exclusion purification (Figure 2.27 B). 
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Figure 2.27: Anion-exchange chromatography separates directed Cascade assemblies from full-length transcript. (A) Anion-
exchange with MonoQ column. Concentrated sample from Ni -NTA was loaded on a  MonoQ column, then eluted in a  gradient 

by an increase of the salt concentration (from 0.3-1M NaCl). Protein complexes with mostly Cas7fv and minor amount of Cas5fv 
are eluted during the gradient (1-4) that contain small RNA exclusively as  shown by SDS-PAGE analys is  and RNA extraction 
(right). Pure RNA matching ful l -length transcript i s  eluted closer to the end of the sa l t gradient (5). (B) Size-exclus ion 

chromatography of the flow-through (F) of the MonoQ column, reveals multiple peaks of complexes with varying amount of Cas 
proteins bound to the small RNA. Proteins were analysed by SDS-PAGE and extracted RNA was  analysed with agarose gel  

electrophores is . 

 

Because we used T7 RNAP to produce the target RNA instead of the weakly transcribed non -coding 

target from the previous purification, noticeably more full -length transcript eluted as a sharp peak at the 

end of the salt gradient in the anion-exchange chromatography. No clear protein band was detected for 

this peak on SDS-PAGE but a relatively clear signal fitting to full-length transcript could be seen on gel 

electrophoresis after RNA extraction. Additionally, the peak also features a high UV absorbance ratio of 

260 nm to 280 nm, indicating the content of this peak to be mostly RNA. Other protein complexes 

eluted during the salt gradient (1-4) contained a relatively high amount of Cas7fv and a smaller amount 
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of Cas5v. RNA extracted from these samples as well as from the flow-through of the MonoQ column 

contained small RNA as indicated by a clear signal during gel electrophoresis. No full-length transcript 

could be detected in these samples. Considering that a relatively weak signal corresponding to full-

length transcript can be seen in the sample of the Ni-NTA purification prior to anion-exchange 

chromatography, it can be assumed that the full-length transcript was bound to the MonoQ column and 

subsequently washed off.  

The flow-through samples of the MonoQ purification step were further analysed by size-exclusion 

chromatography (Figure 2.27 B). The following UV chromatogram shows three major peaks and a very 

minor fourth one. Most notable is the first peak eluting at a very early elution volume that corresponds 

to an approximate molecular weight of 700-400 kDa. The SDS-PAGE analysis of these samples shows 

that this peak contains mostly Cas7fv as well as a very minor amount of Cas5fv which fits for Cascade 

assemblies on small RNA with the appropriate number of Cas7fv subunits. The relatively broad elution 

volume of this peak could indicate a variety of different complex sizes.  

For the second peak, the elution volume at ~ 400 - 150 kDa as well as the protein content visualized by 

SDS-PAGE speaks for the presence of smaller complexes with less Cas7fv involved and which are 

perhaps more similar in size to a real Cascade complex. The third peak most likely contains the typical 

Cas5fv-Cas7fv dimer that is commonly purified. The first broad peak contains the small RNA already 

overserved for MonoQ purified samples, further indicating this to contain the specific RNA wrapping 

complexes. The latest and very small peak apparently contains only artefacts.  

 

2.2.2.8 Structural analysis of RNA wrapping complexes on small RNA 

With a better understanding of how the repeat-tagged RNA is wrapped as well as having removed the 

co-purified rRNA and unwrapped transcript, we analysed the structure of the newly purified complexes 

with TEM. Samples from the first peak of the size-exclusion after anion-exchange chromatography 

revealed numerous “shrimp”-like complexes with a length of approximately 20 nm. However, clear 

structures were only identified in the fraction of the right side from the peak (Supplementary Figure 5). 

The visualized structures appear to be quite flexible and lie in various different orientations when 

observed by TEM (Figure 2.28 A & B). By 2D class averaging we were able to obtain a rough 3D model 

that shows the general shape of this complex. Approximately seven Cas7fv subunits and one additional 

Cas5v (or Cas7fv) fit in this structure. 
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Figure 2.28: TEM analysis and 3D structure of RNA wrapping complexes by 2D class averaging. (A) Origina l  TEM view of 
puri fied s tructures by anion-exchange and size-exclusion chromatography. (B) Collection of various shrimp-like s tructure from 

TEM in various different orientations. (C) 2D class averaging model by merging of all structures from di fferent viewpoints . (C) 
Superimposition of Cas protein structures from the I-Fv Cascade model in the 2D class averaging model . Approximately 8 Cas  
proteins  can fi t in the s tructure. Purple: 1 Cas5fv plus  3 Cas7fv, pink: 3 Cas7fv, yel low: 1 Cas7fv monomer. 

 

The optimal purification and the following TEM analysis showed the shape of the synthetic Cascade 

assemblies on the initial 5′-terminal portion of the repeat-tagged RNA. The general shape of this specific 

complex is not very different in comparison to I-Fv Cascade. In fact, the obtained 3D model by 2D class 

averaging suggests that approximately the same number of Cas5fv and Cas7fv subunits as are present in 

the natural interference complex. It should be noted though that this model is not comparable to e.g. 

electron density data from crystallography and only a rough estimation can be made about how many 

proteins potentially fit in this structure. Additionally, the observed structures on TEM itself also look 

very similar to I-Fv Cascade complexes previously analysed by TEM. This is contradictory to the 
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previously performed RNA-seq analysis which shows that the wrapped RNA should be at least 100 nt 

long and definitely longer than a 60 nt crRNA.  

Similarly shaped structures of about the same size were visualized by TEM in the elution fractions of salt 

gradient during the MonoQ purification step (Supplementary Figure 6). However, these structures were 

a bit more aggregated and the size was not easily identifiable.  

 

2.2.2.9 Backbone-modification of synthetic Cascade complexes  

In the following experiments, we investigated how the synthetic Cascade assemblies we created can be 

modified. For this, Hamrithaa Shanmuganathan fused the fluorescent reporter sfGFP to the backbone-

forming protein Cas7fv during her internship. 

To see if backbone modification is possible in general, we aimed to modify the natural I-Fv Cascade 

complex instead of the artificial RNA wrapping complexes. I-Fv Cascade with the sfGFP-Cas7fv fusion 

protein was created by co-expression of the cas genes and with a naturally occurring crRNA (Figure 2.29 

A). Proteins were purified by Ni-NTA and size-exclusion chromatography. Afterwards, the fractions were 

analysed by SDS- and Urea-PAGE for protein and RNA content respectively. I-Fv Cascade was still formed 

and eluted as a stable peak that contained a crRNA as well as all Cas proteins including the sfGFP-Cas7fv 

fusion protein that exhibited noticeable fluorescence (Figure 2.29 B). 
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Figure 2.29: Backbone modification of I-Fv Cascade with sfGFP fusion. (A) Schematic overview of the expressed genes  for 

assembly of I -Fv Cascade with s fGFP-Cas7fv backbone. The typical wt crRNA used for I-Fv Cascade production was co-expressed 
with the cas genes including the sfgfp-cas7fv fusion. (B) Size-exclus ion chromatography and SDS- and Urea -PAGE analys is  
confi rms  the s table formation of I-Fv Cascade with a l l  Cas  proteins  and a  crRNA (2). 

 

The UV chromatogram shows two significant peaks as well as a minor third one. The first peak contains 

all Cas proteins but not RNA is visible on Urea-PAGE. The early elution volume that corresponds to a high 

molecular weight speaks for aggregates in this fraction. The second peak apparently contains a modified 

I-Fv Cascade considering all Cas proteins including the sfGFP-Cas7fv fusion protein and crRNA can be 

detected in this fraction. Interestingly, a band corresponding to unmodified Cas7fv is detected on SDS-

PAGE as well. The presence of both the sfGFP-Cas7fv fusion protein as well as the unmodified Cas7fv 

could indicate that the backbone contains a mixture of both these proteins. This is perhaps due to 

unspecific cleavage of the small GSGS linker that connects sfGFP and Cas7fv. Co-purification of 

unspecific proteins with 80 and 50 kDa is also apparent by extra bands on SDS-PAGE. 

After we established that backbone-modification is possible in general, we then attempted to assemble 

the RNA wrapping complexes on the repeat-tagged reporter construct with the sfGFP-Cas7fv fusion 
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protein. Size-exclusion chromatography after Ni-NTA purification yielded multiple peaks including one at 

an elution volume containing the previously observed complex (Figure 2.30).  

 

 

Figure 2.30: Backbone modification of synthetic Cascade assembly with repeat-tagged RNA. (A) Schematic overview of the 
expressed constructs for assembly of complexes on repeat-tagged RNA with the sfGFP-Cas7fv fusion protein. (B) Size-exclusion  

chromatography (left) a nd SDS-PAGE analys is  (right) reveals  the formation of multiple complexes  with varying s ize.  

 

The UV chromatogram contains a wide range of peaks that are partially overlapping. The very first one is 

located at the earliest point in the void volume and only a faint band of Cas7fv was detected on SDS-

PAGE in this fraction. This peak contains again most likely aggregates. Interestingly, this purification 

contains more aggregates compared to the purification without Cas7fv-modification which may be due 

to the omission of the anion-exchange chromatography step in this experiment. The second peak is 

located at the elution volume of the previous synthetic RNA wrapping complex but contains mostly the 

sfGFP-Cas7fv-fusion protein and minor amount of Cas7fv but also Cas5fv. This is most clearly visible 

after concentration of these fractions due to the low amount of protein purified in general . After 

concentration, the sample is also notably green due to the sfGFP-Cas7fv fusion protein. Peak 3 and 4 at 

a later elution volume contain the Cas proteins but with the additional 80 kDa protein contaminant. The 

fifth peak at a very late elution volume contains what is most likely co-purified Cas6 or artefacts of the 

purification. Some Cas6f, presumably bound to RNA is eluted at the very end of the elution volume (5).  

At this point, we did not have another repeat-tagged target besides sfgfp under control of the T7-

promoter available. While it is obviously not ideal to use the transcript of sfGFP as a target for RNA 

wrapping while also modifying the backbone of the complex with the sfGFP protein, these initial 

experiments serve as a proof-of-principal and indicate backbone-modification to some extent. The 
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presence of both unmodified Cas7fv and sfGFP-Cas7fv fusion could indicate an unevenly modified 

backbone that should be further studied. TEM should be performed to confirm the shape of these 

structures. 

 

2.2.2.10 Analysis of wrapped small RNA in unmodified and modified complexes 

To ensure that the newest complex with the sfGFP-Cas7fv fusion still encases the same RNA as the 

complex without backbone modification and that it is not an unspecific by-product, we extracted the 

RNA and loaded it on a 10% Urea-PAGE with subsequent SYBR-Gold staining for small RNA analysis with 

high intensity. We also loaded the RNA extraction sample of the unmodified complex from earlier to 

obtain a higher separation of the small RNA then on the previous agarose gel electrophoresis. For exact 

size identification, we also loaded a wild type crRNA as well as the elongated crRNA with a +18 nt spacer 

from previous extractions. 

 

Figure 2.31: Comparison of small RNA by Urea-PAGE. A variety of RNA extraction samples was loaded on a 10% PAA-gel with 8 
M Urea for direct s ize comparison in low range. (1) Wild type crRNA from I-Fv Cascade, (2) +18 nt elongated crRNA from the 

previously created synthetic Cascade, (3) RNA extracted from RNA wrapping complexes  conta i ning the s fGFP-Cas7fv fus ion 
backbone and (4) RNA extracted from the directed RNA wrapping complexes  with unmodified backbone. 

 

The RNA extracted from the complex wrapping RNA with unmodified Cas7fv shows two distinct bands 

on this gel. The lower band runs on the same position as the +18 nt elongated crRNA with a total length 

of ~ 80 nt. The upper band, however, would fit the approximate 100 nt in accordance to the RNA-seq 

analysis. The same RNA can be detected in the sample of the complex with the sfGFP-Cas7fv fusion, 
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suggesting that this is still the same complex but with modified backbone. Considering that no anion-

exchange chromatography step was included in the purification of this sample, more bands on a higher 

position as well as a smear going through the entire lane are visible on the gel. While this might indicate 

the presence of complexes wrapping around longer RNA, i t could also highlight the importance of this 

additional purification step in removing co-purified nucleic acids. 

The direct comparison of both these samples with a 60 nt wild type and a 78 nt elongated crRNA allows 

to effectively judge the size of this wrapped RNA and proves that longer RNA is present in the directed 

wrapping complexes even though we only obtained a surprisingly small structure by 2D class averaging. 

In the +18 nt elongated crRNA from the synthetic Cascade complex, the second repeat region  at the 3′-

end for Cas6f binding is present in the RNA sequence as well. If  the distinct band from the RNA wrapping 

complexes has the same size, this would mean that an additional 20 nt for three Cas7fv subunits are 

available in the 5′-repeat-tagged transcript. 

 

2.2.3 Additional applications of directed RNA wrapping 

2.2.3.1 Silencing of reporter transcripts by directed RNA wrapping 

While investigating the possibility and limitations of directed RNA wrapping by CRISPR repeat sequences 

in general, we also attempted to establish potential applications of this process for other purposes 

besides specifically isolating stabilized RNAs.  

One of these applications was to silence reporter genes on the level of translation. An initial proof of 

principle was made for application by drastically reducing sfGFP production in expression cultures.  

To further study the effect of silencing, we first performed fluorescence microscopy of E. coli after 

expression of the repeat-tagged target construct or the un-tagged control construct as well as the cas 

genes (Figure 2.32). 

Fluorescence was not noticeable in cells producing the repeat-tagged construct in contrast to cells 

expressing the untagged sfgfp or not expressing the cas genes, indicating effective silencing. It should be 

noted that some elongated and deformed cells were observed, possibly as a stress response  due to high 

expression.  
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Figure 2.32: Fluorescence microscopy of E. coli producing (A) sfGFP and the Cas proteins, (B) sfGFP with an upstream repeat 
sequence and the Cas proteins, or (C) only sfGFP with an upstream repeat sequence but without Cas proteins. Cel l s  were 

ei ther excited by normal l ight (DIC) or for GFP. Cas gene express ion completely abol ished fluorescence by s fGFP in cel l s  
producing the transcript with the repeat. In contrast, fluorescent cel l s  were detected in the control  without the repeat 
sequence or when no Cas  proteins  were present. RBS: ribosome binding s i te   

 

To quantify this apparent silencing effect, cells were analysed by fluorescence-activated cell sorting 

(FACS). In the first experiment, it was also investigated if the time of induction for either the cas genes 

or the sfGFP construct has an effect on fluorescence. Cas genes were either induced before sfgfp, at the 

same time or after sfgfp (Figure 2.33).  

 

 

  

Figure 2.33: FACS analysis of E. coli expressing cas genes as well as the control or the repeat-tagged construct. Fluorescence 
was  measured in relative fluorescence units (RFU). Different induction time points of cas gene express ion were investigated. 
Cas genes were induced 1h before sfgfp (Cas), at the same time (both) or 1h after sfgfp (s fGFP). Cells not producing sfGFP at al l  

(-) showed no fluorescence at all and a control expressing only sfgfp (C) showed the maximum fluorescence. Signi ficance was  
measured by a  Student's  t-test and is  indicated as  by a  s tar. 

 



Results 

75 
 

Effective silencing under these conditions and over a short time was most visible when sfgfp and cas 

genes were expressed at the same time (both). While cells expressing the control construct exhibited 

noticeable fluorescence, all values were significantly lower for cells expressing the repeat-tagged 

construct under the same conditions. The lower fluorescence for the repeat-tagged construct further 

confirms the specificity and that directed silencing on RNA is possible. 

When sfgfp expression was induced one hour before the cas genes, both constructs produced notable 

fluorescence. However, the values are significantly lower compared to the control in which no cas genes 

were expressed (C). Additionally, when cas gene expression was induced one hour before sfgfp, both 

constructs showed no significant amount of fluorescence. While this would be expected for the repeat -

construct, it is not for the control and could indicate that this overproduction of Cas proteins can lead to 

unspecific interaction and completely inhibit later sfgfp translation. Otherwise, this could indicate a toxic 

effect on the cell or stress and growth inhibition. Active transcription of sfgfp provides a target for Cas 

proteins countering this effect. This experiment was also performed with simultaneous induction of cas 

genes and sfgfp overnight at 18 °C, which showed the same effect of silencing (Supplementary Figure 7). 

These experiments have been performed with the target constructs produced under control of the 

pBAD promoter by arabinose, to study the effect of separate induction of the target and cas genes. 

However, as stated before, the target is hereby produced by E. coli RNAP which leads to significantly less 

target transcript produced. In the following experiments, we aimed to investigate the silencing effect on 

target transcripts produced by T7 RNAP that was used for purification of the RNA wrapping complexes.  

Silencing was also noticeable on the repeat-tagged construct produced by T7 RNAP after overnight 

growth at 18 °C in comparison to the untagged control construct (Figure 2.34). 

 

 

Figure 2.34: FACS analysis of E. coli expressing cas as well as either the control or the repeat-tagged construct by T7 RNAP. 
Since both constructs were under control of the T7 promoter, expression of both cas genes and sfgfp was either induced (+) or 

not induced (-) before overnight growth at 18°C of both cul tures . 
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These measurements confirm the possibility to use this process for silencing on an RNA level by 

inhibiting translation on wrapped RNA in complexes which was first observed by the color of pelleted 

expression cultures not able to produce sfGFP. Silencing works for target production with E. coli RNAP as 

well as T7 RNAP. The drastic difference in fluorescence of the control and the repeat-construct 

highlights the specificity of this process.   

 

2.2.3.2 Protection of RNA molecules by wrapping in Cas proteins 

Another potential application is the use of directed RNA wrapping for protection of encased RNAs. In 

theory, while bound to Cas proteins, the RNA would be protected from degradation as long as the 

proteins are intact.  

To study the stability of the produced complexes on RNA over a longer time period, we incubated fresh 

Ni-NTA purified proteins in complex with the repeat-tagged lacZ- construct for numerous time points 

with RNase If (Figure 2.35 A). After incubation, RNA was extracted and loaded on Urea-PAGE for initial 

analysis of stability (Figure 2.35 B). In an extended experiment, the stability of the small repeat-tagged 

RNA was confirmed by Northern Blot analysis (Figure 2.35 C).  
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Figure 2.35: Stability of wrapped RNA. (A) Schematic principle of the experimental design. Ni -NTA puri fied protein samples  
were incubated for different time points with RNase If at RT and 200 rpm. RNA was then extracted and separated on Urea-PAGE 

(B) for subsequent Northern Blot analysis with a  probe against the start of the sequence (C). Extracted RNA was incubated with 
RNase I f and loaded as  a  control  (+).  

 

Because the experiment was performed when unspecific RNA was not yet removed, initial analysis by 

separation on Urea-PAGE only showed they typical smear going through the entire lane and small 

wrapped RNA was not identifiable on this gel. Nonetheless, RNA was present in all samples even after 7 

days of incubation. Already extracted RNA, not protected by the complex, was completely degraded, 

confirming that RNase I is active (+). In the Northern Blot analysis, clear signals can be observed for 

directly extracted RNA (0h) as well as samples incubated with RNase I. No clear band can be seen in the 

control sample with unbound RNA, in which all RNA was degraded. On the other hand, a smear can be 

detected in the sample of directly extracted RNA. This is most likely due to the presence of full-length 

transcript or intermediates in the sample. Bands related to larger RNA decrease over time and a smaller 

band becomes more apparent. Even in the sample in which RNA was extracted after 7 days of 

incubation, this band is still clearly visible.  

Overall, we showed that specific RNAs can be protected by Cas proteins for long periods of time. The 

exact size of the RNA is not completely defined by this method because we did not provide an in vitro 

transcribed full-length transcript and this experiment was performed before we removed unspecific RNA 

and full-length transcript. Nonetheless, the position of the signal on the Northern Blot fits to the size of 
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small RNA in the extractions of the latest structures (Figure 2.31) and that was confirmed by RNA-seq 

analysis. 

 

2.2.3.3 Induced release of RNA from complexes 

Another potential application would be the induced release of specifically wrapped RNA from the 

created complexes. While the repeat-tagged RNA can already be isolated by in vitro phenol/chloroform 

extraction and ethanol precipitation, the specific unpacking of the “cargo” RNA from the created 

complexes could prove useful, especially for in vivo applications. We investigated two potential ways to 

achieve this.  

First, we attempted to remove Cas proteins from the wrapped RNA by an Anti-CRISPR protein (Acr). As 

mentioned before, these viral proteins serve as a countermeasure against CRISPR-Cas systems of the 

host, usually by occupying critical positions for DNA binding in the effector complex. The recently 

discovered AcrF15 from Alcanivorax xenomutans, is able to remove the backbone-forming proteins from 

the crRNA in I-F Cascade. In order to validate that AcrF15 is able to effectively disrupt our packing 

system, our group performed in vivo plasmid transformation assays. However, this assay showed no 

activity of Acr in the type I-Fv system (data not published yet). 

As an alternative, we attempted to create complexes on repeat-tagged RNA with the I-F Cas proteins 

that are known to be affected by this Acr. For this, it was first required to investigate if the synthetic 

complexes can be assembled on repeat-tagged RNA with the type I-F CRISPR-Cas system. If possible, 

these complexes could then be targeted by the Acr protein to release the wrapped RNA (Figure 2.36 A). 

In the course of this, the directed RNA wrapping capabilities of the I-F system could be studied and 

compared to the I-Fv system. 

To produce and purify potential I-F complexes directed on repeat-tagged RNA, the I-Fv repeat of 

previously used non-coding RNA construct was exchanged with the sequence of a I-F repeat and the 

new construct was co-expressed with the I-F Cas proteins from a commercially available plasmid (Figure 

2.36 B). The Ni-NTA purified and concentrated samples were then separated by size -exclusion 

chromatography (Figure 2.36 C). No distinct peak was present on the following UV chromatogram but 

protein eluted along the entire elution volume. SDS-PAGE revealed the presence of the Cas7f protein in 

these fractions at earlier elution volumes. However, no clear structure could be identified with TEM in 

the void volume or the later fractions.  
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Figure 2.36: Unpacking by Acr. (A) Schematic principle for theoretical unpacking of RNA wrapped by I -F Cas  proteins . A large 
subunit (LS) should be part of the hypothetical complex besides Cas5f and numerous Cas7f proteins. If complexes  are formed 
and s imilar to Cascade, the addition of the Anti -CRISPR could potentia l ly remove the Cas  proteins  from the complex. (B) 

Schematic representation of the expressed constructs for complex assembly. The targeted non -coding sequence was  tagged 
with a  repeat sequence from the I -F CRISPR-Cas system and cas genes were expressed from a  commercially available plasmid 

including all I-F Cas proteins Cas7f, Cas5f, Cas6f and the large subunit (LS). (C) UV chromatogram of size-exclusion after Ni -NTA 
puri fication via His-tagged Cas7f shows a  broad peak a long the entire elution volume (left). SDS-PAGE analysis of the fractions  
shows the presence of the Cas7f protein and a minor amount of Cas5f and Cas6f (top right). RNA extraction of a l l  fractions  

pooled and concentrated did not conta in dis tinct RNA when loaded on agarose gel  electrophores is  (bottom right) . 

 

As Cas7f was present in all elution fractions, it can be assumed that complexes with a wide variety of 

sizes were created. A faint band of Cas5f can also be seen close below Cas7f. In the later elution 

volumes, Cas6f is co-eluted with Cas7f due to the interaction of both proteins. However, no real specific 

complex was purified in a distinct peak, especially since no RNA was detected by Urea-PAGE in these 

samples. RNA extraction of a concentrated sample with all the protein yielded barely any RNA and only 

a faint smear was visible on agarose gel electrophoresis. Together with the fact that neither Cascade-

similar nor filamentous structures were observed with TEM, we concluded that Cas7f is not ideal for 

RNA wrapping and we did not continue studies with the Acr protein.  

As RNA wrapping with the I-F CRISPR-Cas system was not possible in this work, we chose to investigate 

the release of wrapped RNA by specific degradation of the I-Fv Cas proteins. To achieve this, we used 

the established synthetic system for inducible protein degradation in E. coli based on the Mesoplasma 
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florum transfer-messenger RNA system (Cameron & Collins, 2014). The ssrA tag from M. florum is 

specifically degraded by the endogenous Lon protease (mf-Lon) but not by E. coli proteases. Likewise, 

mf-Lon is not targeting E. coli ssrA (Gur & Sauer, 2008). The system can thus be used to specifically 

target and degrade proteins marked with this protein degradation tag (pdt).  

Initially, we fused the 27 aa pdt to the C-terminus of Cas5fv and Cas7fv, with the goal to specifically 

degrade the formed complexes on repeat-tagged RNA with the induction of the mf-Lon protease (Figure 

2.37 A). For complex formation in E. coli expression cultures, we used the optimal plasmids with T7 

RNAP production of the repeat-tagged sfgfp RNA (Figure 2.37 B). 

Unfortunately, it was not possible to create directed RNA complexes with protein degradation tags. The 

absence of complex formation and RNA wrapping with these constructs was immediately apparent by 

the green color of the pelleted expression cells due to unhindered sfGFP production. 

In the following Ni-NTA purification, Cas5fv and Cas7fv were only detected by SDS-PAGE in the pellet 

after ultracentrifugation (Figure 2.37 C). A likely explanation for this is that the fusion of pdt inhibited 

proper folding of the Cas proteins. This is surprising, considering that entire proteins have been fused to 

the C-terminus of these proteins before (such as sfGFP for Cas7fv and Dendra for Cas5fv). 
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Figure 2.37: Production of Cas proteins with protein degradation tags for induced unpacking of RNA. (A) Schematic principle 
of the theoretical process for release of RNA from complexes by protein degradation. Protein degradation tags (pdt) are fused 
to the C-terminus of His-Cas5fv and Cas7fv that form a  complex on the targeted RNA. After addition of the speci fic mf-Lon 
protease, the proteins are degraded and the RNA is released from the complex. (B) Plasmids used in the expression cul ture for 

production of the complex with protein degradation tags. Cas proteins with pdt and repeat-tagged sfgfp RNA were produced by 
T7 RNAP. (C) SDS-PAGE analysis of lysate and pellet after cell harvest and homogenisation. Cas5fv and Cas7fv were detected in 
the pel let but not in the lysate . Cascade was  loaded for s ize comparison.  

 

Overall, though the creation of specific RNA wrapping complexes was successful, we found no way to 

release the wrapped RNA from synthetic complexes in vivo during the scope of this work. Future studies 

will have to investigate why the addition of the small 27 aa pdt on the C-terminus of both Cas7fv and 

Cas5fv is problematic for protein folding and how to circumvent this problem. Furthermore, alternative 

ways for the release of wrapped RNA could be examined. 
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3. Discussion 

3.1 In vitro analysis of type I-Fv Cascade 

The research that was conducted before this PhD thesis established that the proteins Cas5fv and Cas7fv 

form the Cascade complex of the type IFv system together with Cas6f and a processed crRNA. 

Previously, I-Fv Cascade was purified with a His-tag on Cas7fv and Cas6f (Dwarakanath et al., 2015, 

Gleditzsch et al., 2016). For the research described in this thesis, we switched the His-tag to the Cas5fv 

protein. This purification procedure allows for limited amounts of co-purified byproducts, such as Cas7fv 

filaments in case of purification by His-tagged Cas7fv or Cas6f interacting with Cas7fv or RNA in case of 

His-tagged Cas6f. In general, purification of I-Fv Cascade is possible with a His-tag on all proteins. The 

later solved 3D structure revealed that all termini are accessible.  

In vitro assays have shown that the I-Fv CRISPR-Cas system enables interference when produced in 

E. coli. To study the interference mechanism, it was first necessary to prove in vitro target binding which 

was analyzed in a step-wise fashion. First, ssDNA binding was observed which served as an initial proof 

after purification that this complex is a functional CRISPR-Cas interference complex and interference is 

due to crRNA hybridization with the target DNA. However, it was not possible to show PAM dependency 

in these experiments. 

Additionally, no clear shift indicating dsDNA target binding could be observed by EMSA. Upon close 

inspection, a faint shift can be identified which could indicate dsDNA binding but with m uch lower 

efficiency compared to ssDNA. One possible explanation would be that type I-Fv Cascade evolved to 

exclusively target ssDNA and relies on processes in which ssDNA is formed similar to transcription-

coupled type III systems (Jia et al., 2019, You et al., 2019). 

Because no clear dsDNA binding and thus R-loop formation was detected, the next target construct was 

designed to mimic an opened dsDNA. Cascade was still able to bind this target, although again without 

PAM-dependency. A similar construct was also used for structural analysis of type I-E Cascade (Hayes et 

al., 2016). We later used this approach to successfully solve the 3D structure of I -Fv Cascade bound to 

target DNA. This highlighted the target recognition mechanism of Cas5fv and showed direct amino acid 

interaction with the GG-PAM confirming PAM-dependency in vivo. 

Earliest cleavage assays were not able to show Cas3fv recruitment to the R-loop mimic construct. When 

we optimized purification of Cas3fv and purified a stable standalone variant without the Cas2 domain, 

we adopted target constructs containing a small 10 nt “bubble” opening that were already successfully 

used for Cas3 cleavage assays of the type I-F system (Rollins et al., 2017). Our EMSA assays revealed that 

this small opening of dsDNA is enough for I-Fv Cascade to unwind the adjacent dsDNA. These substrates 

that allow full R-loop formation were used to study Cas3fv recruitment. Cascade mediated DNA target 
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binding efficiency was also measured with Biolayer Interferometry (BLI) in our group (Müller-Esparza, 

2019). These experiments showed that Cascade is able to bind a full complementary dsDNA strand, but 

with a much weaker dissociation constant (KD) compared to the opened bubble opening. This small 

opening, preferably in proximity to the PAM, is enough to increase binding efficiency and  allow R-loop 

formation. 

For dsDNA, constructs with the correct GG-PAM also showed a much stronger binding efficiency 

compared to constructs with a wrong PAM. PAM dependency is thus apparent for dsDNA, while binding 

efficiency with ssDNA is so strong that PAM recognition does not play an observable effect. The 3D 

structure confirmed that the PAM sequence is only recognized in the double-stranded form. With these 

results in mind, the weak signal in EMSAs with dsDNA could represent a minimal amount of full R-loop 

structure products. It remains unclear, why we could not observe complete dsDNA binding with EMSA, 

although Cascade was added in excess to target DNA. BLI assays proved to be more sensitive and thus 

suitable for this purpose. 

The 3D structure of I-Fv Cascade provided a significant amount of information about the complex. It 

showed how structural variations in the novel Cas7fv and Cas5fv proteins substitute for the missing 

subunits of other type I CRISPR-Cas systems. Additionally, it explained the mechanism of PAM 

recognition.  

In the type I-E system, PAM recognition is based on minor groove DNA interactions of the large subunit 

Cas8e (Hayes et al., 2016) which is required for a more promiscuous PAM recognition mechanism that 

allows the recognition of several PAM sequences. The type I-C system has a very similar mechanism for 

Cas8c which was investigated by cryo-EM (Hochstrasser et al., 2016). The PAM recognition mechanism 

by minor groove interactions was thus suggested to be a conserved feature in type I systems. In 

contrast, type I-Fv PAM recognition proceeds from the major groove side of DNA. 

The trench route is here formed by the wrist-loops of Cas5fv and Cas7fv. In type I-F, the extended web is 

expected to serve the same function and to substitute the small subunits. Contrary to type I-E PAM 

recognition, which employs a glutamine wedge, type I-Fv uses Cas5fv to inserts α-helix 3 as a wedge, 

leading to seed bubble formation.  

In comparison to established R-loop formation by type I-E (Figure 1.6), we propose the following model 

for R-loop formation by type I-Fv Cascade (Figure 3.1): I. Cascade scans the major groove of dsDNA for 

correct GG PAM sequences via the AH and wrist of Cas5fv. II. PAM recognition leads to conformational 

rearrangements of AH, which inserts α-helix 3 as a wedge into the major groove resulting in seed bubble 

formation. III. Cascade samples for protospacers complementary to the crRNA spacer forming 

crRNA/target heteroduplex. IV. Simultaneous association of the non-target strand to the trench route 

formed by the wrist helix. Full R-loop formation and locking are required for Cas3fv recruitment. 
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Figure 3.1: R-Loop formation by type I-E and I-Fv Cascade. Side-by-side comparison of components and mechanism of target 
DNA recognition by type I -E and I-Fv Cascade as deduced from structural analyses . Mechanism of survei l lance and R -loop 
formation by the E. coli type I-E Cascade (compare to (Hayes et al., 2016)) are shown in the upper panel . A glutamine wedge 
(arrow) of the large subunit Cse1 (Cas8e) opens the R-loop, and the non-target s trand is guided by smal l  subunits  Cse2. The 
minimal S. putrefaciens type I-Fv Cascade s tructure revealed a shift of the AH domain upon target DNA binding, which results in 
wedge helix insertion (arrow), as shown in the lower panel. The non-target s trand is  guided a long a  trench route formed by 
Cas5fv and Cas7fv WLs . Figure from Pausch et al., 2017 

 

Why did the observed structural variations of type I-F Cascade complexes evolve?  We speculate that 

they occurred due to evolutionary pressure by viral anti -CRISPR proteins. The arms race between 

prokaryotes and viral predators is considered to be a key factor that drives evolution (Koonin et al., 

2017). Our structural comparison with the structure of I-F Cascade bound to AcrF1 and AcrF2 shows that 

all targets for these viral proteins are either removed (LS) or modified (Cas7 and Cas5) (Figure 3.2).   
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Figure 3.2: Structural Cascade variation in response to AcrF1 and AcrF2. Side-by s ide comparison of the I -Fv Cascade base 

s tructure and the homologous and AcrF1/2 vulnerable I -F Cascade base structure (PDB ID: 5ZU9; (Chowdhury et al., 2017). Both 
s tructures are shown in cartoon representation and the Cascade body and head structures were removed for clari ty. The Cas  
proteins were colored according to Figure 1.8. The anti-CRISPR proteins AcrF1.2 (grey) and AcrF2 (green) are  highl ighted by 
transparent surfaces. Regions to which AcrF1/2 associate in I -F Cascade (i.e. Cas7f thumb and web; Cas8f) di ffer drastica l ly in 
their s tructure to I -Fv, not a l lowing binding of AcrF1/2 to the I -Fv Cascade. Figure from Pausch et al., 2017. 

 

Following this hypothesis and considering the low sequence similarity to other Cas3 subunits, Cas3fv 

most likely evolved as well in response to the changes in the I -Fv interface or by AcrF3 proteins. 

Structural data of the Cas3fv protein will be required to elucidate these scenarios. 

So far, no Acr has been found that targets the type I-Fv system and all 14 Acrs that target the 

P. aeruginosa I-F Cascade are inactive against I-Fv Cascade (Müller-Esparza, 2019). A potential Acr that 

targets I-Fv Cascade and perhaps has evolved to counter these countermeasures in the continuing arms 

race has yet to be identified and requires more sequencing data from phages or MGEs targeting the type 

I-Fv system. 

The unique AH domain of Cas5fv can be deleted without affecting complex stability of I-Fv Cascade, 

further suggesting the independent evolution of this domain. On the other hand, deletion of the wrist 

loops from Cas7fv destroys the wrist helix that turns out to be essential for complex stability. The loss of 

small subunits appears to be a more conserved feature. Small subunits are also absent in type I-F 

Cascade where they are substituted by the extended web, serving the same function. If small subunits 

have been indeed replaced and did not evolve from a common ancestor, a possible explanation for this 
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might be the existence of an Acr portein that targets small subunits directly. Another possible and more 

general advantage might be that fewer proteins allow for faster complex formation and in turn a faster 

immune response. 

Although minimization provides an apparent advantage for the type I -Fv system, it is not common in 

other type I systems (Makarova et al., 2015). Interestingly, interference levels of the minimal type I-Fv 

system were calculated to be 10-fold lower than for the type I-F system of Pseudomonas aeruginosa 

PA14 by in vivo assays performed in our group (Steube, 2018). In accordance with this, the KD values for 

dsDNA binding calculated with BLI  were much lower for type I-Fv Cascade (46.65nM (Müller-Esparza, 

2019)) compared to for type I-F Cascade from Pseudomonas aeruginosa (1nM (Rollins et al., 2015)). A 

possible explanation for this could be that the PAM recognition mechanism from the major groove leads 

to higher target recognition times. Otherwise, the minimized architecture of I-Fv Cascade could result in 

lower stability of Cascade/R-loop complexes. Indeed, mismatches between both target DNA strands 

were shown to increase binding affinity, indicating that Cas7fv cannot efficiently stabilize the non-target 

strand (Müller-Esparza, 2019). Decreased interference might also be a result of a different Cas3fv 

recruitment mechanism that still needs to be investigated. Overall, the minimal type I -Fv might have 

sacrificed binding affinity for Acr resistance, which might explain why this system is not as widespread 

among prokaryotes as e.g. the type I-E system. 

 

3.2 Investigation of the nuclease activity of Cas3fv and the Cas1-Cas2/3 super 

complex 

The structure and activity of the type I-Fv-specific Cas3fv DNA nuclease remained largely unexplored. In 

previous experiments, various expression conditions and purifications protocols were tested, including 

the use of different purification tags. Among these, expression with a SUMO-tag was found to be 

successful and small amounts of soluble protein could be purified by which it was possible to establish 

the ssDNA cleavage ability of this protein in presence of divalent cations (Dwarakanath, 2015). 

In this work, we have tried to optimize purification protocols for Cas3fv and study the nuclease activity 

of the protein. In the meantime, usage of an MBP-tag (Maltose binding protein) has been established in 

purifications of related Cas3 proteins, including Cas3 from type I-F (Hochstrasser et al., 2014). While the 

MBP-tag seemed to improve the amount of purified protein by Ni -NTA, size-exclusion revealed that all 

protein eluted in the void volume, indicating either aggregation or bi nding to large nucleic acids.  

Additionally, ssDNA cleavage activity was not observed. Future experiments could investigate nucleic 

acids co-eluting with this protein and include an ion-exchange purification step to remove them. 

Additionally, a GST-tag could be utilized that has been successful for purification of different Cas3 

variants (Wang et al., 2016). 
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Decent amounts of soluble Cas3fv were purified when we also investigated the fusion of the Cas3fv 

protein to the Cas2 domain. The successful purification and relative stability of standalone Cas3 indicate 

that the Cas2 domain is not required for interference.  

Activity of standalone Cas3fv, independent of Cas2, was confirmed on ssDNA substrates. Cas3fv cleaved 

the fixed amount of substrate with increasing time in the presence of divalent Mg2+ and Mn2+ ions and is 

thus capable of repeated degradation. In radioactively labeled nuclease assays, standalone Cas3fv was 

also able to fully degrade bubble substrates with a small 10 nt opening in the presence of ATP, indicating 

a functioning helicase capable of unwinding the remaining ssDNA and subsequent DNA cleavage .  

Full degradation of R-loop substrates by Cas3fv confirmed that the R-loop/Cascade complex is able to 

recruit Cas3fv. The small cleavage products below 10 nt correspond to shredded DNA.  

Additional assays should attempt to quantitatively measure nuclease activity after this general proof of 

in vitro cleavage. In the provided nuclease assays with R-loop substrates, activity appeared quite low 

and conditions should be optimized to show progressive degradation in form of a gradient of cleavage 

with increasing incubation time. 

In general, a nuclease-deficient HD-mutant of Cas3fv would be the most ideal control for these assays. 

Unfortunately, the HD-mutant we created remained insoluble. Further optimization of purification or 

the addition of solubility-tags might help to overcome this issue. The effect of different divalent cations 

on cleavage activity could be studied as well. In some systems, Fe 2+ ions were shown to inhibit cleavage 

(Wang et al., 2016). If the same effect can be achieved with any metal ions, these could be used as a 

control in assays or even for stabilization in purification. With a purified but catalytically inactive Cas3fv, 

future assays could be performed to study recruitment of Cas3fv for example by observing a supershift 

on EMSA with Cascade/R-loop substrates. Additionally, the helicase activity might be studied with 

appropriate assays, including AMP-PN to block the helicase domain for control purposes.  

In the end, structural analysis would also enable a clearer understanding of how Cas3fv is recruited and 

how target cleavage is performed. Future attempts at solving its 3D structure will focus on crystallization 

or cryo-EM. 

Structural analysis should also be performed on the Cas1-Cas2/3fv supercomplex, whose formation in 

the type I-Fv system was proven in this work. This would confirm the architecture of this supercomplex 

but also help to solve the 3D structure of Cas3fv because the complex proved to be highly soluble during 

purification in comparison to standalone Cas3fv or Cas2/3fv which allows for easy purification. On the 

other hand, the size and complexity of this supercomplex provide challenges for crystallization, further 

arguing for the use of cryo-EM.  

Initial TEM analysis did not show any clear structure of the supercomplex. We then attempted SAXS 

analysis, which we successfully used before to analyze the shape of the synthetic Cascade variants. 
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Unfortunately, the data quality of the performed measurements was not sufficient to obtain a 3D 

model. This could be due to complex breakdown during freezing/thawing and subsequent sample 

inhomogeneity. Structural analysis should be further attempted to confirm and compare the structure 

of the supercomplex. Nonetheless, the general assembly of this systems complex is expected to be 

similar to type I-F, considering that the estimated molecular weight of the elution volume fits a complex 

of two Cas1 dimers and two Cas2/3fv proteins. 

The fusion of cas3 to cas2 and the formation of the Cas1-Cas2/3 supercomplex was first investigated in 

the I-F system of Pseudomonas aeruginosa (Rollins et al., 2017, Fagerlund et al., 2017). EM analysis and 

reconstruction revealed this complex to have a four-lobed “propeller-shaped” structure consisting of 

two Cas2/3 proteins and two dimers of Cas1. Cas1 and Cas2 were known to form a complex for 

adaptation (Nunez et al., 2014) and the fusion of Cas2 with Cas3 integrates the nuclease into this 

complex. Radioactively labeled cleavage assays with the Cas1-Cas2/3 were shown to inhibit nuclease 

activity unless this complex is recruited by target-bound Cascade, in which case activity is restored 

(Rollins et al., 2017).  

The Cas1-Cas2/3fv complex from the I-F variant system investigated in this work seems to inhibit Cas3 

ssDNA cleavage activity as well, as shown by incubation of complex with ssDNA substrate. The substrate 

was only cleaved with very a high concentration of added protein, presumably either due to complex 

breakdown overtime or sample inhomogeneity. However, in radioactively labeled nuclease assays, Cas1-

Cas2/3fv was shown to partially cleave empty bubble dsDNA substrates without Cascade as well as R-

loop substrates. The cleavage was in both cases not complete and a strong band of intact substrate 

remained. The partial cleavage seen in these assays differs in comparison to nuclease assays with R-loop 

substrates both in the type I-Fv and type I-F system, because of the very prominent band at around 40 

nt, representing approximately half the size of the 90 nt substrate.  

A possible explanation for the intermediate band is that it represents the nicking position of Cas3fv and 

that the following dsDNA could not be degraded. Likewise, small ssDNA was not fully degraded in this 

assay and an intermediate band was produced in addition to fully degraded DNA. In the case of the I-F 

system, a similar but faint signal has been observed for “bubble” substrates without bound Cascade 

when the target was almost completely degraded. Here, this was thought to be a sign of imprecise 

positioning of the HD-active site to the ssDNA bubble (Rollins et al., 2017). The size of the intermediate 

cleavage products is also in a range similar to a typical spacer of the type I-Fv system which could be an 

indication for production of prespacers by Cas3fv in the primed adaptation process known from other 

CRISPR-Cas systems (Kunne et al., 2016). 

HDX-MS experiments performed by our collaborators have already shown that Cas3 recruitment takes 

places on the non-target strand as this position was more protected from H/D exchange (data not yet 

published). Future nuclease assays could be performed with a different radioactive labeling method 
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such as 3′-end or body labeling instead of the typical 5′-end labeling which could confirm the position of 

Cas3 nicking. The position of the band on cleavage assays might indicate the exact cleavage position of 

Cas3fv on the target substrate. Additionally, AMP-PNP could be used to “freeze” the helicase domain 

and determine the exact position of Cas3fv nicking. 

The impaired exonuclease activity and generally minimal cleavage in these assays could be due to 

inhibition by Cas1-Cas2/3fv that is perhaps only able to nick substrates in the type I-F variant system but 

this difference compared to the I-F system would be surprising. Another explanation for this band is that 

assay conditions require further optimization.  

The presumed structural alterations of Cas3fv could have occurred after fusion to the adaptation 

machinery. Alternatively, it is possible that Cas3 was replaced by a different protein that evolved into 

Cas3fv. As mentioned before, the driving force behind this change could have been viral Acrs such as 

AcrF3 known to inhibit recruitment of Cas3 to I-F Cascade (Rollins et al., 2019). 

The reason for the fusion of the adaptation machinery with the nuclease/helicase is a current subject of 

discussion. One initial suggestion of Richter et al. is that the fusion aids in the interference driven 

acquisition of new spacers that requires Cas3 in addition to Cas1 and Cas2 (Richter et al., 2012). 

However, Cas3 nuclease and helicase activity were not involved in spacer capture studied by in vitro 

integration assays (Fagerlund et al., 2017). 

Rollins et al. also argue that the loss of activity without R-loop substrates would inhibit degradation of 

unrelated ssDNA in the cell and Cas1 would thus function as an anti -toxin to toxic Cas2/3 activity. As for 

why this is not conserved in all type I systems, they speculate that anti-CRISPR activity might have forced 

this diversification, considering that AcrF3 is capable of blocking adaptation and interference of type I -F 

CRISPR-Cas systems which might present an Achilles heel that forced the loss of this fusion (Rollins et al., 

2017). This theory would be in line with the structural alterations in I-Fv Cascade shown in this work. 

Fusions of other cas genes are fairly common; cas4 can be fused to cas1 (in types I-B, I-U, and V-B) and 

cas3 can also be split or fused to other cas genes (Koonin et al., 2017). This highlights the evolution of 

ancestral proteins into dedicated Cas proteins during evolution. For example, Koonin and colleagues 

propose that Cas1 and Cas2 originally evolved from a toxin/anti -toxin pair (Makarova et al., 2013). 

Besides the fusion of Cas2 and Cas3, the general mechanism of Cas3 interference is conserved in type I 

systems and Cas3 was suggested to have evolved from a generic nuclease/helicase to target foreign DNA 

(Nimkar & Anand, 2019).  

 



Discussion 

90 
 

3.3 Synthetic Cascade assembly and directed RNA-wrapping  

The process of “RNA wrapping” by I-Fv Cas proteins and a repeat sequence was established and 

confirmed in this work. It is possible to form a complex of Cas proteins on an RNA molecule of choice by 

adding the 5′-repeat sequence upstream of the desired sequence. The repeat sequence on the produced 

transcript is processed by Cas6f which enables Cas5fv binding that in turn initiates Cas7fv backbone 

assembly on the tagged transcript. A second repeat sequence at the 3′-end as found in natural crRNAs is 

not required. The formed structures can be purified with an affinity tag fused on Cas5fv and the 

wrapped RNA later be extracted. The process works with various RNAs, including the here tested sfgfp, 

lacZ-alpha and a non-coding RNA construct. 

While RNA-seq analysis and the decrease in sfGFP production confirm the specificity of this process,  it is 

not possible to create complexes on an entire reporter gene transcript and there seems to be an 

apparent maximum length of ~ 100 nt of the directed Cascade assemblies. Additional confirmation of 

this length limitation was obtained by the inability to purify a complex with a second repeat tag on the 

3′-end of the transcript for Cas6f binding, which would theoretically create a highly extended Cascade 

complex.  

If no repeat region is present and Cas proteins are overproduced, Cas proteins and RNA are s till co-

purified with His-tagged Cas5fv. Sequencing of this RNA shows no-sequence bias and reveals only 

general RNA from the E. coli transcriptome. Fluorescence microscopy in our laboratory indicates that 

Cas5fv can bind RNA in general, when RNA is massively produced and no repeat is available (Müller-

Esparza, 2019). This would not be an issue under wild-type conditions because Cas proteins are only 

produced in small amounts. 

The E. coli genome was also investigated for natural 5′-handle sequences that could lead to unspecific 

RNA wrapping and 17 sequences were found. Upon closer inspection, a minor peak can be found in the 

mapping profile of obtained reads to the genome which starts directly at one of these 5′-handle 

sequences located in a non-coding area. However, this peak only reaches a maximum of ~ 100 reads in 

comparison to other unspecific peaks with a maximum of up to 1,000 reads. Additionally, in this 

sequencing, only ~ 40,000 reads were mapped to the entire genome from a total of ~ 900,000 reads in 

the entire sequencing and most of the reads match the 5′-terminal portion of the repeat-tagged sfgfp. 

The majority of other unspecific reads were thus mapped to unrelated positions in the genome. On top 

of this, no sequences can be found that match the full 28 nt long repeat sequence required for 5′ -end 

processing and initiation of RNA wrapping. It can be assumed that the absence of a full repeat sequence 

limits the availability for unspecific initiation even further in addition to the generally lower transcription 

of this random sequence compared to the repeat-tagged target.  
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In the sequencing of the T7 RNAP produced sfgfp target, a minor additional peak is noticeable in the 

mapping profile that started with a two amino acid difference to the wild-type 5′-handle. Considering 

that this construct is highly produced, it could be sufficient for a second Cas5fv binding site and initiate 

RNA wrapping although with much lower efficiency compared to the wild-type repeat sequence. It 

should be noted that this peak is not present in previous sequencing of other repeat -tagged sfgfp 

constructs due to a different coding sequence on these plasmids compared to T7 RNAP produced sfgfp. 

One theory for the length limitation was that the expression conditions were not optimal or more 

specifically, that it is necessary to provide individual proteins and RNAs in an optimal ratio. To 

compensate for the necessary overabundance of Cas7fv in a complex spanning an entire reporter gene 

transcript, we re-cloned cas5fv and cas6f on a plasmid with a lower copy number. However, RNA-seq 

results did not show an increased length of wrapped RNA, even when cas7fv was expressed from both 

MCS of the high copy expression plasmid.  

Another investigated reason for the length limitation was that the beginning translation on the 

transcript would interfere with the assembly process. Transcription and translation are coupled 

processes that occur consecutively (Proshkin et al., 2010, Landick et al., 1985). Under special conditions, 

this can even lead to the formation of a transcribing and translation “expressome” complex (Kohler et 

al., 2017). The ~ 100 nt space could thus represent the space between RNA polymerase and the 

ribosome. We first investigated this by removing the RBS but filaments observed on TEM showed the 

same typical length. We later optimized the experimental design by also removing every possible start -

codon but RNA-seq analysis confirmed no positive effect on RNA wrapping and excluded this reason. To 

completely remove the possibility that E. coli RNAP is coupled to ribosomes, even in the absence of 

translation, we changed the promoter for target expression to the T7 promoter. While this didn’t 

remove rRNA contamination, an improvement in the amount of RNA wrapping complexes was 

observed. We realized that standard Cascade production was most ideal when the crRNA was produced 

with T7 RNAP from the particularly high copy number vector, pUC19. This setup ensures that enough 

crRNA is available to form a complex with the Cas proteins. The limited amount of transcript produced 

by E. coli RNAP was apparently not sufficient for assembly to be detected as a peak during size -exclusion 

chromatography. Instead, the massively overproduced Cas proteins formed filaments and other 

byproducts. We initially chose the original setup for independent expression for the silencing 

experiment but it seems that this was counterproductive to complex formation and purification. It 

should be noted that the process itself worked even with the low amount of transcript, so silencing of 

sfgfp was immediately apparent and wrapped RNA could be isolated and detected by RNA-seq.  

When the highly produced Cas proteins were able to form more complexes on the now appropriately 

available repeat-tagged transcript, the Cascade-like structures became detectable during purification 



Discussion 

92 
 

and with TEM. This also seemed to decrease the production of filaments which were not visible in the 

latest purifications. This could also be related to MgCl 2 omission, because a clear peak in the void 

volume disappeared when the repeat-tagged non-coding construct from previous setups with E. coli 

RNAP production was co-purified with Cas proteins. Future experiments will need to investigate if 

filaments are still produced in a very minor amount, or if only some aggregated full -length transcript is 

in the void volume of this purification.  

The purified RNA wrapping complexes exhibit a form that is more similar to the “shrimp”-like type I-Fv 

Cascade, in contrast to the strict helical shape of filament structures. This shape of these structures is 

highlighted by the obtained 3D model from 2D class averaging of TEM pictures. Both, the 3D model and 

the original structures on TEM are not distinctively bigger than wild-type I-Fv Cascade. However, this 

size does not completely match the wide range of molecular weight calculated for the peak during size -

exclusion purification. 

It is not clear yet, how the wrapped RNA fits in this artificial Cascade -sized complex. A possible 

explanation for this is that not the entire structure was captured by TEM. After all, the peak in the 

elution volume of size-exclusion chromatography was very broad which indicates inhomogeneity and 

the image quality was only sufficient to see clear structures in the fraction at the right side of this peak 

which corresponds to an elution volume at the lower end up to 400 kDa. The estimated molecular 

weight of complexes eluting in the first half of this peak would be greater, with a maximum of 700 kDa, 

which correlates to ~ 19 subunits of Cas7fv/Cas5fv and one ~ 100 nt RNA molecule. This would be still 

smaller than the typical 100-200 nm filament structures from previous purifications with MgCl2. Also, no 

clear filament structure like from previous purifications was identifiable in this fraction ( Supplementary 

Figure 5). Still, even the visualized complex from the right side elutes at an elution volume 

corresponding to a higher minimal molecular weight than the natural I -Fv Cascade complex with less 

than 300 kDa. Even if the maximum of 8 Cas proteins can truly be fitted in the model, this complex 

would have a size of slightly more than 300 kDa. 

Similarly shaped structures of about the same size were visualized by TEM in the elution fractions of salt 

gradient during the MonoQ purification step (Supplementary Figure 6). However, these structures were 

a bit more aggregated and the size was not easily identifiable. It is also possible, that these are 

fragments of larger filaments or Cascade-like structures that were broken apart by the high salt 

conditions. 

Another possibility is that the model generated by 2D class averaging also did not present us the 

maximum length of these complexes considering the many orientations observed. In comparison to the 

previously observed filament structures, these smaller Cascade-like complexes are more flexible. On 

TEM pictures itself, they lie in various orientations resulting in different shapes in this 2D view, ranging 
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from an S-like structure to a closed ring (Figure 2.28 B). In the model created by 2D class averaging, this 

visualizes itself as a sideways turn, compared to the strict helical nature of filaments and the more  

compact form. This is the case for filaments from previous purifications that were analyzed with TEM as 

well as for the RNA-free Cas7fv helix obtained during crystallization (Figure 2.18, Figure 2.19). RNA-

binding by the Cas proteins could potentially loosen the strict helical form and bend the structure to the 

typical “shrimp”-like form of Cascade. Without capping at the 3′-end and due to their longer backbone, 

these flexible structures can lie in various orientations. The most likely explanation for the sudden stop 

in Cascade assembly in the range of the first ~ 100 nt is a steric clash of one end of this complex with the 

existing structure (for example in the closed ring form).  

Although the full and definite structure of the directed RNA wrapping complexes is most likely not 

obtained yet, it can be assumed that the full 100 nt wrapping complexes feature the same architecture. 

Additionally, RNA purified from these complexes and their analysis on high percentage gels suggests a 

variety of complexes with different sizes. A first distinct band was confirme d to have a size of ~ 80 nt, 

while a second distinct band corresponds to RNA with a size of ~ 100 nt. Both these fractions match the 

peak in RNA-seq results and this also explains the broadness of the peak during size -exclusion 

chromatography. Nanopore sequencing also suggests a moderately longer length in the total pool of 

available transcripts with a decreasing abundance the longer the length of the transcript. Synthetic 

Cascade assemblies might be formed on a repeat-tagged RNA of up to ~ 250 nt, although with a 

continuously lower chance for the assembly process to cover this size of RNA.   

The few full-length transcripts produced were apparently bound to the MonoQ column and separated 

by ion-exchange chromatography. The UV absorbance ratio suggests that this is not bound to protein 

complexes from Cascade-like structures. Most likely, by increased target production rate with T7 RNAP, 

some transcript escaped complex formation and translation. Another possibility for the presence of full-

length transcript is that while complex assembly already started, it breaks off perhaps by crashing into a 

roadblock for example by ribosomes. In this case, a long RNA strand would only be bound at the 5′-end 

by Cas5fv and perhaps some Cas7fv and thus co-purified. In combination with the slightly larger 

transcripts identified by Nanopore sequencing, a possibility is that the remaining part of larger RNA 

molecules sticks out of the end of the fully formed complexes and thus not wrapped but still co-purified. 

A remaining possibility to cover a large RNA molecule would be to provide this molecule in very low 

numbers before the cas genes are expressed and not inhibit translation. It could then potentially be 

covered by Cas proteins completely. It cannot be guaranteed that an ordered assembly reaction would 

take place on this large construct. 
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To confirm the maximum length of RNA in the synthetic Cascade-like complexes, it will be necessary to 

purify full Cascade complexes with Cas6f at the 3′-end that include crRNAs with a spacer length close to 

the observed ~ 100 nt limit. By step-wise increasing the spacer length by 6 nt for one Cas7fv subunit, it 

would be possible to confirm the maximum number of Cas7fv subunits in the Cascade backbone (Figure 

3.3). The addition of Cas6f at the 3′-end would guarantee a defined end of the complex, ensure stability 

and also allow for purification with a second affinity tag.  

 

Figure 3.3: Schematic representation of step-wise crRNA spacer extension. Starting from an ensured poss ible spacer length  

such as 80 nt (approximately the position of the highest count of mapped reads during RNA-seq analysis and s ize of a  defined 
band during small RNA Urea-PAGE), the crRNA length is increased in steps  of 6 nt for 1 Cas7fv subunit at a  time. Multiple 
constructs with varying length are created and used for Cascade assembly. Purification is then performed to identi fy formed 

Cascade complexes. The fi rst construct that does not form a  Cascade complex m arks  the defini te end of poss ible spacer 
extension. A 3′-repeat sequence for Cas6f binding and full Cascade assembly is included to ensure stability of these complexes .  

 

3.4 Nature of filaments and rRNA contamination 

The discovery of Cascade-like assemblies containing small RNA and the removal of ribosomal RNA 

elucidated how RNA is wrapped in this process. However, the nature of filament structures is not fully 

clear yet.  

Filament structures have been previously purif ied with a His-tag fused to Cas7fv and the general co-

purification of large RNA molecules has led to the assumption that they are formed on random RNA 

(Dwarakanath, 2015).  We still obtained these structures when we switched the His-tag from Cas7fv to 

Cas5fv, so some form of interaction of Cas5fv with these structures is apparent and we assumed that 
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they are starting with a Cas5fv subunit. Cas5fv was never really detected on SDS-PAGE though, which we 

thought to be due to overlapping bands or due to the overrepresentation of Cas7fv in these structures.  

The 3D structure of a small Cas7fv helix obtained during crystallization of I -Fv Cascade Cas7fv matched 

the purified filamentous structures observed on TEM and the later created model by 2D class averaging. 

This crystallized helix also does not contain RNA and while it is possible that RNA was pulled out during 

crystallization, it is also possible that the purified filaments are empty and simply oligomers caused by 

overproduction of Cas7fv. Recombinant overexpression in E. coli compared to minimal wild-type 

expression in S. putrefaciens CN-32 might have also increased the amount of unspecific interaction and 

by-product formation.  

A recent crystallographic study elucidated the 3D structure of the Cas7f protein from Zymomonas 

mobilis (ZmCsy3), forming a molecular helix and filamentous structure in the crystalline state (Gu et al., 

2019). The model of this helix looks generally similar to the Cas7fv helix provided in this work, exhibiting 

a hollow cleft through the structure by the concave palms and with a positively charged cleft to the 

solvent by the extended regions (here “extended web” instead of wrist-loops). In contrast to the Cas7fv 

helix in this work, the ZmCsy3 helix requires seven instead of eight subunits for one full rotation and is 

thus slightly shorter in comparison (Figure 3.4). In addition, the ZmCsy3 helix also appears moderately 

compressed with a distance of 82 Å between coils in comparison to  130 Å. However, this might also be 

due to the packing in the crystal form. 

 

            

Figure 3.4: Comparison of filament structures. (A) Crysta l  s tructure of ZmCsy3 (Cas7f from Zymomonas mobilis). Left: s ide view 

of the molecular helix formed by seven Csy3 molecules  in the asymmetric unit of the crysta l l ine s tate . Each molecule i s  

di fferentiated by colors and labeled from 3.1 to 3.7 to indicate the first to 7th Csy3 molecules. Right: The filamentous structures 

formed by Csy3 molecules. The symmetry-related molecules are displayed with coi l s . Figure from Gu et al., 2019. (B) Crysta l  

Structure of Cas7fv hel ix from this  work (see 2.2.2.3 and Figure 2.19).  
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Gu et al. also claim that the molecular helix is formed in the absence of crRNA in the crystalline state 

and suggest the possibility for ZmCsy3 to aggregate at high concentrations to form a molecular 

backbone without crRNA. In turn, this might be an indication for the backbone to self-assemble before 

binding crRNA and other subunits. This research further indicates that the filament structures we always 

observed do not contain the specifically wrapped RNA and they are only an unspecific product of the 

purification. In the first performed RNA wrapping experiments, filaments would only be formed in case 

of low amounts of available repeat-tagged targets compared to massive overproduction of Cas7fv, 

which is not a native condition. In this case, instead of forming a Cascade-like complex, Cas7fv would 

aggregate to the long helical filament structures.  

Besides the RNA-free helices from type I-F and type I-Fv, the length of all filaments visualized with TEM 

was mostly consistent and did not match the length of any repeat-tagged RNA construct potentially 

inside RNA. Specifically, filaments purified from cultures expressing the sfgfp-half construct looked 

identical to filaments obtained when full repeat-tagged sfgfp was expressed. The few observed 

filaments with a longer length could be overlapping structures. Small repeat-tagged RNA was only 

extracted from Cascade-like structures. Identical looking filament structures with the same lengths were 

also co-purified during recombinant production of type IV crRNP complex in E. coli (Ozcan et al., 2019). 

All this combined, highly suggests that filaments are not formed on RNA.   

Another direct comparison can be made with somewhat filamentous structures of Cas7 from the type I -

C system (Hochstrasser et al., 2016). These structures also appear to be filamentous, with a similar size 

compared to the Cas7fv filaments in this work. However, they feature a much more open and less 

compressed configuration (Figure 3.5). Filaments of Cas7fc are stated to be formed on a 44 nt RNA after 

incubation and presumably by bridging adjacent RNA molecules together which would explain their  

large size compared to a type I-C Cascade. Either these structures are also a product of oligomerization 

of Cas7 without RNA or they are more similar to the synthetic Cascade assemblies produced in this 

work, perhaps presenting something closer to the larger complexes we couldn’t visualize yet. 
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Figure 3.5: Comparison of filament structures from type I-Fv and type I-C visualized with TEM. (A) Fi lamentous  s tructures  
from the void volume of Cas protein puri fications  in this  work (see section 2.2.2.3 and Figure 2.18). (B) TEM analys is  of 

s tructures from oligomerized type I -C Cas7 protein, obtained after incubation of monomeric protein with RNA. Figure modified 
from Hochstrasser et al., 2016. 

 

Because RNA was always co-purified with these proteins, we were previously unable to locate the 

position of this RNA, specifically if it is bound by the central RRM of Cas7fv or sticking on the outside.  

Only when rRNA (and other additional co-purified RNA) was removed, we were able to separate small 

RNA containing complexes and full-length transcript. 

Ribosomal RNA was commonly purified before we removed MgCl 2 from the purification buffer which 

indicates that this component was essential for rRNA contamination. Mg2+ ions are essential co-factors 

for ribosomes and an increased MgCl2 concentration can lead to their stabilization and co-purification 

(Nierhaus, 2014). While Mg2+ is naturally occurring in the cell, their addition to the wash buffer could 

have pulled out rRNA or entire ribosomes. However, ribosomal proteins were not detected on SDS-PAGE 

arguing that only rRNA was co-purified. Otherwise, it might have been possible that ribosome binding to 

the repeat-tagged transcript might be the reason for co-purification.  

Ribosomal RNA proved difficult to remove and no method (RNase I treatment, size -exclusion, strep-

affinity or salt-wash) showed any noticeable effect which speaks for a strong interaction between rRNA 

and Cas proteins. We also hypothesized that rRNA was in the filament structures due to the unique 

positively charges wrist loops of Cas7fv. However, the co-purification of repeat-tagged RNA and Cas 

proteins with mutated and neutralized amino acids still contained rRNA. It is still unclear, why rRNA was 

not detected by Illumina RNA-seq and only by Nanopore sequencing. It is likely that this was a problem 

with fragmentation, which is circumvented by Nanopore sequencing. These results are intriguing 

because rRNA usually is a common contaminant during RNA-seq with Illumina. 
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3.5 Natural reasons for limitations in size of Cascade assembly  

The hypothesis that Cascade assembly can be specifically directed with a repeat sequence on an RNA of 

choice, was made due to the previous research on modulation of the I -Fv Cascade backbone in which its 

size was increased or decreased by including differently sized crRNAs (Gleditzsch et al., 2016). This 

modulation is based on the general RNA binding ability of Cas7fv that enables complex formation on 

random RNA sequences in the first place.  

Recently, this possible modulation has also been shown for the type I-E system. Altered length is here 

achieved by including less or more of the small subunits in the complex, in addition to the backbone 

forming protein Cas7 (Luo et al., 2016, Kuznedelov et al., 2016, Songailiene et al., 2019). In these 

experiments, spacers were extended with up to 24 additional nt, corresponding to 4 additional subunits 

of Cas7e and 2 additional small subunits. However, the maximum length was not disclosed. 

In the newest research that provided the ZmCsy3 helix from a type I -F system, it was shown that 

monomeric ZmCsy3 forms different oligomeric states depending on the length added crRNA which is in 

line with other research that investigates the Cascade assembly and size of complexes. However, no 

other Cas proteins were added in these experiments. 

In the minimal type I-C systems, where the Cas5 protein is additionally responsible for crRNA 

maturation, substituting Cas6, Cas7 oligomers have been identified on RNA without 5′-handle and/or 3′-

hairpin (Figure 3.5) (Hochstrasser et al., 2016). 

Type III systems are known to bind crRNAs of different length by Csm3 or Cmr4 that act as ruler proteins 

spanning the crRNA in 6 nt increments and effective crRNAs of varying length are found in nature 

(Hatoum-Aslan et al., 2013, Hale et al., 2009).  

The general question arises, why it is possible to modulate these crRNP backbones based on crRNA 

length. The multi-subunit arrangement of class 1 systems is different from single-effector class2 systems 

that are not able to bind extended RNA spacers. However, it was shown that the length of guide RNA 

can be moderately reduced for up to 3 nt in Streptococcus pyogenes Cas9, which increased specificity 

and reduced off-target effects (Fu et al., 2014). 

Kuznedelov et al. argue that type I CRISPR effectors might have evolved from much simpler ancestral 

complexes with as little as one Cas7 subunit to the most optimal arrangement of six Cas7 subunits for 

tighter interaction with target DNA (Kuznedelov et al., 2016). The length of spacer CRISPR RNA is also 

influenced by the preferred size of protospacers of the Cas1-Cas2 acquisition complex. Songailiene et al. 

suggest that the optimal length despite the modular architecture of these complexes might be the result 

of their coevolution along Cas1 and Cas2 (Songailiene et al., 2019). 
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Luo et al. have shown that type I-E Cascade complexes with spacers extended up to 24 additional nt 

exhibited increased silencing levels in a CRISPR interference assay (Luo et al., 2016). However, elongated 

complexes were shown still form R-loop structures on target DNA of the same length and while target 

DNA binding affinity was increased, Cas3-mediated cleavage did not require extended R-loops 

(Songailiene et al., 2019). Likewise, no positive effect on interference was observed for extended I -Fv 

Cascade complexes with up to 18 additional nucleotides during in vivo interference assays (Gleditzsch et 

al., 2016).  

 

3.6 Applications 

A variety of applications for the established RNA wrapping process were investigated. Silencing 

translation of reporter gene transcripts and protecting RNA from degradation while encased in the 

Cas7fv backbone was established and additionally, we have provided indications that the backbone of 

synthetic Cascade-assemblies can be modified. Research on additional potential applications, namely 

packing of RNA in complexes in vitro and the induced unpacking of complexes was initiated. These 

applications will be discussed in greater detail in the following sections. 

 

Silencing of reporter gene transcripts: 

Cas5fv-Cas7fv-mediated silencing of reporter genes was confirmed by the color expression cultures, 

fluorescence microscopy and FACS. Silencing takes place on the level of translation after transcription. 

The transcript becomes inaccessible for ribosome binding and translation due to Cas7fv binding and 

blocking of the RBS and the following sequence.  

Quantification of the silencing measured by FACS revealed a ~ 95.3 %  sfGFP reduction when comparing 

the control to the repeat-tagged construct produced by T7 RNAP overnight at 18 °C. Comparison of the 

repeat-tagged control expressing no cas genes to the same construct expressing only sfgfp and cas 

genes simultaneously results in sfGFP reduction of only ~ 91.1 %. This indicates that some transcript will 

always escape wrapping by Cas proteins and will be translated.  

Silencing is less strong when sfgfp was expressed before cas genes. This further indicates direct coupling 

of transcription and translation. If transcripts are produced ahead of time, they will be conv erted to 

sfGFP and Cas proteins will only form complexes on freshly produced mRNA.  

High levels of Cas protein production seem to cause major stress as apparent by the elongated shape of 

cells detected with fluorescence microscopy and FACS. This might be caused by cas gene overexpression 

in general or by a toxic effect due to unspecific RNA binding of Cas7fv. The general ability of Cas7fv to 

bind RNA in vitro without Cas5fv initiation has been shown by EMSA analysis (Dwarakanath, 2015). 
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Sequencing of RNA extracted from the control construct without repeat-tag shows a variety of RNA. 

Even though the addition of the repeat-tag shifts this relation to the 5′-terminal portion of the tagged 

construct, this unspecific binding should be investigated further.  

In contrast to established CRISPR interference (CRISPRi) assays on a DNA level, the level of silencing is 

moderately weaker. For example, a 99.9 % silencing efficiency was obtained with catalytically dead 

dCas9 (Larson et al., 2013). CRISPRi was also established with DNA targeting of type I-E Cascade in 

absence of Cas3, producing similar levels of silencing (Rath et al., 2015). It is also predicted that Cascade-

mediated CRISPRi is accompanied by less off-target effects compared to dCas9. 

Silencing experiments with RNA-targeting single effectors such as Cas13 have focused on knockdown by 

degradation of the RNA target and managed a silencing rate of up to 95 %. For these in vivo assays, 

reporter production can be simply reversed by stopping Cas protein production, reinitiating 

transcription and translation. A strong focus in the applied research in these systems is RNA -editing (Cox 

et al., 2017) and nucleic-acid detection (Gootenberg et al., 2017).  

The well-established eukaryotic RNA interference mechanisms also achieve silencing by degrading 

foreign RNA but are characterized by low efficiency compared to CRISPRi (Hannon, 2002, Zamore et al., 

2000). 

A topic of current research is the degree of off-target effects with the Cas9 and CRISPR-Cas systems in 

general. In type I interference, R-loop formation depends on the presence of PAM and the seed 

sequences while the specificity of the presented RNA wrapping process is based on the presence of a 

repeat-tag. Mismatches in the repeat-tag were shown to not be tolerated in other type I systems and 

even a single mismatch was shown to disable Cascade formation (Beloglazova et al., 2015). As 

mentioned before, a single of natural 5′-handle sequence in the genome of E. coli resulted in an 

extremely small peak in the mapping profile while a comparably minor peak was present i n the 

sequencing of the T7 RNAP produced repeat-tagged transcript with a two amino acid difference to the 

wild-type 5′-handle. These peaks indicate very minor off-target activity that should be further 

investigated. In general, this system has proven to be very specific for silencing. 

To summarize, most CRISPRi methods are based on silencing transcription while the presented method 

of RNA wrapping inhibits translation. In contrast to other RNA targeting systems, RNA wrapping in the 

Cascade complex leaves the RNA intact, which can be a potential advantage such as faster reversibility 

and return to standard conditions. While degradation could also be avoided with an inactivated dCas13, 

Cascade complexes or Cascade-assemblies without Cas6f can encase longer sequences. 
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RNA Protection: 

In addition to the basic application for specific RNA isolation by providing a repeat, we have shown that 

RNA content is also protected from degradation even when incubated with RNase I.  

These experiments were performed before rRNA contamination was removed, so only a smear was 

visible on normal RNA gels. This entire smear remained after incubation with RNase I, which indicates 

that this RNA is highly structured and inaccessible for RNase I degradation as well. However, it is unlikely 

that this unspecific rRNA is protected by being wrapped in Cascade-assemblies in the same fashion as 

the specific repeat-tagged RNA. In future assays from purifications without MgCl 2, this option should be 

excluded.  

No exact size determination was possible for the Northern Blot analysis but the obtained signal fits in 

the range of the usual 5′-terminal portion that was observed by RNA-seq and in extractions with T7 

RNAP produced constructs.  

Noticeable precipitation was visible in the incubated samples, likely by the unstable co-purified 

byproducts such as Cas5fv-Cas7fv dimers that were not removed from the Ni-NTA fraction in this 

experiment. Northern Blot confirms that the RNA that is wrapped in a Cascade-like complex is protected 

for numerous days. The missing capping of Cas6f does not seem to affect stability and the sample is 

apparently as stable as normal Cascade complex, although this would need to be confirmed directly for 

comparison. In type I-C Cascade, crRNA processing is performed by Cas5c in addition to 5′-end capping 

and the 3′-end is only capped by the crRNA stem-loop (Hochstrasser et al., 2016). In general, Cascade 

complexes evolved to be highly stable as they are required to constantly scan the cellular DNA content 

for foreign DNA. With these observations, the specific RNA wrapping can be used as a tool to stabilize 

the specifically isolated repeat-tagged RNA. 

 

In vitro RNA packing:  

Because of the stabilizing effect on RNA, it would be especially useful to be able to pack RNA in Cascade -

like complexes in vitro. Ideally, mixing monomeric apo-Cas7fv with RNA would create these complexes. 

We focused on this approach due to its envisioned simplicity. Alternatively, in vitro complex formation 

could require Cas5fv and a repeat tag which might also be generally desirable even if random RNA 

cannot be stabilized in an in vitro setting. 

Unfortunately, it was not possible to assemble synthetic Cascade assemblies in vitro. Previously, we 

were also not able to use the Cas5fv-Cas7fv dimer for in vitro assembly of a Cascade complex 

(Gleditzsch, 2015) and likewise, we were not able to create Cascade-like complexes in this work. It can 

be assumed that the dimer of these two proteins is not ideal for this application because the interaction 
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is too strong for later assembly. We did not use small RNA for this in vitro wrapping approach, which 

would represent a remaining option. The inability to form complexes with the Cas5fv-Cas7fv dimer 

argues against the hypothesis that the dimer transports Cas7fv to the crRNA. 

A helix of Cas7fv subunits was obtained by chance during crystallization of I -Fv Cascade. This presented 

an intriguing approach for obtaining apo-Cas7fv, especially because I-Fv Cascade can be purified easily. 

However, while crystals were obtained in small-scale drop format, upscaling was not possible and we 

discontinued this approach to focus on purification of soluble Sumo-Cas7fv. Nonetheless, future 

attempts could focus on improving crystallization conditions with the aim of obtaining crystalline Cas7fv 

in higher amounts. After all, this approach of purifying protein on a large scale is commonly used in 

existing biotechnological protocols such as purification of insulin (Mirsky et al., 1963). 

While purified Sumo-Cas7fv can bind RNA in vitro as shown by EMSAs in previous work (Dwarakanath, 

2015), we were not able to obtain clear structures with this approach with both small and long RNA. 

Purification of Sumo-Cas7fv with an included high salt wash seems to be the most ideal approach to 

obtain soluble protein. A problem might be the need for coordinated Cas7fv addition on the backbone 

that is most likely happening in vivo directly after transcription. Protein needs to be directly provided on 

RNA for coordinated backbone formation and to avoid oligomerization, byproducts like Cas5fv-Cas7fv 

and perhaps inhomogeneous RNA plus Cas7fv complexes. 

One benefit of the in vitro approach compared to in vivo conditions we hoped for, was to use in vitro 

incubation to wrap longer RNA molecules. However, so far, it cannot be confirmed that this is possible. 

The obtained structure of purified Cascade-like assemblies indicates that the process only works 

effectively with small RNAs up to ~ 100 nt. If in vitro RNA wrapping can be achieved, it is more likely to 

work with small RNA and further attempts should focus on this. Even more ideally, for proof of principle, 

a specifically designed small RNA without secondary structures should be used.  

In vitro packing of RNA in Cas proteins should be further investigated due to the usefulness of this 

potential application. Monomeric Cas7 from the type I-C system has been purified and claimed to be 

used for the formation of complexes on RNA (Hochstrasser et al., 2016). Additionally, there has been 

successful research performed on in vitro assembly of related Cascade structures with existing protocols 

that are based on isolation and solubilization of Cas proteins from inclusion bodies with subsequent 

refolding on RNA (Plagens & Randau, 2015, Plagens et al., 2014). Alternatively, Beloglazova et al. 

examined crRNA loading of empty Cascade purified from E. coli (Beloglazova et al., 2015). These 

approaches could be transferred to the I-Fv system and synthetic Cascade-assemblies. 
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Induced unpacking of RNA from Cas protein complexes: 

Another potential application we started to investigate is the induced unpacking of RNA from the 

created complexes in vivo. While complexes can be degraded in vitro by standard RNA extraction 

protocols such as phenol/chloroform, the induced release of RNA from stabilized complexes in the cell 

could prove immensely useful e.g. for therapeutic purposes.  

Our first attempt to achieve this was to use a unique Acr protein that has been shown to remove the 

backbone of type I-F Cascade (unpublished). The benefit of this full CRISPR-method would be that the 

backbone complex does not need to be further modified and that the Acr protein can be easily induced 

and expressed for unpacking of the RNA from the complexes. Because in vivo transformation assays, 

showed that this Acr does not target the type I-F variant system, we attempt to create RNA wrapping 

complexes with the type I-F Cas proteins and repeat, something which had not been investigated yet.  

During purification, we were not able to detect a specific complex on the repeat-tagged non-coding 

RNA. Even though this experiment failed, our improvements in the co-expression of the target RNA and 

I-Fv Cas proteins, performed in the meantime, could also be applied to type I-F. Future configurations of 

this co-expression could be helpful to rule out I-F complexes as potential candidates for a 

packing/unpacking system. 

The second investigated approach was based on the Mesoplasma florum transfer-messenger RNA 

system that utilizes protein degradation tags in combination with a specific and separately inducible 

protease that recognizes these tags (Gur & Sauer, 2008). This system has been successfully used for 

specific and tunable protein degradation (Cameron & Collins, 2014). This approach for unpacking of 

repeat-tagged RNA remains promising but more research is required. Complexes could not be purified 

because Cas5fv and Cas7fv became insoluble and were only detected in the pellet of homogenized cells. 

It is unexpected that the addition of the protein degradation tag poses a problem for the Cas proteins 

because we have created RNA wrapping complexes with sfGFP fused to Cas7fv and Cascade has been 

purified with the Dendra-protein fused to the C-terminus of Cas5fv (Müller-Esparza, 2019). The 3D 

structure of I-Fv Cascade also shows that the C-terminus, which is required for the protein degradation 

tag, is accessible. The solubility of the pdt-Cas proteins might improve by increasing the linker length. 

Additionally, the fusion of protein degradation tags to Cascade instead of synthetic wrapping complexes 

should be investigated. 

 

Backbone modification: 

Finally, the backbone of the directed Cascade assemblies can be modified, at least partially, by fusing a 

reporter on the Cas7fv backbone. It is unclear why this seems to be a partial modification and both 
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unmodified Cas7fv and sfGFP-Cas7fv were detected in the backbone. One explanation might be limited 

space on the backbone, especially when the flexible complex has an unfavorable orientation such as a 

closed ring in which both ends of the complex clash. To confirm this, we need to further investigate the 

exact position of the reporter in the modified backbone. Backbone modification of the synthetic 

complexes could enable the use of a variety of proteins, comparable to e.g. CRISPR activation (Maeder 

et al., 2013, Perez-Pinera et al., 2013). We could also envision backbone-modification to help for 

transport in the cell on a directed RNA of choice. Comparable to single-effector CRISPR-Cas systems, the 

multi-subunit type I-Fv system allows greater flexibility in modulation. 

 

In conclusion, the presented RNA wrapping process provides a variety of useful applications. Foremost is 

the specific isolation of RNA by the addition of a repeat-tag. The wrapping process can be used to block 

translation and protect the incorporated RNA. The simplified Cascade backbone provides advantages 

such as greater flexibility and straightforward potential modification. More potential applications 

remain and some have been initiated but were beyond the scope of this work. However, they provide a 

direction for further research on this synthetic method.  
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4. Material and Methods 

4.1 Materials, instruments and source of supplies 

4.1.1 Chemicals, Kits and enzymes 

The chemicals, kits and enzymes used in this work were obtained from the companies listed in 

Table 4.1.  

Table 4.1: List of special chemicals and reagents used in this work. 

Label Manufacturer 

2-log DNA ladder (0.1-10.0 kb) New England Biolabs , Frankfurt 

Acrylamide, N,N-methylenebisacrylamide  Roth GmbH, Karls ruhe  

Amicon ® Ultra  Centri fugal  Fi l ters   Merck Mi l l ipore KGaA, Darmstadt 

Ammonium Persul fate (APS) Roth GmbH, Karls ruhe 

Antarctic Phosphatase  New England Biolabs  GmbH, Frankfurt 

Antibiotics (kanamycin, ampicillin, spectinomycin, 

chloramphenicol)  

Sigma-Aldrich, Taufki rchen ; Roth GmbH, 

Karls ruhe 

ATP Thermo Fisher Scienti fic Ltd. & Co. KG, Bonn  

ATP [γ-32P] Hartmann Analytic GmbH, Braunschweig 

Bacterial protease inhibitor  Roth GmbH, Karls ruhe  

β-Mercaptoethanol Sigma-Aldrich, Taufki rchen 

Bradford Reagent BioRad, München 

Bovine serum a lbumin (BSA) Sigma-Aldrich, Taufki rchen 

Coomass ie Instablue  Expedeon, Cambridge 

Color prestained protein standard (10-250 kDa) New England Biolabs  GmbH, Frankfurt 

Diethyl  Pyrocarbonate (DEPC) Appl iChem GmbH, Darmstadt 

Dimethyl  Sul foxide (DMSO) Sigma-Aldrich, Taufki rchen 

DNA Ol igonucleotides  Eurofins  MWG operon, Ebersberg 

DNase I  Sigma-Aldrich, Taufki rchen 

dNTP Mix New England Biolabs , Frankfurt 

Ethidium Bromide  Roth GmbH, Karls ruhe  

Gel Breaker Tubes  IST Engineering, Mi lpi tas , CA, USA 

Gel  Filtration Markers Kit for Protein Molecular Weights 12,000-

200,000 Da  

Sigma-Alderich, Taufkrichen 

Gelpi lot DNA Loading Dye (5x) Qiagen GmbH, Hi lden 

Glycogen Roche Diagnostics  GmbH, Mannheim 

Il lustra  MicroSpin G-25 columns  GE Healthcare  

Isopropyl -ß-thiogalactopyranos ide (IPTG) Roth GmbH, Karls ruhe  

Low Molecular Weight Marker Affymetrix/USB™ 

Low Molecular Weight DNA Ladder  New England Biolabs  GmbH, Frankfurt 

Low Range ssRNA Ladder  New England Biolabs  GmbH, Frankfurt 
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Lysozyme Sigma-Aldrich, Taufki rchen 

Mi l lex® AP20 Syringe Fi l ter, pore s ize 20 µm Merck KGaA, Darmstadt 

NEBNext® Smal l  RNA Library Prep Set New England Biolabs  GmbH, Frankfurt 

NEB Bui lder HiFi  DNA Assembly Master Mix New England Biolabs  GmbH, Frankfurt 

NTPs  (ATP/GTP/CTP/UTP) Jena Bioscience GmbH, Jena  

Phenol/Chloroform Mix (acidic) Ambion, Darmstadt 

Phus ion DNA polymerase  Thermo Fisher Scienti fic Ltd. & Co. KG, Bonn  

QIAprep Spin Miniprep Ki t Qiagen GmbH, Hi lden 

QIAquick Gel  Extraction Ki t  Qiagen GmbH, Hi lden 

QIAquick PCR Puri fication Ki t  Qiagen GmbH, Hi lden 

Qubit dsDNA HS Assay Ki t Thermo Fisher Scienti fic Ltd. & Co. KG, Bonn  

Qubit RNA HS Assay Ki t Thermo Fisher Scienti fic Ltd. & Co. KG, Bonn  

Quick-Load® 2-Log DNA Ladder (0.1-10.0 kb) New England Biolabs  GmbH, Frankfurt 

Quick-Load® pBR322 DNA-MspI Digest New England Biolabs  GmbH, Frankfurt 

Restriction endonucleases  New England Biolabs  GmbH, Frankfurt 

RNase I f New England Biolabs  GmbH, Frankfurt 

RNase Inhibi tor (murine) New England Biolabs  GmbH, Frankfurt 

Roti®-Nylon plus , pore s ize 0.45 μm Roth GmbH, Karls ruhe  

Sodium dodecyl  sul fate (SDS) Roth GmbH, Karls ruhe  

SigmaPrepTM Spin Column Ki t Sigma-Aldrich, Taufki rchen 

Sumo Protease  Own production 

SYBR Gold® Nucleic acid s ta in  Thermo Fisher Scienti fic Ltd. & Co. KG, Bonn  

T4 DNA Ligase  New England Biolabs  GmbH, Frankfurt 

T4 Polynucleotide Kinase New England Biolabs  GmbH, Frankfurt 

T7 RNA Polymerase  New England Biolabs  GmbH, Frankfurt 

Tetramethylethylendiamine (TEMED) Sigma-Aldrich, Taufki rchen 

ULTRAhyb-Ol igo hybridization buffer Ambion, Darmstadt 

Whatman GB 004, 3MM Schleicher & Schuel l  GmbH, Dassel  

X-Ray CEA RP New fi lm screen CEA GmbH, Hamburg 

Zel luTrans  Dia lys is  tubes  (6,000-8,000 MWCO) Roth GmbH, Karls ruhe  

 

The general chemicals and reagents that are not listed above were purchased from AppliChem GmbH 

(Darmstadt), BioRad Laboratories GmbH (München), Biozym GmbH (HessischOldendorf), Difco 

Laboratories GmbH (Augsburg), Invitrogen (Karlsruhe), Merck KGaA (Darmstadt), Roche GmbH 

(Mannheim), Roth GmbH (Karlsruhe), VWR International (Darmstadt), SERVA GmbH (Heidelberg) and 

Sigma-Aldrich Co. (Taufkirchen).  
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4.1.2 Instruments  

Table 4.2: List of Instruments used in this study 

Instrument  Model  and Company 

Agarose gel electrophoresis  Chambers and Casting trays produced by company technician Philipps-University 
Marburg 

Power supply Consort E835; MS Laborgeräte, 
Dielheim 

Aqua bidest, water system  PURELAB Plus, ELGA LabWater, Celle 

Autoclave  5075 EL, Tuttnauer Europe B.V., Breda, NL 
Bioanalyzer  Agi lent 2100 Bioanalyzer, Agilent, Santa Clara, CA, USA 

Centri fuges  Centri fuge 5424, Eppendorf AG, Hamburg; Sigma 3-30K, Sigma Laborzentrifugen GmbH, 
Osterode am Harz; Sorvall Lynx 4000, Thermo Fisher Scientific Ltd. & Co. KG, Bonn  

Chromatography columns  HisTrap HP 1 ml  and 5 ml , StrepTrap HP 5 ml , HiLoad® 16/600 Superdex® 200 pg, 
Superose® 6 10/300 GL, Mono Q 5/50 GL anion exchange chromatography column; GE 
Healthcare Europe GmbH, Freiburg 

Flow cytometer  BD LSRFortessa, BD Biosciences, Heidelberg 

FPLC  ÄKTA puri fier™ 10: Pump P-900, Monitor UV-900, Monitor UPC-900, Va lve INV-907, 
Mixer M-925; ÄKTA pure L1: Pump P9 Cpl , Mixer M9, Injection valve V9-Inj, UV-Monitor 

U9-L Cpl ; GE Healthcare Europe GmbH, Freiburg 
Denaturing polyacrylamide gel 

electrophoresis  

PROTEAN II  Electrophoresis Chamber, BioRad Laboratories GmbH, Munich  

Hybridization oven  Hybrid Shake 'n' Stack, Thermo Fisher Scientific Ltd. & Co. KG, Bonn  
Incubators  KB53, Binder GmbH, Tuttlingen 

Magnetic stirrer  IKA® RCT Standard, IKA®-Werke GmbH & Co. KG, Staufen 
Magnetic Separation Rack 2-Tube Magnetic Separation Rack; New England Biolabs GmbH, Frankfurt 

Microscope  Axioplan 2, Carl  Zeiss Microscopy GmbH, Göttingen; CoolSnap HQ camera, Visitron 
Systems GmbH, Puchheim; FluoArc HBO Lamp, Carl Zeiss Microscopy Gmb H, Göttingen 

Microfluidizer Microfluidics LM10, Sysmex Deutschland GmbH, Norderstedt. 

MinIon Oxford Nanopore Technologies, UK 
MiniSeq I l lumina , Inc. USA 

Nanodrop  NanoDrop® ND-1000 Spectrometer, Thermo Fisher Scientific Ltd. & Co. KG, Bonn  

PCR-Cycler  C1000TM Thermal Cycler, BioRad Laboratories GmbH, Munich  
Peris taltic pump  Peris taltic Pump P-1, GE Healthcare Europe GmbH, Freiburg 

pH-meter  INOLAB pH level 1, WTW, Weilheim 

Phosphorimager  Storm 840 phosphorimager, Molecular Dynamics, GE Healthcare Europe  GmbH, 
Freiburg 

Qubit Fluorometer  Qubit 2.0, Thermo Fisher Scientific Ltd. & Co. KG, Bonn 
Rocker  Gyrorocker SSL3, Sigma-Aldrich, Taufkirchen 

Scintillation counter  Beckmann LS 6500, Beckman Coulter GmbH, Krefeld 
Semi-dry transfer cell  Trans -Blot® SD Semi-Dry Transfer Cell, BioRad Laboratories GmbH, Munich 

SDS polyacrylamide gel 
electrophoresis  

Mini -PROTEAN Tetra Cell, Bio-Rad Laboratories GmbH, Munich; Power supply PowerPac 
Bas ic, Bio-Rad Laboratories GmbH, Munich 

Sonicator  Branson Sonifier 250, Branson Ultrasonicx, Danbury, CT, USA 

Spectrophotometer  Ul trospec 3000 pro, GE Healthcare Europe GmbH, Freiburg 
Thermomixer  Thermomixer Comfort 5350, Eppendorf AG, Hamburg 

Thermoshaker  HT Thermotron, Infors AG, Bottmingen, Switzerland 
UV-Crosslinker  UV Strata linker® 1800, Stratagene, La Jolla, USA 

UV-Transilluminator  BioDocd-IT system, UVP, Upland, CA, USA 

Vortex Mixer  Vortex Genie 2, Scientific Industries, Bohemia, NY, USA 
 

 

4.1.3  Buffers and solutions 

Buffers, solutions and media are mentioned in the chapter of the respective method. All  

media, solutions and buffers were, if necessary, autoclaved for 20 min at 121°C prior to usage.  
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4.2 Strains and culture conditions 

Table 4.3: Bacterial and archaeal strains used in this study. 

Strain  Description  Source 

Escherichia coli K12 DH5α  
F- Φ80lacZΔM15 Δ(lacZYA-argF) 
U169 recA1 endA1 hsdR17(rK–, mK+) 
phoA supE44λ–thi-1 gyrA96 relA1 

(Hanahan, 1983) 

Escherichia coli Rosetta2 (DE3) 
pLysS  

F- ompT hsdSB(rB- mB-) gal dcm (DE3) 
pLysSRARE2 (CamR) 

Novagen, Darmstadt 

Escherichia coli BL21(DE3) pLsyS F-ompT hsdSB(rB- mB-) gal dcm (DE3) pLysS 
(SpecR) 

Novagen, Darmstadt 

 

E. coli cultures were grown in LB medium (1 % tryptone (w/v), 0.5 % yeast extract, 1 % NaCl (w/v), pH 

7.2) in a rotatory shaker at 200 rpm at 37°C or on solid medium plates (LB medium containing 1.5 % 

(w/v) agar-agar). Single colonies were inoculated with a pre-culture (2% (v/v)) which contain LB medium 

with appropriate antibiotics (spectinomycin 100 μg/ml, kanamycin 50 μg/ml, ampicillin 100 μg/ml and 

chloramphenicol 34µg/ml) based on plasmid encoded antibiotic resistance gene.  

E. coli DH5α was used for cloning procedures. This strain transforms with high efficiency and has a 

number of features useful for cloning. E. coli BL21 (DE3) was used for expression cultures. This strain 

features the gene for expression of the T7 polymerase as well as spe ctinomycin resistance. 

Overexpression by the T7 promoter on transformed plasmids is repressed until IPTG induction from a lac 

promoter. E. coli BL21 (DE3) pLysS cells were used for the production of recombinant Cascade proteins, 

while Rosetta (DE3) pLysS cells were used for Cas1 and Cas2/3fv. Cultures were grown in LB media with 

respective antibiotics until an OD600 of ∼ 0.6 was reached. Expression of cas genes and crRNA or repeat-

tagged target RNA from plasmids under control of the T7 promoter was induced by addition of 1 mM 

IPTG. Expression of target RNA from the pBAD plasmid was induced with 0.2 % arabinose. Cultures were 

grown overnight at 18 °C after induction. Cultures expressing SUMO-Cas7fv were grown for 3 h at 37 °C 

after induction and then harvested immediately.  

Cells were harvested by centrifugation (8.000 rpm, 30 min, 4 °C) and either stored at -80 °C or 

immediately lysed for protein purification.  
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4.3 Plasmids and oligonucleotides  

4.3.1 Plasmids 

Table 4.4: Plasmids used in this work. 

Vector Resistance Application Source 
pUC19 AmpR crRNA production NEB 

pRSFDuet KanR Protein production Novagen 

pACYDuet CamR Protein production Novagen 
pET21d KanR Protein production Novagen 

petM-43 KanR Protein production (Dwarakanath, 2015) 
pEC-His-A KanR Protein production (Dwarakanath, 2015) 
pBAD AmpR Target RNA production and protein production Invi trogen 

 

Table 4.5: Recombinant plasmids for protein production 

Plasmid + Insert Description 

pRSFDuet + cas7fv + cas5fv-His (in MCS1) + cas6f 
(in MCS2) 

C-terminal His-tagged cas5fv and cas7fv in MCS1 
cas6f in MCS2 

pRSFDuet + ΔAH-cas5fv, cas7fv, cas6f 
deletion of aa K121-Y259 of Cas5fv and insertion of 6x Glycine/Serine 

l inker  
pRSFDuet + ΔCas7fv-loop deletion of aa 27-77 of Cas7fv and insertion of 6x Glycine/Serine l inker 

pEC-His-A + SUMO-His-cas7fv Cas7fv with a  6x His-SUMO-tag (N-terminal) (Dwarakanath, 2015) 

prs fDuet + cas7fv+cas5fv-His + cas6f-Strep 
C-terminal His-tagged Cas5fv, Cas7fv and C-terminal Strep-tagged 
Cas6f 

petM-43 + cas2/3fv 
Cas2/3fv with N-terminal His-MBP-tag (Dwarakanath, 2015) with 
frame shift corrected 

pet24d + cas3fv cas3fv with cas2 deleted (by Dr. Patrick Pausch) 
prs fDuet + Strep-cas1 + cas2/3fv N-terminal Strep-tagged Cas1 and Cas2/3fv 

pACYCDuet + His-cas5fv + cas6f 
C-terminal His-tagged Cas5fv and Cas6f from low copy pACYCDuet 
vector 

pRSFDuet + cas7fv  One copy of cas7fv in MCS1 (untagged) 

pRSFDuet + cas7fv + cas7fv  Two copies of cas7fv (one in each MCS) 
pRSFDuet + WL-neutral-cas7fv + cas5fv-His + cas6f  wris t loops in Cas7fv neutralized (aa 62-67 exchanged with alanine) 
pRSFDuet + cas7fv-pdt + His-cas5fv-pdt + cas6f  For pdt-tagged Cas5fv and Cas7fv proteins and untagged Cas6f 

pBAD + sfgfp-cas7fv + cas5fv + cas6f For s fGFP-Cas7fv fusion protein, Cas5fv and Cas6f  
pCsy_complex Type I-F Cascade: Csy1, Csy2, Csy3 and Csy4 (from addgene ID 89232) 

 

Table 4.6: Recombinant plasmids for RNA production 

Plasmid + Insert Description 

puc19 + wt crRNA  
T7 promoter + pre-crRNA with a 32 nt spacer4 from Shewanella 
putrefaciens CN-32 (Dwarakanath, 2015) 

pBAD + RBS + repeat-sfgfp  Repeat-tagged sfgfp RNA including RBS 

pBAD + RBS + sfgfp Control  construct without repeat-tag on sfgfp 
pBAD + RBS + repeat-lacZ-α Repeat-tagged lacZ-α RNA including RBS 

pBAD + repeat + sfgp + repeat   
pBAD + RBS + repeat-sfgfp with additional repeat (partial, no 5′-

handle) for Cas6f binding 

pBAD + repeat-sfGFP  pBAD + RBS + repeat-sfgfp with RBS removed 
pBAD + RBS -+ repeat-sfgp-half pBAD + RBS + repeat-sfgfp the latter half of sfgfp deleted 

pBAD + repeat-non-coding  
500 nt complete non-coding region from pRSFDuet (without ATG) 

cloned in pBAD with repeat but no RBS 

pBAD + Non-coding-repeat-control  
pBAD + repeat-non-coding with and added RBS + 7 nt spacer sequenz 

+ ATG  
pETDuet1 + repeat + RBS+ sfgfp  Repeat-tagged sfgfp RNA including RBS 
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4.3.2 Oligonucleotides 

Table 4.7: Primers used for cloning 

Name Sequence 5′-3′ Description 

ΔAH-Cas5fv-invPCR-fwd 
 

ΔAH-Cas5fv-invPCR-rev 

GGCGGCAGCGGCGGCAGCACAACGGGACCCAAA
AAA 

GATCATTCCAGTAAATGCAT 

Inverse PCR primer to delete alpha-helical 
domain of cas5fv and replacement with 

6xGlycine/Serine linker 
 

ΔCas7fvloop-invPCR-fwd 
 
ΔCas7fvloop-invPCR-rev 

GGCGGCAGCGGCGGCAGCCTGTATATAAGTCAA
AAT 
CCCATTCCAATTCACTACGC 

Inverse PCR primer to delete cas7fv WL-loops 
regions and replacement with 
6xGlycine/Serine linker 

s fGFP2xRepeat-invPCR-
fwd 

 
s fGFP2xRepeat-invPCR-
rev 

TAAGTTCACCGCCGCACAGGCGGCTTAGAAAAGC
TCGAGATCTGCAGCTG 

 
GCTGCCTTTATACAGTTCATCCATACC 

Inverse PCR primer for addition of second 

repeat downstream of pBAD + RBS + repeat-
sfgfp 

Cas75-His-6-Strep-
invPCR-fwd 
 
Cas75-His-6-Strep-

invPCR-rev 

TGGAGCCATCCGCAGTTTGAAAAATAACTCGAGT

CTGGTAAAGAAACC 
 
AAACCAAGGTACTGTAGCGG 

Inverse PCR primer for addition of Strep-tag 
on C-terminus of cas6f in pRSFDuet + cas7fv + 
cas5fv-His  (in MCS1) + cas6f (in MCS2) 

lacZ-Repeat-fwd 
 
 
LacZ-Repeat-rev 

GCACAGGCGGCTTAGAAAGAAGGAGATACCATG
GCATGACCATGATTACGCCAAG 
 
GAATTCCCATATGGTACCAGCTGCAGATCTCGAG
CTCTATGCGGCATCAGAGCAGA 
 

Primer for cloning of lacZ-α in pBAD-Repeat, 
cut with NcoI and XhoI 

minusRBS-fwd 
 
minusRBS-rev 

ATGGTTAGCAAAGGTGAA 
 
GGTTTCTAAGCCGCCTGT 

Primer for removal of RBS from pBAD + RBS + 

repeat-sfgfp by inverse PCR 

gfp-half-fwd 

 
gfp-half-rev 

 

CGGTCTGATAAAACAGAATT 
 
TTCAATGCGGTTCACCAGGG 

Primer for removal of the latter half of sfgfp 
by inverse PCR 
 

iPCR-Cas1-2/3-fwd 
 
iPCR-Cas1-2/3-rev 

GCGGCCGCATAATGCTTA 
 
GATTTATTCCTCATCTTC 

Primer for removal of Cascade genes from 
pRSFDuet + cas7fv + cas5fv-His (in MCS1) + 

cas6f (in MCS2) 
 

Cas7-BamHI-fwd 
 
Cas7-HindIII-rev 

CCAGGATCCATGCAAAAAGTAACGG 
 
CCGCAAGCTTCTATTTTGCATAAAAATACTG 

Primer for cloning cas7fv in first MCS of 
pRSFDuet, cut by BamHI and HindIII 
 

Cas7-NdeI-fwd 
 

Cas7-XhoI-rev 

TACATATGCAAAAAGTAACGGG 
 

GACTCGAGCTATTTTGCATAAAAATAC 

For cloning of cas7fv in second MCS of 
pRSFDuet (NdeI/XhoI) 

 

Cas5-BamHI-fwd 

 
Cas6-NotI-rev 

CAGGATCCGATGAAAATAATCATAG 

 
ATGCGGCCGCTTAAAACCAAGGTACTGTAG 

For cloning of cas5fv and cas6f in pACYCDuet 
restricted with BamHI and NotI (extra G for N-
terminal His-tag) 
 

random-pBAD-fwd 
 

random-pBAD-rev 

ACGTTCACCGCCGCACAGGCGGCTTAGAAAGCAA
AAAGCAAAGCACCG 
 

CGAATTCCCATATGGTACCAGCTGCAGATCCAAC
TCTTTGAACCAAGG 

For cloning of 500 nt random sequence 
(without RBS and any ATG) from pRSFDuet 
backbone in pBAD 
 

invPCR-5-Strep-fwd 

 
invPCR-5-Strep-rev 

CAGTTTGAAAAAAGCCAGGATCCGATGAAA 

 
CGGATGGCTCCAGCTGCTGCCCATGGTATA 

Exchange of His-tag with Strep-tag in 

pACYCDuet + His-cas5fv + cas6f 
 

NC-Control -fwd 
 
NC-Control -rev 

CGGGAGTATGCAAAAAGCAAAGCACCG 
 
TATCTCCTTCTTTCTAAGCCGCCTGTGC 

 

For cloning of RBS + 7nt spacing distance + 
ATG upstream of pBAD + repeat-non-coding 
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minus-His-Cas5-fwd 
 
minus-His-Cas5-rev 
 

TAGTAAGCGGCCGCATAATGCT 
 

AAGCTTAATGTTTGATACATAG 

For removal of C-terminal His-tag on cas5fv 

N-His-Cas5-fwd 

 
N-His-Cas5-rev 

CATCACCATCATCACCACAAAATAATCATAGAATA

TG 
CATGCAACCTCCTATTTTG 

For addition of N-terminal His-tag on cas5fv 

pdt1-fwd 
 
 
pdt-1-revcomp 

GCGGCGAACAAAAACGAAGAAAACACCAACGAA
GTGCCGACCTTTATGCTGAACGCGGGCCAGGCGA
ACCGCCGCCGCGTG 

 
CACGCGGCGGCGGTTCGCCTGGCCCGCGTTCAGC
ATAAAGGTCGGCACTTCGTTGGTGTTTTCTTCGTT

TTTGTTCGCCGC 

Synthesis von pdt#3 from (Cameron & Col lins, 

2014) for placement on C-terminus of cas7fv 
 

pdt2-fwd 
 
 
pdt-2-revcomp 

GCAGCCAATAAGAATGAGGAGAATACGAATGAG

GTTCCTACGTTCATGCTCAATGCCGGACAAGCTA
ATCGTCGACGGGTC 
 

GACCCGTCGACGATTAGCTTGTCCGGCATTGAGC
ATGAACGTAGGAACCTCATTCGTATTCTCCTCATT

CTTATTGGCTGC 

Synthesis of pdt#3 from (Cameron & Col lins, 
2014) for placement on C-terminus of cas5fv 

(varied codon sequence) 

Cas7-wl-neutral-fwd 
 

Cas7-wl-neutral-rev 

GCCGCCGCCGCGGCACAAGCAACTGACATTAA 
 

GCCCGTTTCATCTTTCAC 

For exchange of aa 62-66 to a lanine to 
neutralize wrist loops by inverse PCR 

I-F-Repeat-fwd 

 
I-F-Repeat-rev 

AGAAAGAAGGAGATACC 

 
TAGCTGCCTATACGGCA 

Inverse PCR to change I -Fv Repeat sequence 

to I-F Repeat in pBAD + repeat-non-coding 

pdt1+l inker-fwd 
 
pdt1+l inker-rev 

GCGGCGAACAAAAACGAAG 
 
CGACCCCCCCCCTTTTGCATAAAAATACTG 

addition of GSGS linker between pdt and 
cas7fv 

pdt2+l inker-fwd 
 
pdt2+l inker-rev 

GCAGCCAATAAGAATGAG 
 
CGACCCCCCCCCAAGCTTAATGTTTGATAC 

addition of GSGS linker between pdt and 
cas5fv 

 

 

Table 4.8: Primers used for in vitro assays 

Name Sequence 5′-3′ Description 

T7sfGFP-Repeat-fwd GAAATTAATACGACTCACTATAGGGAGAGTTC
ACCGCCGCACAGGCGG 
 

 

Fwd Primer for amplification of in vitro 
transcription template, including a T7 
promotor sequence 

 
T7-5'handle-gfp-fwd 
 

GAAATTAATACGACTCACTATAGTTAGAAAGA
AGGAGATAC 
 

Fwd Primer for amplification of in vitro 
transcription template, including a T7 
promotor sequence and directly s tarting with 
processed 5′-handle (first nt C instead of G) 

 
T7s fGFP-Repeat-rev 
 

TTAATGGTGATGATGATGGTG Rev primer for amplification of in vitro 
transcription template 

lacZ-probe  TTGTAAAACGACGGCCAGTGAATTCGAGCTCG
GTA 

Northern Blot probe for detection of lacZ- 
(in initial 100 nt) 

Sp4-GG-tar AAGCTTGAGGGCCCAAGCCGTTATGCTAGGGT
TATAGGTTTGCGCGTCTTGCTGGGCGATAGGA
CTCCCTATAGTGAGTCGTATTAGGATCC 

EMSA substrate including complementary 
sequence to crRNA spacer and GG-PAM 

Sp1-GG-tar AAGCTTGAGGGCCCAAGCCGTTATGCTAGCAA
TGTGGTCGCGCAATTTATGATTTGGTTGAGGA
CTCCCTATAGTGAGTCGTATTAGGATCC 

EMSA substrate including non-
complementary sequence to crRNA spacer 
and GG-PAM 

Sp4-GG-non-target GGATCCTAATACGACTCACTATAGGGAGTCCT
ATCGCCCAGCAAGACGCGCAAACCTATAACCC

TAGCATAACGGCTTGGGCCCTCAAGCTT 

Complementary sequence to Sp4-GG-tar for 
dsDNA constructs 
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Sp1-GG-non-target GGATCCTAATACGACTCACTATAGGGAGTCCT
CAACCAAATCATAAATTGCGCGACCACATTGCT
AGCATAACGGCTTGGGCCCTCAAGCTT 

Complementary sequence to Sp1-GG-tar for 
dsDNA constructs 

Sp4-AA-tar AAGCTTGAGGGCCCAAGCCGTTATGCTAGGGT
TATAGGTTTGCGCGTCTTGCTGGGCGATAAAA

CTCCCTATAGTGAGTCGTATTAGGATCC 

EMSA substrate including complementary 
sequence to crRNA spacer and a wrong PAM 

sequence 
Sp4-AA-ntar GGATCCTAATACGACTCACTATAGGGAGTTTTA

TCGCCCAGCAAGACGCGCAAACCTATAACCCT
AGCATAACGGCTTGGGCCCTCAAGCTT 

Complementary sequence to Sp4-AA-tar for 

dsDNA constructs 

Rloop-mimic-tar GGTTATAGGTTTGCGCGTCTTGCTGGGCGATA

GGACTCCCTATAGTGAG 

EMSA substrate including complementary 

sequence to crRNA spacer and GG-PAM 
Rloop-mimic-ntar CTCACTATAGGGAGTCCATTATTATTT Partially complementary sequence to Rloop-

mimic-tar  

Rloop-Sp4-TT-tar GGTTATAGGTTTGCGCGTCTTGCTGGGCGATA
AAACTCCCTATAGTGAG 

EMSA substrate including complementary 
sequence to crRNA spacer and wrong PAM 

Rloop-Sp4-TT-ntar CTCACTATAGGGAGTTTATTATTATTT Partially complementary sequence to Rloop-
Sp4-TT-tar 

Rloop-bubble-ntar GGATCCTAATACGACTCACTATAGGGAGTCCA
TAGCGGGTCCAAGACGCGCAAACCTATAACCC
TAGCATAACGGCTTGGGCCCTCAAGCTT 

Complementary sequence to Sp4-GG-tar with 
small 10 nt opening adjacent to PAM 
 

 

4.4 Working with DNA 

4.4.1 Preparation of plasmid DNA from E. coli 

Plasmids were isolated with the Qiagen plasmid mini kit or Qiagen plasmid maxi kit according to the 

manufacturer’s instructions. 

 

4.4.2 Sanger sequencing 

Cloned constructs were verified by Sanger sequencing performed by Eurofins MWG Operon (Ebersberg). 

Standard primers were used for the sequencing reaction. 

 

4.4.3 Quantification of DNA 

4.4.3.1 Spectrophotometric quantification 

The concentration of plasmid DNA and precipitated DNA oligonucleotides was determined by 

spectrophotometry by measuring the absorbance at 260 and 280 nm. The purity was determined by an 

A260/A280 ratio of 1.8 - 2.0. 

4.4.3.2 Fluorometric quantification 

The Qubit fluorometer was used for high sensitivity quantification of low-yield DNA preparations, e.g. 

after cDNA library preparation (see section 4.5.6). The Qubit utilizes fluorescent dyes (for ss/dsDNA, 

RNA or protein), which emit a signal only when bound to the specific target. By calibration with 
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DNA/RNA/protein standards, the concentration of the utilized sample can be determined. DNA samples 

were quantified via the Qubit dsDNA HS Assay Kit according to the manufacturer´s instructions. 

 

4.4.4 Electrophoresis of DNA 

4.4.4.1 Agarose gel electrophoresis of DNA 

To confirm the linearization of plasmid DNA and correct amplification by PCR, DNA molecules  were 

separated by agarose gel electrophoresis. Agarose gels with 1 % to 2 % (w/v) agarose in TAE buffer (40 

mM Tris-acetate, 1 mM EDTA pH 8) and 0.5 µg/mL ethidium bromide were prepared depending on the 

size of the analyzed DNA fragments. Before the DNA samples were applied into the sample wells of the 

gels, they were mixed with loading dye (6x stock: 0.2 % bromphenol blue, 0.2 % xylene cyanol FF, 60 % 

(v/v) glycerol, 60 mM EDTA pH 8). 5 µl of 2-Log DNA ladder (New England Biolabs) was loaded on each 

gel to determine the size of the DNA. Electrophoresis was performed at 80-120 V at RT in TAE buffer. 

The DNA was visualized by UV irradiation at 254 nm. 

 

4.4.4.2 Non-denaturing polyacrylamide gel electrophoresis of DNA (Native-PAGE) 

Electrophoretic separation of smaller DNA fragments (< 300nt) was performed under non-denaturing 

conditions using polyacrylamide gels. Depending on the size of the DNA fragment, the concentration of 

polyacrylamide (acrylamide /bisacrylamide, 40%, ratio 29:1) in the gel (90 mM Tris pH 8.0, 90 mM boric 

acid, 2 mM EDTA, 0.03% (v/v) APS, 0.005% (v/v) TEMED) was varied between 4% and 12% (v/v). The 

DNA samples mixed with 6x DNA loading dye were applied on to the  gel. DNA marker containing a 

mixture of DNA fragments of known size was also applied onto the gel to size the fragments. The gel run 

was performed in 1x TBE at 10 W for 1 h. After electrophoresis, gels were stained for 5 min in SybrGold 

dissolved in TBE buffer and visualized by UV light at 254 nm. 

 

4.4.5 Purification of DNA  

4.4.5.1 PCR Purification 

PCR reactions showing a single distinct band after gel electrophoresis were purified with 

the QIAquick PCR Purification Kit according to the manufacturer´s instructions. 
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4.4.5.2 Gel extraction from agarose gels 

The PCR amplification products were separated according to size on an agarose gel. The fragment of 

interest was cut out and extracted from the gel piece using the QIAquick gel extraction kit (Qiagen 

GmbH) following the instructions of the manufacturer. 

 

4.4.5.3 Gel extraction from polyacrylamide gels 

DNA was extracted from polyacrylamide gels by cutting the respective bands. The gel pieces  were then 

transferred to a Gel Breaker tube (centrifuge tube with small holes) and centrifuged (14,600 rpm, 2 min, 

RT) into a 2 ml collection tube. 500 µl gel elution buffer (20 mM Tris-HCl pH 7.5, 250 mM sodium 

acetate, 1 mM EDTA, 0.25 % SDS) were added on the gel debris and the mixture was incubated 

overnight on ice while shaking (300 rpm). Following this, the DNA containing gel elution buffer was 

transferred to a Costar® centrifuge filter tube and centrifuged (14,600 rpm, 2 min, RT) to remove 

remaining gel debris. The DNA was subsequently purified with EtOH precipitation (see section 1.5.2).  

 

4.4.6 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was used for amplification of DNA fragments. Two primers were 

designed, flanking the sequence of interest to be amplified. The elongation of these primers was carried 

out by Phusion polymerase, with an included proofreading ability and a reduced mutation rate. A 

standard PCR reaction included the following main steps: I) Denaturation: Heating the reaction at 95°C 

results in the melting of dsDNA into ssDNA (template). II) Primer annealing: Annealing or binding of the 

primers to their complementary DNA. III) Elongation: Extension or elongation of the primer in the 5′ to 3′ 

direction. DNA polymerase catalyzes the elongation by addition of complementary nucleotides. The 

above-listed steps were repeated to achieve sufficient amplification (25-30x).  

Inverse PCR was performed for deletions or small insertions in existing plasmids. In this variation, the 

entire plasmid is with the forward primer directed downstream and the reverse primer directed 

upstream. Primers either included the sequence overhangs with the sequence to be inserted or were 

flanking the sequence to be deleted. The elongation time during PCR was adjusted accordingly.  

PCR amplifications from genomic or plasmid DNA were performed using the following reaction mixture: 

~ 50 ng template DNA, 250 µM dNTPs, 0.2 µM of each primer, 1 x concentrated GC buffer 3% (v/v) 

DMSO, 1 U Phusion polymerase and adjusted to 50 µl with water. The reaction was performed in a 

thermal cycler (BioRad) using the following program: 

Step 1) 95°C – 60 sec 

Step 2) 95°C – 30 sec 
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Step 3) 55-65°C – 30 sec x 30 – 35 

Step 4) 72°C – 30 sec/kb 

Step 5) 72°C – 5 min 

The primers used for PCR are listed in Table 4.7. 

 

4.4.7  Modification of DNA 

4.4.7.1 Restriction  

The restriction digestion of plasmid DNA and PCR products was achieved with appropriate restriction 

endonucleases in respective buffers according to the manufacturer’s instructions. The reaction mixture 

containing 5-10 U enzyme/µg DNA was incubated at 37 °C for 2 h to digest the DNA. 

4.4.7.2 Ligation 

T4 DNA ligase was used for ligation of restricted plasmid DNA in the appropriate buffer according to the 

manufacturer’s instructions. In a standard ligation reaction, 0.02 pmol vector DNA was mixed with 0.06 

pmol insert DNA (ratio 1:3) and 4 U T4 DNA ligase in the recommended DNA ligase reaction buffer 

containing ATP. Phosphorylated inverse PCR products were self -ligated by addition of 10 U T4 DNA 

ligase to the phosphorylation reaction. The reactions were incubated overnight at 16°C and 

subsequently used for transformation with E. coli DH5α. 

4.4.7.3 Phosphorylation 

Inverse PCR products were phosphorylated by T4 Polynucleotide Kinase (PNK) to allow self -ligation. For 

this, 200 ng of inverse PCR product was mixed with 10 U T4 PNK in 1x DNA ligase reaction buffer 

containing ATP. The reaction was incubated for 1 h at 37 °C. 

4.4.7.4 Dephosphorylation 

The 5'-ends of restricted plasmid DNA were dephosphorylated with Antarctic Phosphatase to avoid self-

ligation during the ligation reaction. A standard dephosphorylation reaction included 1 µg restricted 

plasmid DNA and 5-10 U Antarctic Phosphatase in the recommended reaction buffer of the 

manufacturer. The reaction was incubated at 37 °C for 1-2 h followed by heat inactivation at 65°C for 

15 min. 

4.4.7.5 Gibson Assembly 

The Gibson Assembly technique was used to clone most of the plasmids for cas gene expression. This 

technique requires primers including overlapping regions (15-20 nt) to assemble with the backbone 
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(Gibson et al., 2009). During isothermal conditions, a T5 exonuclease degrades dsDNA in 5' to 3' 

direction, resulting in long 3'-overhangs which bind to the complementary overhangs of the neighboring 

DNA fragment. DNA polymerase subsequently fills up the single-stranded DNA by incorporating the 

complementary nucleotides. The resulting gaps are afterwards filled up by a DNA ligase. A self-made 

Gibson Assembly reaction mix was used, which did not contain the DNA ligase making use of E. coli own 

ligase instead. This Hot Fusion reaction mix was proved to contain a higher assembly efficiency than the 

original Gibson Assembly mix (Fu et al., 2014). A typical reaction contained 100 fmol of PCR product, 1.5 

U T5 exonuclease and 20 U Phusion DNA polymerase in pre-assembly buffer (100 mM Tris pH 8.0, 10 

mM MgCl2, 200 µM dNTPs, 10 mM DTT and 5 % (v/v) PEG-8000) and was incubated for 1 h at 50°C. The 

reaction was afterwards transformed into E. coli. 

 

4.4.8 Transformation  

Competent cells of E. coli DH5α or E. coli expression strains were chemically prepared with rubidium 

chloride (RbCl) and calcium chloride (CaCl2) (Inoue et al., 1990). 100 ml of LB medium was supplemented 

with 10 mM MgC2 and 10 mM MgSO4 and inoculated with 2 ml of an overnight culture of E. coli and 

grown until an OD600nm of 0.6. The culture was cooled on ice for 30 min and cells were harvested by 

centrifugation (3.000xg, 10 min, 4 °C). Subsequently, the pellet was resuspended in 33 ml cold RF1 

solution (30 mM potassium acetate pH 5.8, 100 mM RbCl, 50 mM MnCl2, 10 mM CaCl2 and 15 % 

glycerol) and incubated on ice for 30 min. Cells were again centrifuged (3.000xg, 10 min, 4 °C) and the 

pellet was gently resuspended in 5 ml cold RF2 solution (10 mM RbCl, 10 mM MOPS pH 5.8, 75 mM 

CaCl2, 15 % glycerol). Cells were incubated again for 30 min on ice and 100 µl aliquots were created and 

stored at -80 °C. 

For transformation, plasmid DNA was gently mixed with one aliquot of competent cells and incubated 

on ice for a minimum of 15 min. Cells were then head-shocked by incubations for 45 s at 42 °C and 

placed on ice again for 1 min. Following this, 900 µl of LB medium was added and the mixture was 

incubated for 45-60 min at 37 °C and 300 rpm. 100 µl of transformed cells were plated on LB plates with 

the appropriate antibiotics. The remaining cells were pelleted by (8000 rpm, 30 s, RT) and resuspended 

in 100 µl to be plated as well. Plates were incubated overnight at 37 °C until visible colonies were 

formed that could be screened for positive clones containing the plasmid. 

 

4.4.9 Radioactive label ing  

DNA oligonucleotides were radioactively labeled to create probes for Northern Blot or substrates for 

EMSA or Nuclease assays. A total of 100 pmol of each oligonucleotide was 5′-labeled with [γ-32P]-ATP 
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(5000Ci/mmol, Hartmann Analytic) and T4 PNK (NEB) for 1 h at 37°C. The reaction was stopped by 

addition of formamide loading buffer and substrates were separated by denaturing-PAGE (10% 

polyacrylamide, 8 M Urea, 1x TBE). After autoradiographic exposure, bands were cut from the gel, 

eluted and EtOH precipitated (see section 4.5.2). Low Molecular Weight Marker (Affymetrix) 

radioactively labeled with illustra MicroSpin G-25 columns (GE healthcare) for size determination in 

nuclease assays. 

 

4.5 Working with RNA 

4.5.1 Treatment of solutions, glassware and equipment 

All applied buffers and solutions were treated with 0.1% (v/v) DEPC and autoclaved to remove traces of 

DEPC after overnight incubation at RT. Non-disposable plastic ware was treated with RNase Exitus Plus 

(AppliChem) whereas disposable plastic such as pipette tips was purchased RNAse-free conditions and 

autoclaved before use. Glassware was sterilized by incubation at 210°C for at least 2h before use. 

 

4.5.2 RNA extraction 

RNA was extracted from purified proteins via phenol/chloroform extraction followed by EtOH 

precipitation. Samples were thoroughly mixed with 1 volume of acidic phenol/chloroform mix (Ambion) 

and centrifuged (12,000 x g, 10 min and 4 °C). The upper phase was transferred to a new tube and the 

process was repeated. This upper phase was then mixed with 1 volume of chloroform and centrifuged 

again. The resulting upper phase was then transferred subjected to EtOH preci pitation.  

2 volumes of ethanol and 0.3 M Na-acetate were added to the solution and the mixture was incubated 

at -20 °C for 1 h. The sample was then centrifuged (12,000 x g, 10 min and 4 °C), the supernatant 

removed and the pellet washed by addition of 1 volume of EtOH and repeated centrifugation. After 

removal of the supernatant, the pellet was air-dried and then resuspended in DEPC-ddH2O.  

 

4.5.3 Quantification of RNA 

4.5.3.1 Spectrophotometric quantification of RNA  

Quantification and quality control of extracted RNA was performed by Nanodrop spectrophotometer as 

described for DNA (see section 4.4.3). 
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4.5.3.2 Fluorometric quantification 

Low-yield RNA preparations were quantified with the Qubit fluorometer (see section 4.4.3.2). 

Quantification was performed using the Qubit RNA HS Assay Kit according to the manufacturer´s 

instructions. 

 

4.5.4 Electrophoresis of RNA 

4.5.4.1 Agarose gel electrophoresis of RNA 

Larger RNA molecules (>100 nt) were separated on agarose gels (1 %, 1x TBE) as described in section 

4.4.4.1.  

4.5.4.2 Denaturing polyacrylamide gel electrophoresis (Urea-PAGE) 

RNA preparations or protein samples co-eluting with RNA were separated and visualized by urea-

polyacrylamide gel electrophoresis. 8 M urea was added in these gels to resolve the secondary structure 

of RNA and guarantee separation based on size. Urea-gels otherwise consisted of 8 M urea, 90 mM Tris 

pH 8.0, 90 mM boric acid, 2 mM EDTA, 1.0 % (v/v) ammonium persulfate (APS) and 0.1 % (v/v) 

tetramethylethylenediamine (TEMED), and 4 % (v/v) polyacrylamide (acrylamide / bisacrylamide, 40 %, 

ratio 29:1). Gels with a total volume of 10 ml were prepared for normal RNA analysis while bigger gels 

with approximately 40 ml total volume were made for the extraction of in vitro transcribed RNA and 

Nuclease assays. Fully polymerized gels were run in 1x TBE buffer (90 mM Tris pH 8.0, 90 mM boric acid 

and 2 mM EDTA) at 200 V till sufficient separation. The RNA samples were mixed with 2x formamide 

loading dye (80% formamide, 10 mM EDTA, 0.05% (w/v) bromophenol blue and 0.05 % (w/v) xylene 

cyanol) and incubated for 10 min at 95 °C before loading them on the urea-gel. The RNA bands were 

visualized by toluidine blue staining and destaining in ddH2O overnight or by SybrGold staining for 5 min 

and UV translumination at 254 nm. 

 

4.5.5 Northern Blotting 

A semi-dry electrophoretic transfer system was used to transfer the RNA that was separated on 

denaturing polyacrylamide gels onto a positively charged nylon membrane (Roti® -Nylon plus, pore size 

0.45 μm). Prior to the transfer, the membrane, the gels as well as Whatman GB004, 3MM Paper were 

equilibrated in 1x TBE buffer for 5 min. The blot was assembled in the order 6x Whatman paper, nylon 

membrane, polyacrylamide gel, 6x Whatman paper and the transfer was performed for 2 h at 20 V. 

Subsequently, the RNA was UV-crosslinked to the membrane.  
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The membrane was pre-hybridized for 30 min at 42°C in ULTRAhyb-Oligo Hybridization Buffer (1 ml/10 

cm2 membrane) to block non-specific binding sites. The 5'-terminal radiolabeled probes (106 cpm/ml 

hybridization buffer) were applied to the hybridization buffer after incubation at 95°C for 5 min. The 

hybridization was performed overnight at 42°C. The blot was washed twice, with 15 ml low stringency 

buffer (2x SSC, 0.1 % SDS) and with 15 ml high stringency buffer (1x SSC, 0.1 % SDS) for 30 min at 42°C 

each to remove unbound probe. The membranes were exposed to phosphor screens overnight and the 

bands on the phosphor screen were visualized with a phosphorimager.   

 

4.5.6 Illumina Sequencing  

RNA was extracted from purified proteins via phenol/chloroform extraction (acidic) followed by EtOH 

precipitation. Pellets were resuspended in DEPC-ddH2O. For Illumina sequencing, RNA had to be 

fragmented to create cDNA libraries. Fragmentation was achieved by addition of a ZnCl 2 fragmentation 

buffer (final concentration: 10 mM Tris-HCl pH 6.8, 10 mM ZnCl2) and heating for 10 min at 95°C. 

Fragmentation was immediately stopped by putting the sample on ice and addition of 2 µl 500 mM Na2-

EDTA pH 8. The fragmented RNA was separated by denaturating Urea-PAGE and extracted from the gel 

(see section 4.5.4.2 and 4.4.5.3). Fragmentation by bivalent metal ions presumably results in 2′,3′-cyclic 

phosphate and 5′-OH RNA termini (Forconi & Herschlag, 2009), so fragments were first 

dephosphorylated (for 2′,3′-cyclic phosphate curation) and subsequently phosphorylated (for 5′-OH 

curation) with T4 PNK. 15 µl of fragmented RNA was mixed with 6 µl of 5x dephosphorylation buffer 

(500 mM Tris-HCl pH 6.5, 500 MgAc, 25 mM β-mercaptoethanol) and 1 µl T4 PNK (Ambion) in a total 

volume of 30 µl and incubation for 6 h at 37 °C for dephosphorylation. For phosphorylation, 1 mM ATP 

and 1 µl T4 PNK were added and the mixture was further incubated for 1 h at 37 °C. The treated RNA 

was afterwards purified by EtOH precipitation including 1 % (v/v) glycogen. 

cDNA libraries were created with the NEBNext® Multiplex Small RNA Library Pret Set for Illumunia 

according to the manufacturer’s instructions. 100 ng of input RNA was used and amplified cDNA libraries 

were separated by native PAGE for size selection of 120-250 bp. The selected sizes were extracted from 

the gel and EtOH precipitated  

Initial Illumina sequencing of sfgfp and lacZ constructs was performed by the Max Planck Genome 

Centre (Köln) by Illumina HiSeq2500. The performed sequencing had a length limitation of 150 nt. 

Paired-end sequencing was performed to eliminate the change of not sequencing the end of cDNAs, in 

case they have a too large size due to insufficient fragmentation. With Paired-end sequencing, cDNA 

pieces are sequenced from both ends. 
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Newer sequencing (non-coding construct, sfgfp co-produced with cas genes on multiple plasmids and 

sfgfp produced with T7 RNAP) was performed with the MiniSeq Sequencing System in our own 

laboratory. 

 

4.5.7 Nanopore sequencing 

Nanopore sequencing was performed to sequence extracted RNA without the need for fragmentation. 

Extracted RNA was treated with E. coli Poly(A) Polymerase (NEB) for 30 min 37°C to add a poly(A) tail 

and then processed for Nanopore sequencing with the Direct RNA Sequencing Kit according to the  

protocol provided by Oxford Nanopore Technologies. Sequencing was performed with The MinIon 

Sequencing Device.  

 

4.5.8 Mapping of sequencing reads 

Mapping of the sequencing data was performed using CLC Genomics Workbench 9.5.3 (Qiagen, 

Germany). The sequencing data was processed by (i) removal of sequences of low quality (quality score 

limit, 0.05; maximum number of ambiguities, 2), (ii) trimming of adapter sequences, and (iii) filtering by 

length (15-nt cutoff). The trimmed sequences were mapped to the reference genome of Bl21 (DE3) and 

the sequence of the target plasmid using default settings.  

 

4.5.9 In vitro transcription 

In vitro transcription was performed to obtain sfgfp for in vitro RNA wrapping experiments. To generate 

a template, primers were produced that contained the sequence of the T7 promoter upstream of a 

region flanking the sfgfp gene. PCR amplification was confirmed by agarose gel electrophoresis and the 

product was extracted. In vitro transcription was performed in a total volume of 1 ml (40 mM 

HEPES/KOH pH 8, 22 mM MgCl2, 5 mM DTT, 1 mM spermidine, 4 mM of each NTP, 10 µg DNA template, 

and 30 nM T7 RNA polymerase). All ingredients for the reaction were produced fresh with DEPC-ddH2O 

to guarantee stability of the produced RNA. The reaction mix was incubated for 3-5 h at 37 °C to 

produce RNA. An additional Formed pyrophosphate was removed by centrifugation. In vitro produced 

RNA was identified by loading 10 µl on a Urea-PAGE. After identification of the included RNA, the rest of 

the reaction mix was loaded on a bigger Urea-PAGE and the RNA completely separated. The produced 

RNA was extracted by cutting the band from the gel and incubating it with 500 µl gel elution buffer (20 

mM Tris/HCl pH 7.5, 250 mM sodium acetate, 1 mM EDTA and 0.25 % SDS) overnight at 4 °C. On the 

following day, the gel pieces were removed by centrifugation (1 min, 13,000 rpm, RT) and the 
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supernatant was transferred to a new reaction tube. RNA was then obtained by EtOH precipitation (see 

section 4.5.2).  

 

4.6 Biochemical Methods 

4.6.1 Cell lysis 

After the heterologous expression of recombinant proteins (see section 2.3.3), the harvested cells were 

resuspended in the according wash buffer with a ratio of 5 ml buffer per 1 g cell mass. Furthermore, 

0.25 ml of protease inhibitor was added per 1 g cell mass for purification of Cas3fv.  Lysis was achieved 

by the addition of lysozyme and incubation on ice for 15 min followed by cell disruption in an LM10 

Microfluidizer® at 18,000 psi. The lysate was centrifuged at 4 °C and 38,500 × g for 45 min to remove cell 

debris. The supernatant was subsequently filtered using a syringe filter (pore size: 0.22 µm) for 

purification. 

 

4.6.2 Affinity purification 

All proteins and protein complexes were initially purified with affinity purification. For most 

experiments, a 6xHis-tag was used (Ni-NTA) while a Strep-tag was used for purification of the Cas1-

Cas2/3fv complex and for the RNA wrapping complex including a second repeat sequence at the 3′-end 

of the target RNA. Cell lysate was continuously applied to a 5 ml HisTrap or StrepTrap column for 1 h. 

Bound protein was eluted after connecting the column to the FPLC and washing with approximately 20 

ml washing buffer (50 mM Tris/HCl, 20 mM imidazole, 300 mM NaCl, 10 mM MgCl2, 1 mM DTT, 10 % 

glycerin, pH 7). Proteins bound to the column were eluted by a stepwise gradient of imidazole by raising 

the concentration of elution buffer (50 mM Tris/HCl, 500 mM imidazole, 300 mM NaCl, 10 mM MgCl2, 1 

mM DTT, 10 % glycerine, pH 7). In Strep-tag affinity purifications, a wash buffer without imidazole was 

used and the elution buffer contained 2.5 mM Desthiobiotin. 

Eluted samples during the gradient were collected in fractions of 1 ml. The absorbance at 260 and 

280 nm was continuously measured by a built-in UV detector. Fractions with a high absorbance rate, 

indicating proteins and RNA were analyzed by SDS-PAGE and Urea-PAGE. 

 

4.6.3 Size-exclusion chromatography  

After general purification by affinity chromatography, proteins were further purified by size -exclusion 

chromatography. Samples from the His-Tag affinity chromatography containing protein were pooled and 

concentrated to a final volume of 2 ml by using Amicon centrifugal concentrators and centrifugation at 

6,000 g at 4 °C. Concentrated protein samples were further separated by size with a gel filtration column 
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(HiLoad 16/600 Superdex 200 pg or Superose 6 Increase 10/300 GL) connected to an FPLC. Separation 

was performed with a total volume of 120 ml HEPES buffer (50 mM HEPES, 150 mM NaCl, 1 mM DTT, pH 

7). The absorbance at 280 nm was continuously measured by a built-in UV detector. Proteins in the 

eluted samples were identified by SDS-PAGE, while RNA was detected by Urea-PAGE. The total amount 

of purified protein was determined using Bradford assay. 

 

4.6.4 Anion-exchange chromatography 

Anion-exchange chromatography was performed for small RNA wrapping complexes formed on repeat-

tagged sfgfp RNA produced T7 RNAP following the protocol of Jahn et al. (Jahn et al., 1991). The 

concentrated sample was loaded on a MonoQ column and the flow-through was collected. The bound 

sample was gradually eluted in a linear gradient over 20 column volumes and an increasing 

concentration of NaCl (50 mM Tris/HCl, 300-1000 mM NaCl, 1 mM DTT, 10 % glycerin, pH 7). To remove 

the remaining bound protein, the column was further washed with 5 CV of wash buffer (50 mM Tris/HCl, 

300 mM NaCl, 1 mM DTT, 10 % glycerin, pH 7). 

 

4.6.5 Protein quantification by Bradford 

The amount of purified protein was measured by Bradford assay (Bradford, 1976). 200 µl Bradford 

reagent was added to a dilution of the protein sample and the mix was incubated for 15 min . 

Afterwards, the OD595nm was measured and the amount of protein was calculated by a fresh calibration 

curve with BSA. 

 

4.6.6 Production and purification of recombinant proteins 

4.6.6.1 Purification of recombinant I-Fv Cascade and truncated variants 

For production and purification of recombinant I-Fv Cascade, cas genes and crRNA were co-purified. The 

cas genes cas7fv, cas5fv, cas6f were provided in the vector pRSFDuet-1 which allows for the 

simultaneous production of all three proteins with Cas5fv fused to an N-terminal His-tag. This plasmid 

was co-transformed into E. coli BL21 (DE3) pLys with a second pUC19 vector containing the repeat-

spacer4-repeat sequence of the single S. putrefaciens CN-32 CRISPR array downstream of a T7 RNA 

polymerase promoter. Cultures were grown and harvested as described (see section 4.2). Cell pellets 

were lysed and proteins first purified via Ni-NTA purification in a buffer containing 50 mM Tris/HCl, 20-

500 mM imidazole, 300 mM NaCl, 10 mM MgCl2, 1 mM DTT, 10 % glycerine, pH 7. Samples containing 

protein as detected by UV were then pooled, concentrated to 2 ml and subjected to size-exclusion 
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chromatography (HiLoad 16/600 Superdex 200 pg) in a buffer containing 50 mM HEPES-NaOH pH 7.0, 

150 mM NaCl. 

Truncated Cascade, missing the AH domain of Cas5fv or missing the wrist loops from Cas7fv as well as 

Cascade with the sfGFP-Cas7fv fusion purified were by co-production of the respective genes from 

pRSFDuet with a crRNA from pUC19 in the same fashion as for wt-Cascade. 

 

4.6.6.2 Purification of recombinant Cas3fv and Cas1-Cas2/3fv complex 

The target nuclease Cas2/3fv was purified as a fusion construct with an N-terminal His-tag and a C-

terminal MBP-Tag using the vector pETM-43. Standalone Cas3 with the Cas2 portion removed was 

provided on a pet24(+) vector by Dr. Patrick Pausch. Cas3 was produced and purified via Ni-NTA 

chromatography and size exclusion chromatography (Superose 6 Increase 10/300 GL) in a buffer 

containing 20 mM HEPES/KOH pH 7.5, 750 mM NaCl, 10 mM MgCl2 and 2% Glycerin at 4 °C. The Cas1-

Cas2/3 complex was purified by co-expression of cas1 and cas2/3fv from pRSFDuet-1 with an N-terminal 

Strep-tag fused on Cas1. The final size-exclusion chromatography was performed with HiLoad 16/600 

Superdex 200 pg. 

 

4.6.6.3 Purification of filaments and RNA wrapping complexes 

For directed RNA wrapping a repeat-tagged sequence, either sfgfp, lacZ-α or a non-coding sequence 

(from the backbone of the pRSFDuet vector) were transcribed from a pBAD vector for arabinose 

induction or pETDuet-1 for induction with IPTG. Cas genes were produced from pRSFDuet or 

pCsy_complex (addgene). In a later experiment, cas genes were split on different vectors. In this setup, 

cas7fv was expressed from pRSFDuet (either with a copy in the first MCS or with a copy in both MCS of 

the plasmid) and cas5fv and cas6f were expressed from pACYCDuet. Repeat-tagged target transcripts 

were expressed from pBAD as before. 

Formed complexes were purified via Ni-NTA chromatography in a standard purification buffer (50 mM 

Tris/HCl pH 7.0, 300 mM NaCl, 20-500 mM imidazole, 10 mM MgCl2, 10% glycerol, 1 mM DTT) as for 

Cascade purification. For further clean-up and TEM analysis, size-exclusion chromatography was 

performed in the same fashion as for I-Fv Cascade and samples from the fractions of the void volume 

were taken for analyses. For double affinity purification, a C-terminal Strep-tag was fused to Cas6f in 

addition to the N-terminal His-tag of Cas5fv on the pRSFDuet plasmid and Cas proteins were produced 

and purified via Strep-tag affinity chromatography.  

To remove rRNA, Purification was later repeated by Ni-NTA under the same conditions as before but 

without MgCl2 in the wash buffer (50 mM Tris/HCl, 300 mM NaCl, 1 mM DTT, 10 % glycerin, pH 7). 
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Samples were concentrated and loaded on an analytic size-exclusion (Superose 6 Increase 10/300 GL) in 

the standard SEC buffer of I-Fv Cascade. 

For purification of small RNA wrapping complexes, repeat-tagged sfgfp was produced from pETDuet 

with T7 RNAP and co-purified by Ni-NTA with Cas proteins via His-tagged Cas5fv. Samples were 

concentrated to a final volume of 500 µl and subjected to Anion-exchange chromatography. Fractions 

were collected in 700 µl and analyzed by SDS- and Urea-PAGE. The flow-through was pooled and 

subjected to size-exclusion chromatography with a small semi-preparative and analytic column 

(Superose 6 Increase 10/300 GL). Samples were eluted in standard SEC buffer.  

 

4.6.6.4 Purification of SUMO-Cas7fv 

His-SUMO-Cas7fv was purified with the standard purification buffer for Cascade but an extra wash step 

with a high salt buffer (50 mM KCl, 1 M NaCl, 10 mM MgSO4, 2 mM ATP) was applied for 20 column 

volumes while protein was bound to the column. Protein was then eluted with standard Cascade elution 

buffer containing imidazole and eluted protein was concentrated before being loaded on size -exclusion 

chromatography at 4 °C to separate monomeric SUMO-Cas7fv from aggregated protein. 

 

4.6.7 In vitro RNA wrapping 

500 µl RNA-free SUMO-Cas7fv or Cas5fv-Cas7fv dimer (~ 1 mg) were mixed with either in vitro 

transcribed sfgfp RNA (~ 5 µg) or small RNA extracted from pseudomonas oleovorans in our laboratory 

(3.5 µg, heated up at 95 °C and cooled down on ice before added to protein) and incubated for 1 h at RT 

followed by incubation overnight at 4 °C (with the addition of SUMO protease (1:500) in case of Cas7fv-

SUMO). The following day, precipitated protein was removed by centrifugation and the supernatant was 

loaded on size-exclusion chromatography (Superose 6 Increase 10/300 GL) to separate potential 

complexes from monomeric protein.  

Crystallization of Cas7fv was performed in hanging-drop format or in microtubes following a protocol 

established by Dr. Patrick Pausch. Freshly purified I-Fv Cascade (concentrated to 54 mg/l) was mixed in 

various ratios (2:1, 1:1, 1:2) with screening solution (0.2 M MgCl, 0.1 M Tris pH 7.2, 2 M NaCl and 3 % 

fructose) and incubated at 18 °C until crystals were formed.  

 

4.6.8 RNA protection assays 

Ni-NTA purified RNA wrapping complexes formed with on the lacZ-Repeat construct were incubated at 

23 °C, 200 rpm and 10 U of RNase I for varying time points of up to 7 days. Following this, RNA was 

extracted and separated on Urea-PAGE. 1 µg of directly extracted RNA was further incubated under the 
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same conditions to ensure the activity of RNase I and then separated on Urea-PAGE. Gels were either 

stained with Sybr-Gold for nucleic acid detection or used for Northern Blot analysis. The 50 bp DNA 

ladder (NEB) was used for orientation. 

 

4.6.9 Electrophoretic mobility shift assays (EMSA)  

The recombinant Cascade complex was tested for its ability to bind target DNA constructs in 

electrophoretic mobility shift assays (EMSAs). Utilized target oligonucleotides contained a sequence 

complementary to the spacer sequence in the crRNA (spacer4) with a correct PAM (GG) or a wrong PAM 

(TT) at the 3′-end adjacent to the spacer. A non-complementary spacer sequence (spacer1) was used as 

a control. For dsDNA constructs, the non-target strand was labeled to ensure that a shift in EMSA is due 

to fully hybridized construct (see section 4.4.9). Target and non-target strand were hybridized by 

incubation for 10 min at 95 °C and cooling down to RT over 2 hours. A total of 20 nM (∼20,000 cpm) of 

labeled substrate was incubated with varying concentrations of Cascade (0–60 nM) for 30 min at 30 °C 

in 50 mM HEPES-NaOH pH 7.0, 150 mM NaCl and 1 mM DTT. Samples were mixed with Gel Pilot loading 

dye (Qiagen) and separated via non-denaturing TBE-PAGE (6% polyacrylamide, 1x TBE).  

 

4.6.10 Nuclease assays 

Nuclease assays were performed to study in vitro interference of Cas3fv and the Cas1-Cas2/3fv complex. 

To study activity of Cas3fv on ssDNA, a consistent amount of protein (500 nM) was incubated with 1 µg 

ssDNA substrate (M13mp18 ssDNA, NEB) over increasing time points at 30 °C in a buffer containing 

20 mM HEPES pH 7, 100 mM NaCl, 5 mM MgCl2, 5 mM MnCl2 and 1 mM ATP. To compare ssDNA activity 

of Cas3fv and Cas1-Cas2/3fv, increasing amounts of protein (0, 50, 100, 200 and 500 nM) were 

incubated with 1 µg ssDNA substrate with the same buffer. 10 mM EDTA was added to stop the reaction 

in control samples. Remaining ssDNA substrate was separated and visualized by gel electrophoresis in 1x 

TBE (see section 4.4.4.1). 

To study the activity on dsDNA substrates containing a small 10 nt “bubble” opening and Cascade -bound 

R-loop substrates (created by incubation with Cascade as in 4.6.9), radioactively labeled substrates were 

used. In these assays, ~ 20,000 cpm of substrate was incubated without protein or with 500 nM Cas3fv 

or Cas1-2/3fv for 2 h at 30 °C. Samples were separated via denaturing PAGE (see section 4.5.4.2) and 

gels were visualized via phosphoimaging. Radioactively labeled Low Molecular Weight Marker 

(Affymetrix) was used for size determination. 
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4.6.11 Crystallization and 3D structure analysis of I-Fv Cascade 

Crystallization of I-Fv Cascade and solving of the 3D structure was performed by Dr. Patrick Pausch in the 

laboratory of Prof. Dr. Bange of the Philipps-University Marburg (Pausch et al., 2017). Purified Cascade 

was concentrated to an absorbance at 280 nm of 35 AU (NanoDrop Lite Spectrophotometer) and 

crystals were formed by hanging drop vapor-diffusion at 20 °C. Crystallization of the Se-Met labeled 

Cascade was conducted in a two-step protocol, based on the initial formation of seed-crystals derived 

from native Cascade complexes. Seed crystals were generated by mixing equal volumes (1 μl) of Cascade 

sample and crystallization buffer (16% w/v PEG6000, 0.1 M Tris pH 8.0 and 20 mM 5-amino-2,4,6-

triiodoisophthalic acid). Sword-shaped seed crystals grew overnight and were subsequently used for 

streak seeding with a cat whisker into crystallization drops containing Se-Met labeled Cascade. Crystals 

grew within days in drops containing 1 μl of Se-Met labeled Cascade sample and 1 μl crystallization 

buffer (18% w/v PEG6000, 0.1 M Tris pH 7.6 and 20 mM 5-amino-2,4,6-triiodoisophthalic acid). Crystals 

were transferred into crystallization buffer containing 20% v/v glycerol as cryo-protectant, subsequently 

flash frozen and stored in liquid nitrogen. R-loop/Cascade samples were concentrated to an absorbance 

at 280 nm of 30 AU (NanoDrop Lite Spectrophotometer) and crystals were formed by hanging drop 

vapor-diffusion at 20 °C. Needle shaped crystals grew within days in drops containing 1 μl of R-

loop/Cascade and 1 μl crystallization buffer (22.5% w/v PEG4000, 15% v/v glycerol, 153 mM ammonium 

acetate and 85 mM sodium citrate pH 5.6). R-loop/Cascade crystals were flash-frozen and stored in 

liquid nitrogen. 

Diffraction data was collected at beamline ID29 of the European Synchrotron Radiation Facility (ESRF), 

Grenoble, France. Data was processed with the XDS program package for data reduction (Kabsch, 2010), 

Crank2 for experimental phasing of Se-Met labeled Cascade (CCP4 package, (Winn et al., 2011), coot 

(Emsley & Cowtan, 2004) in combination with Refmac5 (CCP4 package) and phenix.refine (PHENIX 

package) for iterative model building and refinement (Adams et al., 2010). The R-loop/Cascade dataset 

was solved by molecular replacement using the Cascade structure via the CCP4 implemented program 

Phaser (McCoy et al., 2007). Figures were prepared in Pymol. 

 

4.6.12 Electron Microscopy 

Transmission Electron Microscopy was performed by Dr. Thomas Heimerl of the Philipps -University 

Marburg to visualize filament structures and small RNA wrapping complexes. 2D Class averaging was 

performed to obtain a 3D model by combining a total of 30 montages.  

 



Material and Methods 

127 
 

4.7 Cell biological methods 

4.7.1 Fluorescence Microscopy 

Fluorescence Microscopy was performed by Julia Wiegel. Cultures for fluorescence microscopy were 

grown for 1 h after induction for Cas proteins and sfGFP respectively. After incubation, 4 µl were fixated 

on a microscope slide covered with 2% agarose. Samples were analyzed with the Axioplan 2 

fluorescence microscope (Carl Zeiss Microscopy GmbH) using an ocular (10X) and a Plan-Apochromat 

(100X), 1.4 oil DIC immersion objective. Pictures were taken with the GFP- and DIC-protocol from 

Metamorph (version 62r6).  The exposure time was 60 ms for DIC and 800 ms for sfGFP. 

 

4.7.2 Fluorescence-activated cell sorting 

Fluorescence-activated cell sorting (FACS) analysis was performed by Hamrithaa Shanmuganathan as 

part of her Master’s thesis. For the first experiment with target expressed from pBAD, cultures were 

grown for 1 h after induction of cas genes and sfgfp expression respectively. For the second experiment, 

both sfgfp and cas genes were expressed by T7 RNAP overnight at 18 °C after induction. After 

incubation, 30 µl of induced samples were taken and diluted with 1% PBS. Biological triplicates from 

different cultures were used for calculation of standard deviation and calculation of error bars. FACS 

analysis was performed at BD LSR Fortessa (BD Biosciences) with a blue laser (detector C) and 

configuration 4 in CTS setting. Data was processed with BD coherent connection and BD FACSDiva. Two-

tailed, unpaired Student's t-tests were performed to calculate the significance of the data using a p-

value of 0.05.  



References 

128 
 

5. References 
 

Abudayyeh, O.O., J.S. Gootenberg, S. Konermann, J. Joung, I.M. Slaymaker, D.B. Cox, S. Shmakov, K.S. 
Makarova, E. Semenova, L. Minakhin, K. Severinov, A. Regev, E.S. Lander, E.V. Koonin & F. 
Zhang, (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR 
effector. Science 353: aaf5573. 

Adams, P.D., P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. 
Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. 
Richardson, J.S. Richardson, T.C. Terwilliger & P.H. Zwart, (2010) . PHENIX: a comprehensive 
Python-based system for macromolecular structure solution. Acta crystallographica. Section D, 
Biological crystallography 66: 213-221. 

Athukoralage, J.S., C. Rouillon, S. Graham, S. Gruschow & M.F. White, (2018) . Ring nucleases deactivate 
type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562: 277-280. 

Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D.A. Romero & P. Horvath, 
(2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-
1712. 

Beloglazova, N., K. Kuznedelov, R. Flick, K.A. Datsenko, G. Brown, A. Popovic, S. Lemak, E. Semenova, K. 
Severinov & A.F. Yakunin, (2015). CRISPR RNA binding and DNA target recognition by purified 
Cascade complexes from Escherichia coli. Nucleic acids research 43: 530-543. 

Beloglazova, N., P. Petit, R. Flick, G. Brown, A. Savchenko & A.F. Yakunin, (2011) . Structure and activity of 
the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. Embo J 30: 4616-
4627. 

Bondy-Denomy, J., A. Pawluk, K.L. Maxwell & A.R. Davidson, (2013). Bacteriophage genes that inactivate 
the CRISPR/Cas bacterial immune system. Nature 493: 429-432. 

Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of 
protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254. 

Brouns, S.J., M.M. Jore, M. Lundgren, E.R. Westra, R.J. Slijkhuis, A.P. Snijders, M.J. Dickman, K.S. 
Makarova, E.V. Koonin & J. Van Der Oost, (2008). Small CRISPR RNAs guide antiviral defense in 
prokaryotes. Science 321: 960-964. 

Cady, K.C., J. Bondy-Denomy, G.E. Heussler, A.R. Davidson & G.A. O'Toole, (2012). The CRISPR/Cas 
adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring 
and engineered phages. Journal of bacteriology 194: 5728-5738. 

Cameron, D.E. & J.J. Collins, (2014). Tunable protein degradation in bacteria. Nature biotechnology 32: 
1276-1281. 

Carte, J., N.T. Pfister, M.M. Compton, R.M. Terns & M.P. Terns, (2010). Binding and cleavage of CRISPR 
RNA by Cas6. Rna 16: 2181-2188. 

Cheng, A.W., H. Wang, H. Yang, L. Shi, Y. Katz, T.W. Theunissen, S. Rangarajan, C.S. Shivalila, D.B. Dadon 
& R. Jaenisch, (2013). Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided 
transcriptional activator system. Cell research 23: 1163-1171. 

Chowdhury, S., J. Carter, M.F. Rollins, S.M. Golden, R.N. Jackson, C. Hoffmann, L. Nosaka, J. Bondy -
Denomy, K.L. Maxwell, A.R. Davidson, E.R. Fischer, G.C. Lander & B. Wiedenheft, (2017) . 
Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided 
Surveillance Complex. Cell 169: 47-57 e11. 



References 

129 
 

Cordin, O., J. Banroques, N.K. Tanner & P. Linder, (2006). The DEAD-box protein family of RNA helicases. 
Gene 367: 17-37. 

Cox, D.B.T., J.S. Gootenberg, O.O. Abudayyeh, B. Franklin, M.J. Kellner, J. Joung & F. Zhang, (2017). RNA 
editing with CRISPR-Cas13. Science 358: 1019-1027. 

Deveau, H., R. Barrangou, J.E. Garneau, J. Labonte, C. Fremaux, P. Boyaval, D.A. Romero, P. Horvath & S. 
Moineau, (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. 
Journal of bacteriology 190: 1390-1400. 

Dwarakanath, S., (2015). Characterization of a minimal Type I CRISPR-Cas system found in Shewanella 
putrefaciens CN-32. Dissertation. Phillipps-Universität Marburg. 

Dwarakanath, S., S. Brenzinger, D. Gleditzsch, A. Plagens, A. Klingl, K. Thormann & L. Randau, (2015) . 
Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. 
Nucleic acids research 43: 8913-8923. 

Elmore, J.R., N.F. Sheppard, N. Ramia, T. Deighan, H. Li, R.M. Terns & M.P. Terns, (2016) . Bipartite 
recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes & 
development 30: 447-459. 

Emsley, P. & K. Cowtan, (2004). Coot: model-building tools for molecular graphics. Acta 
crystallographica. Section D, Biological crystallography  60: 2126-2132. 

Estrella, M.A., F.T. Kuo & S. Bailey, (2016). RNA-activated DNA cleavage by the Type III-B CRISPR-Cas 
effector complex. Genes & development 30: 460-470. 

Fagerlund, R.D., M.E. Wilkinson, O. Klykov, A. Barendregt, F.G. Pearce, S.N. Kieper, H.W.R. Maxwell, A. 
Capolupo, A.J.R. Heck, K.L. Krause, M. Bostina, R.A. Scheltema, R.H.J. Staals & P.C. Fineran, 
(2017). Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. 
Proceedings of the National Academy of Sciences of the United States of America  114: E5122-
E5128. 

Fairman-Williams, M.E., U.P. Guenther & E. Jankowsky, (2010). SF1 and SF2 helicases: family matters. 
Curr Opin Struc Biol 20: 313-324. 

Fineran, P.C., M.J. Gerritzen, M. Suarez-Diez, T. Kunne, J. Boekhorst, S.A. van Hijum, R.H. Staals & S.J. 
Brouns, (2014). Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of 
the National Academy of Sciences of the United States of America 111: E1629-1638. 

Forconi, M. & D. Herschlag, (2009). Metal Ion-Based RNA Cleavage as a Structural Probe. Method 
Enzymol 468: 91-106. 

Fu, C.L., W.P. Donovan, O. Shikapwashya-Hasser, X.D. Ye & R.H. Cole, (2014). Hot Fusion: An Efficient 
Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase. PloS one 
9(12): e115318. 

Fu, Y., J.D. Sander, D. Reyon, V.M. Cascio & J.K. Joung, (2014). Improving CRISPR-Cas nuclease specificity 
using truncated guide RNAs. Nature biotechnology 32: 279-284. 

Gibson, D.G., L. Young, R.Y. Chuang, J.C. Venter, C.A. Hutchison & H.O. Smith, (2009) . Enzymatic 
assembly of DNA molecules up to several hundred kilobases. Nature methods 6: 343-345. 

Gleditzsch, D., (2015). Characterization of a minimal Type I CRISPR-Cas interference complex. Master 
Thesis. Technische Universität Darmstadt. 

Gleditzsch, D., H. Müller-Esparza, P. Pausch, K. Sharma, S. Dwarakanath, H. Urlaub, G. Bange & L. 
Randau, (2016). Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. 
Nucleic Acids Research 44: 5872-5882. 



References 

130 
 

Gong, B., M. Shin, J. Sun, C.H. Jung, E.L. Bolt, J. van der Oost & J.S. Kim, (2014) . Molecular insights into 
DNA interference by CRISPR-associated nuclease-helicase Cas3. Proceedings of the National 
Academy of Sciences of the United States of America  111: 16359-16364. 

Gootenberg, J.S., O.O. Abudayyeh, J.W. Lee, P. Essletzbichler, A.J. Dy, J. Joung, V. Verdine, N. Donghia, 
N.M. Daringer, C.A. Freije, C. Myhrvold, R.P. Bhattacharyya, J. Livny, A. Regev, E.V. Koonin, D.T. 
Hung, P.C. Sabeti, J.J. Collins & F. Zhang, (2017). Nucleic acid detection with CRISPR-
Cas13a/C2c2. Science 356: 438-442. 

Grissa, I., G. Vergnaud & C. Pourcel, (2007). CRISPRFinder: a web tool to identify clustered regularly 
interspaced short palindromic repeats. Nucleic acids research 35: W52-57. 

Gu, D.H., S.C. Ha & J.S. Kim, (2019). A CRISPR RNA Is Closely Related With the Size of the Cascade 
Nucleoprotein Complex. Frontiers in microbiology 10: 2458. 

Guo, T.W., A. Bartesaghi, H. Yang, V. Falconieri, P. Rao, A. Merk, E.T. Eng, A.M. Raczkowski, T. Fox, L.A. 
Earl, D.J. Patel & S. Subramaniam, (2017). Cryo-EM Structures Reveal Mechanism and Inhibition 
of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell 171: 414-426 e412. 

Gur, E. & R.T. Sauer, (2008). Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a 
different protease. Proceedings of the National Academy of Sciences of the United States of 
America 105: 16113-16118. 

Hale, C.R., P. Zhao, S. Olson, M.O. Duff, B.R. Graveley, L. Wells, R.M. Terns & M.P. Terns, (2009) . RNA-
guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956. 

Hanahan, D., (1983). Studies on Transformation of Escherichia Coli with Plasmids. Journal of molecular 
biology 166: 557-580. 

Hannon, G.J., (2002). RNA interference. Nature 418: 244-251. 

Hatoum-Aslan, A., P. Samai, I. Maniv, W. Jiang & L.A. Marraffini, (2013). A ruler protein in a complex for 
antiviral defense determines the length of small interfering CRISPR RNAs. The Journal of 
biological chemistry 288: 27888-27897. 

Hayes, R.P., Y. Xiao, F. Ding, P.B. van Erp, K. Rajashankar, S. Baile y, B. Wiedenheft & A. Ke, (2016). 
Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530: 
499-503. 

Hille, F., H. Richter, S.P. Wong, M. Bratovic, S. Ressel & E. Charpentier, (2018) . The Biology of CRISPR-
Cas: Backward and Forward. Cell 172: 1239-1259. 

Hochstrasser, M.L., D.W. Taylor, P. Bhat, C.K. Guegler, S.H. Sternberg, E. Nogales & J.A. Doudna, (2014) . 
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. 
Proceedings of the National Academy of Sciences of the United States of America 111: 6618-
6623. 

Hochstrasser, M.L., D.W. Taylor, J.E. Kornfeld, E. Nogales & J.A. Doudna, (2016) . DNA Targeting by a 
Minimal CRISPR RNA-Guided Cascade. Molecular cell 63: 840-851. 

Huo, Y., K.H. Nam, F. Ding, H. Lee, L. Wu, Y. Xiao, M.D. Farchione, Jr., S. Zhou, K. Rajashankar, I. Kurinov, 
R. Zhang & A. Ke, (2014). Structures of CRISPR Cas3 offer mechanistic insights into Cascade-
activated DNA unwinding and degradation. Nature structural & molecular biology 21: 771-777. 

Inoue, H., H. Nojima & H. Okayama, (1990). High-Efficiency Transformation of Escherichia-Coli with 
Plasmids. Gene 96: 23-28. 



References 

131 
 

Jackson, R.N., S.M. Golden, P.B. van Erp, J. Carter, E.R. Westra, S.J. Brouns, J. van der Oost, T.C. 
Terwilliger, R.J. Read & B. Wiedenheft, (2014). Crystal structure of the CRISPR RNA–guided 
surveillance complex from Escherichia coli. Science 345: 1473-1479. 

Jackson, R.N., M. Lavin, J. Carter & B. Wiedenheft, (2014). Fitting CRISPR-associated Cas3 into the 
Helicase Family Tree. Curr Opin Struc Biol 24: 106-114. 

Jahn, M.J., D. Jahn, A.M. Kumar & D. Soll, (1991). Mono-Q Chromatography Permits Recycling of DNA-
Template and Purification of Rna Transcripts after T7-Rna Polymerase Reaction. Nucleic Acids 
Research 19: 2786-2786. 

Jansen, R., J.D.A. van Embden, W. Gaastra & L.M. Schouls, (2002). Identification of genes that are 
associated with DNA repeats in prokaryotes. Molecular microbiology 43: 1565-1575. 

Jia, N., C.Y. Mo, C.Y. Wang, E.T. Eng, L.A. Marraffini & D.J. Patel, (2019) . Type III-A CRISPR-Cas Csm 
Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. 
Molecular Cell 73: 264-+. 

Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna & E. Charpentier, (2012) . A programmable dual-
RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. 

Jore, M.M., M. Lundgren, E. van Duijn, J.B. Bultema, E.R. Westra, S.P. Waghmare, B. Wiedenheft, Ü. Pul, 
R. Wurm & R. Wagner, (2011). Structural basis for CRISPR RNA-guided DNA recognition by 
Cascade. Nature structural & molecular biology 18: 529-536. 

Kabsch, W., (2010). Xds. Acta crystallographica. Section D, Biological crystallography  66: 125-132. 

Kazlauskiene, M., G. Tamulaitis, G. Kostiuk, C. Venclovas & V. Siksnys, (2016) . Spatiotemporal Control of 
Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition. 
Molecular cell 62: 295-306. 

Kohler, R., R.A. Mooney, D.J. Mills, R. Landick & P. Cramer, (2017) . Architecture of a transcribing-
translating expressome. Science 356: 194-197. 

Konarev, P.V., V.V. Volkov, A.V. Sokolova, M.H.J. Koch & D.I. Svergun, (2003) . PRIMUS: a Windows PC-
based system for small-angle scattering data analysis. J Appl Crystallogr 36: 1277-1282. 

Koonin, E.V. & V.V. Dolja, (2013). A virocentric perspective on the evolution of life. Current opinion in 
virology 3: 546-557. 

Koonin, E.V. & K.S. Makarova, (2019). Origins and evolution of CRISPR-Cas systems. Philos T R Soc B 374. 

Koonin, E.V. & K.S. Makarova, (2019). Origins and evolution of CRISPR-Cas systems. Philosophical 
transactions of the Royal Society of London. Series B, Biological sciences  374: 20180087. 

Koonin, E.V., K.S. Makarova & Y.I. Wolf, (2017). Evolutionary Genomics of Defense Systems in Archaea 
and Bacteria. Annual review of microbiology 71: 233-261. 

Koonin, E.V., K.S. Makarova & F. Zhang, (2017). Diversity, classification and evolution of CRISPR-Cas 
systems. Current opinion in microbiology 37: 67-78. 

Kunne, T., S.N. Kieper, J.W. Bannenberg, A.I. Vogel, W.R. Miellet, M. Klein, M. Depken, M. Suarez-Diez & 
S.J. Brouns, (2016). Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR 
Adaptation. Molecular cell 63: 852-864. 

Kuznedelov, K., V. Mekler, S. Lemak, M. Tokmina-Lukaszewska, K.A. Datsenko, I. Jain, E. Savitskaya, J. 
Mallon, S. Shmakov, B. Bothner, S. Bailey, A.F. Yakunin, K. Severinov & E. Semenova, (2016) . 
Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers 
are capable of interference and primed adaptation. Nucleic Acids Research 22: 10849–10861. 



References 

132 
 

Landick, R., J. Carey & C. Yanofsky, (1985). Translation Activates the Paused Transcription Complex and 
Restores Transcription of the Trp Operon Leader Region. Proceedings of the National Academy 
of Sciences of the United States of America 82: 4663-4667. 

Larson, M.H., L.A. Gilbert, X. Wang, W.A. Lim, J.S. Weissman & L.S. Qi, (2013) . CRISPR interference 
(CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8: 2180-2196. 

Loeff, L., S.J.J. Brouns & C. Joo, (2018). Repetitive DNA Reeling by the Cascade-Cas3 Complex in 
Nucleotide Unwinding Steps. Molecular cell 70: 385-394 e383. 

Luo, M.L., R.N. Jackson, S.R. Denny, M. Tokmina-Lukaszewska, K.R. Maksimchuk, W. Lin, B. Bothner, B. 
Wiedenheft & C.L. Beisel, (2016). The CRISPR RNA-guided surveillance complex in Escherichia 
coli accommodates extended RNA spacers. Nucleic Acids Research 44: 7385-7394. 

Maeder, M.L., S.J. Linder, V.M. Cascio, Y. Fu, Q.H. Ho & J.K. Joung, (2013) . CRISPR RNA-guided activation 
of endogenous human genes. Nature methods 10: 977-979. 

Makarova, K.S., L. Aravind, N.V. Grishin, I.B. Rogozin & E.V. Koonin, (2002) . A DNA repair system specific 
for thermophilic Archaea and Bacteria predicted by genomic context analysis. Nucleic Acids 
Research 30: 482-496. 

Makarova, K.S., D.H. Haft, R. Barrangou, S.J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F.J. Mojica, 
Y.I. Wolf, A.F. Yakunin, J. van der Oost & E.V. Koonin, (2011). Evolution and classification of the 
CRISPR-Cas systems. Nature reviews. Microbiology 9: 467-477. 

Makarova, K.S., Y.I. Wolf, O.S. Alkhnbashi, F. Costa, S.A. Shah, S.J. Saunders, R. Barrangou, S.J. Brouns, E. 
Charpentier, D.H. Haft, P. Horvath, S. Moineau, F.J. Mojica, R.M. Terns, M.P. Terns, M.F. White, 
A.F. Yakunin, R.A. Garrett, J. van der Oost, R. Backofen & E.V. Koonin, (2015) . An updated 
evolutionary classification of CRISPR-Cas systems. Nature reviews. Microbiology 13: 722-736. 

Makarova, K.S., Y.I. Wolf & E.V. Koonin, (2013). Comparative genomics of defense systems in archaea 
and bacteria. Nucleic Acids Research 41: 4360-4377. 

McCoy, A.J., R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni & R.J. Read, (2007) . Phaser 
crystallographic software. J Appl Crystallogr 40: 658-674. 

Mirsky, I.A., G. Perisutti & R. Jinks, (1963). Isolation and Crystallization of Human Insulin. Journal of 
Clinical Investigation 42: 1869-&. 

Mojica, F.J., C. Diez-Villasenor, J. Garcia-Martinez & E. Soria, (2005). Intervening sequences of regularly 
spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174-182. 

Moreira, D. & P. Lopez-Garcia, (2009). Ten reasons to exclude viruses from the tree of life. Nature 
reviews. Microbiology 7: 306-311. 

Mulepati, S. & S. Bailey, (2011). Structural and Biochemical Analysis of Nuclease Domain of Clustered 
Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Protein 3 (Cas3). Journal of 
Biological Chemistry 286: 31896-31903. 

Mulepati, S. & S. Bailey, (2013). In Vitro Reconstitution of an Escherichia coli RNA-guided Immune 
System Reveals Unidirectional, ATP-dependent Degradation of DNA Target. Journal of Biological 
Chemistry 288: 22184-22192. 

Mulepati, S., A. Heroux & S. Bailey, (2014). Structural biology. Crystal structure of a CRISPR RNA-guided 
surveillance complex bound to a ssDNA target. Science 345: 1479-1484. 

Müller-Esparza, H.C., (2019). Characterization of DNA interference by a minimal Type I-F CRISPR-Cas 
system. Dissertation. Philipps-Universität Marburg. 



References 

133 
 

Nierhaus, K.H., (2014). Mg2+, K+, and the Ribosome. Journal of bacteriology 196: 3817-3819. 

Niewoehner, O., C. Garcia-Doval, J.T. Rostol, C. Berk, F. Schwede, L. Bigler, J. Hall, L.A. Marraffini & M. 
Jinek, (2017). Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. 
Nature 548: 543-548. 

Nimkar, S. & B. Anand, (2019). Cas3 Mediated Target DNA Recognition and Cleavage is Independent of 
the Composition and Architecture of Cascade Surveillance Complex. bioRxiv: 666776. 

Nunez, J.K., P.J. Kranzusch, J. Noeske, A.V. Wright, C.W. Davies & J.A. Doudna, (2014). Cas1-Cas2 
complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nature 
structural & molecular biology 21: 528-534. 

Ozcan, A., P. Pausch, A. Linden, A. Wulf, K. Schuhle, J. Heider,  H. Urlaub, T. Heimerl, G. Bange & L. 
Randau, (2019). Type IV CRISPR RNA processing and effector complex formation in 
Aromatoleum aromaticum. Nature microbiology 4: 89-96. 

Pausch, P., H. Muller-Esparza, D. Gleditzsch, F. Altegoer, L. Randau & G. Bange, (2017). Structural 
Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Molecular cell 67: 622-632 e624. 

Pawluk, A., J. Bondy-Denomy, V.H. Cheung, K.L. Maxwell & A.R. Davidson, (2014). A new group of phage 
anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5: 
e00896. 

Pawluk, A., R.H. Staals, C. Taylor, B.N. Watson, S. Saha, P.C. Fineran, K.L. Maxwell & A.R. Davidson, 
(2016). Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. 
Nature microbiology 1: 16085. 

Perez-Pinera, P., D.D. Kocak, C.M. Vockley, A.F. Adler, A.M. Kabadi, L.R. Polstein, P.I. Thakore, K.A. Glass, 
D.G. Ousterout, K.W. Leong, F. Guilak, G.E. Crawford, T.E. Reddy & C.A. Gersbach, (2013) . RNA-
guided gene activation by CRISPR-Cas9-based transcription factors. Nature methods 10: 973-
976. 

Plagens, A. & L. Randau, (2015). In Vitro Co-reconstitution of Cas Protein Complexes. Methods in 
molecular biology 1311: 23-33. 

Plagens, A., H. Richter, E. Charpentier & L. Randau, (2015). DNA and RNA interference mechanisms by 
CRISPR-Cas surveillance complexes. FEMS microbiology reviews 39: 442-463. 

Plagens, A., V. Tripp, M. Daume, K. Sharma, A. Klingl, A. Hrle, E. Conti, H. Urlaub & L. Randau, (2014) . In 
vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. 
Nucleic acids research 42: 5125-5138. 

Proshkin, S., A.R. Rahmouni, A. Mironov & E. Nudler, (2010) . Cooperation Between Translating 
Ribosomes and RNA Polymerase in Transcription Elongation. Science 328: 504-508. 

Qi, L.S., M.H. Larson, L.A. Gilbert, J.A. Doudna, J.S. Weissman, A.P. Arkin & W.A. Lim, (2013) . 
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene 
expression. Cell 152: 1173-1183. 

Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott & F. Zhang, (2013). Genome engineering using the 
CRISPR-Cas9 system. Nat Protoc 8: 2281-2308. 

Rath, D., L. Amlinger, M. Hoekzema, P.R. Devulapally & M. Lundgren, (2015) . Efficient programmable 
gene silencing by Cascade. Nucleic Acids Research 43: 237-246. 

Richter, C., R.L. Dy, R.E. McKenzie, B.N. Watson, C. Taylor, J.T. Chang, M.B. McNeil, R.H. Staals & P.C. 
Fineran, (2014). Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer 
acquisition, bi-directionally from the primed protospacer. Nucleic acids research 42: 8516-8526. 



References 

134 
 

Richter, C., T. Gristwood, J.S. Clulow & P.C. Fineran, (2012). In vivo protein interactions and complex 
formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas System. PloS one 7: 
e49549. 

Rollins, M.F., S. Chowdhury, J. Carter, S.M. Golden, H.M. Miettinen, A. Santiago-Frangos, D. Faith, C.M. 
Lawrence, G.C. Lander & B. Wiedenheft, (2019) Structure Reveals a Mechanism of CRISPR-RNA-
Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular cell 74: 132-142 e135. 

Rollins, M.F., S. Chowdhury, J. Carter, S.M. Golden, R.A. Wilkinson, J. Bondy-Denomy, G.C. Lander & B. 
Wiedenheft, (2017). Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease 
activity. Proceedings of the National Academy of Sciences of the United States of America  114: 
E5113-E5121. 

Rollins, M.F., J.T. Schuman, K. Paulus, H.S.T. Bukhari & B. Wiedenheft, (2015) . Mechanism of foreign 
DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. 
Nucleic Acids Research 43: 2216-2222. 

Samai, P., N. Pyenson, W. Jiang, G.W. Goldberg, A. Hatoum-Aslan & L.A. Marraffini, (2015). Co-
transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 161: 1164-
1174. 

Samson, J.E., A.H. Magadan, M. Sabri & S. Moineau, (2013). Revenge of the phages: defeating bacterial 
defences. Nature reviews. Microbiology 11: 675-687. 

Sashital, D.G., B. Wiedenheft & J.A. Doudna, (2012). Mechanism of foreign DNA selection in a bacterial 
adaptive immune system. Molecular cell 46: 606-615. 

Sinkunas, T., G. Gasiunas, C. Fremaux, R. Barrangou, P. Horvath & V. Siksnys, (2011) . Cas3 is a single-
stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. Embo J 
30: 1335-1342. 

Sinkunas, T., G. Gasiunas, S.P. Waghmare, M.J. Dickman, R. Barrangou, P. Horvath & V. Siksnys, (2013) . 
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. 
Embo J 32: 385-394. 

Smargon, A.A., D.B.T. Cox, N.K. Pyzocha, K. Zheng, I.M. Slaymaker, J.S. Gootenberg, O.A. Abudayyeh, P. 
Essletzbichler, S. Shmakov, K.S. Makarova, E.V. Koonin & F. Zhang, (2017) . Cas13b Is a Type VI-B 
CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and 
Csx28. Molecular cell 65: 618-630 e617. 

Songailiene, I., M. Rutkauskas, T. Sinkunas, E. Manakova, S. Wittig, C. Schmidt, V. Siksnys & R. Seidel, 
(2019). Decision-Making in Cascade Complexes Harboring crRNAs of Altered Length. Cell reports 
28: 3157-3166 e3154. 

Staals, R.H., S.A. Jackson, A. Biswas, S.J. Brouns, C.M. Brown & P.C. Fineran, (2016) . Interference-driven 
spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. 
Nature communications 7: 12853. 

Steube, N., (2018). Characterization of Anti-CRISPR proteins against three variants of subtype I-F CRISPR-
Cas systems. Master Thesis. Philipps-Universität Marburg. 

Tay, M., S. Liu & Y.A. Yuan, (2015). Crystal structure of Thermobifida fusca Cse1 reveals target DNA 
binding site. Protein science : a publication of the Protein Society  24: 236-245. 

Vercoe, R.B., J.T. Chang, R.L. Dy, C. Taylor, T. Gristwood, J.S. Clulow, C. Richter, R. Przybilski, A.R. Pitman 
& P.C. Fineran, (2013). Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape 
Bacterial Genomes and Expel or Remodel Pathogenicity Islands. Plos Genetics 9. 



References 

135 
 

Vorontsova, D., K.A. Datsenko, S. Medvedeva, J. Bondy-Denomy, E.E. Savitskaya, K. Pougach, M. 
Logacheva, B. Wiedenheft, A.R. Davidson, K. Severinov & E. Semenova,  (2015). Foreign DNA 
acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. 
Nucleic acids research 43: 10848-10860. 

Wang, X., D. Yao, J.G. Xu, A.R. Li, J. Xu, P. Fu, Y. Zhou & Y. Zhu, (2016). Structural basis of Cas3 inhibition 
by the bacteriophage protein AcrF3. Nature structural & molecular biology 23: 868-870. 

Westra, E.R., E. Semenova, K.A. Datsenko, R.N. Jackson, B. Wiedenheft, K. Severinov & S.J. Brouns, 
(2013). Type I-E CRISPR-cas systems discriminate target from non-target DNA through base 
pairing-independent PAM recognition. PLoS Genet 9: e1003742. 

Westra, E.R., P.B. van Erp, T. Kunne, S.P. Wong, R.H. Staals, C.L. Seegers, S. Bollen, M.M. Jore, E. 
Semenova, K. Severinov, W.M. de Vos, R.T. Dame, R. de Vries, S.J. Brouns & J. van der Oost, 
(2012). CRISPR immunity relies on the consecutive binding and degradation of negatively 
supercoiled invader DNA by Cascade and Cas3. Molecular cell 46: 595-605. 

Winn, M.D., C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, R.M. Keegan, E.B. Krissinel, 
A.G. Leslie, A. McCoy, S.J. McNicholas, G.N. Murshudov, N.S. Pannu, E.A. Potterton, H.R. Powell, 
R.J. Read, A. Vagin & K.S. Wilson, (2011). Overview of the CCP4 suite and current developments. 
Acta crystallographica. Section D, Biological crystallography 67: 235-242. 

Xiao, Y., M. Luo, A.E. Dolan, M. Liao & A. Ke, (2018). Structure basis for RNA-guided DNA degradation by 
Cascade and Cas3. Science 361. 

Xiao, Y., M. Luo, R.P. Hayes, J. Kim, S. Ng, F. Ding, M. Liao & A. Ke, (2017). Structure Basis for Directional 
R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Cell 170: 
48-60 e11. 

You, L.L., J. Ma, J.Y. Wang, D. Artamonova, M. Wang, L. Liu, H. Xiang, K. Severinov, X.Z. Zhang & Y.L. 
Wang, (2019). Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-
transcriptional Interference. Cell 176: 239-253. 

Zamore, P.D., T. Tuschl, P.A. Sharp & D.P. Bartel, (2000). RNAi: Double-stranded RNA directs the ATP-
dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25-33. 

Zetsche, B., J.S. Gootenberg, O.O. Abudayyeh, I.M. Slaymaker, K.S. Makarova, P. Essletzbichler, S.E. Volz, 
J. Joung, J. van der Oost, A. Regev, E.V. Koonin & F. Zhang, (2015) . Cpf1 is a single RNA-guided 
endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. 

Zhao, H., G. Sheng, J. Wang, M. Wang, G. Bunkoczi, W. Gong, Z. Wei & Y. Wang, (2014) . Crystal structure 
of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515: 147-
150. 



Supplementary 

136 
 

6. Supplementary Material 
 

Table 6.1: Crystallographic Table 

Data Collectiona SpCascade-I-Fv (SeMet) SpCascade-I-Fv-R-
Loop 

Space group I2 P 3221 

Cell dimensions 

a, b, and c (Å) 157.002 143.316 

- 65.894 143.316 

- 160.682 172.698 

α, β, and γ (°) 90.00 90.00 

- 98.61 90.00 

- 90.00 120.00 

Energy (Å) 0.979 0.991 

Resolution (Å) 47.97 - 3.00 45.27 - 3.25 

- (3.10 - 3.00) (3.36 - 3.25) 

Rmerge 0.0547 (0.356) 0.168 (1.922) 

I / σI 13.18 (2.05) 11.66 (1.80) 

Completeness (%) 100.0 (100.0) 100.0 (100.0) 

Redundancy 10.0 (9.8) 11.1 (11.4) 

CC(1/2) 0.99 (0.72) 0.99 (0.85) 

Anomalous completeness (%) 99.5 (99.8) - 

Anomalous redundancy 5.2 (5.3) - 

 

Refinement 

Resolution (Å) 49.28 - 3.00 46.91 - 3.25 

No. reflections 32,875 (3,271) 32,783 (3,192) 

Rwork/ Rfree 19.4 21.8 

- 24.9 27.7 

No. atoms 11,803 13,131 

Macromolecule 11,803 13,131 

Ligand 0 0 

Water 0 0 

R.m.s deviations - - 

Bond lengths (Å) 0.015 0.010 

Bond angles (°) 1.34 1.29 

Ramachandran (%) - - 

Preferred 95.93 96.76 

Allow ed 3.92 3.1 

Outliers 0.15 0.14 

                                                     a Statistics for the highest-resolution shell are shown in parentheses. 
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Supplementary Figure 1: Comparison of the short type I-Fv and type I-E Cascade. Left: The cartoon shows the crystal s tructure 
of the type I -Fv Cascade complex from S. putrefaciens CN32 in two different orientations. The crRNA, Cas6f, the three Cas7fv 
proteins and Cas5fv are shown in orange, green, blue and red, respectively. The 3′ and 5′ ends of the crRNA are indicated. 

Dotted lines indicate the wrist helix and palm/phumb helix formed by Cas7fv.1-3/Cas5fv. Right: Cartoon of the R-loop/type I-E 
Cascade from E. col i. The Cas7e.1-6, Cas6e, Cas5e, Cse1 (Cas8e) and Cse2.1-2 are in l ight blue, green, red, yellow and darkblue, 
respectively. The crRNA is represented as orange cartoon/surface. Target and non-target DNA are shown as light-green 

cartoon/surface. The coordinates are derived from PDB-ID: 5H9A, Figure from Pausch et al., 2017.   
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Supplementary Figure 2: LacZ-repeat RNA extraction. RNA was  extracted from various samples of the Ni -NTA puri fication of 
Cas  proteins and repeat-tagged RNA. Extracted RNA was separated by agarose gel electrophoresis in which 2-log DNA ladder 
(M) was  loaded for s ize reference. 

 

 

 

 

Supplementary Figure 3: TEM analysis of filaments from lacZ-Repeat. 
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Supplementary Figure 4: 2D class averaging model of filaments structures from TEM analysis (see Figure 2.18).  
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Supplementary Figure 5: TEM analysis of first half of the peak (fraction of 13ml elution volume) after size-exclusion of 
MonoQ purification. 
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Supplementary Figure 6: TEM analysis of MonoQ purification sample (fraction of 13 ml elution volume during salt gradient).  
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Supplementary Figure 7: FACS analysis of E. coli expressing cas genes as well as either the control or the repeat-tagged 
construct overnight at 18 °C after induction. Fluorescence was  measured in relative fluorescence  units  (RFU). Cel l s  not 
producing s fGFP at all  (-) showed no fluorescence at a l l  and a  control  express ing only sfgfp (C) showed the maximum 
fluorescence. 
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