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Abstract

We consider a 1-parameter family of metric connections V? with totally skew-symmetric torsion
tensors on a Riemannian manifold and derive a Weitzenbock formula for the Laplace operator,
arising from such a connection. Various notions related to V? are defined and developed in the

process, mimicking what is normally done with the Levi-Civita connection V9. We investigate the
matter of skew torsion further by introducing weakly non-degenerate and non-degenerate split
torsion and show examples of manifolds, admitting such connections.

Zusammenfassung

Wir betrachten eine 1-parametrische Schar metrischer Zusammenhénge V* mit
schiefsymmetrischen Torsiontensoren auf einer riemmanschen Mannigfaltigkeit und leiten eine
Weitzenbock-Identitat fiir den Laplace Operator ab, der aus einem solchen Zusammenhang
stammt. Verschiedene Begriffe, die mit V* verbunden sind, werden in diesem Prozess definiert
und entfaltet, indem man dem folgt, was normalerweise mit dem Levi-Civita Zusammenhang VY
getan wird. Wir untersuchen die schiefsymmetrische Torsion weiter durch die Einfithrung von
schwach nicht entartete bzw. nicht entartete aufgespaltete Torsion und zeigen Beispiele von

Mannigfaltigkeiten, die solche Zusammenhénge zulassen.
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Introduction

A huge portion of the fundamentals in differential geometry is centered around the notions of a
differentiable manifold, metrics, connections, geodesics, torsion, and curvature. Classically, much
attention is drawn by the Levi-Civita connection VY on a manifold, which is the unique
torsionless metric connection of the Riemannian (M, g). While the metric condition appears to be
quite natural, one may ask himself whether we really need to impose a condition on the torsion to
vanish, and indeed metric connections with non-vanishing torsion have been studied and used
widely in the literature.

The extra freedom given by the presence of torsion enables us to devise more sophisticated
models and describe more phenomena. This is particularly important in the field of mathematical
physics, where manifolds with torsion have been extensively used as the torsion tensor is thought
to couple with spin just as curvature couples with energy. This lies in the heart of Einstein-Cartan

theory. Thus, torsion-gravity with spinning matter is a complete and self-consistent setting for
modern physics, with potential applications wherever spin effects may be important, stretching
from quantum mechanics to the standard models of particle physics and early cosmology.

Another important appearance of metric connections with torsion, and more precisely totally
skew-symmetric torsion, is in superstring theory. There, the number of preserved
supersymmetries essentially depends on the number of parallel spinors. The existence of parallel
spinors is, on the other hand, a severe holonomy condition, and in the case of the Levi-Civita
connection the resulting holonomy groups are known to be SU(n), Sp(n), Go, and Spin(7),
corresponding to Calabi-Yau, hyperkahler, parallel Gy, and parallel Spin(7) manifolds. These
geometries are of great interest, but are also very restrictive and have thus been generalized by
the introduction of torsion into the picture. This is done by considering metric connections with
totally skew torsion tensor, whose holonomy lies in one of the aforementioned groups. A torsion
tensor is called totally skew-symmetric, or in short, totally skew, if considered as a type (0, 3)
tensor using the metric, it is a 3-form.

Keeping the physical background in mind, it is no surprise that metric connections with skew
torsion have mainly been considered in the context of spin geometry. A focal object on a
Riemannian spin manifold (M, g) is the Dirac operator D—the famous square root of the Bochner
Laplace operator (V*V)9 of the Levi-Civita connection V9. On the one hand, they are directly
related by the Lichnerowicz formula

D% = (V*V)%9 + iScalgw

on spinors, where Scal? is the scalar curvature of the Riemannian curvature tensor RY. On the
other hand, there is another famous identity-the Weitzenbock formula-which relates (V*V)9 and
the Hodge Laplacian A = d§ + dd via the curvature:

A= (V'9) +q(RY),

where ¢(RY) is a zero order (no differentiation) curvature term. These formulas are of great use
while estimating the operators’ lowest eigenvalues and proving vanishing theorems.

Once we have allowed the presence of torsion, another useful tool for investigating the geometry
of a given manifold is the consideration of a whole 1-parameter family of connections with
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2 INTRODUCTION

skew-symmetric torsion. Let (M, g) be a Riemannian manifold with a metric connection V with
totally skew torsion tensor T'. Then, the Levi-Civita connection V9 and V are connected via

1
VxY =V%Y + §T(X7 Y).
What one does is to consider the 1-parameter family of connections
$Y = V9Y + gT(X, Y)

depending on s € R. Such a rescaled torsion is, of course, again totally skew. Moreover, particular
scale factors give rise to interesting geometric quantities. For example, with s = %, the Dirac

operator D5 of a naturally reductive space with a spin structure coincides with Kostant’s cubic
Dirac operator. In some situations, introducing the scale factor in formulas like the Weitzenbock
or the Lichnerowicz formula also allows for a better lowest eigenvalue estimate of the operators in
question.

One of the main goals of this thesis is to go through some of the classical theory, allowing torsion
and not assuming the existence of a spin structure on the manifold, and derive a general form for
the Weitzenbdock identity on k-forms. This is achieved in theorem 5.16:

THEOREM 0.1. Let V* be the family of metric connections with totally skew-symmetric torsion
defined by (5.4). Then the Weitzenbdck-type formula

Azw = (V*'V)’w + ¢(R9)w — 2sdTw + 25°S(w) + 4s° B(w)
relates the Bochner-Laplace operator of V® to the Laplacian Az of V%, both acting on a k-form w.

In [ABBK13|, the skew torsion of the connection that’s used has a special form-it is of split type.
This notion is defined there for the first time and it is one of our objectives to elaborate on it a
bit more in this thesis. This, it is further refined in weakly non-degenerate and non-degenerate

split torsion and examples are presented.

There is a good amount of previous work done on these topics. Metric connections with skew
torsion have been widely considered throughout Agricola, Friedrich, and Ivanov’s articles:
[AF04a], [AF10], [AF14], [Agr03], [F102], [Iv02], Iv04] to name a few. A good combined
source is [Agr06]. We have used Semmelmann’s lecture notes [Sem11] and habilitation thesis
[SemO01] as guidelines in the first chapter. Most results on Killing forms, conformal Killing forms,
and special Killing forms with torsion may be cross-referenced in [HKWY10|, HKWY12|, and
[KKYO09]. The notion of split torsion originates from [ABBK13] and reappears in [AK14], and
is tightly related to generalized Wallach spaces, which are classified by Nikonorov in [Nik16].
The description of the Wallach spaces is put together using results from [B02], [BCCS09],
[Dra08|,  HBLT71]|, [Ish99], [Kar88|, [Mas74]|, [Mii80], [Mii81], [Wa72|, and [Yo09]. Further
references are also given throughout the text.

Structure of the thesis. The text is divided in two chapters and an appendix in two parts.

The main object of the first chapter is to derive the general form of the Weitzenbéck formula in
Theorem 5.16, as described at its very beginning in a short introductory word. We start by
setting up the basic algebraic facts, notions, and conventions. Apart from the standard algebra
that is used, we introduce two new operators, the diamond and box operator, in Def. 1.6. We then
proceed to transfer the algebraic picture to a manifold setting and introduce the V-differential
and V-divergence in Def. 2.3 in the process. A study of V-Killing and V-conformal Killing forms
ensues, adopting ideas of Semmelmann et. al., Houri et. al., and others. It is followed by
examples of manifolds admitting such special forms. In the next section we define a number of
Laplace operators which may be considered in the presence of torsion. Thus, we finally close in on
our aim to derive an expression for the Weitzenbock formula in equation (5.2). At the end of the
chapter, some known applications are presented to illustrate how such formulas are usually put
into practice. Theorem 6.3 is an example of a vanishing theorem derived using equation (5.10).
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The second chapter also starts with a short introductory word, followed by a section of
preliminaries. There, the notions of weakly non-degenerate and non-degenerate split torsion are
defined. We also cite the classification theorem for generalized Wallach spaces from [Nik16]. The
following two sections are concerned with the two different non-degeneracy conditions, each of
them containing a series of examples, tightly related to the normed division algebras R, C, H, and
0. In the case of weakly non-degenerate torsion, those are the Stiefel manifolds, while in the case
of non-degenerate split torsion, they are the Wallach spaces. The Wallach spaces are then
elaborated on in greater detail to show the richness of the structure they admit.






CHAPTER 1

Metric connections acting on differential forms

In the first chapter, we go through a series of known results in Riemannian geometry, generalizing
them from the point of view of metric connections with totally skew symmetric torsion. The goal
is to obtain a systematic exposition of the results and to derive a general expression for the
well-known Weitzenbock formula

Aw = (V*V)w + Ric(w)

This is achieved in theorem 5.16. A simple application in the spirit of the Bochner-type vanishing
theorems is given in theorem 6.3.

We start by laying down the algebraic basis needed for this work whilst also setting the notational
conventions. Apart from the standard algebra that is used, we introduce two new operators, the
diamond and box operator, in Def. 1.6.

We then proceed to transfer the algebraic picture to a manifold setting and introduce the
V-differential and V-divergence in Def. 2.3 in the process.

A study of V-Killing and V-conformal Killing forms ensues, adopting ideas of Semmelmann et.
al., Houri et. al. and others. It is followed by examples of manifolds admitting such special forms.

In the next section we define a number of Laplace operators which may be considered in the
presence of torsion. Thus, we finally close in on our aim to derive a more generalized expression
for the Weitzenbock formula in equation (5.2). We also introduce a 1-parameter family of
connections into the picture to generalize even further, inspired by results in [ABBK13], and
finally arrive at the desired identity (5.10) in theorem 5.16.

At the end of the chapter, some known applications are presented to illustrate how such formulas
are usually put into practice. Theorem 6.3 is an example of a vanishing theorem derived using
equation (5.10).

1. Algebraic preliminaries

Given a Riemannian manifold (M, g), our main goal is to describe the action of a metric
connection V with skew torsion on differential forms. We start with the action of an arbitrary
metric connection V on the tangent bundle, which is the standard covariant differentiation. Then
one defines naturally covariant derivative on the cotangent bundle and extends this action to the
whole tensor bundle over the manifold. Finally, we focus only on those connections, which have
totally skew torsion tensor.

1.1. Lie algebra actions on alternating forms. We start with the algebraic picture. Let
g be a Lie algebra with elements g, h,... and V be a vector space with elements X,Y,... We let g
act on V' via the representation ¢ : g — End(V'). The action of g on V* is given by
(e(g)(M)(X) := —n(o(g)X) where n € V*. The representation p extends to the whole tensor
algebra T*V by imposing that it acts as a derivation with respect to the tensor product and
commutes with contractions. We elaborate on this setting starting from an arbitrary
endomorphism ¢ € End(V). Since ¢ acts as a derivation and commutes with contractions,
considering R® V =V, we get that ¢ = 0 on R. Then ¢(a(X)) =0 for X € V and a € V*,
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6 1. METRIC CONNECTIONS ACTING ON DIFFERENTIAL FORMS

leading to the following expression for the action of ¢ on V*:

(L.1) P(a)(X) = —a(p(X)).
Fix an orthonormal basis {e;}} of the n-dimensional V. Tt determines a dual basis {e’} of V* via
e/ (e;) = &!. Denote by A = (aij)nxn € M"(R) the matrix of ¢ with respect to {e;}:
P(X) = Z(ainj)ei, where X = ZXiei eV.
Y] i
Then the matrix, corresponding to ¢ on V* is —A!, i.e.
o) = Z(—ajiaj)ei, where o = zaiei eV
i i
We endow V' with the standard inner product (e;, e;) = d;; and use it to identify V and V* via
p:V—V*
X r— X' =(X,-)
and its inverse § : V* — V. Flat (b) and sharp (f) are called the musical isomorphisms. Note
that €2 = ¢’. Hence, if X = ", Xje;, then X° = 3. (X?);e’ = 3, X;¢', so that (X); = X;. Now
O(X)" =) (ai;X;)e’ while §(X°) = 3 _(~a;iX;)e’
1,] 1
so ¢ and b commute if and only if A = —A?, ie. ¢ is skew-symmetric. On the other hand, if ¢ is
symmetric, they anticommute. When we consider skew-symmetric endomorphisms ¢, like for

example ¢ = o(g) = g for g € g C so(n), we freely identify X and X’ without any risk of
confusion.

REMARK 1.1. We shall use the same letter for a vector af = X € V and its dual covector a@ =
X" € V* whenever possible, identifying V and V* freely. Other notable conventions are that our
exterior product is defined so that (w1 Aw2)(X,Y) := w1 (X)wa(Y) — w1 (Y)wse(X) and we interpret
A= Aije®e e Vo V*as ), Aje @e; € V'@V, that is V* ® V* is identified with
V*®V = End(V) via the isomorphism id ® f.

Let us see how ¢ € End(V), respectively g € g, acts on AFV*:

PROPOSITION 1.2. If w € AFV*, ¢ € End(V), we have:

(1.2) P(w) = qu(ei) Ale; 1 w)

In particular, for ¢ = o(g), g € g, we get the action of g on AFV*.

PROOF. The statement is trivially true for k = 1. Assume that w € A*V*, € AlV* and the
claim is true for all elements of APV* p < k + 1.

dwAn) =dw) An+wAdn) = (de') Alei ) w) An+wAd(e’)Aled )

=D o) A (et @) An+ (=D w A (s m) =D o) Aleid (@A)

proves the proposition by induction. [l

PROPOSITION 1.3. If w € AFV*, ¢ € End(V), and X1, Xo,..., X} €V, we have:

k
(1.3) W)X, Xp) ==Y w(Xp,. 0, d(Xo), ., Xp).
i=1



1. ALGEBRAIC PRELIMINARIES 7

PROOF. Substituting in the previous proposition we get

p(w)(X1,..., Xp) = Z(—l)j+1¢( X wlen X1, X, Xp)
—Z X)wlen X1, o o X0 Xk)

_Z X, X1, X X)) = = > w(Xa, - 6(XG), - Xp). O
J

From now on we work with g = so(n) = A2V, V = R", and o(g) = g. We identify so(n) = A2V*
as follows:

N2V* SeiNej > Eij € Sﬂ(n)
where the matrices E;; denote the standard basis elements of the Lie algebra so(n), i.e. the
endomorphisms mapping e; to ej, e; to —e;, and everything else to zero. Note that since EU has a
—1 on position (4, j) and a 1 on position (j,4), if we write w =3, ;wije; Aej € A2V it
corresponding matrix in so(n) will be A = (—w;j)nxn = (Wji)nxn-
PROPOSITION 1.4. Let a € A2V* with corresponding matriz A € so(n) and Z € V. Then
o) Z =AZ =71 «a.
If a is an element of the forma=XAY, X, Y €V, and w € A*V*, we have
o XAY)Z =(Z,X)Y —(ZY)X =Y.(X1 Z’)=X.(Y 1 2,
VXAY ) w=YANXJw-XAY 1 w).
PROOF. A is given by A = (—j)nxn. We compute:
ola)Z = AZ = Z - 2 Za]7Ze,—ZJa
ij

Taking o = X A'Y, the computation for o(X ANY)Z is trivial. The last line follows directly from
Prop 1.2:

D XAY)e)Aleid w) =Y (XY —YiX)A(eid w)=YA(XJw)-XA(YJIw). O

i i
REMARK 1.5. Let a, 8 € A?V* with corresponding matrices 4, B € so(n). One can compute

= ZA(B, A (et B) = ZAe, A Be; = ZAj,;ej A Byiep
i 7

4,5,k
= Z Z —Aj,,;B,-kej Neg+ Z Z —BkiAije]' N eg
J<k i k<j i
= Z AB kej /\ek+z BA k]ek Nej = Z_[A7B]jk€j N e
j<k k<j i<k

so the matrix corresponding to o(«)S is [A, B], meaning that the action of so(n) on itself given by
o coincides with the adjoint action.

We define two algebraic operations, generalizing the action of so(n) on the tensor algebra over V.
DEFINITION 1.6. For w € A*V* and n € A'V* we define:
nOw := Z(eiJ A (e J w) € AFFZ2V* for k1> 1,

nlw := (e; 1 (eid m)A(ejd (i) w e NFH=AY* for k1> 2,
2 J J
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The definition does not depend on the choice of an orthonormal basis. Because of their notation,
we shall loosely refer to these operations as the diamond operation and the box operation. Our
most important examples will be in the case n = T', where T is the totally skew torsion of a metric
connection (see def. 1.8). In this case we will refer to 70 and T as the diamond and box operators.
A list of identities used for algebraic manipulations with ¢ and [J may be found in Appendix B.

We now show that the diamond operation is really a generalization of the action g of
so(n) = A2V
LEMMA 1.7. Let i be an element of A'V* and w of ANFV*. The following holds for any v € A*V*:
0w A7) = (nOw) Ay + (=1)Mw A (n07).

In particular, if l = 2 orl = n — 2 in case n is even, the identity above is just the Leibniz rule
turning N into a derivation. Thus, o(n) = nd on A*V*.

ProoF. We show the derivation rule directly:

nOWAY) = (eid ) Aleid (wAY))

i
= Z(eiJ n) A (e d w) Ay + (—1)1"2(@1 n)AwA (e )
% %
= (10w) Ay + (=1)¥w A (n0).
For w € V*, the identity
ndw =w 1 1= o(nw
is a trivial check, showing that n{ and o(n) coincide on 1-forms and hence on A*V*. |
Further arithmetic identities concerning the diamond and box operations are given in the
appendix.

1.2. The torsion action on alternating forms. Now, let (M, g) be a Riemannian
manifold, equipped with a metric connection V:
(1.4) VxY =V%Y + AxY

where X, Y € TM, Vg( is the Levi-Civita connection, and Ay : TM — T'M is an endomorphism
field on TM. We may also consider Ax as a 2-form Ax : TM x TM — R because V is metric.
Note that Ax(Y,Z) = (AxY,Z) so AxY =Y 1 Ax = AxQY. (—,—) is the scalar product,
induced by the metric g on TM at a fixed point. We associate a torsion tensor
T:TM xTM — TM to V:

T(X,Y)=VxY -VyX - [X,Y].

Due to its symmetries and using the metric, one can consider T : A2TM @ TM — R. According
to the splitting
NTM @TM = NTM e TM &V

under so(n), where V is the Cartan product of A2T'M and T'M, the possible torsion tensors are
classified (this is known as the Cartan classification):
DEFINITION 1.8. We call a torsion tensor T’

e vectorial if T : TM — R;
o totally skew or skew-symmetric if T : N’TM — R;
e of Cartan type if T : V — R.

LEMMA 1.9. Summarizing the results of the previous subsection, we extend (1.4) as a derivation to
the whole tensor algebra over M. In particular, for a k-form w

(1.5) Vyxw = V4w + Axw.
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COROLLARY 1.10. If V is a connection with skew-symmetric torsion T, Ax = %XJ T and

(1.6) Vxw=Vw+ = (XJ T)Ow.

2
COROLLARY 1.11. If V is a connection with vectorial torsion, Ax = 2X ANV for some vector field
V and

Vixw=Vw+2(XAV)0w=Viw+2(VA(X 1 w) - XA (VI w)).

We investigate connections with skew torsion in more detail in the following sections.

2. Connections with skew-symmetric torsion acting on differential forms

Let V be a metric connection with totally skew torsion tensor T (see eqn. 1.6). We use the same
letter for T: TM x TM — TM and T : A>TM — R. Geometric quantities defined with
respect to the Levi-Civita connection will be marked with an upper index ¢ (e.g. RY), while
quantities without upper index refer to the connection V (e.g. R) —an upper index V may still be
explicitly written in the latter case lest confusions occur. In any case, the metric ¢ will always be
fixed, but the connection may vary.

DEFINITION 2.1. We define a V-adapted frame as follows: at a point p € M we can fix an orthonor-
mal frame {e;} such that the connection components vanish, that is (Ve,e;) (p) = 0. We then use
parallel transport with respect to V to define the orthonormal frame in a neighbourhood around p.

From now on we assume that eq,...,e, is an orthonormal frame. The formulas we obtain are
generally invariant under orthogonal basis changes. Use of V-adapted frames will be mentioned
explicitly.

2.1. Basic identities. Let’s prove some useful formulas involving inner products and the
defined diamond and box operations.

PROPOSITION 2.2. The following equalities hold for any T € ATM and any w € AFTM :

(2.1) —2X 1 T= Zn:T(X, ei) N e;
=1
(2.2) (X1 T)O Zez T(X,e;) 1 w)

T(X,X;), X1, Xj, oy Xi).

[vja

(2.3) (X1 T)0w) (X1,.., Xp) =
j=1

ProoF. We confirm the first equality:
ZT (X,e) Ne; = ZT (X, ei,e5)e; Ne; = Z—QT(X,ei,ej)ei Nej=—=2(X1T).
1] 1<j

The second one follows easily from Prop. 1.2:

(X1 T)Ow = Z T(X,ei,ej)ej N (e J w)= —Zej ANT(X,ej)d w).
ij=1 j=1

(2.3) is a coordinate-free alternative to (2.2), obtained by just plugging the arguments in. (|
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2.2. Divergence and differential. We would like to define two new operators on k-forms,
which in some sense generalize the exterior differentiation d and the divergence d. These
operators depend on a previously fixed metric connection V with skew torsion 7'

DEFINITION 2.3. The V-differential and the V-divergence of a k-form w are defined as
dVw = Zei A Ve,w, Vw = — Zei 4 Ve,w.
i i

The definitions do not depend on the choice of orthonormal basis. Of course, these notions
coincide with the usual definitions in case T' = 0. These two operators have appeared previously
in the mathematical physics literature (see [HKW'Y 10|, where the diamond and box operations
also appear implicitly as special cases of the contracted wedge product) and are tightly related to

massless Dirac equations. It is natural to define a corresponding Hodge-Laplace operator, as is
again done in [ HKWY10|:

DEFINITION 2.4. The Hodge Laplacian with torsion is defined by
A:=dVeY +6VdY

We now recall the definition of the Hodge star operator and state some of its properties without
proof.

DEFINITION 2.5. Let (M, g) be a closed, oriented, Riemannian manifold. We define the Hodge star
operator * : AFTM — A" FTM assigning to each n € AKT'M the form *1 such that for every
weANTM

wA*xn = (w,n)dV
holds, where dV is the volume form of M.

LEMMA 2.6. We state some properties of x without proof (see [Sem11] - 7.3 on p.174):

*1 =dV (X1 wn)=(wXAn)
X =X dV (X J w) = (—D)*1X Axw
*2 — (_1)k(n—k) <w’ *17> _ (_1)k(n—k) <*w7,’7>

Here w is a k-form, X is a vector field or its dual 1-form, and n is a form of appropriate degree.

PROPOSITION 2.7. On a closed, oriented, Riemannian manifold (M",g) the operators d¥ and 5V
are formally adjoint. Moreover, the Hodge star operator x relates them by the formula

Vw=—(=1)"* D 4 @V w,
where w is a k-form.

PRrROOF. The proof of the adjointness is similar to the Levi-Civita case since we only need the
connection to be metric. Let w be a k-form and n a (k+ 1)-form. First note that in the V-adapted
frame around a fixed point p € M the 1-form ). V., e; vanishes at p, but it doesn’t depend on the
choice of frame, so it is identically zero. Then compute as follows:

/ <d wn dV / <Zez/\velw 77>dV / Z e (e ANw),m) dV
n Mn - n
/ zel ei Nw,n)ydV — / Z(ei/\w,veimd‘/.
Mn = -

Note that
Eel ei Nw,n)ydV = dz D (e Aw,myer A ANEN... Ney
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is exact, so

(den>dV— / Zez/\wven /Zez/\w/\* Ve,n)
k“/ Zw/\et/\*veln /ZW/\*ELJVT])

:/ w/\*évn:/ <w,6vn>dV,
Mn Mn

proving the first assertion. Using that *V = Vx we further confirm

wdY % w = * Z (ei A\ Ve, (xw)) = * Z (ei A *(Ve,w))

) 2

= (=DM (e 1 Vew) = —(-1)"FDsV, 0

Mn

We now prove some identities involving the newly defined diamond and box operators.
PROPOSITION 2.8. The diamond operator and the box operator are related to d¥ and 6V by
TOw = dw — de, TOw = 6w — 6V w.

PROOF. We use (2.2) and e 1 T' = 5 Z T'(e;,ej,ex)e; A ej to compute

dw — de—Ze, ng—Ve,w———Zez ((e; 1 T)Ow)

:§ZeiA€j/\(T(ei,ej)J w)=Z(ekJ TYA (e, 1 w) = TOw.

k

Further, we find that

dw—o6Vw = ZeiJ (Ve,w — Zez ((e; 2 T)Ow) = ; Z(ei 1 T)0(e; 4 w) =Tw,

where the last step follows directly from the definitions of ¢ and [. O

COROLLARY 2.9. T'Q and TU are formally adjoint, i.e. on a closed, oriented, Riemannian manifold
(M™,g)

/ (TOw,n) dV = / (w, TOn) dV
M M
holds for a k-form w and a (k + 1)-form n, k > 1.

PROOF. This is true for both pairs d, 6 and dV, 6V hence it follows for their differences T'¢
and Tl 0

Recall a standard formula relating the exterior differential d with a covariant differentiation V.

LEMMA 2.10. If V is a metric connection with torsion T, and w is a k-form, then

k
dw(Xo,..., X :Z Yi(Vx,w)(Xo, .- Xiy ooy Xp)
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COROLLARY 2.11. We have the following basis-free expressions for TOw and dY w:
(@¥w) (X1, Xir1) = D (-1 (V,w) (X1, Xy - X)),
J
(TO W) (X1, Xpg1) = O (-1 (DX, X5), X1, X X Xig)-
1<j
PROOF. The first identity is seen directly from the definition d¥ = >, €iAVe,, while the second
one follows from Lemma 2.10 and d — d¥ = T. O

COROLLARY 2.12. If Vw =0, then TOw = dw and TOw = dw. For w =T we have TOT = 207
(see the following remark) and TOT =0, so 6V T = oT.

REMARK 2.13. This justifies that for any metric connection V, we will just write 071 for the
divergence of the torsion. Note also that using the first formula we easily get

or(X,Y, Z,V) : = (T(X,Y), T(Z,V)) + (T(Y, Z), T(X,V)) + (T(Z, X),T(Y,V))
= %(TQT)(X, Y,Z,V),

which is also shown in [Agr06]. The 4-form op appears in many special geometries and often
carries significant information about the structure of the manifold. We will use the last expression,
as well as the identity

PIT(X,Y,Z, V) = ( Z (VxT)(Y, Z, V)> — (VW) (X,Y,Z) 4+ 207 (X,Y, Z, V)
XYz

from the same source later on. One can easily confirm it in our language. That is just d97 =
dVT + TOT, where we have taken into account Cor 2.11, TOT = 207, and the fact that T is a
3-form.

ExaMPLE 2.14. In the simple case of a Lie group we are aware of a series of examples of forms,
which are not V-parallel, but are still dV-closed. Let V be one of the canonical flat connections of
the Lie group and take a basis {e;} of V-parallel 1-forms. Their wedge products produce higher
degree V-parallel forms. Since
d¥ (fw) =df Aw+ f.dVw,

we can take w = e;; A...Aej and f = x5, 1 < p <k, {ij}é‘?:l C {1,...,n}, where n is the
dimension of the Lie group. The k-form fw is not V-parallel anymore, but it is dY-closed. In a
similar manner we can produce §¥-coclosed forms on Lie groups, leaning on the expression

SV (fw)=—df 1 w+ f.6Vw.
The algebraic identities we’ve used are summed up in Prop. B.2.
We proceed to find an expression for (dV)2.

PROPOSITION 2.15. On a k-form w

(dV)*w = dTOw + TO(TOw) — TO(VIw) — (VIT)Ow.

ProoF. We manipulate the expression
(dV)w = (d —TO)’w=0— d(TOw) — TO(dw) + TO(TOw).

According to Prop. B.2 in the appendix, we have

A(TOw) = (VIT)Ow — dTQw + TO(VIw) — TO(dw),
and we directly arrive at

(dV)w = —(VIT)Ow + dTOw — TO(VIw) + TO(TOw). O
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Thus we observe that d¥ does not in general square to zero so it will not be a useful tool to
investigate cohomology. However, there is a certain class of forms, called special V-Killing forms,
on which dV does square to zero. We introduce them in the following chapter.

3. V-parallel forms and V-Killing forms

Recall how a conformal Killing k-form is defined: for an arbitrary vector space V we have a
splitting

V @ AV 2 AR g ARy g ARLY

into irreducible so(dim V')-representations, where A¥1V is just the Cartan product of V and AFV.
According to this splitting, applied to the tangent space at a point T, M =V of an n-dimensional
manifold M, we may write the covariant derivative of a k-form w with respect to any metric
connection V as
1
3.1 Vxw=——X1 d¥w— ——— X AVw + Py (w).
(3.1) AR P n—k+1 +Px (W)
Here P)Y (w) is simply the projection of Vxw on the last summand of the splitting. Defined in
this way, PV is usually called a twistor operator. See [SemO01] for details in the case when V is
the Levi-Civita connection. The same construction applies to any metric connection.

DEFINITION 3.1. Let X € TM be arbitrary. We call a differential k-form w:
(1) V-parallel, if it satisfies V xw = 0;
(2) V-Killing, if it satisfies Vyw = ﬁXJ dvw;
— Further, if w satisfies the equation

Vx(dVw) =cX Aw

for some constant ¢, we call it special V-Killing or just special;
(3) V-x-Killing, if it satisfies Vxw = —n%mX A SN w;
— Further, if w satisfies the equation

Vx(6Vw)=—cX 1 w

for some constant ¢, we call it special V-x-Killing or just special;
(4) V-conformal Killing, if it satisfies PY (w) =0
When V is the Levi-Civita connection, we obtain the classical definitions.

Killing and conformal Killing forms have been studied by Bochner and Yano ([YB54], [Y70]),
and more recently by Semmelmann in his habilitation thesis [SemO01], where one of the results is
a classification of all manifolds admitting special Killing or %-Killing forms with respect ot the
Levi-Civita connection. It turns out that a compact, simply connected manifold, admitting a
VY-special Killing form, must be either isometric to S™, or be Saskian, 3-Saskian, nearly Kahler,
or weak Gl2. Special forms have been introduced by Tachibana and Yu ([TY70]) and have also
appeared in the context of torsion ((HKWY12]). They exhibit some interesting properties,
motivating the definition of the Hodge Laplacian with torsion A := dVV +6VdVY.

Recently, Killing and conformal Killing forms have also been used in the mathematical physics
literature in the series of papers: [E16a], [E16b], [E17], [KRTO07], and others. They appear
naturally and define conserved quantities for geodesic motion, as well as symmetry operators of
the massive and massless Dirac equations in curved background. They are then used to extend
known symmetry algebras through the introduction of an appropriate Lie bracket to bigger Lie
superalgebras. However, this Lie superalgebra structure appears only on spaces with constant
curvature. The setting generally allows the presence of torsion and V-Killing and V-conformal
Killing forms have indeed been considered ((HKWY10|, HKWY12]).

We will now investigate the action of V on low order forms, with special emphasis on parallel
objects. To start with, we show that the Killing equation is the same for all connections with
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totally skew-symmetric torsion, in particular it coincides with the one for the Levi-Civita
connection. This will also give us the opportunity to define a special torsion, hence connection,
which makes a given Killing vector of constant length parallel.

PROPOSITION 3.2. Let V be a metric connection with skew-symmetric torsion T'. The vector field
X is Killing iff it is V-Killing. Hence, any V-parallel vector field is Killing. Conversely, for a
Killing vector field X of constant length, there exists a metric connection V with skew-symmetric
torsion T, for which X is V-parallel. One such is given by T = WX ANdIX.

PROOF. Since classical Killing vector fields coincide with V-Killing vector fields for connections
with skew-symmetric torsion, we just use the term Killing vector field. Here is our justification:

(VyX,Z)=—(V;X)Y) = (Vi X,Z) + %T(Y, X,Z)=—(V}X)Y) - %T(Z, X,Y)
= (V{X,Z)=—(V}X,)Y).

Obviously, every V-parallel vector field is V-Killing, hence Killing. The converse is more interesting.
Can we find an appropriate connection which turns any Killing vector parallel? Some special
geometries lead us to the suspicion that if X is Killing, then V with T' = WX AdIX will do the
trick. This turns out to be true only if X is of constant length. Let X be such a vector field, Y
and Z — arbitrary.

1
(VyX,Z) =(V{X,Z) + W(X NEX)Y, X, Z)

= (ViX,2) ((6,7) (T4 X, Z) = (VX X))+

L1
2/|X[?
+HIXPUVELX, Y)Y = (VEX, Z)) + (X, Z) (VL X, X) — (V% X, Y>))
1
= (V4X.2) ~ (W X.2) + 5o (X V) (V4 X, 2) ~ (X, 2) (V4 X,Y) ) =0,
This concludes the proof. Note that we needed to use V%X = 0, which is granted by the constant
length condition, because otherwise we can’t make the term (V4X,(X,Y)Z — (X,Z)Y) vanish,
since (X,Y)Z —(X,Z)Y = o(Y A Z)X runs through all possible vectors as Y and Z vary. O

REMARK 3.3. We saw that a V-parallel vector field is Killing. Dually, a V-parallel 1-form should
also be Killing as we readily see from Vw = 0, which implies also d¥w = 0 and dw = TOw. Then

1
S 2

which is precisely the Killing condition. Such 1-forms exist in many geometric situations, for
example on quasi-Sasakian manifolds or Go-manifolds with non-vanishing Lee form.

V9w = Vw — %(XJ T)ow = —%T(X, W) = %(M T)(X) = ~(T0w)(X) = %XJ o,

We showed that a Killing vector field, or equivalently 1-form, is simultaneously Killing for all
metric connections with totally skew torsion. This is also true for conformal Killing 1-forms:

ProPOSITION 3.4. Every conformal Killing 1-form is also conformal Killing with respect to any
metric connection with totally skew-symmetric torsion.

PRrROOF. Let w be a conformal Killing 1-form, and V - a metric connection with totally skew-
symmetric torsion. We can write simultaneously

1 1
ngw=§XJ dw—ﬁX/\(Sw and

1 1
Vxw =X dVw— =X AN6Vw+ PY (w).
n
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Subtracting the first line from the second one and using the last lemma, we get
1 1 1
—5X 1 (T0w) = =5 X 1 (TOw) + ~X A (T0w) + PY(w),

which simplifies to Py (w) = 0 right away (70w = 0) and finishes the proof. O

PROPOSITION 3.5. The torsion T is (conformal) Killing if and only if it is V-(conformal) Killing.
In particular, if T is Killing, one has

1 1

PROOF. Assume T is conformal Killing:
1 1
3.3 V%T ==X 1 dT — ——X N OT.
(3:3) X 4 n—2
We show that this condition is equivalent to the V-conformal Killing condition:

1 1
4 T==-X1d"T — ——X ASVT.
(3.4) Vx 1 d "9 A0

We verify this, subtracting the two identities. The divergence terms cancel out, since d1' is the
same for both connections. The difference (3.4) - (3.3) is

%(XJ T)OT = %XJ (= TOT),

which is easily seen to be true by X 1 (w0n) = —(X 1 w)On + (—1)*wO(X 1 n) from Prop. B.2.
The explicit form (3.2) follows directly from (3.4) and dT' — dVT = 207 (see corollary 2.12 and the
following remark). O

We just saw that for some special forms: 1-forms and the 3-form, corresponding to the torsion,
the V-conformal Killing condition is preserved in the class of metric connections with totally skew
torsion. This condition is also preserved in the conformal class of the metric g.

REMARK 3.6. Under the conformal change § = e*'g, covariant differentiation on k-forms with
respect to the Levi-Civita connections V9 and VY9 is related via ([Sem01], p.17)

Viw = Viw — kdA\(X)w — dA A (X J w) + X A (grad(\) J w).
If we consider the connection with torsion
1
Vyxw = Vw+ §(X 4 T)w,
the appropriate connection to look at after the conformal change is
- A 1
Vyw = V4w + §(X 4 T)Ow.
In this case, we get the relation
(3.5) Vxw = Vxw — kd\(X)w —dA\ A (X 1 w) + X A (grad(A) J w).

PROPOSITION 3.7. Let w be a V-conformal Killing k-form on the Riemannian manifold (M, g) and
consider the conformally equivalent metric § = e**g. Then & = e*TVAy satisfies
. 1 - 1 -
Vxw=—-X1dVo— ——X" N6V,
S n—k+1 v

where b is the dual with respect to §.
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PrOOF. The computation goes exactly the same way as in the case of the Levi-Civita con-
nection, so we just highlight some key moments. Let {e;} be a g-orthonormal frame, whose dual is
{0;}. Then {é; = e ?¢;} is a g-orthonormal frame and &; = e*o; is its dual. Then, with (3.5)

Vo= 6iAVer = 0iAVed =D 0 AVeo+ (k—k)dAAD = dV .

Similarly, again using (3.5) one can compute
Vi = e~ (6Vd + (2k — n)grad(\) 1 &) .
One then substitutes & = e** 1Ay obtaining
AV = e* DA (k4 Ddd A w + dVw),
6V = DA (—(k+ 1)grad(X) 2 w+ (5vw) and
Vi = ek DA ((k +1)dA (X )w + @Xw) .

With these three identities, (3.5), and e™?*X e > the result follows. O

COROLLARY 3.8. The V-conformal Killing k-form w is conformal to a V-x-Killing form iff there
exists a function X\, such that

dvw=—(k+1)d\ Aw
and conformal to a V-Killing form iff there exists a function A\, such that
Vw=(n—k+ grad(\) J w.

If both conditions are satisfied for the same A, w is conformal to a parallel form.

PROOF. From the intermediate computations in the last proof we have:

Ao = e ((k+ 1)dA Aw + dVw)
§Vi = e 2 ek H1A (—(n—k+ 1)grad(A\) J w+ 5vw) .

which show the claim. O

COROLLARY 3.9. If a k-form is simultaneously V-parallel for two different metrics g and § = e*g
of the same conformal class, then X\ is constant.

PROOF. In this case we have d¥Vw = §Vw = 0 so that
dAANw=0 and grad(\)J w=0.
We can thus compute
0 =grad(\) J (dA\Aw) = |grad(\)|*w — dA A (grad(\) J w) = |grad(\)*w,
proving the claim. O
The V-conformal Killing condition is also invariant under the Hodge star operator.

PROPOSITION 3.10. Ifw is a V-conformal Killing k-form, then xw is a V-conformal Killing (n—k)-
form.

PRrOOF. We apply * to the defining equation

1 1
e X dw— —— XAV
Vxw = S AR | v

Using *V = V%, Lemma 2.6, and Prop. 2.7, we can intertwine d¥ and §V, interchanging X 1 . and
X A . in the process, and then determine the signs, arriving at

1 1
—X v ———XAGY ,
T 4 dY (xw) P NSV (xw),

which is exactly the condition for the (n — k)-form *w to be V-conformal Killing. ]

Vx(xw) =
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Observing that  interchanges d¥-closed and §V-closed, we directly arrive at:

COROLLARY 3.11. The k-form w is V-Killing iff xw is V-x-Killing. Moreover, w is special V-Killing
with constant c iff *w is special V-x-Killing with the same constant c.

PRrROOF. We apply the Hodge star  to the definition VxdYw = ¢X A w and use Lemma 2.6
to determine the signs that occur when we swap * and d¥ and *(X A w) and X 1 *w, arriving
precisely at VxéVw = —cX 1 w. |

PROPOSITION 3.12. Ifw and n are V-x-Killing k- and l-forms, then w An is a V-x-Killing (k+1)-
form.

PRrROOF. From B.2 we have
dwAn) =d¥wAn+ (=1)*wAdVn =0,
directly showing the d¥-closedness, as well as (see Prop. B.1)
NwAn) =6VwAn+ (=DFu A 6Vn —wd(Vn) — (—=1)F(Vw)On.
This simplifies using that w and n are V-conformal Killing. Namely, we compute
1

v k v
= i i =(-1)'———
wO(Vn) n_lﬂzi:(e W) Aei AoV = (=) ———w A sy
and similarly
=(=DF———5Vw A
(Veo)On = (~1)F - ——%w A,
arriving at
—k—-14+1 n—k—101+1
V(wAn) =" T VA D~ AGY
S n—Fk+1 whn+(=1) n—l+1 © g
after grouping the similar summands. We can rewrite this last identity in the form
1
— V(wAn) =—Fb"wA D | S— N
n— k10 WA= s e At (U Ao,
We now multiply by —1 and wedge with X on the left to obtain
1 v
R SR §¥(wAn) = (Vxw) An+wA (Vxn) =Vx(wAn),
which is precisely the V-conformal Killing condition for w A 7. (|

There is also an equivalent definition for special V-Killing, respectively V-#-Killing forms.
PROPOSITION 3.13. The V-Killing k-form w is special with constant c iff for any X,Y
c

The corresponding condition for a V-x-Killing [-form n with constant ¢ is

c
Viyn=———(g(X,Y)n— X1 (Y An)).
Xy n_l“(g( )n (Y An))
PRrROOF. For a special V-Killing form w we have
1
=——X 1 dvw.
Vxw = v

We differentiate and use Vx(dVw) = ¢X Aw to obtain
1
VxVyw = k—H(VXYJ dw+Y I (X Aw))
so that

& &
Vi w= e (X Aw) = k—H(g(X,Y)w—X/\(YJ w)).



18 1. METRIC CONNECTIONS ACTING ON DIFFERENTIAL FORMS

Conversely, we can expand this last identity for a V-Killing k-form w to arrive at
Y 1 (VxdVw)=¢cY J (X Aw)

for any Y, meaning that VxdYw = ¢X Aw, so that w is special. The corresponding statements for
V-#-Killing forms follow by just applying * and using Lemma 2.6. O

COROLLARY 3.14. The following formula holds for the curvature on a special V-Killing k-form w:

c
X, Y w=—(XAY)Ow.

PRrROOF. We just apply the definition R(X,Y) = Vgﬂ/ — V%, x and substitute the expression

from the proposition. O

PropoSITION 3.15. If w is a special V-Killing k-form, it is an eigenform of the Hodge Laplacian
with torsion A (see definition 2.4). More precisely,

Aw = —c(n—k)w, where Vx(dvw)=cX Aw.
Further, if n is a special V-x-Killing l-form, it is an eigenform of A satisfying
An = —cly, where Vx(6Vn)=—cX 1 n.
PRrROOF. The proof is a direct computation. We will only do it for 1 as the other case is similar.
Vx(6Vn) = —cX 1 n=dVoVn = —cln,
but 1 is d¥-closed, so
Anp=dvVoVn+6VdVn=dvéVn = —cly. O
Using the equivalent definition, we can also show the following:

PROPOSITION 3.16. If w is a special V-Killing k-form, it is an eigenform of the Bochner Laplacian
with torsion V*V = —tr(V?). More precisely,

—k
V*Vw = —Mw, where Vx(d¥w) = cX Aw.
k+1
Further, if n is a special V-x-Killing [-form, it is an eigenform of V*V satisfying
{
V*Vn = _n—07l+1n’ where Vx(6Vn) = —cX 1 1.
Proor. We simply take the trace in
c
Viyw = =7 (0(X,Y)w = XA (Y 0 w)
or the corresponding V-x-Killing identity and compute the coefficient. ]

COROLLARY 3.17. Let (M, g) be a compact manifold and w a special V-Killing k-form with constant
c. Then ¢ < 0.

c(n—k)

PROOF. We integrate V*Vw = — ==~ w over M:
2 * c(n —k) / c(n —k) 2
= v = ————= v = ————= 0
196l = [ (9°9w.0) il o > o
hence ¢ < 0. 0

Observe that although in general (dV)? # 0, for a special V-Killing form w, (d¥)%w = 0 does hold.
This allows us to prove the following:

PROPOSITION 3.18. If w is a special V-Killing k-form of odd degree k, then w A (d¥w)P is a special
V-Killing form of degree p(k + 1) + k.
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PRrOOF. The degree of dVw is (k4 1), which is even. Set = wA (d¥w)?. Then dVn = (dVw)PH!
and
Vie(d¥n) = (p+ (T (d¥w)) A (@) = (p+ 1)eX Aw A (@ w)? = c(p+1)X A7,
so 7 is special with constant ¢(p + 1).

This shows that given a special V-Killing 1-form, we can produce a whole series of special
V-Killing forms of odd degree.

One often considers the curvature of a manifold as an endomorphism on the space of 2-forms.
The case when it is symmetric is usually of interest, since this implies the symmetry of the Ricci
tensor. It has been previously observed, that this holds if the torsion T is parallel, or even if VT’
is a 4-form, which in our current terminology is just T being V-Killing. In fact, this condition is

also necessary, as shown in ([Iv02], Corollary 3.4.):

ProposITION 3.19. ([Iv02], Cor. 3.4.) Let (M,g,V,T) be a Riemannian manifold with a metric
connection V with totally skew-symmetric torsion T'. The following conditions are equivalent:
(1) V9T = dT;
(2) VT is a 4-form;
(3) R(X,Y,Z,V)=R(Z,V,X,Y).
4. Examples

In this section we give a few examples of manifolds admitting interesting forms in terms of their
behaviour with respect to a characteristic connection V. We also find many eigenforms of the
Hodge Laplacian with torsion A (see def. 2.4). We already encountered this operator in the
previous section and we will further investigate its properties in the next one.

4.1. 3-(a, d)-Sasaki manifolds. An almost 3-contact metric manifold (M, ¢;,&;, 15, g) is
3-(a, §)-Sasaki if it additionally satisfies
dn; = 2a®; + 2(o — 8)n; A .

Here and further on we assume that (4, j, k) is an even permutation of (1,2,3). We have defined
D;(X,Y) := g(X, ¢;Y) and the real constant ¢ is such that it satisfies

(6, &5]) = 206
The Killing vector fields &; are of constant length and a # 0 is a real constant. Many further
identities can be shown and we list some of them here:
LEMMA 4.1. A 3-(«, §)-Sasakian manifold (M, ¢;, &, i, g) satisfies
d®; = 2(6 — a)(m A 2j —n; A Pr)

§d ©,=0, 1 Q= —m, &d =,

PRrROOF. For a proof and further details see [AD19]. O

Furthermore, as any 3-(«, d)-Sasaki manifold is a canonical almost 3-contact metric manifold, it

admits an unique canonical connection V with totally skew torsion T

LEMMA 4.2. The canonical connection V has totally skew torsion

3
T= Z i A dn; + 8(6 — a)mas.
=1

Furthermore, if we set 5 = 2(0 — 2«v), the following are satisfied:
Vx& = Bne(X)E —n;(X)&k), Vxni = Bne(X)n; —ni(X)me), Vxdi = Bne(X)d; — i (X))
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PRrROOF. For a proof and further details see [AD19]. O

We investigate the behaviour of the defining forms of the structure and their products and
derivatives with respect to dV, §V, and A. Lengthy, but straightforward computations produce
the following table:

‘ w ‘ Vxw ‘ V-closed ‘ V-cocl. ‘ eigenv. ‘ type ‘
| i | B (X)nj — ni (X)) | no [ yes | 4% [ Killing |
Mij Bni(X)ni +ni(X)n;) A ng yes no 432 -
P + 14 B0 (X) (@i +njx) — mi(X) (P + ki) no yes 232 -
1123 0 yes yes 0 Parallel
dv o B2 (0 (X)(mi A j — nj A ;) no no 352 -
+0(X) (0 A D, — mie A B;))
:,-3:1 n; N\ D; 0 yes yes 0 Parallel
i NP +n; N P; - no yes 932 -
i NPj —n; NP; - no no 352 -
or 0 yes yes 0 Parallel
?:1 D; N D, 0 yes yes 0 Parallel
> ik Pi Ak 0 yes yes 0 Parallel

TABLE 4.1. Notable forms

4.2. The Stiefel manifold V,, o = SO(n)/SO(n — 2). Consider the (2n — 3)-dimensional
Stiefel manifold V;, 2 = SO(n)/SO(n — 2), where SO(n — 2) is embedded as the upper left block of
SO(n) = {A € M"(R)|AA" = Id}. On a Lie algebra level we have

h o) )
50(71) = —()36 0 Ton—3| € Mn(]R) h e 50(n — 2),5[)071 S Rn_z,l‘gn_g eR
—xt  —x9n_3 0
We interpret @1 as column-vectors g = (z1,23,...,T2,—5)" and @1 = (v2, 74, ..., Ton—a)".

Consider the splitting g = h @ m with g = so(n), h = so(n — 2), and
m=R"Z2HpR" 2GR =m & my & ms.

The tangent space to Vj, 2 at the origin may be identified with m, which is split as a direct sum of
irreducible h-modules. Here each of m; and my is a standard representation of h = so(n — 2) and
mgs is a trivial representation. Moreover, for {7, j, k} = {1,2,3} the following commutation
relations are satisfied:

h,m;] Cmy,  [my,mg] Ch, [my,m;] Cmy.

Thus, g = h & m is a reductive splitting. The direct sum is orthogonal with respect to any metric
of the form

9t =9 lmidme +t.9 Ims,

where ¢ is the metric, induced on m by the Killing form of g and ¢t > 0 is a real parameter. Fix a
basis of m as follows: let ¢; e m, ¢ =1,2,...,2n — 3 be such that x; = 1 and all other coordinates
are zero. This basis is orthogonal with respect to g; and we make it orthonormal by taking
&= \/%egn_g instead of eg;,_3.
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PROPOSITION 4.3. The homogeneous space (Vi 2 = SO(n)/SO(n —2),g1), where g1 is induced by
the Killing form of so(n) is naturally reductive with canonical connection V. = V9 + %T whose
totally skew torsion tensor T'(X,Y) = —[X,Y]w is given by

T=(er2+e3q+...+em52n-a) N e€2,_3.

Any isotropy-invariant tensor will be parallel with respect to the canonical connection V. We can
use representation theory to obtain the following table of invariants:

Tensor type ‘ Vao ‘ Vs ‘ Vo2 ‘ Vio,m>17

Vector field 1 1 1 1
Symmetric (0,2) | 5 4 4 4
Symmetric (0,3) | 5 4 4 4

2-form 4 1 1 1
3-form 4 5 1 1
4-form 1 5 5 1

TABLE 4.2. Invariants on Stiefel manifolds

Additional interesting invariant tensors appear in lower dimensions due to the fact that V, o
carries some additional (n — 2)- and (n — 1)-forms. The invariant vector field is ¢ and the
invariant 2-form

F=epp+es+...+ems5m—a.

As always, we have identified m and m* via ¢g;. The metric dual of e; is still denoted by e; for
1 < < 2n — 4, while the dual of £ is 7. We define an almost contact metric structure
(Vn,Za gt ¢7 , 6)7 where

¢p=—Fio—E34—...— Eyy_ 5904

is the endomorphism defined by F(X,Y) = g;(X, #Y). One can check that ¢? = —Id + 7 ® ¢ and
the structure is indeed almost contact metric. According to Wang’s theorem (see [KN69],
Chapter X), the Levi-Civita connection is given by the mapping A : m — s0(2n — 3) with

1
AF(X)Y = §[X,Y]m +U(X,Y).
The tensor U(X,Y) is defined by the formula
1 1
g(U(X.Y),Z) = 502, X, ) + 59¢(X, [Z, V]m)-

We can proceed to calculate

1 t t
MY = X VI, MOOS= 510 a%©Y = (1-5) 6L AR©5 =0,
where X, Y € m; @ me. Now we easily see that £ (or equivalently ) is Killing and the following
holds:
1
VﬁénngJ F:§XJ dn.

Thus dn = /tF, from which easily follows that the Nijenhuis tensor
No(X,Y) = [6X,6Y] = 6[6X, Y] = 6[X, 0¥ ] + ¢*[X, Y] + d(X, V)¢
of ¢ vanishes for all t > 0. We can finally state the following:
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PROPOSITION 4.4. The almost contact metric structure (V2 = SO(n)/SO(n — 2), g:) is normal
which makes it a-Sasakian with o = \/t.

We can also consider the family of connections V'}tY for s € R such that
9(VX'Y. 2) = gi(V4Y, 2) + ST(X.Y, 2)

and describe V! as a mapping A%’ : m — s0(2n — 3). First we find A% (X) as elements of
50(2n — 3) =2 A’m:

Vi Vi1
gt - _ Y- gt = [ = -
M) ==Y Fan ApO= (Y- 7
Here X € m; @ my. We thus obtain the action of A% on w € A¥m by just letting it act via ¢:
MG = =3 P A ow Ao = (Y- 1) Fow.

Then we deal with the torsion term finding Tp such that ¢(To(X,Y), Z) = T(X,Y, Z), namely
1
To(X,Y) = _[X7 Y]m1®m2 - ;[Xv Y]mS'
Now VY'Y = VLY + 3T5(X,Y) and we can use Tp to obtain Ay’ from Ag:
STh X Fyan, A =T 2R
2Vt ’ " 2Vt

Direct computations lead to the following:

s+t—2

AGH(X) =

PROPOSITION 4.5. 1 is a special Vt-Killing 1-form, which is an eigenform of ASt. More precisely:

1 t—s (t—5)%(n—2)
VS,t — X | J%t A5ty = F 550 =0, AStp— )
x " 2 n, n \/E ’ n ’ n t n
Further, F is special V*!-closed and also an eigenform of AS!:
—t t— —2 t—s5)}(n—2
V;tF _ ) X A n, ds,tF — O7 (58’tF — ( S)(n )777 As,tF — ( S) (n )F
2/t Vit t

In particular, none of those are parallel unless s = t.
COROLLARY 4.6. T = \/tF A1 is also a special V*'-Killing form.

PROOF. 7 is a special Killing 1-form and d®'n = FT:F, so T = tF An = £=d*'n Anis also

special. ([

We have obtained an example of a metric connection V*! with totally skew torsion sT € A3m
which is V*!-Killing, yet not V*!-parallel.

PROPOSITION 4.7. The torsion sT of V! is V*'-Killing but not parallel unless s =0 or s = t.

PROOF. The torsion sT' of V? equals

sT = sVtF A,
which is already special V*!-Killing by the previous corollary. In general, it is not parallel:
1 t t—
V“}tsT = ZX 1 d¥(sT) = %X 1 (FAdn) = %X 4 (FAF). 0

We go on to investigate the cases n =4 and n = 5 in some more detail.
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4.3. The Stiefel manifold Vo = SO(4)/S0O(2). We consider the 5-dimensional
Vio = 80(4)/SO(2). First, we give the additional 2-forms:

PROPOSITION 4.8. The following 2-forms are isotropy-invariant:
Fi=eates, Fy=e3—en, F3=eq+ters, Fy=e3+ean.

(Vaa, gt, i, &,m) with ¢; such that Fy(X,Y) = g(X,$;Y), where 1 < i < 4, is an almost contact
metric manifold. The Nijenhuis tensor N; of the structure ¢; is always totally skew. For i = 1,4
it is zero, hence the structure is normal, and for i = 2,3 it is non-zero. The structure ¢1 is
a-Sasakian, ¢o and ¢3 are semi-cosymplectic, while ¢4 is quasi-Sasakian non-Sasakian.

PROOF. The isotropy is one-dimensional and is represented by h = E19 € h. One computes
ad(h) = E13 + Ea4 and checks that the four given forms are indeed isotropy-invariant. On the
other hand, representation theory tells us that there are exactly four such invariants, so we are
done. We can see directly from the expressions for F; that ¢? = —Id + 7 ® £ and g(X,¢;Y) =
—g(¢;X,Y), which is enough to conclude that the structures are almost contact metric. We omit
the computations behind the statement about the Nijenhuis tensors. We know from the general
case that ¢ is a-Sasakian. The semi-cosymplectic condition is dn = §F = 0, which we can readily
confirm using the formulas for AJ. The same formulas enable us to show also that dFy = 0,
which is the quasi-Sasakian condition, along with being normal. For the precise expressions, see
the following table 4.3 with s = 0. |

Let’s consider the family of connections
VY = V&Y + gTO(X,Y)

and the associated operators d*!, §%!, and A%! =: A. We study the behaviour of n, F;, and T with
respect to those operators, arriving at the following table 4.3.

‘ w | Viiw ‘ d®tw 5% tw eigenvalue‘ type ‘
n %XJ ds,t77 f;\/;Fl 0 (t—s)Qt(n—Q) Sp. K
5=t (t=s)(n=2) | (t=5)*(n—2)
Iy 2\/EX/\77 : 10 N 41t 2 Sp. CK
Fy | $H(X 3 Fy) A+ SE20(X)Fy | 2B An |0 o -
—s —5)2
Fy | 5=2(X 0 o) A — 20X Fy | 2520 F, An 0 2ED -
Fy %(¢4¢1X) An 0 0 0 Harm.

TABLE 4.3. Notable forms

We do not investigate higher degree forms, since 3-forms are given by the Hodge star *; of 2-forms
and our operators behave well with respect to *;. Note that the operator depends on the metric
gt- Closed and coclosed are interchanged, and so are special Killing and special conformal Killing.
An example of the last phenomenon is the following observation: we know from the general case
that T = v/tFy A7 is special Killing. Its Hodge dual is proportional to Fy, which is special
conformal Killing, as noted in the table.

Inspired by the observation that T' is the Hodge dual of F}, we obtain an example of a metric
connection with totally skew torsion which is V-closed, yet not V-parallel.

PRrRoOPOSITION 4.9. Consider
1 1
VI = VI 4 ST = V9 (5T + p(Fy),

where we have chosen t = 1 for the metric in the sake of simplicity and x means x1. For the pair
(S,p) = (%7 %)7 A$PTSP — 0 but vs,st,p 7& 0.
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PRrOOF. To ease notation, we skip all the occurrences of ¢ = 1 in the formulas computed so far.
Recall some of the properties of the Hodge star on Vj o:
VP = «VP;  %d*P = (—1)¥6%P % on a k-form; #* =1.
‘We compute
ARP(X) = A (X) + 2. (X 0 +Fy) 0.

To show that VSPTSP =£ 0 and d®PT*P = 0 we can equivalently show VP TP =£ 0 and §*PxT5P =
0 so we work with the simpler *T%P = sF} + pFy. Note that «Fy = —F; A n. First,

VSP(sFy) = sV Fy — %[XJ (Fy An), Fi] = sV Fy — %[(XJ Fy) A, Fy] — %U(X)[a,m
= sV ki — %[(XJ Fy) A, B
‘We then find
VY (pFy) = pVi Fy — p—;[X 1 (FyAn), Fy] = pVi Fy — %2[(XJ Fy) A m, Fyl.

The codiffrential 65 = —e; 1 Ve is easy to compute:

2
S
3P (sFy + pFy) = 6°Fy + ps°Fy + 31’ Z ei ) [(ei ) Fu) An, Fi] + % Z e [(eid Fu) A, Fy

2(1—s)n+—ZeZJ [(ei d Fq) A, Fi]+ Ze,J [(ei 2 Fy) Am, Fy]
2s(1 — 5)n + 2p? 77=2(8(1—S)+p)n-
Choosing s = % p= % we conclude that
V5iT55 £0 and d33T535 = — %833 « T35 =0
by observing that VB’BT # 0, for example. O

4.4. The Stiefel manifold V5, = SO(5)/SO(3). Consider the 7-dimensional V5. First, we
give the additional 3-forms:

PROPOSITION 4.10. The following 3-forms are isotropy-invariant:
Fy = e197 +esar+es67,  Fo =eiss, F3=eus, Fi=eizeteras+eas, Fs = e+ e236+e2s.
The a-Sasakian (Vs2,g:,¢,&,m) with ¢ such that F(X,Y) = g(X,¢Y) (see prop 4.4) admits a
nearly parallel Ga-structure for t = \/g with the defining 3-form given by

= F1 + Fy — F5 = e127 + €347 + €567 + €135 — €146 — €236 — €245-

PROOF. It is known that ¢ has stabilizer GGo. We can compute its differential and compare it
to the Hodge star to see that the structure is nearly parallel, seeing already that d¢ = 0. Look
ahead to table 4.4 with s = 0 for the precise expressions. The Hodge star %; depends on the metric.
One can compute

Vi

* [ = 7FA F,  xFy=—F3An, *F3=FAn, *xF =F5An, *F5=—FAn.

Therefore
Vi
*t1p=7F/\F—F3/\77+F4/\77
and Vi
3 3 t
dp =tFNF+ —FyAn— —F3An= FANF —F3An+FyN
0 i IRAY/| i An= \/1_5< 5 3An+ Fy 77>

One now sees that #1) is proportional to dvy if and only if % = % —=i= % |
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Again, proceed to consider the family of connections Vs’tY V&Y + 5Tp(X,Y) and the
associated operators d*t, 6%, and AS! =: A. We summarize the results regarding the forms F; in
table 4.4. Higher degree forms are not investigated since they are given by the Hodge star *; of

‘ w ‘ Vi&tw ‘ d*tw ‘ 5 tw ‘ eigenv. | type ‘
P L5(X ) F)AF (t—s)FAF 0 |t [sp K
Fy 50X 1 Fo) A+ SJQFf/QW(X)FAL 1—\;;174 AT 0 - -

Iy (¢XJ Fs) A — 5220 (X) Fs S5 A 0 - -
Fy ;—ﬁ(qsx 3 Fy)An+ S;F\t[Qn(X)(QF5 - 3F) I;J;@Fg, —-3R)An| 0 - -
Fs | §2(0X 0 Fs) A+ *T20(X)(3F; — 2Fy) | "2(3F5 — 2Fy) A | 0 - -

TABLE 4.4. Notable forms

the ones we already know. In this example, the ”generic” 3-forms that we investigate are not
eigenforms of A (except for Fj, which we will show to be special Killing). However, there exist
linear combinations, which are eigenforms of A.

PROPOSITION 4.11. FY is a special V*'-Killing 3-form. The following are eigenforms of A:
9(s —1)2

(s — 1)
(FQ —F5), A(3F2+F5) = : (3F2+F5),

M(Fﬁa — Fy), ABFs + Fy) = (s—1)*

A(Fy — Fs) =

A(F3 — Fy) = (3F5 + Fy).

PROOF. We know that F; = v/tF A n is special from the general case. Using the identities in
the table above, one can compute:

A(s — ¢ 2 -1 2 -1 2
A = %Fl, Al = (S ; ) (3F2 — 2F5), Al = (8 r ) (3F3 — 2F4),
-1 2 -1 2
AF, = (s t ) (TFy — 6F3), AFy = (s . ) (TFs — 6%)
The linear combinations given in the proposition are now easily found. O

REMARK 4.12. Observe that the G» structure ¢ should also be an eigenform of A for s = 0,t = §
Indeed, in this case the eigenvalues of F} and Fy — F5 coincide, equalling 6. This leads us to
investigate another interesting value of the parameter t: t = %, for which F} and 3F, + Fy have
coinciding eigenvalues.

5. Laplacians acting on forms

5.1. Laplacians acting on k-forms. We would like to continue our investigation on
operators acting on forms by looking at different types of Laplacians. We have at our disposal the
classical Hodge and Bochner-Laplace operators, as well as two analogously defined operators,
using an arbitrary connection with skew-symmetric torsion. We can also investigate the
Lichnerowicz Laplacian and its generalized version, both defined and studied in [Diel3], and
their skew-torsion counterparts. We define all of them presently.

(1) We start with the classical Hodge Laplacian. It is defined as
AY = dé + dd.

This operator is elliptic, formally self-adjoint, positive, and on a compact manifold a k-
form w satisfies A9%w = 0 iff dw = 0 and dw = 0.
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In Definition 2.4 we already introduced the Hodge Laplacian with torsion
A=dvVeY +6VdY.
This is an analogue of the Hodge Laplacian, which is again formally self-adjoint and
positive. The claim that on a compact manifold Aw = 0 iff d¥w = 0 and §¥w = 0 holds
as well. Yet, since we showed that (dV)% # 0, A # (d¥ +6V)2. We also note that A and
A9 coincide on functions: Af = A9f. Indeed, using df = d¥ f we easily see
Af — dV&Vf_l_éVde — 5vdf
and analogously AY9f = ddf. Now
(A7 = A)f = (6 = 6V)(df) = TO(df) = 0.

Next, we define the Bochner-Laplace operator. Whenever we have a connection V, this is
just the operator V*V, acting on a k-form. In the case of the Levi-Civita connection we
denote it by (V*V)9. The relation

(V*V)w = —tr(V3w)

holds whenever V is metric. We refer to [Sem11], p.193 for the proof. Observe also that
if we have torsion and define the Hessian of a function as HessY (f)(X,Y) := (Vdf)(X,Y),
it differs from the usual one, that is:
Hess" (f)(X,Y) = (Vdf)(X,Y) = Viy [ = X(Y(f)) = (VxY)f
Hess?(f)(X, V) = (V9f)(X,Y) = (V9)y f = X(V(f)) — (V4 V)

— HessV (f)(X,Y) = Hess?(f)(X, ) — %T(X, Y)(F).

In particular, this shows that Hess" fails to be symmetric any more and this failure is
measured by the torsion tensor, while its symmetric part is exactly Hess?. Both Hessians
have equal traces, hence the Bochner-Laplace operators defined for V and V¢ coincide on
functions:

(V*V)f = —tr(HessV (f)) = —tr(Hess?(f)) = (V*V)9f.

The last operator we define is the Lichnerowicz Laplacian. First we need an additional
quantity—the curvature endomorphism ¢(R).

qR)w = Z ej A (eiJ Rieiej)w)
Y]

on a k-form w. This object is thoroughly studied by Semmelmann in [Sem01]. We can
use it to define the Lichnerowicz Laplacian (adopting the terminology from [Diel3)):

AL = V*V 4 ¢(R).

It is handled more easily by representation theory. In fact, it acts as a Casimir operator
on certain homogeneous spaces ([MS10], [AS12]). The link with representation theory
becomes more obvious when one rewrites ¢(R) as follows:

q(R)w = Z o(e; Nej)R(es, e)w = Z o(e; Nej)o(R(e Nej)w =: g(R)%w.

1<j 1<j

If we want to make the representation visible, we denote A% := V*V +¢(R)¢. This allows
us to speak about A7 for representations 7, different from the natural representation o
(see Prop 1.2), which we have been using since Section 2. It is precisely how Moroianu
and Semmelmann treat the subject. We cite the following theorem ([MS10], Lemma 5.2):
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THEOREM 5.1. Let G be a compact semi-simple Lie group and H < G a compact subgroup such
that M = G/H s the naturally reductive homogeneous space with Riemannian metric induced by
—B, where B is the Killing form of G. Let V denote the canonical connection of M. Let also
0: H — End(E) be a representation of the isotropy group and EM := G x, E be the associated
vector bundle over M. Then the curvature endomorphism q(R)? acts fibre-wise on EM as —Casf
Moreover, if we consider the space of sections I'(EM) as a G-representation via the left reqular
representation l, the differential operator A% acts on T'(EM) as —CaslG.

Since we only use the representation o, we continue writing Ay, without the superscript. We
proceed by computing the expression for A on forms, but first we introduce a slight abuse of
notation:

REMARK 5.2. We write TO(Vw) = 3 ZU (eid (ej1 T)) A (eid Vejw) for conciseness.

THEOREM 5.3. The Hodge Laplacian A = dV 6V + 6VdY on a k-form w is given by
(5.1) Aw = (V'V)w + q¢(R)w — 2TO(Vw) = A — 2TT(Vw).
PROOF. Let w be a k-form. We compute the Laplacian by the definitions of dV and §V:
— Zei AVe,(ej I Ve,w) — ZeiJ Ve (ej A Ve,w)

= _Zei A(ejd Ve, Ve,w) Zez (ej A Ve, Ve,w)

:—Zei/\(ejJ Ve, Ve,w) E&JVEZV@JW—FZQ (eid Ve, Ve,w)

=-> Vi, w-l—Ze] velvejw Ve,.veiw))
i
= (V*V)w—qu (ei 1 Rlei ej)w +Z€J (€ Vig;e;)w)-
i?j
So far this was a straightforward computation, which led us to the expected Bochner-Laplace and
curvature terms. We derive the last term exploiting the identity [e;, e;] = —T'(e;, e;) in the adapted
frame. Now
Zej (€id Vi, ew ZT ei,ej,ep)ej A (e; ) Ve,w)
i, t,7,k

=— Z (eid (exd T))A(e;d Vew)=—2TO(Vw)

concludes the proof. O

Obviously, the formula we obtained for the Laplacian coincides with the well-known Weitzenbock
type formula in the Riemannian case. Let’s try to write down the term ¢(R) more explicitly.

PROPOSITION 5.4. The curvature endomorphisms of V and V9 are related by
d(R)w = q(R)w + %5T(w) + iS(w) —dT0w + %UTDUJ + %B(w),
where B(w) =Y (e 2 T)AN((exd T)d w).
PROOF. In the appendix we define the (0,4)-tensor F' by the identity
R(X,Y,Z,V)=RI(X.,Y,Z,V)+ F(X,Y,Z, V),
as well as the 2-form F(X,Y) = F(X,Y,—,—). We then prove the identity
R(X,Y)w=RI(X,Y)w+ o(F(X,Y))w.
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This means that ¢(R)w — ¢(RY)w is nothing else, but

Z e; N ez _ Q (‘5’17 6] Z Fzgklej ez . Q(ek A el)w)
i,7,k,l

=3 Z Fijriej A (eid (et A (exJ w) —ex A(erJ w)))

ikl

= Fjmej Aleid (e A(epd w)))
ikl

= Fjmej A(Gaerd w— e Aleid (e d w)))
ikl

= ZFijkiej A (er J w)+ Z Fijrie; Neg A (e 1 (&1 w)).
1,5,k 0,5,k

We deal with the two summands independently. Let’s write down Fjj;y; explicitly:

1 1 1 1
Fijin = 5 (Ve T)(ejsex 1) = 5 (Ve T)(eis ey er) + 7 (Tleis ). Tlew, @) + orlei e ex; e)-

First observe that Fjjx; = Ricj, — Ricg & 1s a 2-tensor, whose action on w is exactly the first summand
we acquired. By proposition A.1 we get

1 1
> Fijries Aller J w) = S07(@) + 7 5(w).

)])

To compute the second term note that e; A ¢ is antisymmetric in j and [, as is e, | (e; J w) in k
and ¢. This means that we can take the antisymmetric part of Fj;; according to those symmetries.
Hence,

Z Fijiej Nep A (e J (6] w)) =
i:jykyl

1 1
5 (T ennen) = §Ta TN cien) -
i,5,k,l

[

1
(VejT)(ei,ek, 61) + - VelT)(eivekv ej)

e

W |

1 1 1
+ZUT(ei,ej, ek, er) + 3 (T'(ei,e5),T(ex, er)) — 3 (T(ex,ej), T (e, er)) )eﬂ A (ex J (e 1 w))

1

1 1 1
=) (ZdT(ez',epek,ez) — or(es ej,en,e) + por(es ej,ene) + gorler, e e, 1)

i.jikl 4
1
~3 (T(ex,ei), T(ej,er)) )eﬂ A (e 2 (e, 4 w))

=Zk( %ekJ (e dT))—l—%(ekJ (ei 1 op))) A (ex 3 (e w))+%;(ekJ TY A ((ex 1 T)J w)

1 1
Here we used the definition of o as well as the formula

dT(X,Y,Z,V) = Y (VxT)(Y.Z.V)) = (WT)(X.Y, Z) + 200(X.Y, Z,V)
XYZ
from Appendix A of [Agr06] (Corollary A.1). We also denoted the last term by B(w) for brevity.
O

As a consequence we get the following:
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PRrROPOSITION 5.5. If w is a k-form, the Laplacian Aw of w is given by the formula

(5.2) Aw =(V*V)w + ¢(R?)w + %5T(w) + iS(w) —2T0(Vw)
— (dT)Ow + %UTEIw + %B(w)

REMARK 5.6. Finding ¢(R) by definition can sometimes be easy. In case R : A2T'M — A2TM is
a symmetric endomorphism, we have

(R(@), B) = (a, R(B)) ,
so only the part of o which lies in Im(R) = hol counts. Here 8 € so(n) is arbitrary. Recall that
¢(R) can be written as

a(R) = olei Aej)o(Rle; Aej)).
1<)
In this form we see that the summation just runs through an orthonormal basis of so(n) (we scale
the metric on A°’TM 2 so(n) so that e; Ae; has unit length), and of course the sum doesn’t depend
on a change of the basis. We can take a basis of the holonomy algebra hol and complete it to a
basis of so(n). Then

where a runs over this part of the basis, which spans the holonomy algebra hol.
At this point we recall the splitting
V @ APV 2 ARy @ ARV @ ARLY
and consider the positive operator

(P*P)w) = ((PY)" o P¥) (@) = = Y (Ve (P () = P, ., ()

7

PROPOSITION 5.7. On a compact manifold, (P*P)w = 0 <= w is a V-conformal Killing form.

PrOOF. The reverse direction is clear by definition. The forward direction is proven after we
integrate over the manifold since P*P is a positive operator. O
PROPOSITION 5.8. Let w be a k-form. Then

k n—=k
R)w —2TO(Vw) = ——6Vd w + ————d¥ 6w — (P*P)w.
a(R)w (Vo) = g0 w0 w - (PP

Proor. Differentiating equation (3.1), we get

(V'V)(w) = or0d% 4 = d6%w - (PP)(w).

k + n—k+1
Substituting this identity and A = dVéY 4+ dVdY in (5.1), we obtain
k n—k
— 210 =Aw— (VV)w=—0VdVw+ ———dV6¥w — (P*P
q(R)w (Vw) w— (V*V)w k—|—16 d¥w+ n—k+1d 0w — ( )(w),
proving the proposition. ([

COROLLARY 5.9. If w is a V-conformal Killing k-form on a compact manifold (M,g), we have
/ (¢(R)w — 2T0O(Vw),w) > 0.
M

PrOOF. We have (P*P)w = 0 for a V-conformal Killing form w. What’s left on the right hand
side is obviously positive. ([

Let’s consider B, which appeared in the last proposition, as an operator B : AT M — AFTM.
We derive some of its properties. First, a couple of definitions are needed:



30 1. METRIC CONNECTIONS ACTING ON DIFFERENTIAL FORMS

DEFINITION 5.10. We call the torsion tensor 7" of a metric connection of Finstein type if
0T=0 and S(X,Y)=Xg(X,Y), AeR.
This definition appears first in [AF14] (Def 2.11). The assumption S = A.g is met in a few

notable cases, such as nearly Kahler, nearly parallel G5, and isotropy irreducible homogeneous
spaces.

REMARK 5.11. Note that A is actually unique. It is determined by the torsion and one can easily
compute it using Proposition A.1:

1 1 19
Ric(X,Y) = Ric“(X, V) — 1§(X,y) = ol Seall A
4 n n 4
3 A 6/|7|*
Siriz=2 — = U
2n|| l 4 n =

DEFINITION 5.12. Let M = G/H be a homogeneous space with a metric connection V with skew
torsion 1'. Define the Lie algebra

gr = Lie{X 1 T|X € TM} C so(n),
generated by the elements X 1 T, X € T M.

This Lie algebra was first investigated by Agricola and Friedrich in [AF04a]. Let’s define the
mapping « : TM — A2’TM by

aX)=X1T.
and its metric adjoint 8 : A2TM — TM. We will contract a 2-form w in a k-form 7 by the rule

1
w 77=§Zw,;jejJ (e; 1 m).
.

Now we can write down an explicit expression for 5, which is defined by the relation
(n, a(X)) = (B(n), X):
aX)=n,X1T)=n1 (X1 T)=X1 (nd T)=(X,n1 T),
arriving at S(n) =nd T.
LEMMA 5.13. It holds that o a(X) = 35(X).

Proor. We compute directly:
1 1
(X1 T)1 T= §Z(XJ T)ijlej 4 (eid T)) = 3 > T XpTijpey
i)j i?jﬂkﬂp
1 1
=5 > SepXiep = 59(X). 0
k,p
PROPOSITION 5.14. The following hold for the operator B : NFT M — NFTM :
(1) B=0 fork=1,
(2) B: A*TM — A>TM s a symmetric operator,
(3) On a 2-form w, B(w) = a0 B(w).
Moreover, if M is homogeneous and T is of Finstein type, B is a multiple of a projection on the

generators of gr.

PRrROOF. The first claim is obvious. For the second one, we see that for any X,Y,Z,V € T M,

(5.3) (B(X,Y),ZAV)=T(T(X,Y),2z,V) =(T'(X,Y), T(Z,V)) .
Even more, let’s consider the set of w vectors {T'(e;, €j)}1<i<j<n, Where we embed R™ in

n(n—1) . .
2 by just adding enough zeroes on the end of the vectors. We must assume n > 3. Then
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their Gramian matrix is exactly the matrix of B as an operator in A2T'M. As such, it is positive
semi-definite and has rank equal to the number of linearly independent vectors in the considered
set. This number equals n — dim(KerT'), where

KerT :={X e TM|X 1 T = 0}.
Now B has a kernel of dimension

n(n

dim(KerB) = T_l) —n + dim(KerT).

In particular, this number is strictly positive when n > 3. We verify the third claim directly:

Bw)=> (exd T)A((exd T)J w) =) (wepd T)(ex T)

k k
= (wd (erd T))fexd T) = (exd (wd T)).(exd T)=(wd T) T.
k k
Now suppose 1" is of Einstein type with .S = A.g. Lemma 5.13 reads

Foa(X) = 3S(X) = )X,

meaning that foa = %I d. Compute

A
BYw)=aofBoaofB(w)= §B(w).
If we define B) := %B, we get Bi = B,. This means that B) is a projection and its image is
precisely the set of generators of gy, when considered on a homogeneous space. (I

We will now try to simplify (5.2) by introducing a one-parameter family of connections and
focusing on a specific value of the parameter.

5.2. Laplacians for a one-parameter family of connections. Let V be a metric
connection with totally skew torsion T'. Define a one-parameter family {V*}scr in the space of
metric connections by considering the line between V and V9:

(5.4) $Y = VLY + 2sT(X,Y).

The connection V = V1 =: V¢ that we used to define the family will be referred to as the
canonical connection of the family. The torsion tensor of the new connection V* is T = 4sT', so
that T is again totally skew, enabling us to use all formulas proven so far. Even more, we can

express quantities and identities involving the pair (V*,T%) in terms of the canonical pair (V¢,T).
For the curvature identities, this is done in the appendix.

This family has been successfully used in the literature to study rescaled differential operators, a

central example being the Dirac operator on spin manifolds with the scaling factor s = %2 for the

connection (see [AF04b], [Agr03], [Kos99] ). One can obtain estimates of the lowest eigenvalue
of the square of this rescaled Dirac operator ((ABBK13]).

We will make use of theorem B.1 of [ABBK13], according to which in the case when VT = 0,
the following identities hold:

(VAT)(U,V, W) = (25 = )or(U,V, W, X),

Y R(X,Y,Z,V)=5(6-8s)or(X,Y,Z,V).
X,Y,Z
Here X, Y, Z, U, V,W are vector fields. Moreover, R*(X,Y,Z,V) = R*(Z,V,X,Y) and the fact
that Ric® is symmetric follow from the expression for the first Bianchi identity. In the appendix
we give a formula for the general case and see that in the case of parallel torsion it reduces to the
theorem we just cited.
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REMARK 5.15. Observe that the first identity means that 1" cannot simultaneously be parallel with
respect to V? for two different values of s unless o = 0, which is rarely the case.

Let’s denote d* := dV° and 6° := " for simplicity and form the corresponding Laplacians
A® = d%6°% 4 §°d®, etc. After s is introduced, we see directly from the definitions that op, S, and
B(w) transform to 165207, 16529, and 16s2B(w), as T is replaced by 4sT. Formula (5.2) then
reads

(5.5) Asw = (V*V)w + q(RI)w + 25 0T (w) + 45%S(w) — 8sTO(V4w)
— 4sdT0w + 8s°o70w + 852 B(w).

We want to derive separate formulas for A® and (V*V)* and see if we could rescale them in a
clever way. Working by definition and using the identities from proposition B.1, we get

Afw = d*6°w + 6°dPw = (d — T*0) (0 — T°Dw + (6 — T°0)(d — T5O)w
= A% — 45(d(T0Ow) + TO(dw) + 6(TOw) + TO(Sw)) + 16s*(TO(TOw) + TH(TTw))

= A — 4s((dT) 0w — 6TOw + 4TO(VIw)) + 1652 (2070w — B(w) — %S(w))

= A — 4s(dT)0w + 46T Ow — 16sTO(V9w) + 32520700w — 165°B(w) — 852S(w).
Now, for the Bochner-Laplace operator (V*V)*w = =3, VS Vi w+ >, V3 ¢,w in the adapted

frame V3 e; = VZ,e; + 25T (e;, ¢;) implies VZ,e; = 0, hence we have

(V'V)w==) ViViw and (V'V)fw=-) VIViw

Again with the help of proposition B.1 we compute
(V'V)w = — Z Ve, Vew=— Z Ve (VI w+2s(e; 1 T)Ow)
j i

7

= (V*'V)w —2s(e; 1 T)OVI.w —25VE (T(ei, ej) A(ej I w))

= (V*'V)w — 4sTO(VIw) — 25V; T(es, ej,ex)er A (ej 1 w) — 28T (ej,e5) A (ej 1 Vew)
= (V*'V)w — 4sTO(VIw) + 250T (e, ex)er A (ej 1 w) — 4sTO(Viw)

= (V*V)9w — 8sTO(VIw) 4 250TOw + 8s?opw — 852 B(w) — 45%S(w).

We arrive at the expressions

(5.6) ASw = A — 45(dT) 0w + 456TOw — 16sT(VIw) + 32520p0w — 1652 B(w) — 8525 (w),

(5.7) (V*V)ow = (V*V)w — 8sTO(VIw) + 250TOw + 8507w — 85 B(w) — 4525 (w).

One can also combine (5.6), proposition B.1, and A9 = A% to see how the Lichnerowicz Laplacian
rescales:

(5.8) Sw=A%w —4s(dT)0w + 456TOw — 8sTH(VIw) + 16s%0rCw.

Proposition 5.4 gives us
(5.9) q(R*)w = q(RI)w + 250TOw + 452S(w) — 4sdT 0w + 8s*orlw + 8s° B(w).

Our goal is to derive a Weitzenbock-type formula where the first order derivative term TC(VIw)
vanishes and now we are finally in position to state the following:

THEOREM 5.16. Let V?® be the family of metric connections with totally skew-symmetric torsion
defined by (5.4). Then the Weitzenbdck-type formula

(5.10) Azw = (V*V)’w + ¢(RI)w — 2sdT 0w + 25%S(w) + 4s* B(w)
relates the Bochner-Laplace operator of V* to the Laplacian A% of V2, both acting on a k-form w.
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PROOF. We want to find a combination of equations (5.6) and (5.7) that eliminates the first
order term TCJ(VY9w). This means that the value of the parameter s in (5.6) has to equal one half of
the value of the parameter in (5.7). Having this and the classical relation AYw = (V*V)9w+¢q(R9)w
in mind, (5.10) follows directly. O

5.3. Laplacians acting on 1-forms. Here we will take a closer look at the case when w is a
1-form. We recall some of the simplifications that arise:

the ¢ operation is just contraction,
the [J operation always returns zero,
the operator B is identically zero,
¢(R)w = Ric(w).
We work directly in the context of the 1-parameter family of connections defined in the previous
1
subsection. When we want to emphasize a result about the canonical connection V4, we omit the
superscript and write simply V. Having said this, equation (5.5) takes the form
A’w = Afw — 8sTO(Viw) = (V*V)’w + Ric’(w) — 8sTO(Viw).
PROPOSITION 5.17. For a 1-form w the following formula holds:
A’w=Ajw—4sd’w 1 T.

We emphasize the relation
(5.11) 2ro(Véw) = d’w 1 T.
PROOF. We just need to verify (5.11). Indeed, observe that
dwleneg) = (V5 w)e) — (V2 w)(es),

hence
2T0(Viw Ze] (e; 1 T).(V: Zdwez,ej (ejd (6,1 T))=d’wd T,
having taken into account the anti-symmetry with respect to the indices i, j. |

We can also reduce equation (5.10) to the case of a 1-form. It now reads
Asw = (V*V)*w + Ric!(w) + 2528 (w) = (V*V)*w + RicV2 (w) — V250 TOw.

Equation (5.6) will also come to use as soon as we try to compare our Hodgle Laplacian to the
Riemannian one. It looks like

Asw = Aw + 456TOw — 16sTO(VIw) — 8525 (w).

Now, using (5.11) we can draw a conclusion under some natural assumptions, but first we prove a
lemma.

PROPOSITION 5.18. Let (M™, g) be a Riemannian manifold, endowed with a metric connection V*
with totally skew-symmetric torsion T° = 4sT', which is of Einstein type, i.e. it satisfies

S(X,Y)=Mg(X,Y), AeR; T =0.

Then any closed or d®-closed 1-form is an eigenform of the Hodge Laplacian AY exactly when it is
an eigenform of A®.

PrOOF. Under the assumptions of the proposition equation (5.6) takes the form
(A* — ANw = 85* w —8sd9w 1 T
for a 1-form w. This proves the proposition in case w is closed. To confirm the other case we
calculate the difference
dw 1 T—d°wl T=(TQw)d T=4s(w! T)J T=2s(wl S)=2s5\w,

according to Lemma 5.13. Now the proposition holds for w d®-closed as well. (|
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PROPOSITION 5.19. Let (M9, J, g) be a nearly Kihler manifold with Scal? = 30. If X is a Killing
vector field, let X* and (JX)° be the respective dual 1-forms. They are eigenforms of the Laplacian
A =dVsY 4+ 6VdY of the characteristic connection V. More precisely,

AX’ =16X°, A(JX)" =8(JX).

PROOF. Here we make extensive use of the results, obtained in [MS10]. There, the authors
prove that on such a manifold every Killing vector field X satisfies

AIX® = 10X, AI(JX) =18(JX)’,
ApX’ =12X°, AL(JX) =12(JX)°.
In the current setting we have 7 = 0 and S = 4g, hence (5.8) reads
Arw = Aw —2T0(VIw)

on a l-form. This immediately implies 27'0(V9X?) = —2X” and 270(V9(JX)?) = 6(JX)® for a
Killing vector field X. The first equation of proposition B.1 reads TO(Vw) = TH(VIw) — w, hence

AX’ = ApX’ —2I(VX") = 12X° + 4X° = 16X,
A(JX) = Ap(JX) —2TO(V(J X)) = 12(JX) —4(JX)" =8(JX)’.
Thus, the proposition holds. ([

Consider a dV-closed conformal-Killing 1-form w. It satisfies V xw = —%X A dw, but in this case
dw = f is just a function and the wedge product is redundant.

PROPOSITION 5.20. Let (M™, g) be a Riemannian manifold, endowed with a metric connection V

with totally skew-symmetric torsion T. Let w be a 1-form, which satisfies Vxw = —+£.X for any

vector field X and function f. Then f = dw and !
n .
Aw = — 1Rlc(w)

holds. In particular, w is an eigenform of A if the manifold is V-Finstein.

PRrROOF. First note that since w is a 1-form, TOw = 0. Hence, dw = §Vw. Also d¥w = 0 holds.
Now
Aw = df = (V*V)(w) + Ric(w).
We used the definition of A and the fact that for a function f we have df = d¥ f. Further,

x 1 1 1
(V'V)w == Ve Vew= -3 Ve(fe) = > (VeS)ei = ~df.
T 3 1
Finally, 2-1df = Ric(w), hence Aw = -2 Ric(w), concluding the proof. O

A family of forms of similar type are studied by Moroianu in [Mor07]. Take a Gradient
Conformal Vector Field X. That is X, such that its dual 1-form w is conformal and exact:

1 1
V%w:§YJ dw—ﬁY/\cSw, w=dh

for an arbitrary vector field Y and a function h. We now easily simplify to V{w = —% f.Y, where
f=A%.

EXAMPLE 5.21. One rather trivial example is the 1-form
n:i= Z €T;.€e;
i

on a Lie group. Here {e;} is the dual to a V-parallel basis with respect to a metric connection V
with non-zero totally skew torsion T', and {z;} are just the coordinate functions. It is obvious that 7
is not parallel itself, since V1 = e;, but it fulfills dVn = 0. Moreover, we easily compute §¥Vn = —n,



6. APPLICATIONS 35

where n is the dimension of the Lie group, hence for an arbitrary vector field X = ), a;.e; it holds
that: | .
Vxn= Zai.vein = Zai.ei.ﬁ.(—n) = 6V . X.
(3 3

6. Applications

6.1. Yano and Bochner’s techniques. In this section we give a short description of the
general ideas underlying some of the previous research on Killing and conformal Killing forms.
First we refer to [YB54] and [Y70] for the following:

THEOREM 6.1. Hopf principle: let Lo := g% agzai;j + A gﬁ > 0 on a compact manifold (M",g).

Then Lo = 0.

This theorem may be applied to any operator whose symbol is the metric, such as the elliptic
operator V*V. The introduction of torsion only affects the first order part, so the Hopf principle
actually applies to all Laplace operators we defined in section 4. The function that is usually of
interest is the length function of an interesting object, e.g. a special form: Killing, conformal
Killing, harmonic, etc. One combines this with the technique of integrating Weitzenbock type
formulas (as in equation (5.1)) over the manifold. In our notation that reads:

/ (Aw — (V*'V)w — ¢(R)w + 2TD(Vw),w) dV = 0 <=
M
/M (Aw,w) — (V*V)w,w) — (q(R)w,w) + 2 (TO(Vw),w) dV = 0 <

1
/M laVoll? + 16Vl * — [[Vwl|* — 5 > olei nej)o(R(ei Aej)w,w) + 2 (TO(Vw),w) dV =0
i?j
Those techniques may be used to formulate existence and non-existence theorems about special
forms after imposing conditions on the curvature and torsion terms, see [YB54|. To that end, we
can further simplify the curvature expression as follows (we assume summation over repeated
indices to simplify notation):

| =5 teles nepolRieinews) dV = | —5 (Ruaoles Aeofer hea) av =

1
/M 1 Bismt (o(ex Nep)w, o(e; A ejlw)dV = /M Rijii (et N (ex 4 w),ej A(eid w))ydV =

/ Rijii(er 4 w,d05(eid w) —ej A(egd ;1 w))dV =

M

—/ Rici (ex 1 w,e; 1 w) + Rijig (ej 1 erJ w,epd e; 1 wydV =
M

—/ S(Ric)ik (ex 4 w,ei 4 w) + (Rim)ijri (65 1 ex 1 woerd e; 1 w)dV.
M

The final equality holds because we can split the Ricci tensor into its symmetric and
antisymmetric parts in the first summand and only the symmetric part survives, since it is
multiplied by a symmetric expression in the inner product after it. Similarly, the symmetries of
the second summand imply, that only the 4-form part of the curvature tensor will impact the
result, i.e. the image R;,, of the Bianchi map, considered in Appendix A. We can write

1
/ (g(R)w, w) dV = / <Ricg— —S) lei ) w,ex w)dV+

1 1
—I—/ <—dvT+—0T> (ejJ et w,ed et w)dV.
M \4 3 )ikl
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In the case of zero torsion only the Ricci tensor remains. We can also simplify the expression
/ 2(TO(Vw), / (olej d T)(Vew),w) = / ((Ve;w), 0(ej 4 T)w)
M M
- Z/ Vjw, Viw — ij> :

Now we can build on the available results using our setting and the idea of a 1-parameter family
of connections.

We also cite a couple of observations available in [Y70] (p.68 Prop 2.1 & p.69 Prop 2.2):

PROPOSITION 6.2. A k-form w is V-Killing exactly when §¥w = 0 and Aw = (k + 1)V (Vw).
Further, a dY -exact, V-Killing form on a compact manifold is zero.

PROOF. One verifies the second claim as follows: w = dVn and 6Yw = 0 hold by assumption.
Now

/ <(5vdvn,77>dV=0:dv17=0=w. O
M

Another interesting application of the introduced machinery is the following:

THEOREM 6.3. Let (M",g) be a compact Riemannian manifold endowed with a family of connecti-
ons with totally skew-symmetric torsion V° = V9 4+ %TS. Assume that the Ricci tensor of V¥ is

symmetric, which is equivalent to 6T° = 0, and that we can fix s such that RicsV?2 > 0. Then

for t € R, |t| < |s|, M™ admits no non-trivial V-harmonic 1-forms. In particular, M™ admits no
Ve-harmonic 1-forms.

PROOF. We use equation (5.3) with 67° = 0 taken into account:

Asw = (V*V) 5w + Ricsﬁ(w).
V2

The condition 67° = 0 also implies that the endomorphism Ric®V“ is symmetric, so if w is V*-

harmonic, integrating the identity leads us directly to

o= (7T + ) = [ (197l (0 20

Equality is attained only when w is identically zero, so there are no non-trivial V*-harmonic 1-
forms. We have some freedom regarding the parameter s. Recall equation (A.6). In our case it
leads to

Ri S‘/_( ) = Ric?(w) — 852S(w).
We know that S, viewed as an endomorphism, is positive-definite, so whenever |t| < |s|, we will
have Ric!V2 > Ric*V2 > 0, hence the non-existence of V¢-harmonic forms. O

REMARK 6.4. Again the main examples, where the conditions of the last propositions are fulfilled,
are nearly Kéahler manifolds, nearly parallel Go-manifolds, and isotropy irreducible homogeneous
spaces. Let (M™,g) be such a manifold. M" is Einstein, admits a characteristic connection with
torsion T such that 67 = 0, and there is a positive constant A with S(X,Y) = Ag(X,Y"). Then:

Scaly

Ric*(X,Y) = Ric/(X,Y) — 45°S(X,Y) = ( — 4>\52> g(X,Y).

Now the condition Ric‘s‘\/§ > 0 reads

Scal? Scald
A gas? >0, orequivalently |s] < e
8An




We have previously determined A =

6]

|
n
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, arriving at

Scal?
< _
ol < \ 387
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CHAPTER 2

Manifolds with split torsion

In this chapter we consider reductive homogeneous spaces M = G/H with decomposition
g =b®m, where m =my @ ... ®m, splits into p not necessarily inequivalent h-modules. The
isotropy decomposition of m into p h-irreducible modules has naturally been an object of
investigation in the mathematical literature for a long time. In the case p = 1, the resulting
isotropy irreducible homogeneous spaces are very well understood and have already been classified
(see [Wo068], [WZ91]). There has also been a great deal of interest in this kind of splitting for
arbitrary p in the search of Einstein metrics on homogeneous spaces. A number of authors,
including Arvanitoyeorgos, Chrysikos, Nikonorov, Sakane and others, have contributed greatly to
this topic (see, for example: [ACO09], [AC10], [ACS13], [Arv93], [CN19], [Sa99], ...).

Apart from p = 1, the case p = 3 has probably been studied in most detail. It is precisely the
setting in which locally 3-symmetric spaces, which are a natural generalization of locally
symmetric spaces, arise. These spaces appear with different names in the literature and have
recently been classified by Nikonorov in [Nik16], where they are called generalized Wallach
spaces, which is also the name we are going to use for them. The notion of split torsion is defined
in [ABBK13] and reappears in [AK14], where its presence enables the improvement of an
eigenvalue estimate for the Dirac operator with torsion. Here, we use it as a starting point and
build on it to define the notion of manifolds admitting split torsion and refine it further,
introducing non-degenerate and weakly non-degenerate split torsion. In both cases, we present
examples, which are taken from the classification of generalized Wallach spaces [Nik16]. These
examples are tightly related to the normed division algebras R, C,H, and O, which is made more
evident at the end of the chapter, where we elaborate on the Wallach spaces in more detail.

1. Preliminaries

1.1. Split torsion. Let (M = G/H, g) be a Riemannian homogeneous space with reductive
decomposition g = h @ m, such that m = m; @ ... & m, splits into p irreducible h-invariant modules
and assume p > 3. Let V be an invariant metric connection on M with totally skew torsion tensor

T (recall def. 1.8 and eqn. 1.6). We refine the notion of skew torsion in the following:

DEFINITION 1.1. We call the totally skew torsion tensor 1" of split type and refer to T as split
torsion if whenever T'(e;, e, ex) # 0, the basis elements e; ;1 belong to different components of m.

DEFINITION 1.2. We call the Riemannian homogeneous space (M, g, V) a manifold with split torsion
if it admits an invariant metric connection V with totally skew torsion of split type.

A series of examples of manifolds with split torsion that we have already encountered are the
Stiefel manifolds V, ».
In some cases, we can take advantage of the split condition and condense the information encoded
in the torsion tensor in a simpler mapping . Assume that we can write
m=m D mo D ms,

where m; are not necessarily irreducible and the split condition for the tensor is fulfilled with
respect to this decomposition. If p = 3, this is exactly the irreducible decomposition and the
assumption is empty, but in general it is not.

39
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DEFINITION 1.3. Let X; € m; and define v : m; X mg X mg — R via
Y( X1, Xo, X3) := T(X1, Xa, X3).

The mapping ~ is sufficient to recover the full torsion tensor T, so we can translate algebraic
properties of v to geometric properties. We introduce two non-degeneracy notions:

DEFINITION 1.4. Let X; € m; and define a mapping ['x, : mg — mg by
(1.1) (I'x, (X2), X3) = v(X1, X2, X3),
where (—, —) is an h-invariant scalar product on ms. We call v:

e non-degenerate, if for any fixed non-zero vector X; € my, I'x, is an isomorphism. Such a
trilinear map -y is also called a triality. In this case we call the corresponding split torsion
tensor T non-degenerate;

o weakly non-degenerate, if there exists a non-zero vector X; € my, such that I'x, is an
isomorphism. In this case we call the corresponding split torsion tensor 1" weakly non-
degenerate.

REMARK 1.5. We only chose X7 € m; in the definition for concreteness. One can always rename
the modules from the very beginning, or equivalently use Xs € my or X3 € mg3 in the definition.

PROPOSITION 1.6. The mapping I'x,, defined in Def. 1.4, is h-equivariant iff Xy is h-invariant.
In this case, the following statements hold:

o If my is irreducible, I'x, is injective;

o If mg is irreducible, I'x, is surjective.

ProoF. Confirming the necessary and sufficient condition is a standard check. The following
statements are a direct consequence from the h-invariance of the kernel and image of I'x,. O

1.2. Naturally reductive homogeneous spaces. Consider the homogeneous space
M = G/H, where G and H are compact with Lie algebras g and . We call M reductive if b
admits a complement m such that g = h @ m and [h, m] C m. In this case, we identify m with the
tangent space T,M to M at a fixed point 0 € M, which we call the origin. We can make an
arbitrary choice since the manifold is homogeneous, and one usually takes o := eH, the coset of
G/H containing the unit element e € G. A metric g on M would thus correspond to a scalar
product (—, —) on m, which is invariant under the isotropy action, i.e. which fulfills

(1.2) (12, X]m,Y) + (X, [Z,Y]n) =0

for X,Y € m and Z € . Having m reductive renders the projections of the commutators onto m
redundant while Z € h. However, they are necessary if we let Z vary in g, which is the definition
of a naturally reductive metric.

DEFINITION 1.7. A metric ¢ on M such that (1.2) holds for any X,Y € m and Z € g is cal-
led naturally reductive. The Riemannian manifold (M = G/H,g) is called a naturally reductive
homogeneous space.

In other words, we require the metric to be not only ad(h)-invariant, but also ad(g)-invariant.
The expression on the left hand side of (1.2) is the definition of the tensor
2U(X,Y,Z)=2(U(X,Y),Z) on M. Fixing the metric g also fixes the Levi-Civita connection V9.
Recall that if we have a metric connection V with totally skew torsion T, we can consider the
1-parameter family

V%:=VI+2sT, seR.
Assume that ¢ is naturally reductive. There is a natural candidate for a totally skew torsion
tensor: T¢(X,Y) := —[X, Y. This is the torsion of a special connection for the homogeneous

space—the so-called canonical connection V. It is totally skew, as the naturally reductive
property (1.2) shows directly. Generating the 1-parameter family of connections V* = V9 + 25T,
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the canonical connection V¢ corresponds to the value s = i, f.e. V¢ =Vi. It satisfies the
additional properties VT = 0 and V°R® = 0.

REMARK 1.8. One can equivalently define a naturally reductive homogeneous space as a connected,
simply connected Riemannian manifold, admitting a metric connection with totally skew torsion,
which renders its torsion and curvature tensors parallel. From this point of view, symmetric spaces
are naturally reductive homogeneous spaces whose canonical connection coincides with their Levi-
Civita connection.

REMARK 1.9. According to a theorem by Wang, connections on homogeneous spaces let themselves
be described through maps A : m — so(m). The canonical connection corresponds to the zero map
and the so-called canonical affine connection—to the map A(X)Y = J[X,Y]wn. The second one is
used to describe the Levi-Civita connection, which then corresponds to the map

LCX)Y =AX)Y +U(X,Y).
In [Agr06]| we find another useful property of naturally reductive homogeneous spaces:

PROPOSITION 1.10. Let M = G/H be a naturally reductive homogeneous space with canonical
connection V¢. The holonomy algebra hol® of the canonical connection is a Lie subalgebra of the
Lie algebra by of the isotropy group H.

1.3. Generalized Wallach spaces.

DEFINITION 1.11. A reductive homogeneous space M = G/H, g = h & m, with three isotropy
summands m = m; & ms @ mg, satisfying the condition

[mia m’L] C hv
is called a generalized Wallach space.

REMARK 1.12. The generalized Wallach spaces are also known as three-locally-symmetric spaces or
locally 3-symmetric spaces.

As a direct consequence of the definition, we have the following fundamental property:
COROLLARY 1.13. On a generalized Wallach space, the relations
[m;, my] C my
for{i,j,k} ={1,2,3} are satisfied.
ProoF. This is easily seen using the Killing form of g. O
Generalized Wallach spaces are good candidates for manifolds with split torsion.
PROPOSITION 1.14. A naturally reductive generalized Wallach space is a manifold with split torsion.

PROOF. The canonical connection V¢ of a naturally reductive homogeneous space (M, g) has
torsion, given by T¢(X,Y) = —[X, Y|, which is parallel, totally skew, and according to the last
corollary—of split type when M is generalized Wallach. Thus, (M, g, V) is manifold with split
torsion. In particular, this is the case when M = G/H with G a compact, simple Lie group. O

Note that so far we haven’t required the modules m; to be irreducible, so we are actually working
in the case p > 3. In case they are irreducible, p = 3 and we can turn to the classification result of
[Nik16]:

THEOREM 1.15. Let G/H be a connected and simply connected compact homogeneous space. Then
G/H is a generalized Wallach space if and only if it is one of the following types:
(1) G/H is a direct product of three irreducible symmetric spaces of compact type;
(2) The group G is simple and the pair (g,b) is one of the pairs in Table 1 (the embedding
of b in g is determined by the following requirement: the corresponding pairs (g,%€;) and
(8,0),i=1,2,3, in Table 2 are symmelric);
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(3) G=FxFxF xF and H = diag (F) C G for some connected simply connected compact
simple Lie group F, with the following description on the Lie algebra level:

(g,h) = fefefefdag(f) = {(X, X, X, X)|X €7}),

where § is the Lie algebra of F', and (up to permutation) p; = {(X, X, -X,-X)|X € f},
p2 = {(X: _XaX» _X)|X € f}z p3 = {(X7 _X» _X7X)’X € f}

The examples we are interested in are generalized Wallach spaces of types (2) and (3). We do not

produce tables 1 and 2, that are referred to in the theorem. Table 1 consists of three 3-parameter

and two l-parameter families, as well as ten isolated pairs, where g is an exceptional Lie algebra.
Table 1 also contains the dimensions of the modules m; for each of the given pairs (g, b).
According to Prop. 1.6, I'x, is h-equivariant on a generalized Wallach space only if m; is

1-dimensional. A quick scan of table 1 tells us that for type (2) this is only possible on the Stiefel

manifolds V}, o, which appear as a subfamily of (g,h) = (so(k + 1 +m), so(k) & so(l) & so(m)). For

generalized Wallach spaces of type (3), the dimensions of all modules m; equal dim F', which
cannot be 1.

2. Weakly non-degenerate split torsion
A simple consequence of prop. 1.6 is the following:
PROPOSITION 2.1. Let (M,g,V) be a manifold with weakly non-degenerate split torsion T. Let

§ € my be such that I'¢ : mg — mg is an isomorphism and assume further that V§ = 0. Then:

e mg and ma are isomorphic as by representations;
e &£ 1 T is a non-degenerate 2-form on my @ mg;
o M possesses invariant k-forms in all degrees.

PRrROOF. According to prop. 1.6, V& = 0 means that the isomorphism I'¢ is h-equivariant, hence
an isomorphism of h representations.
Both T" and £ are V-parallel, so £ 1 T is also V-parallel. If we write my = m3 = m’ as h-modules,
& 1 T is the element corresponding to R in the h-module splitting
A%(mg @ m3) =2 A%(2m) = 3A% () @ S2(w') @ R.

More generally, we can decompose

AFm = AF(my & 2m') @@A“m@z\”m@zv
=0 j5=0

For even k, consider the summand with ¢ = k, j = k/2. That is
R® Ak/Zm/ ® Ak,’/Qm/ ~ A?(Ak/2ml) @ S(Q)(Ak/Qm’) DR,

where we find the isotropy-invariant k-form, which we denote by ¥ € A*m’ C AFm. We now have
an invariant form of each even degree k. Since £ € my, 0 # & AU € AFlm will be an invariant
form of odd degree k + 1. O

PROPOSITION 2.2. Let (G/H,g,V¢) be a naturally reductive homogeneous space with weakly non-
degenerate split torsion T, such that my is 1-dimensional and mg = ms. Then (M, g, V) admits an
almost contact metric structure.

PROOF. Let & € my. Since dim(m;) = 1, it must be V-parallel, hence Killing. If dim(mz) = n,
the manifold is (2n 4 1)-dimensional and ¢ J T € A?(my & m3) being non-degenerate means that it
gives rise to an almost complex structure ¢ : mg & mz — mg @ mg. Define FI(X,Y) := g(X, ¢Y).
Then F' is proportional to £ | T and

(2.1) oY = NT'(Y,§)
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for a constant A € R. Moreover, we can use equation (2.1) to extend ¢ to ¢ : m — m. Then
#¢ =0 and ¢> = —Id on my @ ms, so that

¢ =—-Id+n®¢
and (M, g,¢,&,n) is an almost contact metric structure with & Killing. O

2.1. The Stiefel manifolds. An example that we already encountered in Chapter 1 and in

the classification of generalized Wallach spaces are the Stiefel manifolds V;, 2 = SO(n)/SO(n — 2).

We refer to section 4.2. for the explicit construction of the homogeneous space. The torsion of the

canonical connection is weakly non-degenerate and we fall in the conditions of the last proposition.
In this case, the almost contact metric structure is a-Sasakian, as proven in proposition 4.4.

The complex case. We can follow the same framework for the (4n — 6)-dimensional manifold
VT(EQ =SU(n)/S(U(n—2) xU(1) x U(1)), where U(n — 2) is embedded as the upper left block of
U(n) = {A € M™(C)|AA? = Id}. V7§2 also falls in the classification of generalized Wallach spaces.

The isotropy H = S(U(n —2) x U(1) x U(1)) is

U 0 0
H=<1|0 =z 0 e SUM)|U eU(n—2),z€C
00 zdei(U)

On a Lie algebra level, we have

wo w1

su(n) =< |—wh  —iX Won—3 | lu€u(n—2),A €Rwo; € C" 2wy, 3€C

—w, —Wap—3 I\—tr(u)
We interpret wp 1 as column-vectors wo = (w1, ws, ..., wa,—5)" and wy = (w2, wy, ..., wa,—a)".
Consider the splitting g = h & m with g = su(n), h = u(n — 2) @R, and
m=C"?20C"?20C=m ®my®ms.

The tangent space to Vrf? at the origin may be identified with m, which is split as a direct sum of
h-modules. The metric g, induced by the Killing form of g, is naturally reductive. Since the
homogeneous space is generalized Wallach, its canonical connection has split torsion.

PROPOSITION 2.3. The split torsion tensor T¢(X,Y) = —[X,Y]m of the canonical connection of
Vn(fz is weakly non-degenerate.

PROOF. Define v :m; X mg x mg — R as in Dfn 1.3
(X1, Xo, X3) 1= g(T(X1, X2), X3) = T(X1, X2, X3)

and I' : m; — my via
g(FX17X2) = ’Y(X17X27£)7

where
0 0 O
E=10 0 1| emg
0 -1 0
One can confirm directly that I" is an isomorphism between m; and ms. [l

However, in this case m; and my differ as isotropy representations. Indeed, one easily shows that
an element (u,i\) € h acts as u + iA\Id on m; and as u + (¢r(u) — iX)Id on my. In fact, we might
have chosen any nonzero element of ms with the same success, which means that there is no
h-invariant vector field in m3. This could already be seen if we observe that the h-modules m; are
actually irreducible, so that ms does not contain a trivial 1-dimensional submodule.
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The quaternionic case. The classification of generalized Wallach spaces also contains the
manifold V&, = Sp(n)/Sp(n — 2) x Sp(1) x Sp(1). It has dimension 8n — 12 and can be
constructed in the same manner as V;, o and VT(EQ, only by working with symplectic matrices in
M™(H). It is again a manifold, admitting weakly non-degenerate split torsion.

REMARK 2.4. A remarkable case is the above examples occurs when n = 3. Then V},(CQ = W5 and

Vdﬂ']I W12 are two of the Wallach spaces, which will be considered in greater detail in the upcoming
section. They are our main examples of manifolds admitting non-degenerate split torsion.

3. Non-degenerate split torsion

In this section we turn our attention to the notion of non-degenerate split torsion, quickly guiding
us to the Wallach spaces, which are then described in more detail.

PROPOSITION 3.1. If v is non-degenerate, m; = mg = m3 = V' as vector spaces and V is a division
algebra.

PRrROOF. The first statement is contained in the definition. We can now write
Y:VXxVxV-—R or v:VxV —YV,

which gives us a multiplication on V', where multiplication on the left or right by a non-zero element
is an isomorphism, hence V is a division algebra. O

REMARK 3.2. This is already quite restrictive since we know that a division algebra K over R may
only have dimension 1, 2, 4, or 8. We state the following known results:

e if K is commutative and associative, it must be isomorphic to either R or C;
e if K is non-commutative, but associative, it must be isomorphic to H;
e if K is non-associative, but alternative, it must be isomorphic to Q.

REMARK 3.3. We previously saw that a triality defines a division algebra. The converse is also
true — every division algebra gives rise to a triality.

DEFINITION 3.4. A normed triality is a triality v, satisfying |v(X1, X2, X3)| < || X1]]-[| X2]]-]| X3]|
and such that for all X;; € m;; there exists X € my for which equality is attained. Here
{i,j,k} ={1,2,3}.

REMARK 3.5. Every normed triality corresponds to a normed division algebra.

We sketch one way to obtain the four normed trialities: let n be 1, 2, 4, or 8. We can embed R"
and Spin(n) in Cliff(n) and view R™ as the vector representation of Spin(n). Here we understand
Spin(n) as the Lie group generated by even number of multiplications with unit vectors in the
Clifford algebra, so that Spin(1) = Zs and Spin(2) = U(1). Let A be the + and — spin
representations. For n = 1,2 these are AT 2 A7 2R and Ay 2 A, = C, coinciding with the
corresponding vector representations. Finally, Clifford multiplication is a map
p:R® x AX — AT which can also be written as p: R™ x AT x AT — R giving the desired
normed triality.

3.1. Generalities on Wallach spaces. Let K stand for one of the normed division algebras
R, C, H, or @. We denote by Wi the homogeneous spaces W3 = SU(2), W6 = U(3)/U(1)3,
W12 = Sp(3)/Sp(1)3, and W?* = F,;/Spin(8), respectively. These are the Wallach spaces (see
[WaT72]), which are generalized Wallach spaces from type (2) in the sense of the classification

theorem 1.15. Write the reductive decomposition as g = h & m with

K K K
m=m; &my bms.

PROPOSITION 3.6. The h-modules mX have the same dimension. For K = H,Q they are not
isomorphic as h-representations.
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PROOF. We can look up the table in [Nik16] to confirm that the dimensions are equal, but
the deeper reason is that the spaces Wik are manifolds with non-degenerate split torsion, i.c. they
are related to trialities, namely the normed trialities, described at the end of the previous section.
We will also provide an explicit description of the spaces in the sequel, where this will become
computationally obvious.

A remark following from Theorem 1 in [DraO8] states that if h has maximal rank in g and m;
are irreducible, then none of them is trivial, no two are isomorphic as h-representations, yet all of
them have the same dimension. We already saw a counterexample in the Stiefel manifolds V;, o if
the rank condition is not satisfied. For the Wallach spaces with K = H or @, on the other hand,
rank(G) = rank(H), and we can apply the result, proving the second statement. O

As a homogeneous space, Wi arises in a quite particular context—it is a principal orbit of
cohomogeneity 2, related to a 5-, 8-, 14-, or 26-dimensional representation of SO(3), SU(3), Sp(3),
or Fy, depending on K ([HBL71], Theorem 5, p.16). Those are actually the isotropy
representations on the tangent space at the origin of the following symmetric spaces:

M?® = SU(3)/SO(3), M® = SU(3), M'* = SU(6)/Sp(3), and M?6 = Es/F,. They are
orbit-equivalent to polar actions on R™ = m, whose principal orbits are known to be isoparametric
submanifolds. The codimension 2 action is isometric and may be restricted to the sphere, where
the principal orbits will now be of codimension 1, i.e. hypersurfaces. These spaces are naturally
related to the normed division algebras R, C,H, and O, as we will see in the Jordan algebra
construction. The above mentioned symmetric spaces admit an invariant symmetric trace-free
(0, 3)-tensor, closely related to their structure, whose existence translates to the split torsion on
the Wallach spaces (see also [AFH13]). We look for other isotropy-invariant tensors using
computer computations. From now on we will largely exclude W3 = SU(2) from our
considerations, since it is a Lie group.

PROPOSITION 3.7. The number of linearly independent isotropy-invariant tensors of the correspon-
ding types on each Wallach space except for W3 is given in Table 3.1.

‘ Tensor type ‘ weo ‘ w2 ‘ w2 ‘

Symmetric (0,2) | 3 3 3
Symmetric (0,3) | 2 1 1
Type (1,2) 6 3 3
2-form 3 0 0
3-form 2 1 1
4-form 3 6 3
5-form 0 3 3
6-form 1 0 1

TABLE 3.1. Invariants on Wallach spaces

We have computed the dimensions of the spaces of invariants on the various symmetric or
skew-symmetric powers of the tangent bundle to Wk, obtaining the results given in table, by
considering A*(m) or S*(m) as representation spaces of the isotropy action and decomposing

them into irreducible modules. In the relevant cases we will state the full decompositions, while
here we have just counted the number of trivial modules.

We shall elaborate some more on the structure of m = my & mX & mX with emphasis on the cases

K = H and Q. The blocks {mX}3_, are of dimension dim K, but we will not consider them as
copies of K, since they differ as isotropy representations. Let’s fix an orthogonal (with respect to
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the negative of the Killing form of g) basis {e;}34m% of m such that
m’ = span{e1, ..., edimk},
my = span{edimK+1; - - > €2dimK }
m?f = span{eadimK+1; - - - €3dimK }-

We denote the covectors dual to e; with o*. Keep in mind that each of the blocks m]ZK is

isotropy-invariant. We can now directly detect some of the invariants in the table.

e Symmetric (0, 2)-tensors.

These are actually the standard metrics on the blocks m]lK. We introduce the following

notation: let

dim K dim K

g1:=01®01+...—|—0 ©o

be the standard metric on m{ and define go, g3 on m5, m% in a similar fashion. A general
metric on m will then be written as

Ipw = Ag1+ pge + g3, A u,v>0.

We set g := ¢1,1,1 and assume to be working with this metric in case nothing else is
mentioned. Then e; and ¢ are also metric dual.
Torsion type tensors.

We are interested in metric connections with torsion, so we would like to know which
the possible torsion tensors are. They are tensors of type (1,2) with one skew-symmetry
between the arguments because of the metricity. However, we would ideally like to work
with connections with totally skew torsion, i.e. torsion tensors, which considered as type
(0,3) are actually 3-forms.

Symmetric (0, 3)-tensors and 3-forms.

Moving down in the rows of the table, we come to the symmetric 3-tensors. The
numbers on this row match those on the row with 3-forms for a reason. We explain the
relation here and describe both cases simultaneously. Let’s start with the 3-forms. There
is always one of them, which we call T, anticipating the relation to torsion. Only W9
exhibits a peculiarity here due to its dimension. The Hodge dual %7 is also an invariant
3-form and T' # +T since T AT = 0, but T A *T = |T|*>vol. There is a correspondence
between the symmetric (0, 3)-tensors and the 3-forms. Namely, if

T = Z T,-jk(aj’ Aol /\O‘k), then s:= Z T,-jk(ai ® o’ @O‘k)
i<j<k i<j<k
will be an invariant, traceless, totally symmetric (0, 3)-tensor, and the other way around.
This explains the two-dimensional subspace of invariants in S3(W9%). We should note that
this correspondence works only because the torsion is split.
Invariant 2-forms.

The existence of invariant 2-forms is of particular interest, since there must be a
non-degenerate 2-form w corresponding to every almost complex structure J on the tan-
gent space. The form and the almost complex structure are related through g(X,JY) =
w(X,Y). Since we are working with even dimensional manifolds, it is quite natural to
raise the question whether they are almost complex or not. This, surprisingly, turns out
not to be the case in general, despite the leading example of W, which admits both a
Kahler and a nearly Kéhler structure. The reason why it admits more invariants of this
type than the other two Wallach spaces is because they are not related to the common
underlying structure of the spaces, but to the dimension of the particular manifold. In this
case m splits into three 2-dimensional isotropy-invariant blocks, so their ”volume forms”
would be invariant 2-forms. This is exactly the same reason why W1'? admits three more
invariant 4-forms than W24,
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REMARK 3.8. On the last note we might try to relax the almost complex condition
and look for other structures, like quaternion Kahler (qK), for example. Alekseevsky has
shown that every compact homogeneous qK manifold is necessarily a symmetric space
(these are also known as Wolf spaces). This allows us to discard directly the existence
of qK structures on the Wallach spaces. There is an analogue to qK structures after the
introduction of torsion, which is called gKT - quaternionic Kéhler with torsion. Just
as a qK structure is defined by a parallel (w.r.t. the Levi-Civita connection) rank three
distribution in the bundle of almost complex structures over the manifold, a gKT structure
is defined by such a distribution, which must be parallel with respect to a metric connection
with (skew) torsion. Such manifolds have been of interest in the mathematical physics
literature. We will try to answer the question whether the Wallach spaces admit qKT
structures.

e Invariant 4-forms.

The existence of 4-forms may also be related to important geometric data. The form
or = $3(eit T) A (e; 2 T) appears in many non-integrable geometries, while the
fundamental form of a qK or KT structure is defined by Q := IANT+JAJ + KA K,
where I, J, and K form a local basis of the rank 3 parallel distribution in the bundle of
2-forms, defining the structure.

Viewed as reductive homogeneous spaces, we might ask if the Wallach spaces admit naturally
reductive metrics.

PROPOSITION 3.9. The spaces (W6,g171,1), (W12,g1,1,1), and (W247gl,474) are naturally reductive.

PRrROOF. The proof is a direct computation. We realize the homogeneous spaces explicitly as
described in the following sections and see which metric is induced by the Killing form of the Lie
algebra of the group of transitive actions. Only for W?2?% does the resulting metric have different
scaling factors on the blocks m?. O

Knowing that W2 and W?* are both naturally reductive, and that they only admit a
1-dimensional space of isotropy-invariant 3-forms each, this space must be spanned by the totally
skew torsion T of the canonical connection, viewed as a type (0,3) tensor. This would also mean

that all metric connections with totally skew torsion will belong to the 1-parameter family

V! = V9 4 2tT¢ spanned by the canonical connection and the Levi-Civita connection.

A unified description via Hermitian matrices over K. In this paragraph we present a
unified description of the Wallach spaces following Massey [Mas74], Ishikawa [Ish99], and others.
Let us consider the Jordan algebra

H3(K) = {Ac M3(K)|A* = A}

Multiplication is defined by the Jordan product Ao B = $(AB + BA). We refer to [Yo09], p.31
for a more detailed treatment of the Jordan product and its properties. Here we just briefly state
the most relevant ones:

PROPOSITION 3.10. The following hold in (H?(K),o):
e (H*(K),o) is an algebra whose unit is the identity matriz;
o (A, B) :=tr(Ao B) is a positive-definite inner product.
A typical element of H3(K) has the form

&1 w2 uis
A= |tz & ug3
u13 u2z &3
with 123 € R and u;; € K, 1 <14 < j < 3. The corresponding dimensions equal
3+ 3dimK = 6,9,15,27. We wish to consider the automorphism groups Gk := Aut(H?(K)),
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namely: Gg = O(3), Gc =U(3), Gu = Sp(3), Go = Fy. In the first three cases, the action is
given by conjugation T e A := TAT~! = TAT*, while in the last one F} is defined abstractly as
the automorphism group of the Jordan algebra. Details about this action and algebraic facts
concerning Fy can be readily found in [Yo09]. The following is well-known:

ProrosiTION 3.11. The Lie algebras of the automorphism groups Gk are given by the skew-
Hermitian matrices: Lie(Gg) = h3(K) = {X € M3(K)|X* = —X} in the cases K = R,C, or
H, and f4 when K = Q.

The space H3(K) decomposes to H*>(K) = H3(K) @ R under the action of Gi. The first factor is
the traceless part, whereas the second contains multiples of the identity matrix. Next we endow
H3(K) with the metric (A, B) := tr(A o B). With respect to this metric, the automorphism
groups act isometrically. Now we can restrict the action on the irreducible representation H(K)
to its unit sphere Sk := S(HJ(K)). This last sphere has dimension 4,7, 13, or 25 depending on K.
Understanding the action on the aforementioned spheres is the main object of the rest of the
paragraph.

Orbit structure. We describe the orbit structure by using an algebraic fact, which is well
known in the real and complex cases, and still holds for the quaternions and the octonions.
Namely, we claim that each matrix from H?(K) may be brought to diagonal form with real
entries on the diagonal under the action of the corresponding automorphism group. The resulting
set of diagonal elements and their multiplicities are unique up to permutation of the entries. We
call them eigenvalues. This lets us describe each orbit by a set {&1,&2,&3} of three real numbers
(allowing multiplicities). Further, these real numbers must satisfy the conditions

(3.1) G4+&E+&G=0 and (&4)*+ (L)’ + (&) =1,

characterizing Sg. The case &1 = & = &3 is immediately excluded. We obtain two solutions in the
case when &1 = & # €3, namely:

1 1 2 1 1 2
{&1,&,83) = {%, 75 —%} or {&1,8,&3} = {—%7 NG %}-

They describe the exceptional orbits. The last remaining case £1 # & # 3 # &1 will be the generic
case, corresponding to the principal orbits. From now on, let’s denote by one symbol the orbits

Of = {ACA" € Sk|A € Gk} for K£0, Op = {Aef€ Sx|A € Go}
through E: diag (&1,&2,&3) € Sk. Each orbit is a homogeneous space (’)5 = GK/Stabg(GK).

PROPOSITION 3.12. The stabilizer of a point £ € H3(K) is given by:

° StabE(GR) = (Zg)g,
. Stabg(G(c) =U(1)3,
o Stabg(GH) = Sp(1)3,
) Stabg(G@) = Spin(8)
for a principal orbit and
o Stabg(GR) = 0(2) X Za,
o Stabg(GC) =U(2) x U(1),
o Stabg(Gm) = Sp(2) x Sp(1),

° Stabg(G@) = Spin(9)

in the case of an exceptional orbit.
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Proor. Take T' = (t;;)3x3 € Gx for K # O. The condition T.g.T* = gis equivalent to
T.g: E.T or

tn& ti2ée 1383 t11é1 t12&1 t13én
to1&1 to2ly t23&3| = |to1&o t22a t23éa|
t3161 13282 13383 13163 13263 13383

which implies ¢;; = 0 for ¢ # j in the case of a principal orbit. The condition T.T™ = Id then

imposes |t;| = 1 for i = 1,2, 3, arriving at the result. Assume ¢ = diag (&1,&1,&3) belongs to an
exceptional orbit. Then we get t13 = to3 = t31 = t32 = 0 so that

t11 ti2 O
0 0 33

Again, the claim follows directly from the condition T.7* = Id.

We are now left with the case K = O, for which we refer to [Yo09], chapter II once again. Theorems
2.7.1 and 2.7.4 resolve the issue here. O

COROLLARY 3.13. The principal orbits are the homogeneous spaces

o Gr/Stabg(Gr) = O(3)/(Zs)® C Sg,
° Gc/Stabg(Gc) = U(?))/U(l)?’ = Wg C S((?:,
o Gu/Stabg(Gu) = Sp(3)/Sp(1)® = Wi C S§,

] G@/Stabg(G@) = F4/Spin(8) = Wé;l C S(%)E)
while the exceptional orbits are the projective planes
. GR/Stabg(GR) =0(3)/0(2) x Zy = RPQ,
° G(C/Stabg(Gc) =U(3)/U(2) x U(1) = CP?,
o Gm/Stabg(Gn) = Sp(3)/Sp(2) x Sp(1) = HP?,
. G@/Stabg(G@) = Fy/Spin(9) = OP2.
Note that all principal orbits are of codimension one in the ambient spheres.

Algebraic description of the orbits. We can describe the orbits not only as homogeneous
spaces, but also algebraically. We’ve already mentioned that each orbit is defined by a set of three
eigenvalues (possibly with repetitions for the exceptional orbits). These are obviously the
eigenvalues of any matrix in the same orbit, i.e. we have the description

Og = {A € Sk|A has cigenvalues {1, &2, §3}-
We now state the following:
PropoSITION 3.14. The orbit through gz's the set
Op = {A € Sil(A — &.1d)(A — &a.1d)(A - &.1d) = 0}

1
= {A e Sk|A3 - 5A — &16831d = 0.
PROOF. Let charp(X) be the characteristic polynomial of a 3 x 3 matrix B, i.e.

charp(X) = X? — 01(B)X? + 09(B)X — 03(B)Id,

where 012 3(B) are the elementary symmetric polynomials of the eigenvalues of B. We want to
show that an orbit (95 is defined by the matrix equation charg(A) = 0 which reads

A% — 51(§) A% + 09 () A — 03(6)Id = 0.

Observe that if A solves the equation, then T.A.T* for T € Gk, K # O does so too, due to the
identity T.AF.T* = (T.A.T*)*. On the other hand, if & € Fy, a(X oY) = a(X) o a(Y) for any
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X,Y € H3(0). One also easily sees that a(X*) = a(X 0o X---0 X) = a(X)*. In particular, if
A annihilates charg(X), so does a(A). Since we know that cvery matrix satisfies its characteristic

—

equation, i.e. charg(é) = 0 holds, we can conclude that charg(A) = 0 for every matrix A in the
orbit of E

Conversely, let a matrix A € Sk annihilate charg(X ), i.e.

(A—&.1d)(A— & Id)(A—¢&5.1d) = 0.
We can once more apply an element o € Gk to this identity, diagonalizing A to D = a(A4) =

diag (dy, d2, ds). Now we are multiplying diagonal matrices, so the matrix equation is equivalent to
the system

(di - El)(di - 52)(di - 53) =0, ¢=123.
Taking D € Sk into account, this means {dy, da,d3} = {&1,&2,£3}, hence A = a~1(D) € Og.
We obtain the final form of the expression by computing

(€ =tr@ =0, o= -G -G~ =3 0l =616 O

Tangent space description. In general, considering a homogeneous space M = G/H, one

normally decomposes g = m @ h and identifies m = T,(G/H). This gives a nice picture of the

tangent space, but we are now interested in finding out how it looks inside the ambient space
H(K). Consider a curve T'(t) C Gk with T'(0) = Id and the corresponding curve

A(t) = T(t).£T(t)* in Sk. Differentiating and evaluating at t = 0, we get
A(0) = 7(0).8 = £7(0) = [T(0), ] € TL0¢ C TgSx C H{j(K).
We obtain every element of TzOg in H3(K) through the map

bh*(K) 3 T(0) — [17(0),€] =: X € H3(K).

Of course, this map has a kernel, which is the isotropy algebra at the point. A direct check shows
that its image consists of matrices which have zeroes on the main diagonal. More precisely,
matrices of the form

0 w2 ws
X = |a2 0  wusl,uyek
uyg ugz 0
Considering (95 C Sk as a submanifold, we write for the tangent space
TgSK = Tg@{@ Ng@g

ProPOSITION 3.15. On a principal orbit 05 we have:

T:0

0
3 52 x 0 K| Z2KeKaK and Ng@gZﬁé.R7
* * 0

where the elements in the lower left corner of TE—OE are determined by those in the upper right by
the Hermitian property and

& —&3 0 0
0 & -4 0
0 0 & —&

Sl



3. NON-DEGENERATE SPLIT TORSION 51

ProOOF. We've already mentioned that the matrices in T—(’){ must have zeroes along the dia-
gonal. The fact that all such appear follows from dimensional reasons. The principal orbit (’){ has

codimension one, so NN, E_Of = R.7i¢ is one-dimensional. According to the condition 77 L Tf—Og, we
may take 7i¢ = diag (1, (2, (3) € Hp(K) and solve the system

e LE §1.G0+6.¢+83.(3=0
tr(fg) =0 &G +Q+E=0
7] =1 G+E+E=1

Up to the choice of a sign for the normal, the solution reads 77 = %diag (€2—E3,85—&1,61—&2). O

1

PROPOSITION 3.16. On the exceptional orbit Oy := Oy, through py = diag(\/g, %, —%) we have:

6
00 K 0K 0
T,,0o= |0 0 K| K&K and N,yOo= [+ 0 0| @R,
£ % 0 000

where the elements in the lower left corner of T, Oy and Np,Oo are determined by those in the
upper right by the Hermitian property and

1

7% 0 O
ng= 1,0 —% 0

0 0 O

An analogous result holds for the other exceptional orbit, defined by —pg.

PrRoOOF. The argument is the same as in the previous proposition, but this time the extra
relation & = & causes the vanishing of an additional block in the tangent space, which now
becomes a part of the normal space. The last normal direction is the same as before, only with
the values for 5 being substituted in the expression. The fact that everything holds good for the
second exceptional orbit as well is obvious. O

The normal sphere bundle to an exceptional orbit and preferred geodesics. From the
description of the tangent and normal spaces to (95 viewed as a submanifold in Sk, we obtain a

description of the normal sphere bundle to an exceptional orbit. Let py = diag (\/L67 %, —%) € Sk

define the exceptional orbit Oy as before. The normal sphere bundle to Oy is the set
NOy = {(p,n)|p € Op,n € S(N,Op)}.

ProposITION 3.17. The normal sphere bundle NOg to an exceptional orbit is diffeomorphic to a
principal orbit of the Gk action on Sk. More precisely, we have a fibration KP! — Wx — KP2.

PROOF. We let Gk act on an element (p,n) € NOp by its action on Hg(K) in both components.
The action is transitive on the first component with stabilizer computed in the beginning of the
section. The element n has the form

t uw 0
n=|u -t 0|,teRueck
0 0 O

and has unit length. This in particular means that it lies in S(H3(K)) C H§(K) embedded as the
upper left 2 x 2 block. To see what the isotropy of (p,n) is we should let the stabilizer of p act on
n. We argue as before: for the different division algebras the groups O(2), U(2), Sp(2), or Spin(9)
act on S(H3(K)), and the orbits are described by the eigenvalues of a diagonal matrix. In this case
they are already uniquely determined by the traceless and unit length conditions, and indeed after
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computing the stabilizers (Z9)?2, U(1)2, Sp(1)2, and Spin(8), we see that there is just one orbit and
the space is actually homogeneous. We finally have

RP! = O(2)/(Z3)?, K
CP! =U(2)/U(1)?, K
HP' = Sp(2)/Sp(1)?, K
OP! = Spin(9)/Spin(8), K=0

Now the full action on Ny is transitive with stabilizer the intersection of the stabilizers of the two
components, which are (Z3)?, U(1)3, Sp(1)3, and Spin(8) in the respective cases for K. The resulting

homogeneous spaces coincide with the principal orbits of the action of Gx on Sx. Moreover, we
have seen that the fibre of the bundle

I
==I @ ZE

S(HG(K)) =

7 Wk — KP?,
where 7(p,n) = p is the natural projection, is the projective line KP'. O

REMARK 3.18. Note that we may consider the Jordan algebra construction on matrices from ¥ (KK)
(k > 3, K # 0), write down the automorphism group Gg(k) = O(k), U(k), or Sp(k), which acts
by conjugation, separate the traceless part, restrict to the sphere, and obtain similar results for
k > 4 as we did for £ = 2,3. We saw that the cohomogeneity of the action is 0 or 1 for £k = 2 or
3. Indeed, it equals k& — 2 for any k. Due to the fact that we can diagonalize matrices, we will find
that all orbits are of the type Gk (k)/Gr(k1) X ... Xx Gk(ks), where kj + ... + ks = k is any partition
of k. The principal orbits will have k; = 1,7 =1, .., s, while those of minimal dimension will equal
KP*=1. Note that the families for s = 3 and K = R, C, H appear in the classification of generalized
Wallach spaces.

DEFINITION 3.19. We call preferred geodesics the geodesics obtained in the following way: consider
a fixed point & € Og C Sk, at which we have our tangent space description and the 3-dimensional
space X, consisting of diagonal matrices with real entries:

X = {A = diag (A1, Ao, A3)|A123 € R}

The condition tr(A) = 0 defines a hyperplane in X. The intersection of this hyperplane with the
sphere S(H?(K)) is a great circle, i.e. a geodesic on one hand, and it equals X N Sk on the other.
This is one preferred geodesic. All others are obtained by this one applying the isometric group
action.

PRrROPOSITION 3.20. Fach preferred geodesic intersects all orbits of the group action, always ortho-
gonally, and it meets principal and exceptional orbits 6 or 3 times, respectively.

Proor. We again work with the geodesic through 5 It consists only of diagonal matrices,
while the diagonal of Tg@g is empty. Thus they intersect orthogonally. There are 3! = 6 points
of intersection because we can permute the diagonal entries within each orbit. In the case of an
exceptional orbit each is met twice due to the equal eigenvalues, so we get 3 = 3!/2 points of
intersection. Moreover, apart from the 5 (or 2) other points of intersection with Og, each other
point of the geodesic is again a diagonal matrix and belongs to a different orbit. Obviously, every
possible set of eigenvalues may be acquired, so it intersects all orbits. Due to the diagonal form, we
get similar tangent space descriptions at the other points and always come to the conclusion that
the intersection is orthogonal. O

We can now interpret the result regarding the normal sphere bundle: if we fix a principal orbit,
going from any point along the preferred geodesic intersecting it, we will eventually meet an
exceptional orbit, and in this way we will be able to arrive at any point of the exceptional orbit,
and more so coming from any possible normal direction. Having taken the normal directions into
account, the correspondence will be bijective.
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The Gauss map and the second fundamental form. Here we describe the embeddings of the
orbits in the ambient sphere by means of the second fundamental form, or equivalently, the shape
operator. We start by defining the Gauss map. The Gauss map  for a hypersurface is defined as

—

v:0g— Sk (() =i,
assigning to each point 5 € (’)5 of the hypersurface its unit normal vector. Its differential
(’}/*)5 : Tf@g — TC_SK

is the shape operator at 5 , which is the symmetric operator corresponding to the second
fundamental form. Its eigenvectors and eigenvalues are of particular importance as those are the
principal directions and the principal curvatures of the hypersurface We proceed to compute
them for a principal orbit O We can restrict our attention to C f due to the homogeneity of
the orbit.

ProposITION 3.21. The second fundamental form of the hypersurface (95 for é’: diag (&1,&2,&3)

s.t. it is a principal orbit has three distinct eigenvalues, each of which with multiplicity dim K. They

are determined by the entries ofg and have values A1 = (é‘?l/g), Ay = (5512:/5;)7 and A3 = & \/g;)

PROOF. We will compute the action of the differential v, of the Gauss map on a basis of Tg@g.
We fix an orthonormal basis {e;}?3M¥ of the tangent space T:O0f C H 3(K). Let’s illustrate the
choice of basis for the field K = C. The other cases are analogous.

1 010 1 0 2 O 1 0 01
e1t=—7=11 0 0|, ea=—1|—¢ 0 0|, es=— 10 0 Of,
V2 000 V2 0 00 V2 1 0 0
0 0 2 0 0 0 0 0 O
e ! 0 00 es ! 0 0 1 €6 ! 0 0 =1
4 = ) = ) =
V2 — 0 0 v2 010 V2 0 — O

Let’s consider a curve g(t) in Gk s.t. [§(0),€] = e;. This is possible because we showed that the
elements of gg map surjectively to the tangent space taking their commutator with the defining
point £. We obtain the vector e; as the image of

0 10
§0)= |1 0
(&2—&)V2 0 0 0
The corresponding curve in Gk is then
cos(u) sin(u) 0 .
{g(t) = —Sl(I)l(u) coso(u) (1) u = m, te R} C Gk.

The vector ] is now tangent to the curve g(¢).£.9(t)* in the orbit. To compute v, (e1) we consider
the image

Y(9(8)-£.9(t)") = g(t).7ig.g(t)" =: n(t)
of the curve in Og. Note that v commutes with the group action because the latter is isometric.
We have computed fi¢ explicitly in Prop 3.15. All that’s left now is to compute n(t), differentiate,
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and evaluate at t = 0. We obtain:

. —&3c08(2u) + &2 cos? (u) — & sin?(u) 3¢5 sin(2u) 0
n(t) = — %{3 sin(2u) €3 cos(2u) + & sin?(u) — &1 cos?(u) 0
V3
0 0 & — &
010
_ /3 & _ &V3
0=} 62 N ey
Hence €3 /3
ooy 33 __&V3
v«(e1) = n(0) = G-t _51)61 and \; Goa)

Thus we’ve found one eigenvector of the second fundamental form and its corresponding eigenvalue.
For ey we proceed likewise with

- O

1

§0) = (& —&)V2

O O =
o O O

?
0

cos(u) isin(u) 0 ;
{g(t) = isir(;(u) cosO(u) (1) ‘u = m, te R} C Gk.
The expression for n(t) now reads
. —&3co8(2u) + & cos?(u) — & sin?(u) 3i€5 sin(2u) 0
n(t) = — —%i{g sin(2u) €3 cos(2u) + & sin?(u) — &1 cos®(u) 0 ,
V3
0 0 &1 — &
whose differential at t = 0 is
0 2 0
: 3 & : £3V/3
N(O)=\/jf — 0 0 =f62.
2@-a) | oo &-&

Thus we’ve seen that A; has multiplicity equal to dim C = 2 in this case. For the other division
algebras, we do the same computation for all imaginary units, getting the required multiplicity. To
work with the other blocks of the tangent space we only need to apply a cyclic permutation of the
indices, which results in the given values for Ay and As. O

REMARK 3.22. Take the principal orbit through 5 = diag (—%, 0, %) This is in some sense the
"middle” orbit. It is expected to be minimal by Wallach in [Wa72]. We can directly compute

M=vV3 =0, Ms=—V3=>H=X\N+X+X3=0

confirming this conjecture. It was also seen by Karcher in [Kar88|, among other sources, where he
proves that the largest volume hypersurface in a family of isoparametric hypersurfaces is minimal.

The positive scalar curvature metrics. Wallach [WaT72] classified all even-dimensional
homogeneous spaces with strictly positive sectional curvature, producing a list containing all
even-dimensional compact rank one symmetric spaces (CROSS’s) and three exceptional
examples—the three Wallach spaces Wi, K = C,H, Q. Using the results so far, we see how the
positive scalar curvature metrics on these spaces arise in a natural manner. We use the same
notation with py defining the orbit @Oy = KP2. Fix a principle orbit, defined by a generic
€ = diag (&1, &, &3), and consider the fibre bundle

7 Wk — KP?
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with fibre KIP! established in Proposition 3.17. Choose metrics in the following way:

e ¢p is the Fubini-Study metric on the base;
e gr is any Riemannian metric on the fibre;
® gy :=Tpgr + T gp, t > 0 is a rcal parameter, 7 is the projection on the fibre.

The following fact is well-known:

PROPOSITION 3.23. The projection 7 : (W, gr) — (KP?, gB) is a smooth Riemannian submersion
with kernel Ker(r) = KP!.

We can now make use of the O’Neill formulas for a Riemannian submersion.
PropPOSITION 3.24. Wk admits a metric with strictly positive sectional curvature.

ProoF. Quoting one of O’Neill’s formulas we have
3
Kw(X,Y) = Ko(X,Y) = 2 VX, Y],

where Ky and Kj are the sectional curvatures on Wy and KIP?2, and V[X, Y] denotes the vertical
part of the commutator.

VX, Y] = (mhgr)([X, Y], [X,Y)).

The fibre is compact, so (75gr)([X, Y], [X,Y]) < C for some constant C' > 0. It is known that the

g;?(((féi)) = %. Assume that we have scaled it in

such a way that min(Ky) = 1. Moreover, we can do this for any metric on the fibre, in particular
for any rescaling Agg of gp, A > 0, obtaining

Fubini-Study metric gp has a pinching factor of

Kuw(X,Y) = Ko(X,Y) = SN (rpgr) (X, V] [X,Y]) > 1 - 230,

Now

4
Kw(X,Y
w (X, )>0<:>0<>\<“3C
]

3.2. Explicit realizations of the Wallach spaces. We proceed to study the Wallach
spaces on a case by case basis. The flag manifold W% = U(3)/U(1)® has been extensively
investigated and is very well understood by now. We refer to [BFGK90], Chapter 5 for further
details on the space and the precise realization. Here we only give a short description, serving the
purpose to illustrate the results in Table 3.1.

The complex Wallach space W¢. Consider g = u(3) = {A € M?*(C)|A" = —A} and b C g the
subalgebra of diagonal matrices. The Killing form of g is given by B(X,Y) = tr(XY") and induces

a metric g = —1 Re(B). We fix an orthonormal basis
0 1 0 0 72 0 0 01
egr=1|-1 0 0f,ea=1]2 0 O|,e3=1]0 0 0O,
0 0 0 0 00 -1 0 0
0 0 1 0 0 O 000
=0 0 0 =0 0 1|,e=1{0 0 %
¢t 0 0 0 -1 0 0 ¢ 0

The invariants. An element h € § of the isotropy algebra acts on X € m by
ad(h)(X) = [h, X] € m. This action extends to arbitrary tensors requiring it to act as a derivation
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with respect to the tensor product (respectively wedge or symmetric product). The invariants
from the table above are now explicitly given by:

S2m): g =o' 102, g=0B oM, g3=0° +O_66

S3(m) ;51 = o135 4 M6 _ 5236 L ;245 o 136 4 145 235 246,
A2(m):wy =c'ANo?, wa=0 Aot wi3=0"NA0Y

A3(m): T = g3 4 M6 _ o236 | 5245 yp 136 4 145 285 246,
M) an =o'y = 01256 gy = o345,

A®(m) : none;

A6 (m) . 0.123456 )

The nearly Kahler structure of the manifold is given by the form w = w; — w2 + w3. It defines the
almost complex structure J through w(X,Y) = ¢(X, JY). Given a geometric structure defined by
certain objects, we call a connection with respect to which those objects are parallel
characteristic. In this case this would be a connection V with the properties Vg =0 and Vw =0
(or equivalently V.J = O) It is given by

VxV = VY + = (vg J)JY,

where VY denotes the Levi-Civita connection. On the other hand, we have realized the manifold

as a naturally reductive homogeneous space, and as such it admits a canonical connection V€. It

coincides with V. Thus the torsion of this connection equals T" which is totally skew, and more
precisely, non-degenerate split.

The quaternionic Wallach space W1!2. Consider W12 = Sp(3)/Sp(1)? with the reductive
decomposition

sp(3) = b @ m = (sp(1) ©sp(1) B sp(1)) @ (m' ® my' @ my),

where
sp(3) = {A € MP(H)|A" = — A4},
v 0 0 0 w
vOOveH,mgﬂ: 0 0 0||lveHy,,
0 00 -v 0 0
0 0 O
mgﬂ: 0 0 wv|l|lveH,, b= 0 q2 q1,2,3 € Im(H)
0 —v 0 0 0 g3

One can directly check that this choice fulfills all abovementioned properties. We choose bases in
the corresponding spaces: on b take {hp}g:1 with
hi = diag{i,0,0}, hy =diag{j,0,0}, hs=diag{k,0,0},
hy = diag{0,7,0}, hs =diag{0,7,0}, hg = diag{0,k,0},
h7y = diag{0,0,i}, hg =diag{0,0,j}, hg = diag{0,0,k}.
Here i, j, k denote the basic unit imaginary quaternions satisfying i = j =k’ =—-1landij = k

On m take {ep} -, such that e 234 form a basis of mi, e5.6,7,8 - of m¥, and €9,10,11,12 - of m3
More precisely,

e1 = A e mi! with v = 1, eo = A cmil with v =

es = A e mtl with v = j, es=Acmt! withv =%k
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We fix the bases of m5' and m}! in a similar fashion. This allows us to implement all matrices in a
computer algebra program and perform computations there. In particular, we compute the
isotropy representation iso : h — so(m) = s0(12) and use it to search for invariant objects.

The invariants. Explicit computations give us bases of the spaces from table 3.1:
S2(m) : g1 = ol 4 022 4 o33 o gy = 655 4 o0 1 5TT 4 688,
g3 = 029 4 1010 | G111y 1212,
S3(m) : s = gl 4 gLBI0 | GLTIL | (1812 (2510 4 (269 ;2712 | 2811
3O GB612 L (3T (3810 _ (4512 _ 4611 L (4710 4 489,
A%(m) : none;
A3(m) : T = o159 4 gL6.10 | GLTIL 4 (1812 (2510 4 ;269 ;2712 | ;2811
_ BBy (3612 4 (BT9 (3810 4512 (4611 4 4T10 4 489,
A(m) : oy = o234, ag = o>O7S, g = oP101112
= ob2910 | GL21112 4 J139.01 (131012 4 (14912 | (141011
_ 23912 _ 5231011 | (24911 _ (240,12 ;34910 _ ;341112
s = o126 L GL2T8 L G135 _ (1368 4 ;1458 | 1467
4 2358 4 g230T | 52457 | (2468 | 3456 L 3478
ag = 000910 _ 5561112 4 S5TONL L (5 T1012 | (589,12 (58,1011 _
_ 07912 4 GOTI00L | (689,11 | (68,10,12 _ (789,10 4 781112,
AS(m) : Bi = oLBOTIZ L GLE6SIL | (LSTSI0 16789 | ;256711 | ;256812
L o2BT8Y 4 (267810 _ (356710 _ 35689 | (357812,
4 3BT G567 _ 5456810 _ j45T8 11 4 467812
By = gl23512 4 G123611 _ 5123700 _ (12389 _ ;124511 4 ;124612
L oh2479 (124810 4 (134510 13469 | (134712
_ g lLBABIL Y 523459 | (234610 4 (234711 | (234812
By = gLBIOILI2 _ (169,1112 | (1791012 _ (1891011 4 ;2591112 | (2,6,10.11,12
1 g2TO1011 4 (280,1012  [35910,12 _ 369,101 4 (37,10,11,12

4 o8OILI2 | G4591011 _ (469,1012 _ j4T91L12 | (48101112,
AS(m) : none.

We see that there is a unique invariant 3-form 7T listed above. The naturally reductive metric on
W2 is given by g := g1.1.1 = g1 + g2 + g3. In general, the torsion of the canonical connection is
given by T(X,Y) = —[X,Y]n for X, Y € m and is totally skew. Since our computations show

that there is only one invariant 3-form 7" looking as listed above, T" has to coincide with T up to

a factor. This is indeed the case, and in fact more holds:

LeEMMA 3.25. The torsion T of the canonical connection is —T'. The coefficients of the invariant
3-form T =: %Zi,j’k Ti',-k.am’k have the property that to each pair i,j, there is at most one index k
such that Tij, # 0. The commutator structure of m is then given by

lei,e;] = Tijrer for the unique Ty, # 0, and [e;, e;] = 0 otherwise.

The last lemma says, of course, that T is split and that it determines the commutator structure of
the manifold completely. Here we should add that dT" = 4(a4 — a5 — ag), so we again see that the
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4-forms which are more naturally related to the general geometric structure are a4 56 while oy 23
are rather exceptional for the particular space.

Geometric structures. We point out that there is no invariant 2-form on W', so that the
manifold cannot be almost complex.

REMARK 3.26. This contradicts a result in [AMO7], which we show is based on an erroneous claim.
Namely, the structures J;, | = 1, 2,3 defined on p. 7 of [AMO7] are thought to be invariant based
on the property

(3.2) JY, X]m =Y, Ji X ]
for any X € m, Y € h. Take, for example, [ =3, X =e; and Y = hy. J3 is defined via

0 aiz  a13 0  kap kais
J3 |—a12 0 ax| = |kaiz 0  kag3
—ai3 —azz 0 kaiz kazz 0

Then the left hand side of the invariance property (3.2) equals
J3[hi1,e1]m = Jzea = e3
while for the right hand side we get
[h1, J3€1]m = [h1, e4]m = —e3,
so that J3 cannot be invariant. Similar arguments show that J; and Js also aren’t invariant.

We have already mentioned that W'2 cannot admit a quaternion Kihler structure since it isn’t a
symmetric space. We now try to answer the question as to whether there exists a quaternion
Kéhler structure with torsion (where the torsion tensor is assumed totally skew). This amounts
to determining whether a Vi-invariant rank 3 distribution in the bundle of antisymmetric
endomorphisms of TW1? exists for some value of t. First we work with the canonical connection,
i.e. the case t =1/4.

PROPOSITION 3.27. The holonomy algebra hol® equals the isotropy algebra b = sp(1) Dsp(1l) Dsp(1):
hol® =sp(1) ® sp(1) ®sp(1) = b.

PROOF. The holonomy algebra is generated by all curvature transformations, which we can
explicitly compute using Wang’s theorem as mentioned in Remark 3.3. Then the curvature endo-
morphism of any connection is given through its corresponding map A : m — so(m) by

R(X,Y)Z = AX)A(Y)Z — AY)A(X)Z — A([X,Y]w)Z — iso([X,Y]y) Z

for X,Y,Z € m. In particular, for the canonical connection A = 0, so only the final term of the
expression remains. It is nonzero only when [X,Y], # 0, that is when X,Y € m]ZHI belong to the
same block of m. We have these relations explicitly:

i, mif] [m3, m] : [m, mi] :

[61, 62] = 2h1 — 2h4 [65, 66] = 2h1 — 2h7 [6 610] = 2h4 — 2h7

[61, 63] = 2h2 — 2h5 [65, 67] = 2h2 — 2h8 [6 611] = 2h5 — 2h8

le1, e4] = 2hs — 2hg [es, es] = 2hs — 2hg [eg, €12] = 2hg — 2hg

[62, 63] = 2h3 + 2hg [66, 7] = 2hg + 2hyg [610, 611] = 2hg + 2hg

[62, 64] = —2h2 — 2h5 [66, 8] —2h1 — th [610, 612] —2h5 — 2h8

les, e4] = 2hy + 2hy [e7, es] = 2hy + 2h7 le11, e12] = 2hy + 2h7.
One now easily sees that all elements of the isotropy algebra appear as elements of the holonomy
algebra, so hol® = b = sp(1) ® sp(1) D sp(1). O
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We are interested in the representation theory of hol® = b, which we view as the 9-dimensional Lie
algebra with basis {hp}?):l- We choose the Cartan subalgebra ¢ spanned by h1, hy, and hy.

Whenever we are given a complex representation o : h — End(V),
Vo :={v e V]o(h)v =i.a(h)v Yhe€c},
where « € h*, is called a weight space of V' with weight .. The weights of the adjoint
representation are called roots. The set of all roots always contains an even number of elements
and is symmetric with respect to multiplication by —1. Thus we can choose half of them, which
we call positive, and the other half - negative, as long as the sums of positive roots, if still roots,
are positive. With respect to this choice, one defines partial ordering in the set of weights. One
can then characterize the finite-dimensional irreducible representations of h using the notion of
highest weight - that is a weight of a representation, which is higher than any other weight of the
representation with respect to the introduced partial ordering. The theorem is that an irreducible
representation always admits a highest weight and any two representations with the same highest
weight are isomorphic to each other.

Let us consider the action of § on the complexification Wy := m]{ﬂ ® C. Fixing the positive roots
(27 07 0)7 (07 27 0)7 (07 07 2) e h*7

we find that the highest weight of Wy is (1,1,0). If we define W5 and W3 analogously, they have
highest weights (1,0,1) and (0, 1,1), respectively. Moreover, we can use Weyl’s dimension formula
to determine the dimension of an h-representation with highest weight o = (a,b,¢), a,b,c > 0.

The formula simplifies to dim(V,) = (a + 1)(b+ 1)(c + 1) in our case. We conclude that the three

modules m]ZHI are irreducible since their complexifications are. Let’s write once again the
h-invariant splitting of m into blocks and compute its second exterior power:

m= m]ﬁ S mgl S mgﬂ
A2(m) = A2(mi) o A2(mih) o A2(m) o mi A mE @ mi A mE @ mE A m
The 6-dimensional representation A?(mj') splits into two irreducible modules:
A*(mil) = Vﬁ(z,o,o) & Vl%(O,Q,O)’

which we have indexed by the m]ZHI they arise from and their highest weights. They are both
3-dimensional by Weyl’s formula, as the superscript indicates. Explicit bases are given by:

V13,(2,070) = span{eis + €34, €13 — €24, €14 + €23}
Vi (0.2.0) = span{eis — eaa, €13 + €4, €14 — €23}

We give the analogous results for A?(m5) and A%(mf):
‘/2?:(2,0,0) = span{ese + €78, €57 — €68, €58 + €67}
V23,(0,0,2) = span{ess — ers, €57 + €68, €58 — €67}

‘/:'3(07270) = span{eg,lo + €11,12,€9,11 — €10,12,€9,12 + 610,11}

Vef(o,o,z) = S13'?111{69,10 — €11,12,€9,11 + €10,12, €9,12 — 610,11}-

Of course, at the end we have said nothing else than that A%(m) contains two isomorphic copies of
b, on both of which it acts by its adjoint representation. Thus the splitting we’ve obtained is
actually the splitting into root spaces, as also seen from the weights, which equal the positive

roots we had fixed. Let’s turn to the modules of type mIiHI A mgﬂ. The highest weight vectors there

are obtained by wedging the corresponding highest weight vectors of mgﬂ and mgﬂ. The weights are
then added, so we conclude that mif A m5' mif A mY, and mi A m{! admit highest weight vectors
for the weights (2,1,1),(1,2,1), and (1,1, 2), respectively. Thus each of them, being
16-dimensional, reduces to a sum of a 3.2.2 = 12-dimensional irreducible module with the
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mentioned weight and a 4-dimensional module with weight (0,1, 1), (1,0,1), or (1,1,0),
respectively. The last claim can also be seen by observing that

[, ] mE AmE — mb

is an h-equivariant map since [h, [e;, e;]] = [[h, ei], €;] + [ei, [k, €;]] holds for any h € b, e; € mi])
ej € m]?l. The 4-dimensional module is now isomorphic to the image of the map, and the
12-dimensional one is its kernel. Now we finally have the irreducible decomposition

(3.3) A*(m) :V13,(2,0,0) & Vl?:(O,Z,O) & ‘/2%(2,0,0) ® ‘/2??(070,2) ® V33,(0,2,0) b V33,(0,0,2)
® Vi) ® Ve © Vi © Viorn © Viien © VLo

Yet none of the h-invariant 3-dimensional modules in the splitting defines a KT structure on
W12 because they do not contain almost complex structures. The property J? = —Id fails in all
cases.

Structure group. Consider the following setting: let M = G/H be an n-dimensional
Riemannian homogeneous space. It gives rise to the principle fibre bundle G — G/H, whose fibre
is isomorphic to H. H being also the structure group of the principal bundle is in a natural way a

subgroup of SO(n). We now ask the question how H sits in SO(n).

Consider W12 = Sp(3)/Sp(1)3. We are looking for an embedding of Sp(1)? in SO(12). It will be
easier to work on a Lie algebra level, where this translates to finding h = sp(1) ® sp(1) @ sp(1) in
$0(12). There are many such embeddings, but we can discard most of them by decomposing
50(12) =2 A%(m) in h-irreducible modules w.r.t. the embedding in question and comparing the
result with the decomposition 3.3. Performing this with the help of the computer algebra
program LiE results in the following;:

PROPOSITION 3.28. The Lie algebra b lies in s0(12) in the following way:

Embed SO(4)% C SO(12) diagonally which gives 3s50(4) = 2sp(1)®2sp(1) D 2sp(1) in s0(12). Group
the siz sp(1) summands in three pairs, taking for each pair copies coming from different so(4)’s.
Then take the diagonal in each of the three pairs, finding b C 2sp(1) @ 2sp(1) @ 2sp(1) C s0(12).

PROOF. We are led to this construction by the computations done above. The tangent space
m is split into three different 4-dimensional blocks, each of which admits nontrivial actions from
two of the sp(1)’s in h and gets acted upon trivially by the third copy of sp(1). We achieve this
effect by taking the diagonals as described above. The choice of the pairing is not unique, but they
all lead to equivalent results due to the available symmetries. O

The octonionic Wallach space W?%. In this section we focus our discussion on the Wallach
space of biggest dimension: W2* = F;/Spin(8). We do computations mainly using the predefined
realization of f(4) as a compact subgroup of all 26 x 26 matrices with real entries "f(4, Compact)”

from Maple’s Differential geometry package. We will thus not make it explicit here as we did in

the W2 case. A 27 x 27 matrix realization given in [BCCSO09] is also used to cross-check some

computations using MATLAB. The number of dimensions we are dealing with limits the amount

of computations we can perform, but the simplicity of the isotropy algebra simplifies some other
computations. We adopt the weights used for the simple Lie algebra D, in LiE. The three

non-isomorphic irreducible 8-dimensional representations of Dy = s0(8) have weights [1, 0,0, 0],
[0,0,1,0], and [0, 0,0, 1], where the first one is the standard representation, and the other two are

the half-spin representations. The adjoint representation has weight [0, 1,0, 0].

The invariants. The following decomposition of the Lie algebra f(4) is well-known ([B02]):

f4=h@m=5o(8)@(m§)@m9@m9).
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The 8-dimensional representations m%,;g of the isotropy algebra must either be reducible to 8-fold
sums of the trivial representation, or be equal to some 8-dimensional so(8)-representation. A
computer check shows that they are irreducible. Now they must be the three 8-dimensional
representations mentioned above: m? with weight [1,0,0, 0], mg) with weight [0,0,1,0], and mg
with weight [0,0,0, 1]. We decompose all spaces that appear in Table 3.1 with respect to the
action of the isotropy algebra h = s0(8).

PROPOSITION 3.29. One has the following decompositions in h-irreducible modules:
S2(m) = V¥l g V02 g Vi3 g Vil g VP25 V53 g ml & m) & mg @ 3R,

In particular, there are: three invariant symmetric (0,2)-tensors;

One invariant symmetric (0,3)-tensor of split type:
§3(m) =V350 @ V2L g 22 gy 2UB g 22 gy 25 o 2206 g LR g 1122 g 1123
@ 2V50L g 27962 @ 97963 g /35,1 @ 1352 gy 1353 gy 9p 3m? @ 3m§) o 3m9 &R
No b-invariant 2-forms:
(3.4) A*(m) = Vo0l g V02 & V903 & 3h o m{ @ m} @ my;
One invariant 3-form of split type:
Ag(m) :V350 D 2‘/160,1 @ 2‘/160,2 o 2vl60.3 D 3‘/56,1 D 3v56,2 @ 3v56,3
e V¥ o V2 e VP ¢ 2h e 2m @ 2m] @ 2m§ & R;

Three invariant 4-forms;

Three invariant 5-forms;

One invariant 6-form;

Three invariant tensors of type (1,2).

PRrROOF. The proof is a direct computation using LiE. We’ve indexed all irreducible h-modules
by their dimensions (in superscript). The isomorphic modules are grouped together, while the
non-isomorphic ones are distinguished by the second superscript. The known modules m(ZQ, h, and
R are mentioned explicitly. The statement that the symmetric (0, 3)-tensor and the 3-form are of
split type is seen directly in the computations. For example, the R module in A®(m) arises in the
following way: consider

ANmlomlaemd)=AMmPemd)or) e (A2mPemd)omd) e ...
= oMW em?emdoA’md)ems o ..
—..omlomdoml®..

The three-fold tensor product on the last line occurs only once in the decomposition and is not
h-irreducible. Its decomposition in irreducible modules contains the single copy of R that we find
at the end. In this manner we see that the tensor spanning this 1-dimensional module is of split
type. Exactly the same reasoning applies to S3(m). O

As before, each of the symmetric (0, 2)-tensors corresponds to the ”standard metric” on m;@. As
we can see, all results match those of W2 precisely, with the exception of the three additional
four forms in the previous case, stemming from the fact that the tangent space splits into three
four-dimensional blocks. This underlines the similarity of the geometry, and is most notably
represented in the symmetric (0,3)-tensor and the 3-form, which are again of split type. Note that
here the modules V? are already irreducible.

Geometric structure. The situation here is again much similar to what happens with W2,
The invariant torsion tensors have no vectorial components. They are also neither pure
skew-symmetric, nor of pure Cartan type. Considered as (0, 3)-tensors, they all project to the
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invariant 3-form when skew-symmetrized. Following this observation, we can consider the same
family of connections as we did in the previous case.

Structure group. As in the W2 case, we describe the structure group of Fy — Fy/Spin(8). We
are looking for an embedding of Spin(8) in SO(24). On a Lie algebra level this means finding
50(8) in s0(24). Again, there are many ways to do this, but we discard most of them by
comparing with 3.4. This time the picture looks as follows:

PROPOSITION 3.30. One embeds SO(8) x SO(8) x SO(8) C SO(24) diagonally, obtaining so(8) &
50(8) @ 50(8) in 50(24) and takes an appropriate diagonal embedding of 50(8) C s0(8)Es0(8) B s0(8).

PRrOOF. The Lie algebra h = s0(8) acts on each 8-dimensional block of m via a different irre-
ducible representation. Namely, we see all three possible 8-dimensional irreducible representations
[1,0,0,0], [0,0,1,0], and [0,0,0,1] of s0(8) occur once. We can obtain this effect by letting all copies
of 50(8) in s0(8) @ s0(8) @ s0(8) act on every block of m, but in a different way. This is done by
using the S3-symmetry of the Dynkyn diagram of Dy = s0(8) to twist the algebras while taking the
diagonal. It is precisely what we mean by an ”appropriate diagonal embedding”. This construction
may indeed be realized, as one can show using LiE. O



Appendix

A. Curvature identities

Let’s find an expression for the curvature operator R(X,Y) =VxVy — VyVx — V[ X,Y] with
R(X,Y,Z,V)=(R(X,Y)Z,V). We know from [Agr06] the following:

PROPOSITION A.1. Ifeyq,..., e, is an orthonormal frame and S(X,Y) = > . (T(e;, X),T(e;,Y)),
then the following identities hold:
1 1

1 1
+ Z <T(X7 Y)7T(Z7 V)) + ZO-T(X7 Y7 Za V))

(A.2) Ric(X,Y) = Ric!(X,Y) — %(6T)(X, y) — iS(X, Y),
(A3) Scal = Seal? — % T2

The condition that V is metric implies that each curvature transformation R(X,Y) is
skew-adjoint, i.e. R can be interpreted as an endomorphism R : A2TM —s hol¥ C A2TM,
where holV is the holonomy algebra of V. As such, it is defined by

1
R(ei A ej) = B Z Rijk:l(ek: Aer).
k.l

Here {e;} is an orthonormal basis as always. This definition can be seen to be linked to the first
one by the relation

R(X,)Y)w=o(R(XAY))w

when applied to a k-form w. The same argument applies to the Levi-Civita connection V9.
Denote the last four terms on right hand side of (A.1) by F(X,Y,Z,V), i.e.

R(X,Y,Z,V) = RIX,Y,Z,V)+ F(X,Y,Z,V).

F(X,Y,—,—) may be considered as a 2-form, which we denote by F(X,Y ). Note also that the
2-form R(X,Y,—, —) is nothing else but R(X AY).

PROPOSITION A.2. If w is a k-form, then
(A4) R(X,Y)w=RI(X,Y)w+ o(F(X,Y))w.
PROOF. It is obvious from the previous comments that
R(XANY)=RIXANY)+F(X,Y).
Applying ¢ to both sides we get the claim directly. (I

We should mention that a Ricci-type decomposition of the curvature tensor is possible. For this
purpose we need the block-interchanging symmetry of the curvature tensor, i.e. we require the
torsion 1" to be V-Killing. In the case when it is actually parallel, the decomposition is obtained
in [AF14]. There, the curvature is split with respect to the kernel and image of the Bianchi map
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b: Rijk — Rijii + Rjrit + Rpgji. We can still do the same, obtaining the same kernel part, and a
slightly different expression for the term in the image. More precisely, R = Rye, + Ry with

1 1
Rier(X,Y.2,V) = RUX,Y. Z,V) + L {T(X,Y),T(Z,V)) = 550r(X,Y, Z,V)

1 1
Rin(X,Y,Z, V) = ZdVT()Q Y,Z,V)+ gaT(X7 Y,Z,V).

It is important to note that R;,, is a 4-form so it does not affect the Ricci or scalar curvatures,
and we may write the known decomposition

1 | 1
Biey = W+ —— (Ric — 22 9)Dg+ _Seal 9Dy,
n—2 n 2n(n —1)

where
(ADB)(X,Y,Z,V)=A(X,Z)B(Y,V)+ AY,V)B(X,Z) - A(X,V)B(Y, Z) — A(Y, Z)B(X,V) is
the Kulkarni-Nomizu product, and W is the Weyl curvature tensor. It is traceless and it is related
to W9 by

1 1
W(XY,ZV) =WI(X,Y, ZV) + [ {T(X.Y), T(Z,V)) = 5or(X,Y. 2,V)

Y (seg vz SITE
A(n —2) PP E S An — 1)(n—2)
We give the formulas in the case of a 1-parameter family of connections. From now on we denote
the values, corresponding to the canonical connection with a superscript ”¢”, while so far we have
used no superscript for those quantities. According to (5.4) they correspond to the parameter
value s = %. We still use ”g” to indicate the Riemannian values, i.e. the ones for s = 0.

(9D 9)(X,Y, Z,V).

PROPOSITION A.3. If V*® is the 1-parameter family of metric connections, given by (5.4), then the
following identities hold:

(A5)  R(X,Y,Z,V) = RIX,Y,2,V) + 25((V§T)(Y, Z,V) - (V§T)(X, Z,V))
+4s* (T(X,Y), T(Z,V)) + 2s(1 — 2s)o7(X,Y, Z,V),
(A.6) Ric*(X,Y) = Ric/(X,Y) — 2s(6T)(X,Y) — 4s2S(X,Y),
Scal® = Scal? — 24s2||T|?.

The first Bianchi identity is given by

Y RNX,Y,Z,V) =dT(X,Y,Z,V) + (V{T)(X, Y, Z) + (45 = 1) > (VST)(Y,Z,V)

XY,z X\Y,Z

+ (65 — 8s* — 2)or(X,Y, Z,V).
PrOOF. The first identity follows after a straightforward computation, substituting V*® and T

for V and T in (A.1). The following equalities are easily obtained by contraction in (A.5), or again
by substituting with V*® and 7" in the corresponding equations from proposition A.1. Finally, the

first Bianchi identity follows from the one we have in the canonical case in theorem 2.6., [Agr06],
which reads

Z RX,Y,Z,V)=dTl(X,Y,Z,V) —op(X,Y, Z,V) + (V$T)(X, Y, Z),
XY, Z

and the observation that

RY(X,Y,Z,V) = RY(X.,Y, Z,V) + <2$ - %) (VS T)(Y, Z,V) — (VST (X, Z,V))

+ <432 - %) (T(X,Y), T(Z,V)) — (25 - %>QUT(X, Y, Z,V).0
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REMARK A.4. We again write equation (A.5) as R*(X,Y,Z, V)= RI(X,Y,Z,V)+ F*(X,Y,Z,V)
and denote by F*(X,Y) the 2-form F*(X,Y,—, —).

B. Algebraic identities

Here are some helpful identities involving ¢ and [J that we use in the text:

PROPOSITION B.1. If V* is a 1-parameter family of metric connections, given by (5.4), and w is a
k-form, then the following identities hold:

TO(Viw) = TO(VIw) — 2sor0w + 2sB(w) + 5.5 (w),
d*(TOw) = (&*T)Ow — 2(V*T)Dw + 2T0(Viw) — TO(d*w),
3 (TOw) = —(6°T) 0w + 2(V*T)Dw + 2T0O(Viw) — TO(6°w),
d*(TOw) = —(d°T)Qw + (V*T)Ow + TO(Viw) — TO(d*w),
(d°T)Ow = (dT)Ow — 8sorw,

TO(T0) + TO(TOw) = 2070w — B(w) — %S(W).

PROOF. The computations for the first four identities are involving but straightforward. We
are only required to follow the definitions closely and manipulate forms in a standard way. Here
we skip them. The fifth identity follows directly from d — d®* = T¥¢ and the definition of o7, and
the last one follows easily from

AsTO(TOw) = (6 — 6°)(TOw)

and the previous formulas in the proposition. The only new identity that will have to be established
is

(VT Ow — (VIT)Dw = —2sop0w,
which is again a direct computation. (I

We also give the relevant computation rules concerning interior product with a vector field and
the derivation rules of d¥ and ¢Y:

PROPOSITION B.2. Let X be a vector field and w,n k- and l-forms. The following identities hold:

X1 (wOn) = —(X 1 w)On+ (—DFwd(X 1 7)),
X 1 (wOn) = (X J w)On + (-DFu(X 1 n),
dVwAn) =dvwAn+ (=1)*wAdVny,

NwAn) =6YwAn+ (=DFu A dVn —wd(Vn) — (—1)*(Vw)On.
In particular, for a function f and a form w, we obtain
d¥ (fw) =df Aw+ f.d¥w,
6V (fw) = —df J w+ f.6Vw.
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