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Chapter I: Introduction

1

Introduction to the Problem

Common basis of all empirical accounting-based asset pricing models is their at-

tempt to explain today’s asset prices or returns with accounting characteristics

that are observable today. Technically, empirical accounting-based asset pricing

is implemented in the literature with a wide variety of statistical methods: re-

gression approaches, method of multiples, and error measures, a fact that re-

sults in several problems.

First problem

Given that regression approaches, method of multiples, and error measures deal

with empirical asset pricing, the multitude of conceptually different and non-

connected approaches is puzzling and gives rise to two questions:

(i)

(ii)

If regression approaches, method of multiples, and error measures are ap-
plied empirically, they might lead to vastly different valuation results.
Therefore, wouldn’t it be useful to elaborate conceptual similarities and
differences between these statistical methods and even find a superordi-

nate category?

With respect to regression approaches, the existing literature uses just a
small subset of possible statistical methods for empirical asset pricing, i.e.,
ordinary least squares, weighted least squares, or quantile regressions.
Wouldn’t it be rational to enlarge this subset of regression approaches by
using other functions of the residuals, e.g., higher (and not first or second)
order of absolute values of residuals or the maximum error?

With respect to the method of multiples, wouldn’t it be useful to possess a
pricing formula that can integrate different methods of computing means

as well as using several accounting figures?
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With respect to error measures, wouldn’t it be reasonable to have a pricing
framework (= objective function) that is consistent with the error measure

(= quality assessment).

Given these questions, the first objective of this thesis in Chapter Il is to analyze
which of the existing empirical asset pricing approaches are conceptually similar,
i.e., can be summarized to a superordinate category and present statistical
methods that can be considered as quasi-natural extensions to existing empirical

asset pricing models.

Second problem

Based on this overview over empirical asset pricing models and the literature, it
can be strongly assumed that the chosen factors (numbers and specific selection
of explanatory variables) as well as the specific statistical method used (e.g., or-
dinary least squares regression, quantile regression) have an important influence
on the explanatory power of an empirical analysis. Since the only concern of the
majority of existing papers is the previously mentioned explanatory power, they
can be regarded as dealing with statistical significance of factors/specific statisti-

cal methods, whereas the economic relevance is far less analyzed.

Since price differences are the decisive aspect of valuation models in practice
and not statistical significance, analyzing their economic significance is essential
and inevitable. Nobody will pay a higher price for a company just because a spe-
cific valuation method produces a high out-of-sample R2. Moreover, business de-
cisions should not be based only on whether a p-value passes a specific threshold
because statistical significance (p-value) cannot measure the size of an effect or

the importance of a result.

Therefore, it is the second objective of this thesis in Chapter Ill to analyze the

economic significance of different factors/specific statistical methods.

Third problem

If, however, different factors/specific statistical methods lead to economically
significant differences in value, a model-selection criterion is needed that is

2
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based on economic instead of statistical criteria. While arbitrage theory provides
a general guideline for economic model evaluation for theoretical asset pricing
models (i.e., prices must be a linear function of their future cash flows), empirical
asset pricing models do not rely on present values of cash flows, but on assumed
relations between accounting characteristics/factor returns and company pric-
es/returns. For that reason, no theoretical guidelines regarding the components
of the model exist. In particular, there are neither hints regarding the number

and type of explanatory variables nor the specific statistical approach.

Given this high need for an economic model evaluation criterion, the third objec-
tive of this thesis in Chapter IV is to develop an economic model evaluation crite-

rion and come up with an economic ranking of different empirical models.

Fourth problem

From the perspective of asset pricing theory such a model evaluation criterion is
superfluous because the correct business valuation model is clear: the present
value of future cash flows. Practically, forecasts of the future are difficult and, in
particular, the determination of discount factors proves problematic. Therefore,
it might be better to use a theoretically less convincing but easier applicable
model—e.g., use of accounting characteristics—instead of a theoretically superi-
or but inadequately implementable model—present value. However, the superi-
or practicability of existing accounting-based valuations comes at a high cost: a

relatively weak foundation in asset pricing theory:

(i)  Multiples

Multiples essentially argue that similar accounting characteristics should
result in similar prices.

Problems from the perspective of asset pricing theory: While such a valua-
tion statement is intuitive, it is not backed up by asset pricing/arbitrage
theory that states: Identical cash flow streams must possess identical pric-
es. In other words, there are three differences between multiples and arbi-
trage theory. First, accounting characteristics are considered instead of

cash flow streams. Second, similar instead of identical positions are exam-
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(ii)

(iii)

ined. Third, one accounting characteristic is regarded as enough to charac-

terize a company completely.

Implementing discounted cash flow models with the help of accounting
characteristics

In literature, there are discounted cash flow models that use (functions of)
accounting figures in order to express cash flows, the horizon value and/or
the discount rate.

Problems from the perspective of asset pricing theory: Irrespective of the
specific inclusion of the accounting characteristics in the discounted cash
flow models, they can only serve as an approximation, i.e., the models con-

tain assumptions that do not generally hold in reality.

Empirical accounting-based approaches

Empirical accounting-based approaches explain stock prices with the help
of accounting characteristics.

Problems from the perspective of asset pricing theory: These empirical ac-
counting-based approaches belong to the field of value relevance studies
and, thus, are only interested in statistical significance of accounting char-
acteristics, but not economic significance, i.e., they do not derive pricing
statements. In principle, the regression coefficients of value relevance
studies can also be used to obtain business values. However, valuation dif-
ferences between different regression approaches are huge and these
models have a weak economic backing when contrasted with the economic

principle.

All these problems underline the trade-off between asset pricing rigor and prac-

ticability of models: Present value models are theoretically superior, but their

practical implementation in form of constant discount rates and horizon models

is far from economically convincing. Accounting-based models are characterized

by less asset pricing theory rigor, however, can be implemented without sacrific-

ing much of their theoretical basis. Obtaining better asset pricing models, hence,

means either improve the implementation of present value models or the theo-

retical foundations of accounting-based models. Two reasons favor the im-
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provement of the asset pricing foundation of empirical accounting-based mod-
els. On the one hand, the accounting literature so far has not fully exploited the
asset pricing potential of accounting-based valuation models: It can be increased
visibly without sacrificing practicability. On the other hand, purely empirical
models always create a justification problem: Who would pay a higher price for a
company because sales multiples result in higher prices than earnings multiples?
Who would pay a higher price for a company because a lower discount rate for
earnings is used? Who would pay a higher price for a company because an em-
pirical estimation procedure, which possesses a higher R%, recommends a higher

price than other empirical estimation procedures?

Therefore, it is the fourth objective of this thesis in Chapter V to connect the
practicability of accounting-based valuation models with the theoretical rigor of

asset pricing theory.

2 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter Il gives an overview
of existing empirical assets pricing approaches and condenses them into a com-
mon framework. Chapter Ill analyzes the economic significance of valuation dif-
ferences of different regression approaches. Chapter IV defines an economic
model evaluation criterion and applies it to selected empirical asset pricing mod-
els. Finally, based on these results, Chapter V develops an accounting-based em-

pirical business valuation model: the optimize-the-price approach.
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Chapter II: Overview of Existing Approaches
and Elaboration of a Common Framework

1 Introduction

Empirical asset pricing models have one thing in common: They try to explain to-
day’s asset prices (or returns) with value drivers that are observable today. How-
ever, at this point the common ground ends because three conceptually differ-
ent approaches—we call them different categories of statistical methods—exist:

regression approaches, method of multiples, and error measures.

Regression approaches are the most prominent in the academic literature and
are associated with factor models/predictability of stock returns or value rele-
vance studies in accounting. However, regression approaches seem to get more
diverse in recent times. On the one hand, the number and specification of factors
is increased (e.g., the overview in Harvey/Liu/Zhu (2016)), on the other hand, dif-
ferent regression methods like quantile regressions (e.g., Allen/Singh/Powell
(2011)), weighted least squares regressions (e.g., Easton/Sommers (2003)), or
generalized least squares regressions (e.g., Lewellen/Nagel/Shanken (2010)) are
employed. Finally, regression approaches stand unconnected to alternative pric-

ing approaches like the method of multiples and error measures.

The method of multiples is extremely popular in business valuation because of its
easy implementation (see Coenenberg/Schultze (2002), p. 697). Perhaps due to
its popularity, many approaches exist ranging from arithmetic, geometric, and
harmonic mean to median as well as the ratio of averages (see Agrrawal/
Borgman/Clark/Strong (2010), pp. 12 ff.). Even pricing results for several ac-
counting figures (e.g., EBIT and sales multiples) are averaged (see Beatty/
Riffe/Thompson (1999), p. 26 and Cheng/McNamara (2000), p. 352).—All these
approaches are primarily unrelated and, in particular, not connected with regres-

sion analysis.
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Finally, error measures are used to provide a suitable criterion for assessing the

results of empirical pricing approaches (see Dittmann/Maug (2008), pp. 1 ff.).

However, they suffer to some degree from consistency issues: the quality as-

sessment (error measure) does not fit to the framework of the pricing model be-

cause both use different objective functions. Moreover, they are not related to

regression analysis.

Given that all three categories of statistical methods, regression approaches,

method of multiples, and error measures circle around the same problem, name-

ly empirical asset pricing, the multitude of conceptually different and non-

connected approaches is puzzling and gives rise to two questions:

(i)

(ii)

If regression approaches, method of multiples, and error measures are ap-
plied empirically, they might lead to vastly different valuation results (e.g.,
Nietert/Otto (2018) for multiples and Chapter Il for regression approach-
es). Wouldn’t it then be useful to understand why valuation results are dif-
ferent or even identify superior statistical methods? In other words,
wouldn’t it be helpful to elaborate conceptual similarities and differences

between statistical methods and even find a superordinate category?

Within regression approaches, the literature uses just a small subset of
possible statistical methods for empirical asset pricing, i.e., ordinary least
squares, weighted least squares, or quantile regressions. “Why not mini-
mize some other function of the residuals”, as Wooldridge in his famous
textbook on econometrics (see Wooldridge (2012), p. 31) asks? Potential
candidates would be higher (and not first or second) order of absolute val-
ues of residuals or the maximum error.

With respect to the method of multiples, wouldn’t it be useful to possess a
pricing formula that can integrate different methods of computing means
as well as using several accounting figures?

With respect to error measures, wouldn’t it be reasonable to have a pricing
framework (= objective function) that is consistent with the error measure

(= quality assessment).
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Given these questions, the objectives of this Chapter Il are (i) to analyze which of
the existing empirical asset pricing approaches are conceptually similar, i.e., can
be summarized to a superordinate category; (ii) to present statistical methods
that can be considered as quasi-natural extensions to existing empirical asset

pricing models.

To achieve these objectives, a two-step procedure is followed. In a first step, the
three categories of statistical methods (regression approaches, method of multi-
ples, and error measures) are analyzed with regard to whether they can be ag-
gregated to a general statistical method, i.e., to one superordinate category. In a
second step, the general statistical method is used to check whether other statis-
tical methods can be subsumed under the general statistical method. If this is the
case, a quasi-natural extension to existing empirical asset pricing models will be

found.

The results of this chapter can be summarized as follows: First, regression ap-
proaches and error measures can be combined to one superordinate category
because they (can be formulated to) minimize functions of residuals. The method
of multiples, however, remains a separated category since the multiple, the fac-
tor loading, is not determined from an optimization problem. Second, quasi-

natural extensions of existing

(i)  regression approaches combine higher orders of residuals (L,-norms) with
different penalties on over- and underestimations (quantile regressions),
and dependence structures between error terms of different observations

(generalized least squares regressions).

(i)  methods of multiples compute prices as weighted average of prices arising
from different methods of computing means using different accounting

figures.

(iii) error measures allow for the computation of factor loadings from an objec-
tive function that is consistent with the error measure (= quality assess-

ment) used.
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Compared to the literature, this chapter provides two contributions: First, it ana-
lyzes empirical asset pricing models across categories. The literature analyzes
factor models/predictability of stock returns, value relevance, and multiples
completely separately even though all three categories deal with asset pricing.
Moreover, the literature in both factor models/predictability of stock returns
(e.g., Harvey/Liu/Zhu (2016) and Appendix 4) and value relevance (e.g.,
Molls/StrauR (2007) and Appendix 4) is almost exclusively interested in discus-
sion of factors, but does not touch the issue of different statistical methods. The
only exception is Allen/Singh/Powell (2011) who examine the integration of
quantile regression into the Fama/French (1993) three-factor model. Regarding
the analysis of factors, the literature is strictly empirical. The most advanced pa-
per by Barillas/Shanken (2018) employs an empirical nesting approach. If, e.g.,
the CAPM and the Fama/French (1993) three factor model were equivalent re-
garding the intercept (alpha is equal to zero), the CAPM would be favored be-
cause it was the more parsimonious model. We, on the other hand, propose a
theoretical nesting approach by showing that different statistical methods can be
nested into a superordinate category.—Such a theoretical approach is able to
compare, e.g., quantile regressions, generalized least squares regressions, and
multiples, which cannot be done using the nesting approach of Barillas/Shanken

(2018).

Second, by proposing quasi-natural extensions to empirical asset pricing models,
it partially provides an answer to Wooldridge who asks: “Why not minimize some

other function of the residuals?” (see Wooldridge (2012), p. 31).

With respect to regression models the empirical asset pricing literature so far has
extended ordinary least squares regressions regarding quantile regressions (e.g.,
Allen/Singh/Powell (2011), p. 176), weighted least squares regressions (e.g.,
Easton/Sommers (2003), Formula (2), p. 42), and generalized least squares re-
gressions (e.g., Lewellen/Nagel/Shanken (2010), p. 183). This chapter adds higher
orders of residuals (L,-norms) on an isolated basis and together with different

penalties on over- and underestimations (quantile regressions) and dependence



Chapter Il

structures between error terms of different observations (generalized least

squares regressions).

With respect to multiples Beatty/Riffe/Thompson (1999) and Cheng/McNamara
(2000) discuss how prices arising from the use of different accounting figures can
be weighted to obtain a final price. Prices arising from different methods of
computing the mean, however, are not examined.—This chapter closes this gap
and shows how to combine price estimates arising from different methods of

computing means with those using several accounting figures.

In the context of error terms, the so far missing computation of consistent factor
loadings is provided, consistent in the sense that the objective function becomes

consistent with the error measure (= quality assessment).

The remainder of this Chapter Il is organized as follows: Section 2 gives an over-
view of existing empirical asset pricing approaches and proposes quasi-natural
extensions. In Section 3 the superordinate category of the presented statistical

methods is elaborated. Section 4 concludes this chapter.

2 Overview of Existing Approaches’

2.1 Regression Approaches

2.1.1 Basic Principle

Regression approaches attempt to explain a dependent variable (asset prices or
returns) with the help of explanatory variables (= factors) best possible. Best pos-
sible means that the unknown model parameters (= regression coefficients, i.e.,

factor loadings) are determined so that a function of residuals (objective func-

' Note that model calibration—see, e.g., the introduction to this approach in Cochrane

(2005)—does not belong to the class of empirical asset pricing models. Model calibration im-
plements theoretical models empirically, whereas empirical asset pricing models directly refer
to the empirical relation without taking the detour over a theoretical model.
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tion) is minimized. The objective function of the regression serves at the same
time as quality assessment of the model’s explanatory power. Therefore, regres-
sion approaches are consistent since regression coefficients and quality assess-
ment are derived from the same objective function. Existing regression ap-

proaches only differ in the way how this objective function is defined.

Regression analysis can be conducted with cross-sectional as well as with time
series data both with prices and returns. Characteristic examples for cross-
sectional regressions of prices are value relevance studies (e.g., Easton/Harris
(1991) and Appendix 4 for a rather comprehensive overview) that explain stock
prices with the help of earnings per share and book value per share. Characteris-
tic examples for time series regressions of returns are the three-, four-, five-, and
six-factor models by Fama/French (1993), Carhart (1997), Fama/French (2015),
and Fama/French (2018) which explain stock returns with the help of market risk,
size, value, momentum etc.—Again use Appendix 4 for an overview.— In the fi-
nancial empirical asset pricing literature, time series regressions play the leading
role, whereas cross-sectional regressions dominate in the empirical accounting

literature.
Formally, regression approaches work as follows:

(2.1)

m
Yi = Bo +Zﬁj Ay — g
=1

where y; denotes observation i of the dependent variable, 4; ; characteristic j of
observation i, §; the regression coefficient of characteristic j, B, the intercept

parameter, and ¢; the residual of asset i.

The relation of (2.1) to all four approaches (cross section of prices as well as re-

turns and time series of prices as well as returns) is described in more detail:

Prices of companies in a cross section are the standard case of value relevance
studies in accounting (e.g., the survey paper of Molls/Strau® (2007), p. 958 or

Appendix 4). In this standard case the explanatory relation reads, e.g.,

11
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Pie = Bot + Bepire " EBITj ¢ + - — &
for all companies i in the sample at time t.

In other words, the variable y; in (2.1) is equal to the price of company i at time
t. The variables A; ; are accounting figures, e.g., EBIT;, (but not their growth

rates) at time t.

Returns of companies in the cross section can be found in two different strands
of the literature: on the one hand, in value relevance studies in accounting, e.g.,
the survey paper Molls/StrauB (2007), Kothari/Zimmerman (1995), Harris/Muller
(1999) or Appendix 4; on the other hand, in the second step of the two-pass re-
gressions of Black/Jensen/Scholes (1972) and Fama/MacBeth (1973).

The regression equation that describes the relation between dependent and in-

dependent variables reads

— in accounting (e.g., Harris/Muller (1999), Formula 2, p. 299 or Kothari/
Zimmerman (1995), Formula 2, p. 159)

R Market Value; ; Earnings;,

or = + i * — &
it Market Valuei_t_l ﬁo,t ﬁearnmgs,t it

Market Value; ;_,

— in two-pass regressions (Black/Jensen/Scholes (1972) and Fama/MacBeth

(1973))

Ri,t — Tt = Yot + Yractor,,t * BetaFactorl,i,t + o= g
for all companies i in the sample at time t.

In other words, the variable y; in (2.1) is equal to the return or the return differ-
ential of company i at time t to the riskless rate. The variables A; ; are either rel-
ative accounting figures or beta factors determined from time series regressions

(first step of the two-pass regression) at time t.

Prices of companies in time series can be found in, e.g., Kothari/Zimmerman

(1995), p. 175 and Appendix 4 and look like
Py = Boi + Pri - earnings;; + -+ — &4

12



Chapter Il

for company i at all points in time 7.

In other words, the variable y; in (2.1) is equal to the price of a company i at
time 7. The variable A;; denote accounting figure j of company i at different

points in time 7.

Returns of companies in time series can be found in the first step of the two-pass

regressions of Black/Jensen/Scholes (1972) and Fama/MacBeth (1973):

Ri,‘r - = ,Bi + ﬁFactorl,i,r ) RFactorl,T + o= Eit
for company i at all points in time .

In other words, the variable y; in (2.1) is equal to the return or return differential
to the riskless rate of company i at time 7. The variable 4;; denote returns of
factor j at different points in time 7. In Fama/French (2015), Formula 4, p. 2, e.g.,
factor returns are specified as return of a portfolio (of small stocks, stocks with
high book-to-market ratio etc.) minus the return on another portfolio (of big

stocks, stocks with high book-to-market ratio etc.).

To keep the complexity of the notation in check we will use the regression For-
mula (2.1) in the remainder of this Chapter Il and suppress, in addition, the time
subscript t. That way, we can use one formula that holds for cross section of
prices as well as returns and time series of prices as well as returns. However,
when we will analyze the implicit economic assumptions of empirical asset pric-
ing approaches in Chapter IV, we will thoroughly distinguish between cross sec-

tion of prices as well as returns and time series of prices as well as returns.

2.1.2  Existing Approaches in the Literature

Our criterion used to structure existing regression approaches is their respective
objective function. For each objective function one characteristic paper is cited.
Hence, this section does not aim at providing an overview of all papers in empiri-

cal asset pricing that use regression approaches. Instead it prepares for the anal-

13



Chapter Il

ysis of differences and similarities in regression approaches and, thus, the identi-

fication of a superordinate category.

2.1.2.1 Ordinary Least Squares Regression

Ordinary least squares regressions have the highest degree of dissemination in
empirical asset pricing studies both the field of value relevance and factor mod-

els/predictability (see Appendix 4).

Ordinary least squares regression minimizes the sum of the squared residuals
with respect to regression coefficients. In this connection, ordinary least squares
regression does not penalize underestimations differently from overestimations.

Formally,

(2.2)

2
n

m
min + ) A iBi|l — v
50151,...,[?,”2 Bo — ldﬁ] Vi

i=1 j
where residual ¢; reads

(2.3)

m \
g&=|Po+ zAi,jﬁj — Vi
=t /
~——_—
=9
and y, denotes the estimated price/return of observation i.

Alternatively,

(2.4)

2
min

m
+Y A8 -
ﬁo,ﬁl,...,ﬁm - ﬁo 4 lr]ﬁ] yl

n
i=1 j=
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can be used as objective function. Since the square root function is monotonous-
ly increasing in its arguments, Problems (2.2) and (2.4) deliver the same mini-
mum for By, B1, ---, Bm- Only the value of the objective functions differs (see

Boyd/Vandenberghe (2009), p. 131).

2.1.2.2 Weighted Least Squares Regression

Weighted least squares regressions are the second most used statistical method
(see Appendix 4). Weighted least squares regression multiplies all inputs (obser-
vations y; and characteristics 4; ;) by a weight w; before they enter the optimiza-
tion problem. A typical application of weighted least squares regression is the
case of heteroscedastic error terms, i.e., error terms are uncorrelated but not
identically distributed (see Rao/Toutenburg/Shalabh/Heumann (2008), p. 156). If
the weights are correctly specified, weighted least squares regression results in
lower standard errors than the traditional ordinary least squares regression (see

Wooldridge (2012), pp. 280 ff.).

Then, the sum of the squared residuals is minimized with respect to regression
coefficients. In this connection, weighted least squares regression does not pe-

nalize underestimations differently from overestimations. Formally,

(2.5)

n

m
Bo,lr?rll,i..r.l.ﬁm Z wifo + Z wiA; jBj| — wiyi

i=1 j
or, alternatively,

(2.6)

n m
bl Z wiffo + Z wiAi B | — wiyi

=1 Jj

where residual ¢; reads
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(2.7)

m
wig = | wifo + z wiA; B | — wiy;

=1

Il | <.

Wiy,

Note that there are two different approaches of weighting in the literature:
Easton/Sommers (2003), Formula (2), p. 42 use P;; as weight w;, whereas, e.g.,

Brown/Lo/Lys (1999), Formula (15), p. 105 employ P; ;5.

2.1.2.3 Quantile Regression

Quantile regressions are only employed by Allen/Singh/Powell (2011) in the field
of empirical asset pricing. Quantile regressions are able to penalize overestima-
tions differently from underestimations by using a weight 7 for underestimations
and 1 — 7 for overestimations where it holds 0 < 7 < 1 (see Koenker (2005), p.
5). For T < 0.50, overestimations are penalized more strongly in the objective
function, for T > 0.50 underestimations. For T = 0.50 (median regression), over-
and underestimations are treated equally. The cases T = 0 and 7 = 1 are exclud-
ed since otherwise there would be no trade-off between over- and underestima-
tions. Consequently, y; would be set arbitrarily low for penalized overestima-
tions so that never an overestimation in the sense y; > y; occurs (high for penal-
ized underestimations so that never an underestimation in the sense y; < y; oc-
curs) and an infinite number of admissible solutions for the regression coeffi-
cients would result. The higher 7, the more optimization reduces underestima-
tions due to their high penalty and increases overestimations due to their low
penalty, a fact that leads to higher estimated prices/returns y;. Therefore, the
weighting factor T corresponds to the estimated quantile of the dependent vari-
able because the sample is divided in a way such that 7 percent are below and
(1 — 1) percent are above the estimated price/return y; (see Koenker (2005), p.

7).

Formally, quantile regression can be written (see Koenker (2005), Formula (1.19),

p. 10)

16



Chapter Il

(2.8)

m
min (1-1)- Z +ZA..._ ,
50'51,---,ﬁm( ) ' Bo ' l,]ﬁ} Vi
i=1 j=1
J/i</30+27]71=114i‘jﬁj

overestimation

n

m
+T- 2 Bo +2Ai,jﬁj — Vi
=1

i=1
yizBo+XTL, A jBj

underestimation

where residual ¢; reads

(2.9)

m

& = ﬁo"‘zAi,jﬁj — i
=1
="

Several quantiles T can be considered. Therefore, a family of regression lines is
available for interpretation and, thus, a more complete view of the relationship
between the variables is obtained compared to ordinary least squares regres-
sion. Ordinary least squares regression only looks at one regression line (see
Koenker (2005), pp. 17, 25) because its regression line is based on the condition-

al mean in the sense of E{y;|44,.., Ay} = Bo + X721 Ai i B}

2.1.2.4 Generalized Least Squares Regression

Generalized least squares regressions in the field of empirical asset pricing were
pioneered by Sami/Zhou (2004) and massively advocated by Lewellen/
Nagel/Shanken (2010). However, overall they are still used sparingly (see Appen-
dix 4).

The intuition behind generalized least squares regressions is that error terms
might not be uncorrelated and identically distributed. Instead, error terms of dif-

ferent observations might depend on each other.
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This dependence structure can be characterized as follows: the variance of error
terms reads a2W where W is a positive definite matrix instead of an identity ma-
trix as in the classical regression model (see Rao/Toutenburg/Shalabh/Heumann
(2008), p. 143). Special cases of this dependence structure are: (i) heteroscedas-
ticity where error terms are uncorrelated but possess a different variance; W
then becomes a diagonal matrix and generalized least squares regression simpli-
fies to weighted least squares regression (see Rao/Toutenburg/Shalabh/Heu-
mann (2008), p. 156); (ii) serial correlation where error terms exhibit serial corre-
lation but have an identical variance; W then becomes a matrix that contains the
autocorrelation coefficients of first and higher order (see Rao/Toutenburg/Shal-
abh/Heumann (2008), p. 159).—Recall, regression approaches can be formulated
as cross-sectional and time series regressions (see Section 2.1.1) and, hence,

both heteroscedasticity and serial correlation might be relevant.

Formally, dependence structures of error terms can be captured by transforming
the original variables of the regression model (see Rao/Toutenburg/Shal-

abh/Heumann (2008), pp. 143 f., 151):

(2.10)

=w
* * cee
1,1 1m (wl,l wl.ﬂ) Aip o Aim
* * cee
n1 7 An,m Wn,1 Wnn An,l An,m
=w
<€I) (wlll wl,n) <€1>
5;; Wypq 0 Wpp &n
=w

where w is a square and regular matrix and it holds W™! = ww.

Generalized least squares regression minimizes the sum of the squared residuals
with respect to regression coefficients. In this connection, it does not penalize

underestimations differently from overestimations. Formally,
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(2.11)

m
min + ) A Bi|—vy
ﬁOﬂﬁl:--vﬁmE ﬁo — l’]ﬁ] yl

i=1 j
or, alternatively,

(2.12)

n m
min + Z A Bl — vy
ﬁOiﬁlJ--uﬁm 2 ﬁo j_l l;]ﬁ] yl

=1

where residual &/ reads

(2.13)

m
& = 30+ZA;jﬁj —-Yi
=1

*

=V

2.1.3 Possible Extensions to Regression Approaches

“Possible extensions to regression models” could in principle comprise any statis-
tical method of the literature. Therefore, we must be more precise and confine
ourselves to what we would like to call quasi-natural extensions. Quasi-natural
extensions integrate separated features of the statistical methods introduced in
Section 2.1.2 into one general statistical method, but do not modify the core of
regression approaches in that they can be subsumed under the minimization of a

function of residuals.
Separated features of the statistical methods in Section 2.1.2 are:

(i)  The order of the function of residuals; so far: absolute values (first order)

and quadratic functions (second order).
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(i)  The different weighting of over- and underestimations; so far: quantile re-

gressions.

Based on the separated features (i) to (ii) we suggest the following possible (qua-

si-natural) extensions.

2.1.3.1 L,-Norms as Objective Functions

The intuition behind this extension is that not only absolute values (first order) or
quadratic functions (second order) of residuals could be minimized. Instead, the
absolute value of higher orders of residuals could also be considered. The higher
the order, the less (more) influence have small (large) residuals on the objective
function and vice versa. Therefore, in the limiting case, where the order of the

function approaches infinity, only the maximum residual becomes relevant.

Technically, the order of the residuals’ function is captured by means of L,-

norms, which are defined as (see Collatz (1964), pp. 132 ff.):

(2.14)

1
n p
lell, = | Y led?
i=1

The limiting case p = oo results from:

(2.15)

i = 1,...,n}

Minimizing L,-norms means that the pth root of the sum of the pth power of the

llelloo = max {Ieil

absolute values of residuals is minimized. In this connection, L,-norms do not pe-

nalize underestimations differently from overestimations. Formally,
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(2.16)

=

m p

n
min + A B = v
Bo.B1,Bm lzl: Bo . l']'B] Yi

j:
where residual ¢; reads

(2.17)

m
& = 30+2Ai,jﬁj —Yi
=1

=N

2.1.3.2 Different Weighting of Over- and Underestimations and
L,-Norms as Objective Functions

This extension is motivated by a combination of L,-norms with the idea of an

asymmetric penalty on over- and underestimations.

Then, the minimization of the L,-norm with different weighting of over- and un-
derestimations means that the pth root of the sum of the pth power of the abso-
lute values of the residuals is minimized. In this connection a weight t for under-

estimations and 1 — 7 for overestimations is used with 0 < 7 < 1. Formally,

(2.18)
n m 14
min 1—1)" z +ZA..._ ,
BO’Bl!'"UBm ( ) £ BO ' L:]ﬁ] yl
i=1 ]=1
Yi<Bo+Ljz, AijBj
- overestimation
1
14
n m p
+'I," Z ﬁ0+zAl’]ﬁ] _yi
YizBo+LjL, AijBj
underestimation

where residual g; reads
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(2.19)

m
g = .Bo"'zAi,jﬁj — Vi
j=1

—_— ————
=

2.1.3.3 Combining the Extensions from Sections 2.1.3.1 t0 2.1.3.2

Combing Ly-norms with different penalties on over- and underestimations (quan-

tile regressions) and integrating them into the generalized least squares regres-

sions framework (2.11) to (2.13) yields

(2.20)
min
BoB1)Bm
with
(2.21)
11
n1

n m p
* *
a-o- > B+ As|-v
i=1 j=1
Yi<Bo+Ljii A ;Bj
overestimation
A
14
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A:l m Wn,1 Wn,n An 1 An m
=w
<81> <w1,1 wlln) (€1>
5;; Wpq 0 Wpp €n
=w
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where w is a regular an symmetric matrix and it holds W ™! = ww
and where residual €; reads

(2.22)

m
g = 30+2Ar,jﬁj -y
=1

N———  —

*

=V

2.2 Method of Multiples

2.2.1 Basic Principle

A multiple is defined as company price divided by the accounting figure of inter-
est, e.g., the price earnings ratio. It is obtained from an average of a group of
comparable companies (see Peemoller/Meister/Beckmann (2002), pp. 197 f.).—
This is the reason why the method of multiples is often called comparable com-
pany approach (see Peemoller/Meister/Beckmann (2002), pp. 197 f.).—
Therefore, the method of multiples does not include the optimization of an ob-
jective function and, hence, there is no associated quality assessment of the ex-

planatory power of multiples.

The importance of this method is made clear by the fact that 99 percent of ana-
lysts’ reports rely on multiple-based valuations (see Asquith/Mickhail/Au (2005),
p. 257). Moreover, the comparable company approach is used in nearly all initial

public offerings (see Beckmann/Meister/Meitner (2003), pp. 103 f.).

Technically, multiples could be applied to both prices and returns. However, giv-
en the scope of their application—valuation of corporations—using multiples

with returns is not used in both the literature and the industry.

Similarly, multiples can, in principle, be applied to cross-sectional or time series

data. However, the defining feature of multiples is the comparison with similar
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companies and not with the history of the company under consideration. Hence,

multiples are solely associated with a cross-sectional analysis.

Pricing by multiplies means that a multiple is multiplied by the corresponding ac-

counting figure at time t of the valuation object to determine its price at time t.
Such a procedure implies three things:

(i)  Only positive multiples can be interpreted in economic terms. Negative
multiples would revert the ordering of companies in that companies with a,
e.g., higher positive EBIT or sales would be regarded as inferior to compa-

nies with smaller EBIT or sales.

(ii)  Only positive accounting figures for both the company to be valued and the
group of comparable companies will yield to meaningful economic inter-
pretations. A negative accounting figure combined with a positive multiple

results in a negative price.

(iii) Combinations of negative multiples with negative accounting numbers lead
to completely implausible results: Companies with negative EBITs would

realize higher prices than companies with positive EBITs.

2.2.2  Existing Approaches in the Literature

Principally, approaches with one and those with several multiples exist.

2.2.2.1 Approaches with One Multiple

There are five different ways of estimating multiples from comparable compa-
nies (see Agrrawal/Borgman/Clark/Strong (2010), p. 12 ff.): the arithmetic mean
B. (e.g., Baker/Rubak (1999) or Liu/Nissim/Thomas (2002)), the geometric mean
By (e.g., Kim/Ritter (1999)), the harmonic mean S, (e.g., Baker/Rubak (1999) or
Liu/Nissim/Thomas (2002)), the median S,,(e.g., Alford (1992), Cheng/McNama-
ra (2000), or Kim/Ritter (1999)), and the ratio of averages B,,, (e.g., Beatty/
Riffe/Thompson (1999)).
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2.2.2.1.1 Arithmetic Mean

Using the arithmetic mean, the multiple is determined as

(2.23)

where B, > 0 by construction.

2.2.2.1.2 Geometric Mean

Using the geometric mean, the multiple is determined as

(2.24)
l n
= ([160) =enfi Y m )
i=1 i=1

where 8, > 0 by construction.

2.2.2.1.3 Harmonic Mean

Using the harmonic mean, the multiple is determined as

(2.25)

where £, > 0 by construction.

2.2.2.1.4 Median
Using the median, the multiple is determined as
(2.26)

Bmea = Median (&>
A;

where B,.q4 > 0 by construction.

25



Chapter Il

2.2.2.1.5 Ratio of Averages

Using the ratio of averages, the multiple is determined as

(2.27)

1
n =1 Vi
ﬁroa = 1

n
n i=1Ai

where f,,, > 0 by construction.

Therefore, the ratio of averages deviates from the computational procedures of
the other multiples: It computes averages first and then computes a ratio. The
other multiples calculate the ratio in the first step and average over these ratios

in the second step.

2.2.2.2 Approaches with Several Multiples

Existing models that use several multiples define the estimated prices as the
arithmetic mean of the separate single-factor price estimates (see Beatty/
Riffe/Thompson (1999), p. 26 and Cheng/McNamara (2000), p. 352). In this con-
nection, it is averaged over prices estimated with the help of different account-
ing figures A; ; (e.g., EBIT and sales) that use the same method of computing

means (e.g., arithmetic means).

Formally, the price of company C to be valued reads using its m accounting fig-

ures A¢ ; and multiples ﬁx,AJ. with x € {a, g, h, med, roa}:

(2.28)

PC,A(;_l = /3x,A1 'AC,1

P CAcm = ﬁx,Am ' AC,m

where PC,AC]. is the (estimated) price of company C using accounting figure A ;.

Then, the final price of company C can be computed as
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(2.29)

where m is the number of different accounting figures (like EBIT, sales etc.).

2.2.3  Possible Extensions to the Method of Multiples

“Possible extensions to the method of multiples” should follow the guidelines of
guasi-natural extensions developed in Section 2.1.3. Quasi-natural extensions do
not modify the core of multiples, i.e., that pricing by multiplies means that a mul-
tiple (i.e., company price divided by the accounting figure of interest, e.g., the
price earnings ratio) is multiplied by the corresponding accounting figure of the

valuation object.

However, possible extensions do not just average over different prices computed

with the help of different accounting figures using equally weighting, but also

(i)  average over different methods to compute means.—Nietert/Otto (2018)
show that different methods to compute means results in huge (computed)

price differences.

(ii)  average with an arbitrary weighting scheme.

2.2.3.1 Averaging over Prices Arising from Different Methods of
Computing Means

Formally, the price of company C to be valued reads using its accounting figure

Ac ; and multiple ﬁx,Aj with x € {a, g, h, med, roa}

(2.30)
PC,ACJ-,a = ﬁa,A]- “Acj
PC,ACJ-,g = ﬁg,Aj 'Ac,j

PC,AC_]-,h = .Bh,Aj “Acj
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PC,AC,j,med = Bmed,Aj “Acj

PC,AC‘j,roa = ﬁroa,Aj ' AC,j
Then, the final price of the company can be computed as

(2.31)

1 1
Pc = T Z PC,AC_j,x = T Z ,Bx,Aj “Acj

x€{a,g,h,med,roa} x€{a,g,h,med,roa}

or with an arbitrary weighting scheme We 4 x for the different methods of

computing means

(2.32)

Pc = We,Acjx Pc,ACJ-,x = WeAcjx” .Bx,Aj “Acj
x€f{a,g,h,med,roa} x€{a,g,h,med,roa}

where er{a,g,h,med,roa} Weacjx = 1.

2.2.3.2 Averaging over Prices Arising from Different Accounting
Figures and Different Methods of Computing Means

The most general form of the method of multiples combines averaging over pric-
es arising from using different accounting figures (Section 2.2.2.2) with those
arising from different methods of computing means using arbitrary weighting

schemes (Section 2.2.3.1). Then, it is obtained

— Prices from different accounting figures with arbitrary weighting scheme (Sec-
tion 2.2.2.2)
(2.29)

m m
Pc = § WeAcjx” PC,ACJ-,x = § We,Ac jx '.Bx,Aj “Ac
j=1 j=1

28



Chapter Il

— Prices from different methods computing means with arbitrary weighting
scheme (Section 2.2.3.1)
(2.32)

Pc = WeAcjx” PC,ACJ-,x = WeAcjx” .Bx,Aj “Acj
x€{a,g,h,med,roa} x€{a,g,h,med,roa}

Hence, it finally holds

(2.33)

m
P = z z Wc,acix " Peacx

x€{a,g,h,med,roa} j=1

m
= Z Z WeAcjx ﬂx,Aj Ac,;

x€{a,g,h,med,roa} j=1

m _
where er{a,g,h,med,roa} Zj:l Weacjx = 1.

2.3 Error Measures

2.3.1 Basic Principle

Error measures serve to evaluate and compare different model results that are
estimated with the help of regression approaches or the method of multiples
(e.g., Dittmann/Maug (2008)). As such, error measures do not determine factor
loadings but provide just a quality assessment of explanatory power. Conse-
qguently, the use of error measures often creates an inconsistency since factor

loadings and quality assessment are derived from different objective functions.

Since error measures evaluate the outcome of regression approaches or the
method of multiples, they can be applied to both cross-sectional and time series
data as well as prices and returns. Due to missing factor loadings, however, error

measure cannot price assets.
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2.3.2  Existing Approaches in the Literature

Error measures proceed as follows. In a first step, errors are calculated for each
asset i. In a second step, these errors are expressed as either percentage or loga-
rithmic errors (e.g., Dittmann/Maug (2008)). In a third step, the resulting distri-
bution of percentage or logarithmic errors is evaluated, e.g., based on descriptive
statistics (e.g., Dittmann/Maug (2008)). In other words, error measures do not
prescribe a certain descriptive statistic as evaluation criterion. Instead decision
makers possess full flexibility as to which descriptive statistic they regard as rele-
vant.—From that perspective, one can begin to fathom a certain connection to
regression analysis because ordinary least squares regressions use the variance

of errors as descriptive statistics.

2.3.2.1 Percentage Error

The percentage error elpCt is defined as the difference between the estimated
price (return) y; and the actual price (return) y; divided by the actual price (re-

turn) y; (see Dittmann/Maug (2008), p. 6):

(2.34)

¢t Vi—wi
el =

L

Vi

2.3.2.2 Logarithmic Error

The logarithmic error eilog is defined as the natural logarithm of the quotient of
the estimated price (return) ; and the actual price (return) y; (see

Dittmann/Maug (2008), p. 6):

(2.35)
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2.3.3 Possible Extensions to Error Measures

“Possible extensions to error measures” should follow the guidelines of quasi-
natural extensions developed in Section 2.1.3, i.e., do not modify the core of er-

ror measures: the use of percentage or logarithmic errors.

In this connection, quasi-natural extensions rest upon two ideas. Frist, the con-
sistent use of objective functions and error measures is recommended. This
means that an error measure should be minimized to obtain factor loadings so
that the objective function from which factor loadings are obtained and the qual-
ity assessment coincide. The determination of factor loadings in turn means that
pricing will become possible. Second, a meaningful descriptive statistic might be

selected.

2.3.3.1 L,-Norms of Percentage Errors

. . . Vi—Vi & .
Since the percentage error is defined as % = y—‘ each relation between ex-
i i

planatory variables A, and dependent variable y; fits the idea of a percentage

error when the error is additively connected to the explanatory variables, i.e.,

(2.36)

Vi = f(Ay, 0, 4, o Am) — &
and

(2.37)

9i=f(Ay, o, Ajy o, Ay)

This can be seen as follows:

(2.38)

9=y _ f(Ay, o Ay s Am) — (F(Ay, i Ay o A) — &) _ &
Vi Yi Vi

Thus (2.38) 57‘ is identical to gP¢t,
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However, an application argument favors a more specific, i.e., linear model be-

cause the determination of factor loadings is vastly simplified in a linear model.

Hence, it is specified

(2.39)
m
yi =Bo+ zAi,jﬁj — &
=1
and
(2.40)

m
Ji=Po+ ZAi,jﬂj
Jj=1

To be able to derive factor loadings, the asset-specific percentage errors must be
aggregated to make statements about the size of total mispricing. Then, it be-
comes, however, necessary avoiding that positive and negative deviations com-
pensate each other. Combining both requirements means L,-norms of percent-

age errors IIepCtllp must be used.

Based on the specification (2.40), factor loadings f3; are then determined by min-

imizing Ly,-norms of percentage errors IISPCtllp, ie.,

— if underestimations are not penalized differently from overestimations

|

— if underestimations are penalized differently from overestimations

(2.41)

SIS

min

n
Z Bo + X721 4B — Vi
:80':811"'1:8771

Vi

i=1

(2.42)
n m p
_ Bo + Xi=1 4B — v
min |(1—-1)-
Bo,B1,Bm it Vi
Yi<Bo+XiLy AijBj
- overestimation
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1
14

n m p

Bo + =1 4B — v
+T-
= Vi
yizBo+XiL, AijBj
underestimation -

2.3.3.2 L,-Norms of Logarithmic Errors

Using logarithmic errors means that over- and underestimations are not treated
equally because the natural logarithm is a concave function that
weights/penalizes underestimations more strongly than overestimations. From
that perspective, there will be always an asymmetric penalty irrespective of
whether an additional penalty term is supposed on over- and underestimations

(quantile regressions).

With this general remark in mind, logarithmic errors can be approached in a simi-

lar vein as percentage errors: Since the logarithmic error is defined as
In (%) = g;, each model fits logarithmic errors when the error is an exponential
i

function that is multiplicatively connected with the explanatory variables 4;, i.e.,

(2.43)

Vi = f(A1, o, Aj o) A) - exp{—g;}
and

(2.44)

9i=f(Ay A An)

This can be seen as follows:

(2.45)

9\ _ f(Ay, . 4, o Ar) ) B 1
I (}’i) = <f(A1, s Aj, ...,Am) -exp{—¢;} =1n (exp{—si})
=In(1) — In(exp{—¢;}) = ¢

Thus (2.45) ¢; is identical to £!°9.
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However, an application argument favors a more specific, i.e., exponential mod-
el: the determination of factor loadings is vastly simplified if a linear model—

after taking logarithm—is used.

Hence, it is specified

(2.46)
yi = exp(B) - H(Ai,j)ﬁj - exp(—¢;)
j=1
and
(2.47)

yi = exp(Bo) - H(Ai,j)ﬁj
=1

To be able to derive factor loadings, the asset-specific logarithmic errors must be
aggregated to make statements about the size of total mispricing. For that rea-

son, L,-norms of logarithmic errors IIEIOQIIP are used as objective function.

Based on the specification (2.47), factor loadings f3; are then determined by min-

imizing L,-norms of logarithmic errors ||sl°9||p, ie.,

— if underestimations are not penalized directly differently (but only indirectly

by means of the logarithm) from overestimations

(2.48)
n 1
m,, (2 G [
min Inl=
Bo,B1,-Bm | £ Vi
i=1
1
- n 2
= min ln 1. _ln NP
Bo.Brr-sBm Z' @) —In(yy)|
L i=1 ]
1
n m -
_ . . 5
= min In| exp(f,) - (Ai,j) ~In(y)
BO'Bl:'--;Bm : !
_":1 ]:1
i.e.,
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(2.49)

D=

p

n m
1, 2 o+ 2 () =)
i= =

— if underestimations are penalized directly differently (and indirectly by means

of the logarithm) from overestimations

(2.50)
n m p
i a=0 o+ ;ﬁjln(fli,j) ~In)
In(y)<Bo+X]L, Bjin(4; )
overestimation
1
T
n m p
+T- Z ﬁO + Z ﬂ]ln(AlJ) - ln(yl)
i=1 =
In(y2zBo+X 7L, Bjln(4; ;) =
underestimation
3 Elaboration of a Common Framework

for Empirical Asset Pricing Models

Taking the overview of empirical models developed in Section 2 as starting point,
a common framework for empirical asset pricing models can be developed. In
particular, it is determined which of the three different categories of statistical
methods—regression approaches, method of multiples, and error measures—

are conceptually similar, i.e., can be summarized to a superordinate category and

which approaches are conceptually different.
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3.1 Regression Approaches

3.1.1 Most General Regression Model

Problem
(2.20)
n m 14
min 1—-17)" z +ZA’.*.._ *
BOrﬁl»---»ﬁm ( ) 4 ﬁo . lr]ﬁ] yl
=1 ]=1
Vi <Bo+ZiLi A} ;Bj
overestimation
A
14
n m 14
T Y [ B
i=1 j=1
YizBo+Xi, Aj jBj
underestimation
with
(2.21)
<yik> <w1]1 wlln) (yl)
y';: wn,l o le,Tl yTL
=w
A;,l see A;’m (0)1’1 cee wl'n> Al’l s Al’m
Ay o Apm Wn,1 Wnn A4 Apm
=w
<€1> <w1’1 wl,n) <€1>
8‘;;. wn,l o wn,n Sn
=w

where w is a regular an symmetric matrix and it holds W~ = ww

and where residual ¢; reads
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(2.22)

m
e =\ Bo+t ) 4isfy |- vi
j=1
—_— ———

=y

is the most general problem since it combines L,-norms with different penalties
on over- and underestimations (quantile regressions) with dependence struc-

tures between error terms (generalized least squares regressions).

All regression approaches—whether existing approaches or extensions—can be

derived as special cases from (2.20).

3.1.2 Identifying Other Regression Models as Special
Cases of the Most General Regression Model

3.1.2.1 Existing Approaches in the Literature

— Ordinary least squares regression

Wy1 0 Win
< P >=identity matrix

Wnp1 7 Wpnp
p=2
=1

and summation from i = 1 to n without distinguishing between y; < 8, +

i=1Ai By and y; = Bo + Xz A ;-

— Weighted least squares regression

w1y v Wip
i~ i )= diagonal matrix
Wn1 7 Wpnp
p=2
T=1

and summation from i = 1 to n without distinguishing between y; < 8, +

Tm1AiBjand y; = By + XL, A B
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— Quantile regression

w11 - Wip

< : : ) = identity matrix
Wpq 0 Wypp

p=1

3.1.2.2 Possible Extensions to Regression Approaches

— Ly-norm
wl,l a)l’n
: i | = identity matrix
(Un,1 wTL,TL
=1

and summation from i = 1 to n without distinguishing between y; < f, +

je1Ai By and y = Bo + Xz A B

— Ly,-norm with different weighting of over- and underestimations

W11 7t Win
< : : )zidentity matrix

Wypq 0 Wypp

3.1.3  An Alternative Formulation of the General Regres-
sion Model (2.20)

Problem (2.20) makes mispricing only implicitly visible by means of the objective
function. If mispricing is to be made explicit, it is recommended introducing up-

per limits for over- and underestimations. This can be achieved as follows:

Based on (2.22) an overestimation can be identified as

m
g = .30+ZA>{J.Bj -y >0
=
S ——

=y

and an underestimation as
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m
em = Bo+ ) Aiyfy |- yi<0
j=1

which implies

g§t>0=>¢"=0
g <0=>¢g*=0

Now different upper bounds for over- and underestimations can be defined

(2.51)

& = —p; or—g Sy
where ui > 0 and y; = 0. Alternatively,
e/ | < uf
lei ™| < uy

The upper limits on over- and underestimations allow reinterpreting problem
(2.20) in a (slightly) more intuitive way: Factor loadings f8; are determined by
minimizing the Ly-norms of residuals where the upper limits of over- and under-
estimations should be chosen as tight as possible. Finally, a scaling factor x = 0
can be integrated into the objective function because such a scaling factor does
not change the outcome. With these modifications in mind, problem (2.20) can

be re-formulated as:

(2.52)

n n %
, min_ _x-|(1-1) -Z(#?)” +T-z(ui‘)”
Uiy seulin My, i=1 i=1
ﬁO'.Bl'""ﬁm - B
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s.t.

(2.53)

overestimation: &/ = B, + XL, A} ;B; —yi > 0
o+ +
£ =4

+ +

&’ < Un

underestimation: &/~ = B, + XL, A7 ;B —yi <0

& = —pyor-g <y

En = —Hn OF =&~ < Uy

(2.54)
uy =0,u7 20,4t =0,u;, 20,8 €ER, B ER, ..., ER

where x is greater than zero and denotes a scaling factor and there is either an
over- (g/* > 0) or an underestimation (¢;~ < 0) implying &f* >0=>¢'"=0

and g~ <0=>¢" =0.

3.2 Method of Multiples

3.2.1 Most General Model of the Method of Multiples

The most general model of the method of multiples is

(2.33)

m
P = § § Weacjx” PC,AC_j,x
x€{a,g,h,med,roa} j=1

m
= § § WeAcjx” .Bx,Aj A

x€{a,g,h,med,roa} j=1
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3.2.2 Identifying Other Methods of Multiples as Special
Cases of the Most General Model of the Method of
Multiples

If there is just one method of computing means, (2.33) will simplify to (2.29), if
there is just one accounting figure (2.33) simplifies to (2.32), and if there is just
one accounting figure and one method of computing means, (2.33) will simplify

to (2.28).

3.3 Error Measures

Both L,-norms of percentage errors (Problem (2.42)) and of logarithmic errors
(Problem (2.50)) can be written as special cases of the general regression model

(2.20).
— Lp-norm of percentage errors

W11 W1in

. . H . : 1 1 1 [

: " t | = identity matrix with w;; = - Vi=1,...,n.
wn,l cee wn,n

— Ly,-norm of logarithmic errors
Wy,1 0 Win
P i | = identity matrix
Wnpa1 0t Wpp

and variable transformation: In(y;) instead of y; and ln(Ai,j) instead of 4; ;.

3.4 Identification of the Superordinate Category

In connecting the method of multiples with regression approaches it can be ob-
served that the core multiple Formula (2.33) leads to a structure that is formally
similar to pricing in a regression context because wC,ACJ.,x-Bx,AJ. describe the
(general) factor loadings and A¢ ; the firm-specific factors. From that perspec-

tive, regression approaches and the method of multiples are comparable.
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Regression and multiples can, however, be only subsumed under one superordi-
nate category if their approach in determining factor loadings will be comparable
as well. The method of multiples does not involve an optimization to determine
multiples and, thus, can be understood as using an arbitrary objective function.
In particular, the objective function of the general regression model (2.52) in-
cluding its constraint (2.53) can be applied.—Again compatibility is obtained so
far. However, multiples are determined based on averaging and require in addi-
tion a non-negativity constraint on factor loadings (see Equations (2.23) to

(2.27)). These two constraints are absent with regression approaches.

Therefore, regression approaches and the method of multiples are structurally
different and cannot be aggregated to one superordinate category and the

method of multiples forms a category of its own.

Regression approaches and error measures can be subsumed under Problem

(2.20) meaning they can be summarized under one superordinate category.

4 Conclusion

In empirical asset pricing three different categories of statistical methods—
regression approaches, method of multiples, and error measures—are used.
However, these categories give rise to vastly different empirical price/return es-
timates. Hence, two immediate questions arise: (i) Wouldn’t it then be useful to
understand why valuation results are different or even identify superior statisti-
cal methods? (ii) Wouldn’t other statistical methods, which are not currently
used by empirical asset pricing, like minimizing maximum error or generalized

least squares regression lead to better pricing results?

Given these questions, the objectives of this Chapter Il are (i) to analyze which of
the existing empirical asset pricing approaches are conceptually similar, i.e., can

be summarized to a superordinate category; (ii) to present statistical methods
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that can be considered as quasi-natural extensions to existing empirical asset

pricing models.

The results of this chapter can be summarized as follows: First, regression ap-
proaches and error measures can be combined to one superordinate category
because they (can be formulated to) minimize functions of residuals. The method
of multiples, however, remains a separated category since the multiple—the fac-
tor loading—is not determined from an optimization problem.

Second, quasi-natural extensions of existing

(i)  regression approaches combine higher orders of residuals (L,-norms) with
different penalties on over- and underestimations (quantile regressions),
and dependence structures between error terms of different observations

(generalized least squares regressions).

(i)  methods of multiples compute prices as weighted average of prices arising
from different methods of computing means using different accounting

figures.

(iii) error measures allow for the computation of factor loadings from an objec-
tive function that is consistent with the error measure (= quality assess-

ment) used.

The practical implications of this chapter are twofold: First, it serves as an inter-
mediate step towards the evaluation of the implicit economic assumptions of the
empirical asset pricing approaches in Chapter IV. With the superordinate catego-
ry identified, only the superordinate category needs to be analyzed with respect
to its implicit economic assumptions. An examination of the whole variety of sta-
tistical methods is no longer needed. Second, its quasi-natural extensions to ex-
isting empirical asset pricing models have the potential of improving empirical

asset pricing models.
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Chapter lll: Economic Significance of Valuation
Differences of Different Regression Models

1 Introduction

The explanatory power of each empirical analysis depends on the chosen factors
(numbers and specific selection of explanatory variables) as well as the specific
statistical method used (e.g., ordinary least squares regression, quantile regres-
sion). The literature is aware of the importance of number and/or specification
of factors. E.g., the literature survey of Harvey/Liu/Zhu (2016) lists 316 predictors
for asset returns, Harvey/Liu (2019) even more than 400 factors (finance papers),
Appendix 4 contains an overview of factors analyzed in value relevance studies
(accounting papers). Less examined, but still adequately reflected in the litera-
ture is the question regarding the effect of specific statistical methods. Allen/
Singh/Powell (2011) raise the question how using quantile regression instead of
ordinary least squares regression will change the explanatory power of the fac-
tors identified in Fama/French (1993). Brown/Lo/Lys (1999) and Easton/
Sommers (2003) express their concern about a scale effect that might bias price
regressions and, hence, prefer weighted least squares over ordinary least
squares regression. Lewellen/Nagel/Shanken (2010) recommend using general-
ized least squares regression to improve empirical models statistically. Finally,
Barillas/Shanken (2018) employ an empirical nesting approach. If, e.g., the CAPM
and the Fama/French (1993) three factor model were equivalent regarding the
intercept (alpha is equal to zero), the CAPM would be favored because it was the
more parsimonious model.—All these papers analyzing factors and specific sta-
tistical methods are concerned with explanatory power of the statistical methods
why they can be regarded as dealing with statistical significance of fac-

tors/specific statistical methods.

Economic relevance of factors/specific statistical methods, on the other hand, is

far less analyzed and, hence, understood. Economic significance regarding differ-
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ent numbers of factors/specific statistical methods comprises on the one hand
the question how and not just whether (as with statistical significance) the
choice of different numbers of factors and/or specific empirical models changes
stock prices or returns; on the other hand the interplay between factors and spe-
cific statistical methods, i.e., whether some explanatory factors induce greater
price changes when combined with specific statistical methods than other fac-
tors. The literature on socially responsible investments (SRI) e.g., Bauer/
Koedijk/Otten (2005), Bollen (2007), Renneboog/Ter Horst/Zhang (2008), Hong/
Kacperczyk (2009), Nofsinger/Varma (2014), and lIbikunle/Steffen (2017), indi-
rectly addresses economic relevance of factors. It uses with the CAPM,
Fama/French (1993), and Carhart (1997) three different empirical models to
identify return differences between conventional and socially responsible in-
vestments to take the influence of different factors on returns into account. The
literature on multiples is more explicit regarding economic relevance of factors
and specific statistical methods: Beatty/Riffe/Thompson (1999), Cheng/McNama-
ra (2000), and Schreiner (2007) average valuation results for several accounting
figures (e.g., EBIT and sales multiples) because they are aware that different fac-
tors translate into different company prices. Nietert/Otto (2018) analyze valua-
tion differences that arise from using different key statistics (e.g., EBIT or sales),
the criterion of finding peers, and the method how multiples of comparable

companies are aggregated (e.g., arithmetic or geometric average).

This less than desirable analysis of the economic significance of factors/specific
statistical methods is somewhat puzzling: on the one hand, because price differ-
ences are the decisive aspect of valuation models in practice and not statistical
significance. Nobody will pay a higher price for a company just because a specific
valuation method produces a high out-of-sample R2. On the other hand, because
The American Statistical Association (2016) points out that business decisions
should not be based only on whether a p-value passes a specific threshold since
statistical significance (p-value) cannot measure the size of an effect or the im-

portance of a result.
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Therefore, it is the objective of this Chapter Ill to analyze the economic signifi-

cance of different factors/specific statistical methods.

To achieve this objective, cross-sectional regression models with accounting fig-
ures as explanatory variables are used. More specifically, the factors from the
value relevance and multiple literature are taken and combined with the stand-
ard statistical methods of the empirical asset pricing and value relevance litera-
ture, i.e., ordinary least squares, weighted least squares, and quantile regression.
In addition, the role of statistical methods is analyzed with equal importance to
the role of factors and the interplay between factors and statistical methods.—
Regarding statistical significance the literature puts visibly more importance on

factors than on statistical methods.

The results of this chapter can be summarized as follows:

First, economic significance regarding different factors/specific statistical meth-
ods addresses the question how and not just whether (as with statistical signifi-
cance) the choice of different factors/specific statistical methods influences
company prices/returns and consists of two components: “magnitude” and “sim-
ilarity”. “Magnitude” focuses on the size of differences between prices/returns
that different factors/specific statistical methods produce. “Similarity” condenses
the cumulative relative frequency distribution of price/return differences into
one number and addresses the problem that moderate price/return differences

do not necessarily mean similar empirical models.

Second, “magnitude” shows for our data basis, i.e., company prices in the cross
section, that price differences are generally large. Only 13% of all factors/specific
statistical methods belong to the best category (price differences of 10% or less).
These price differences are primarily caused by specific statistical methods and

not so much by factors.

Third, “similarity” applied to our data basis illustrates that nearly all fac-
tors/specific statistical methods are dissimilar where statistical methods are pri-

marily responsible for this lack of similarity and factors play only a minor role.
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This chapter makes the following contribution compared to the literature:

First, this chapter introduces a systematic analysis of economic significance of
both factors and specific statistical methods. The literature on socially responsi-
ble investments only analyses a very limited number of factors (Fama/French
(1993) and Carhart (1997) as extensions to the CAPM) and does not consider dif-
ferent regression models as in Allen/Singh/Powell (2011). The accounting litera-
ture (see Molls/StrauR (2007) or Appendix 4 for a rather comprehensive over-
view) analyzes different regressions, but just with respect to statistical signifi-
cance and not economic significance. Moreover, the interplay between factors
and specific statistical methods is ignored. In this respect the literature on multi-
ples (e.g., Nietert/Otto (2018)) is able to partially step in. Yet multiples can by
construction not handle regressions. Hand/Coyne/Green/Zhang (2017) compare
price estimates based on discounted cash flow and residual income approaches,
i.e., focus on factors, but do not consider regressions. Finally, this chapter com-
pares with Europe, U.S., and BRIC three regions. The literature on socially re-
sponsible investments (value relevance of accounting figures) focuses on individ-
ual countries to be able to elaborate the diversification disadvantage of socially

responsible investments (effects of country-specific financial accounting rules).

Second, this chapter develops a test procedure regarding economic relevance of
factors/specific statistical methods. The literature so far has: with Gibbons/
Ross/Shanken (1989) a statistical test with respect to statistical significance of
factors; with Barillas/Shanken (2018) an empirical nesting approach that allows
to identify superior models, i.e., models that are equivalent regarding the inter-
cept (alpha is equal to zero), but more parsimonious and, therefore, better, be-

cause they need less factors.

The remainder of this Chapter Ill is organized as follows: Section 2 outlines the
design of the analysis. Section 3 describes data set and data cleaning. The results
of the empirical analysis are contained in Section 4. Section 5 concludes this

chapter.

47



Chapter Il

2 Design of the Analysis

To be able to analyze the economic significance regarding different numbers of
factors/specific statistical methods, a two-step procedure is required.—Note in

|II

this connection that we use the phrase “empirical model” as superordinate cate-
gory that is decomposed into two components: factors and specific statistical

methods (e.g., ordinary least squares regression).

In a first step, a (theoretical) evaluation criterion regarding economic significance
must be developed. In a second step, factors/specific statistical methods must be
selected to compute company prices/returns, thus creating the data basis for the

application of the evaluation criterion.

2.1 Developing an Evaluation Criterion Regarding
Economic Significance (First Step)

2.1.1 Definition of Economic Significance

Economic significance regarding different factors/specific statistical methods ad-
dresses the question how and not just whether (as with statistical significance)
the choice of different factors/specific statistical methods influences company

prices/returns.

It comprises clearly the magnitude of the price/return differences between dif-
ferent factors/specific statistical methods. Specifically, “magnitude” offers the
following deeper insights: Are there few large (outliers) and otherwise small dif-
ferences or are differences generally large? Which factors/specific statistical
methods result in higher, which in lower prices/returns? Can differences be ob-

served irrespective of industries, regions, and years?

While “magnitude” stresses the differences between factors/specific statistical

methods, i.e., focuses on dissimilarities, it cannot capture adequately the flip side
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of differences, namely similarity. E.g., many small differences between two em-
pirical models might lead to the conclusion that these models are not different.
Not different does, however, not necessarily mean that these two empirical
models are similar. In fact, the two empirical models could be not different, but
also not similar. Therefore, “similarity” analyzes: Are there certain combinations
of factors/specific statistical methods that are always similar and others that are
always dissimilar? Is the degree of similarity between factors/specific statistical

methods constant over various industries, regions, and years?

In summary, economic significance is defined to answer the following two ques-

tions:

(i)  What is the magnitude of the price/return differences between different

factors/specific statistical methods?

(i)  What factors/specific statistical methods are similar regarding their

price/return differences?

2.1.2 General Requirements for an Evaluation Criterion
Regarding Economic Significance

To be able to evaluate economic significance, i.e., to answer the questions re-
garding “magnitude” and “similarity”, an evaluation criterion must meet the fol-

lowing two requirements:

(i)  All differences between factors/specific statistical methods must be judged

simultaneously.

(i)  The sign of the differences between factors/specific statistical methods

matters.

When analyzing “magnitude” both requirements (i) and (ii) advocate a direct ac-
cess to differences and no aggregation because this would lead to a loss in in-
formation. Aggregated differences, namely, can neither distinguish between

many small and few large differences (requirement (i)) nor identify fac-
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tors/specific statistical methods that produce higher prices/returns than others
(requirement (ii)). Therefore, e.g., differences’ means or the often used statistical
criteria (out-of-sample) R? (e.g., Campbell/Thompson (2008)) or generalized least
squares R? (see Lewellen/Nagel/Shanken (2010), p. 183) will not work as evalua-

tion criterion regarding economic signiﬁcance.2

“Similarity” requires a slightly different treatment than “magnitude”. On the one
hand, detailed information on differences as captured by requirements (i) and (ii)
is also needed for “similarity”: Positive and negative differences must not be net-
ted because this would result in a wrong picture of “similarity”. Moreover, the
distribution of differences—one big and many small versus many medium-sized
differences—is important to judge “similarity”. For both reasons again neither
differences’ means nor (out-of-sample) R? are good criteria to measure “similari-
ty”. On the other hand, differences must be evaluated in total and to that end

possibly aggregated to make a statement on “similarity”.

2.1.3 Derivation of an Evaluation Criterion Regarding
Economic Significance

2.1.3.1 Common Basis for Measuring “Magnitude” and “Similari-
ty”

Core of both “magnitude” and “similarity” is the difference between the esti-
mated company prices/returns. Therefore, a formalization of the difference is
the common basis for applying “magnitude” and “similarity” and, hence, for

judging economic significance.

In this connection it is recommended normalizing differences since a large differ-
ence in combination with a large company price/return appears to be less prob-
lematic than in combination with a small company price/return. The current

price/return of the company is a good choice as numeraire. Using the current

> Note in addition that also a technical aspect argues against the use of (out-of-sample) R’

(Out-of-sample) R” relies on the variance of errors which will not be adequate if, e.g., quantile
regression is considered: There, the sum of the absolute values of errors should be used as
quality measure and not their variance.
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price/return means that a uniform numeraire is used in all calculations and,
therefore, comparability across all specific statistical methods is enabled. If the
company price/return of one reference statistical method is used as numeraire,
only results regarding different factors for this reference method can be com-
pared. Comparisons between results of factors from statistical methods that do
not contain the reference method cannot be made because the numeraire dif-

fers.
Formalizing these ideas, the following ratio can be defined for each company C;:

(3.1)

yCi,stat.meth.j - yCi,stat.methTef

Ye;

ratioc,j =

where yci,smmeth,j denotes the company price/return estimated based on the
statistical method j, yci,stat_methref the company price/return estimated based
on the reference statistical method ref, and y., the current price/return of the

company.

A ratioc, ; of zero signifies no difference between company prices/returns calcu-
lated by statistical method j and the reference statistical method ref. On the
other hand, a ratioci_j of, e.g., 1 means that the difference between the two es-
timated company prices/returns is as large as the current company price/return.

In this respect, a ratioc, ; of 1 can be regarded as very large difference.

Finally, note three aspects regarding Ratio (3.1). First, ratioc, ; possesses a trian-

gular structure, i.e., e.g., ﬁC,Quant(q) - ﬁC,WLS (PC,WLS is the price estimated with
the help of the reference regression weighted least squares) returns the same
result apart from the sign as ﬁC_WLS - PC_Quant(q) (PC,Quant(q) is the price esti-
mated with the help of the reference regression quantile regression). However,
since we are interested in analyzing which factors/specific statistical methods
produce high and which low prices/returns, we compute all ratios, not just those
of the upper or lower triangle. Second, Ratio (3.1) is a (normalized) price/return

difference and, thus, has some similarity to alpha. Yet recognize the completely

51



Chapter Il

different intention behind both measures: aIpha3 portrays the difference be-
tween estimated and actual prices/returns, whereas Ratio (3.1) depicts the dif-
ference between prices/returns estimated with the help of two different empiri-
cal models. Third, Ratio (3.1) just describes the difference between pric-
es/returns of different empirical models. It has no connotation in the sense of
“better/worse empirical model” since Ratio (3.1) neither measures against a
price/return derived from a “true” pricing model nor tries to reproduce current
prices/returns. For the same reason, phrases like “over-“ or “underestimation”

are not used.

2.1.3.2 “Magnitude”

To infer the evaluation criterion “magnitude” of economic significance from Ra-
tio (3.1), the relative frequency distribution of Ratio (3.1) for all companies under
consideration is computed. By using Ratio (3.1)’s relative frequency distribution,
all information regarding size and sign of differences is provided without a loss of
information and requirements (i) and (ii) of Section 2.1.2 are met. In addition,
since one particular Ratio (3.1) refers to just one statistical method j/reference
statistical method-combination, frequency distributions (for all companies) must
be determined for all statistical method j/reference statistical method-combina-

tions.

Therefore, a better overview of results regarding “magnitude” will be achieved if

the relative frequency distribution is condensed to few classes:
0% < Ratio(3.1) <10% and —10% < Ratio(3.1) < 0%

10% < Ratio(3.1) <50% and —50% < Ratio(3.1) <-10%

To be more precise, there are two different types of alphas in the literature: on the one hand,
Jensen’s (original) alpha and, as special case, the alpha in the analyses of socially responsible
investments; on the other hand, the alpha in factor models/predictably approaches. In the
latter type of models alphas should be zero because the model is tested in-sample and should
fully explain stock returns. Jensen’s (original) alpha as well as the alpha in the socially respon-
sible investment-type of models is determined out-of-sample and used as measure of invest-
ment quality: Investors should seek positive alpha stocks.
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50% < Ratio (3.1) <100% and —100% < Ratio (3.1) < —-50%
100% < Ratio (3.1) <200% and —200% < Ratio(3.1) < —-100%
200% < Ratio (3.1) <500% and —-500% < Ratio(3.1) < —-200%

Ratio (3.1) > 500% and Ratio (3.1) < —500%

To finish the design of the criterion “magnitude” of economic significance, a
bound must be defined that separates low and, thus, acceptable “magnitudes”
from high (inacceptable) “magnitudes”. Given that a Ratio (3.1) of 1 means that
the difference between the two estimated company prices/returns is as large as
the current company price/return, a size of 10% or less might be considered as
an acceptable “magnitude”. Absolute values of Ratio (3.1) that exceed 10% might

be seen as too high.

2.1.3.3 “Similarity”

To infer the evaluation criterion “similarity” of economic significance from Ratio
(3.1), start with the observation that two empirical models will be identical, i.e.,
perfectly similar, if they exhibit zero differences in prices/returns. The more dif-

ferences occur, the more dissimilar models will be.

To implement this intuition formally, a two-step procedure is applied. In a first
step, the relative frequency distribution is transformed into a cumulative relative
frequency distribution. To do this, company-specific Ratios (3.1) are sorted by

size and added on a percentage-weighted basis, i.e.,

(3.2)

n _ .
i=1 1ratiost (ratloci,j)

n

Prop(R) =

where 1,(z) denotes the value of the indicator function on a set A for variable z

and n is the number of companies in the sample.

By construction, Prop(R)
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()  is monotonically increasing in R and lies in the interval [0%, 100%)].

(ii)  indicates the percentage of companies which have a Ratio (3.1) less than or

equal to the value R.

In a second step, the cumulative relative frequency distribution (3.2) is trans-
formed into a measure of “similarity” with the help of the following procedure:
In the extreme case of perfect similarity there are no differences between two
empirical models. Then, Prop(R) shows a cumulative relative frequency distri-
bution function that is identical to a Dirac distribution, i.e., a function whose val-
ue is zero for Ratios (3.1) smaller than zero and one for Ratios (3.1) greater than
or equal to zero. This can be read as: 0% of the companies have different pric-
es/returns, and 100% of the companies have identical ones. Consequently, devia-
tions from perfect similarity can be identified as the area between the Dirac dis-

tribution (= ideal case) and the cumulative relative frequency distribution (3.2).

Formally, this measure of “similarity” can be computed as follows: For Ratios
(3.1) < 0 (company price/return of statistical method j is less than the company
price/return of the reference statistical method ref), the cumulative relative
frequency distribution function (3.2) is above the Dirac distribution (which has a

value of 0).

For Ratios (3.1) > 0 (company price/return of statistical method j is greater than
the company price/return of the reference statistical method ref), the cumula-
tive relative frequency distribution function (3.2) is below the Dirac distribution
(which has a value of 1). Therefore, both sub-areas are positive and can be added
to determine the total area that reflects the (normalized) difference of company
prices/returns estimated based on the statistical method j and the company
prices/returns estimated based on the reference statistical method ref. As
shown in Appendix 2, this area can be calculated as the arithmetic mean of the

absolute values of Ratio (3.1) for all companies:
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(3.3)
n
oD lrac
—_ ratio,. ;
n CiJ
=1

Area (3.3) is the evaluation criterion regarding “similarity” of economic signifi-
cance. If Area (3.3) is small, company prices/returns estimated based on the sta-
tistical method j and the company prices/returns estimated based on the refer-
ence statistical method ref will be similar, otherwise dissimilar. In other words,
the greater Area (3.3) is, the more dissimilar statistical method j and the refer-

ence statistical method ref will be.

To analyze all statistical method j/reference statistical method-combinations, a
histogram of Areas (3.3) is created that summarizes the values of Area (3.3) for

each statistical method j/reference statistical method-combination.

To finish the design of the criterion “similarity” of economic significance, a bound
must be defined that separates small Areas (3.3) and, thus, similar fac-
tors/specific statistical methods from dissimilar ones. However, a direct interpre-
tation of (3.3) proves impossible because (3.3) is primarily a formal measure and
gives no direct intuition as to how similar two empirical models are: Assume (3.3)
takes a value of 1. Does this mean that regression j is similar to the reference

statistical method ref?

To develop an intuition regarding acceptable sizes of Area (3.3), an interpretation
similar to the one of Ratio (3.1) would be helpful where differences were related

to current prices/returns and, thus, gave rise to an intuitive upper bound.

Such a relation does not exist® for the arithmetic mean (3.3). However, with the
help of the geometric mean such a relation can be established. Note that the ge-

ometric mean is a lower bound for the arithmetic mean, i.e., it holds

. . 1 . . 1 dif ferencec;
The arithmetic mean - ?=1|ratloc.j| reads in more detail -+ ?zlil =,
n i n

ve;

4

X dif ferencec, dif ferencec.
Aslongasy.. =0, it holds| ‘l = | ll and, thus,
Ci yc; ?-1376-
A = A
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arithmetic mean(|ratioci, ]D = geometric mean(|ratioci, ]|)

The geometric mean of |rati0ci‘j|, in turn, can be related to the geometric mean

of prices/returns:

(3.4)

n n

geometric mean(|ratioci,j|) = ’ 1_[|Tati0ci,j| = ' 1_[

|dif ferencec,|
yCi

n

[T, |dif ferencec,|

n/ n
i:]_YCi

_ geometric mean(|dif ferencec,|)

geometric mean(yc,)

(3.4) relates average differences to average prices/returns. Hence, it is the de-
sired economic intuition behind Area (3.3). Therefore, similar to the bound for

the “magnitude” (Ratio (3.1)) a bound of 10% again seems to be reasonable.

i Z?:l yCi
?=1|differenceci|
. n
n ln=1 yCi

lzn: |differenceci| - 1_2?=1|differenceci|
n & Ye; n
i=

n
1 arith. mean(|differenceci|)

n arith. mean(yci)

In other words, the arithmetic mean of differences divided by the arithmetic mean of compa-
ny prices/returns (second term) is meaningful. Unfortunately, this ratio is additionally divided
by the number of companies (first term). Hence, the lower bound for % : Z?=1|ratioci,j is so
low so that it cannot provide a meaningful economic judgement.

One final question must be clarified: When is Ye; > 0 given? If prices are considered, i.e.,
Y¢; = Pc,, the positivity always holds since prices of companies with limited liability are by
definition positive (only in insolvency do they equal zero). Returns, i.e., ¢, = R¢;¢¢+1, ON the

. . differencec_| |differencec.|
other hand can assume negative values. From that perspective, = > m L
ye; Yi—1Y¢;
cannot be guaranteed and will hold only if: y;, > 0 and Z?zlyci does not contain too many
negative or zero returns so that y¢, < i1 Y¢;; or: ¥¢; < 0 and XiL, y¢, does not contain too
many positive or zero returns so that y¢, > YL, y¢, (¢, is less negative than }i_; y¢,). Intui-
tively, these conditions will be met if in a positive (negative) return environment the sum of
returns of a portfolio exceeds (is less than) the return of one asset, a condition that is usually
met.
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In other words, Areas (3.3) up to 10% indicate that two statistical methods are
similar, Areas (3.3) greater that 10% can be interpreted as dissimilar models. The

greater Area (3.3) is, the more dissimilar two empirical models will be.

2.2 Accounting Characteristics as Factors and Re-
gressions as Specific Statistical Methods
(Second Step)

The evaluation criteria “magnitude” and “similarity” regarding economic signifi-
cance are broadly defined and, thus, can be applied to both financial and ac-
counting data consisting of both prices and returns. Nevertheless, to prepare for
an empirical application of our evaluation criteria, it is recommended narrowing
the scope of empirical models: Harvey/Liu/Zhu (2016) lists 316 predictors, Har-
vey/Liu (2019) even more than 400 factors for asset returns (finance papers),
Appendix 4 illustrates the different factors in value relevance studies (accounting
papers) together with the variety of specific statistical methods used in finance

and accounting papers.—It is impossible to analyze all these models.

We, therefore, restrict ourselves to accounting studies because accounting stud-
ies use far less factors (see Appendix 4) and, hence, leave room for the analysis
of specific statistical methods as well as the interplay between factors and specif-
ic statistical methods. With 316 factors on the other hand, the aspect of specific

statistical methods would just play a subordinate role.

Moreover, the focus on specific statistical methods as well as the interplay be-
tween factors and specific statistical methods advice not to invent any new em-
pirical model (as was done in Chapter Il with Ly-norms), but take exclusively well-
established empirical models from the literature. That way, we can be sure that
non-standard models do not bias our evaluation regarding economic signifi-
cance. More specifically, accounting characteristics from the value relevance and
multiple literature are taken to specify factors. Specific statistical methods are

captured with the help of the most frequently used regressions (see Appendix 4).
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2.2.1  Accounting Characteristics as Factors

One of the most comprehensive lists of accounting characteristics is contained in
Schreiner (2007), p. 39. Therefore, his collection of accounting figures is used
with one minor adjustment: The exact label of the accounting characteristics is
based on the label used in Thompson Reuters (see Thompson Reuters (2015))

and not on Schreiner (2007).

Important side note: All accounting characteristics are used to explain compa-

nies’ equity and not entity values.

Single-factor models

The accounting characteristics of Schreiner (2007) can immediately be translated
into the following single-factor models.—Translated is the keyword here because
Schreiner (2007) uses his factors to compute multiples and does not use them in

a regression context.

Model number Independent variable Regression equation

M1 Net Sales Or Revenues (SA) |y =, + B, - SA

M2 Gross Income (Gl) Yy =P+ PB1-GI
Earnings Before Interest,

M3 Taxes & Depreciation ¥y =po+ b1 EBITDA
(EBITDA)
Earnings Before InterestAnd | .

M4 Taxes (EBIT) y=PBo+pi EBIT

M5 Earnings Before Taxes (EBT) | y = By, + B, - EBT

M6 Earnings (E) Yy=po+p1 E

M7 Total Assets (TA) y=po+p1 - TA
Book Value Of Common Eg- | .

M8 uity (B) y= .BO + .81 "B
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Model number Independent variable Regression equation
M9 Invested Capital (IC) Y=o+ p1-IC
M10 Operating Cash Flow (OCF) | ¥ = 8, + 1 - OCF
M11 Ordinary Cash Dividends (D) | y = o+ ;D

Table 3.1: List of single-factor models

where y is a symbol that comprises prices/returns and "~ denotes estimation.

Multi-factor models

For the multi-factor models, a direct translation of Schreiner’s (2007) factors is
impossible: Multiples just use one factor, whereas for multi-factor models com-

binations of factors must be chosen.

To construct multi-factor models, however, value relevance studies in general
and, in particular, Ohlson (1995), p. 661 prove helpful: Ohlson (1995) uses earn-
ings (component from the income statement), book values (component from the
balance sheet), and dividends (component from the cash flow statement) as ex-
planatory variables of firm’s market value. We follow his idea and develop multi-
factor models that consist of all three variables as well as multi-factor models
that are based on any combination of two out of the three variables. Finally, a

model with all 11 independent variables is considered.

Model number Independent variables Regression equation

Earnings (E)

M12 Book Value Of Common Eg- y=Bo+B1-E+p,-B
uity (B)

Earnings (E) £ D
M13 V=B84 B+ E+ B -
Ordinary Cash Dividends (D) V=Foth &
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Model number Independent variables Regression equation

Book Value Of Common Eg-
M14 uity (B) 9=PBy+pPL-B+pBy-D
Ordinary Cash Dividends (D)

Earnings (E)

Book Value Of Common Eq- | 7 Botpi-E
M15 . +B; - B

uity (B) 4B, D

3

Ordinary Cash Dividends (D)

Net Sales Or Revenues (SA)

Gross Income (Gl)

Earnings Before Interest,

Taxes & Depreciation §=PBo+ Py SA

(EBITDA) +5, - GI

Earnings Before Interest +B3 - EBITDA

And Taxes (EBIT) +B4 - EBIT

. +fs - EBT

M16 Earnings Before Taxes (EBT) +B.-E

Earnings (E) +B,-TA

Total Assets (TA) +PBs - B

Book Value Of Common Eg- +By0 - OCF

uity (B) +B,, - D

Invested Capital (IC)
Operating Cash Flow (OCF)
Ordinary Cash Dividends (D)

Table 3.2: List of multi-factor models

2.2.2  Regressions as Specific Statistical Methods

Specific statistical methods are captured on the one hand by means of ordinary
and weighted least squares regressions because they are the most frequently
used statistical methods in empirical asset pricing (see Appendix 4). Moreover,
weighted least squares regressions are interesting since they can correct for het-
eroscedasticity of error terms by eliminating the scale effect (see Easton/
Sommers (2003), Formula (2), p. 42 and Brown/Lo/Lys (1999), Formula (15), p.

105). On the other hand, quantile regressions are considered for two reasons
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event though they have—with the exception of Allen/Singh/Powell (2011)—not
been used in empirical asset pricing. First, quantile regressions possess some nice
economic features as Chapter IV will show. Second, they are able to analyze the
extreme outcomes in the tail of a distribution by allowing to weight over- and

underestimations differently (see Allen/Singh/Powell (2011)).

In summary, the following regressions are used to specify the term “specific sta-

tistical methods”:

Ordinary least squares regression

— Weighted least squares regression

Quantile regression with 7 = 0.25

— Quantile regression with T = 0.50 (median regression)

Quantile regression with 7 = 0.75

2.2.3  Further Restrictions on the Empirical Models Ana-
lyzed

Even the restriction to accounting data done in Section 2.2.1 leaves many empir-
ical models to be analyzed: prices and returns in time series or cross section.
Therefore, narrowing further down the class of empirical models to be analyzed

is strongly recommended.

First, regarding the question of price or return models, we choose price models
for two reasons. On the one hand, empirical finance papers tend to focus more
on returns, whereas accounting papers are more interested in prices (see Ap-
pendix 4). Since we have chosen accounting data, this argument favors price
models. On the other hand, Kothari/Zimmermann (1995) and Brown/Lo/Lys
(1999) show empirically that returns possess better econometric properties, but
prices produce less biased earnings responses.—Since we are interested in eco-
nomic and not statistical significance, the argument of better econometric prop-

erties of returns weights less than the higher economic content of prices.
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Second regarding cross-sectional versus time series analysis, we take cross-
sectional analysis.—Appendix 4 shows that cross section of prices is far more
common in the accounting literature. Hence, choosing cross-sectional analysis
prevents our analysis of economic significance from becoming marginal as it

would be the case with time series of prices.

2.2.4  Exact Procedure of Determining Company Prices

Company prices are determined out-of-sample, i.e., company i’s price (P;,

i € {1,...,n}) and its accounting characteristic j (4; ;, j € {1, ..., m}) are not in-

J?
cluded in the cross-sectional estimation of the regression coefficients. Once the
regression coefficients are determined in the cross section, company i's price is

calculated as

Pi=Bo+ B Aps+ -+ B Aim

Each of the 16 models described in Section 2.2.1 is now estimated using each of
the 5 regressions described in Section 2.2.2, giving a total of 80 possible different

prices for company i.

3 Data Set and Data Cleaning

3.1 Data Set

To apply our evaluation criteria of economic significance in general and, in par-
ticular, to elaborate the valuation differences between different factors/specific

statistical methods, we use the following data set:

First, companies are taken whose Industry Classification Benchmark (see London
Stock Exchange Group plc (2016)) code begins with 2 (“Industrials”) or 3 (“Con-

sumer Goods”) because traditional accounting characteristics should have the
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highest explanatory power with regard to company prices in these industries. Fi-
nancials, e.g., do not have meaningful sales that could be compared to compa-
nies in other industries or the depreciation of loans would not be comparable to
the depreciation of buildings. With the help of the four-digit Industry Classifica-
tion Benchmark codes it is possible to divide the companies into 10 industries, 19

supersectors, 41 sectors and 114 subsectors.

Second, companies contained in three different regional indices are used:
Thompson Reuters Europe, Thompson Reuters United States and Thompson
Reuters BRIC (see Thompson Reuters (2016)). The separate consideration of
these three different regions makes it possible to detect and not to mix up po-
tential differences in the stock markets and accounting standards and to check
the results of this study for their robustness. Europe and the U.S. are used be-
cause the majority of existing empirical studies are based on U.S. companies
(see, e.g., the survey papers of Harvey/Liu/Zhu (2016), Harvey/Liu (2019), and
Dechow/Ge/Schrand (2010)). Europe and emerging markets, however, gain im-

portance (see, e.g., Molls/Straul (2007) and Outa/Ozili/Eisenberg (2017)).
Third, the years 2010 to 2014 are considered to examine intertemporal stability.

In summary, the resulting data set consists of 30 partial data sets comprising two

industries, three regions, and five years.

Prices and accounting characteristics (see Section 2.2.1) are taken from Thomson

Reuters Worldscope.

3.2 Data Cleaning

Data cleaning comprises the following steps:

First, currency-dependent variables are expressed in Euro, i.e., the automatic
conversion of Thomson Reuters Worldscope is used to ensure that they are

comparable across the companies.
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Second, yearly data is used, i.e., market prices and accounting figures are based
on the same day, namely the end of the financial year. This means that prices at
different days are used for different companies.—Since we use cross-sectional
regression, this fact is technically innocuous. Economically, we believe that ho-
mogenizing the date of market prices and accounting data is a better idea than
explaining companies’ end of the year prices (identical date for all companies)
with accounting characteristics that come from different dates due to compa-

nies’ different fiscal years.

Third, all companies are eliminated that contain negative accounting figures be-
tween 2010 and 2014. The literature (e.g., the pioneering paper of Collins/
Pincus/Xie (1999) and, more recently, Balachandran/Mohanram (2011), Barth/
Landsman/Lang/Williams (2012), Givoly/Hayn/Katz (2017), and Baboukardos
(2018)) indicates that negative accounting characteristics might lead to a bias in

pricing.

After data cleaning, the following numbers of observations remain in the data

set:

Data set description Data set label Number of | Number of
companies | companies
before data | after data

cleaning cleaning

European industrials 2010 01_EUROPE_2010_2 321 254

U.S. industrials 2010 02_USA_2010_2 353 160

BRIC industrials 2010 03_BRIC_2010_2 173 136

European industrials 2011 04 EUROPE_2011 2 322 269

U.S. industrials 2011 05 USA 2011 2 364 177

BRIC industrials 2011 06_BRIC 2011 2 170 126

European industrials 2012 07_EUROPE_2012_2 337 240

U.S. industrials 2012 08_USA_2012_2 376 190

BRIC industrials 2012 09_BRIC_2012_2 179 135
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Data set description Data set label Number of | Number of
companies | companies
before data | after data

cleaning cleaning

European industrials 2013 10_EUROPE_2013_2 352 232

U.S. industrials 2013 11_USA 2013_2 384 200

BRIC industrials 2013 12 BRIC_2013_2 181 126

European industrials 2014 13_EUROPE_2014 2 365 235

U.S. industrials 2014 14 USA_2014 2 397 222

BRIC industrials 2014 15 BRIC_2014 2 179 123

European consumer goods 16_EUROPE_2010_3 159 110

companies 2010 - - -

U'.S. consumer goods compa- 17 USA 2010 3 175 32

nies 2010 - - -

BBIC consumer goods compa- 18 BRIC 2010 3 117 77

nies 2010 - - -

European consumer goods 19 EUROPE_2011_3 163 120

companies 2011

U'.S. consumer goods compa- 20 USA 2011 3 182 92

nies 2011 - - -

BBIC consumer goods compa- 21 BRIC 2011 3 119 80

nies 2011 - - -

European consumer goods 22_EUROPE_2012_3 162 110

companies 2012 - - -

U..S. consumer goods compa- 23 USA 2012 3 183 91

nies 2012 - - -

BBIC consumer goods compa- 24 BRIC 2012 3 124 90

nies 2012 - - -

European consumer goods | o ¢\;papE 2013 3 173 118

companies 2013 - - -

U'.S. consumer goods compa- 26_USA_2013_3 190 100

nies 2013

BRIC consumer goods compa- 27 BRIC_2013_3 175 90

nies 2013
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Data set description Data set label Number of | Number of
companies | companies
before data | after data

cleaning cleaning

European consumer goods | ¢ ¢;ppE 2014 3 180 115

companies 2014 - - -

U.S. consumer goods compa-

. 29 _USA 2014 3 190 102

nies 2014

BBIC consumer goods compa- 30 BRIC 2014 3 122 35

nies 2014 - - -

Table 3.3:

Number of companies in each data set before and after data cleaning

Table 3.3 shows that the number of companies n is always visibly greater than

the number of accounting figures m (with maximum m = 11).

4 Results of the Empirical Analysis

To implement our evaluation criterion regarding economic significance of differ-
ent factors/specific statistical methods developed in Section 2.1, its components
“magnitude” and “similarity” are determined for the data set outlined in Section

3.

All computations are performed with RStudio Version 1.1.463 resting upon R ver-

sion 3.6.0 (see R Core Team (2019)) using the following packages:
— quantreg (version 5.38) for quantile regressions (function rq)

— stats (version 3.6.0) for OLS and WLS regressions (function Im)
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4.1 Construction Principle Behind the Ensuing
Figures

The ensuing figures of Sections 4.2 and 4.3 are histograms of Ratio (3.1) or Area
(3.3) respectively. The exact construction principle behind these histograms,

however, deserves some illustration.

Assume that values have been computed for the following companies U with the

help of factors; and regressions:

U; factor; OLS U; factor; OLS U; factors OLS
U; factor; WLS U; factor; WLS U, factors WLS
U: factor; OLS U: factor; OLS U: factors OLS

U: factor; WLS

U factor; WLS

Uz factors WLS

To analyze the role of regression, e.g., OLS, the following Ratios (3.1) are com-

puted
U, factor; WLS — U, factor; OLS U, factor, WLS — U, factor, OLS U, factor; WLS — U, factor; OLS
market price U, market price Uy market price U,
U, factor; WLS — U, factor, OLS U, factor, WLS — U, factor, OLS U, factor; WLS — U, factor; OLS
market price U, market price U, market price U,

These six ratios form the basis of the histogram computation.

In a similar vein, factors are examined; consider, e.g., factor;:

U, factor; WLS — U, factor; OLS U, factor; WLS — U, factor, OLS

market price U, market price U,
U, factor, OLS — U, factor; WLS U, factor; OLS — U, factor; WLS

market price U; market price U,

These four (two different) ratios are used to compute histograms.

4.2 “Magnitude” of Price Differences Between
Different Factors/Regressions

Before detailed results on “magnitude” are presented, an overview and, that
way, a first impression might be helpful. Then, the role of factors as well as the
role of regressions are analyzed and, finally, robustness analyses with respect to

industry, region, and year are conducted.
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4.2.1 Overall Results
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Figure 3.1:  Histogram of the absolute values of price differences between different statistical
methods measured with the help of |Ratio (3.1)|
Maximum difference: 10,079%

Figure 3.1 shows that only 13% of |Ratio (3.1)| computed across all models be-
long to the category of “acceptable magnitude” (|Ratio (3.1)| assumes values of
10% or less, see Section 2.1.3.2). On the other hand, 12% of all ratios exhibit a
value of more than 200%, i.e., price differences that are more than two times

greater than companies’ current prices.

In the light of Figure 3.1 it becomes clear that price differences between fac-
tors/regressions are not caused by few outliers and are otherwise small. Instead,

price differences are generally large.

However, if there are so few differences less than 10% and so many large price
differences, the question arises what causes these price differences. In other
words, it becomes necessary to analyze in detail the factors of Section 2.2.1 and
the specific regressions of Section 2.2.2 to examine whether selected fac-
tors/regressions are responsible for these price differences or whether all fac-

tors/regressions contribute rather equally.
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4.2.2 The Role of Factors

4.2.2.1 Factors in General

relative frequency
%)
g

[ T

10% 50% 100% 200% 500% >500%

EM1I EM2 EM32 EMA EM5 BEM6E BEM7 EMB
M9 EMI0mMI1MI12 0 MI3 0 MI4A M5 0 M16

Figure 3.2:  Histogram of the absolute values of price differences between different statistical
methods measured with the help of |Ratio (3.1)| broken down by factors
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)
Maximum difference: single-factor models: 10,079% (M9); two-factor models:
4,918% (M12); three-factor-model: 2,319%; 11-factor model: 3,979%

Figure 3.2 illustrates that all factors produce large price differences. In detail, the
following observations from Figure 3.2 are worth mentioning: Compared to the
benchmark of 13% (12%) from the overview Figure 3.1 in the category “less than
10%” (“greater than 200%”), the multi-factor models M12 to M16 fare better
with a percentage of M12: 15% (8%), M13: 16% (7%), M14: 15% (9%), M15: 17%
(6%), and M16: 20% (5%). From the one-factor models, only M5 15% (8%) and
M6 13% (8%) do well compared to the 13% (12%)-benchmark. On the other
hand, models M1: 8% (19%), M7: 9% (21%), and M9: 9% (21%) produce the

worst values in the category “less than 10%” (“greater than 200%").

In summary, the factor choice is of high economic significance for company valu-
ation regarding the component “magnitude” of price differences. The fact that all
factors produce large price differences can be interpreted as different factors

contribute differently to company prices.
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4.2.2.2 Factors when Controlled for Regressions

From Figure 3.2 it remains an open question how the interplay between factors
and regressions influences the high economic significance of the factor choice.
E.g., maybe the factor choice is of economic significance just for ordinary least
squares regressions but not for the other regressions.—To answer this question,

Figure 3.2 is analyzed for each regression separately.

Regarding the economic significance of factors when controlled for regressions,
it is obtained: For the OLS versus WLS, OLS versus Quantile (0.25), OLS versus
Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile
(0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile
(0.50) versus Quantile (0.75) different factors do not matter. The low number in
the best category “10% or less” is caused by the regression leaving only a minor
influential potential to the factor choice as the following (exemplary) figures il-

lustrates—all figures can be found in Appendix 5.1.1:

50% -
45% -
40% -
35% -
30% -
25% -
20% -
15% -
10% -
5% -
0% -

relative frequency

10% 50% 100% 200% 500% >500%

EM1 EM2 EM3 EM4 EM5 EM6e EM7 EMS8
MO EM10EM11 = M12 B M13 = M14 0 M15 5 M16

Figure 3.3:  Histogram of the absolute values of price differences between method WLS with
reference OLS measured with the help of |Ratio (3.1)| broken down by factors
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

The factor influence is different with OLS versus Quantile (0.50) and WLS versus

Quantile (0.25) regressions:
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Histogram of the absolute values of price differences between method Quantile
(0.50) with reference OLS measured with the help of |Ratio (3.1)| broken down
by factors

M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

10% 50% 100% 200% 500% >500%

EM1 EM2 EM3 EM4 EM5 EM6e EM7 EMS8
EMS EM10EmMI11 ®MI12 EM13 5 M14 - M15 = M16

Histogram of the absolute values of price differences between method Quantile
(0.25) with reference WLS measured with the help of |Ratio (3.1)| broken down
by factors

M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

In these cases, the statistical methods do not induce big price differences why

the factor choice influences economic significance. This can be seen in particular
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from Figure 3.4: M7, M8, and M9 have a by 50% smaller percentage in the best
category “10% or less” than M4, M5, M6 or the multi-factor models M12 to M16.

4.2.3 The Role of Regressions

4.2.3.1 Regressions in General
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EOLS ®EWILS Quantile (0.25) ®Quantile (0.50) = Quantile (0.75)

Figure 3.6  Histogram of the absolute values of price differences between different statistical
methods measured with the help of |Ratio (3.1)| broken down by the statistical
method chosen as reference
Maximum difference: from OLS: 8,318%; from WLS: 10,012%; from Quantile
(0.25): 10,079%; from Quantile (0.50): 9,279%; from Quantile (0.75): 10,079%

According to Figure 3.6 all regressions are responsible for large price differences.
In detail, the following observations from Figure 3.6 are worth mentioning: Com-
pared to the benchmark of 13% from the overview Figure 3.1 in the category
“less than 10%” OLS: 14%, WLS: 15%, and Quantile (0.25): 16% fare best, Quan-
tile (0.50): 12% and Quantile (0.75): 7% worst. Regarding the category “greater
than 200%”, it is obtained: WLS: 11%, Quantile (0.25): 10%, Quantile (0.50): 8%
are good, OLS: 18% and Quantile (0.75): 12% are bad because they exceed the

benchmark percentage of 12%.

In summary, the regression choice is of high economic significance for company

valuation regarding the component “magnitude” of price differences.
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4.2.3.2 Regressions when Controlled for Factors

Section 4.2.2.2 seems to indicate that regressions are of higher economic signifi-
cance than factors. This guess must be checked in this section by analyzing the
interplay between regressions and factors. To that end, Figure 3.6 is analyzed for

each factor separately.

Regarding the economic significance of regressions when controlled for factors,
it is obtained: For the OLS versus WLS, OLS versus Quantile (0.25), OLS versus
Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile
(0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile
(0.50) versus Quantile (0.75) different factors do not matter, i.e., they do change
the big price differences that these regressions produce. For OLS versus Quantile
(0.50) and WLS versus Quantile (0.25) moderate differences are observed that
are again not altered by factors as the following (exemplary) figure illustrates—

all figures can be found in Appendix 5.1.2:
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Figure 3.7:  Histogram of the absolute values of price differences for M4 measured with the
help of |Ratio (3.1)]

Figure 3.7 complements and confirms nicely the findings of Section 4.2.2.2 ,Fac-

tors when Controlled for Regressions”.
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4.2.3.3 Regressions that Generate High or Low Prices

As last step to understand the influence of regressions we analyze whether some
regressions generate generally higher or lower prices than other regressions. The
economic background of this analysis is that, e.g., buyers and sellers of compa-
nies have different interest in pricing (buyers: low price; sellers: high price) and,

thus, might want to know what regression supports their views.

The following relations between prices and regressions are observable—see Ap-

pendix 5.1.3 for a detailed graphical analysis:

Regression used as reference
Quantile Quantile Quantile
oLs WLS
(0.25) (0.50) (0.75)
oLS - higher higher hlgher/ hlgher/
ambiguous | ambiguous
3 WLS lower = ambiguous lower lower
=
©
C .
c Quantile lower ambiguous - lower lower
g (0.25) &
(%]
g
oo .
1) Quantile lower/ . .
I (0.50) TS higher higher lower
Quantile lower/ . . .
(0.75) AT higher higher higher
Table 3.4:  Comparison of the sign of Ratio (3.1) to identify regressions that translate into

high or low prices

Hints how to read Table 3.4: Table 3.4 computes the difference between prices of
regressions analyzed and prices of regressions used as reference. E.g., “lower”
means that the regression analyzed produces lower prices than the regression
used as reference, e.g., WLS-prices are lower than OLS-prices.

According to Table 3.4, OLS and Quantile (0.75) regressions deliver higher prices
than WLS und Quantile (0.25) regressions. In fact, OLS regressions tend to deliver
the highest prices of all approaches, whereas WLS and Quantile (0.25) regres-
sions tend to produce the lowest prices of all regressions. This statement is true
irrespective of the factors considered (see Appendix 5.1.3). Ambiguity on the
other hand might be seen as an indication that these statistical methods are

somewhat similar.
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Finally, the results regarding the sign of Ratio (3.1) for the three quantile regres-
sions—prices do not necessarily rise with quantiles—deserve a clarifying com-
ment. High (low) quantile regressions determine betas in a way so that estimated
prices rarely fall below (increase above) current prices. In other words, in-sample
high (low) quantile regressions produce high (low) prices by construction. How-
ever, out-of-sample this might not be true due to quantile crossing in the outly-
ing regions of the design space (see, e.g., Koenker (2005), pp. 55 f.). Therefore,
the intuition that higher quantiles lead to higher prices can be regarded as good

working hypothesis, but cannot be taken as always given.

4.2.4 Robustness Check: Role of Industries, Regions, and
Years

Note that the results regarding “magnitude” obtained so far are not driven by in-

dustry, region, or year.
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Figure 3.8:  Histogram of the absolute values of price differences between different statistical
methods measured with the help of |Ratio (3.1)| broken down by industry
Maximum difference: industrials: 7,821%; consumer goods: 10,079%
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Figure 3.8 clarifies that both industrials and consumer goods exhibit a low per-

centage of differences in the best category “10% or less” and, hence, a similar

pattern as in the overview Figure 3.1.

In other words, economic significance of factors and regressions regarding

“magnitude” remains valid even if controlled for industries.

— Region
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Figure 3.9:

10% 50% 100% 200% 500% >500%
B EUROPE mU.S. BRIC
Histogram of the absolute values of price differences between different statistical

methods measured with the help of |Ratio (3.1)| broken down by region
Maximum difference: Europe: 8,278%; U.S.: 6,054%; BRIC: 10,079%

According to Figure 3.9, low percentage of differences in the best category “10%

or less” remains small even for the U.S. (16%) where BRIC produces generally

lower values in the best category. Therefore, potential differences in the stock

market efficiency and accounting standards in different regions do not change

the patterns as in the overview Figure 3.1.

In other words, economic significance of factors and regressions regarding

“magnitude” remains valid even if controlled for regions.
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— Year
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Figure 3.10: Histogram of the absolute values of price differences between different statistical
methods measured with the help of |Ratio (3.1)| broken down by year
Maximum difference: 2010: 7,821%; 2011: 9,847%; 2012: 10,079%; 2013: 8,728% ;
2014: 8,189%

Figure 3.10 illustrates that potentially different stock market conditions in differ-
ent years do not change the patterns as in the overview Figure 3.1 regarding
model generated price differences: The percentage of differences in the best

category “10% or less” does not exceed 15% in any year between 2010 and 2014.

In other words, economic significance of factors and regressions regarding

“magnitude” remains valid even if controlled for years.

4.3 “Similarity” of Different Factors/Regressions

While “magnitude” stresses the differences between factors/regressions, i.e., fo-
cuses on dissimilarities, “similarity” focuses on the common aspects of fac-
tors/regressions. The corresponding nature of “magnitude” and “similarity”, i.e.,
both components of economic significance, can be illustrated best with the help

of some important results regarding “magnitude” from Section 4.2:
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The analysis of differences with the help of “magnitude” in the foregoing Section
4.2 suggests as intuition regarding “similarity”: (i) Models that exhibit a high per-
centage in the best category (“10% or less”), e.g., WLS versus Quantile (0.25) for
M4 in Figure 3.7, are similar; (ii) models where the sign of Ratio (3.1) is ambigu-

ous in Table 3.4, e.g., WLS versus Quantile (0.25), are similar.

However, this intuition is too crude since it cannot evaluate the higher/lower
cases of Table 3.4 and, of course, cannot systematically judge similarities be-
tween factors/regressions. E.g., what exact percentage in the best category

(“10% or less”) is required so that empirical models are classified as similar?

4.3.1 Overall Results
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Figure 3.11: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3)
Maximum size of the dissimilarity area: 1,079%

Figure 3.11 shows that only 2% of Area (3.3) computed across all models belong
to the category with the highest similarity (“Area (3.3) of size 10% or less”).
Therefore, it becomes clear that dissimilarities between different fac-
tors/regressions are not caused by few outliers and are otherwise small. Instead,
dissimilarities are generally large. In particular, Figure 3.11 illustrates that rules

of thumb like “OLS and median regressions should be similar because they both
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use mean values” or “models where the sign of Ratio (3.1) is ambiguous in Table

3.4, e.g., WLS versus Quantile (0.25), are similar” are not true.

However, if there are so few similarities in the best category (“10% or less”), the
guestion arises what causes these dissimilarities. In other words, it becomes
necessary to analyze in detail the factors of Section 2.2.1 and the regressions of
Section 2.2.2 to examine whether selected factors/regressions are responsible
for these dissimilarities or whether all factors/regressions contribute rather
equally. In particular, are there certain factors/regressions that are always similar
and others that are always dissimilar? Is the degree of similarity between fac-

tors/regressions constant over various industries, regions, and years?

4.3.2 The Role of Factors

4.3.2.1 Factors in General
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Figure 3.12: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3) broken down by factors
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)
Maximum size of the dissimilarity area: single-factor models: 1,079% (M9); two-
factor models: 494% (M12); three-factor-model: 384%; 11-factor model: 423%
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Figure 3.12 illustrates that all factors produce large dissimilarities. The fact that
some models do not have large differences in Ratio (3.1) does obviously not
mean that these models are similar. Notably, multi-factor models that produce
moderate differences measured by means of Ratio (3.1) are as dissimilar as one-

factor models which had large differences in the form of high Ratios (3.1).

In summary, the factor choice is of high economic significance for company valu-

ation regarding the component “similarity” of price differences.

4.3.2.2 Factors when Controlled for Regressions

The problem with Figure 3.12 is, however, that it commingles the influence of
factors/regressions on “similarity”. To be able to answer the question how the
interplay between factors and regressions influences “similarity”, Figure 3.12 is

examined for each regression separately.

Regarding the economic significance of factors when controlled for regressions,

it is obtained:

On the one hand, the analysis regarding “similarity” reproduces the results of
“magnitude” done in Section 4.2.2.2: OLS versus WLS, OLS versus Quantile (0.25),
OLS versus Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile
(0.75), Quantile (0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile
(0.75), and Quantile (0.50) versus Quantile (0.75) are irrespective of the specific
factors considered as dissimilar as the following (exemplary) figures illustrate—

all figures can be found in Appendix 5.1.4:
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Histogram of dissimilarities between method WLS with reference OLS measured
with the help of Area (3.3) broken down by factors

M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

On the other hand, the comparison “magnitude” between OLS und Quantile

(0.50) regressions in Figure 3.4 underestimates the dissimilarity between both

regressions even if it is controlled for factors as the ensuing Figure 3.14 illus-

trates:
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Figure 3.14:
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Histogram of dissimilarities between method Quantile (0.50) with reference OLS
measured with the help of Area (3.3) broken down by factors

M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

Finally, factors exert an effect on “similarity” of WLS versus Quantile (0.25). For 7

of 16 factors a percentage of more than 20% of the best “similarity” category

“10% or less” is achieved, for the other 9 factors such a percentage cannot be

achieved as Figure 3.15 demonstrates:
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Figure 3.15:
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Histogram of dissimilarities between method Quantile (0.25) with reference WLS
measured with the help of Area (3.3) broken down by factors

M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an
eleven-factor model (plus intercept)

The overall verdict of dissimilarity in Figure 3.12 regarding WLS versus Quantile

(0.25), thus, hides the influence of factors.
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4.3.3 The Role of Regressions

4.3.3.1 Regressions in General
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Figure 3.16: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3) broken down by the statistical method chosen as reference
model
Maximum difference: from OLS: 949%; from WLS: 1,079%; from Quantile (0.25):
1,036%; from Quantile (0.50): 908%; from Quantile (0.75): 1,079%

According to Figure 3.16 all regressions are responsible for dissimilarities mean-
ing that the regression choice is of high economic significance for company valu-

ation regarding the component “similarity”.

4.3.3.2 Regressions when Controlled for Factors

Section 4.3.3.1 seems to indicate that regressions are of higher economic signifi-
cance regarding the explanation of dissimilarities than factors. This guess must
be checked in this section by analyzing the interplay between regressions and

factors. To that end, Figure 3.16 is analyzed for each factor separately.

Regarding the economic significance of regressions when controlled for factors,
it is obtained: OLS versus WLS, OLS versus Quantile (0.25), OLS versus Quantile
(0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile (0.25)
versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile (0.50)
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versus Quantile (0.75) produce high dissimilarities irrespective of factors, i.e.,

factors do not neutralize the economic significance of regression as the following

(exemplary) figure illustrates—all figures can be found in Appendix 5.1.5:
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Histogram of dissimilarities for M1 measured with the help of Area (3.3)

Factors do not alter the dissimilarity results regarding OLS versus Quantile (0.50)

regressions. However, factors exert influence on the “similarity” of WLS versus

Quantile (0.25) regressions as the following (exemplary) figure illustrates—all

figures can be found in Appendix 5.1.5:
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Figure 3.18 indicates that in model M8 WLS and Quantile (0.25) are rather simi-

lar, which is not the case in model M1.

To be more precise regarding the phrase “rather similar”, high dissimilarity (per-
centage of the best category “10% or less” is equal to less than 20%) for WLS ver-
sus Quantile (0.25) is given for M1, M2, M3, M7, M9, M10, M11, M15, M16,
whereas moderate (percentage of the best category “10% or less” is equal to be-

tween 20% and 50%) dissimilarity holds for M4, M5, M6, M8, M12, M13, M14.

The overall verdict of dissimilarity in Figure 3.16 regarding WLS versus Quantile

(0.25), thus, hides the influence of factors.

4.3.4 Robustness Check: Role of Industries, Regions, and
Years

Note that the results regarding “similarity” obtained so far are not driven by in-

dustry, region, or year.
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Figure 3.19: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3) broken down by industry
Maximum size of the dissimilarity area: industrials: 650%; consumer goods:
1,079%
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Figure 3.19 clarifies that both industrials and consumer goods exhibit a low per-
centage of the best category “10% or less” and, hence, a similar pattern as in the

overview Figure 3.11.

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for industries.
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Figure 3.20: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3) broken down by region
Maximum size of the dissimilarity area: Europe: 929%; U.S.: 468%; BRIC: 1,079%

According to Figure 3.20, the percentage in the best category “10% or less” re-
mains small even for the U.S. (3% compared to 2% of overview Figure 3.11)
where BRIC produces generally higher dissimilarities (1% compared to 2% of
overview Figure 3.11). Therefore, potential differences in the stock market effi-
ciency and accounting standards in different regions do not change the patterns

as in the overview Figure 3.11.

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for regions.
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Figure 3.21: Histogram of dissimilarities between different statistical methods measured with
the help of Area (3.3) broken down by year
Maximum size of the dissimilarity area: 2010: 717%; 2011: 789%; 2012: 1,079%;
2013: 949%; 2014: 656%

Figure 3.21 illustrates that potentially different stock market conditions in differ-
ent years do not change the patterns as in the overview Figure 3.11 regarding
model generated dissimilarities: The size of Area (3.3) in the best category “10%

or less” does not exceed 3% in any year between 2010 and 2014.

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for years.

5 Conclusion

The explanatory power of each empirical analysis depends on the chosen factors
(numbers and specific selection of explanatory variables) as well as the specific
statistical method used (e.g., ordinary least squares regression, quantile regres-
sion). The literature is aware of the importance of factors/specific statistical

methods and, hence, analyzes the statistical significance of factors/specific sta-
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tistical methods. Economic relevance of factors/specific statistical methods, on

the other hand, is far less analyzed and, hence, understood.

Therefore, it is the objective of this Chapter Ill to analyze the economic signifi-
cance of different factors/specific statistical methods. To achieve this objective,
cross-sectional regression models with accounting figures as explanatory varia-

bles are used.

The results of this chapter can be summarized as follows:

First, economic significance regarding different factors/specific statistical meth-
ods addresses the question how and not just whether (as with statistical signifi-
cance) the choice of different factors/specific statistical methods influences
company prices/returns and consists of two components: “magnitude” and “sim-
ilarity”. “Magnitude” focuses on the size of differences between prices/returns
that different factors/specific statistical methods produce. “Similarity” condenses
the cumulative relative frequency distribution of price/return differences into
one number and addresses the problem that moderate price/return differences

do not necessarily mean similar empirical models.

Second, “magnitude” shows for our data basis, i.e., company prices in the cross
section, that price differences are generally large. Only 13% of all factors/specific
statistical methods belong to the best category (absolute values of price differ-
ences of 10% or less). These price differences are primarily caused by specific

statistical methods and not so much by factors.

Third, “similarity” applied to our data basis illustrates that nearly all fac-
tors/specific statistical methods are dissimilar where statistical methods are pri-

marily responsible for this lack of similarity and factors play only a minor role.

Given that the specific statistical method is the primary reason for both high
“magnitude” values and low ,similarity” degrees of empirical models, the specific
statistical method should be chosen carefully. This means, that an economic

model selection criterion would be helpful because economic valuation problems
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should be tackled using economic and not statistical criteria.—Such an economic

model evaluation criterion is developed in the ensuing Chapter IV.
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Chapter IV: Developing an Economic Model
Evaluation Criterion and Applying it to Selected
Empirical Asset Pricing Models

1 Introduction

Working with empirical models in general means that two fundamental ques-
tions must be answered: (i) What and how many factors, i.e., explanatory varia-
bles, should be used? (ii) What empirical model, i.e., ordinary least squares re-
gression, quantile regression etc., is to be applied?—Both questions are nowa-
days seen as critical. Harvey (2017), pp. 1413 f. argues that trying different em-
pirical models can be regarded as one form of p-hacking. The American Statistical
Association (2016) points out that business decisions should not be based only
on whether a p-value passes a specific threshold and that statistical significance
(p-value) cannot measure the size of an effect or the importance of a result. In
other words, for economic problems an economic model evaluation criterion is
desirable.—This chapter considers a sub-class of economic models: empirical as-

set pricing models.

No arbitrage provides a general guideline for economic model evaluation for
theoretical asset pricing models in that prices must be a linear function of their
future cash flows. Empirical asset pricing models, however, do not rely on pre-
sent values of cash flows, but on assumed relations between accounting charac-
teristics/factor returns and company prices/returns (see Chapter Il for an over-
view). For that reason, no theoretical guidelines regarding the components of
the model exist. In particular, there are neither hints regarding the number and
type of explanatory variables nor the specific empirical model (ordinary least
squares regression, quantile regression etc.). To make things worse, (i) Chapter llI
shows that there are huge differences in corporate values when different factors
and statistical methods are applied so that virtually arbitrary corporate values

can be justified. Nietert/Otto (2018) demonstrate that the same is true if the
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method of multiples is used to compute company prices. (ii) Moreover, there is a
recent trend in the literature (see Appendix 4), to use more complex and diverse
statistical methods. Initially, the literature used ordinary and partially weighted
least squares regressions. Now generalized least squares regressions gain im-
portance (see the explicit recommendation of Lewellen/Nagel/Shanken (2010),
p. 183 to use generalized least squares R?) together with sophisticated machine

learning (Gu/Kelly/Xiu (2018) and Barth/Li/McClure (2018)).

Given this high need for an economic model evaluation criterion, the objective of
this Chapter IV is twofold: (i) first develop an economic model evaluation criteri-

on; (ii) come up with an economic ranking of different empirical models.

To achieve this objective, the optimization problems of the empirical asset pric-
ing approaches (of Chapter Il) are transformed with the help of Lagrange duality
to their corresponding dual programs. The dual program contains the price of the
company in the objective function and, hence, possesses a clear economic inter-
pretation that can be related to arbitrage theory of theoretical asset pricing.
Based on the dual program a ranking of models can be derived in a sense that

the best models are those that use the most innocuous assumptions.
The results of this chapter can be summarized as follows:

First, the economic model evaluation criterion judges the implicit economic as-
sumptions revealed by computing the dual program along the two dimensions

compliance with the economic principle and institutional circumstances.

Second, applying the economic evaluation criterion to empirical models reveals
that regressions on cross section of prices can be regarded as acceptable from an
economic perspective, whereas regressions on cross section of returns and time
series models as well as the method of multiples do not comply with the eco-

nomic principle.

Third, within the group of cross-sectional price models quantile regression
proves to be the best model because it is able to offer a good approximation to

the economic principle and mimics best the institutional circumstances, in par-
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ticular, if the regression is run without a constant. On the other hand, statistically
more advanced models like generalized least squares regressions deteriorate the
implied economic content of models: They work with weighted prices; however

assets can only be purchased and sold at (unweighted) prices.
This chapter makes the following contribution compared to the literature.

First, both Harvey (2017), pp. 1413 f. and The American Statistical Association
(2016) advocate economic model evaluation criteria. This chapter makes a first
attempt at deriving such an economic model evaluation criterion by evaluating
empirical models based on economic/theoretic criteria like no arbi-
trage/economic principle. As opposed to our approach, model evaluation in the
literature still rests primarily on statistical criteria. (i) Black/Jensen/Scholes
(1972), p. 6 develop the standard quality assessment for empirical models: The
intercept of a regression (alpha) should not be significantly different from zero,
Gibbons/Ross/Shanken (1989) design the corresponding statistical test, Cochrane
(2005), p. 230 extends this test to heteroskedastic and autocorrelated errors. A
further development of alpha towards a better economic interpretation is the
squared Sharpe ratio of MacKinlay (1995), p. 6 in connection with Barillas/
Shanken (2017), pp. 1317 f.—However, Sharpe ratios are limited to p-o-
preferences which are known to miss arbitrage opportunities. Therefore, their
role as economic model evaluation criterion is doubtful. (ii) As purely statistical
criteria the out-of-sample R? (e.g., Campbell/Thompson (2008)) or the size of the
estimated slope coefficients (e.g., Lev/Zarowin (1999), p. 356) are used. Lewel-
len/Nagel/Shanken (2010) give prescriptions how to improve empirical models
statistically and explicitly recommend using generalized least squares R? (see
Lewellen/Nagel/Shanken (2010), p. 183). However, R? is not naturally applicable
to non-quadratic objective functions as in quantile regressions (see Allen/
Singh/Powell (2011)) or Classification and Regression Trees (CART) estimation
functions (see, e.g., Barth/Li/McClure (2018)) where CART is a non-parametric
estimation approach that does not require the researcher to specify the rela-
tion’s functional form. The most advanced paper regarding statistical method

evaluation, Barillas/Shanken (2018), employs an empirical nesting approach. If,
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e.g., the CAPM and the Fama/French (1993) three factor model were equivalent
regarding the intercept (alpha is equal to zero), the CAPM would be favored be-
cause it was the more parsimonious model.—All these approaches do not con-
sider an economic model evaluation criterion. (iii) Some papers use intuitive ar-
guments to justify particular statistical methods: Brown/Lo/Lys (1999) raise con-
cerns about the use of the coefficient of determination as a measure of value
relevance in price regressions because it might be biased due to a scale effect.
Allen/Singh/Powell (2011) deliberately use quantile regressions instead of ordi-
nary least squares regressions because quantile regressions are able to better
analyze the extreme outcomes in the tail of a distribution. Easton/Sommers
(2003) prefer weighted least squares regressions to deal with heteroscedastici-
ty.—Again, these arguments are intuitive, but lack an economic/theoretical rea-

soning, a gap that we fill with our economic model evaluation criterion.

Second, we provide an economic/theoretical argument for choosing prices over
returns as dependent variables in empirical asset pricing. Kothari/Zimmermann
(1995) were among the first to raise the question whether prices or returns
should be selected as dependent variables: They show empirically that returns
possess better econometric properties, prices produce less biased earnings re-
sponses. Brown/Lo/Lys (1999) reach similar results and Barth/Beaver/Landsman
(2001) conclude that price studies are interested in determining what is reflected
in firm value while return studies (price changes) are interested in determining
what is reflected in change in value over a specific period of time.—We provide a
theoretical analysis of price versus return as dependent variable and a model-

based justification of Kothari/Zimmermann’s (1995) statement.

Third, we apply duality theory to model evaluation in the field of empirical asset
pricing. That duality theory can be used to get a better understanding of linear
programming, in particular, production planning (see, e.g., Boyd/Vandenberghe
(2009), p. 240) is common knowledge in the literature. An application in empiri-
cal finance is rare, however. We are only aware of Wilhelm/Briining (1992) who
apply duality theory to identify the implicit economic assumptions in the field of

empirical term structure estimation.—This chapter is inspired by them.
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The remainder of this Chapter IV is organized as follows: Section 2 develops an
economic model evaluation criterion. Section 3 applies this criterion to various
models and identifies economically convincing empirical models. Section 4 con-

cludes this chapter.

2 Developing an Economic Model Evalua-
tion Criterion

Developing an economic model evaluation criterion means (i) revealing the im-
plicit economic assumptions of empirical asset pricing models and (ii) judging
them from an economic perspective.—Revealing the implicit economic assump-
tion is achieved using Lagrange duality. Judging the implicit economic assump-

tions is done by applying what we call economic dominance of models.

2.1 Components of the Economic Model Evalua-
tion Criterion

2.1.1 Lagrange Duality

The original economic application of (Lagrange) duality has been production
planning of companies (see, e.g., Boyd/Vandenberghe (2009), p. 240). Compa-
nies determine their optimal production program, i.e., the optimal numbers of
each product, by maximizing their contribution margin subject to resource con-
straints (= primal program). The corresponding dual program then identifies the
optimal costs for the company (subject to constraints). In other words, primal
and dual program approach the production planning problem from two different
directions (production numbers and costs) and thereby offer different economic
insights.—Exactly this different view of the dual program is what can be used to

reveal implicit economic assumptions. Hodges/Schaefer (1977) apply this view to
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determine discount factors on bond markets, Wilhelm/Briining (1992) to term

structure models, and we to empirical asset pricing models.

Using Lagrange duality in the context of empirical asset pricing models allows us
to circumvent one typical problem with empirical asset pricing models: The pri-
mal program—minimization of errors between estimated and actual values of a
variable—cannot be interpreted from an economic perspective because error
minimization is not an economic concept. The dual program, however, minimizes
assets’ acquisition costs subject to some constraints. At this point, an economic
interpretation becomes apparent since cost minimization is related to the eco-

nomic principle, i.e., an economic core concept.

Note that the dual program is not needed for pricing.—It just serves as a means
to reveal the implicit economic assumptions of the primal program. This is along
the lines of Wilhelm/Brining (1992), where the term structure can only be de-
termined from the primal but not from the dual program (see Wilhelm/Briining
(1992), Formula (26), p. 270). However, only with the help of the dual program

economic interpretations become possible.

2.1.2 Economic Dominance of Models

“Economic dominance of models” is our criterion to judge the implicit economic
assumptions revealed by computing the dual program and it is developed as fol-

lows:

All components of an empirical model (objective functions and constraints) must
be considered simultaneously and never the individual components separately
because objective function and constraint; to constraint, together form z + 1
goals to be judged when evaluating models. Transferring results from multi-goal
decision theory to economic model evaluation, a model is regarded to dominan-
te another model economically if it is better with respect to at least one goal, but
never worse with respect to all other goals. A model that is never better with re-

spect to one goal, but worse with respect to other goals is said to be economical-
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ly dominated.—Models that are not economically dominated are economically

efficient.

To finish the definition of economic dominance of models, the terms “bet-
ter/worse with respect to goals” must be clarified. “Better/worse” are developed

along two lines: (i) the economic principle; (ii) institutional circumstances.

The economic principle tries to achieve a given output with minimum input or
obtain with a given input maximum output. The economic principle is very gen-
eral because it does not depend on investor preferences and wealth situations.
In a financial environment the economic principle is reflected in arbitrage theory:
Investors strive at acquiring a given cash flow at the lowest possible price, again

independent of investor preferences and wealth situations.

In other words, the closer a model follows the idea of the economic principle, the
better the model is judged, i.e., the objective function should minimize input and

a subset of the constraints should characterize a given output.

“Better/worse” regarding institutional circumstances means that the model’s
constraints match the actual legal environment and market usages. E.g., if a
model has no short sale constraints, such a model is regarded as worse than a
model that has such constraints: Uncovered short sales are forbidden for stocks
(see Regulation (EU) No 236/2012, Article 12) and, hence, the model is not able
to reflect the legal environment properly. Covered short sales are allowed by the
EU Regulation. Nevertheless market usages require a certain amount of collat-
eral for securities lending. In other words, there is an implicit upper bound for
short sales meaning that a model without short sale constraints also fails to por-

tray market usages adequately.
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2.2 Computing Dual Programs and Identifying
Their Components

In a first step dual programs are computed for the superordinate categories of
models that have been identified in Chapter II. In a second step, their specific
components are discussed depending on whether cross section/time series of

prices/returns are considered.

2.2.1 Computing Dual Programs

2.2.1.1 Dual Program of the Superordinate Category Regression
Approaches

According to Appendix 1.2.4.2, the dual program reads

(4.1)
n
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=1
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2.2.1.2 Dual Program of the Superordinate Category Method of
Multiples

According to Appendix 1.3.4, the dual program reads

(4.3)
n m
min 2(/1*—/1-_)-yfk+1-2ﬁ2
A AT A A, 4 t L o2 Lt
ﬁl:--vﬁm =1 ]=1
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2.2.2 Components of Dual Programs

To characterize the components of dual programs it is necessary to distinguish
between cross-sectional and time series as well as price and return models. All
these types of models will result in slightly different interpretations of objective
functions and constraints that in turn might influence the economic evaluation of

the specific model.

Dependent and explanatory variables can directly be taken from the primal pro-
gram and, hence, fitted to the cross-sectional/time series/price/return frame-
work. The interpretation of the dual variables in the cross-sectional/time se-
ries/price/return framework is less simple because it cannot be taken from the
primal program. Hence, it is specified in a way so that the dual program gets the

best possible economic interpretation.
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2.2.2.1 Prices of Companies in the Cross Section

When prices of companies in the cross section are considered, it is known from
Chapter Il, Section 2.1.1 that the variable y;" in the primal (2.52) and dual (4.1)
program is equal to the price of company i at time t. The variables A;‘J- are ac-

counting figures, e.g., EBIT; ; (but not their growth rates) at time t.

Then, the dual variable A} (1;) can be interpreted as the number of purchases
(sales) of asset i at time ¢t, i.e., portfolio holdings. The interpretation of the dual
variable as portfolio holdings is motivated by the fact that portfolio holdings fit
well to a price/accounting figure framework.—Portfolio weights are better suited

to a return/growth rate setting.

2.2.2.1.1 Superordinate Category: Regression Approaches

Objective function

With dual variables specified as portfolio holdings, the objective function of the

dual program

(4.1)
n
min AF—210)-y!
A;,A;,...,A;,A;Z( ! i)y
i=1
reads:
(4.5)

m‘?v+ e Z(Nift ~ Nip) - Pl

The price of a portfolio is to be minimized. The portfolio itself is specified closer

with the help of the constraints (4.2).

Constraints on accounting characteristics

The constraint
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(4.2)
AA=21++4-2,=0

is specified as

(4.6)
N{ty=N{;+-+Nf =Ny, =0

and signifies that portfolio holdings must add to zero. In other words, purchases
must always be accompanied by short sales to achieve zero investment. Con-
straint (4.6) should, however, not be confused with a self-financing constraint
which states that the amount purchased is equal to the amount sold so that total

wealth (and not total portfolio holdings) is equal to zero.

The constraints on portfolio characteristics in the narrower sense

(4.2)
AI_AI,l -A ;,1 + -t /1:114:1,1 - /17_114:1,1 =0
MAL = A+ + Ay — A3 A5 = 0
reads
(4.7)

+ * — * + * — * _
Ni¢Af1e — NpgAiqe + o+ NppAn e — NpeAnae =0

+ A* - A* + A* - A* —
Ny Al e — NigAime + -+ Ny eAnme — NptAnme = 0

It states that in the portfolio each accounting figure A;, must be equal to zero.
Note that (4.7) captures the secondary objectives of the decision maker, whereas

(4.5) incorporates the primary objective.

Constraint on dual variables

The constraint (part of (4.2)) on dual variables can be specified as
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(4.8)
p—1
p

1 n p 1 n p P
1-0t7r- ) (NHPF T+ @7 ) (N )ﬁ] <x
| >0 >0

i.e., a constraint on portfolio holdings. Since x is an arbitrary positive scaling fac-
tor (see (2.52)), it influences the tightness of the portfolio holdings constraint:

The greater x is, the less is (4.8) binding.

2.2.2.1.2 Superordinate Category: Method of Multiples

Objective function

(4.9)

n 1 m
min AT —27)- -*+—'Z 2
A AT A, Zl( i i ) Vi 2 - ﬂ]
ﬁl!""ﬁm = /=

means that the price of a portfolio including the artefact 5 }Zlﬁjz is minimized.

Constraints on accounting characteristics

Such a constraint does not exist because multiples are determined directly from
accounting figures (see Chapter I, Equations (2.23) to (2.27) and Equation
(A1.20)) and then are integrated by means of price deviations into the objective

function.

Constraint on dual variables

Constraint (4.4) on dual variables

(4.10)

p—-1

1 n 1 n T
[(1 —OT Y (NPT + @ Z(N;t)%] <x

can now be interpreted as a constraint on portfolio holdings. Since x is an arbi-
trary positive scaling factor (see (2.52)), it influences the tightness of the portfo-

lio holdings constraint: The greater x is, the less is (4.10) binding.
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2.2.2.2 Other Cases

2.2.2.2.1 Returns of Companies in the Cross Section

When returns of companies in the cross section are considered, it is known from
Chapter Il, Section 2.1.1 that the variable y;" in the primal (2.52) and dual (4.1)
program is equal to the return or the return differential of company i at time t to
the riskless rate. The variables A’{J are either relative accounting figures or beta
factors determined from time series regressions (first step of the two-pass re-

gression).

Then, the dual variable A{r (A;) can be interpreted as the portfolio weight of pur-
chases (sales) of asset i. However, the portfolio weights’ time subscript is yet to

be clarified. To that end, start from investors’ (terminal) wealth equation
Witr = Nig " Presr + Nog s Pogyq +

or

Wi _ Nl,t ' Pl,t . Pl,t+1 n N2,t ' P2,t ] PZ,t+1 4o
Wi Wi P1,t Wi P2,t

This translates finally to

Nl,t ' Pl,t NZ,t ' P2,t
1+ Ry tre1 = —w (1 + Rl,t,t+1) + W (1 + R2,t,t+1) T+
t t
=Wt =Wyt

In other words, portfolio weights have a lag of one, i.e., the return between
times t and t + 1 is associated with portfolio weights of time t. This in turn
means that A7 (1;) are the portfolio weights at time t — 1 if return R;, is to be

explained.

With the now identified variables of the cross-sectional return model its compo-

nents can be specified.

Objective function

The dual program

103



Chapter IV

(4.1)
n
min A —A7) - y!
A;‘,A;,...,A;;,A;Z( t ()i
i=1
reads
(4.11)

n
: + — . *
min § (Wi,t—l _Wi,t—l) Rit 1t
i=1

+ - + -
Wit-1Wit-1-Wnt—1Wnit—1

The return of a portfolio of assets i to n is to be minimized.

Constraints on accounting characteristics

The constraint

(4.12)

Wit = Wieqg ot Wa g —Wee g =0
signifies that portfolio weights must add to zero.
The constraints on portfolio characteristics in the narrower sense
(4.13)
Wit 1A e = Wiem1 Al e+t Wae 1 An e — Wieo1An e = 0
Wit 1Al me = Wie—1Alme + o+ Woe 1 Anme — Wie—1Apme = 0

state that in the portfolio each accounting figure A;, must be equal to zero.—
Again these constraints on accounting figures capture decision makers’ second-

ary objectives.

Constraint on dual variables

The constraint (part of (4.2)) on dual variables
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(4.14)

p—-1

RN 1 » |7
(11—t 'Z(W;rt—1)p_1 + ()P Z(W;t—1)p_1 =X
i=1 i=1

can now be interpreted as a constraint on portfolio weights. Since x is an arbi-
trary positive scaling factor (see (2.52)), it influences the tightness of the portfo-

lio weights constraint: The greater x is, the less is (4.14) binding.

2.2.2.2.2 Prices of Companies in Time Series

When prices of companies in time series are considered, it is known from Chap-
ter 11, Section 2.1.1 that the variable y;" in the primal (2.52) and dual (4.1) pro-

gram is equal to the price of a company i at time 7. The variable A}"]-J denote ac-

counting figure j of company i at different points in time t.

Then, the dual variable A} (4;) can be interpreted as the portfolio holdings of

purchases (sales) of company i at time 7.

With the now identified variables of the time series price model its components

can be specified.

Objective function

The objective function of the dual program (4.1) reads

(4.15)

i.e., the price of company i at time 7 multiplied by portfolio holdings at time t is

minimized where time runs from 1to t.

Constraints on accounting characteristics

The constraint
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(4.16)
Ni_,l—l - Ni,_l + -+ Nl_,l—t - Nl,_t = 0

signifies that portfolio holdings over time (from time 1 to time t) must add to ze-

ro.
The constraints on portfolio characteristics in the narrower sense
(4.17)
+ * — * + g — A% _
Ni,lAi,l,l - Ni,lAi,l,l +ot Ni,tAi,l,t - Ni,tAi,l,t =0
+ * — * + * — * _
Ni1Aima = NigAijma + o+ NieAijme = NitAime = 0

states that the accounting figure j of company i at time T multiplied by portfolio

holdings at time T must be equal to zero over time where time runs from 1 to t.

Constraint on dual variables

The constraint (part of (4.2)) on dual variables

(4.18)

p—1

1 ¢ P 1 t P P
(1-1)tP- ) (NP T+ ()P (Ni})m] <x

can now be interpreted as a constraint on portfolio holdings: The sum of portfo-

lio holdings over time is not allowed to exceed x where time runs from 1 to t.

2.2.2.2.3 Returns of Companies in Time Series

When returns of companies in time series are considered, it is known from Chap-
ter 1l, Section 2.1.1 that the variable y;" in the primal (2.52) and dual (4.1) pro-
gram is equal to the return or return differential to the riskless rate of company i

*

at time 7. The variable Al,j,‘[

denotes returns of factor j at different points in time

T.
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Then, the dual variable 1} (A7) can be interpreted as the portfolio weight of pur-
chases (sales) of asset i at different point in time T with a lag of one, i.e., w;;_,

andw; ;.

With the now specified variables of the time series return model its components

can be specified.

Objective function

The objective function of the dual program (4.1) reads

(4.19)

w

+ mln Z(Wl‘[ 1~ iT‘r—l) ) (Ri,‘[ - rr)
t-1

lOW Lt 1Wl

i.e., the return differential to the riskless rate of company i at time T multiplied
by portfolio weights at time T — 1 is minimized where time runs fromOtot — 1

for portfolio weights and from 1 to t for returns.

Constraints on accounting characteristics

The constraint

(4.20)

+ - + -

Wio = Wig+ t Wi g =W =0
signifies that portfolio weights must add to zero over time.
The constraints on portfolio characteristics in the narrower sense

(4.21)

+ p* - A* + * - f—
WAl — WA+ wi Al —wi A1, =0

+ * - * —_
WioAm1 — lOA 1t +W1t 1Am, ¢ — Wit 1Am: =0

states that the weighted factor return j must be equal to zero over time.
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Note in this connection that it does not matter whether discrete or log re-
turn/growth rates (as an example, consider the variable MP(t) in Chen/Roll/Ross
(1986), p. 394 that is defined as the logarithm of the quotient of industrial pro-
duction) are used. Each explanatory variable gets its own equation in (4.21) and,

hence, different definitions of growth rates are not mixed in one equation.

Constraint on dual variables

The constraint (part of (4.2)) on dual variables

(4.22)

p—1

1 v 1S e
(1—-1)t-» 'Z(WJT—JP_I + (v)t-p- Z(Wfr—l)p_l =x
=1 =1

can now be interpreted as a constraint on portfolio weights: The sum of portfolio

weights over time is not allowed to exceed x where time runs fromOto t — 1.

2.3 Specification of the Economic Model Evalua-
tion Criterion

To be able to apply the economic model evaluation criterion as a benchmark,
i.e., as a collection of features that models should possess, it becomes necessary
to specify it in more detail. —Such a specification was impossible in Section 2.1
because there it has been unclear that, e.g., a constraint on portfolio holdings in
the dual program exists that must then be judged from an economic point of

view.

The specification of the economic model evaluation criterion develops along two
lines. First, economic principle and institutional circumstances must be specified
and connections with the components of the dual program (objective function,
constraints on, e.g., accounting figures, constraints on, e.g., portfolio holdings)
identified. That way, an economically convincing model can be established. Sec-

ond, economic dominance of models can actually be tested and a ranking of
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models can be carried out. In this connection, a relative (how good are models
compared to each other?) and an absolute ranking (are models acceptable at

all?) is provided.

2.3.1 Specification of the Economic Principle

The economic principle simply means that a given output should be obtained by
means of a minimum input or with a given input a maximum output should be
generated. In other words, goods should be bought as cheap as possible or sold
as expensive as possible. Such an approach is sometimes called “arbitration” (see
Munn (1983)). It is different from the free lunch of Harrison/Kreps (1979) where
investors are not interested in acquiring or selling a physical position. Instead, in-
vestors form a difference arbitrage to obtain a positive cash flow in at least one
point in time and state without requiring a negative cash flow in all other time

and state combinations.

If the economic principle is specified to the context of buying/selling companies,

it reads in more detail:

— For the buyer of a company
A buyer invests cash flow at time t to acquire the company and gets a future
cash flow stream in exchange. Alternatively, the cash flow stream can be ex-
pressed with the help of multi-period returns or approximated by accounting
characteristics at time t in a sense that accounting figures are observable and

are used as proxy for the unobservable future cash flow stream.

From that perspective there are two objectives for the buyer: (i) wealth at
time t and (ii) accounting characteristics at time t or cash flow at t + 1. Both
objectives are conflicting as a rule: A low investment at t leads to low cash
flows at time t + 1 or is accompanied by low accounting characteristics at
time t (otherwise the investment would not be low); a high investment at
time t leads to high cash flows at time t 4+ 1 or is associated with high ac-

counting characteristics at time t. To deal with this conflict of interests, the
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maximum principle of efficiency is applied, i.e., one objective (primary objec-
tive) is maximized subject to lower bounds on the other objectives (secondary
objectives). Maximizing the primary objective subject to lower bounds on the
secondary objectives guarantees that only efficient alternatives will be select-
ed. The primary objective is associated with wealth at time t, the secondary
objectives with the different accounting characteristics/cash flows. A buyer
consequently maximizes wealth at time t, which signifies minimizing the (pur-
chase) price of the company, subject to accounting characteristics/cash flows

greater than or equal to a lower bound.

For the seller of a company

Identically to the buyer, the seller of a company is interested in wealth at time
t and accounting characteristics at time t/a cash flow stream. However, max-
imizing wealth at time t means that the (sales) price of the company should
be as high as possible; the accounting characteristics/cash flow stream con-
straint must be formulated in a way so that the seller loses as few accounting
characteristics/cash flows as possible, i.e., accounting characteristics/cash

flows should be less than or equal to an upper bound.

From this specification of the economic principle several consequences regarding

the formulation of an economic model evaluation criterion follow. When judging

models from an economic perspective,

(i)

(ii)

objective function and constraints must be considered simultaneously and
not separately because they both together constitute decision makers’ ob-

jectives.

an actual company must be modelled (that is either be purchased or sold),

i.e., arbitration and not free lunch must be pursued.’

(iii) buyers’ and sellers’ point of views must be reflected. Both points of view

cannot be transformed into each other. Setting purchase = —sale leads to

By the way, whenever arbitration is implemented using all available assets on the market, it
will automatically be tested for a free lunch at time t since an accounting characteristic/cash
flow bound of zero of the free lunch is a special case of the lower bound on accounting char-
acteristic/cash flow in the case of arbitration.
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identical objective functions. However, this variable transformation cannot
adequately reflect the accounting characteristics/cash flow constraint,
namely that the buyer wants to obtain accounting characteristics/cash
flows greater than or equal to and the seller wants to abandon less than or

equal to a certain bound.®

2.3.2 Institutional Circumstances

Institutional circumstances refer to the constraints on portfolio holdings/weights
and can be decomposed into two groups: (i) legal environment and (ii) market

usages.

The legal environment forbids uncovered short sales of stocks (see Regulation
(EU) No 236/2012, Article 12). Of course, any assets already in possession can be
sold and covered short sales are allowed by the EU Regulation. In addition, there
are no limits on purchases of stocks assuming that companies are not subject to

capital adequacy regulation.

The legal environment, thus, imposes the following constraint on portfolio hold-

ings: The sales of stock i must be less than or equal to a lower bound, i.e.,

Ny <x; fori=1,..n

To see this, note:

— Decision problem from the buyer’s perspective:
mln NU t " PU t
Ny ! ’

st.Nye-Aye = A,
where Ny . denotes the numbers of company U purchased at time t, Py, the price of
company U at time t, Ay, company U’s accounting characteristic at time ¢, and A, the
lower bound on the accounting characteristic at time t.

— Decision problem from the seller’s perspective:
max Ng ¢ Py
Nsy ™ ’

S.t. NS,U,L’ - AU,L’ S /Tt

where Ng ; ; denotes the numbers of company U sold at time t.
Setting Ny = Ng ;;+ makes the objective functions coincide. However, the constraint will be
different.
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There is no explicit legal limit on portfolio weights because portfolio weights de-
pend on investor-specific wealth. However, limits on portfolio holdings can be re-

expressed as limits on weights as follows:

Ni,_t'Pi,t<xi_,t'Pi
Wy = W

Wit

,t .
fori=1,..n

Market usages might impose an upper limit on covered short sales because they
require a certain amount of collateral for securities lending. Such a limit is again
imposed on each asset i. Depending on the overall amount of short sales of indi-
vidual investors, individual investors might be confronted with different limits,
but it seems to be safe to argue that limits nevertheless will be imposed on indi-

vidual assets.

Moreover, market usages imply that there are market impact costs, i.e., large
amounts of purchases and/or (short) sales influence market prices. Market im-
pact costs might be linear (e.g., Kyle (1985)) or nonlinear in the amount traded
(e.g., Almgren/Thum/Hauptmann/Li (2005), Grinold (2006), and Gatheral (2010)).
The models, however, agree that market impact costs are asset-specific and de-

pend on the sign of the transaction (purchase or sale).

Finally, constraints on portfolio holdings are needed for technical reasons, name-
ly to find an optimal solution to the dual program. To satisfy the m constraints on
accounting characteristics, m assets are needed. The remaining n — m assets can
be used to obtain the m accounting characteristics at a more and more negative
price, i.e., to obtain an arbitrage profit. Constraints on portfolio holdings exactly

limit these arbitrage profits.

2.3.3  Relative and Absolutes Ranking of Models

When evaluating investment projects using net present value, usually a two-step
procedure is applied. In a first step, all investment project are eliminated whose

net present value is negative, i.e., that are from an absolute perspective disad-
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vantageous. In a second step, the remaining investment projects are ranked

based on the size of their positive net present value.

When ranking models we employ a similar procedure. Absolute ranking means
judging whether the models are acceptable when compared to the model evalu-
ation criterion (1) economic principle (Section 2.3.1 (i) to (iii)) and (2) institutional
circumstances (Section 2.3.2). In the context of absolute ranking it only matters
whether the criterion is met or not, the exact extent does not matter. Relative
ranking answers the question how good models are compared to each other.
Here, the exact extent matters of how far the model evaluation criterion (1) eco-
nomic principle (Section 2.3.1 (i) to (iii)) and (2) institutional circumstances (Sec-

tion 2.3.2) is met.

3 Applying the Economic Model Evalua-
tion Criterion

Intuitively, applying the economic model evaluation criterion means that the

best models are those that use the most innocuous assumptions.

3.1 Absolute Ranking of Empirical Asset Pricing
Models: Cross Section of Prices

3.1.1 Model Evaluation Criterion Economic Principle:
Section 2.3.1 (i) to (iii)

This model evaluation criterion comprises objective function ((4.5) for regression
approaches and (4.9) for the method of multiples) and accounting constraints
((4.7) for regression approaches and none for the method of multiples) of the

dual program.
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First, both regression approaches and the method of multiples address the pric-
ing problem in an indirect way: They determine regression coefficients or multi-
ples from a sample of companies by minimizing prices and apply them to the
company to be valued. From that perspective they do not minimize directly the
price of the company to be valued, as the criterion in Section 2.3.1 (i) suggests.
Note that such a behavior can be interpreted in parallel to Law-of-One-Price-
oriented pricing. There, a price functional is determined from a subset of assets
and applied to the cash flow to be valued. Here, regression coefficients/multiples

are determined from a subset of assets and applied to the company to be valued.

Second, minimizing prices subject to accounting constraints take all (primary and
secondary) objectives into account and not just the primary objective. However,
this indirect pricing is also responsible for the fact that the idea of a free lunch
and not an arbitration is followed: “accounting characteristics of the portfolio =
0” is used together with price minimization of the portfolio because the investor
is not interested in investing in a company, but only in generating an arbitrage
profit. Therefore, this pricing approach is not completely compelling in the light

of the criterion in Section 2.3.1 (ii) because it overlooks that additional gains
might be possible form arbitration. Multiples have an artefact % ;-”;1[3]-2 in the

objective function that is incompatible with the economic principle because it

does not solely minimize prices.

Third, by minimizing prices to determine regression coefficients, regression ap-
proaches take the buyers’ perspective. They cannot handle the sellers’ perspec-
tive and, hence, cannot deal with the criterion in Section 2.3.1 (iii). Note in this
connection that different weights T on over- and underestimations in the primal
program cannot capture buyers’ and sellers’ perspective because they do not en-
ter the objective function of the dual program. The method of multiples deter-
mines multiples by averaging over a group of companies. Therefore, it does not
explicitly take the buyers’ perspective. However, it cannot take the sellers’ per-

spective either and, thus, cannot handle the criterion in Section 2.3.1 (iii), too.
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3.1.2 Model Evaluation Criterion Institutional Circum-
stances: Section 2.3.2

This model evaluation criterion comprises constraints on portfolio holdings,
namely (4.6) and (4.8) for regression approaches and (4.10) for the method of

multiples.

Constraint (4.6) demands that the sum of portfolio holdings over all assets of the
portfolio must be equal to zero.—This should not be confused with a self-
financing constraint where investments are funded by sales. Here, just holdings
not holdings multiplied by price (= investments) are considered. This constraint
stems from the constant 5, of the regression. It cannot, however, be justified
from either (i) legal environment or (ii) market usages and, hence, clearly violates

the model evaluation criterion institutional circumstances in Section 2.3.2.

The constraints on portfolio holdings (4.8) and (4.10) are difficult to justify with
the help of the legal environment, i.e., short sale constraints, because these con-
straints are not based on individual assets. In addition, market usages cannot ra-
tionalize such a constraint. It is true that only moderate orders will be executed
at a given price. But market impact refers to transactions in individual asset i and
usually not to transactions in all assets. Therefore, these constraints on portfolio
holdings can be justified merely because they limit arbitrage profits.—In reality

infinite arbitrage profits are not observable.

In this connection, the question arises as to what type of constraint on portfolio
holdings results in the lowest price, i.e., allows the highest arbitrage profit? If we
define g = ﬁ, then monotonicity of L,-norms implies that ||-||,, < [I*ll4, for
q1 < q3. In other words, for g, the constraint on portfolio holdings (4.8) is less
restrictive since the left-hand side is less and the right-hand side is constant.
Moreover, q falls with increasing p (for p > 1, as can be seen from its first deriv-
ative). This means, an increase in p leads to a fall in g making ||-||, greater and

the constraint on portfolio holdings (4.8) more binding. A more binding con-

straint translates into higher prices, i.e., lower arbitrage profits. E.g., ordinary
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least squares regression p = 2 results in lower prices/higher arbitrage profits

than minimizing the maximum error (p = ).

3.1.3  Absolute Ranking of Empirical Asset Pricing Mod-
els: Cross Section of Prices

Having the results of the model evaluation criterion (i) economic principle (Sec-
tion 3.1.1) and (ii) institutional circumstances (Section 3.1.2) in mind, regression
models using cross section of prices can be regarded as barely acceptable from
an absolute ranking perspective: Indirect pricing, only consideration of free
lunches, but not arbitration, and focus on buyers’ perspective mean that the
economic principle is not fully implemented. On the other hand, at least the idea
of minimizing prices (subject to accounting constraints) is captured. The con-
straints on portfolio holdings cannot be justified fully by means of short shelling

constraints, but partially from the perspective of limited arbitrage profits.

Only constraint (4.6), the sum of portfolio holdings over all assets must be equal
to zero, cannot at all be justified by means of institutional circumstances.—
However, as Cochrane (2005), p. 236 points out cross-sectional regression can al-
so run without a constant meaning that this detrimental constraint can be re-

moved.

The method of multiples is not acceptable from an absolute ranking perspective
since there is an artefact in its objective function signifying that not solely prices

are minimized.

3.2 Absolute Ranking of Other Model Categories

3.2.1 Cross Section of Returns

Principally the results derived for cross section of prices carry over for cross sec-

tion of returns. However, the objective function
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(4.11)

min Z(Wlt 1~ Wit 1) Rit_1t

Wi AW e Wit -1 Wi e—1
is new and must be analyzed in more detail.

Plugging in for portfolio weights and returns, (4.11) modifies to

n N+ N_ . P* P*
mln 2 :( it—1" lt 1 Nig—q i,t—1> ( it 1>
+ - *
Ny e g NNt e N 145 Wi_1 Wi_1 Py

i,t—

i.e.,
(4.23)
n
+ —
. Ni,t—l - Ni,t—l "
. _ min, ~ ——F— P
N1,t—1JN1,t—1J---JNn,t—1JNn,t—1 =1 Wt—l
n _
_ <Nlt 1 Pi,t—l _ Ni,t—l ) Pi,t—l) 1
; Wiy Wiy

According to (4.23) the price of a portfolio is minimized where there is a certain
time lag: Portfolio holdings at t — 1 are multiplied—at least in the first term—
with prices at time t. However, prices at time t are not observable at time t — 1.
Hence, (4.23) implies that prices do not change between t — 1 and t if it should

possess a reasonable economic interpretation.

This time lag or rather the assumption of constant prices between t — 1 and t is
unrealistic. For that reason, cross section of returns is not acceptable from an ab-
solute ranking perspective. Put differently, (4.23) gives a theoretical justification
of Barth/Beaver/Landsman’s (2001) explanation that price studies are interested
in determining what is reflected in firm value while return studies (price changes)
are interested in determining what is reflected in change in value over a specific

period of time.

Side note: This result does not come at a surprise if minimization of returns is
considered from a no-arbitrage perspective. Approaches using Law-of-One-Price-
oriented pricing, like Black/Scholes (1973) argue as follows: A riskless portfolio
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that consists of an option and a risky asset must earn the same return as a risk-
less asset.—No return optimization is involved, just the application of the Law-of-
One-Price. Utility-oriented pricing like Cox/Ingersoll/Ross (1985) makes state-
ments regarding required return in a maximizing expected utility framework.

Again, no return optimization or constructing arbitration is employed.

3.2.2 Time Series Models

In our analysis of time series models we do not distinguish between price and re-

turn models as will soon become clear.

In time series models prices/returns of one asset i ((4.15) or (4.19)) are mini-
mized over time subject to constraints on accounting characteristics of one asset
i ((4.17) or (4.21)) over time. The constraint on portfolio holdings/weights ((4.18)

or (4.22)) also refers to sums of portfolio holdings/weights over time.

Analyzing prices and accounting characteristics/returns of one asset i over time
is, however, incompatible with the economic principle. The economic principle
constructs arbitrages at one point in time using several assets and not one asset
over time. Moreover, limits on portfolio holdings/weights of one asset i over

time do not coincide with the restriction that institutional circumstances impose.

For that reason, time series price and return models are not acceptable from an

absolute ranking perspective.

3.3 Relative Ranking of Empirical Asset Pricing
Models: Cross Section of Prices

Given the results of the absolute ranking, only cross-sectional price regressions
are (barely) acceptable using the economic model evaluation criterion. There-

fore, only this approach will be analyzed from a relative ranking perspective. The
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method of multiples as well as return and time series regression approaches will

be left out since they did not pass the absolute ranking.

To establish a relative ranking, it is proceeded as follows. In a first step, models
are identified that differ just between their respective objective functions, but
possess identical constraints. Since these models are different only with one
component (objective function), they can easily be examined regarding econom-
ic model-dominance: A model whose objective function is better than the one of
other models regarding the economic principle, is model-dominant, the other
models are model-dominated and, hence, model-inefficient. In a second step,
the set of efficient models is further analyzed with respect to their constraints.
Since the objective functions of each class of efficient models coincide by con-
struction, only one component (constraint) must be analyzed to check for model-
dominance in the following sense: A model whose constraint on portfolio hold-
ings is better than the one of other models regarding institutional circumstances,
is model-dominant, the other models are model-dominated and, hence, model-

inefficient.

3.3.1  First Step: Testing Models with Transformed and
Untransformed Dependent Variables

Models with different objective functions but identical constraints can be found
by distinguishing between models with transformed (P;;) and non-transformed
(P;) dependent variables. Models with transformed dependent variables(P;,)
contain weighted least squares regression/percentage error, error measures
with logarithmic error, and generalized least squares regression. Models with un-
transformed dependent variables (P;,) comprise all other regression models.
With respect to constraints, all models are subject to (4.6) to (4.8), i.e., underlie
the same set of constraints. In this connection note that the constraints on ac-
counting characteristics (4.7) sometimes depend on transformed (A’{J-'t) and
sometimes depend on untransformed (4; ; ;) variables. This does not make a dif-

ference from the perspective of the economic principle: All that matters is that
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secondary objectives are captured by means of accounting constraints that de-
mand that each accounting figure in the portfolio is equal to zero (idea of a free
lunch). The exact form of this accounting constraint, i.e., transformed or untrans-

formed accounting figures, does not matter.

Table 4.1 indicates that the objective function of untransformed models is supe-
rior to the objective function of transformed models. Since all models are identi-
cal with respect to constraints (4.6) to (4.8), untransformed models dominate ac-

cording to economic model-dominance transformed models.
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Put differently, using statistically more advanced models deteriorates the implied
economic content of models although they might improve the statistical quality.
Therefore, the recommendation to use generalized least squares R? (see Lewel-
len/Nagel/Shanken (2010), p. 183) goes into the wrong direction from an eco-

nomic point of view.

3.3.2 Second Step: Testing the Subset of Efficient Mod-
els by Specifying the L,-norm

The only model-efficient class is the class of models with untransformed de-
pendent variables. Since all models of this class are based on the same objec-
tives, i.e., objective function and accounting constraints, they differ only with re-
spect to the constraint on portfolio holdings. This constraint in turn depends on
the L,-norm chosen (see (4.8)). In particular, quantile regression, (p = 1), ordi-
nary least squares regression (p = 2), and Ly-regression (p = unspecified) are

analyzed.

Table 4.2 indicates that the constraint on portfolio holdings of quantile regres-
sion is superior to the one of the other two models. Since all models are identical
with respect to the objective function (primary objective) and the accounting
constraints (secondary objective), quantile regression model-dominates ordinary

least squares and L,-norm regressions.

Finally note that the economic content of quantile regression can be further im-

proved if it is run without a constant to avoid the problematic constraint

(4.6)

Cochrane (2005), p. 236 points out cross-sectional regressions can be run with-

out such a constant.
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4 Conclusion

Harvey (2017), p. 1413 argues that trying different empirical models can be re-
garded as one form of p-hacking. The American Statistical Association (2016)
points out that business decisions should not be based only on whether a p-value
passes a specific threshold. Moreover, Chapter Il shows that there are large dif-
ferences in corporate values when different empirical models are applied so that
virtually arbitrary corporate values can be justified. Nietert/Otto (2018) demon-
strate that the same is true if the method of multiples is used to compute com-

pany values.—There is a clear need for an economic model evaluation criterion.

Given this high need for an economic model evaluation criterion, the objective of
this Chapter IV is twofold: (i) first develop an economic model evaluation criteri-

on; (ii) come up with an economic ranking of different empirical models.
The results of this chapter can be summarized as follows:

First, the economic model evaluation criterion judges the implicit economic as-
sumptions revealed by computing the dual program along the two dimensions

compliance with the economic principle and institutional circumstances.

Second, applying the economic evaluation criterion to empirical models reveals
that regressions on cross section of prices can be regarded as acceptable from an
economic perspective, whereas regressions on cross section of returns and time
series models as well as the method of multiples do not comply with the eco-

nomic principle.

Third, within the group of cross-sectional price models quantile regression
proves to be the best model because it is able to offer a good approximation to
the economic principle and mimics best the institutional circumstances, in par-
ticular, if the regression is run without a constant. On the other hand, statistically
more advanced models like generalized least squares regression deteriorates the
implied economic content of models: They work with weighted prices; however

assets can only be purchased and sold at (unweighted) prices.
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Still, even the best empirical model, quantile regression, is not fully convincing
regarding the economic principle. In order to find an economically fully convinc-
ing empirical model, it might be wiser to start from economic principle and insti-
tutional circumstances and develop a new model instead of trying to adjust exist-
ing empirical models to economic principle and institutional circumstances.—

This will be done in Chapter V.
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Chapter V: An Accounting-Based Empirical
Business Valuation Model

1 Introduction

From the perspective of asset pricing theory the correct business valuation mod-
el is clear: the present value of future cash flows must be used for valuation be-
cause it follows from no arbitrage, i.e., the intuition that a positive investment is
needed to generate a positive return. Practically, forecasts of the future are diffi-
cult and, in particular, the determination of discount factors proves problematic
as the literature overview in Aggarwal/Mishra/Wilson (2018) illustrates. There-
fore, the industry introduced two main simplifications into present value compu-
tations as can been inferred from textbook formulas (e.g., Brealey/Myers/Allen
(2016), p. 497, Damodaran (2006), p. 383, Damodaran (2012), p. 386, Berk/
DeMarzo (2017), p. 323, Ross/Westerfield/Jaffe/Roberts (2015), p. 390, and
Ross/Westerfield/Jordan (2015), p. 411): time-constant discount rates (WACC)
and horizon values to capture the far distant future.—However, time-constant
discount rates cannot be transferred seamlessly to multi-period discounting.
First, Fama (1977) shows that they neglect non-flat term structures and, second,
they overlook stochastically changing investment opportunity sets. Third, Fama
(1996) finds that one-period returns behave differently than multi-period returns
meaning that they exhibit a different risk and, thus require different discounting.
Fourth, Fama/French (1997) conclude that empirical cost of capital estimates are
imprecise for three reasons: (i) difficulties in identifying the right asset pricing
model; (ii) imprecisions in estimating factor loadings; (iii) imprecisions in estimat-
ing factor risk premia. Finally, the horizon model, by definition, creates some im-
precision because a stable growth after n periods is assumed together with a flat
term structure.—Therefore, the practical implementation of present value ap-

proaches is less theoretically stringent as desired.
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If, however, a superior theoretical model—present value—cannot be imple-
mented adequately, it might be better to use a theoretically less convincing
model—e.g., use of accounting characteristics—that creates less problems with
its application. This impression is supported by the following observations from
valuation practice: Imam/Barker/Clubb (2008) find that discounted cash flow
models have become significantly more important in valuation practice than pri-
or survey evidence suggests, e.g., Demirakos/Strong/Walker (2004). But still val-
uation multiples, notably the price/earnings ratio, are used. Peasnell/Yin (2014)
stress the still important role of multiples in investment research reports of U.S.
firms issued by analysts of leading brokerage firms in 2011-2012. Tan/Yu (2018)
support a trend in the intensified use of discounted cash flow models, but also
find that discounted cash flows are only used in 21% of all valuation cases. Final-
ly, residual income valuations are still rarely used in analysts’ reports
(Hand/Coyne/Green/Zhang (2017)). The reasons for the use of accounting-based
valuation methods are, on the one hand, the complexity of discounted cash flow
approaches (Damodaran (2006), Imam/Barker/Clubb (2008), and Tan/Yu (2018)).
On the other hand, forecasting arguments matter: Imam/Barker/Clubb (2008)
point out (p. 515) that valuation models are seen as complementary to each oth-
er since analysts need to use subjective methods that deliver prices that feel
right (p. 503). Tan/Yu (2018) come to the conclusion that analysts are more likely
to use discounted cash flow models if earnings quality is low due to earnings

management or earnings are negative.

The superior practicability of existing accounting-based valuations, however, is

bought with a relatively weak foundation in asset pricing theory:

(i)  Multiples
Multiples essentially argue that similar accounting characteristics should
result in similar prices.
Problems from the perspective of asset pricing theory: While such a valua-
tion statement is intuitive, it is not backed up by asset pricing/arbitrage
theory that states: Identical cash flow streams must possess identical pric-

es. In other words, there are three differences between multiples and arbi-
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(ii)

trage theory. First, accounting characteristics are considered instead of
cash flow streams. Second, similar instead of identical positions are exam-
ined. Third, one accounting characteristic is regarded as enough to charac-
terize a company completely. Only the third problem has been addressed
to some degree by the literature by averaging valuation results for several
accounting characteristics (e.g., EBIT and sales) because different account-
ing characteristics translate into different company prices, see, e.g., Beat-
ty/Riffe/Thompson (1999), Cheng/McNamara (2000), and Schreiner (2007).
However, business valuations using simultaneously several accounting

characteristics do not exist.

Implementing discounted cash flow models with the help of accounting
characteristics

Berk/DeMarzo (2017) or Brealey/Myers/Allen (2016) use multiples to esti-
mate the horizon value of discounted cash flow models. Residual income
valuation models (Feltham/Ohlson (1995), Ohlson (1995), and Ohlson
(2005)) express cash flows by means of earnings where a function of earn-
ings is discounted using a riskless rate. The most integrated approaches of
discounted cash flow and accounting-based models (Claus/Thomas (2001),
Easton (2004), Gebhardt/Lee/Swaminathan (2001), and Ohlson/Juettner-
Nauroth (2005)) also express the discount rate as a function of earnings or
their growth rates (and not just cash flows).

Problems from the perspective of asset pricing theory: Residual income
models focus on the numerator of discounted cash flow models, i.e., they
strive at expressing expected cash flows with the help of accounting char-
acteristics. The denominator, the discount rate, is still characterized by
constant cost of capital. Therefore, Easton (2004), Gebhardt/Lee/
Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005) cannot address
Fama’s (1977) and Fama’s (1996) criticism of constant cost of capital.
Claus/Thomas (2001) at least use a non-flat term structure, but have to as-
sume constant risk premia, an assumption that does not hold in reality. Fi-

nally, Hand/Coyne/Green/Zhang (2017) find less drastic, but still remarka-
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ble empirical valuation differences between discounted cash flow and ac-

counting-based residual income valuations.

(iii)  Empirical accounting-based approaches

Empirical accounting-based approaches explain stock prices with the help
of accounting characteristics (see, e.g., Appendix 4 for an overview).

Problems from the perspective of asset pricing theory: These empirical ac-
counting-based approaches belong to the field of value relevance studies
and, thus, are only interested in statistical significance of accounting char-
acteristics, but not economic significance, i.e., they do not derive pricing
statements. In principle, the regression coefficients of value relevance
studies can also be used to obtain business values. However, Chapter llI
showed that valuation differences between different regression methods
are huge. Chapter IV demonstrated that regression models have a weak

economic backing when contrasted with the economic principle.

In summary, there seems to be a trade-off between asset pricing rigor and prac-
ticability of models. Present value models are theoretically superior, but their
practical implementation in form of constant discount rates and horizon models
is far from economically convincing. Accounting-based models are characterized
by less asset pricing theory rigor, however, can be implemented without sacrific-
ing much of their theoretical basis, in particular empirical accounting-based asset
pricing models. Obtaining better asset pricing models, hence, means either im-
prove the implementation of present value models or the theoretical founda-
tions of accounting-based models. Given the sheer amount of valuation models
or heuristics that use accounting data as input (see Cascino/Clatworthy/Garcia
Osma/Gassen/Imam/Thomas (2014), p. 191), we would like to improve the asset
pricing foundation of accounting-based models, in particular, empirical account-
ing-based models for two reasons. On the one hand, the accounting literature so
far has not fully exploited the asset pricing potential of accounting-based valua-
tion models: It can be increased visibly without sacrificing practicability. On the
other hand, purely empirical models always create a justification problem: Who

would pay a higher price for a company because sales multiples result in higher
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prices than earnings multiples? Who would pay a higher price for a company be-
cause a lower discount rate for earnings is used? Who would pay a higher price
for a company because an empirical estimation procedure, which possesses a
higher R?, recommends a higher price than other empirical estimation proce-

dures?

Therefore, it is the objective of this Chapter V to connect the practicability of ac-

counting-based valuation models with the theoretical rigor of asset pricing theo-

ry.

To achieve this objective, two steps are applied. First, the valuation approach of
arbitrage theory/economic principle is transferred to the problem of business
valuation: optimize the price of the company subject to constraints on account-
ing characteristics. Second, the optimize-the-price approach is compared to re-
gression approaches to elaborate the economic significance of value differences

both theoretically and empirically.

The results of this chapter can be summarized as follows: From a theoretical per-
spective, the optimize-the-price approach is based on the economic principle and
is able to integrate constraints on portfolio holdings that are in line with the in-
stitutional environment and market usages. Moreover, the optimize-the-price
approach can distinguish between buyers’ and sellers’ position, use the mispric-
ing potential of the company to be valued (arbitration, Munn (1983)) instead of
focusing only on mispricing of other companies (free lunch), and can integrate
synergies, multi-period valuations as well as risk. From an empirical perspective,
the price differences between the integrated (optimize-the-price approaches)
and the separated approaches (regressions) as well as price differences between

buyers and sellers are of very high economic significance.

This chapter makes the following contribution compared to the literature:

First, it offers a completely different approach on accounting-based valuation, a
direct optimization of the buyer’s/seller’s price. The theoretical accounting litera-
ture so far, in particular residual income valuation models, adapted the dis-
counted cash flow approach by expressing cash flows and/or discount rates with
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the help of accounting characteristics (Feltham/Ohlson (1995), Ohlson (1995),
Ohlson (2005) as well as Claus/Thomas (2001), Easton (2004), Gebhardt/Lee/
Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005)). Since the optimize-
the-price approach rests upon the economic principle, it holds for a much broad-
er spectrum of preferences and thus, decision makers, than the discounted cash
flow approaches that usually rely on CAPM derivatives, i.e., u-o-preferences. One
interesting side aspect of the optimize-the-price approach deserves mentioning.
Aggarwal/Mishra/Wilson (2018) illustrate that the determination of discount fac-
tors is the most critical part when applying discounted cash flow models. The op-
timize-the-price approach does not need to determine discount factors because
prices are determined directly, a procedure that is typical for the determination

of price functionals in no arbitrage theory (see, e.g., Ingersoll (1987), p. 29).

Second, we integrate the several factors from value relevance studies into an ac-
counting-based valuation formula. That way, value relevance studies, which are
not interested in valuation but use several accounting characteristics as explana-
tory variables, are combined with multiples, which can price, but can deal only
with one accounting characteristic at the same time. In this connection it is im-
portant to note that a good business valuation approach does not mean repro-
ducing market prices best possible. If a company already possesses a market
price the valuation problem will already be solved. Instead, business valuation
must be able to identify under- or overvalued companies thereby taking needs of

the particular buyer/seller into account.

Third, we take peculiarities of valuation into account, like buyers’/sellers’ posi-
tion, lifecycle of the firm (including negative earnings), synergies, value of corpo-
rate control etc. and show for buyer’s/seller’s position empirically valuation dif-
ferences. Principally discounted cash flow models are able to deal with these pe-
culiarities. However, textbook formulas (e.g., Brealey/Myers/Allen (2016), Dam-
odaran (2006), Damodaran (2012), Berk/DeMarzo (2017), Ross/Westerfield/
Jaffe/Roberts (2015), and Ross/Westerfield/Jordan (2015)) ignore at least buy-
ers’/sellers’ position. The multiples and the value relevance literature cannot ad-

dress buyers’/sellers’ position either. In addition, the value relevance literature
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barely analyzes synergies with Henning/Lewis/Shaw (2000) as sole exception.
Not surprisingly, the different importance of synergies for buyers and sellers is

not addressed at all.

The remainder of this Chapter V is organized as follows: Section 2 develops the
optimize-the-price approach theoretically. Section 3 analyzes the optimize-the-

price approach empirically. Section 4 concludes this chapter.

2 Optimize-the-Price Approach

Chapter 1V, Sections 2.3.1 and 2.3.2 develop an economic model evaluation crite-
rion to evaluate the economic content of empirical asset pricing approaches. In
Chapter IV this economic model evaluation criterion is used to detect the prob-

lems of empirical asset pricing models.

In this section this economic model evaluation criterion is applied in a construc-

tive way, namely to design an accounting-based business valuation model.

2.1 Requirements for an Economically Convinc-
ing Business Valuation Model

The economic model evaluation criterion comprises two components: economic

principle and institutional circumstances.

2.1.1  Economic Principle (see Chapter IV, Section 2.3.1)

It follows from the economic principle (see Chapter IV, Section 2.3.1):

(i)  Objective function and constraints must be considered simultaneously and
not separately because they both together constitute decision makers’ ob-

jectives.
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(i)  An actual company must be modelled (that is either be purchased or sold),

i.e., arbitration and not free lunch must be pursued.
(iii) Buyers’ and sellers’ point of views must be reflected.

Finally, to implement the economic principle formally, it is recommended to de-
fine all accounting characteristics in a way so that a higher value of the account-
ing characteristic is unequivocally associated with a more desirable outcome.
Higher earnings are clearly better than lower earnings. However, a debt-to-
equity ratio defined as debt divided by equity shows the inverse relation: A lower
debt-to-equity-ratio is preferable. For that reason, the ratio is re-defined as equi-
ty divided by debt or equity divided by total assets since higher equity means

lower insolvency risk and, thus, is regarded as better.

Taking together bullet points (i) to (iii) and the positive definition of accounting
characteristics, the economic principle translates into the following two decision

problems:

(5.1) Decision problem buyer:
A buyer minimizes the (purchase) price of the company subject to accounting
characteristics greater than or equal to a lower bound (accounting characteristics

represent what the buyer gets in return for the investment).

(5.2) Decision problem seller:
A seller maximizes the (sales) price of the company subject to accounting charac-
teristics less than or equal to an upper bound (accounting characteristics repre-

sent what the seller loses in return for the sales price).

2.1.2 Institutional Circumstances (see Chapter IV, Sec-
tion 2.3.2)

Institutional circumstances refer to the constraints on portfolio holdings:
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(i)  Legal environment
Prohibition of uncovered short sales (see Regulation (EU) No 236/2012, Ar-
ticle 12) indicates that the sales of stock i must be less than or equal to a
lower bound. There are no limits on purchases of stocks assuming that

companies are not subject to capital adequacy regulations.

(ii)  Market usages
Market usages might impose an upper limit on covered short sales because
they require a certain amount of collateral for securities lending. Such a
limit is again imposed on each asset i. Moreover, there are market impact
costs, i.e., large amounts of purchases and/or (short) sales influence mar-

ket prices; a fact that might give rise to an upper limit on portfolio holdings.

In summary, institutional circumstances, hence, impose constraints on portfolio
holdings in the decision problem buyer (5.1) and the decision problem seller

(5.2).

2.2 One-Period Model

To learn about the formalization of the decision problems (5.1) and (5.2), we
start with an (unrealistic) one-period model and extend it in Subsections 2.3 to

2.5.

2.2.1 Model

Based on the verbal description of the decision problem buyer (5.1) and the deci-
sion problem seller (5.2), these two decision problems can be formulated as fol-

lows:
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— Buyer
(5.3)
n
min Nt —N7)-P;
N{jt,N;t,...,N,{t,N,;tZ( Lt l’t) Lt
=1
s.t.
(5.4)
Nt Ay = NipAyqp + 4+ NyrApae — NptApae = a;
Nl*,-tAl,m,t - Nl_,tAl,m,t + ot NrttAn,m,t - Nr?,tAn,m,t = Am
(5.5)

f(NTe ooos Ny o, N, Ny oo, Ny o, Ni) < g4 (%)

f(NTe s Ny oo, N, Ny oo, Ny s Ni) < g ()

Ni = 0

N =20

N}, =0

N =0

where Nl-“ft (N;;) denotes the numbers of asset i purchased (sold) at time ¢,
P; ; the price of company i at time ¢, 4; j accounting characteristics j of com-
pany i at time ¢, and a; accounting characteristics j of the company to be val-
ued. g(x) and f(.) are functions that determine the portfolio holdings con-

straints.
— Seller

(5.6)

n

max Z(N;’t — Ni}) “Ppe

+ - + N—
Ny Ny Ny oNn e =1
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s.t.
(5.7)
Nl-',-tAl,l,t - Nl_,tAl,l,t + et NrJ{,tAn,Lt = NptApie < aq
Nf:tAl,m,t - Nl_,tAl,m,t + et N;,tAn,m,t - Nn_,tAn,m,t < Am
(5.8)

f(NTe oo, Ny o, N, Ny oo, Ny o, Nip) < g4 (%)

f(NT o, Ny o, NF U NT o, N o, Nipt) < ()

Ni = 0

Ni; =0

Ny >0

Ny, =0

2.2.2 Economic Analysis of the Decision Problem

The objective function in combination with the constraints on accounting charac-
teristics (buyer: (5.3) in combination with (5.4); seller: (5.6) in combination with
(5.7)) implement bullet point (i) of the economic principle. That the constraints
on accounting characteristics refer to the accounting characteristics of the com-
pany to be valued, i.e., accounting characteristic; (5.4) = a; or (5.7) < a; imple-
ments bullet point (ii) of the economic principle. A free lunch would have been
on (5.4) = 0 or (5.7) < 0. The differentiation between buyer and seller (buyer:
(5.3) in combination with (5.4); seller: (5.6) in combination with (5.7)) addresses
bullet point (iii) of the economic principle. Finally, the constraints on portfolio
holdings (5.5) or rather (5.8) take legal environment and market usages into ac-

count.

Three remarks are in order to finalize the analysis of the buyer’s and seller’s deci-

sion problems. First, the constraints on portfolio holdings are not specified to a
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particular model at this stage of the analysis. Second, buyers’ and sellers’ deci-
sion problems do not contain a budget constraint. This is due to the fact that
pricing is done and the actual purchase/sale, where funding comes into play, is
subsequent to the pricing problem. Third, (5.3) and (5.6) are empirical models
because they try to explain today’s prices using accounting characteristics. They
do not compute today’s prices as present value of future cash flows as theoreti-

cal asset pricing models would do.

To analyze both decision problems further, we compare prices for buyers and

sellers and explore the effect of the constraints on portfolio holdings.

Intuitively, one would argue that prices of sellers can never be below prices of
buyers, at worst, both prices coincide.—This intuition is, however, wrong. In a
model with just one accounting characteristic the accounting constraint can al-
ways be met exactly, i.e., duplication holds. In models with several accounting
characteristics, it could happen that some accounting characteristics constraints
can only be met as inequalities, i.e., higher (lower) values than the desired a; are
obtained for the buyer (seller), because only then the other accounting charac-
teristics constraints will be met. In other words super-replication (supra-
replication) holds. The price of a super-replication (supra-replication) portfolio is
higher than/equal to (lower than/equal to) the price of a duplication portfolio.
Thus, under admittedly rare circumstances, the super-replicating price of a buyer
can be higher than the supra-replicating price of a seller in models with several
accounting characteristics, in particular if there are by far more companies than

constraints (see Section 3.3.2.1.3, Figure 5.6 for an example).

The constraints on portfolio holdings (5.5) or rather (5.8) could be formulated as
constraints for the portfolio holdings on individual assets or on a (weighted) sum
of assets. An example for a constraint on an individual asset is a short sale con-
straint on asset; or an upper limit on the portfolio holding of asset;. An example
for a constraint on portfolio holdings of a (weighted) sum of assets is the con-

straint obtained in regression approaches.
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p—1
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The effect, i.e., the tightness of the portfolio holdings constraints (5.5) or rather
(5.8) is driven by two aspects. On the one hand, the shape of the constraint cap-
tured by the specific form of the of function f(.): It is known from Chapter IV,

Section 3.1.2 that an increase in g = ﬁ makes the constraints on portfolio hold-

ings (5.5) or rather (5.8) less binding. A less binding constraint, however, results
in lower (higher) prices for buyers (sellers) because buyers can sell more expen-
sive companies short and, that way, bring prices further down and sellers can
hold an higher number of expensive companies bringing prices up. On the other
hand, the right-hand side g;(x)—the size—of portfolio holdings constraints (5.5)
or rather (5.8) exerts influence. A higher right-hand side g;(x) means a less bind-
ing constraint (enlarged short sales for buyers, enlarged purchases for sellers)

and, thus, lower (higher) prices for buyers (sellers).

2.3 Extension to the Optimize-the-Price Ap-
proach: Synergies

2.3.1 Modelling Synergies

When purchasing or selling an actual company and not trying to explain, e.g.,
drivers of stock returns in general, synergies should not be overlooked as they
arise when two firms are combined (see, e.g., Damodoran (2006), p. 1013). It can
be distinguished (see, e.g., Damodaran (2006), pp. 1014 f.) between operating
synergies that allow firms to increase operating income from existing assets
and/or growth, and financial synergies that arise from higher cash flows and/or

lower cost of capital.

Intuitively, synergies mean that a buyer of a company gains more and a seller
loses more than the accounting characteristics of the company. More precisely,
modelling synergies comprises: (i) Changes in (all of the) m accounting character-
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istics of the company to be valued must be captured. That way, both operating
and financial synergies can be integrated, e.g., an increase in earnings and the
equity-to-debt ratio as well as positive and negative synergies, e.g., an increase
in earnings and a decrease in the equity-to-debt ratio. (ii) Synergies might not
arise only in connection with one company, but with several companies if the ac-

quiring and/or acquired company is a conglomerate.

Formally, the base case of bullet point (i) means: Company U possesses account-
ing characteristic ay ; and acquires company (; thereby obtaining accounting
characteristic ac, ;. Positive synergies signify s(aU,j,aCi,j) > ac, j, negative syn-
ergies signify s(aU_j, aci_j) < ac,j- In that connection it does not matter whether
company U or C; or both are responsible for the synergies. All that matters is
that for valuation purposes company C; has accounting characteristics
s(aU,j, aci,j) # ac, j- The sale of company C; results in a situation where the sell-
er of company C; loses s(ay,j,ac,;) > ac,; instead of just ac,; with positive

synergies and s(aU,j, aci,j) < ac,j with negative synergies.

If the acquiring (selling) company U is a conglomerate (bullet point (ii)), its ac-
counting characteristic j is equal to the weighted sum of accounting characteris-
tics j of the ny components of the conglomerate, i.e., ay; = 2221 ay,,;- The

company to be acquired/sold possesses as accounting characteristic j

nc ap ts e . .
ac,j = 2k=l1 Auc,,j if it is a conglomerate. Therefore, synergies can be formalized

as

(5.9)

nq

ny
s E Auy,j» z aUCrf
k=1 k=1

Looking at the synergy formalization (5.9) reveals, however, that accounting
characteristic a; is considered in isolation of ay, i.e., there is no effect like
s(aU,j, aci,j) + s(au,k, aci_k) < s(aU_j, ac,j» aU_k,aCi’k). We have decided
against modelling such an effect for two reasons. First, such an effect would con-

sider accounting characteristics as source and not just as result of synergies. E.g.,
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economies of scale (= source) can influence both sales and earnings (= results)
positively. However, s(ay j, ac, j, Qy k» ac,x ) would imply that economies of scale
and sales together cause higher earnings. While such a causal relation between
accounting characteristics is not impossible7, it will probably be rare and, hence,
not be a good starting point for the valuation effect of synergies. Second, using
s(ay,j, ac,j» Au ko acl.,k) creates an allocation problem: Which accounting charac-
teristic gets the benefit of the synergy, accounting characteristic j or k?—Recall
an allocation is required because each accounting characteristic needs its own

constraint (5.4) (buyer) or (5.7) (seller).

2.3.2 Valuation Model

Integrating the formalization of synergies (5.9) into the buyer’s/seller’s decision
problem delivers—recall core of interest is the valuation of a company with syn-

ergies, but not the valuation of the synergy:

— Buyer
(5.3)
n
+ _ N7 -
,oon Z(Ni,t - Ni,t) P
Ny N7ty ¢ Np ¢ b
i=1
s.t.
(5.10)
ny nCi
+ - + -
N{tAv1e = NigAiqe + o+ NppApae — NptAne =S Z auk,pz Quc,1
k=1 k=1

7 E.g., a company could be close to insolvency due to lack of cash flows why customers do no

longer want to purchase products from this company. A stock-based acquisition of a cash-rich
company will result in a better liquidity situation. Since insolvency risk is now reduced, cus-
tomers will begin buying company’s products. In other words, a better liquidity situation
caused the increase in sales.
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ny nc
+ - + - § g
Nl,tAl,m,t - Nl,tAl,m,t +oeet Nn,tAn,m,t - Nn,tAn,m,t =S aUk,m ’ aUCl.,m
k=1 k=1

(5.5)

Constraints on portfolio holdings

— Seller
(5.6)
n
+ —
, max Z(Ni’t — Ni't) Pt
Nl,t’Nl,t""’Nn,t'Nn,t .
i=1
s.t.
(5.11)
ny nc;
+ - + -
N{tA1,e — NigAiqe + o+ NptApae — NptAne < Z auk,pz Quc,1
k=1 k=1
ny nCi
+ - + -
N{ Ay me = NitAyme + o+ NppAnme — NpeAnme <8 z Aypm Z Qyc,m
k=1 k=1
(5.8)

Constraints on portfolio holdings

2.3.3  Analysis of the Effects of Synergies

The exact effect of synergies on company prices depends on the specific form of
s(YW ay. chi ay. i) and, hence, can only be evaluated numerically. Nev-
k=1"UyJj’ &g=1"UcypJ ’ ’ y v

ertheless, a theoretical analysis is able to gain several insights.

(i)  Positive versus negative versus mixed synergies
It holds with positi ies: s (XY M > Y -
olds with positive synergies: s | Xy=1 Quy,j» L= Qe,.j k=1 Wc,js

. . . ny nCi nCi
with negative synergies: s( Yoay, i a ) < ay,. j- Conse-
g ynerg D=1 AU jr Ljems UcyJ D=1 Ucyi
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(ii)

(iii)

quently, positive (negative) synergies call for higher (lower) portfolio hold-
ing in the (super-/supra-) replication portfolio that result in higher (lower)
prices.

Mixed synergies mean that some accounting characteristics increase, e.g.,
earnings, and other decrease, e.g., equity-to-debt ratio. They have a mixed
effect on portfolio holdings of the (super-/supra-) replication portfolio

which translates into an ambiguous effect on prices.

Buyer versus seller

. . . nc,
In the case of positive synergies buyers gain more than Zk_‘l ay,.j, sellers
= o

Nnc.
lose more than Zkill ay, j- Therefore, the prices for both buyers and
14

sellers increase.—This result fits nicely to the economic intuition: A buyer
receives in the case of positive synergies more than accounting characteris-
tic j and, hence, should be willing to pay more. A seller loses more than ac-
counting characteristic j. For that reason, compensation in the form of a
higher sales price is demanded.—These results transfer to negative and
mixed synergies: Negative synergies call for a lower price for both buyers

and sellers, whereas the effect of mixed synergies is ambiguous.

Which companies are used for (super-/supra-) replication in the presence
of synergies?

Creating a (super-/supra-) replication portfolio means that several compa-
nies are combined hypothetically, whereas synergies arise from the combi-
nation of actual companies. Therefore, only companies outside of the con-
glomerate to be valued should be used for replication purposes. Since
these companies are economically and often legally independent, no syn-
ergies8 will arise when their accounting characteristics are (hypothetically)

combined in a (super-/supra-) replication portfolio.

8

Things might be different with financial synergies since a portfolio always offers diversifica-

tion benefits. For this reason, we discuss aspects of risk in a subsection of its own (see Subsec-
tion 2.5).
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(iv) Value of corporate control

The value of corporate control rests upon the idea that a controlling owner
would operate the firm differently from the way it is operated currently
(see, e.g., Damodaran (2006), p. 845) and, hence, allows to achieve more
desirable accounting characteristics compared to a situation when the de-
cision maker is not the controlling owner.

Technically, getting more desirable accounting characteristics means that
the right-hand side of the accounting characteristics constraints (5.4) (buy-
er) or (5.7) (seller) increases. In other words, the value of corporate control
can be captured (technically) by means of the accounting characteristics

constraints with synergies (5.10) (buyer) and (5.11) (seller).

2.4 Extension to the Optimize-the-Price Ap-
proach: Multi-Period Features

2.4.1 Modelling Multi-Period Features

Market prices comprise future cash flow streams in one value. However, ac-
counting characteristics do not possess a similar reference to the future because,
e.g., today’s earnings cannot be interpreted as the present value of future earn-
ings. Put more precisely, Damodaran (2012), pp. 611, 633, 644-645 gives some
economic justifications for the use of multi-period models (or rather the inade-

guateness of a steady state assumption):

(i)  Companies in general are subject to a life cycle with different values for
revenues and earnings in each phase. In particular, negative or abnormally
low earnings create valuation problems. This fact becomes particularly visi-
ble with start-up firms that often lose money but at the same time are

characterized by high values.

(ii)  If companies have a significant likelihood of distress or default, a going

concern assumption cannot be applied. Instead, accounting characteristics
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(iii)

must be adjusted, e.g., low earnings and equity-to-debt-ratios are used

during such crisis times.

Translating corporate control into a different corporate policy might take
time. Therefore, accounting characteristics might not change immediately
but until some time has passed so that the new corporate policy can be-

come effective.

Principally, there are two possibilities to model multi-period aspects.

(i)

(ii)

Accounting characteristics are considered at different points in time. This
means, instead of arguing with a; as in the one-period model, a; ¢, @; ;11, .-
are applied. Such a complete specification of accounting characteristics at
all points in time is able to capture the life cycle of a company and, as such,
can also be applied to start-ups. However, a complete specification of ac-
counting characteristics at all points in time might be impossible given the
(ex ante) infinite life of a company. Therefore, a simplification in the form
Qjt) A1, -+, A Might be needed, where a;r could be regarded as a
steady state accounting characteristic that is associated with a horizon val-
ue. In other words, only years t to T — 1 are modelled in detail and starting
from year T standardization is applied.—Note in this connecting that such
a model implies identically constraints on accounting characteristics from

time T on.

Growth rates for accounting characteristics are specified. The idea behind
this approach can be found in Barth/Beaver/Landsman (2001), p. 95 who
conclude that “price studies are interested in determining what is reflected
in firm value while return studies (price changes) are interested in deter-
mining what is reflected in change in value over a specific period of time”.
In this connection, different growth rates can be specified for each period
to reflect the life cycle of companies or just one growth rate if companies
have reached the steady state. Nevertheless, growth rates have two disad-
vantages: First, the temporary nature of negative or abnormally low earn-

ings cannot be captured by earnings growth rates (see Damodaran (2012),
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p. 611). Second, the theoretical analyses in Chapter Ill, Section 2.2.3
showed that pure returns/growth rates are incompatible with the econom-

ic principle.

2.4.2 Valuation Model

Integrating the formalization of multi-period models into the buyers’/sellers’ de-

cision problem delivers (only the version is depicted that specifies

aj,t, aj,t+1, . aj,T):

— Buyer
(5.3)
n
min Z(N;rt —N.)Pie
N3 L NT geoNpy (N7 1 £ ' ’ ’
o T
s.t.
(5.12)
+ - + -
NitAi1e — NpgAige + o+ NptApae — NptAnae = Qo
+ - + -
Ny Aime — NitAime + -+ NpcAnme — NptAnme = Qe
+ - + -
Nl,tAl,l,T - Nl,tAl,l,T + -+ Nn,tAn,l,T - Nn,tAn,l,T = air
+ - + -
Ny Aimr — NptAimr + o+ Ny tApmr — NptApmr = At
(5.5)

Constraints on portfolio holdings
— Seller

(5.6)

+ -
Nl,t'Nl,t""'Nn,t' nt

n
+ -).
max+ N= Z(Ni,t _Ni,t) Pi,t
Ti=1
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s.t.
(5.13)
+ - + -
Nl,tAl,l,t - Nl,tAl,l,t + ot Nn,tAn,l,t - Nn,tAn,l,t S al,t
+ - + -
Nl,tAl,m,t - Nl,tAl,m,t + -t Nn,tAn,m,t - Nn,tAn,m,t < Amt
+ - + -
Nl,tAl,l,T - Nl,tAl,l,T + et Nn,tAn,l,T - Nn,tAn,l,T S al,T
+ - + -
Nl,tAl,m,T - Nl,tAl,m,T + et Nn,tAn,m,T - Nn,tAn,m,T < am,r
(5.8)

Constraints on portfolio holdings

2.4.3  Analysis of the Effects of Multi-Period Features

Multi-period models cause two differences compared to the one-period model of

Section 2.2.

First, they contain more accounting characteristics constraints (5.12) and (5.13).
More constraints, however, reduce the scope for portfolio optimization meaning
that buyers’ prices will be higher and sellers’ prices will be lower in the multi-

period compared to the one-period model.

Second, the right-hand sides of the accounting characteristics constraints exert
influence on the pricing problem as well. Assume accounting characteristic; of
the company to be valued increases faster (slower) over time as for the compa-
nies of the (super-/supra-) replication portfolio, e.g., due to a different phase of
the company life cycle. Then, the portfolio holdings in the (super-/supra-) repli-
cation portfolio increase (decrease) meaning higher (lower) prices for buyers and

sellers.

Effects (i) and (ii) have contradictory effects on company prices and might give

rise to a situation where the multi-period model delivers results similar to the
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one-period model of Section 2.2. In other words, the steady state assumption of

the one-period model might not be completely unrealistic.

2.5 Extension to the Optimize-the-Price Ap-
proach: Risk/Uncertainty

2.5.1 Modelling Risk/Uncertainty

The optimize-the-price approach developed so far just works under certainty.
Multiples and value relevance studies also work under certainty. However, resid-
ual income models express expected cash flows with the help of accounting
characteristics and discount them with constant cost of capital (Easton (2004),
Gebhardt/Lee/Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005)) or a
constant risk premium (Claus/Thomas (2001)). From that perspective they can
handle risk, albeit in a stylized way. Since it is the objective of the optimize-the-
price approach to improve the theoretical foundation of accounting-based asset
pricing, it needs an extension towards risk/uncertainty to become an economi-

cally dominant approach.

Principally, there are two possibilities of integrating risk/uncertainty into the op-

timize-the-price approach.

First, the stochasticity of future accounting characteristics is addressed by means
of different states. To that end, a forecast for accounting characteristic; at each
point in time 7 and in each state s is developed, i.e., a; ; ;. Since time- and state-
dependent accounting characteristics are modelled, no state probabilities are
needed, (Knightian) uncertainty is given. States can be derived from scenarios
that themselves can be independent in each point of time (e.g., at time t + 1
there is a good, normal, and bad state and at time t 4+ 2 there are other good,
normal, and bad states; the states at time t + 1 are not intertemporally con-
nected with the states at time t + 2) or can be intertemporally connected (e.g.,

from the good state at time t 4+ 1 there are three possible consecutive states at
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time t + 2 so that a sequence is obtained: good-good, good-normal, and good-

bad).

Buyers construct the (super-) replication portfolio to obtain at least the state-
dependent accounting characteristics of the business to be valued at a minimum
price; sellers setup the (supra-) replication portfolio to lose not more than the
state-dependent accounting characteristics of the business to be valued and to
achieve a maximum price. Note with respect to the optimization potential: If
there are more companies than states, markets will be complete. In such a situa-
tion optimization will be nontrivial because accounting characteristic; can be
achieved by different combinations of companies. Only if the number of compa-
nies is equal to the number of states, a unique solution (under some regulatory

conditions) will be obtained thus eliminating any optimization potential.

Second, expected values and risk measures (e.g., Lower Partial Moments, Value
at Risk etc.) based on the distribution of accounting characteristics are em-
ployed. Since distributions are considered, state probabilities must be known

and, hence, a situation under risk is obtained.

Buyers construct the (super-) replication portfolio to obtain the expected value
of the accounting characteristics of the business to be valued at a minimum
price, sellers setup the (supra-) replication portfolio to lose not more than the
expected value of the accounting characteristics of the business to be valued and
to achieve a maximum price. Since risk measures take the fluctuation aspect into
account, they are regarded as negative. Thus, both buyers and sellers would like
to keep fluctuations in check. This can be achieved by adding a constraint on the

risk measure of each accounting characteristic in the optimization problem.

To implement the risk measure approach in detail, two different paths may be
chosen. First, expected values and risk measures are computed for each point in
time. On the one hand, this can be achieved with the help of scenarios. E.g., if
there are three equally probable realizations of accounting characteristics be-
tween time T and 7 + 1, the (conditional) expected values simply is the weighted

average of the three realizations.—However: If scenarios have already been de-
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rived, it would not be useful to create an information loss by condensing them
into expected values and risk measures. On the other hand, expected values and
risk measures are estimated from past realizations using time series estimation.
If the time series of accounting characteristics are (weakly) stationary, time se-
ries estimators can be applied to obtain estimators of expected values and risk
measures. Otherwise, the time series must be made (weakly) stationary, e.g., by
means of using growth rates instead of values of accounting characteristics.—
Caveat: Growth rates have problems in adequately dealing with negative ac-
counting characteristics. Second, the development of expected values and risk
measures of accounting characteristics over time is modelled. Expected values
and/or risk measures of accounting characteristics might exhibit constant growth
or a triangular form over time similar to the expected value forecasts in dividend

discount models.

2.5.2 Valuation Model

Integrating the formalization of risk/uncertainty into the buyers’/sellers’ decision
problem delivers—objective functions and constraints on portfolio holdings re-

main the same as in Sections 2.3.2 or 2.4.2—°:

— Accounting characteristics constraints using time- and state-dependent fore-

casts for accounting characteristics

(5.14)
>

(o]
+ - + - buyer
N1,1:A1,j,1',s - N1,1:A1,j,1:,s + -+ Nn,rAn,‘r,s - Nn,rAn,j,‘r,s < Aj1s
o]
seller

for pointintime t € {t,...,T} and state s € {1, ..., S;}.

Principally constraints on portfolio holdings could be time- and state-dependent due to, e.g.,
time- and state-variable market impact costs.—However, such an approach seems to be arti-
ficially complicated and will hide the structure of the decision problem behind technicalities.
Therefore, we will not consider this case.
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— Accounting characteristics constraints using expected values and risk

measures for accounting characteristics

Expected value

(5.15)
=
Nl-l,—TEt{Al,j,T} - Nl_,‘rEt{Al,j,T} + -t NT-::TEt{An,]',T} - Nn_,TEt{An,j,r}buéerEt{aj,T}
se?l.’er

Risk measure

(5.16)
<
- - b
RM;, (Nl-',-‘L'Al,j,‘L' - Nl,TAl,j,T + et NT-ll-,‘L'An,]',‘L' - NTl,‘L'An,j,‘L') uierRMk(aj,‘c)

(]
seller

where RM,, denote risk measurey.

The left-hand sides of the accounting characteristics constraints (5.16) com-
prise diversification effects, i.e., financial synergies. This means the accounting
characteristics of the (super-/supra-) replication portfolio exhibit less fluctua-
tions than the accounting characteristics of an isolated position, the company
to be valued. If financial synergies are unwanted, risk measures of the isolated
positions of the (super-/supra-) replication portfolio must be taken instead of
the risk measure of the (super-/supra-) replication portfolio itself. Note, how-
ever, that financial synergies cannot be excluded from time- and state-
dependent accounting characteristics: There it is impossible to separate the
influence of an accounting characteristic of one company from the one of
other companies because risk measures that indicate risk connections, e.g.,

covariances, do not exist and, thus, they cannot be suppressed.
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2.5.3  Analysis of the Effects of Risk/Uncertainty

Integrating risk/uncertainty into the optimize-the-price approach introduces ef-
fects to the one-period model of Section 2.2 that are very similar to the multi-

period model of Section 2.4.

First, more constraints signify less flexibility in determining the (super-/supra-)
replication portfolios. Hence, buyers’ prices will be higher and sellers’ prices low-

er.

Second, the right-hand sides of the accounting characteristics constraints (5.14)
and the constraints on expected values of accounting characteristics (5.15) exert
influence as well. Assume (the expected value of) accounting characteristic; of
the company to be valued increases faster (slower) over time as for the compa-
nies of the (super-/supra-) replication portfolio, e.g., due a different phase of the
company life cycle. Then, the portfolio holdings in the (super-/supra-) replication
portfolio increase (decrease) meaning higher (lower) prices for buyers and
sellers. The analyses are slightly more difficult with the risk measure constraints
(5.16) because of diversification effects. A higher risk measure of the company to
be valued (right-hand side of (5.16)) does not necessarily translate into higher
portfolio holdings and, thus, prices.—Recall the right-hand side of (5.16) consti-

tutes just an upper bound.

Effects (i) and (ii) have contradictory effects on company prices resulting in an
ambiguous total effect. This ambiguous total effect, however, is similar to the

one observed with multi-period but deterministic models in Section 2.4.3.
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2.6 Comparison of the Optimize-the-Price Ap-
proach with Regression Approaches

2.6.1 Idea Behind and Implementation of the Compari-
son

Regressions determine regression coefficients for accounting characteristics from
a group of companies and apply these regression coefficients to the accounting
characteristics of the company to be valued. In other words, a two-step pricing
approach is applied. The optimize-the-price approach, on the other hand, is a
one-step pricing approach because it directly determines the price of the com-
pany to be valued without requiring intermediate steps like the determination of
regression coefficients.—Due to this completely different determination of prices

both approaches seem to be difficult to compare.

However, duality theory might help with the comparison. The variables of the
dual program of the optimize-the-price approach can be interpreted as regres-
sion coefficients (see Appendix 1.4 for the general derivation and Appendix 1.4.5
for the dual program). The regression coefficients from regressions can be com-

pared with regression coefficients from the optimize-the-price approachlo.

— Buyer (see Appendix 1.4.5, adjusted to values of accounting characteristics

and cross section)

(A1.43)

mln X — a;
Wl ,U z '8] J

° This is possible because the optimize-the price problem meets the requirement of strong du-

ality (see Appendix 1.5). Therefore, the optimal values of the objective function of the primal
and the dual program coincide. Since we minimize the objective function in the (buyer’s and
seller’s) dual program, the dual in standard form, however, is characterized by maximizing the
objective function, the value of both objective functions differ by the factor—1.
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s.t.
1
n n P
A-0 Y lefP+e Yl P| <u
i=1 i=i
u=0
B1=0,..,Bn=0
where

m

& = ZAL-J,B] P,>0
j=1
m

Sl_ = Al,jﬁj Pl <0
j=1

— Seller (see Appendix 1.4.7, adjusted to values of accounting characteristics

and cross section)

(A1.55)
m
min u x+z,[>’j a
wh1 m 4
j=1
s.t.
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m
j=1

m
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— Regression (see Appendix 1.2.1, adjusted to values of accounting characteris-

tics and cross section)

(A1.4)

n n %
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2.6.2 Comparison

When the optimize-the-price approach and regressions are compared, four dif-

ferences arise.
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(i)

(ii)

(iii)

Objective function

The objective function of the optimize-the-price approach and regressions
differ by the term Z;’;lﬁj * a;, which is missing in regressions. This differ-
ence comes from the fact that the optimize-the-price approach focuses on
arbitration and not on free lunches as regressions (see Chapter IV, Formula
(4.2)). Intuitively, the difference is caused by the fact that regressions de-
termine regression coefficients only from the group of companies and then
apply them to the company to be valued. On the contrary, the optimize-
the-price approach integrates the company to be valued into the determi-
nation of regression coefficients and, thus, can raise the mispricing poten-
tial not only of other companies, but also of the company to be valued.
Therefore, applying more advanced regressions like generalized least
squares regression cannot equalize the difference in the objective func-

tions.

Buyer versus seller position

Regressions determine regression coefficients in a way so that the residual
within the group of companies used for the regression ideally is equal to
zero. Since the company to be valued cannot exert influence on regression
coefficients, buyer and seller positions cannot be taken into account.
The-optimize-the-price approach by constructions optimizes the price, i.e.,
determines regression coefficients in a way so that buyer and seller posi-

tions are taken explicitly into account.

Regression coefficients

First, the optimize-the-price approach has no intercept [, as opposed to
regressions. An intercept, however, is from an asset pricing perspective
implausible since it means that there is a price component that is inde-
pendent of company-specific accounting characteristics that serve as price
drivers. Moreover, such an intercept implies (see Chapter IV, Formula (4.6))
that portfolio holdings must add to zero. Such a constraint can neither be

justified from legal environment nor market usages.
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Second, the optimize-the-price approach can justify a sign restriction on
regression coefficients. Since the optimize-the-price approach rest upon
explicitly formulated constraints on portfolio holdings (see (5.5) and (5.8)),
a non-negativity constraint on portfolio holdings might be used. Then, Ap-
pendix 1.4.6.4, Formula (A1.51) shows that the non-negativity constrains
on portfolio holdings result in non-negativity constraints on regression co-
efficients. That way, a theoretical/economic foundation of a procedure of
Campbell/Thompson (2008) is delivered: They recommend using a sign re-
striction on regression coefficients. In particular if a regression coefficient
has an unexpected sign, they set the regression coefficient equal to zero

when forming forecasts.

(iv) Specification problem for the size g(.) of the constraint on portfolio hold-
ings
Regressions do not have a specification problem with respect to size g(.)
because they minimize pricing errors why x in Chapter IV, Formula (4.2)
can be rightfully set equal to 1. On the contrary, the optimize-the-prize-
approach requires the specification of the size g(.) as input because oth-
erwise it cannot find an optimal solution: Without g(.) the market will not
be free of an accounting arbitrage. If, however, upper limits for x must be
specified to integrate institutional circumstances, the optimize-the-price
approach can do this and, hence, is more flexible than regressions because

in regressions just a given constraint on portfolio holdings can be used.

3 Empirical Analysis

3.1 Economic Significance of Price Differences
Between Different Models

The analysis of the optimize-the-price approach in Section 2 has shown that

shape f(.) and size g(.) of the constraints on portfolio holdings as well as buy-
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ers’ and sellers’ position exert influence on the optimize-the-price approach.
Moreover, multi-period models are different from one-period models because
the steady state assumption implied by one-period models does not hold in reali-
ty. Finally, the integrated (optimize-the-price approach) approach is conceptually
different from the separated approach (regressions) and has no regression inter-
cept; company-independent intercepts are from an asset pricing perspective im-
plausible.—Although all these differences between models are clearly identifia-
ble from a theoretical perspective, it is not clear whether they translate into eco-

nomically significant price differences.

Therefore, this Section 3 focuses on the economic significance of model differ-

ences by answering the following questions empirically:

(i)  The economic significance of price differences caused by shape f(.) and
size g(.) of the constraints on portfolio holdings within the optimize-the-

price approach.

(ii)  The economic significance of price differences between one- and multi-

period versions of the optimize-the-price approach.

(iii) The economic significance of price differences between integrated (opti-
mize-the-price approach) and separated approaches (regressions) and its

interplay with/without regression intercepts f3,.

(iv) The economic significance of differences between buyers’ and sellers’ pric-

es.

3.2 Research Design and Data Set

The economic significance of Questions (i), (ii), (iii), and (iv) is analyzed with the
help of “magnitude” (see Chapter lll, Section 4.2) and “similarity” (see Chapter
I, Section 4.3). In this connection, the answer to Question (iv) is then obtained

as by-product to the answers of Questions (i), (ii), and (iii).
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3.2.1 Research Design

Question (i): constraints on portfolio holdings

The shape f(.) of the constraints on portfolio holdings is captured by analyz-
ing four different constraints: short sale constraints as well as constraints in
the form of L;-, Ly-, and L.-norms. The size g(.) of the constraint—relevant
only for the L;-, Ly-, and L.-norms—is addressed by specifying g(.) as x and
choosing three values: a small (x = 0.5), medium (x = 1), and relatively high

value (x = 2)."

Question (ii): one- versus multi-period models

Multi-period models are constructed with 2010 as base year. The years 2011
to 2014 comprise the development of the accounting characteristics in the
“future”, i.e., specify the constraints at t + 1 to t + 4 in (5.12) and (5.13).—
That way, empirical data can be used to represent accounting characteristics
of the “future” instead of assuming arbitrary values. Both one- and multi-
period models are computed with a non-negativity constraint on portfolio

holdings only.

Question (iii): comparison to regressions

When comparing the optimize-the-price approach and regressions, it must be
avoided that two effects are intermingled, namely the effect of different port-
folio holding constraints and the integrated (optimize-the-price approach)
versus separated (regressions) determination of regression coefficients.
Therefore, the optimize-the-price approach is computed with that constraint
on portfolio holdings that is implied by the specific regression model: con-
straints on individual portfolio holdings for quantile regressions (L;-norm) and
L,-norm constraint for ordinary as well as weighted least squares regressions.
Then, the pricing results of the (constraints-adjusted) optimize-the-price ap-
proach are compared to those of quantile (25%, 50%, and 75%), ordinary, and

weighted least squares regressions with and without regression intercepts f3,.

11

The empirical analysis in Section 3.3.2 demonstrates that these three values for x indeed cre-
ate enough diversity.
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3.2.2 Software

All computations are performed with RStudio Version 1.1.463 resting upon R ver-

sion 3.6.0 (see R Core Team (2019)) using the following packages:

IpSolve (version 5.6.13) for the optimize-the-price approach with non-

negativity constraints on portfolio holdings

— nloptr (version 1.2.1) for the optimize-the-price approach with constraints on

portfolio holdings in L,-norm-form

— quantreg (version 5.38) for quantile regressions

— stats (version 3.6.0) for OLS and WLS regressions

3.2.3 Data Set

Principally the data set of Chapter Ill, Section 3.1 is used. However, the computa-
tion time for constraints on portfolio holdings in L,-norm-form (for x = 1) takes

18,131.05 minutes, i.e., 12.6 days.

Thus, for L,-norm constraints only a subset of this data set is considered: indus-
trials from Europe in the year 2014. Since the robustness analyses regarding in-
dustry, region, and year in Chapter lll, Sections 4.2.4 and 4.3.4 have shown that
results regarding “magnitude” and “similarity” are not affected by industry, re-
gion, and year, such a limited data set seems to be acceptable to keep the com-

putation time in check.
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3.3 Empirical Results

3.3.1 Cleaning the Results of the Numerical Optimization

When analyzing the economic significance of the optimize-the-price approach,
only solutions can be used that constitute (globally) optimal solutions and are

not just local optima.

The structure of the optimization problem, in particular, the highly non-linear
constraints on portfolio holdings in L,-norm-form, however, makes numerical op-
timization a nontrivial task. The following two incidents give rise to local optima
and, hence, call for their elimination before economic significance can be exam-

ined:
(i)  The optimization algorithm exceeds the maximum number of iterations.
(ii)  The alleged solution violates constraints of the optimization problem.

Appendix 5.3 contains details regarding the specific computations that had to be

eliminated. Incident (i) is relevant in = 0.13% of all cases, incident (ii) in

36,800

582
36,800

= 1.58%. In other words, the data loss due to the inability to find a global

optimum is not severe.

How can the histograms regarding “magnitude” and “similarity” be adjusted to
cope with cases from incidents (i) and (ii)? To answer that question, fall back on

the illustrative example of Chapter lll, Section 4.1.

Assume that prices have been computed for the following companies U; with the

help of factors; and constraints on portfolio holdings in the form of Ly:

Ui factor; L1 U factorz Ly Ui factors L1
Ui factory L2 U: factor; L2 Ui factors L2
U: factor; L1 U: factorz L1 U: factors L1
U: factor; L2 U: factor; L2 U: factors L2

Now assume that U; factor; L; is not a global optimum because it belongs to in-

cidents (i) or (ii). Then, it is not meaningful to compute Ratio (3.1) involving U,
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U, factor; L,—U; factory
market price U,y

. L . . .
factory Ly, i.e., X because using a non-global optimum might

induce massive biases. The other ratios, however, can still be computed, i.e.,

U, factor, L, — U, factor, L,

market price U;
U, factor, L, — U, factor, L,

U, factor; L, — U, factor; L,

market price U,

U, factor, L, — U, factor; L, U, factor; L, — U, factor; L,

market price Uy market price U, market price U,

Therefore, histograms are computed based on the above five instead of original-

ly six Ratios (3.1).
Finally, a third incident might endanger the judgement of economic significance:

(iii) The (empirical) solution of the optimize-the-price approach violates the

theoretical order of Section 2.2.2, namely that

— anincreaseinq = ﬁand/or

— a greater right hand side of the constraints on portfolio holdings
makes the constraints on portfolio holdings (5.5) or rather (5.8) less binding

a fact that results in lower prices for buyers and higher prices for sellers.

The following two companies—Britisch American Tobacco and Bayerische Mo-
torenwerke®®—are examples of incident (iii). When minimizing the price of a

portfolio (buyer’s perspective) that offers at least the same amount of sales (fac-

tor M1) as British American Tobacco/Bayerische Motorenwerke, it is obtained:

Company Constraint on Constraint on Price (value of Sales (value of
portfolio hold- sales the objective the constraint in
ings function in the the optimum)
optimum)
L,x=1 -89.15 (in billion 16.96 (in billion
British American 16.96 (in billion EUR) EUR)
Tobacco L,x=1 EUR) -66.85 (in billion 31.18 (in billion
EUR) EUR)
L,x=1 5.12 (in billion 80.40 (in billion
Bayerische Mo- 80.40 (in billion EUR) EUR)
torenwerke L,x=1 EUR) 5.83 (in billion 85.60 (in billion
EUR) EUR)
Table 5.1: Examples where a L,-norm constraint delivers higher prices for buyers than a L;-

norm constraint although theory suggests that prices for L,-norm constraints can-
not exceed those for L;-norm constraints.

12

duce incidents (i) or (ii).

Both companies have been chosen because they belong to the top five companies that pro-
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Table 5.1 illustrates two seemingly puzzling results: Prices for British American
Tobacco and Bayerische Motorenwerke for L, exceed those for L; even though
theory states that a less binding constraint on portfolio holdings (L,) cannot lead
to higher prices that a more binding constraint (L;). This puzzle can be resolved if
the value of the accounting constraint in the optimum is taken into considera-
tion. With a L;-norm constraint on portfolio holdings sales of 16.96 billion EUR
(British American Tobacco) or 80.40 billion EUR (Bayerische Motorenwerke) are
priced. However, using the L,-norm constraint on portfolio holdings results in
sales of 31.18 billion EUR (British American Tobacco) or 85.60 billion EUR (Bayer-
ische Motorenwerke). In other words, with a L,-norm constraint on portfolio
holdings super-replication occurs. Higher sales, however, justify a higher price
meaning that incident (iii) should not be eliminated from assessing economic sig-
nificance. Therefore, incident (iii) bears some similarity to the case from Section
2.2.2 where, under rare circumstances, prices of sellers were less than prices of

buyers.

Note, however, two things in connection with incident (iii). First, super-
replication does not necessarily lead to distorted price relations between Li-

norm and L,-norm constraints on portfolio holdings:

Company Constraint on Constraint on Price (value of Sales (value of
portfolio hold- sales the objective the constraint in
ings function in the the optimum)
optimum)
L, x =0.5 5.08 (in billion 17.24 (in billion
British American 16.96 (in billion EUR) EUR)
Tobacco L, x=0.5 EUR) -26.52 (in billion 26.49 (in billion
EUR) EUR)
Table 5.2:  Examples where a L,-norm constraint delivers lower prices for buyers than a L;-

norm constraint despite super-replication.

Second, sales have only a limited role in explaining prices. Theoretically, several
accounting characteristics are needed to adequately reflect the multi-
dimensionality of the figure cash flows that condense several value drivers into
one figure. Empirically, actual market prices of British American Tobacco (79.22
billion EUR) and Bayerische Motorenwerke (58.9335 billion EUR) are far away

from the prices that the optimize-the-price approach based on sales computes.
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This means that market prices obviously are driven by other factors than sales

alone.

3.3.2 Economic Significance of Shape and Size of Con-
straints on Portfolio Holdings

Analyzing the economic significance of shape and size of the constraints on port-
folio holdings of the one-period model (5.5) and (5.8) requires: First, prices for
several different constraints in L,-norm-form (shape) and values of x (size) are
computed for buyers and sellers. Second, these prices are compared to each
other to analyze how different constraints in Lp-norm-form and x result in differ-
ent “magnitudes” of price differences and, third, which Lp-norm-form and x

combinations result in “similar” prices.

3.3.2.1 “Magnitude” of Price Differences of Different Shapes and
Sizes of Constraints on Portfolio Holdings

“Magnitude” is computed as (normalized) difference between company values
determined from all pricing approaches and the company value determined from
the model under consideration. It is formalized by means of Ratio (3.1) (see
Chapter Ill, Section 2.1.3.2) and will be regarded as high if Ratio (3.1) exceeds
10%.

3.3.2.1.1 The Role of Shape

To analyze the economic significance of shape, it is useful to break up the joint
effect of position (buyer or seller) and shape of constraints in order to obtain a

ceteris paribus analysis.

Consider x = 1 as an example (all other values for x can be found in Appendix

5.2.1.1.1). Then, it is obtained for buyers’ and sellers’ positions:
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Histogram of Ratio (3.1) and x=1 for different shapes for buyers
Non-negativity constraint and valuation for buyer (OTPB))
L;-norm constraint and valuation for buyer (OTPB_L1)
L,-norm constraint and valuation for buyer (OTPB_L2)
L,-norm constraint and valuation for buyer (OTPB_LInf)
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Histogram of Ratio (3.1) and x=1 for different shapes for sellers
Non-negativity constraint and valuation for the seller (OTPS)
L;-norm constraint and valuation for the seller (OTPS_L1)
L,-norm constraint and valuation for the seller (OTPS_L2)
L,-norm constraint and valuation for the seller (OTPS_LInf)

Figure 5.1 and Figure 5.2 demonstrate that the shape of constraints on portfolio

holdings is economically highly significant. In addition, these differences in
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“magnitude” are not caused by different factors as the figures in Appendix

5.2.1.1.1 starting with Figure Appendix 5.2.1.1.1g show.

From an economic perspective, these shape effects portrayed in Figure 5.1 and
Figure 5.2 can be explained as follows: Ratio (3.1) subtracts the price obtained
from the reference model (the reference model is the one mentioned in the leg-
end) from the prices of the other models. A L;-norm constraint on portfolio hold-
ings is more restrictive than a L,-norm constraint which in turn is more restrictive
than a L.-norm constraint. Therefore, prices of buyers with L..-norm constraints
are the smallest, those with L,-norm constraints are in the middle, and those
with Li-norm constraints are the highest. Yet, all three types of constraints allows
for short sales. These are forbidden in the OTB version why this approach yields

the highest (= worst) prices for buyers.

For the seller the order of L;-, L,-, and Lw.-norm constraints on portfolio holdings
is the same. Therefore, sellers obtain best prices from L.-norm constraints fol-
lowed by L,- and L;-norm constraints. Lowest prices for sellers are achieved with
short sale constraints OTS: Sellers cannot sell low price companies short and in-

vest proceeds in high price companies.

3.3.2.1.2 The Role of Size

A higher size x means less binding constraints on portfolio holdings and, thus,
lower prices for buyers and higher prices for sellers. What Figure 5.3 and Figure
5.4, however, illustrate for a L;-norm constraint on portfolio holdings—the fig-
ures for the other constraints on portfolio holdings can be found in Appendix
5.2.1.1.2—is the extreme effect of size x on Ratios (3.1), i.e., the high economic

significance of size x on “magnitude”:
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Figure 5.3:  Histogram of Ratio (3.1) and L, for different sizes x for buyers
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Figure 5.4: Histogram of Ratio (3.1) and L, for different sizes x for sellers

The high economic significance of size x is not limited to certain factors as the

figures in Appendix 5.2.1.1.2 starting with Figure Appendix 5.2.1.1.2g show.

3.3.2.1.3 Prices of Buyers Versus Sellers

The economic significance of buyers’ and sellers’ positions becomes even more
apparent if prices for buyers and sellers are compared directly. To that end, con-
sider the ensuing exemplary figures, all figures can be found in Appendix

5.2.1.1.3:
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Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints in non-negativity form
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Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints of shape L, and size x=1

Figure 5.5 and Figure 5.6 clarify that it is essential with respect to economic sig-

nificance to distinguish between buyers’ and sellers’ positions. In other words, if

both positions are not analyzed separately, optimization potential —lower prices

for buyers and higher prices for sellers—remains unused. Moreover, Figure 5.6

contains an example for the rare cases where buyers’ prices exceed those of

sellers (see, e.g., category +50% and red column; a positive number indicates
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that the reference model seller produces a price that is less than the one for

buyers; see Section 2.2.2 for an economic explanation).

In addition, factors play a role when analyzing economic significance of buyers’
and sellers’ positons as the following exemplary figure demonstrates (all figures

can be found in Appendix 5.2.1.1.3 starting with Figure Appendix 5.2.1.1.3k):
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relative frequency
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0% JI I-. T T T T I-. T
-500% -200% -100% -50% -10% 0% 10% 50% 100% 200% 500% >500%

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EMS8
MO EM10 B M11 BEM12 B M13 B M14 1 M15 B M16

Figure 5.7:  Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints in non-negativity form broken down by factors

Multi-factor models produce lesser Ratios (3.1) than single-factor models since
their optimization potential is reduced due to more accounting characteristics
constraints. Nevertheless, they are also unable to produce Ratios (3.1) of less
than 10% that have been defined as acceptable in Chapter Ill, Section 2.1.3.2. In
other words, even for multi-factor models it is required to separate buyers’ from

sellers’ positions.

3.3.2.2 “Similarity” of Price Differences of Different Shapes and
Sizes of Constraints on Portfolio Holdings

While “magnitude” stresses the price differences between models, i.e., focuses
on dissimilarities, “similarity” concentrates on the common aspects of models.
“Similarity” is computed with the help of Area (3.3) (see Chapter Ill, Section
2.1.3.3) and regarded as high if Area (3.3) is less than 10%.
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3.3.2.2.1 The Role of Shape

Since “magnitude” results in shapes that create economically significant differ-
ences, “similarity” cannot deliver other results. In fact, Appendix 5.2.1.2.1 shows
that using different shapes of constraints on portfolio holdings translates into
Areas (3.3) that all are in the > 500% region (irrespective of whether it is broken
down by factor or not). In other words, the criterion “similarity” also stresses the

economic significance of the role of shape.

3.3.2.2.2 The Role of Size

The role of size x is of high economic significance (similarly to shape): Different
sizes x on constraints on portfolio holdings translate into Areas (3.3) that all are
in the > 500% region (irrespective of whether it is broken down by factor or not)

as Appendix 5.2.1.2.2 shows.

3.3.2.3 Summary on the Economic Significance of Shape and Size
of Constraints on Portfolio Holdings

Shape and size x of the constraints on portfolio holdings as well as decision mak-
ers’ position (buyer and seller) exert huge influence on buyers’ and sellers’ com-

pany values, i.e., are of high economic significance.

Therefore, on the one hand, a separate price determination of buyers’ and
sellers’ position is mandatory. On the other hand, constraints on portfolio hold-
ings (shape and size) should be modelled wisely. In particular, they should not be
implied as, e.g., it is the case with regression approaches. Given that constraints
in L-norm-form cannot be justified from institutional circumstances (see Section
2.1.2), a non-negativity constraint on portfolio holdings as the sole constraint
should be imposed. Non-negativity constraints do not have to specify the size x,
constraints in L,-norm-form sometimes result in negative prices (due to the short
sale in the (super-/supra-) replication portfolio), and the practical implementa-

I”

tion of short sales for “normal” companies might prove difficult.
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3.3.3  Economic Significance of One- versus Multi-Period
Versions of the Optimize-the-Price Approach

Economic significance boils down to the question whether the steady state as-
sumption of the one-period model might not be completely unrealistic. There-
fore, “similarity” (Area (3.3)) of one- and multi-period models is the decisive as-

pect of economic significance when one- and multi-period models are compared.

3.3.3.1 Graphical Analysis

“Similarity” figures (figures regarding “magnitude” can be found in Appendix
5.2.2.2) differentiated between buyers and sellers and with non-negativity con-

straints on portfolio holdings reveal:
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0% - T T T T 1
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Figure 5.8: Histogram of Area (3.3) of price differences between one- and multi-period ver-
sions of the optimize-the-price approach with non-negativity constraints on port-
folio holdings and buyers’ position
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Figure 5.9: Histogram of Area (3.3) of price differences between one- and multi-period ver-
sions of the optimize-the-price approach with non-negativity constraints on port-
folio holdings and sellers’ position

Figure 5.8 illustrates that the steady state assumption of the one-period model
partially works not bad for buyers, but is definitely bad for sellers. Obviously, the
two differences between one- and multi-period models ((i) increasing number of
constraints on accounting characteristics (5.12) and (5.13) and, thus, less optimi-
zation potential; (ii) time trend in the size x of constraints on portfolio holdings;
see Appendix 5.2.2.1) compensate each other better in the case of buyers than in

the case of sellers.

A look at different factors (see Appendix 5.2.2.3) might help to explain these re-
sults. Multi-factor models produce low “similarity” for buyers as opposed to the
one-factor models M1 “Net Sales Or Revenues (SA)” and M8 “Book Value Of
Common Equity”. Yet these models do not possess the best explanatory power
regarding company values—several accounting characteristics are needed to ad-
equately reflect the multi-dimensionality of the figure cash flows that condense
several value drivers into one figure—, a fact that might explain why there is not
much of a difference between one- and multi-period variants of the optimize-

the-price approach.

Finally, the different degrees of “similarity” between buyers and sellers deserve

some consideration. Non-negativity constraints on portfolio holdings prevent
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buyers from selling expensive companies short in the (super-) replication portfo-
lio why the price of the (super-) replication portfolio cannot be reduced that
much. On the other hand, non-negativity constraints on portfolio holdings prove
less restrictive for sellers since they are concerned with purchasing expensive
companies in the (supra-) replication portfolio to end up with a high price for the
company to be valued. In other words, non-negativity constraints exert a direct
influence on the (super-), but only an indirect one (limits the number of purchas-

es) on the (supra-) replication portfolio.

3.3.3.2 Summary on the Economic Significance of One- and Multi-
Period Versions of the Optimize-the-Price Approach

Given the results regarding “similarity”, it becomes apparent that price differ-
ences between one- and multi-period versions of the optimize-the-price ap-
proach are economically significant. Put differently, a one-period model is empir-
ically not a good approximation of multi-period models and the steady state as-

sumption implied by the one-period model is clearly violated empirically.

3.3.4 Economic Significance of Integrated (Optimize-the-
Price Approach) versus Separated Approaches (Re-
gressions)

Analyzing the integrated versus the separated approaches means examining em-
pirically, how much optimization potential is not used if a free lunch (separated

approach) is considered instead of an arbitration (integrated approach).

3.3.4.1 “Magnitude” of the Price Differences between Integrated
(Optimize-the-Price Approach) versus Separated Ap-
proaches (Regressions)

Since the optimize-the-price approach is equipped with a constraint on portfolio
holdings that matches the one implied by the respective regression approaches

(see Section 3.2.1), it is not necessary to distinguish between shape and size of
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the constraints on portfolio holdings. Therefore, the results regarding “magni-

tude” can be directly accessed:
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Histogram of Ratio (3.1) of buyers’ price differences between quantile regressions
and the optimize-the-price approach with a constraint on portfolio holdings in L;-
norm-form*

Figure 5.10 illustrates, first, the huge differences between prices computed with

the help of regressions and the optimize-the-price approach and, second, that

the prices of the optimize-the price-approach are well below the ones obtained

by means of regressions.—Similar results are obtained for OLS and WLS regres-

sions; see Appendix 5.2.3.2.1 starting with Figure Appendix 5.2.3.2.1g.

Principally the same picture is obtained for sellers. This time, however, the price

of the seller following the optimize-the-price approach exceeds the one obtained

from regressions (see Appendix 5.2.3.2.1):

13

Recall that the dual program of the optimize-the-price approach must be compared to the

primal program of regressions and a L..-constraint in the primal program translates into a L;-
constraint in the dual program.
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Figure 5.11: Histogram of Ratio (3.1) of sellers’ price differences between quantile regressions
and the optimize-the-price approach with a constraint on portfolio holdings in L;-
norm-form

In other words, focusing on a free lunch instead of following arbitration leaves an
economically highly significant optimization potential on the table. Moreover, it
becomes clear that regressions formally seem to represent buyers’ position be-
cause they minimize prices (see Chapter IV, Formula (4.5)). However, this section
illustrates that the focus on free lunches instead of arbitration cannot at all ad-

dress the buyers’ position.

Finally, note, first, that regressions without an intercept do not change the find-
ings so far: Regressions without intercept are the theoretically superior model
(see Chapter IV, Section 3.1.3) and produce economically significant lower prices
(see Appendix 5.2.3.1.1). Nevertheless they ignore arbitration and, hence, devi-
ate economically significantly from prices of the optimize-the-price approach.
Second, all results do not change if broken down by factors, see Appendices

5.2.3.2.1and 5.2.3.3.1.
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3.3.4.2 “Similarity” of the Price Differences between Integrated
(Optimize-the-Price Approach) versus Separated Ap-
proaches (Regressions)

Since “magnitude” illustrates economically significant price differences between
the optimize-the-price approach and regressions, “similarity” cannot deliver dif-
ferent results. In fact, Appendices 5.2.3.2.2 and 5.2.3.3.2 demonstrate the eco-
nomically significant low degree of “similarity” between both approaches that al-
so holds when broken down by factors and for regressions with and without in-

tercept.

3.3.4.3 Summary on the Economic Significance of Integrated (Op-
timize-the-Price Approach) versus Separated Approaches
(Regressions)

The price differences between the integrated (optimize-the-price approach) and
the separated approaches (regressions) are of very high economic significance.
Therefore, ignoring—like regressions do—the price optimization potential of the
company to be valued (arbitration) and instead focusing only on free lunches im-
plies an economically significant mispricing. In particular, regressions can neither

be associated with buyers’ nor sellers’ perspectives.

4 Conclusion

Valuing businesses by means of present values is the only correct approach from
an asset pricing theory perspective because present values follow from no arbi-
trage, i.e., the intuition that a positive investment is needed to generate a posi-
tive return meaning that one gets nothing for free. However, no-arbitrage theory
is difficult to translate into applicable valuation models for companies. There-
fore, combining the practicability of accounting-based valuation models with the

theoretical rigor of asset pricing theory might bring business valuation a visible
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step forward.—The optimize-the-price approach is our solution to the business

valuation task:

From a theoretical perspective, the optimize-the-price approach is based on the
economic principle and is able to integrate constraints on portfolio holdings that
are in line with the institutional environment and market usages. Moreover, the
optimize-the-price approach can distinguish between buyers’ and sellers’ posi-
tion, use the mispricing potential of the company to be valued (arbitration) in-
stead of focusing only on mispricing of other companies (free lunch), and can in-

tegrate synergies, multi-period valuations as well as risk.

From an empirical perspective, the price differences between the integrated (op-
timize-the-price approach) and the separated approaches (regressions) as well as
price differences between buyers and sellers are of very high economic signifi-

cance measured with the help of “magnitude” and ”similarity”.

From the perspective of a practical business valuation, a multi-period version of
the optimize-the-price approach together with a non-negativity constraint on
portfolio holdings is suited best: First, the steady state assumption of a one-
period model is not given in reality. Second, constraints in L,-norm-form cannot
be justified from institutional circumstances and sometimes result in negative
prices (due to the short sale in the (super-/supra-) replication portfolio). Moreo-

III

ver, the practical implementation of short sales for “normal” companies might

prove difficult.
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Appendix

Appendix1 Lagrange Duality

Appendix 1.1 A Primer on the Implementation
Steps of Lagrange Duality

Before Lagrange duality is applied to the specific problems of Chapter Il, it is use-
ful to present a general overview of how primal programs are transformed into
dual programs. Once such a central theme is developed, it will be easier to follow

the specific derivations.

By giving this primer, we follow the textbook of Boyd/Vandenberghe (2009).

Appendix 1.1.1 Fundamental Relation Between Primal
and Dual Program

Starting point is the primal problem in standard form, i.e., a minimization prob-
lem where inequality constraints are in less-than-or-equal-to-zero form (see

Boyd/Vandenberghe (2009), Formula 5.1, p. 215)

(A1.1)
minimize f,(z)
subjectto f;(z) <0, i=1,...m
hi(z)=0, i=1,..,p

with decision variables z € R™.

The constraints are connected with the objective function by means of a La-

grange function (see Boyd/Vandenberghe (2009), p. 216).
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(A1.2)

m p
g4v) = irzlfL(x, Av) = ierf<f0(Z) + Zlifi(z) + z vihi(z))

After optimizing the Lagrange function, the dual problem emerges (see

Boyd/Vandenberghe (2009), Formula 5.16, p. 223):

(A1.3)
maximize g(4,v)

subjectto1 >0

where v is not sign-constrained since it is the Langrange multiplier of the con-

straints in equation form of the primal problem (A1.1).

Appendix 1.1.2 Steps of Lagrange Duality

To transform a primal problem to the dual problem (A1.3), the following steps

must be mastered:

1% step: reformulate the primal problem in standard form where necessary

2" step: write the Lagrange function

3" step: differentiate the Lagrange function with respect to decision variables z
(but not with respect to the Lagrange multipliers A and v)

4t step: group the Lagrange function by the variables z

5t step: insert the necessary conditions into the Lagrange function

6" step: formulate the dual problem in accordance with (A1.3)
Note in this connection that the necessary conditions from the 5t step
guarantee that the objective function of the dual problem assumes a
finite value.

7t step: transform the maximization problem into a minimization problem by
multiplying the objective by —1
The original dual program of empirical asset pricing models is a mini-
mization problem (valuation errors are minimized). Consequently, the

dual problem is a maximization problem. For economic interpreta-
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tions—relation to the economic principle—a minimization problem is
superior. Hence, the maximization problem is multiplied by —1.
gt step: reformulate some of the constraints of the dual program to obtain a

better economic interpretation for them

Appendix 1.2 Lagrange Dual of the Superordinate
Category Regression Approaches

Appendix 1.2.1  Primal Program

According to Chapter Il (Section 3.1, Formulas (2.52) to (2.21)) the general opti-

mization problem of regression approaches reads

(2.52)
1
n n )
, min__x-|(1-1) 'Z(Mf)p +T'Z(Hi_)p
[T Lo gy T ] =1
ﬁO!ﬁlv""ﬁm = =
s.t.
(2.53)

overestimation: &/ = By + XL, A7 ;B; — yi >0

et <uf

ent < g
underestimation: &/~ = By + XL, A7 ;Bj — yi <0

& = —uy or-g” <y

€n 2 ~ln O =& < Uy

uf =0,u; =0,..,ut =0,u; =0, ER, B ER,...,Lm ER
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with

(2.21)

=W
* * cee
11 " Aim (“)1,1 “)1.n> Ay Aim
* *
n1 An,m Wn,1 Wn,n Anl An,m
=W
<8I> <w1’1 wl,n) (81>
&n Wpq 0 Wpp €n
=w

where x is greater than zero and denotes a scaling factor.

The primal program (2.52) to (2.21) is then formulated in standard form (1° step)

by plugging in for € and expressing all constraints in less-than-or-equal-to-zero

form:
(A1.4)
1
n n P
min X- (1—r)-Z(u?)p+T'z(u"—)p
MI-!H]T!"'!M?I-’HT_I' '_1 '_1
BoBrBm . a
s.t.

m
Bo+ ) iy —yi—ut <0
=1

m
~Bo= ) ALy +yi—ui <0
j=1

m
Bot ) Anify = yi— i <0
=1

m
—Bo —ZAZ,]-/?J- +yn—tn <0
j=1
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BoERBLER, ..., Bn ER

Appendix 1.2.2  Preparing for Dualization

The Lagrange function of the primal problem in standard form (A1.4) reads (Z”d

step)
(A1.5)
1
1p
[(1 -0)- Z(u:)p +r- Z(ul y?
2% | o+ z,,-ﬁ,- —yi—ut |+ 5| —Bo— ) AL+ i
+ .

m
+25 | By +2An,ﬁ, ya— ik |+ 2| —Bo = > B+ vi -

j=1

+yi (—u) +yr (—pD) + o+ v () + ¥ (<un)

Forming necessary conditions (3rd step) delivers

1
i i [(1—r> Z(;ﬁ)pw Xml )p] (A=) p- (P!

6/,L1 B
=M -y =0
i-p
p
6#1 [(1_T) Z(H;)p‘FT Z(Ml )p] ‘T-p- (:ul_)p_l
—A—y1 =0
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n n 1—_p
oL 1 .\ . 1
X (1—T)~2(/1i)p+r'2(,ui)p A1=7)-p-(u3)?
HUn p — =
=1 =1
—An =V =
=P
a [(1—r) Z(u;*)p+r Z(ul )”] Top e (up)Pt
v
A —Yn =0
oL
— 7t - + _ =
aﬁo =A—-AT+ -+ —-14,=0
oL
=AMAL, —AAL L+ A — A A5, =0
0131 ' ' '
oL
=MA A+ A — A =0
9Bm ’
becausel— 1= 1_—p.
1% 14

Collecting decision variables uf, u7, ..., b, i, and By, By, ..., Bm in the Lagrange

function (A1.5) delivers (4th step)

(A1.6)

SIS

L=x: [(1 —7) ) WP+ Z(u{)”]
i=1 =1

=ML pf = AT pg == A e = Ay
o 2R T PR TRl A TRl vy

n n
‘|'ﬁoz:/12L —,802/1{
i=1 i=1
n n
+p1 Z AT Ai1— P1 Z A A7,
i=1 i=1

n n
+Bm Z /1?- ) A?,m — Pm Z Ai_ ! Azm
i=1 i=1
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n

n
—Zl?'szli"y?
i=1

=1

To prepare for inserting the necessary conditions into the Lagrange function (5th
step), an intermediate transformation is recommended. Each necessary condi-
tion with respect to u;" and y; is multiplied by its u; or u;” respectively. Then, all

these multiplied necessary conditions are added, a procedure that results in

i-p

14

x-[(l—r)-Z(,u;r)p-I-T'Z(M[)p] (1=1)- (uH)?
i=1 i=1

—ATud =y uy

1-p
n n T
#x- (=0 ) @+ Z(u{)p] T ()P
i=1 i=1
BT S SR Y
i-p
n n D
b |(1=0)- ) @hr + e Z(u{)”] (A=) ()P
i=1 i=1

=AUy =Vt Hn
1-p

p

b= Y @HP 4 Z(u{)”] T

—AnUn —Vn Ha =0

i.e., after collecting associated pu; and u;

1-p
i n n T
x- (1—r)-2<uf>p+r-2(u;>p]

AA-D - @OP+7- WP +-+ A -1 )P +7- WP
=-D 2L, (1) +r 2 (1))

A uf =yl u AT u -y Ut

— A Uy = Vn Hm =g My —Vn hn =0
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and thus

(A1.7)

X - [(1 — 1) -i(u?)” +1 i(u{)”r

A uf =yl u AT —vug

— Ay Uy = Vn Ha = An Uy —Vn U =0

1-— 1
because —2 + 1 = -,
p p

Plugging the aggregated necessary conditions for u (A1.7) and the necessary

conditions for 8 into Lagrange function (A1.6) yields (5" step)

L=x-[(1—T)-Zn:(uf’)p+r-i(u{)p]

A uy = AL pg == A = A

S B SO it 2 I el
=0 because of (A1.7)

n n
+,BOZ/1? _,Boz/li_
i=1 i=1

=0 because of aaTL=0
0

n n
‘|',31Z:/1;r A7, _312/1; A,
i=1 i=1

=0 because of aaTL=0
1

S

+ ...

n n
+ﬁmzl-i|- 'A?,m _BmZAi_ 'A;'k,m
i=1 i=1

=0 because of aaTLzo
m

n n
—Zl?'yHZli‘-yf
i=1 i=1

Consequently, it is obtained
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(A1.8)
L==) A yi+) 4y
212,
Appendix 1.2.3  Dual Program: First Version

The adaption of the general dual program (A1.3) to the regression environment

(6" step) reads

(A1.9)

s.t.

oL

— =X
ouy

oL

e 4

duy

oL

— =X

ous;

oL

—_— =X

Opun

n n
+ ¥ T
AN?%M._Z% Vi +Zli
Vivievivn =
1-p
1 n n o
e [(1—1) -Z(/«tf)p +T'Z(Hi_)p]
p — o
i=1 i=1
- =y =0
1-p
1 n n o
= [(1 —T) Y WP+ T-Zm;)p]
p — e
i=1 i=1
—A1—v1 =0
1-p
1 n n o
—-[A-1) -Z(u?)” +T-Z(ui‘)”]
p — e
i=1 =1
A =2 =0
1-p
" n n o
= [(1 —D) Y WP+ T-Zm;)p]
p — =
i=1 i=1
A —¥n =0
oL
a—ﬁoz/lj—/lg+---+/1;—/1,; =0

A-1-p- @)

Tep- ()P

(=1 p- ()P

~Tep- (up)PH
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oL b oas o + s .
FT A — A A+ + A — 440, =0
B1
aL + A% — A%k + Ax — A%
= Al,m - A1 Al,m +oeet AnAn,m - AnAn,m =0
0Bm

Af=0,1=0,..,4>0,1;, =0
Vi Z20,¥7 20,7 20,77 20

The objective function of the maximization problem (A1.9) reads

Af =27
A+/11 ,1+,1- Z( )y

)’1 1 Yn ¥n

Hence, the maximization problem (A1.9) easily translates into a minimization

problem (7" step) and the first version of the dual program is obtained.

(A1.10)
min A =27
AT AT AR, 2( ) yi
Vf:h Vn Vn B
s.t.

1-p
p

[1—r) Z(u:>P+r Z(ul)p] (A=) P =2t -y =0

n n %
x- [(1 —D ) WY +r-2<u;>p] TP = AT = =0
i=1 i=1

n n %
x- [(1 —D ) WY +T'Z(#{)”] (A=) P - A -y =0

x'[(l—f)'zn:(#?)p+f'i(ﬂf)p

A=A+ +2 - =

1-p
4

T WP = A —ye =0
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AIA;,I - ;,1 + -t AZA;J - /1514;1,1 =0

A;A’i,m - AI ’i,m + et A;A;,m - A;A;,m =0

Af>017>0,..,11>0,1;,=0

¥i=0,y0 =0, =0,y =0

Appendix 1.2.4  Dual Program: Final Version (8" step)

The necessary conditions of the dual program: first version (A1.10) are a function
of the decision variables u;” and p; of the primal program (A1.4). For that rea-
son, dual program (A1.10) has no ready economic interpretation and, thus, can-
not serve as economic model selection criterion. Instead, u;" and p;” must be re-

moved from the constraints of dual program (A1.10).

Appendix 1.2.4.1  Determination and thus Elimination of u; and

i
Appendix 1.2.4.1.1 Equations that contain ;] and u;

The following equations contain u; and u; and, hence, are candidates for the

elimination of u; and y; .

— Aggregated necessary condition for ,ui+ and pu;

(A1.7)

X [(1 - 1) -Zn:(ui*)p + r-i(u{)pr

A uf =y u AT v

=AUy =V e = An Uy =V Un =0
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— Necessary conditions with respect to u;" and u;°
(A1.11)

p

1i-p
p

x- [(1 —7) ) +T-Z<u;)r’] =) (P = 2E =y =0

1-p

p

x- [(1 —D) ) WP+ Z(u;)p] (WP = A =y =0
i=1 i=1

p

1i-p
p

x- [(1 DX ok +I-Z(u{)”] =D (P =25 = =0

1-p

p

x- [(1 —D) ) WP+ Z(u{)”] T )P = A = =0
i=1 i=1

Appendix 1.2.4.1.2 Solving the Equation System with respect to y; and u;

The equation system (Al1.7) and (A1.11) is rich enough to allow for a complete
determination y and u; and, hence, elimination of u; and y; from the con-
straints of dual program (A1.10). Intuitively, it is proceeded as follows: From the
necessary conditions (A1.11) u7, ..., 4, are expressed as functions of uf. These

expressions are then inserted into (A1.7).

Restructuring (A1.7) leads to

[(1 —-17)" Zn:(u?)” +T Zn:(u{)pr

_ WAy A A tyD) u A An ) s+ Ga v i
X

since x is by definition greater than zero.

Reshuffling (A1.11) gains

1-p

p

x- [(1 —D) ) P+ Z(u;)p] A=) WP =2 +yf
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1-p
n n T
x- [(1 —D) ) P+ Z(u;)r’] TP = AT yE

i-p

p

x- [(1 —D) ) WP+ Z(u;)p] (=) WP = A 4yt
i=1 i=1

1-p
n n T
x- [(1 —D) D @+ Z(u;)r’] TP = 2

or rather (after taking the ﬁth power)

(A1.12)

Q=
=

1

1
A=0) D @+ ) W[ =27 (=T p - (A + ¥
L i=1 i=1 .

Q=
=

1 1

=0 > P47 ) @) | =TT g - (4 +yD) T
L i=1 i=1 .

D=
=Y

1

1
=0 Y @+ ) WDP| =0T (1= DT - (O + )T
| i=1 i=1 E

=
=

1 1

(=0 > P 47 ) @I | =TT g - (O + 9T
L i=1 i=1 .

T is located between 0 and 1 (see, e.g., Koenker (2005), p. 5); /1;’ and A; as well
as yi+ and y; are nonnegative in the dual program (A1.10). Moreover, /1;’ and yl-+
(A4; and y;) will not be both identical to zero. If a purchase occurs in the opti-
mum, A} will be greater than zero and the nonnegativity constraint on purchases
will not bind, i.e., y;’ = 0. If a sale occurs in the optimum, /11?L will be equal to ze-
ro, but y;" will be greater than zero due to the now binding nonnegativity con-

straint.

Since the left-hand sides of (A1.12) are identical, a relation between u7, ..., 4,

and uf can be established:
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1 1 1

1
p1.gr1 TP = a1 (L= - (A 4T

xP=1 P71y - (07 + 1)

1 1 1
X1 (1=t (aF + v TP
1 1 1
T (1— 0Pt - G +y DT

L (1= P g - (4 + )P

xP~1 .= 1. - (A + ¥ )1

(A1.13)
Ca-oFT |, i

p-1 (A; + )P

P = - -
(1-1)p-1 Ay +ya)t?P

1
1-0p-1 Af +yH)T?

n 1 THg 1
TPt (A7 +y)P

and from (A1.7)

(A1.14)

A +y) i+ QAT +yD)pur + -+ A +vD) it + A +ve) - un
p 1 1
=xP~1-(1—7)P~1-puf - (Af +y)TP

1 1+p-1 D
since it holds xp-1 = = x p-1 = xpr-1,

Inserting (A1.13) into (A1.14) gains

1 1
N € o Lo ¢ ) 70 b
Af +v) w5 +y0) ———

1
TPt (1 +y)ip

1

1

(A-0F T | Gf+yDTP

FOE + )
A-0F T @ +yDT?
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1 1
I ¢ et e Af +yHir
+(A5 +yn)-T-u1 —
TPl A7 + )i P
P 1 1

=P T (1= 0T - O + )T

1 1
Division™® by ui and (1 — 7)2=1 - (A} + y;/)1-» yields

1
A +vH' =3 (1-—1)t>»

B B 1 1
Tp-1 (/1; +)/1_)1_p
. 1 1
+(A ) T T
(1-0P T (A +y)T?
_ _ 1 1 _p_
+(/1n + Yn) 1 1 = xp-1

™1 (A7 4+ )P
i.e.,

(A1.15)

1 1
O + ¥ T (1= OTF + (G5 +y)P-1- 7

[uy

1 P _p_
HOE 4 RO (L= TP 4 (B + )P 11 = 27
since it holds

1 1 _b_
A7+ AT +yD)P T = (A7 +y7) 71 = (4] +y7)P1

Taking the " root of (A1.15) finally delivers

(A1.16)

_D_ 1 b 1 1p
(AL +yP -1 —D)1P+ (A7 +y )Pt 71?P
+... =X
1 b 1
F P (L= )T 4 (4 )P 717

14 . . . .
In the case that asset 1 is overvalued, /J;r will be zero. In that case, however, all equations will

be expressed as a function of u; and the computations will follow the exactly same path.
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(A1.16) contains the unobservable variables y;" and y; . However, since 1] and

A7 as well as y;* and y; are nonnegative in the dual program (A1.10), it holds
AF+yt=afand A7 +y7 = A7
and, hence,

(A1.17)

p—-1
p

_p_ 1 p_ 1
(AP~ (1 —1)1P + (A)P~1-71P
+ o <x
_p_ 1 b1
FORFT - (1= DT + ()1 - 7T
(A1.17) is the form of a constraint useful for integrating into the dual program

(A1.10) because it no longer depends on ;" and u; as well as y;" and y;".

Appendix 1.2.4.2  Dual Program: Final Version

Substituting (A1.17) for the necessary conditions with respect to ,u;’ and y; in

the first form of dual program (A1.10), it is finally gained

(4.1)
n
min AF—217)-yr
A;,A;,...,A;,A;Z( : i) Yi
=1
s.t.
(4.2)

p—1

[(1 - 1) L70 Z(ﬁ)p 14 (7)t-» zn: I’L] <x

i=1
A=A+ +2 - =
/H-Ah - ;,1 +-t AZA;J - /1514:1,1 =0
MALm — A A+ A — L Aym =0
A >0,17=0,..,4>02,=0

192



Appendix

(4.1) is the desired final form of the dual program.

Appendix 1.2.5 Dual Program for the Special Case: p=1

Since p is in the denominator of the final form of the dual program (4.1), the
special case p = 1 cannot be directly seen from (4.1). However, this special case
can be directly derived from the necessary conditions with respect to u; and p;

of the first form of dual program (A1.10):

i-p

n n T
x- [(1 —D ) WY +r-2(u;)p] (A=D)- (P = A -y =0
i=1 i=1
n n l_Tp
x- [(1 —D) ) WP+ 2@;)*’] T WP = A -y =0

i-p

n n T
x- [(1 —D ) WY +r-2(u;)p] (A =D)- (P — A -y =0
i=1 i=1

1-p
n n >
x'[(1_7)'2(“i+)p+f'z(u{)”] T ()P =~y =0
i=1 i=1

With p = 1 the above necessary conditions simplify to

(A1.18)
x-(1-1) -2 -y =
x-T—A; —y; =0

x- (I-1)—Af—yn =

x-T— Ay —vq =

Since y;" and y;” are nonnegative in the dual program (A1.10), (A1.18) can be

written without explicit reference to y;" and y;” as
x-(1-1)—-A <0
x-tT—A1 <0
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x-(1—-1)—4 <0

x-1—1,<0
and, finally,
(A1.19)
AM<x-(1-1)
M <x-t
AM<x-(1-1)
MM <x-T

(A1.19) are the desired constraints for integrating into the dual program (A1.10).

Appendix 1.3 Lagrange Duality of the Superordi-
nate Category Method of Multiples

Appendix 1.3.1 Primal Program

The method of multiples does not involve optimization (see Chapter Il, Section
2.2.1) since the multiple—and, thus, company values—is determined completely

as a function of company characteristics (see (2.23) to (2.27)).

Put differently, an optimization problem will be adequate to capture the method

of multiples if it yields as outcome of the optimization the multiple

(A1.20)
Bi=rf(v4)

where f(.) is defined in a way so that B always remains positive.

Note in addition that f(.) has no subscript because the function is independent
of specific accounting figures. It is, e.g., an arithmetic average meaning that

arithmetic averages are computed for all accounting figures A;.
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Note in this connection that several multiples can be used in combination to de-
termine prices (see (2.33)). However, each multiple is determined independently
of other multiples, a fact that can be formalized as follows: The necessary condi-

tion of multiple §; reads

(A1.21)
aG;

aﬁ]_o IBJ f(y'Aj)

where G is the yet unknown objective function of the optimization problem.

Gj can be determined from (A1.21) by means of integration:

1 2
Gy = fﬁj —f(».4;)dp; = o] — f(v,4;) - B; + const
where const denotes an arbitrary constant.

Even though technically arbitrary, const should be specified so that a compari-
son to regression approaches can be established.—As long as const does not
depend on B; this procedure will be innocuous. The same is true for adding con-

straints that do not influence the optimal value of f;.

Such innocuous const and constraints are any of those that optimize with re-
spect to valuation errors ,ul-+ and u; since they play no role in the method of mul-
tiples. To remain comparable to the superordinate category of regression ap-
proaches, its objective function and constraints regarding over- and underesti-

mation might be added.

This signifies that the following primal program in standard form can be used to

describe the optimization problem of the method of multiples (1** step):

(A1.22)

m v
1

min, Z— f(y,A) Bj+x-

uiur,. unun 2

B
0,,.. am

1-1)- E(unp +7- Z(ul )p]
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s.t.

—Hp =0

—Hn =0
Note that adding a nonnegativity constraint for j; is not adequate. On the one
hand, because the method of multiples specifies the function f(y,Aj) to be
nonnegative. Adding a nonnegativity constraint for §; overlooks this institutional

feature of the method of multiples. On the other hand for formal reasons: Add-

ing a nonnegativity constraint for B; (or —f; < 0 in standard form) would result

in the following necessary condition for f3;

oL

a—ﬁj—ﬁj—f(%/lj)—/lﬁ,:o

where Aﬂj (with Aﬁj = 0) denotes the Lagrange multiplier of the nonnegativity

constraint for f3;.

Therefore a nonnegativity constraint on 8; cannot reproduce the core result of

the method of multiples §; = f(y,Aj), but only g; = f(y,Aj).
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Appendix 1.3.2 Preparing for Dualization

The Lagrange function of the primal problem in standard form (A1.22) reads (2"

step)
(A1.23)
1
m 1 n n p
L =Z§-ﬁj2 —f(y,4)-B +x- (1—1)-2(11?)” +T-Z(u{)”]
= i=1 i=1
m m
+A% ZA;,—H,— —yi—ul |+A7 —ZAL-@,- Ty
j=1 J=1
+ .o
m m
+25 ZA;,,-HJ- —Yn—Hn |+ An _ZA:LJ'GJ' + Vn ~ Hn
j:l ]=1

v (=) v (D) + o+ v (—es) + e (i)
Forming necessary conditions (3rOI step) delivers

(A1.24)

1-p

n n
oL 1 . N e Nyt
= A= Y @ T Y @ A=) p ()
Iy p i=1 i=1

- =y =0

1-p

p

oL 1 < = s
Ew-;-[(1—r)-;(ui)p+r-;<ui)p] Tp (P

AL —y1 =0

n n 1p
oL 1 .\ e N
= =D Y @ T Y @] =D p ()P
Obtn P i=1 i=1
—dn —¥a =0

1-p

n n
oL 1 .\ O Cpet
S=xe (=D Y WP T ) | T )
l’tn p i=1 i=1

A —¥n =0
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aL + A% — A% + p* —A*
0_61 =MA — A+ A — AR =0
oL + A% — % + A% —A*
30, MALm — AL+ + An g — Ay A m = 0
m

oL

oL

35 = Pn = An) =0

m

Collecting decision variables uf,ui, ..., ut, u, and 64, ...,0,, in the Lagrange

function (A1.23) produces (4™ step)

(A1.25)

L=x-[(l—r)-i(u?)“r-i(u{)pr

=M puf = AT pg == A e = A g
o 2 T CUR TRl Ay TR o vy

n n
I |
+9121; A — 912/11' “Aig +§'.312 —f(v,Ay) - b1
i=1 i=1

+...
n n 1
0 D A A = O D 7 Ay + 5 B = O A) B
i=1 i=1
n n
—Zﬂ?-szli‘-yf‘
i=1 i=1

To prepare for inserting the necessary conditions into the Lagrange function (5th
step), an intermediate transformation is recommended. Each necessary condi-
tion with respect to u; and y; is multiplied by its ;" and u; respectively. Then,

all these multiplied necessary conditions are added, a procedure that results in
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(A1.7)

1
n n 5
x- [(1 —D) ) WP+ Z(u;)p]
i=1 i=1

R SR THE L T Sun Thy

— A U =V e =AUy —Vn U =0

In a similar vein, each necessary condition with respect to 8; is multiplied by its

0.

(A1.26)
aL
20, AMAL 0 —A[AL 01+ +A5A5 1 01 —A3A5 160, =0
1
JL
ﬁ = ATAy{,m O — AL i,m O+ + /1141-A:1,m Oy — lr_lA:l,m "0, =0
m

Plugging the aggregated necessary conditions for u (Al1.7) and the multiplied
necessary conditions for 8 (A1.26) into Lagrange function (A1.25) yields (5th step)

L=x: [(1 —7) ) WP+ Z(u{)”]
i=1 =1

=ML pf = AT pg == A e = Ay

S it SO it G R
=0 because of (A1.7)

n n
+91z/1?- A7, — 912/11'_ A7,
i=1 i=1

=0 because of (A1.26)

SIS

+ ...

n n
+9mzxi’-"4>{,m_ mZ/li_'A?,m
i=1 i=1

=0 because of (A1.26)

n n
—zl?-yi"+z/1{-y£‘
i=1 i=1
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N| =

B = f(v.4) B

m
i)
j=1

=S B (Bi~f(r4))) 3B

-~ . -7
=0 because of (A1.24)

Consequently,

n n m

+ * = * 1 2

L= _Z/li Vi +Zli Vi —E'Zﬁj
1 i=1 =1

i=

Appendix 1.3.3  Dual Program: First Version

Adapting the general dual program (A1.3) to the method of multiple environ-
ment (6th step) and translating the maximization problem into a minimization

problem (7th step) leads to the first version of the dual program:

(A1.27)
n m
min 2(,11'_/17).y?+1.2ﬁ.2
AT AT A A5, 4 t L 2Lt
BiBm, 1 J=1
Vi ViV Vn
s.t.

1-p

p

x-[(1—r>-2<ui+)?+r-2(u;)p] (A=) WP = A =y =0

1-p

p

x- [(1 —1) ) WP+ Z(u;)?] T P2 =y = 0

1-p
n n T
x- [(1 —D) > @+ Z(mp] A=) (P A =

1-p

p

x- [(1 —D) ) W +T-Z<u;>p] T ) = 2 = = 0
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AIA;,I - ;,1 + -t AZA;J - /1514;1,1 =0

A;A’i,m - AI ’i,m + et A;A;,m - A;A;,m =0

Br—f(y,A) =0

Bm _f(y'Am) =0

Af>017>0,..,11>0,1;,=0
¥ =097 20,77 =0,y =0

Appendix 1.3.4 Dual Program: Final Version (8™ Step)

The necessary conditions of the dual program: first version (A1.27) are a function
of the decision variables ;" and y; of the primal program (A1.22). For that rea-
son, dual program (A1.27) has no ready economic interpretation and, thus, can-
not serve as economic model selection criterion. Instead, p;” and u;” must be re-
moved from the constraints of dual program (A1.27). In this, connection, the
same procedure as in Appendix 1.2.4 can be followed because the necessary

conditions are identical. For that reason it is obtained

(4.3)
1 m
,1+,11m1£11+/1‘ Z(ﬁ D)y E.Zﬁjz
j=1
s.t.
(4.4)

[(1 —OTF Y G+ (7 Z(A;)ﬁ] <x
Bi—f(y, A1) =0

Bm _f(y'Am) =0
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Af=>0,147=0,..,4 >0,1, =0

B; remains as artefact in the objective function.

Appendix 1.4 Lagrange Dual of Optimize-the-Price
Approaches

Appendix 1.4.1 Primal Program

The primal program of the buyer’s optimize-the-price-approach reads (see Chap-

ter V, Formulas (5.3) to (5.5))

(5.3)
A;Agﬁﬁgjﬁfﬁ'(AT"AI)*'“'+1%'(13"15)
s.t.
(5.4)
A QAT —AD)+ -+ A4 - ) =2 ay
Ay (A —AD)+ A A (B —A0) = apy
(5.5)

p—1
p

[(1 ST G+ (T Z(A;)%] <x
i=1 i=1

AT=0

|

A5 >0

A7 >0

The primal program (5.3) to (5.5) is then formulated in standard form (1°*' step)
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(A1.28)

lf,lg?.i.,r/llz,/lg Pp-(AF —AD) ++P - (4 —2y)

s.t.

p—1

[(1—1% Z(ﬁ)p 5L ()T Z Ll] <x

i=1

—Ayqe (/11- —AL)— = Apqe A — A7) < —a4

_Al,m ' (/1-{ - /1;)_- e _An,m ' (/U-l - /17_1) < —ap
-Af <0

-7 <0

A5 <0

;<0

Appendix 1.4.2  Preparing for Dualization

The Lagrange function of the primal problem in standard form (A1.28) reads (2nd

step)

(A1.29)
L=P (A —A0) ++ B (4 — 13)

p—1

tu-| |a -0 Z(ﬁ)p T+ (TP Z(A = 1] —x
+p1 (_Al,l'(/l-ll- _AI)_"'_An,l ' (/1141- _/15) +a1)
+fm (_Al,m ' (A-I'- - /1;) - An,m ' (/1; - /11;) + am)

v (A + v (FAD F vt (A vy (-5)

Forming necessary conditions (3rOI step) delivers
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oL p—1 = oo = oA
57 = Prru e | A= 0T Y 0P T 0T Y G
1 i=1 i=1
1 p P 4
-(1—-1o)t-p .p 1 (AP~ " =By Ay == P Ay — Vi =0

aaTLI:_Pl_l_u P; [(1—1)1 D Z(f)p 1+(T)1 p- Z(ﬂ )P- 1]

21 _
1'(/11)”_1 t B At ot B Ay —v1 =0

p—1

-
oL p—1 =. =,
— R — 1 H\p-1 1 p—-1
o P, +u > 1-1) E(/l) + (1) E(/l) ]

1 p

(A= G = By Ay == B A — Vi = 0
oL e
= Byt [(1—r)1 - Z(mv T4 (DT zu - ]
n
L p Ly
(p)1-P - p—1 (AP T+ By 'An,l + -+ Bm 'An,m —v, =0
i.e.,
(A1.30)
-1
oL 1= D 1 P
g =Pt =0T ) GHPT+ @TF ) (P
i=1 i=1
1 1
1=t P-ADP 1= Ay~ B Aym — vi=0
-1
oL R I
—C =Pt [ = DT Y GO+ @ ) (1)1
! i=1 i=1
1 1
(P (AP 1+ A+t B Ay — v =0
-1
oL B
+
o =Pt -0 Z(A T 4 (1) - Z(A - ]
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1 1
(1—-1)t-p- (A;)p—l — pB1 'An,l — = PBm- An,m - V;L_ =0
1
oL
[ Z(A*)p O Z(A T
045
1 1
' (T)l_p ' (/11_1)19_1 + ﬁl 'An,l + et ﬁm 'An,m —Vp = 0
becausep—— 1= —and—— 1 —L.
p p -1 p-1

Collecting decision variables A} and A7 in the Lagrange function (A1.29) delivers

(4™ step)
(A1.31)
L= (P1 —B1 A1 — = Pm 'A1,m)(/1f — A7)
4o
+(Bo = B Any = = B Anm) (A — 42)
VA=A ==y A = A

p—1

1« p 1 < p |P
po|A=0)P- > AHP~T+ ()P (/U)F]
2 2
+Z B g
j=1

_‘Ll'x

To prepare for inserting the necessary conditions into the Lagrange function (5th
step), an intermediate transformation is recommended. Each necessary condi-
tion with respect to A} and A; is multiplied by its 2} and A; respectively. Then,

all these multiplied necessary conditions are added, a procedure that results in

(because L +1= L)
p-1 p-1

-1

R I S -
0=P 2 +p|(A=DTF - Y GHFT + (@7 - Y 371
i=1 i=1
1 _b_
(1-D)tP- (AP 1 =B “Ajq A== B Ay M-
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L = L S
Py | (=T Y GHPT + @TF Y P
i=1 i=1
1
(@O (ADPE+ By Ay AL A B Ay AL —vr A
+ coe
-1
N R S R
By A e [(1= TP ) NPT+ (T ) (A)P
i=1 i=1
1 _p_
(1-7)t-p- (A;;)p—l —pB1- Ann e A; — = PBm- An,m + - Vn A+
-1
L = L N o |P
By T (L= DT Y GHPT+ @TF Y (AP
i=1 i=1

1 _b_
' (T)l_p ' (A;)p—l + ﬁl ' An,l '/15 + et ﬂm ' An,m ' /11; —Vp /15

i.e.,
0= (P1 —B1 A1 — = Pm- 1‘11,m)(/11r - 1)
+(Pn - ﬁl 'An,l — ﬁm ' An,m)(/lz - /15)
v A VDA = A v A

-1

p
Ja-om. Z(A*)p T+ @ Z(A Ll]

(-7 (AI)F + @F - Q)
+ .

AP + (T - (A5)P-1

+(1 - T)lL

Note that the last terms in brackets can be written as
1 _b_ 1 _b_
1-oi7P-A)P-1 4+ (0)1-P- (AP 1
1 _b_ 1 _b_
+(1 = DT - ()P + ()T - (207
1 - D 1 - b
= (1-0T7- ) G T+ @7 ) (A7)
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Therefore, the multiplied and aggregated necessary condition reads

(A1.32)
0= (P1 - ﬁ1 'A1,1 -t ﬁm 'Al,m)(/l-ll- - /1[)
+...
+(Pn - ﬁl 'An,l - _ﬁm 'An,m)(/lz - /15)
—vf A —vi A= - Ay

pe|a-om. Z(A*)p T4 ()T Zu - 1]

Plugging the aggregated necessary conditions for A (A1.32) into Lagrange func-

tion (A1.31) yields (5™ step)

L= (P1 —B1 A1 — = Pm '1‘11,m)(/11r — 1)

+...

+(P - B 'Anl — = PBm 'An,m)(/t; - /15)

_V1 /11 —Vi AL ==V A v Ay
n n r-1

1 _p_ 1 [P
p |1 =0T Y T+ @ Z(A{)p-ll

i=1 i=1

=0 because of (A1.32)
m
j=1
_M . x
Consequently, it is obtained

(A1.33)

m

L=—u-x+Zﬁj-aj

j=1
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Appendix 1.4.3 Dual Program: First Version

Adapting the general dual program (A1.3) to the optimize-the-price-approach
environment (6th step) and translating the maximization problem into a minimi-

zation problem (7" step) leads to

max —u x+2,8] a;

wWh1,

which is equivalent to

mm ,u x—Zﬁ] a;
wh1,

and, hence,
(A1.34)
Mgnn U- x—zp’] a;
s.t.
-1
I EE B S
Pt | = DT Y GHFT + (7 - Y )P
i=1 i=1
1 1
(1= AP 1= p "Apy == B Arym — vi =0
-1
n » -
P 4| )T Z(ﬁ)p T (TP Z _1]
i=1
1

) (T)ﬁ ) (AI)pTl + B 'A1,1 + -+ B Al,m —v; =0

-1

1 n p 1 n 14 p
Pt | (1= D7 Y @1 + (DT - Z(A{)F]
i=1 i=1
1 1
(A=)t P- (AP~ 1 =B - Apy == Bm Anm — vy =0
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-1

N Z(A*)p Ty @ Z(” ]
(T) p (/1 )p 1+ B An1+ “+Pm-A —v, =0
u=0

By =0, By =0
vi=>0,..,1=>0

vi =20,...,vy, =20

Appendix 1.4.4  Dual Program: Final Version (8" step)

The necessary conditions of the dual program: first version (A1.34) are a function
of the decision variables A} and A; of the primal program (A1.28). For that rea-
son, dual program (A1.34) has no ready interpretation as error minimization
problem/cannot be related to the superordinate categories regression ap-
proaches and method of multiples. Instead, 1} and A; must be removed from

the constraints of dual program (A1.34).

Appendix 1.4.4.1  Determination and thus Elimination of 4] and
A7

Appendix 1.4.4.1.1 Equations that contain 4] and 4;

The following equations contain /12L and A; and, hence, are candidates for the

elimination of 4] and ;.

— Aggregated necessary condition for A7 and A}

(A1.32)
0=(Py—B1-Ars == B Avm) A — A7)
Lo
+(Py = B1 Aps — = B Anm) A — 23)
_Vf'AI_Vf'AI_"'_VrT'AZ_V;'/UL
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-1

Ja-or. 2@*)2’ 4 ()T Z(A )?- 1]

— Necessary conditions with respect to A} and 17

(A1.30)
-1
D p
Pt =) Z(f)v T+ (@7 (A )p—ll
1
(1= (l+)p T—Bi A== Bm Ay —vi =0
-1
= = p [P
P p (1 - DT Z(ﬁ)p T4 (1) Z(/l yp-1
B
(DP - (A7 )p Y+ B A+ + B Ay —vi =0
-1
1= P 1 p|P
P +u-|(1-0)TP -Z(A{“)P—l + ()P - Z(A{)P—l
i=1 i=1
(1_T) (/1+)p1_ﬂ1 nl_"'_ﬁm'An,m_vrT=0
-1
1o~ P 1 p]?
Pt |1 = DT Y AP + (TP - Y ()P
i=1 i=1
U
(ODP - (AP 1+ By 'An,l + ot By An,m — v, =0
or
(A1.35)

-1

n

o 1 1

u- [1—T Z(AJr)p 14+ (p)1-P Z )P- ] 1—1)tP-(AH)p-1
i=1
=By A1+ -+ B Ay — P+ V]

=&} according to (2.53)

-1

1 « 1 " p 1 1
T [(1 DTy PP+ (@T- Z(m%] @ P

=P —f1 A1~ Bm Am t V1
=—¢&] according to (2.53)
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—_1

L L & L L
u-|(1 -0t Z(A*)plﬂrl D aoF| -0 ()T
i=1
=ﬁ1'An,1+"'+ﬁm'An,m_Pn+Vrt

—ct
=&p

according to (2.53)

n >
T [ (1-1) Z(A*)p 1+ (Dt? Z pL] (T)ﬁ ' (/15)ﬁ
i=1

=P, _ﬁl 'An,l - "'_ﬁm 'An,m +Vn
=—&, according to (2.53)

Appendix 1.4.4.1.2 Solving the Equation System with respect to 4] and 4;

The equation system (A1.35) and (A1.32) is rich enough to allow for a complete
determination of A} and A; and, hence, elimination of 1} and A; from the con-
straints of dual program (A1.34). Intuitively, it is proceeded as follows: From the
necessary conditions (A1.35) A7, ..., A; are expressed as functions of A}. These

expressions are then inserted into (A1.32).

Restructuring (A1.32) leads to

p-1
P

we|a-om. Z(A*)v Lt (T Z(z - ]

+(=&f —vi) A + (—ef +vi) - (=17)
+ .
+(_€n _Vn) /1++( —&n +Vn) ( An)_o

or

(A1.36)

p—1
p

(=077 G+ (07 2(&:)%]

VD) A (e D) AL e (e H V) A+ (men +vp) Ay
u
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since u is by definition greater than zero. u is the Langrange multiplier of the
constraint on portfolio holdings. u = 0 implies that this constraint is not binding.
From an economic perspective this means that no company is purchased and
sold, i.e., all companies are correctly valued. In such a case, the profit from set-
ting up an “accounting arbitrage” would be zero.—This is, however, a rather un-

realistic case.

Reshuffling (A1.35) gains

1

n n D
[(1 T GHPT 4 @ 2@;)5’71] A -DFT- AFT

i=1 i=1
& 4
U
-1
N T S e L 1
(=0T Y @HFT + @FF - Y APT| - (@7 - ()77
i=1 i=1
—& +v;
U

1 “ 1 L p 1 1
[(1 DT Y PP+ (@T- 2@;)%] (1= DTGP
i=1 i

N T S 2 L 1
(=0T Y @HFT + @FF - Y APT| - (@7 - ()77
i=1 i=1
—&, + Vv,
U
or rather (after taking the 1 — pth power)

(A1.37)

p—1
p

[(1 —OTF Y G+ ()7 Z(A;)ppfl]
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et +vi\'"?
_ <%> A —D)tar

p-1
n P
[(1—r>1 P 2@*)1@ T+ () %-Z(Ai—)p’ﬁ]

i=1
—&; +vi\'7?
=( lu 1) @A

1 n p 1 n p 1P
1-Di7- > AHPr-1+ ()P (/1?)7’71]
a-05), 2

i=1
et +vh\'7P
=<—"# ") -(1-1) 1A

D
n T
[(1—‘[ Z(/ﬁ)p 14+ (1)1~ p.zui—)%l

i=1
—e 4 ym\17P
_ ( en: Vn) ORI
T is located between 0 and 1 (see, e.g., Koenker (2005), p. 5); A} and A; are
nonnegative in the primal program (5.3) to (5.5). Moreover, & + v;' (=& +v[)
will not be both identical to zero. If the estimated value exceeds the observed
value (g > 0, undervaluation), the Langrage multiplier of the nonnegativity
constraint on £i+ (vi+) is equal to zero because this constraint in not binding. In
that case, no overvaluation will occur (¢, = 0) and the Langagnre multiplier on
nonnegative overvaluations v; will be greater than zero because the nonnegativ-

ity constraint on &; will be binding.

Since the left-hand sides of (A1.37) are identical, a relation between A7, ..., 45,

and A} can be established:

(A1.38)
s +vH) P T
A= (ef ) at
At = (ef +v)'? T

(&f +v)ip 1

213



Appendix

__ G4 o

" (e V)P 1-1

A

and from (A1.36)

(A1.39)
(&fF+viH) AT+ (e +v) AT ++(EE+HvD) A+ (—e +v) A5
u

= +vDP-A -0 A
Inserting (A1.38) into (A1.39) gains
(ef +vD)'? 7

—& tv)i P T—1
(ef +v)7P

(ef +vi) A7 + (—ef +vi)- 0 A

TR I o .l D T

+ +(gn +Vn) (S;L--"Vr-{)l_p 1
_ .y (ErvHrr ¢ +
+(—&7 +vy) (—e- +v, )7 1—1 A

U

=(f+vHP-1-0)t-af

Division™ by A7 and (1 —1)7'- (gf +v{)'™? as well as multiplication by u

yields
e +vi —&7 +v§
), CE D)
+ cee
(e +vD) (—&; +v;)
G T e T
n n n n
i.e.,
(A1.40)

(ef +vi)P-(1—1)+ (—ef +VI)P -1
+(Et+vP-(I—D)+ (e +v))P -t =u

> In the case that asset 1 is not bought, A} will be zero. In that case, however, all equations will

be expressed as a function of A7 and the computations will follow the exactly same path.
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(A1.40) contains the unobservable variables vl-+ and v; . However, according to
(2.53) E;’ is nonnegative and &, nonpositive, meaning that —¢; is nonnegative.
Moreover, vi+ and v; are nonnegative in the dual program (A1.34). Therefore, it

holds
gt +vi =&t and —g; +v; = —¢f
and, hence,

(A1.41)

[(1 —- 1) i &+ i(—e;)pr <u

Eventually, to avoid writing &/ for the undervalued, but —&;” for the overvalued
companies, absolute values might be more convenient—note both & and —¢;

are positive:

(A1.42)

1
n n 5
A=0- Yl +e- Y lel| <u
i=1 i=i

(A1.42) is a constraint useful for integrating into the dual program (A1.34) be-

cause it no longer depends on A} and 7 as well as v; and v; .

Appendix 1.4.5 Dual Program: Final Version

Substituting (A1.42) for the necessary conditions regarding /1;’ and A; in the first

form of dual program (A1.34), it is finally gained

(A1.43)
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s.t.
1
n n P
A-0- ) let P+ ) 5P| <u
i=1 i=i
u=0
B1=0,..,Bm=0
where

m

& =) Ay -y 20
j=1
m

&= ) Ay =y <0
j=1

(A1.43) is the desired final form of the dual program.

Appendix 1.4.6 Dual Program for the Special Case: p=1

The constraint regarding portfolio holdings in the buyer’s primal program

(A1.28)

p—1
p

[(1 ST G+ (T Z(A;)%] <x
i=1 i=1

makes it immediately clear that the case p = 1 cannot be integrated into (A1.28)
but needs a treatment of its own. In fact, since not even the primal program can
be adapted to this special case, the derivation of the dual program must start

complete anew.

Appendix 1.4.6.1 Primal Program

The primal program in standard form (1% step) of this special case of the opti-

mize-the-price-approach reads
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(A1.44)
lf,lg?.i.,r/llz,/lg Pp-(AF —AD) ++P - (4 —2y)

s.t.

Constraints on individual portfolio holdings

AT <«xf

A< xt
and

AT < x5

Constraints on accounting figures

—A11 (A —A]) = —Apr (N —A) < —y

_Al,m ' (/1-{ - /1;) — An,m ' (/1; - Aﬁ) < —ap

Appendix 1.4.6.2  Preparing for Dualization
The Lagrange function of the primal problem (A1.44) reads (2™ step)

(A1.45)
L=P (A =20) + -+ Py (25 = A7)
Fui - (A = x) + g (A = x1)
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Fup - (A — x4 +un - (A — %)

+ﬁ1 ) (_A1,1 ’ (/11- - /1[) — T An,l ' (/1?1 - /11;) + al)
+ e
+ﬁm ’ (_Al,m ' (/1-{ - /1;) — An,m ’ (/1; - /15) + am)

+vi (D) H v (FAD vt (D) v (4D

Forming necessary conditions (3™ step) delivers

(A1.46)
oL + +
=P+ —BP1-A1——PBmAm—vi =0
0A]
aL B B
== —Pitur + B Attt B Ay —v1 =0
0A]
oL N N
_+=Pn+.un_ﬁl'An,l_"'_ﬁm'An,m_vn =0
oA,
oL B B
—— =P, t+uy +ﬁ1'An,1+"'+ﬁm'An,m_Vn =0
a1y

Collecting decision variables A} and 4; in the Lagrange function (A1.45) delivers

(4™ step)
(A1.47)
L= (P1_31'141,1_"‘_ﬁm'ALm)'(/l-f_AI)
+ e
+(Po = Br- Ana = = B Anm) - (5 = A7)
_vl*-./l-ll-_vl—./q_..._v;{.A;_Vg./m

S S PR U T o TR/ B ST

m
j=1

To prepare for inserting the necessary conditions into the Lagrange function (5th
step), an intermediate transformation is recommended. Each necessary condi-
tion with respect to A} and A; is multiplied by its A} and A; respectively. Then,
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all these multiplied necessary conditions are added. In other words, the multi-

plied and aggregated necessary condition reads

(A1.48)
0= (Pl_:81'141,1_"'_.Bm'Al,m)'(;{_ll—_AI)
+(Pn - ﬁl 'An,l T .Bm ’ An,m) ' (/11-: - /15)
L A e R PR A A

Ul A H At A g

Plugging the aggregated necessary conditions for A (A1.48) into Lagrange func-
tion (A1.47) yields (5™ step)

L= (Pl_Bl'Al,l_"'_Bm'Al,m)'(/1-{_AI)
4o
+(Pn_ﬁl'An,l_"'_ﬁm'An,m)'(/11-;_/15)
A VAT = A v A

A A A Ay
=0 because of (A1.48)

m

=1

n n
—Zu?'xi*—zyi"xi‘

L :

l

Consequently, it is obtained

(A1.49)

n

n m
=Y ubex =y w4 ) gy
i=1 =

i=1

Appendix 1.4.6.3  Dual Program: First Version

Adapting the general dual program (A1.3) to the optimize-the-price-approach
environment (6th step) and translating the maximization problem into a minimi-

zation problem (7' step) leads to
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(A1.50)
m
min Zlh i Elli_'xi_— Bj - a
T Ty ﬂnl‘n —
B J=
s.t.
Po4+ui —PB1-Aig— = BmAym —vi =

—Pr+pr + B Ayt B Ay — V1 =

Pn+.u1-‘lt-_ﬁl'An,l_"'_ﬁm'An,m_vr-{=
_Pn+.u1;+ﬁl'An,1+"'+ﬁm'An,m_v1?=0

pi 20, .., 43 =0
py 20, ..,uy 20
vi =20,..,v; =0
vy = Vg =20
By=0,..,Bm=0

Appendix 1.4.6.4  Dual Program: Final Version (8" step)

The necessary conditions of the dual program: first version (A1.50) are a function
of the Lagrange multipliers of portfolio holdings v;" and v;” why the dual program
(A1.50) has no ready interpretation as error minimization problem/cannot be re-
lated to the superordinate categories regression approaches and method of mul-
tiples. Therefore, v;" and v;” must be removed from the constraints of dual pro-

gram (A1.50).

Using the definition of £i+ and g; from (2.53), the necessary conditions of (A1.50)

can be re-formulated as

+ +_ o+
& TV =y

—& tvi =

+ + — .t
€n+vn _nl'l‘l’l

—&n T Vn =g
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According to (2.53) e;’ is nonnegative and g nonpositive, meaning that —g; is
nonnegative. Moreover, vl-+ and v; are nonnegative in the dual program (A1.34).

Therefore, it holds

+ + + - - -
& +v; =g and—¢g tv; = —¢

and, hence,
& <uf
—& Sy
et <ut
—SE = Mn

This means, the dual program: first version (A1.50) simplifies to

(A1.51)
I VED SR
[T T #nﬂn
B1-
s.t.
e < uy
—e7 < up
& < Uy
—&n = Un

,ui'-ZO nun>0
Pn 20,4y 20

B1=20,..,6,=0
(A1.51) is the desired final form of the dual program.

221



Appendix

Appendix 1.4.7 Dual Program for the Seller

The primal program of the seller’s optimize-the-price-approach reads (see Chap-

ter V, Formulas (5.6) to (5.8))

(5.6)
A P - (A =20+ -+ B (A — 23)
s.t.
(5.7)
A QAT —AD)+ -+ A4 —2) < ay
Ay (A —AD)+ A A (B —2A)) < apy
(5.8)

p—1

[(1 —D) Z(ﬁ)p T4 (0)Tp zn: pL] <x

i=1

AT=0
AL =0
>0
A, =0
and in standard form
(A1.52)
min —Py; (N = N{;) — = Ppe (N, — Nyy)

+ = +
Ni Ny Np e Np e
s.t.

(A1.53)
Nl-',-tAl,l,t —NiAyqe + -+ N;,tAn,l,t — NptAnie < a4
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+ - + -
Nl,tAl,m,t - Nl,tAl,m,t + et Nn,tAn,m,t - Nn,tAn,m,t < am

(A1.54)

P
[(1—7)1 P Z(m)p T (0T Z(Nlt)f’ 1] <x

If the primal program (A1.52) to (A1.54) is compared to the buyer’s primal pro-

gram (A1.28) where price P;, is used instead of y;, N\, instead of A], N, instead

of 47, and 4 j; instead of A; ;

(A1.28)
min P, -(NY, =N )+--+P, .- (N, — N
N{oNT gt Ny 1t ( 1t 1,t) nt ( n,t n,t)

s.t.

+ - + -
NitAie — NpgAie + o+ NppApae — NptAnae 2= a4

+ - + -
Ny Aime — NigAime + -+ NotAnme — NptAnme = am

p—-1

[u_f = Z(N;})P T4 (T Z(Nlt)p ] <x
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it becomes clear that a simple variable substitution achieves the transformation

of the seller’s into the buyer’s primal program, namely use
—P; ¢ in the buyer’s problem to obtain (A1.52) of the seller’s problem
—A4,; j in the buyer’s problem to obtain (A1.53) of the seller’s problem
—a; in the buyer’s problem to obtain (A1.54) of the seller’s problem

Applying these variable substitutions in (A1.43), the seller’s dual program: final

version reads

(A1.55)
mm y x+zﬁj a;
B
s.t.
n
[(1—r) DI+ Yl |p] <y
P
u=0
ﬁl 20' 'ﬁm2 0
where

m
€l+ = _ZAl'jﬁ] +PL = 0

j=1

m

j=1

For the special case p = 1 it is obtained from (A1.51) by using the above variable

substitutions
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(A1.56)

s.t.

where
m
j=1

m
Si_ = _ZAl'jﬁ] +PL <0
=1

Appendix 1.5 Strong Duality

Strong duality means that primal and dual program possess the same value of
the objective function in the optimum, i.e., the duality gap is equal to zero (see,
e.g., Boyd/Vandenberghe (2009), p. 226). From an economic perspective strong
duality is desirable: Empirical asset pricing models can be connected with their
dual program since the value of both objective functions coincide in the opti-

mum.

According to Boyd/Vandenberghe (2009), p. 226 two steps are required to show

strong duality: (i) the primal problem is convex meaning that usually but not al-
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ways strong duality is given; (ii) so-called constraint qualifications must be given.

One example of a constraint qualification is Slater’s condition.

Appendix 1.5.1 Regression Approach as Primal Program

The constraint k (k € {1, ...,n}) of the primal program (A1.4) reads
m
Bo+t ) Aisfy = vi— i <0
j=1

Constraints in inequality form can always be expressed with the help of con-
straints in equality form and a slack variable (see Boyd/Vandenberghe (2009), pp.
131f.):

m
:30+ZAZ,jﬁj—yZ—H;+S; =0

Jj=1
where s; denotes this slack variable.

Boyd/Vandenberghe (2009), p. 227 point out that the Slater condition reduces to
the requirement of feasibility of the problem when the constraints are all linear
equalities and the domain of the objective function is open. Since the minimum
error—regression approaches minimize Lp-norms of errors—is less than infinity,

the primal problem is indeed feasible.

Only the different sign of the value of the objective function of the primal and
the dual problem must be taken into consideration: The dual program trans-
forms the maximization problem into a minimization problem by multiplying by

—1 (see 7" step, Appendix 1.1.2).

This is plausible since regression approaches consider valuation errors, but their
dual programs consider “arbitrage profits” which means negative prices or posi-

tive payments. Thus, the valuation error can be interpreted as a profit.
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Appendix 1.5.2 Optimize-the-Price Approach as Primal
Program

The constraint h (h € {1, ..., m}) of the primal program (A1.28) reads
—Aip Ay = A) == App - (4 = A3) < —ay,

Constraints in inequality form can always be expressed with the help of con-
straints in equality form and a slack variable (see Boyd/Vandenberghe (2009), pp.
131f.):

—Ap- (/1; ) == Anp (AZ — 1)+ Si-lr = —a,
where s,f denotes this slack variable.

Boyd/Vandenberghe (2009), p. 227 point out that the Slater condition reduces to
the requirement of feasibility of the problem when the constraints are all linear
equalities and the domain of the objective function is open. Since the minimum
price is greater than —oco—otherwise an arbitrage profit would be possible—, the

primal problem is indeed feasible.

Again the difference in sign of the primal/dual objective function is due to the 7

step (transformation of a maximization into a minimization problem).
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Appendix2 The Area Under the Cumulative
Density Compared to the Area
Under the Dirac Distribution
Function

Chapter llIl, Section 2.1.3.3 introduces a criterion to characterize the similarity
between different regression approaches: It compares the cumulative density
function of differences (indicates, e.g., how close WLS and OLS regressions are)
to the case where no differences exist because two approaches are identical. The
latter case can be described with the help of the Dirac distribution. The less both
functions diverge, i.e., the smaller the area between the cumulative distribution
function of differences and the Dirac distribution is, the more similar the two ap-

proaches are.—The comparison of areas reads formally
(A2.1)

0 e
area (3.3) = f F(t)dt + f (1-F(@))dt
— o0 0

~———— m —
region of negative dif ferences region of positve dif ferences

If, e.g., WLS regression is compared to OLS regression, for some companies WLS
regression might result in smaller estimated values than OLS regression—region
of negative differences—and for some companies in greater values—region of
positive differences. The Dirac distribution on the other hand captures the idea
that there are no differences in value, i.e., all companies have zero valuation dif-
ferences. That is the reason why in (A2.1) zero is the number that separates both

regions.

The purpose of this appendix is to prove that this comparison of Areas (A2.1) can
be expressed as expected value of the absolute value of the differences, in the
case of Chapter Ill the Ratio (3.1) is used. To that end, Hajek (2015), p. 20 and
Rao (2012) prove helpful.

The expected value of the absolute value of the Ratio (3.1) can be written as
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(A2.2)

Ef{|ratioc,;|} = E{ratioz, ; + ratiof, ;} = E{ratiog, ;} + E{ratiof, ;}

ratiogi’j=max{—ratiocl.,j; 0} contains all negative values including zero,

. + _ . . . oy .
ratioc, ; = max{ratloci,j, 0} contains all positive ratios.

To be able to differentiate between positive and negative ratios, ratio™ and

ratiot are expressed using indicator functions:

(A2.3)
0
7"atioc_i,j :f 1ratioci‘jst(t)dt
(A2.4)
ratiogi,j :f 1ratioci’j>t(t)dt
0

The intuition behind this representation of ratioc, ; and ratioé"i,j is the follow-

ing:
ratioc,;:

0 ifratioc,; >t

1T'ati0(;i_j5t(t) = {1 ifT'atiOCi,j st

Therefore, the integral reads

0
ratioc_i,j =f 1ratioci‘jst(t)dt
— 00

ratiocl._j 0
P
—0 ratiocl.‘j

_ 0
=0+ tlratioc.j
P
= —ratioc,;
ratiog, :

0 ifratioc,; <t

1ratioci'j>t(t) = {1 ifratioci,]- >t

Therefore, the integral reads
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o

ratiog‘-i,j :f 1ratioci,j>t(t)dt
0

ratiocl._j [
f 1dt+ J 0dt
0 ratiocl.,j

Iratloci, j
0

+0

= ratioc,

Computing the expected value (A2.2) using the ratio specifications (A2.3) and
(A2.4) means

[00]

1ratioci,j>t (t)dt}

0
E{|ratioc,;|} = E {j 1mtioCi‘j5t(t)dt} +E {f
o 0

Since the expected value of a sum (or of an integral) is equal to the sum (integral)

of the expected values, one obtains

[ee)

0
Bllratioc, 1} = [ B {Lyastog @} de + | B {Lratog, @} de

0

The expected value of the indicator function corresponds to a probability, i.e.,
0 (e
E{|ratioci_j|} = J Pr(ratioci,j < t)dt +J0 Pr(ratioci’j > t)dt
—o0

where Pr denotes probability.
Since
Pr(ratioc,; < t) = F(t) and Pr(ratioc,; > t) = 1 — F(t)
where F(.) denotes the distribution function
it is finally obtained

(A2.5)

0 e’
Ef{|ratioc,;|} =f_ F(t)dt +J0 (1-F(@))dt
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Appendix 3  Definition of Variables

In the following table all the variables collected from Thompson Reuters

Worldscope are listed together with their definition (see Thompson Reuters

(2015)):
Variable | Abbrevia- | Item No. | Definition
tion
General information about the company

Worldsco | WPID WC06105 | Represents a permanent identifier assigned to a

pe Per- company or security on the database.

manent

I.D.

Company | NAME WC06001 | Represents the legal name of the company as

Name reported in the 10-K for U.S. companies and the
annual report for non-U.S. companies.

Nation NAT WC06026 | Represents the country in which the corporate
office of a company is located.

ICB Code | ICB WC07040 | Represents an industry code within the Indus-
trial Classification Benchmark (ICB) which was
implemented as a result of a merger of the in-
dustrial classification of Dow Jones and FTSE.
This benchmark allows for the comparison of
companies through four hierarchical levels of
industry classification. The ICB Code provided is
the subsector code, the lowest level in the hier-
archical structure.

Market Capitalization

Market P WC08002 | Market Price — Fiscal Period End * Common

Capitali- Shares Outstanding

zation - For companies with more than one type of

Fiscal Pe- common/ordinary share, market capitalization

riod End represents the total market value of the com-
pany.

Income Statement

Net Sales | SA WC01001 | Represent gross sales and other operating rev-

Or Reve- enue less discounts, returns and allowances.

nues

GrossIn- | Gl WC01100 | Represents the difference between sales or

come revenues and cost of goods sold and deprecia-
tion/depletion, and amortization.

Earnings EBITDA WC18198 | Represent the earnings of a company before in-

Before In- terest expense, income taxes and depreciation.

terest, It is calculated by taking the pre-tax income and

Taxes & adding back interest expense on debt and de-

Deprecia- preciation, depletion and amortization and sub-

tion tracting interest capitalized.

(EBITDA)
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Variable | Abbrevia- | Item No. | Definition

tion

Earnings EBIT WC18191 | Represent the earnings of a company before in-

Before In- terest expense and income taxes. It is calculated

terest by taking the pre-tax income and adding back

And Taxes interest expense on debt and subtracting inter-

(EBIT) est capitalized.

Earnings EBT WC01401 | Pre-tax Income:

Before Represents all income/loss before any federal,

Taxes state or local taxes. Extraordinary items report-
ed net of taxes are excluded.

Earnings E WC01751 | Net Income Used To Calculate Earnings Per
Share:

Represents the net income the company uses to
calculate its earnings per share. It is before ex-
traordinary items.

Balance Sheet

Total As- | TA WC02999 | Represent the sum of total current assets, long

sets term receivables, investment in unconsolidated
subsidiaries, other investments, net property
plant and equipment and other assets.

Book Val- | B WCO03501 | Represents common shareholders’ investment

ue Of in a company.

Common

Equity

Invested IC WC02999 | Total Assets - Cash & Short Term Investments

Capital (=TA-CE) | WC02001

Cash Flow Statement

Operating | OCF WC04860 | Net Cash Flow — Operating Activities:

Cash Flow Represent the net cash receipts and disburse-
ments resulting from the operations of the
company. It is the sum of Funds from Opera-
tions, Funds From/Used for Other Operating Ac-
tivities and Extraordinary Items.

Ordinary | D WC18192 | Dividends Provided For Or Paid — Common:

Cash Div- Represents the total value of the common divi-

idends dends declared for the year.

Table Appendix 3: Definition of Variables
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Appendix4 Overview of the Empirical Asset
Pricing Literature

Empirical asset pricing is understood in this thesis as an approach that uses solely
empirical analysis to derive asset prices. Therefore it should be distinguished
from papers that (i) calibrate theoretical models to empirical data, most notably
the literature concerned with the empirical testing of the CAPM or APT (Koijen/
Van Nieuwerburgh (2011) for calibration, Fama/MacBeth (1973) for CAPM, and
Chen/Roll/Ross (1986) for APT testing); (ii) perform cross-sectional tests of return
predictability or analyze the anomalies, i.e., deal with market efficiency (e.g.,

Fama (1991) and Fama (1998)).

We believe that there are two main strands of the empirical assets pricing litera-
ture that are, up to date, barely connected: value relevance studies in accounting

and factor models/predictability of stock returns in finance.

One last introductory remark: Overview of the empirical asset pricing literature
means extensive overview of the literature, but not complete analysis of all pa-
pers.—There are too many papers to be able to claim that we could completely
capture the literature on empirical asset pricing: It took Kothari (2001) 127 pages
to summarize the value relevance literature from the 1970s to the year 2000,
Holthausen/Watts (2001) cover the same time period on 72 pages; the value rel-
evance literature from 1990 to 2005 is contained in Moélls/StrauR (2007) on 42
pages. Finally, Harvey/Liu/Zhu (2016) provide on 63 pages an (highly) aggregated
overview of factor models/predictability of stock returns: The literature discusses

316 predictors for asset returns.

Therefore, this appendix (i) puts a focus on new papers after 2010; (ii) regards
statistical methods (e.g., ordinary, weighted, or generalized least squares) as

I”

equally important as factors; (iii) cites the “classical” papers in the field with pub-

lication years after 1990.

233



Appendix

This means that papers will be listed in this appendix if they have identical fac-
tors, but different statistical methods or different factors, but identical statistical
methods. Papers that analyze different markets (e.g., U.S. versus emerging mar-
kets) using identical factors and statistical methods will be ignored. Moreover,

III

“non-classical” papers that employ factors that are a subset of factors examined

in later papers are not contained either.—Only the later papers will be listed.
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Appendix

Appendix 5 Empirical Results

Appendix 5.1 Figures in Connection with Chapter
i

Appendix 5.1.1 Factors when Controlled for Regressions
Section 4.2.2.2

To measure the interplay between factors and statistical methods, Figure 3.2 is
analyzed for each regression separately. Recall in this connection that M1 to M11
are single-factor models (plus intercept); M12 to M14 are two-factor models
(plus intercept); M15 is a three-factor model (plus intercept); M16 is an eleven-

factor model (plus intercept).
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Appendix

Appendix 5.1.2 Regressions when Controlled for Factors
(Section 4.2.3.2)

To measure the interplay between factors and regressions, Figure 3.6 is analyzed
for each factor separately. Recall in this connection that M1 to M11 are single-
factor models (plus intercept); M12 to M14 are two-factor models (plus inter-
cept); M15 is a three-factor model (plus intercept); M16 is an eleven-factor mod-

el (plus intercept).
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Appendix 5.1.3

Statistical Methods that Generate High
or Low Prices (Section 4.2.3.3)

To measure whether some statistical methods result in higher or lower prices

than other statistical methods, Ratio (3.1) is broken down by statistical methods

for each factor. Formally, the figures from Appendix 5.1 are split into positive

and negative Ratio (3.1) using the following classes:

0% < Ratio (3.1) <10%

10% <

50% <

100% <

200% <

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

< 50%

< 100%

< 200%

< 500%

> 500%

and

and

and

and

and

and

—10% <

—50% <

—100% <

—200% <

—=500% <

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

Ratio (3.1)

< 0%

< -10%

< -50%

< —-100%

< —-200%

< —500%

In other words, classes are defined inclusive of the upper bound and exclusive of

the lower bound.
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Appendix

Appendix 5.1.4 Factors when Controlled for Regressions
(Section 4.3.2.2)

To measure the interplay between factors and statistical methods, Figure 3.12 is
analyzed for each regression separately. Recall in this connection that M1 to M11
are single-factor models (plus intercept); M12 to M14 are two-factor models
(plus intercept); M15 is a three-factor model (plus intercept); M16 is an eleven-

factor model (plus intercept).
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Appendix 5.1.5 Regressions when Controlled for Factors
(Section 4.3.3.2)

To measure the interplay between factors and statistical methods, Figure 3.16 is
analyzed for each factor separately. Recall in this connection that M1 to M11 are
single-factor models (plus intercept); M12 to M14 are two-factor models (plus in-
tercept); M15 is a three-factor model (plus intercept); M16 is an eleven-factor

model (plus intercept).
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Appendix 5.2 Figures in Connection with Chapter
V Section 3.3

Appendix 5.2.1 Effect of Shape and Size of Constraints on
Portfolio Holdings (Section 3.3.2)

Appendix 5.2.1.1  “Magnitude"

Appendix 5.2.1.1.1 The Role of Shape
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Appendix 5.2.1.1.2 The Role of Size
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Appendix 5.2.2

Appendix 5.2.2.1
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Figure Appendix 5.2.2.1:

Appendix 5.2.2.2

Multi-period Version of the Optimize-
the-Price-Approach (Section 3.3.3)

Time Trend on Accounting Characteristics

EBITDA EBIT  EBT E TA B IC OCF D

EBRIC MW Europe ®mU.S.

Time trend for selected accounting characteristics between 2010 and
2014 broken down by region

with SA Net Sales or Revenues, Gl Gross Income, EBITDA Earnings Be-
fore Interest, Taxes and Depreciation, EBIT Earnings Before Interest
and Taxes, EBT Earnings Before Taxes, E Earnings, TA Total Assets, B
Book Value of Common Equity, IC Invested Capital, OCF Operating
Cash Flow, D Ordinary Cash Dividends

“Magnitude”
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Appendix 5.2.2.3  “Similarity”
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Appendix 5.2.3 Optimize-the-Price-Approach versus Re-
gressions (Section 3.3.4)

Appendix 5.2.3.1 Comparison of Regressions With and Without
Constant 8

Appendix 5.2.3.1.1 “Magnitude”
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Appendix 5.2.3.1.2 “Similarity”

317



Appendix

%005<

QTWE ST PTWE ESTW R CTW B TTAN N OTWE SN W
Ehm LNm 9w SE tINE ENE ZNE Tm

s1030e) Aq umop uayouq (g°g) eaay :qg°1°€"z’S xipuaddy ainsi4
%005 %00¢ %00T %0

S %01
|
L

%005<

%005

oy gIom S0l

(€°€) eauay :ez'T'g'2°S Xipuaddy aungiy

%00¢ %001 %05

%01
|

%0 |

%01

%0¢

%0¢€

%07

Aouanbauy annejau

%09

%0L

S10 —

%0

%S

%ST

%S¢

%0¢€

Aouanbauy annejau

318



Appendix

QTWE ST PTWE ESTW R CTW B TTAN N OTWE SN W
Ehm LNm 9w SE tINE ENE ZNE Tm

s1030e) Aq umop uayouq (g°g) eaay :pg°1°€°7’S Xipuaddy ainsi4
%005< %005 %00¢ %00T %085 %01

%005<

%005

oy M e 1M E

(€°€) eRay DZ'T°€"7'S xipuaddy aingiy

%00¢

%001

%05

%0 |

%0¢

%0¢€

%07

S
[Tl
Aouanbauy annejau

%001

STM —

319

%0

%0¢

S S
< It
Aouanbauy annejau

5

%08



Appendix

QTWESTW D PTINE ETW R ZTW R TTNE OTINE 6N E
BNm LANmE 9N m SAE PINE ENE ENE TWE
s1030e) Aq umop uayouq (g°g) eaay Jz'T°€ ¢S xipuaddy a4nSi4
%005< %005 %00¢ %00T %085 %01

%005<

%0 |

noyym (SZ0)ueno | (ST0)EIuenD |

(€°€) eauy :97°T°€'2°S Xipuaddy a.ngiy

%005 %00¢ %001

%05

%01

%0¢

S S
< It
Aouanbauy annejau

5

%08

(sZ'0) ajnuenp —

%0

%09

Aouanbauy annejau

320



Appendix

QTWE ST PTWE ESTW R CTW B TTAN N OTWE SN W

noyum [0S 0)3ueno M (050)3)1uenD |
2Wm LNmE S9Nm SWE e ENE ZNE TWE

s1030e) Aq umop uayouq (g°€) eaay :yg'1°€"z’S xipuaddy ainsi4 (7€) eaay :8z'1°€"2’S xipuaddy ainSiy4
%005< %005 %00¢ %00T %085 %01 %005< %005 %00¢ %00T %085
| | W&D L | | | | | | W&D
" 0
%01
- %07
%0¢
- %0C
%0¢€
g
&
=
3
%0S £ - oop
3
(2]
-
%09
- %05
- %0L
- %09
- %08
- %06 - %0L

(0s°0) ®jnuenp —

321

Aouanbauy annejau



Appendix

QTWESTW D PTINE ETW R ZTW R TTNE OTINE 6N E
BNm LANmE 9N m SAE PINE ENE ENE TWE
s1030e) Aq umop uayouq (g°g) eaay :fg'1°€"z’S xipuaddy ainsi4
%005< %005 %00¢ %00T %085 %01 m&oomn
%0

%0¢

%0¢€

%07

Aouanbauy annejau

- %08

- %06

(s£°0) ajnuenp —

noyum (52 0)3pueno M (S£°0)3)1uenD |

(€°€) eaay :1z°1°€°2°S X1puaddy a.n3iy

%005 %00¢ %001 %0 o

%0

%09

Aouanbauy annejau

322



Appendix

Appendix 5.2.3.2  Optimize-the-Price-Approach versus Regres-
sions With Constant 3,

Appendix 5.2.3.2.1 “Magnitude”
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Appendix 5.2.3.2.2 “Similarity”
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Appendix 5.2.3.3  Optimize-the-Price-Approach versus Regres-
sions Without Constant 8,

Appendix 5.2.3.3.1 “Magnitude”
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Appendix 5.2.3.3.2 “Similarity”
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Appendix

Appendix 5.3 Cleaning the Results of the Numeri-
cal Optimization from Chapter V,
Section 3.3.1

Data loss due to lack of convergence
Without cleaning there are 115 calculations per cell, 115x16 = 1,840 calculations per row sum (= sum over models),
115x20 = 2,300 calculations per column sum (=sum over methods) and 115x16x20 = 36,800 calculations in total.

Model

Method 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 )3
OTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OTPB

L1 x0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orp8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2
L1 x1

oTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L1_x2

OTPB

12 x0.5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
orp8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12_x1

oTPB 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
L2_x2

OTPB

Linf x0.5 0 0 0 0 0 0 0 1 0 0 1 1 1 2 2 1 9
oTP8 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 6
Linf_x1

oTPB 3 1 1 1 0 0 3 0 1 0 0 0 0 0 0 1 11
Linf_x2

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OTPS

11 x0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L1_x1

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L1 x2

OTPS

12 %05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2_x1

OoTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2_x2

OTPS

Linf x0.5 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2
OTPS 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 5
Linf_x1

OTPS 0 0 0 0 0 1 1 1 4 0 2 0 0 1 0 0 10
Linf_x2

)3 6 1 3 2 0 2 6 3 7 0 3 2 3 3 3 3 47

Table Appendix 5.3a: Data loss due to lack of convergence
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Data loss due to lack of compliance with constraints
Without cleaning there are 115 calculations per cell, 115x16 = 1,840 calculations per row sum (= sum over models),
115x20 = 2,300 calculations per column sum (=sum over methods) and 115x16x20 = 36,800 calculations in total.

Model

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >
OTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
oTPB 9 12 9 9 15 23 4 17 7 18 20 23 18 23 24 20 | 251
L1_x0.5

oTP8 2 7 g 28 2 10 1 4 8 10 8 7 10 14 19 20 | 153
L1 x1

ore8 4 6 3 2 1 4 1 5 2 8 4 3 2 14 | 13 | 11 | 83
L1 x2

OTPB

12.x0.5 8 18 2 7 8 1 4 g g 9 2 2 2 4 g 5 76
oTPB 1 2 0 0 0 0 5 4 3 0 0 0 0 0 0 1 16
12_x1

oTP8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2_x2

OTPB

Linf x0.5 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3
oTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linf_x1

oTP8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linf_x2

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OTPS

L1 x0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
oTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L1 x1

otPs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L1_x2

OTPS

12 %05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
oTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12_x1

oTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2_x2

OTPS

Linf x0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
oTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linf_x1

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linf_x2

)3 20 | 45 | 17 | 46 | 26 | 38 | 16 | 33 | 23 | 45 | 34 | 35 | 32 | 55 | 59 | 58 | 582

Table Appendix 5.3b: Data loss due to lack of compliance with constraints
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