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Chapter I: Introduction 

1 Introduction to the Problem 

Common basis of all empirical accounting-based asset pricing models is their at-

tempt to explain today’s asset prices or returns with accounting characteristics 

that are observable today. Technically, empirical accounting-based asset pricing 

is implemented in the literature with a wide variety of statistical methods: re-

gression approaches, method of multiples, and error measures, a fact that re-

sults in several problems. 

First problem 

Given that regression approaches, method of multiples, and error measures deal 

with empirical asset pricing, the multitude of conceptually different and non-

connected approaches is puzzling and gives rise to two questions: 

(i) If regression approaches, method of multiples, and error measures are ap-

plied empirically, they might lead to vastly different valuation results. 

Therefore, wouldn’t it be useful to elaborate conceptual similarities and 

differences between these statistical methods and even find a superordi-

nate category? 

(ii) With respect to regression approaches, the existing literature uses just a 

small subset of possible statistical methods for empirical asset pricing, i.e., 

ordinary least squares, weighted least squares, or quantile regressions. 

Wouldn’t it be rational to enlarge this subset of regression approaches by 

using other functions of the residuals, e.g., higher (and not first or second) 

order of absolute values of residuals or the maximum error? 

With respect to the method of multiples, wouldn’t it be useful to possess a 

pricing formula that can integrate different methods of computing means 

as well as using several accounting figures? 
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With respect to error measures, wouldn’t it be reasonable to have a pricing 

framework (= objective function) that is consistent with the error measure 

(= quality assessment). 

Given these questions, the first objective of this thesis in Chapter II is to analyze 

which of the existing empirical asset pricing approaches are conceptually similar, 

i.e., can be summarized to a superordinate category and present statistical 

methods that can be considered as quasi-natural extensions to existing empirical 

asset pricing models. 

Second problem 

Based on this overview over empirical asset pricing models and the literature, it 

can be strongly assumed that the chosen factors (numbers and specific selection 

of explanatory variables) as well as the specific statistical method used (e.g., or-

dinary least squares regression, quantile regression) have an important influence 

on the explanatory power of an empirical analysis. Since the only concern of the 

majority of existing papers is the previously mentioned explanatory power, they 

can be regarded as dealing with statistical significance of factors/specific statisti-

cal methods, whereas the economic relevance is far less analyzed. 

Since price differences are the decisive aspect of valuation models in practice 

and not statistical significance, analyzing their economic significance is essential 

and inevitable. Nobody will pay a higher price for a company just because a spe-

cific valuation method produces a high out-of-sample R². Moreover, business de-

cisions should not be based only on whether a p-value passes a specific threshold 

because statistical significance (p-value) cannot measure the size of an effect or 

the importance of a result. 

Therefore, it is the second objective of this thesis in Chapter III to analyze the 

economic significance of different factors/specific statistical methods. 

Third problem 

If, however, different factors/specific statistical methods lead to economically 

significant differences in value, a model-selection criterion is needed that is 
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based on economic instead of statistical criteria. While arbitrage theory provides 

a general guideline for economic model evaluation for theoretical asset pricing 

models (i.e., prices must be a linear function of their future cash flows), empirical 

asset pricing models do not rely on present values of cash flows, but on assumed 

relations between accounting characteristics/factor returns and company pric-

es/returns. For that reason, no theoretical guidelines regarding the components 

of the model exist. In particular, there are neither hints regarding the number 

and type of explanatory variables nor the specific statistical approach. 

Given this high need for an economic model evaluation criterion, the third objec-

tive of this thesis in Chapter IV is to develop an economic model evaluation crite-

rion and come up with an economic ranking of different empirical models. 

Fourth problem 

From the perspective of asset pricing theory such a model evaluation criterion is 

superfluous because the correct business valuation model is clear: the present 

value of future cash flows. Practically, forecasts of the future are difficult and, in 

particular, the determination of discount factors proves problematic. Therefore, 

it might be better to use a theoretically less convincing but easier applicable 

model—e.g., use of accounting characteristics—instead of a theoretically superi-

or but inadequately implementable model—present value. However, the superi-

or practicability of existing accounting-based valuations comes at a high cost: a 

relatively weak foundation in asset pricing theory: 

(i) Multiples 

Multiples essentially argue that similar accounting characteristics should 

result in similar prices. 

Problems from the perspective of asset pricing theory: While such a valua-

tion statement is intuitive, it is not backed up by asset pricing/arbitrage 

theory that states: Identical cash flow streams must possess identical pric-

es. In other words, there are three differences between multiples and arbi-

trage theory. First, accounting characteristics are considered instead of 

cash flow streams. Second, similar instead of identical positions are exam-
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ined. Third, one accounting characteristic is regarded as enough to charac-

terize a company completely. 

(ii) Implementing discounted cash flow models with the help of accounting 

characteristics 

In literature, there are discounted cash flow models that use (functions of) 

accounting figures in order to express cash flows, the horizon value and/or 

the discount rate. 

Problems from the perspective of asset pricing theory: Irrespective of the 

specific inclusion of the accounting characteristics in the discounted cash 

flow models, they can only serve as an approximation, i.e., the models con-

tain assumptions that do not generally hold in reality. 

(iii) Empirical accounting-based approaches 

Empirical accounting-based approaches explain stock prices with the help 

of accounting characteristics. 

Problems from the perspective of asset pricing theory: These empirical ac-

counting-based approaches belong to the field of value relevance studies 

and, thus, are only interested in statistical significance of accounting char-

acteristics, but not economic significance, i.e., they do not derive pricing 

statements. In principle, the regression coefficients of value relevance 

studies can also be used to obtain business values. However, valuation dif-

ferences between different regression approaches are huge and these 

models have a weak economic backing when contrasted with the economic 

principle. 

All these problems underline the trade-off between asset pricing rigor and prac-

ticability of models: Present value models are theoretically superior, but their 

practical implementation in form of constant discount rates and horizon models 

is far from economically convincing. Accounting-based models are characterized 

by less asset pricing theory rigor, however, can be implemented without sacrific-

ing much of their theoretical basis. Obtaining better asset pricing models, hence, 

means either improve the implementation of present value models or the theo-

retical foundations of accounting-based models. Two reasons favor the im-
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provement of the asset pricing foundation of empirical accounting-based mod-

els. On the one hand, the accounting literature so far has not fully exploited the 

asset pricing potential of accounting-based valuation models: It can be increased 

visibly without sacrificing practicability. On the other hand, purely empirical 

models always create a justification problem: Who would pay a higher price for a 

company because sales multiples result in higher prices than earnings multiples? 

Who would pay a higher price for a company because a lower discount rate for 

earnings is used? Who would pay a higher price for a company because an em-

pirical estimation procedure, which possesses a higher R², recommends a higher 

price than other empirical estimation procedures? 

Therefore, it is the fourth objective of this thesis in Chapter V to connect the 

practicability of accounting-based valuation models with the theoretical rigor of 

asset pricing theory. 

2 Organization of the Thesis 

The remainder of this thesis is organized as follows: Chapter II gives an overview 

of existing empirical assets pricing approaches and condenses them into a com-

mon framework. Chapter III analyzes the economic significance of valuation dif-

ferences of different regression approaches. Chapter IV defines an economic 

model evaluation criterion and applies it to selected empirical asset pricing mod-

els. Finally, based on these results, Chapter V develops an accounting-based em-

pirical business valuation model: the optimize-the-price approach. 
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Chapter II: Overview of Existing Approaches 
and Elaboration of a Common Framework 

1 Introduction 

Empirical asset pricing models have one thing in common: They try to explain to-

day’s asset prices (or returns) with value drivers that are observable today. How-

ever, at this point the common ground ends because three conceptually differ-

ent approaches—we call them different categories of statistical methods—exist: 

regression approaches, method of multiples, and error measures. 

Regression approaches are the most prominent in the academic literature and 

are associated with factor models/predictability of stock returns or value rele-

vance studies in accounting. However, regression approaches seem to get more 

diverse in recent times. On the one hand, the number and specification of factors 

is increased (e.g., the overview in Harvey/Liu/Zhu (2016)), on the other hand, dif-

ferent regression methods like quantile regressions (e.g., Allen/Singh/Powell 

(2011)), weighted least squares regressions (e.g., Easton/Sommers (2003)), or 

generalized least squares regressions (e.g., Lewellen/Nagel/Shanken (2010)) are 

employed. Finally, regression approaches stand unconnected to alternative pric-

ing approaches like the method of multiples and error measures. 

The method of multiples is extremely popular in business valuation because of its 

easy implementation (see Coenenberg/Schultze (2002), p. 697). Perhaps due to 

its popularity, many approaches exist ranging from arithmetic, geometric, and 

harmonic mean to median as well as the ratio of averages (see Agrrawal/

Borgman/Clark/Strong (2010), pp. 12 ff.). Even pricing results for several ac-

counting figures (e.g., EBIT and sales multiples) are averaged (see Beatty/

Riffe/Thompson (1999), p. 26 and Cheng/McNamara (2000), p. 352).—All these 

approaches are primarily unrelated and, in particular, not connected with regres-

sion analysis. 
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Finally, error measures are used to provide a suitable criterion for assessing the 

results of empirical pricing approaches (see Dittmann/Maug (2008), pp. 1 ff.). 

However, they suffer to some degree from consistency issues: the quality as-

sessment (error measure) does not fit to the framework of the pricing model be-

cause both use different objective functions. Moreover, they are not related to 

regression analysis. 

Given that all three categories of statistical methods, regression approaches, 

method of multiples, and error measures circle around the same problem, name-

ly empirical asset pricing, the multitude of conceptually different and non-

connected approaches is puzzling and gives rise to two questions: 

(i) If regression approaches, method of multiples, and error measures are ap-

plied empirically, they might lead to vastly different valuation results (e.g., 

Nietert/Otto (2018) for multiples and Chapter III for regression approach-

es). Wouldn’t it then be useful to understand why valuation results are dif-

ferent or even identify superior statistical methods? In other words, 

wouldn’t it be helpful to elaborate conceptual similarities and differences 

between statistical methods and even find a superordinate category? 

(ii) Within regression approaches, the literature uses just a small subset of 

possible statistical methods for empirical asset pricing, i.e., ordinary least 

squares, weighted least squares, or quantile regressions. “Why not mini-

mize some other function of the residuals”, as Wooldridge in his famous 

textbook on econometrics (see Wooldridge (2012), p. 31) asks? Potential 

candidates would be higher (and not first or second) order of absolute val-

ues of residuals or the maximum error. 

With respect to the method of multiples, wouldn’t it be useful to possess a 

pricing formula that can integrate different methods of computing means 

as well as using several accounting figures? 

With respect to error measures, wouldn’t it be reasonable to have a pricing 

framework (= objective function) that is consistent with the error measure 

(= quality assessment). 
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Given these questions, the objectives of this Chapter II are (i) to analyze which of 

the existing empirical asset pricing approaches are conceptually similar, i.e., can 

be summarized to a superordinate category; (ii) to present statistical methods 

that can be considered as quasi-natural extensions to existing empirical asset 

pricing models. 

To achieve these objectives, a two-step procedure is followed. In a first step, the 

three categories of statistical methods (regression approaches, method of multi-

ples, and error measures) are analyzed with regard to whether they can be ag-

gregated to a general statistical method, i.e., to one superordinate category. In a 

second step, the general statistical method is used to check whether other statis-

tical methods can be subsumed under the general statistical method. If this is the 

case, a quasi-natural extension to existing empirical asset pricing models will be 

found. 

The results of this chapter can be summarized as follows: First, regression ap-

proaches and error measures can be combined to one superordinate category 

because they (can be formulated to) minimize functions of residuals. The method 

of multiples, however, remains a separated category since the multiple, the fac-

tor loading, is not determined from an optimization problem. Second, quasi-

natural extensions of existing 

(i) regression approaches combine higher orders of residuals (Lp-norms) with 

different penalties on over- and underestimations (quantile regressions), 

and dependence structures between error terms of different observations 

(generalized least squares regressions). 

(ii) methods of multiples compute prices as weighted average of prices arising 

from different methods of computing means using different accounting 

figures. 

(iii) error measures allow for the computation of factor loadings from an objec-

tive function that is consistent with the error measure (= quality assess-

ment) used. 
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Compared to the literature, this chapter provides two contributions: First, it ana-

lyzes empirical asset pricing models across categories. The literature analyzes 

factor models/predictability of stock returns, value relevance, and multiples 

completely separately even though all three categories deal with asset pricing. 

Moreover, the literature in both factor models/predictability of stock returns 

(e.g., Harvey/Liu/Zhu (2016) and Appendix 4) and value relevance (e.g., 

Mölls/Strauß (2007) and Appendix 4) is almost exclusively interested in discus-

sion of factors, but does not touch the issue of different statistical methods. The 

only exception is Allen/Singh/Powell (2011) who examine the integration of 

quantile regression into the Fama/French (1993) three-factor model. Regarding 

the analysis of factors, the literature is strictly empirical. The most advanced pa-

per by Barillas/Shanken (2018) employs an empirical nesting approach. If, e.g., 

the CAPM and the Fama/French (1993) three factor model were equivalent re-

garding the intercept (alpha is equal to zero), the CAPM would be favored be-

cause it was the more parsimonious model. We, on the other hand, propose a 

theoretical nesting approach by showing that different statistical methods can be 

nested into a superordinate category.—Such a theoretical approach is able to 

compare, e.g., quantile regressions, generalized least squares regressions, and 

multiples, which cannot be done using the nesting approach of Barillas/Shanken 

(2018). 

Second, by proposing quasi-natural extensions to empirical asset pricing models, 

it partially provides an answer to Wooldridge who asks: “Why not minimize some 

other function of the residuals?” (see Wooldridge (2012), p. 31). 

With respect to regression models the empirical asset pricing literature so far has 

extended ordinary least squares regressions regarding quantile regressions (e.g., 

Allen/Singh/Powell (2011), p. 176), weighted least squares regressions (e.g., 

Easton/Sommers (2003), Formula (2), p. 42), and generalized least squares re-

gressions (e.g., Lewellen/Nagel/Shanken (2010), p. 183). This chapter adds higher 

orders of residuals (Lp-norms) on an isolated basis and together with different 

penalties on over- and underestimations (quantile regressions) and dependence 
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structures between error terms of different observations (generalized least 

squares regressions). 

With respect to multiples Beatty/Riffe/Thompson (1999) and Cheng/McNamara 

(2000) discuss how prices arising from the use of different accounting figures can 

be weighted to obtain a final price. Prices arising from different methods of 

computing the mean, however, are not examined.—This chapter closes this gap 

and shows how to combine price estimates arising from different methods of 

computing means with those using several accounting figures. 

In the context of error terms, the so far missing computation of consistent factor 

loadings is provided, consistent in the sense that the objective function becomes 

consistent with the error measure (= quality assessment). 

The remainder of this Chapter II is organized as follows: Section 2 gives an over-

view of existing empirical asset pricing approaches and proposes quasi-natural 

extensions. In Section 3 the superordinate category of the presented statistical 

methods is elaborated. Section 4 concludes this chapter. 

2 Overview of Existing Approaches1 

2.1 Regression Approaches 

2.1.1 Basic Principle 

Regression approaches attempt to explain a dependent variable (asset prices or 

returns) with the help of explanatory variables (= factors) best possible. Best pos-

sible means that the unknown model parameters (= regression coefficients, i.e., 

factor loadings) are determined so that a function of residuals (objective func-

                                                           
1
 Note that model calibration—see, e.g., the introduction to this approach in Cochrane 

(2005)—does not belong to the class of empirical asset pricing models. Model calibration im-
plements theoretical models empirically, whereas empirical asset pricing models directly refer 
to the empirical relation without taking the detour over a theoretical model. 



Chapter II 

11 

tion) is minimized. The objective function of the regression serves at the same 

time as quality assessment of the model’s explanatory power. Therefore, regres-

sion approaches are consistent since regression coefficients and quality assess-

ment are derived from the same objective function. Existing regression ap-

proaches only differ in the way how this objective function is defined. 

Regression analysis can be conducted with cross-sectional as well as with time 

series data both with prices and returns. Characteristic examples for cross-

sectional regressions of prices are value relevance studies (e.g., Easton/Harris 

(1991) and Appendix 4 for a rather comprehensive overview) that explain stock 

prices with the help of earnings per share and book value per share. Characteris-

tic examples for time series regressions of returns are the three-, four-, five-, and 

six-factor models by Fama/French (1993), Carhart (1997), Fama/French (2015), 

and Fama/French (2018) which explain stock returns with the help of market risk, 

size, value, momentum etc.—Again use Appendix 4 for an overview.— In the fi-

nancial empirical asset pricing literature, time series regressions play the leading 

role, whereas cross-sectional regressions dominate in the empirical accounting 

literature. 

Formally, regression approaches work as follows: 

(2.1) 

𝑦𝑖 = 𝛽0 +∑𝛽𝑗 ∙

𝑚

𝑗=1

𝐴𝑖,𝑗 − 𝜀𝑖  

where 𝑦𝑖 denotes observation 𝑖 of the dependent variable, 𝐴𝑖,𝑗 characteristic 𝑗 of 

observation 𝑖, 𝛽𝑗 the regression coefficient of characteristic 𝑗, 𝛽0 the intercept 

parameter, and 𝜀𝑖 the residual of asset 𝑖. 

The relation of (2.1) to all four approaches (cross section of prices as well as re-

turns and time series of prices as well as returns) is described in more detail: 

Prices of companies in a cross section are the standard case of value relevance 

studies in accounting (e.g., the survey paper of Mölls/Strauß (2007), p. 958 or 

Appendix 4). In this standard case the explanatory relation reads, e.g., 
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𝑃𝑖,𝑡 = 𝛽0,𝑡 + 𝛽𝐸𝐵𝐼𝑇,𝑡 ∙ 𝐸𝐵𝐼𝑇𝑖,𝑡 +⋯− 𝜀𝑖,𝑡 

for all companies 𝑖 in the sample at time 𝑡. 

In other words, the variable 𝑦𝑖 in (2.1) is equal to the price of company 𝑖 at time 

𝑡. The variables 𝐴𝑖,𝑗 are accounting figures, e.g., 𝐸𝐵𝐼𝑇𝑖,𝑡 (but not their growth 

rates) at time 𝑡. 

Returns of companies in the cross section can be found in two different strands 

of the literature: on the one hand, in value relevance studies in accounting, e.g., 

the survey paper Mölls/Strauß (2007), Kothari/Zimmerman (1995), Harris/Muller 

(1999) or Appendix 4; on the other hand, in the second step of the two-pass re-

gressions of Black/Jensen/Scholes (1972) and Fama/MacBeth (1973). 

The regression equation that describes the relation between dependent and in-

dependent variables reads 

 in accounting (e.g., Harris/Muller (1999), Formula 2, p. 299 or Kothari/

Zimmerman (1995), Formula 2, p. 159) 

𝑅𝑖,𝑡𝑜𝑟 
𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑖,𝑡
𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑖,𝑡−1

= 𝛽0,𝑡 + 𝛽𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠,𝑡 ∙
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖,𝑡

𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑖,𝑡−1
+⋯− 𝜀𝑖,𝑡 

 in two-pass regressions (Black/Jensen/Scholes (1972) and Fama/MacBeth 

(1973)) 

𝑅𝑖,𝑡 − 𝑟𝑡 = 𝛾0,𝑡 + 𝛾𝐹𝑎𝑐𝑡𝑜𝑟1,𝑡 ∙ 𝐵𝑒𝑡𝑎𝐹𝑎𝑐𝑡𝑜𝑟1,𝑖,𝑡 +⋯− 𝜀𝑖,𝑡 

for all companies 𝑖 in the sample at time 𝑡. 

In other words, the variable 𝑦𝑖 in (2.1) is equal to the return or the return differ-

ential of company 𝑖 at time 𝑡 to the riskless rate. The variables 𝐴𝑖,𝑗 are either rel-

ative accounting figures or beta factors determined from time series regressions 

(first step of the two-pass regression) at time 𝑡. 

Prices of companies in time series can be found in, e.g., Kothari/Zimmerman 

(1995), p. 175 and Appendix 4 and look like 

𝑃𝑖,𝜏 = 𝛽0,𝑖 + 𝛽1,𝑖 ∙ 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖,𝜏 +⋯− 𝜀𝑖,𝜏 
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for company 𝑖 at all points in time 𝜏. 

In other words, the variable 𝑦𝑖 in (2.1) is equal to the price of a company 𝑖 at 

time 𝜏. The variable 𝐴𝑖,𝑗 denote accounting figure 𝑗 of company 𝑖 at different 

points in time 𝜏. 

Returns of companies in time series can be found in the first step of the two-pass 

regressions of Black/Jensen/Scholes (1972) and Fama/MacBeth (1973): 

𝑅𝑖,𝜏 − 𝑟𝜏 = 𝛽𝑖 + 𝛽𝐹𝑎𝑐𝑡𝑜𝑟1,𝑖,𝜏 ∙ 𝑅𝐹𝑎𝑐𝑡𝑜𝑟1,𝜏 +⋯− 𝜀𝑖,𝜏 

for company 𝑖 at all points in time 𝜏. 

In other words, the variable 𝑦𝑖 in (2.1) is equal to the return or return differential 

to the riskless rate of company 𝑖 at time 𝜏. The variable 𝐴𝑖,𝑗 denote returns of 

factor 𝑗 at different points in time 𝜏. In Fama/French (2015), Formula 4, p. 2, e.g., 

factor returns are specified as return of a portfolio (of small stocks, stocks with 

high book-to-market ratio etc.) minus the return on another portfolio (of big 

stocks, stocks with high book-to-market ratio etc.). 

To keep the complexity of the notation in check we will use the regression For-

mula (2.1) in the remainder of this Chapter II and suppress, in addition, the time 

subscript 𝑡. That way, we can use one formula that holds for cross section of 

prices as well as returns and time series of prices as well as returns. However, 

when we will analyze the implicit economic assumptions of empirical asset pric-

ing approaches in Chapter IV, we will thoroughly distinguish between cross sec-

tion of prices as well as returns and time series of prices as well as returns. 

2.1.2 Existing Approaches in the Literature 

Our criterion used to structure existing regression approaches is their respective 

objective function. For each objective function one characteristic paper is cited. 

Hence, this section does not aim at providing an overview of all papers in empiri-

cal asset pricing that use regression approaches. Instead it prepares for the anal-
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ysis of differences and similarities in regression approaches and, thus, the identi-

fication of a superordinate category. 

2.1.2.1 Ordinary Least Squares Regression 

Ordinary least squares regressions have the highest degree of dissemination in 

empirical asset pricing studies both the field of value relevance and factor mod-

els/predictability (see Appendix 4). 

Ordinary least squares regression minimizes the sum of the squared residuals 

with respect to regression coefficients. In this connection, ordinary least squares 

regression does not penalize underestimations differently from overestimations. 

Formally, 

(2.2) 

min
𝛽0,𝛽1,…,𝛽𝑚

∑([𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖)

2
𝑛

𝑖=1

 

where residual 𝜀𝑖 reads 

(2.3) 

𝜀𝑖 =

(

 
 
𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1⏟        
=𝑦�̂� )

 
 
− 𝑦𝑖  

and 𝑦�̂� denotes the estimated price/return of observation 𝑖. 

Alternatively, 

(2.4) 

min
𝛽0,𝛽1,…,𝛽𝑚

√∑([𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖)

2
𝑛

𝑖=1
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can be used as objective function. Since the square root function is monotonous-

ly increasing in its arguments, Problems (2.2) and (2.4) deliver the same mini-

mum for 𝛽0, 𝛽1, … , 𝛽𝑚. Only the value of the objective functions differs (see 

Boyd/Vandenberghe (2009), p. 131). 

2.1.2.2 Weighted Least Squares Regression 

Weighted least squares regressions are the second most used statistical method 

(see Appendix 4). Weighted least squares regression multiplies all inputs (obser-

vations 𝑦𝑖 and characteristics 𝐴𝑖,𝑗) by a weight 𝜔𝑖 before they enter the optimiza-

tion problem. A typical application of weighted least squares regression is the 

case of heteroscedastic error terms, i.e., error terms are uncorrelated but not 

identically distributed (see Rao/Toutenburg/Shalabh/Heumann (2008), p. 156). If 

the weights are correctly specified, weighted least squares regression results in 

lower standard errors than the traditional ordinary least squares regression (see 

Wooldridge (2012), pp. 280 ff.). 

Then, the sum of the squared residuals is minimized with respect to regression 

coefficients. In this connection, weighted least squares regression does not pe-

nalize underestimations differently from overestimations. Formally, 

(2.5) 

min
𝛽0,𝛽1,…,𝛽𝑚

∑([𝜔𝑖𝛽0 +∑𝜔𝑖𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝜔𝑖𝑦𝑖)

2
𝑛

𝑖=1

 

or, alternatively, 

(2.6) 

min
𝛽0,𝛽1,…,𝛽𝑚

√∑([𝜔𝑖𝛽0 +∑𝜔𝑖𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝜔𝑖𝑦𝑖)

2
𝑛

𝑖=1

 

where residual 𝜀𝑖 reads 
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(2.7) 

𝜔𝑖𝜀𝑖 =

(

 
 
𝜔𝑖𝛽0 +∑𝜔𝑖𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1⏟            
=𝜔𝑖𝑦�̂� )

 
 
− 𝜔𝑖𝑦𝑖  

Note that there are two different approaches of weighting in the literature: 

Easton/Sommers (2003), Formula (2), p. 42 use 𝑃𝑖,𝑡 as weight 𝜔𝑖, whereas, e.g., 

Brown/Lo/Lys (1999), Formula (15), p. 105 employ 𝑃𝑖,𝑡−1. 

2.1.2.3 Quantile Regression 

Quantile regressions are only employed by Allen/Singh/Powell (2011) in the field 

of empirical asset pricing. Quantile regressions are able to penalize overestima-

tions differently from underestimations by using a weight 𝜏 for underestimations 

and 1 − 𝜏 for overestimations where it holds 0 < 𝜏 < 1 (see Koenker (2005), p. 

5). For 𝜏 < 0.50, overestimations are penalized more strongly in the objective 

function, for 𝜏 > 0.50 underestimations. For 𝜏 = 0.50 (median regression), over- 

and underestimations are treated equally. The cases 𝜏 = 0 and 𝜏 = 1 are exclud-

ed since otherwise there would be no trade-off between over- and underestima-

tions. Consequently, �̂�𝑖 would be set arbitrarily low for penalized overestima-

tions so that never an overestimation in the sense �̂�𝑖 > 𝑦𝑖 occurs (high for penal-

ized underestimations so that never an underestimation in the sense �̂�𝑖 < 𝑦𝑖 oc-

curs) and an infinite number of admissible solutions for the regression coeffi-

cients would result. The higher 𝜏, the more optimization reduces underestima-

tions due to their high penalty and increases overestimations due to their low 

penalty, a fact that leads to higher estimated prices/returns �̂�𝑖. Therefore, the 

weighting factor 𝜏 corresponds to the estimated quantile of the dependent vari-

able because the sample is divided in a way such that 𝜏 percent are below and 

(1 − 𝜏) percent are above the estimated price/return �̂�𝑖 (see Koenker (2005), p. 

7). 

Formally, quantile regression can be written (see Koenker (2005), Formula (1.19), 

p. 10) 
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(2.8) 

min
𝛽0,𝛽1,…,𝛽𝑚

(1 − 𝜏) ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖|

𝑛

𝑖=1
𝑦𝑖<𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

+𝜏 ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖|

𝑛

𝑖=1
𝑦𝑖≥𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

where residual 𝜀𝑖 reads 

(2.9) 

𝜀𝑖 = (𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦�̂�

− 𝑦𝑖 

Several quantiles 𝜏 can be considered. Therefore, a family of regression lines is 

available for interpretation and, thus, a more complete view of the relationship 

between the variables is obtained compared to ordinary least squares regres-

sion. Ordinary least squares regression only looks at one regression line (see 

Koenker (2005), pp. 17, 25) because its regression line is based on the condition-

al mean in the sense of 𝐸{𝑦𝑖|𝐴1, . . , 𝐴𝑚} = 𝛽0 + ∑ 𝐴𝑖,𝑗𝛽𝑗
𝑚
𝑗=1 . 

2.1.2.4 Generalized Least Squares Regression 

Generalized least squares regressions in the field of empirical asset pricing were 

pioneered by Sami/Zhou (2004) and massively advocated by Lewellen/

Nagel/Shanken (2010). However, overall they are still used sparingly (see Appen-

dix 4). 

The intuition behind generalized least squares regressions is that error terms 

might not be uncorrelated and identically distributed. Instead, error terms of dif-

ferent observations might depend on each other. 
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This dependence structure can be characterized as follows: the variance of error 

terms reads 𝜎2𝑊 where 𝑊 is a positive definite matrix instead of an identity ma-

trix as in the classical regression model (see Rao/Toutenburg/Shalabh/Heumann 

(2008), p. 143). Special cases of this dependence structure are: (i) heteroscedas-

ticity where error terms are uncorrelated but possess a different variance; 𝑊 

then becomes a diagonal matrix and generalized least squares regression simpli-

fies to weighted least squares regression (see Rao/Toutenburg/Shalabh/Heu-

mann (2008), p. 156); (ii) serial correlation where error terms exhibit serial corre-

lation but have an identical variance; 𝑊 then becomes a matrix that contains the 

autocorrelation coefficients of first and higher order (see Rao/Toutenburg/Shal-

abh/Heumann (2008), p. 159).—Recall, regression approaches can be formulated 

as cross-sectional and time series regressions (see Section 2.1.1) and, hence, 

both heteroscedasticity and serial correlation might be relevant. 

Formally, dependence structures of error terms can be captured by transforming 

the original variables of the regression model (see Rao/Toutenburg/Shal-

abh/Heumann (2008), pp. 143 f., 151): 

(2.10) 

(
𝑦1
∗

⋮
𝑦𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝑦1
⋮
𝑦𝑛
) 

(

𝐴1,1
∗ ⋯ 𝐴1,𝑚

∗

⋮ ⋱ ⋮
𝐴𝑛,1
∗ ⋯ 𝐴𝑛,𝑚

∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝐴1,1 ⋯ 𝐴1,𝑚
⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑚

) 

(
𝜀1
∗

⋮
𝜀𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝜀1
⋮
𝜀𝑛
) 

where 𝜔 is a square and regular matrix and it holds 𝑊−1 = 𝜔𝜔. 

Generalized least squares regression minimizes the sum of the squared residuals 

with respect to regression coefficients. In this connection, it does not penalize 

underestimations differently from overestimations. Formally, 
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(2.11) 

min
𝛽0,𝛽1,…,𝛽𝑚

∑([𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗)

2
𝑛

𝑖=1

 

or, alternatively, 

(2.12) 

min
𝛽0,𝛽1,…,𝛽𝑚

√∑([𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗)

2
𝑛

𝑖=1

 

where residual 𝜀𝑖
∗ reads 

(2.13) 

𝜀𝑖
∗ = (𝛽0 +∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦𝑖
∗̂

− 𝑦𝑖
∗ 

2.1.3 Possible Extensions to Regression Approaches 

“Possible extensions to regression models” could in principle comprise any statis-

tical method of the literature. Therefore, we must be more precise and confine 

ourselves to what we would like to call quasi-natural extensions. Quasi-natural 

extensions integrate separated features of the statistical methods introduced in 

Section 2.1.2 into one general statistical method, but do not modify the core of 

regression approaches in that they can be subsumed under the minimization of a 

function of residuals. 

Separated features of the statistical methods in Section 2.1.2 are: 

(i) The order of the function of residuals; so far: absolute values (first order) 

and quadratic functions (second order). 
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(ii) The different weighting of over- and underestimations; so far: quantile re-

gressions. 

Based on the separated features (i) to (ii) we suggest the following possible (qua-

si-natural) extensions. 

2.1.3.1 Lp-Norms as Objective Functions 

The intuition behind this extension is that not only absolute values (first order) or 

quadratic functions (second order) of residuals could be minimized. Instead, the 

absolute value of higher orders of residuals could also be considered. The higher 

the order, the less (more) influence have small (large) residuals on the objective 

function and vice versa. Therefore, in the limiting case, where the order of the 

function approaches infinity, only the maximum residual becomes relevant. 

Technically, the order of the residuals’ function is captured by means of Lp-

norms, which are defined as (see Collatz (1964), pp. 132 ff.): 

(2.14) 

‖𝜀‖𝑝 = [∑|𝜀𝑖|
𝑝

𝑛

𝑖=1

]

1
𝑝

 

The limiting case 𝑝 = ∞ results from: 

(2.15) 

‖𝜀‖∞ = max  {|𝜀𝑖| | 𝑖 = 1,… , 𝑛} 

Minimizing Lp-norms means that the 𝑝th root of the sum of the 𝑝th power of the 

absolute values of residuals is minimized. In this connection, Lp-norms do not pe-

nalize underestimations differently from overestimations. Formally, 
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(2.16) 

min
𝛽0,𝛽1,…,𝛽𝑚

(∑|[𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖|

𝑝
𝑛

𝑖=1

)

1
𝑝

 

where residual 𝜀𝑖 reads 

(2.17) 

𝜀𝑖 = (𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦�̂�

− 𝑦𝑖 

2.1.3.2 Different Weighting of Over- and Underestimations and 
Lp-Norms as Objective Functions 

This extension is motivated by a combination of Lp-norms with the idea of an 

asymmetric penalty on over- and underestimations. 

Then, the minimization of the Lp-norm with different weighting of over- and un-

derestimations means that the 𝑝th root of the sum of the 𝑝th power of the abso-

lute values of the residuals is minimized. In this connection a weight 𝜏 for under-

estimations and 1 − 𝜏 for overestimations is used with 0 < 𝜏 < 1. Formally, 

(2.18) 

min
𝛽0,𝛽1,…,𝛽𝑚

[
 
 
 
 
 
 

(1 − 𝜏) ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖|

𝑝
𝑛

𝑖=1
𝑦𝑖<𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

+𝜏 ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖|

𝑝
𝑛

𝑖=1
𝑦𝑖≥𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 
 

1
𝑝

 

where residual 𝜀𝑖 reads 
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(2.19) 

𝜀𝑖 = (𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦�̂�

− 𝑦𝑖 

2.1.3.3 Combining the Extensions from Sections 2.1.3.1 to 2.1.3.2 

Combing Lp-norms with different penalties on over- and underestimations (quan-

tile regressions) and integrating them into the generalized least squares regres-

sions framework (2.11) to (2.13) yields 

(2.20) 

min
𝛽0,𝛽1,…,𝛽𝑚

[
 
 
 
 
 
 

(1 − 𝜏) ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗|

𝑝
𝑛

𝑖=1
𝑦𝑖
∗<𝛽0+∑ 𝐴𝑖,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1⏟                          

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

+𝜏 ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗|

𝑝
𝑛

𝑖=1
𝑦𝑖
∗≥𝛽0+∑ 𝐴𝑖,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1⏟                          

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 
 

1
𝑝

 

with 

(2.21) 

(
𝑦1
∗

⋮
𝑦𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝑦1
⋮
𝑦𝑛
) 

(

𝐴1,1
∗ ⋯ 𝐴1,𝑚

∗

⋮ ⋱ ⋮
𝐴𝑛,1
∗ ⋯ 𝐴𝑛,𝑚

∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝐴1,1 ⋯ 𝐴1,𝑚
⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑚

) 

(
𝜀1
∗

⋮
𝜀𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝜀1
⋮
𝜀𝑛
) 
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where 𝜔 is a regular an symmetric matrix and it holds 𝑊−1 = 𝜔𝜔 

and where residual 𝜀𝑖
∗ reads 

(2.22) 

𝜀𝑖
∗ = (𝛽0 +∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦𝑖
∗̂

− 𝑦𝑖
∗ 

2.2 Method of Multiples 

2.2.1 Basic Principle 

A multiple is defined as company price divided by the accounting figure of inter-

est, e.g., the price earnings ratio. It is obtained from an average of a group of 

comparable companies (see Peemöller/Meister/Beckmann (2002), pp. 197 f.).—

This is the reason why the method of multiples is often called comparable com-

pany approach (see Peemöller/Meister/Beckmann (2002), pp. 197 f.).—

Therefore, the method of multiples does not include the optimization of an ob-

jective function and, hence, there is no associated quality assessment of the ex-

planatory power of multiples. 

The importance of this method is made clear by the fact that 99 percent of ana-

lysts’ reports rely on multiple-based valuations (see Asquith/Mickhail/Au (2005), 

p. 257). Moreover, the comparable company approach is used in nearly all initial 

public offerings (see Beckmann/Meister/Meitner (2003), pp. 103 f.). 

Technically, multiples could be applied to both prices and returns. However, giv-

en the scope of their application—valuation of corporations—using multiples 

with returns is not used in both the literature and the industry. 

Similarly, multiples can, in principle, be applied to cross-sectional or time series 

data. However, the defining feature of multiples is the comparison with similar 
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companies and not with the history of the company under consideration. Hence, 

multiples are solely associated with a cross-sectional analysis. 

Pricing by multiplies means that a multiple is multiplied by the corresponding ac-

counting figure at time 𝑡 of the valuation object to determine its price at time 𝑡. 

Such a procedure implies three things: 

(i) Only positive multiples can be interpreted in economic terms. Negative 

multiples would revert the ordering of companies in that companies with a, 

e.g., higher positive EBIT or sales would be regarded as inferior to compa-

nies with smaller EBIT or sales. 

(ii) Only positive accounting figures for both the company to be valued and the 

group of comparable companies will yield to meaningful economic inter-

pretations. A negative accounting figure combined with a positive multiple 

results in a negative price. 

(iii) Combinations of negative multiples with negative accounting numbers lead 

to completely implausible results: Companies with negative EBITs would 

realize higher prices than companies with positive EBITs. 

2.2.2 Existing Approaches in the Literature 

Principally, approaches with one and those with several multiples exist. 

2.2.2.1 Approaches with One Multiple 

There are five different ways of estimating multiples from comparable compa-

nies (see Agrrawal/Borgman/Clark/Strong (2010), p. 12 ff.): the arithmetic mean 

𝛽𝑎 (e.g., Baker/Rubak (1999) or Liu/Nissim/Thomas (2002)), the geometric mean 

𝛽𝑔 (e.g., Kim/Ritter (1999)), the harmonic mean 𝛽ℎ (e.g., Baker/Rubak (1999) or 

Liu/Nissim/Thomas (2002)), the median 𝛽𝑚(e.g., Alford (1992), Cheng/McNama-

ra (2000), or Kim/Ritter (1999)), and the ratio of averages 𝛽𝑟𝑜𝑎 (e.g., Beatty/

Riffe/Thompson (1999)). 
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2.2.2.1.1 Arithmetic Mean 

Using the arithmetic mean, the multiple is determined as 

(2.23) 

𝛽𝑎 =
1

𝑛
∑(

𝑦𝑖
𝐴𝑖
)

𝑛

𝑖=1

 

where 𝛽𝑎 > 0 by construction. 

2.2.2.1.2 Geometric Mean 

Using the geometric mean, the multiple is determined as 

(2.24) 

𝛽𝑔 = (∏(
𝑦𝑖
𝐴𝑖
)

𝑛

𝑖=1

)

1
𝑛

= exp {
1

𝑛
∑ln (

𝑦𝑖
𝐴𝑖
)

𝑛

𝑖=1

} 

where 𝛽𝑔 > 0 by construction. 

2.2.2.1.3 Harmonic Mean 

Using the harmonic mean, the multiple is determined as 

(2.25) 

𝛽ℎ =
1

1
𝑛
∑ ((

𝑦𝑖
𝐴𝑖
)
−1

)𝑛
𝑖=1

 

where 𝛽ℎ > 0 by construction. 

2.2.2.1.4 Median 

Using the median, the multiple is determined as 

(2.26) 

𝛽𝑚𝑒𝑑 = Median (
𝑦𝑖
𝐴𝑖
) 

where 𝛽𝑚𝑒𝑑 > 0 by construction. 
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2.2.2.1.5 Ratio of Averages 

Using the ratio of averages, the multiple is determined as 

(2.27) 

𝛽𝑟𝑜𝑎 =

1
𝑛
∑ 𝑦𝑖
𝑛
𝑖=1

1
𝑛
∑ 𝐴𝑖
𝑛
𝑖=1

 

where 𝛽𝑟𝑜𝑎 > 0 by construction. 

Therefore, the ratio of averages deviates from the computational procedures of 

the other multiples: It computes averages first and then computes a ratio. The 

other multiples calculate the ratio in the first step and average over these ratios 

in the second step. 

2.2.2.2 Approaches with Several Multiples 

Existing models that use several multiples define the estimated prices as the 

arithmetic mean of the separate single-factor price estimates (see Beatty/

Riffe/Thompson (1999), p. 26 and Cheng/McNamara (2000), p. 352). In this con-

nection, it is averaged over prices estimated with the help of different account-

ing figures 𝐴𝑖,𝑗 (e.g., EBIT and sales) that use the same method of computing 

means (e.g., arithmetic means). 

Formally, the price of company 𝐶 to be valued reads using its 𝑚 accounting fig-

ures 𝐴𝐶,𝑗 and multiples 𝛽𝑥,𝐴𝑗 with 𝑥 ∈ {𝑎, 𝑔, ℎ,𝑚𝑒𝑑, 𝑟𝑜𝑎}: 

(2.28) 

𝑃𝐶,𝐴𝐶,1 = 𝛽𝑥,𝐴1 ∙ 𝐴𝐶,1 

⋮ 

𝑃𝐶,𝐴𝐶,𝑚 = 𝛽𝑥,𝐴𝑚 ∙ 𝐴𝐶,𝑚 

where 𝑃𝐶,𝐴𝐶,𝑗 is the (estimated) price of company 𝐶 using accounting figure 𝐴𝐶,𝑗. 

Then, the final price of company 𝐶 can be computed as 
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(2.29) 

𝑃𝐶 =
1

𝑚
∑𝑃𝐶,𝐴𝐶,𝑗

𝑚

𝑗=1

=
1

𝑚
∑𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗

𝑚

𝑗=1

 

where 𝑚 is the number of different accounting figures (like EBIT, sales etc.). 

2.2.3 Possible Extensions to the Method of Multiples 

“Possible extensions to the method of multiples” should follow the guidelines of 

quasi-natural extensions developed in Section 2.1.3. Quasi-natural extensions do 

not modify the core of multiples, i.e., that pricing by multiplies means that a mul-

tiple (i.e., company price divided by the accounting figure of interest, e.g., the 

price earnings ratio) is multiplied by the corresponding accounting figure of the 

valuation object. 

However, possible extensions do not just average over different prices computed 

with the help of different accounting figures using equally weighting, but also 

(i) average over different methods to compute means.—Nietert/Otto (2018) 

show that different methods to compute means results in huge (computed) 

price differences. 

(ii) average with an arbitrary weighting scheme. 

2.2.3.1 Averaging over Prices Arising from Different Methods of 
Computing Means 

Formally, the price of company 𝐶 to be valued reads using its accounting figure 

𝐴𝐶,𝑗  and multiple 𝛽𝑥,𝐴𝑗 with 𝑥 ∈ {𝑎, 𝑔, ℎ,𝑚𝑒𝑑, 𝑟𝑜𝑎} 

(2.30) 

𝑃𝐶,𝐴𝐶,𝑗,𝑎 = 𝛽𝑎,𝐴𝑗 ∙ 𝐴𝐶,𝑗  

𝑃𝐶,𝐴𝐶,𝑗,𝑔 = 𝛽𝑔,𝐴𝑗 ∙ 𝐴𝐶,𝑗  

𝑃𝐶,𝐴𝐶,𝑗,ℎ = 𝛽ℎ,𝐴𝑗 ∙ 𝐴𝐶,𝑗  
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𝑃𝐶,𝐴𝐶,𝑗,𝑚𝑒𝑑 = 𝛽𝑚𝑒𝑑,𝐴𝑗 ∙ 𝐴𝐶,𝑗 

𝑃𝐶,𝐴𝐶,𝑗,𝑟𝑜𝑎 = 𝛽𝑟𝑜𝑎,𝐴𝑗 ∙ 𝐴𝐶,𝑗 

Then, the final price of the company can be computed as 

(2.31) 

𝑃𝐶 =
1

5
∑ 𝑃𝐶,𝐴𝐶,𝑗,𝑥

𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

=
1

5
∑ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗

𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

or with an arbitrary weighting scheme 𝜔𝐶,𝐴𝐶,𝑗,𝑥 for the different methods of 

computing means 

(2.32) 

𝑃𝐶 = ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝑃𝐶,𝐴𝐶,𝑗,𝑥
𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

= ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗
𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

where ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥 = 1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎} . 

2.2.3.2 Averaging over Prices Arising from Different Accounting 
Figures and Different Methods of Computing Means 

The most general form of the method of multiples combines averaging over pric-

es arising from using different accounting figures (Section 2.2.2.2) with those 

arising from different methods of computing means using arbitrary weighting 

schemes (Section 2.2.3.1). Then, it is obtained 

 Prices from different accounting figures with arbitrary weighting scheme (Sec-

tion 2.2.2.2) 

(2.29) 

𝑃𝐶 =∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝑃𝐶,𝐴𝐶,𝑗,𝑥

𝑚

𝑗=1

=∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗

𝑚

𝑗=1
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 Prices from different methods computing means with arbitrary weighting 

scheme (Section 2.2.3.1) 

(2.32) 

𝑃𝐶 = ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝑃𝐶,𝐴𝐶,𝑗,𝑥
𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

= ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗
𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

Hence, it finally holds 

(2.33) 

𝑃𝐶 = ∑ ∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝑃𝐶,𝐴𝐶,𝑗,𝑥

𝑚

𝑗=1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

= ∑ ∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗

𝑚

𝑗=1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

where ∑ ∑ 𝜔𝐶,𝐴𝐶,𝑗,𝑥
𝑚
𝑗=1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎} = 1. 

2.3 Error Measures 

2.3.1 Basic Principle 

Error measures serve to evaluate and compare different model results that are 

estimated with the help of regression approaches or the method of multiples 

(e.g., Dittmann/Maug (2008)). As such, error measures do not determine factor 

loadings but provide just a quality assessment of explanatory power. Conse-

quently, the use of error measures often creates an inconsistency since factor 

loadings and quality assessment are derived from different objective functions. 

Since error measures evaluate the outcome of regression approaches or the 

method of multiples, they can be applied to both cross-sectional and time series 

data as well as prices and returns. Due to missing factor loadings, however, error 

measure cannot price assets. 
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2.3.2 Existing Approaches in the Literature 

Error measures proceed as follows. In a first step, errors are calculated for each 

asset 𝑖. In a second step, these errors are expressed as either percentage or loga-

rithmic errors (e.g., Dittmann/Maug (2008)). In a third step, the resulting distri-

bution of percentage or logarithmic errors is evaluated, e.g., based on descriptive 

statistics (e.g., Dittmann/Maug (2008)). In other words, error measures do not 

prescribe a certain descriptive statistic as evaluation criterion. Instead decision 

makers possess full flexibility as to which descriptive statistic they regard as rele-

vant.—From that perspective, one can begin to fathom a certain connection to 

regression analysis because ordinary least squares regressions use the variance 

of errors as descriptive statistics. 

2.3.2.1 Percentage Error 

The percentage error 𝜀𝑖
𝑝𝑐𝑡 is defined as the difference between the estimated 

price (return) �̂�𝑖 and the actual price (return) 𝑦𝑖 divided by the actual price (re-

turn) 𝑦𝑖 (see Dittmann/Maug (2008), p. 6): 

(2.34) 

𝜀𝑖
𝑝𝑐𝑡
=
�̂�𝑖 − 𝑦𝑖
𝑦𝑖

 

2.3.2.2 Logarithmic Error 

The logarithmic error 𝜀𝑖
𝑙𝑜𝑔

 is defined as the natural logarithm of the quotient of 

the estimated price (return) �̂�𝑖 and the actual price (return) 𝑦𝑖 (see 

Dittmann/Maug (2008), p. 6): 

(2.35) 

𝜀𝑖
𝑙𝑜𝑔

= ln (
�̂�𝑖
𝑦𝑖
) 
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2.3.3 Possible Extensions to Error Measures 

“Possible extensions to error measures” should follow the guidelines of quasi-

natural extensions developed in Section 2.1.3, i.e., do not modify the core of er-

ror measures: the use of percentage or logarithmic errors. 

In this connection, quasi-natural extensions rest upon two ideas. Frist, the con-

sistent use of objective functions and error measures is recommended. This 

means that an error measure should be minimized to obtain factor loadings so 

that the objective function from which factor loadings are obtained and the qual-

ity assessment coincide. The determination of factor loadings in turn means that 

pricing will become possible. Second, a meaningful descriptive statistic might be 

selected. 

2.3.3.1 Lp-Norms of Percentage Errors 

Since the percentage error is defined as 
�̂�𝑖−𝑦𝑖

𝑦𝑖
=

𝜀𝑖

𝑦𝑖
, each relation between ex-

planatory variables 𝐴𝑘 and dependent variable 𝑦𝑖 fits the idea of a percentage 

error when the error is additively connected to the explanatory variables, i.e., 

(2.36) 

𝑦𝑖 = 𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) − 𝜀𝑖 

and 

(2.37) 

�̂�𝑖 = 𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) 

This can be seen as follows: 

(2.38) 

�̂�𝑖 − 𝑦𝑖
𝑦𝑖

=
𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) − (𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) − 𝜀𝑖)

𝑦𝑖
=
𝜀𝑖
𝑦𝑖

 

Thus (2.38) 
𝜀𝑖

𝑦𝑖
 is identical to 𝜀𝑝𝑐𝑡. 
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However, an application argument favors a more specific, i.e., linear model be-

cause the determination of factor loadings is vastly simplified in a linear model. 

Hence, it is specified 

(2.39) 

𝑦𝑖 = 𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

− 𝜀𝑖 

and 

(2.40) 

�̂�𝑖 = 𝛽0 +∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

 

To be able to derive factor loadings, the asset-specific percentage errors must be 

aggregated to make statements about the size of total mispricing. Then, it be-

comes, however, necessary avoiding that positive and negative deviations com-

pensate each other. Combining both requirements means Lp-norms of percent-

age errors ‖𝜀𝑝𝑐𝑡‖𝑝 must be used. 

Based on the specification (2.40), factor loadings 𝛽𝑗 are then determined by min-

imizing Lp-norms of percentage errors ‖𝜀𝑝𝑐𝑡‖𝑝, i.e., 

 if underestimations are not penalized differently from overestimations 

(2.41) 

min
𝛽0,𝛽1,…,𝛽𝑚

[∑|
𝛽0 + ∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1 − 𝑦𝑖

𝑦𝑖
|

𝑝𝑛

𝑖=1

]

1
𝑝

 

 if underestimations are penalized differently from overestimations 

(2.42) 

min
𝛽0,𝛽1,…,𝛽𝑚

[
 
 
 
 
 
 

(1 − 𝜏) ∙ ∑ |
𝛽0 + ∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1 − 𝑦𝑖

𝑦𝑖
|

𝑝𝑛

𝑖=1
𝑦𝑖<𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 



Chapter II 

33 

+𝜏 ∙ ∑ |
𝛽0 + ∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1 − 𝑦𝑖

𝑦𝑖
|

𝑝𝑛

𝑖=1
𝑦𝑖≥𝛽0+∑ 𝐴𝑖,𝑗𝛽𝑗

𝑚
𝑗=1⏟                        

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 
 

1
𝑝

 

2.3.3.2 Lp-Norms of Logarithmic Errors 

Using logarithmic errors means that over- and underestimations are not treated 

equally because the natural logarithm is a concave function that 

weights/penalizes underestimations more strongly than overestimations. From 

that perspective, there will be always an asymmetric penalty irrespective of 

whether an additional penalty term is supposed on over- and underestimations 

(quantile regressions). 

With this general remark in mind, logarithmic errors can be approached in a simi-

lar vein as percentage errors: Since the logarithmic error is defined as 

ln (
�̂�𝑖

𝑦𝑖
) = 𝜀𝑖, each model fits logarithmic errors when the error is an exponential 

function that is multiplicatively connected with the explanatory variables 𝐴𝑘, i.e., 

(2.43) 

𝑦𝑖 = 𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) ∙ exp{−𝜀𝑖} 

and 

(2.44) 

�̂�𝑖 = 𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) 

This can be seen as follows: 

(2.45) 

ln (
�̂�𝑖
𝑦𝑖
) = ln (

𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚)

𝑓(𝐴1, … , 𝐴𝑗 , … , 𝐴𝑚) ∙ exp{−𝜀𝑖}
) = ln (

1

exp{−𝜀𝑖}
) 

= ln(1) − ln(exp{−𝜀𝑖}) = 𝜀𝑖 

Thus (2.45) 𝜀𝑖 is identical to 𝜀𝑙𝑜𝑔. 



Chapter II 

34 

However, an application argument favors a more specific, i.e., exponential mod-

el: the determination of factor loadings is vastly simplified if a linear model—

after taking logarithm—is used. 

Hence, it is specified 

(2.46) 

𝑦𝑖 = exp(𝛽0) ∙∏(𝐴𝑖,𝑗)
𝛽𝑗

𝑚

𝑗=1

∙ exp(−𝜀𝑖) 

and 

(2.47) 

�̂�𝑖 = exp(𝛽0) ∙∏(𝐴𝑖,𝑗)
𝛽𝑗

𝑚

𝑗=1

 

To be able to derive factor loadings, the asset-specific logarithmic errors must be 

aggregated to make statements about the size of total mispricing. For that rea-

son, Lp-norms of logarithmic errors ‖𝜀𝑙𝑜𝑔‖𝑝 are used as objective function. 

Based on the specification (2.47), factor loadings 𝛽𝑗 are then determined by min-

imizing Lp-norms of logarithmic errors ‖𝜀𝑙𝑜𝑔‖𝑝, i.e., 

 if underestimations are not penalized directly differently (but only indirectly 

by means of the logarithm) from overestimations 

(2.48) 

min
𝛽0,𝛽1,…,𝛽𝑚

[∑|ln (
�̂�𝑖
𝑦𝑖
)|
𝑝𝑛

𝑖=1

]

1
𝑝

 

= min
𝛽0,𝛽1,…,𝛽𝑚

[∑|ln(�̂�𝑖) − ln(𝑦𝑖)|
𝑝

𝑛

𝑖=1

]

1
𝑝

 

= min
𝛽0,𝛽1,…,𝛽𝑚

[∑|ln(exp(𝛽0) ∙∏(𝐴𝑖,𝑗)
𝛽𝑗

𝑚

𝑗=1

) − ln(𝑦𝑖)|

𝑝
𝑛

𝑖=1

]

1
𝑝

 

i.e., 
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(2.49) 

min
𝛽0,𝛽1,…,𝛽𝑚

[∑|𝛽0 +∑𝛽𝑗ln(𝐴𝑖,𝑗)

𝑚

𝑗=1

− ln(𝑦𝑖)|

𝑝
𝑛

𝑖=1

]

1
𝑝

 

 if underestimations are penalized directly differently (and indirectly by means 

of the logarithm) from overestimations 

(2.50) 

min
𝛽0,𝛽1,…,𝛽𝑚

[
 
 
 
 
 
 

(1 − 𝜏) ∙ ∑ |𝛽0 +∑𝛽𝑗ln(𝐴𝑖,𝑗)

𝑚

𝑗=1

− ln(𝑦𝑖)|

𝑝
𝑛

𝑖=1
ln(𝑦𝑖)<𝛽0+∑ 𝛽𝑗ln(𝐴𝑖,𝑗)

𝑚
𝑗=1⏟                                  

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

+𝜏 ∙ ∑ |𝛽0 +∑𝛽𝑗ln(𝐴𝑖,𝑗)

𝑚

𝑗=1

− ln(𝑦𝑖)|

𝑝
𝑛

𝑖=1
ln(𝑦𝑖)≥𝛽0+∑ 𝛽𝑗ln(𝐴𝑖,𝑗)

𝑚
𝑗=1⏟                                

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 
 

1
𝑝

 

3 Elaboration of a Common Framework 
for Empirical Asset Pricing Models 

Taking the overview of empirical models developed in Section 2 as starting point, 

a common framework for empirical asset pricing models can be developed. In 

particular, it is determined which of the three different categories of statistical 

methods—regression approaches, method of multiples, and error measures—

are conceptually similar, i.e., can be summarized to a superordinate category and 

which approaches are conceptually different. 
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3.1 Regression Approaches 

3.1.1 Most General Regression Model 

Problem 

(2.20) 

min
𝛽0,𝛽1,…,𝛽𝑚

[
 
 
 
 
 
 

(1 − 𝜏) ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗|

𝑝
𝑛

𝑖=1
𝑦𝑖
∗<𝛽0+∑ 𝐴𝑖,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1⏟                          

𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 

+𝜏 ∙ ∑ |[𝛽0 +∑𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

] − 𝑦𝑖
∗|

𝑝
𝑛

𝑖=1
𝑦𝑖
∗≥𝛽0+∑ 𝐴𝑖,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1⏟                          

𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ]
 
 
 
 
 
 

1
𝑝

 

with 

(2.21) 

(
𝑦1
∗

⋮
𝑦𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝑦1
⋮
𝑦𝑛
) 

(

𝐴1,1
∗ ⋯ 𝐴1,𝑚

∗

⋮ ⋱ ⋮
𝐴𝑛,1
∗ ⋯ 𝐴𝑛,𝑚

∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝐴1,1 ⋯ 𝐴1,𝑚
⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑚

) 

(
𝜀1
∗

⋮
𝜀𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝜀1
⋮
𝜀𝑛
) 

where 𝜔 is a regular an symmetric matrix and it holds 𝑊−1 = 𝜔𝜔 

and where residual 𝜀i reads 
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(2.22) 

𝜀𝑖
∗ = (𝛽0 +∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦𝑖
∗̂

− 𝑦𝑖
∗ 

is the most general problem since it combines Lp-norms with different penalties 

on over- and underestimations (quantile regressions) with dependence struc-

tures between error terms (generalized least squares regressions). 

All regression approaches—whether existing approaches or extensions—can be 

derived as special cases from (2.20). 

3.1.2 Identifying Other Regression Models as Special 
Cases of the Most General Regression Model 

3.1.2.1 Existing Approaches in the Literature 

 Ordinary least squares regression 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix 

𝑝 = 2 

𝜏 = 1 

and summation from 𝑖 = 1 to 𝑛 without distinguishing between 𝑦𝑖
∗ < 𝛽0 +

∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1  and 𝑦𝑖

∗ ≥ 𝛽0 + ∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1 . 

 Weighted least squares regression 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = diagonal matrix 

𝑝 = 2 

𝜏 = 1 

and summation from 𝑖 = 1 to 𝑛 without distinguishing between 𝑦𝑖
∗ < 𝛽0 +

∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1  and 𝑦𝑖

∗ ≥ 𝛽0 + ∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1 . 
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 Quantile regression 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix 

𝑝 = 1 

3.1.2.2 Possible Extensions to Regression Approaches 

 Lp-norm 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix 

𝜏 = 1 

and summation from 𝑖 = 1 to 𝑛 without distinguishing between 𝑦𝑖
∗ < 𝛽0 +

∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1  and 𝑦𝑖

∗ ≥ 𝛽0 + ∑ 𝐴𝑖,𝑗
∗ 𝛽𝑗

𝑚
𝑗=1 . 

 Lp-norm with different weighting of over- and underestimations 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix 

3.1.3 An Alternative Formulation of the General Regres-
sion Model (2.20) 

Problem (2.20) makes mispricing only implicitly visible by means of the objective 

function. If mispricing is to be made explicit, it is recommended introducing up-

per limits for over- and underestimations. This can be achieved as follows: 

Based on (2.22) an overestimation can be identified as 

𝜀𝑖
∗+ = (𝛽0 +∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦𝑖
∗̂

− 𝑦𝑖
∗ > 0 

and an underestimation as 
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𝜀𝑖
∗− = (𝛽0 +∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1⏟        

)

=𝑦𝑖
∗̂

− 𝑦𝑖
∗ < 0 

which implies 

𝜀𝑖
∗+ > 0 => 𝜀𝑖

∗− = 0 

𝜀𝑖
∗− < 0 => 𝜀𝑖

∗+ = 0 

Now different upper bounds for over- and underestimations can be defined 

(2.51) 

𝜀𝑖
∗+ ≤ 𝜇𝑖

+ 

𝜀𝑖
∗− ≥ −𝜇𝑖

− or −𝜀𝑖
∗− ≤ 𝜇𝑖

− 

where 𝜇𝑖
+ ≥ 0 and 𝜇𝑖

− ≥ 0. Alternatively, 

|𝜀𝑖
∗+| ≤ 𝜇𝑖

+ 

|𝜀𝑖
∗−| ≤ 𝜇𝑖

− 

The upper limits on over- and underestimations allow reinterpreting problem 

(2.20) in a (slightly) more intuitive way: Factor loadings 𝛽𝑗 are determined by 

minimizing the Lp-norms of residuals where the upper limits of over- and under-

estimations should be chosen as tight as possible. Finally, a scaling factor 𝑥 ≥ 0 

can be integrated into the objective function because such a scaling factor does 

not change the outcome. With these modifications in mind, problem (2.20) can 

be re-formulated as: 

(2.52) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽0,𝛽1,…,𝛽𝑚

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 



Chapter II 

40 

s.t. 

(2.53) 

overestimation: 𝜀𝑖
∗+ = 𝛽0 + ∑ 𝐴1,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1 − 𝑦1

∗ > 0 

𝜀1
∗+ ≤ 𝜇1

+ 

⋮ 

𝜀𝑛
∗+ ≤ 𝜇𝑛

+ 

underestimation: 𝜀𝑖
∗− = 𝛽0 + ∑ 𝐴1,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1 − 𝑦1

∗ < 0 

𝜀1
∗− ≥ −𝜇1

− or – 𝜀1
∗− ≤ 𝜇1

− 

⋮ 

𝜀𝑛
∗− ≥ −𝜇𝑛

− or −𝜀𝑛
∗− ≤ 𝜇𝑛

− 

(2.54) 

𝜇1
+ ≥ 0, 𝜇1

− ≥ 0,… , 𝜇𝑛
+ ≥ 0, 𝜇𝑛

− ≥ 0, 𝛽0 ∈ ℝ, 𝛽1 ∈ ℝ,… , 𝛽𝑚 ∈ ℝ 

where 𝑥 is greater than zero and denotes a scaling factor and there is either an 

over- (𝜀𝑖
∗+ > 0) or an underestimation (𝜀𝑖

∗− < 0) implying 𝜀𝑖
∗+ > 0 => 𝜀𝑖

∗− = 0 

and 𝜀𝑖
∗− < 0 => 𝜀𝑖

∗+ = 0. 

3.2 Method of Multiples 

3.2.1 Most General Model of the Method of Multiples 

The most general model of the method of multiples is 

(2.33) 

𝑃𝐶 = ∑ ∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝑃𝐶,𝐴𝐶,𝑗,𝑥

𝑚

𝑗=1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}

 

= ∑ ∑𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗 ∙ 𝐴𝐶,𝑗

𝑚

𝑗=1𝑥∈{𝑎,𝑔,ℎ,𝑚𝑒𝑑,𝑟𝑜𝑎}
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3.2.2 Identifying Other Methods of Multiples as Special 
Cases of the Most General Model of the Method of 
Multiples 

If there is just one method of computing means, (2.33) will simplify to (2.29), if 

there is just one accounting figure (2.33) simplifies to (2.32), and if there is just 

one accounting figure and one method of computing means, (2.33) will simplify 

to (2.28). 

3.3 Error Measures 

Both Lp-norms of percentage errors (Problem (2.42)) and of logarithmic errors 

(Problem (2.50)) can be written as special cases of the general regression model 

(2.20). 

 Lp-norm of percentage errors 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix with 𝜔𝑖,𝑖 =

1

𝑃𝑖
 ∀ 𝑖 = 1,… , 𝑛. 

 Lp-norm of logarithmic errors 

(

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
) = identity matrix 

and variable transformation: ln(𝑦𝑖) instead of 𝑦𝑖 and ln(𝐴𝑖,𝑗) instead of 𝐴𝑖,𝑗. 

3.4 Identification of the Superordinate Category 

In connecting the method of multiples with regression approaches it can be ob-

served that the core multiple Formula (2.33) leads to a structure that is formally 

similar to pricing in a regression context because 𝜔𝐶,𝐴𝐶,𝑗,𝑥 ∙ 𝛽𝑥,𝐴𝑗  describe the 

(general) factor loadings and 𝐴𝐶,𝑗 the firm-specific factors. From that perspec-

tive, regression approaches and the method of multiples are comparable. 
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Regression and multiples can, however, be only subsumed under one superordi-

nate category if their approach in determining factor loadings will be comparable 

as well. The method of multiples does not involve an optimization to determine 

multiples and, thus, can be understood as using an arbitrary objective function. 

In particular, the objective function of the general regression model (2.52) in-

cluding its constraint (2.53) can be applied.—Again compatibility is obtained so 

far. However, multiples are determined based on averaging and require in addi-

tion a non-negativity constraint on factor loadings (see Equations (2.23) to 

(2.27)). These two constraints are absent with regression approaches. 

Therefore, regression approaches and the method of multiples are structurally 

different and cannot be aggregated to one superordinate category and the 

method of multiples forms a category of its own. 

Regression approaches and error measures can be subsumed under Problem 

(2.20) meaning they can be summarized under one superordinate category. 

4 Conclusion 

In empirical asset pricing three different categories of statistical methods—

regression approaches, method of multiples, and error measures—are used. 

However, these categories give rise to vastly different empirical price/return es-

timates. Hence, two immediate questions arise: (i) Wouldn’t it then be useful to 

understand why valuation results are different or even identify superior statisti-

cal methods? (ii) Wouldn’t other statistical methods, which are not currently 

used by empirical asset pricing, like minimizing maximum error or generalized 

least squares regression lead to better pricing results? 

Given these questions, the objectives of this Chapter II are (i) to analyze which of 

the existing empirical asset pricing approaches are conceptually similar, i.e., can 

be summarized to a superordinate category; (ii) to present statistical methods 
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that can be considered as quasi-natural extensions to existing empirical asset 

pricing models. 

The results of this chapter can be summarized as follows: First, regression ap-

proaches and error measures can be combined to one superordinate category 

because they (can be formulated to) minimize functions of residuals. The method 

of multiples, however, remains a separated category since the multiple—the fac-

tor loading—is not determined from an optimization problem. 

Second, quasi-natural extensions of existing 

(i) regression approaches combine higher orders of residuals (Lp-norms) with 

different penalties on over- and underestimations (quantile regressions), 

and dependence structures between error terms of different observations 

(generalized least squares regressions). 

(ii) methods of multiples compute prices as weighted average of prices arising 

from different methods of computing means using different accounting 

figures. 

(iii) error measures allow for the computation of factor loadings from an objec-

tive function that is consistent with the error measure (= quality assess-

ment) used. 

The practical implications of this chapter are twofold: First, it serves as an inter-

mediate step towards the evaluation of the implicit economic assumptions of the 

empirical asset pricing approaches in Chapter IV. With the superordinate catego-

ry identified, only the superordinate category needs to be analyzed with respect 

to its implicit economic assumptions. An examination of the whole variety of sta-

tistical methods is no longer needed. Second, its quasi-natural extensions to ex-

isting empirical asset pricing models have the potential of improving empirical 

asset pricing models. 
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Chapter III: Economic Significance of Valuation 
Differences of Different Regression Models 

1 Introduction 

The explanatory power of each empirical analysis depends on the chosen factors 

(numbers and specific selection of explanatory variables) as well as the specific 

statistical method used (e.g., ordinary least squares regression, quantile regres-

sion). The literature is aware of the importance of number and/or specification 

of factors. E.g., the literature survey of Harvey/Liu/Zhu (2016) lists 316 predictors 

for asset returns, Harvey/Liu (2019) even more than 400 factors (finance papers), 

Appendix 4 contains an overview of factors analyzed in value relevance studies 

(accounting papers). Less examined, but still adequately reflected in the litera-

ture is the question regarding the effect of specific statistical methods. Allen/

Singh/Powell (2011) raise the question how using quantile regression instead of 

ordinary least squares regression will change the explanatory power of the fac-

tors identified in Fama/French (1993). Brown/Lo/Lys (1999) and Easton/

Sommers (2003) express their concern about a scale effect that might bias price 

regressions and, hence, prefer weighted least squares over ordinary least 

squares regression. Lewellen/Nagel/Shanken (2010) recommend using general-

ized least squares regression to improve empirical models statistically. Finally, 

Barillas/Shanken (2018) employ an empirical nesting approach. If, e.g., the CAPM 

and the Fama/French (1993) three factor model were equivalent regarding the 

intercept (alpha is equal to zero), the CAPM would be favored because it was the 

more parsimonious model.—All these papers analyzing factors and specific sta-

tistical methods are concerned with explanatory power of the statistical methods 

why they can be regarded as dealing with statistical significance of fac-

tors/specific statistical methods. 

Economic relevance of factors/specific statistical methods, on the other hand, is 

far less analyzed and, hence, understood. Economic significance regarding differ-
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ent numbers of factors/specific statistical methods comprises on the one hand 

the question how and not just whether (as with statistical significance) the 

choice of different numbers of factors and/or specific empirical models changes 

stock prices or returns; on the other hand the interplay between factors and spe-

cific statistical methods, i.e., whether some explanatory factors induce greater 

price changes when combined with specific statistical methods than other fac-

tors. The literature on socially responsible investments (SRI) e.g., Bauer/

Koedijk/Otten (2005), Bollen (2007), Renneboog/Ter Horst/Zhang (2008), Hong/

Kacperczyk (2009), Nofsinger/Varma (2014), and Ibikunle/Steffen (2017), indi-

rectly addresses economic relevance of factors. It uses with the CAPM, 

Fama/French (1993), and Carhart (1997) three different empirical models to 

identify return differences between conventional and socially responsible in-

vestments to take the influence of different factors on returns into account. The 

literature on multiples is more explicit regarding economic relevance of factors 

and specific statistical methods: Beatty/Riffe/Thompson (1999), Cheng/McNama-

ra (2000), and Schreiner (2007) average valuation results for several accounting 

figures (e.g., EBIT and sales multiples) because they are aware that different fac-

tors translate into different company prices. Nietert/Otto (2018) analyze valua-

tion differences that arise from using different key statistics (e.g., EBIT or sales), 

the criterion of finding peers, and the method how multiples of comparable 

companies are aggregated (e.g., arithmetic or geometric average). 

This less than desirable analysis of the economic significance of factors/specific 

statistical methods is somewhat puzzling: on the one hand, because price differ-

ences are the decisive aspect of valuation models in practice and not statistical 

significance. Nobody will pay a higher price for a company just because a specific 

valuation method produces a high out-of-sample R². On the other hand, because 

The American Statistical Association (2016) points out that business decisions 

should not be based only on whether a p-value passes a specific threshold since 

statistical significance (p-value) cannot measure the size of an effect or the im-

portance of a result. 
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Therefore, it is the objective of this Chapter III to analyze the economic signifi-

cance of different factors/specific statistical methods. 

To achieve this objective, cross-sectional regression models with accounting fig-

ures as explanatory variables are used. More specifically, the factors from the 

value relevance and multiple literature are taken and combined with the stand-

ard statistical methods of the empirical asset pricing and value relevance litera-

ture, i.e., ordinary least squares, weighted least squares, and quantile regression. 

In addition, the role of statistical methods is analyzed with equal importance to 

the role of factors and the interplay between factors and statistical methods.—

Regarding statistical significance the literature puts visibly more importance on 

factors than on statistical methods. 

The results of this chapter can be summarized as follows: 

First, economic significance regarding different factors/specific statistical meth-

ods addresses the question how and not just whether (as with statistical signifi-

cance) the choice of different factors/specific statistical methods influences 

company prices/returns and consists of two components: “magnitude” and “sim-

ilarity”. “Magnitude” focuses on the size of differences between prices/returns 

that different factors/specific statistical methods produce. “Similarity” condenses 

the cumulative relative frequency distribution of price/return differences into 

one number and addresses the problem that moderate price/return differences 

do not necessarily mean similar empirical models. 

Second, “magnitude” shows for our data basis, i.e., company prices in the cross 

section, that price differences are generally large. Only 13% of all factors/specific 

statistical methods belong to the best category (price differences of 10% or less). 

These price differences are primarily caused by specific statistical methods and 

not so much by factors. 

Third, “similarity” applied to our data basis illustrates that nearly all fac-

tors/specific statistical methods are dissimilar where statistical methods are pri-

marily responsible for this lack of similarity and factors play only a minor role. 
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This chapter makes the following contribution compared to the literature: 

First, this chapter introduces a systematic analysis of economic significance of 

both factors and specific statistical methods. The literature on socially responsi-

ble investments only analyses a very limited number of factors (Fama/French 

(1993) and Carhart (1997) as extensions to the CAPM) and does not consider dif-

ferent regression models as in Allen/Singh/Powell (2011). The accounting litera-

ture (see Mölls/Strauß (2007) or Appendix 4 for a rather comprehensive over-

view) analyzes different regressions, but just with respect to statistical signifi-

cance and not economic significance. Moreover, the interplay between factors 

and specific statistical methods is ignored. In this respect the literature on multi-

ples (e.g., Nietert/Otto (2018)) is able to partially step in. Yet multiples can by 

construction not handle regressions. Hand/Coyne/Green/Zhang (2017) compare 

price estimates based on discounted cash flow and residual income approaches, 

i.e., focus on factors, but do not consider regressions. Finally, this chapter com-

pares with Europe, U.S., and BRIC three regions. The literature on socially re-

sponsible investments (value relevance of accounting figures) focuses on individ-

ual countries to be able to elaborate the diversification disadvantage of socially 

responsible investments (effects of country-specific financial accounting rules). 

Second, this chapter develops a test procedure regarding economic relevance of 

factors/specific statistical methods. The literature so far has: with Gibbons/

Ross/Shanken (1989) a statistical test with respect to statistical significance of 

factors; with Barillas/Shanken (2018) an empirical nesting approach that allows 

to identify superior models, i.e., models that are equivalent regarding the inter-

cept (alpha is equal to zero), but more parsimonious and, therefore, better, be-

cause they need less factors. 

The remainder of this Chapter III is organized as follows: Section 2 outlines the 

design of the analysis. Section 3 describes data set and data cleaning. The results 

of the empirical analysis are contained in Section 4. Section 5 concludes this 

chapter. 
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2 Design of the Analysis 

To be able to analyze the economic significance regarding different numbers of 

factors/specific statistical methods, a two-step procedure is required.—Note in 

this connection that we use the phrase “empirical model” as superordinate cate-

gory that is decomposed into two components: factors and specific statistical 

methods (e.g., ordinary least squares regression). 

In a first step, a (theoretical) evaluation criterion regarding economic significance 

must be developed. In a second step, factors/specific statistical methods must be 

selected to compute company prices/returns, thus creating the data basis for the 

application of the evaluation criterion. 

2.1 Developing an Evaluation Criterion Regarding 
Economic Significance (First Step) 

2.1.1 Definition of Economic Significance 

Economic significance regarding different factors/specific statistical methods ad-

dresses the question how and not just whether (as with statistical significance) 

the choice of different factors/specific statistical methods influences company 

prices/returns. 

It comprises clearly the magnitude of the price/return differences between dif-

ferent factors/specific statistical methods. Specifically, “magnitude” offers the 

following deeper insights: Are there few large (outliers) and otherwise small dif-

ferences or are differences generally large? Which factors/specific statistical 

methods result in higher, which in lower prices/returns? Can differences be ob-

served irrespective of industries, regions, and years? 

While “magnitude” stresses the differences between factors/specific statistical 

methods, i.e., focuses on dissimilarities, it cannot capture adequately the flip side 
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of differences, namely similarity. E.g., many small differences between two em-

pirical models might lead to the conclusion that these models are not different. 

Not different does, however, not necessarily mean that these two empirical 

models are similar. In fact, the two empirical models could be not different, but 

also not similar. Therefore, “similarity” analyzes: Are there certain combinations 

of factors/specific statistical methods that are always similar and others that are 

always dissimilar? Is the degree of similarity between factors/specific statistical 

methods constant over various industries, regions, and years? 

In summary, economic significance is defined to answer the following two ques-

tions: 

(i) What is the magnitude of the price/return differences between different 

factors/specific statistical methods? 

(ii) What factors/specific statistical methods are similar regarding their 

price/return differences? 

2.1.2 General Requirements for an Evaluation Criterion 
Regarding Economic Significance 

To be able to evaluate economic significance, i.e., to answer the questions re-

garding “magnitude” and “similarity”, an evaluation criterion must meet the fol-

lowing two requirements: 

(i) All differences between factors/specific statistical methods must be judged 

simultaneously. 

(ii) The sign of the differences between factors/specific statistical methods 

matters. 

When analyzing “magnitude” both requirements (i) and (ii) advocate a direct ac-

cess to differences and no aggregation because this would lead to a loss in in-

formation. Aggregated differences, namely, can neither distinguish between 

many small and few large differences (requirement (i)) nor identify fac-
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tors/specific statistical methods that produce higher prices/returns than others 

(requirement (ii)). Therefore, e.g., differences’ means or the often used statistical 

criteria (out-of-sample) R2 (e.g., Campbell/Thompson (2008)) or generalized least 

squares R² (see Lewellen/Nagel/Shanken (2010), p. 183) will not work as evalua-

tion criterion regarding economic significance.2 

“Similarity” requires a slightly different treatment than “magnitude”. On the one 

hand, detailed information on differences as captured by requirements (i) and (ii) 

is also needed for “similarity”: Positive and negative differences must not be net-

ted because this would result in a wrong picture of “similarity”. Moreover, the 

distribution of differences—one big and many small versus many medium-sized 

differences—is important to judge “similarity”. For both reasons again neither 

differences’ means nor (out-of-sample) R2 are good criteria to measure “similari-

ty”. On the other hand, differences must be evaluated in total and to that end 

possibly aggregated to make a statement on “similarity”. 

2.1.3 Derivation of an Evaluation Criterion Regarding 
Economic Significance 

2.1.3.1 Common Basis for Measuring “Magnitude” and “Similari-
ty” 

Core of both “magnitude” and “similarity” is the difference between the esti-

mated company prices/returns. Therefore, a formalization of the difference is 

the common basis for applying “magnitude” and “similarity” and, hence, for 

judging economic significance. 

In this connection it is recommended normalizing differences since a large differ-

ence in combination with a large company price/return appears to be less prob-

lematic than in combination with a small company price/return. The current 

price/return of the company is a good choice as numeraire. Using the current 

                                                           
2
 Note in addition that also a technical aspect argues against the use of (out-of-sample) R

2
. 

(Out-of-sample) R
2
 relies on the variance of errors which will not be adequate if, e.g., quantile 

regression is considered: There, the sum of the absolute values of errors should be used as 
quality measure and not their variance. 
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price/return means that a uniform numeraire is used in all calculations and, 

therefore, comparability across all specific statistical methods is enabled. If the 

company price/return of one reference statistical method is used as numeraire, 

only results regarding different factors for this reference method can be com-

pared. Comparisons between results of factors from statistical methods that do 

not contain the reference method cannot be made because the numeraire dif-

fers. 

Formalizing these ideas, the following ratio can be defined for each company 𝐶𝑖: 

(3.1) 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 =
�̂�𝐶𝑖,𝑠𝑡𝑎𝑡.𝑚𝑒𝑡ℎ.𝑗  –  �̂�𝐶𝑖,𝑠𝑡𝑎𝑡.𝑚𝑒𝑡ℎ𝑟𝑒𝑓

𝑦𝐶𝑖
 

where �̂�𝐶𝑖,𝑠𝑡𝑎𝑡.𝑚𝑒𝑡ℎ.𝑗 denotes the company price/return estimated based on the 

statistical method 𝑗, �̂�𝐶𝑖,𝑠𝑡𝑎𝑡.𝑚𝑒𝑡ℎ𝑟𝑒𝑓  the company price/return estimated based 

on the reference statistical method  𝑟𝑒𝑓, and 𝑦𝐶𝑖  the current price/return of the 

company. 

A 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 of zero signifies no difference between company prices/returns calcu-

lated by statistical method 𝑗 and the reference statistical method 𝑟𝑒𝑓. On the 

other hand, a 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 of, e.g., 1 means that the difference between the two es-

timated company prices/returns is as large as the current company price/return. 

In this respect, a 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 of 1 can be regarded as very large difference. 

Finally, note three aspects regarding Ratio (3.1). First, 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 possesses a trian-

gular structure, i.e., e.g., �̂�𝐶,𝑄𝑢𝑎𝑛𝑡(𝑞) –  �̂�𝐶,𝑊𝐿𝑆 (�̂�𝐶,𝑊𝐿𝑆 is the price estimated with 

the help of the reference regression weighted least squares) returns the same 

result apart from the sign as  �̂�𝐶,𝑊𝐿𝑆 − �̂�𝐶,𝑄𝑢𝑎𝑛𝑡(𝑞)  (�̂�𝐶,𝑄𝑢𝑎𝑛𝑡(𝑞) is the price esti-

mated with the help of the reference regression quantile regression). However, 

since we are interested in analyzing which factors/specific statistical methods 

produce high and which low prices/returns, we compute all ratios, not just those 

of the upper or lower triangle. Second, Ratio (3.1) is a (normalized) price/return 

difference and, thus, has some similarity to alpha. Yet recognize the completely 
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different intention behind both measures: alpha3 portrays the difference be-

tween estimated and actual prices/returns, whereas Ratio (3.1) depicts the dif-

ference between prices/returns estimated with the help of two different empiri-

cal models. Third, Ratio (3.1) just describes the difference between pric-

es/returns of different empirical models. It has no connotation in the sense of 

“better/worse empirical model” since Ratio (3.1) neither measures against a 

price/return derived from a “true” pricing model nor tries to reproduce current 

prices/returns. For the same reason, phrases like “over-“ or “underestimation” 

are not used. 

2.1.3.2 “Magnitude” 

To infer the evaluation criterion “magnitude” of economic significance from Ra-

tio (3.1), the relative frequency distribution of Ratio (3.1) for all companies under 

consideration is computed. By using Ratio (3.1)’s relative frequency distribution, 

all information regarding size and sign of differences is provided without a loss of 

information and requirements (i) and (ii) of Section 2.1.2 are met. In addition, 

since one particular Ratio (3.1) refers to just one statistical method 𝑗/reference 

statistical method-combination, frequency distributions (for all companies) must 

be determined for all statistical method 𝑗/reference statistical method-combina-

tions. 

Therefore, a better overview of results regarding “magnitude” will be achieved if 

the relative frequency distribution is condensed to few classes: 

0% < Ratio (3.1) ≤ 10% and −10% < Ratio (3.1) ≤ 0% 

10% < Ratio (3.1) ≤ 50% and −50% < Ratio (3.1) ≤ −10% 

                                                           
3
 To be more precise, there are two different types of alphas in the literature: on the one hand, 

Jensen’s (original) alpha and, as special case, the alpha in the analyses of socially responsible 
investments; on the other hand, the alpha in factor models/predictably approaches. In the 
latter type of models alphas should be zero because the model is tested in-sample and should 
fully explain stock returns. Jensen’s (original) alpha as well as the alpha in the socially respon-
sible investment-type of models is determined out-of-sample and used as measure of invest-
ment quality: Investors should seek positive alpha stocks. 
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50% < Ratio (3.1) ≤ 100% and −100% < Ratio (3.1) ≤ −50% 

100% < Ratio (3.1) ≤ 200% and −200% < Ratio (3.1) ≤ −100% 

200% < Ratio (3.1) ≤ 500% and −500% < Ratio (3.1) ≤ −200% 

 

Ratio (3.1) > 500% and 

 

Ratio (3.1) ≤ −500% 

To finish the design of the criterion “magnitude” of economic significance, a 

bound must be defined that separates low and, thus, acceptable “magnitudes” 

from high (inacceptable) “magnitudes”. Given that a Ratio (3.1) of 1 means that 

the difference between the two estimated company prices/returns is as large as 

the current company price/return, a size of 10% or less might be considered as 

an acceptable “magnitude”. Absolute values of Ratio (3.1) that exceed 10% might 

be seen as too high. 

2.1.3.3 “Similarity” 

To infer the evaluation criterion “similarity” of economic significance from Ratio 

(3.1), start with the observation that two empirical models will be identical, i.e., 

perfectly similar, if they exhibit zero differences in prices/returns. The more dif-

ferences occur, the more dissimilar models will be. 

To implement this intuition formally, a two-step procedure is applied. In a first 

step, the relative frequency distribution is transformed into a cumulative relative 

frequency distribution. To do this, company-specific Ratios (3.1) are sorted by 

size and added on a percentage-weighted basis, i.e., 

(3.2) 

𝑃𝑟𝑜𝑝(�̅�) =
∑ 1𝑟𝑎𝑡𝑖𝑜𝑗≤�̅�(𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗)
𝑛
𝑖=1

𝑛
 

where 1𝐴(𝑧) denotes the value of the indicator function on a set 𝐴 for variable 𝑧 

and 𝑛 is the number of companies in the sample. 

By construction, 𝑃𝑟𝑜𝑝(�̅�) 



Chapter III 

54 

(i) is monotonically increasing in �̅� and lies in the interval [0%, 100%]. 

(ii) indicates the percentage of companies which have a Ratio (3.1) less than or 

equal to the value �̅�. 

In a second step, the cumulative relative frequency distribution (3.2) is trans-

formed into a measure of “similarity” with the help of the following procedure: 

In the extreme case of perfect similarity there are no differences between two 

empirical models. Then, 𝑃𝑟𝑜𝑝(�̅�) shows a cumulative relative frequency distri-

bution function that is identical to a Dirac distribution, i.e., a function whose val-

ue is zero for Ratios (3.1) smaller than zero and one for Ratios (3.1) greater than 

or equal to zero. This can be read as: 0% of the companies have different pric-

es/returns, and 100% of the companies have identical ones. Consequently, devia-

tions from perfect similarity can be identified as the area between the Dirac dis-

tribution (= ideal case) and the cumulative relative frequency distribution (3.2). 

Formally, this measure of “similarity” can be computed as follows: For Ratios 

(3.1) < 0 (company price/return of statistical method 𝑗 is less than the company 

price/return of the reference statistical method 𝑟𝑒𝑓), the cumulative relative 

frequency distribution function (3.2) is above the Dirac distribution (which has a 

value of 0). 

For Ratios (3.1) > 0 (company price/return of statistical method 𝑗 is greater than 

the company price/return of the reference statistical method 𝑟𝑒𝑓), the cumula-

tive relative frequency distribution function (3.2) is below the Dirac distribution 

(which has a value of 1). Therefore, both sub-areas are positive and can be added 

to determine the total area that reflects the (normalized) difference of company 

prices/returns estimated based on the statistical method 𝑗 and the company 

prices/returns estimated based on the reference statistical method 𝑟𝑒𝑓. As 

shown in Appendix 2, this area can be calculated as the arithmetic mean of the 

absolute values of Ratio (3.1) for all companies: 
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(3.3) 

1

𝑛
∙∑|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|

𝑛

𝑖=1

 

Area (3.3) is the evaluation criterion regarding “similarity” of economic signifi-

cance. If Area (3.3) is small, company prices/returns estimated based on the sta-

tistical method 𝑗 and the company prices/returns estimated based on the refer-

ence statistical method 𝑟𝑒𝑓 will be similar, otherwise dissimilar. In other words, 

the greater Area (3.3) is, the more dissimilar statistical method 𝑗 and the refer-

ence statistical method 𝑟𝑒𝑓 will be. 

To analyze all statistical method 𝑗/reference statistical method-combinations, a 

histogram of Areas (3.3) is created that summarizes the values of Area (3.3) for 

each statistical method 𝑗/reference statistical method-combination. 

To finish the design of the criterion “similarity” of economic significance, a bound 

must be defined that separates small Areas (3.3) and, thus, similar fac-

tors/specific statistical methods from dissimilar ones. However, a direct interpre-

tation of (3.3) proves impossible because (3.3) is primarily a formal measure and 

gives no direct intuition as to how similar two empirical models are: Assume (3.3) 

takes a value of 1. Does this mean that regression 𝑗 is similar to the reference 

statistical method 𝑟𝑒𝑓? 

To develop an intuition regarding acceptable sizes of Area (3.3), an interpretation 

similar to the one of Ratio (3.1) would be helpful where differences were related 

to current prices/returns and, thus, gave rise to an intuitive upper bound. 

Such a relation does not exist4 for the arithmetic mean (3.3). However, with the 

help of the geometric mean such a relation can be established. Note that the ge-

ometric mean is a lower bound for the arithmetic mean, i.e., it holds 

                                                           

4
 The arithmetic mean 

1

𝑛
∙ ∑ |𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|

𝑛
𝑖=1  reads in more detail 

1

𝑛
∙ ∑

|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖
|

𝑦𝐶𝑖

𝑛
𝑖=1 .  

As long as𝑦𝐶𝑖 ≥ 0, it holds 
|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖

|

𝑦𝐶𝑖
≥

|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖
|

∑ 𝑦𝐶𝑖
𝑛
𝑖=1

 and, thus,  
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arithmetic mean(|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|) ≥ geometric mean(|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|) 

The geometric mean of |𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|, in turn, can be related to the geometric mean 

of prices/returns: 

(3.4) 

geometric mean(|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|) = √∏|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|

𝑛

𝑖=1

𝑛

= √∏
|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|

𝑦𝐶𝑖

𝑛

𝑖=1

𝑛

 

=

√∏ |𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|
𝑛
𝑖=1

𝑛

√∏ 𝑦𝐶𝑖
𝑛
𝑖=1

𝑛
 

=
geometric mean(|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|)

geometric mean(𝑦𝐶𝑖)
 

(3.4) relates average differences to average prices/returns. Hence, it is the de-

sired economic intuition behind Area (3.3). Therefore, similar to the bound for 

the “magnitude” (Ratio (3.1)) a bound of 10% again seems to be reasonable. 

                                                                                                                                                               

1

𝑛
∙∑

|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|

𝑦𝐶𝑖

𝑛

𝑖=1

≥
1

𝑛
∙
∑ |𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|
𝑛
𝑖=1

∑ 𝑦𝐶𝑖
𝑛
𝑖=1

 

=
1

𝑛
∙

∑ |𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|
𝑛
𝑖=1

𝑛
∑ 𝑦𝐶𝑖
𝑛
𝑖=1

𝑛

 

=
1

𝑛
∙
arith.mean(|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|)

arith.mean(𝑦𝐶𝑖)
 

In other words, the arithmetic mean of differences divided by the arithmetic mean of compa-
ny prices/returns (second term) is meaningful. Unfortunately, this ratio is additionally divided 

by the number of companies (first term). Hence, the lower bound for 
1

𝑛
∙ ∑ |𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|

𝑛
𝑖=1  is so 

low so that it cannot provide a meaningful economic judgement.  
One final question must be clarified: When is 𝑦𝐶𝑖 > 0 given? If prices are considered, i.e., 

𝑦𝐶𝑖 = 𝑃𝐶𝑖, the positivity always holds since prices of companies with limited liability are by 

definition positive (only in insolvency do they equal zero). Returns, i.e., 𝑦𝐶𝑖 = 𝑅𝐶𝑖,𝑡,𝑡+1, on the 

other hand can assume negative values. From that perspective, 
|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖

|

𝑦𝐶𝑖
≥

|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑖|

∑ 𝑦𝐶𝑖
𝑛
𝑖=1

 

cannot be guaranteed and will hold only if: 𝑦𝐶𝑖 > 0 and ∑ 𝑦𝐶𝑖
𝑛
𝑖=1  does not contain too many 

negative or zero returns so that 𝑦𝐶𝑖 < ∑ 𝑦𝐶𝑖
𝑛
𝑖=1 ; or: 𝑦𝐶𝑖 < 0 and ∑ 𝑦𝐶𝑖

𝑛
𝑖=1  does not contain too 

many positive or zero returns so that 𝑦𝐶𝑖 > ∑ 𝑦𝐶𝑖
𝑛
𝑖=1  (𝑦𝐶𝑖  is less negative than ∑ 𝑦𝐶𝑖

𝑛
𝑖=1 ). Intui-

tively, these conditions will be met if in a positive (negative) return environment the sum of 
returns of a portfolio exceeds (is less than) the return of one asset, a condition that is usually 
met. 
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In other words, Areas (3.3) up to 10% indicate that two statistical methods are 

similar, Areas (3.3) greater that 10% can be interpreted as dissimilar models. The 

greater Area (3.3) is, the more dissimilar two empirical models will be. 

2.2 Accounting Characteristics as Factors and Re-
gressions as Specific Statistical Methods 
(Second Step) 

The evaluation criteria “magnitude” and “similarity” regarding economic signifi-

cance are broadly defined and, thus, can be applied to both financial and ac-

counting data consisting of both prices and returns. Nevertheless, to prepare for 

an empirical application of our evaluation criteria, it is recommended narrowing 

the scope of empirical models: Harvey/Liu/Zhu (2016) lists 316 predictors, Har-

vey/Liu (2019) even more than 400 factors for asset returns (finance papers), 

Appendix 4 illustrates the different factors in value relevance studies (accounting 

papers) together with the variety of specific statistical methods used in finance 

and accounting papers.—It is impossible to analyze all these models. 

We, therefore, restrict ourselves to accounting studies because accounting stud-

ies use far less factors (see Appendix 4) and, hence, leave room for the analysis 

of specific statistical methods as well as the interplay between factors and specif-

ic statistical methods. With 316 factors on the other hand, the aspect of specific 

statistical methods would just play a subordinate role. 

Moreover, the focus on specific statistical methods as well as the interplay be-

tween factors and specific statistical methods advice not to invent any new em-

pirical model (as was done in Chapter II with Lp-norms), but take exclusively well-

established empirical models from the literature. That way, we can be sure that 

non-standard models do not bias our evaluation regarding economic signifi-

cance. More specifically, accounting characteristics from the value relevance and 

multiple literature are taken to specify factors. Specific statistical methods are 

captured with the help of the most frequently used regressions (see Appendix 4). 
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2.2.1 Accounting Characteristics as Factors 

One of the most comprehensive lists of accounting characteristics is contained in 

Schreiner (2007), p. 39. Therefore, his collection of accounting figures is used 

with one minor adjustment: The exact label of the accounting characteristics is 

based on the label used in Thompson Reuters (see Thompson Reuters (2015)) 

and not on Schreiner (2007). 

Important side note: All accounting characteristics are used to explain compa-

nies’ equity and not entity values. 

Single-factor models 

The accounting characteristics of Schreiner (2007) can immediately be translated 

into the following single-factor models.—Translated is the keyword here because 

Schreiner (2007) uses his factors to compute multiples and does not use them in 

a regression context. 

Model number Independent variable Regression equation 

M1 Net Sales Or Revenues (SA) �̂� = 𝛽0 + 𝛽1 ⋅ 𝑆𝐴 

M2 Gross Income (GI) �̂� = 𝛽0 + 𝛽1 ⋅ 𝐺𝐼 

M3 
Earnings Before Interest, 
Taxes & Depreciation 
(EBITDA) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐸𝐵𝐼𝑇𝐷𝐴 

M4 
Earnings Before Interest And 
Taxes (EBIT) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐸𝐵𝐼𝑇 

M5 Earnings Before Taxes (EBT) �̂� = 𝛽0 + 𝛽1 ⋅ 𝐸𝐵𝑇 

M6 Earnings (E) �̂� = 𝛽0 + 𝛽1 ⋅ 𝐸 

M7 Total Assets (TA) �̂� = 𝛽0 + 𝛽1 ⋅ 𝑇𝐴 

M8 
Book Value Of Common Eq-
uity (B) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐵 
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Model number Independent variable Regression equation 

M9 Invested Capital (IC) �̂� = 𝛽0 + 𝛽1 ⋅ 𝐼𝐶 

M10 Operating Cash Flow (OCF) �̂� = 𝛽0 + 𝛽1 ⋅ 𝑂𝐶𝐹 

M11 Ordinary Cash Dividends (D) �̂� = 𝛽0 + 𝛽1 ⋅ 𝐷 

Table 3.1: List of single-factor models  

where 𝑦 is a symbol that comprises prices/returns and ̂  denotes estimation. 

Multi-factor models 

For the multi-factor models, a direct translation of Schreiner’s (2007) factors is 

impossible: Multiples just use one factor, whereas for multi-factor models com-

binations of factors must be chosen. 

To construct multi-factor models, however, value relevance studies in general 

and, in particular, Ohlson (1995), p. 661 prove helpful: Ohlson (1995) uses earn-

ings (component from the income statement), book values (component from the 

balance sheet), and dividends (component from the cash flow statement) as ex-

planatory variables of firm’s market value. We follow his idea and develop multi-

factor models that consist of all three variables as well as multi-factor models 

that are based on any combination of two out of the three variables. Finally, a 

model with all 11 independent variables is considered. 

Model number Independent variables Regression equation 

M12 

Earnings (E) 

Book Value Of Common Eq-
uity (B) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐸 + 𝛽2 ⋅ 𝐵 

M13 
Earnings (E) 

Ordinary Cash Dividends (D) 
�̂� = 𝛽0 + 𝛽1 ⋅ 𝐸 + 𝛽2 ⋅ 𝐷 
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Model number Independent variables Regression equation 

M14 

Book Value Of Common Eq-
uity (B) 

Ordinary Cash Dividends (D) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐵 + 𝛽2 ⋅ 𝐷 

M15 

Earnings (E) 

Book Value Of Common Eq-
uity (B) 

Ordinary Cash Dividends (D) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝐸 
+𝛽2 ⋅ 𝐵 
+𝛽3 ⋅ 𝐷 

M16 

Net Sales Or Revenues (SA) 

Gross Income (GI) 

Earnings Before Interest, 
Taxes & Depreciation 
(EBITDA) 

Earnings Before Interest 
And Taxes (EBIT) 

Earnings Before Taxes (EBT) 

Earnings (E) 

Total Assets (TA) 

Book Value Of Common Eq-
uity (B) 

Invested Capital (IC) 

Operating Cash Flow (OCF) 

Ordinary Cash Dividends (D) 

�̂� = 𝛽0 + 𝛽1 ⋅ 𝑆𝐴 
+𝛽2 ⋅ 𝐺𝐼 
+𝛽3 ⋅ 𝐸𝐵𝐼𝑇𝐷𝐴 
+𝛽4 ⋅ 𝐸𝐵𝐼𝑇 
+𝛽5 ⋅ 𝐸𝐵𝑇 
+𝛽6 ⋅ 𝐸 
+𝛽7 ⋅ 𝑇𝐴 
+𝛽8 ⋅ 𝐵 
+𝛽9 ⋅ 𝐼𝐶 
+𝛽10 ⋅ 𝑂𝐶𝐹 
+𝛽11 ⋅ 𝐷 

Table 3.2: List of multi-factor models 

2.2.2 Regressions as Specific Statistical Methods 

Specific statistical methods are captured on the one hand by means of ordinary 

and weighted least squares regressions because they are the most frequently 

used statistical methods in empirical asset pricing (see Appendix 4). Moreover, 

weighted least squares regressions are interesting since they can correct for het-

eroscedasticity of error terms by eliminating the scale effect (see Easton/

Sommers (2003), Formula (2), p. 42 and Brown/Lo/Lys (1999), Formula (15), p. 

105). On the other hand, quantile regressions are considered for two reasons 
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event though they have—with the exception of Allen/Singh/Powell (2011)—not 

been used in empirical asset pricing. First, quantile regressions possess some nice 

economic features as Chapter IV will show. Second, they are able to analyze the 

extreme outcomes in the tail of a distribution by allowing to weight over- and 

underestimations differently (see Allen/Singh/Powell (2011)). 

In summary, the following regressions are used to specify the term “specific sta-

tistical methods”: 

 Ordinary least squares regression 

 Weighted least squares regression 

 Quantile regression with 𝜏 = 0.25 

 Quantile regression with 𝜏 = 0.50 (median regression) 

 Quantile regression with 𝜏 = 0.75 

2.2.3 Further Restrictions on the Empirical Models Ana-
lyzed 

Even the restriction to accounting data done in Section 2.2.1 leaves many empir-

ical models to be analyzed: prices and returns in time series or cross section. 

Therefore, narrowing further down the class of empirical models to be analyzed 

is strongly recommended. 

First, regarding the question of price or return models, we choose price models 

for two reasons. On the one hand, empirical finance papers tend to focus more 

on returns, whereas accounting papers are more interested in prices (see Ap-

pendix 4). Since we have chosen accounting data, this argument favors price 

models. On the other hand, Kothari/Zimmermann (1995) and Brown/Lo/Lys 

(1999) show empirically that returns possess better econometric properties, but 

prices produce less biased earnings responses.—Since we are interested in eco-

nomic and not statistical significance, the argument of better econometric prop-

erties of returns weights less than the higher economic content of prices. 
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Second regarding cross-sectional versus time series analysis, we take cross-

sectional analysis.—Appendix 4 shows that cross section of prices is far more 

common in the accounting literature. Hence, choosing cross-sectional analysis 

prevents our analysis of economic significance from becoming marginal as it 

would be the case with time series of prices. 

2.2.4 Exact Procedure of Determining Company Prices 

Company prices are determined out-of-sample, i.e., company 𝑖’s price (𝑃𝑖, 

𝑖 ∈ {1,… , 𝑛}) and its accounting characteristic 𝑗 (𝐴𝑖,𝑗, 𝑗 ∈ {1, … ,𝑚}) are not in-

cluded in the cross-sectional estimation of the regression coefficients. Once the 

regression coefficients are determined in the cross section, company 𝑖's price is 

calculated as 

�̂�𝑖 = 𝛽0 + 𝛽1 ∙ 𝐴𝑖,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑖,𝑚 

Each of the 16 models described in Section 2.2.1 is now estimated using each of 

the 5 regressions described in Section 2.2.2, giving a total of 80 possible different 

prices for company 𝑖. 

3 Data Set and Data Cleaning 

3.1 Data Set 

To apply our evaluation criteria of economic significance in general and, in par-

ticular, to elaborate the valuation differences between different factors/specific 

statistical methods, we use the following data set: 

First, companies are taken whose Industry Classification Benchmark (see London 

Stock Exchange Group plc (2016)) code begins with 2 (“Industrials”) or 3 (“Con-

sumer Goods”) because traditional accounting characteristics should have the 
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highest explanatory power with regard to company prices in these industries. Fi-

nancials, e.g., do not have meaningful sales that could be compared to compa-

nies in other industries or the depreciation of loans would not be comparable to 

the depreciation of buildings. With the help of the four-digit Industry Classifica-

tion Benchmark codes it is possible to divide the companies into 10 industries, 19 

supersectors, 41 sectors and 114 subsectors. 

Second, companies contained in three different regional indices are used: 

Thompson Reuters Europe, Thompson Reuters United States and Thompson 

Reuters BRIC (see Thompson Reuters (2016)). The separate consideration of 

these three different regions makes it possible to detect and not to mix up po-

tential differences in the stock markets and accounting standards and to check 

the results of this study for their robustness. Europe and the U.S. are used be-

cause the majority of existing empirical studies are based on U.S. companies 

(see, e.g., the survey papers of Harvey/Liu/Zhu (2016), Harvey/Liu (2019), and 

Dechow/Ge/Schrand (2010)). Europe and emerging markets, however, gain im-

portance (see, e.g., Mölls/Strauß (2007) and Outa/Ozili/Eisenberg (2017)). 

Third, the years 2010 to 2014 are considered to examine intertemporal stability. 

In summary, the resulting data set consists of 30 partial data sets comprising two 

industries, three regions, and five years. 

Prices and accounting characteristics (see Section 2.2.1) are taken from Thomson 

Reuters Worldscope. 

3.2 Data Cleaning 

Data cleaning comprises the following steps: 

First, currency-dependent variables are expressed in Euro, i.e., the automatic 

conversion of Thomson Reuters Worldscope is used to ensure that they are 

comparable across the companies. 
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Second, yearly data is used, i.e., market prices and accounting figures are based 

on the same day, namely the end of the financial year. This means that prices at 

different days are used for different companies.—Since we use cross-sectional 

regression, this fact is technically innocuous. Economically, we believe that ho-

mogenizing the date of market prices and accounting data is a better idea than 

explaining companies’ end of the year prices (identical date for all companies) 

with accounting characteristics that come from different dates due to compa-

nies’ different fiscal years. 

Third, all companies are eliminated that contain negative accounting figures be-

tween 2010 and 2014. The literature (e.g., the pioneering paper of Collins/

Pincus/Xie (1999) and, more recently, Balachandran/Mohanram (2011), Barth/

Landsman/Lang/Williams (2012), Givoly/Hayn/Katz (2017), and Baboukardos 

(2018)) indicates that negative accounting characteristics might lead to a bias in 

pricing. 

After data cleaning, the following numbers of observations remain in the data 

set: 

Data set description Data set label Number of 
companies 
before data 

cleaning 

Number of 
companies 
after data 
cleaning 

European industrials 2010 01_EUROPE_2010_2 321 254 

U.S. industrials 2010 02_USA_2010_2 353 160 

BRIC industrials 2010 03_BRIC_2010_2 173 136 

European industrials 2011 04_EUROPE_2011_2 322 269 

U.S. industrials 2011 05_USA_2011_2 364 177 

BRIC industrials 2011 06_BRIC_2011_2 170 126 

European industrials 2012 07_EUROPE_2012_2 337 240 

U.S. industrials 2012 08_USA_2012_2 376 190 

BRIC industrials 2012 09_BRIC_2012_2 179 135 
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Data set description Data set label Number of 
companies 
before data 

cleaning 

Number of 
companies 
after data 
cleaning 

European industrials 2013 10_EUROPE_2013_2 352 232 

U.S. industrials 2013 11_USA_2013_2 384 200 

BRIC industrials 2013 12_BRIC_2013_2 181 126 

European industrials 2014 13_EUROPE_2014_2 365 235 

U.S. industrials 2014 14_USA_2014_2 397 222 

BRIC industrials 2014 15_BRIC_2014_2 179 123 

European consumer goods 
companies 2010 

16_EUROPE_2010_3 159 110 

U.S. consumer goods compa-
nies 2010 

17_USA_2010_3 175 82 

BRIC consumer goods compa-
nies 2010 

18_BRIC_2010_3 117 77 

European consumer goods 
companies 2011 

19_EUROPE_2011_3 163 120 

U.S. consumer goods compa-
nies 2011 

20_USA_2011_3 182 92 

BRIC consumer goods compa-
nies 2011 

21_BRIC_2011_3 119 80 

European consumer goods 
companies 2012 

22_EUROPE_2012_3 162 110 

U.S. consumer goods compa-
nies 2012 

23_USA_2012_3 183 91 

BRIC consumer goods compa-
nies 2012 

24_BRIC_2012_3 124 90 

European consumer goods 
companies 2013 

25_EUROPE_2013_3 173 118 

U.S. consumer goods compa-
nies 2013 

26_USA_2013_3 190 100 

BRIC consumer goods compa-
nies 2013 

27_BRIC_2013_3 125 90 
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Data set description Data set label Number of 
companies 
before data 

cleaning 

Number of 
companies 
after data 
cleaning 

European consumer goods 
companies 2014 

28_EUROPE_2014_3 180 115 

U.S. consumer goods compa-
nies 2014 

29_USA_2014_3 190 102 

BRIC consumer goods compa-
nies 2014 

30_BRIC_2014_3 122 85 

Table 3.3: Number of companies in each data set before and after data cleaning 

Table 3.3 shows that the number of companies 𝑛 is always visibly greater than 

the number of accounting figures 𝑚 (with maximum 𝑚 = 11). 

4 Results of the Empirical Analysis 

To implement our evaluation criterion regarding economic significance of differ-

ent factors/specific statistical methods developed in Section 2.1, its components 

“magnitude” and “similarity” are determined for the data set outlined in Section 

3. 

All computations are performed with RStudio Version 1.1.463 resting upon R ver-

sion 3.6.0 (see R Core Team (2019)) using the following packages: 

 quantreg (version 5.38) for quantile regressions (function rq) 

 stats (version 3.6.0) for OLS and WLS regressions (function lm) 
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4.1 Construction Principle Behind the Ensuing 
Figures 

The ensuing figures of Sections 4.2 and 4.3 are histograms of Ratio (3.1) or Area 

(3.3) respectively. The exact construction principle behind these histograms, 

however, deserves some illustration. 

Assume that values have been computed for the following companies U with the 

help of factorsi and regressions: 

U1 factor1 OLS U1 factor2 OLS U1 factor3 OLS 
U1 factor1 WLS U1 factor2 WLS U1 factor3 WLS 
U2 factor1 OLS U2 factor2 OLS U2 factor3 OLS 
U2 factor1 WLS U2 factor2 WLS U2 factor3 WLS 

To analyze the role of regression, e.g., OLS, the following Ratios (3.1) are com-

puted 

U1 factor1 WLS − U1 factor1 OLS

market price U1
 

U1 factor2 WLS − U1 factor2 OLS

market price U1
 

U1 factor3 WLS − U1 factor3 OLS

market price U1
 

U2 factor1 WLS − U2 factor1 OLS

market price U2
 

U2 factor2 WLS − U2 factor2 OLS

market price U2
 

U2 factor3 WLS − U2 factor3 OLS

market price U2
 

These six ratios form the basis of the histogram computation. 

In a similar vein, factors are examined; consider, e.g., factor1: 

U1 factor1 WLS − U1 factor1 OLS

market price U1
 

U2 factor1 WLS − U2 factor1 OLS

market price U2
 

U1 factor1 OLS − U1 factor1 WLS

market price U1
 

U2 factor1 OLS − U2 factor1 WLS

market price U2
 

These four (two different) ratios are used to compute histograms. 

4.2 “Magnitude” of Price Differences Between 
Different Factors/Regressions 

Before detailed results on “magnitude” are presented, an overview and, that 

way, a first impression might be helpful. Then, the role of factors as well as the 

role of regressions are analyzed and, finally, robustness analyses with respect to 

industry, region, and year are conducted. 
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4.2.1 Overall Results 

 

Figure 3.1: Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| 
Maximum difference: 10,079% 

Figure 3.1 shows that only 13% of |Ratio (3.1)| computed across all models be-

long to the category of “acceptable magnitude” (|Ratio (3.1)| assumes values of 

10% or less, see Section 2.1.3.2). On the other hand, 12% of all ratios exhibit a 

value of more than 200%, i.e., price differences that are more than two times 

greater than companies’ current prices. 

In the light of Figure 3.1 it becomes clear that price differences between fac-

tors/regressions are not caused by few outliers and are otherwise small. Instead, 

price differences are generally large. 

However, if there are so few differences less than 10% and so many large price 

differences, the question arises what causes these price differences. In other 

words, it becomes necessary to analyze in detail the factors of Section 2.2.1 and 

the specific regressions of Section 2.2.2 to examine whether selected fac-

tors/regressions are responsible for these price differences or whether all fac-

tors/regressions contribute rather equally. 
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4.2.2 The Role of Factors 

4.2.2.1 Factors in General 

 

Figure 3.2: Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 
Maximum difference: single-factor models: 10,079% (M9); two-factor models: 
4,918% (M12); three-factor-model: 2,319%; 11-factor model: 3,979% 

Figure 3.2 illustrates that all factors produce large price differences. In detail, the 

following observations from Figure 3.2 are worth mentioning: Compared to the 

benchmark of 13% (12%) from the overview Figure 3.1 in the category “less than 

10%” (“greater than 200%”), the multi-factor models M12 to M16 fare better 

with a percentage of M12: 15% (8%), M13: 16% (7%), M14: 15% (9%), M15: 17% 

(6%), and M16: 20% (5%). From the one-factor models, only M5 15% (8%) and 

M6 13% (8%) do well compared to the 13% (12%)-benchmark. On the other 

hand, models M1: 8% (19%), M7: 9% (21%), and M9: 9% (21%) produce the 

worst values in the category “less than 10%” (“greater than 200%”). 

In summary, the factor choice is of high economic significance for company valu-

ation regarding the component “magnitude” of price differences. The fact that all 

factors produce large price differences can be interpreted as different factors 

contribute differently to company prices. 
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4.2.2.2 Factors when Controlled for Regressions 

From Figure 3.2 it remains an open question how the interplay between factors 

and regressions influences the high economic significance of the factor choice. 

E.g., maybe the factor choice is of economic significance just for ordinary least 

squares regressions but not for the other regressions.—To answer this question, 

Figure 3.2 is analyzed for each regression separately. 

Regarding the economic significance of factors when controlled for regressions, 

it is obtained: For the OLS versus WLS, OLS versus Quantile (0.25), OLS versus 

Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile 

(0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile 

(0.50) versus Quantile (0.75) different factors do not matter. The low number in 

the best category “10% or less” is caused by the regression leaving only a minor 

influential potential to the factor choice as the following (exemplary) figures il-

lustrates—all figures can be found in Appendix 5.1.1: 

 

Figure 3.3: Histogram of the absolute values of price differences between method WLS with 
reference OLS measured with the help of |Ratio (3.1)| broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

The factor influence is different with OLS versus Quantile (0.50) and WLS versus 

Quantile (0.25) regressions: 
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Figure 3.4: Histogram of the absolute values of price differences between method Quantile 
(0.50) with reference OLS measured with the help of |Ratio (3.1)| broken down 
by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

 

Figure 3.5: Histogram of the absolute values of price differences between method Quantile 
(0.25) with reference WLS measured with the help of |Ratio (3.1)| broken down 
by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

In these cases, the statistical methods do not induce big price differences why 

the factor choice influences economic significance. This can be seen in particular 
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from Figure 3.4: M7, M8, and M9 have a by 50% smaller percentage in the best 

category “10% or less” than M4, M5, M6 or the multi-factor models M12 to M16. 

4.2.3 The Role of Regressions 

4.2.3.1 Regressions in General 

 

Figure 3.6 Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| broken down by the statistical 
method chosen as reference 
Maximum difference: from OLS: 8,318%; from WLS: 10,012%; from Quantile 
(0.25): 10,079%; from Quantile (0.50): 9,279%; from Quantile (0.75): 10,079% 

According to Figure 3.6 all regressions are responsible for large price differences. 

In detail, the following observations from Figure 3.6 are worth mentioning: Com-

pared to the benchmark of 13% from the overview Figure 3.1 in the category 

“less than 10%” OLS: 14%, WLS: 15%, and Quantile (0.25): 16% fare best, Quan-

tile (0.50): 12% and Quantile (0.75): 7% worst. Regarding the category “greater 

than 200%”, it is obtained: WLS: 11%, Quantile (0.25): 10%, Quantile (0.50): 8% 

are good, OLS: 18% and Quantile (0.75): 12% are bad because they exceed the 

benchmark percentage of 12%. 

In summary, the regression choice is of high economic significance for company 

valuation regarding the component “magnitude” of price differences. 
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4.2.3.2 Regressions when Controlled for Factors 

Section 4.2.2.2 seems to indicate that regressions are of higher economic signifi-

cance than factors. This guess must be checked in this section by analyzing the 

interplay between regressions and factors. To that end, Figure 3.6 is analyzed for 

each factor separately. 

Regarding the economic significance of regressions when controlled for factors, 

it is obtained: For the OLS versus WLS, OLS versus Quantile (0.25), OLS versus 

Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile 

(0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile 

(0.50) versus Quantile (0.75) different factors do not matter, i.e., they do change 

the big price differences that these regressions produce. For OLS versus Quantile 

(0.50) and WLS versus Quantile (0.25) moderate differences are observed that 

are again not altered by factors as the following (exemplary) figure illustrates—

all figures can be found in Appendix 5.1.2: 

 

Figure 3.7: Histogram of the absolute values of price differences for M4 measured with the 
help of |Ratio (3.1)| 

Figure 3.7 complements and confirms nicely the findings of Section 4.2.2.2 „Fac-

tors when Controlled for Regressions”. 
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4.2.3.3 Regressions that Generate High or Low Prices 

As last step to understand the influence of regressions we analyze whether some 

regressions generate generally higher or lower prices than other regressions. The 

economic background of this analysis is that, e.g., buyers and sellers of compa-

nies have different interest in pricing (buyers: low price; sellers: high price) and, 

thus, might want to know what regression supports their views. 

The following relations between prices and regressions are observable—see Ap-

pendix 5.1.3 for a detailed graphical analysis: 

 

Regression used as reference 

OLS WLS 
Quantile 

(0.25) 
Quantile 

(0.50) 
Quantile 

(0.75) 

R
eg

re
ss

io
n

 a
n

al
yz

ed
 

OLS – higher higher 
higher/ 

ambiguous 
higher/ 

ambiguous 

WLS lower – ambiguous lower lower 

Quantile 
(0.25) 

lower ambiguous – lower lower 

Quantile 
(0.50) 

lower/ 
ambiguous 

higher higher – lower 

Quantile 
(0.75) 

lower/ 
ambiguous 

higher higher higher – 

Table 3.4: Comparison of the sign of Ratio (3.1) to identify regressions that translate into 
high or low prices 
Hints how to read Table 3.4: Table 3.4 computes the difference between prices of 
regressions analyzed and prices of regressions used as reference. E.g., “lower” 
means that the regression analyzed produces lower prices than the regression 
used as reference, e.g., WLS-prices are lower than OLS-prices. 

According to Table 3.4, OLS and Quantile (0.75) regressions deliver higher prices 

than WLS und Quantile (0.25) regressions. In fact, OLS regressions tend to deliver 

the highest prices of all approaches, whereas WLS and Quantile (0.25) regres-

sions tend to produce the lowest prices of all regressions. This statement is true 

irrespective of the factors considered (see Appendix 5.1.3). Ambiguity on the 

other hand might be seen as an indication that these statistical methods are 

somewhat similar. 
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Finally, the results regarding the sign of Ratio (3.1) for the three quantile regres-

sions—prices do not necessarily rise with quantiles—deserve a clarifying com-

ment. High (low) quantile regressions determine betas in a way so that estimated 

prices rarely fall below (increase above) current prices. In other words, in-sample 

high (low) quantile regressions produce high (low) prices by construction. How-

ever, out-of-sample this might not be true due to quantile crossing in the outly-

ing regions of the design space (see, e.g., Koenker (2005), pp. 55 f.). Therefore, 

the intuition that higher quantiles lead to higher prices can be regarded as good 

working hypothesis, but cannot be taken as always given. 

4.2.4 Robustness Check: Role of Industries, Regions, and 
Years 

Note that the results regarding “magnitude” obtained so far are not driven by in-

dustry, region, or year. 

 Industry 

 

Figure 3.8: Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| broken down by industry 
Maximum difference: industrials: 7,821%; consumer goods: 10,079% 
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Figure 3.8 clarifies that both industrials and consumer goods exhibit a low per-

centage of differences in the best category “10% or less” and, hence, a similar 

pattern as in the overview Figure 3.1. 

In other words, economic significance of factors and regressions regarding 

“magnitude” remains valid even if controlled for industries. 

 Region 

 

Figure 3.9: Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| broken down by region 
Maximum difference: Europe: 8,278%; U.S.: 6,054%; BRIC: 10,079% 

According to Figure 3.9, low percentage of differences in the best category “10% 

or less” remains small even for the U.S. (16%) where BRIC produces generally 

lower values in the best category. Therefore, potential differences in the stock 

market efficiency and accounting standards in different regions do not change 

the patterns as in the overview Figure 3.1. 

In other words, economic significance of factors and regressions regarding 

“magnitude” remains valid even if controlled for regions. 
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 Year 

 

Figure 3.10: Histogram of the absolute values of price differences between different statistical 
methods measured with the help of |Ratio (3.1)| broken down by year 
Maximum difference: 2010: 7,821%; 2011: 9,847%; 2012: 10,079%; 2013: 8,728% ; 
2014: 8,189% 

Figure 3.10 illustrates that potentially different stock market conditions in differ-

ent years do not change the patterns as in the overview Figure 3.1 regarding 

model generated price differences: The percentage of differences in the best 

category “10% or less” does not exceed 15% in any year between 2010 and 2014. 

In other words, economic significance of factors and regressions regarding 

“magnitude” remains valid even if controlled for years. 

4.3 “Similarity” of Different Factors/Regressions 

While “magnitude” stresses the differences between factors/regressions, i.e., fo-

cuses on dissimilarities, “similarity” focuses on the common aspects of fac-

tors/regressions. The corresponding nature of “magnitude” and “similarity”, i.e., 

both components of economic significance, can be illustrated best with the help 

of some important results regarding “magnitude” from Section 4.2: 
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The analysis of differences with the help of “magnitude” in the foregoing Section 

4.2 suggests as intuition regarding “similarity”: (i) Models that exhibit a high per-

centage in the best category (“10% or less”), e.g., WLS versus Quantile (0.25) for 

M4 in Figure 3.7, are similar; (ii) models where the sign of Ratio (3.1) is ambigu-

ous in Table 3.4, e.g., WLS versus Quantile (0.25), are similar. 

However, this intuition is too crude since it cannot evaluate the higher/lower 

cases of Table 3.4 and, of course, cannot systematically judge similarities be-

tween factors/regressions. E.g., what exact percentage in the best category 

(“10% or less”) is required so that empirical models are classified as similar? 

4.3.1 Overall Results 

 

Figure 3.11: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) 
Maximum size of the dissimilarity area: 1,079% 

Figure 3.11 shows that only 2% of Area (3.3) computed across all models belong 

to the category with the highest similarity (“Area (3.3) of size 10% or less”). 

Therefore, it becomes clear that dissimilarities between different fac-

tors/regressions are not caused by few outliers and are otherwise small. Instead, 

dissimilarities are generally large. In particular, Figure 3.11 illustrates that rules 

of thumb like “OLS and median regressions should be similar because they both 
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use mean values” or ”models where the sign of Ratio (3.1) is ambiguous in Table 

3.4, e.g., WLS versus Quantile (0.25), are similar” are not true. 

However, if there are so few similarities in the best category (“10% or less”), the 

question arises what causes these dissimilarities. In other words, it becomes 

necessary to analyze in detail the factors of Section 2.2.1 and the regressions of 

Section 2.2.2 to examine whether selected factors/regressions are responsible 

for these dissimilarities or whether all factors/regressions contribute rather 

equally. In particular, are there certain factors/regressions that are always similar 

and others that are always dissimilar? Is the degree of similarity between fac-

tors/regressions constant over various industries, regions, and years? 

4.3.2 The Role of Factors 

4.3.2.1 Factors in General 

 

Figure 3.12: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 
Maximum size of the dissimilarity area: single-factor models: 1,079% (M9); two-
factor models: 494% (M12); three-factor-model: 384%; 11-factor model: 423% 
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Figure 3.12 illustrates that all factors produce large dissimilarities. The fact that 

some models do not have large differences in Ratio (3.1) does obviously not 

mean that these models are similar. Notably, multi-factor models that produce 

moderate differences measured by means of Ratio (3.1) are as dissimilar as one-

factor models which had large differences in the form of high Ratios (3.1). 

In summary, the factor choice is of high economic significance for company valu-

ation regarding the component “similarity” of price differences. 

4.3.2.2 Factors when Controlled for Regressions 

The problem with Figure 3.12 is, however, that it commingles the influence of 

factors/regressions on “similarity”. To be able to answer the question how the 

interplay between factors and regressions influences “similarity”, Figure 3.12 is 

examined for each regression separately. 

Regarding the economic significance of factors when controlled for regressions, 

it is obtained: 

On the one hand, the analysis regarding “similarity” reproduces the results of 

“magnitude” done in Section 4.2.2.2: OLS versus WLS, OLS versus Quantile (0.25), 

OLS versus Quantile (0.75), WLS versus Quantile (0.50), WLS versus Quantile 

(0.75), Quantile (0.25) versus Quantile (0.50), Quantile (0.25) versus Quantile 

(0.75), and Quantile (0.50) versus Quantile (0.75) are irrespective of the specific 

factors considered as dissimilar as the following (exemplary) figures illustrate—

all figures can be found in Appendix 5.1.4: 
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Figure 3.13: Histogram of dissimilarities between method WLS with reference OLS measured 
with the help of Area (3.3) broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

On the other hand, the comparison “magnitude” between OLS und Quantile 

(0.50) regressions in Figure 3.4 underestimates the dissimilarity between both 

regressions even if it is controlled for factors as the ensuing Figure 3.14 illus-

trates: 
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Figure 3.14: Histogram of dissimilarities between method Quantile (0.50) with reference OLS 
measured with the help of Area (3.3) broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

Finally, factors exert an effect on “similarity” of WLS versus Quantile (0.25). For 7 

of 16 factors a percentage of more than 20% of the best “similarity” category 

“10% or less” is achieved, for the other 9 factors such a percentage cannot be 

achieved as Figure 3.15 demonstrates: 
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Figure 3.15: Histogram of dissimilarities between method Quantile (0.25) with reference WLS 
measured with the help of Area (3.3) broken down by factors 
M1 to M11 are single-factor models (plus intercept); M12 to M14 are two-factor 
models (plus intercept); M15 is a three-factor model (plus intercept); M16 is an 
eleven-factor model (plus intercept) 

The overall verdict of dissimilarity in Figure 3.12 regarding WLS versus Quantile 

(0.25), thus, hides the influence of factors. 
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4.3.3 The Role of Regressions 

4.3.3.1 Regressions in General 

 

Figure 3.16: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) broken down by the statistical method chosen as reference 
model 
Maximum difference: from OLS: 949%; from WLS: 1,079%; from Quantile (0.25): 
1,036%; from Quantile (0.50): 908%; from Quantile (0.75): 1,079% 

According to Figure 3.16 all regressions are responsible for dissimilarities mean-

ing that the regression choice is of high economic significance for company valu-

ation regarding the component “similarity”. 

4.3.3.2 Regressions when Controlled for Factors 

Section 4.3.3.1 seems to indicate that regressions are of higher economic signifi-

cance regarding the explanation of dissimilarities than factors. This guess must 

be checked in this section by analyzing the interplay between regressions and 

factors. To that end, Figure 3.16 is analyzed for each factor separately. 

Regarding the economic significance of regressions when controlled for factors, 

it is obtained: OLS versus WLS, OLS versus Quantile (0.25), OLS versus Quantile 

(0.75), WLS versus Quantile (0.50), WLS versus Quantile (0.75), Quantile (0.25) 

versus Quantile (0.50), Quantile (0.25) versus Quantile (0.75), and Quantile (0.50) 
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versus Quantile (0.75) produce high dissimilarities irrespective of factors, i.e., 

factors do not neutralize the economic significance of regression as the following 

(exemplary) figure illustrates—all figures can be found in Appendix 5.1.5: 

 

Figure 3.17: Histogram of dissimilarities for M1 measured with the help of Area (3.3) 

Factors do not alter the dissimilarity results regarding OLS versus Quantile (0.50) 

regressions. However, factors exert influence on the “similarity” of WLS versus 

Quantile (0.25) regressions as the following (exemplary) figure illustrates—all 

figures can be found in Appendix 5.1.5: 

 

Figure 3.18: Histogram of dissimilarities for M8 measured with the help of Area (3.3) 



Chapter III 

86 

Figure 3.18 indicates that in model M8 WLS and Quantile (0.25) are rather simi-

lar, which is not the case in model M1. 

To be more precise regarding the phrase “rather similar”, high dissimilarity (per-

centage of the best category “10% or less” is equal to less than 20%) for WLS ver-

sus Quantile (0.25) is given for M1, M2, M3, M7, M9, M10, M11, M15, M16, 

whereas moderate (percentage of the best category “10% or less” is equal to be-

tween 20% and 50%) dissimilarity holds for M4, M5, M6, M8, M12, M13, M14. 

The overall verdict of dissimilarity in Figure 3.16 regarding WLS versus Quantile 

(0.25), thus, hides the influence of factors. 

4.3.4 Robustness Check: Role of Industries, Regions, and 
Years 

Note that the results regarding “similarity” obtained so far are not driven by in-

dustry, region, or year. 

 Industry 

 

Figure 3.19: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) broken down by industry 
Maximum size of the dissimilarity area: industrials: 650%; consumer goods: 
1,079% 
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Figure 3.19 clarifies that both industrials and consumer goods exhibit a low per-

centage of the best category “10% or less” and, hence, a similar pattern as in the 

overview Figure 3.11. 

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for industries. 

 Region 

 

Figure 3.20: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) broken down by region 
Maximum size of the dissimilarity area: Europe: 929%; U.S.: 468%; BRIC: 1,079% 

According to Figure 3.20, the percentage in the best category “10% or less” re-

mains small even for the U.S. (3% compared to 2% of overview Figure 3.11) 

where BRIC produces generally higher dissimilarities (1% compared to 2% of 

overview Figure 3.11). Therefore, potential differences in the stock market effi-

ciency and accounting standards in different regions do not change the patterns 

as in the overview Figure 3.11. 

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for regions. 
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 Year 

 

Figure 3.21: Histogram of dissimilarities between different statistical methods measured with 
the help of Area (3.3) broken down by year 
Maximum size of the dissimilarity area: 2010: 717%; 2011: 789%; 2012: 1,079%; 
2013: 949%; 2014: 656% 

Figure 3.21 illustrates that potentially different stock market conditions in differ-

ent years do not change the patterns as in the overview Figure 3.11 regarding 

model generated dissimilarities: The size of Area (3.3) in the best category “10% 

or less” does not exceed 3% in any year between 2010 and 2014. 

In other words, economic significance of factors and regressions regarding “simi-

larity” remains valid even if controlled for years. 

5 Conclusion 

The explanatory power of each empirical analysis depends on the chosen factors 

(numbers and specific selection of explanatory variables) as well as the specific 

statistical method used (e.g., ordinary least squares regression, quantile regres-

sion). The literature is aware of the importance of factors/specific statistical 

methods and, hence, analyzes the statistical significance of factors/specific sta-
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tistical methods. Economic relevance of factors/specific statistical methods, on 

the other hand, is far less analyzed and, hence, understood. 

Therefore, it is the objective of this Chapter III to analyze the economic signifi-

cance of different factors/specific statistical methods. To achieve this objective, 

cross-sectional regression models with accounting figures as explanatory varia-

bles are used. 

The results of this chapter can be summarized as follows: 

First, economic significance regarding different factors/specific statistical meth-

ods addresses the question how and not just whether (as with statistical signifi-

cance) the choice of different factors/specific statistical methods influences 

company prices/returns and consists of two components: “magnitude” and “sim-

ilarity”. “Magnitude” focuses on the size of differences between prices/returns 

that different factors/specific statistical methods produce. “Similarity” condenses 

the cumulative relative frequency distribution of price/return differences into 

one number and addresses the problem that moderate price/return differences 

do not necessarily mean similar empirical models. 

Second, “magnitude” shows for our data basis, i.e., company prices in the cross 

section, that price differences are generally large. Only 13% of all factors/specific 

statistical methods belong to the best category (absolute values of price differ-

ences of 10% or less). These price differences are primarily caused by specific 

statistical methods and not so much by factors. 

Third, “similarity” applied to our data basis illustrates that nearly all fac-

tors/specific statistical methods are dissimilar where statistical methods are pri-

marily responsible for this lack of similarity and factors play only a minor role. 

Given that the specific statistical method is the primary reason for both high 

“magnitude” values and low „similarity” degrees of empirical models, the specific 

statistical method should be chosen carefully. This means, that an economic 

model selection criterion would be helpful because economic valuation problems 
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should be tackled using economic and not statistical criteria.—Such an economic 

model evaluation criterion is developed in the ensuing Chapter IV. 
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Chapter IV: Developing an Economic Model 
Evaluation Criterion and Applying it to Selected 
Empirical Asset Pricing Models 

1 Introduction 

Working with empirical models in general means that two fundamental ques-

tions must be answered: (i) What and how many factors, i.e., explanatory varia-

bles, should be used? (ii) What empirical model, i.e., ordinary least squares re-

gression, quantile regression etc., is to be applied?—Both questions are nowa-

days seen as critical. Harvey (2017), pp. 1413 f. argues that trying different em-

pirical models can be regarded as one form of p-hacking. The American Statistical 

Association (2016) points out that business decisions should not be based only 

on whether a p-value passes a specific threshold and that statistical significance 

(p-value) cannot measure the size of an effect or the importance of a result. In 

other words, for economic problems an economic model evaluation criterion is 

desirable.—This chapter considers a sub-class of economic models: empirical as-

set pricing models. 

No arbitrage provides a general guideline for economic model evaluation for 

theoretical asset pricing models in that prices must be a linear function of their 

future cash flows. Empirical asset pricing models, however, do not rely on pre-

sent values of cash flows, but on assumed relations between accounting charac-

teristics/factor returns and company prices/returns (see Chapter II for an over-

view). For that reason, no theoretical guidelines regarding the components of 

the model exist. In particular, there are neither hints regarding the number and 

type of explanatory variables nor the specific empirical model (ordinary least 

squares regression, quantile regression etc.). To make things worse, (i) Chapter III 

shows that there are huge differences in corporate values when different factors 

and statistical methods are applied so that virtually arbitrary corporate values 

can be justified. Nietert/Otto (2018) demonstrate that the same is true if the 
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method of multiples is used to compute company prices. (ii) Moreover, there is a 

recent trend in the literature (see Appendix 4), to use more complex and diverse 

statistical methods. Initially, the literature used ordinary and partially weighted 

least squares regressions. Now generalized least squares regressions gain im-

portance (see the explicit recommendation of Lewellen/Nagel/Shanken (2010), 

p. 183 to use generalized least squares R²) together with sophisticated machine 

learning (Gu/Kelly/Xiu (2018) and Barth/Li/McClure (2018)). 

Given this high need for an economic model evaluation criterion, the objective of 

this Chapter IV is twofold: (i) first develop an economic model evaluation criteri-

on; (ii) come up with an economic ranking of different empirical models. 

To achieve this objective, the optimization problems of the empirical asset pric-

ing approaches (of Chapter II) are transformed with the help of Lagrange duality 

to their corresponding dual programs. The dual program contains the price of the 

company in the objective function and, hence, possesses a clear economic inter-

pretation that can be related to arbitrage theory of theoretical asset pricing. 

Based on the dual program a ranking of models can be derived in a sense that 

the best models are those that use the most innocuous assumptions. 

The results of this chapter can be summarized as follows: 

First, the economic model evaluation criterion judges the implicit economic as-

sumptions revealed by computing the dual program along the two dimensions 

compliance with the economic principle and institutional circumstances. 

Second, applying the economic evaluation criterion to empirical models reveals 

that regressions on cross section of prices can be regarded as acceptable from an 

economic perspective, whereas regressions on cross section of returns and time 

series models as well as the method of multiples do not comply with the eco-

nomic principle. 

Third, within the group of cross-sectional price models quantile regression 

proves to be the best model because it is able to offer a good approximation to 

the economic principle and mimics best the institutional circumstances, in par-
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ticular, if the regression is run without a constant. On the other hand, statistically 

more advanced models like generalized least squares regressions deteriorate the 

implied economic content of models: They work with weighted prices; however 

assets can only be purchased and sold at (unweighted) prices. 

This chapter makes the following contribution compared to the literature. 

First, both Harvey (2017), pp. 1413 f. and The American Statistical Association 

(2016) advocate economic model evaluation criteria. This chapter makes a first 

attempt at deriving such an economic model evaluation criterion by evaluating 

empirical models based on economic/theoretic criteria like no arbi-

trage/economic principle. As opposed to our approach, model evaluation in the 

literature still rests primarily on statistical criteria. (i) Black/Jensen/Scholes 

(1972), p. 6 develop the standard quality assessment for empirical models: The 

intercept of a regression (alpha) should not be significantly different from zero, 

Gibbons/Ross/Shanken (1989) design the corresponding statistical test, Cochrane 

(2005), p. 230 extends this test to heteroskedastic and autocorrelated errors. A 

further development of alpha towards a better economic interpretation is the 

squared Sharpe ratio of MacKinlay (1995), p. 6 in connection with Barillas/

Shanken (2017), pp. 1317 f.—However, Sharpe ratios are limited to µ--

preferences which are known to miss arbitrage opportunities. Therefore, their 

role as economic model evaluation criterion is doubtful. (ii) As purely statistical 

criteria the out-of-sample R2 (e.g., Campbell/Thompson (2008)) or the size of the 

estimated slope coefficients (e.g., Lev/Zarowin (1999), p. 356) are used. Lewel-

len/Nagel/Shanken (2010) give prescriptions how to improve empirical models 

statistically and explicitly recommend using generalized least squares R² (see 

Lewellen/Nagel/Shanken (2010), p. 183). However, R² is not naturally applicable 

to non-quadratic objective functions as in quantile regressions (see Allen/

Singh/Powell (2011)) or Classification and Regression Trees (CART) estimation 

functions (see, e.g., Barth/Li/McClure (2018)) where CART is a non-parametric 

estimation approach that does not require the researcher to specify the rela-

tion’s functional form. The most advanced paper regarding statistical method 

evaluation, Barillas/Shanken (2018), employs an empirical nesting approach. If, 
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e.g., the CAPM and the Fama/French (1993) three factor model were equivalent 

regarding the intercept (alpha is equal to zero), the CAPM would be favored be-

cause it was the more parsimonious model.—All these approaches do not con-

sider an economic model evaluation criterion. (iii) Some papers use intuitive ar-

guments to justify particular statistical methods: Brown/Lo/Lys (1999) raise con-

cerns about the use of the coefficient of determination as a measure of value 

relevance in price regressions because it might be biased due to a scale effect. 

Allen/Singh/Powell (2011) deliberately use quantile regressions instead of ordi-

nary least squares regressions because quantile regressions are able to better 

analyze the extreme outcomes in the tail of a distribution. Easton/Sommers 

(2003) prefer weighted least squares regressions to deal with heteroscedastici-

ty.—Again, these arguments are intuitive, but lack an economic/theoretical rea-

soning, a gap that we fill with our economic model evaluation criterion. 

Second, we provide an economic/theoretical argument for choosing prices over 

returns as dependent variables in empirical asset pricing. Kothari/Zimmermann 

(1995) were among the first to raise the question whether prices or returns 

should be selected as dependent variables: They show empirically that returns 

possess better econometric properties, prices produce less biased earnings re-

sponses. Brown/Lo/Lys (1999) reach similar results and Barth/Beaver/Landsman 

(2001) conclude that price studies are interested in determining what is reflected 

in firm value while return studies (price changes) are interested in determining 

what is reflected in change in value over a specific period of time.—We provide a 

theoretical analysis of price versus return as dependent variable and a model-

based justification of Kothari/Zimmermann’s (1995) statement. 

Third, we apply duality theory to model evaluation in the field of empirical asset 

pricing. That duality theory can be used to get a better understanding of linear 

programming, in particular, production planning (see, e.g., Boyd/Vandenberghe 

(2009), p. 240) is common knowledge in the literature. An application in empiri-

cal finance is rare, however. We are only aware of Wilhelm/Brüning (1992) who 

apply duality theory to identify the implicit economic assumptions in the field of 

empirical term structure estimation.—This chapter is inspired by them. 
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The remainder of this Chapter IV is organized as follows: Section 2 develops an 

economic model evaluation criterion. Section 3 applies this criterion to various 

models and identifies economically convincing empirical models. Section 4 con-

cludes this chapter. 

2 Developing an Economic Model Evalua-
tion Criterion 

Developing an economic model evaluation criterion means (i) revealing the im-

plicit economic assumptions of empirical asset pricing models and (ii) judging 

them from an economic perspective.—Revealing the implicit economic assump-

tion is achieved using Lagrange duality. Judging the implicit economic assump-

tions is done by applying what we call economic dominance of models. 

2.1 Components of the Economic Model Evalua-
tion Criterion 

2.1.1 Lagrange Duality 

The original economic application of (Lagrange) duality has been production 

planning of companies (see, e.g., Boyd/Vandenberghe (2009), p. 240). Compa-

nies determine their optimal production program, i.e., the optimal numbers of 

each product, by maximizing their contribution margin subject to resource con-

straints (= primal program). The corresponding dual program then identifies the 

optimal costs for the company (subject to constraints). In other words, primal 

and dual program approach the production planning problem from two different 

directions (production numbers and costs) and thereby offer different economic 

insights.—Exactly this different view of the dual program is what can be used to 

reveal implicit economic assumptions. Hodges/Schaefer (1977) apply this view to 
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determine discount factors on bond markets, Wilhelm/Brüning (1992) to term 

structure models, and we to empirical asset pricing models. 

Using Lagrange duality in the context of empirical asset pricing models allows us 

to circumvent one typical problem with empirical asset pricing models: The pri-

mal program—minimization of errors between estimated and actual values of a 

variable—cannot be interpreted from an economic perspective because error 

minimization is not an economic concept. The dual program, however, minimizes 

assets’ acquisition costs subject to some constraints. At this point, an economic 

interpretation becomes apparent since cost minimization is related to the eco-

nomic principle, i.e., an economic core concept. 

Note that the dual program is not needed for pricing.—It just serves as a means 

to reveal the implicit economic assumptions of the primal program. This is along 

the lines of Wilhelm/Brüning (1992), where the term structure can only be de-

termined from the primal but not from the dual program (see Wilhelm/Brüning 

(1992), Formula (26), p. 270). However, only with the help of the dual program 

economic interpretations become possible. 

2.1.2 Economic Dominance of Models 

“Economic dominance of models” is our criterion to judge the implicit economic 

assumptions revealed by computing the dual program and it is developed as fol-

lows: 

All components of an empirical model (objective functions and constraints) must 

be considered simultaneously and never the individual components separately 

because objective function and constraint1 to constraintz together form 𝑧 + 1 

goals to be judged when evaluating models. Transferring results from multi-goal 

decision theory to economic model evaluation, a model is regarded to dominan-

te another model economically if it is better with respect to at least one goal, but 

never worse with respect to all other goals. A model that is never better with re-

spect to one goal, but worse with respect to other goals is said to be economical-
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ly dominated.—Models that are not economically dominated are economically 

efficient. 

To finish the definition of economic dominance of models, the terms “bet-

ter/worse with respect to goals” must be clarified. “Better/worse” are developed 

along two lines: (i) the economic principle; (ii) institutional circumstances. 

The economic principle tries to achieve a given output with minimum input or 

obtain with a given input maximum output. The economic principle is very gen-

eral because it does not depend on investor preferences and wealth situations. 

In a financial environment the economic principle is reflected in arbitrage theory: 

Investors strive at acquiring a given cash flow at the lowest possible price, again 

independent of investor preferences and wealth situations. 

In other words, the closer a model follows the idea of the economic principle, the 

better the model is judged, i.e., the objective function should minimize input and 

a subset of the constraints should characterize a given output. 

“Better/worse” regarding institutional circumstances means that the model’s 

constraints match the actual legal environment and market usages. E.g., if a 

model has no short sale constraints, such a model is regarded as worse than a 

model that has such constraints: Uncovered short sales are forbidden for stocks 

(see Regulation (EU) No 236/2012, Article 12) and, hence, the model is not able 

to reflect the legal environment properly. Covered short sales are allowed by the 

EU Regulation. Nevertheless market usages require a certain amount of collat-

eral for securities lending. In other words, there is an implicit upper bound for 

short sales meaning that a model without short sale constraints also fails to por-

tray market usages adequately. 
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2.2 Computing Dual Programs and Identifying 
Their Components 

In a first step dual programs are computed for the superordinate categories of 

models that have been identified in Chapter II. In a second step, their specific 

components are discussed depending on whether cross section/time series of 

prices/returns are considered. 

2.2.1 Computing Dual Programs 

2.2.1.1 Dual Program of the Superordinate Category Regression 
Approaches 

According to Appendix 1.2.4.2, the dual program reads 

(4.1) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
∑(𝜆𝑖

+ − 𝜆𝑖
−) ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

s.t. 

(4.2) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝜆1
+ − 𝜆1

− +⋯+ 𝜆𝑛
+ − 𝜆𝑛

− = 0 

𝜆1
+𝐴1,1

∗ − 𝜆1
−𝐴1,1

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,1

∗ − 𝜆𝑛
−𝐴𝑛,1

∗ = 0 

⋮ 

𝜆1
+𝐴1,𝑚

∗ − 𝜆1
−𝐴1,𝑚

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,𝑚

∗ − 𝜆𝑛
−𝐴𝑛,𝑚

∗ = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 
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2.2.1.2 Dual Program of the Superordinate Category Method of 
Multiples 

According to Appendix 1.3.4, the dual program reads 

(4.3) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛽1,…,𝛽𝑚

∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

+
1

2
∙∑𝛽𝑗

2

𝑚

𝑗=1

 

s.t. 

(4.4) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝛽1 − 𝑓(𝑦, 𝐴1) = 0 

⋮ 

𝛽𝑚 − 𝑓(𝑦, 𝐴𝑚) = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 

2.2.2 Components of Dual Programs 

To characterize the components of dual programs it is necessary to distinguish 

between cross-sectional and time series as well as price and return models. All 

these types of models will result in slightly different interpretations of objective 

functions and constraints that in turn might influence the economic evaluation of 

the specific model. 

Dependent and explanatory variables can directly be taken from the primal pro-

gram and, hence, fitted to the cross-sectional/time series/price/return frame-

work. The interpretation of the dual variables in the cross-sectional/time se-

ries/price/return framework is less simple because it cannot be taken from the 

primal program. Hence, it is specified in a way so that the dual program gets the 

best possible economic interpretation. 
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2.2.2.1 Prices of Companies in the Cross Section 

When prices of companies in the cross section are considered, it is known from 

Chapter II, Section 2.1.1 that the variable 𝑦𝑖
∗ in the primal (2.52) and dual (4.1) 

program is equal to the price of company 𝑖 at time 𝑡. The variables 𝐴𝑖,𝑗
∗  are ac-

counting figures, e.g., 𝐸𝐵𝐼𝑇𝑖,𝑡 (but not their growth rates) at time 𝑡. 

Then, the dual variable 𝜆𝑖
+ (𝜆𝑖

−) can be interpreted as the number of purchases 

(sales) of asset 𝑖 at time 𝑡, i.e., portfolio holdings. The interpretation of the dual 

variable as portfolio holdings is motivated by the fact that portfolio holdings fit 

well to a price/accounting figure framework.—Portfolio weights are better suited 

to a return/growth rate setting. 

2.2.2.1.1 Superordinate Category: Regression Approaches 

Objective function 

With dual variables specified as portfolio holdings, the objective function of the 

dual program 

(4.1) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
∑(𝜆𝑖

+ − 𝜆𝑖
−) ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

reads: 

(4.5) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

∗

𝑛

𝑖=1

 

The price of a portfolio is to be minimized. The portfolio itself is specified closer 

with the help of the constraints (4.2). 

Constraints on accounting characteristics 

The constraint 
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(4.2) 

𝜆1
+ − 𝜆1

− +⋯+ 𝜆𝑛
+ − 𝜆𝑛

− = 0 

is specified as 

(4.6) 

𝑁1,𝑡
+ − 𝑁1,𝑡

− +⋯+𝑁𝑛,𝑡
+ − 𝑁𝑛,𝑡

− = 0 

and signifies that portfolio holdings must add to zero. In other words, purchases 

must always be accompanied by short sales to achieve zero investment. Con-

straint (4.6) should, however, not be confused with a self-financing constraint 

which states that the amount purchased is equal to the amount sold so that total 

wealth (and not total portfolio holdings) is equal to zero. 

The constraints on portfolio characteristics in the narrower sense 

(4.2) 

𝜆1
+𝐴1,1

∗ − 𝜆1
−𝐴1,1

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,1

∗ − 𝜆𝑛
−𝐴𝑛,1

∗ = 0 

⋮ 

𝜆1
+𝐴1,𝑚

∗ − 𝜆1
−𝐴1,𝑚

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,𝑚

∗ − 𝜆𝑛
−𝐴𝑛,𝑚

∗ = 0 

reads 

(4.7) 

𝑁1,𝑡
+ 𝐴1,1,𝑡

∗ − 𝑁1,𝑡
− 𝐴1,1,𝑡

∗ +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡

∗ − 𝑁𝑛,𝑡
− 𝐴𝑛,1,𝑡

∗ = 0 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡

∗ − 𝑁1,𝑡
− 𝐴1,𝑚,𝑡

∗ +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡

∗ − 𝑁𝑛,𝑡
− 𝐴𝑛,𝑚,𝑡

∗ = 0 

It states that in the portfolio each accounting figure 𝐴𝑖,𝑡
∗  must be equal to zero. 

Note that (4.7) captures the secondary objectives of the decision maker, whereas 

(4.5) incorporates the primary objective. 

Constraint on dual variables 

The constraint (part of (4.2)) on dual variables can be specified as 
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(4.8) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

i.e., a constraint on portfolio holdings. Since 𝑥 is an arbitrary positive scaling fac-

tor (see (2.52)), it influences the tightness of the portfolio holdings constraint: 

The greater 𝑥 is, the less is (4.8) binding. 

2.2.2.1.2 Superordinate Category: Method of Multiples 

Objective function 

(4.9) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛽1,…,𝛽𝑚

∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

+
1

2
∙∑𝛽𝑗

2

𝑚

𝑗=1

 

means that the price of a portfolio including the artefact 
1

2
∙ ∑ 𝛽𝑗

2𝑚
𝑗=1  is minimized. 

Constraints on accounting characteristics 

Such a constraint does not exist because multiples are determined directly from 

accounting figures (see Chapter II, Equations (2.23) to (2.27) and Equation 

(A1.20)) and then are integrated by means of price deviations into the objective 

function. 

Constraint on dual variables 

Constraint (4.4) on dual variables 

(4.10) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

can now be interpreted as a constraint on portfolio holdings. Since 𝑥 is an arbi-

trary positive scaling factor (see (2.52)), it influences the tightness of the portfo-

lio holdings constraint: The greater 𝑥 is, the less is (4.10) binding. 
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2.2.2.2 Other Cases 

2.2.2.2.1 Returns of Companies in the Cross Section 

When returns of companies in the cross section are considered, it is known from 

Chapter II, Section 2.1.1 that the variable 𝑦𝑖
∗ in the primal (2.52) and dual (4.1) 

program is equal to the return or the return differential of company 𝑖 at time 𝑡 to 

the riskless rate. The variables 𝐴𝑖,𝑗
∗  are either relative accounting figures or beta 

factors determined from time series regressions (first step of the two-pass re-

gression). 

Then, the dual variable 𝜆𝑖
+ (𝜆𝑖

−) can be interpreted as the portfolio weight of pur-

chases (sales) of asset 𝑖. However, the portfolio weights’ time subscript is yet to 

be clarified. To that end, start from investors’ (terminal) wealth equation 

𝑊𝑡+1 = 𝑁1,𝑡 ∙ 𝑃1,𝑡+1 + 𝑁2,𝑡 ∙ 𝑃2,𝑡+1 +⋯ 

or 

𝑊𝑡+1
𝑊𝑡

=
𝑁1,𝑡 ∙ 𝑃1,𝑡
𝑊𝑡

∙
𝑃1,𝑡+1
𝑃1,𝑡

+
𝑁2,𝑡 ∙ 𝑃2,𝑡
𝑊𝑡

∙
𝑃2,𝑡+1
𝑃2,𝑡

+⋯ 

This translates finally to 

1 + 𝑅𝑊,𝑡,𝑡+1 =
𝑁1,𝑡 ∙ 𝑃1,𝑡
𝑊𝑡⏟    
=𝑤1,𝑡

∙ (1 + 𝑅1,𝑡,𝑡+1) +
𝑁2,𝑡 ∙ 𝑃2,𝑡
𝑊𝑡⏟      
=𝑤2,𝑡

∙ (1 + 𝑅2,𝑡,𝑡+1) + ⋯ 

In other words, portfolio weights have a lag of one, i.e., the return between 

times 𝑡 and 𝑡 + 1 is associated with portfolio weights of time 𝑡. This in turn 

means that 𝜆𝑖
+ (𝜆𝑖

−) are the portfolio weights at time 𝑡 − 1 if return 𝑅𝑖,𝑡 is to be 

explained. 

With the now identified variables of the cross-sectional return model its compo-

nents can be specified. 

Objective function 

The dual program 
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(4.1) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
∑(𝜆𝑖

+ − 𝜆𝑖
−) ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

reads 

(4.11) 

min
𝑤1,𝑡−1
+ ,𝑤1,𝑡−1

− ,…,𝑤𝑛,𝑡−1
+ ,𝑤𝑛,𝑡−1

−
∑(𝑤𝑖,𝑡−1

+ −𝑤𝑖,𝑡−1
− ) ∙ 𝑅𝑖,𝑡−1,𝑡

∗

𝑛

𝑖=1

 

The return of a portfolio of assets 𝑖 to 𝑛 is to be minimized. 

Constraints on accounting characteristics 

The constraint 

(4.12) 

𝑤1,𝑡−1
+ −𝑤1,𝑡−1

− +⋯+𝑤𝑛,𝑡−1
+ − 𝑤𝑛,𝑡−1

− = 0 

signifies that portfolio weights must add to zero. 

The constraints on portfolio characteristics in the narrower sense 

(4.13) 

𝑤1,𝑡−1
+ 𝐴1,1,𝑡

∗ − 𝑤1,𝑡−1
− 𝐴1,1,𝑡

∗ +⋯+𝑤𝑛,𝑡−1
+ 𝐴𝑛,1,𝑡

∗ − 𝑤𝑛,𝑡−1
− 𝐴𝑛,1,𝑡

∗ = 0 

⋮ 

𝑤1,𝑡−1
+ 𝐴1,𝑚,𝑡

∗ − 𝑤1,𝑡−1
− 𝐴1,𝑚,𝑡

∗ +⋯+𝑤𝑛,𝑡−1
+ 𝐴𝑛,𝑚,𝑡

∗ −𝑤𝑛,𝑡−1
− 𝐴𝑛,𝑚,𝑡

∗ = 0 

state that in the portfolio each accounting figure 𝐴𝑖,𝑡
∗  must be equal to zero.—

Again these constraints on accounting figures capture decision makers’ second-

ary objectives. 

Constraint on dual variables 

The constraint (part of (4.2)) on dual variables 
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(4.14) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑤𝑖,𝑡−1

+ )
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑤𝑖,𝑡−1

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

can now be interpreted as a constraint on portfolio weights. Since 𝑥 is an arbi-

trary positive scaling factor (see (2.52)), it influences the tightness of the portfo-

lio weights constraint: The greater 𝑥 is, the less is (4.14) binding. 

2.2.2.2.2 Prices of Companies in Time Series 

When prices of companies in time series are considered, it is known from Chap-

ter II, Section 2.1.1 that the variable 𝑦𝑖
∗ in the primal (2.52) and dual (4.1) pro-

gram is equal to the price of a company 𝑖 at time 𝜏. The variable 𝐴𝑖,𝑗,𝜏
∗  denote ac-

counting figure 𝑗 of company 𝑖 at different points in time 𝜏. 

Then, the dual variable 𝜆𝑖
+ (𝜆𝑖

−) can be interpreted as the portfolio holdings of 

purchases (sales) of company 𝑖 at time 𝜏. 

With the now identified variables of the time series price model its components 

can be specified. 

Objective function 

The objective function of the dual program (4.1) reads 

(4.15) 

min
𝑁𝑖,1
+ ,𝑁𝑖,1

− ,…,𝑁𝑖,𝑡
+ ,𝑁𝑖,𝑡

−
∑(𝑁𝑖,𝜏

+ − 𝑁𝑖,𝜏
− ) ∙ 𝑃𝑖,𝜏

𝑡

𝜏=1

 

i.e., the price of company 𝑖 at time 𝜏 multiplied by portfolio holdings at time 𝜏 is 

minimized where time runs from 1 to 𝑡. 

Constraints on accounting characteristics 

The constraint 
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(4.16) 

𝑁𝑖,1
+ − 𝑁𝑖,1

− +⋯+𝑁𝑖,𝑡
+ − 𝑁𝑖,𝑡

− = 0 

signifies that portfolio holdings over time (from time 1 to time 𝑡) must add to ze-

ro. 

The constraints on portfolio characteristics in the narrower sense 

(4.17) 

𝑁𝑖,1
+ 𝐴𝑖,1,1

∗ − 𝑁𝑖,1
− 𝐴𝑖,1,1

∗ +⋯+𝑁𝑖,𝑡
+𝐴𝑖,1,𝑡

∗ − 𝑁𝑖,𝑡
−𝐴𝑖,1,𝑡

∗ = 0 

⋮ 

𝑁𝑖,1
+ 𝐴𝑖,𝑚,1

∗ − 𝑁𝑖,1
− 𝐴𝑖,𝑚,1

∗ +⋯+𝑁𝑖,𝑡
+𝐴𝑖,𝑚,𝑡

∗ − 𝑁𝑖,𝑡
−𝐴𝑖,𝑚,𝑡

∗ = 0 

states that the accounting figure 𝑗 of company 𝑖 at time 𝜏 multiplied by portfolio 

holdings at time 𝜏 must be equal to zero over time where time runs from 1 to 𝑡. 

Constraint on dual variables 

The constraint (part of (4.2)) on dual variables 

(4.18) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝜏

+ )
𝑝
𝑝−1

𝑡

𝜏=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝜏

− )
𝑝
𝑝−1

𝑡

𝜏=1

]

𝑝−1
𝑝

≤ 𝑥 

can now be interpreted as a constraint on portfolio holdings: The sum of portfo-

lio holdings over time is not allowed to exceed 𝑥 where time runs from 1 to 𝑡. 

2.2.2.2.3 Returns of Companies in Time Series 

When returns of companies in time series are considered, it is known from Chap-

ter II, Section 2.1.1 that the variable 𝑦𝑖
∗ in the primal (2.52) and dual (4.1) pro-

gram is equal to the return or return differential to the riskless rate of company 𝑖 

at time 𝜏. The variable 𝐴𝑖,𝑗,𝜏
∗  denotes returns of factor 𝑗 at different points in time 

𝜏. 
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Then, the dual variable 𝜆𝑖
+ (𝜆𝑖

−) can be interpreted as the portfolio weight of pur-

chases (sales) of asset 𝑖 at different point in time 𝜏 with a lag of one, i.e., 𝑤𝑖,𝜏−1
+  

and 𝑤𝑖,𝜏−1
− . 

With the now specified variables of the time series return model its components 

can be specified. 

Objective function 

The objective function of the dual program (4.1) reads 

(4.19) 

min
𝑤𝑖,0
+ ,𝑤𝑖,0

− ,…,𝑤𝑖,𝑡−1
+ ,𝑤𝑖,𝑡−1

−
∑(𝑤𝑖,𝜏−1

+ − 𝑤𝑖,𝜏−1
− ) ∙ (𝑅𝑖,𝜏 − 𝑟𝜏)

𝑡

𝜏=1

 

i.e., the return differential to the riskless rate of company 𝑖 at time 𝜏 multiplied 

by portfolio weights at time 𝜏 − 1 is minimized where time runs from 0 to 𝑡 − 1 

for portfolio weights and from 1 to 𝑡 for returns. 

Constraints on accounting characteristics 

The constraint 

(4.20) 

𝑤𝑖,0
+ − 𝑤𝑖,0

− +⋯+𝑤𝑖,𝑡−1
+ − 𝑤𝑖,𝑡−1

− = 0 

signifies that portfolio weights must add to zero over time. 

The constraints on portfolio characteristics in the narrower sense 

(4.21) 

𝑤𝑖,0
+ 𝐴1,1

∗ − 𝑤𝑖,0
− 𝐴1,1

∗ +⋯+𝑤𝑖,𝑡−1
+ 𝐴1,𝑡

∗ − 𝑤𝑖,𝑡−1
− 𝐴1,𝑡

∗ = 0 

⋮ 

𝑤𝑖,0
+ 𝐴𝑚,1

∗ − 𝑤𝑖,0
− 𝐴𝑚,1

∗ +⋯+𝑤𝑖,𝑡−1
+ 𝐴𝑚,𝑡

∗ − 𝑤𝑖,𝑡−1
− 𝐴𝑚,𝑡

∗ = 0 

states that the weighted factor return 𝑗 must be equal to zero over time. 
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Note in this connection that it does not matter whether discrete or log re-

turn/growth rates (as an example, consider the variable MP(t) in Chen/Roll/Ross 

(1986), p. 394 that is defined as the logarithm of the quotient of industrial pro-

duction) are used. Each explanatory variable gets its own equation in (4.21) and, 

hence, different definitions of growth rates are not mixed in one equation. 

Constraint on dual variables 

The constraint (part of (4.2)) on dual variables 

(4.22) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑤𝑖,𝜏−1

+ )
𝑝
𝑝−1

𝑡

𝜏=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑤𝑖,𝜏−1

− )
𝑝
𝑝−1

𝑡

𝜏=1

]

𝑝−1
𝑝

≤ 𝑥 

can now be interpreted as a constraint on portfolio weights: The sum of portfolio 

weights over time is not allowed to exceed 𝑥 where time runs from 0 to 𝑡 − 1. 

2.3 Specification of the Economic Model Evalua-
tion Criterion 

To be able to apply the economic model evaluation criterion as a benchmark, 

i.e., as a collection of features that models should possess, it becomes necessary 

to specify it in more detail.—Such a specification was impossible in Section 2.1 

because there it has been unclear that, e.g., a constraint on portfolio holdings in 

the dual program exists that must then be judged from an economic point of 

view. 

The specification of the economic model evaluation criterion develops along two 

lines. First, economic principle and institutional circumstances must be specified 

and connections with the components of the dual program (objective function, 

constraints on, e.g., accounting figures, constraints on, e.g., portfolio holdings) 

identified. That way, an economically convincing model can be established. Sec-

ond, economic dominance of models can actually be tested and a ranking of 
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models can be carried out. In this connection, a relative (how good are models 

compared to each other?) and an absolute ranking (are models acceptable at 

all?) is provided. 

2.3.1 Specification of the Economic Principle 

The economic principle simply means that a given output should be obtained by 

means of a minimum input or with a given input a maximum output should be 

generated. In other words, goods should be bought as cheap as possible or sold 

as expensive as possible. Such an approach is sometimes called “arbitration” (see 

Munn (1983)). It is different from the free lunch of Harrison/Kreps (1979) where 

investors are not interested in acquiring or selling a physical position. Instead, in-

vestors form a difference arbitrage to obtain a positive cash flow in at least one 

point in time and state without requiring a negative cash flow in all other time 

and state combinations. 

If the economic principle is specified to the context of buying/selling companies, 

it reads in more detail: 

 For the buyer of a company 

A buyer invests cash flow at time 𝑡 to acquire the company and gets a future 

cash flow stream in exchange. Alternatively, the cash flow stream can be ex-

pressed with the help of multi-period returns or approximated by accounting 

characteristics at time 𝑡 in a sense that accounting figures are observable and 

are used as proxy for the unobservable future cash flow stream. 

From that perspective there are two objectives for the buyer: (i) wealth at 

time 𝑡 and (ii) accounting characteristics at time 𝑡 or cash flow at 𝑡 + 1. Both 

objectives are conflicting as a rule: A low investment at 𝑡 leads to low cash 

flows at time 𝑡 + 1 or is accompanied by low accounting characteristics at 

time 𝑡 (otherwise the investment would not be low); a high investment at 

time 𝑡 leads to high cash flows at time 𝑡 + 1 or is associated with high ac-

counting characteristics at time 𝑡. To deal with this conflict of interests, the 
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maximum principle of efficiency is applied, i.e., one objective (primary objec-

tive) is maximized subject to lower bounds on the other objectives (secondary 

objectives). Maximizing the primary objective subject to lower bounds on the 

secondary objectives guarantees that only efficient alternatives will be select-

ed. The primary objective is associated with wealth at time 𝑡, the secondary 

objectives with the different accounting characteristics/cash flows. A buyer 

consequently maximizes wealth at time 𝑡, which signifies minimizing the (pur-

chase) price of the company, subject to accounting characteristics/cash flows 

greater than or equal to a lower bound. 

 For the seller of a company 

Identically to the buyer, the seller of a company is interested in wealth at time 

𝑡 and accounting characteristics at time 𝑡/a cash flow stream. However, max-

imizing wealth at time 𝑡 means that the (sales) price of the company should 

be as high as possible; the accounting characteristics/cash flow stream con-

straint must be formulated in a way so that the seller loses as few accounting 

characteristics/cash flows as possible, i.e., accounting characteristics/cash 

flows should be less than or equal to an upper bound. 

From this specification of the economic principle several consequences regarding 

the formulation of an economic model evaluation criterion follow. When judging 

models from an economic perspective, 

(i) objective function and constraints must be considered simultaneously and 

not separately because they both together constitute decision makers’ ob-

jectives. 

(ii) an actual company must be modelled (that is either be purchased or sold), 

i.e., arbitration and not free lunch must be pursued.5 

(iii) buyers’ and sellers’ point of views must be reflected. Both points of view 

cannot be transformed into each other. Setting purchase = −sale leads to 

                                                           
5
 By the way, whenever arbitration is implemented using all available assets on the market, it 

will automatically be tested for a free lunch at time 𝑡 since an accounting characteristic/cash 
flow bound of zero of the free lunch is a special case of the lower bound on accounting char-
acteristic/cash flow in the case of arbitration. 
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identical objective functions. However, this variable transformation cannot 

adequately reflect the accounting characteristics/cash flow constraint, 

namely that the buyer wants to obtain accounting characteristics/cash 

flows greater than or equal to and the seller wants to abandon less than or 

equal to a certain bound.6 

2.3.2 Institutional Circumstances 

Institutional circumstances refer to the constraints on portfolio holdings/weights 

and can be decomposed into two groups: (i) legal environment and (ii) market 

usages. 

The legal environment forbids uncovered short sales of stocks (see Regulation 

(EU) No 236/2012, Article 12). Of course, any assets already in possession can be 

sold and covered short sales are allowed by the EU Regulation. In addition, there 

are no limits on purchases of stocks assuming that companies are not subject to 

capital adequacy regulation. 

The legal environment, thus, imposes the following constraint on portfolio hold-

ings: The sales of stock 𝑖 must be less than or equal to a lower bound, i.e., 

𝑁𝑖,𝑡
− ≤ 𝑥𝑖,𝑡

−  for 𝑖 = 1,…𝑛 

                                                           
6
 To see this, note: 

 Decision problem from the buyer’s perspective: 
min
𝑁𝑈

𝑁𝑈,𝑡 ∙ 𝑃𝑈,𝑡 

s.t. 𝑁𝑈,𝑡 ∙ 𝐴𝑈,𝑡 ≥ �̅�𝑡 

where 𝑁𝑈,𝑡 denotes the numbers of company 𝑈 purchased at time 𝑡, 𝑃𝑈,𝑡  the price of 

company 𝑈 at time 𝑡, 𝐴𝑈,𝑡 company 𝑈’s accounting characteristic at time 𝑡, and �̅�𝑡 the 

lower bound on the accounting characteristic at time 𝑡. 

 Decision problem from the seller’s perspective: 
max
𝑁𝑆,𝑈

𝑁𝑆,𝑈,𝑡 ∙ 𝑃𝑈,𝑡 

s.t. 𝑁𝑆,𝑈,𝑡 ∙ 𝐴𝑈,𝑡 ≤ �̅�𝑡 

where 𝑁𝑆,𝑈,𝑡 denotes the numbers of company 𝑈 sold at time 𝑡. 

Setting 𝑁𝑈,𝑡 = 𝑁𝑆,𝑈,𝑡 makes the objective functions coincide. However, the constraint will be 

different. 



Chapter IV 

112 

There is no explicit legal limit on portfolio weights because portfolio weights de-

pend on investor-specific wealth. However, limits on portfolio holdings can be re-

expressed as limits on weights as follows: 

𝑁𝑖,𝑡
− ∙ 𝑃𝑖,𝑡
𝑊𝑡⏟    
=𝑤𝑖,𝑡

−

≤
𝑥𝑖,𝑡
− ∙ 𝑃𝑖,𝑡
𝑊𝑡

 for 𝑖 = 1,…𝑛 

Market usages might impose an upper limit on covered short sales because they 

require a certain amount of collateral for securities lending. Such a limit is again 

imposed on each asset 𝑖. Depending on the overall amount of short sales of indi-

vidual investors, individual investors might be confronted with different limits, 

but it seems to be safe to argue that limits nevertheless will be imposed on indi-

vidual assets. 

Moreover, market usages imply that there are market impact costs, i.e., large 

amounts of purchases and/or (short) sales influence market prices. Market im-

pact costs might be linear (e.g., Kyle (1985)) or nonlinear in the amount traded 

(e.g., Almgren/Thum/Hauptmann/Li (2005), Grinold (2006), and Gatheral (2010)). 

The models, however, agree that market impact costs are asset-specific and de-

pend on the sign of the transaction (purchase or sale). 

Finally, constraints on portfolio holdings are needed for technical reasons, name-

ly to find an optimal solution to the dual program. To satisfy the 𝑚 constraints on 

accounting characteristics, 𝑚 assets are needed. The remaining 𝑛 −𝑚 assets can 

be used to obtain the 𝑚 accounting characteristics at a more and more negative 

price, i.e., to obtain an arbitrage profit. Constraints on portfolio holdings exactly 

limit these arbitrage profits. 

2.3.3 Relative and Absolutes Ranking of Models 

When evaluating investment projects using net present value, usually a two-step 

procedure is applied. In a first step, all investment project are eliminated whose 

net present value is negative, i.e., that are from an absolute perspective disad-
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vantageous. In a second step, the remaining investment projects are ranked 

based on the size of their positive net present value. 

When ranking models we employ a similar procedure. Absolute ranking means 

judging whether the models are acceptable when compared to the model evalu-

ation criterion (1) economic principle (Section 2.3.1 (i) to (iii)) and (2) institutional 

circumstances (Section 2.3.2). In the context of absolute ranking it only matters 

whether the criterion is met or not, the exact extent does not matter. Relative 

ranking answers the question how good models are compared to each other. 

Here, the exact extent matters of how far the model evaluation criterion (1) eco-

nomic principle (Section 2.3.1 (i) to (iii)) and (2) institutional circumstances (Sec-

tion 2.3.2) is met. 

3 Applying the Economic Model Evalua-
tion Criterion 

Intuitively, applying the economic model evaluation criterion means that the 

best models are those that use the most innocuous assumptions. 

3.1 Absolute Ranking of Empirical Asset Pricing 
Models: Cross Section of Prices 

3.1.1 Model Evaluation Criterion Economic Principle: 
Section 2.3.1 (i) to (iii) 

This model evaluation criterion comprises objective function ((4.5) for regression 

approaches and (4.9) for the method of multiples) and accounting constraints 

((4.7) for regression approaches and none for the method of multiples) of the 

dual program. 
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First, both regression approaches and the method of multiples address the pric-

ing problem in an indirect way: They determine regression coefficients or multi-

ples from a sample of companies by minimizing prices and apply them to the 

company to be valued. From that perspective they do not minimize directly the 

price of the company to be valued, as the criterion in Section 2.3.1 (i) suggests. 

Note that such a behavior can be interpreted in parallel to Law-of-One-Price-

oriented pricing. There, a price functional is determined from a subset of assets 

and applied to the cash flow to be valued. Here, regression coefficients/multiples 

are determined from a subset of assets and applied to the company to be valued. 

Second, minimizing prices subject to accounting constraints take all (primary and 

secondary) objectives into account and not just the primary objective. However, 

this indirect pricing is also responsible for the fact that the idea of a free lunch 

and not an arbitration is followed: “accounting characteristics of the portfolio = 

0” is used together with price minimization of the portfolio because the investor 

is not interested in investing in a company, but only in generating an arbitrage 

profit. Therefore, this pricing approach is not completely compelling in the light 

of the criterion in Section 2.3.1 (ii) because it overlooks that additional gains 

might be possible form arbitration. Multiples have an artefact 
1

2
∙ ∑ 𝛽𝑗

2𝑚
𝑗=1  in the 

objective function that is incompatible with the economic principle because it 

does not solely minimize prices. 

Third, by minimizing prices to determine regression coefficients, regression ap-

proaches take the buyers’ perspective. They cannot handle the sellers’ perspec-

tive and, hence, cannot deal with the criterion in Section 2.3.1 (iii). Note in this 

connection that different weights 𝜏 on over- and underestimations in the primal 

program cannot capture buyers’ and sellers’ perspective because they do not en-

ter the objective function of the dual program. The method of multiples deter-

mines multiples by averaging over a group of companies. Therefore, it does not 

explicitly take the buyers’ perspective. However, it cannot take the sellers’ per-

spective either and, thus, cannot handle the criterion in Section 2.3.1 (iii), too. 
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3.1.2 Model Evaluation Criterion Institutional Circum-
stances: Section 2.3.2 

This model evaluation criterion comprises constraints on portfolio holdings, 

namely (4.6) and (4.8) for regression approaches and (4.10) for the method of 

multiples. 

Constraint (4.6) demands that the sum of portfolio holdings over all assets of the 

portfolio must be equal to zero.—This should not be confused with a self-

financing constraint where investments are funded by sales. Here, just holdings 

not holdings multiplied by price (= investments) are considered. This constraint 

stems from the constant 𝛽0 of the regression. It cannot, however, be justified 

from either (i) legal environment or (ii) market usages and, hence, clearly violates 

the model evaluation criterion institutional circumstances in Section 2.3.2. 

The constraints on portfolio holdings (4.8) and (4.10) are difficult to justify with 

the help of the legal environment, i.e., short sale constraints, because these con-

straints are not based on individual assets. In addition, market usages cannot ra-

tionalize such a constraint. It is true that only moderate orders will be executed 

at a given price. But market impact refers to transactions in individual asset 𝑖 and 

usually not to transactions in all assets. Therefore, these constraints on portfolio 

holdings can be justified merely because they limit arbitrage profits.—In reality 

infinite arbitrage profits are not observable. 

In this connection, the question arises as to what type of constraint on portfolio 

holdings results in the lowest price, i.e., allows the highest arbitrage profit? If we 

define 𝑞 ≡
𝑝

𝑝−1
, then monotonicity of Lp-norms implies that ‖∙‖𝑞2 ≤ ‖∙‖𝑞1  for 

𝑞1 < 𝑞2. In other words, for 𝑞2 the constraint on portfolio holdings (4.8) is less 

restrictive since the left-hand side is less and the right-hand side is constant. 

Moreover, 𝑞 falls with increasing 𝑝 (for 𝑝 > 1, as can be seen from its first deriv-

ative). This means, an increase in 𝑝 leads to a fall in 𝑞 making ‖∙‖𝑞 greater and 

the constraint on portfolio holdings (4.8) more binding. A more binding con-

straint translates into higher prices, i.e., lower arbitrage profits. E.g., ordinary 
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least squares regression 𝑝 = 2 results in lower prices/higher arbitrage profits 

than minimizing the maximum error (𝑝 = ∞). 

3.1.3 Absolute Ranking of Empirical Asset Pricing Mod-
els: Cross Section of Prices 

Having the results of the model evaluation criterion (i) economic principle (Sec-

tion 3.1.1) and (ii) institutional circumstances (Section 3.1.2) in mind, regression 

models using cross section of prices can be regarded as barely acceptable from 

an absolute ranking perspective: Indirect pricing, only consideration of free 

lunches, but not arbitration, and focus on buyers’ perspective mean that the 

economic principle is not fully implemented. On the other hand, at least the idea 

of minimizing prices (subject to accounting constraints) is captured. The con-

straints on portfolio holdings cannot be justified fully by means of short shelling 

constraints, but partially from the perspective of limited arbitrage profits. 

Only constraint (4.6), the sum of portfolio holdings over all assets must be equal 

to zero, cannot at all be justified by means of institutional circumstances.—

However, as Cochrane (2005), p. 236 points out cross-sectional regression can al-

so run without a constant meaning that this detrimental constraint can be re-

moved. 

The method of multiples is not acceptable from an absolute ranking perspective 

since there is an artefact in its objective function signifying that not solely prices 

are minimized. 

3.2 Absolute Ranking of Other Model Categories 

3.2.1 Cross Section of Returns 

Principally the results derived for cross section of prices carry over for cross sec-

tion of returns. However, the objective function 
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(4.11) 

min
𝑤1,𝑡−1
+ ,𝑤1,𝑡−1

− ,…,𝑤𝑛,𝑡−1
+ ,𝑤𝑛,𝑡−1

−
∑(𝑤𝑖,𝑡−1

+ −𝑤𝑖,𝑡−1
− ) ∙ 𝑅𝑖,𝑡−1,𝑡

∗

𝑛

𝑖=1

 

is new and must be analyzed in more detail. 

Plugging in for portfolio weights and returns, (4.11) modifies to 

min
𝑁1,𝑡−1
+ ,𝑁1,𝑡−1

− ,…,𝑁𝑛,𝑡−1
+ ,𝑁𝑛,𝑡−1

−
∑(

𝑁𝑖,𝑡−1
+ ∙ 𝑃𝑖,𝑡−1

∗

𝑊𝑡−1
−
𝑁𝑖,𝑡−1
− ∙ 𝑃𝑖,𝑡−1

∗

𝑊𝑡−1
) ∙ (

𝑃𝑖,𝑡
∗

𝑃𝑖,𝑡−1
∗ − 1)

𝑛

𝑖=1

 

i.e., 

(4.23) 

min
𝑁1,𝑡−1
+ ,𝑁1,𝑡−1

− ,…,𝑁𝑛,𝑡−1
+ ,𝑁𝑛,𝑡−1

−
∑

𝑁𝑖,𝑡−1
+ −𝑁𝑖,𝑡−1

−

𝑊𝑡−1
∙ 𝑃𝑖,𝑡

∗

𝑛

𝑖=1

−∑(
𝑁𝑖,𝑡−1
+ ∙ 𝑃𝑖,𝑡−1

𝑊𝑡−1
−
𝑁𝑖,𝑡−1
− ∙ 𝑃𝑖,𝑡−1
𝑊𝑡−1

) ∙ 1

𝑛

𝑖=1

 

According to (4.23) the price of a portfolio is minimized where there is a certain 

time lag: Portfolio holdings at 𝑡 − 1 are multiplied—at least in the first term—

with prices at time 𝑡. However, prices at time 𝑡 are not observable at time 𝑡 − 1. 

Hence, (4.23) implies that prices do not change between 𝑡 − 1 and 𝑡 if it should 

possess a reasonable economic interpretation. 

This time lag or rather the assumption of constant prices between 𝑡 − 1 and 𝑡 is 

unrealistic. For that reason, cross section of returns is not acceptable from an ab-

solute ranking perspective. Put differently, (4.23) gives a theoretical justification 

of Barth/Beaver/Landsman’s (2001) explanation that price studies are interested 

in determining what is reflected in firm value while return studies (price changes) 

are interested in determining what is reflected in change in value over a specific 

period of time. 

Side note: This result does not come at a surprise if minimization of returns is 

considered from a no-arbitrage perspective. Approaches using Law-of-One-Price-

oriented pricing, like Black/Scholes (1973) argue as follows: A riskless portfolio 
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that consists of an option and a risky asset must earn the same return as a risk-

less asset.—No return optimization is involved, just the application of the Law-of-

One-Price. Utility-oriented pricing like Cox/Ingersoll/Ross (1985) makes state-

ments regarding required return in a maximizing expected utility framework. 

Again, no return optimization or constructing arbitration is employed. 

3.2.2 Time Series Models 

In our analysis of time series models we do not distinguish between price and re-

turn models as will soon become clear. 

In time series models prices/returns of one asset 𝑖 ((4.15) or (4.19)) are mini-

mized over time subject to constraints on accounting characteristics of one asset 

𝑖 ((4.17) or (4.21)) over time. The constraint on portfolio holdings/weights ((4.18) 

or (4.22)) also refers to sums of portfolio holdings/weights over time. 

Analyzing prices and accounting characteristics/returns of one asset 𝑖 over time 

is, however, incompatible with the economic principle. The economic principle 

constructs arbitrages at one point in time using several assets and not one asset 

over time. Moreover, limits on portfolio holdings/weights of one asset 𝑖 over 

time do not coincide with the restriction that institutional circumstances impose. 

For that reason, time series price and return models are not acceptable from an 

absolute ranking perspective. 

3.3 Relative Ranking of Empirical Asset Pricing 
Models: Cross Section of Prices 

Given the results of the absolute ranking, only cross-sectional price regressions 

are (barely) acceptable using the economic model evaluation criterion. There-

fore, only this approach will be analyzed from a relative ranking perspective. The 
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method of multiples as well as return and time series regression approaches will 

be left out since they did not pass the absolute ranking. 

To establish a relative ranking, it is proceeded as follows. In a first step, models 

are identified that differ just between their respective objective functions, but 

possess identical constraints. Since these models are different only with one 

component (objective function), they can easily be examined regarding econom-

ic model-dominance: A model whose objective function is better than the one of 

other models regarding the economic principle, is model-dominant, the other 

models are model-dominated and, hence, model-inefficient. In a second step, 

the set of efficient models is further analyzed with respect to their constraints. 

Since the objective functions of each class of efficient models coincide by con-

struction, only one component (constraint) must be analyzed to check for model-

dominance in the following sense: A model whose constraint on portfolio hold-

ings is better than the one of other models regarding institutional circumstances, 

is model-dominant, the other models are model-dominated and, hence, model-

inefficient. 

3.3.1 First Step: Testing Models with Transformed and 
Untransformed Dependent Variables 

Models with different objective functions but identical constraints can be found 

by distinguishing between models with transformed (𝑃𝑖,𝑡
∗ ) and non-transformed 

(𝑃𝑖,𝑡) dependent variables. Models with transformed dependent variables(𝑃𝑖,𝑡
∗ ) 

contain weighted least squares regression/percentage error, error measures 

with logarithmic error, and generalized least squares regression. Models with un-

transformed dependent variables (𝑃𝑖,𝑡) comprise all other regression models. 

With respect to constraints, all models are subject to (4.6) to (4.8), i.e., underlie 

the same set of constraints. In this connection note that the constraints on ac-

counting characteristics (4.7) sometimes depend on transformed (𝐴𝑖,𝑗,𝑡
∗ ) and 

sometimes depend on untransformed (𝐴𝑖,𝑗,𝑡) variables. This does not make a dif-

ference from the perspective of the economic principle: All that matters is that 



Chapter IV 

120 

secondary objectives are captured by means of accounting constraints that de-

mand that each accounting figure in the portfolio is equal to zero (idea of a free 

lunch). The exact form of this accounting constraint, i.e., transformed or untrans-

formed accounting figures, does not matter. 

Table 4.1 indicates that the objective function of untransformed models is supe-

rior to the objective function of transformed models. Since all models are identi-

cal with respect to constraints (4.6) to (4.8), untransformed models dominate ac-

cording to economic model-dominance transformed models. 



Chapter IV 

121 

 

Ec
o

n
o

m
ic

 e
va

lu
at

io
n

 

C
o

m
p

at
ib

le
 w

it
h

 t
h

e 
ec

o
n

o
m

ic
 p

ri
n

ci
p

le
. 

In
co

m
p

at
ib

le
 w

it
h

 t
h

e 
ec

o
n

o
m

ic
 p

ri
n

ci
p

le
: 

P
ri

ce
s 

o
f 

p
o

rt
fo

lio
s 

an
d

 n
o

t 
p

o
rt

fo
lio

 h
o

ld
in

gs
 s

h
o

u
ld

 
b

e 
m

in
im

iz
ed

. 

In
co

m
p

at
ib

le
 w

it
h

 t
h

e 
ec

o
n

o
m

ic
 p

ri
n

ci
p

le
: 

P
ri

ce
s 

o
f 

p
o

rt
fo

lio
s 

an
d

 
n

o
t 

p
o

rt
fo

lio
s’

 
lo

ga
ri

th
m

ic
 

p
ri

ce
s 

sh
o

u
ld

 b
e 

m
in

im
iz

ed
. 

In
co

m
p

at
ib

le
 w

it
h

 t
h

e 
ec

o
n

o
m

ic
 p

ri
n

ci
p

le
: 

P
ri

ce
s 

o
f 

p
o

rt
fo

lio
s 

an
d

 n
o

t 
w

ei
gh

te
d

 p
ri

ce
s 

sh
o

u
ld

 b
e 

m
in

im
iz

ed
.—

O
n

e 
ca

n
n

o
t 

ac
q

u
ir

e 
as

se
ts

 
at

 

w
ei

gh
te

d
 p

ri
ce

s 
b

u
t 

ju
st

 a
t 

(m
ar

ke
t)

 p
ri

ce
s.

 

Ta
b

le
 4

.1
: 

O
b

je
ct

iv
e

 f
u

n
ct

io
n

s 
o

f 
se

ve
ra

l m
o

d
e

ls
 a

n
d

 t
h

e
ir

 e
va

lu
at

io
n

 a
cc

o
rd

in
g 

to
 t

h
e 

e
co

n
o

m
ic

 p
ri

n
ci

p
le

 

O
b

je
ct

iv
e 

fu
n

ct
io

n
 m
in

𝑁
1
,𝑡+
,𝑁
1
,𝑡−
,…
,𝑁
𝑛
,𝑡
+
,𝑁
𝑛
,𝑡
−
∑
(𝑁

𝑖,
𝑡+
−
𝑁
𝑖,
𝑡−
)
∙𝑃
𝑖,
𝑡

𝑛

𝑖=
1

 

(4
.5

) 
sp

ec
if

ie
d

 w
it

h
 

re
sp

ec
t 

to
 

n
o

n
-t

ra
n

sf
o

rm
ed

 
d

ep
en

d
en

t 
va

ri
ab

le
s 

m
in

𝑁
1
,𝑡+
,𝑁
1
,𝑡−
,…
,𝑁
𝑛
,𝑡
+
,𝑁
𝑛
,𝑡
−
∑
(𝑁

𝑖,
𝑡+
−
𝑁
𝑖,
𝑡−
)
∙𝑃
𝑖,
𝑡

𝑛

𝑖=
1

∙
𝜔
𝑖
⏟ =
1 𝑃
𝑖,
𝑡

 

(4
.5

) 
in

 c
o

n
n

ec
ti

o
n

 w
it

h
 C

h
ap

te
r 

II 
Se

ct
io

n
 3

.1
.2

 

m
in

𝑁
1
,𝑡+
,𝑁
1
,𝑡−
,…
,𝑁
𝑛
,𝑡
+
,𝑁
𝑛
,𝑡
−
∑
(𝑁

𝑖,
𝑡+
−
𝑁
𝑖,
𝑡−
)
∙l
n
(𝑃
𝑖,
𝑡
)

𝑛

𝑖=
1

 

(4
.5

) 
in

 c
o

n
n

ec
ti

o
n

 w
it

h
 C

h
ap

te
r 

II 
Se

ct
io

n
 3

.1
.2

 

m
in

𝑁
1
,𝑡
+
,𝑁
1
,𝑡−
,…
,𝑁
𝑛
,𝑡
+
,𝑁
𝑛
,𝑡
−
∑
(𝑁

𝑖,
𝑡+
−
𝑁
𝑖,
𝑡−
)
∙𝑃
𝑖,
𝑡
∙𝜔

𝑖

𝑛

𝑖=
1

 

(4
.5

) 
in

 c
o

n
n

ec
ti

o
n

 w
it

h
 C

h
ap

te
r 

II 
Se

ct
io

n
 3

.1
.2

 

M
o

d
el

 

N
o

n
-t

ra
n

sf
o

rm
ed

 
L p

-n
o

rm
 

W
ei

gh
te

d
 le

as
t 

sq
u

ar
e

s 
re

gr
e

s-
si

o
n

 a
n

d
 p

e
r-

ce
n

ta
ge

 e
rr

o
r 

Er
ro

r 
m

ea
su

re
s 

w
it

h
 lo

ga
ri

th
m

ic
 

er
ro

r 

G
en

er
al

iz
ed

 le
as

t 
sq

u
ar

e
s 

re
gr

e
s-

si
o

n
 



Chapter IV 

122 

Put differently, using statistically more advanced models deteriorates the implied 

economic content of models although they might improve the statistical quality. 

Therefore, the recommendation to use generalized least squares R² (see Lewel-

len/Nagel/Shanken (2010), p. 183) goes into the wrong direction from an eco-

nomic point of view. 

3.3.2 Second Step: Testing the Subset of Efficient Mod-
els by Specifying the Lp-norm 

The only model-efficient class is the class of models with untransformed de-

pendent variables. Since all models of this class are based on the same objec-

tives, i.e., objective function and accounting constraints, they differ only with re-

spect to the constraint on portfolio holdings. This constraint in turn depends on 

the Lp-norm chosen (see (4.8)). In particular, quantile regression, (𝑝 = 1), ordi-

nary least squares regression (𝑝 = 2), and Lp-regression (𝑝 = unspecified) are 

analyzed. 

Table 4.2 indicates that the constraint on portfolio holdings of quantile regres-

sion is superior to the one of the other two models. Since all models are identical 

with respect to the objective function (primary objective) and the accounting 

constraints (secondary objective), quantile regression model-dominates ordinary 

least squares and Lp-norm regressions. 

Finally note that the economic content of quantile regression can be further im-

proved if it is run without a constant to avoid the problematic constraint 

(4.6) 

𝑁1,𝑡
+ − 𝑁1,𝑡

− +⋯+𝑁𝑛,𝑡
+ − 𝑁𝑛,𝑡

− = 0 

Cochrane (2005), p. 236 points out cross-sectional regressions can be run with-

out such a constant. 
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4 Conclusion 

Harvey (2017), p. 1413 argues that trying different empirical models can be re-

garded as one form of p-hacking. The American Statistical Association (2016) 

points out that business decisions should not be based only on whether a p-value 

passes a specific threshold. Moreover, Chapter III shows that there are large dif-

ferences in corporate values when different empirical models are applied so that 

virtually arbitrary corporate values can be justified. Nietert/Otto (2018) demon-

strate that the same is true if the method of multiples is used to compute com-

pany values.—There is a clear need for an economic model evaluation criterion. 

Given this high need for an economic model evaluation criterion, the objective of 

this Chapter IV is twofold: (i) first develop an economic model evaluation criteri-

on; (ii) come up with an economic ranking of different empirical models. 

The results of this chapter can be summarized as follows: 

First, the economic model evaluation criterion judges the implicit economic as-

sumptions revealed by computing the dual program along the two dimensions 

compliance with the economic principle and institutional circumstances. 

Second, applying the economic evaluation criterion to empirical models reveals 

that regressions on cross section of prices can be regarded as acceptable from an 

economic perspective, whereas regressions on cross section of returns and time 

series models as well as the method of multiples do not comply with the eco-

nomic principle. 

Third, within the group of cross-sectional price models quantile regression 

proves to be the best model because it is able to offer a good approximation to 

the economic principle and mimics best the institutional circumstances, in par-

ticular, if the regression is run without a constant. On the other hand, statistically 

more advanced models like generalized least squares regression deteriorates the 

implied economic content of models: They work with weighted prices; however 

assets can only be purchased and sold at (unweighted) prices. 
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Still, even the best empirical model, quantile regression, is not fully convincing 

regarding the economic principle. In order to find an economically fully convinc-

ing empirical model, it might be wiser to start from economic principle and insti-

tutional circumstances and develop a new model instead of trying to adjust exist-

ing empirical models to economic principle and institutional circumstances.—

This will be done in Chapter V. 
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Chapter V: An Accounting-Based Empirical 
Business Valuation Model 

1 Introduction 

From the perspective of asset pricing theory the correct business valuation mod-

el is clear: the present value of future cash flows must be used for valuation be-

cause it follows from no arbitrage, i.e., the intuition that a positive investment is 

needed to generate a positive return. Practically, forecasts of the future are diffi-

cult and, in particular, the determination of discount factors proves problematic 

as the literature overview in Aggarwal/Mishra/Wilson (2018) illustrates. There-

fore, the industry introduced two main simplifications into present value compu-

tations as can been inferred from textbook formulas (e.g., Brealey/Myers/Allen 

(2016), p. 497, Damodaran (2006), p. 383, Damodaran (2012), p. 386, Berk/

DeMarzo (2017), p. 323, Ross/Westerfield/Jaffe/Roberts (2015), p. 390, and 

Ross/Westerfield/Jordan (2015), p. 411): time-constant discount rates (WACC) 

and horizon values to capture the far distant future.—However, time-constant 

discount rates cannot be transferred seamlessly to multi-period discounting. 

First, Fama (1977) shows that they neglect non-flat term structures and, second, 

they overlook stochastically changing investment opportunity sets. Third, Fama 

(1996) finds that one-period returns behave differently than multi-period returns 

meaning that they exhibit a different risk and, thus require different discounting. 

Fourth, Fama/French (1997) conclude that empirical cost of capital estimates are 

imprecise for three reasons: (i) difficulties in identifying the right asset pricing 

model; (ii) imprecisions in estimating factor loadings; (iii) imprecisions in estimat-

ing factor risk premia. Finally, the horizon model, by definition, creates some im-

precision because a stable growth after 𝑛 periods is assumed together with a flat 

term structure.—Therefore, the practical implementation of present value ap-

proaches is less theoretically stringent as desired. 



Chapter V 

127 

If, however, a superior theoretical model—present value—cannot be imple-

mented adequately, it might be better to use a theoretically less convincing 

model—e.g., use of accounting characteristics—that creates less problems with 

its application. This impression is supported by the following observations from 

valuation practice: Imam/Barker/Clubb (2008) find that discounted cash flow 

models have become significantly more important in valuation practice than pri-

or survey evidence suggests, e.g., Demirakos/Strong/Walker (2004). But still val-

uation multiples, notably the price/earnings ratio, are used. Peasnell/Yin (2014) 

stress the still important role of multiples in investment research reports of U.S. 

firms issued by analysts of leading brokerage firms in 2011–2012. Tan/Yu (2018) 

support a trend in the intensified use of discounted cash flow models, but also 

find that discounted cash flows are only used in 21% of all valuation cases. Final-

ly, residual income valuations are still rarely used in analysts’ reports 

(Hand/Coyne/Green/Zhang (2017)). The reasons for the use of accounting-based 

valuation methods are, on the one hand, the complexity of discounted cash flow 

approaches (Damodaran (2006), Imam/Barker/Clubb (2008), and Tan/Yu (2018)). 

On the other hand, forecasting arguments matter: Imam/Barker/Clubb (2008) 

point out (p. 515) that valuation models are seen as complementary to each oth-

er since analysts need to use subjective methods that deliver prices that feel 

right (p. 503). Tan/Yu (2018) come to the conclusion that analysts are more likely 

to use discounted cash flow models if earnings quality is low due to earnings 

management or earnings are negative. 

The superior practicability of existing accounting-based valuations, however, is 

bought with a relatively weak foundation in asset pricing theory: 

(i) Multiples 

Multiples essentially argue that similar accounting characteristics should 

result in similar prices. 

Problems from the perspective of asset pricing theory: While such a valua-

tion statement is intuitive, it is not backed up by asset pricing/arbitrage 

theory that states: Identical cash flow streams must possess identical pric-

es. In other words, there are three differences between multiples and arbi-
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trage theory. First, accounting characteristics are considered instead of 

cash flow streams. Second, similar instead of identical positions are exam-

ined. Third, one accounting characteristic is regarded as enough to charac-

terize a company completely. Only the third problem has been addressed 

to some degree by the literature by averaging valuation results for several 

accounting characteristics (e.g., EBIT and sales) because different account-

ing characteristics translate into different company prices, see, e.g., Beat-

ty/Riffe/Thompson (1999), Cheng/McNamara (2000), and Schreiner (2007). 

However, business valuations using simultaneously several accounting 

characteristics do not exist. 

(ii) Implementing discounted cash flow models with the help of accounting 

characteristics 

Berk/DeMarzo (2017) or Brealey/Myers/Allen (2016) use multiples to esti-

mate the horizon value of discounted cash flow models. Residual income 

valuation models (Feltham/Ohlson (1995), Ohlson (1995), and Ohlson 

(2005)) express cash flows by means of earnings where a function of earn-

ings is discounted using a riskless rate. The most integrated approaches of 

discounted cash flow and accounting-based models (Claus/Thomas (2001), 

Easton (2004), Gebhardt/Lee/Swaminathan (2001), and Ohlson/Juettner-

Nauroth (2005)) also express the discount rate as a function of earnings or 

their growth rates (and not just cash flows). 

Problems from the perspective of asset pricing theory: Residual income 

models focus on the numerator of discounted cash flow models, i.e., they 

strive at expressing expected cash flows with the help of accounting char-

acteristics. The denominator, the discount rate, is still characterized by 

constant cost of capital. Therefore, Easton (2004), Gebhardt/Lee/

Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005) cannot address 

Fama’s (1977) and Fama’s (1996) criticism of constant cost of capital. 

Claus/Thomas (2001) at least use a non-flat term structure, but have to as-

sume constant risk premia, an assumption that does not hold in reality. Fi-

nally, Hand/Coyne/Green/Zhang (2017) find less drastic, but still remarka-
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ble empirical valuation differences between discounted cash flow and ac-

counting-based residual income valuations. 

(iii) Empirical accounting-based approaches 

Empirical accounting-based approaches explain stock prices with the help 

of accounting characteristics (see, e.g., Appendix 4 for an overview). 

Problems from the perspective of asset pricing theory: These empirical ac-

counting-based approaches belong to the field of value relevance studies 

and, thus, are only interested in statistical significance of accounting char-

acteristics, but not economic significance, i.e., they do not derive pricing 

statements. In principle, the regression coefficients of value relevance 

studies can also be used to obtain business values. However, Chapter III 

showed that valuation differences between different regression methods 

are huge. Chapter IV demonstrated that regression models have a weak 

economic backing when contrasted with the economic principle. 

In summary, there seems to be a trade-off between asset pricing rigor and prac-

ticability of models. Present value models are theoretically superior, but their 

practical implementation in form of constant discount rates and horizon models 

is far from economically convincing. Accounting-based models are characterized 

by less asset pricing theory rigor, however, can be implemented without sacrific-

ing much of their theoretical basis, in particular empirical accounting-based asset 

pricing models. Obtaining better asset pricing models, hence, means either im-

prove the implementation of present value models or the theoretical founda-

tions of accounting-based models. Given the sheer amount of valuation models 

or heuristics that use accounting data as input (see Cascino/Clatworthy/García 

Osma/Gassen/Imam/Thomas (2014), p. 191), we would like to improve the asset 

pricing foundation of accounting-based models, in particular, empirical account-

ing-based models for two reasons. On the one hand, the accounting literature so 

far has not fully exploited the asset pricing potential of accounting-based valua-

tion models: It can be increased visibly without sacrificing practicability. On the 

other hand, purely empirical models always create a justification problem: Who 

would pay a higher price for a company because sales multiples result in higher 



Chapter V 

130 

prices than earnings multiples? Who would pay a higher price for a company be-

cause a lower discount rate for earnings is used? Who would pay a higher price 

for a company because an empirical estimation procedure, which possesses a 

higher R², recommends a higher price than other empirical estimation proce-

dures? 

Therefore, it is the objective of this Chapter V to connect the practicability of ac-

counting-based valuation models with the theoretical rigor of asset pricing theo-

ry. 

To achieve this objective, two steps are applied. First, the valuation approach of 

arbitrage theory/economic principle is transferred to the problem of business 

valuation: optimize the price of the company subject to constraints on account-

ing characteristics. Second, the optimize-the-price approach is compared to re-

gression approaches to elaborate the economic significance of value differences 

both theoretically and empirically. 

The results of this chapter can be summarized as follows: From a theoretical per-

spective, the optimize-the-price approach is based on the economic principle and 

is able to integrate constraints on portfolio holdings that are in line with the in-

stitutional environment and market usages. Moreover, the optimize-the-price 

approach can distinguish between buyers’ and sellers’ position, use the mispric-

ing potential of the company to be valued (arbitration, Munn (1983)) instead of 

focusing only on mispricing of other companies (free lunch), and can integrate 

synergies, multi-period valuations as well as risk. From an empirical perspective, 

the price differences between the integrated (optimize-the-price approaches) 

and the separated approaches (regressions) as well as price differences between 

buyers and sellers are of very high economic significance. 

This chapter makes the following contribution compared to the literature: 

First, it offers a completely different approach on accounting-based valuation, a 

direct optimization of the buyer’s/seller’s price. The theoretical accounting litera-

ture so far, in particular residual income valuation models, adapted the dis-

counted cash flow approach by expressing cash flows and/or discount rates with 
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the help of accounting characteristics (Feltham/Ohlson (1995), Ohlson (1995), 

Ohlson (2005) as well as Claus/Thomas (2001), Easton (2004), Gebhardt/Lee/

Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005)). Since the optimize-

the-price approach rests upon the economic principle, it holds for a much broad-

er spectrum of preferences and thus, decision makers, than the discounted cash 

flow approaches that usually rely on CAPM derivatives, i.e., µ--preferences. One 

interesting side aspect of the optimize-the-price approach deserves mentioning. 

Aggarwal/Mishra/Wilson (2018) illustrate that the determination of discount fac-

tors is the most critical part when applying discounted cash flow models. The op-

timize-the-price approach does not need to determine discount factors because 

prices are determined directly, a procedure that is typical for the determination 

of price functionals in no arbitrage theory (see, e.g., Ingersoll (1987), p. 29). 

Second, we integrate the several factors from value relevance studies into an ac-

counting-based valuation formula. That way, value relevance studies, which are 

not interested in valuation but use several accounting characteristics as explana-

tory variables, are combined with multiples, which can price, but can deal only 

with one accounting characteristic at the same time. In this connection it is im-

portant to note that a good business valuation approach does not mean repro-

ducing market prices best possible. If a company already possesses a market 

price the valuation problem will already be solved. Instead, business valuation 

must be able to identify under- or overvalued companies thereby taking needs of 

the particular buyer/seller into account. 

Third, we take peculiarities of valuation into account, like buyers’/sellers’ posi-

tion, lifecycle of the firm (including negative earnings), synergies, value of corpo-

rate control etc. and show for buyer’s/seller’s position empirically valuation dif-

ferences. Principally discounted cash flow models are able to deal with these pe-

culiarities. However, textbook formulas (e.g., Brealey/Myers/Allen (2016), Dam-

odaran (2006), Damodaran (2012), Berk/DeMarzo (2017), Ross/Westerfield/

Jaffe/Roberts (2015), and Ross/Westerfield/Jordan (2015)) ignore at least buy-

ers’/sellers’ position. The multiples and the value relevance literature cannot ad-

dress buyers’/sellers’ position either. In addition, the value relevance literature 
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barely analyzes synergies with Henning/Lewis/Shaw (2000) as sole exception. 

Not surprisingly, the different importance of synergies for buyers and sellers is 

not addressed at all. 

The remainder of this Chapter V is organized as follows: Section 2 develops the 

optimize-the-price approach theoretically. Section 3 analyzes the optimize-the-

price approach empirically. Section 4 concludes this chapter. 

2 Optimize-the-Price Approach 

Chapter IV, Sections 2.3.1 and 2.3.2 develop an economic model evaluation crite-

rion to evaluate the economic content of empirical asset pricing approaches. In 

Chapter IV this economic model evaluation criterion is used to detect the prob-

lems of empirical asset pricing models. 

In this section this economic model evaluation criterion is applied in a construc-

tive way, namely to design an accounting-based business valuation model. 

2.1 Requirements for an Economically Convinc-
ing Business Valuation Model 

The economic model evaluation criterion comprises two components: economic 

principle and institutional circumstances. 

2.1.1 Economic Principle (see Chapter IV, Section 2.3.1) 

It follows from the economic principle (see Chapter IV, Section 2.3.1): 

(i) Objective function and constraints must be considered simultaneously and 

not separately because they both together constitute decision makers’ ob-

jectives. 
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(ii) An actual company must be modelled (that is either be purchased or sold), 

i.e., arbitration and not free lunch must be pursued. 

(iii) Buyers’ and sellers’ point of views must be reflected. 

Finally, to implement the economic principle formally, it is recommended to de-

fine all accounting characteristics in a way so that a higher value of the account-

ing characteristic is unequivocally associated with a more desirable outcome. 

Higher earnings are clearly better than lower earnings. However, a debt-to-

equity ratio defined as debt divided by equity shows the inverse relation: A lower 

debt-to-equity-ratio is preferable. For that reason, the ratio is re-defined as equi-

ty divided by debt or equity divided by total assets since higher equity means 

lower insolvency risk and, thus, is regarded as better. 

Taking together bullet points (i) to (iii) and the positive definition of accounting 

characteristics, the economic principle translates into the following two decision 

problems: 

(5.1) Decision problem buyer: 

A buyer minimizes the (purchase) price of the company subject to accounting 

characteristics greater than or equal to a lower bound (accounting characteristics 

represent what the buyer gets in return for the investment). 

(5.2) Decision problem seller: 

A seller maximizes the (sales) price of the company subject to accounting charac-

teristics less than or equal to an upper bound (accounting characteristics repre-

sent what the seller loses in return for the sales price). 

2.1.2 Institutional Circumstances (see Chapter IV, Sec-
tion 2.3.2) 

Institutional circumstances refer to the constraints on portfolio holdings: 
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(i) Legal environment 

Prohibition of uncovered short sales (see Regulation (EU) No 236/2012, Ar-

ticle 12) indicates that the sales of stock 𝑖 must be less than or equal to a 

lower bound. There are no limits on purchases of stocks assuming that 

companies are not subject to capital adequacy regulations. 

(ii) Market usages 

Market usages might impose an upper limit on covered short sales because 

they require a certain amount of collateral for securities lending. Such a 

limit is again imposed on each asset 𝑖. Moreover, there are market impact 

costs, i.e., large amounts of purchases and/or (short) sales influence mar-

ket prices; a fact that might give rise to an upper limit on portfolio holdings. 

In summary, institutional circumstances, hence, impose constraints on portfolio 

holdings in the decision problem buyer (5.1) and the decision problem seller 

(5.2). 

2.2 One-Period Model 

To learn about the formalization of the decision problems (5.1) and (5.2), we 

start with an (unrealistic) one-period model and extend it in Subsections 2.3 to 

2.5. 

2.2.1 Model 

Based on the verbal description of the decision problem buyer (5.1) and the deci-

sion problem seller (5.2), these two decision problems can be formulated as fol-

lows: 
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 Buyer 

(5.3) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1

 

s.t. 

(5.4) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≥ 𝑎1 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≥ 𝑎𝑚 

(5.5) 

𝑓(𝑁1,𝑡
+ , … , 𝑁𝑖,𝑡

+ , … , 𝑁𝑛,𝑡
+ , 𝑁1,𝑡

− , … , 𝑁𝑖,𝑡
− , … , 𝑁𝑛,𝑡

− ) ≤ 𝑔1(𝑥) 

⋮ 

𝑓(𝑁1,𝑡
+ , … , 𝑁𝑖,𝑡

+ , … , 𝑁𝑛,𝑡
+ , 𝑁1,𝑡

− , … , 𝑁𝑖,𝑡
− , … , 𝑁𝑛,𝑡

− ) ≤ 𝑔𝑛(𝑥) 

𝑁1,𝑡
+ ≥ 0 

𝑁1,𝑡
− ≥ 0 

⋮ 

𝑁𝑛,𝑡
+ ≥ 0 

𝑁𝑛,𝑡
− ≥ 0 

where 𝑁𝑖,𝑡
+  (𝑁𝑖,𝑡

− ) denotes the numbers of asset 𝑖 purchased (sold) at time 𝑡, 

𝑃𝑖,𝑡 the price of company 𝑖 at time 𝑡, 𝐴𝑖,𝑗,𝑡 accounting characteristics 𝑗 of com-

pany 𝑖 at time 𝑡, and 𝑎𝑗  accounting characteristics 𝑗 of the company to be val-

ued. 𝑔(𝑥) and 𝑓(. ) are functions that determine the portfolio holdings con-

straints. 

 Seller 

(5.6) 

max
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1
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s.t. 

(5.7) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≤ 𝑎1 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≤ 𝑎𝑚 

(5.8) 

𝑓(𝑁1,𝑡
+ , … , 𝑁𝑖,𝑡

+ , … , 𝑁𝑛,𝑡
+ , 𝑁1,𝑡

− , … , 𝑁𝑖,𝑡
− , … , 𝑁𝑛,𝑡

− ) ≤ 𝑔1(𝑥) 

⋮ 

𝑓(𝑁1,𝑡
+ , … , 𝑁𝑖,𝑡

+ , … , 𝑁𝑛,𝑡
+ , 𝑁1,𝑡

− , … , 𝑁𝑖,𝑡
− , … , 𝑁𝑛,𝑡

− ) ≤ 𝑔𝑛(𝑥) 

𝑁1,𝑡
+ ≥ 0 

𝑁1,𝑡
− ≥ 0 

⋮ 

𝑁𝑛,𝑡
+ ≥ 0 

𝑁𝑛,𝑡
− ≥ 0 

2.2.2 Economic Analysis of the Decision Problem 

The objective function in combination with the constraints on accounting charac-

teristics (buyer: (5.3) in combination with (5.4); seller: (5.6) in combination with 

(5.7)) implement bullet point (i) of the economic principle. That the constraints 

on accounting characteristics refer to the accounting characteristics of the com-

pany to be valued, i.e., accounting characteristicj (5.4) ≥ 𝑎𝑗  or (5.7) ≤ 𝑎𝑗 imple-

ments bullet point (ii) of the economic principle. A free lunch would have been 

on (5.4) ≥ 0 or (5.7) ≤ 0. The differentiation between buyer and seller (buyer: 

(5.3) in combination with (5.4); seller: (5.6) in combination with (5.7)) addresses 

bullet point (iii) of the economic principle. Finally, the constraints on portfolio 

holdings (5.5) or rather (5.8) take legal environment and market usages into ac-

count. 

Three remarks are in order to finalize the analysis of the buyer’s and seller’s deci-

sion problems. First, the constraints on portfolio holdings are not specified to a 
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particular model at this stage of the analysis. Second, buyers’ and sellers’ deci-

sion problems do not contain a budget constraint. This is due to the fact that 

pricing is done and the actual purchase/sale, where funding comes into play, is 

subsequent to the pricing problem. Third, (5.3) and (5.6) are empirical models 

because they try to explain today’s prices using accounting characteristics. They 

do not compute today’s prices as present value of future cash flows as theoreti-

cal asset pricing models would do. 

To analyze both decision problems further, we compare prices for buyers and 

sellers and explore the effect of the constraints on portfolio holdings. 

Intuitively, one would argue that prices of sellers can never be below prices of 

buyers, at worst, both prices coincide.—This intuition is, however, wrong. In a 

model with just one accounting characteristic the accounting constraint can al-

ways be met exactly, i.e., duplication holds. In models with several accounting 

characteristics, it could happen that some accounting characteristics constraints 

can only be met as inequalities, i.e., higher (lower) values than the desired 𝑎𝑗 are 

obtained for the buyer (seller), because only then the other accounting charac-

teristics constraints will be met. In other words super-replication (supra-

replication) holds. The price of a super-replication (supra-replication) portfolio is 

higher than/equal to (lower than/equal to) the price of a duplication portfolio. 

Thus, under admittedly rare circumstances, the super-replicating price of a buyer 

can be higher than the supra-replicating price of a seller in models with several 

accounting characteristics, in particular if there are by far more companies than 

constraints (see Section 3.3.2.1.3, Figure 5.6 for an example). 

The constraints on portfolio holdings (5.5) or rather (5.8) could be formulated as 

constraints for the portfolio holdings on individual assets or on a (weighted) sum 

of assets. An example for a constraint on an individual asset is a short sale con-

straint on asseti or an upper limit on the portfolio holding of assetj. An example 

for a constraint on portfolio holdings of a (weighted) sum of assets is the con-

straint obtained in regression approaches. 
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[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

The effect, i.e., the tightness of the portfolio holdings constraints (5.5) or rather 

(5.8) is driven by two aspects. On the one hand, the shape of the constraint cap-

tured by the specific form of the of function 𝑓(. ): It is known from Chapter IV, 

Section 3.1.2 that an increase in 𝑞 ≡
𝑝

𝑝−1
 makes the constraints on portfolio hold-

ings (5.5) or rather (5.8) less binding. A less binding constraint, however, results 

in lower (higher) prices for buyers (sellers) because buyers can sell more expen-

sive companies short and, that way, bring prices further down and sellers can 

hold an higher number of expensive companies bringing prices up. On the other 

hand, the right-hand side 𝑔𝑖(𝑥)—the size—of portfolio holdings constraints (5.5) 

or rather (5.8) exerts influence. A higher right-hand side 𝑔𝑖(𝑥) means a less bind-

ing constraint (enlarged short sales for buyers, enlarged purchases for sellers) 

and, thus, lower (higher) prices for buyers (sellers). 

2.3 Extension to the Optimize-the-Price Ap-
proach: Synergies 

2.3.1 Modelling Synergies 

When purchasing or selling an actual company and not trying to explain, e.g., 

drivers of stock returns in general, synergies should not be overlooked as they 

arise when two firms are combined (see, e.g., Damodoran (2006), p. 1013). It can 

be distinguished (see, e.g., Damodaran (2006), pp. 1014 f.) between operating 

synergies that allow firms to increase operating income from existing assets 

and/or growth, and financial synergies that arise from higher cash flows and/or 

lower cost of capital. 

Intuitively, synergies mean that a buyer of a company gains more and a seller 

loses more than the accounting characteristics of the company. More precisely, 

modelling synergies comprises: (i) Changes in (all of the) 𝑚 accounting character-
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istics of the company to be valued must be captured. That way, both operating 

and financial synergies can be integrated, e.g., an increase in earnings and the 

equity-to-debt ratio as well as positive and negative synergies, e.g., an increase 

in earnings and a decrease in the equity-to-debt ratio. (ii) Synergies might not 

arise only in connection with one company, but with several companies if the ac-

quiring and/or acquired company is a conglomerate. 

Formally, the base case of bullet point (i) means: Company 𝑈 possesses account-

ing characteristic 𝑎𝑈,𝑗 and acquires company 𝐶𝑖 thereby obtaining accounting 

characteristic 𝑎𝐶𝑖,𝑗. Positive synergies signify 𝑠(𝑎𝑈,𝑗 , 𝑎𝐶𝑖,𝑗) > 𝑎𝐶𝑖,𝑗, negative syn-

ergies signify 𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗) < 𝑎𝐶𝑖,𝑗. In that connection it does not matter whether 

company 𝑈 or 𝐶𝑖 or both are responsible for the synergies. All that matters is 

that for valuation purposes company 𝐶𝑖 has accounting characteristics 

𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗) ≠ 𝑎𝐶𝑖,𝑗. The sale of company 𝐶𝑖 results in a situation where the sell-

er of company 𝐶𝑖 loses 𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗) > 𝑎𝐶𝑖,𝑗 instead of just 𝑎𝐶𝑖,𝑗 with positive 

synergies and 𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗) < 𝑎𝐶𝑖,𝑗 with negative synergies. 

If the acquiring (selling) company 𝑈 is a conglomerate (bullet point (ii)), its ac-

counting characteristic 𝑗 is equal to the weighted sum of accounting characteris-

tics 𝑗 of the 𝑛𝑈 components of the conglomerate, i.e., 𝑎𝑈,𝑗 = ∑ 𝑎𝑈𝑘,𝑗
𝑛𝑈
𝑘=1 . The 

company to be acquired/sold possesses as accounting characteristic 𝑗 

𝑎𝐶𝑖,𝑗 = ∑ 𝑎𝑈𝐶𝑖 ,𝑗
𝑛𝐶𝑖
𝑘=1  if it is a conglomerate. Therefore, synergies can be formalized 

as 

(5.9) 

𝑠 (∑𝑎𝑈𝑘,𝑗

𝑛𝑈

𝑘=1

,∑𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖

𝑘=1

) 

Looking at the synergy formalization (5.9) reveals, however, that accounting 

characteristic 𝑎𝑗 is considered in isolation of 𝑎𝑘, i.e., there is no effect like 

𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗) + 𝑠(𝑎𝑈,𝑘, 𝑎𝐶𝑖,𝑘) < 𝑠(𝑎𝑈,𝑗 , 𝑎𝐶𝑖,𝑗, 𝑎𝑈,𝑘 , 𝑎𝐶𝑖,𝑘). We have decided 

against modelling such an effect for two reasons. First, such an effect would con-

sider accounting characteristics as source and not just as result of synergies. E.g., 
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economies of scale (= source) can influence both sales and earnings (= results) 

positively. However, 𝑠(𝑎𝑈,𝑗 , 𝑎𝐶𝑖,𝑗, 𝑎𝑈,𝑘, 𝑎𝐶𝑖,𝑘) would imply that economies of scale 

and sales together cause higher earnings. While such a causal relation between 

accounting characteristics is not impossible7, it will probably be rare and, hence, 

not be a good starting point for the valuation effect of synergies. Second, using 

𝑠(𝑎𝑈,𝑗, 𝑎𝐶𝑖,𝑗, 𝑎𝑈,𝑘, 𝑎𝐶𝑖,𝑘) creates an allocation problem: Which accounting charac-

teristic gets the benefit of the synergy, accounting characteristic 𝑗 or 𝑘?—Recall 

an allocation is required because each accounting characteristic needs its own 

constraint (5.4) (buyer) or (5.7) (seller). 

2.3.2 Valuation Model 

Integrating the formalization of synergies (5.9) into the buyer’s/seller’s decision 

problem delivers—recall core of interest is the valuation of a company with syn-

ergies, but not the valuation of the synergy: 

 Buyer 

(5.3) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1

 

s.t. 

(5.10) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 −𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≥ 𝑠 (∑𝑎𝑈𝑘,1

𝑛𝑈

𝑘=1

,∑𝑎𝑈𝐶𝑖 ,1

𝑛𝐶𝑖

𝑘=1

) 

⋮ 

                                                           
7
 E.g., a company could be close to insolvency due to lack of cash flows why customers do no 

longer want to purchase products from this company. A stock-based acquisition of a cash-rich 
company will result in a better liquidity situation. Since insolvency risk is now reduced, cus-
tomers will begin buying company’s products. In other words, a better liquidity situation 
caused the increase in sales. 
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𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 −𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≥ 𝑠 (∑𝑎𝑈𝑘,𝑚

𝑛𝑈

𝑘=1

,∑𝑎𝑈𝐶𝑖 ,𝑚

𝑛𝐶𝑖

𝑘=1

) 

(5.5) 

Constraints on portfolio holdings 

 Seller 

(5.6) 

max
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1

 

s.t. 

(5.11) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 −𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≤ 𝑠 (∑𝑎𝑈𝑘,1

𝑛𝑈

𝑘=1

,∑𝑎𝑈𝐶𝑖 ,1

𝑛𝐶𝑖

𝑘=1

) 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 −𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≤ 𝑠 (∑𝑎𝑈𝑘,𝑚

𝑛𝑈

𝑘=1

,∑𝑎𝑈𝐶𝑖 ,𝑚

𝑛𝐶𝑖

𝑘=1

) 

(5.8) 

Constraints on portfolio holdings 

2.3.3 Analysis of the Effects of Synergies 

The exact effect of synergies on company prices depends on the specific form of 

𝑠 (∑ 𝑎𝑈𝑘,𝑗
𝑛𝑈
𝑘=1 , ∑ 𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖
𝑘=1 ) and, hence, can only be evaluated numerically. Nev-

ertheless, a theoretical analysis is able to gain several insights. 

(i) Positive versus negative versus mixed synergies 

It holds with positive synergies: 𝑠 (∑ 𝑎𝑈𝑘,𝑗
𝑛𝑈
𝑘=1 , ∑ 𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖
𝑘=1 ) > ∑ 𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖
𝑘=1 ; 

with negative synergies: 𝑠 (∑ 𝑎𝑈𝑘,𝑗
𝑛𝑈
𝑘=1 , ∑ 𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖
𝑘=1 ) < ∑ 𝑎𝑈𝐶𝑖 ,𝑗

𝑛𝐶𝑖
𝑘=1 . Conse-
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quently, positive (negative) synergies call for higher (lower) portfolio hold-

ing in the (super-/supra-) replication portfolio that result in higher (lower) 

prices. 

Mixed synergies mean that some accounting characteristics increase, e.g., 

earnings, and other decrease, e.g., equity-to-debt ratio. They have a mixed 

effect on portfolio holdings of the (super-/supra-) replication portfolio 

which translates into an ambiguous effect on prices. 

(ii) Buyer versus seller 

In the case of positive synergies buyers gain more than ∑ 𝑎𝑈𝐶𝑖 ,𝑗
𝑛𝐶𝑖
𝑘=1 , sellers 

lose more than ∑ 𝑎𝑈𝐶𝑖 ,𝑗
𝑛𝐶𝑖
𝑘=1 . Therefore, the prices for both buyers and 

sellers increase.—This result fits nicely to the economic intuition: A buyer 

receives in the case of positive synergies more than accounting characteris-

tic 𝑗 and, hence, should be willing to pay more. A seller loses more than ac-

counting characteristic 𝑗. For that reason, compensation in the form of a 

higher sales price is demanded.—These results transfer to negative and 

mixed synergies: Negative synergies call for a lower price for both buyers 

and sellers, whereas the effect of mixed synergies is ambiguous. 

(iii) Which companies are used for (super-/supra-) replication in the presence 

of synergies? 

Creating a (super-/supra-) replication portfolio means that several compa-

nies are combined hypothetically, whereas synergies arise from the combi-

nation of actual companies. Therefore, only companies outside of the con-

glomerate to be valued should be used for replication purposes. Since 

these companies are economically and often legally independent, no syn-

ergies8 will arise when their accounting characteristics are (hypothetically) 

combined in a (super-/supra-) replication portfolio. 

                                                           
8
 Things might be different with financial synergies since a portfolio always offers diversifica-

tion benefits. For this reason, we discuss aspects of risk in a subsection of its own (see Subsec-
tion 2.5). 
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(iv) Value of corporate control 

The value of corporate control rests upon the idea that a controlling owner 

would operate the firm differently from the way it is operated currently 

(see, e.g., Damodaran (2006), p. 845) and, hence, allows to achieve more 

desirable accounting characteristics compared to a situation when the de-

cision maker is not the controlling owner. 

Technically, getting more desirable accounting characteristics means that 

the right-hand side of the accounting characteristics constraints (5.4) (buy-

er) or (5.7) (seller) increases. In other words, the value of corporate control 

can be captured (technically) by means of the accounting characteristics 

constraints with synergies (5.10) (buyer) and (5.11) (seller). 

2.4 Extension to the Optimize-the-Price Ap-
proach: Multi-Period Features 

2.4.1 Modelling Multi-Period Features 

Market prices comprise future cash flow streams in one value. However, ac-

counting characteristics do not possess a similar reference to the future because, 

e.g., today’s earnings cannot be interpreted as the present value of future earn-

ings. Put more precisely, Damodaran (2012), pp. 611, 633, 644-645 gives some 

economic justifications for the use of multi-period models (or rather the inade-

quateness of a steady state assumption): 

(i) Companies in general are subject to a life cycle with different values for 

revenues and earnings in each phase. In particular, negative or abnormally 

low earnings create valuation problems. This fact becomes particularly visi-

ble with start-up firms that often lose money but at the same time are 

characterized by high values. 

(ii) If companies have a significant likelihood of distress or default, a going 

concern assumption cannot be applied. Instead, accounting characteristics 
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must be adjusted, e.g., low earnings and equity-to-debt-ratios are used 

during such crisis times. 

(iii) Translating corporate control into a different corporate policy might take 

time. Therefore, accounting characteristics might not change immediately 

but until some time has passed so that the new corporate policy can be-

come effective. 

Principally, there are two possibilities to model multi-period aspects. 

(i) Accounting characteristics are considered at different points in time. This 

means, instead of arguing with 𝑎𝑗 as in the one-period model, 𝑎𝑗,𝑡, 𝑎𝑗,𝑡+1, … 

are applied. Such a complete specification of accounting characteristics at 

all points in time is able to capture the life cycle of a company and, as such, 

can also be applied to start-ups. However, a complete specification of ac-

counting characteristics at all points in time might be impossible given the 

(ex ante) infinite life of a company. Therefore, a simplification in the form 

𝑎𝑗,𝑡, 𝑎𝑗,𝑡+1, … , 𝑎𝑗,𝑇 might be needed, where 𝑎𝑗,𝑇 could be regarded as a 

steady state accounting characteristic that is associated with a horizon val-

ue. In other words, only years 𝑡 to 𝑇 − 1 are modelled in detail and starting 

from year 𝑇 standardization is applied.—Note in this connecting that such 

a model implies identically constraints on accounting characteristics from 

time 𝑇 on. 

(ii) Growth rates for accounting characteristics are specified. The idea behind 

this approach can be found in Barth/Beaver/Landsman (2001), p. 95 who 

conclude that “price studies are interested in determining what is reflected 

in firm value while return studies (price changes) are interested in deter-

mining what is reflected in change in value over a specific period of time”. 

In this connection, different growth rates can be specified for each period 

to reflect the life cycle of companies or just one growth rate if companies 

have reached the steady state. Nevertheless, growth rates have two disad-

vantages: First, the temporary nature of negative or abnormally low earn-

ings cannot be captured by earnings growth rates (see Damodaran (2012), 
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p. 611). Second, the theoretical analyses in Chapter III, Section 2.2.3 

showed that pure returns/growth rates are incompatible with the econom-

ic principle. 

2.4.2 Valuation Model 

Integrating the formalization of multi-period models into the buyers’/sellers’ de-

cision problem delivers (only the version is depicted that specifies 

𝑎𝑗,𝑡, 𝑎𝑗,𝑡+1, … , 𝑎𝑗,𝑇): 

 Buyer 

(5.3) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1

 

s.t. 

(5.12) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≥ 𝑎1,𝑡 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 −𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≥ 𝑎𝑚,𝑡 

⋮ 

𝑁1,𝑡
+ 𝐴1,1,𝑇 − 𝑁1,𝑡

− 𝐴1,1,𝑇 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑇 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑇 ≥ 𝑎1,𝑇 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑇 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑇 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑇 − 𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑇 ≥ 𝑎𝑚,𝑇 

(5.5) 

Constraints on portfolio holdings 

 Seller 

(5.6) 

max
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
∑(𝑁𝑖,𝑡

+ − 𝑁𝑖,𝑡
−) ∙ 𝑃𝑖,𝑡

𝑛

𝑖=1
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s.t. 

(5.13) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≤ 𝑎1,𝑡 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 −𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 −𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≤ 𝑎𝑚,𝑡 

⋮ 

𝑁1,𝑡
+ 𝐴1,1,𝑇 − 𝑁1,𝑡

− 𝐴1,1,𝑇 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑇 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑇 ≤ 𝑎1,𝑇 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑇 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑇 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑇 − 𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑇 ≤ 𝑎𝑚,𝑇 

(5.8) 

Constraints on portfolio holdings 

2.4.3 Analysis of the Effects of Multi-Period Features 

Multi-period models cause two differences compared to the one-period model of 

Section 2.2. 

First, they contain more accounting characteristics constraints (5.12) and (5.13). 

More constraints, however, reduce the scope for portfolio optimization meaning 

that buyers’ prices will be higher and sellers’ prices will be lower in the multi-

period compared to the one-period model. 

Second, the right-hand sides of the accounting characteristics constraints exert 

influence on the pricing problem as well. Assume accounting characteristicj of 

the company to be valued increases faster (slower) over time as for the compa-

nies of the (super-/supra-) replication portfolio, e.g., due to a different phase of 

the company life cycle. Then, the portfolio holdings in the (super-/supra-) repli-

cation portfolio increase (decrease) meaning higher (lower) prices for buyers and 

sellers. 

Effects (i) and (ii) have contradictory effects on company prices and might give 

rise to a situation where the multi-period model delivers results similar to the 
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one-period model of Section 2.2. In other words, the steady state assumption of 

the one-period model might not be completely unrealistic. 

2.5 Extension to the Optimize-the-Price Ap-
proach: Risk/Uncertainty 

2.5.1 Modelling Risk/Uncertainty 

The optimize-the-price approach developed so far just works under certainty. 

Multiples and value relevance studies also work under certainty. However, resid-

ual income models express expected cash flows with the help of accounting 

characteristics and discount them with constant cost of capital (Easton (2004), 

Gebhardt/Lee/Swaminathan (2001), and Ohlson/Juettner-Nauroth (2005)) or a 

constant risk premium (Claus/Thomas (2001)). From that perspective they can 

handle risk, albeit in a stylized way. Since it is the objective of the optimize-the-

price approach to improve the theoretical foundation of accounting-based asset 

pricing, it needs an extension towards risk/uncertainty to become an economi-

cally dominant approach. 

Principally, there are two possibilities of integrating risk/uncertainty into the op-

timize-the-price approach. 

First, the stochasticity of future accounting characteristics is addressed by means 

of different states. To that end, a forecast for accounting characteristicj at each 

point in time 𝜏 and in each state 𝑠 is developed, i.e., 𝑎𝑗,𝜏,𝑠. Since time- and state-

dependent accounting characteristics are modelled, no state probabilities are 

needed, (Knightian) uncertainty is given. States can be derived from scenarios 

that themselves can be independent in each point of time (e.g., at time 𝑡 + 1 

there is a good, normal, and bad state and at time 𝑡 + 2 there are other good, 

normal, and bad states; the states at time 𝑡 + 1 are not intertemporally con-

nected with the states at time 𝑡 + 2) or can be intertemporally connected (e.g., 

from the good state at time 𝑡 + 1 there are three possible consecutive states at 



Chapter V 

148 

time 𝑡 + 2 so that a sequence is obtained: good-good, good-normal, and good-

bad). 

Buyers construct the (super-) replication portfolio to obtain at least the state-

dependent accounting characteristics of the business to be valued at a minimum 

price; sellers setup the (supra-) replication portfolio to lose not more than the 

state-dependent accounting characteristics of the business to be valued and to 

achieve a maximum price. Note with respect to the optimization potential: If 

there are more companies than states, markets will be complete. In such a situa-

tion optimization will be nontrivial because accounting characteristicj can be 

achieved by different combinations of companies. Only if the number of compa-

nies is equal to the number of states, a unique solution (under some regulatory 

conditions) will be obtained thus eliminating any optimization potential. 

Second, expected values and risk measures (e.g., Lower Partial Moments, Value 

at Risk etc.) based on the distribution of accounting characteristics are em-

ployed. Since distributions are considered, state probabilities must be known 

and, hence, a situation under risk is obtained. 

Buyers construct the (super-) replication portfolio to obtain the expected value 

of the accounting characteristics of the business to be valued at a minimum 

price, sellers setup the (supra-) replication portfolio to lose not more than the 

expected value of the accounting characteristics of the business to be valued and 

to achieve a maximum price. Since risk measures take the fluctuation aspect into 

account, they are regarded as negative. Thus, both buyers and sellers would like 

to keep fluctuations in check. This can be achieved by adding a constraint on the 

risk measure of each accounting characteristic in the optimization problem. 

To implement the risk measure approach in detail, two different paths may be 

chosen. First, expected values and risk measures are computed for each point in 

time. On the one hand, this can be achieved with the help of scenarios. E.g., if 

there are three equally probable realizations of accounting characteristics be-

tween time 𝜏 and 𝜏 + 1, the (conditional) expected values simply is the weighted 

average of the three realizations.—However: If scenarios have already been de-
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rived, it would not be useful to create an information loss by condensing them 

into expected values and risk measures. On the other hand, expected values and 

risk measures are estimated from past realizations using time series estimation. 

If the time series of accounting characteristics are (weakly) stationary, time se-

ries estimators can be applied to obtain estimators of expected values and risk 

measures. Otherwise, the time series must be made (weakly) stationary, e.g., by 

means of using growth rates instead of values of accounting characteristics.—

Caveat: Growth rates have problems in adequately dealing with negative ac-

counting characteristics. Second, the development of expected values and risk 

measures of accounting characteristics over time is modelled. Expected values 

and/or risk measures of accounting characteristics might exhibit constant growth 

or a triangular form over time similar to the expected value forecasts in dividend 

discount models. 

2.5.2 Valuation Model 

Integrating the formalization of risk/uncertainty into the buyers’/sellers’ decision 

problem delivers—objective functions and constraints on portfolio holdings re-

main the same as in Sections 2.3.2 or 2.4.2—9: 

 Accounting characteristics constraints using time- and state-dependent fore-

casts for accounting characteristics 

(5.14) 

𝑁1,𝜏
+ 𝐴1,𝑗,𝜏,𝑠 − 𝑁1,𝜏

− 𝐴1,𝑗,𝜏,𝑠 +⋯+𝑁𝑛,𝜏
+ 𝐴𝑛,𝜏,𝑠 − 𝑁𝑛,𝜏

− 𝐴𝑛,𝑗,𝜏,𝑠

≥⏟
𝑏𝑢𝑦𝑒𝑟

≤⏟
𝑠𝑒𝑙𝑙𝑒𝑟

𝑎𝑗,𝜏,𝑠 

for point in time 𝜏 ∈ {𝑡, … , 𝑇} and state 𝑠 ∈ {1,… , 𝑆𝜏}. 

                                                           
9
 Principally constraints on portfolio holdings could be time- and state-dependent due to, e.g., 

time- and state-variable market impact costs.—However, such an approach seems to be arti-
ficially complicated and will hide the structure of the decision problem behind technicalities. 
Therefore, we will not consider this case. 
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 Accounting characteristics constraints using expected values and risk 

measures for accounting characteristics 

Expected value 

(5.15) 

𝑁1,𝜏
+ 𝐸𝑡{𝐴1,𝑗,𝜏} − 𝑁1,𝜏

− 𝐸𝑡{𝐴1,𝑗,𝜏} +⋯+ 𝑁𝑛,𝜏
+ 𝐸𝑡{𝐴𝑛,j,𝜏} − 𝑁𝑛,𝜏

− 𝐸𝑡{𝐴𝑛,𝑗,𝜏}

≥⏟
𝑏𝑢𝑦𝑒𝑟

≤⏟
𝑠𝑒𝑙𝑙𝑒𝑟

𝐸𝑡{𝑎𝑗,𝜏} 

Risk measure 

(5.16) 

𝑅𝑀𝑘(𝑁1,𝜏
+ 𝐴1,𝑗,𝜏 − 𝑁1,𝜏

− 𝐴1,𝑗,𝜏 +⋯+𝑁𝑛,𝜏
+ 𝐴𝑛,j,𝜏 − 𝑁𝑛,𝜏

− 𝐴𝑛,𝑗,𝜏)

≤⏟
𝑏𝑢𝑦𝑒𝑟

≤⏟
𝑠𝑒𝑙𝑙𝑒𝑟

𝑅𝑀𝑘(𝑎𝑗,𝜏) 

where 𝑅𝑀𝑘 denote risk measurek. 

The left-hand sides of the accounting characteristics constraints (5.16) com-

prise diversification effects, i.e., financial synergies. This means the accounting 

characteristics of the (super-/supra-) replication portfolio exhibit less fluctua-

tions than the accounting characteristics of an isolated position, the company 

to be valued. If financial synergies are unwanted, risk measures of the isolated 

positions of the (super-/supra-) replication portfolio must be taken instead of 

the risk measure of the (super-/supra-) replication portfolio itself. Note, how-

ever, that financial synergies cannot be excluded from time- and state-

dependent accounting characteristics: There it is impossible to separate the 

influence of an accounting characteristic of one company from the one of 

other companies because risk measures that indicate risk connections, e.g., 

covariances, do not exist and, thus, they cannot be suppressed. 
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2.5.3 Analysis of the Effects of Risk/Uncertainty 

Integrating risk/uncertainty into the optimize-the-price approach introduces ef-

fects to the one-period model of Section 2.2 that are very similar to the multi-

period model of Section 2.4. 

First, more constraints signify less flexibility in determining the (super-/supra-) 

replication portfolios. Hence, buyers’ prices will be higher and sellers’ prices low-

er. 

Second, the right-hand sides of the accounting characteristics constraints (5.14) 

and the constraints on expected values of accounting characteristics (5.15) exert 

influence as well. Assume (the expected value of) accounting characteristicj of 

the company to be valued increases faster (slower) over time as for the compa-

nies of the (super-/supra-) replication portfolio, e.g., due a different phase of the 

company life cycle. Then, the portfolio holdings in the (super-/supra-) replication 

portfolio increase (decrease) meaning higher (lower) prices for buyers and 

sellers. The analyses are slightly more difficult with the risk measure constraints 

(5.16) because of diversification effects. A higher risk measure of the company to 

be valued (right-hand side of (5.16)) does not necessarily translate into higher 

portfolio holdings and, thus, prices.—Recall the right-hand side of (5.16) consti-

tutes just an upper bound. 

Effects (i) and (ii) have contradictory effects on company prices resulting in an 

ambiguous total effect. This ambiguous total effect, however, is similar to the 

one observed with multi-period but deterministic models in Section 2.4.3. 
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2.6 Comparison of the Optimize-the-Price Ap-
proach with Regression Approaches 

2.6.1 Idea Behind and Implementation of the Compari-
son 

Regressions determine regression coefficients for accounting characteristics from 

a group of companies and apply these regression coefficients to the accounting 

characteristics of the company to be valued. In other words, a two-step pricing 

approach is applied. The optimize-the-price approach, on the other hand, is a 

one-step pricing approach because it directly determines the price of the com-

pany to be valued without requiring intermediate steps like the determination of 

regression coefficients.—Due to this completely different determination of prices 

both approaches seem to be difficult to compare. 

However, duality theory might help with the comparison. The variables of the 

dual program of the optimize-the-price approach can be interpreted as regres-

sion coefficients (see Appendix 1.4 for the general derivation and Appendix 1.4.5 

for the dual program). The regression coefficients from regressions can be com-

pared with regression coefficients from the optimize-the-price approach10. 

 Buyer (see Appendix 1.4.5, adjusted to values of accounting characteristics 

and cross section) 

(A1.43) 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 −∑𝛽𝑗 ∙ 𝑎𝑗

𝑚

𝑗=1

 

                                                           
10

 This is possible because the optimize-the price problem meets the requirement of strong du-
ality (see Appendix 1.5). Therefore, the optimal values of the objective function of the primal 
and the dual program coincide. Since we minimize the objective function in the (buyer’s and 
seller’s) dual program, the dual in standard form, however, is characterized by maximizing the 
objective function, the value of both objective functions differ by the factor−1. 
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s.t. 

[(1 − 𝜏) ∙∑|𝜀𝑖
+|𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑|𝜀𝑖
−|𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

𝜇 ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

where 

𝜀𝑖
+ =∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

− 𝑃𝑖 ≥ 0 

𝜀𝑖
− =∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

− 𝑃𝑖 < 0 

 Seller (see Appendix 1.4.7, adjusted to values of accounting characteristics 

and cross section) 

(A1.55) 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 +∑𝛽𝑗 ∙ 𝑎𝑗

𝑚

𝑗=1

 

s.t. 

[(1 − 𝜏) ∙∑|𝜀𝑖
+|𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑|𝜀𝑖
−|𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

𝜇 ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

where 

𝜀𝑖
+ = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 ≥ 0 

𝜀𝑖
− = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 < 0 
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 Regression (see Appendix 1.2.1, adjusted to values of accounting characteris-

tics and cross section) 

(A1.4) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽0,𝛽1,…,𝛽𝑚

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

s.t. 

𝛽0 +∑𝐴1,𝑗𝛽𝑗

𝑚

𝑗=1

− 𝑃1 − 𝜇1
+ ≤ 0 

−𝛽0 −∑𝐴1,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃1 − 𝜇1
− ≤ 0 

⋮ 

𝛽0 +∑𝐴𝑛,𝑗𝛽𝑗

𝑚

𝑗=1

− 𝑃𝑛 − 𝜇𝑛
+ ≤ 0 

−𝛽0 −∑𝐴𝑛,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑛 − 𝜇𝑛
− ≤ 0 

−𝜇1
+ ≤ 0 

−𝜇1
− ≤ 0 

⋮ 

−𝜇𝑛
+ ≤ 0 

−𝜇𝑛
− ≤ 0 

𝛽0 ∈ ℝ, 𝛽1 ∈ ℝ,… , 𝛽𝑚 ∈ ℝ 

2.6.2 Comparison 

When the optimize-the-price approach and regressions are compared, four dif-

ferences arise. 
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(i) Objective function 

The objective function of the optimize-the-price approach and regressions 

differ by the term ∑ 𝛽𝑗 ∙ 𝑎𝑗
𝑚
𝑗=1 , which is missing in regressions. This differ-

ence comes from the fact that the optimize-the-price approach focuses on 

arbitration and not on free lunches as regressions (see Chapter IV, Formula 

(4.2)). Intuitively, the difference is caused by the fact that regressions de-

termine regression coefficients only from the group of companies and then 

apply them to the company to be valued. On the contrary, the optimize-

the-price approach integrates the company to be valued into the determi-

nation of regression coefficients and, thus, can raise the mispricing poten-

tial not only of other companies, but also of the company to be valued. 

Therefore, applying more advanced regressions like generalized least 

squares regression cannot equalize the difference in the objective func-

tions. 

(ii) Buyer versus seller position 

Regressions determine regression coefficients in a way so that the residual 

within the group of companies used for the regression ideally is equal to 

zero. Since the company to be valued cannot exert influence on regression 

coefficients, buyer and seller positions cannot be taken into account. 

The-optimize-the-price approach by constructions optimizes the price, i.e., 

determines regression coefficients in a way so that buyer and seller posi-

tions are taken explicitly into account. 

(iii) Regression coefficients 

First, the optimize-the-price approach has no intercept 𝛽0 as opposed to 

regressions. An intercept, however, is from an asset pricing perspective 

implausible since it means that there is a price component that is inde-

pendent of company-specific accounting characteristics that serve as price 

drivers. Moreover, such an intercept implies (see Chapter IV, Formula (4.6)) 

that portfolio holdings must add to zero. Such a constraint can neither be 

justified from legal environment nor market usages. 
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Second, the optimize-the-price approach can justify a sign restriction on 

regression coefficients. Since the optimize-the-price approach rest upon 

explicitly formulated constraints on portfolio holdings (see (5.5) and (5.8)), 

a non-negativity constraint on portfolio holdings might be used. Then, Ap-

pendix 1.4.6.4, Formula (A1.51) shows that the non-negativity constrains 

on portfolio holdings result in non-negativity constraints on regression co-

efficients. That way, a theoretical/economic foundation of a procedure of 

Campbell/Thompson (2008) is delivered: They recommend using a sign re-

striction on regression coefficients. In particular if a regression coefficient 

has an unexpected sign, they set the regression coefficient equal to zero 

when forming forecasts. 

(iv) Specification problem for the size 𝑔(. ) of the constraint on portfolio hold-

ings 

Regressions do not have a specification problem with respect to size 𝑔(. ) 

because they minimize pricing errors why 𝑥 in Chapter IV, Formula (4.2) 

can be rightfully set equal to 1. On the contrary, the optimize-the-prize-

approach requires the specification of the size 𝑔(. ) as input because oth-

erwise it cannot find an optimal solution: Without 𝑔(. ) the market will not 

be free of an accounting arbitrage. If, however, upper limits for 𝑥 must be 

specified to integrate institutional circumstances, the optimize-the-price 

approach can do this and, hence, is more flexible than regressions because 

in regressions just a given constraint on portfolio holdings can be used. 

3 Empirical Analysis 

3.1 Economic Significance of Price Differences 
Between Different Models 

The analysis of the optimize-the-price approach in Section 2 has shown that 

shape 𝑓(. ) and size 𝑔(. ) of the constraints on portfolio holdings as well as buy-
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ers’ and sellers’ position exert influence on the optimize-the-price approach. 

Moreover, multi-period models are different from one-period models because 

the steady state assumption implied by one-period models does not hold in reali-

ty. Finally, the integrated (optimize-the-price approach) approach is conceptually 

different from the separated approach (regressions) and has no regression inter-

cept; company-independent intercepts are from an asset pricing perspective im-

plausible.—Although all these differences between models are clearly identifia-

ble from a theoretical perspective, it is not clear whether they translate into eco-

nomically significant price differences. 

Therefore, this Section 3 focuses on the economic significance of model differ-

ences by answering the following questions empirically: 

(i) The economic significance of price differences caused by shape 𝑓(. ) and 

size 𝑔(. ) of the constraints on portfolio holdings within the optimize-the-

price approach. 

(ii) The economic significance of price differences between one- and multi-

period versions of the optimize-the-price approach. 

(iii) The economic significance of price differences between integrated (opti-

mize-the-price approach) and separated approaches (regressions) and its 

interplay with/without regression intercepts 𝛽0. 

(iv) The economic significance of differences between buyers’ and sellers’ pric-

es. 

3.2 Research Design and Data Set 

The economic significance of Questions (i), (ii), (iii), and (iv) is analyzed with the 

help of “magnitude” (see Chapter III, Section 4.2) and “similarity” (see Chapter 

III, Section 4.3). In this connection, the answer to Question (iv) is then obtained 

as by-product to the answers of Questions (i), (ii), and (iii). 
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3.2.1 Research Design 

 Question (i): constraints on portfolio holdings 

The shape 𝑓(. ) of the constraints on portfolio holdings is captured by analyz-

ing four different constraints: short sale constraints as well as constraints in 

the form of L1-, L2-, and L∞-norms. The size 𝑔(. ) of the constraint—relevant 

only for the L1-, L2-, and L∞-norms—is addressed by specifying  𝑔(. ) as 𝑥 and 

choosing three values: a small (𝑥 = 0.5), medium (𝑥 = 1), and relatively high 

value (𝑥 = 2).11 

 Question (ii): one- versus multi-period models 

Multi-period models are constructed with 2010 as base year. The years 2011 

to 2014 comprise the development of the accounting characteristics in the 

“future”, i.e., specify the constraints at 𝑡 + 1 to 𝑡 + 4 in (5.12) and (5.13).—

That way, empirical data can be used to represent accounting characteristics 

of the “future” instead of assuming arbitrary values. Both one- and multi-

period models are computed with a non-negativity constraint on portfolio 

holdings only. 

 Question (iii): comparison to regressions 

When comparing the optimize-the-price approach and regressions, it must be 

avoided that two effects are intermingled, namely the effect of different port-

folio holding constraints and the integrated (optimize-the-price approach) 

versus separated (regressions) determination of regression coefficients. 

Therefore, the optimize-the-price approach is computed with that constraint 

on portfolio holdings that is implied by the specific regression model: con-

straints on individual portfolio holdings for quantile regressions (L1-norm) and 

L2-norm constraint for ordinary as well as weighted least squares regressions. 

Then, the pricing results of the (constraints-adjusted) optimize-the-price ap-

proach are compared to those of quantile (25%, 50%, and 75%), ordinary, and 

weighted least squares regressions with and without regression intercepts 𝛽0. 

                                                           
11

 The empirical analysis in Section 3.3.2 demonstrates that these three values for 𝑥 indeed cre-
ate enough diversity. 
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3.2.2 Software 

All computations are performed with RStudio Version 1.1.463 resting upon R ver-

sion 3.6.0 (see R Core Team (2019)) using the following packages: 

 lpSolve (version 5.6.13) for the optimize-the-price approach with non-

negativity constraints on portfolio holdings 

 nloptr (version 1.2.1) for the optimize-the-price approach with constraints on 

portfolio holdings in Lp-norm-form 

 quantreg (version 5.38) for quantile regressions 

 stats (version 3.6.0) for OLS and WLS regressions 

3.2.3 Data Set 

Principally the data set of Chapter III, Section 3.1 is used. However, the computa-

tion time for constraints on portfolio holdings in Lp-norm-form (for 𝑥 = 1) takes 

18,131.05 minutes, i.e., 12.6 days. 

Thus, for Lp-norm constraints only a subset of this data set is considered: indus-

trials from Europe in the year 2014. Since the robustness analyses regarding in-

dustry, region, and year in Chapter III, Sections 4.2.4 and 4.3.4 have shown that 

results regarding “magnitude” and “similarity” are not affected by industry, re-

gion, and year, such a limited data set seems to be acceptable to keep the com-

putation time in check. 
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3.3 Empirical Results 

3.3.1 Cleaning the Results of the Numerical Optimization 

When analyzing the economic significance of the optimize-the-price approach, 

only solutions can be used that constitute (globally) optimal solutions and are 

not just local optima. 

The structure of the optimization problem, in particular, the highly non-linear 

constraints on portfolio holdings in Lp-norm-form, however, makes numerical op-

timization a nontrivial task. The following two incidents give rise to local optima 

and, hence, call for their elimination before economic significance can be exam-

ined: 

(i) The optimization algorithm exceeds the maximum number of iterations. 

(ii) The alleged solution violates constraints of the optimization problem. 

Appendix 5.3 contains details regarding the specific computations that had to be 

eliminated. Incident (i) is relevant in 
47

36,800
= 0.13% of all cases, incident (ii) in 

582

36,800
= 1.58%. In other words, the data loss due to the inability to find a global 

optimum is not severe. 

How can the histograms regarding “magnitude” and “similarity” be adjusted to 

cope with cases from incidents (i) and (ii)? To answer that question, fall back on 

the illustrative example of Chapter III, Section 4.1. 

Assume that prices have been computed for the following companies 𝑈𝑗 with the 

help of factorsi and constraints on portfolio holdings in the form of Lp: 

U1 factor1 L1 U1 factor2 L1 U1 factor3 L1 
U1 factor1 L2 U1 factor2 L2 U1 factor3 L2 
U2 factor1 L1 U2 factor2 L1 U2 factor3 L1 
U2 factor1 L2 U2 factor2 L2 U2 factor3 L2 

Now assume that U1 factor1 L1 is not a global optimum because it belongs to in-

cidents (i) or (ii). Then, it is not meaningful to compute Ratio (3.1) involving U1 
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factor1 L1, i.e., 
U1 factor1 L2−U1 factor1 L1

market price U1
 because using a non-global optimum might 

induce massive biases. The other ratios, however, can still be computed, i.e., 

 U1 factor2 L2 − U1 factor2 L1
market price U1

 
U1 factor3 L2 − U1 factor3 L1

market price U1
 

U2 factor1 L2 −U2 factor1 L1
market price U1

 
U2 factor2 L2 − U2 factor2 L1

market price U1
 

U2 factor3 L2 − U2 factor3 L1
market price U1

 

Therefore, histograms are computed based on the above five instead of original-

ly six Ratios (3.1). 

Finally, a third incident might endanger the judgement of economic significance: 

(iii) The (empirical) solution of the optimize-the-price approach violates the 

theoretical order of Section 2.2.2, namely that 

 an increase in 𝑞 ≡
𝑝

𝑝−1
 and/or 

 a greater right hand side of the constraints on portfolio holdings 

makes the constraints on portfolio holdings (5.5) or rather (5.8) less binding 

a fact that results in lower prices for buyers and higher prices for sellers. 

The following two companies—Britisch American Tobacco and Bayerische Mo-

torenwerke12—are examples of incident (iii). When minimizing the price of a 

portfolio (buyer’s perspective) that offers at least the same amount of sales (fac-

tor M1) as British American Tobacco/Bayerische Motorenwerke, it is obtained: 

Company Constraint on 
portfolio hold-

ings 

Constraint on 
sales 

Price (value of 
the objective 

function in the 
optimum) 

Sales (value of 
the constraint in 

the optimum) 

British American 
Tobacco 

L1, 𝑥 = 1 

16.96 (in billion 
EUR) 

-89.15 (in billion 
EUR) 

16.96 (in billion 
EUR) 

L2, 𝑥 = 1 -66.85 (in billion 
EUR) 

31.18 (in billion 
EUR) 

Bayerische Mo-
torenwerke 

L1, 𝑥 = 1 

80.40 (in billion 
EUR) 

5.12 (in billion 
EUR) 

80.40 (in billion 
EUR) 

L2, 𝑥 = 1 5.83 (in billion 
EUR) 

85.60 (in billion 
EUR) 

Table 5.1: Examples where a L2-norm constraint delivers higher prices for buyers than a L1-
norm constraint although theory suggests that prices for L2-norm constraints can-
not exceed those for L1-norm constraints. 

                                                           
12

 Both companies have been chosen because they belong to the top five companies that pro-
duce incidents (i) or (ii). 
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Table 5.1 illustrates two seemingly puzzling results: Prices for British American 

Tobacco and Bayerische Motorenwerke for L2 exceed those for L1 even though 

theory states that a less binding constraint on portfolio holdings (L2) cannot lead 

to higher prices that a more binding constraint (L1). This puzzle can be resolved if 

the value of the accounting constraint in the optimum is taken into considera-

tion. With a L1-norm constraint on portfolio holdings sales of 16.96 billion EUR 

(British American Tobacco) or 80.40 billion EUR (Bayerische Motorenwerke) are 

priced. However, using the L2-norm constraint on portfolio holdings results in 

sales of 31.18 billion EUR (British American Tobacco) or 85.60 billion EUR (Bayer-

ische Motorenwerke). In other words, with a L2-norm constraint on portfolio 

holdings super-replication occurs. Higher sales, however, justify a higher price 

meaning that incident (iii) should not be eliminated from assessing economic sig-

nificance. Therefore, incident (iii) bears some similarity to the case from Section 

2.2.2 where, under rare circumstances, prices of sellers were less than prices of 

buyers. 

Note, however, two things in connection with incident (iii). First, super-

replication does not necessarily lead to distorted price relations between L1-

norm and L2-norm constraints on portfolio holdings: 

Company Constraint on 
portfolio hold-

ings 

Constraint on 
sales 

Price (value of 
the objective 

function in the 
optimum) 

Sales (value of 
the constraint in 

the optimum) 

British American 
Tobacco 

L1, 𝑥 = 0.5 

16.96 (in billion 
EUR) 

5.08 (in billion 
EUR) 

17.24 (in billion 
EUR) 

L2, 𝑥 = 0.5 -26.52 (in billion 
EUR) 

26.49 (in billion 
EUR) 

Table 5.2: Examples where a L2-norm constraint delivers lower prices for buyers than a L1-
norm constraint despite super-replication. 

Second, sales have only a limited role in explaining prices. Theoretically, several 

accounting characteristics are needed to adequately reflect the multi-

dimensionality of the figure cash flows that condense several value drivers into 

one figure. Empirically, actual market prices of British American Tobacco (79.22 

billion EUR) and Bayerische Motorenwerke (58.9335 billion EUR) are far away 

from the prices that the optimize-the-price approach based on sales computes. 
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This means that market prices obviously are driven by other factors than sales 

alone. 

3.3.2 Economic Significance of Shape and Size of Con-
straints on Portfolio Holdings 

Analyzing the economic significance of shape and size of the constraints on port-

folio holdings of the one-period model (5.5) and (5.8) requires: First, prices for 

several different constraints in Lp-norm-form (shape) and values of 𝑥 (size) are 

computed for buyers and sellers. Second, these prices are compared to each 

other to analyze how different constraints in Lp-norm-form and 𝑥 result in differ-

ent “magnitudes” of price differences and, third, which Lp-norm-form and 𝑥 

combinations result in “similar” prices. 

3.3.2.1 “Magnitude” of Price Differences of Different Shapes and 
Sizes of Constraints on Portfolio Holdings 

“Magnitude” is computed as (normalized) difference between company values 

determined from all pricing approaches and the company value determined from 

the model under consideration. It is formalized by means of Ratio (3.1) (see 

Chapter III, Section 2.1.3.2) and will be regarded as high if Ratio (3.1) exceeds 

10%. 

3.3.2.1.1 The Role of Shape 

To analyze the economic significance of shape, it is useful to break up the joint 

effect of position (buyer or seller) and shape of constraints in order to obtain a 

ceteris paribus analysis. 

Consider 𝑥 = 1 as an example (all other values for 𝑥 can be found in Appendix 

5.2.1.1.1). Then, it is obtained for buyers’ and sellers’ positions: 
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Figure 5.1: Histogram of Ratio (3.1) and x=1 for different shapes for buyers 
Non-negativity constraint and valuation for buyer (OTPB)) 
L1-norm constraint and valuation for buyer (OTPB_L1) 
L2-norm constraint and valuation for buyer (OTPB_L2) 

L-norm constraint and valuation for buyer (OTPB_LInf) 

 

Figure 5.2: Histogram of Ratio (3.1) and x=1 for different shapes for sellers 
Non-negativity constraint and valuation for the seller (OTPS) 
L1-norm constraint and valuation for the seller (OTPS_L1) 
L2-norm constraint and valuation for the seller (OTPS_L2) 

L-norm constraint and valuation for the seller (OTPS_LInf) 

Figure 5.1 and Figure 5.2 demonstrate that the shape of constraints on portfolio 

holdings is economically highly significant. In addition, these differences in 
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“magnitude” are not caused by different factors as the figures in Appendix 

5.2.1.1.1 starting with Figure Appendix 5.2.1.1.1g show. 

From an economic perspective, these shape effects portrayed in Figure 5.1 and 

Figure 5.2 can be explained as follows: Ratio (3.1) subtracts the price obtained 

from the reference model (the reference model is the one mentioned in the leg-

end) from the prices of the other models. A L1-norm constraint on portfolio hold-

ings is more restrictive than a L2-norm constraint which in turn is more restrictive 

than a L∞-norm constraint. Therefore, prices of buyers with L∞-norm constraints 

are the smallest, those with L2-norm constraints are in the middle, and those 

with L1-norm constraints are the highest. Yet, all three types of constraints allows 

for short sales. These are forbidden in the OTB version why this approach yields 

the highest (= worst) prices for buyers. 

For the seller the order of L1-, L2-, and L∞-norm constraints on portfolio holdings 

is the same. Therefore, sellers obtain best prices from L∞-norm constraints fol-

lowed by L2- and L1-norm constraints. Lowest prices for sellers are achieved with 

short sale constraints OTS: Sellers cannot sell low price companies short and in-

vest proceeds in high price companies. 

3.3.2.1.2 The Role of Size 

A higher size 𝑥 means less binding constraints on portfolio holdings and, thus, 

lower prices for buyers and higher prices for sellers. What Figure 5.3 and Figure 

5.4, however, illustrate for a L1-norm constraint on portfolio holdings—the fig-

ures for the other constraints on portfolio holdings can be found in Appendix 

5.2.1.1.2—is the extreme effect of size 𝑥 on Ratios (3.1), i.e., the high economic 

significance of size 𝑥 on “magnitude”: 
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Figure 5.3: Histogram of Ratio (3.1) and L1 for different sizes x for buyers 

 

Figure 5.4: Histogram of Ratio (3.1) and L1 for different sizes x for sellers 

The high economic significance of size 𝑥 is not limited to certain factors as the 

figures in Appendix 5.2.1.1.2 starting with Figure Appendix 5.2.1.1.2g show. 

3.3.2.1.3 Prices of Buyers Versus Sellers 

The economic significance of buyers’ and sellers’ positions becomes even more 

apparent if prices for buyers and sellers are compared directly. To that end, con-

sider the ensuing exemplary figures, all figures can be found in Appendix 

5.2.1.1.3: 
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Figure 5.5: Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints in non-negativity form 

 

Figure 5.6: Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints of shape L1 and size x=1 

Figure 5.5 and Figure 5.6 clarify that it is essential with respect to economic sig-

nificance to distinguish between buyers’ and sellers’ positions. In other words, if 

both positions are not analyzed separately, optimization potential—lower prices 

for buyers and higher prices for sellers—remains unused. Moreover, Figure 5.6 

contains an example for the rare cases where buyers’ prices exceed those of 

sellers (see, e.g., category +50% and red column; a positive number indicates 
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that the reference model seller produces a price that is less than the one for 

buyers; see Section 2.2.2 for an economic explanation). 

In addition, factors play a role when analyzing economic significance of buyers’ 

and sellers’ positons as the following exemplary figure demonstrates (all figures 

can be found in Appendix 5.2.1.1.3 starting with Figure Appendix 5.2.1.1.3k): 

 

Figure 5.7: Histogram of Ratio (3.1) of buyers’ and sellers’ prices and portfolio holdings con-
straints in non-negativity form broken down by factors 

Multi-factor models produce lesser Ratios (3.1) than single-factor models since 

their optimization potential is reduced due to more accounting characteristics 

constraints. Nevertheless, they are also unable to produce Ratios (3.1) of less 

than 10% that have been defined as acceptable in Chapter III, Section 2.1.3.2. In 

other words, even for multi-factor models it is required to separate buyers’ from 

sellers’ positions. 

3.3.2.2 “Similarity” of Price Differences of Different Shapes and 
Sizes of Constraints on Portfolio Holdings 

While “magnitude” stresses the price differences between models, i.e., focuses 

on dissimilarities, “similarity” concentrates on the common aspects of models. 

“Similarity” is computed with the help of Area (3.3) (see Chapter III, Section 

2.1.3.3) and regarded as high if Area (3.3) is less than 10%. 
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3.3.2.2.1 The Role of Shape 

Since “magnitude” results in shapes that create economically significant differ-

ences, “similarity” cannot deliver other results. In fact, Appendix 5.2.1.2.1 shows 

that using different shapes of constraints on portfolio holdings translates into 

Areas (3.3) that all are in the > 500% region (irrespective of whether it is broken 

down by factor or not). In other words, the criterion “similarity” also stresses the 

economic significance of the role of shape. 

3.3.2.2.2 The Role of Size 

The role of size 𝑥 is of high economic significance (similarly to shape): Different 

sizes 𝑥 on constraints on portfolio holdings translate into Areas (3.3) that all are 

in the > 500% region (irrespective of whether it is broken down by factor or not) 

as Appendix 5.2.1.2.2 shows. 

3.3.2.3 Summary on the Economic Significance of Shape and Size 
of Constraints on Portfolio Holdings 

Shape and size 𝑥 of the constraints on portfolio holdings as well as decision mak-

ers’ position (buyer and seller) exert huge influence on buyers’ and sellers’ com-

pany values, i.e., are of high economic significance. 

Therefore, on the one hand, a separate price determination of buyers’ and 

sellers’ position is mandatory. On the other hand, constraints on portfolio hold-

ings (shape and size) should be modelled wisely. In particular, they should not be 

implied as, e.g., it is the case with regression approaches. Given that constraints 

in Lp-norm-form cannot be justified from institutional circumstances (see Section 

2.1.2), a non-negativity constraint on portfolio holdings as the sole constraint 

should be imposed. Non-negativity constraints do not have to specify the size 𝑥, 

constraints in Lp-norm-form sometimes result in negative prices (due to the short 

sale in the (super-/supra-) replication portfolio), and the practical implementa-

tion of short sales for “normal” companies might prove difficult. 
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3.3.3 Economic Significance of One- versus Multi-Period 
Versions of the Optimize-the-Price Approach 

Economic significance boils down to the question whether the steady state as-

sumption of the one-period model might not be completely unrealistic. There-

fore, “similarity” (Area (3.3)) of one- and multi-period models is the decisive as-

pect of economic significance when one- and multi-period models are compared. 

3.3.3.1 Graphical Analysis 

“Similarity” figures (figures regarding “magnitude” can be found in Appendix 

5.2.2.2) differentiated between buyers and sellers and with non-negativity con-

straints on portfolio holdings reveal: 

 

Figure 5.8: Histogram of Area (3.3) of price differences between one- and multi-period ver-
sions of the optimize-the-price approach with non-negativity constraints on port-
folio holdings and buyers’ position 
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Figure 5.9: Histogram of Area (3.3) of price differences between one- and multi-period ver-
sions of the optimize-the-price approach with non-negativity constraints on port-
folio holdings and sellers’ position 

Figure 5.8 illustrates that the steady state assumption of the one-period model 

partially works not bad for buyers, but is definitely bad for sellers. Obviously, the 

two differences between one- and multi-period models ((i) increasing number of 

constraints on accounting characteristics (5.12) and (5.13) and, thus, less optimi-

zation potential; (ii) time trend in the size 𝑥 of constraints on portfolio holdings; 

see Appendix 5.2.2.1) compensate each other better in the case of buyers than in 

the case of sellers. 

A look at different factors (see Appendix 5.2.2.3) might help to explain these re-

sults. Multi-factor models produce low “similarity” for buyers as opposed to the 

one-factor models M1 “Net Sales Or Revenues (SA)” and M8 “Book Value Of 

Common Equity”. Yet these models do not possess the best explanatory power 

regarding company values—several accounting characteristics are needed to ad-

equately reflect the multi-dimensionality of the figure cash flows that condense 

several value drivers into one figure—, a fact that might explain why there is not 

much of a difference between one- and multi-period variants of the optimize-

the-price approach. 

Finally, the different degrees of “similarity” between buyers and sellers deserve 

some consideration. Non-negativity constraints on portfolio holdings prevent 
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buyers from selling expensive companies short in the (super-) replication portfo-

lio why the price of the (super-) replication portfolio cannot be reduced that 

much. On the other hand, non-negativity constraints on portfolio holdings prove 

less restrictive for sellers since they are concerned with purchasing expensive 

companies in the (supra-) replication portfolio to end up with a high price for the 

company to be valued. In other words, non-negativity constraints exert a direct 

influence on the (super-), but only an indirect one (limits the number of purchas-

es) on the (supra-) replication portfolio. 

3.3.3.2 Summary on the Economic Significance of One- and Multi-
Period Versions of the Optimize-the-Price Approach 

Given the results regarding “similarity”, it becomes apparent that price differ-

ences between one- and multi-period versions of the optimize-the-price ap-

proach are economically significant. Put differently, a one-period model is empir-

ically not a good approximation of multi-period models and the steady state as-

sumption implied by the one-period model is clearly violated empirically. 

3.3.4 Economic Significance of Integrated (Optimize-the-
Price Approach) versus Separated Approaches (Re-
gressions) 

Analyzing the integrated versus the separated approaches means examining em-

pirically, how much optimization potential is not used if a free lunch (separated 

approach) is considered instead of an arbitration (integrated approach). 

3.3.4.1 “Magnitude” of the Price Differences between Integrated 
(Optimize-the-Price Approach) versus Separated Ap-
proaches (Regressions) 

Since the optimize-the-price approach is equipped with a constraint on portfolio 

holdings that matches the one implied by the respective regression approaches 

(see Section 3.2.1), it is not necessary to distinguish between shape and size of 
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the constraints on portfolio holdings. Therefore, the results regarding “magni-

tude” can be directly accessed: 

 

Figure 5.10: Histogram of Ratio (3.1) of buyers’ price differences between quantile regressions 
and the optimize-the-price approach with a constraint on portfolio holdings in L1-
norm-form

13
 

Figure 5.10 illustrates, first, the huge differences between prices computed with 

the help of regressions and the optimize-the-price approach and, second, that 

the prices of the optimize-the price-approach are well below the ones obtained 

by means of regressions.—Similar results are obtained for OLS and WLS regres-

sions; see Appendix 5.2.3.2.1 starting with Figure Appendix 5.2.3.2.1g. 

Principally the same picture is obtained for sellers. This time, however, the price 

of the seller following the optimize-the-price approach exceeds the one obtained 

from regressions (see Appendix 5.2.3.2.1): 

                                                           
13

 Recall that the dual program of the optimize-the-price approach must be compared to the 
primal program of regressions and a L∞-constraint in the primal program translates into a L1-
constraint in the dual program. 



Chapter V 

174 

 

Figure 5.11: Histogram of Ratio (3.1) of sellers’ price differences between quantile regressions 
and the optimize-the-price approach with a constraint on portfolio holdings in L1-
norm-form 

In other words, focusing on a free lunch instead of following arbitration leaves an 

economically highly significant optimization potential on the table. Moreover, it 

becomes clear that regressions formally seem to represent buyers’ position be-

cause they minimize prices (see Chapter IV, Formula (4.5)). However, this section 

illustrates that the focus on free lunches instead of arbitration cannot at all ad-

dress the buyers’ position. 

Finally, note, first, that regressions without an intercept do not change the find-

ings so far: Regressions without intercept are the theoretically superior model 

(see Chapter IV, Section 3.1.3) and produce economically significant lower prices 

(see Appendix 5.2.3.1.1). Nevertheless they ignore arbitration and, hence, devi-

ate economically significantly from prices of the optimize-the-price approach. 

Second, all results do not change if broken down by factors, see Appendices 

5.2.3.2.1 and 5.2.3.3.1. 
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3.3.4.2 “Similarity” of the Price Differences between Integrated 
(Optimize-the-Price Approach) versus Separated Ap-
proaches (Regressions) 

Since “magnitude” illustrates economically significant price differences between 

the optimize-the-price approach and regressions, “similarity” cannot deliver dif-

ferent results. In fact, Appendices 5.2.3.2.2 and 5.2.3.3.2 demonstrate the eco-

nomically significant low degree of “similarity” between both approaches that al-

so holds when broken down by factors and for regressions with and without in-

tercept. 

3.3.4.3 Summary on the Economic Significance of Integrated (Op-
timize-the-Price Approach) versus Separated Approaches 
(Regressions) 

The price differences between the integrated (optimize-the-price approach) and 

the separated approaches (regressions) are of very high economic significance. 

Therefore, ignoring—like regressions do—the price optimization potential of the 

company to be valued (arbitration) and instead focusing only on free lunches im-

plies an economically significant mispricing. In particular, regressions can neither 

be associated with buyers’ nor sellers’ perspectives. 

4 Conclusion 

Valuing businesses by means of present values is the only correct approach from 

an asset pricing theory perspective because present values follow from no arbi-

trage, i.e., the intuition that a positive investment is needed to generate a posi-

tive return meaning that one gets nothing for free. However, no-arbitrage theory 

is difficult to translate into applicable valuation models for companies. There-

fore, combining the practicability of accounting-based valuation models with the 

theoretical rigor of asset pricing theory might bring business valuation a visible 
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step forward.—The optimize-the-price approach is our solution to the business 

valuation task: 

From a theoretical perspective, the optimize-the-price approach is based on the 

economic principle and is able to integrate constraints on portfolio holdings that 

are in line with the institutional environment and market usages. Moreover, the 

optimize-the-price approach can distinguish between buyers’ and sellers’ posi-

tion, use the mispricing potential of the company to be valued (arbitration) in-

stead of focusing only on mispricing of other companies (free lunch), and can in-

tegrate synergies, multi-period valuations as well as risk. 

From an empirical perspective, the price differences between the integrated (op-

timize-the-price approach) and the separated approaches (regressions) as well as 

price differences between buyers and sellers are of very high economic signifi-

cance measured with the help of “magnitude” and ”similarity”. 

From the perspective of a practical business valuation, a multi-period version of 

the optimize-the-price approach together with a non-negativity constraint on 

portfolio holdings is suited best: First, the steady state assumption of a one-

period model is not given in reality. Second, constraints in Lp-norm-form cannot 

be justified from institutional circumstances and sometimes result in negative 

prices (due to the short sale in the (super-/supra-) replication portfolio). Moreo-

ver, the practical implementation of short sales for “normal” companies might 

prove difficult. 
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Appendix 

Appendix 1 Lagrange Duality 

Appendix 1.1 A Primer on the Implementation 
Steps of Lagrange Duality 

Before Lagrange duality is applied to the specific problems of Chapter II, it is use-

ful to present a general overview of how primal programs are transformed into 

dual programs. Once such a central theme is developed, it will be easier to follow 

the specific derivations. 

By giving this primer, we follow the textbook of Boyd/Vandenberghe (2009). 

Appendix 1.1.1 Fundamental Relation Between Primal 
and Dual Program 

Starting point is the primal problem in standard form, i.e., a minimization prob-

lem where inequality constraints are in less-than-or-equal-to-zero form (see 

Boyd/Vandenberghe (2009), Formula 5.1, p. 215) 

(A1.1) 

minimize 𝑓0(𝑧) 

subject to 𝑓𝑖(𝑧) ≤ 0,     𝑖 = 1,… ,𝑚 

ℎ𝑖(𝑧) = 0,     𝑖 = 1, … , 𝑝 

with decision variables 𝑧 ∈ ℝ𝑛. 

The constraints are connected with the objective function by means of a La-

grange function (see Boyd/Vandenberghe (2009), p. 216). 
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(A1.2) 

𝑔(𝜆, 𝜈) = inf
𝑧
 𝐿(𝑥, 𝜆, 𝜈) = inf

𝑧
( 𝑓0(𝑧) +∑𝜆𝑖𝑓𝑖(𝑧)

𝑚

𝑖=1

+∑𝜈𝑖ℎ𝑖(𝑧)

𝑝

𝑖=1

) 

After optimizing the Lagrange function, the dual problem emerges (see 

Boyd/Vandenberghe (2009), Formula 5.16, p. 223): 

(A1.3) 

maximize 𝑔(𝜆, 𝜈) 

subject to 𝜆 ≥ 0 

where 𝜈 is not sign-constrained since it is the Langrange multiplier of the con-

straints in equation form of the primal problem (A1.1). 

Appendix 1.1.2 Steps of Lagrange Duality 

To transform a primal problem to the dual problem (A1.3), the following steps 

must be mastered: 

1st step: reformulate the primal problem in standard form where necessary 

2nd step: write the Lagrange function 

3rd step: differentiate the Lagrange function with respect to decision variables 𝑧 

(but not with respect to the Lagrange multipliers 𝜆 and 𝜈) 

4th step: group the Lagrange function by the variables 𝑧 

5th step: insert the necessary conditions into the Lagrange function 

6th step: formulate the dual problem in accordance with (A1.3) 

Note in this connection that the necessary conditions from the 5th step 

guarantee that the objective function of the dual problem assumes a 

finite value. 

7th step: transform the maximization problem into a minimization problem by 

multiplying the objective by −1 

The original dual program of empirical asset pricing models is a mini-

mization problem (valuation errors are minimized). Consequently, the 

dual problem is a maximization problem. For economic interpreta-
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tions—relation to the economic principle—a minimization problem is 

superior. Hence, the maximization problem is multiplied by −1. 

8th step: reformulate some of the constraints of the dual program to obtain a 

better economic interpretation for them 

Appendix 1.2 Lagrange Dual of the Superordinate 
Category Regression Approaches 

Appendix 1.2.1 Primal Program 

According to Chapter II (Section 3.1, Formulas (2.52) to (2.21)) the general opti-

mization problem of regression approaches reads 

(2.52) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽0,𝛽1,…,𝛽𝑚

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

s.t. 

(2.53) 

overestimation: 𝜀𝑖
∗+ = 𝛽0 + ∑ 𝐴1,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1 − 𝑦1

∗ > 0 

𝜀1
∗+ ≤ 𝜇1

+ 

⋮ 

𝜀𝑛
∗+ ≤ 𝜇𝑛

+ 

underestimation: 𝜀𝑖
∗− = 𝛽0 + ∑ 𝐴1,𝑗

∗ 𝛽𝑗
𝑚
𝑗=1 − 𝑦1

∗ < 0 

𝜀1
∗− ≥ −𝜇1

− or – 𝜀1
∗− ≤ 𝜇1

− 

⋮ 

𝜀𝑛
∗− ≥ −𝜇𝑛

− or −𝜀𝑛
∗− ≤ 𝜇𝑛

− 

(2.54) 

𝜇1
+ ≥ 0, 𝜇1

− ≥ 0,… , 𝜇𝑛
+ ≥ 0, 𝜇𝑛

− ≥ 0, 𝛽0 ∈ ℝ, 𝛽1 ∈ ℝ,… , 𝛽𝑚 ∈ ℝ 
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with 

(2.21) 

(
𝑦1
∗

⋮
𝑦𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝑦1
⋮
𝑦𝑛
) 

(

𝐴1,1
∗ ⋯ 𝐴1,𝑚

∗

⋮ ⋱ ⋮
𝐴𝑛,1
∗ ⋯ 𝐴𝑛,𝑚

∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝐴1,1 ⋯ 𝐴1,𝑚
⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑚

) 

(
𝜀1
∗

⋮
𝜀𝑛
∗
) = (

𝜔1,1 ⋯ 𝜔1,𝑛
⋮ ⋱ ⋮

𝜔𝑛,1 ⋯ 𝜔𝑛,𝑛
)

⏟            
≡𝜔

∙ (

𝜀1
⋮
𝜀𝑛
) 

where 𝑥 is greater than zero and denotes a scaling factor. 

The primal program (2.52) to (2.21) is then formulated in standard form (1st step) 

by plugging in for 𝜀 and expressing all constraints in less-than-or-equal-to-zero 

form: 

(A1.4) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽0,𝛽1,…,𝛽𝑚

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

s.t. 

𝛽0 +∑𝐴1,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦1
∗ − 𝜇1

+ ≤ 0 

−𝛽0 −∑𝐴1,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

+ 𝑦1
∗ − 𝜇1

− ≤ 0 

⋮ 

𝛽0 +∑𝐴𝑛,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑛
∗ − 𝜇𝑛

+ ≤ 0 

−𝛽0 −∑𝐴𝑛,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

+ 𝑦𝑛
∗ − 𝜇𝑛

− ≤ 0 
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−𝜇1
+ ≤ 0 

−𝜇1
− ≤ 0 

⋮ 

−𝜇𝑛
+ ≤ 0 

−𝜇𝑛
− ≤ 0 

𝛽0 ∈ ℝ, 𝛽1 ∈ ℝ,… , 𝛽𝑚 ∈ ℝ 

Appendix 1.2.2 Preparing for Dualization 

The Lagrange function of the primal problem in standard form (A1.4) reads (2nd 

step) 

(A1.5) 

𝐿 = 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

+𝜆1
+(𝛽0 +∑𝐴1,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦1
∗ − 𝜇1

+)+ 𝜆1
−(−𝛽0 −∑𝐴1,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

+ 𝑦1
∗ − 𝜇1

−) 

+⋯ 

+𝜆𝑛
+(𝛽0 +∑𝐴𝑛,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑛
∗ − 𝜇𝑛

+) + 𝜆𝑛
−(−𝛽0 −∑𝐴𝑛,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

+ 𝑦𝑛
∗ − 𝜇𝑛

−) 

+𝛾1
+(−𝜇1

+) + 𝛾1
−(−𝜇1

−) + ⋯+ 𝛾𝑛
+(−𝜇𝑛

+) + 𝛾𝑛
−(−𝜇𝑛

−) 

Forming necessary conditions (3rd step) delivers 

𝜕𝐿

𝜕𝜇1
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇1
+)𝑝−1 

−𝜆1
+ − 𝛾1

+ = 0 

𝜕𝐿

𝜕𝜇1
− = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇1
−)𝑝−1 

−𝜆1
− − 𝛾1

− = 0 

⋮ 
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𝜕𝐿

𝜕𝜇𝑛
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇𝑛
+)𝑝−1 

−𝜆𝑛
+ − 𝛾𝑛

+ = 0 

𝜕𝐿

𝜕𝜇𝑛−
= 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇𝑛
−)𝑝−1 

−𝜆𝑛
− − 𝛾𝑛

− = 0 

𝜕𝐿

𝜕𝛽0
= 𝜆1

+ − 𝜆1
− +⋯+ 𝜆𝑛

+ − 𝜆𝑛
− = 0 

𝜕𝐿

𝜕𝛽1
= 𝜆1

+𝐴1,1
∗ − 𝜆1

−𝐴1,1
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,1
∗ − 𝜆𝑛

−𝐴𝑛,1
∗ = 0 

⋮ 

𝜕𝐿

𝜕𝛽𝑚
= 𝜆1

+𝐴1,𝑚
∗ − 𝜆1

−𝐴1,𝑚
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,𝑚
∗ − 𝜆𝑛

−𝐴𝑛,𝑚
∗ = 0 

because 
1

𝑝
− 1 =

1−𝑝

𝑝
. 

Collecting decision variables 𝜇1
+, 𝜇1

−, … , 𝜇𝑛
+, 𝜇𝑛

− and 𝛽0, 𝛽1, … , 𝛽𝑚 in the Lagrange 

function (A1.5) delivers (4th step) 

(A1.6) 

𝐿 = 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− −⋯− 𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− 

−𝛾1
+ ∙ 𝜇1

+ − 𝛾1
− ∙ 𝜇1

− −⋯− 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
− ∙ 𝜇𝑛

− 

+𝛽0∑𝜆𝑖
+

𝑛

𝑖=1

− 𝛽0∑𝜆𝑖
−

𝑛

𝑖=1

 

+𝛽1∑𝜆𝑖
+ ∙ 𝐴𝑖,1

∗

𝑛

𝑖=1

− 𝛽1∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,1
∗  

+⋯ 

+𝛽𝑚∑𝜆𝑖
+ ∙ 𝐴𝑖,𝑚

∗

𝑛

𝑖=1

− 𝛽𝑚∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,𝑚
∗  
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−∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

To prepare for inserting the necessary conditions into the Lagrange function (5th 

step), an intermediate transformation is recommended. Each necessary condi-

tion with respect to 𝜇𝑖
+ and 𝜇𝑖

− is multiplied by its 𝜇𝑖
+ or 𝜇𝑖

− respectively. Then, all 

these multiplied necessary conditions are added, a procedure that results in 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝 

−𝜆1
+ ∙ 𝜇1

+ − 𝛾1
+ ∙ 𝜇1

+ 

+𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝 

−𝜆1
− ∙ 𝜇1

− − 𝛾1
− ∙ 𝜇1

− 

+⋯ 

+𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝 

−𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
+ ∙ 𝜇𝑛

+ 

+𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝 

−𝜆𝑛
− ∙ 𝜇𝑛

− − 𝛾𝑛
− ∙ 𝜇𝑛

− = 0 

i.e., after collecting associated 𝜇𝑖
+ and 𝜇𝑖

− 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

 

⋅ [(1 − 𝜏) ⋅ (𝜇1
+)𝑝 + 𝜏 ⋅ (𝜇1

−)𝑝 +⋯+ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝 + 𝜏 ⋅ (𝜇𝑛

−)𝑝⏟                                        

=(1−𝜏)⋅∑ (𝜇𝑖
+)
𝑝𝑛

𝑖=1 +𝜏⋅∑ (𝜇𝑖
−)
𝑝𝑛

𝑖=1

] 

−𝜆1
+ ∙ 𝜇1

+ − 𝛾1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− − 𝛾1
− ∙ 𝜇1

− 

−⋯ 

−𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− − 𝛾𝑛
− ∙ 𝜇𝑛

− = 0 
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and thus 

(A1.7) 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝛾1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− − 𝛾1
− ∙ 𝜇1

− 

−⋯ 

−𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− − 𝛾𝑛
− ∙ 𝜇𝑛

− = 0 

because 
1−𝑝

𝑝
+ 1 =

1

𝑝
. 

Plugging the aggregated necessary conditions for 𝜇 (A1.7) and the necessary 

conditions for 𝛽 into Lagrange function (A1.6) yields (5th step) 

𝐿 = 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− −⋯− 𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− 

−𝛾1
+ ∙ 𝜇1

+ − 𝛾1
− ∙ 𝜇1

− −⋯− 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
− ∙ 𝜇𝑛

−⏟                            
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.7)

 

+𝛽0∑𝜆𝑖
+

𝑛

𝑖=1

− 𝛽0∑𝜆𝑖
−

𝑛

𝑖=1⏟            

=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 
𝜕𝐿
𝜕𝛽0

=0

 

+𝛽1∑𝜆𝑖
+ ∙ 𝐴𝑖,1

∗

𝑛

𝑖=1

− 𝛽1∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,1
∗

⏟                    

=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 
𝜕𝐿
𝜕𝛽1

=0

 

+⋯ 

+𝛽𝑚∑𝜆𝑖
+ ∙ 𝐴𝑖,𝑚

∗

𝑛

𝑖=1

− 𝛽𝑚∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,𝑚
∗

⏟                      

=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 
𝜕𝐿
𝜕𝛽𝑚

=0

 

−∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

Consequently, it is obtained 
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(A1.8) 

𝐿 = −∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

Appendix 1.2.3 Dual Program: First Version 

The adaption of the general dual program (A1.3) to the regression environment 

(6th step) reads 

(A1.9) 

max
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛾1
+,𝛾1

−,…,𝛾𝑛
+,𝛾𝑛

−

−∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

s.t. 

𝜕𝐿

𝜕𝜇1
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇1
+)𝑝−1 

−𝜆1
+ − 𝛾1

+ = 0 

𝜕𝐿

𝜕𝜇1
− = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇1
−)𝑝−1 

−𝜆1
− − 𝛾1

− = 0 

⋮ 

𝜕𝐿

𝜕𝜇𝑛
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇𝑛
+)𝑝−1 

−𝜆𝑛
+ − 𝛾𝑛

+ = 0 

𝜕𝐿

𝜕𝜇𝑛−
= 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇𝑛
−)𝑝−1 

−𝜆𝑛
− − 𝛾𝑛

− = 0 

𝜕𝐿

𝜕𝛽0
= 𝜆1

+ − 𝜆1
− +⋯+ 𝜆𝑛

+ − 𝜆𝑛
− = 0 
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𝜕𝐿

𝜕𝛽1
= 𝜆1

+𝐴1,1
∗ − 𝜆1

−𝐴1,1
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,1
∗ − 𝜆𝑛

−𝐴𝑛,1
∗ = 0 

⋮ 

𝜕𝐿

𝜕𝛽𝑚
= 𝜆1

+𝐴1,𝑚
∗ − 𝜆1

−𝐴1,𝑚
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,𝑚
∗ − 𝜆𝑛

−𝐴𝑛,𝑚
∗ = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 

𝛾1
+ ≥ 0, 𝛾1

− ≥ 0,… , 𝛾𝑛
+ ≥ 0, 𝛾𝑛

− ≥ 0 

The objective function of the maximization problem (A1.9) reads 

max
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛾1
+,𝛾1

−,…,𝛾𝑛
+,𝛾𝑛

−

−∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

 

Hence, the maximization problem (A1.9) easily translates into a minimization 

problem (7th step) and the first version of the dual program is obtained. 

(A1.10) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛾1
+,𝛾1

−,…,𝛾𝑛
+,𝛾𝑛

−

∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

 

s.t. 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝−1 − 𝜆1

+ − 𝛾1
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝−1 − 𝜆1

− − 𝛾1
− = 0 

⋮ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝−1 − 𝜆𝑛

+ − 𝛾𝑛
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝−1 − 𝜆𝑛

− − 𝛾𝑛
− = 0 

𝜆1
+ − 𝜆1

− +⋯+ 𝜆𝑛
+ − 𝜆𝑛

− = 0 
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𝜆1
+𝐴1,1

∗ − 𝜆1
−𝐴1,1

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,1

∗ − 𝜆𝑛
−𝐴𝑛,1

∗ = 0 

⋮ 

𝜆1
+𝐴1,𝑚

∗ − 𝜆1
−𝐴1,𝑚

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,𝑚

∗ − 𝜆𝑛
−𝐴𝑛,𝑚

∗ = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 

𝛾1
+ ≥ 0, 𝛾1

− ≥ 0,… , 𝛾𝑛
+ ≥ 0, 𝛾𝑛

− ≥ 0 

Appendix 1.2.4 Dual Program: Final Version (8th step) 

The necessary conditions of the dual program: first version (A1.10) are a function 

of the decision variables 𝜇𝑖
+ and 𝜇𝑖

− of the primal program (A1.4). For that rea-

son, dual program (A1.10) has no ready economic interpretation and, thus, can-

not serve as economic model selection criterion. Instead, 𝜇𝑖
+ and 𝜇𝑖

− must be re-

moved from the constraints of dual program (A1.10). 

Appendix 1.2.4.1 Determination and thus Elimination of 𝝁𝒊
+ and 

𝝁𝒊
− 

Appendix 1.2.4.1.1 Equations that contain 𝝁𝒊
+ and 𝝁𝒊

− 

The following equations contain 𝜇𝑖
+ and 𝜇𝑖

− and, hence, are candidates for the 

elimination of 𝜇𝑖
+ and 𝜇𝑖

−. 

 Aggregated necessary condition for 𝜇𝑖
+ and 𝜇𝑖

− 

(A1.7) 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝛾1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− − 𝛾1
− ∙ 𝜇1

− 

−⋯ 

−𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− − 𝛾𝑛
− ∙ 𝜇𝑛

− = 0 
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 Necessary conditions with respect to 𝜇𝑖
+ and 𝜇𝑖

− 

(A1.11) 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝−1 − 𝜆1

+ − 𝛾1
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝−1 − 𝜆1

− − 𝛾1
− = 0 

⋮ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝−1 − 𝜆𝑛

+ − 𝛾𝑛
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝−1 − 𝜆𝑛

− − 𝛾𝑛
− = 0 

Appendix 1.2.4.1.2 Solving the Equation System with respect to 𝝁𝒊
+ and 𝝁𝒊

− 

The equation system (A1.7) and (A1.11) is rich enough to allow for a complete 

determination 𝜇𝑖
+ and 𝜇𝑖

− and, hence, elimination of 𝜇𝑖
+ and 𝜇𝑖

− from the con-

straints of dual program (A1.10). Intuitively, it is proceeded as follows: From the 

necessary conditions (A1.11) 𝜇1
−, … , 𝜇𝑛

− are expressed as functions of 𝜇1
+. These 

expressions are then inserted into (A1.7). 

Restructuring (A1.7) leads to 

[(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

=
(𝜆1
+ + 𝛾1

+) ∙ 𝜇1
+ + (𝜆1

− + 𝛾1
−) ∙ 𝜇1

− +⋯+ (𝜆𝑛
+ + 𝛾𝑛

+) ∙ 𝜇𝑛
+ + (𝜆𝑛

− + 𝛾𝑛
−) ∙ 𝜇𝑛

−

𝑥
 

since 𝑥 is by definition greater than zero. 

Reshuffling (A1.11) gains 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝−1 = 𝜆1

+ + 𝛾1
+ 
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𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝−1 = 𝜆1

− + 𝛾1
− 

⋮ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝−1 = 𝜆𝑛

+ + 𝛾𝑛
+ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝−1 = 𝜆𝑛

− + 𝛾𝑛
− 

or rather (after taking the 
1

1−𝑝

th power) 

(A1.12) 

[(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

= 𝑥
1
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

[(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

= 𝑥
1
𝑝−1 ⋅ 𝜏

1
𝑝−1 ⋅ 𝜇1

− ∙ (𝜆1
− + 𝛾1

−)
1
1−𝑝 

⋮ 

[(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

= 𝑥
1
𝑝−1 ⋅ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇𝑛

+ ∙ (𝜆𝑛
+ + 𝛾𝑛

+)
1
1−𝑝 

[(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

= 𝑥
1
𝑝−1 ⋅ 𝜏

1
𝑝−1 ⋅ 𝜇𝑛

− ∙ (𝜆𝑛
− + 𝛾𝑛

−)
1
1−𝑝 

𝜏 is located between 0 and 1 (see, e.g., Koenker (2005), p. 5); 𝜆𝑖
+ and 𝜆𝑖

− as well 

as 𝛾𝑖
+ and 𝛾𝑖

− are nonnegative in the dual program (A1.10). Moreover, 𝜆𝑖
+ and 𝛾𝑖

+ 

(𝜆𝑖
− and 𝛾𝑖

−) will not be both identical to zero. If a purchase occurs in the opti-

mum, 𝜆𝑖
+ will be greater than zero and the nonnegativity constraint on purchases 

will not bind, i.e., 𝛾𝑖
+ = 0. If a sale occurs in the optimum, 𝜆𝑖

+ will be equal to ze-

ro, but 𝛾𝑖
+ will be greater than zero due to the now binding nonnegativity con-

straint. 

Since the left-hand sides of (A1.12) are identical, a relation between 𝜇1
−, … , 𝜇𝑛

− 

and 𝜇1
+ can be established: 
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𝑥
1
𝑝−1 ⋅ 𝜏

1
𝑝−1 ⋅ 𝜇1

− ∙ (𝜆1
− + 𝛾1

−)
1
1−𝑝 = 𝑥

1
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

⋮ 

𝑥
1
𝑝−1 ⋅ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇𝑛

+ ∙ (𝜆𝑛
+ + 𝛾𝑛

+)
1
1−𝑝 = 𝑥

1
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

𝑥
1
𝑝−1 ⋅ 𝜏

1
𝑝−1 ⋅ 𝜇𝑛

− ∙ (𝜆𝑛
− + 𝛾𝑛

−)
1
1−𝑝 = 𝑥

1
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

i.e., 

(A1.13) 

𝜇1
− =

(1 − 𝜏)
1
𝑝−1

𝜏
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆1
− + 𝛾1

−)
1
1−𝑝

 

⋮ 

𝜇𝑛
+ =

(1 − 𝜏)
1
𝑝−1

(1 − 𝜏)
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆𝑛
+ + 𝛾𝑛

+)
1
1−𝑝

 

𝜇𝑛
− =

(1 − 𝜏)
1
𝑝−1

𝜏
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆𝑛− + 𝛾𝑛−)
1
1−𝑝

 

and from (A1.7) 

(A1.14) 

(𝜆1
+ + 𝛾1

+) ∙ 𝜇1
+ + (𝜆1

− + 𝛾1
−) ∙ 𝜇1

− +⋯+ (𝜆𝑛
+ + 𝛾𝑛

+) ∙ 𝜇𝑛
+ + (𝜆𝑛

− + 𝛾𝑛
−) ∙ 𝜇𝑛

− 

= 𝑥
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

since it holds 𝑥
1

𝑝−1
+1
= 𝑥

1+𝑝−1

𝑝−1 = 𝑥
𝑝

𝑝−1. 

Inserting (A1.13) into (A1.14) gains 

(𝜆1
+ + 𝛾1

+) ∙ 𝜇1
+ + (𝜆1

− + 𝛾1
−) ∙

(1 − 𝜏)
1
𝑝−1

𝜏
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆1
− + 𝛾1

−)
1
1−𝑝

 

+⋯ 

+(𝜆𝑛
+ + 𝛾𝑛

+) ∙
(1 − 𝜏)

1
𝑝−1

(1 − 𝜏)
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆𝑛
+ + 𝛾𝑛

+)
1
1−𝑝
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+(𝜆𝑛
− + 𝛾𝑛

−) ∙
(1 − 𝜏)

1
𝑝−1

𝜏
1
𝑝−1

⋅ 𝜇1
+ ∙
(𝜆1
+ + 𝛾1

+)
1
1−𝑝

(𝜆𝑛− + 𝛾𝑛−)
1
1−𝑝

 

= 𝑥
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
𝑝−1 ⋅ 𝜇1

+ ∙ (𝜆1
+ + 𝛾1

+)
1
1−𝑝 

Division14 by 𝜇1
+ and (1 − 𝜏)

1

𝑝−1 ⋅ (𝜆1
+ + 𝛾1

+)
1

1−𝑝 yields 

(𝜆1
+ + 𝛾1

+)
1−

1
1−𝑝 ∙ (1 − 𝜏)

1
1−𝑝 

+(𝜆1
− + 𝛾1

−) ∙
1

𝜏
1
𝑝−1

∙
1

(𝜆1
− + 𝛾1

−)
1
1−𝑝

 

+(𝜆𝑛
+ + 𝛾𝑛

+) ∙
1

(1 − 𝜏)
1
𝑝−1

∙
1

(𝜆𝑛
+ + 𝛾𝑛

+)
1
1−𝑝

 

+(𝜆𝑛
− + 𝛾𝑛

−) ∙
1

𝜏
1
𝑝−1

∙
1

(𝜆𝑛− + 𝛾𝑛−)
1
1−𝑝

= 𝑥
𝑝
𝑝−1 

i.e., 

(A1.15) 

(𝜆1
+ + 𝛾1

+)
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆1

− + 𝛾1
−)

𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝 

+⋯ 

+(𝜆𝑛
+ + 𝛾𝑛

+)
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆𝑛

− + 𝛾𝑛
−)

𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝 = 𝑥

𝑝
𝑝−1 

since it holds 

(𝜆1
− + 𝛾1

−)1 ∙ (𝜆1
− + 𝛾1

−)
1
𝑝−1 = (𝜆1

− + 𝛾1
−)
1+

1
𝑝−1 = (𝜆1

− + 𝛾1
−)

𝑝
𝑝−1 

Taking the 
𝑝

𝑝−1

th root of (A1.15) finally delivers 

(A1.16) 

[
(𝜆1
+ + 𝛾1

+)
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆1

− + 𝛾1
−)

𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝

+⋯

+(𝜆𝑛
+ + 𝛾𝑛

+)
𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆𝑛

− + 𝛾𝑛
−)

𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝

]

𝑝−1
𝑝

= 𝑥 

                                                           
14

 In the case that asset 1 is overvalued, 𝜇
1
+ will be zero. In that case, however, all equations will 

be expressed as a function of 𝜇1
− and the computations will follow the exactly same path. 
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(A1.16) contains the unobservable variables 𝛾𝑖
+ and 𝛾𝑖

−. However, since 𝜆𝑖
+ and 

𝜆𝑖
− as well as 𝛾𝑖

+ and 𝛾𝑖
− are nonnegative in the dual program (A1.10), it holds 

𝜆𝑖
+ + 𝛾𝑖

+ ≥ 𝜆𝑖
+ and 𝜆𝑖

− + 𝛾𝑖
− ≥ 𝜆𝑖

− 

and, hence, 

(A1.17) 

[
(𝜆1
+)

𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆1

−)
𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝

+⋯

+(𝜆𝑛
+)

𝑝
𝑝−1 ∙ (1 − 𝜏)

1
1−𝑝 + (𝜆𝑛

−)
𝑝
𝑝−1 ∙ 𝜏

1
1−𝑝

]

𝑝−1
𝑝

≤ 𝑥 

(A1.17) is the form of a constraint useful for integrating into the dual program 

(A1.10) because it no longer depends on 𝜇𝑖
+ and 𝜇𝑖

− as well as 𝛾𝑖
+ and 𝛾𝑖

−. 

Appendix 1.2.4.2 Dual Program: Final Version 

Substituting (A1.17) for the necessary conditions with respect to 𝜇𝑖
+ and 𝜇𝑖

− in 

the first form of dual program (A1.10), it is finally gained 

(4.1) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
∑(𝜆𝑖

+ − 𝜆𝑖
−) ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

s.t. 

(4.2) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝜆1
+ − 𝜆1

− +⋯+ 𝜆𝑛
+ − 𝜆𝑛

− = 0 

𝜆1
+𝐴1,1

∗ − 𝜆1
−𝐴1,1

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,1

∗ − 𝜆𝑛
−𝐴𝑛,1

∗ = 0 

⋮ 

𝜆1
+𝐴1,𝑚

∗ − 𝜆1
−𝐴1,𝑚

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,𝑚

∗ − 𝜆𝑛
−𝐴𝑛,𝑚

∗ = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 
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(4.1) is the desired final form of the dual program. 

Appendix 1.2.5 Dual Program for the Special Case: p=1 

Since 𝑝 is in the denominator of the final form of the dual program (4.1), the 

special case 𝑝 = 1 cannot be directly seen from (4.1). However, this special case 

can be directly derived from the necessary conditions with respect to 𝜇𝑖
+ and 𝜇𝑖

− 

of the first form of dual program (A1.10): 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝−1 − 𝜆1

+ − 𝛾1
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝−1 − 𝜆1

− − 𝛾1
− = 0 

⋮ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝−1 − 𝜆𝑛

+ − 𝛾𝑛
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝−1 − 𝜆𝑛

− − 𝛾𝑛
− = 0 

With 𝑝 = 1 the above necessary conditions simplify to 

(A1.18) 

𝑥 ⋅ (1 − 𝜏) − 𝜆1
+ − 𝛾1

+ = 0 

𝑥 ⋅ 𝜏 − 𝜆1
− − 𝛾1

− = 0 

⋮ 

𝑥 ⋅ (1 − 𝜏) − 𝜆𝑛
+ − 𝛾𝑛

+ = 0 

𝑥 ⋅ 𝜏 − 𝜆𝑛
− − 𝛾𝑛

− = 0 

Since 𝛾𝑖
+ and 𝛾𝑖

− are nonnegative in the dual program (A1.10), (A1.18) can be 

written without explicit reference to 𝛾𝑖
+ and 𝛾𝑖

− as 

𝑥 ⋅ (1 − 𝜏) − 𝜆1
+ ≤ 0 

𝑥 ⋅ 𝜏 − 𝜆1
− ≤ 0 



Appendix 

194 

⋮ 

𝑥 ⋅ (1 − 𝜏) − 𝜆𝑛
+ ≤ 0 

𝑥 ⋅ 𝜏 − 𝜆𝑛
− ≤ 0 

and, finally, 

(A1.19) 

𝜆1
+ ≤ 𝑥 ⋅ (1 − 𝜏) 

𝜆1
− ≤ 𝑥 ⋅ 𝜏 

⋮ 

𝜆𝑛
+ ≤ 𝑥 ⋅ (1 − 𝜏) 

𝜆𝑛
− ≤ 𝑥 ⋅ 𝜏 

(A1.19) are the desired constraints for integrating into the dual program (A1.10). 

Appendix 1.3 Lagrange Duality of the Superordi-
nate Category Method of Multiples  

Appendix 1.3.1 Primal Program 

The method of multiples does not involve optimization (see Chapter II, Section 

2.2.1) since the multiple—and, thus, company values—is determined completely 

as a function of company characteristics (see (2.23) to (2.27)). 

Put differently, an optimization problem will be adequate to capture the method 

of multiples if it yields as outcome of the optimization the multiple 

(A1.20) 

𝛽𝑗 = 𝑓(𝑦, 𝐴𝑗) 

where 𝑓(. ) is defined in a way so that 𝛽𝑗 always remains positive. 

Note in addition that 𝑓(. ) has no subscript because the function is independent 

of specific accounting figures. It is, e.g., an arithmetic average meaning that 

arithmetic averages are computed for all accounting figures 𝐴𝑗. 
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Note in this connection that several multiples can be used in combination to de-

termine prices (see (2.33)). However, each multiple is determined independently 

of other multiples, a fact that can be formalized as follows: The necessary condi-

tion of multiple 𝛽𝑗 reads 

(A1.21) 

𝜕𝐺𝑗

𝜕𝛽𝑗
= 0 = 𝛽𝑗 − 𝑓(𝑦, 𝐴𝑗) 

where 𝐺 is the yet unknown objective function of the optimization problem. 

𝐺𝑗 can be determined from (A1.21) by means of integration: 

𝐺𝑗 = ∫𝛽𝑗 − 𝑓(𝑦, 𝐴𝑗) 𝑑𝛽𝑗 =
1

2
∙ 𝛽𝑗

2 − 𝑓(𝑦, 𝐴𝑗) ∙ 𝛽𝑗 + 𝑐𝑜𝑛𝑠𝑡 

where 𝑐𝑜𝑛𝑠𝑡 denotes an arbitrary constant. 

Even though technically arbitrary, 𝑐𝑜𝑛𝑠𝑡 should be specified so that a compari-

son to regression approaches can be established.—As long as 𝑐𝑜𝑛𝑠𝑡 does not 

depend on 𝛽𝑗 this procedure will be innocuous. The same is true for adding con-

straints that do not influence the optimal value of 𝛽𝑗. 

Such innocuous 𝑐𝑜𝑛𝑠𝑡 and constraints are any of those that optimize with re-

spect to valuation errors 𝜇𝑖
+ and 𝜇𝑖

− since they play no role in the method of mul-

tiples. To remain comparable to the superordinate category of regression ap-

proaches, its objective function and constraints regarding over- and underesti-

mation might be added. 

This signifies that the following primal program in standard form can be used to 

describe the optimization problem of the method of multiples (1st step): 

(A1.22) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽1,…,𝛽𝑚,
𝜃1,…,𝜃𝑚

∑
1

2
∙ 𝛽𝑗

2 − 𝑓(𝑦, 𝐴𝑗) ∙ 𝛽𝑗

𝑚

𝑗=1

+ 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝
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s.t. 

∑𝐴1,𝑗
∗ 𝜃𝑗

𝑚

𝑗=1

− 𝑦1
∗ − 𝜇1

+ ≤ 0 

−∑𝐴1,𝑗
∗ 𝜃𝑗

𝑚

𝑗=1

+ 𝑦1
∗ − 𝜇1

− ≤ 0 

⋮ 

∑𝐴𝑛,𝑗
∗ 𝜃𝑗

𝑚

𝑗=1

− 𝑦𝑛
∗ − 𝜇𝑛

+ ≤ 0 

−∑𝐴𝑛,𝑗
∗ 𝜃𝑗

𝑚

𝑗=1

+ 𝑦𝑛
∗ − 𝜇𝑛

− ≤ 0 

−𝜇1
+ ≤ 0 

−𝜇1
− ≤ 0 

⋮ 

−𝜇𝑛
+ ≤ 0 

−𝜇𝑛
− ≤ 0 

Note that adding a nonnegativity constraint for 𝛽𝑗 is not adequate. On the one 

hand, because the method of multiples specifies the function 𝑓(𝑦, 𝐴𝑗) to be 

nonnegative. Adding a nonnegativity constraint for 𝛽𝑗 overlooks this institutional 

feature of the method of multiples. On the other hand for formal reasons: Add-

ing a nonnegativity constraint for 𝛽𝑗 (or −𝛽𝑗 ≤ 0 in standard form) would result 

in the following necessary condition for 𝛽𝑗 

𝜕𝐿

𝜕𝛽j
= 𝛽𝑗 − 𝑓(𝑦, 𝐴𝑗) − 𝜆𝛽𝑗 = 0 

where 𝜆𝛽𝑗 (with 𝜆𝛽𝑗 ≥ 0) denotes the Lagrange multiplier of the nonnegativity 

constraint for 𝛽𝑗. 

Therefore a nonnegativity constraint on 𝛽𝑗 cannot reproduce the core result of 

the method of multiples 𝛽𝑗 = 𝑓(𝑦, 𝐴𝑗), but only 𝛽𝑗 ≥ 𝑓(𝑦, 𝐴𝑗). 
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Appendix 1.3.2 Preparing for Dualization 

The Lagrange function of the primal problem in standard form (A1.22) reads (2nd 

step) 

(A1.23) 

𝐿 =∑
1

2
∙ 𝛽𝑗

2 − 𝑓(𝑦, 𝐴𝑗) ∙ 𝛽𝑗

𝑚

𝑗=1

+ 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

+𝜆1
+(∑𝐴1,𝑗

∗ 𝜃𝑗

𝑚

𝑗=1

− 𝑦1
∗ − 𝜇1

+) + 𝜆1
−(−∑𝐴1,𝑗

∗ 𝜃𝑗

𝑚

𝑗=1

+ 𝑦1
∗ − 𝜇1

−) 

+⋯ 

+𝜆𝑛
+(∑𝐴𝑛,𝑗

∗ 𝜃𝑗

𝑚

𝑗=1

− 𝑦𝑛
∗ − 𝜇𝑛

+)+ 𝜆𝑛
−(−∑𝐴𝑛,𝑗

∗ 𝜃𝑗

𝑚

𝑗=1

+ 𝑦𝑛
∗ − 𝜇𝑛

−) 

+𝛾1
+(−𝜇1

+) + 𝛾1
−(−𝜇1

−) + ⋯+ 𝛾𝑛
+(−𝜇𝑛

+) + 𝛾𝑛
−(−𝜇𝑛

−) 

Forming necessary conditions (3rd step) delivers 

(A1.24) 

𝜕𝐿

𝜕𝜇1
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇1
+)𝑝−1 

−𝜆1
+ − 𝛾1

+ = 0 

𝜕𝐿

𝜕𝜇1
− = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇1
−)𝑝−1 

−𝜆1
− − 𝛾1

− = 0 

⋮ 

𝜕𝐿

𝜕𝜇𝑛
+ = 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ 𝑝 ⋅ (𝜇𝑛
+)𝑝−1 

−𝜆𝑛
+ − 𝛾𝑛

+ = 0 

𝜕𝐿

𝜕𝜇𝑛−
= 𝑥 ∙

1

𝑝
∙ [(1 − 𝜏) ∙∑(𝜇𝑖

+)𝑝
𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ 𝑝 ⋅ (𝜇𝑛
−)𝑝−1 

−𝜆𝑛
− − 𝛾𝑛

− = 0 
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𝜕𝐿

𝜕𝜃1
= 𝜆1

+𝐴1,1
∗ − 𝜆1

−𝐴1,1
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,1
∗ − 𝜆𝑛

−𝐴𝑛,1
∗ = 0 

⋮ 

𝜕𝐿

𝜕𝜃𝑚
= 𝜆1

+𝐴1,𝑚
∗ − 𝜆1

−𝐴1,𝑚
∗ +⋯+ 𝜆𝑛

+𝐴𝑛,𝑚
∗ − 𝜆𝑛

−𝐴𝑛,𝑚
∗ = 0 

𝜕𝐿

𝜕𝛽1
= 𝛽1 − 𝑓(𝑦, 𝐴1) = 0 

⋮ 

𝜕𝐿

𝜕𝛽𝑚
= 𝛽𝑚 − 𝑓(𝑦, 𝐴𝑚) = 0 

Collecting decision variables 𝜇1
+, 𝜇1

−, … , 𝜇𝑛
+, 𝜇𝑛

− and 𝜃1, … , 𝜃𝑚 in the Lagrange 

function (A1.23) produces (4th step) 

(A1.25) 

𝐿 = 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− −⋯− 𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− 

−𝛾1
+ ∙ 𝜇1

+ − 𝛾1
− ∙ 𝜇1

− −⋯− 𝛾𝑛
+ ∙ 𝜇𝑛

+ + 𝛾𝑛
− ∙ 𝜇𝑛

− 

+𝜃1∑𝜆𝑖
+ ∙ 𝐴𝑖,1

∗

𝑛

𝑖=1

− 𝜃1∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,1
∗ +

1

2
∙ 𝛽1

2 − 𝑓(𝑦, 𝐴1) ∙ 𝛽1 

+⋯ 

+𝜃𝑚∑𝜆𝑖
+ ∙ 𝐴𝑖,𝑚

∗

𝑛

𝑖=1

− 𝜃𝑚∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,𝑚
∗ +

1

2
∙ 𝛽𝑚

2 − 𝑓(𝑦, 𝐴𝑚) ∙ 𝛽𝑚 

−∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

 

To prepare for inserting the necessary conditions into the Lagrange function (5th 

step), an intermediate transformation is recommended. Each necessary condi-

tion with respect to 𝜇𝑖
+ and 𝜇𝑖

− is multiplied by its 𝜇𝑖
+ and 𝜇𝑖

− respectively. Then, 

all these multiplied necessary conditions are added, a procedure that results in 
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(A1.7) 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝛾1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− − 𝛾1
− ∙ 𝜇1

− 

−⋯ 

−𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝛾𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− − 𝛾𝑛
− ∙ 𝜇𝑛

− = 0 

In a similar vein, each necessary condition with respect to 𝜃𝑖  is multiplied by its 

𝜃𝑖. 

(A1.26) 

𝜕𝐿

𝜕𝜃1
= 𝜆1

+𝐴1,1
∗ ∙ 𝜃1 − 𝜆1

−𝐴1,1
∗ ∙ 𝜃1 +⋯+ 𝜆𝑛

+𝐴𝑛,1
∗ ∙ 𝜃1 − 𝜆𝑛

−𝐴𝑛,1
∗ ∙ 𝜃1 = 0 

⋮ 

𝜕𝐿

𝜕𝜃𝑚
= 𝜆1

+𝐴1,𝑚
∗ ∙ 𝜃𝑚 − 𝜆1

−𝐴1,𝑚
∗ ∙ 𝜃𝑚 +⋯+ 𝜆𝑛

+𝐴𝑛,𝑚
∗ ∙ 𝜃𝑚 − 𝜆𝑛

−𝐴𝑛,𝑚
∗ ∙ 𝜃𝑚 = 0 

Plugging the aggregated necessary conditions for 𝜇 (A1.7) and the multiplied 

necessary conditions for 𝜃 (A1.26) into Lagrange function (A1.25) yields (5th step) 

𝐿 = 𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1
𝑝

 

−𝜆1
+ ∙ 𝜇1

+ − 𝜆1
− ∙ 𝜇1

− −⋯− 𝜆𝑛
+ ∙ 𝜇𝑛

+ − 𝜆𝑛
− ∙ 𝜇𝑛

− 

−𝛾1
+ ∙ 𝜇1

+ − 𝛾1
− ∙ 𝜇1

− −⋯− 𝛾𝑛
+ ∙ 𝜇𝑛

+ + 𝛾𝑛
− ∙ 𝜇𝑛

−⏟                            
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.7)

 

+𝜃1∑𝜆𝑖
+ ∙ 𝐴𝑖,1

∗

𝑛

𝑖=1

− 𝜃1∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,1
∗

⏟                    
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.26)

 

+⋯ 

+𝜃𝑚∑𝜆𝑖
+ ∙ 𝐴𝑖,𝑚

∗

𝑛

𝑖=1

− 𝜃𝑚∑𝜆𝑖
−

𝑛

𝑖=1

∙ 𝐴𝑖,𝑚
∗

⏟                      
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.26)

 

−∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1
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+ ∑
1

2
∙ 𝛽𝑗

2 − 𝑓(𝑦, 𝐴𝑗) ∙ 𝛽𝑗

𝑚

𝑗=1⏟              

=∑ 𝛽𝑗∙ (𝛽𝑗−𝑓(𝑦,𝐴𝑗))⏟          
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.24)

−
1
2
∙𝛽𝑗
2𝑚

𝑗=1

 

Consequently, 

𝐿 = −∑𝜆𝑖
+ ∙ 𝑦𝑖

∗

𝑛

𝑖=1

+∑𝜆𝑖
− ∙ 𝑦𝑖

∗

𝑛

𝑖=1

−
1

2
∙∑𝛽𝑗

2

𝑚

𝑗=1

 

Appendix 1.3.3 Dual Program: First Version 

Adapting the general dual program (A1.3) to the method of multiple environ-

ment (6th step) and translating the maximization problem into a minimization 

problem (7th step) leads to the first version of the dual program: 

(A1.27) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛽1,…,𝛽𝑚,

𝛾1
+,𝛾1

−,…,𝛾𝑛
+,𝛾𝑛

−

∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

+
1

2
∙∑𝛽𝑗

2

𝑚

𝑗=1

 

s.t. 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇1
+)𝑝−1 − 𝜆1

+ − 𝛾1
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇1
−)𝑝−1 − 𝜆1

− − 𝛾1
− = 0 

⋮ 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ (1 − 𝜏) ⋅ (𝜇𝑛
+)𝑝−1 − 𝜆𝑛

+ − 𝛾𝑛
+ = 0 

𝑥 ∙ [(1 − 𝜏) ∙∑(𝜇𝑖
+)𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(𝜇𝑖
−)𝑝

𝑛

𝑖=1

]

1−𝑝
𝑝

⋅ 𝜏 ⋅ (𝜇𝑛
−)𝑝−1 − 𝜆𝑛

− − 𝛾𝑛
− = 0 
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𝜆1
+𝐴1,1

∗ − 𝜆1
−𝐴1,1

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,1

∗ − 𝜆𝑛
−𝐴𝑛,1

∗ = 0 

⋮ 

𝜆1
+𝐴1,𝑚

∗ − 𝜆1
−𝐴1,𝑚

∗ +⋯+ 𝜆𝑛
+𝐴𝑛,𝑚

∗ − 𝜆𝑛
−𝐴𝑛,𝑚

∗ = 0 

𝛽1 − 𝑓(𝑦, 𝐴1) = 0 

⋮ 

𝛽𝑚 − 𝑓(𝑦, 𝐴𝑚) = 0 

𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 

𝛾1
+ ≥ 0, 𝛾1

− ≥ 0,… , 𝛾𝑛
+ ≥ 0, 𝛾𝑛

− ≥ 0 

Appendix 1.3.4 Dual Program: Final Version (8th Step) 

The necessary conditions of the dual program: first version (A1.27) are a function 

of the decision variables 𝜇𝑖
+ and 𝜇𝑖

− of the primal program (A1.22). For that rea-

son, dual program (A1.27) has no ready economic interpretation and, thus, can-

not serve as economic model selection criterion. Instead, 𝜇𝑖
+ and 𝜇𝑖

− must be re-

moved from the constraints of dual program (A1.27). In this, connection, the 

same procedure as in Appendix 1.2.4 can be followed because the necessary 

conditions are identical. For that reason it is obtained 

(4.3) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−,

𝛽1,…,𝛽𝑚

∑(𝜆𝑖
+ − 𝜆𝑖

−) ∙ 𝑦𝑖
∗

𝑛

𝑖=1

+
1

2
∙∑𝛽𝑗

2

𝑚

𝑗=1

 

s.t. 

(4.4) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝛽1 − 𝑓(𝑦, 𝐴1) = 0 

⋮ 

𝛽𝑚 − 𝑓(𝑦, 𝐴𝑚) = 0 
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𝜆1
+ ≥ 0, 𝜆1

− ≥ 0,… , 𝜆𝑛
+ ≥ 0, 𝜆𝑛

− ≥ 0 

𝛽𝑗 remains as artefact in the objective function. 

Appendix 1.4 Lagrange Dual of Optimize-the-Price 
Approaches 

Appendix 1.4.1 Primal Program 

The primal program of the buyer’s optimize-the-price-approach reads (see Chap-

ter V, Formulas (5.3) to (5.5)) 

(5.3) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
𝑃1 ∙ (𝜆1

+ − 𝜆1
−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛

+ − 𝜆𝑛
−) 

s.t. 

(5.4) 

𝐴1,1(𝜆1
+ − 𝜆1

−) + ⋯+ 𝐴𝑛,1(𝜆𝑛
+ − 𝜆𝑛

−) ≥ 𝑎1 

⋮ 

𝐴1,𝑚(𝜆1
+ − 𝜆1

−)+. . . +𝐴𝑛,𝑚(𝜆𝑛
+ − 𝜆𝑛

−) ≥ 𝑎𝑚 

(5.5) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝜆1
+ ≥ 0 

𝜆1
− ≥ 0 

⋮ 

𝜆𝑛
+ ≥ 0 

𝜆𝑛
− ≥ 0 

The primal program (5.3) to (5.5) is then formulated in standard form (1st step) 
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(A1.28) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
𝑃1 ∙ (𝜆1

+ − 𝜆1
−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛

+ − 𝜆𝑛
−) 

s.t. 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

−𝐴1,1 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,1 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) ≤ −𝑎1 

⋮ 

−𝐴1,𝑚 ∙ (𝜆1
+ − 𝜆1

−)−. . . −𝐴𝑛,𝑚 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) ≤ −𝑎𝑚 

−𝜆1
+ ≤ 0 

−𝜆1
− ≤ 0 

⋮ 

−𝜆𝑛
+ ≤ 0 

−𝜆𝑛
− ≤ 0 

Appendix 1.4.2 Preparing for Dualization 

The Lagrange function of the primal problem in standard form (A1.28) reads (2nd 

step) 

(A1.29) 

𝐿 = 𝑃1 ∙ (𝜆1
+ − 𝜆1

−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) 

+𝜇 ∙ ([(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

− 𝑥) 

+𝛽1 ∙ (−𝐴1,1 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,1 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) + 𝑎1) 

+⋯ 

+𝛽𝑚 ∙ (−𝐴1,𝑚 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,𝑚 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) + 𝑎𝑚) 

+𝜈1
+ ∙ (−𝜆1

+) + 𝜈1
− ∙ (−𝜆1

−) + ⋯+ 𝜈𝑛
+ ∙ (−𝜆𝑛

+) + 𝜈𝑛
− ∙ (−𝜆𝑛

−) 

Forming necessary conditions (3rd step) delivers 



Appendix 

204 

𝜕𝐿

𝜕𝜆1
+ = 𝑃1 + 𝜇 ⋅

𝑝 − 1

𝑝
∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝
−1

 

∙ (1 − 𝜏)
1
1−𝑝 ∙

𝑝

𝑝 − 1
∙ (𝜆1

+)
𝑝
𝑝−1

−1
− 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

+ = 0 

𝜕𝐿

𝜕𝜆1
− = −𝑃1 + 𝜇 ⋅

𝑝 − 1

𝑝
∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝
−1

 

∙ (𝜏)
1
1−𝑝 ∙

𝑝

𝑝 − 1
∙ (𝜆1

−)
𝑝
𝑝−1

−1
+ 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

− = 0 

⋮ 

𝜕𝐿

𝜕𝜆𝑛
+ = 𝑃𝑛 + 𝜇 ⋅

𝑝 − 1

𝑝
∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝
−1

 

∙ (1 − 𝜏)
1
1−𝑝 ∙

𝑝

𝑝 − 1
∙ (𝜆𝑛

+)
𝑝
𝑝−1

−1
− 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

+ = 0 

𝜕𝐿

𝜕𝜆𝑛−
= −𝑃𝑛 + 𝜇 ⋅

𝑝 − 1

𝑝
∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝
−1

 

∙ (𝜏)
1
1−𝑝 ∙

𝑝

𝑝 − 1
∙ (𝜆𝑛

−)
𝑝
𝑝−1

−1
+ 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

− = 0 

i.e., 

(A1.30) 

𝜕𝐿

𝜕𝜆1
+ = 𝑃1 + 𝜇 ∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

+ = 0 

𝜕𝐿

𝜕𝜆1
− = −𝑃1 + 𝜇 ∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

− = 0 

⋮ 

𝜕𝐿

𝜕𝜆𝑛
+ = 𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝
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∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

+ = 0 

𝜕𝐿

𝜕𝜆𝑛−
= −𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

− = 0 

because 
𝑝−1

𝑝
− 1 =

−1

𝑝
 and 

𝑝

𝑝−1
− 1 =

1

𝑝−1
. 

Collecting decision variables 𝜆𝑖
+ and 𝜆𝑖

− in the Lagrange function (A1.29) delivers 

(4th step) 

(A1.31) 

𝐿 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚)(𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚)(𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇 ⋅ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

−𝜇 ∙ 𝑥 

To prepare for inserting the necessary conditions into the Lagrange function (5th 

step), an intermediate transformation is recommended. Each necessary condi-

tion with respect to 𝜆𝑖
+ and 𝜆𝑖

− is multiplied by its 𝜆𝑖
+ and 𝜆𝑖

− respectively. Then, 

all these multiplied necessary conditions are added, a procedure that results in 

(because 
1

𝑝−1
+ 1 =

𝑝

𝑝−1
) 

0 = 𝑃1 ∙ 𝜆1
+ + 𝜇 ⋅ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
𝑝
𝑝−1 − 𝛽1 ∙ 𝐴1,1 ∙ 𝜆1

+ −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 ∙ 𝜆1
+ − 𝜈1

+ ∙ 𝜆1
+ 
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−𝑃1 ∙ 𝜆1
− + 𝜇 ⋅ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
𝑝
𝑝−1 + 𝛽1 ∙ 𝐴1,1 ∙ 𝜆1

− +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 ∙ 𝜆1
− − 𝜈1

− ∙ 𝜆1
− 

+⋯ 

+𝑃𝑛 ∙ 𝜆𝑛
+ + 𝜇 ⋅ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
𝑝
𝑝−1 − 𝛽1 ∙ 𝐴𝑛,1 ∙ 𝜆𝑛

+ −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 ∙ 𝜆𝑛
+ − 𝜈𝑛

+ ∙ 𝜆𝑛
+ 

−𝑃𝑛 ∙ 𝜆𝑛
− + 𝜇 ⋅ [(1 − 𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
𝑝
𝑝−1 + 𝛽1 ∙ 𝐴𝑛,1 ∙ 𝜆𝑛

− +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 ∙ 𝜆𝑛
− − 𝜈𝑛

− ∙ 𝜆𝑛
− 

i.e., 

0 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚)(𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚)(𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇 ⋅ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ [
(1 − 𝜏)

1
1−𝑝 ∙ (𝜆1

+)
𝑝
𝑝−1 + (𝜏)

1
1−𝑝 ∙ (𝜆1

−)
𝑝
𝑝−1

+⋯

+(1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
𝑝
𝑝−1 + (𝜏)

1
1−𝑝 ∙ (𝜆𝑛

−)
𝑝
𝑝−1

] 

Note that the last terms in brackets can be written as 

(1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
𝑝
𝑝−1 + (𝜏)

1
1−𝑝 ∙ (𝜆1

−)
𝑝
𝑝−1 

+⋯ 

+(1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
𝑝
𝑝−1 + (𝜏)

1
1−𝑝 ∙ (𝜆𝑛

−)
𝑝
𝑝−1 

= (1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1 + (𝜏)

1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

𝑛

𝑖=1
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Therefore, the multiplied and aggregated necessary condition reads 

(A1.32) 

0 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚)(𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚)(𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇 ⋅ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

Plugging the aggregated necessary conditions for 𝜆 (A1.32) into Lagrange func-

tion (A1.31) yields (5th step) 

𝐿 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚)(𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚)(𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇 ⋅ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

⏟                                    
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.32)

 

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

−𝜇 ∙ 𝑥 

Consequently, it is obtained 

(A1.33) 

𝐿 = −𝜇 ∙ 𝑥 +∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1
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Appendix 1.4.3 Dual Program: First Version 

Adapting the general dual program (A1.3) to the optimize-the-price-approach 

environment (6th step) and translating the maximization problem into a minimi-

zation problem (7th step) leads to 

max
𝜇,𝛽1,…,𝛽𝑚

−𝜇 ∙ 𝑥 +∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

which is equivalent to 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 −∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

and, hence, 

(A1.34) 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 −∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

s.t. 

𝑃1 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

+ = 0 

−𝑃1 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

− = 0 

⋮ 

𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

+ = 0 
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−𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

− = 0 

𝜇 ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

𝜈1
+ ≥ 0,… , 𝜈𝑛

+ ≥ 0 

𝜈1
− ≥ 0,… , 𝜈𝑛

− ≥ 0 

Appendix 1.4.4 Dual Program: Final Version (8th step) 

The necessary conditions of the dual program: first version (A1.34) are a function 

of the decision variables 𝜆𝑖
+ and 𝜆𝑖

− of the primal program (A1.28). For that rea-

son, dual program (A1.34) has no ready interpretation as error minimization 

problem/cannot be related to the superordinate categories regression ap-

proaches and method of multiples. Instead, 𝜆𝑖
+ and 𝜆𝑖

− must be removed from 

the constraints of dual program (A1.34). 

Appendix 1.4.4.1 Determination and thus Elimination of 𝝀𝒊
+ and 

𝝀𝒊
− 

Appendix 1.4.4.1.1 Equations that contain 𝝀𝒊
+ and 𝝀𝒊

− 

The following equations contain 𝜆𝑖
+ and 𝜆𝑖

− and, hence, are candidates for the 

elimination of 𝜆𝑖
+ and 𝜆𝑖

−. 

 Aggregated necessary condition for 𝜆𝑖
+ and 𝜆𝑖

− 

(A1.32) 

0 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚)(𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚)(𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 
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+𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

 Necessary conditions with respect to 𝜆𝑖
+ and 𝜆𝑖

− 

(A1.30) 

𝑃1 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

+ = 0 

−𝑃1 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

− = 0 

⋮ 

𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
1
𝑝−1 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

+ = 0 

−𝑃𝑛 + 𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

 

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
1
𝑝−1 + 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

− = 0 

or 

(A1.35) 

𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
1
𝑝−1 

= 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝑃1⏟                  
=𝜀1

+ 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  (2.53)

+ 𝜈1
+ 

𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
1
𝑝−1 

= 𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚⏟                  
=−𝜀1

− 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  (2.53)

+ 𝜈1
− 



Appendix 

211 

⋮ 

𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
1
𝑝−1 

= 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝑃𝑛⏟                    
=𝜀𝑛

+ 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 (2.53)

+ 𝜈𝑛
+ 

𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
1
𝑝−1 

= 𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚⏟                    
=−𝜀𝑛

− 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 (2.53)

+ 𝜈𝑛
− 

Appendix 1.4.4.1.2 Solving the Equation System with respect to 𝝀𝒊
+ and 𝝀𝒊

− 

The equation system (A1.35) and (A1.32) is rich enough to allow for a complete 

determination of 𝜆𝑖
+ and 𝜆𝑖

− and, hence, elimination of 𝜆𝑖
+ and 𝜆𝑖

− from the con-

straints of dual program (A1.34). Intuitively, it is proceeded as follows: From the 

necessary conditions (A1.35) 𝜆1
−, … , 𝜆𝑛

− are expressed as functions of 𝜆1
+. These 

expressions are then inserted into (A1.32). 

Restructuring (A1.32) leads to 

𝜇 ∙ [(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

+(−𝜀1
+ − 𝜈1

+) ∙ 𝜆1
+ + (−𝜀1

− + 𝜈1
−) ∙ (−𝜆1

−) 

+⋯ 

+(−𝜀𝑛
+ − 𝜈𝑛

+) ∙ 𝜆𝑛
+ + (−𝜀𝑛

− + 𝜈𝑛
−) ∙ (−𝜆𝑛

−) = 0 

or 

(A1.36) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

=
(𝜀1
+ + 𝜈1

+) ∙ 𝜆1
+ + (−𝜀1

− + 𝜈1
−) ∙ 𝜆1

− +⋯+ (𝜀𝑛
+ + 𝜈𝑛

+) ∙ 𝜆𝑛
+ + (−𝜀𝑛

− + 𝜈𝑛
−) ∙ 𝜆𝑛

−

𝜇
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since 𝜇 is by definition greater than zero. 𝜇 is the Langrange multiplier of the 

constraint on portfolio holdings. 𝜇 = 0 implies that this constraint is not binding. 

From an economic perspective this means that no company is purchased and 

sold, i.e., all companies are correctly valued. In such a case, the profit from set-

ting up an “accounting arbitrage” would be zero.—This is, however, a rather un-

realistic case. 

Reshuffling (A1.35) gains 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆1

+)
1
𝑝−1 

=
𝜀1
+ + 𝜈1

+

𝜇
 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (𝜏)
1
1−𝑝 ∙ (𝜆1

−)
1
𝑝−1 

=
−𝜀1

− + 𝜈1
−

𝜇
 

⋮ 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (1 − 𝜏)
1
1−𝑝 ∙ (𝜆𝑛

+)
1
𝑝−1 

=
𝜀𝑛
+ + 𝜈𝑛

+

𝜇
 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

−1
𝑝

∙ (𝜏)
1
1−𝑝 ∙ (𝜆𝑛

−)
1
𝑝−1 

=
−𝜀𝑛

− + 𝜈𝑛
−

𝜇
 

or rather (after taking the 1 − 𝑝th power) 

(A1.37) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝
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= (
𝜀1
+ + 𝜈1

+

𝜇
)

1−𝑝

∙ (1 − 𝜏)−1 ∙ 𝜆1
+ 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

= (
−𝜀1

− + 𝜈1
−

𝜇
)
1−𝑝

∙ (𝜏)−1 ∙ 𝜆1
− 

⋮ 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

= (
𝜀𝑛
+ + 𝜈𝑛

+

𝜇
)

1−𝑝

∙ (1 − 𝜏)−1 ∙ 𝜆𝑛
+ 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

 

= (
−𝜀𝑛

− + 𝜈𝑛
−

𝜇
)
1−𝑝

∙ (𝜏)−1 ∙ 𝜆𝑛
− 

𝜏 is located between 0 and 1 (see, e.g., Koenker (2005), p. 5); 𝜆𝑖
+ and 𝜆𝑖

− are 

nonnegative in the primal program (5.3) to (5.5). Moreover, 𝜀𝑖
+ + 𝜈𝑖

+ (−𝜀𝑖
− + 𝜈𝑖

−) 

will not be both identical to zero. If the estimated value exceeds the observed 

value (𝜀𝑖
+ > 0, undervaluation), the Langrage multiplier of the nonnegativity 

constraint on 𝜀𝑖
+ (𝜈𝑖

+) is equal to zero because this constraint in not binding. In 

that case, no overvaluation will occur (𝜀𝑖
− = 0) and the Langagnre multiplier on 

nonnegative overvaluations 𝜈𝑖
− will be greater than zero because the nonnegativ-

ity constraint on 𝜀𝑖
− will be binding. 

Since the left-hand sides of (A1.37) are identical, a relation between 𝜆1
−, … , 𝜆𝑛

− 

and 𝜆1
+ can be established: 

(A1.38) 

𝜆1
− =

(𝜀1
+ + 𝜈1

+)1−𝑝

(−𝜀1
− + 𝜈1

−)1−𝑝
∙
𝜏

1 − 𝜏
∙ 𝜆1
+ 

⋮ 

𝜆𝑛
+ =

(𝜀1
+ + 𝜈1

+)1−𝑝

(𝜀𝑛
+ + 𝜈𝑛

+)1−𝑝
∙ 𝜆1
+ 
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𝜆𝑛
− =

(𝜀1
+ + 𝜈1

+)1−𝑝

(−𝜀𝑛− + 𝜈𝑛−)1−𝑝
∙
𝜏

1 − 𝜏
∙ 𝜆1
+ 

and from (A1.36) 

(A1.39) 

(𝜀1
+ + 𝜈1

+) ∙ 𝜆1
+ + (−𝜀1

− + 𝜈1
−) ∙ 𝜆1

− +⋯+ (𝜀𝑛
+ + 𝜈𝑛

+) ∙ 𝜆𝑛
+ + (−𝜀𝑛

− + 𝜈𝑛
−) ∙ 𝜆𝑛

−

𝜇
 

= (𝜀1
+ + 𝜈1

+)1−𝑝 ∙ (1 − 𝜏)−1 ∙ 𝜆1
+ 

Inserting (A1.38) into (A1.39) gains 

(𝜀1
+ + 𝜈1

+) ∙ 𝜆1
+ + (−𝜀1

− + 𝜈1
−) ∙

(𝜀1
+ + 𝜈1

+)1−𝑝

(−𝜀1
− + 𝜈1

−)1−𝑝
∙
𝜏

1 − 𝜏 ∙ 𝜆1
+

+⋯+ (𝜀𝑛
+ + 𝜈𝑛

+) ∙
(𝜀1
+ + 𝜈1

+)1−𝑝

(𝜀𝑛
+ + 𝜈𝑛

+)1−𝑝
∙ 𝜆1
+

+(−𝜀𝑛
− + 𝜈𝑛

−) ∙
(𝜀1
+ + 𝜈1

+)1−𝑝

(−𝜀𝑛− + 𝜈𝑛−)1−𝑝
∙
𝜏

1 − 𝜏 ∙ 𝜆1
+

𝜇
 

= (𝜀1
+ + 𝜈1

+)1−𝑝 ∙ (1 − 𝜏)−1 ∙ 𝜆1
+ 

Division15 by 𝜆1
+ and (1 − 𝜏)−1 ⋅ (𝜀1

+ + 𝜈1
+)1−𝑝 as well as multiplication by 𝜇 

yields 

(𝜀1
+ + 𝜈1

+)

(𝜀1
+ + 𝜈1

+)1−𝑝
∙ (1 − 𝜏) +

(−𝜀1
− + 𝜈1

−)

(−𝜀1
− + 𝜈1

−)1−𝑝
∙ 𝜏 

+⋯ 

+
(𝜀𝑛
+ + 𝜈𝑛

+)

(𝜀𝑛
+ + 𝜈𝑛

+)1−𝑝
∙ (1 − 𝜏) +

(−𝜀𝑛
− + 𝜈𝑛

−)

(−𝜀𝑛− + 𝜈𝑛−)1−𝑝
∙ 𝜏 = 𝜇 

i.e., 

(A1.40) 

(𝜀1
+ + 𝜈1

+)𝑝 ∙ (1 − 𝜏) + (−𝜀1
− + 𝜈1

−)𝑝 ∙ 𝜏 

+⋯ 

+(𝜀𝑛
+ + 𝜈𝑛

+)𝑝 ∙ (1 − 𝜏) + (−𝜀𝑛
− + 𝜈𝑛

−)𝑝 ∙ 𝜏 = 𝜇 

                                                           
15

 In the case that asset 1 is not bought, 𝜆1
+ will be zero. In that case, however, all equations will 

be expressed as a function of 𝜆1
− and the computations will follow the exactly same path. 
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(A1.40) contains the unobservable variables 𝜈𝑖
+ and 𝜈𝑖

−. However, according to 

(2.53) 𝜀𝑖
+ is nonnegative and 𝜀𝑖

− nonpositive, meaning that −𝜀𝑖
− is nonnegative. 

Moreover, 𝜈𝑖
+ and 𝜈𝑖

− are nonnegative in the dual program (A1.34). Therefore, it 

holds 

𝜀𝑖
+ + 𝜈𝑖

+ ≥ 𝜀𝑖
+ and −𝜀𝑖

− + 𝜈𝑖
− ≥ −𝜀𝑖

− 

and, hence, 

(A1.41) 

[(1 − 𝜏) ∙∑𝜀𝑖
+𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑(−𝜀𝑖
−)𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

Eventually, to avoid writing 𝜀𝑖
+ for the undervalued, but −𝜀𝑖

− for the overvalued 

companies, absolute values might be more convenient—note both 𝜀𝑖
+ and −𝜀𝑖

− 

are positive: 

(A1.42) 

[(1 − 𝜏) ∙∑|𝜀𝑖
+|𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑|𝜀𝑖
−|𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

(A1.42) is a constraint useful for integrating into the dual program (A1.34) be-

cause it no longer depends on 𝜆𝑖
+ and 𝜆𝑖

− as well as 𝜈𝑖
+ and 𝜈𝑖

−. 

Appendix 1.4.5 Dual Program: Final Version 

Substituting (A1.42) for the necessary conditions regarding 𝜆𝑖
+ and 𝜆𝑖

− in the first 

form of dual program (A1.34), it is finally gained 

(A1.43) 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 −∑𝛽𝑗 ∙ 𝑎𝑗

𝑚

𝑗=1

 



Appendix 

216 

s.t. 

[(1 − 𝜏) ∙∑|𝜀𝑖
+|𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑|𝜀𝑖
−|𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

𝜇 ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

where 

𝜀𝑖
+ =∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑖
∗ ≥ 0 

𝜀𝑖
− =∑𝐴𝑖,𝑗

∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑖
∗ < 0 

(A1.43) is the desired final form of the dual program. 

Appendix 1.4.6 Dual Program for the Special Case: p=1 

The constraint regarding portfolio holdings in the buyer’s primal program 

(A1.28) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

makes it immediately clear that the case 𝑝 = 1 cannot be integrated into (A1.28) 

but needs a treatment of its own. In fact, since not even the primal program can 

be adapted to this special case, the derivation of the dual program must start 

complete anew. 

Appendix 1.4.6.1 Primal Program 

The primal program in standard form (1st step) of this special case of the opti-

mize-the-price-approach reads 
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(A1.44) 

min
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
𝑃1 ∙ (𝜆1

+ − 𝜆1
−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛

+ − 𝜆𝑛
−) 

s.t. 

Constraints on individual portfolio holdings 

𝜆1
+ ≤ 𝑥1

+ 

⋮ 

𝜆𝑛
+ ≤ 𝑥𝑛

+ 

and 

𝜆1
− ≤ 𝑥1

− 

⋮ 

𝜆𝑛
− ≤ 𝑥𝑛

− 

Constraints on accounting figures 

−𝐴1,1 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,1 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) ≤ −𝑎1 

⋮ 

−𝐴1,𝑚 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,𝑚 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) ≤ −𝑎𝑚 

−𝜆1
+ ≤ 0 

−𝜆1
− ≤ 0 

⋮ 

−𝜆𝑛
+ ≤ 0 

−𝜆𝑛
− ≤ 0 

Appendix 1.4.6.2 Preparing for Dualization 

The Lagrange function of the primal problem (A1.44) reads (2nd step) 

(A1.45) 

𝐿 = 𝑃1 ∙ (𝜆1
+ − 𝜆1

−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) 

+𝜇1
+ ∙ (𝜆1

+ − 𝑥1
+) + 𝜇1

− ∙ (𝜆1
− − 𝑥1

−) 

+⋯ 
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+𝜇𝑛
+ ∙ (𝜆𝑛

+ − 𝑥𝑛
+) + 𝜇𝑛

− ∙ (𝜆𝑛
− − 𝑥𝑛

−) 

+𝛽1 ∙ (−𝐴1,1 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,1 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) + 𝑎1) 

+⋯ 

+𝛽𝑚 ∙ (−𝐴1,𝑚 ∙ (𝜆1
+ − 𝜆1

−) − ⋯− 𝐴𝑛,𝑚 ∙ (𝜆𝑛
+ − 𝜆𝑛

−) + 𝑎𝑚) 

+𝜈1
+ ∙ (−𝜆1

+) + 𝜈1
− ∙ (−𝜆1

−) + ⋯+ 𝜈𝑛
+ ∙ (−𝜆𝑛

+) + 𝜈𝑛
− ∙ (−𝜆𝑛

−) 

Forming necessary conditions (3rd step) delivers 

(A1.46) 

𝜕𝐿

𝜕𝜆1
+ = 𝑃1 + 𝜇1

+ − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1
+ = 0 

𝜕𝐿

𝜕𝜆1
− = −𝑃1 + 𝜇1

− + 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1
− = 0 

⋮ 

𝜕𝐿

𝜕𝜆𝑛
+ = 𝑃𝑛 + 𝜇𝑛

+ − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛
+ = 0 

𝜕𝐿

𝜕𝜆𝑛−
= −𝑃𝑛 + 𝜇𝑛

− + 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛
− = 0 

Collecting decision variables 𝜆𝑖
+ and 𝜆𝑖

− in the Lagrange function (A1.45) delivers 

(4th step) 

(A1.47) 

𝐿 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚) ∙ (𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚) ∙ (𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇1
+ ∙ 𝜆1

+ + 𝜇1
− ∙ 𝜆1

− +⋯+ 𝜇𝑛
+ ∙ 𝜆𝑛

+ + 𝜇𝑛
− ∙ 𝜆𝑛

− 

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

−∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

−∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

 

To prepare for inserting the necessary conditions into the Lagrange function (5th 

step), an intermediate transformation is recommended. Each necessary condi-

tion with respect to 𝜆𝑖
+ and 𝜆𝑖

− is multiplied by its 𝜆𝑖
+ and 𝜆𝑖

− respectively. Then, 
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all these multiplied necessary conditions are added. In other words, the multi-

plied and aggregated necessary condition reads 

(A1.48) 

0 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚) ∙ (𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚) ∙ (𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇1
+ ∙ 𝜆1

+ + 𝜇1
− ∙ 𝜆1

− +⋯+ 𝜇𝑛
+ ∙ 𝜆𝑛

+ + 𝜇𝑛
− ∙ 𝜆𝑛

− 

Plugging the aggregated necessary conditions for 𝜆 (A1.48) into Lagrange func-

tion (A1.47) yields (5th step) 

𝐿 = (𝑃1 − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚) ∙ (𝜆1
+ − 𝜆1

−) 

+⋯ 

+(𝑃𝑛 − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚) ∙ (𝜆𝑛
+ − 𝜆𝑛

−) 

−𝜈1
+ ∙ 𝜆1

+ − 𝜈1
− ∙ 𝜆1

− −⋯− 𝜈𝑛
+ ∙ 𝜆𝑛

+ − 𝜈𝑛
− ∙ 𝜆𝑛

− 

+𝜇1
+ ∙ 𝜆1

+ + 𝜇1
− ∙ 𝜆1

− +⋯+ 𝜇𝑛
+ ∙ 𝜆𝑛

+ + 𝜇𝑛
− ∙ 𝜆𝑛

−⏟                            
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (A1.48)

 

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

−∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

−∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

 

Consequently, it is obtained 

(A1.49) 

−∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

−∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

Appendix 1.4.6.3 Dual Program: First Version 

Adapting the general dual program (A1.3) to the optimize-the-price-approach 

environment (6th step) and translating the maximization problem into a minimi-

zation problem (7th step) leads to 
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(A1.50) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽1,…,𝛽𝑚

∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

+∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

−∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

s.t. 

𝑃1 + 𝜇1
+ − 𝛽1 ∙ 𝐴1,1 −⋯− 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

+ = 0 

−𝑃1 + 𝜇1
− + 𝛽1 ∙ 𝐴1,1 +⋯+ 𝛽𝑚 ∙ 𝐴1,𝑚 − 𝜈1

− = 0 

⋮ 

𝑃𝑛 + 𝜇𝑛
+ − 𝛽1 ∙ 𝐴𝑛,1 −⋯− 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

+ = 0 

−𝑃𝑛 + 𝜇𝑛
− + 𝛽1 ∙ 𝐴𝑛,1 +⋯+ 𝛽𝑚 ∙ 𝐴𝑛,𝑚 − 𝜈𝑛

− = 0 

𝜇1
+ ≥ 0,… , 𝜇𝑛

+ ≥ 0 

𝜇1
− ≥ 0,… , 𝜇𝑛

− ≥ 0 

𝜈1
+ ≥ 0,… , 𝜈𝑛

+ ≥ 0 

𝜈1
− ≥ 0,… , 𝜈𝑛

− ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

Appendix 1.4.6.4 Dual Program: Final Version (8th step) 

The necessary conditions of the dual program: first version (A1.50) are a function 

of the Lagrange multipliers of portfolio holdings 𝜈𝑖
+ and 𝜈𝑖

− why the dual program 

(A1.50) has no ready interpretation as error minimization problem/cannot be re-

lated to the superordinate categories regression approaches and method of mul-

tiples. Therefore, 𝜈𝑖
+ and 𝜈𝑖

− must be removed from the constraints of dual pro-

gram (A1.50). 

Using the definition of 𝜀𝑖
+ and 𝜀𝑖

− from (2.53), the necessary conditions of (A1.50) 

can be re-formulated as 

𝜀1
+ + 𝜈1

+ = 𝜇1
+ 

−𝜀1
− + 𝜈1

− = 𝜇1
− 

⋮ 

𝜀𝑛
+ + 𝜈𝑛

+ = 𝜇𝑛
+ 

−𝜀𝑛
− + 𝜈𝑛

− = 𝜇𝑛
− 
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According to (2.53) 𝜀𝑖
+ is nonnegative and 𝜀𝑖

− nonpositive, meaning that −𝜀𝑖
− is 

nonnegative. Moreover, 𝜈𝑖
+ and 𝜈𝑖

− are nonnegative in the dual program (A1.34). 

Therefore, it holds 

𝜀𝑖
+ + 𝜈𝑖

+ ≥ 𝜀𝑖
+ and −𝜀𝑖

− + 𝜈𝑖
− ≥ −𝜀𝑖

− 

and, hence, 

𝜀1
+ ≤ 𝜇1

+ 

−𝜀1
− ≤ 𝜇1

− 

⋮ 

𝜀𝑛
+ ≤ 𝜇𝑛

+ 

−𝜀𝑛
− ≤ 𝜇𝑛

− 

This means, the dual program: first version (A1.50) simplifies to 

(A1.51) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽1,…,𝛽𝑚

∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

+∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

−∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

s.t. 

𝜀1
+ ≤ 𝜇1

+ 

−𝜀1
− ≤ 𝜇1

− 

⋮ 

𝜀𝑛
+ ≤ 𝜇𝑛

+ 

−𝜀𝑛
− ≤ 𝜇𝑛

− 

𝜇1
+ ≥ 0,… , 𝜇𝑛

+ ≥ 0 

𝜇𝑛
− ≥ 0,… , 𝜇𝑛

− ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

(A1.51) is the desired final form of the dual program. 
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Appendix 1.4.7 Dual Program for the Seller 

The primal program of the seller’s optimize-the-price-approach reads (see Chap-

ter V, Formulas (5.6) to (5.8)) 

(5.6) 

max
𝜆1
+,𝜆1

−,…,𝜆𝑛
+,𝜆𝑛

−
𝑃1 ∙ (𝜆1

+ − 𝜆1
−) + ⋯+ 𝑃𝑛 ∙ (𝜆𝑛

+ − 𝜆𝑛
−) 

s.t. 

(5.7) 

𝐴1,1(𝜆1
+ − 𝜆1

−) + ⋯+ 𝐴𝑛,1(𝜆𝑛
+ − 𝜆𝑛

−) ≤ 𝑎1 

⋮ 

𝐴1,𝑚(𝜆1
+ − 𝜆1

−)+. . . +𝐴𝑛,𝑚(𝜆𝑛
+ − 𝜆𝑛

−) ≤ 𝑎𝑚 

(5.8) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝜆𝑖

−)
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝜆1
+ ≥ 0 

𝜆1
− ≥ 0 

⋮ 

𝜆𝑛
+ ≥ 0 

𝜆𝑛
− ≥ 0 

and in standard form 

(A1.52) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
−𝑃1,𝑡 ∙ (𝑁1,𝑡

+ − 𝑁1,𝑡
− ) −⋯− 𝑃𝑛,𝑡 ∙ (𝑁𝑛,𝑡

+ − 𝑁𝑛,𝑡
− ) 

s.t. 

(A1.53) 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≤ 𝑎1 

⋮ 
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𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≤ 𝑎𝑚 

(A1.54) 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

𝑁1,𝑡
+ ≥ 0 

𝑁1,𝑡
− ≥ 0 

⋮ 

𝑁𝑛,𝑡
+ ≥ 0 

𝑁𝑛,𝑡
− ≥ 0 

If the primal program (A1.52) to (A1.54) is compared to the buyer’s primal pro-

gram (A1.28) where price 𝑃𝑖,𝑡 is used instead of 𝑦𝑖
∗, 𝑁𝑖,𝑡

+  instead of 𝜆𝑖
+, 𝑁𝑖,𝑡

−  instead 

of 𝜆𝑖
−, and 𝐴1,𝑗,𝑡 instead of 𝐴𝑖,𝑗

∗  

(A1.28) 

min
𝑁1,𝑡
+ ,𝑁1,𝑡

− ,…,𝑁𝑛,𝑡
+ ,𝑁𝑛,𝑡

−
𝑃1,𝑡 ∙ (𝑁1,𝑡

+ − 𝑁1,𝑡
− ) + ⋯+ 𝑃𝑛,𝑡 ∙ (𝑁𝑛,𝑡

+ − 𝑁𝑛,𝑡
− ) 

s.t. 

𝑁1,𝑡
+ 𝐴1,1,𝑡 − 𝑁1,𝑡

− 𝐴1,1,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,1,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,1,𝑡 ≥ 𝑎1 

⋮ 

𝑁1,𝑡
+ 𝐴1,𝑚,𝑡 − 𝑁1,𝑡

− 𝐴1,𝑚,𝑡 +⋯+𝑁𝑛,𝑡
+ 𝐴𝑛,𝑚,𝑡 − 𝑁𝑛,𝑡

− 𝐴𝑛,𝑚,𝑡 ≥ 𝑎𝑚 

[(1 − 𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

+)
𝑝
𝑝−1

𝑛

𝑖=1

+ (𝜏)
1
1−𝑝 ∙∑(𝑁𝑖,𝑡

− )
𝑝
𝑝−1

𝑛

𝑖=1

]

𝑝−1
𝑝

≤ 𝑥 

−𝑁1,𝑡
+ ≤ 0 

−𝑁1,𝑡
− ≤ 0 

⋮ 

−𝑁𝑛,𝑡
+ ≤ 0 

−𝑁𝑛,𝑡
− ≤ 0 
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it becomes clear that a simple variable substitution achieves the transformation 

of the seller’s into the buyer’s primal program, namely use 

−𝑃𝑖,𝑡 in the buyer’s problem to obtain (A1.52) of the seller’s problem 

−𝐴𝑖,𝑗,𝑡 in the buyer’s problem to obtain (A1.53) of the seller’s problem 

−𝑎𝑗 in the buyer’s problem to obtain (A1.54) of the seller’s problem 

Applying these variable substitutions in (A1.43), the seller’s dual program: final 

version reads 

(A1.55) 

min
𝜇,𝛽1,…,𝛽𝑚

𝜇 ∙ 𝑥 +∑𝛽𝑗 ∙ 𝑎𝑗

𝑚

𝑗=1

 

s.t. 

[(1 − 𝜏) ∙∑|𝜀𝑖
+|𝑝

𝑛

𝑖=1

+ 𝜏 ∙∑|𝜀𝑖
−|𝑝

𝑛

𝑖=𝑖

]

1
𝑝

≤ 𝜇 

𝜇 ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

where 

𝜀𝑖
+ = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 ≥ 0 

𝜀𝑖
− = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 < 0 

For the special case 𝑝 = 1 it is obtained from (A1.51) by using the above variable 

substitutions 
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(A1.56) 

min
𝜇1
+,𝜇1

−,…,𝜇𝑛
+,𝜇𝑛

−,

𝛽1,…,𝛽𝑚

∑𝜇𝑖
+ ∙ 𝑥𝑖

+

𝑛

𝑖=1

+∑𝜇𝑖
− ∙ 𝑥𝑖

−

𝑛

𝑖=1

+∑𝛽𝑗 ∙ 𝑎j

𝑚

𝑗=1

 

s.t. 

𝜀1
+ ≤ 𝜇1

+ 

−𝜀1
− ≤ 𝜇1

− 

⋮ 

𝜀𝑛
+ ≤ 𝜇𝑛

+ 

−𝜀𝑛
− ≤ 𝜇𝑛

− 

𝜇1
+ ≥ 0,… , 𝜇𝑛

+ ≥ 0 

𝜇𝑛
− ≥ 0,… , 𝜇𝑛

− ≥ 0 

𝛽1 ≥ 0,… , 𝛽𝑚 ≥ 0 

where 

𝜀𝑖
+ = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 ≥ 0 

𝜀𝑖
− = −∑𝐴𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑃𝑖 < 0 

Appendix 1.5 Strong Duality 

Strong duality means that primal and dual program possess the same value of 

the objective function in the optimum, i.e., the duality gap is equal to zero (see, 

e.g., Boyd/Vandenberghe (2009), p. 226). From an economic perspective strong 

duality is desirable: Empirical asset pricing models can be connected with their 

dual program since the value of both objective functions coincide in the opti-

mum. 

According to Boyd/Vandenberghe (2009), p. 226 two steps are required to show 

strong duality: (i) the primal problem is convex meaning that usually but not al-
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ways strong duality is given; (ii) so-called constraint qualifications must be given. 

One example of a constraint qualification is Slater’s condition. 

Appendix 1.5.1 Regression Approach as Primal Program 

The constraint 𝑘 (𝑘 ∈ {1,… , 𝑛}) of the primal program (A1.4) reads 

𝛽0 +∑𝐴𝑘,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑘
∗ − 𝜇𝑘

+ ≤ 0 

Constraints in inequality form can always be expressed with the help of con-

straints in equality form and a slack variable (see Boyd/Vandenberghe (2009), pp. 

131 f.): 

𝛽0 +∑𝐴𝑘,𝑗
∗ 𝛽𝑗

𝑚

𝑗=1

− 𝑦𝑘
∗ − 𝜇𝑘

+ + 𝑠𝑘
+ = 0 

where 𝑠𝑘
+ denotes this slack variable. 

Boyd/Vandenberghe (2009), p. 227 point out that the Slater condition reduces to 

the requirement of feasibility of the problem when the constraints are all linear 

equalities and the domain of the objective function is open. Since the minimum 

error—regression approaches minimize Lp-norms of errors—is less than infinity, 

the primal problem is indeed feasible. 

Only the different sign of the value of the objective function of the primal and 

the dual problem must be taken into consideration: The dual program trans-

forms the maximization problem into a minimization problem by multiplying by 

−1 (see 7th step, Appendix 1.1.2). 

This is plausible since regression approaches consider valuation errors, but their 

dual programs consider “arbitrage profits” which means negative prices or posi-

tive payments. Thus, the valuation error can be interpreted as a profit. 
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Appendix 1.5.2 Optimize-the-Price Approach as Primal 
Program 

The constraint ℎ (ℎ ∈ {1, … ,𝑚}) of the primal program (A1.28) reads 

−𝐴1,ℎ ∙ (𝜆ℎ
+ − 𝜆ℎ

−) − ⋯− 𝐴𝑛,ℎ ∙ (𝜆ℎ
+ − 𝜆ℎ

−) ≤ −𝑎ℎ 

Constraints in inequality form can always be expressed with the help of con-

straints in equality form and a slack variable (see Boyd/Vandenberghe (2009), pp. 

131 f.): 

−𝐴1,ℎ ∙ (𝜆ℎ
+ − 𝜆ℎ

−) − ⋯− 𝐴𝑛,ℎ ∙ (𝜆ℎ
+ − 𝜆ℎ

−) + 𝑠ℎ
+ = −𝑎ℎ 

where 𝑠ℎ
+ denotes this slack variable. 

Boyd/Vandenberghe (2009), p. 227 point out that the Slater condition reduces to 

the requirement of feasibility of the problem when the constraints are all linear 

equalities and the domain of the objective function is open. Since the minimum 

price is greater than −∞—otherwise an arbitrage profit would be possible—, the 

primal problem is indeed feasible. 

Again the difference in sign of the primal/dual objective function is due to the 7th 

step (transformation of a maximization into a minimization problem). 
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Appendix 2 The Area Under the Cumulative 
Density Compared to the Area 
Under the Dirac Distribution 
Function 

Chapter III, Section 2.1.3.3 introduces a criterion to characterize the similarity 

between different regression approaches: It compares the cumulative density 

function of differences (indicates, e.g., how close WLS and OLS regressions are) 

to the case where no differences exist because two approaches are identical. The 

latter case can be described with the help of the Dirac distribution. The less both 

functions diverge, i.e., the smaller the area between the cumulative distribution 

function of differences and the Dirac distribution is, the more similar the two ap-

proaches are.—The comparison of areas reads formally 

(A2.1) 

𝑎𝑟𝑒𝑎 (3.3) = ∫ 𝐹(𝑡)𝑑𝑡
0

−∞⏟      
𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

+ ∫ (1 − 𝐹(𝑡))𝑑𝑡
∞

0⏟          
𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

 

If, e.g., WLS regression is compared to OLS regression, for some companies WLS 

regression might result in smaller estimated values than OLS regression—region 

of negative differences—and for some companies in greater values—region of 

positive differences. The Dirac distribution on the other hand captures the idea 

that there are no differences in value, i.e., all companies have zero valuation dif-

ferences. That is the reason why in (A2.1) zero is the number that separates both 

regions. 

The purpose of this appendix is to prove that this comparison of Areas (A2.1) can 

be expressed as expected value of the absolute value of the differences, in the 

case of Chapter III the Ratio (3.1) is used. To that end, Hajek (2015), p. 20 and 

Rao (2012) prove helpful. 

The expected value of the absolute value of the Ratio (3.1) can be written as 
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(A2.2) 

𝐸{|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|} = 𝐸{𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
− + 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

+ } = 𝐸{𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
− } + 𝐸{𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

+ } 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
− = max{−𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗; 0} contains all negative values including zero, 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
+ = max{𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗; 0} contains all positive ratios. 

To be able to differentiate between positive and negative ratios, 𝑟𝑎𝑡𝑖𝑜− and 

𝑟𝑎𝑡𝑖𝑜+ are expressed using indicator functions: 

(A2.3) 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
− = ∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗≤𝑡

(𝑡)𝑑𝑡
0

−∞

 

(A2.4) 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
+ = ∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗>𝑡

(𝑡)𝑑𝑡
∞

0

 

The intuition behind this representation of 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
−  and 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

+  is the follow-

ing: 

𝒓𝒂𝒕𝒊𝒐𝑪𝒊,𝒋
− : 

1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗≤𝑡
(𝑡) = {

0 if 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 > 𝑡

1 if 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 ≤ 𝑡
 

Therefore, the integral reads 

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
− = ∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗≤𝑡

(𝑡)𝑑𝑡
0

−∞

 

= ∫ 0 𝑑𝑡
𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

−∞

+∫ 1 𝑑𝑡
0

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

 

= 0 + 𝑡|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
0  

= −𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 

𝒓𝒂𝒕𝒊𝒐𝑪𝒊,𝒋
+ : 

1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗>𝑡
(𝑡) = {

0 if 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 ≤ 𝑡

1 if 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 > 𝑡
 

Therefore, the integral reads 
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𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗
+ = ∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗>𝑡

(𝑡)𝑑𝑡
∞

0

 

= ∫ 1 𝑑𝑡
𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

0

+∫ 0 𝑑𝑡
∞

𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗

 

= 𝑡|0
𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 + 0 

= 𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 

Computing the expected value (A2.2) using the ratio specifications (A2.3) and 

(A2.4) means 

𝐸{|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|} = 𝐸 {∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗≤𝑡
(𝑡)𝑑𝑡

0

−∞

} + 𝐸 {∫ 1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗>𝑡
(𝑡)𝑑𝑡

∞

0

} 

Since the expected value of a sum (or of an integral) is equal to the sum (integral) 

of the expected values, one obtains 

𝐸{|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|} = ∫ 𝐸 {1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗≤𝑡
(𝑡)} 𝑑𝑡

0

−∞

+∫ 𝐸 {1𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗>𝑡
(𝑡)} 𝑑𝑡

∞

0

 

The expected value of the indicator function corresponds to a probability, i.e., 

𝐸{|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|} = ∫ 𝑃𝑟(𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 ≤ 𝑡)𝑑𝑡
0

−∞

+∫ 𝑃𝑟(𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 > 𝑡)𝑑𝑡
∞

0

 

where 𝑃𝑟 denotes probability. 

Since 

𝑃𝑟(𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 ≤ 𝑡) = 𝐹(𝑡) and 𝑃𝑟(𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗 > 𝑡) = 1 − 𝐹(𝑡) 

where 𝐹(. ) denotes the distribution function 

it is finally obtained 

(A2.5) 

𝐸{|𝑟𝑎𝑡𝑖𝑜𝐶𝑖,𝑗|} = ∫ 𝐹(𝑡)𝑑𝑡
0

−∞

+∫ (1 − 𝐹(𝑡))𝑑𝑡
∞

0
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Appendix 3 Definition of Variables 

In the following table all the variables collected from Thompson Reuters 

Worldscope are listed together with their definition (see Thompson Reuters 

(2015)): 

Variable Abbrevia-
tion 

Item No. Definition 

General information about the company 

Worldsco
pe Per-
manent 
I.D. 

WPID WC06105 Represents a permanent identifier assigned to a 
company or security on the database. 

Company 
Name 

NAME WC06001 Represents the legal name of the company as 
reported in the 10-K for U.S. companies and the 
annual report for non-U.S. companies. 

Nation NAT WC06026 Represents the country in which the corporate 
office of a company is located. 

ICB Code ICB WC07040 Represents an industry code within the Indus-
trial Classification Benchmark (ICB) which was 
implemented as a result of a merger of the in-
dustrial classification of Dow Jones and FTSE. 
This benchmark allows for the comparison of 
companies through four hierarchical levels of 
industry classification. The ICB Code provided is 
the subsector code, the lowest level in the hier-
archical structure. 

Market Capitalization 

Market 
Capitali-
zation – 
Fiscal Pe-
riod End 

P WC08002 Market Price – Fiscal Period End * Common 
Shares Outstanding 
For companies with more than one type of 
common/ordinary share, market capitalization 
represents the total market value of the com-
pany. 

Income Statement 

Net Sales 
Or Reve-
nues 

SA WC01001 Represent gross sales and other operating rev-
enue less discounts, returns and allowances. 

Gross In-
come 

GI WC01100 Represents the difference between sales or 
revenues and cost of goods sold and deprecia-
tion/depletion, and amortization. 

Earnings 
Before In-
terest, 
Taxes & 
Deprecia-
tion 
(EBITDA) 

EBITDA WC18198 Represent the earnings of a company before in-
terest expense, income taxes and depreciation. 
It is calculated by taking the pre-tax income and 
adding back interest expense on debt and de-
preciation, depletion and amortization and sub-
tracting interest capitalized. 
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Variable Abbrevia-
tion 

Item No. Definition 

Earnings 
Before In-
terest 
And Taxes 
(EBIT) 

EBIT WC18191 Represent the earnings of a company before in-
terest expense and income taxes. It is calculated 
by taking the pre-tax income and adding back 
interest expense on debt and subtracting inter-
est capitalized. 

Earnings 
Before 
Taxes 

EBT WC01401 Pre-tax Income: 
Represents all income/loss before any federal, 
state or local taxes. Extraordinary items report-
ed net of taxes are excluded. 

Earnings E WC01751 Net Income Used To Calculate Earnings Per 
Share: 
Represents the net income the company uses to 
calculate its earnings per share. It is before ex-
traordinary items. 

Balance Sheet 

Total As-
sets 

TA WC02999 Represent the sum of total current assets, long 
term receivables, investment in unconsolidated 
subsidiaries, other investments, net property 
plant and equipment and other assets. 

Book Val-
ue Of 
Common 
Equity 

B WC03501 Represents common shareholders’ investment 
in a company. 

Invested 
Capital 

IC 
(=TA-CE) 

WC02999
WC02001 

Total Assets - Cash & Short Term Investments 

Cash Flow Statement 

Operating 
Cash Flow 

OCF WC04860 Net Cash Flow – Operating Activities: 
Represent the net cash receipts and disburse-
ments resulting from the operations of the 
company. It is the sum of Funds from Opera-
tions, Funds From/Used for Other Operating Ac-
tivities and Extraordinary Items. 

Ordinary 
Cash Div-
idends 

D WC18192 Dividends Provided For Or Paid – Common: 
Represents the total value of the common divi-
dends declared for the year. 

Table Appendix 3: Definition of Variables 
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Appendix 4 Overview of the Empirical Asset 
Pricing Literature 

Empirical asset pricing is understood in this thesis as an approach that uses solely 

empirical analysis to derive asset prices. Therefore it should be distinguished 

from papers that (i) calibrate theoretical models to empirical data, most notably 

the literature concerned with the empirical testing of the CAPM or APT (Koijen/

Van Nieuwerburgh (2011) for calibration, Fama/MacBeth (1973) for CAPM, and 

Chen/Roll/Ross (1986) for APT testing); (ii) perform cross-sectional tests of return 

predictability or analyze the anomalies, i.e., deal with market efficiency (e.g., 

Fama (1991) and Fama (1998)). 

We believe that there are two main strands of the empirical assets pricing litera-

ture that are, up to date, barely connected: value relevance studies in accounting 

and factor models/predictability of stock returns in finance. 

One last introductory remark: Overview of the empirical asset pricing literature 

means extensive overview of the literature, but not complete analysis of all pa-

pers.—There are too many papers to be able to claim that we could completely 

capture the literature on empirical asset pricing: It took Kothari (2001) 127 pages 

to summarize the value relevance literature from the 1970s to the year 2000, 

Holthausen/Watts (2001) cover the same time period on 72 pages; the value rel-

evance literature from 1990 to 2005 is contained in Mölls/Strauß (2007) on 42 

pages. Finally, Harvey/Liu/Zhu (2016) provide on 63 pages an (highly) aggregated 

overview of factor models/predictability of stock returns: The literature discusses 

316 predictors for asset returns. 

Therefore, this appendix (i) puts a focus on new papers after 2010; (ii) regards 

statistical methods (e.g., ordinary, weighted, or generalized least squares) as 

equally important as factors; (iii) cites the “classical” papers in the field with pub-

lication years after 1990. 
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This means that papers will be listed in this appendix if they have identical fac-

tors, but different statistical methods or different factors, but identical statistical 

methods. Papers that analyze different markets (e.g., U.S. versus emerging mar-

kets) using identical factors and statistical methods will be ignored. Moreover, 

“non-classical” papers that employ factors that are a subset of factors examined 

in later papers are not contained either.—Only the later papers will be listed. 
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Appendix 5 Empirical Results 

Appendix 5.1 Figures in Connection with Chapter 
III 

Appendix 5.1.1 Factors when Controlled for Regressions 
Section 4.2.2.2 

To measure the interplay between factors and statistical methods, Figure 3.2 is 

analyzed for each regression separately. Recall in this connection that M1 to M11 

are single-factor models (plus intercept); M12 to M14 are two-factor models 

(plus intercept); M15 is a three-factor model (plus intercept); M16 is an eleven-

factor model (plus intercept). 
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Appendix 5.1.2 Regressions when Controlled for Factors 
(Section 4.2.3.2) 

To measure the interplay between factors and regressions, Figure 3.6 is analyzed 

for each factor separately. Recall in this connection that M1 to M11 are single-

factor models (plus intercept); M12 to M14 are two-factor models (plus inter-

cept); M15 is a three-factor model (plus intercept); M16 is an eleven-factor mod-

el (plus intercept). 
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Appendix 5.1.3 Statistical Methods that Generate High 
or Low Prices (Section 4.2.3.3) 

To measure whether some statistical methods result in higher or lower prices 

than other statistical methods, Ratio (3.1) is broken down by statistical methods 

for each factor. Formally, the figures from Appendix 5.1 are split into positive 

and negative Ratio (3.1) using the following classes: 

0% < Ratio (3.1) ≤ 10% and −10% < Ratio (3.1) ≤ 0% 

10% < Ratio (3.1) ≤ 50% and −50% < Ratio (3.1) ≤ −10% 

50% < Ratio (3.1) ≤ 100% and −100% < Ratio (3.1) ≤ −50% 

100% < Ratio (3.1) ≤ 200% and −200% < Ratio (3.1) ≤ −100% 

200% < Ratio (3.1) ≤ 500% and −500% < Ratio (3.1) ≤ −200% 

 

Ratio (3.1) > 500% and 

 

Ratio (3.1) ≤ −500% 

In other words, classes are defined inclusive of the upper bound and exclusive of 

the lower bound. 
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Appendix 5.1.4 Factors when Controlled for Regressions 
(Section 4.3.2.2) 

To measure the interplay between factors and statistical methods, Figure 3.12 is 

analyzed for each regression separately. Recall in this connection that M1 to M11 

are single-factor models (plus intercept); M12 to M14 are two-factor models 

(plus intercept); M15 is a three-factor model (plus intercept); M16 is an eleven-

factor model (plus intercept). 
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Appendix 5.1.5 Regressions when Controlled for Factors 
(Section 4.3.3.2) 

To measure the interplay between factors and statistical methods, Figure 3.16 is 

analyzed for each factor separately. Recall in this connection that M1 to M11 are 

single-factor models (plus intercept); M12 to M14 are two-factor models (plus in-

tercept); M15 is a three-factor model (plus intercept); M16 is an eleven-factor 

model (plus intercept). 

  



Appendix 

272 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
b

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

2
 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
d

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

4
 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
a:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
1

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
c:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
3

 

  



Appendix 

273 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
f:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
6

 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
h

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

8
 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
e

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

5
 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
g:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
7

 

  



Appendix 

274 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
j:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
1

0
 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
l:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
1

2
 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
i:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
9

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
k:

 A
re

a 
(3

.3
) 

fo
r 

m
o

d
e

l M
1

1
 

  



Appendix 

275 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
n

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

1
4

 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
p

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

1
6

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
m

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

1
3

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.1

.5
o

: 
A

re
a 

(3
.3

) 
fo

r 
m

o
d

e
l M

1
5

 

  



Appendix 

276 

Appendix 5.2 Figures in Connection with Chapter 
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Appendix 5.2.1.1.2 The Role of Size 
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Appendix 5.2.1.1.3 Prices of Buyers versus Sellers 
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Appendix 5.2.2 Multi-period Version of the Optimize-
the-Price-Approach (Section 3.3.3) 

Appendix 5.2.2.1 Time Trend on Accounting Characteristics 

 

Figure Appendix 5.2.2.1: Time trend for selected accounting characteristics between 2010 and 
2014 broken down by region 
with SA Net Sales or Revenues, GI Gross Income, EBITDA Earnings Be-
fore Interest, Taxes and Depreciation, EBIT Earnings Before Interest 
and Taxes, EBT Earnings Before Taxes, E Earnings, TA Total Assets, B 
Book Value of Common Equity, IC Invested Capital, OCF Operating 
Cash Flow, D Ordinary Cash Dividends 

Appendix 5.2.2.2 “Magnitude” 
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Appendix 5.2.2.3 “Similarity” 

 

  



Appendix 

309 


 B

u
ye

r 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.2

.2
.3

b
: 

A
re

a 
(3

.3
) 

fo
r 

th
e

 b
u

ye
r 

b
ro

ke
n

 d
o

w
n

 b
y 

fa
ct

o
rs

 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.2

.2
.3

a:
 A

re
a 

(3
.3

) 
fo

r 
th

e
 b

u
ye

r 

 

  



Appendix 

310 


 S

e
lle

r 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.2

.2
.3

d
: 

A
re

a 
(3

.3
) 

fo
r 

th
e

 s
e

lle
r 

b
ro

ke
n

 d
o

w
n

 b
y 

fa
ct

o
rs

 

 

 

Fi
gu

re
 A

p
p

e
n

d
ix

 5
.2

.2
.3

c:
 A

re
a 

(3
.3

) 
fo

r 
th

e
 s

e
lle

r 

 

  



Appendix 

311 

Appendix 5.2.3 Optimize-the-Price-Approach versus Re-
gressions (Section 3.3.4) 

Appendix 5.2.3.1 Comparison of Regressions With and Without 
Constant 𝜷𝟎 

Appendix 5.2.3.1.1 “Magnitude” 
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Appendix 5.2.3.1.2 “Similarity” 
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Appendix 5.2.3.2 Optimize-the-Price-Approach versus Regres-
sions With Constant 𝜷𝟎 

Appendix 5.2.3.2.1 “Magnitude” 
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Appendix 5.2.3.2.2 “Similarity” 
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Appendix 5.2.3.3 Optimize-the-Price-Approach versus Regres-
sions Without Constant 𝜷𝟎 

Appendix 5.2.3.3.1 “Magnitude” 
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Appendix 5.2.3.3.2 “Similarity” 
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Appendix 5.3 Cleaning the Results of the Numeri-
cal Optimization from Chapter V, 
Section 3.3.1 

Data loss due to lack of convergence 
Without cleaning there are 115 calculations per cell, 115x16 = 1,840 calculations per row sum (= sum over models), 
115x20 = 2,300 calculations per column sum (=sum over methods) and 115x16x20 = 36,800 calculations in total. 

 
Model 

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∑ 

OTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
L1_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
L1_x1 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 

OTPB 
L1_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
L2_x0.5 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

OTPB 
L2_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
L2_x2 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

OTPB 
LInf_x0.5 

0 0 0 0 0 0 0 1 0 0 1 1 1 2 2 1 9 

OTPB 
LInf_x1 

1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 6 

OTPB 
LInf_x2 

3 1 1 1 0 0 3 0 1 0 0 0 0 0 0 1 11 

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
LInf_x0.5 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2 

OTPS 
LInf_x1 

1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 5 

OTPS 
LInf_x2 

0 0 0 0 0 1 1 1 4 0 2 0 0 1 0 0 10 

∑ 6 1 3 2 0 2 6 3 7 0 3 2 3 3 3 3 47 

Table Appendix 5.3a: Data loss due to lack of convergence 
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Data loss due to lack of compliance with constraints 
Without cleaning there are 115 calculations per cell, 115x16 = 1,840 calculations per row sum (= sum over models), 
115x20 = 2,300 calculations per column sum (=sum over methods) and 115x16x20 = 36,800 calculations in total. 

 
Model 

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∑ 

OTPB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
L1_x0.5 

9 12 9 9 15 23 4 17 7 18 20 23 18 23 24 20 251 

OTPB 
L1_x1 

2 7 3 28 2 10 1 4 8 10 8 7 10 14 19 20 153 

OTPB 
L1_x2 

4 6 3 2 1 4 1 5 2 8 4 3 2 14 13 11 83 

OTPB 
L2_x0.5 

3 18 2 7 8 1 4 3 3 9 2 2 2 4 3 5 76 

OTPB 
L2_x1 

1 2 0 0 0 0 5 4 3 0 0 0 0 0 0 1 16 

OTPB 
L2_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
LInf_x0.5 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 

OTPB 
LInf_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPB 
LInf_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L1_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
L2_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
LInf_x0.5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
LInf_x1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OTPS 
LInf_x2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

∑ 20 45 17 46 26 38 16 33 23 45 34 35 32 55 59 58 582 

Table Appendix 5.3b: Data loss due to lack of compliance with constraints 
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Deutschsprachige Zusammenfassung 

Gemeinsame Grundlage aller empirischen rechnungslegungsbasierten Asset-

Pricing-Modelle ist der Versuch, die heutigen Assetpreise oder -renditen mit heu-

te beobachtbaren Rechnungslegungsgrößen zu erklären. Technisch gesehen ist 

das empirische rechnungslegungsbasierte Asset Pricing in der Literatur durch ei-

ne Vielzahl statistischer Methoden implementiert: Regressionsansätze, Multipli-

katorverfahren und Fehlermaße, was zu mehreren Problemen führt. 

Erstes Problem 

Angesichts der Tatsache, dass sich Regressionsansätze, Multiplikatorverfahren 

und Fehlermaße mit der empirischen Preisermittlung von Vermögenswerten be-

fassen, ist die Vielzahl der konzeptionell unterschiedlichen und nicht verbunde-

nen Ansätze verblüffend und wirft zwei Fragen auf: 

(i) Wenn Regressionsansätze, Multiplikatorverfahren und Fehlermaße empi-

risch angewendet werden, können sie zu sehr unterschiedlichen Bewer-

tungsergebnissen führen. Wäre es daher nicht sinnvoll, konzeptionelle 

Ähnlichkeiten und Unterschiede zwischen diesen statistischen Methoden 

herauszuarbeiten und sogar eine übergeordnete Kategorie zu finden? 

(ii) In Bezug auf Regressionsansätze verwendet die vorhandene Literatur nur 

eine kleine Teilmenge möglicher statistischer Methoden für die empirische 

Preisermittlung von Vermögenswerten, d.h. OLS-, WLS- oder Quantilsre-

gressionen. Wäre es nicht vernünftig, diese Untermenge von Regressions-

ansätzen durch Verwendung anderer Funktionen der Residuen zu vergrö-

ßern, z.B. Verwendung einer höheren (und nicht ersten oder zweiten) Ord-

nung der Absolutwerte der Residuen oder des maximalen Fehlers? 

Wäre es in Bezug auf das Multiplikatorverfahren nicht sinnvoll, eine Bewer-

tungsformel zu haben, die verschiedene Methoden der Mittelwertberech-

nung sowie die Verwendung mehrerer Rechnungslegungsgrößen integrie-

ren kann? 



Deutschsprachige Zusammenfassung 

361 

Wäre es in Bezug auf Fehlermaße nicht sinnvoll, einen Bewertungsrahmen 

(= Zielfunktion) zu haben, der mit dem Fehlermaß (= Qualitätsbewertung) 

übereinstimmt? 

In Anbetracht dieser Fragen besteht das erste Ziel dieser Arbeit in Kapitel II darin 

zu analysieren, welche der vorhandenen empirischen Ansätze zur Preisermittlung 

von Vermögenswerten konzeptionell ähnlich sind, d.h. zu einer übergeordneten 

Kategorie zusammengefasst werden können und statistische Methoden vorzu-

stellen, die als quasi-natürliche Erweiterungen zu bestehenden empirischen As-

set-Pricing-Modellen betrachtet werden können. 

Zweites Problem 

Basierend auf dieser Übersicht über empirische Asset-Pricing-Modelle und der Li-

teratur kann stark davon ausgegangen werden, dass die gewählten Faktoren (An-

zahl und spezifische Auswahl von erklärenden Variablen) sowie die spezifisch 

verwendete statistische Methode (z.B. OLS-Regression, Quantilsregression) einen 

wichtigen Einfluss auf die Erklärungskraft einer empirischen Analyse haben. Da 

die Mehrheit der vorhandenen Arbeiten nur die zuvor erwähnte Erklärungskraft 

betrifft, kann davon ausgegangen werden, dass sie sich mit der statistischen Sig-

nifikanz von Faktoren/spezifischen statistischen Methoden befassen, während 

die ökonomische Relevanz weitaus weniger analysiert wird. 

Da in der Praxis der entscheidende Aspekt von Bewertungsmodellen Preisunter-

schiede sind und keine statistische Signifikanz, ist eine Analyse ihrer ökonomi-

schen Signifikanz unabdingbar und unumgänglich. Niemand wird einen höheren 

Preis für ein Unternehmen zahlen, nur weil eine bestimmte Bewertungsmethode 

einen hohen out-of-sample R2-Wert ergibt. Darüber hinaus sollten Geschäftsent-

scheidungen nicht nur darauf beruhen, ob ein p-Wert eine bestimmte Schwelle 

überschreitet, da die statistische Signifikanz (p-Wert) die Größe eines Effekts o-

der die Wichtigkeit eines Ergebnisses nicht messen kann. 

Daher ist es das zweite Ziel dieser Arbeit in Kapitel III, die ökonomische Bedeu-

tung verschiedener Faktoren/spezifischer statistischer Methoden zu analysieren. 
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Drittes Problem 

Wenn jedoch unterschiedliche Faktoren/spezifische statistische Methoden zu 

ökonomisch signifikanten Preisunterschieden führen, ist ein Modellauswahlkrite-

rium erforderlich, das auf ökonomischen statt statistischen Kriterien basiert. 

Während die Arbitrage-Theorie eine allgemeine Richtlinie für die ökonomische 

Modellbewertung für theoretische Asset-Pricing-Modelle darstellt (d.h. die Prei-

se müssen eine lineare Funktion ihrer zukünftigen Cashflows sein), stützen sich 

empirische Asset-Pricing-Modelle nicht auf Barwerte der Cashflows, sondern auf 

angenommene Beziehungen zwischen Rechnungslegungsgrößen/Faktorrenditen 

und Unternehmenspreisen/-renditen. Aus diesem Grund existieren keine theore-

tischen Richtlinien in Bezug auf die Komponenten des Modells. Insbesondere gibt 

es weder Hinweise auf die Anzahl und Art der erklärenden Variablen noch auf 

den spezifischen statistischen Ansatz. 

Angesichts des hohen Bedarfs an einem ökonomischen Bewertungskriterium be-

steht das dritte Ziel dieser Arbeit in Kapitel IV darin, ein ökonomisches Bewer-

tungskriterium zu entwickeln und eine ökonomische Einordnung verschiedener 

empirischer Modelle zu erstellen. 

Viertes Problem 

Aus Sicht der Asset-Pricing-Theorie ist ein solches Modellbewertungskriterium 

überflüssig, da das richtige Unternehmensbewertungsmodell klar ist: der Bar-

wert zukünftiger Cashflows. Prognosen für die Zukunft sind in der Praxis schwie-

rig und insbesondere die Ermittlung von Abzinsungsfaktoren problematisch. Da-

her ist es möglicherweise besser, ein theoretisch weniger überzeugendes aber 

leichter anwendbares Modell zu verwenden—z.B. die Verwendung von Rech-

nungslegungsgrößen—als ein theoretisch überlegenes aber nicht angemessen 

implementierbares Modell—Barwert. Die überlegene Praktikabilität bestehender 

rechnungslegungsbasierter Bewertungen hat jedoch seinen Preis: einer relativ 

schwache Begründung in der Asset-Pricing-Theorie: 
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(i) Multiplikatoren 

Multiplikatoren argumentieren im Wesentlichen, dass ähnliche Rechnungs-

legungsgrößen zu ähnlichen Preisen führen sollten. 

Probleme aus Sicht der Asset-Pricing-Theorie: Eine solche Bewertung ist 

zwar intuitiv, wird jedoch nicht durch die Asset-Pricing-/Arbitrage-Theorie 

gestützt, die besagt: Identische Cashflow-Ströme müssen identische Preise 

aufweisen. Mit anderen Worten, es gibt drei Unterschiede zwischen Multi-

plikatoren und Arbitrage-Theorie. Erstens werden Rechnungslegungsgrö-

ßen anstelle von Cashflow-Strömen berücksichtigt. Zweitens werden ähnli-

che statt identische Positionen untersucht. Drittens wird eine Rechnungs-

legungsgröße als ausreichend angesehen um ein Unternehmen vollständig 

zu charakterisieren. 

(ii) Implementierung von Discounted-Cashflow-Modellen mit Hilfe von Rech-

nungslegungsgrößen 

In der Literatur gibt es Discounted-Cashflow-Modelle, die (Funktionen von) 

Rechnungslegungsgrößen verwenden um Cashflows, den Restwert 

und/oder den Abzinsungsfaktor auszudrücken. 

Probleme aus Sicht der Asset-Pricing-Theorie: Unabhängig von der konkre-

ten Einbeziehung der Rechnungslegungsgrößen in die Discounted-

Cashflow-Modelle können sie nur als Annäherung dienen, d.h. die Modelle 

enthalten Annahmen, die in der Realität im Allgemeinen nicht zutreffen. 

(iii) Empirische rechnungslegungsbasierte Ansätze 

Empirische rechnungslegungsbasierte Ansätze erklären Aktienkurse an-

hand von Rechnungslegungsgrößen. 

Probleme aus Sicht der Asset-Pricing-Theorie: Diese empirischen rech-

nungslegungsbasierten Ansätze gehören zum Bereich der Value-Relevance-

Studien und interessieren sich daher nur für die statistische Signifikanz von 

Rechnungslegungsgrößen, nicht aber für die ökonomische Signifikanz, d.h. 

sie leiten keine Preisaussagen ab. Grundsätzlich können die Regressionsko-

effizienten von Value-Relevance-Studien auch zur Ermittlung von Unter-

nehmenswerten herangezogen werden. Die Preisunterschiede zwischen 
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den verschiedenen Regressionsansätzen sind jedoch groß und diese Model-

le haben im Gegensatz zum ökonomischen Prinzip einen schwachen öko-

nomischen Rückhalt. 

Alle diese Probleme unterstreichen den Kompromiss zwischen einer strengen 

Preisermittlung von Vermögenswerten und der praktischen Umsetzbarkeit von 

Modellen: Barwertmodelle sind theoretisch überlegen aber ihre praktische Um-

setzung in Form von konstanten Abzinsungsfaktoren und Restwertmodellen ist 

ökonomisch gesehen alles andere als überzeugend. Rechnungslegungsbasierte 

Modelle zeichnen sich durch eine weniger strenge Anlehnung an die Asset-

Pricing-Theorie aus, können jedoch ohne viel von ihrer theoretischen Grundlage 

zu verlieren implementiert werden. Bessere Asset-Pricing-Modelle zu erhalten 

bedeutet daher entweder die Implementierung von Barwertmodellen oder die 

theoretischen Grundlagen von rechnungslegungsbasierten Modellen zu verbes-

sern. Zwei Gründe sprechen für die Verbesserung der theoretischen Grundlagen 

von rechnungslegungsbasierten Modellen. Einerseits hat die Rechnungslegungsli-

teratur das Asset-Pricing-Potenzial rechnungslegungsbasierter Modelle bisher 

nicht voll ausgeschöpft: Sie kann ohne Einbußen bei der Praktikabilität sichtbar 

gesteigert werden. Andererseits führen rein empirische Modelle immer zu einem 

Rechtfertigungsproblem: Wer würde für ein Unternehmen einen höheren Preis 

zahlen, weil Umsatzmultiplikatoren zu höheren Preisen führen als Gewinnmulti-

plikatoren? Wer würde einen höheren Preis für ein Unternehmen zahlen, weil 

ein niedrigerer Abzinsungsfaktor für die Gewinne verwendet wird? Wer würde 

einen höheren Preis für ein Unternehmen zahlen, weil ein empirisches Schätzver-

fahren mit einem höheren R2 einen höheren Preis empfiehlt als andere empiri-

sche Schätzverfahren? 

Daher ist es das vierte Ziel dieser Arbeit in Kapitel V, die Praktikabilität rech-

nungslegungsbasierter Bewertungsmodelle mit der theoretischen Strenge der 

Asset-Pricing-Theorie zu verknüpfen. 


