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Zusammenfassung 
Das Wachstum von Bakterien ist ein komplexes, aber gut organisiertes Spiel, bei dem ausreichende 
Mengen verschiedener Zellkomponenten produziert werden müssen, um Zellteilungen 
durchzuführen und den Zyklus zu wiederholen. Dabei kann vieles schief gehen - deshalb haben 
sich bei Bakterien mehrere Strategien entwickelt, um sicherzustellen, dass alle Prozesse 
synchronisiert ablaufen. Diese Problematik wird zusätzlich erschwert, da die Zellen ihre 
Wachstumsrate an ihre Lebensbedingungen anpassen, was wiederum die gesamte Zellphysiologie 
beeinflusst. Eine bemerkenswerte Änderung ist, dass mit zunehmender Nährstoffverfügbarkeit und 
-qualität die durchschnittliche Größe der Zellen und die Konzentration der Ribosomen in der Zelle 
steigt; letztere ermöglicht sowohl die Produktion der größten Makromolekülfraktion in der Zelle 
(Proteine) als auch mehr Ribosomen, die für ein schnelles Wachstum erforderlich ist. Mit der 
Zunahme des Volumens der Zelle kommt eine erforderliche Vergrößerung der Oberfläche, da ein 
Ungleichgewicht zwischen diesen beiden zu einem unhaltbaren Innendruck führen würde. Wie 
stellen Bakterien dann sicher, dass das Volumenwachstum mit der Produktion von 
Zellhüllenkomponenten synchronisiert wird, so dass die Zellhomöostase erhalten bleibt, 
insbesondere bei schwankender Wachstumsrate? Genomischer Kontext ist bekannt dafür die 
Koregulation von Genen zu unterstützen und dadurch ihre Expression auf verschiedene zelluläre 
Reize zu synchronisieren. Da das bakterielle Genom sehr unbeständig ist, deutet die Existenz 
konservierter genomischer Kontexte auf wichtige Ansatzpunkte der Koregulation hin. Könnte es 
sein, dass in diesen Genclustern das fehlende Puzzlestück zur Erklärung der Synchronisierung von 
Volumenwachstum und Oberflächenexpansion liegt?  
Um diese Frage zu beantworten, werden in dieser Arbeit drei Fragestellungen bearbeitet. Zunächst 
entwickeln wir ein Genomvergleichstool (www.GenCoDB.org), dass die ständig wachsende 
Verfügbarkeit von sequenzierten bakteriellen Genomen nutzt, um die Analyse, den Vergleich und 
die Quantifizierung von Genomkontexten zu erleichtern. Dies beruht auf neuartigen Strategien, um 
die Breite der Genomdaten, die auf rechnerisch effiziente Weise verfügbar sind, zu 
berücksichtigen, die Wirkung von Probenahmeverzerrungen, die sich in den meisten bakteriellen 
Datensätzen finden lassen, zu verringern und sicherzustellen, dass Kandidaten für ihren 
evolutionären Kontext als signifikant angesehen werden können. Die Verfügbarkeit von GenCoDB 
wird die genomische Kontextforschung in der Mikrobiologiegemeinschaft erleichtern und den 
Zugang von Nicht-Bioinformatikern zu dieser Quelle wichtiger biologischer Daten verbessern. 
Mit unseren neuen Erkenntnissen zu genomischen Nachbarschaftsdaten untersuchen wir 
anschließend die Evolution konservierter Gencluster und versuchen mögliche Kandidaten zur 
Regulation der Volumen-Oberfläche zu identifizieren. Beim Nachvollziehen der 
Verwandschaftsverhältnisse von Genclustern im gesamten Bakterienreich stellen wir fest, dass die 
Co-Orientierung stark konserviert ist, was jedoch weder den späteren Kontext um das Cluster 
herum noch die Expansion des Clusters beeinflusst. Wir finden heraus, dass die vertikale 
Übertragung und nicht der horizontale Gentransfer der treibende Faktor für das Auftreten von 
Genclustern in Chromosomen ist und dass Cluster an Origin und Terminator mit größerer 
Wahrscheinlichkeit instand gehalten werden. Schließlich stellen wir fest, dass trotz der scheinbaren 
Häufigkeit der Operon-Organisation in Genclustern, diese eher aufgrund anderer selektiver 
Belastungen wie Protein-Protein-Interaktionen innerhalb des Clusters und des essentiellen Statuses 
ihrer Gene aufrechterhalten werden, und dass Operons ein Produkt der Co-Lokalisierung über die 
evolutionäre Zeit zu sein scheinen.  
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Wir identifizieren einen einzelnen Gencluster-Kandidaten, der allen Anforderungen gerrecht wird, 
die unserer Meinung nach für die Homöostase des Zellwachstums der Oberflächenexpansion 
erforderlich sind. Die Anforderungen sind eine hohe Verbreitung innerhalb von Bakterien sowie 
eine Verbindung zwischen ribosomenassoziierten Proteinen (Wachstum) und Zellhüllesynthese. In 
Übereinstimmung mit unseren Evolutionsstudien finden wir heraus, dass das Cluster zwar ko-
reguliert ist, dies aber nicht der selektive Druck zu sein scheint, der diese verschiedenen Prozesse 
zusammenführte. Stattdessen finden wir eine potenzielle Rolle des genomischen Channellings, das 
die Produktion von Pyrimidinen mit der Synthese der Zellhülle verknüpft, die von der Co-
Lokalisierung dieses Clusters abhängig ist.  
Insgesamt wird diese Arbeit das Verständnis der Chromosomenentwicklung in Bakterien und die 
potenziellen Auswirkungen des genomischen Kontextes auf die Metabolitenverwertung erweitern. 
Es stellt die Rolle von Operons und horizontalem Gentransfer bei der langfristigen Entwicklung 
der Genordnung in Frage und bietet eine neue quantitative und statistische Ressource, die den 
Zugang zu über 1,9 Millionen Gen-Nachbarschaften ermöglicht.  
  



Abstract    
 

 
 

II  
 

 

Abstract 
The growth of bacteria is a complex but well-orchestrated dance involving the repetitive and 
reproducible production of their diverse cellular components in order to divide. A lot can go astray 
and therefore the cell has developed several strategies in order to ensure everything remains 
synchronized. This problem is only further complicated as the cells adjust their growth rate to their 
living conditions resulting in ripple effects throughout the cell physiology. One notable change is 
that as nutrient availability and quality increases so too does the average size and the concentration 
of ribosomes in the cell. The latter enables the production of the largest macromolecule faction in 
the cell (proteins) including the production of more ribosomes required to maintain the protein 
synthesis requirements. With the increase in volume of the cell comes a required increase in surface 
area, and a disbalance between these two would result in untenable levels of internal pressure. How 
then do bacteria ensure that volume growth is synchronized with the production of cell envelope 
components so that cell homeostasis is maintained, especially in the face of fluctuating growth 
rate? Genomic context is known to assist in co-regulation of genes thereby synchronizing them to 
respond to different cellular stimuli. As the bacterial genome is highly fluid, the existence of 
conserved genomic contexts suggests important loci of co-regulation. Could it be in these gene 
clusters that a possible link between growth and surface expansion is found? 
To answer this question this thesis undertook three missions, firstly we established a genome 
comparison tool (www.GenCoDB.org) that will take advantage of the ever-growing availability of 
bacterial genomes to assist us in the analysis, comparison, and quantification of genome contexts. 
This will rely on novel strategies in order to: accommodate the breadth of genome data available 
in a computationally efficient manner, reduce the effect of sampling bias that plague most bacterial 
datasets and ensure candidates are considered significant for their evolutionary context. The 
availability of GenCoDB is sure to facilitate genomic context research in the microbiology 
community and improve accessibility to non-bioinformatics to this wellspring of important 
biological data. 
With the swath of genomic neighbourhood data, we then sought to understand and analyse the 
evolution of conserved gene clusters in order to narrow down possible volume-surface regulating 
candidates. By tracking the evolution of gene clusters throughout the Bacteria kingdom we found 
that co-orientation is strongly conserved, however, this does not influence the subsequent context 
around the cluster nor the expansion of the cluster. We found that vertical transmission and not 
horizontal gene transfer was found to be the driving factor of gene cluster occurrence in 
chromosomes and that the origin and terminus are hotspots for cluster maintenance. Finally, we 
found that despite the apparent frequency of operon organization in gene clusters, gene clusters 
appear to be maintained due to other selective pressures such as within-cluster protein-protein 
interactions and the essential status of their genes. We suggest that operons are a consequence and 
not a cause co-localization over evolutionary time.  
We identified a single gene cluster candidate that met all the requirements we believe are required 
for cell growth homeostasis of synchronized surface and volume expansion. These requirements 
were a broad conservation within Bacteria, and a connection between ribosome-associated proteins 
(growth) with cell envelope synthesizes. In agreement with our evolution studies we found that 
whilst the cluster was co-regulated this did not appear to be the selective pressure that brought these 
different processes together. Instead we found a potential role of genomic channelling, linking the 
production of pyrimidines with the synthesis of the cell envelope which is reliant on the co-
localization of this cluster.  
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Together, this work will forward the understanding of chromosome evolution in Bacteria and the 
potential implications of genomic context in metabolite utilization. It challenges the roles that 
operons and horizontal gene transfer play in the long-term evolution of gene order and it provides 
a new quantitative and statistical resource providing access to over 1.9 million gene 
neighbourhoods. 
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With the following introduction, we will introduce the concept of growth in bacteria. Most 
importantly we will focus on how during steady state growth, in a myriad of conditions, the cell 
ensures that the duplication of its cellular components such as proteins, DNA and cell envelope 
occur in step with the division of the cell. We will introduce the mechanisms cells have adapted in 
order to ensure these requirements are met even at high growth rates and in the face of 
perturbations. Then we will focus on how genomic context is a vehicle in which stoichiometry 
between different processes in the cell can be ensured as well as the different evolutionary pressures 
facing genome organization. 

1.1 Cell growth in the context of bacteria 
“What defines life?” - a hotly debated question amongst biologists, but one aspect in which they 
all agree upon is that without growth and self-replication, life could not persist (Koshland 2002). 
In the context of biology, growth can be defined both as the accumulation of cell mass, occurring 
when anabolism is greater than the rate of catabolism, and the proliferation of cells through 
division. These two processes are often tightly intertwined with each other as we will later detail 
in this chapter. Bacteria are the canonical model for understanding growth due to their ease of 
manipulation, their relative simplicity and rapid growth. Understanding the complexities of growth 
in bacteria is of great benefit to our society. Bacteria are being increasingly used as cell factories 
to produce metabolic products for medicinal, industrial and economical purposes (Kleerebezemab, 
Hols, and Hugenholtz 2000). Additionally, there is a strong need for research and development into 
bacteriostatic antibiotics, antibiotics that halt the growth of bacteria stopping their proliferation. 
Shortly after the discovery of culturable bacteria, their growth behaviour was classified into four 
distinct phases: lag, log/exponential, stationery and death phase. Only during the log phase would 
the cells be classified as growing and therefore this thesis will focus on this phase. In the log phase 
bacteria are both rapidly dividing and accumulating resources, increasing the total cell mass, as the 
name of the phase would suggest, exponentially. The frequency that a cell culture can double their 
mass is referred to as the growth rate, and this rate is determined by the growth conditions. 
Classically temperature, nutrient quality of the media, and environmental factors such as salinity, 
acidity and the presence of antimicrobial compounds can all modulate the growth rate of a cell. 
Typically the growth rate in natural environments would be governed by the limitation or quality 
of a nutrient, typically carbon, however, nitrogen, phosphorus and oxygen may also be limiting 
factors (Aldén, Demoling, and Bååth 2001). Changing solely the carbon source in the minimal 
medium M9 from a preferred sugar, such as glucose, to succinate can result in a doubling time 
increase from 70 to 134 minutes in Escherichia coli (Chang et al. 1999). Another important factor 
is the genetic context of the cell: different species even encountering the same growth conditions 
can have wildly different growth rates, for example, in a nutrient rich lysogeny broth (LB) E. coli 
doubles every 20 minutes whereas Sinorhizobium meliloti in the same media doubles every 140 
minutes (Dai et al. 2018). One of the fastest-growing known bacteria, Vibrio natriegens, can reach 
a doubling time of 9.4 minutes in optimized media (Hoffart et al. 2017).  
 
Here we should separate the concepts of cell division and cell growth rate. The growth rate is 
normally measured via the optical density of a cell culture which is a reasonable estimation of the 
number of cell mass doublings occurring in an hour. Simultaneously, bacteria undergo binary 
fission which involves the replication and segregation of their DNA into the production of two 
roughly equally sized daughter cells. When a cell divides and splits into two daughter cells, the 
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number of cells in the population has doubled, however, the cell mass has remained identical. 
Having said that, a bacterial population must make sure that division and growth rate are 
synchronized. If division does not synchronize with mass doublings, for example division occurs 
consistently at a faster or slower rate, this would result in the progression towards infinitely small 
or large cells, as each generation would be a different size from the last. The processes in the cell 
which ensures this does not happen is referred to as “cell size homeostasis” (Taheri-Araghi et al. 
2015). This highlights one of the many facets of the cell that needs to be adjusted with a change in 
growth rate.  
 
Cell mass within bacteria is not homogenous and consists of several different cellular 
macromolecules which need to be duplicated before the coming division event, including DNA, 
RNA, proteins, and the cell envelope, including the cell wall and the phospholipid membrane(s). 
Each has their own mechanism of biosynthesis and herein lies the first challenge for the cell - as it 
is not simply a matter of globally increasing production of these macromolecules due to the many 
interdependencies in their synthesis. It was evidenced early on in microbial research that cellular 
composition (RNA, DNA, protein and the cell mass itself) is directly proportional to the growth 
rate and independent of the growth medium composition (Schaechter, Maaloe, and Kjeldgaard 
1958). These observations led to the formation of mathematical laws which govern the relationship 
between the growth rate and the chemical composition of the cell. (Schaechter, Maaloe, and 
Kjeldgaard 1958). Described by the law is an exponential relationship between the growth rate and 
the respective concentrations of cellular components, and the exponent of these relationships varies 
with each component (Figure 1.1). RNA and ribosome concentrations increase with the growth 
rate, DNA concentration decreases, and protein concentration remains constant (Bremer and 
Dennis 2008). Strikingly, this does not happen when modulating the growth rate with temperature 
(Bremer and Dennis 2008). The question is why does each component behave differently? During 
rapid growth in E. coli half of the cell’s biomass is protein (Bremer and Dennis 2008) of which the 
production consumes 75% of the cell’s ATP budget (Russell and Cook 1995). Therefore, making 
protein synthesis very important in achieving fast growth rates. The protein content can be further 
divided into three fractions, ribosome-associated proteins, growth invariant proteins, and others 
(including constitutively expressed proteins) (Figure 1.1.B). In E. coli K12 MG1655 the fixed 
fraction is half of the protein fraction, whereas the non-fixed fraction, including constitutively 
expressed proteins inversely correlate with the growth rate (Figure 1.1.B) (Scott and Hwa 2011). 
In order to meet the protein synthesis demand, cells need ribosomes which consist of a mixture of 
RNA and ribosomal proteins, in other words the rate of protein synthesis is given by the 
concentration of available translating ribosomes. As a large portion of the protein mass is ribosome-
associated proteins, this means there is a significant fraction of ribosomes involved in the 
proliferation of further ribosomal protein synthesis. Therefore, as growth rates increase, the fraction 
of proteins responsible for synthesizing further ribosomes needs to increase in order to 
accommodate the required protein synthesis load (Figure 1.1.B). This means that ribosomes 
synthesizing ribosomes is a key determinant of growth and the larger fraction a cell can devote 
towards ribosome self-reproduction the faster the cell can grow as a whole. Experiments in E.coli 
revealed that 85% of total cell RNA in E. coli is ribosomal RNA (rRNA) independent of growth 
rate (Bremer and Dennis 2008). Therefore, as the RNA/total protein ratio and the ribosomal 
protein/total protein ratio has a positive linear relationship with growth rate, this relationship 
mainly reflects the positive linear relationship between ribosomal mass and the growth rate (Figure 
1.1.A) (Schaechter, Maaloe, and Kjeldgaard 1958). To ensure that the rRNA and ribosomal protein 
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levels remain at stoichiometric proportions, ribosomal proteins are able to bind to the UTR of their 
own mRNA (Nomura, Gourse, and Baughman 1984). Typically they bind rRNA with a high 
affinity, however in cases of insufficient rRNA to bind, they bind their own mRNA and  thereby 
autoregulate their synthesis until sufficient rRNA can be produced (Nomura, Gourse, and 
Baughman 1984). This ensures stoichiometric levels of the two ribosome components irrespective 
of the growth rate. 

 
1 - Figure 1.1 - Growth laws in bacteria 

A. As growth rate (λ) increases due to higher nutrient quality, so to does the RNA/protein and cell size, 
which both correlate linearly. This is highlighted in the increase of RNA (mainly ribosomes) that the cell 
requires in order to meet protein synthesis demands. B. The cellular protein content can be abstracted into 
three fractions, a fixed fraction which is invariable to changes in growth rate (orange), the ribosome-
affiliated proteins which increase with growth rate (green) and other proteins inversely correlated with 
growth rate (blue). The dotted line represents how the ribosome-affiliated fraction consumes the “other” 
fraction as growth rate increases. Adapted from (Scott and Hwa 2011) 
 
Further complexity was found in the same work by Schaechter et al. who also observed another 
fundamental bacterial growth law: cell volume and thereby size is linearly correlated with the 
growth rate (Figure 1.1.A). As the growth rate of a cell increases so does the cell volume, again 
independent of the composition of the growth media. This has many implications to the regulation 
and concentration of macromolecules in the cell as the volume increases. However, it was found 
that independent of the size of the cell, the protein concentration continued to remain constant (X.-
Y. Zheng and O’Shea 2017), correlating the expansion of volume with the active ribosome pool. 
The question of why bacteria increase their size with an increased growth rate/nutrient availability 
is still unanswered. The first of two potential explanations posit that it is to accommodate the 
volume of DNA, which at high growth rates undergoes multifork replication and therefore requires 
significantly more space. This hypothesis is supported by the fact that bacteria not performing 
multifork replication, such as C.crescentus, do not alter their cell size with their growth rate 
(Campos et al. 2014). An alternative explanation suggests that increasing cell size during high 
growth conditions is a crude method of storing nutrients in order to survive and adjust to future 
periods of starvation  (Westfall and Levin 2017). From these observations it has become clear that 
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in the variation of growth rate the relative concentrations of different cellular macromolecules are 
finely tuned to maintain such mass doubling speeds. At specific growth rates the number of 
ribosome complexes needs to reflect the number of active RNA polymerases and other complexes 
in tight stoichiometry. However, it is not only macromolecules that must be synchronized, but the 
sub-processes which synthesize them as well, namely translation, transcription, and DNA 
replication. With the association between growth rate and cell size this goes further still, requiring 
that there must be stoichiometry and synchronization between even more encapsulating processes 
such as cell volume and cell surface growth. How then can the bacteria synchronize everything at 
once whilst keep pace with the ticking clock that is division in the face of environmental changes, 
stresses and perturbants? 

1.2 Synchronization strategies in bacteria 
The requirements for cell division can be loosely divided into three sections: replication of the 
chromosome(s), production of twice the number of cellular components and the act of division 
itself. With the complexity of each of these three tasks, this begs the question, what strategies do 
bacteria use in order to synchronize these processes? As we have already discussed at length how 
the different macromolecules are regulated with growth rate, we will next discuss DNA replication. 
In the context of cell division the replication is divided into three periods, the B period, spanning 
the birth of the cell and division, the C period, which is the time required to completely duplicate 
the DNA and the D period; the time between finishing DNA replication and division (Bremer and 
Dennis 2008). In E. coli the time it takes to replicate the genome is approximately 41 minutes, 
however this does vary based on growth rate slows down in poor growth conditions (Cooper and 
Helmstetter 1968). We have already mentioned that E. coli can achieve doubling times of 20 
minutes, however if the doubling time of a cell is less than the C period, how could the cell possibly 
produce enough DNA in order to divide in time? To solve this issue and as alluded to earlier, many 
bacteria undergo what is referred to as multifork replication, where the replication of the DNA is 
initiated before the previous round has finished. In Pectobacterium carotovorum this can result in 
up to 30 replisomes on the DNA at one time (Couturier and Rocha 2006). Through multifork 
replication, bacteria can ensure that at division, at least one round of replication is finished once 
cell mass has doubled division is required (Donachie 1968). A consequence of multifork replication 
is that there an increase in gene dosage of genes close to the origin of replication (ori) (Soler-Bistué, 
Timmermans, and Mazel 2017). Bacteria have taken advantage of this by biasing the which genes 
are localized near the origin. It has been found that several translation- or ribosome-associated 
genes are located there in many bacteria (Soler-Bistué, Timmermans, and Mazel 2017). This 
provides our first clue to the relevance of genome organization in the synchronization of essential 
pathways during cell growth, which we will discuss in more depth later. Indeed, the  amount of 
protein found in a cell has been found to be a function of the number of replication origins, thereby 
extrapolating from this, the amount of DNA in the cell is correlated to the amount of protein in the 
cell (Donachie 1968). What then correlates the growth rate with the onset of multifork replication? 
Although The precise mechanisms of initiation remain elusive but we know that replication 
initiation occurs at relatively constant cell volumes respective to the current number of origins of 
replication in the cell(Donachie 1968; Hill et al. 2012; Wold et al. 1994). This initiation volume is 
independent of both the growth rate or the birth size of the cell (Wallden et al. 2016). One 
hypothesis suggests that this is  because the expression of proteins involved in the initiation of 
replication, an example from E.coli being the replication initiation protein DnaA, are autoregulated 
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maintaining their concentration independent of the volume or growth rate of the cell (Skarstad and 
Katayama 2013). Initiation would then occur through the accumulation of a fixed critical amount 
of replication initiator at the chromosome origin. Then with initiation, the proteins are diluted 
between the now multiple origins and must accumulate again before a new replication fork is 
initiated (Si et al. 2017). When there are already multiple origins, they are required to initiate 
relatively simultaneously as they begin to become hemimethylated and protected from further re-
initiation (M. Lu et al. 1994). 
 
After finalization of macromolecule synthesis, the cell needs to undergo division, dividing these 
components between the daughter cells. As we explained earlier in the introduction, division needs 
to be coordinated with the growth rate or else the size of the cells would inflate or shrink during 
each generation. There has been much research as to how the cell decides when to trigger division, 
and it was thought to occur through one of three different models: the adder, sizer and timer models 
(Taheri-Araghi et al. 2015). Under the adder model, cells divide after adding a fixed amount of size 
to their initial size, under sizer, the cell waits until they are a predetermined size before initiating 
division and with the timer model the cell initiates a fixed amount of time after birth (Taheri-Araghi 
et al. 2015). It was shown that under the majority of growth conditions bacteria divide under adder 
model (Amir 2014), however at slow growth rates this breaks down and division begins as one 
would expect in the sizer model (Wallden et al. 2016). The adder model can ensure cell size 
homeostasis despite the stochasticity of cell division, as initially smaller cells add proportionally 
larger amounts of cell mass before dividing and vice versa with initially larger cells, resulting in 
them converging in a similar growth-rate-defined size (Lin and Amir 2017). Exactly how the 
growth rate determines what the fixed size should be mechanistically is currently not known. Along 
with the increase in volume and size comes an increase in surface size. This must be matched by 
the production of the cell envelope as disbalance between volume and surface may lead to 
unsustainable levels of internal pressure in the cell or an unstable wall or membrane (Koch 1985). 
It is seen that disrupting the balance between cell wall synthesis and cell volume growth by cell 
wall targeting antibiotics has a greater effect at faster growth rates (Aldridge et al. 2012). As growth 
rate is coupled with: cell size, the total levels of ribosomes and the protein fraction in the cell, this 
suggests a cellular mechanism which synchronizes the volume expansion of the cell, and 
subsequently the production of ribosomes, with the production of the cell envelope. To this end we 
will explore different expression strategies bacteria use in order to maintain cell homeostasis. 
 
Having mechanisms in place to maintain stoichiometry during different growth rates is important, 
however these need to persist not just in perfect growth conditions but also in natural contexts. 
Contexts where the growth homeostasis relationship outlined by the bacterial growth laws can be 
and are challenged. There are many different strategies and mechanisms utilized by bacteria to 
counteract different perturbants such as salt, iron, pH, and antibiotics to name a few examples. 
These are often regulated by signal transduction modules where the perturbant or stimuli is detected 
by one module and conveys the signal to an intracellular responder that can elicit changes in the 
transcriptional profile of the cell. An example of this is the stress response to perturbations of cell 
envelope synthesis in B. subtilis which consists of four sigma factors σW, σX, σM, σV each with 
overlapping but different stimuli. For briefness we will just cover the roles of σW and σM. σW is 
stimulated by membrane-active agents such as detergents and has a regulon consisting of 60-90 
genes (Helmann 2006). The regulon consists of genes that provide resistance to antimicrobial 
agents, for example fosB which inactivates the MurA-targeting antibiotic fosfomycin (Cao et al. 
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2001). Furthermore genes involved in reshaping the membrane lipid composition are also activated. 
This leads to decreased membrane fluidity thereby providing long term resistance to membrane-
active stressors allowing the cell to continue growing (Kingston, Subramanian, and Rock 2011). In 
contrast to σW, σM does not solely focus on upregulating genes involved in the detoxification and 
resistance to antimicrobial agents when peptidoglycan synthesis is inhibited (Eiamphungporn and 
Helmann 2008). Instead several genes within the peptidoglycan biosynthesis pathway such as 
murG and amj are upregulated to maintain the unperturbed synthesis rate and keep cell homeostasis 
(Eiamphungporn and Helmann 2008). The widespread use of sigma factors underpins the benefit 
of coordinating gene expression in order to synchronize the activity of many proteins. 
 
Sigma factors are one of the ways bacteria coordinate gene expression and this is often required 
when responding to specific stimuli or changes in their environment. At the transcriptional level, 
transcription factors and sigma factors are utilized by the cell. Transcription factors are usually 
sequence-specific DNA-binding proteins and respond to stimuli to regulate transcription of a gene. 
Transcription factors may increase transcription by making the promoter region more accessible to 
the RNA polymerase, stabilizing its binding or recruiting other co-activators (Balleza et al. 2009). 
Conversely, they may also reduce transcription by blocking access of a promoter to RNA 
polymerase (Balleza et al. 2009). We discussed the role of some sigma factors in the previous 
paragraph; however their mode of function differs to transcription factors. Unlike transcription 
factors, sigma factors are required for transcription in bacteria. They associate themselves with the 
RNA polymerase complex and influence the promoter sequence affinity of RNA polymerase 
(Maeda, Fujita, and Ishihama 2000). They are often expressed constitutively and released from an 
anti-sigma factor upon recognition of the stimuli resulting in a rapid response. Genes that are 
collectively regulated by the same transcription factors or sigma factors are denoted as regulons 
and can be restrictive, affecting only two genes, or globally changing the expression of over 500 
genes. Genes in a regulon can be dispersed across the genome. This strategy of co-regulation has 
been shown to be noisy, meaning that there is a lot of variability in the expression of genes 
responding to the same signal (de Lorenzo and Pérez-Martín 1996) This is often dependent on the 
individual genomic context of each gene, for example from gene dosage from multifork replication 
(Sauer et al. 2016), genome supercoiling (Dorman 2006) and upstream and downstream 
transcription events. The pioneering work of Monod (Jacob and Monod 1961) revealed the 
existence of operons in bacterial genomes. The canonical operon is usually described as a group of 
functionally similar genes (acting, e.g., in the same metabolic pathway), which are controlled by a 
single promoter, are close together, are all orientated in the same direction, terminate at a single 
transcription terminator and are transcribed at similar levels (Laing et al. 2006; Jacob and Monod 
1961; Salgado et al. 2000). Operons reduce the noise in expression variability between the co-
transcribed genes. This enables tight synchronization between the gene products (Ray and Igoshin 
2012). As operons are also co-localized/clustered on the genome, the other aforementioned effects 
would not impose variability between expression of different genes. Operons are usually conserved 
in multiple species suggesting importance in the tight regulation they provide which can be of 
critical importance in the formation of multisubunit protein complexes. Therefore, regulation via 
operon organization makes for an interesting candidate in the synchronisation of surface and 
volume growth.  
 
Operon transcription is not the only advantage of co-localizing genes on a genome affords to 
bacteria. It has been observed that several genes which encode protein-complexes and biosynthetic 
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pathways are also found together in gene clusters (Dandekar et al. 1998; Fani, Brilli, and Liò 2005). 
The benefits of this are explained by the molarity model which posits that co-transcription and 
translation result in increased local concentrations of gene products (Gómez, Cases, and Valencia 
2004). This thereby facilitates interaction or complex formation between the proteins as they are 
more likely to find their corresponding partner. In Mycoplasma genitalium it was shown that gene 
clustering was present in over a third of all known functional protein-protein interactions (Huynen 
et al. 2000). Therefore, it could be suggested that genomic context conservation is important to 
maintaining physically interacting proteins and therefore generates a strong selective force, 
especially on proteins involved in crucial physiological functions. The localization of proteins may 
be especially relevant in synchronizing enzyme activity levels, for example with moonlighting 
proteins. Moonlighting proteins are enzymes with more than one function (Huberts and van der 
Klei 2010). When moonlighting proteins interact with other proteins and processes this creates a 
potential synchronizing link between the two processes. An example is glucosyltransferase UgtP 
in B. subtilis (Weart et al. 2007). Firstly, OpgH is required for the synthesis for a gram-positive 
cell wall component, the diglycosyl-diacylglycerol anchor for lipoteichoic acid. Additionally 
however, when growing in nutrient rich medium and one of its substrates, UDP-glucose, is 
abundant, OpgH interacts with the cell division protein FtsZ, resulting in a delay of division and 
increasing cell size (Weart et al. 2007). It is therefore speculated that through OpgH, cell wall 
synthesis, carbon metabolism and cell division could be synchronized. As co-localised genes are 
often localised together (Mingorance, Tamames, and Vicente 2004) this suggests further 
moonlighting (and therefore) synchronizing strategies could be found at the genomic context level. 

1.3 Bacterial genomic context evolution 
As we are interested in the synchronization of highly conserved processes in bacteria (cell wall, 
synthesis, translation, etc), it would be expected that such a context would be found conserved 
across the Bacterial kingdom. Therefore, to understand the role synchrony plays in genomic context 
we must first understand the forces which shape and maintain bacterial chromosome organization. 
Gene order (synteny) is notably poorly conserved between bacterial species (Mushegian and 
Koonin 1996; Itoh et al. 1999; Dandekar et al. 1998) and that disruption of gene order occurred at 
a faster rate than the mutation of protein amino acid sequences (Wolf, Rogozin, Kondrashov, et al. 
2001). However, despite the high rate of gene shuffling, bacterial genomes, even those distantly 
related to each other, do not appear to be independent collections of randomly ordered genes, and 
there are indeed several conserved genomic contexts and genene pairs (also referred to as gene 
neighbourhoods or gene clusters) that have been identified (Wolf, Rogozin, Kondrashov, et al. 
2001). Examples of such cases include a mega-ribosome cluster consisting of over 20 ribosomal 
genes (Ohkubo et al. 1987), the genes encoding the ATP synthase complex (McCarn et al. 1988) 
and the division and cell wall (DCW) cluster (Pucci et al. 1997). The existence of these conserved 
clusters in defiance of the observed decline of context conservation at larger genomic scales indeed 
suggests that there must be fitness benefits conferred by these genomic arrangements such as cell 
process synchrony (J. Lawrence 1999; J. G. Lawrence and Roth 1996). The selective benefits of 
synchrony is only one plausible explanation for gene clustering. Further explanations can be broken 
down into three partially overlapping categories: the mechanisms which brought the genes together 
(Fani, Brilli, and Liò 2005; Touchon and Rocha 2016; Ream, Bankapur, and Friedberg 2015), 
which evolutionary forces are important in maintaining the cluster (Fang, Rocha, and Danchin 
2008; Oliveira et al. 2017) and how these forces impact the biological function of the cell 
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(Tamames et al. 2001; Wells, Bergendahl, and Marsh 2016; Mingorance, Tamames, and Vicente 
2004; Dandekar et al. 1998).  
 
The fluidity of the bacterial genome stems from the many mechanisms which can alter its 
organization. There are both intrinsic factors resulting from the cell's own (error-prone) processes, 
and from external factors where DNA is taken up or forcefully inserted into the genome. Intrinsic 
rearrangements typically occur during the malfunction of regular cellular machinery leading to the 
inversion, deletion, duplication or translocation parts of the chromosome, referred to collectively 
as rearrangement events. The major source for such events is due to homologous recombination, 
which is a DNA repair process found in bacteria. Homologous recombination occurs after DNA 
damage has been detected involving either a double- or single-strand DNA break (Dillingham and 
Kowalczykowski 2008). DNA damage can be induced through several factors including UV light, 
radiation, restriction enzymes and chemical mutagens. RecBCD or RecF pathways, for double- or 
single-strand breaks respectively, are used to repair the gap (Smith 2012). Whilst both pathways 
utilize different proteins and mechanisms initially to unwind and degrade one end of DNA near the 
DNA break they both result in single stranded DNA 3’ end covered in RecA protein (Smith 2012). 
The RecA-coated nucleoprotein filament searches for homologous stretches of DNA and then 
undergoes strand invasion where it moves into the homologous recipient DNA duplex. This forms 
a D-loop which can be resolved in two ways. First the loop is cut resulting in swapping the strands 
between the two DNA molecules, and the gaps can be filled with DNA polymerase leading to two 
altered DNA fragments. Alternatively, the invading 3’ end can prime DNA synthesis and form a 
replication fork. Rearrangements occur when homology-dependant recombination-repair 
machinery recruits a similar but incorrect match as the repair template. The resolution of the 
mismatch can then lead to inversions, deletions or duplications depending on the orientation and 
location of the incorrect repair template and the damaged DNA (West 2003). Due to homologous 
recombination it has been shown that during stalls of the replication forks, inversions between the 
two sides of the genome are significantly more likely (Tillier and Collins 2000), resulting in high 
frequencies of inversions being centered on the origin and terminus of the chromosome (Suyama 
and Bork 2001). Due to high levels of sequence repetition, rearrangements occur especially 
frequently with repetitive genomic elements (Achaz et al. 2003). Direct repeats result in deletion 
of the sequence between them whilst inverted repeats lead to inversion. Another pseudo-intrinsic 
factor shaping chromosome organization are the presence of transposable elements (transposons). 
Whilst transposons were originally identified in plants (McCLINTOCK 1950), they have been 
found in nearly all organisms having evolutionarily important roles in genome construction. 
Transposons can be classified into different classes; however all are mobile genetic elements which 
often persist in the genome in a selfish way and can either be self-sufficient or require the presence 
of other transposable elements to move. They usually are surrounded by flanking regions which 
either facilitate: transcription, retrotranscription and reinsertion into the genome (class I); or 
excision and insertion (class II) (Kapitonov and Jurka 2008). In bacteria, transposons have been 
shown to frequently carry genes involved in other functions such as antibiotic resistance. This can 
also occur between chromosomal DNA and plasmids resulting in a mechanism in which foreign 
genes can be inserted into the genome. 
 
The uptake of external genes can also occur through other mechanisms in bacteria, for example 
transformation, conjugation and transduction. Transformation is the uptake and integration of 
extracellular DNA performed by many bacteria. One example is found in B. subtilis, which enters 
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a state of competence as they leave the exponential phase. While competent, they begin uptaking 
DNA (Solomon and Grossman 1996). DNA is then integrated based on homologous recombination 
and therefore usually is sourced from bacteria of the same species. There are infrequent exceptions 
where non-homologous DNA is integrated resulting in the insertion of foreign DNA. Conjugation 
involves the extended contact between two cells, a donor and recipient. A sex pilus is built between 
the two cells and DNA (usually an episome) is transferred from the host to recipient and can be 
incorporated into the host. The conjugation of Mycobacteria is chromosome- instead of plasmid-
based (Derbyshire and Gray 2014). Transduction is the movement of genetic information between 
bacteria through a virus or viral vector. Firstly, the host cell DNA is packaged into viral capsids 
which are released through lysis. When the phage capsids infect a new host, the new DNA can be 
integrated into the host's DNA. Through these mechanisms multiple genes can be transferred at 
once across species boundaries, what is referred to as horizontal gene transfer (HGT). Through 
HGT gene clusters can be found over large taxonomic distances.  
 
We have outlined both how fluid the bacterial chromosome is and the multiple mechanisms that 
create such genetic variability. However, without strong selective forces, any formed gene clusters 
will not be maintained long in a population. There are several hypotheses as to why gene clusters 
may arise despite strong chromosomal fluidity. One such model states that tight compaction of 
genes improves the rate for which HGT may occur between species. HGT subsequently results in 
the propagation of an apparent “conserved gene cluster” to a diverse array of taxa (J. G. Lawrence 
and Roth 1996). Under this model only non-essential genes are likely to cluster together and be 
transferred, unless the essentiality of the gene was developed after transfer to the recipient genome. 
Additionally, groups of genes that are laterally transferred are often similar in function as they must 
provide a selectable phenotype to the recipient – leaving little allowance for genes of divergent 
function to cluster together through this mechanism. The Fisher model works on the presumption 
that co-localized genes also co-adapted (for example corresponding amino acids in protein-protein 
interactions) and thereby, having them situated proximately to each other reduces the chance they 
will be separated by recombination events (Fisher 1929). This may then result in additional genes 
co-adapting and increasing the size of the inseparable cluster. In gene clusters which have already 
been discovered in bacteria, there was an enrichment in genes essential for cell growth. This has 
been explained for two reasons. By clustering essential genes, this reduces the probability that 
deleterious rearrangement events will span regions containing essential genes (Fang, Rocha, and 
Danchin 2008). Furthermore, as essential genes are less likely to participate in rearrangement 
events, particularly deletion events, this results in the deletable distances between essential genes 
shrinking over generations resulting in the auto-coalescence of multiple essential genes (Fang, 
Rocha, and Danchin 2008).  
 
In the previous section we discussed the fitness benefits of operons and protein-protein interactions 
related to co-localization on the genome. Similar to the concept of operon transcription, co-
expression of genes is another hypothezied evolutionary force. The “piece-wise” model explains 
the formation of more complex operons, which may contain a diverse array of gene functions (Fani, 
Brilli, and Liò 2005). It explains that small clusters, formed through other mechanisms, such as 
those mentioned above and below, may themselves cluster under a need for common regulation. 
This then leads to the build-up of larger and larger gene clusters. Coexpression is classed as a short 
term selective force but over long evolutionary time periods would not be able to maintain gene 
clusters together (Fondi, Emiliani, and Fani 2009). Another study found that coregulation and 
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protein-protein interactions could explain ⅔ of gene pair clustering (Fang, Rocha, and Danchin 
2008), this leaves however a third of gene pairs unexplained. These are only a selection of 
hypotheses regarding the formation and maintenance of gene clusters and it is possible we have 
not yet scratched the surface. One example was pointed out by Tamames et al (2011), who showed 
that organisms that had lost the DCW cluster, yet maintained all DCW genes independently, also 
lost their rod shape. If the localization of the cluster is required for the rod shape, or if selective 
advantage of the DCW cluster is only present in rod shaped bacteria, is currently an area of active 
research.  
 
Despite the fluidity of the bacterial genome, several conserved neighbourhoods of genes have been 
found across the bacterial kingdom. Because of their evolutionary significance, conserved gene 
clusters have begun to be exploited for several purposes in biological research. For example 
Dandekar et al. showed that conserved gene-pair co-localization could be used to predict protein-
protein interaction partners. Another example was the annotation of four GTPases as having a role 
in translation solely based on their conserved genome context (Wolf, Rogozin, Kondrashov, et al. 
2001). Furthermore, this relationship has been exploited in order to predict the functional activities 
of unannotated proteins (R. Overbeek et al. 1999; Huynen et al. 2000). While these examples 
highlight the usefulness of genomic context conservation for various research questions, access to 
quantitative, statistical data on genomic context conservation is relatively limited – especially for 
scientists without a bioinformatics background. Currently there are numerous and excellent 
genomic databases for bacteria available, including microbe-wide datasets such as Microbes Online 
(Dehal et al. 2010), JGI (Grigoriev et al. 2012), NCBI (NCBI Resource Coordinators 2018), 
StringDB (Snel et al. 2000) and species-specific databases such as SubtiWiki for B. subtilis 
(Michna et al. 2016) or EcoCyc for E. coli (Keseler et al. 2017). All these databases allow the 
visualization of the genomic context around a chosen gene in one form or another, affirming the 
ubiquitous need for this information. As examples, Microbes Online and JGI allow users to view 
multiple contexts concurrently (each genome is displayed as a separate line). StringDB takes 
another approach by displaying only genes which are frequently observed at each position on the 
neighbourhood for different taxonomic groupings. Through colour-coding of orthologous genes in 
the context of a gene of interest, these tools enable a semi-quantitative description of potential 
conservation patterns. This is done by manual counting of conserved genes across a limited number 
of genomes. However, this visual inspection of individual genomes is time-consuming and error-
prone, typically preventing a statistical analysis of thousands of taxonomically diverse genomes, 
as required for rigorous conclusions about genomic context conservation. Another pitfall is that 
genomic databases are naturally biased towards species of high medical, biotechnological or 
academic interest, which can obscure statistical analyses of genetic context conservation. For 
example, if genomes within a subset are closely related, observed similarities between genomes 
are less likely due to appear because of selective pressures maintaining such an arrangement, but 
as a mere consequence of insufficient evolutionary time for genomic rearrangement events to have 
occurred. If not taken into account, this bias would result in false positive conserved neighbours 
identified in highly sequenced bacterial clades, such as Proteobacteria, and false negative 
neighbours not detected in less sequenced clades, such as Bacteroidetes. Accordingly, accounting 
for the non-random distribution of bacterial genomes is paramount for a meaningful analysis of 
genomic context conservation, but to date there is no publicly available database that provides such 
statistical analyses. 
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Despite the similarities in DNA code and transcription/translation apparatuses, the evolutionary 
forces that act upon eukaryotic and prokaryotic genomes is very different (Michalak 2008). 
Eukaryotes lack the ability (in most cases) to transcribe polycistronic transcripts and therefore do 
not have the operon-level organization found in bacteria genomes. Instead eukaryotes often have 
gene clusters which are also coregulated but comprise genes that have been duplicated and 
diverged. One such example is canonically represented by the β-globin gene cluster. The genes in 
this cluster are controlled by a local cis-acting sequence upstream of the cluster (Tanimoto et al. 
1999). These are then often surrounded by chromatin insulators which lead to regions of gene 
silencing via heterochromatization (as opposed to the actively transcripted euchromatic state) 
(Gerasimova and Corces 2001). Chromatin is a term for packed eukaryotic nuclear DNA which is 
wrapped around a protein octamer referred to as a histone. The modifications of the histones control 
the state of the chromatin and particular modifications are associated with different expression 
patterns. For example methylation of Lys9, Lys27 and Lys35 of histone H3 is linked to 
heterochromatization (Lachner and Jenuwein 2002), whereas methylation of histone H3 at Lys4 is 
associated with euchromatization (Santos-Rosa et al. 2002; Zegerman et al. 2002). In addition to 
histone modifications, the DNA can also be methylated which in many organisms also results in 
heterochromatinization and gene silencing (Geiman and Robertson 2002). Both DNA methylation 
and histone recruitment can be modulated by DNA sequence specific factors, which often lead to 
the spread of this signal in both directions often covering large sections in similar regulation 
patterns. This therefore leads to genes clustering together based temporal and spatial expression 
requirements. 

1.4 Project aims 
The aim of this project is to further understand how, at diverse growth rates, bacteria maintain 
stoichiometry between volume and surface growth. Early observations of growing bacteria 
revealed that independent of the composition of the media, growth rate is modulated so it correlates 
the volume/size of the cell (Schaechter, Maaloe, and Kjeldgaard 1958). Measurements of the 
chemical composition of these growing cells highlighted a linear relationship between the growth 
rate and the number of active ribosomes, specifically the pool of ribosomes required to be 
synthesizing other ribosomes in order to match the protein translation demand of the growing cell. 
With this increase in volume, naturally comes an increase in the surface area of the cell and 
subsequently requirements for additional cell envelope components such as peptidoglycan and 
phospholipids. Whilst much work has looked into how the processes of DNA replication and 
division are regulated under the different growth rates, how cell envelope biosynthesis is regulated 
in relation to growth rate is not as well understood. Specifically, we will explore the role genomic 
context may have in connecting these two processes. To accomplish this, first we will develop a 
platform to allow us to quickly, quantitatively and statistically peruse the genomic contexts across 
the broad range of genetic diversity within Bacteria. The implementation of thousands of bacterial 
genomes will facilitate the analysis of genome context evolution and determine which gene 
neighbourhoods can be considered interesting candidates in the context of evolution. Our aim is to 
find gene neighbourhoods containing ribosome-associated genes co-localized with genes involved 
in the biosynthesis or homeostasis of the cell well, one that is well conserved across the Bacterial 
kingdom. Upon finding a candidate gene cluster we will explore its possible role in synchronizing 
surface and volume growth. Firstly, we will bioinformatically measure the correlation of expression 
between the genes of the gene cluster in multiple organisms where the cluster is conserved. We 
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will test for the presence of noise-reducing operons in the gene cluster that may link ribosomal and 
cell envelope genes. Finally, we will disrupt the co-localization and observe how cell growth in 
different media is affected. 
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In this chapter we will present GenCoDB (Genomic Context Database), an easy-access tool 
enabling the rigorous study of genetic context conservation in bacteria. GenCoDB implements 
statistical analyses that correct for sequencing bias and allows for an unprecedented resolution of 
genetic context conservation at different taxonomic levels and in individual clades. By exploiting 
the hierarchical ortholog group definitions from OrthoDB (29), GenCoDB categorizes genes into 
orthologous groups with user-adjustable levels of fine-graining, thereby permitting deep insights 
into the conservation of genes encoding either broad or more specialized biological functions. In 
GenCoDB the user can analyse the genomic context of a given gene via three complementary 
views, comprising an enhanced genome-by-genome view, a statistical neighbourhood view, as well 
as an evolutionary view showing the conserved genetic context along the bacterial tree of life. By 
combining the best features of conserved gene context visualization from Microbes Online, JGI 
and StringDB, as well as by adding new quantitative statistical analyses, GenCoDB fills a gap in 
the space of current databases without creating redundancies with previous tools. This database is 
publicly available at the Genomic Context Conservation Database (www.gencodb.org). 

2.1 Data collection 
Gene neighbourhood analysis 
To compare gene neighbourhoods between different organisms, it is necessary to define which 
genes encode for similar proteins across the different genomes. These orthologs are traditionally 
identified by clustering genes based on similarity in the encoded protein sequence, as in the 
commonly used PFAM and COG ortholog group definitions (El-Gebali et al. 2019; Tatusov et al. 
2000). However, the definition of whether two genes are orthologous is subjective to the research 
question and there are, in principle, many levels of course- or fine-graining that can be applied. 
This is especially apparent with highly abundant but diverse genes, encoding for instance ABC 
transporters, for which very small differences in protein structure can result in the import/export of 
vastly different substrates completely changing their cellular role. Thus, to allow for a 
differentiated definition of orthologous genes, GenCoDB is built upon the hierarchical ortholog 
grouping of OrthoDB (Kriventseva et al. 2019), in which each protein sequence was clustered 
multiple times with different subsets of protein sequences belonging to organisms of different 
taxonomic groups. Consequently, by being exposed to either more closely or more divergent 
sequences, every protein is assigned to different ortholog groups of different levels of course-
graining – trading specificity for generality (Figure 2.1A). For instance, as shown in Figure 2.1A, 
the ATP-binding protein LagD is assigned a general ABC transporter group at the kingdom level, 
but a much more specific group, bacteriocin cleavage/export ABC transporter, at the order level. 
Notably the exposure of different subsets of sequences resulted in LagD being grouped with 
permeases (despite being an ATPase) at the class level, highlighting the need to modulate the 
sensitivity of ortholog grouping classifications. 
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2 - Figure 2.1 - Neighbourhood collection workflow 

An outline of the workflow used in the data collection for GenCoDB. First, we choose a gene to analyse 
(the seed) and find its orthologs in other genomes based on a hierarchical clustering sensitivity from 
OrthoDB. Using the same ortholog assignment strategy, this is repeated for all genes in the seed’s 
neighbourhood. Then we divide the genomes into different subsets based on taxonomic divisions. We 
calculate the genetic diversity each genome provides to its subset to determine the weight of information a 
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neighbourhood brings to the dataset. Then based on expected conservation frequencies we remove 
insignificant neighbours resulting in a significantly conserved genomic context. The coloured arrows 
represent genes on a genome and the different colours represent distinct ortholog groups. The ortholog group 
of the seed gene is always indicated in red. The shaded boxes behind the steps represent which ortholog 
group level was assigned to the neighbouring genes (green and blue) or which taxonomic subset of genomes 
were used to perform the subsequent analysis (orange and yellow) 
 
Gene-centric neighbourhood statistics 
 
To provide comprehensive gene neighbourhood analysis on a broad statistical basis, we focussed 
our analysis on the 5,487 fully sequenced prokaryotic genomes deployed in OrthoDB v10 
(Kriventseva et al. 2019). Given that many traditional analyses of conserved gene neighbourhoods 
rely on whole genome alignments for which the computation time scales exponentially with the 
number of genomes (Wolf, Rogozin, Kondrashov, et al. 2001), analysis of such large datasets is 
not feasible with conventional methods. Thus, to overcome this limitation, GenCoDB considers 
only local genetic neighbourhoods with a gene-centric approach, allowing for quicker data 
collection, analysis and visualization, as outlined in Figure 1B. GenCoDB’s analysis pipeline starts 
with the selection of a “seed” gene of interest (Figure 2.1B; step I), and all proteins that are 
orthologous to it (at a chosen ortholog grouping level as defined by OrthoDB). We exploited the 
database links between OrthoDB, UniProt and NCBI to identify their respective genomic positions 
(Figure 2.1B; step II). Then we retrieved the 25 genes up- and downstream for all genes in this 
selection, recorded their transcription orientation relative to the seed gene and assigned each 
neighbouring gene with an ortholog group (Figure 2.1; step III). Whenever the link between the 
three databases was incomplete for a gene (~5% of genes), we assigned the gene with an 
“unknown” ortholog group thereby maintaining the correct relative positions of up- and 
downstream genes. For simplicity, in assigning ortholog groups to neighbouring genes, we 
restricted the possibilities to 5 levels, namely kingdom, phylum, class, order and family (Figure 
2.1A). If a gene is not associated with an ortholog group at that level, the closest ortholog group 
from the next more general taxonomic level is assigned instead. For example, if a gene is missing 
the ortholog group at the phylum level, the ortholog group from the super phylum is assigned 
instead. To enable differentiated genetic context analyses at different taxonomic levels, we repeated 
the downstream analysis for various selections of genomes from different (sub-)taxa, e.g. ‘Bacteria’ 
at the kingdom level, ‘Proteobacteria’ at the phylum level, or ‘Enterobacteriales’ at the order level 
(Figure 2.1C). These taxonomic nodes are based on the taxon-definitions of the NCBI database 
(NCBI Resource Coordinators 2018) and were restricted to those containing a minimum of 50 
genomes. In total, GenCoDB analyses genomic context conservation at 89 taxonomic nodes, which 
not only allows fine-grained studies of gene context conservation in particular taxa, but also enables 
tracing of gene synteny over evolutionary history (see below). In the following steps we derived 
gene neighbourhood conservation statistics at different taxonomic levels (Figure 2.1; steps IV-
VIII). 

2.2 Data correction and normalization 
Correction of sampling bias 
The published genome sequences of Bacteria are not evenly distributed across the kingdom, with 
a bias towards species that are: pathogenic to humans, of economic interest, or that are easy to 
culture in the laboratory. This leads to individual taxa contributing larger fractions of information 
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to a final dataset than others. Therefore, simply counting the absolute number of genomes in which 
two or more genes are conserved in a particular position does not accurately reflect the true level 
of conservation, and conversely produces false positive results (Figure 2.2A). For example, if two 
ortholog groups are both present in two halves of the analysed genomes (see the blue and green 
genes Figure 2.2A), the high abundance of blue orthologs in closely related E. coli sub-strains is 
far less significant than the high abundance of green orthologs, which are present in far more 
diverse bacterial species. 
 
Within the underlying dataset of GenCoDB we found indeed an unequal representation of genomes 
from the four biggest bacterial phyla, with a high abundance of Proteobacteria genomes and a lower 
abundance of Bacteroidetes (Figure 2.2B). In order to derive meaningful synteny statistics at each 
taxonomic node, we aimed at correcting for any potential sequencing bias present in the genomes 
deployed in OrthoDB (Figure 2.1; step IV). To this end we calculated a contribution value for each 
genome, relative to how distant a species is from closely related species in the dataset. This 
contribution value overvalues genetically divergent genomes, and devalues genomes which are 
similar to other species in the dataset. As a measure of evolutionary distance of a given genome, 
we calculated its average patristic distance (Stuessy and König 2008) - based on a 16S rRNA gene 
tree (see Supplemental Text) – to its closest neighbours (the 50% of closest genomes) (Figure 2.2C; 
histogram). We then heuristically assigned a genome contribution value for this genome by linearly 
interpolating between a minimal and a maximal contribution value with increasing patristic 
distance (Figure 2.2C; red line). Here, capping the contribution value of individual genomes at a 
maximal value of 1 prevents a few highly divergent genomes from dominating the conservation 
statistics, while the minimal contribution value is chosen such that the n extremely closely related 
genomes (those with distances values lower than 10% of the mean - when all distances values are 
subtracted by minimum distance; see red shaded area Figure 2.2D ) are weighted with a value of 
1/n – effectively treating them as the equivalent of a single genome. As the maximum and minimum 
thresholds are dependent on the included genomes, we reiterated the calculation of the contribution 
factor for each genome using the different taxon subsets. 
After adjustment we noticed several increases and decreases in the contribution from individual 
taxa (Figure 2.2E). For example, when applying the adjustment to all genomes (the Bacteria taxon), 
we observed that the genomes associated to Bacteroidetes and other smaller phyla had a higher 
contribution to the dataset, as would be expected from the fact that these are fewer genomes that 
are more distantly related to the other phyla (Figure 2.2B). Interestingly, whilst Proteobacteria and 
Firmicutes are the major contributors to the dataset, the correction changes their proportional 
contributions only by 4% and 1%, respectively. This is related to the fact that in this dataset both 
phyla featured the highest within-phyla genetic diversity of the four biggest phyla (Figure 2.2F), 
explaining why even after the correction, a large fraction of the dataset is composed of 
proteobacterial genomes (Figure 2.2F). This also rationalizes the large decrease in contribution 
from Actinobacteria after the correction (Figure 2.2B), as it has a significantly lower level of 
genetic diversity in its sequenced genomes (Figure 2.2F). However, while for instance the overall 
contribution from Proteobacteria changes only slightly, it is noteworthy that the contributions from 
its individual sub-taxa are not. For example, the contribution of Gammaproteobacteria (containing 
the two highly sequenced genera, Escherichia and Pseudomonas) decreased after the correction, 
while the contribution from other sub-taxa, such as the Deltaproteobacteria increased (Figure 2.2E). 
This bias correction step was recalculated separately at every taxonomic level as the contribution 
proportion of each sub-taxa varies for each sub-division of the dataset. 
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Application of this process results in GenCoDB being built on a dataset that contains 5487 bacterial 
genomes distributed across 89 sub-taxonomic nodes within the bacterial kingdom. The analysis 
can be centred on over 4 million different ortholog groups, whose neighbourhoods collectively 
include almost 9 million individual genes. Each ortholog group can be viewed at five different 
taxonomic levels of ortholog grouping, leading to a total number of almost 1.8 billion different 
genetic neighbourhoods. To the authors' best knowledge this is the largest and most comprehensive 
collection of bacterial neighbourhood information.  
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3 - Figure 2.2 - Scaling of genomic contributions at the Bacteria-taxon 

(A) An example genomic neighbourhood highlighting the dangers of not accounting for genomic bias in 
analysis. Here two orthologs are shown to be conserved in 50% of the genomes, the blue and the green. 
Whilst in this dataset they are equally conserved as the blue orthologs are all found in E. coli sub-strains it 
is unlikely this conservation can provide any meaningful biological insight. (B) The number of genomes 
from each phylum in the GenCoDB dataset (left) and the contribution that they make up in the whole dataset 
(left in brackets and right) before (left) and after bias correction (right). (C) An example showing the patristic 
distances between E. coli (top) and B. fragilis (bottom) and five other species. The bottom 50% of these 
values would be taken to calculate the average patristic distance for the species. (D) A histogram showing 
the distribution of average patristic distances of every genome in the dataset. The dotted line indicates the 
mean of the distribution. Values falling in the scaled region were scaled linearly between the minimum 
contribution value 1/n and 1 (as represented by the red line). n in this example was 8 genomes. (E) A 
taxonomic tree displaying the change in contribution of each taxa to the dataset at the Bacteria-taxon. Red 
nodes represent taxa whose contribution is greater after the normalization. Blue nodes represent taxa whose 
contribution is less. The size of the circles represents the amount of difference. Taxonomic groups with less 
than 50 genomes are not displayed. (F) The average of pairwise patristic distances of all species belonging 
to the four main phyla. 
 
Determination of significant conservation 
Many conserved gene neighbourhoods have been identified in Bacteria, which span both the entire 
kingdom or are restricted to small bacterial taxa. The number of rearrangement events expected to 
have occurred since the existence of the shared common ancestor needs to be factored in when 
considering if the observation of a conserved neighbourhood is significant. If the conservation is 
higher than what would be expected, this indicates an evolutionary advantage in its maintenance, 
or contrarily if it is lower than it is most likely present due to chance alone. Determination of this 
expected rate has been a challenge in this form of analysis. Previous work in this area was limited 
by lower numbers of available bacterial genomes, and partially solved this issue through the 
calculation of the probability that two genes occur next to each other on randomly generated, 
reshuffled genomes (Wolf, Rogozin, Kondrashov, et al. 2001; R. Overbeek et al. 1999). However, 
the assumption of randomness does not hold true in actual bacterial genome datasets where many 
genomes are closely related and the chance that one sees two genes next to each other is 
significantly higher as even distantly related genomes are not fully randomized. 
 
In order to overcome this challenge, GenCoDB determines a threshold for significant context 
conservation by taking into account the relationship between the genetic diversity within a taxon 
and the average conservation of neighbourhoods surrounding ortholog groups belonging to them. 
To this end, for a given set of genomes we first calculated a conservation score of the gene 
neighbourhood around each ortholog group, by measuring the cumulative frequencies of the top 
10 most conserved ortholog groups in the neighbourhood of 25 genes up- and downstream of the 
seed gene. After normalization a maximum conservation score of 1 is reached if 10 of the 
neighbouring positions of the seed gene contain a fully conserved ortholog group in 100% of the 
genomes. The minimum value is 1/(10 x m), where m is the number of genomes the seed ortholog 
group is present in, representing the case where each genome has a completely different 
neighbourhood with no ortholog multiples. 
We repeated this process for every taxon, using the average patristic distance of the entire taxon as 
a measure of the diversity of the group. We then fit an exponential trend line to the relationship 
between the mean conservation score of each taxon and its genetic diversity (Figure 2.3). To 
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determine a threshold for significant conservation, we calculated an exponential trend line to the 
standard deviations of the conservation scores for each taxon and added that to the mean fit. 
Additionally, as neighbourhoods which are strongly conserved and neighbourhoods with a few 
closely related genomes are included in this calculation, this fit is an overestimation of the true 
expected conservation value of a gene given a genetic distance of the group. If the conservation of 
a gene is higher than the value of the trend line at the given genetic distance, it is considered 
significantly conserved. Using this threshold users can know that what is displayed are 
relationships that are present higher than one would expect, but if a user does want to change this 
threshold, either making it more or less sensitive, that is possible. 
 

 
4 - Figure 2.3. Calculation of conservation significance 

In this box plot each box represents the average conservation of the 50 most conserved neighbours 
(conservation score) of each ortholog group at a taxonomic level. The green triangle and yellow line 
represent the mean and median respectively. The whiskers extend to highest datum within 1.5 interquartile 
range of the upper quartile and vice versa. Flyers (values greater or less than the whiskers) are not displayed. 
The black line is an exponential fit of the means and the red line represents a fit to one standard deviation 
above the mean. Neighbourhoods which have a conservation score higher than the threshold at a taxonomic 
distance are considered significant. 
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2.3 GenCoDB user interface 
GenCoDB provides multiple views to explore gene conservation information for each bacterial 
ortholog group from OrthoDB. These views comprise the “Neighbourhood view”, the “Tree view”, 
the “Genome view”, and one view containing detailed information about the chosen ortholog 
group. Users can search for ortholog groups by either querying the ortholog group directly via its 
name or its OrthoDB ID, or by querying the genes belonging to the ortholog group (Figure 2.4). 
Specific genes can be searched using the gene name/symbol, gene description, UniProt ID or 
RefSeq ID, which provide a link to a gene-specific page linking to all ortholog groups (at different 
taxonomic levels) the gene belongs to. To narrow down the search results, the search inputs may 
also be combined with the taxon or species of interest.  
 

 
5 - Figure 2.4. An example search using GenCoDB. 

 (A) An example displays of GenCoDB being used to search for the mraY (UDP-N-acetylmuramoylalanine-
D-glitamate ligase) ortholog group at the Proteobacteria level. Both hits to mraY containing ortholog groups 
and specific gene hits are displayed with additional information to inform the user on which group/gene 
they should use. 
 
Neighbourhood view. One of GenCoDB’s innovations in gene context analysis is the 
neighbourhood view, which strikes a balance between information content and displaying large 
amounts of genomic data. The visualized neighbourhood is shown as a stacked histogram 
representing the abundance and syntactic distance (gene distance) of different ortholog groups 
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relative to a chosen seed gene/ortholog group (Figure 2.5A, I). This captures the advantages of a 
genome scale viewers (e.g. MicrobesOnline) and summarized neighbourhood viewers (e.g. 
StringDB), providing detailed information on the variations of neighbours without limiting the 
number of genomes that can be visualized at once. The neighbourhood view is dynamic in that 
hovering over a bar will highlight the location of the same ortholog group at other positions and 
additionally provide a popup containing the statistics of conservation for this group at that position 
(Figure 2.5A, VI). In an example case, when analysing the genomic neighbourhood of murD 
(encoding UDP-N-acetylmuramoylalanine-D-glutamate ligase), we observe that there is high 
conservation of murG (encoding phospho-N-acetylmuramoyl-pentapeptide- transferase) upstream 
of murD in 75% of the genomes (Figure 2.5A, VI, dark green bar). However, when synteny is not 
strongly conserved (for example due to insertions/deletions or rearrangements), the bar is separated 
across multiple columns, such as for the cell division protein ftsZ (Figure 2.5A, VII, light green 
bars) which at the hovered over area (+8) is present in 3.13% of the genomes there comprising 
5.81% of the total ftsZ in this neighbourhood. Therefore, to assist in data comprehension, 
GenCoDB displays another graph showing the cumulative conservation of each ortholog group in 
a neighbourhood 25 genes up- and downstream of the seed gene (Figure 2.5A, II), showing that 
murD and ftsZ are present in 77.6% and 51.5% of neighbourhoods with murD respectively. In 
addition, gene orientation is very relevant in gene context analysis, for example in predicting the 
targets of transcriptional regulators, such as for two-component systems, which often regulate 
divergently transcribed target genes. Therefore, the user may optionally display conservation of 
genes encoded in the opposite orientation from the seed gene on the negative y-axis. This is 
exemplified in Figure 2.5B, showing the neighbourhood surrounding a transcriptional regulator 
(green) of a sigma factor (pink) and a two-component regulator (brown), which is shown to be 
encoded in the reverse orientation in relation to the other two genes, after the setting has been 
turned on (Figure 2.5A, III). 
 
As outlined in Figure 2.3, a significance threshold was calculated to determine if the conservation 
of an ortholog group was above what would be expected by chance. This threshold is set by default 
and only ortholog groups with a cumulative conservation greater than the threshold are displayed. 
However, users can manually change the display threshold (Figure 2.5A, IV) to visualize any 
ortholog group appearing in at least 5% of the selected neighbourhoods. The top 50 most conserved 
ortholog groups in each selected neighbourhood are assigned a random colour, any additional 
groups are shaded in grey. 
Many ortholog groups have gene members dispersed across the bacterial kingdom, however the 
composition or presence of a conserved neighbourhood will differ across the bacterial taxonomic 
tree. To allow users to explore the evolutionary variation within neighbourhoods, GenCoDB 
provides the option to filter by taxon which genomes are visualised in the histogram. By default, 
the graph includes the genomic context around the seed gene from all genomes containing the 
ortholog group. Users can then select from which taxa the genomes should be retrieved from 
(Figure 2.5A, V), thereby allowing for taxon-specific genomic conservation analyses. Importantly, 
while navigating through different taxonomic levels, GenCoDB automatically adjusts the default 
significance threshold according to Figure 2.3, in order to accommodate for a different level of 
genetic diversity in the different genome subsets chosen by the user. 
 
In addition, the user may choose the ortholog grouping level at which the neighbourhood is 
visualized (Figure 2.5A, VIII). This changes the ortholog groups that are assigned to neighbour 
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genes, but does not change the genomes which are included in the analysis. There is not always a 
correct or clear choice for which level of ortholog grouping a user should use, as it depends on their 
research question, gene of interest and their needs. For example, at more specific ortholog grouping 
levels it is possible that a neighbour is split between two ortholog groups and neither is above the 
significance threshold and therefore not displayed, even though at a higher grouping level they 
would be combined and subsequently shown as significantly conserved (Figure 2.1A). Conversely 
if a less specific grouping is used, the annotations of the group are more general and provide less 
insightful information, thereby obscuring the conservation of interesting processes in a gene 
neighbourhood). 
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6 - Figure 2.5. An example display of the Neighbourhood View 

 (A) An example display of murD (UDP-N-acetylmuramoylalanine-D-glutamate ligase) in the 
neighbourhood view. (1) The histogram represents the frequency of each ortholog group appearing at a gene 
distance from murD. Each bar can be hovered over to provide statistics on the conservation of that group at 
that position relative to the seed gene (murD in this case), see (VI and VII). (II) The bar plot on the right 
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displays the total conservation of each ortholog group in the neighbourhood. (III) The ability to display 
genes which are not co-oriented with the seed gene in the negative y-axis can be toggled on (See B). The 
bias correction can also be toggled, swapping between raw genome frequencies and the calculated 
contribution values. (IV) Here the threshold for which ortholog groups are displayed based on their total 
conservation in the neighbourhood. By default, it is set at the level we calculated is significant for the 
taxonomic group the user is using. (V) Here the user can quickly change the subset of genomes they are 
looking at. This does not change the ortholog group sensitivity. (VIII) Here the user can change the ortholog 
group assignments of the neighbouring genes, this does not change the underlying genome subset, and the 
user would need to select their seed ortholog group at the correct taxonomic division for that. (B) An 
example display of the neighbourhood of a transcriptional regulator in the default state (left), and when 
orientation is being shown (right).  
 
Tree view. As alluded to in the previous section, the context surrounding genes can vary drastically 
in different taxa and can provide insightful information about the evolution or function of gene 
clusters. For example, the conservation of a particular gene cluster in only a subset of bacterial taxa 
can indicate an important physiological function of this gene arrangement, and tracing the 
addition/removal of genes to/from the cluster over evolutionary time may reveal interesting 
correlations with physiological behaviour of bacteria. To analyse such events, GenCoDB provides 
the tree view, which summarizes the genetic context of the neighbourhood view and projects it on 
a phylogenetic tree for the underlying taxonomic groups of genomes (Figure 2.6A), see the 
supplementary text for details. In this view, the user can inspect the most conserved synteny at each 
taxonomic node - very similar to the functionality provided by StringDB (Snel et al. 2000). Here, 
the conserved synteny is defined by the most conserved genes at a particular position, if the 
conservation is above the significance threshold for this taxonomic group. In addition, the user can 
toggle to display either the conservation of the seed gene in each taxonomic group (i.e., the fraction 
of species containing the seed gene in that group), or the conservation score of the neighbourhood 
in the taxonomic group (Figure 2.6A). Here, the conservation score is calculated as the average 
cumulative conservation of the top 10 most conserved genes in the neighbourhood, which can 
simply be interpreted as the area of the bars found in the neighbourhood view. Using this statistic 
it is possible to quickly identify taxonomic groups with a highly conserved neighbourhood around 
the chosen seed gene, allowing the user to further focus on these taxonomic in the other views. 
This also helps users to identify possible functions of a conserved cluster, as it facilitates 
determining which taxa maintain the observed clustering and which have lost it. 
 
For both display and convenience purposes only the highest three taxonomic levels are displayed 
by default, however users are able to show or hide a node’s descendants by clicking on them. Taxa 
with less than 50 representatives of the ortholog group are not displayed in this mode. If a more 
detailed analysis is required for the genomic context at a particular taxonomic node, users can 
navigate directly from the tree view to the neighbourhood view via a link shown in the tooltip 
associated with each taxonomic node. 
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7 - Figure 2.6 - Example display of the Tree View 

An example display of murD (UDP-N-acetylmuramoylalanine-D-glutamate ligase; dark green arrow) in the 
tree view. (A) The circles represent the conservation score of the ortholog group at that taxonomic level. 
The dark circles mean the circle can be clicked to reveal children taxonomic groups. (B) The user can decide 
if the size of the circle should show the conservation score or the number of neighbourhoods in the 
taxonomic group with this ortholog group  (C) The arrows below the circles represent the most conserved 
synteny surrounding the seed gene at the taxonomic level and can be hovered over to see what ortholog 
groups they are. A gene will only be considered part of the synteny if its conservation is above the 
significance threshold at that position. The seed gene is always shown in dark green.  
 
Genome view. This view provides two main functions for GenCoDB: Firstly, users are able to 
inspect the raw gene context around their chosen ortholog group in individual genomes. Therefore, 
if a novel gene neighbourhood is found in other views, in this view it is possible to determine which 
genomes contain the gene cluster, and which species have different genomic rearrangements. The 
second function is that it allows for a customized selection of genomes (beyond taxonomic 
membership), which can then be subjected to further statistical analysis (Figure 2.7A). For instance, 
users may choose their own subsets of bacteria, such as human pathogens or flagellated bacteria, 
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for display of the genomic context. Additionally, users are able to easily filter the view to only 
show genomes containing a combination of particular ortholog groups in their neighbourhood 
(Figure 2.7B). This combinatorial search quickly narrows down the displayed genomes to only 
those containing the cluster of interest, allowing to user to discover other co-occurrences which 
may not have been as apparent in the whole dataset. Importantly, once all the desired genomes have 
been selected either by filtering by the presence of ortholog groups or the selection of genomes or 
a combination of the two, these can be exported to be visualized in the neighbourhood view (Figure 
2.7C). However, as the process of calculating the contribution bias from species and the 
significance threshold is computationally too expensive, these statistical corrections are not 
available in the neighbourhood view of custom genome selections. 
 

 
8 - Figure 2.7 - An example display of the Genome View 

In this example, the ortholog group of a murD is displayed in the genome view. (A) Here the users can select 
which taxa or species they would like to see displayed in this view (or for later export to the neighbourhood 
view) (B) Here the user can filter to only include neighbourhoods of the seed gene that contain the specified 
ortholog group, in this case the light blue gene (they may be found ±25 up or downstream). One gene is 
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hovered over showing various identifiers for that gene and links to the represpective databases. (C) Once 
users are happy with their filtered selection of neighbours, they can export it to the neighbourhood view to 
see it as a quantitative histogram. 
 
Data availability. Through the user interface every graph is available to download, both in *.svg 
and *.png formats, allowing the effortless generation of publication-quality graphics. Both the 
neighbourhood and genome view allow for download of the raw data in comma separated value 
(csv) format. In particular, the *.csv files available from the neighbourhood view contains a row 
for each ortholog group in the displayed neighbourhood, with columns containing the frequency of 
that ortholog group appearing in the 25 up- and downstream positions surrounding the seed gene. 
The genome view produces a *.csv file which has a row for each selected genome and in the 
columns the ortholog group assigned to the genes in the 25 up- and downstream positions 
surrounding the seed gene. Both of these *.csv files reflect the settings selected in the user interface, 
including the database correction, genome selection and orientation options (a + or – will be placed 
before ortholog group IDs to signify relative orientation to the seed gene). These *.csv files allow 
for the reproduction of the graphs with other visualization strategies or for further downstream 
analyses. 

2.4 Application of GenCoDB to the division cell wall cluster 
To test the functionality of GenCoDB we applied it to the task of analysing the DCW cluster, a 
gene cluster which is conserved throughout the bacterial kingdom, containing genes responsible 
for various steps in the synthesis of cell wall precursors and cell division. The cluster has been well 
described for various model organisms, such as E. coli (M. Vicente, Gomez, and Ayala 1998), B. 
subtilis (Real and Henriques 2006) and N. gonorrhoeae (Francis et al. 2000), typically containing 
around 15 genes that mostly belong to the mur family (responsible for cell wall precursor synthesis) 
and fts family (responsible for cell division)(Tamames et al. 2001). We first focused on mraY, one 
of the genes that appears in the centre of the cluster in many model organisms. Indeed, when 
considering all genomes, we found 13 other genes that were significantly conserved in this 
neighbourhood (meaning a cumulative co-conservation with mraY over 22% with the lowest at 
27.7% being D-alanine--D-alanine ligase) with minor tapering of conservation for genes which are 
positioned further away from mraY, a difference between (Figure 2.8A). We also observed that co-
direction orientation is highly conserved within the cluster that there were no cases where gene 
inversion of these orthologs had occurred. This points to operon organised transcription and indeed 
it has already been observed in several species that many of these genes are shown to be regulated 
by the same promoters (M. Vicente, Gomez, and Ayala 1998; Francis et al. 2000; de la Fuente, 
Palacios, and Vicente 2001). Strikingly conservation of the first 10 genes seem to have the position 
of the gene relatively strongly conserved however the last 4 genes whilst overall similarly 
conserved as the other genes, have very variable positions suggesting several insertion and deletion 
events within the right side of the cluster.  
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9 - Figure 2.8 – Analysis of the DCW cluster in GenC 

(A) The neighbourhood of mraY including all genomes in which mraY is found. (B-E) The neighbourhood 
of mraY with genomes from only Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes respectively. 
The legend for the coloured bars is found in A. Black bars represent ortholog groups that were not in the 
top 50 most conserved groups when considering all genomes and certain groups have been labelled for 
convenience. (F) A selection of genomes from firmicutes showing the distribution of genes around mraY. 
Each arrow represents a gene, and the colour the assigned ortholog group. Purple represents mraY and the 
other colours match the legend in A and B with slight opacity. Black arrows represent genes that are not 
displayed in the histogram view as they are not considered significantly conserved. (G,H) The 
neighbourhood of mraY with a custom selection of genomes either of rod-shaped bacteria (G) or cocci and 
spiral shaped bacteria (H). The colour of the bars is consistent with the legend from A and B. 
  
Curious about these rearrangements, we wanted to see how these changes were distributed across 
the bacteria kingdom and if they were localized to particular taxa. Viewing mraY in the tree view 
we see that the conservation score is strikingly lower in the Cyanobacteria and delta/epsilon 
subdivisions of Proteobacteria (17.37 and 19.56 respectively) (Figure 2.5). A closer inspection in 
the neighbourhood view confirmed that in many genomes of these sub taxa the neighbourhood 
around mraY was gone (Figure 2.9). We also noticed that the conserved synteny whilst mostly 
similar across the different taxa was much smaller in firmicutes than the other phylum even through 
the conservation scores were relatively similar and in fact slightly higher than proteobacteria or 
bacteroidetes which have large conserved syntenies (30.78 vs 28.41 and 28.27 respectively). 
Therefore, to investigate why this was the case we restricted the number of genomes to the main 4 
phyla in our database: Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. 
 

 
10 - Figure 2.9 – Loss of conserved genomic neighbourhoods of mraY in some taxa 

The genomic context surrounding mraY from delta/epsilon Proteobacteria genomes (left) and Cyanobacteria 
genomes (right). Height of the bar represents the conservation of an ortholog group, with colours signifying 
the different ortholog groups. Legends are found in the top right-hand corner of each histogram. 
  
In Proteobacteria and Bacteroidetes we only see slight disruption and when we explored further 
down the taxonomic tree there was no to little disruption in the gamma and beta proteobacteria 
(Figure 2.8B and C, Figure 2.10). In addition to the core DCW genes, many Proteobacteria 
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genomes contain ddlB and ftsA (Figure 2.8B), being co-conserved with mraY in 56% and 67.5% 
of neighbourhoods, whereas Bacteroidetes contains a glutamyl-tRNA aminotransferase (yqeY) at 
45.9% (Figure 2.8C). However, in actinobacteria we see the association of 5 additional ortholog 
groups, namely a pyrodoxal phosphate homeostasis protein (ylmE) (56.6%), a polyphenol oxidase 
(ylmD) (47.6% - below the significance threshold), Cell division protein SepF (69.7%), an 
uncharacterized membrane protein (ylmG) (58.4%) and a divIVA domain containing protein 
(Figure 2.8C) (72.6%). Furthermore, these were accompanied with the loss of ftsA (Figure 2.8C).  
 

 
11 - Figure 2.10 – Strongly conserved genomic neighbourhoods of mraY in some 
Gamma/Betaproteobacteria 
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The genomic context surrounding mraY from Gammaproteobacteria genomes (left) and Betaproteobacteria 
genomes (right). Height of the bar represents the conservation of an ortholog group, with colours signifying 
the different ortholog groups. Legends are found in the top right-hand corner of each histogram. 
  
Cell wall synthesis and division occurs differently in actinobacteria, as unlike other rod-shaped 
bacteria they elongate their cell wall from their poles and not laterally along the cell length 
(reviewed in (Pamela et al. n.d.)). Also, in contrast to the other phylum, a major player in the 
divisome, FtsZ, is not essential for growth for Actinobacteria (McCormick et al. 1994), therefore 
it is unsurprising there would be difference in the division cell wall cluster. The biological function 
of many of the newly introduced genes to the cluster have yet to be determined however given that 
in our tool we see them associated with the DCW cluster, a role in cell division or septum formation 
seems likely. Indeed, SepF and divIVA which do not have close homologs in non-terrabacteria 
genomes, have been shown to be crucial in Z-ring formation leading to division (Hamoen et al. 
2006). ylmE and ylmD have orthologs in the majority of bacterial species however according to our 
tool, they do not have significant conservation partners except in terrabacteria (Figure 2.11). In 
Streptomyces venezuelae these two genes were deleted and there was no observable impact on 
growth rate, septum formation or sporulation (Santos-Beneit et al. 2017), however this does not 
preclude a role in cell wall synthesis and in non-laboratory conditions. For instance in E.coli (not 
from Actinobacteria) yfiH (the ylmD homolog) was shown to be involved in preventing non-
canonical amino-acids from being incorporated into the peptide chain in place of L-alanine 
(Parveen and Reddy 2017). As actinobacteria do not have D-alanine--D-alanine ligase (ddlB) in 
their DCWcluster, perhaps ylmD provides a complementary function. We also found evidence that 
uncharacterized membrane protein (ymlF) may have a small role in cell division as a knock out 
mutant for this gene in Streptococcus pneumoniae was shown to have thinner septums and 
increased numbers of tetrads and diplococci suggesting incomplete division (Fadda et al. 2003), 
and in chloroplasts, the ylmG ortholog when overexpressed, impaired chloroplast division and 
distribution of the chloroplast nucleoids(Kabeya et al. 2010). Therefore, one could extrapolate, in 
the absence of such confirmatory literature the functional predictive power conserved 
neighbourhoods provide and how this could be used to help functionality characterise currently 
under researched ortholog groups and the role players in novel phenotypes unique to certain clades. 
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12 - Figure 2.11 – Evolution of conserved neighbourhoods of ylmE and ylmD 

The evolutionary history of the genomic neighbourhoods of ylmE (left) and ylmD (right). The circles 
represent the conservation score of the ortholog group at that taxonomic level. The arrows below the circles 
represent the most conserved synteny surrounding the seed gene at the taxonomic level. A gene will only 
be considered part of the synteny if its conservation is above the significance threshold at that position. The 
seed gene is always shown in dark green.  
 
In Firmicutes there is significant disruption both on 3’ and 5’ ends of the cluster (Figure 2.8E). 
Upstream of mraY the same genes are conserved as found in the other phyla but it appears the order 
of the genes is greatly intermingled, however closer inspection of the genomes in the genome view 
shows that the relative order of these 5 genes remains the same but they have been randomly 
interspaced with other genetic elements (Figure 2.8.F). Downstream of mraY there is a loss of murC 
and ddlB and in some cases the addition of the same ortholog groups that appeared in the 
actinobacteria neighbourhood, such as the DivIVA domain-containing protein and the 
uncharacterized membrane protein (ylmG) (Figure 2.8E). Given Actinobacteria and Firmicutes 
share a more recent common ancestor compared to the other phyla it is reasonable that they share 
common rearrangements in this cluster and signifies these changes likely occurred before the 
division of terrabacteria. Two new additions to this cluster were the RNA polymerase sigma factor 
RpoD, and an RNA-binding protein (Figure 2.8E). RpoD is the housekeeping sigma factor active 
during exponential growth and up-regulates genes associated with fast growth such as translation 
associated proteins (Ozaki et al. 1991). As cell wall synthesis and cell division also occurs at a 
faster rate during high growth rates and less required during other phases perhaps associating this 
cluster with this sigma factor may allow for faster response times to changes in nutritional 
availability.  
  
Here, we would like to mention two important notes that highlight the benefits of the flexible 
customization of GenCoDB. Firstly, at the default parameters, the murE and murF genes belong to 
the same ortholog group. This would occur if the protein sequences of these two genes are very 
similar to one another and it has been shown that murE and murF despite not having over high 
sequence similarity have highly conserved motif regions and most likely diverged from a recent 
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common ancestor (Bouhss et al. 1997). Without prior knowledge of the cluster it is not clear these 
are two separate genes with two functions, however by adjusting the ortholog grouping level to a 
lower level, in this case phylum, murE and murF cluster into distinct groups. Secondly ftsL is only 
found in the Proteobacteria despite it being highly conserved in this cluster in all phyla. This is 
because despite being recognized as the same gene, the differences in the sequences of ftsL cluster 
the proteins separately even in the least sensitive of ortholog group levels. 
  
Using these observations and then connecting them with literature confirms the power of genetic 
context analysis for hypothesis generating however it can also be used to provide confirmatory 
evidence of research questions. Tamames(2001) found that the conservation of this cluster was 
correlated with cell morphology, specifically rod-shaped cells. To test this observation we looked 
at the neighbourhood of mraY in the known rod shaped Bacilli and other filamentous bacteria (e.g 
Actinomyces, Clostridium, Enterobacter) and compared that to a neighbourhood of non-rod 
bacteria (e.g coccoids such as Streptococcus, Enteroccocus and Neisseria bacteria and spiral shaped 
bacteria from Helicobacter, Campylobacter and Leptospira). Here we see that in the rod bacteria 
there is a strong conserved neighbourhood around mraY however in spiral and coccoidal bacteria 
there is no to little conservation surrounding mraY, confirming what was reported by 
Tamames(2001) (Figure 2.8G and H). Given this striking difference it is tempting to propose that 
if through random rearrangement events the DCW cluster is broken, the interplay between the 
different proteins of this cluster is demolished and the coordination required to form a rod shaped 
cell wall is lost. Alternatively, this evidence could suggest that the selective pressures that maintain 
the DCW cluster are only present in rod shaped bacteria, and if they lose this cell morphology 
through disruptions in other parts of the genome, reshuffling of the DCWcluster would then be 
permitted. Further in lab investigation especially looking at the organisms which do not follow the 
trend of being rod shaped with a DCW cluster would be required in order to to tease these two 
alternatives apart.  

2.5 Comparison with current tools 
GenCoDB holds a unique position amongst other bacterial genome comparison tools as the way 
for non-bioinformatic trained scientists to get quantitative gene neighbourhood data. However, how 
does it compare to the many other tools in its other aspects? An important distinction between these 
tools is how they determine orthologs between different genomes. Of the four surveyed tools: 
StringDB, MicrobesOnline, JGI’s IMG/M tool (Chen et al. 2019) and the EFI-Genome 
Neighbourhood Tool(Gerlt et al. 2015), a mix of COG and PFAM identities are used to group the 
genomes (Table 2.1). GenCoDB is the only that is built on the OrthoDB classifications. With the 
use of COG and PFAM groupings comes the loss of stratification in the clustering sensitivities. 
MicrobesOnline and JGI provide some customization with two different forms of grouping in their 
visualization with MicrobesOnline giving the option of MicrobesOnline Ortholog groups instead 
of COGs to provide increased sensitivity. GenCoDB gives the option of 5 different levels of 
clustering sensitivity for neighbours. Alternatively, COG and PFAM ortholog group identifiers 
support significantly more genomes than OrthoDB classifications and therefore more genomes can 
be included in the analysis. However, only JGI takes advantage of this and contains more genomes 
in their published dataset than GenCoDB, and only with the latest updates is StringDB close to 
matching GenCoDB in the number of species (Table 2.1). The gene neighbourhood sections of 
MicrobesOnline, JGI and the EFI-Genome Neighbourhood Tool are specialized in showing 
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genomes aligned to a by a chosen seed ortholog group which is emulated in the Genome view in 
GenCoDB. As previously discussed, this form of visualisation is restricted by the number of 
genomes that can be displayed at one time, StringDB overcomes this by summarising the 
neighbourhoods and only displaying the most conserved gene synteny of each taxon, as seen in the 
Tree view of GenCoDB. Another important factor for genome comparison research is finding 
where and how often two or more genes co-occur with one another. GenCoDB provides this 
function through the genome view, and of the other four surveyed tools only StringDB and JGI 
provide this functionality, however in StringDB it is limited to only genes that are considered 
highly networked. 
  
Of great importance is how these tools facilitate the analysis of genomic context. GenCoDB is the 
only tool which performs a correction for sampling bias in the genomes present in their dataset 
facilitating the interpretation of the data and the formation of conclusions. By measuring, 
quantifying and reporting the strength and quality of conservation reduces the requirement for users 
to perform further analysis downstream to get interpretable data. With the quantitative data that 
GenCoDB provides, users can do more than hypothesis generation but directly ask impactful and 
relevant research questions. 
 

Comparison of genome neighbourhood comparison webtools 

 GenCoDB StringDB Microbes Online JGI EFI-Genome 
Neighbourhood Tool 

Number of Bacterial 
Genomes 

5487 4445 1752 14088 UniProt Database 

Ortholog Grouping OrthoDB (5 
different levels) 

COG COG/Microbes Online 
Ortholog Groups 

COG and 
PFAM 

PFAM 

View at Genome 
Level 

Yes No Yes Up to 40 
at a time 

Yes 

Synteny evolution Yes Yes No No No 

Co-occurrence Yes Yes* No Yes No 

Handles Genome Bias Yes No No No No 

Quantitative 
Neighbourhood 

Yes No No No No 

Suitability for non-
bioinformaticians 

+++ +++ +++ ++ + 

1 - Table 2.1 - Comparison of features from different Bacteria genome comparison tools 

A comparison of the features and data of GenCoDB to other popular Bacteria genome comparison tools. 
Ortholog grouping refers both to how ortholog groups are classified and how many levels of sensitivity are 
provided. View at Genome level referred to the capability to seeing genome by genome which genes are 
next to the seed gene. Synteny evolution refers to the function to quickly see how the average gene order 
has changed between different taxonomic phylum. Co-occurrence asks if the tool allows you to find out 
exactly which genomes contain two or more genes co-localized. Qualitative neighbourhood refers to if the 
tool provides statistics on exactly how conserved different ortholog groups are with each other. ‘+’ - 
represents a qualitative score, with more +’s meaning a higher evaluation. * - Only for high networked genes 
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2.7 Summary 
Studying the genetic context of bacterial genes has proven to be an extremely useful tool for 
geneticists in classifying and identifying gene function, interaction partners and regulation 
networks. Of special interest are the cases where the context is conserved across multiple genomes, 
signifying a selective advantage of this genomic arrangement. The ubiquitous need for these data 
is evidenced by the multiple online platforms which provide genome browsers. However, current 
tools are not well equipped for the increasingly large number of bacterial genomes that are being 
made available and only provide relatively simple analyses, such as the co-occurrence of two 
ortholog groups and completely precludes more complex analyses including phenotype correlation, 
phylogenetic analyses and evolution studies. Additionally, as sequencing databases inflate so does 
the impact of sequencing bias, which results in the increased likelihood of false positive 
conclusions from what was previously a wellspring of insight. 
  
To address this, we created GenCoDB, a highly interactive and dynamic database aiming to provide 
the scientific community, a hub for sourcing genomic context conservation data in bacteria. The 
data are a collation of over 5000 bacterial genomes whose genes are aligned through their ortholog 
groupings in order to calculate quantitative conservation statistics of their gene neighbours. By 
utilizing the hierarchical ortholog classifications by orthoDB (Kriventseva et al. 2019), users are 
not restricted to only one ortholog group per gene, allowing for adjustable sensitivity in finding 
orthologs, which is especially important when analysing highly abundant but diversified proteins 
such as DNA bindings proteins. Users can analyse their chosen ortholog group through three 
distinct “views”: The genome view provides a look at the raw alignment of their gene/ortholog 
group of interest. Of particular utility is that the displayed genomes can be filtered based on both 
taxa/subtaxa membership and the co-occurrence of other ortholog groups in the neighbourhood. 
This selection of genomes can be exported to the neighbourhood view, which displays the 
conservation of ortholog groups at relative distance from a “seed” gene via a stacked bar plot, 
providing quantitative statistics of conservation and allowing the visualisation of thousands of 
genomic contexts simultaneously. Here, the statistics can be adjusted to account for the 
aforementioned sequencing bias and by default only significantly conserved ortholog groups are 
displayed. In the tree view the context surrounding a gene can be tracked at different taxonomic 
levels providing an overview of the average synteny seen in each taxon and giving clues, e.g., as 
to when genomic rearrangements may have occurred and in which groups of organisms the 
genomic context remains conserved 
 
 



  
 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

3. Bioinformatic analysis of bacterial gene cluster 
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In this chapter we take the large amounts of quantitative genomic context data that we produced 
for GenCoDB and use it to better understand the evolution and dynamics of gene clustering in 
bacteria. By focusing these data, we identify conserved gene clusters at a high taxonomic resolution 
allowing us to track their evolution over evolutionary time. Using this state-of-the-art list of gene 
clusters, we can test the long-standing hypotheses in the field to determine the selective pressures 
that maintain gene clusters. We also propose a new model for the emergence of operons within 
clusters and that it does not provide a long-term selective pressure in maintaining gene clusters. 

3.1 Analysis of genomic contexts 
The relationship between gene conservation and neighbourhood conservation 
In Chapter 2 we measured the average conservation found in neighbourhoods from different 
bacterial taxa (Figure 2.3). There we saw that neighbourhood conservation increased as the genetic 
diversity (and therefore possible rearrangement events) decreased. Contrary to this, we know that 
essential genes are often broadly conserved and are less likely to be involved in rearrangement 
events. Therefore, we set out to observe the impact of these two opposing forces using our 
neighbourhood dataset by comparing conservation around each gene with their taxonomic 
dispersal. Indeed, both forces were strongly visible in our dataset. We saw a peak of high 
neighbourhood conservation for both genes that are conserved in only a small number of genomes 
and in genes that are broadly conserved (Figure 3.1). As we would expect, these genes were 
enriched in essential processes or known to be found in conserved gene clusters and included 
ribosomal genes, ATP synthases and flagella components. Interestingly, we also observed a great 
number of neighbourhoods between these extremes, those that are more conserved than the average 
neighbourhood of a gene with similar conservation across the bacterial kingdom (Figure 3.1). 
Strikingly, most of these outliers are previously non-cluster associated processes thereby 
highlighting the depth and power our large genome dataset and method have in identifying new 
conserved neighbourhoods. 

Each point represents a unique ortholog group 
(gene) at the Bacteria taxonomic level. The 
conservation score is calculated as the average 
neighbourhood conservation of the top 50 most 
conserved neighbour-genes. The gene 
conservation is a measure of the number of 
genomes the gene is present in. The 
contribution of each genome is normalized 
based on how genetically distinct species was 
in the dataset. Here broadly conserved genes 
such as ribosomal proteins found in nearly 
every organism will have gene conservation 
values ~2700. Values higher than this represent 
ortholog groups that have multiple occurrences 
in genomes and are often highly duplicated 

genes. The shade of the points represents the density of points at the location. 

13 - Figure 3.1 - The relationship between 
conservation of a gene and its genomic 
neighbourhood 
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Neighbourhood conservation degrades rapidly with size at a gene scale 
The greater the spacing between genes on a genome, the more statistically probable a 
rearrangement event will occur between them resulting in a separation of their neighbourhoods. 
Our dataset currently excludes physical chromosome distance but instead uses the number of genes 
as a measurement of distance. The majority of previous work uses a nucleotide scale to judge 
rearrangement frequency, therefore to understand the impact of using a gene scale for our dataset 
we measured neighbourhood decay at a gene scale. To this end, we examined the neighbourhood 
of each ortholog group containing at least 250 genomes. For each neighbourhood we measured the 
maximal conservation of the genes found x positions up- and downstream of the original ortholog 
group relative to the conservation of the ortholog group (positional conservation) (see Figure 3.3 
for a visual representation). As expected, we observed a negative correlation between neighbour 
conservation and gene distance (Figure 3.2). The rate at which this decrease occurred was striking 
as conservation deteriorated exponentially as a function of distance. We observed no significant 
bias towards up- or downstream neighbours in relation to conservation. From this information we 
can state that conserved gene clusters comprised of more than three genes appear to be 
evolutionarily un-favored (Figure 3.2). This also details an important consideration when looking 
at the significance of co-localization of two genes next to each other, as we observed an increase 
of 15% in the conservation of a directly neighbouring gene. Therefore, gene pairs should require 
an equivalent increase in co-conservation to be considered significant (Figure 3.2). For future 
analysis we will consider clusters consisting of three or more genes to reduce the impact this 
distance bias has on our observation. 

 

The neighbourhood statistics of 
ortholog groups which were at least 
partially conserved (>250 genomes). 
Position 0 on the x-axis represents the 
location of the genes belonging to the 
ortholog group. The black line shows 
the average of highest positional 
conservation values for each neighbour 
at each relative position. The red line 
represents the average proportion of 
genes which are in the same orientation 
as the seed gene at each position. The 
shared areas (grey, pale red) represent 
the standard error. 

14 - Figure 3.2 - Conservation of 
genes and orientation with gene 
distance 
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15 - Figure 3.3 - Example gene neighbourhood of sufD 
An example representation of a conserved gene neighbourhood centred on sufD (Light brown bar in the 
centre). The colours represent different neighbouring ortholog groups. The legend below the plot matches 
the colour to the ortholog group. Genome contribution is normalized based on the relatedness to other 
species in the dataset. The positional conservation is identified by the height of the bars per x-axis position 
relative to the centred gene (sufD) Neighbourhood conservation is the sum of these bars per colour. The 
neighbourhood conservation value is the sum of positional conservation proportions for each ortholog group 
is displayed in the legend as a percentage of the countered genes genome contribution. Neighbouring 
ortholog groups which were less than 5% present (relative to the seed gene) were removed for clarity.  
 
Orientation is tightly regulated in gene neighbourhoods with no external forces 
In the introduction we outlined several plausible selective forces that could maintain a gene cluster, 
one of which being co-regulation of multiple genes through co-transcription as a polycistronic 
transcript (an operon). This requires that all genes that are part of the cluster are co-oriented. 
Therefore, we tracked how orientation is biased in our neighbourhoods. If there is no association 
between two neighbouring genes orientations (therefore random) we would expect that on average 
co-orientation would occur randomly in 50% of cases. Contrary to this, we observed a bias towards 
maintaining a similar orientation amongst nearby genes (Figure 3.2). We also saw that the average 
orientation trended to a value greater than 50% as distance increased. This is likely caused by the 
orientation bias found in bacterial where genes are preferentially located on the leading strand to 
avoid collisions with DNA replication machinery (Rocha and Danchin 2003) Unexpectedly, a 
strong correlation between the conservation of gene neighbourhoods and their orientation was 
revealed potentially alluding to orientation being a key element in conserved gene neighbourhoods 
(Figure 3.2). This tight correlation may also suggest that the orientation of gene clusters does not 
impact genes outside the neighbourhood which regress to the “randomized” genome average.  
 
Short-range synteny is conserved in gene clusters 
Due to the constraints of previous alignment methods in identifying conserved gene 
neighbourhoods, the existence of contexts in which gene content is conserved but gene order is 
highly malleable are undetectable. Our dataset was generated independent of alignments (excluding 
the seed gene) and therefore perfectly suited to analyse how often neighbourhoods are shuffled, 
those which maintain gene content - but in a different synteny. To do this we compared the highest 
conserved gene in the neighbourhood to its highest positional conservation in each neighbourhood. 
To ensure we were only capturing neighbourhoods that were conserved in the first place, only 
ortholog groups which had a neighbour with a neighbourhood conservation of over 20% were 
considered. Rearrangements were found to happen very infrequently, as neighbourhood 
conservation and highest positional conservation were often identical, meaning the genes did not 
change relative position (Figure 3.4). This means insertions, deletions and shuffling must not occur 
frequently within neighbourhoods. This demonstrates that synteny is critical to the function of gene 
clusters and that the measured high rate of mutation to gene order is lower in conserved gene 
neighbourhoods. 
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The distribution of differences between 
conservation of the most conserved 
ortholog group in a neighbourhood (total 
proportion of conservation in a 
neighbourhood relative to the seed gene) 
and its highest positional conservation 
(proportion of conservation at a certain 
gene distance from the centered gene 
relative to the seed gene). Only 
neighbourhoods with at least one 
ortholog group with a neighbourhood 
conservation of 20% were included. 

 

3.2 Identification of conserved gene clusters 
Method of identification 
The gene level resolution of our dataset provided us the ability to generate genome context data for 
thousands of genomes rapidly, and then analyse these neighbourhoods at the gene order level. 
However, with a large amount of data comes complexity. Therefore, in order for us to better study 
gene clusters we devised a way to consolidate our dataset into gene clusters by grouping closely 
conserved genes together. Genes were networked and connected by their reciprocal co-
conservation values (Figure 3.5). Connections which were below the significance threshold as 
defined in Chapter 2 were removed (Figure 2.3). All genes that were then still networked to two or 
more other genes were taken together as a gene cluster. To prevent very large clusters from being 
classified due to the presence of one gene in two different clusters, all bridge genes (those with 
neighbours whom did not network with each other) were duplicated, with each clone taking a 
separate group of neighbours, forming two separate clusters (Figure 3.5). Using this strategy, we 
could repeat this process at all taxonomic levels allowing us to determine when gene clusters first 
arose and how they changed over evolutionary time. By implementing this technique, we identified 
1383 gene cluster families over 35 different taxonomic nodes (Figure 3.6 and Table 8.7). In total 
this consisted of 4827 gene clusters when including the many variations of a gene cluster family 
seen at the different taxonomic levels. We found that neither the number of gene neighbourhoods 
nor the number of clustered genes were overrepresented in a particular bacterial taxon however in 
more recent taxonomic divisions, the number of detected clusters increases, most likely due to 
reduced evolutionary time for genomic shuffling to occur and the increased influence of HGT 
(Figure 3.6).  

16 - Figure 3.4 - Rearrangements in 
gene neighbourhoods 
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A representation of how our 
clustering algorithm functions. 
Each square represents a different 
ortholog group. The lines between 
them represent the neighbourhood 
conservation between the genes, 
and are coloured red when this falls 
below the threshold. The ortholog 
groups are coloured based on the 
clusters they are assigned, except 
for red which identifies ortholog 
groups which are classified as not 
in a gene cluster. Multiple colours 
represent the multiple different 
clusters an ortholog group can 
belong to. 
 
 

17 - Figure 3.5 - Schematic of the 
clustering algorithm 
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18 - Figure 3.6 - Identification of gene clusters in bacteria 

Gene neighbourhoods were clustered together based on common conservation at each taxonomic division. 
Clusters that contained 50% or more genes from a cluster identified at an ancestor clade were considered a 
descendant cluster and not unique. The size of each circle represents the number of unique clusters (the 
oldest member of each gene cluster family) identified at each taxonomic level (see the legend in the bottom 
left corner). 
 
The role of HGT in gene clusters 
As we detailed in the introduction, horizontal gene transfer is a major factor in bacterial 
chromosome evolution. Unlike vertical transmission where gene clusters are transmitted to 
descendants and therefore are taxonomically isolated, horizontal gene transfer permits the spread 
of genes clusters independent of phylogenetic relatedness. To analyse and compare these two 
modes of gene cluster transmission we used two normalization strategies for conservation during 
the clustering process. Our initial strategy normalizes the frequency two genes co-localize by the 
number of genomes belonging to the taxonomic distribution. This results only in clusters which are 
prevalent in the majority of the clade being identified. As this precludes horizontal transmission, 
we also used a strategy independent of taxonomic definitions where conservation was normalized 
by the number of genomes each ortholog group appeared in (the same strategy used to calculate 
neighbourhood and positional conservation from histograms). This strategy does not bias against 
genes which are dispersed across the Bacteria kingdom. Therefore, gene clusters which uniquely 
appear using this normalization strategy are mostly distributed via HGT as opposed to vertical 
transmission. A limitation of this strategy is that neighbourhoods which are highly taxonomically 
restricted would both not have appeared in our previous analysis and would be ranked very highly 
even if the genes were not involved in HGT. Therefore, we enforced a minimum required genome 
distribution of 50. Using this strategy, we identified 59 clusters which were not detected using the 
first method (Table 8.8). As this number is significantly lower than the taxonomic bound strategy, 
this suggests that over large evolutionary time scales HGT is not relevant in conserved gene 
clusters. Analysing the HGT clusters, we saw that they were smaller on average than those found 
from vertical transmission with a maximum size of 5 genes, and only 11 being larger than three 
genes (Table 8.8). There are often size limitations with the number of nucleotides (and therefore 
genes) that can be transferred via most HGT methods which could explain the smaller size of these 
clusters. The majority of HGT associated gene clusters were poorly characterized but often had 
annotated membrane domains or were thought to be secreted (Table 8.8). A few noticeable clusters 
included a cluster of pilus assembly genes which would be required for HGT method of 
conjugation. There were also several clusters containing ABC transporters, which often have roles 
in virulence and antibiotic resistance which are genes they are often implicated in HGT (Derbyshire 
and Gray 2014).  
 
Genes which are horizontally transferred have been observed to have reduced GC content (Daubin, 
Lerat, and Perrière 2003). It is thought this bias may occur due to a few factors which favour the 
transmission of sequences rich in AT. These include: the majority of bacterial restriction enzymes 
are biased towards GC sequences resulting in high GC genes being less likely to be incorporated 
into the genome as free DNA, and both phages and insertion sequences, two other vectors of HGT, 
favoring sequences low in GC content (Rocha and Danchin 2002). In order to observe to test how 
likely horizontal gene transfer may have played a role in forming and spread gene clusters we 
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measured the GC content of the clustered regions compared to the host genome. Clusters were 
shown on average to have a higher GC content than the whole genome by 2% (Figure 3.7). This 
relationship held in clusters from more recent taxonomic divisions as well. This thereby suggests 
both an unlikely origin via HGT for many clusters and that the clusters themselves are less likely 
than other parts of the genome to be transferred. This implicates vertical transmission as the major 

defining factor for gene cluster 
organization. 

The GC content of clusters was 
calculated as the average GC content of 
the genomic cluster spanning region in 
all genomes where the cluster had a 
minimum of four of the genes co-
localized. Then the average GC content 
of this subset of genomes was measured 
and compared.  
 
In bacteria mutations have been 
shown to be biased towards AT 
(Hershberg and Petrov 2010), 
suggesting that areas rich in GC 
content undergo less maintained 
mutations. As we see an increased 

rate of GC occurrence in gene clusters, the possibility that clusters form in areas protected from 
mutagenesis thereby resulting in clusters of essential processes. We measured the mutation rate of 
genes found in conserved neighbourhoods compared to equally conserved genes not found in 
neighbourhoods and found that neighbourhood genes did not undergo significantly more or less 
mutations than non-clustered genes of similar ubiquity (Figure 3.8). Additionally, we saw no 
difference between the mutation rates of clustered genes compared to the same genes in genomes 
where they are no longer clustered (Figure 3.8). 

The average sequence distance (as measured 
by Clustalw) was measured, comparing all 
sequences of genes from clusters identified at 
the bacterial level, that were still found with 
50% of their cluster members in extant 
genomes. This was repeated for cluster gene 
sequences which were no longer associated 
with the cluster and for all highly conserved 
genes >2000 genomes. Error bars represent the 
standard deviation of the samples. 
 

19 - Figure 3.7 - GC content bias of 
clusters 

20 - Figure 3.8 - Mutation rate of clustered 
genes 
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21 - Figure 3.9 - Location of gene clusters on the B. subtilis genome 

The genomic location of all gene cluster families presents on the B. subtilis W168 genome. The y-axis 
represents at which taxonomic division the cluster was first detected. Clusters detected at the Bacteria level 
are labeled with a custom annotation based on the function of genes in the cluster. The size of the circle 
represents the number of genes in the cluster. The colour is another indicator of the position of the 
chromosome. 
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3.3 Analysis of gene cluster conservation 
Co-orientation is highly conserved in gene clusters 
In Chapter 3.1 we noted that co-orientation rapidly degrades with gene distance (Figure 3.1). 
However, we also saw high correlation between orientation and conservation in neighbourhoods 
(Figure 3.2). To test which of these two forces is stronger on conserved gene clusters, which are 
both long and well conserved, we measured the average co-orientation that occurs in our identified 
clusters. We found that indeed co-orientation was highly conserved in gene clusters irrespective of 
the gene length of the cluster (Figure 3.10). This further strengthens the correlation we saw between 
gene neighbourhood conservation and orientation and suggests that co-orientation is an important 
factor in the maintenance of gene clusters. 

A histogram showing the number of gene 
clusters with specific proportions of co-
orientation of all involved genes. Only the 
oldest member of each gene cluster family 
was used. In cases where a gene from the 
cluster was not present on the genome, and 
therefore had no orientation, this 
contributed a 0 to the average and explains 
how values under 0.5 are possible. 
 
Function conservation within 
clusters 
One of our goals is to understand the 
overarching forces that drive gene 
cluster formation, tangential to this, is 
if particular cellular functions benefit 

more from clustering their individual genes with others. We annotated the clusters identified in 
Bacteria using a manually curated list of gene ontology terms (GO terms) (The Gene Ontology 
Consortium 2019), designed to capture ubiquitous and clear defined biological processes in the 
cell. We found that several clusters contain genes with homologous functions, which was most 
apparent in the larger clusters whereas smaller clusters had genes with a diverse range of functions 
(Figure 3.11). It has been previously reported that clusters are functionally homogeneous (Wolf, 
Rogozin, Kondrashov, et al. 2001; R. Overbeek et al. 1999). We presume, that the small but diverse 
clusters in our dataset were detected due to the higher sensitivity of our detection method and were 
not identified in previous studies.  
 
 

22 - Figure 3.10 - Conservation of 
orientation within gene clusters 
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23 - Figure 3.11 - Functional roles of cluster genes 

For gene clusters identified at the bacterial level with five or more genes, we classified each of their gene 
members using a predefined gene ontology list (see legend for GO terms). The colour represents which 
annotation the gene was given (see the legend in the top right corner). Clusters are sorted by number of 
genes 
 
To get a quantitative understanding of gene function in clusters we performed enrichment analysis 
with the genes found in clusters of B. subtilis using the genome as a background (Figure 3.8).  
Using the web-tool DAVID (D. W. Huang, Sherman, and Lempicki 2009), we looked for 
enrichments in GO terms, uniprot keywords, KEGG pathways and Interpro domains. We found 
nine groups of annotations that appeared to be enriched in clustered genes including: 
ribosome/translation genes, ATP synthases, flagella genes, pyrimidine/arginine biosynthesis genes, 
sigma factors, cell shape associated genes, iron binding, and DNA repair. (Table 3.1). 16 significant 
terms (<0.05 P-value Bejamini Hochburg correction) were not clustered. This was mostly 
unchanged when restricting the clustered genes to only those detected at the bacteria level. The 
majority of these associates align with well known gene clusters such as the ribosome suber-cluster 
and the ATP synthase cluster.  
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Enriched Gene Annotations in Clustering Genes 

Category Term Count 
Pop 
Hits 

Fold 
Enrichment PValue Benjamini 

Annotation Cluster 1 Enrichment Score: 18.03833735983574 
GOTERM_MF_DIRECT GO:0003735~structural constituent of ribosome 49 55 3.72 9.43E-24 3.06E-21 
GOTERM_BP_DIRECT GO:0006412~translation 52 62 2.98 1.45E-19 3.00E-17 
GOTERM_MF_DIRECT GO:0019843~rRNA binding 34 38 3.73 1.96E-16 3.61E-14 
GOTERM_CC_DIRECT GO:0005840~ribosome 39 49 3.22 2.62E-15 1.17E-13 
Annotation Cluster 2 Enrichment Score: 2.0645164271685235 

GOTERM_MF_DIRECT 
GO:0046933~proton-transporting ATP synthase 
activity, rotational mechanism 7 7 4.17 1.02E-03 5.38E-02 

GOTERM_BP_DIRECT GO:0015986~ATP synthesis coupled proton transport 7 7 3.55 2.57E-03 2.33E-01 

GOTERM_CC_DIRECT 
GO:0045261~proton-transporting ATP synthase 
complex, catalytic core F(1) 5 5 4.05 1.46E-02 7.78E-02 

GOTERM_MF_DIRECT 
GO:0046961~proton-transporting ATPase activity, 
rotational mechanism 3 3 4.17 1.44E-01 9.49E-01 

Annotation Cluster 3 Enrichment Score: 1.3463031253112354 
GOTERM_MF_DIRECT GO:0003774~motor activity 5 5 4.17 1.31E-02 3.01E-01 
GOTERM_CC_DIRECT GO:0009425~bacterial-type flagellum basal body 6 8 3.03 2.53E-02 1.18E-01 
GOTERM_CC_DIRECT GO:0031514~motile cilium 16 38 1.70 2.89E-02 1.21E-01 

GOTERM_BP_DIRECT 
GO:0071973~bacterial-type flagellum-dependent cell 
motility 9 16 2.00 5.16E-02 7.46E-01 

GOTERM_BP_DIRECT GO:0006935~chemotaxis 5 11 1.61 3.75E-01 9.83E-01 
Annotation Cluster 4 Enrichment Score: 1.2374018318599636 
GOTERM_BP_DIRECT GO:0044205~'de novo' UMP biosynthetic process 8 10 2.84 7.00E-03 2.15E-01 

GOTERM_MF_DIRECT 
GO:0004088~carbamoyl-phosphate synthase 
(glutamine-hydrolyzing) activity 4 5 3.34 9.22E-02 8.77E-01 

GOTERM_BP_DIRECT GO:0006526~arginine biosynthetic process 5 10 1.77 3.01E-01 9.75E-01 
Annotation Cluster 5 Enrichment Score: 1.1058545075576294 
GOTERM_MF_DIRECT GO:0016987~sigma factor activity 11 20 2.30 9.75E-03 2.73E-01 
GOTERM_BP_DIRECT GO:0006352~DNA-templated transcription, initiation 10 19 1.87 5.70E-02 7.03E-01 

GOTERM_MF_DIRECT 
GO:0003700~transcription factor activity, sequence-
specific DNA binding 23 110 0.87 8.66E-01 1.00E+00 

Annotation Cluster 6 Enrichment Score: 0.9767810932765434 
GOTERM_MF_DIRECT GO:0004129~cytochrome-c oxidase activity 6 7 3.58 1.04E-02 2.67E-01 
GOTERM_CC_DIRECT GO:0070469~respiratory chain 3 4 3.03 2.55E-01 6.61E-01 
GOTERM_MF_DIRECT GO:0005507~copper ion binding 3 6 2.09 4.40E-01 9.98E-01 
Annotation Cluster 7 Enrichment Score: 0.9651972102490863 
GOTERM_BP_DIRECT GO:0051301~cell division 15 33 1.61 5.29E-02 7.13E-01 
GOTERM_BP_DIRECT GO:0007049~cell cycle 11 22 1.77 6.09E-02 6.94E-01 
GOTERM_BP_DIRECT GO:0008360~regulation of cell shape 9 18 1.77 1.02E-01 8.20E-01 
GOTERM_BP_DIRECT GO:0009252~peptidoglycan biosynthetic process 7 13 1.91 1.28E-01 8.68E-01 
GOTERM_BP_DIRECT GO:0071555~cell wall organization 6 14 1.52 3.54E-01 9.81E-01 
Annotation Cluster 8 Enrichment Score: 0.24307645512331666 
GOTERM_MF_DIRECT GO:0005506~iron ion binding 8 21 1.59 2.18E-01 9.82E-01 

GOTERM_MF_DIRECT 

GO:0016705~oxidoreductase activity, acting on paired 
donors, with incorporation or reduction of molecular 
oxygen 3 9 1.39 6.73E-01 1.00E+00 

GOTERM_MF_DIRECT GO:0004497~monooxygenase activity 3 12 1.04 8.21E-01 1.00E+00 
GOTERM_MF_DIRECT GO:0020037~heme binding 5 25 0.83 8.83E-01 1.00E+00 
Annotation Cluster 9 Enrichment Score: 0.11282483408671384 
GOTERM_BP_DIRECT GO:0009432~SOS response 4 10 1.42 5.66E-01 9.97E-01 
GOTERM_BP_DIRECT GO:0006281~DNA repair 7 28 0.89 8.43E-01 1.00E+00 
GOTERM_BP_DIRECT GO:0006310~DNA recombination 5 26 0.68 9.61E-01 1.00E+00 

2 - Table 3.1 - Enriched annotations in B. subtilis clustered genes 
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A list of the grouped GO term annotations which were enriched amongst clustered genes compared to all 
the genes on the B. subtilis genome. Annotation clusters are sorted from most enriched to least. Count 
represents the number of times the annotation was in the clustered genes subset. Pop Hits, is the number of 
times the annotation was found in all genes in genome. 
 
Growth dynamics of conserved gene clusters 
As a definition, gene clusters must be resistant to genomic rearrangements which would separate 
the genes. We asked if this resistance extends to nearby genes as the number of possible (those that 
result in fit offspring) rearrangement events that could move them would decrease. If so, under a 
neutral model of genomic rearrangement (Darling, Miklós, and Ragan 2008) this would be 
evidenced by an expansion in the size of gene clusters over evolutionary time. Therefore, we 
tracked the size of gene clusters down each gene cluster family lineage. Gene cluster families and 
their lineages were defined as follows: for every identified cluster, if another cluster at a higher 
taxonomic rank shared more than 50% of its gene content with it, that cluster would be considered 
the ancestor of this cluster. We work under the parsimonious assumption that if two species share 
a gene cluster, that this was likely derived from vertical inheritance from a shared common ancestor 
as opposed to being formed in parallel. Given the stringency of our cluster classification method 
the effect of taxonomically dispersed HGT clusters should be minimal. Naturally the strength of 
neighbourhood conservation surrounding gene clusters increases as we restricted the genome 
subset. As our clustering uses the threshold for expected conservation at a specific genetic diversity 
that we calculated in Chapter 2, we control for the conservation increase. Therefore, any addition 
to a gene cluster must be conserved significantly higher than would be expected by chance. We 
saw however that on average there was neither a significant increase or decrease in gene cluster 
size in more closely related genome samples (Figure 3.12 - blue line). On average we see ~2 genes 
added to a gene cluster over the span of the entire bacterial lineage (Figure 3.12). Of the lineages 
we were able to track, clusters were seen to expand and shrink in 46.6% and 27% of cases 
respectively. The remaining 25.9%, the cluster size remained unchanged. Therefore, this suggests 
clusters do not act as anchors for further clustering of genes and are more likely to be generated 

spontaneously (Figure 3.12). 
Simultaneously, this suggests 
that clusters are not slowly 
eroded through evolutionary 
history but are quickly dispersed 
all together.  

The cluster size of each gene 
cluster family member is plotted 
against the genetic diversity (the 
average patristic distance between 
all genomes of the taxa) of the 
taxonomic division it was clustered 
on. A linear regression was fitted to 
the data (blue). A slight jitter has 
been applied to each point for 
clarity purposes.  

24 - Figure 3.12 – Size 
dynamics of gene clusters over 
evolutionary time 
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The coexpression of genes as operons is thought to be a driving force in the maintenance of gene 
clusters (Fani, Brilli, and Liò 2005). We have also observed strong biases in the correlation of 
orientation both within gene neighbourhoods and the identified gene clusters (Figure 3.2 and 3.10). 
Therefore, we reasoned, if genes do indeed cluster in order to be regulated under common 
regulatory factors, new genes should appear primarily downstream of the cluster to not disrupt 
regulation of other genes by e.g. the promoter. Therefore, we measured the number of new genes 
added to growing clusters which appeared in the downstream half of the gene cluster (orientated 
relative to the majority of genes in the cluster). We found that there appeared to be no preference 
to either side in the context of new genes being added the clusters (Figure 3.13). This places into 

doubt the role of co-transcription in cluster 
formation.  

The lineage of each gene cluster family was 
tracked down the evolutionary tree. We 
performed a kernel density estimation on the 
proportion of new members of growing gene 
clusters were positioned either in the second 
half or downstream of the cluster. Clusters 
were considered descendants if they contained 
50% of the genes from an ancestor cluster.  
 
Gene Clustering and genome organization 
Two well known gene clusters (the DNA 
replication and the ribosome cluster) are 
known to be localized close to the origin 

of replication (ori) (Couturier and Rocha 2006). It is thought that the conserved location of these 
clusters may be due to the increased gene dosage effects they undergo during replication (Couturier 
and Rocha 2006). It has also been shown that the localization of genes on the genome can affect 
the subsequent localization of the genome (Ginez, Osorio, and Poggio 2014). Therefore, we asked 
if genome organization was an important intrinsic property to the conservation of clusters. By 
taking the median distance of clusters from the ori on each genome we were able to define four 
different conservation behaviors: ori localized (>50% of clusters found in the first quintile), 
terminator localized (>50% of clusters found in the last quintile), non-polar localization (>50% of 
clusters found in the second to fourth quintile), and no location conservation. The majority of 
localized clusters we found to be either ori or terminus proximal (46.6%) with only one cluster 
localizing between the ori and terminus regions and the remainder not localizing (Figure 3.14). We 
see that ori proximal clusters are enriched in translation machinery but with also the notable 
inclusions of secretion/transport systems and the ATP synthase cluster. As mentioned previously, 
ori proximal genes undergo a gene dosage increase which is magnified in conditions of fast growth 
where multifork replication occurs. During these conditions the bacterial cells have an increased 
demand for translation machinery, ribosomes and ATP (Couturier and Rocha 2006). Conversely, 
clusters which were located at the terminal end of the chromosome did not have a unifying function 
however they were just as abundant as those seen near the ori. In addition, there is the presence of 
a smaller ribosome cluster and a translation cluster at the terminal end which would receive much 
lower transcriptional activity due to a lesser effect from gene dosage. The presence of phage genes 
near the terminus can be explained as horizontal gene transfer since pro-phage activity occurs more 

25 - Figure 3.13 - Directional Growth of 
clusters 
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frequently in genomic areas closer to the terminus (Oliveira et al. 2017) We found that very few 
clusters were specifically localized between either of the genome poles however there were many 
clusters which displayed no localization at all.  

For the gene clusters identified 
at the bacterial level, their 
position in their respective 
genomes relative to the oriC 
were compiled. x-axis labels 
represent bins of distance (5% 
of the distance between the 
origin of replication and the 
terminus). Shading of the bins 
is based on the proportion of 
genomes with the cluster which 
had the cluster localized in this 
area. Rows were clustered 
based on similarity. Clusters 
matching the Cluster ID can be 
found in Table 8.7. Cluster IDs 
are sorted by size of the cluster 
in descending order. 
 
Selective pressures of gene 
clusters 
There are several hypotheses 

as to which selective forces act on bacterial genomes to preserve gene neighbourhoods including: 
essentiality of the genes, protein-protein interactions of gene-products of the cluster and co-
transcription on polycistronic transcripts. Given our large number of clusters scattered over the 
evolutionary history of an organism we now have the possibility to see how or if these selective 
forces come into play. Firstly, we measured the average proportion of a group of genes, from the 
B. subtilis genome, that are essential, interacted with, or is transcribed in the same transcript,  as 
another gene from the cluster. We also measured the average Pearson correlation score of all 
pairwise combinations of cluster genes as a measure of transcriptional correlation using publicly 
available RNAseq datasets for B. subtilis (for conditions see Table 8.9). These classifications were 
assigned to the genes using the DEG10 database for essentiality (Luo et al. 2014), the DOOR 
database for operons (Mao et al. 2009) and STRING database for protein-protein interactions 
(Szklarczyk et al. 2019). We used two methods to determine the expected proportion, taking the 
average of both gene groups derived from a sliding window along the genome, and 100,000 
randomized gene groups (An example can be seen in Figure 3.15). As the size of the gene groups 
could be a confounding factor, we repeated this process for several different sizes so that 
appropriate comparisons could be made (Figure 3.15). Unlike essentiality and protein-protein 
interactions, operons are required to have their genes next to each other and therefore measuring 
operon proportionality using randomized gene groups was not measured in this case. Using all 
clusters which were still maintained in the extant B. subtilis species we compared to what is seen 
across the genome and they were considered significant if the proportion in the cluster was found 
to be higher than one standard deviation above the mean. The mean and standard deviation were 

26 - Figure 3.14 - Genomic 
location of gene clusters 
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taken from the method which provided the higher values therefore to increase stringency of our 
method. The thresholds (mean + standard deviation) for percentage of: essentiality, protein-protein 
interactions, co-transcribed genes, and average Pearson correlation score for clusters of size 3 are 
respectively: 5.34% + 13.4% (18.74%), 14.4% + 23.3% (37.7%), 22.8% + 34.3% (57.1%), 61.1% 
+ 29.7% (90.8%). 

 

The proportion of genes which 
were found to be transcribed on the 
same transcripts of gene groups 
from a sliding window on the B. 
subtilis genome. Operon status was 
defined by the DOOR database. 
Process was repeated using 
different sliding window sizes 
reflecting the number of genes (x-
axis). Green triangle represents the 
mean and the yellow line represents 
the median. The whiskers extend to 
highest datum within 1.5 
interquartile range of the upper 

quartile and vice versa. Flyers (values greater or less than the whiskers) are displayed as circles. 
 
We found that essentialness of genes, protein-protein interactions and operon transcription was 
enriched in neighbourhoods in 42.1%, 63.2% and 47.3% of clusters, however transcriptional co-
regulation, was enriched in only 13.5% of clusters (Figure 3.16). That operons were enriched but 
not transcriptional co-regulated may appear contradictory however one gene cluster could contain 
multiple operons which are differently regulated. Furthermore, the measured co-regulation of B. 
subtilis genes was very high compared to the average number of operons, therefore it is harder to 
be significantly corregulating.  Finally, as co-regulation is possible through other means 
independent of genome context such as in regulons this is unsurprising. Interestingly, it was 
observed that whilst operons were more enriched in neighbourhoods it was never the only selective 
force representing a cluster unlike that which was seen for interaction and essentialness (Figure 
3.16). This suggests that simply having genes in an operon structure or co-regulated is not a strong 
enough evolutionary force to keep gene neighbourhoods and may be a consequence of having genes 
together over a long evolutionary time. To get a better understanding of how theses selective forces 
shaped the evolution of gene clusters, we delineated the contributions based on the taxonomic level 
for which we first detected the clusters. Transcriptional correlation has little impact in older clusters 
and only appears as a factor in more recently observed gene clusters whereas the impact of the 
other selective forces remained relatively stable (Figure 3.16). We found that many recently 
occurring gene clusters could not be explained by any of the factors mentioned above. Interestingly 
all of theses clusters were localized either by the origin or terminus of the genome further 
implicating these regions as hotspots for cluster formation. 

27 - Figure 3.15 - Calculation of 
expected operons found in gene 
clusters using a sliding window 
approach 
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28 - Figure 3.16 - Evidence of selective pressures in gene clusters 

All extant gene clusters found in B. subtilis were measured for the abundance in essential proteins, proteins 
which co-interacted, genes which are corregulated and genes that were transcribed together on polycistronic 
transcripts. These were compared to the expected genome frequency as calculated both as a sliding window 
and random selection from the genome at multiple window sizes. Clusters were considered abundant in the 
selective factor if the proportion was one standard deviation higher than the genome average. Essentiality, 
interactions and operon status in B.subtilis were defined by the DEG10 database for essentiality (Luo et al. 
2014), the DOOR database for operons (Mao et al. 2009) and STRING database for protein-protein 
interactions (Szklarczyk et al. 2019). 
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29 - Figure 3.17 - Relevance in selective pressures over time 

All extant gene clusters found in B. subtilis were measured for the abundance in essential proteins, proteins 
which co-interacted, genes which are corregulated and genes that were transcribed together on polycistronic 
transcripts. These were compared to the expected genome frequency as calculated both as a sliding window 
and random selection from the genome at multiple window sizes. Clusters were considered abundant in the 
selective factor if the proportion was one standard deviation higher than the genome average. Essentiality, 
interactions and operon status in B.subtilis were defined by the DEG10 database for essentiality (Luo et al. 
2014), the DOOR database for operons (Mao et al. 2009) and STRING database for protein-protein 
interactions (Szklarczyk et al. 2019). Clusters were only assigned “unknown factor” when they were not 
enriched in any of the aforementioned factors. The taxonomic levels on the x-axis are sorted from broadest 
to narrowest taxa containing B. subtilis.  

3.5 Summary 
With the resources we generated from GenCoDB we had access to gene neighbourhood data at a 
resolution previously not possible. This facilitated the comparisons of genomic contexts of genes 
from 4,036,537 ortholog groups encompassing 5487 genomes over 89 different taxonomic levels, 
which together summed over 1.9 million neighbourhoods. Despite the expectation that 
neighbourhood conservation should be anticorrelated with how conserved the genes are, we found 
that several genes which were conserved across the bacterial kingdom had highly conserved gene 
neighbourhoods. This also highlighted several genes which were less conserved but had higher 
neighbourhood conservation than average which would normally not be detectable with fewer 
genomes. In looking at neighbouring genes we saw that conservation and co-orientation both 
correlate and rapidly degrade as a function of distance resulting in clusters greater than three genes 
being rare. Conversely, we found that once co-localization was established, short-range 
rearrangements within the neighbourhood are very rare. We developed a method to define gene 
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clusters using our gene neighbourhood data finding 1383 gene cluster families. A complementary 
analysis identified 59 clusters that were likely distristributed by horizontal gene transfer despite the 
finding that the majority of our identified gene clusters were anti-correlated with characteristics 
associated with HGT. Whilst orientation rapidly degrades as neighbourhoods get larger, 
irregardless of the size of the gene clusters we found co-orientation was highly present. However, 
this does not lead to a bias in cluster growth. On average, we saw cluster growth was not the 
standard suggesting that conserved neighbourhoods do not encourage the conservation of more 
genes around it. Furthermore, we observed that gene clusters were highly enriched in the origin of 
replication and terminal parts of the chromosome. We tested the prevalence of the hypothesized 
selective pressures of gene clusters: essentiality of the genes, protein-protein interactions within 
genes in the cluster and co-transcription on polycistronic transcripts, and indeed found an 
enrichment of all three. Strikingly, whilst many clusters had a mix of selective pressures, or 
contained interacting or essential genes, very few were solely under the selective pressure created 
by operon level transcription. This suggests that this is a weak evolutionary force and may not be 
enough independently to maintain gene clusters on a fluid genome. 
 
 



 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Perturbation of a conserved translation and cell 
envelope synthesis associated gene cluster 
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In this chapter we will apply GenCoDB, the quantitative bacterial genome context analysis web-
tool, to the task of identifying a conserved gene cluster connecting translation and cell envelope 
synthesis. Using the findings on how evolution acts on gene clusters in bacteria that we learned 
about in chapter 3, we will bioinformatically and genetically interrogate the gene cluster in an 
attempt to decipher the fitness benefits from the co-localization of these genes in the model 
organism Bacillus subtilis. We will highlight that several key theories of gene neighbourhood 
conservation do not hold for this cluster including that polycistronic transcripts do not play a key 
regulatory role in correlating gene expression. Finally, we will present our own model on how this 
cluster may act through pyrimidine/arginine metabolism and consequently central carbon 
metabolism to synchronize essential processes in the cell. 

4.1 Identification of genomic-linked volume/surface area mediators  
 
Earlier we introduced how ribosomes are major determinants of bacterial cell growth rate. 
Similarly, as the growth rate increases, so does the volume of the cell (Schaechter, Maaloe, and 
Kjeldgaard 1958). Cell envelope associated pathways, for example those which produce 
peptidoglycan precursors for the cell wall, are responsible for surface growth. With the increase in 
cell volume must come an increase in surface area therefore requiring a concerted expression of all 
involved pathways with ribosome synthesis. Genes in conserved gene neighbourhoods and operons 
have been shown to co-regulate and provide reduced noise in their co-expression (Ray and Igoshin 
2012). Therefore, the existence of a gene cluster containing rate-limiting genes for both cell volume 
and cell surface growth could synchronize these processes. To this end. we targeted 77 translation-
associated genes, including ribosome subunits, translation factors and tRNA synthetases for 
genomic context analysis (Table 4.1). Only genes which were conserved over the significance 
threshold provided by GenCoDB were considered. 35 of these surveyed genes, 31 being ribosomal 
proteins, were part of the mega-ribosomal gene cluster. The mega-ribosomal gene cluster is the 
largest gene cluster found in nearly all bacteria and usually consists of the large majority of the 
genome’s ribosomal protein genes as well as several other processes including ATP synthesis 
(Ohkubo et al. 1987). Of the other 17 ribosome proteins, all were found to be conserved with other 
genes. However, these were almost exclusively found with only other translation associated genes 
in much smaller clusters. Eight translation genes were found to have no significant conserved gene 
neighbourhoods. It was very rare that cell envelope genes were associated with translation genes. 
Only three of our surveyed genes were found in a genomic context with cell envelope genes which 
coincidentally all belong in the same cluster. This cluster contained three of the surveyed genes, 
rpsB, tsf and frr, which were found together with three cell envelope genes, namely, uppS, cdsA 
and dxr – all of which will be described in the next section in detail.   
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Genomic contexts of translation-associated genes 

Gene 
name 

OG ID Ortholog group description Conserved 
Neighbours 

Ribosome-associated 
neighbours 

Cell Envelope 
Neighbours 

tsf 1405357at2 Elongation factor Ts 14 rpsB,frr uppS, cdsA, dxr 
rpsB 1623045at2 30S ribosomal protein S2 11 tsf,frr uppS, cdsA, dxr 
frr 134426at1385 ribosome recycling factor 11 rpsB,tsf uppS, cdsA, dxr 
yqeL 1990650at2 Ribosomal silencing factor RsfS 7 rplU, rpmA, YchF, 

RlmH 

 

pheS 469058at2 phenylalanine--tRNA ligase 
subunit alpha 

6 pheS, rplT, rpmL, thrZ 
 

rplS 1698718at2 50S ribosomal protein L19 6 trmD, rpsP, RimM 
 

rplT 1932144at2 50S ribosomal protein L20 6 rpml, pheS, thrZ, infC 
 

thrZ 900765at2 threonine--tRNA ligase 4 rplT, rpmL, pheS 
 

rpmI 2046660at2 50S ribosomal protein L35  6 rplT, pheS, thrZ 
 

rpsP 1937072at2 30S ribosomal protein S16   6 RimM,rplL, trmD 
 

rpsR 1940575at2 30S ribosomal protein S18 4 rpsF, rplI 
 

rplI 1959318at2 Ribosomal protein L9 4 rpsR,rpsF 
 

rpsF 1776954at2 30S ribosomal protein S6 4 rpsR, rplI 
 

rpsO 1990141at2 30S ribosomal protein S15 7 rbfA, truB, infB, RimP 
 

infB 347113at2 translation initiation factor IF-2 8 rbfA, RimP, truB,rpsO 
 

rbfA 1971380at2 ribosome-binding factor A 9 RimP, infB, truB, rpsO 
 

prfA 928964at2 peptide chain release factor 1 1 rpmE 
 

rpmE 2014569at2 50S ribosomal protein L31 1 prfA 
 

rplU 1949059at2 50S ribosomal protein L21 4 rpmA 
 

rpmA 1904463at2 50S ribosomal protein L27 4 rplU, ychF 
 

rpmB 2062238at2 50S ribosomal protein L28 2 rpmGB 
 

rpmGB 2034291at2 50S ribosomal protein L33 3 rpmB 
 

gatB 1498741at2 glutamyl-tRNA amidotransferase 3 rpsU 
 

rpsU 2088764at2 30S ribosomal protein S21   3 gatB 
 

aspS 226836at2 aspartate--tRNA ligase   1 hisS 
 

defA 1649129at2 peptide deformylase 1 fmt 
 

glyS 213210at2 glycine--tRNA ligase subunit beta  1 glyQ 
 

hisS 277998at2 histidine--tRNA ligase 1 aspS 
 

rpmF 2092354at2 50S ribosomal protein L32 7 
  

metS 761140at2 methionine--tRNA ligase 1 
  

rpsT 2005443at2 30S ribosomal protein S20 1 
  

trpS 951354at2 tryptophan--tRNA ligase 0 
  

tyrS 402899at2 tyrosine--tRNA ligase 0 
  

valS 32262at2 isoleucine--tRNA ligase  0 
  

leuS 32262at2 isoleucine--tRNA ligase 0 
  

lysS 63621at2 lysine--tRNA ligase 0 
  

cspR 132510at1385 tRNA methyltransferase   0 
  

gltX 1409413at2 glutamate--tRNA ligase 0 
  

argS 1146366at2 arginine--tRNA ligase 0 
  

3 - Table 4.1 - Genomic context of translation associated genes 

Survey of the genomic contexts for translation associated genes looking for the presence of co-localized cell 
envelope genes. Each column represents the number of ortholog groups (referred to as genes) found in the 
genomic neighbourhood. All bacterial genomes which contained the gene were considered and significance 
was determined by the default threshold provided by GenCoDB. In the case the gene fell into a well known 
cluster, the cluster name is provided instead. Genes found in the conserved ribosome cluster were omitted 
from the table. 
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4.2 The translation-cell envelope cluster 
Based on its unique role as the only gene cluster associating genes involved in translation and cell 
envelope synthesis, we will refer to it as the translation-cell envelope (TCE) cluster. The cluster 
consists of eight core genes, the six already mentioned and two auxiliary genes being pyrH and 
rasP, which are involved in pyrimidine biosynthesis and cell division, respectively (Figure 4.1). 
We saw that the gene order of the cluster was conserved, matching the gene cluster behavior we 
observed in chapter 3, and is mostly seen in the order rpsB, tsf, pyrH, frr, uppS, cdsA, dxr and rasP. 
The gene with the strongest association with the cluster (based on the average co-localization of 
the other seven genes) was frr and the weakest was dxr. Because of the tight association between 
gene context and functional association it is important to understand the role of each of these 
genes/proteins in the cell to see how they potentially might interact. To this end we will briefly 
review each of the genes in this cluster.  
 

 
30 - Figure 4.1 - The Translation Cell Envelope Cluster 

A histogram representing the conserved neighbourhood around frr. The height of the bar represents the 
frequency that gene (ortholog group) appears in that position relative to frr.  
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Genes below the significance threshold are not displayed. The bars in the top right represent the sum each 
colour in the histogram as a percentage of the height of the center bar. As all genes displayed here are in the 
positive y-axis this means they are all in the forward orientation relative to frr.  
 
Of the eight core conserved genes, rpsB is first gene of this cluster and is strongly conserved both 
in bacteria and in higher eukaryotes. rpsB encodes ribosomal protein S2 which is essential for the 
translation machinery in almost all cellular life. Although the functional role of S2 in translational 
activity is not yet completely understood, it is thought to play a key role in stabilizing the interaction 
of the ribosome with the Shine-Dalgarno sequence (Kaminishi et al. 2007; Yusupova et al. 2006) 
(Figure 4.2). In addition S2 may have moonlighting functions outside translation as it has been co-
purified with RNA-polymerase and a global regulator Hfq (Sukhodolets and Garges 2003). 
Interestingly, S2 is specifically targeted by proteases in response to cell stress – potentially to both 
slow the cellular translation rate and to increase the free amino acid pool for new protein synthesis 
(Kuroda et al. 2001). Therefore, rpsB could act as a bottleneck for translation initiation, thereby 
dictating how fast the cell is growing under stress conditions. 
 
The tsf gene encodes the translation elongation factor Ts (EF-Ts) protein. Its role in translation is 
to facilitate the dissociation of GDP from elongation factor-Tu (EF-Tu) so that EF-Tu may reform 
its active Ef-Tu-GTP complex which induces the binding of the codon specific aa-tRNA to the A-
site of the mRNA-programmed ribosome (Gromadski, Wieden, and Rodnina 2002) (Figure 4.2). It 
has been shown in vitro that EF-Ts can inhibit RNA polymerase function (Biebricher and 
Druminski 1980). Therefore, it is possible that during stringent response when high concentrations 
of ppGpp and pppGpp block the interaction between EF-Tu and EF-Ts, the free EF-Ts would then 
be able to also restrict transcriptional activity. 
 
Following tsf is pyrH which is an essential gene encoding uridylate kinase. Uridylate kinase plays 
its key role in pyrimidine biosynthesis by forming UDP through the ATP-dependent 
phosphorylation of UMP (Figure 4.2). UDP can then later be phosphorylated to UTP, an important 
substrate for RNA polymerase, a precursor for CTP synthesis and a cofactor in sugar metabolism 
(Figure 4.2). The production of UDP must be tightly regulated as it can be readily transformed into 
dUDP and then dUTP, which could be incorporated into DNA instead of dTTP. This is why it is 
thought that pyrH is localized to the periphery of the cell (Noria and Danchin 2002). Uridylate 
kinases are feedback-inhibited by UTP and activated by GTP (Gagyi et al. 2003), suggesting a 
homeostasis mechanism to ensure balanced purine and pyrimidine metabolite pools (Figure 4.2). 
The mechanism in which GTP activates uridylate kinases is different from bacteria to bacteria and 
does not appear to extend to archaea. Downstream, UDP-Glc has been shown to be a negative 
regulator of FtsZ assembly (Weart et al. 2007) and that low levels of UTP can lead to the 
modulation of attenuator sequences (Bonner et al. 2001).The former means that control of UDP 
and central carbon metabolism link growth rate to cell division to ensure they occur together in a 
growth rate dependant manner. The latter allows the cell to increase pyrimidine biosynthesis in 
events of low UTP levels by promoting the formation of an antiterminator before the pyrimidine 
biosynthesis gene cluster and potentially other genes (Bonner et al. 2001).  
 
frr is the next gene in the gene cluster, encoding the ribosome recycling factor protein. It is 
responsible for the dissociation of ribosomes from mRNA after the termination of translation so 
that all factors (ribosome, mRNA and tRNA) may be recycled for the next round of translation 
(Janosi, Shimizu, and Kaji 1994) (Figure 4.2). This mechanism is in conjunction with an 
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association to elongation factor G and the hydrolysis of GTP (Figure 4.2). Overexpression of the 
frr gene has been shown in Streptomyces diastatochromogenes to lead to increases in both cell 
growth and protein production (Ma et al. 2014). 
 
uppS encodes the cis-prenyltransferase undecaprenyl-diphosphate synthase (UppS) which is an 
important enzyme in the synthesis of the bacterial cell wall. The protein catalyses the elongation 
of C15-PP with eight isoprene units, creating di-trans, octo-cis-undecaprenyl-diphosphate (UPP, 
C55-PP) which can enter the lipid II cycle by being dephosphorylated to undecaprenyl phosphate 
(Figure 4.2). This is then enzymatically converted to lipid I and lipid II by the subsequent addition 
of amino acid-bound and activated UDP-sugars, forming a peptidoglycan precursor. Lipid II acts 
as a carrier to flip the peptidoglycan precursor across the membrane where they can form part of 
the growing peptidoglycan chain. Therefore, uppS can directly control the number of carrier 
molecules in the Lipid II cycle. Furthermore, the undecaprenyl phosphate is used in B. subtilis by 
TacO in the biosynthesis of wall teichoic acids. Wall teichoic acids are a major component of the 
cell wall in gram-positive bacteria (comprises 60%) and if they are removed result in defects in cell 
division and cell morphology (Brown, Santa Maria, and Walker 2013). Therefore, ensuring critical 
numbers of wall teichoic acids is essential for normal cell growth. 
 
cdsA encodes a phosphatidate cytidylyltransferase which forms the key lipid intermediate cytosine 
diphosphate-diacylglycerol from phosphatidic acid and cytosine triphosphate. This is the last step 
in lipid biosynthesis before the diversification of the different polar head groups and is the main 
source of this key membrane precursor (Figure 4.2). E. coli mutants with low levels of CdsA 
activity have been shown to have no growth rate defects, however, this was accompanied by 
modifications in the lipid composition of their membranes (Ganong, Leonard, and Raetz 1980). 
Aside from forming the envelope, the phospholipid membrane has been shown to be loosely 
coupled to membrane protein homeostasis, as protein synthesis and growth has been shown to be 
halted until the phospholipid to protein ratio is restored (McIntyre et al. 1977).  
 
dxr encodes 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase. DXP reductoisomerase is 
the first enzyme devoted to the MEP pathway, one of the two pathways involved in isoprenoid 
synthesis (Figure 4.2). Isoprenoids are a diverse group of molecules found in all organisms with a 
range of functions and are being considered an alternative biofuel to ethanol. Whilst the function 
of isoprenes in bacteria is not fully known, many of the genes in this pathway are essential for 
normal growth and many precursors within the pathway are toxic (Sivy, Shirk, and Fall 2002). In 
bacteria they can serve a role as a cell wall biosynthesis intermediate. Overexpression of dxr was 
shown to not increase the production of isoprenes (Xue and Ahring 2011). If not diverted towards 
isoprene production, the downstream product of dxr eventually acts as a precursor for uppS, 
discussed earlier. In fact both uppS and dxr were shown to be negatively correlated with isoprene 
production and may instead indicate a shift away from isoprene production towards larger 
terpenoids (Hess et al. 2013).  
 
The last gene in this gene cluster is rasP which encodes an intramembrane protease. As a protease, 
it degrades pre-cleaved targets, several of which are signal peptides. In specific relevance to cell 
growth in B. subtilis it is involved in the degradation of RsiW, an anti-sigma factor to σw (Parrell 
et al. 2017). σw is a regulator that acts in response to cell envelope stress (Zweers et al. 2012). In 
overexpression strains of rasP, it was shown to boost the production of several membrane proteins 
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(Neef et al. 2017) presumably by clearing the membrane of unneeded or mislocalized proteins that 
would perturb the cell envelope. Another important function is that it cleaves the essential cell 
division protein FtsL. FtsL has been shown to be rate limiting for cell division (Bramkamp et al. 
2006) so it is speculated that a high expression of rasP promotes cell elongation over division (with 
cell wall stress being stimulated by the rapid volume growth). Given this finding, and its context 
with several ribosome-associated and cell envelope genes, rasP could be an important regulator of 
cell size and division in relation with the growth rate 
 

 
31 - Figure 4.2 - Cluster genes hold bottleneck positions 

The cell envelope associated genes hold bottle-neck positions in their respective biochemical pathways. 
These steps are often before committed steps. RpsB is a required protein for translation initiation as a part 
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of the ribosome complex. Tsf is a bottleneck for translation elongation reactivating Ef-Tu (inactive in grey, 
active in green). PyrH is the sole producer of UDP in de novo pyrimidine biosynthesis. frr controls 
termination of translation and therefore the available active ribosome pool. Together RpsB, Tsf, and Frr 
contribute to translation producing more proteins, including their self-replication. UppS produces the carrier 
molecule for the lipid II cycle and is removed from the cluster in species where it has been duplicated and 
therefore made redundant. CdsA produces the last intermediate before the diversification of the polar head 
groups. Dxr is an essential gene in teichoic acid biosynthesis and produces an intermediate required for cell 
wall synthesis. Squares represent enzymes and are coloured yellow when they belong to the TCE cluster. 
Circles are metabolites.  
 
Selective forces of the TCE cluster 
To understand what evolutionary benefits co-localizing these eight genes together would provide 
to a species, we analysed it under the three frameworks of conservation that we developed in 
Chapter 3: essentiality, protein-protein interactions within the cluster, and operon organized 
transcription. Essentiality results in genes less likely to be deleted or displaced (disrupting 
expression) resulting in the grouping of essential genes as non-essential genes in between get 
removed. Excluding rasP, all the core conserved genes have been demonstrated as essential in 
many organisms (Luo et al. 2014) and all are highly conserved across the Bacteria kingdom. The 
high number of essential genes in this cluster means that it is extremely unlikely that the broad 
dispersal pattern of the cluster was due to horizontal gene transfer and therefore was most likely 
transmitted vertically. It should be noticed that several essential ribosome associated genes are not 
found in conserved clusters (Table 4.1) and unlike other clusters where essentiality of the genes is 
enriched, the cluster comprises many different processes. Therefore, we believe it is unlikely that 
the only selective force keeping this cluster together is essentiality. Proteins involved in within-
cluster protein-protein interactions have been frequently observed to be encoded in gene clusters. 
It is thought this is advantageous as coupled transcription and translation results in increased local 
concentrations of the co-localized proteins, increasing the probability of finding interaction 
partners. Despite this, there is very little evidence in the literature detailing interactions between 
the eight proteins encoded in the cluster, aside from Frr associating with the assembled ribosome 
(and thereby indirectly with RpsB) at the end of translation. As many of the genes are from different 
pathways there is no intuitive explanation as to why they would need to interact but that does not 
preclude moonlighting interactions.  
 
In chapter 3 we found that operon level transcription, whilst likely not a driving mechanism for 
cluster formation, was highly abundant in gene clusters. Unlike eukaryotes, bacteria have a 
mechanism in which to ensure equal transcript abundances. Operons were first discovered by 
(Jacob and Monod 1961) and involve the transcription of multiple genes from one promoter 
resulting in a transcript encoding multiple genes (polycistronic transcripts). Evidence that many of 
the genes in this cluster are transcribed as polycistronic transcripts include that in practically all 
genomes in which the cluster is maintained, the genes are co-orientated (Figure 4.1). From our 
analysis in Chapter 3, we found that this cluster was enriched in operons in B. subtilis. However, 
this calculation measures how many genes are found in an operon with at least one other gene from 
the cluster and does not take into account the number of genes that are grouped together. Therefore, 
from this observation alone, we cannot know if the entire cluster is found in an operon together and 
how strongly the co-regulation between genes is. Unlike many operons, the genes in this gene 
cluster are involved in very different biological processes and yet they are unified in that they each 
hold either bottleneck or rate limiting steps in these respective processes (Figure 4.2). Even the 
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three genes involved in translation belong to separate different rate limiting steps in translation: 
initiation, elongation and dissociation. In the introduction we have already discussed the 
requirement of synchronization between both surface and volume expansion, or interpreted as cell 
envelope synthesis and translation/ribosome content. Therefore, it would be highly beneficial for a 
cell to tightly regulate these processes through a single operon to ensure synchrony.  

4.3 Regulation of the cluster 
Literature suggests polycistronic transcripts across the gene cluster 
Microarray data from B. subtilis compiled by Subtiwiki (Zhu and Stülke 2018) have suggested that 
there is operon level regulation occurring over this cluster (Figure 4.3), as indicated by one long 
transcript spanning from rpsB until downstream of rseP (rasP). We should however view these 
data with caution as microarray-based studies are limited in their ability to define operons. For 
example, due to the low base-pair resolution of microarray data it is possible that neighbouring 
transcriptional units would be detected as operons even if separated by strong terminator and 
promoter elements. If they are indeed transcribed as an operon, from these data we cannot 
quantitatively distinguish between polycistronic and monocistronic transcripts. Finally, this 
microarray observation also conflicts with the operon databases we used in chapter 2, which 
currently do not classify all the genes as forming a single transcript (Mao et al. 2009). Therefore, 
it became clear to us that we needed to further investigate the exact transcriptional organization 
and regulation of this gene cluster. 

Transcriptional units for the TCE cluster predicted with microarray data. The red lines each represent 
independent transcriptional units. Figure was acquired from Subtiwiki (Zhu and Stülke 2018) and altered. 
The existence of one long polycistronic transcript containing all eight genes of the cluster is suggested. 
 
Absolute transcript levels varying between the 8 genes 
To observe how these genes are regulated in these species and in various conditions, we 
downloaded several RNAseq datasets for model organisms from the four main phyla in our dataset, 
B. subtilis, E. coli, M. tuberculosis and B. fragilis (Firmicutes, Proteobacteria, Actinobacteria and 
Bacteroidetes respectively) (for conditions see Table 8.9). The TCE cluster is present all of these 
species except for B. fragillis where the genes have been dispersed across the genome. The 
definition of an operon requires that all member genes would be transcribed at the same abundance 
under the assumption of no internal transcription start sites (TSS) or terminators (aside from 
abortive transcription resulting in the progressive reduction of expression along the cluster length). 
Even in cases where the assumption of no terminators is invalid, transcript levels should remain 
correlated across different conditions. We found that transcript levels varied significantly between 
the genes suggesting the presence of regulatory elements within the cluster (Figure 4.4). The 
expression of the cluster was highest for genes at the 5’ end of the gene cluster and decreasing for 
genes at the 3’ end highlighting the role terminators play in the gene regulation of this cluster. 

32 - Figure 4.3 - Microarray data showing operon level organisation in B.subtilis 
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Strong upshifts of transcripts within the cluster indicate the presence of internal transcript start 
sites. 
 

 

 
33 - Figure 4.4 - The transcriptional profile of the TCE gene cluster in B. subtilis 

The transcriptional profile over the TCE cluster of B. subtilis grown in LB media during exponential phase. 
The height of the grey area represents the relative number of transcripts mapping to the genomic region 
containing the TCE cluster. Genes on the chromosome are represented in blue. The upper and lower profiles 
are displaying the same data. The upper profile has been log transformed and the lower profile has had the 
y-axis truncated to display the less expressed genes in a linear scale. Viewing the transcriptional profile on 
a log scale hides the vast changes in transcriptional activity that occur over the cluster. Coloured lines 
represent single nucleotide polymorphisms between the sample and the reference genome. Large upshifts 
represent transcription start sites and conversely downshifts suggest locations of transcriptional terminators. 
 
Gene expression of the cluster correlates across conditions and species 
The apparent presence of internal transcript start sites challenges the idea that these genes are 
transcriptionally synchronized as they could all be independently regulated. We therefore took the 
available RNAseq datasets and measured the correlation of gene expression of the TCE cluster 
genes in several different condition (Table 8.9). Despite the seemingly high presence of promoters 
and array of different conditions, the expression of the eight genes in B. subtilis correlated strongly 
between the conditions, as indicated by visual inspection of the transcriptional profile (Figure 4.5). 
To quantify this, we calculated Pearson correlation scores, where positively correlated genes will 
have scores close to 1, and genes which do not correlate at all will have scores close to 0. Negatively 
correlated genes will have a score close to -1. Of the three species where the cluster was conserved 
(B. subtilis, M. tuberculosis, and E. coli) we saw high correlation scores (>0.9) suggesting these 
promoters may be regulated by the same mechanisms (Figure 4.6). Conversely, we saw a loss of 
positive correlation between the genes on the B. fragillis genome where the cluster is split (Figure 
4.6). However, as we measured in chapter 3, average correlation scores for gene expression in 
neighbouring genes is very high, this cluster would not be classed as significantly correlated by 
this stringent threshold (Figure 3.15). When compared to the expression correlation of random 
genes we do see the cluster is higher than the stringency threshold. 
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34 - Figure 4.5 - Tightly correlated expression of the cluster genes in diverse conditions 

A selection of conditions from the RNAseq dataset retrieval of B. subtilis showing number of reads for each 
of the eight cluster genes and two additional genes found conserved in Firmicutes. Expression of the cluster 
genes remains highly consistent in all the observed conditions regardless of perturbation or carbon source 
(growth rate). The exception here is dxr which had higher levels of dxr expression in a dxr overexpression 
strain (This condition was not included in future expression correlation analysis). 
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35 - Figure 4.6 - Pairwise correlation of TCE expression in four different Bacteria species 
Pearson correlation tests of the expression between the pairwise comibinations of the eight cluster genes 
across different conditions in different species. The exact retrieved conditions varied between the species (n 
= 62, 72, 58, 30 for B. subtilis, E. coli, M. tuberculosis, B. Fragilis respectively) based on the available 
datasets. The colour and size of the circle represents the Pearson correlation score taken from all conditions 
of that sample. 
 
Ratio between cluster genes is not conserved between species and highlights the requirement 
of fine tuning within the cluster 
To see if the presence of internal transcription start sites allows for different species to fine tune 
the expression of the cluster genes, we pooled together the datasets from the three cluster-
containing species and reperformed the correlation analysis. Interestingly, whilst within species 
correlation between the gene cluster’s transcript expression is conserved, this is lost in many gene 
pair comparisons between species (Figure 4.7). We found that the loss was due to different ratios 
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of expression between the different cluster genes of the different species. This would represent the 
need for different species to have different levels of the proteins to accommodate their growth 
needs. Altogether this can explain the presence of the internal transcription start sites as they may 
act as fine tuners, setting the absolute requirement of the gene product for the species’ physiological 
needs. Interestingly however, uppS and cdsA expression levels were tightly correlated across all 
three species, which is unexpected, given the increased peptidoglycan needed in gram-positive 
species, and the increased phospholipids needed in gram-negative species.  
 

 
36 - Figure 4.7 - Pooled pairwise read expression levels of the cluster 
RNAseq datasets between the three cluster containing species were pooled to observe inter-species 
correlation of the TCE cluster genes. The numbers in the upper triangle reflect the Pearson correlation score. 
The number of stars represent the p-value. * < 0.05, ** < 0.01, * < 0.001. The lower triangle shows the 
expression of each gene plotted against each other with each dot presenting a different RNAseq sample. The 
inset shows a zoomed in view at the frr-cdsA comparison. The points have been coloured based on the 
species the sample was derived from (blue = M. tuberculosis, red = E. coli, yellow = B. subtilis) 
 
Confirmation of several transcription start sites within the gene cluster 
The differing stoichiometries in the TCE cluster gene levels between species suggest there must be 
regulatory elements within the cluster to module expression of the individual genes. We wanted to 
understand exactly where and how many regulatory elements were found in the gene cluster. The 
upshift in transcript abundances were most apparent before tsf, pyrH and frr and the reduction of 
transcript abundance happened directly after the first four genes of the cluster. To find the 
transcription start sites we performed 5’ RACE experiments on extracted RNA from B. subtilis. B. 
subtilis was grown to exponential phase in LB media for RNA extraction. After reverse 
transcription and polyadenylation of the cluster genes (see Materials and Methods) we were able 
to confirm the presence of eight different start sites. The sites were mainly clustered in the first half 
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of the gene cluster, namely: one before rpsB, one before tsf, three before pyrH, one before frr. 
Surprisingly, we were unable to find a transcription start site for uppS which also did not have a 
clear spike before in the transcriptional profile of the cluster (reference to Figure 4.4).  
 
TSS position (bp)  Subsequent Gene 
-52 rpsB 
782 tsf 
1180 pyrH 
1584 pyrH 
1843 pyrH 
2097 frr 
3568 cdsA 
5900 rasP 

4 - Table 4.2 - 5’ RACE identified transcription start sites 
Predicted transcription start sites (TSS) acquired from 5’ RACE experiments on extracted RNA from 
B.subtilis grown in exponential phase in LB medium. The TSS position was measured from the first “A” 
from the start codon of rpsB. The subsequent gene represents the first gene which has a start codon after the 
identified TSS. 
 
Whole cluster transcripts unlikely due to the presence of strong terminators 
During transcription, terminators are not complete roadblocks for RNA polymerase and have been 
shown to have varying levels of efficiency (Mitra et al. 2009). In fact many terminators can be 
regulated to modulate this efficiency, which can in turn stop or increase the level of polycistronic 
transcripts (Schmidt and Chamberlin 1987). Therefore, the possibility remained that there was a 
basal level of transcription that started at the rpsB promoter and continued transcription until the 
end of the cluster. If this existed, one could posit that this fraction of long transcript is the basal 
level required for the synchronisation of the genes at a specific growth rate. From re-analysis of 
the data published by (Mondal et al. 2016) we noted three terminators, which reduced 
transcriptional read through by 75%, 81% and 60% after rpsB, tsf, and frr, respectively (Figure 
4.4). It was clear that the chance for concurrent transcription from one end of the gene cluster to 
the other is extremely low. Given the abundance of internal transcription sites and terminators 
within the cluster we deemed it unlikely that operon level transcription was relevant in the 
expression of these all these genes. However, the absence of a detectable transcription start site 
before uppS with the 5’RACE method suggests frr could be transcriptionally co-transcribed with 
its downstream genes, such as uppS and cdsA with partial transcription abortion through the 
relatively weak terminator after frr. We cannot however preclude the possibility our method was 
unable to detect a TSS in this region. 
 
No significant readthrough occurs between translation and cell envelope parts of the cluster 
Due to the absence of a detectable TSS and a relatively weak terminator element between frr and 
uppS we sought to measure how many uppS-containing transcripts derived from upstream 
expression. As PCR over this area could only confirm if the long transcripts existed and not 
quantitatively measure if upstream transcription from frr was the major transcript of uppS, we 
implemented a CRISPR interference (CRISPRi) system (Peters et al. 2016). CRISPRi, through a 
deactivated Cas9 (dCas9) which is guided to the DNA for a guide RNA and sterically blocks 
oncoming RNA polymerases, causing the polymerase to dissociate from the DNA, which results 
in an incomplete, non-functional transcript. The dCas9 does not bind to the target site permanently, 
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thereby allowing RNApol progress between binding events. The level of repression can be 
controlled by the concentration of guided dCas9 proteins resulting in the occupation time of the 
targeted location. We used CRISPRi to knockdown RNA transcription of frr (Peters et al. 2016). 
To ensure high efficiency knock-down and to reduce the possibility of interacting with an internal 
promoter within frr, which could drive uppS expression, the guide RNA was targeted at the 5’ end 
of frr. We expected that if uppS and frr were found on the same transcript, knocking down frr 
transcripts should result in a proportionally similar knockdown of uppS transcripts. This however 
was not the case, as we saw that knocking down frr transcripts resulted in no correlated change in 
uppS transcript abundance (Figure 4.8). This shows that the expression of uppS and subsequently 
the downstream cell envelope genes are independent of the expression being driven from the 

upstream promoters.  
 

RNA was extracted from 
Bacillus subtilis mutant 
expressing dCas9 with a sgRNA 
targeting frr and grown in LB 
with varying concentrations of 
xylose and subjected to qPCR.  
Higher concentrations of xylose 
represent an increased 
knockdown of frr. To see how 
many uppS transcripts contained 
the frr coding sequence both frr 
and uppS transcript levels were 
measured with qPCR. Error bars 
represent the standard error 
between the replicates. Fold 

changes are relative to the transcript abundances measured in the 0.01% xylose condition. qPCR levels were 
normalized to the constitutively expressed genes recA and gyrB. 

4.4 Characterization of the uppS promoter 
uppS promoter detected within the frr gene 
Given the presence of a terminator directly before uppS and no significant read-through occurring 
through this terminator from frr, the evidence strongly pointed towards an independent uppS 
promoter, despite not detecting a TSS with 5’RACE. Therefore, we created promoter fusions of 
the upstream area of uppS fused to the luciferase operon. We tried several 5’ truncations of the 
genomic sequence before uppS and found that we needed 180bp before we observed reporter 
activity (Figure 4.9). Taking a larger fragment of 400bp, containing the majority of the frr gene, 
does not increase expression significantly, suggesting the presence of only one active promoter 
element (Figure 4.10). The next tested smaller fragment containing the first 140bp of upstream 
sequence provided no activity, suggesting the 40bp difference between these fragments were 
essential for activity and most likely contained the promoter (Figure 4.10). However, the 40bp 

37 - Figure 4.8 - qPCR after frr 
targeted Crispr Interference 
reveals no readthrough from 
frr transcripts 
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alone did not show promoter activity. Combining it with increasingly sized parts of the UTR of 
uppS did not restore activity until the full 180bp was present. Due to the cloning method used, there 
was a 40bp between the 40bp and the 140bp fragment (Figure 4.9) and we believe this resulted in 
a reduction in activity (Figure 4.9). This could suggest that the promoter actually lies in the region 
160-120 bp upstream of uppS and was incomplete in the 140bp fragment and therefore also 
truncated in the 40bp part explaining why there was no detectable activity from either of the 
promoter fusion constructs alone. Additionally, duplicating this 40bp region before the full 180bp 
region resulted in a reduction in activity of this putative promoter (Figure 4.9). This conflicts with 
the previous explanation and could suggest there is some repressive binding activity occurring from 
this sequence or that it is titrating away transcriptional activators.  
 
One of the largest UTRs in the cluster in B. subtilis (130bp), exceeded only by the UTR between 
tsf and pyrH (146bp), lies between uppS and frr. As activity only occurs in fragments larger than 
this UTR this suggests the promoter may fall within the frr gene itself. It is striking that within the 
UTR, and therefore downstream of this putative promoter, there is a terminator with an efficiency 
of 60%, as mentioned previously. This means that there could be wasteful transcription initiation 
which is terminated shortly after beginning. However, these shorter transcripts may not form 
correct hairpin structures and allow transcription through this terminator. This may explain why 
the terminator was measured with only 60% efficiency despite us seeing little to no readthrough 
with the CRISPRi experiments (4.8). The presence of the terminator following the TSS start site 
may explain why we were unable to detect a TSS with the 5’ RACE method as RNA secondary 
structures can reduce the efficiency of reverse transcription or later polyadenylation, thereby 
resulting in no primer binding site for subsequent PCR amplification and detection.  

 
38 - Figure 4.9 - Schematic of promoter fusion constructs 
Construction of different promoter fusions to identify the active transcription region driving uppS 
expression. Each bar represents the length of the different tested promoter fusion constructs under their 
respective derived sequence. Grey lines represent inactive constructs, red lines represent active constructs 
and the faded-red constructs represent active constructs, however with weaker activity. Thin lines represent 
a 60bp dummy sequence that is introduced due to the cloning strategy and contains synthetic 
transcriptionally inactive DNA sequence used to connect the different 5’ UTR regions.  
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39 - Figure 4.10 - Reporter activity of uppS 5’ UTR truncations 
Different truncations of sequence upstream of uppS were placed before the LUX reporter and integrated 
into the Bacillus subtilis genome. The length is measured from the 10bp upstream of the uppS start codon. 
Measurement was taken during exponential phase in LB media. Error bars represent the standard deviation 
between the replicates (n=3). 140-180 represents that only the sequence difference between the 180bp and 
140bp fragments was used in the promoter fusion construct. 
 
PuppS is transcriptionally upregulated in low amino acid conditions 
Now that we identified the promoter which independently controls uppS we wanted to understand 
how this promoter was regulated. Given its tight genomic association with ribosomal genes and the 
need for increased lipid II carriers at higher growth rates we would expect the promoter to be 
upregulated under faster growth conditions. We measured the activity of the promoter in fast and 
slow growth conditions, respectively LB and MOPS media which in our plate reader promote 
doubling times of ~23 and ~78 minutes. Surprisingly, we found that opposite to what we expected, 
the activity of PuppS doubled in the slow growth conditions (Figure 4.11). To confirm this 
relationship, we tested an intermediate growth rate using MOPS media supplemented with amino 
acids (doubling time ~60 minutes), however, unexpectedly we saw the same level of reporter 
activity as with the much faster LB media (Figure 4.11). Supplementation of any of the individual 
amino acids used in the 6 amino acid mixture (methionine, histidine, arginine, proline, threonine) 
or any other amino acids we tested resulted in similar activity levels seen in the LB media 
(tryptophan the other amino acid is always present in the media). We did see reduced activity from 
supplementation of tyrosine and threonine but these both had detrimental effects on the growth rate 
of the cell. We cannot confirm the stimulus is slow growth in this case as between the MOPS media 
and LB media, there are many other nutritional differences. Given that we saw similar reductions 
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upon the supplementation of all tested amino acids, a likely reason would be the nitrogen 
scavenging from the amino acids directly. Promoter fusion reporter assays measure expression 
activity of a nucleotide sequence, however, this could be derived from both transcriptional 
regulation (the promoter) and post transcriptional regulation (such as proteins binding to the 
5’UTR). Therefore, we performed qPCR analysis of our exponentially grown 180bp-PuppS strain in 
both MOPS media with and without the amino supplementation to measure if the transcript levels 
of the first gene in the luciferase operon increased. We saw a similar two-fold increase in the MOPS 
media condition, suggesting that regulation of the uppS promoter occurs by a transcriptional 
mechanism (Figure 4.12). As uppS is a key gene in the production of peptidoglycan and wall 
teichoic acids, we hypothesized that this additional promoter allows the cell to respond to perturb 
ants of these pathways by increasing production of cell wall intermediaries through the expression 
of uppS. Preliminary experiments, testing sub-lethal concentrations of four different cell wall 
targeting antibiotics which trigger the σM response, bacitracin, nisin, ramoplanin and tunicamycin, 
showed no effect towards the activity of the promoter. 

 
40 - Figure 4.11 - PuppS reporter fusion activity under different conditions 
The 180bp PuppS fragment activity was measured under different media conditions. The measurement was 
taken during exponential phase. Glucose and tryptophan were added to all MOPS media conditions. MOPS 
media (6AA) include methionine, histidine, arginine, proline, threonine in the media. The other amino acid 
conditions are each individually added to basic MOPS media. Error bars represent the standard deviation 
between the replicates (n=3).  
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RNA was extracted from B. subtilis containing the PuppS-lux 
reporter grown in MOPS media with and without amino acid 
supplementation and subjected to qPCR. Error bars represent the 
standard error between the replicates. Fold change is relative to 
the transcript abundances in the 6 amino acid condition. qPCR 
levels were normalized to the constitutively expressed genes 
recA and gyrB. 

4.5 Perturbation of gene expression 
correlation within the cluster 
We observed a tight co-regulation of the genes in the TCE 
cluster, most of which are essential and involved in key 
growth-related processes. Furthermore, their expression 
has been modulated and tuned for different species. This 
suggests that a balance between these processes may be key 
for efficient growth. Therefore, we investigated if 
perturbing this stoichiometry between the genes of this 
cluster would be detrimental to growth. 

  
To this end we again used the CRISPRi system. We hypothesized that if balance between these 
genes is important, this would be most pronounced at fast growth rates where noise would be 
amplified and there is less time to correct disbalances. We measured the growth of strains knocking 
down expression of each gene individually in the cluster in both LB and MOPS media, our 
representatives for fast and slow growth media respectively. Surprisingly we saw that in LB 
medium, the majority of gene knockdowns did not affect the growth curves except in some cases 
with highest xylose concentration (1%), i.e. the strongest knockdown condition (Figure 4.13). For 
example, rps and tsf which after an early fast growth period had a slower growth rate followed by 
a lower maximal OD. We believe the initial growth speed occurs due to the time required for the 
sgRNA to be transcribed and for dilution of older proteins to occur through cell division. pyrH, frr 
and rasP knockdowns showed growth curves near-identical to the wild type at all presented levels 
of knockdown. (Figure 4.13) Upon induction with 0.1% and 1% xylose, dxr knockdown caused 
both cell populations to die (Figure 4.13). In the uppS and cdsA knockdowns with the same level 
of transcriptional repression, following the protein dilution that occurs over the first two hours we 
observed a reduction of cell mass of the culture followed by a regrowth of the culture. As dCas9 
blocks transcription by hindering RNA-polymerase progression and we could not predict a 
transcription start before cdsA (Table 2), potentially the growth defects we see from the uppS 
knockdown are derived from a disruption in cdsA function as they most likely are on the same 
transcript.  
 

41 - Figure 4.12 - PuppS regulation is transcriptional 
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42 - Figure 4.13 - Effect on gene knockdown in LB 
Plate reader measurements of the different CRISPRi knockdown strains grown in LB. Each strain expresses 
dcas9 and an sgRNA under the control of a xylose inducible promoter which each target a different gene 
(labeled above each plot). The colour of the bar represents the different xylose concentrations that cells were 
exposed to at time 0 which are indicated in the legend in the top right of the figure. The error bars represent 
the standard deviation at two time points. 
  
In comparison, in the slow growth media, MOPS, we observed different responses to gene 
knockdown, which was not consistent with the LB media results (Figure 4.14). rasP, frr, and pyrH 
behaved similarly between the two conditions (Figure 4.14 and 4.15). Interestingly the rpsB 
knockdown strain was unable to grow well in MOPS media and began to die during the 
measurement period even at 0% xylose. frr also was unable to reach the same maximum OD in the 
0% xylose condition. Both these genes are known to be highly growth rate-sensitive (Borkowski 
et al. 2016) and therefore in the slow media when expression of these genes are much lower they 
may be more sensitive to the basal repression caused by CRISPRi. This would suggest that our 
hypothesis, that synchrony of these genes at fast growth rates is important and controlled by 
expression of this gene cluster is incorrect and perhaps it is expression at slow growth that needs 
to be balanced. Alternatively, because both these genes are very highly expressed in the LB 
condition, the sheer number of DNA-associated RNA polymerases may physically block the dCas9 
from interacting with the DNA and lessening the effect of the knockdown. This effect was not 
observed with uppS and cdsA which appeared to be less affected by the knockdown, only showing 
significant growth defects at 1% xylose, and minor effects at 0.1%. Also, strikingly, in MOPS 
media, the knockdown of dxr expression resulted in no change to the growth rate, whereas it was 
significantly affected at 1% xylose in the LB condition. We compared these growth rates to a wild 
type and not a strain containing the dCas9 without a guide RNA, however we assume the effects 
of expressing the dCas9 protein in isolation is minimal in both conditions seeing that knockdown 
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strains such as rasP grew identically to the wild type. 
 

 
43 - Figure 4.14 - Effect on gene knockdown in MOPS 
Plate reader measurements of the different CRISPRi knockdown strains grown in MOPS + glucose. Each 
strain expresses dcas9 and an sgRNA under the control of a xylose inducible promoter which each target a 
different gene (labeled above each plot). The colour of the bar represents the different xylose concentrations 
that cells were exposed to at time 0 which are indicated in the legend in the top right of the figure. The error 
bars represent the standard deviation at two time points. 
 
Growth is highly sensitive to transcriptional perturbation of TCE cluster genes during 
transition from lag phase to exponential phase 
Growth out of the lag phase has been relatively poorly studied in comparison to the exponential 
phase, however it has clear implications in the growth of bacteria in natural environments. 
Therefore, using the same CRISPRi strains as previously, we induced knockdown from inoculation 
and measured their growth out of the lag phase. We found that in LB many xylose concentrations 
that were permissible for normal growth in the log phase were lethal to lag phase cultures. All 
genes, excluding the non-essential rasP, displayed a dose-dependent response to xylose-induced 
knockdown (Figure 4.15). As a different overnight culture is needed for each knockdown, it cannot 
be guaranteed that the starting cell numbers and time spent in stationary phase is identical between 
all the samples. Therefore, it is only correct to compare different xylose concentrations in one 
knockdown strain and not each strain to one another. The greater sensitivity of these genes coming 
out of lag phase could suggest an important role in regulation of this cluster in the preparation 
growth in the exponential phase. A key observation here is that whilst the length of lag phase 
changed as the strength of the knock-down increased, we see some minor long-term effects on the 
growth rate in exponential phase (noted by a change in slope particularly in the frr knockdown). 
Based on this preliminary experiment, one could speculate that the early expression of these genes 
sets the expected growth rate in the media.  
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44 - Figure 4.15 - Effect on gene knockdown on recovery from stationary phase 
Plate reader measurements of the different CRISPRi knockdown strains grown from a LB stationary phase 
culture transferred into fresh LB media. Each strain expresses dCas9 and a sgRNA targeting a different gene 
which is under the control of a xylose inducible promoter. The colour of the bar represents the different 
xylose concentrations that cells were exposed to at time 0 which are indicated in the legend in the top right 
of the figure.  

4.6 Role of transertion during expression of the gene cluster 
Unlike eukaryotes, bacteria are able to couple translation and transcription as they occur in the 
same cell compartment. This means that as a gene is being transcribed, ribosomes are already 
attaching to the nascent transcript to start translation. This for one leads to quicker response of 
protein production and is especially true on long transcripts such as operons. It is hypothesised that 
if a gene encodes a membrane-bound product it is also coupled with the insertion of the nascent 
protein into the membrane in a process referred to as transertion (Matsumoto et al. 2015; Libby, 
Roggiani, and Goulian 2012). This stipulates that there is a chain between the membrane bound 
synthesised protein, to the ribosome, to the transcript, to the RNA polymerase to the DNA, which 
is altogether thought to pull the genomic DNA closer to the membrane (Libby, Roggiani, and 
Goulian 2012). This has been observed in E. coli, where breaking the chain between transcription 
and membrane insertion, through transcriptional targeting antibiotics, resulted in DNA 
condensation (Gorle et al. 2017). There are many hypothetical advantages of such a mechanism, 
including the idea that subsequent membrane-bound proteins require less time until they are 
positioned in their active site. This is especially true for proteins which form complexes or interact 
with each other in the membrane when positioned near each other on the chromosome. The force 
of transertion has also been thought sufficient to shift the nucleoid into an expanded state that 
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allows better access to ribosomes and transcription factors and to assist in chromosome segregation 
during DNA replication and cell division. 
 
Further investigation into the genes in the TCE cluster reveals that many of them have been shown 
to be membrane-associated. Interestingly, although rpsB, tsf, pyrH and frr do not have annotated 
membrane binding domains, several experiments have shown that they localized at the cell surface 
or are membrane-proximal (Hahne et al. 2008; Wilkins, Beighton, and Homer 2003; Lewis, Thaker, 
and Errington 2000; Gagyi et al. 2004). cdsA has been found localised at the septum (Nishibori et 
al. 2005) and rasP has well annotated intra-membrane domains. Only uppS and dxr lack direct 
experimental evidence of their cell localization, however the products of their enzymatic activity 
directly integrate into the membrane, such that localization would facilitate enzyme function. 
Additionally, we observed that in the B. subtilis genome, there exists the flagella gene cluster 
containing several proteins that form a membrane embedded protein complex upstream of the TCE 
cluster. Furthermore, we see that the TCE cluster is not conserved in species in which co-
transcription and translation are not coupled, such as in Planctomyces (Jogler et al. 2012).  
 
In order to test this hypothesis, we constructed a mutant with a TetR-YFP fusion and inserted a 
terR binding array downstream of the gene cluster (Figure 4.16). This was placed after polC and 
not directly after the cluster in order to reduce the risk of interfering with any essential processes. 
We visualized the cells with phase microscopy to observe the position of the TetR binding array in 
each cell, identified as a focus of light after expression of the TetR-YFP fluorescent protein (Figure 
4.17). To measure if this focus was being pulled towards the membrane, we measured the distance 
of each focus from the longitudinal centre of the cell. Given that we are viewing the foci on a 2D 
plane whilst the DNA can move in 3 dimensions, one would not expect even in positive cases that 
foci would only be found distant from the centre. This is because foci could appear in the middle 
of the cell but still be bordering the cell wall on a vertical axis. However, if a foci would only be 
found localized to the centre of the cell, there would be very few occurrences of foci at the edges 
of the cell.  
Viewing the foci, however, revealed no bias of the genome to the longitudinal walls of the cell and 
we saw a mostly even distribution along the cell width (Figure 4.18). This distribution did not 
match the behaviour of DNA in other hypothesized transertion systems in E. coli (Gorle et al. 
2017). A control strain would need to be created mainly positioning the TetR binding array next to 
known membrane proteins or with an inducible membrane protein to know the distribution we 
should expect in genes we expect to transert and not transert. Rifampicin could then be applied to 
the control and experimental mutants to break up transertion to determine if that has an effect on 
the distribution. This was attempted with the tetB and lacY genes, however, positive clones were 
not successfully created. Still, the observation that there was an almost uniform distribution of the 
loci along the cell width suggests that any genome movement towards the cell wall caused by the 
transcription and translation of the cluster genes is highly unlikely.  
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The construction of a strain to 
investigate the transertion potential of 
the TCE cluster. The area under the 
dotted line represents the integrated 
DNA. The insert was placed 
downstream of the TCE cluster after 
the polC gene. polC and ylxS are the 
endogenous genes and remain 
unchanged. The ‘T’ shape represents 
terminators.  
 
 
 
 

 
46 - Figure 4.17 - Fluorescent microscopy of the polC-TetR array TetR-YFP mutant 

Examples of the phase microscopy images taken of the polC-TetR array TetR-YFP mutant used 
for foci detection and measurements. Samples were taken from their respective media during 
exponential phase. Samples were spun down to increase concentration before visualization under 
the microscope when required. Scale bar in the bottom right corner represents 10μm.  
 

45 - Figure 4.16 - Schematic showing 
genomic integration to visualize 
genome localization 
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Bacillus subtilis containing a 
tetR binding array localized 
downstream of the TCE cluster 
and a TetR-Yfp fusion protein 
was grown in LB and viewed 
under phase microscopy. The 
genomic loci of the localization 
cluster in relation to the cell 
wall was measured. The 
histogram shows the frequency 
of distances between the 
longitudinal centre of the cell 
and the spot signals (d) that 
were detected.  
 
During bacterial cell 

replication the key challenge is to correctly segregate the DNA into the two daughter cells. In many 
cases the origin of the two genomes are pulled to the soon to be old poles and termini are found 
near the septum (Wheeler and Shapiro 1997). As seen in Chapter 3, the TCE cluster is often 
localized near the terminus on the genome. cdsA has also found to be localized specifically to the 
membrane at the septum (Nishibori et al. 2005) potentially pulling the terminus also towards the 
septum through transertion forces. Therefore, we also measured the distance between the foci and 
the midcell. The foci appeared to be well distributed across the length of the cell and therefore we 
do not suggest from these data that the cluster is relevant for chromosomal localization during cell 
division. 
 

47 - Figure 4.18 - No 
evidence was found that the 
gene cluster localizes the 
DNA to the cell wall 
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48 - Figure 4.19 - No evidence was found that the gene cluster localizes the DNA to mid cell 
The genomic loci of the localization cluster in relation to the midcell was measured.  The demograph shows 
average signal strength along the length of Bacillus subtilis containing a tetR binding array localized 
downstream of the TCE cluster and a TetR-Yfp fusion protein grown in LB and viewed under confocal 
microscopy. The signal strength of each cell is displayed along its longitudinal axis and they are sorted by 
the length of the cells with red representing the strongest signal.  

4.7 rasP’s role in modulating the relationship between cell size and growth 
rate 
It is still an ongoing question in microbiology how the regulation and mechanism of cell size in 
bacteria works. As outlined in the introduction, early research in bacterial growth revealed that cell 
size positively correlated with growth rate (Schaechter, Maaloe, and Kjeldgaard 1958) and later it 
was elucidated that cell size homeostasis is ensured by the addition of a fixed amount of cell size 
per round of division (Taheri-Araghi et al. 2015). What is currently missing from the equation is a 
conclusion to the question, how does the cell translate their growth rate into how much size they 
should add? Presumably this mechanism needs to integrate a measure of growth rate (for example 
the expression of ribosomal proteins) with the control of cell envelope and division machinery 
which are both directly impacted by changes in size. With the TCE cluster containing all three of 
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these elements we hypothesized that these genes may control the relationship between growth rate 
and size. rasP is a unique member of the TCE gene cluster as it is the only non-essential gene and 
can be deleted without significant changes to the fitness of the cell. Cells which have been depleted 
of rasP have been shown to be shorter without significant changes to the cell’s growth rate 
(Bramkamp et al. 2006). This is predicted to occur as RasP digests FtsL which is a last stage 
divisome protein. If RasP levels are high, FtsL levels will be low, resulting in a delayed division 
and cells growing larger, hence in the absence of RasP, FtsL can accumulate quicker, leading to 
faster (earlier) division and smaller cells. As discussed in the introduction, when bacteria are 
growing at a faster rate their cell size is also larger at division. We propose a mechanism that by 
coupling expression of rasP with rpsB and other translation factors, the cell is able to link the 
timing of division (and therefore size) with growth rate through the expression of rasP. 
Consequently, if this was the case, by deleting rasP we should not only see smaller cells but cells 
where the relationship between growth rate and cell size is weaker.  
 

 
49 - Figure 4.20 - rasP has a role regulating growth rate with cell size 
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The difference in cell size in context of rasP depletion was measured. Examples of the phase microscopy 
images used for cell size measurements are shown. Samples were taken from their respective media during 
exponential phase. Samples were spun down to increase concentration before visualization under the 
microscope when required. Scale bar in the bottom right corner represents 5μm.  
 
Jesica Bzdok, a master’s student in our lab, created a rasP deletion mutant and measured the size 
of the cells at different growth rates. To ensure we observed the full range of the B. subtilis growth 
rate range, the cells were growing in various media with different carbon sources and amino acid 
supplementation. In order from highest nutritional quality to lowest, LB media, MOPS media + 
glucose and amino acids (aa), MOPS media + glucose, MOPS media, + glycerol and aa, MOPS 
media + glycerol, MOPS media + ribose and aa, and MOPS media + ribose. Our fastest growing 
condition was LB medium, where a doubling time of ~24 minutes was achieved, and the slowest 
was MOPS media with succinate as the carbon source resulting in a ~210-minute doubling time. 
The rasP mutant did not have significant growth rate differences compared to wild type. B. subtilis 
cells are known not to vary greatly in their width at different growth rates, therefore we rely solely 
on cell length as a measure of cell size (Sargent 1975). We were able to confirm this in all our 
growth conditions and in the rasP deletion mutant (Figure 4.21).  

 
50 - Figure 4.21 - Deletion of rasP does not change cell width 
The effect of rasP deletions on cell width in Bacillus subtilis at different growth rates. Each data point 
represents cells from different strains and media. In order from highest nutritional quality media to lowest, 
LB media, MOPS media + glucose and amino acids (aa), MOPS media + glucose, MOPS media, + glycerol 
and aa, MOPS media + glycerol, MOPS media + ribose and aa, and MOPS media + ribose. Vertical error 
bars represent the standard error in the cell width, horizontal error bars represent the standard error in the 
growth rate.  
 
As measured previously by Bramkamp et al, we observed the shorter cell phenotype in LB when 
rasP was deleted. However, this observation did not hold in our slower growth conditions where 
in fact we saw the rasP mutants were larger (Figure 4.20). Across wild type samples we measured 
a change in average size from 6.004 µm (±0.053SE) in the fast growing LB media to 2.509 µm 
(±0.012SE) in the slow MOPS media (Figure 4.22) matching the size:growth rate relationship 
previously measured by Taheri-Araghi et al. The mutant had average sizes between 4.92 µm and 
2.45 µm (Figure 4.22). The linear relationship between length and growth rate was different 
between the wild type and the mutant and as we predicted, we saw a decrease in the relationship 
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(slope) in the mutant with 1.594 µm/λ[hour] compared to 2.570 µm/λ[hour]. Despite the range of 
different carbon sources and nutrient content, all 8 media correlated in a linear relationship for both 
the wild type (R² = 0.9792) and the rasP mutant (R² = 0.9878). By complementing rasP in another 
genomic context, we were able to mostly restore the wild type relationship between growth rate 
and cell size (2.268 µm/λ[hour]), however, the cells were not as large as the wild type but still 
bigger than the complete deletion (Figure 4.22). It should be noted that the rasP complement was 
expressed under a constitutive promoter (PliaG), which was not modulated at different growth rates, 
therefore acting similarly to a constitutive promoter in this instance and the overexpression of the 
rasP complement could explain smaller sizes overall. Further experiments are needed where we 
express rasP at different levels. This would help us decipher rasPs role better in cell size 
determination. As we were able to restore the balance between cell length and growth rate with a 
rasP complement at a different genomic locus, we suggest that this function of rasP is independent 
of genomic localization. 
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51 - Figure 4.22 - rasP knockout mutants are smaller than wild type in rich media but smaller in poor 
media 
The effect of rasP mutations on cell length in Bacillus subtilis at different growth rates. Each data point 
represents cells from different strains and media. Vertical error bars represent the standard error in the cell 
length, horizontal error bars represent the standard error in the growth rate. Linear regressions were fit to 
the data points each strain type. rasP was complementation in the sacA locus under the control xylose 
inducible promoter (1% xylose). In order from highest nutritional quality to lowest, LB media, MOPS media 
+ glucose and amino acids (aa), MOPS media + glucose, MOPS media, + glycerol and aa, MOPS media + 
glycerol, MOPS media + ribose and aa, and MOPS media + ribose. 
 
FtsL is not the only target of RasP as it also cuts RsiV and RsiW, which are anti sigma factors to 
their respective sigma factors σV and σW and block their activities until they are proteolysed 
(Zweers et al. 2012). σW is responsible for regulating genes involved in cell wall homeostasis 
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(Eiamphungporn and Helmann 2008) and σV is responsible upregulating genes involved in lytic 
resistance (Zellmeier et al. 2005). It is possible that in the absence of RasP there is a lack of σV and 
σW activity as a result of their respective anti-sigma factors not being proteolysed. Therefore, to 
test this scenario we did preliminary measurements of the cell size of mutants deleted in σV and 
sigW separately (Figure 8.1). We found that the sizes of the σW mutant matched the length and slope 
of the rasP complement mutant. The deletion of σW resulted in similar changes as seen in the rasP 
deletion mutant, however not as dramatic (a slope of 2.04 µm/λ[hour]). Interestingly, the intersect 
between the slopes of the WT, rasP deletion mutant and the σW deletion mutant meet at a doubling 
time of 50 minutes. With these data it is presently not possible to deduce whether the effect we see 
in the rasP mutant is partially due to its role in σW activity or if the effect of the σW depletion is 
independent as we do not quantitatively know the impact of RasP on σW in vivo.  

4.8 Phylogenetic Analysis of the TCE cluster 
Unlike previously discovered gene clusters, the TCE consists of genes which are mostly from as 
of yet unrelated and diverse physiological processes (Nikolaichik and Donachie 2000; Tamames 
et al. 2001) and there is very little literature detailing interactions between these proteins. 
Therefore, this cluster stands out as highly unique even amongst the already known highly 
conserved gene clusters. Rare for a cluster of its size, the TCE cluster is found widely conserved 
across the bacterial kingdom including the phyla of Proteobacteria, Actinobacteria and Firmicutes 
with neighbourhood conservation scores surrounding frr being 24.91, 31.58, and 33.99 respectively 
(Figure 4.23). Here a neighbourhood conservation score is the average conservation of the top 50 
most conserved genes in the neighbourhood. The maximum score is 50 representing 100% 
conservation of the top 50 most conserved neighbours. In the phylum Bacteroidetes the cluster was 
not conserved and had a conservation score of 15.22.   
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The conservation of the translation-cell 
envelope cluster in different Bacteria 
taxonomic groups. The genomic 
neighbourhood is centred around frr 
and overlaid on a taxonomic tree (NCBI 
definitions). The size of the circle at 
each taxonomic level represents the 
conservation score. The arrows below 
the circles represent the most conserved 
genes (if above the significance 
threshold) at each position surrounding 
frr.  
 
In the gram-negative phylum 
Proteobacteria we see an extension 
to the 3’ end of the cluster with 
several genes involved in outer-
membrane maintenance, a 
physiological feature not present in 
the other two gram-positive phyla 
(Figure 4.23). The first is BamA 
which is important for the assembly 
and insertion of beta-barrel proteins 
in the outer membrane. There are 
also three genes involved in lipid A 
biosynthesis (ipxABD), which is a 

phosphorylated glycolipid that anchors the lipopalysaccharide to the outer membrane. The last 
proteobacteria-specific gene associated with the cluster is rnhB (Ribonuclease HII) which degrades 
RNA of RNA-DNA hybrids. The in vivo role of this protein is still unknown, however, early 
experiments have shown that strains lacking these ribonucleases show a temperature-sensitive 
growth phenotype in E. coli (Ohtani et al. 2000) whereas in B. subtilis a similar knockout is lethal 
(Itaya et al. 1999), highlighting an important role in growth. The mutation studies suggest that rnhB 
is more important in gram-positive bacteria such as B. subtilis, however, as it is not co-localized 
with the cluster in these genomes it is less likely that this importance is relevant in context of the 
gene cluster.  
 
As in Proteobacteria there is also a large 3’ extension to the cluster in Firmicutes, with the genes 
slowly decreasing in conservation with the length of the cluster (Figure 4.23). Notably several more 
translation associated genes are found here including proS, rpl7ae, infB, rbfA, truB, rimP, and 
rpsO. Additionally, polC, and nusA may be found downstream. polC is involved in DNA 
replication and part of the replisome (Hernández-Tamayo et al. 2019) and nusA is involved in 
transcription termination (Mondal et al. 2016). As we mentioned in 4.7, a large flagellar gene 
cluster lies upstream in many Firmicutes species. 
 

52 - Figure 4.23 - Cluster is broadly 
dispersed across the bacterial 
kingdom 
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In Actinobacteria, the cluster sees the loss of three genes, uppS, dxr and rasP and the addition of 
23 rRNA methyltransferase rlmN (Figure 4.23). The dxr and rasP genes remain tightly conserved 
together in these genomes and are associated with ispG - another gene involved in isoprenoid 
biosynthesis directly downstream from dxr. In Actinobacteria there are two copies of uppS, 
suggesting a duplication event early in the phylum’s evolutionary history. Given that uppS is 
normally located between frr and cdsA, which both remain in the extant cluster, a very localized 
rearrangement event must have occurred to maintain cdsA’s status in the cluster, further 
highlighting the fitness benefits the co-localization provides. Upstream of the cluster (not 
downstream as in Proteobacteria), rnhB can also be found in many Actinobacteria, suggesting 
convergent evolution in the localization of this gene with this cluster. 
 
Notably the cluster is not heavily present in Bacteroidetes however all the genes remained 
conserved, with identifiable orthologs being present in over 90% of the Bacteroidetes genomes. 
Despite the degradation of the cluster in Bacteroidetes many of the individual genes remain co-
localized in pairs, namely rpsB-tsf (+2 other ribosomal proteins), pyrH-frr and dxr-rasP. cdsA is 
found mostly without a conserved neighbourhood with minor co-localization with a ribosomal 
silencing factor (rsfS), ftsH, and phosphatidylserine decarboxylase (psd). Bacteroidetes are 
widespread and found in varying ecosystems. They are anaerobic, well known for their polymer-
decomposing capabilities, and are primarily located in the gastrointestinal tract of animals (Smith 
et al., 2006; Ley et al., 2009; Thomas et al., 2011). They are gram-negative, chemo-organotrophic, 
rod shaped and do not form endospores (Woese, 1987; Paster et al., 1994). At this stage, a unique 
phenotype of the Bacteroidetes, which explains how Bacteroidetes differ from the cluster-
containing phyla that might indicate a potential role of the cluster, has not been identified. 
 
Conservation of the cluster is not associated with codon-bias towards fast growth 
Only by accurately synchronizing expansion of cell volume and surface is a cell able to achieve a 
maximum growth speed in a specific media. Therefore, if the TCE facilitated this synchronization 
we would expect species containing the cluster to also grow faster. Currently growth rate data, 
especially data in media designed to optimize growth rates, are not available for the breadth of 
species we have in our dataset to test this hypothesis. We took advantage of the observed 
relationship between the maximal growth rate and codon bias seen in bacteria (Vieira-Silva and 
Rocha 2010). This method exploits the varying sizes of tRNA pools in the cell, which shrink (in 
proportion to the number of ribosomes) and become limiting at fast growth rates (Dong, Nilsson, 
and Kurland 1996) resulting in preferences for certain synonymous codons over others. This is 
especially important in highly translated genes such as ribosomal proteins. Thus, cells optimizing 
for growth rate should have a bias towards the favoured codons in these highly translated genes. 
Using this method, we calculated the predicted maximum growth rate for each genome in our 
dataset and compared that size of the TCE cluster (the highest number of cluster genes found in 
context with one another). Surprisingly, we observed that there was no correlation between these 
two measurements (Figure 4.24). This suggests that the evolutionary forces acting on fast growth 
rates and the maintenance of the cluster are independent of each other. 
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53 - Figure 4.24 - Cluster conservation and growth-rate-codon-optimization is not correlated 
Violin plot showing the predicted generation time based on codon bias in highly translated genes in genomes 
containing different numbers of genes in the TCE cluster. The white circle in each violin represents the 
median, the thick line extends to the upper and lower quartiles and the width represents the frequency of the 
data points.  
 
Correlated presence and absence of genes with the TCE cluster 
To analyse bioinformatically what is different between species with and without the genes clustered 
we looked for genes/ortholog groups that are present only in species with the cluster together and 
vice versa. We categorized each genome cluster as either containing the cluster or not (less than 
half of the genes are found together) and then for every ortholog group measured how often it 
appeared in a genome with and without the cluster. Genes were then ranked by the product of their 
frequency in cluster-containing genomes and their absence in cluster-lacking genomes. This was 
repeated where genes were ranked based on their frequency in cluster-lacking genomes and 
absence in cluster-containing genomes. This strategy prioritizes both genes which are highly 
conserved, and therefore more likely to have a physiological impact, and those which actively 
evolutionarily correlate with the presence/absence of the cluster. This is contrasted to taking a sum 
instead of the product of the frequencies. For example, a gene which is poorly conserved and found 
in only 10% of genomes which coincidentally are cluster-containing genomes would in this case 
receive a high rank. For similar reasons we did not apply a statistical test such as a Fisher exact test 
which would more likely identify genes based on their taxonomic distribution. 
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Genes correlating with the presence of the TCE 
Cluster 

Genes correlating with the absence of the TCE 
Cluster 

Similarity:Contains HPr domain. Endonuclease MutS2 
LexA repressor ribosomal protein L33 
ribonuclease PH arginine decarboxylase 
D-alanyl-D-alanine carboxypeptidase Transmembrane:Helical 
Similarity:Contains HTH gntR-type DNA-binding 
domain. 

hypothetical protein 

cell division protein FtsQ Ribonuclease Y 
transcriptional regulator NrdR Similarity:Belongs to the complex I subunit 6 

family. 
segregation and condensation protein A uridine kinase 
phosphoenolpyruvate-protein phosphotransferase Alpha-D-phosphohexomutase alpha/beta/alpha 

domain I 
DNA-directed RNA polymerase omega subunit 4-alpha-glucanotransferase 
RNA-binding protein Hfq Transmembrane:Helical 
Similarity:Contains 1 HTH iclR-type DNA-
binding domain. 

DNA polymerase III delta subunit 

Similarity:Contains HTH gntR-type DNA-binding 
domain. 

purine nucleoside phosphorylase 

RapZ-like family HD domain protein 
Transport permease protein hypothetical protein 
Transcriptional regulator MraZ hypothetical protein 
uroporphyrin-III C-methyltransferase hypothetical protein 
Similarity:Contains 1 CSD (cold-shock) domain. GDP-L-fucose synthase 
Glutaredoxin Transmembrane:Helical 
Transmembrane:Helical Transmembrane:Helical 

5 - Table 4.3 - Presence and absence gene correlation with the cluster 
This table represents the top 20 genes which had the highest correlations of being either absent or present 
alongside the cluster, sorted in descending order. Ranking is based on the product of the number of genomes 
a gene appears within a conserved TCE cluster and the number where the gene is absent when the TCE 
cluster is not conserved (and vice versa for absence). 
 
The ortholog group most correlated with conservation of the cluster is a group of genes which have 
similarity to HPr domain containing proteins (Table 4.3). HPr proteins are phosphotransferases 
involved in PTS-dependent sugar transport and carbon catabolite repression. This hints that 
potentially the cluster may be linked with central carbon metabolism; however, further experiments 
would be needed to clarify this connection. Conversely the gene correlated with a break-up of the 
TCE cluster is endonuclease MutS2 which is involved in suppressing homologous recombination 
and repairing DNA after oxidative DNA damage (Table 4.3). This is surprising as it suggests that 
after genome rearrangements (potentially from homologous recombination) resulting in the 
separation of the gene cluster, genes are selectively brought in to reduce further arrangements and 
locking in the dispersed cluster. We see that arginine decarboxylase and uridine kinase are brought 
in in the absence of the cluster (Table 4.3). The former is involved in the catabolism of arginine for 
varying purposes (nitrogen source, ATP) and uridine kinase acts as a salvaging pathway for more 
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UMP. Both these metabolic processes are close together in the bacterial metabolic network, hinting 
at potential interactions genes in the TCE may have with these metabolites. There are several poorly 
annotated genes which are enriched in genomes where the cluster is not co-localised (Table 4.3). 
One likely reason is that many of the genomes where the cluster is not conserved are less researched 
and therefore more likely to have novel and under-researched genes. 

4.9 Delocalization of the TCE cluster 
The gene presence/absence correlation analysis in the previous section revealed to us several genes 
which correlated with the splitting of the TCE cluster. Two of these were arginine decarboxylase 
and uridine kinase, standing out due to their role in the pyrimidine/arginine biosynthesis pathway 
which many genes in the cluster also share. pyrH is directly required for UDP synthesis. uppS, 
cdsA and dxr all use CTP or UDP directly or in their downstream substrates, therefore UDP 
concentrations are highly relevant for their activity. We thus hypothesized the close proximity of 
the cell envelope genes to the pyrimidine producing enzyme is a form of genomic challenging 
(Mingorance, Tamames, and Vicente 2004). Local transcription and subsequently coupled 
translation results in higher local concentrations of the pyrimidine producer (pyrH) and the 
pyrimidine consumers.  
 
To see if the co-localization of the pyrimidine producer with the pyrimidine consumers is 
important, we attempted to break the association between these genes. We first attempted to insert 
a large sequence of inactive DNA (40kb) between frr and pyrH thereby separating the two halves 
of the cluster. We used inactive DNA that was constructed to minimize transcriptional activity 
(Zumkeller, Schindler, and Waldminghaus 2018). Whilst we were able to create a vector for the 
transformation, we were unable to transform it into B. subtilis. This may be due to either the large 
insert size decreasing the transformation efficiency or the insertion of the spacer DNA into the 
cluster being lethal. Given that the alternative strategies did function the issue was most likely the 
former. With the propensity of B. subtilis to recombine homologous DNA and the spacer DNA 
being highly similar, it is also likely the inserted sequence would not have been stable and shrunk 
over time. 
 
Creation of a TCE split cluster mutant 
We next attempted to directly move the latter four genes of the cluster to another location on the 
genome. First, we transformed copies of the four genes from uppS to rasP into the amyE locus 
under a xylose inducible promoter with no inducer to reduce the risk of lethality from 
overexpressing these genes (Figure 4.25). The amyE locus is an established integration site for B. 
subtilis, which has been shown not to have different levels of activity compared to other integration 
sites and does not appear to cause collateral effects to neighbouring genes (Kim, Mogk, and 
Schumann 1996). We then deleted the original locus of four genes in the presence of xylose (Figure 
4.25). To ensure the expression of the genes downstream from the cluster was maintained, the same 
xylose inducible promoter was inserted before them (Figure 4.25). From the transcriptome data 
(Figure 4.25) we observed that the expression of the latter four genes in the cluster and their 
downstream neighbours were all expressed at the same or similar level, which is why we deemed 
utilizing the same inducible promoter to ensure equivalent expression was closest to the wild type 
condition. We tested growth of this mutant in various concentrations of xylose and found that the 
dynamic range of growth rate fell between 0.3% and 0.7% (Figure 4.26). As we were able to get 
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reproducible growth and to ensure sufficient xylose remained in the media over long incubation 
times and high optical densities we used 1% xylose as our standard concentration (Figure 4.26), 
which is close to the saturating concentration of the promoter (Radeck et al. 2013). We measured 
uppS expression with qPCR in the wild type and the mutant at 1% xylose in MOPS media + 
Glucose minimal media and observed no significant difference in expression (Figure 4.28).  

 
54 - Figure 4.25 - Schematic showing how the cluster was split 

Construction of strain where the TCE cluster has been delocalized (split cluster strain). The areas shown by 
the dotted line represent the integrated DNA and current state of the strain’s genome. The genes in red were 
replaced with an antibiotic cassette (blue) through homologous recombination. The genes in grey represent 
the endogenous genome. AmyE was an integration site and divided in two with the insertion of the second 
half of the cluster (yellow). The ‘T’ shape represents terminators. The readthrough blocked strain is also 
displayed in a separate box. Here, an antibiotic resistance cassette was placed in the reverse orientation 
between frr and uppS to ensure that no transcriptional readthrough could occur. 
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Doubling time measurements were taken 
from plate reader measurements of 
exponentially growing split cluster 
mutants grown in LB at varying xylose 
concentrations. Error bars represent 
standard deviation between the replicates 
(n=3). 
 
Splitting the cluster results in 
arginine auxotrophic behavior 
With the completion of our 
experimental strain we could now 

examine how the delocalization of the cluster affects the physiology of a cell. First, we wanted to 
explore the role of pyrimidines in the mutant’s metabolism. If pyrimidine and subsequently 
arginine metabolism has been disrupted by the delocalization of the cluster, we would expect the 
mutant to grow poorly in media lacking a pyrimidine source. B. subtilis is unable to import the 
majority of pyrimidine molecules, specifically the molecules after pyrH in the pathway, UDP and 
UTP which is where we expect the major dysregulation to occur. Therefore, we decided to test the 
growth of the split cluster mutant in the presence of different amino acids from the arginine 
biosynthesis metabolism which shares a common metabolite with the de novo pyrimidine pathway, 
carbamoyl phosphate. We observed that in both LB media and in a minimal media supplemented 
with multiple amino acids (including arginine) there were no obvious differences in the growth rate 
between the wild type and the split cluster (Figure 4.27). However, when we removed amino acid 
supplementation from the media, we saw over the course of many experiments that cells which 
were exposed to amino acid lacking conditions for long periods of time either regrew later at the 
wild type growth rate or died. Therefore, to observe how the cells behave after shifting to the media, 
we repeated our plate reader experiments by pre-culturing cells with amino acids, washing them 
and placing them in the amino acid deprived media at time zero. Doing this we noted an instant 2-
fold increase in the doubling time of the cell from ~78 minutes in the wild type to ~156 minutes in 
the mutant (Figure 4.27). This phenotype was able to be recovered by supplementing only amino 
acids related to arginine biosynthesis, namely, arginine, proline, glutamate and glutamine, 
however, none of the other tested amino acids could restore the phenotype (Figure 4.27). As proS 
is downstream of the cluster, now controlled by the xylose inducible promoter, an explanation for 
the proline auxotrophic behaviour could be the dysregulation of this gene. However, the rasP 
deletion mutant we created under section 4.7 also had proS under the same promoter with the 
identical inducer levels and we did not observe growth rate defects in this same media and therefore 
deem this possibility unlikely (Figure 4.22). To confirm the effects, we saw were not due to our 
regulation strategy using the xylose promoter, we created another mutant where we put the native 
uppS under the control of the xylose promoter, placing an antibiotic resistance after frr as in the 
split cluster (Figure 4.25). Using this strain with the same xylose concentration used for the split 
cluster strain resulted in no significant growth rate differences compared to the wild type in any of 
the conditions we tested (Figure 4.27). We observed the mutant in the amino acid supplemented 

55 - Figure 4.26 - Xylose dependency of 
the split cluster mutant 
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and deprived media but saw no obvious morphological defects that might explain the slow growth 
phenotype.  
 
 
 

 
56 - Figure 4.27 - Effect of disrupted gene co-localization in different media 
Investigating the role of nutrients in a TCE disrupted mutant. Error bars are the standard deviation 
of each sample. All MOPS media contain tryptophan as the B. subtilis strain is auxotroph and 
glucose as the carbon source. The 6 amino supplementation includes methionine, histidine, 
arginine, proline, threonine and tryptophan. 
 
Splitting the cluster causes genome wide expression changes 
To better understand the role of arginine in the context of the cluster we measured the transcript 
levels of several genes of the cluster using qPCR. We found that in the wild type, there was very 
little difference in the expression of the cluster genes between the two media (Figure 4.28). 
However, even though only the latter four genes were genetically manipulated we saw an increase 
in expression of pyrH and frr in the split cluster mutant (Figure 4.28). This suggests that either the 
antibiotic cassette placed downstream of these genes is influencing the expression or that there is 
a feedback mechanism responding to the changes caused by the translocation of the cluster. As the 
antibiotic cassette is placed in the reverse orientation in relation to the other genes and is followed 
by several terminators to insulate its expression it is unlikely this would be the case of an increase 
in expression. In the arginine depleted media, we see a striking decrease (9-fold) in uppS expression 
(Figure 4.28) even though induction of xylose remained the same in this media condition. 
Furthermore, proS, which was under the control of the same promoter, did not share the same 
behaviour. We saw previously that the uppS UTR did not show reduced activity in the same media 
conditions in our promoter fusion experiments conflicting with this observation (Figure 4.11). At 
this stage we do not have an explanation for the drop in uppS levels in this condition. 
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57 - Figure 4.28 - qPCR of the cluster genes in the different conditions and strains 
Transcript abundance of the TCE cluster genes in different media and genetic contexts measured with qPCR. 
The values are fold changes in relation to the wildtype in MOPS media with no amino acid supplementation. 
The error bars represent the standard error of the replicates. qPCR levels were normalized to the 
constitutively expressed genes recA and gyrB. 
 
Antibiotic sensitivity of the split cluster 
In order to observe how else, the disruption of the eight gene-cluster may have perturbed other 
biological processes in the cell we applied four antibiotics: ampicillin, tetracycline, ciprofloxacin 
and rifampicin to target cell wall synthesis, translation, DNA synthesis and transcription 
respectively. In amino acid supplemented conditions, we observed no difference in antibiotic 
sensitivity between the mutant and wild type (Figure 4.29). It was seen, however, that in the amino 
acid deprived conditions there was a 10-fold increase in sensitivity to both ampicillin and 
rifampicin of the mutant strain (Figure 4.29). That the cell is more sensitive to cell wall perturbing 
antibiotics is not unexpected as uppS is under the control of a xylose inducible promoter which was 
at the same level in both the amino acid present and absent conditions, and thereby incorrect tuning 
by this promoter might be the cause of the increased sensitivity. From the qPCR experiments we 
saw that uppS in the 0 amino acid condition may be repressed resulting in less peptidoglycan 
synthesis and a susceptible cell wall (Figure 4.28). Why the cell may be more sensitive to 
transcription inhibition is an open question. We have speculated that splitting the cluster could 
disrupt pyrimidine biosynthesis which may inhibit UTP production and therefore its availability to 
RNA polymerase during transcription. One possibility, however, is that as only the mutant in the 
amino acid absent condition grows at a slower rate, potentially it is the slower growth that results 
in increased sensitivity and not the disruption of the cluster directly.  
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58 - Figure 4.29 - Effect of disrupted TCE co-localization on antibiotic sensitivity 
Here we observe antibiotic sensitivity of B.subtilis in different media in the context of TCE cluster 
disruption. Strains were grown in MOPS + glucose and antibiotics were added during exponential phase. 
Growth rates are normalized to the growth rate of the strain in the media condition with no antibiotic 
addition. Growth rates were taken 2 hours after addition of the antibiotics. 
 
Mutant recovers auxotrophic phenotype via the xylose inducible promoters 
Throughout our handling of the split cluster mutant strain we observed that long incubations in 
minimal media (without amino acid supplementation) resulted in eventual death of the cell. 
However, in some cases we noted that regrowth occurred after long incubation time. Further 
inoculation of these cultures revealed a recovery to the wild type growth rate in the minimal media. 
We postulated these samples may have undergone a compensatory mutation and therefore 
submitted a sample for DNA sequencing alongside our wild type strain. We discovered there were 
several intergenic SNPs (n = 38) within our lab strain compared to the published W168 genome 
and in the mutant strain we found an additional 8 SNPs (Table 4.4). Relevant to the phenotypes we 
observed, we saw mutations in the frr and xylR genes. The mutations in the frr gene stems from 
our cloning method which relies on Golden Gate cloning using the type II restriction enzymes BsaI 
and BpiI. In order to create constructs, we needed to ensure there were no restriction sites for these 
two enzymes, and in the homology region which covered the frr region there was one. We removed 
it by making a synonymous nucleotide substitution. Both the translocated uppS and the downstream 
dxr gene are regulated by the xylose inducible promoter in the mutant. The SNP in the xylR gene 
results in a frameshift which most likely completely destroys the function of the encoded protein. 
The xylose inducible promoter PxylA is controlled by upstream operator sites (Pxylo) which in the 
absence of xylose are normally bound by XylR repression expression of the promoter (Gärtner et 
al. 1992). In the presence of xylose XylR dissociates from the operator site allowing expression. A 
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non-functional xylR gene would result in no repression of the xylose promoters. As these mutations 
occur after overnight cultures where the supplied xylose has either been metabolized or diluted 
between many cells perhaps these mutations arose due low xylose levels resulting in low uppS and 
proS expression, which we know results in low growth rates or lethality, and not from splitting the 
cluster itself. We also saw two missense SNPs in cypA and SNPs in the ribosomal RNA genes rrnB 
and rrnI. cypA is a cytochrome P450-like enzyme which is involved in the detoxification and 
degradation of polychlorinated biphenyls (Sun, Pan, and Zhu 2018). It is unlikely these mutations 
are relevant to the phenotype we observed since PCBs are not naturally occurring compounds and 
would not be present in the media.  
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Gene Name Frame Shift Missense Stop Gained Synonymous 
cypA 0 2 0 1 
frr 0 0 0 2 
rrnB-16S 0 1 0 0 
rrnI-16S 0 1 0 0 
xylR 1 0 0 0 
rluD 0 1/2* 0 0 
rrnH-23S 0 7 0 0 
rrnG-16S 0 2 0 0 
comP 0 1 0 0 
epsC 0 1 0 0 
gerAA 0 1 0 0 
gltA 0 1 0 0 
ilvC 0 0 0 1 
narG 0 1 0 0 
oppD 0 1 0 0 
pgdS 0 0 0 1 
pksN 1 0 0 0 
prpC 0 1 0 0 
rluB 0 0 0 1 
rplW 0 1 0 0 
sacA 0 1 0 0 
sepF 0 1 0 0 
sigI 0 1 0 0 
trmD 0 1 0 0 
yesY 1 0 0 0 
yheH 0 0 1 0 
yjcM 0 1 0 0 
ymfD 0 1 0 0 
yoqA 0 1 0 0 
yozT 0 0 0 1 
yqeZ 0 0 0 1 
ytpS 0 1 0 0 
yulF 0 1 0 0 
yutE 0 1 0 0 
yxbD 0 1 0 0 

6 - Table 4.4 - Genome sequencing of the mutant 
The split cluster mutant was allowed to grow overnight in the MOPS media without amino acid 
supplementation. The culture was grown to confirm the recovery of growth rate and the culture was streaked 
and DNA sequenced. The bolded and underlined genes are rows where the SNPs were found only in the 
mutant strain, all other SNPs were found in both samples. *rluD was the only exception and was found to 
have a SNP less in the mutant strain, the first number represents SNPs discovered in wild type and the 
second, the number in the mutants. rRNA genes were classified as missense mutations despite not encoding 
an amino acid sequence. 
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4.10 Metabolomic profile of the TCE split cluster strain 
Our analysis of the TCE cluster has pointed to several possible perturbations of key metabolic 
pathways including arginine and pyrimidine biosynthesis and central carbon metabolism. 
Therefore, we performed metabolite extractions of both the wild type and split cluster mutant in 

MOPS media, amino acid lacking and 
supplemented. Our collaborators in the Link 
group (Stefano Donati) performed targeted 
mass spectrometry to acquire relative 
intracellular concentrations of several 
metabolites between our samples. We 
performed a principal component analysis 
of the 81 measured metabolites. The 
analysis revealed that the samples clustered 
together based on the media the sample was 
collected from more than the genetic context 
of the organism with most of the variance 
being explained in PC1 (82.2%) (Figure 
4.30). This is unsurprising as in the absence 
of amino acids the bacteria would need to de 
novo synthesize them, resulting in large 
shifts in the metabolism and metabolites. 
Variability between replicates was higher in 
the 0 amino acid condition (Figure 4.30).  

 
Principal component analysis of four conditions which compared metabolite concentration between the wild 
type of Bacillus subtilis and a mutant where the TCE cluster was de-localized in both minimal and amino 
acid supplemented media. Amino acid supplementation consisted of tryptophan, arginine, proline, serine, 
threonine and methionine. Each point represents a different sample and the colour represents the strain and 
condition. The point in the middle is an average of the two samples per condition. 

59 - Figure 4.30 - Metabolite differences 
caused by media conditions is greater than 
genetic differences 
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60 - Figure 4.31 - Metabolic changes between the conditions 

A heatmap showing the relative abundances of the different targeted metabolites in the four different 
conditions. The colour is an average of the different replicates for each condition. 113 is the ID number for 
the split cluster strain. 
 
When comparing the split cluster strain to the wild type in the presence of amino acids we saw 10 
metabolites that were significantly lower in abundance in the mutant (Figure 4.32). Notably several 
of these belonged to the aforementioned pyrimidine and arginine metabolic pathways including 
arginine, N-Carbamoyl-L-aspartate', dUMP, UMP and UDP-N-acetyl-D-Glucosamine. Conversely 
some metabolites in this pathway had increased concentrations including N-Acetyl-L-Ornithine, 
L-Citrulline and N-Acetyl-L-Glutamic acid. We also found many metabolites related to the TCA 
cycle to have significant differences in pool levels including: 2-Isopropylmalic acid, a derivative 
from the TCA intermediate succinic acid; D-Glucosamine-P which is synthesized from glutamine 
and pantothenic acid which is a precursor to the synthesis of coenzyme A which were all less 
present. The TCA intermediates succinitate, acetyl-CoA and asparagine, a derivative for 
oxaloacetate, were higher in concentration. We also observed that the split cluster had higher 
concentrations of ATP than the wild type with amino acid supplementation. 

 
61 - Figure 4.32 - Metabolite abundance differences with amino acid supplementation 
A volcano plot comparing the mutant and the wild type in MOPS minimal media supplemented 
with 6 amino acids. Points in pink represent metabolites that were over the significance and fold 
change thresholds. Fold change is mutant/wt, therefore metabolites which are present in higher 
levels in the wild type appear on the left side of the figure. 
 
In the amino acid lacking conditions we saw that the mutant had very few metabolites in higher 
abundance than the wild type with only two showing a significant increase, ornithine a precursor 
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and catabolic product of arginine, and 2R,3R-2,3-Dihydroxy-3-methylpentanoate which is 
involved in valine, leucine and isoleucine biosynthesis (Figure 4.33). As in the amino acid 
supplemented media, we saw decreases in the mutant for carbamoyl-aspartate, arginine and 
glucosamine. Several different and diverse metabolites were lower in the mutant in this condition 
including cytidine, dihydropteroate, NAD, guanosine, UDP-N-acetylmuramoyl-L-alanine and 
Deoxyribose-P (down in both conditions) (Figure 4.33).  
 

 
62 - Figure 4.33 - Metabolite abundance differences without amino acid supplementation 
A volcano plot comparing the mutant and the wild type in MOPS minimal media not supplemented with 
amino acids. Points in pink represent metabolites that were over the significance and fold change thresholds. 
Fold change is mutant/wt, therefore metabolites which are present in higher levels in the wild type appear 
on the left side of the figure. 
 
A notable metabolite to observe is arginine. Arginine is one of the amino acids we supply in the 6 
amino acid containing media. B. subtilis imports available arginine as can be seen in wild type by 
its high intracellular concentrations (Figure 4.34). When provided with no arginine in the media, 
we saw the wild type strain had significantly lower concentrations of arginine. As the wild type 
cannot import arginine in this condition it must rely on de novo biosynthesis. We also see low 
levels of arginine in the split cluster mutant when there is no arginine in the media, however, unlike 
the wild type when arginine is provided to the split cluster there is no increase in arginine 
intracellular concentrations (Figure 4.34). Therefore, we could postulate two reasons to explain 
this behaviour: either arginine import has been blocked through an unknown mechanism in the 
mutant leaving the cell to rely on de novo biosynthesis for its arginine requirements or that arginine 
consumption is drastically increased. If arginine is the only limiting factor in the split cluster, as 
evidenced by the fact we can restore the normal growth phenotype with the addition of arginine, 
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the first possibility is unlikely unless de novo biosynthesis of arginine is also in some way hindered. 
The other three of the other amino acids that were supplied, methionine, proline and histidine, 
behaved as we would expect. 

Targeted mass spectrometry C12/C13 ratios for 
arginine. Error bars represent the standard 
deviation between the replicates. The y-axis has 
been split to show the large increase in arginine 
in the wild type whilst still highlighting the 
differences in the other samples. 

4.11 Proteome of the TCE split 
cluster 
We performed protein extractions of the wild 
type and split cluster mutant from 
exponentially growing cultures in the amino 
acid supplemented MOPS media and were 

able to get measurements for 1318 proteins. We were able to see clear clustering between the 
samples on the first component of a principal component analysis (Figure 4.35). Between the 
samples we found many proteins with significant differences in expression (n = 307) with the 
majority being lower in the mutant (n = 219) rather than higher (n = 89) (Figure 4.36 and Table 
8.10). Of the eight cluster genes we were only unable to get measurements for cdsA, most likely a 
result of our implemented protein extraction strategy which is known to have issues with membrane 
proteins. Two of the genes were also shown to have significant differences, tsf and uppS. tsf is 
higher in the wild type with a difference of 0.348 whereas uppS is higher in the mutant with a 
difference of -1.252. This does counter our qPCR findings in the mutant strain in the same media 
conditions where we saw lower levels of uppS transcripts compared to the wild type (Figure 4.28). 
As the standard deviation between the replicates in the qPCR experiment was very high, we could 
have overestimated the reduction in uppS levels. Since we controlled expression of UppS 
expression through a xylose inducible promoter and optimized the xylose concentration for 
optimum growth rates in the media, a higher level of UppS could suggest that it may be less 
effective in its new context as it was needed to have a higher expression to achieve the same growth 
rate.  

63 - Figure 4.34 Arginine was not present in 
the split cluster strain 
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A PCA plot of the metabolite data. 
Each point represents a different 
sample. Proportion of variance for the 
two components are written as 
percentages next to the axis labels. 
Samples were grown in MOPS media 
supplemented with amino acids. 
 
To improve our understanding on 
what these major shifts in protein 
levels could mean, we subjected 
the proteins with significant 
differenences between the two 
samples to enrichment analysis, 
using all detected proteins as the 
background. Processes we saw 
upregulated in the mutant included 

many ribosomal proteins, proteins involved in the TCA cycle, membrane proteins and those 
involved signal transduction. Given there is a major shift in protein expression between these two 
samples it is unsurprising we would see an enrichment in signal conveying proteins. Among them 
are many transcriptional factors, notably the purine operon repressor (PurR), the regulator of 
genetic competence and quorum sensing (ComA) and the transcriptional regulator of transition 
state (AbrB). We also saw the upregulation of the transcriptional regulator, PsdR (formally YvcP) 
which is induced by lipid II-binding lantibiotics, such as nisin which is known to subsequently 
induce the Psd system to export the toxic peptides (Zhang et al. 2016). As in the metabolomic data, 
we saw several proteins from the TCA were upregulated including FumC, PdhC and SucD 
responsible for the synthesis of malate, acetyl-CoA and succinate respectively (Figure 4.36) with 
the latter two also showing an increase of the corresponding metabolite and the former not being 
measured (Figure 4.32). Other proteins involved in carbon metabolism that were upregulated in the 
mutant include DapB, IlvH, LysC, DhbC, GlmM, Prs and Tkt. 
 
Amongst the proteins less expressed in the mutant we found enrichments in pyrimidine 
biosynthesis, diaminopimelate biosynthesis, the TCA cycle, and mobility (Figure 4.36) as well as 
the sigma factors σA and σB. Within the TCA cycle both citrate synthases and isocitrate 
dehydrogenase were downregulated. Citrate was not measured in our metabolomic experiments 
(Figure 4.32), however the product of isocitrate dehydrogenase, ɑ-ketoglutarate, was found to be 
higher in concentration, suggesting this metabolite may be building up. Regarding pyrimidine 
biosynthesis, dihydroorotase (PyrC), dihydroorotate dehydrogenase B (PyrK), orotidine 5'-
phosphate decarboxylase (PyrF) were downregulated. This corresponds with the metabolic 
experiments as PyrF catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to 
uridine 5'-monophosphate (UMP) and we see the decrease in enzyme concentration correlates with 
decrease in UMP concentrations in the metabolomic data. This was also the case for PyrC which 
catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. We did not see similar 
decreases in the protein levels for the rest of the operon which is also controlled by the same σA 

64 - Figure 4.35 - Protein samples are 
similar based on strain 
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dependant promoter. PyrR is found at the start of the operon and has RNA binding activity which 
is stimulated by UMP and UTP and results in the transcription termination by the binding of anti-
antiterminators (Hobl and Mack 2007). We also saw a downregulation of the σA regulated 
glutamine synthetase (GlnA), although we did not get measurements for its two negative regulators 
GlnR and TnrA. Reduced levels of GlnA would result in higher glutamate pool levels and therefore 
also a buildup of ɑ-ketoglutarate, which could explain the build-up of this metabolite despite the 
downregulation of isocitrate dehydrogenase. We also see the significant downregulation of YhdL. 
YhdL is an anti-σM factor, implying the cell may be compensating for cell wall stress and that σMis 
more active in the cell.   

 

A volcano plot showing the 
proteins which were 
differentially expressed 
between the wild type and 
split cluster mutant in MOPS 
with amino acid 
supplementation. The x axis 
represents the difference in 
log2 signal strength (thereby 
log2 fold change). Proteins 
which are more highly 
expressed in the mutant are on 
the left of the plot. Red points 
indicate proteins which were 
considered significantly 
differentially expressed, 
passing the significance and 
difference thresholds which 
are represented by the black 
line.  
 
RelA, an important protein 
in stringent response, was 

shown to be less prevalent in the split cluster strain. Mutants lacking RelA are still viable but are 
unable to undergo the stringent response (Fiil and Friesen 1968). The stringent response results in 
a downregulation of resource-consuming cell processes such as transcription and translation whilst 
simultaneously upregulating the expression of biosynthetic genes (Jain, Kumar, and Chatterji 2006; 
Chatterji and Ojha 2001). This is in agreement with our data as most upregulated proteins were 
associated with ribosomes or translation. A lack of amino acids is known to trigger the starvation 
response in bacteria when the ribosome encounters deacylated tRNA in the ribosomal A-site. To 
see if the split cluster is more sensitive to the stringent response, we supplied serine hydroxamate 
(SHX) to the media at varying concentrations. SHX is a serine mimic that triggers the stringent 
response (Tosa and Pizer 1971). As stringent response greatly limits the growth rate of the cell, this 

65 - Figure 4.36 - 
Differentially expressed 
proteins between the wild 
type and split cluster 
mutant 
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could be an explanation for why we see a decrease in growth rate of the split cluster when no amino 
acids are present. Therefore, we would expect the cell to be more sensitive to SHX if the stringent 
response is being triggered early in media lacking amino acids in the mutant. In preliminary 
experiments we saw that in amino acid supplemented media both the WT and split cluster strains 
were affected in the same way to different SHX concentrations, implying that their stringent 
response and recognition is the same. This also suggests the slow growth is not due to the stringent 
response being activated. 

4.12 Summary 
In this chapter, we characterized the Translation-Cell Envelope gene cluster which we identified 
using GenCoDB as an interesting candidate for synchronizing cell volume and cell envelope 
synthesis. The cluster consists of many essential genes holding key rate limiting steps in their 
respective pathways and was found to be broadly conserved across the bacterial kingdom, 
suggesting that it may fulfil a role as a synchronizer between the many processes contained in the 
cluster. We discerned that polycistronic transcripts comprising of the translation and cell envelope 
fractions of the cluster are inconsequential in vivo. This was despite previous experimental 
evidence, tight transcriptional correlation between the genes, and suggestions from the literature. 
Through other experiments we were able to confirm that co-localization of rasP in the TCE cluster 
was not relevant for cell size homeostasis nor is it likely to contribute to the localization of the 
genome to the membrane through transertion.  
We investigated the impact pyrimidine and arginine metabolism on the cell by analysing a mutant 
where the cluster was split in half. This revealed a dependency of arginine-like amino acids which 
appeared to be rapidly catabolized in the cell resulting in growth deficiency in arginine lacking 
media. Examining the changes in the metabolome and proteome of these mutants confirmed the 
impact the delocalization of these genes had on both pyrimidine and arginine de novo biosynthesis 
and highlighted the subsequent effects on central carbon metabolism. 
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Bacteria are among the simplest organisms on our planet, and yet the question of how they 
orchestrate their individual processes to maintain stable growth is still a question out of our reach. 
One specific question is how the cell regulates the increase in volume and surface area that comes 
with increased growth rates. As introduced in Chapter 1, a new avenue to study this topic is from 
the context of conserved gene neighbourhoods. Doing so requires a platform allowing both the 
quantitative and statistical analysis of gene neighbourhoods and an understanding of their 
behaviour in the context of genome evolution. In this chapter we will discuss the possible: 
interpretations, implications, limitations and future recommendations for the data we presented in 
the last three chapters. First, we will discuss GenCoDB and how our choices in species bias 
correction and significance adds value to the microbiology community in comparison with other 
strategies. Next we will discuss our analysis on the evolution of gene clusters in the context of the 
selective pressures that maintain them. Finally, we will examine our findings of a physiological 
benefit of a non-canonical gene cluster which brings together ribosome-associated and cell 
envelope genes. 

5.1 GenCoDB 
Our goal with the development of GenCoDB was to establish a tool solely for the purpose of finding 
gene neighbourhoods linking ribosome-associated genes with cell envelope biosynthesis. In the 
process of creating this tool, we ended up creating one with much broader applicability which 
distinguishes itself amongst other bacterial genome comparison web tools. First and foremost, 
GenCoDB can be used to analyse conserved gene neighbourhoods, facilitating future research in 
this area. It is of particular use for laboratories lacking bioinformatic support or that currently rely 
on non-quantitative tools such as MicrobesOnline. One area positively impacted by the access of 
GenCoDB is research into extra cytoplasmic function (ECF) sigma factors which are a cellular 
mechanism for signal transduction in bacteria often found co-localized with their direct target 
genes, genes encoding functions important for the signal transduction mechanism or their anti‐σ 
factors (Jordan et al. 2006; Joseph et al. 2002). Both Staroń et al. and X. Huang et al. used genome 
context data to characterize their ECF classification groups using MicrobesOnline (Dehal et al. 
2010) with the former using  additionally using THE SEED (Ross Overbeek et al. 2005) - a web 
tool that is no longer available. Using MicrobesOnline they could only count the raw frequency of 
genes appeared in the genomic context with no attention towards the significance or bias their 
genome subsets could be providing. More recently in another field, Szadkowski et al. were looking 
for additional components of a protein module of interest (the MglA-MglB-RomR module). The 
authors used a mixture of BlastP and custom Perl scripts in order to find that the protein RomX co-
localized with this module. They then experimentally verified the importance of the co-localization 
of RomX in the lab, as a critical interaction partner of RomR. In all of these cases, if they had had 
access to GenCoDB this would have provided them with quicker, and more quantitative results.  
 
In Chapter 2, as part of identifying significantly conserved ortholog groups, we measured the 
average neighbourhood conservation for many different taxonomic subsets (Figure 2.3). Generally, 
the conservation correlated with the genetic diversity within the group. When genetic diversity was 
low there was also an increase in the variance of average neighbourhood conservation values. This 
can be understood due to the stochasticity inherent in genomic rearrangement events and the 
heightened effect of noise due to the smaller sample sizes of these clades. There were a few notable 
exceptions where median conservation was higher or lower than the model. Those which had 
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higher levels of conservation relative to their genetic diversity included Spirochaeta, Mollicutes, 
and Cytophagales. Both Mollicutes are known to have highly reduced genomes which would 
reduce the number of possible genome permutations independent of rRNA sequence differences 
explaining their trend towards more conserved neighbourhoods (Sirand-Pugnet et al. 2007). 
Furthermore, mycoplasmataceae (a family within Mollicutes) species specifically have been shown 
to have reduced evidence of inversions occurring on their genome, drastically minimizing the effect 
of chromosome shuffling on gene order (Suyama and Bork 2001). Previous work on gene cluster 
analysis in Mollicutes reported they had the smallest number of gene clusters when compared to 
other bacteria; however, this did not factor in the smaller genome size nor the genetic diversity of 
the Mollicutes to the other bacterial subgroups (Y. Zheng et al. 2005). As to the other clades we 
could not find literature evidence suggesting why they have higher levels of neighbourhood 
conservation; however, there are many reasons that could lead to this observation. For instance, a 
lack of restriction enzymes that could result in strand breaks in the DNA or increasing the 
likelihood of errors during repair. The actinobacteria phylum was shown to have less conserved 
neighbourhoods relative to their diversity. Counterintuitively, actinobacteria engage less with 
genome reorganizing HGT events than any other phylum (Lewin et al. 2016), however, the average 
genome sizes are significantly larger (on average greater than 5 megabytes) (Barka et al. 2016). 
Larger genomes correspond to larger gene repertoires and signify that several gene duplication 
events must have occurred if the acquisition of genes was not through HGT resulting in a shuffled 
genome.  
 
With the development of our method, we were aware of two challenges, how to overcome the 
genome sampling bias and determining significance in conservation. As we established earlier, the 
significance that two genes appear co-localized is dependent on the context of which genomes are 
being analysed. Namely co-localization seen in species closely related to each other is less 
significant because there is less evolutionary time between them in which rearrangement events 
could occur. We approached this problem with a methodical approach that measured the expected 
neighbourhood conservation at different subsets of genomes (taxonomic divisions) and used this 
as a basis of defining a threshold of significance (Figure 2.3). This relationship fit tightly at large 
scale divisions with only a few minor outliers that could be explained due to larger and smaller 
average genome sizes of the clades. Our model only began to break down in smaller taxonomic 
groups with higher noise and smaller sample sizes which hamper analysis (Figure 2.3). Depending 
on the resources used to study neighbourhood conservation, the way this challenge is approached 
varies. In genome browser based comparison tools (e.g MicrobesOnline (Dehal et al. 2010) and the 
JGI genome portal (Grigoriev et al. 2012) where the neighbourhoods are aligned centred on one 
ortholog group, quantitative statistics are not provided; subsequently, it is impossible to determine 
if an observation is significant. Therefore, users would need to perform their own downstream 
analysis. StringDB does not directly provide significance to their genomic context information and 
instead provides a combined score which is the combination of many factors, co-localization 
included (Snel et al. 2000). As well as co-localization, these factors include text mining, gene 
fusion, co-expression co-occurrence. For co-localization they only consider genes with intergenic 
distances of less than 300 nucleotides (Snel et al. 2000). To generate the scores the number of 
occurrences of a gene pair is compared to the chance that this gene pair would appear together in 
randomly shuffled genomes (Snel et al. 2000). This probability of a gene pair occurring in two 
genomes was calculated 0.02, decreases to <0.002 for three species and <0.0005 for four species. 
As we discussed in Section 2.2, basing co-localization statistics of randomized genomes is a vast 
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underrepresentation of the true expected co-localization frequency in real bacterial datasets. This 
is because bacterial genomes are not independent from each other and share significant similarities 
especially at smaller evolutionary distances. In the clustering work performed by R. Overbeek et 
al., they implemented an arbitrary threshold to the sum of “pair of close bidirectional best hits” 
scores they assigned to each of their gene pairs. Overlapping pairs with scores higher than this 
threshold would iteratively be clustered together to classify clusters. The threshold was then 
optimized to get a clear disentanglement of clusters. Fang, Rocha, and Danchin, implemented a 
more sophisticated statistical test in determining the significance of gene pairs, the Kuiper test. 
This tests against the null hypothesis that a given distribution is uniformly distributed, and in this 
case the distribution consisted of the gene distances between a gene pair in the surveyed genomes. 
This test is independent of the gene distance, therefore would not exclude if a gene pair is constantly 
half a genome apart from one another. However, we would consider this scenario extremely 
uncommon. Aside from the minor filtering they do to remove extremely distant and closely related 
species (explained in the next section) the distance between genes that are from a sister clade and 
those from a different phylum are treated identical and thereby the statistical weight that comes 
with such an observation is not included. None of these methods aside from that implemented in 
R. Overbeek et al. 1999 takes the genetic diversity strongly into account when modulating how 
they define significance and therefore, with fine tuning of the selected genome pool, any gene pair 
could be arbitrarily made to be significant. R. Overbeek et al. calculated the score of a gene pair 
being directly proportional to the genome distance. Therefore, a genome subset consisting of 
closely related genomes would surpass the threshold. However, as this threshold is arbitrarily 
chosen and static it would not be able to easily adapt to a changing genome dataset. We therefore 
believe our method of significance is a good solution to the rapidly changing and expanding the 
availability of bacterial genomes. 
 
Despite the efforts of movements such as the Tree of Life, which aim for diversity in genome 
sequencing, our need to understand pathogenic and economically relevant species has resulted in 
us favouring acquiring genomes non-uniformly across the bacterial kingdom. In extreme cases 
some bacterial datasets have several sequences of one species, usually in model organisms such as 
E. coli or B. subtilis (Chen et al. 2019; Kriventseva et al. 2015; Dehal et al. 2010). In the case of 
genome comparisons, the presence of these extra genomes, or over/under-sampling of certain 
claims results in a bias and ultimately in false positives and negatives. We reduce the impact of this 
bias with an elegant method that scales the contribution of each genome relative to its similarity to 
other species in the dataset based on a 16S rRNA tree (Figure 2.2). This method was similar to 
what was performed in Vieira-Silva and Rocha, 2010, and does have limitations which we will 
outline later in this chapter. This method is advantageous as it adapts to the genomes it has available 
and therefore allows the database to upscale without the risk of sampling bias changing the 
interpretation. To the best of our knowledge, GenCoDB is the only bacterial genome comparative 
website which takes this bias into account. Many databases, especially those which do not provide 
quantitative statistics generally include every genome that meets their quality thresholds (Dehal et 
al. 2010; Chen et al. 2019). Other databases perform curation steps before including their genomes 
with the aim of including only representative species, thereby minimizing the effect of genomes 
from multiple strains of an organism (Kriventseva et al. 2019; Szklarczyk et al. 2019). Crucially 
this curation was performed in the most recent version of OrthoDB from which we decided which 
genomes to include in our dataset. We would argue that this effort is insufficient. Firstly, it is 
manual and time consuming, thereby not allowing it to be scalable. Secondly, without any objective 
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measures to define genetic distance, it is impossible to know exactly how over-represented a clade 
may be. We saw this in our OrthoDB dataset, where although proteobacteria made up a significant 
proportion of the genome sequences and actinobacteria less so, analysis of the genetic diversity of 
these phyla showed that actinobacteria are not very diverse and the contribution should decrease 
and vice versa for the proteobacteria (Figure 2.2). Other work which identified clusters in bacterial 
genomes utilized different methods in order to overcome these challenges. As already explained 
R. Overbeek et al.  uses a similar method as the one we implemented by utilizing the phylogenetic 
distance on a 16S rRNA tree to score their gene pairs. To minimize the influence generated by 
many closely related species (such as strains) and from extremely distant species, Fang, Rocha, 
and Danchin excluded the top and bottom 10% gene distances scores they generated for each gene 
pair. This is similar to our method at attributing contribution values to genomes, where closely 
related species are assigned contribution values that sum to a total of 1, and extremely distant 
species can only contribute up to a maximum of 1. It is different, however, in that the method 
implemented in Fang, Rocha, and Danchin, 2008 relies on the assumption that all the similar (or 
distant) sequences are adequately captured in the 10% window, whereas in reality the window 
could be much larger or smaller. In case it is smaller, this would be introducing a bias by removing 
perfectly valid genomes from the calculation and resulting in a significance score higher than it 
should be.  
 
It is important to frame conclusions derived from the data of GenCoDB with the limitations from 
the data generation methods. Our definitions of neighbourhoods are based solely on gene order 
meaning factors such as intergenic distance, genetic elements such as repetitive sequences and non-
coding RNAs are not included. The knowledge of intergenic distance can have important 
implications on genes for instance it has been shown that small distances (0-20bp) between genes 
transcribed unidirectionally are more likely to evolve into overlapping genes (where two 
transcriptional units share partial sequence) (Fukuda, Nakayama, and Tomita 2003). Overlapping 
genes are not displayed in GenCoDB and would have negative intergenic distances. Knowledge of 
intergenic distances is also crucial to many operon prediction algorithms where separation of less 
than 60 nucleotides between co-direction genes is sufficient to identify 75-80% of operons (Janga 
et al. 2006; Moreno-Hagelsieb and Collado-Vides 2002). As GenCoDB was built using ortholog 
groups defined by OrthoDB, which in turn utilizes similarities between protein amino acid 
sequences of encoded genes to categorize the groups, any transcripts which are not translated can 
therefore not be assigned an ortholog group nor included in our database. Non-coding RNAs are 
transcripts, usually 50-250 nucleotides in length (Eddy 2001) and can have very crucial and diverse 
roles including in processes like virulence (Toledo-Arana, Repoila, and Cossart 2007), stress 
response (Calderón et al. 2014) and quorum sensing (Bejerano-Sagie and Xavier 2007). They 
typically function by binding to mRNA resulting in either the stimulation/inhibition of translation 
or the degradation of stabilization of the mRNA. Therefore, they are similar to genes in that their 
conservation in a neighbourhood could also indicate relevance to the other genes/non-coding RNA 
in cluster. They are not as well annotated as translated genes because they lack open reading frames 
and small size makes them hard to detect on a sequence level. Thus, they are usually detected based 
on locating highly conserved intergenic regions (Wassarman et al. 2001) or areas which would 
form RNA secondary structures typically seen in non-coding RNAs such as stem-loops (Rivas et 
al. 2001). As GenCoDB utilizes NCBI genome annotations, both intergenic distances and non-
coding features are accessible. The former could be implemented in future extensions of GenCoDB 
both in the genome view which could be scaled to display actual genomic proportions, and in the 
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neighbourhood view, where hovering in the spaces between the bars could display a histogram 
showing the variation in intergenic distance between genes in these positions. The latter however 
will prove a challenge both without a unifying categorization system that can identify orthologous 
non-coding RNAs and the unequal levels of annotation between the genomes.  
 
In order to determine both the level of conservation expected in different taxonomic groups and to 
reduce the impact genome sampling bias we utilized a genetic distance measure implemented in 
Vieira-Silva and Rocha, 2010. Here they used differences in 16S rRNA sequences as a proxy for 
genetic distance. The 16S rRNA gene is ubiquitous across bacteria and highly conserved with nine 
hypervariable regions that are used for species identification (Baker, Smith, and Cowan 2003). For 
this reason the 16S rRNA gene has been used to define bacterial taxonomy and the genetic distances 
between species (Mushegian and Koonin 1996). Utilization of the 16S rRNA sequences has 
limitations however. A threshold of 97% difference between the hypervariable regions has 
commonly been used to delineate bacterial species borders but this itself has been shown to be 
partially flawed. Two different species can have highly similar 16S rRNA sequences such as in the 
case of Bacillus globisporus and Bacillus psychrophilus with 99% similarity. Conversely, some 
genomes such as E. coli can have multiple 16S rRNA sequences which can differ by up to 5% 
(Eren et al. 2013). This is unsurprising as while evolution of the genome and the gene do correlate, 
they can have different histories, resulting in deviations between the evolutionary signals provided 
by them. In order to solve this issue and to acquire better resolution in the fine graining of species 
definitions, multiple well conserved genes are often used (such as elongation factors). However, 
the increase in the number of genes used also results in an increase in the complexity and 
computational time required. Therefore, as this method is for the resolution of evolutionary 
distances at the small scale, whereas GenCoDB focuses on long term evolution, we reasoned this 
was not worth the scale challenges it brings to future updates of the database. Another limitation 
of comparing 16S rRNA sequences is that it is an indirect measure of evolutionary time between 
species, and does not perfectly capture gene shuffling. We see that rate in which chromosomal 
rearrangements and shuffling events occur do vary in different clades sometimes independently of 
rRNA mutations as seen in figure 2.3. Aligning whole genomes is not thought to be a plausible 
solution and is complicated due to differing lengths of genomes, multiple chromosomes and lack 
of gene order. There have been other methods used to measure genetic distances between genomes 
that are not gene alignment based including gene content (Snel, Bork, and Huynen 1999), using 
the proteome to count the frequency of oligopeptide strings (Qi, Wang, and Hao 2004) and of 
relevance to genome organization the presence/absence of genes in found in conserved gene 
clusters (Wolf, Rogozin, Grishin, et al. 2001), gene order (House, Pellegrini, and Fitz-Gibbon 
2014), and the persistence conserved gene pairs (Wolf, Rogozin, Grishin, et al. 2001). 
Unfortunately, either, these methods would not resolve the disconnect between the distance score 
and expected rearrangement events, or, in order to generate distance scores between thousands of 
genomes would require a much larger amount of computational time than is currently used. As 
methods develop and computational resources increase, it would be good to re-examine this 
limitation for GenCoDB and may help resolve the discrepancies we see between genetic distance 
and neighbourhood conservation in taxa such as Actinobacteria and Mollicutes. 
 
Future updates to GenCoDB could bring numerous auxiliary functions which improve the usability 
of the web tool. An early expansion would be the inclusion of Archaea and eukaryotic genomes to 
the database. OrthoDB already includes these genomes and therefore the addition would not 
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involve significant changes to the database. As “kingdom” is the highest offered taxonomic level 
by orthoDB it would be not possible to group together shared genes between both bacteria and 
eukaryotes. We outlined in the introduction how eukaryotes have different evolutionary 
mechanisms that shape their genome organization and therefore it would be interesting to observe 
the difference in neighbourhood statistics between both prokaryotes and eukaryotes. Archaeal 
genomes have often been included with bacteria in previous genome organization studies 
(Dandekar et al. 1998; Wolf, Rogozin, Kondrashov, et al. 2001) therefore including them in 
GenCoDB would be a valuable resource for archaea researchers and an extension of earlier work. 
The next change would be independence from OrthoDB. Currently GenCoDB is restricted to the 
update schedule of OrthoDB (approximately every 2 years) as it supplies the ortholog groupings 
required to perform the neighbourhood retrieval. It also limits the number of genomes we are able 
to include in the database, as they must be mapped by these ortholog group mappings, therefore 
the scalability and ability to handle large numbers of genome sequences of GenCoDB is not being 
used to its full extent. To achieve independence ortholog maps need to generated. To do this for 
many thousands of genomes is a complex and computationally taxing task; however, there are a 
few tools already published that would allow this with more development (Lechner et al. 2011; 
Camacho et al. 2009) 

5.2 Neighbourhood Evolution Analysis 
Using the over 1.9 million gene neighbourhoods we identified 1383 gene cluster families which 
were trackable over the evolutionary history of bacteria. By tracking the size of clusters through 
the different lineages we found no strong tendency in the expansion or degradation of gene clusters 
with only a slight bias towards clusters increasing in size (Figure 3.12). As there is not a large bias 
in the descendants of clusters this suggests our strategy to account for the increased conservation 
expected by evolutionary chance is satisfactory. There are two well accepted models on the size 
dynamics of gene clusters, the piecewise model and the uber-operon. The former states that gene 
clusters come together slowly overtime through stepwise building processes (Fani, Brilli, and Liò 
2005). Fani et al. 2005 show evidence suggesting the progression of the histidine biosynthesis gene 
cluster in proteobacteria occurring in a stepwise manner. Whilst in our dataset we also observe the 
growth of some gene clusters this does appear to be an outlying behaviour and therefore should not 
be a model explaining gene cluster size dynamics generally. The piecewise model also predicts that 
expansion of the cluster should occur downstream as to minimize disruption of gene regulation 
(Fani, Brilli, and Liò 2005). However, we could see no bias to the localization of new genes to 
gene clusters (Figure 3.13). The uber-operon hypothesis states that operons splitting is a normal 
evolutionary event and once split the former genes remain in a similar functional and regulatory 
context (Lathe, Snel, and Bork 2000). As we do not see a bias towards shrinking clusters the 
frequency of this occurring must be limited, however we should temper our observation due to the 
methods used in cluster lineage detection. We considered a cluster a descendant if it contains at 
least 50% of the genes from an ancestor cluster. Therefore, if a cluster was fragmented into more 
than thirds, we no longer tracked the cluster and its shrinking lineage would not contribute to our 
statistics. The possibility also exists that both the piecewise model and uber-operon-based 
degradation occur simultaneously in close to equal levels resulting an observed average static size 
that we see. Given that cluster size seems unchanging, this is what would be expected if gene 
clusters were transmitted via HGT instead of vertical transmission. The selfish operon model posits 
that genes cluster together so that they are more likely to be transferred together in random HGT 
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events (J. G. Lawrence and Roth 1996). By both normalizing cluster identification by either the 
taxonomic divisions or the conservation of the gene and comparing them, we were able to detect 
clusters which were present scattered across the bacteria kingdom. However, compared to the 1383 
gene families identified with the former method, we found only 59 that could be attributed to HGT. 
Therefore, we believe HGT is not an important method in long term gene cluster formation. This 
is in agreement with Pál and Hurst 2004, who characterized HCT events by measuring the absence 
of essential genes (genes that are unlikely to be involved with HGT) from of gene clusters. As our 
method is independent of essentiality status, therefore including the possibility of essential genes 
transferring, we believe that we provide more weight behind this and therefore posit that vertical 
gene transmission is the underlying method of gene cluster evolution. 
 
We studied the impact of the four main hypothesized selective pressures that could act in 
maintaining gene clusters: essentiality, intra-cluster interactivity, operon transcription, and 
transcriptional co-regulation. Co-regulation was found very rarely enriched in gene clusters (Figure 
3.16) and this was especially true in clusters which have withstood longer periods of evolution 
(Figure 3.17). This is in agreement with the work of J. Lawrence, 1999 and J. G. Lawrence and 
Roth 1996, whom argue that the selective advantage of co-transcription can be matched more easily 
by stochastic evolutionary events resulting in regulons. The other three selective factors were 
enriched in relatively high abundances in gene clusters with our numbers closely agreeing with 
previous studies using significantly reduced sample sizes (Fang, Rocha, and Danchin 2008; 
Huynen et al. 2000). We measured higher levels of interacting proteins in our gene clusters than  
Huynen et al. 2000 found in their study comparing Mycoplasma species. We believe this difference 
lies in both their small sample size of only three genomes, and the improvement in our knowledge 
of protein-protein interactions since 2000, increasing the number of genes which are classified as 
interacting. Essential genes have previously been shown to be overrepresented in operons and gene 
clusters (Pál and Hurst 2004) and are usually found at the 5' end of a cluster (Muro et al. 2011). 
Conversely, Fang, Rocha, and Danchin 2008 state that it is not essentiality but persistence which 
is relevant to gene clustering. They define persistent genes as those which are highly conserved 
across the bacterial kingdom. There is significant overlap between persistent genes and essential 
genes, and indeed we found that there were several highly conserved genes with strongly conserved 
gene neighbourhoods (Figure 3.1); however, these did mainly consist of also genes we would 
classify as essential. To corroborate the two works, we believe it is most likely that genes, which 
provide strong fitness benefits cluster together, which is why they are either broadly conserved or 
classified as essential. However, the fitness benefit of every gene in every species is hard to 
quantify, especially outside of a laboratory setting, therefore we believe essentiality is a suitable 
substitute.  
 
We saw that whilst several gene clusters were enriched in either interacting or essential genes, there 
were very few where operon organization was the only selective force (Figure 3.16). Again, this 
was most apparent in clusters which have been maintained over long periods of evolutionary 
history. We postulate that this means as a selective force, operon level transcription is not strong 
enough to resist the mutational pressure of genomic rearrangements. Therefore, the small increase 
in correlation provided by operon level transcription is most likely insufficient to overcome this 
barrier. In fact, it was shown by (Lathe, Snel, and Bork 2000) that operons regularly broken up into 
smaller operons which continue to be similarly regulated (referred to as uber-operons). The lack of 
importance of operons in gene clusters certainly has implications in our understanding of gene 
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clusters. A conserved genomic context is often used as evidence of operon expression or to predict 
the presence of operons (Price et al. 2005). However, if operons are not important in maintaining 
gene clusters, why then would there have been an enrichment in polycistronic transcripts at the 
same level as the other factors? We would outline two possibilities to explain this observation. 
Firstly, is that operons are a fitness benefit, albeit weak in the face of mutational pressure. We 
outlined how polycistronic transcription benefits bacteria in the introduction, but briefly, co-
transcription results in the transcript level of the transcribed genes to be in a 1:1 stoichiometry 
which has been shown to reduce expression noise (Ray and Igoshin 2012); furthermore, it reduces 
gene network complexity, improves the efficiency of RNA polymerase and requires the production 
of less transcription factors to control the same number of genes. Due to other factors (namely the 
essentiality or interactions of the genes) maintaining the gene cluster, the fitness benefit from 
operons is able to act and optimize expression of the cluster genes. It has been argued however, 
that the benefit of stoichiometry in transcripts is often not exploited by bacterial evolution. Many 
well studied operons have translational efficiency variations between different genes on 
polycistronic transcripts thereby resulting in the proteins no longer being in stoichiometry (J. 
Lawrence 1999). The second possibility is that it is the natural state for genes which are co-
localized is to deteriorate into an operon co-transcribed state due to mutations of the internal 
terminators and transcription start sites. Previous work has suggested that operons develop through 
a piecewise model, where the size of the operon slowly increases over evolutionary time, i.e. operon 
before gene cluster (Fani, Brilli, and Liò 2005). This is counter what we postulate, as we believe 
our data suggests that the gene cluster comes first. However, the number of genes belonging to 
conserved gene clusters is relatively low (n=286 in B. subtilis) whereas the number of genes in 
multigene operons is relatively high (n=2504) therefore it is unlikely the model we postulate is a 
major driver in operon formation. We also observed that in conserved neighbourhoods and gene 
clusters, co-orientation is also highly conserved. Co-orientation is most likely one of the first 
factors that is resolved during the formation of a gene cluster, as we have shown within gene cluster 
rearrangements happen very infrequently (Figure 3.4). But which forces can explain the formation 
of co-orientation hand in hand with cluster formation, if the most obvious need for co-orientation 
(operons) is only established later? We would suggest that the directionality we observe is not a 
cause of operons but the negative consequences that would result from divergent or convergent 
gene orientation. Firstly, genes on bacterial chromosomes are usually expressed on the leading 
strand to reduce head-on collisions occurring between transcription and DNA replication 
machineries which has been shown to be detrimental to the cell (Paul et al. 2013). Additionally, in 
highly compressed genomes, transcriptional collision has been implicated in impairing 
transcription termination and elongation between convergent gene pairs (Prescott and Proudfoot 
2002). 
 
The majority of our evolutionary analysis focused on the clusters that still persist in the modern 
day B.subtilis genome. Whilst genes that are essential, in one organism are not essential in another, 
we show that genes which are highly conserved (and therefore often essential for life) have 
conserved neighbours (Figure 3.1) and therefore when studying the bacterial wide clusters our 
observations should hold. For clusters which were detected at lower taxonomic ranks (e.g 
Firmicutes, Bacilli) these likely are either not found in other taxonomic groups or behave 
differently. To test if our observations hold in other taxonomic contexts, future work should look 
at the extant clusters of species belonging to other distant taxonomic groups (such as E.coli). A 
further interesting avenue for research would be the correlation of genome size with the 
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maintenance of gene clusters. As observed in taxa known to have average genome size differences, 
the strength of gene neighbourhood conservation also varied accordingly (Figure 2.3) 

5.3 TCE Cluster 
During changes in nutrient availability and subsequently through evolution, cells have learnt to 
adapt their physiology to optimize their growth rate requiring a balance between DNA replication, 
division and protein synthesis. How the cell manages to synchronize the increased demand of cell 
envelope biosynthesis to accommodate the increased volume growth seen at faster growth rates 
currently remains a mystery. We postulated this could be achieved through connecting the 
expression of key cell envelope intermediates with ribosome-associated genes. In our work in 
chapters 2 and 3, we developed the infrastructure allowing us to scan genomic neighbourhoods 
looking for this link connecting surface and volume growth. To our surprise, genes involved in cell 
envelope synthesis were very rarely found in context with translation associated genes (Table 4.1). 
We found only one cluster which connected three ribosomal-associated genes with cell envelope 
genes that was found well conserved in the bacterial kingdom (Table 4.1). This cluster consisted 
in total of eight genes: rpsB, tsf, pyrH, frr, uppS, cdsA, dxr and rasP. The mix of biological roles 
of the genes contrasts previous findings showing that gene clusters normally consist of genes 
involved in similar cellular processes (Fang, Rocha, and Danchin 2008; Rogozin et al. 2002). As 
well as the translation and cell envelope genes, there are also genes involved in pyrimidine 
metabolism and division. Earlier work that identified gene clusters in bacteria only identified parts 
of this cluster usually as gene pairs (namly rpsB-tsf and uppS-cdsA) (Rogozin et al. 2002). As these 
studies were limited at the time in available genomes, we believe our larger dataset and therefore 
higher resolution allowed us to detect this gene cluster.  
 
As both co-localization and co-orientation of these eight genes was highly conserved (Figure 4.23) 
it seemed likely that volume and surface growth could be synchronized through the co-regulation 
of these genes. This was supported when we realized that nearly all genes held essential bottleneck 
positions in their respective processes (Figure 4.2), and in organisms where duplication events 
made this untrue (uppS in actinobacteria) the gene was removed from the cluster (Figure 4.23). We 
speculated that perhaps by regulating expression of this locus, the rate of translation, cell wall 
synthesis and division could be controlled acting as a cellular clock. In order to confirm if these 
genes in fact transcriptionally correlated, we analysed public transcriptomic datasets from different 
species, and in different conditions. We saw high levels of co-regulation in all species where the 
cluster was maintained (Figure 4.6). However, we subsequently showed that the ribosome-
associated genes and cell envelope biosynthesis genes was not transcribed on a single transcript. 
Therefore, these genes do not form an operon, despite previous evidence stating otherwise (Figure 
4.8). Earlier in the discussion, we mentioned the possibility that operons naturally form over time 
in genes that are co-localized. As this cluster is in the context of evolution very old and must have 
formed in an early ancestor of both Firmicutes and Proteobacteria it is unlikely that lack of 
polycistronic transcripts is due to lack of evolutionary time. The reason may be linked to what we 
observed in the relative levels of expression of the eight genes in the different species where each 
gene was expressed at different levels in different species (Figure 4.7). By using CRISPRi we were 
able to perturb expression of each of the genes (Figure 4.13 and 4.14). In response to inhibition, 
the majority of the genes had different effects on the growth rate to the repression, contrary to what 
would be expected if every gene was rate limiting to growth. From these data, we cannot know for 
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certain that each gene responded to the repression identically, and it should be noted that the genes 
do vary by several orders of magnitude of expression naturally. The work of Peters et al. 2016 did 
show similar repression from CRISPRi for different genes. If synchronization of these eight genes 
and their respective processes is essential, we would suggest co-regulation appears to play a minor, 
if ever present role.  
 
In chapters 3 and 5.2, we discussed how co-regulation and operon organization is insufficient to 
maintain gene clustering (Figure 3.15). This suggests there is another selective pressure 
maintaining the TCE gene cluster. We explored three avenues: modulating size control with growth 
rate, increased enzyme efficiency due to transertion, and genomic channelling of pyrimidine 
metabolites.  
 
Due to containing all the elements required to be able to regulate the documented cell size increase 
in response to growth rate (namely growth rate sensing regulation, cell wall synthesis and division 
control) we hypothesized the TCE cluster is responsible for this relationship. rasP was thought to 
be a key member in this hypothesized control as it cleaves a late stage division protein and in its 
absence was shown to result in a mini-cell phenotype (Bramkamp et al. 2006). This finding was 
only tested at one growth rate (Bramkamp et al. 2006) and we hypothesized that without rasP we 
would observe no concurrent change in cell size with the modulation of the growth. With our 
independent rasP deletion mutant we could confirm the mini cell phenotype from Bramkamp et al. 
2006 however we found that this was only true in LB media (and presumably other fast growing 
media) ( Figure 4.22). When grown in minimal media supplemented by non-preferred carbon 
sources of B.subtilis we found the mutant cells were actually larger than the wild type (Figure 4.22). 
This highlights the importance of testing phenotypes at multiple different growth rates. Whilst we 
did not see a complete loss in the relationship between growth rate and cell size, the deletion of 
rasP did lessen the strength of the relationship (Figure 4.22). This suggests that rasP is responsible 
for size control however it is not the sole contributor and there must be other proteins responsible 
for creating redundancy in cell size control. Previously this relationship has been perturbed by 
directly targeting cytoskeletal proteins to shrink the cell without changing the growth rate (Monds 
et al. 2014), or ribosomal maturation to slow growth rate without modulating size (Bügl et al. 2000). 
rasP is not directly involved with either as was the case with UgtP which normally acts in cell 
envelope biogenesis but moonlights as a metabolic sensor to link cell size with central metabolism 
(Weart et al. 2007; Hill et al. 2013). A deletion in ugtP results in a similar phenotype as the rasP 
mutant in that the relationship between growth rate and size was perturbed (Hill et al. 2013). The 
results in Hill et al. 2013 do not show the effect on size from this deletion in conditions slower than 
a doubling time ~50 minutes which is where the intersect occurs in our data between the wild type 
and rasP mutant (Figure 4.22). As we currently do not know what triggers RasP activity in the cell, 
we could postulate that RasP may also act as a metabolic sensor together with UgtP and that these 
proteins collectively ensure cell size and growth rate to be balanced. Aside from FtsL, RasP is 
known to cleave RsiV and RsiW, anti-sigma factors to their respective sigma factors σV and σW 
(Zweers et al. 2012). Our preliminary data showed that deletion of sigW but not sigV (therefore 
replicating what may happen to the concentration of σW and σV levels in the absence of rasP) 
resulted in a similar but weaker change in the size-growth rate relationship. This suggests the 
phenotype we observe by deleting rasP maybe a cumulative effect from the increase in FtsL and 
RsiW (and subsequently the reduction in σW) levels. As we were able to restore the growth rate 
relationship by complementing rasP at an independent locus (Figure 4.22), this suggests that the 
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genomic context of rasP associating it with ribosome-associated genes and expression is not 
essential. To further understand the role of rasP in the size-growth rate relationship we modulated 
the expression of rasP by changing the inducer concentrations. This would confirm if the 
relationship is the result of RasP concentration levels and may indicate the dynamic range in which 
rasP functions. An interesting observation is that in the slope of the relationship between size and 
growth rate for the wild type, rasP, sigW and ugtP deletion mutants, was that despite their slopes 
all being different they all intersected at approximately a doubling time of 50 minutes. Therefore, 
at a doubling time faster than every 50 minutes wild type cells were larger than the mutants and 
vice versa. The question is why is this 50-minute doubling time conserved? It is thought that a 
reason for size expansion during increasing growth rates is to accommodate the bulk of DNA 
arising from multifork replication. Perhaps not coincidentally the time it takes for B.subtilis to 
replicate its genome is 40-50 minutes (Skarstad and Katayama 2013). This however raises the 
question, why would the cell want to be smaller during slow growth conditions (> 50-minute 
doubling time)? Smaller cells have a higher surface area to volume ratio increasing the ability for 
external nutrients to sustain the requirements of the cell which may be necessary in poor conditions 
that generate these slow growth rates. Further still, smaller bacteria have a height dry weight per 
volume and it is suggested the reduction of water content may reduce energetic costs (Simon and 
Azam 1989). Therefore, in B.subtilis, the 50 minute doubling time might represent a breakpoint 
where the advantages of a larger cell volume to accommodate multifork replication outweigh the 
advantages of being small. We should note that despite the observed size changes in all these 
mutations, we did not see a significant change in growth rate (Figure 4.22). Suggesting either the 
difference in size is accommodated for by the cell, or that there are other physiological changes 
that do not perturb the growth rate. 
 
Within the TCE cluster is uridylate kinase (pyrH) an essential enzyme in the synthesis of 
pyrimidine producing UDP from UMP (Figure 5.1). It is co-localized alongside three enzymes 
which either directly (cdsA) or indirectly through their downstream reactions (uppS, dxr) require 
UDP or the downstream product CTP (Figure 4.2). Additionally, by looking at which genes 
correlated in genomes where the cluster was maintained we found that in the absence of a cluster 
both arginine decarboxylase and uridine kinase were both enriched (Table 4.3). Species which have 
functional uridine kinase are less reliant on de novo pyrimidine synthesis as they can scavenge 
UMP from uridine. Similarly, species expressing arginine decarboxylase may have more abundant 
sources of arginine (or a more efficient de novo biosynthesis pathway) and therefore more readily 
catabolize it. Therefore, this suggests that the selective pressures maintaining TCE cluster may be 
highly interwoven with a functional and well-regulated pyrimidine and arginine pathway. The 
molarity model suggests a selective advantage of gene clustering to be the increased local 
concentration of proteins resulting in more efficient protein-protein interactions and metabolic 
channelling of substrates. Therefore, pyrH’s position in the chromosome may facilitate the use of 
its product UDP by other pyrimidine consumers downstream. We reasoned by separating the 
pyrimidine producer from the consumers would result in the deregulation of the pyrimidine 
metabolites and subsequently arginine metabolism due to the shared intermediates (Figure 5.1). By 
genetically splitting the cluster (Figure 4.25) we indeed found that whilst there were no strong 
negative phenotypes in rich media, a strong slow growth phenotype in MOPS minimal media was 
observed in the absence of arginine (Figure 4.27).  
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To explain this observation, we have two hypotheses. Firstly, due to the inefficient utilization of 
pyrimidines by pyrimidine consumers normally found in the cluster, there is an accumulation of 
UDP and other pyrimidines. Pyrimidines are known to be negative regulators of the branch 
molecule between arginine and pyrimidine metabolism, carbamoyl phosphate, thereby resulting in 
decreased flux and production of arginine, and arginine deprivation for the cell (Turner, Lu, and 
Switzer 1994). By supplementing arginine, the requirement for arginine de novo synthesis from 
carbamoyl phosphate is no longer needed resulting in normal growth. Secondly, pyrH is known to 
be localized to the membrane (Noria and Danchin 2002); however, the biological significance of 
this has not yet been elucidated. It is believed the compartmentalization may separate it from other 
enzymes that would readily convert UDP to dUPD potentially resulting in the production of the 
deleterious dTMP. It may also be degraded away from dUMP to prevent its conversion to dUDP 
resulting in the formation of a futile cycle. Perhaps the loss of co-localization with cell envelope 
genes is important for the localization of PyrH. This delocalization would result in decreased 
efficiency of PyrH potentially limiting the cells of pyrimidines. Preliminary data showed that of 
the four antibiotics tested, which all targeted different cellular processes, only rifampicin was 
shown to be more effective in the split cluster mutant in the arginine deprived conditions potentially 
referencing the lack of pyrimidine nucleotides for transcription (Figure 4.29). With the addition of 
arginine, all flux from carbamoyl phosphate could be directed to pyrimidine biosynthesis, 
potentially counteracting the loss in efficiency. When analysing UTP levels in the split cluster we 
did not see a significant difference in UTP concentration however it is known that pyrH is 
autoregulated by UTP and therefore it is unsurprising we see no difference (Turner, Lu, and Switzer 
1994) (Figure 5.1). Unfortunately, the utilized method for measuring metabolites was unable to 
measure UDP levels at this stage. We do see that two other metabolites in the pyrimidine pathway 
are reduced, namely UMP and carbamoyl aspartic acid, which could suggest that flux into this 
pathway is reduced. 
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66 - Figure 5.1 - The effect of TCE de-localisation on Pyrimidine and arginine metabolism 

A schematic of the pyrimidine and arginine de novo biosynthesis pathways. Circles represent metabolites. 
The shade represents its status in the metabolomics data set: white - unchanged, red - reduced concentration 
in the split cluster mutant, green - increased concentration in the split cluster mutant, grey - unmeasured. 
Proteins involved in this pathway that were significantly differentially expressed are written in bold between 
the metabolites with the same colour scheme. Lines with a blunt end represent negative regulation from the 
metabolite acting on the step in the pathway. 
 
Strikingly, metabolomic data revealed that arginine metabolism was perturbed. Even in media 
where arginine was supplemented the split cluster mutant had close to no intracellular arginine, 
similar to the levels found in the wild type and split cluster in minimal media (Figure 4.34). We do 
not see an upregulation of arginine-rich proteins which suggests the arginine is not being 
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sequestered away by translation. This leaves two other possibilities, that the split cluster mutant is 
exporting/not importing arginine or they are consuming it an increased rate. As we are able to 
restore the wild type phenotype with the supplementation the latter seems more likely. In bacteria 
there are many arginine catabolic pathways, three main ones include: the arginase pathway, the 
ADI pathway, and the arginine succinyltransferase pathway, reviewed in (C.-D. Lu 2006). The 
arginase pathway has arginine catabolized into ornithine by arginase, releasing urea, ornithine is 
then covered to glutamate by ornithine aminotransferase which can be converted further into 2-
ketoglutarate resulting in a source of carbon and nitrogen for the cell (Gardan, Rapoport, and 
Débarbouillé 1995). In bacteria where urease is present, urea may also act as a nitrogen source. 
The arginine deiminase (ADI) pathway creates energy, carbon and nitrogen sources for the cell. 
Arginine deiminase converts arginine to both L-citrulline and ammonia, the former then being 
broken down further into ornithine and carbamoyl phosphate (Broman et al. 1978). Carbamoyl 
phosphate can be used to produce pyrimidines or is further broken down into ammonia, CO2 and 
forms ATP by carbamate kinase. It is thought that this pathway is a main supplier of ATP during 
anaerobic conditions (Noens and Lolkema 2017). The arginine succinyltransferase pathway also 
utilizes arginine and ornithine as a carbon and nitrogen source resulting in 2 molecules of ammonia 
and 2 glutamate and is induced during carbon starvation conditions (Cunin et al. 1986). This 
pathway is mainly found in proteobacteria (Stalon et al. 1987) and has been shown to be the main 
cause of arginine degradation in E. coli (Schneider, Kiupakis, and Reitzer 1998). In some species, 
this catabolic pathway allows arginine to be the sole carbon or nitrogen source for the cell (Cunin 
et al. 1986). Based on metabolite changes in our split cluster samples we saw that citruline and 
orinithine pool levels were higher, and in the presence of arginine ATP levels were much higher 
(Figure 4.31). This would suggest that the arginine diminase pathway is currently active however 
this pathway has so far not been detected in the B. subtilis W168 strain that we use.  
 
The proteomic dataset revealed that protein levels for the arginine repressor (ArgR) were lower in 
the split cluster mutant. ArgR repressor activity is regulated by the concentration of arginine in the 
cell and controls 423 genes in E .coli (Cho et al. 2011). When arginine is present in the cell, ArgR 
both activates arginine metabolism genes and represses biosynthetic genes (Czaplewski et al. 
1992). ArgR is auto-regulated, therefore at high levels of cellular arginine ArgR levels are normally 
low and vice versa (Tian et al. 1994). Given the low levels of arginine in the mutant, one would 
expect high levels of ArgR in the split cluster. however, this is not the case. (Table 4.5). Lower 
levels ArgR would result in less repression of arginine catabolism genes and could explain while 
even in low-arginine conditions we see metabolic evidence that catabolism is occurring. Notably, 
knockouts of ArgR were shown to result in reduced growth rates (Sander et al. 2019); however, 
this is attributed to the many other targets AgrR has. The work of Sander et al. 2019 revealed that 
deletion or repression of ArgR activity non-uniformly affected the genes in the arginine metabolism 
pathway with ArgA and ArgI being most affected. ArgI catalyzes the branch point reaction between 
arginine and pyrimidine biosynthesis and thereby reduce the available metabolites for the 
pyrimidine pathway. The proteomics method was unable to detect peptides from the core arginine 
metabolism genes; therefore, we cannot determine if this is occurring in our system. However, we 
do see an increase in citrulline which would be expected if repression of ArgI is relieved by lower 
repressor concentrations. (Sander et al. 2019) were able to partially restore the growth rate by 
supplying pyrimidine intermediate orotate and the precursor aspartate. In agreement with their 
results we see large drops in carbamoyl aspartate and orotic acid (Figure 4.31) but we do not see 
significant reductions in UTP levels as they did. In their work however the drop in UTP levels was 
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not as large as the other two metabolites suggesting that their reduction mainly has consequences 
on the metabolites prior to UTP (namely in our case UMP). The reduction in UMP levels in the 
split cluster mutant may explain why in species which do not localize the gene cluster, the UMP 
salvaging enzyme uridine kinase is present.  
 
Glutamate is the precursor for arginine biosynthesis but acts as the end product of arginine 
catabolism and can enter the TCA cycle through glutamine dehydrogenase producing α-
ketoglutarate. Expression of glutamate dehydrogenases is normally activated by arginine (not 
glutamate) and inhibited by citrate. Arginine also represses glutamate synthesis. Through this 
control P. aeruginosa can control the flow of glutamate into the tricarboxylic acid cycle to prevent 
the futile and energy consuming cycle in ammonium assimilation and glutamate biosynthesis when 
arginine serves as a source of carbon and nitrogen. While neither glutamate nor glutamate 
dehydrogenase changes in the split cluster mutant we see an increase in α-ketoglutarate despite a 
reduction in isocitrate dehydrogenase (Figure 4.31). Glutamate dehydrogenase is inhibited by 
citrate, which we were unable to measure, however citrate synthase was shown to be upregulated 
suggesting that citrate synthesis is up. (Table 4.5). This could suggest that arginine is being broken 
down into α-ketoglutarate resulting either in the observed increase in ATP or a futile cycle, wasting 
the resources of the cell and resulting in the slow growth phenotype. To further understand what is 
occurring the split cluster, we would propose supplying labelled arginine to the media to determine 
exactly which metabolic products are using arginine. This may help us understand what is 
triggering arginine metabolism if it is in fact occurring. Canonically, arginine catabolism is 
triggered during high intracellular levels of arginine (Gardan, Rapoport, and Débarbouillé 1995). 
However it has already been found to be triggered by ornithine, citruline and proline, and mediated 
through σL (Gardan, Rapoport, and Débarbouillé 1995). The former two metabolites are present in 
higher levels in the split cluster (Figure 4.31), and presumably citrulline levels could be increased 
if flux from carbamoyl phosphate is directed to arginine biosynthesis due to negative regulation of 
pyrBI by over accumulating UDP. 
 
Taken together, with our incomplete metabolic and proteomic datasets, it is hard to rule out our 
hypothesis as to why we observe slow growth in the split cluster mutant. Parsimoniously, the culprit 
appears to be limited arginine levels in the cell caused by unregulated arginine catabolism, however 
the link as to why the removal of co-localization of the TCE cluster would cause this remains 
elusive. Given the tight regulatory links between pyrimidines and arginine biosynthesis (Sander et 
al. 2019), pyrH or one its substrates seems like the likely cause. Therefore, we propose a model 
based on the information we have generated so far, that delocalized pyrH, from pyrimidine 
consumers (uppS, cdsA, dxr) result in a disruption of de novo pyrimidine biosynthesis, namely 
UMP, carbamoyl aspartic acid and potentially UDP by directing flux of carbamoyl phosphate 
towards arginine biosynthesis, as evidenced by the higher levels of citrulline (Figure 5.2). This 
potentially occurs through an unknown mechanism that downregulates the arginine repressor 
independent of arginine concentration resulting in the induction of arginine catabolism.  Arginine 
is then catabolized resulting in either more citrulline or into the carbon cycle producing ATP. 
Subsequently, this induces a state of arginine starvation in arginine lacking media, as any new 
synthesized arginine is metabolised (Figure 5.2). Given the ever-present context of the ribosome-
associated genes we must ask if the coordination of pyrimidine metabolites through pyrH and its 
consumers is related to growth rate. Our analysis of transcription over the TCE cluster does not 
preclude the existence of a pyrH-frr operon therefore UDP production could be statistically linked 
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with the rate of translation. Further support is that PyrH is activated by GTP levels. GTP has been 
shown to control ribosomal promoter activity in a growth dependant manner (Gaal et al. 1997) 
thereby linking growth rate with the production of UDP. UDP could then be used to modulate the 
synthesis of cell envelope genes and the link between carbon metabolism, UDP-glucose modules 
and cell division (Hill et al. 2013). This leaves us with the following questions (Figure 5.2): through 
what mechanism is argR downregulated, where is the arginine going, is the relationship between 
GTP levels and PyrH important for cell growth, and are there effects on the cell envelope that our 
assays were not able to detect? One possible avenue is to test how the delocalization functions in 
an argR depleted background. argR is unessential and can be deleted, with growth rate defects in 
certain conditions, however if it is the sole cause of the slow growth phenotype, we should see no 
difference between a split and non-split mutant.  

In the wild type PyrH is responsible for the 
production of UDP which is then used in many 
aspects of the cell, one being the cell envelope, which 
has many important enzymes co-localized with pyrH. 
If the TCE cluster is split, thereby separating the cell 
envelope pyrimidine consumers from the producer 
we see effects in pyrimidine metabolism (red). We 
also see argR downregulation resulting in the 
activation of inappropriate arginine catabolism 
resulting in arginine starvation in arginine poor 
conditions. We postulate that the dysregulation of 
pyrimidines is caused by the separation of the 
consumers from the producer and through an 
unknown mechanism, downregulates argR. 
  
Our split cluster mutant is built so that that the 
latter four genes (upps, cdsA, dxr and rasP) are 
translocated to the amyE locus (Figure 4.25). We 
provided every effort to try and control collateral 
effects from this manipulation, for example 

maintaining a similar level of expression of the downstream essential genes (proS and polC) 
(Figure 4.28), and ensuring the slow growth phenotype in minimal media was not caused by the 
artificial expression either uppS or proS (Figure 4.28). However, we should understand the 
limitations of our observations. Firstly, the new locus of amyE is considerably closer to the origin 
of replication which means that at different growth rates there will be gene dosage effects (Soler-
Bistué, Timmermans, and Mazel 2017) resulting in increased expression of these four genes at high 
growth rates. B. subtilis requires 40-50 minutes to replicate its chromosome (Skarstad and 
Katayama 2013) and therefore would not need to undergo multifork replication in MOPS media 
(multifork replication normally occurs once the doubling time reaches 35 minutes in rich media) 
therefore we should only observe these effects in the LB media condition. However, as gene dosage 
effects are predicted to be relevant in ribosome-growth rate regulation as the ribosome supercluster 
is also located near the origin (Soler-Bistué, Timmermans, and Mazel 2017) we suggest further 
controls placing the latter four genes at other loci in the genome to remove this as a factor. Another 
limitation is we currently observe only the effects caused by a split of the cluster occurring between 

67 - Figure 5.2 - Model of TCE cluster 
delocalization on growth in minimal media 



Discussions and Conclusions  

 
 

128 
 

 

ffr and uppS. This location was chosen for several reasons. Firstly, we wanted to understand if this 
cluster connected surface and volume expansion and between these two genes marks the 
demarcation between the three translation associated genes and the cell envelope genes. Secondly, 
as we aimed to understand the fitness benefit of the co-localization of the eight cluster genes, by 
moving half of the cluster, this results in the highest combination of genes being separated from 
each other which we hoped would have the largest impact on fitness. Finally uppS is the first gene 
in the cluster which has levels of expression mimicable by the inducible promoters currently 
available in B.subtilis (Radeck et al. 2013). In our attempts to clone the promoter of rpsB in 
B.subtilis we found it was lethal in our cloning system, most likely due to the high affinity promoter 
in multiple copies titrating RNA polymerase away from the essential transcription required in the 
cell. If these challenges could be overcome, based on the data we presented highlighting the 
perturbation of pyrimidine metabolism in the split cluster (Figure 4.31) we would suggest that 
further splits between pyrH and frr or uppS and cdsA, thereby still separating the pyrimidine 
producer from the majority of the consumers would result in a similar phenotype. We believe that 
splits that maintain context between pyrH and the pyrimidine consumers would not result in the 
slow growth phenotype in minimal media. This is supported as the minimal translocation of rasP 
(Figure 4.22) did not result in any noticeable differences in the growth rate in various media 
conditions.  

5.4 Conclusions 
The aim of this study was to search for and analyse conserved genomic signals which could indicate 
a method of synchronization between cell surface and volume growth required when adapting to 
different growth rates. To this end we developed the web-tool GenCoDB, a platform that facilitates 
quantitative and statistical analysis of bacterial gene neighbourhoods. We developed this tool to 
handle the rapidly expanding numbers of bacterial genomes. It is designed to reduce sampling bias 
present in bacterial genome datasets and calculate the significance of observed gene clusters 
(Chapters 2.1 and 2.2). The webtool comes with three different forms of user interfaces 
(neighbourhood, tree and genome view) enabling diverse types of analyses and research questions 
(Chapter 2.3). Using the data from GenCoDB we analysed the evolution of gene neighbourhoods. 
We found, in agreement with previous work, the enrichment of operons in conserved gene clusters 
(Chapter 3.3). However, careful evolutionary analysis revealed their role as a selective force was 
weak and was insufficient to explain gene cluster maintenance alone. We proposed a model 
suggesting that operons are a consequence of gene clusters and not cause suggesting observed gene 
clusters are present for reasons beyond the synchrony of their gene products (Chapter 3.3). We 
applied both GenCoDB and our new knowledge of gene cluster evolution to the search for a 
genomic context involved in the synchronization of surface and volume growth. The genomic co-
localisation of cell envelope synthesis genes with ribosomal-associated genes was rare with only 
one non-canonical candidate being found (Chapter 4.1). The TCE cluster was identified to be a 
well conserved gene cluster found mainly in proteobacteria, firmicutes and actinobacteria and 
consisting of mainly of essential rate-limiting enzymes (Chapter 4.2). In agreement with our 
observations from Chapter 3, we found that polycistronic transcripts did not link the expression 
translation and cell envelope genes. However, subsequent delocalization of the gene cluster in B. 
subtilis suggested that cluster localization is essential for appropriate pyrimidine biosynthesis and 
utilization (Chapters 4.8 to 4.11). Future work can continue to unravel the selective pressures 
maintaining the TCE cluster and its possible role in synchronizing volume and surface growth.
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6.1 Lab-Bench methods 
Chemicals and enzymes 
All chemicals, enzymes and enzyme buffers used were purchased from Carl Roth GmbH & Co. 
KG (Karlsruhe, Germany), Thermo Scientific (Waltham, Massachusetts), Sigma- Aldrich (Saint 
Louis, Missouri), AppliChem (Chicago, Illinois), New England Biolabs (NEB) (Ipswich, 
Massachusetts) or BD (Franklin Lakes, New Jersey), if not mentioned otherwise.  
 
Strains and growth conditions 
Bacillus subtilis and Escherichia coli were routinely grown in Luria-Bertani (LB) medium (1% 
(w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl) at 37°C with agitation (250rpm). Solid 
media additionally contained 1.5% (w/v) agar. All strains used are shown in Table 8.1. Selective 
media for B. subtilis contained spectinomycin (100μg/ml), chloramphenicol (5μg/ml), 
erythromycin in combination with lincomycin (1μg/ml: 25μg/ml for mlsr). Selective media for E. 
coli contained IPTG (0.1mM) and Xgal (40μg/ml) with either ampicillin (100μg/ml) or 
spectinomycin (50μg/ml). For the growth assays cells were grown overnight in 3ml and day 
cultured in 10ml (1:250 dilution from the overnight culture) in MOPS minimal media (10% 10X 
MOPS mixture (Teknova, Hollister, CA), 1% K2HPO4, 88% sterile H2O). MOPS media was either 
supplemented with only L-Tryptophan (0.25μg/ml) or a mixture of L-Methionine, L-Histidine, L-
Arginine, L-Proline, L-Threonine and L-Tryptophan at the same concentration. When not 
specified, glucose was added as the carbon source (1.8% w/v). Other carbon sources included: 
xylose (1% w/v), fructose (1.8% w/v), glycerol (1.6% w/v), ribose (0.8% w/v) and succinate (1% 
w/v). 
 
Creation of Level 0 parts 
The majority of plasmids we generated using a modular cloning method (MoClo) (Weber et al. 
2011). All plasmids generated using this method and used in this study can be found in tables 8.2-
8.5.  Table 8.6 that indicates the primers and the templates utilized to generate the part inserts (by 
PCR-amplification or oligonucleotides annealing), together with the MoClo destination vectors 
used for each part. The constructs that required to be cured for BpiI and BsaI restriction sites are 
also indicated with multiple forward and reverse primers. The cure of undesired BpiI and BsaI sites 
was performed according to Weber et al. To generate the genetic parts present in the library we 
used PCR-amplification or annealing of DNA oligonucleotides. In the case of PCR-amplification, 
the PCR products were verified by electrophoresis with 1, or 2% agarose gels and purified by gel 
extraction or column purification, following the protocols of the manufacturer. The purified 
product was used to clone the insert into the appropriate MoClo destination vector, following the 
procedure described in a later section. In case of annealing of DNA oligonucleotides, the reaction 
of annealing and the phosphorylation of the 5'OH was performed as follows: 2 μL of 100 μM 
oligonucleotides stock were mixed with 2 μL 10X T4 DNA ligase buffer, 1 μL of T4 
Polynucleotide Kinase and 15 μL of sterile water. The reaction mixture was incubated at 37 °C for 
1 hour and at 65 °C for 20 minutes to heat inactivate the T4 PNK. An aliquot of reaction mix was 
then used to clone the insert into the appropriate MoClo destination vector. 
 
Modular Cloning (MoClo) reactions (Golden gate assembly).  
All constructs were assembled in MoClo, using linear DNA fragments (PCR-amplificated 
products, or phosphorylated annealed oligonucleotides) or the MoClo-encoded parts listed in Table 
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8.2 (level 0 parts), Table 8.3 (level 1 parts), Table 8.3 (level M parts). The parts each vector is 
constructed on are displayed as a combination of ID numbers which reference a part in another 
table (e.g Level M parts (TABLE X) references level 1 parts (TABLE X). Each table indicates the 
list of the parts used to generate the constructs and a brief description of the constructs. All MoClo 
reactions were set up using 15 fmol of each DNA part (PCR product or plasmid), 1μL of the 
required restriction enzyme (BsaI or BpiI), 1 μL of T4DNA ligase (5 U/μL) and 2 μL of Thermo 
ligase buffer (10x), in a final reaction volume of 20 μL. The reaction was incubated in a 
thermocycler for 5 h at 37 °C, 10 min at 50 °C and 10 min at 80 °C. 2 μL of the reaction mixture 
was then added to 50 μL chemically competent E. coli DH5α cells (E. coli DH5α λpir cells in case 
of CRIMoClo constructs), incubated for 30 min on ice and transformed by heat shock. 950μL of 
liquid LB was then added to the transformation, and the cells were recovered for 45 min at 37 °C. 
40 μL of the transformation mix was plated on selective LB-IPTG-X-Gal plates and incubated 
overnight at 37 °C. The emerging colonies were tested by colony PCR and restriction digestion.  
 
Creation of other plasmids 
Plasmids that were generated not using the MoClo method can be found in Table X. To create the  
CRISPRi we followed the protocol from (Peters et al. 2016). sgRNA sequences for the TCE genes 
were when possible also taken from (Peters et al. 2016) as they were experimentally tested and 
verified. the sgRNA for rasP was designed using Bowtie, and the highest scoring 19nt (rasP -based) 
sequence which had only one alignment was chosen, with a preference to those at the 5’ end of the 
gene.  Sequences can be found in table 8.6. These primers were used with GF0561 to inverse PCR 
amplify pJMP2 and then the plasmid was relegated to later be transformed.  
 
Transformation of E. coli strains 
E. coli DH5α cells were inoculated in 125ml SOB from a 5μl overnight culture. The culture was 
then incubated for 15-17 hours at 22C with shaking (120rpm), until an OD of 0.5 was reached. The 
cultures were then put on ice for 10 minutes, spun at 2500xg for 10 minutes at 4C. Cells were then 
re-suspended in 40ml of chilled TB. Put on ice again and process repeated, this time re-suspended 
in 10ml of TB. Finally, 0.7ml of DMSO added and put on ice for 10 minutes. Cells were then 
aliquoted in Eppendorf tubes (into 100μl), and snap frozen in liquid nitrogen and stored at -80C. 
Transformations of the E. coli DH5α strains were carried out according to the standard protocol. 
The competent cells were defrosted on ice for 20 minutes, DNA added (5μl ligation mixture per 
50μl cells) and mixed, left for 30 minutes before 50 second heat shock at 42°C. After a 2-minute 
cooling period on ice, LB was added to give a total volume of 1ml and then placed into a shaking 
incubator at 37°C for one and a half hours. Cells were then plated onto LB agar plates with selective 
antibiotics and IPTG / Xgal and incubated at 37°C overnight. Spectinomycin resistance plates used 
for level 0 and level M and ampicillin resistance plates used for level 1.  
  
Transformation of B. subtilis strains 
Plasmids for B. subtilis transformation were prepared from the E. coli overnight cultures containing 
the desired plasmid and purified using the Omega E.Z.N.A. plasmid DNA mini kit. The plasmid 
was linearised. This linearized plasmid was used for transformation without further purification. A 
day before the transformation B. subtilis was streaked out on a LB agar plate to create a bacterial 
lawn. The incubation was done overnight at 30C. In the morning Medium 1 and Medium 2 were 
prepared. Medium 1 was inoculated with the number of bacteria on an agar plate that was needed 
to reach an OD of 0.2. This solution was incubated for 3 hours at 37 C while shaking. Afterwards 
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10 ml pre-warmed medium 2 was added and the culture for another 2 hours incubated. After that 
time 400 μl of the culture was transferred to a test tube and 5 ul linearized DNA was added. Cells 
were then plated onto LB agar plates with the appropriate antibiotic. 
 
Basic Salts    Medium 1    Medium 2 
2.0g/l (NH4)2SO4   10ml Basic Salts   10ml Basic Salts 
14.0g/l K2HPO4   120μl 40%(w/v) Glucose  120μl 40%(w/v) Glucose 
6.0g/l KH2PO4   100μl 2%(w/v) Tryptophan  60μl 1M MgSO4 x 7H2O 
1.0g/l Na3-citrate x 2H20  60μl 1M MgSO4 x 7H2O 
0.2g/l MgSO4 x 7H2O  10μl 20%(w/v) Casaminoacids 

5μl 2.2mg/ml Ferric-ammoniumcitrate 
 
RNA purification 
Bacillus subtilis cells (20ml) were harvested at an optical density (OD600) between 0.3 and 0.5 via 
centrifugation (10 minutes, 5000rpm, room temperature) in the specified media. Supernatant was 
removed and 1.5mls of TRIzol Reagent (Ambion) was added. The resuspended cells were 
combined with 0.1 zirconia beads and lysed in a bead beater (3 cycles, 6.0 m/s, time 40seconds, 
5min pause). RNA isolation was performed using the standard TRIzol reagent protocol. 
 
5’RACE 
~0.5ug RNA was used to generate cDNA using the standard NEB reverse transcriptase protocol. 
A cocktail mixture of gene specific primers was used to prime the reverse transcriptase. The cDNA 
was then purified and then A-tailed using the standard NEB TdT protocol. After another 
purification step the cDNA was amplified using an A-tail anchor primer (5’ 
GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTC 3’) and a gene specific nested 
primer (94C, 15s denaturation, 50C 30s annealing, 72C 40s elongation, x35). The PCR product 
was purified and another nested PCR was performed using the adapter primer (5’ 
GACCACGCGTATCGATGTCGAC 3’) and another gene specific nested primer (94C, 15s 
denaturation, 59C 30s annealing, 72C 40s elongation, x35). This PCR product was visualized on a 
gel, gel extracted if muliple bands were present, and send for sequencing using the nested primer. 
All 50ul PCR reaction included 1.25ul of DMSO to reduce secondary structures. 
 
qPCR  
RT-qPCR was performed with the Luna Universal One-Step RT-qPCR Kit (New England Biolabs) 
on extracted RNA. 1 μl of 10-fold diluted RNA was added to 4 μl of rtPCR mix and subjected to a 
reverse transcription step at 55°C and 45 cycles of PCR (10) seconds at 95°C and 30 seconds at 
60°C). The average CT value of three technical replicates of three biological replicates for each 
sample was used in ΔΔCt relative expression analysis (Livak and Schmittgen, 2001). The reference 
genes were constitutively expressed genes recA (BSU16940) and gyrB (BSU00060) (da Silva et 
al. 2016; Crawford et al. 2014; Gomes et al. 2018; Reiter, Kolstø, and Piehler 2011). Primer 
sequences can be found in table 8.6. In figure 6.1 we show using our two reference genes that the 
10-fold dilution of all six RNA samples fell in the linear detection range for qPCR and that no 
dilution or a dilution greater than 10,000 would have resulted in some of the samples being 
incorrectly measured. 
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68 - Figure 6.1 – qPCR dilution series for reference genes 

Each dot represents the average of 3 technical replicates at a different dilution of the RNA sample. A dilution 
factor of 0 represents no dilution of the extracted RNA. CT is Cycle Threshold. The linear regression was 
fit only to the points with a log 10 dilution factor of 1 – 3 as some samples fall out of the linear range when 
not diluted or diluted too much. The equation for the slope and R2 value can be found for each line in the 
legend.  
 
Plate Reader assays 
Cells were grown overnight in 3ml culture of either LB or MOPS minimal media. A 10ml day 
culture of MOPS minimal media was inoculated with 40μl of the overnight culture to give a 1:250 
dilution. This was grown to an OD of 0.1-0.2 and then diluted to give the same OD of 0.05. 100μl 
of these dilutions were added to the 96-well plate (Grainer 655097), for control purposes some 
wells were also filled with MOPS minimal media. For the induction with xylose or bacitracin, 5μl 
of water and xylose or bacitracin at varying concentrations were added to the samples. The final 
xylose concentrations were 0-2% and the final bacitracin concentrations 0-100μg/μl. Upon 
induction the plate reading began, shaking at 37°C and the OD of each well was measured in real 
time every 10 minutes for hours. As a background control, wells were filled with MOPS minimal 
media only. The plate was inserted into the plate reader (Victor2). The analysis, calculations and 
visual representations were made using MATLAB. The average OD600 values of the control wells 
(containing only minimal media) were averaged and used as a blank, in order to remove 
background noise from the reads. 
 
Isolation of genomic DNA from B. subtilis 
For isolation of genomic DNA from Bacillus subtilis a 3 ml LB culture was done overnight at 37C. 
In the morning 10 ml LB medium were inoculated from the overnight culture (1000-fold dilution). 
At OD600 of 0.8 – 1.0 the culture was centrifuged to harvest the cells (10 min, 5000 rpm, RT). The 
pellet was resuspended in 400μl TEN and transferred into 2 ml eppendorf cups. Then we added 20 
μl lysozyme and incubate for 20 min at 37ÅãC. After the incubation 2μl RNase A was added and 
incubated for another 3 min at 65C. In the next step 40 μl SDS, a small amount (covering a tip of 
a small spatula) of proteinase K and 550 μl TEN* were added and mixed and Incubated for 2 hours 
at 60C. Then 900 μl of phenol (equilibrated with TE buffer, pH 7,5-8.0) were added and the solution 
mixed by inverting the tube. In the next step, the tubes were centrifuged (5 min, 130 000 rpm, RT) 
and the upper phase was transferred into a new 1.5 ml eppendorf cup. The extraction was repeated 
once with phenol and twice with chloroform: isoamyl alcohol (24:1). The aqueous phase was then 
transferred to 10 ml -20C cold ethanol in a test tube / falcon tube. The precipitated DNA can then 
be coiled up with a bent tip of 
a Pasteur pipettes. DNA was air tried and dissolved in TEN* or ddH2O overnight at 4C. 
 
Microscopy 
To prepare slides for microscopy experiments cells were cultured overnight and freshly inoculated 
in 3ml media for day culture. At an OD600 of ~0.3 -0.5 cells were harvested. 0.5 ml of the cell 
culture was shortly spun down and 200 μl of the supernatant removed. The Cells were placed on 
1% MOPS media agar pads. Viewed under a phase microscope. The 514nm laser was used to 
visualize YFP activity. Cell counting, measuring and loci tracking were performed in oufti 
(Paintdakhi et al. 2016).  
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6.2 Bioinformatics 
Transcriptomic dataset analysis 
RNAseq data were downloaded from the NCBI SRA archive, all datasets used can be found in 
table 8.9. The raw RNA-seq data were processed with fastq-mcf to remove sequencing adapters 
and primers (Aronesty 2011). The reads were quality trimmed to a Phred score of >20 using 
SolexaQA v3.1.4 (Cox, Peterson, and Biggs 2010). Analysis of the general quality parameters of 
the raw and processed data was done using FastQC v0.11.5 (“Babraham Bioinformatics - FastQC 
A Quality Control Tool for High Throughput Sequence Data” n.d.). The reads were mapped to the 
respective reference genome using Bowtie 2 (version 2.2.6) with --sensitive and --end-to-end 
(Langmead and Salzberg 2012). Where possible paired end reads were used. The reads were then 
assigned to the gene features from the respective gff files with HTSeq-count using union mode on 
exon features (Anders, Pyl, and Huber 2014; Li et al. 2009). Mapping were visualized in the 
Integrative Genome viewer (Thorvaldsdóttir, Robinson, and Mesirov 2013).  Correlation analysis 
was performed with R. Conservation analysis was performed with a personalized python script.  
 
Data collection 
Flat files were downloaded from OrthoDB v10 (Kriventseva et al. 2015). An archived version of 
the UniProt ID mapping (Jan 2019) to match the data from OrthoDB . GFF files were acquired 
from NCBI as of 1 Jan 2019.16S rRNA sequences of the included species were retrieved from 
SILVA resource (Quast et al. 2013). Taxonomy was used as defined by NCBI taxonomy. Further 
analysis was performed on the strains Bacillus subtilis W168, Escherichia Coli K12 and 
Mycobacterium tuberculosis H37Rv. Mapping to orthoDB equivalents was performed by taking 
the top BlastP hit (v2.7.1 with default parameters) to Bacillus subtilis subsp. natto BEST195 
(645657), Escherichia coli TW10509 (656449) and Mycobacterium tuberculosis CDC1551 
(83331) respectively (Camacho et al. 2009). Operon membership was sourced from DOOR 
(Database of Prokaryotic Operons) (v2.0) (Mao et al. 2009). Essentialness of genes were defined 
by the DEG database (v15.2) (Luo et al. 2014). Protein-protein interactions were retrieved from 
the STRING database (v10.5) (Snel et al. 2000). For the analysis of genomic location of clusters, 
the origin of replication locations were acquired from OriDB (v2.1.0) (Siow et al. 2012). 16S rRNA 
sequences were aligned using Clustal Omega (v1.2.3) using the default parameters (Sievers et al. 
2011). A tree was built on this alignment using Fasttree (v2.1.10) with the default parameters 
(Price, Dehal, and Arkin 2010). Pairwise patristic distances of each species in the tree was 
calculated by PATRISTIC (v1.0) (Fourment and Gibbs 2006). To discriminate between which 
ortholog groups would be classified as the conserved synteny at each taxonomic level the most 
conserved groups surrounding the seed at each position were identified. If the positional 
conservation of that group is higher than the threshold it was considered part of a part of the 
conserved synteny. This process radiated out from the seed gene until there are no more 
significantly conserved groups. In the case a middle position did not have a group above the 
significance threshold it is displayed as a blank.  

6.3 Omics 
DNA sequencing 
Several split cluster mutant strains were allowed to grow in MOPS media without amino 
supplementation. Cultures which survived and reached stationary phase were inoculated into the 
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same media conditions and tested for wild type growth rate. One candidate was chosen was 
streaked out for single colonies. Reinoculation and DNA extraction of the single colony was 
performed as described above. Extracted DNA was sent for library preparation and sequencing to 
AG Becker. The raw data sequencing data was treated the same as the RNAseq data sets. SNPs 
were detected using the Genome Analysis Toolkit (McKenna et al. 2010) and their effect on 
genes was calculated by SNPEff (Cingolani et al. 2012). 
 
Metabolomics 
Cultures of wild type and split cluster were inoculated into MOPS media with amino 
supplementation. They were allowed to grow until an optical density (OD 600) of 0.3 and they 
were spun down and washed with MOPS media (no amino acid supplementation). The cultures 
were divided and amino acids were re-added to one half. The cultures were then allowed to regrow 
to and OD of 0.5. For metabolomics 2 mL culture aliquots were vacuum-filtered on a 0.45 µm pore 
size filter (HVLP02500, Merck Millipore). Filters were immediately transferred into 40:40:20 (v-
%) acetonitrile/methanol/water at −20 °C for extraction. Extracts were centrifuged for 15 min at 
11,000 × g at −9 °C. Centrifuged extracts were mixed with 13C-labeled internal standard. 
Chromatographic separations were performed on an Agilent 1290 Infinity II LC System (Agilent 
Technologies) equipped with an Acquity UPLC BEH Amide column (2.1 × 30 mm, particle size 
1.8 µm, Waters) for acidic conditions and an iHilic-Fusion (P) HPLC column (2.1 × 50 mm, 
particle size 5 µm, Hilicon) for basic conditions. We were applying the following binary gradients 
at a flow rate of 400 µl min−1: acidic condition) 0–1.3 min: isocratic 10% A (water/formic acid, 
99.9/0.1 (v/v), 10 mM ammonium formate), 90% B (acetonitrile/formic acid, 99.9/0.1 (v/v)); 1.3–
1.5 min linear from 90 to 40% B; 1.5–1.7 min linear from 40 to 90% B, 1.7–2 min isocratic 90% 
B. Basic condition) 0–1.3 min: isocratic 10% A (water/formic acid, 99.8/0.2 (v/v), 10 mM 
ammonium carbonate), 90% B (acetonitrile); 1.3–1.5 min linear from 90 to 40% B; 1.5–1.7 min 
linear from 40 to 90% B, 1.7–2 min isocratic 90% B. The injection volume was 3.0 µl (full loop 
injection). Eluting compounds were detected using an Agilent 6495 triple quadrupole mass 
spectrometer (Agilent Technologies) equipped with an Agilent Jet Stream electrospray ion source 
in positive and negative ion mode. Source gas temperature was set to 200 °C, with 14 L min−1 
drying gas and a nebulizer pressure of 24 psi. Sheath gas temperature was set to 300 °C and flow 
to 11 L min−1. Electrospray nozzle and capillary voltages were set to 500 and 2500 V, 
respectively. Metabolites were identified by multiple reaction monitoring (MRM), and MRM 
parameters were optimized and validated with authentic standards44. Metabolites were measured 
in 12C− and 13C isoforms, and data were analyzed with Metabolanalyst (Chong, Wishart, and 
Xia 2019).  
 
Proteomics 
Test-tube cultivations on MOPS media with amino acid supplementation were performed as 
described above for wild type and split cluster mutant strains. Cells were grown to an optical 
density (OD600) of 0.5- and 2-mL culture aliquots were transferred into 2 mL reaction tubes and 
washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL, 1.5 KH2PO4, 8.1 Na2HPO4). 
Cell pellets were resuspended in 300 μL of lysis buffer containing 100 mM ammonium bicarbonate, 
0.5% sodium laroyl sarcosinate (SLS), and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells 
were lysed by 5 min incubation at 95 °C and ultrasonication for 10 s (Vial Tweeter, Hielscher). 
Cells were again incubated for 30 min at 90 °C followed by alkylation with 10 mM iodoacetamide 
for 30 min at 25 °C. To clear the cell lysate, samples were centrifuged for 10 min at 15 000 rpm, 
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and the supernatant was transferred into a new tube. Proteins in the cell lysates were digested with 
1 μg of trypsin (Promega) overnight at 30 °C. The analysis of peptides was performed by liquid 
chromatography–mass spectrometry, carried out on a Q-Exactive Plus instrument connected to an 
Ultimate 3000 RSLC Nano with a Prowflow upgrade and a nanospray flex ion source (Thermo 
Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 μm × 42 cm) 
packed in-house with C18 resin (2.4 μm, Dr. Maisch GmbH, Germany). The following separating 
gradient was used: 98% solvent A (0.15% formic acid) and 2% solvent B (99.85 acetonitrile, 0.15% 
formic acid) to 25% solvent B over 105 min and to 35% solvent B for additional 35 min at a flow 
rate of 300 nL min–1. The data acquisition mode was set to obtain one high resolution MS scan at 
a resolution of 70 000 full width at half-maximum (at m/z 200) followed by MS/MS scans of the 
10 most intense ions. To increase the efficiency of the MS/MS attempts, the charged state screening 
modus was enabled to exclude unassigned and singly charged ions. The dynamic exclusion 
duration was set to 30 s. The ion accumulation time was set to 50 ms for MS and 50 ms at 17 500 
resolution for MS/MS. The automatic gain control was set to 3 × 106 for MS survey scans and 1 × 
105 for MS/MS scans. Label-free quantification (LFQ) of the data was performed using Progenesis 
QIP (Waters), and for MS/MS searches of aligned peptide features MASCOT (v2.5, Matrix 
Science) was used. The following search parameters were used: full tryptic search with two missed 
cleavage sites, 10 ppm MS1 and 0.02 Da fragment ion tolerance. Carbamidomethylation (C) as 
fixed, oxidation (M), and deamidation (N,Q) as variable modification. Progenesis outputs were 
further processed with SafeQuant. 
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8.1 Bacterial strains, plasmids and primers used in this study 
 

B.subtilis strains 

ID Genotype Resistence Comment 
GFB0058 W168 uppsUTR::cat CmR Readthrough Blocked 
GFB0097 W168  amyE::PDG380+pXylA+uppS->rasP CmR Operon Analysis 
GFB0113 W168  amyE::PDG380+pXylA+uppS->rasP upps->rasp::cat 

PxylA-proS 
CmR Split Cluster 

GFB0057 W168 lacA::dCas9 erm  ErmR Operon Analysis 
GFB0074 W168  lacA::dCas9 erm AmyE::(rpsB-sgRNA cat) ErmR/CmR Operon Analysis 
GFB0075 W168  lacA::dCas9 erm AmyE::(tsf-sgRNA cat) ErmR/CmR Operon Analysis 
GFB0076 W168  lacA::dCas9 erm AmyE::(pyrH-sgRNA cat) ErmR/CmR Operon Analysis 
GFB0077 W168  lacA::dCas9 AmyE::(frr sgRNA cat) ErmR/CmR Operon Analysis 
GFB0078 W168  lacA::dCas9 AmyE::(uppS sgRNA cat) ErmR/CmR Operon Analysis 
GFB0079 W168  lacA::dCas9 AmyE::(cdsA sgRNA cat) ErmR/CmR Operon Analysis 
GFB0080 W168  lacA::dCas9 AmyE::(dxr sgRNA cat) ErmR/CmR Operon Analysis 
GFB0081 W168  lacA::dCas9 AmyE::(rasP sgRNA cat) ErmR/CmR Operon Analysis 
GFB0101 W168 polC-(tet array cat PxylA-tetR-YFP) ErmR/CmR Transertion 
GFB0104 W168 sacA:::cat-Pupps20-lux CmR Pupps Promoter Fusion  
GFB0105 W168 sacA:::cat-Pupps80-lux CmR Pupps Promoter Fusion  
GFB0106 W168 sacA:::cat-Pupps180-lux CmR Pupps Promoter Fusion  
GFB0107 W168 sacA:::cat-Pupps120-lux CmR Pupps Promoter Fusion  
GFB0108 W168 sacA:::cat-Pupps150-lux CmR Pupps Promoter Fusion  
GFB0110 W168 sacA:::cat-Pupps40-lux CmR Pupps Promoter Fusion  
GFB0111 W168 sacA:::cat-Pupps100-lux CmR Pupps Promoter Fusion  
GFB0112 W168 sacA:::cat-Pupps200-lux CmR Pupps Promoter Fusion  
GFB0115 W168 sacA:::cat-PuppS(180-140)-lux CmR Pupps Promoter Fusion  
GFB0123 W168 sacA:::cat-PuppS(180-140)-Pupps20-lux CmR Pupps Promoter Fusion  
GFB0124 W168 sacA:::cat-PuppS(180-140)-Pupps40-lux CmR Pupps Promoter Fusion  
GFB0125 W168 sacA:::cat-PuppS(180-140)-Pupps80-lux CmR Pupps Promoter Fusion  
GFB0126 W168 sacA:::cat-PuppS(180-140)-Pupps100-lux CmR Pupps Promoter Fusion  
GFB0127 W168 sacA:::cat-PuppS(180-140)-Pupps120-lux CmR Pupps Promoter Fusion  
GFB0128 W168 sacA:::cat-PuppS(180-140)-Pupps140-lux CmR Pupps Promoter Fusion  
GFB0129 W168 sacA:::cat-PuppS(180-140)-Pupps180-lux CmR Pupps Promoter Fusion  
GFB0130 W168 ΔrasP::spec-Pxyla  SpcR RasP knock out 
GFB0153 W168 ΔrasP::spec-Pxyla sac::(Pliag-rasP erm) ErmR RasP complement 

7 - Table 8.1 – B. subtilis strains utilized in this study 
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The name, the genotype, the antibiotic resistance and a description of the strain are reported. The strains 
are listed in alphabetical order. CmR: chloramphenicol resistance, ErmR: erythromycin resistance, SpcR: 
spectinomycin resistance. 
  
 

Level 0 library 

Level 
0 ID 

Name Genetic Part Vector Donor Primer 
forward 

Primer 
reverse 

Reference 

8 pSV0-
9_003 

RBS strong (st8) 
corrected 

pICH41246 Synthetic 
DNA 

- - Robert Luis Vellanoweth and 
Jesse C. Rabinowitz  

16 pSV0-
11_001 

L3S2P21 used in 
P...lux/gfp 

pICH41276 Synthetic 
DNA 

- - Ying-Ja Chen et al.  

56 pSV0-
11_006 

dummy 
terminator 

pICH41276 Synthetic 
DNA  

- - AG Fritz, unpublished 

74 pSV0-
14_003 

du15 pICH41295 Synthetic 
DNA 

- - AG Fritz, unpublished 

75 pSV0-
15_022 

du15 pICH41308 Synthetic 
DNA 

- - AG Fritz, unpublished 

82 pSV0-
15_029 

As20_992  pICH41308 Pseudomonas 
fluorescens 

Pf-5 

- - Virgil A Rhodius et al.  

100 pAT0-
14_004 

sacA front 
homologous 

region 

pICH41295 B. subtilis - - Radeck et al. 2013 pBs3C 

101 pAT0-
15_035 

cat 
(chloramphenicol 

resistance) on 
minus strand 

pICH41308 pBsC3lux - - Radeck et al. 2013 pBs3C 

103 pAT0-
9_004 

RBS (Ribosome 
binding site) 

pICH41246 Synthetic 
DNA 

- - Radeck et al. in front of lux 
operon in pBs3C 

104 pAT0-
15_036 

lux operon 
(Photorhabdus 
luminescence) 

pICH41308 Photorhabdus 
luminescens 

- - Radeck et al. 2013 pBs3C 

105 pAT0-
11_016 

sacA back 
homologous 

region 

pICH41276 B. subtilis - - Radeck et al. 2013 pBs3C 

107 plAS0-
14_005 

LacA Left 
homologous 

region 

pICH41295 B. subtilis - - AG Fritz, unpublished 

115 pAT0-
15_037 

spc pICH41308 pBs4S - - Radeck et al. 2013 pBS4S 

116 pAT0-
15_038 

erm pICH41308 pBs2E - - Radeck et al. 2013 pBS2E 

119 pJM0-
9_005 

du15 plCH41246 Synthetic 
DNA 

- - AG Fritz, unpublished 

122 pJM0-
11_019 

LacA Right 
homologous 

region 

pICH41276 B. subtilis - - AG Fritz, unpublished 

128 pAS0-
11-020 

Upps 5' HR pICH41276 B. subtilis GF0382, 
GF0384 

GF0383, 
GF0385 

This study 

130 pAS0-1-
035 

UppsP pICH41233 B. subtilis - - This study 
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178 pJM0-
1_038 

PliaG plCH41233 B. subtilis - - AG Fritz, unpublished 

180 pJM0-
1_040 

PxylA plCH41233 B. subtilis - - AG Fritz, unpublished 

186 pAS0-
14_13 

frr HR longer pICH41295 B. subtilis GF0386, 
GF0388, 
GF0390 

GF0387, 
GF0389, 
GF0391 

This study 

201 pAS0-
14_14 

Post PolC 
homology region 

left 

pICH41295 B. subtilis GF0607 GF0608 This study 

205 pAS0-
15-55 

TetYFP (from 
plau53) 

pICH41308 plau53 GF0688 GF0689 This study 

207 pAS0-
15-56 

tet array (from 
plau43) 

pICH41308 plau43 GF0617 GF0618 This study 

208 pAS0-
11_024 

Post PolC 
homology region 

right 

pICH41276 B. subtilis GF0609 GF0610 This study 

219 pAS0-
11_026 

rasP HR R pICH41276 B. subtilis GF0702 GF0703 This study 

220 pAS0-
14_17 

20bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0706 GF0707 This study 

221 pAS0-
14_18 

40bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0708 GF0709 This study 

223 pAS0-
14_20 

80bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0712 GF0705 This study 

224 pAS0-
14_21 

100bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0713 GF0705 This study 

225 pAS0-
14_22 

120bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0714 GF0705 This study 

226 pAS0-
14_23 

140bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0715 GF0705 This study 

228 pAS0-
14_25 

180bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0717 GF0705 This study 

229 pAS0-
14_26 

200bp UppS 
Promotor + RBS 

pICH41295 B. subtilis GF0718 GF0705 This study 

261 pJB0-
14_34 

rasP HR Left pICH41295 B. subtilis GF0759, 
GF0761 

GF0760, 
GF0762 

This study 

262 pAN0-
1_55 

Pupps no UTR plCH41233 B. subtilis GF0765 GF0766 This study 

293 pJB0-
15_061 

rasP Gene pICH41308 B. subtilis GF0850, 
GF0843 

GF0842, 
GF0844 

This study 

8 - Table 8.2 -  Level 0 part library 

MoClo-encoded level 0 parts either generated or used in this study. The parts of listed in numerical order. 
Internal name abbreviations: (pAS) generated by Andre Sim, (pSV) generated by Stefano Vecchione, 
(pAT) generated by Anika Thorhauer, (pJM) generated by Julia Manning, (pJB) generated by Jessica 
Bzdok, (pAN) generated by Annis Newman. The original name of MocClo destination vectors, in which 
the parts are encoded as well as the original names of the donor plasmids and primers used for PCR-
amplification, or oligonucleotide annealing are indicated. 
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Level 1 library 

Level 1 
ID 

Name Vector Level 1 Doner parts Description 

149 pJM1-1L_0046 plCH47732 100 + 101 + 16 sacA integration R 
189 pJM1-4L_0006 plCH47761 74 + 75 + 105 sacA integration L 
196 pAS1-2L-0030 plCH47742 180 + 119 + 75 + 56 PxylA promoter 
198 pAS1-3L-0064 plCH47751 130 + 119 + 75 + 128 UTR uppS integration 
266 pAS1-1R-0004 plCH47802 74 + 82 + 56 cat 
300 pAS-1-6L-0005 plCH47861 186 + 75 + 56 UTR uppS integration 
332 pAS1-1L_0071 plCH47732 201 + 207 + 56 Transertion 1 
333 pAS1-3L-0069 plCH47751 180 + 103 + 205 + 16 Transertion 3 
334 pAS1-4L_0009 plCH47761 74 + 75 + 208 Transertion 4 
368 pAS1-2L_0071 plCH47742 74 + 101 + 16 Transertion 2 
382 pJB1-1L_0091 plCH47732 107 + 75 + 56 lacA integration L 
384 pAS1-1L_0091 plCH47732 186 + 101 + 56 UTR uppS integration 

385 pAS1-2L_0073 plCH47742 180 + 119 + 75 + 261 proS expresssion control 
386 pAS1-1L_0093 plCH47732 100 + 101 + 16 sacA integration L with cat 
399 pAS1-2L_0075 plCH47742 220 + 104 + 16 20bp UppS Promotor + RBS 
400 pAS1-2L_0076 plCH47742 221 + 104 + 16 40bp UppS Promotor + RBS 
402 pAS1-2L_0078 plCH47742 223 + 104 + 16 80bp UppS Promotor + RBS 

403 pAS1-2L_0079 plCH47742 224 + 104 + 16 100bp UppS Promotor + RBS 
404 pAS1-2L_0080 plCH47742 225 + 104 + 16 120bp UppS Promotor + RBS 
405 pAS1-2L_0081 plCH47742 226 + 104 + 16 140bp UppS Promotor + RBS 

407 pAS1-2L_0083 plCH47742 228 + 104 + 16 180bp UppS Promotor + RBS 
440 pJB1-4L_0014 plCH47761 74 + 116 + 122 lacA integration R 
444 pAN1-2L_0105 plCH47742 262 + 103 + 104 + 16 Pupps no UTR test  
445 pJB1_1L_0111 plCH47732 261 + 115 + 16 for rasP knockout 
446 pJB1-2L_0106 plCH47742 74 + 75 +219 for rasP knockout 
454 pAN1-3L_0074 plCH47751 226 + 104 + 16 140bp PuppS Promoter Fusion 
455 pAN1-3L_0075 plCH47751 228 + 104 + 16 180bp Pupps Promoter Fusion  
456 pAN1-3L_0076 plCH47751 220 + 104 + 16 20bp Pupps Promoter Fusion  
457 pAN1-3L_0077 plCH47751 221 + 104 + 16 40bp Pupps Promoter Fusion  
458 pAN1-3L_0078 plCH47751 223 + 104 + 16 80bp Pupps Promoter Fusion  
459 pAN1-3L_0079 plCH47751 224 + 104 + 16 100bp Pupps Promoter Fusion  
460 pAN1-3L_0080 plCH47751 225 + 104 + 16 120bp Pupps Promoter Fusion  
514 pJB1-2L_0113 plCH47742 178 + 119 + 75 + 56 PliaG promoter 
515 pJB1-3L_0086 plCH47751 96 + 8 + 293 + 16 rasP 

9 - Table 8.3 -  Level 1 part library 
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MoClo-encoded level 1 parts either generated or used in this study. The parts of listed in numerical order. 
Internal name abbreviations: (pAS) generated by Andre Sim, (pJM) generated by Julia Manning, (pJB) 
generated by Jessica Bzdok, (pAN) generated by Annis Newman. The original name of MocClo 
destination vectors, in which the parts are encoded as well as the original names of the donor plasmids and 
primers used for PCR-amplification, or oligonucleotide annealing are indicated. 
 

Level M library 

Level M ID Name Vector Level 1 Doner parts Description 
240 pASM-6_008 pAGM8081 384 + 196 + 198 Readthrough Block 
298 pASM-1_062 pAGM8031 332 + 368 + 333 + 334 Transertion 
354 pASM-1_92 pAGM8031 386 + 402+ 189 PuppS 80 
355 pASM-1_93 pAGM8031 386 + 404+ 189 PuppS 120 
356 pASM-1_94 pAGM8031 386 + 405 + 189 PuppS 140 
357 pASM-1_95 pAGM8031 386 + 407 + 189 PuppS 180 
358 pASM-1_96 pAGM8031 386 + 399 + 189 PuppS 20 
393 pASM-1_98 pAGM8031 386 +400 + 189 PuppS 40 
394 pASM-1_99 pAGM8031 386 + 403 + 189 PuppS 100 
399 pASM-1_104 pAGM8031 386 + 413 + 189 PuppS 200 
401 pASM-1_106 pAGM8031 384 + 385 uppS-rasP deletion construct 
412 pANM-1_115 pAGM8031 149 + 461 + 120 Pupps no UTR test  
413 pJBM-1_116 pAGM8031 445 + 446 rasP knock out 
418 pANM-1_121 pAGM8031 149 + 461 + 460 + 189 120bp PuppS Promoter Fusion 
419 pANM-1_122 pAGM8031 149 + 461 + 457 + 189 40bp Pupps Promoter Fusion  
420 pANM-1_123 pAGM8031 149 + 461 + 458 + 189 80bp Pupps Promoter Fusion  
421 pANM-1_124 pAGM8031 149 + 461 + 454+ 189 140bp Pupps Promoter Fusion  
422 pANM-1_125 pAGM8031 149 + 461 + 455+ 189 180bp Pupps Promoter Fusion  
423 pANM-1_126 pAGM8031 149 + 461 + 456 + 189 20bp Pupps Promoter Fusion  
424 pANM-1_127 pAGM8031 149 + 461 + 459 + 189 100bp Pupps Promoter Fusion  
482 pJBM-MC_281 pSVM-mc 382 + 514 + 515 + 440 rasP complement 

10 - Table 8.4 -  Level M part library 

MoClo-encoded level 1 parts either generated or used in this study. The parts of listed in numerical order. 
Internal name abbreviations: (pAS) generated by Andre Sim, (pJM) generated by Julia Manning, (pJB) 
generated by Jessica Bzdok, (pAN) generated by Annis Newman. The original name of MocClo 
destination vectors, in which the parts are encoded as well as the original names of the donor plasmids and 
primers used for PCR-amplification, or oligonucleotide annealing are indicated. 
 

Additional plasmids 

ID Plasmid Resistance Reference Description 
pJMP1 - (E)SpcR/(B)CmR Peters et al Cell. 2016 Bacillus subtilis dCas9 expression vector; 

integrates into lacA/ganA 
pJMP2 - (E)SpcR/(B)CmR Peters et al Cell. 2016 Bacillus subtilis sgRNA expression vector; 

integrates into amyE 
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pDG1662 - AmpR BGSC, Guerot-Fleury 
et al. 1996 

ectopic integration into the B. subtilis amyE 
locus 

GFE125 pDG1662 AmpR This study pxylA+uppS>rasP for ectopic intergration into 
AmyE in B.Subtilis with cat resistance 

GFE033 pJMP2 (E)SpcR/(B)CmR This study rpsB sgRNA in pJMP2 
GFE034 pJMP2 (E)SpcR/(B)CmR This study tsf sgRNA in pJMP2 
GFE035 pJMP2 (E)SpcR/(B)CmR This study pyrH sgRNA in pJMP2 
GFE036 pJMP2 (E)SpcR/(B)CmR This study frr sgRNA in pJMP2 
GFE037 pJMP2 (E)SpcR/(B)CmR This study uppS sgRNA in pJMP2 
GFE038 pJMP2 (E)SpcR/(B)CmR This study cdsA sgRNA in pJMP2 
GFE039 pJMP2 (E)SpcR/(B)CmR This study dxr sgRNA in pJMP2 
GFE040 pJMP2 (E)SpcR/(B)CmR This study rasP sgRNA in pJMP2 
GFE041 pJMP2 (E)SpcR/(B)CmR This study proS sgRNA in pJMP2 
GFE042 pJMP2 (E)SpcR/(B)CmR This study polC sgRNA in pJMP2 

11 - Table 8.5 – Additional used plasmids 

Additional plasmids that were created or used in this study. The plasmids are listed in alphanumerical 
order. The internal id, plasmid backbone, resistance required for selection, source  and description are 
provided. CmR: chloramphenicol resistance, AmpR: ampicillin resistance, SpcR: spectinomycin resistance. 
(E) – For selection in Escherichia coli, (B) – For section in Bacillus subtilis 
 

Oligonucleotides 

Name Nucleotide sequence (5' -> 3') Description 
GF0323 AGCTCGCAAATTAAACATCCC rpsB_p2 
GF0324 TGTTAATGTACCGCCCAACC rpsb_p3 
GF0326 CGTAGCGAAAATGGTTGAAGG tsf_p2 
GF0327 AGGGCTTGCTGAGTTAAGATTTG tsf_p3 
GF0329 CGTTGACGGTGTGTATAATGC pyrH_p2 
GF0330 AACGTCTGCCTCAATTTCAG pyrH_p3 
GF0332 ATCACGCCATACGATAAAACAG frr_p2 
GF0333 GATTTAAAGGTGTCTGCGCTCC frr_p3 
GF0335 TCTTTACTGACGTCTTGTGGC upps_p2 
GF0336 AATTACTCAGCCTTATCTCGCC upps_p3 
GF0338 CGCTGTTTTTGTCTGTTTTTGG cdsA_p2 
GF0339 AGATAGATATACGGGATCGGAAG cdsA_p3 
GF0341 TATCGAAAAGGCACTAACCCG dxr_p2 
GF0342 TTCGTTTGCCGCATTTAGC dxr_p3 
GF0344 TTGACGGAGGAAGACTGTTG rasP_p2 
GF0345 AACGCCGCAAACTGAAATAAG rasP_p3 
GF0347 CTTCCAATCCGCATCACTGTC proS_p2 
GF0348 AGAATATGAAGATCGTACGGCG proS_p3 
GF0382 tttagaagacatgcttAGGAATCTCATGCTCAACATACTC upps HR fwd 1 
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GF0383 tttagaagacatGTCCTCTTTTGTATAACGTTCTAAGT upps HR rev 1 
GF0384 tttagaagacatGGACATACTTAAGGGAGAAATTCCC upps HR fwd 2 
GF0385 tttagaagacatagcgTGACAATTTCAGTACGGCCTC upps HR rev 2 
GF0386 tttagaagacatggagGGGGAAATAACGTGTCAAAAGAAG frr HR fwd 1 
GF0387 tttagaagacatGATGACAACTGATTTAAAGGTGTCT frr HR rev 1 
GF0388 tttagaagacatCATCTATTAACGTGCCTGAAGC frr HR fwd 2 
GF0389 tttagaagacatGTCCTCAGTGGAAGCACGC frr HR rev 2 
GF0390 tttagaagacatGGACGTTCAAAAACTGACAGATG frr HR fwd 3 
GF0391 tttagaagacatcattCCCTGCTGATAATCAATGTAATCA frr HR rev 3 
GF0392 ggagTTAATACTGTTGATTACATTGATTATCAGCAGGGAATGTAAC

CTTTTTGGGTGACGG 
upps promoter 

GF0393 agtaCCGTCACCCAAAAAGGTTACATTCCCTGCTGATAATCAATGT
AATCAACAGTATTAA 

upps promoter 2 

GF0481 GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTC dT-RACE-Anchor 
GF0482 GACCACGCGTATCGATGTCGAC RACE-Adaptor 
GF0483 ACGTACCGTTTTCTTGCATT rpSB_p5 
GF0484 TCGCAGTTTCTTCATCAGTTG tsf_p4 
GF0544 tttagaagacatggagACTATATGGGAATGCTGGCGAC frr HR fwd new 
GF0545 tttagaagacatATCTTCAATATTCAAAGAGCCTTCC upps HR rev 2 new 
GF0546 tttagaagacatAGATATTGATGAATCGCTTTTTTCTAC upps HR fwd 3 new 
GF0547 tttagaagacatagcgTTTTGGAAATCCCGTCCGCTTC upps HR rev 3 new 
GF0561 ACATTTATTGTACAACACGAGCCCATTTTTG Universal reverse 

sgRNA primer 
GF0562 gcttcatttttgggttccaaGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG

GC 
rpsB sgRNA 

GF0563 tagaaccttctgctgcgataGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

tsf sgRNA 

GF0564 aatacgatacgtttgtatttGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG
GC 

pyrH sgRNA 

GF0565 ctaataatgatggatttgcaGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

frr sgRNA 

GF0566 ttttgtataacgttctaagtGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG
GC 

uppS sgRNA 

GF0567 gcataaattaatatggtgaaGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

cdsA sgRNA 

GF0568 acatagataccagctgaaatGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

dxr sgRNA 

GF0569 cggcatcagctggaacttcaGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

proS sgRNA 

GF0570 atgttcaaagtatgtcatgaGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA
GGC 

polC sgRNA 

GF0607 tttagaagacatggagGGTGTGACTGAAGAACAGATTGG post-polC HR left fwd 
GF0608 tttagaagacatcattTTACGATGGCACTTTTTGCG post-polC HR left rev 
GF0609 tttagaagacatgcttGAGGCAAAGAGTGGGGAAACC post-polC HR right 

fwd 
GF0610 tttagaagacatagcgTATGCGCCCGAAATCCTTAG post-polC HR right rev 
GF0617 tttagaagacataatgATATCGACCCAAGTACCGCC tet array fwd 2 
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GF0618 tttagaagacataagcTGATAGGGACAGCGCTGAGT tet array rev 2 
GF0627 ATCACCATGGACAAGCACAA qPCR mnaA fwd 
GF0628 TCACATCAAGCCTGACTTCG qPCR mnaA rev 
GF0629 GACGGCATTACGGTTGAAGT qPCR gyrB fwd 
GF0630 CCGCCTTCGTACGTGTTAAT qPCR gyrB rev 
GF0631 GTTCGGCAAAGGTTCCATTA qPCR recA fwd 
GF0632 GCCAATTCCCAGTGCTGTAT qPCR recA rev 
GF0645 CGGAAGCTCGCAAATTAAAC qPCR rpsB fwd 
GF0646 CAACTTCCGCTTCTTCTTCG qPCR rpsB rev 
GF0647 AAACTGCGGCTTCCAACTTA qPCR uppS fwd 
GF0648 CACCTTCATCCCTTCATGGT qPCR uppS rev 
GF0649 CTTGGGATTGTCAACCTGCT qPCR rasP fwd 
GF0650 TTCCATGTGACAACCAGCAT qPCR rasP rev 
GF0688 TGTACTGGGGTGGATGCAG tetR-YFP fwd for 

pGP380 
GF0689 TTTGGATCCAAACCACTTCGTGCAGAAGAC tetR-YFP rev for 

pGP380 
GF0702 tttagaagacatgcttGCATTTGTTGTGTTTATCGGAGTAG after rasP HR fwd 
GF0703 tttagaagacatAGCGCCGAAACCTGTAAGAACGC after rasP HR rev 
GF0705 tttagaagacatCATTAGATTCCTCCGTCACCCAAA  Universal uppS 

promoter rev 
GF0706 GGAGTTGGGTGACGGAGGAATCT 20bp uppS promoter 

fwd 
GF0707 CATTAGATTCCTCCGTCACCCAA 20bp uppS promoter 

rev 
GF0708 GGAGCAGCAGGGAATGTAACCTTTTTGGGTGACGGAGGAATCT 40bp uppS promoter 

fwd  
GF0709 CATTAGATTCCTCCGTCACCCAAAAAGGTTACATTCCCTGCTG 40bp uppS promoter 

rev  
GF0710 GGAGCTGTTGATTACATTGATTATCAGCAGGGAATGTAACCTTTT

TGGGTGACGGAGGAATCT 
60bp uppS promoter 
fwd  

GF0711 CATTAGATTCCTCCGTCACCCAAAAAGGTTACATTCCCTGCTGAT
AATCAATGTAATCAACAG 

60bp uppS promoter 
rev 

GF0712 tttagaagacatGGAGAGGGGGTTTTTTTGTTAATACTGTTG 80bp uppS promoter 
fwd 

GF0713 tttagaagacatGGAGAAAGACCCTCTCATGTTTACAGG 100bp uppS promoter 
fwd 

GF0714 tttagaagacatGGAGTGTACAATAGATAATAGTGAAAAGACCCTC 120bp uppS promoter 
fwd 

GF0715 tttagaagacatGGAGGGAAGTTTAATGAAAAACTATGTACAATAGATA
ATAGTGA 

140bp uppS promoter 
fwd 

GF0716 tttagaagacatGGAGGACAAAGAAAAAGAAATCATGGAAGT 160bp uppS promoter 
fwd 

GF0717 tttagaagacatGGAGAAATTGACAGTGTCACAAAAGACAA 180bp uppS promoter 
fwd 

GF0718 tttagaagacatGGAGGACAGATGAATATGTGTCAAAAATTGAC 200bp uppS promoter 
fwd 

GF0719 tttagaagacatGGAGACTGAAGACGTTCAAAAACTGAC 220bp uppS promoter 
fwd 
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GF0720 tttagaagacatGGAGAGGATGAACTGCGTGCTT 240bp uppS promoter 
fwd 

GF0721 tttagaagacatGGAGGAAAAACGGAGACATTACTGAGG 260bp uppS promoter 
fwd 

GF0722 tttagaagacatGGAGGATGATCTCAAAAAACTTGAGAAAAACGG 280bp uppS promoter 
fwd 

GF0723 tttagaagacatGGAGACGTTCGCCGTGATGCTAA 300bp uppS promoter 
fwd 

GF0759 tttagaagacatGGAGAATATGATGTTCCGCTGCTG rasP HR Left fwd 1 
GF0760 tttagaagacatGCCTTCAATAGCCAAAAACGGT rasP HR Left rev 1 
GF0761 tttagaagacatAGGCTGTATCGAAAAGGCAC rasP HR Left fwd 2 
GF0762 tttagaagacatCATTCATGGAAGAAAACGAGCG rasP HR Left rev 2 
GF0765 GGAGAAATTGACAGTGTCACAAAAGACAAAGAAAAAGAAATCA

TGGAAGTTTAAT 
PuppS no UTR FWD 

GF0766 AGTAATTAAACTTCCATGATTTCTTTTTCTTTGTCTTTTGTGACAC
TGTCAATTT 

PuppS no UTR REV 

GF0793 TGCTCGTTATCACGCCATAC qPCR frr 
GF0794 TCGAATCATATTGCCGTCAC qPCR frr 
GF0795 GGAGCATCATTTCACGGAGT qPCR lux 
GF0796 GGGCTGTGGGAAGAACAATA qPCR lux 
GF0802 GACAGAATACGAGCGGGGTA qPCR proS F 
GF0803 CGGCATCAATTTTCTCCATT qPCR proS R 
GF0842 tttagaagacatTCTCCCTCCGTCAAGTGCC rasP-gene rev1 
GF0843 tttagaagacatGAGACTGTTGTTTCTATTTATTGAAGCG rasP-gene fwd2 
GF0844 tttagaagacataagcCTTTTCGTTTACAAAAACAGCCGC rasP-gene rev2 
GF0850 tttagaagacataatgTTCGTGAATACAGTTATAGCGTTTATCAT rasP-gene fwd1 

12 - Table 8.6 – Oligonucleotides used in this study 

The list of oligonucleotides used in this study sorted in numerical order. Nucleotide sequences are in 5’ -> 
3’ order. 
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8.2 Supplementary  

The effect of rasP, sigW and sigV 
deletions on cell length in Bacillus 
subtilis at different growth rates. Each 
data point represents cells from different 
strains and media. Vertical error bars 
represent the standard error in the cell 
length, horizontal error bars represent 
the standard error in the growth rate. 
Linear regressions were fit to the data 
points each strain type. In order from 
highest nutritional quality to lowest, LB 
media, MOPS media + glucose and 
amino acids (aa), MOPS media + 
glucose, MOPS media, + glycerol and 
aa, MOPS media + glycerol, MOPS 
media + ribose and aa, and MOPS media 

+ ribose. 
 

Gene clusters identified at the Bacteria taxonomic level 

Cluster 
ID 

Gene Descriptions 

1 K Homology domain, 30S ribosomal protein S10, 50S ribosomal protein L23, Ribosomal protein L2, 30S ribosomal protein S19, 50S ribosomal protein 
L16, 30S ribosomal protein S17, 50S ribosomal protein L14, 50S ribosomal protein L24, 50S ribosomal protein L18, 50S ribosomal protein L30, 50S 
ribosomal protein L15, Protein translocase subunit SecY, translation initiation factor IF-1, 30S ribosomal protein S11, 30S ribosomal protein S4, 50S 
ribosomal protein L4, 50S ribosomal protein L3, 50S ribosomal protein L22, 50S ribosomal protein L29, 50S ribosomal protein L5, 30S ribosomal protein 
S14, 30S ribosomal protein S8, 50S ribosomal protein L6, 30S ribosomal protein S5, adenylate kinase, 30S ribosomal protein S13, Methionine 
aminopeptidase, DNA-directed RNA polymerase subunit alpha, 50S ribosomal protein L17, 50S ribosomal protein L36, 30S ribosomal protein S12, 
preprotein translocase subunit SecE, Transcription termination/antitermination protein NusG, 50S ribosomal protein L11, 50S ribosomal protein L1, 50S 
ribosomal protein L10, 50S ribosomal protein L7/L12, DNA-directed RNA polymerase subunit beta, DNA-directed RNA polymerase subunit beta', 30S 
ribosomal protein S7, elongation factor G, Elongation factor Tu 

2 glucose-1-phosphate thymidylyltransferase, dTDP-glucose 4,6-dehydratase, dTDP-4-dehydrorhamnose reductase, dTDP-4-dehydrorhamnose 3,5-
epimerase, glycosyl transferase, NAD-dependent epimerase, glycosyl transferase, tyrosine protein kinase, sugar ABC transporter substrate-binding protein, 
undecaprenyl-phosphate glucose phosphotransferase, acetyltransferase, UDP-4-amino-4, 6-dideoxy-N-acetyl-beta-L-altrosamine transaminase, UDP-
glucose 4-epimerase, glycosyltransferase WbuB, glycosyl transferase family 1, glycosyl transferase family 2, polysaccharide biosynthesis protein, glycosyl 
transferase family 2, glucose-1-phosphate adenylyltransferase, glycosyl transferase, Transport permease protein, ABC transporter ATP-binding protein 

3 NADH-quinone oxidoreductase subunit E, NADH-ubiquinone oxidoreductase 51kDa subunit, FMN-binding domain, NADH-quinone oxidoreductase, 
NADH dehydrogenase, NADH dehydrogenase, NADH-quinone oxidoreductase subunit D, NADH-quinone oxidoreductase subunit H, NADH:ubiquinone 
oxidoreductase subunit J, NADH-quinone oxidoreductase subunit K, NADH-quinone oxidoreductase subunit M, NADH:ubiquinone oxidoreductase subunit 
N, 4Fe-4S ferredoxin, iron-sulphur binding, conserved site, NADH-quinone oxidoreductase subunit A, NADH, Ion-translocating oxidoreductase complex 
subunit A, Ion-translocating oxidoreductase complex subunit D, Na(+)-translocating NADH-quinone reductase subunit D 

4 cell division protein FtsZ, 16S rRNA (cytosine(1402)-N(4))-methyltransferase, penicillin-binding protein, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-
-2, 6-diaminopimelate ligase, Phospho-N-acetylmuramoyl-pentapeptide-transferase, cell division protein FtsW, rod shape-determining protein, penicillin-
binding protein 2, rod shape-determining protein MreC, UDP-N-acetylmuramate--L-alanine ligase, Cell division protein FtsQ, cell division protein FtsA, 
UDP-N-acetylglucosamine--N-acetylmuramyl- (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase, Transcriptional regulator 
MraZ, UDP-N-acetylmuramoylalanine-D-glutamate ligase, UDP-3-O-acyl-N-acetylglucosamine deacetylase 

5 Beta sliding clamp, chromosome partitioning protein ParB, tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG, Ribosomal RNA 
small subunit methyltransferase G, chromosome partitioning protein, GTPase Der, Membrane protein insertase YidC, DNA gyrase subunit B, DNA gyrase 
subunit A, Chromosomal replication initiator protein DnaA, DNA replication and repair protein RecF, 50S ribosomal protein L34, ribonuclease P protein 
component 

6 chromosome segregation protein SMC, signal recognition particle protein, 30S ribosomal protein S16, Ribosome maturation factor RimM, tRNA 
(guanine(37)-N(1))-methyltransferase, 50S ribosomal protein L19, RNA-binding protein, ribonuclease III, Signal peptidase I 

7 ATP synthase epsilon chain, ATP synthase subunit c, ATP synthase subunit delta, ATP synthase subunit alpha, ATP synthase gamma chain, ATP synthase 
subunit beta, ATP synthase subunit a, ATP synthase subunit b 

69 - Figure 8.1 - rasP knockout 
mutants are smaller than wild type in 
rich media but smaller in poor media 
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8 Histidinol-phosphate aminotransferase, 1-(5-phosphoribosyl)-5-, histidinol dehydrogenase, ATP phosphoribosyltransferase, imidazoleglycerol-phosphate 
dehydratase, imidazole glycerol phosphate synthase subunit HisH, imidazole glycerol phosphate synthase cyclase subunit, phosphoribosyl-AMP 
cyclohydrolase 

9 ABC transporter ATP-binding protein, ABC transporter permease, Efflux transporter, RND family, MFP subunit, acriflavin resistance protein, RND 
transporter, efflux transporter periplasmic adaptor subunit, Histidine kinase, DNA-binding response regulator 

10 Uridylate kinase, 30S ribosomal protein S2, Elongation factor Ts, ribosome recycling factor, di-trans,poly-cis-decaprenylcistransferase, phosphatidate 
cytidylyltransferase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, Zinc metalloprotease 

11 3-isopropylmalate dehydratase small subunit, 3-isopropylmalate dehydratase large subunit, 3-isopropylmalate dehydrogenase, 2-isopropylmalate synthase, 
acetolactate synthase small subunit, ketol-acid reductoisomerase, Acetolactate synthase 

12 chemotaxis protein CheR, chemotaxis response regulator protein-glutamate methylesterase, chemotaxis protein CheA, response regulator, chemotaxis 
protein CheW, methyl-accepting chemotaxis protein, response regulator 

13 anthranilate phosphoribosyltransferase, anthranilate synthase component I, Indole-3-glycerol phosphate synthase, Tryptophan synthase beta chain, 
Tryptophan synthase alpha chain, N-(5'-phosphoribosyl)anthranilate isomerase, glutamine amidotransferase 

14 tRNA pseudouridine synthase B, Ribosome maturation factor RimP, Transcription termination/antitermination protein NusA, ribosome-binding factor A, 
30S ribosomal protein S15, Polyribonucleotide nucleotidyltransferase, translation initiation factor IF-2 

15 flagellar biosynthetic protein FliP, Flagellar biosynthetic protein FliQ, Flagellar biosynthetic protein FliR, Flagellar motor switch protein FliN, Flagellar 
biosynthetic protein FlhB, flagellar biosynthesis protein FlhA 

16 50S ribosomal protein L20, threonine--tRNA ligase, 50S ribosomal protein L35, phenylalanine--tRNA ligase subunit alpha, phenylalanine--tRNA ligase 
subunit beta 

17 monovalent cation/H+ antiporter subunit D, Na+/H+ antiporter subunit C, Na+/H+ antiporter subunit E, K+/H+ antiporter subunit F, Na+/H+ antiporter 
subunit G 

18 glycine cleavage system protein H, glycine cleavage system protein T, glycine dehydrogenase (aminomethyl-transferring), FAD-dependent oxidoreductase, 
pyridoxamine 5'-phosphate oxidase 

19 replicative DNA helicase, 30S ribosomal protein S6, single-stranded DNA-binding protein, 30S ribosomal protein S18, 50S ribosomal protein L9 

20 ABC transporter permease, ABC transporter, nitrate ABC transporter substrate-binding protein, ABC transporter permease, ABC transporter permease 

21 pyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha, transketolase, dihydrolipoamide succinyltransferase, dihydrolipoyl 
dehydrogenase, 2-oxoglutarate dehydrogenase E1 component 

22 phosphate ABC transporter substrate-binding protein PstS, phosphate ABC transporter permease subunit PstC, phosphate ABC transporter, permease protein 
PstA, phosphate ABC transporter ATP-binding protein, phosphate transport system regulatory protein PhoU 

23 amino acid ABC transporter ATP-binding protein, amino acid ABC transporter permease, amino acid ABC transporter substrate-binding protein, amino 
acid ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein 

24 Uroporphyrinogen-III synthase, sulfite reductase, phosphoadenosine phosphosulfate reductase, precorrin-6Y C5,15-methyltransferase, precorrin-2 C(20)-
methyltransferase 

25 hemolysin D, cation transporter, ABC transporter, ABC transporter, Transport permease protein 

26 ATP-dependent protease subunit HslV, ATP-dependent Clp protease ATP-binding subunit ClpX, trigger factor, ATP-dependent Clp protease proteolytic 
subunit, Lon protease 

27 peptide ABC transporter ATP-binding protein, peptide ABC transporter ATP-binding protein, peptide ABC transporter substrate-binding protein, ABC 
transporter permease, peptide ABC transporter permease 

28 iron ABC transporter ATP-binding protein, iron ABC transporter permease, ABC transporter, ABC transporter substrate-binding protein, ABC transporter 
substrate-binding protein 

29 ATPase AAA, membrane protein, VWA domain-containing protein, cobaltochelatase subunit CobS 

30 flagellar basal body rod protein FlgC, Flagellar basal body rod protein FlgB, Flagellar hook protein FlgE, flagellar hook capping protein 

31 iron-sulfur cluster assembly scaffold protein, cysteine desulfurase, Rrf2 family transcriptional regulator, iron-sulfur cluster insertion protein ErpA 

32 flagellar protein FliS, Flagellin, flagellar hook-associated protein 3, Flagellar hook-associated protein 1 

33 Heat-inducible transcription repressor HrcA, Chaperone protein DnaJ, Protein GrpE, Chaperone protein DnaK 

34 cytochrome o ubiquinol oxidase subunit III, cytochrome c oxidase subunit II, cytochrome c oxidase subunit I, protoheme IX farnesyltransferase 

35 glutamate 5-kinase, Ribosome-binding ATPase YchF, 50S ribosomal protein L21, 50S ribosomal protein L27 

36 transcriptional regulator, crossover junction endodeoxyribonuclease RuvC, Holliday junction DNA helicase RuvA, Holliday junction DNA helicase RuvB 

37 riboflavin synthase subunit alpha, 3,4-dihydroxy-2-butanone 4-phosphate synthase, 6,7-dimethyl-8-ribityllumazine synthase, Riboflavin biosynthesis 
protein RibD 

38 AraC family transcriptional regulator, TonB-dependent receptor, RNA polymerase sigma factor, anti-FecI sigma factor FecR 

39 30S ribosomal protein S1, cytidylate kinase, 3-phosphoshikimate 1-carboxyvinyltransferase, DNA-binding protein 

40 ABC transporter ATP-binding protein, SUF system FeS cluster assembly, SufBD, SUF system FeS cluster assembly, SufBD, Cysteine desulfurase 

41 xanthine dehydrogenase small subunit, xanthine dehydrogenase molybdopterin binding subunit, xanthine dehydrogenase accessory protein XdhC, (2Fe-2S)-
binding protein 

42 Type I restriction enzyme R Protein, N6 adenine-specific DNA methyltransferase, N-terminal domain, restriction endonuclease subunit S 

43 C4-dicarboxylate ABC transporter permease, TRAP transporter solute receptor DctP superfamily, C4-dicarboxylate ABC transporter permease 

44 recombination protein RecR, DNA polymerase III subunit gamma/tau, nucleoid-associated protein 

45 Thymidylate kinase, DNA polymerase III subunit delta', hydrolase TatD 

46 Flagellar hook-basal body complex protein FliE, flagellar motor switch protein FliG, Flagellar M-ring protein 

47 membrane protein, metal ABC transporter substrate-binding protein, ABC transporter 

48 1-phosphofructokinase, PTS fructose transporter subunit IIC, DeoR family transcriptional regulator 

49 Triosephosphate isomerase, Glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 
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50 ABC transporter substrate-binding protein, C4-dicarboxylate ABC transporter permease, C4-dicarboxylate ABC transporter 

51 amidase, Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C, Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B 

52 methylcrotonoyl-CoA carboxylase, acetyl-CoA carboxylase biotin carboxylase subunit, Biotin carboxyl carrier protein of acetyl-CoA carboxylase 

53 ABC transporter ATP-binding protein, ABC transporter permease, glycine/betaine ABC transporter substrate-binding protein 

54 Protein translocase subunit SecD, preprotein translocase subunit YajC, Protein-export membrane protein SecF 

55 GTP 3',8-cyclase, molybdenum cofactor biosynthesis protein, molybdopterin molybdenumtransferase MoeA 

56 membrane protein, phosphate starvation protein PhoH, Endoribonuclease YbeY 

57 Ribose-phosphate pyrophosphokinase, 50S ribosomal protein L25, Peptidyl-tRNA hydrolase 

13 - Table 8.7 – Identified gene clusters from the Bacteria taxonomic level 

A list of the clusters that were identified at the Bacteria taxonomic level (the highest). Clusters are sorted 
in descending order by the number of genes. The descriptions column contain the OrthoDB assigned gene 
description for each gene member in the cluster. 
 

Horizontal gene transfer gene clusters  

Cluster ID Gene Descriptions 
1 multidrug transporter, glycosyl transferase, hemolysin D, alginate biosynthesis protein AlgE, poly(beta-D-mannuronate) lyase 
2 dialkylrecorsinol condensing enzyme DarA, F3YYE9_DESAF, peptidase, 3-oxoacyl-ACP synthase, 3-oxoacyl-ACP synthase 
3 ABC transporter ATP-binding protein, ABC transporter ATP-binding protein, branched-chain amino acid ABC transporter substrate-binding 

protein, branched-chain amino acid ABC transporter permease, branched-chain amino acid ABC transporter permease 
4 L1L958_9ACTN, Ferritin-like, Secreted protein, membrane protein 
5 peptidase, Signal peptide protein, histidine kinase, kinesin 
6 type II secretion protein F, Conserved domain protein, P-loop containing nucleoside triphosphate hydrolase, type II secretion system protein F 
7 microcompartment protein EutL, ethanolamine utilization protein EutH, ethanolamine ammonia-lyase, ethanolamine utilization cobalamin 

adenosyltransferase 
8 A0A101PM64_9ACTN, lytic transglycosylase, periplasmic immunogenic protein, Homing endonuclease 
9 citrate lyase subunit alpha, Citrate lyase acyl carrier protein, holo-ACP synthase CitX, \N 

10 glucose-1-phosphate thymidylyltransferase, dTDP-glucose 4,6-dehydratase, dTDP-4-dehydrorhamnose reductase, dTDP-4-dehydrorhamnose 3,5-
epimerase 

11 phosphoesterase, phosphoesterase, type IV secretion protein IcmB 
12 A0A126V038_9RHOB, threonine--tRNA ligase, V9WKJ0_9RHOB 
13 DUF1127 domain-containing protein, Holliday junction resolvasome, helicase subunit, Domain of unknown function DUF4105 
14 ribonuclease P protein component, 50S ribosomal protein L34, Membrane protein insertase YidC 
15 phage tail protein, H2K0L2_STRHJ, A0A0K2AYC9_STRAM 
16 P-loop containing nucleoside triphosphate hydrolase, acetolactate synthase, Imidazole glycerol phosphate synthase subunit HisH 
17 membrane protein, DNA replication terminus site-binding protein, nucleoid-associated protein 
18 Protein of unknown function DUF1896, Protein of unknown function DUF3945, tetracycline regulation of excision, RteC 
19 prepilin-type N-terminal cleavage/methylation domain-containing protein, prepilin-type N-terminal cleavage/methylation domain-containing 

protein, prepilin-type N-terminal cleavage/methylation domain-containing protein 
20 phosphoribosyltransferase, membrane protein, Short C-terminal domain protein 
21 prokaryotic E2 family E, A0A0U3JEM4_ACIJO, UBA/THIF-type NAD/FAD binding protein 
22 HNH endonuclease, Secreted protein, A0A1Q5MCT3_9ACTN 
23 flagellar biosynthesis repressor FlbT, flagellar biosynthesis regulator FlhF, flagellar protein FlgJ 
24 F2K9A2_PSEBN, lipoprotein, terminase 
25 Gll3097 protein, Photosystem II CP47 reaction center protein, Photosystem II reaction center protein T 
26 membrane protein, Tsr2248 protein, CP12 domain protein 
27 A0A0N9WZW2_PSEFL, lipoprotein, F2KLH6_PSEBN 
28 membrane protein, membrane protein, membrane protein 
29 Armadillo-type fold, 3-oxoacyl-ACP synthase, Uncharacterized protein conserved in bacteria 
30 transporter, membrane protein, membrane protein 
31 Putative membrane protein, membrane protein, Hypothetical membrane protein 
32 DUF3153 domain-containing protein, polyketide cyclase / dehydrase and lipid transport, I7GBP5_MYCS2 
33 D-proline reductase (dithiol) proprotein PrdA, C8P4I6_9LACO, permease 
34 stage 0 sporulation protein, Nitrogen regulatory PII-like, alpha/beta, Initiation-control protein YabA 
35 sensory transduction regulator, membrane protein, lipoprotein 
36 type VI secretion protein, Type IV secretion system, VirB5, type IV secretion system protein VirB10 
37 A0A1D8G7F0_9ACTN, membrane protein, membrane protein 
38 pilus assembly protein TadE, pilus assembly protein TadG, pilus assembly protein TadG 
39 TerD-family protein, A0A1M7Q688_9ACTN, DUF4937 domain-containing protein 
40 A4WRX2_RHOS5, primosomal protein DnaI, A0A0B5DS84_9RHOB 
41 A0A0X3RV14_STRRM, A0A191V936_9ACTN, A0A0N0SUC9_9ACTN 
42 polyketide cyclase, polyketide cyclase, cupin 
43 Chain length determinant family protein, uracil phosphoribosyltransferase, membrane protein 
44 molecular chaperone DnaJ, nosiheptide resistance regulatory protein, DNA-binding protein 
45 sugar ABC transporter substrate-binding protein, sugar ABC transporter permease, ABC transporter permease 
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46 lipid-A-disaccharide synthase, Acyl-, outer membrane protein assembly factor BamA 
47 ABC transporter permease, sugar ABC transporter substrate-binding protein, sugar ABC transporter ATP-binding protein 
48 ABC transporter permease, BMP family ABC transporter substrate-binding protein, ABC transporter permease 
49 Tetratricopeptide repeat, pilus assembly protein, ATPase 
50 ATP synthase subunit D, Protein of unknown function DUF2764, ATP synthase subunit E 
51 stage VI sporulation protein D, membrane protein, membrane protein 
52 lipoprotein, A0A1P8MW48_9RHOB, A4WVE9_RHOS5 
53 Secreted protein, Secreted protein, cobalt ABC transporter permease 
54 Protein of unknown function DUF1419, L0LRA9_RHITR, Uncharacterised conserved protein UCP036055 
55 permease, Chromosome segregation ATPase-like protein, non-ribosomal peptide synthetase module 
56 sugar ABC transporter permease, ABC transporter substrate-binding protein, ABC transporter permease 
57 ABC transporter ATP-binding protein, mammalian cell entry protein, ABC transporter permease 
58 Beta sliding clamp, Chromosomal replication initiator protein DnaA, DNA replication and repair protein RecF 

 
14 - Table 8.8 - Horizontal gene transfer gene clusters 

A list of the clusters that were identified by normalizing against ortholog distribution instead of taxa size. 
These clusters were compared the original taxa size normalized cluster list, leaving on the unique clusters 
in this list. Clusters are sorted in descending order by the number of genes. The descriptions column 
contain the OrthoDB assigned gene description for each gene member in the cluster. 
 

RNA datasets 

Species Dataset Experiment Comments 
Bacillus subtilis  SRP022234  SRR899517 Control 

SRR899518 Control 
SRR899519 Acetic Acid 
SRR899520 Acetic Acid 
SRR899521 Ethanol 
SRR899535 Ethanol 
SRR899548 Lactic Acid 
SRR899549 Lactic Acid 
SRR899550 Indole 
SRR899551 Indole 
SRR899552 Low H2O2 
SRR899553 Low H2O2 
SRR899554 High H2O2 
SRR899555 High H2O2 
SRR899556 oxDXS 
SRR899557 oxDXS 
SRR899558 oxFNI 
SRR899559 oxFNI 
SRR899645 DMSO 
SRR899646 DMSO 
SRR899649 oxlspA 
SRR899650 oxlspA 
SRR922367 control 
SRR922368 low acetic acid 
SRR922369 High Acetic Acid 
SRR922370 Low Ethanol 
SRR922371 High Ethanol 
SRR922372 Low Lactic Acid 
SRR922373 High Lactic Acid 
SRR922374 Low Indole 
SRR922375 High Indole 
SRR922376 Low H2O2 
SRR922377 High H2O2 
SRR922378 NaCl 
SRR922379 Glucose 
SRR922380 Mannose 
SRR922381 Xylose 
SRR922382 oxDXS 
SRR922383 oxDXSDXR 
SRR922384 oxDXSFNI 
SRR922385 oxFNI 

SRP074602 SRR3488622.sra GSM2147025: salt.T90 (KN14_R1); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488623.sra GSM2147024: salt.T60 (KN13_R1); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488624.sra GSM2147023: no_salt.T90 (KN3_R2); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488625.sra GSM2147022: no_salt.T60 (KN2_R2); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
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SRR3488626.sra GSM2147021: no_salt.T30 (KN1_R2); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488627.sra GSM2147020: no_salt.T90 (KN11); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488628.sra GSM2147019: no_salt.T60 (KN10); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488629.sra GSM2147018: no_salt.T30 (KN9); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488630.sra GSM2147017: dormant.T0 (KN8); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488631.sra GSM2147016: salt.T90 (KN7); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488632.sra GSM2147015: salt.T60 (KN6); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488633.sra GSM2147014: salt.T30 (KN5); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488634.sra GSM2147013: dormant.T0 (KN4); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 
SRR3488635.sra GSM2147012: salt.T30 (KN12_R1); Bacillus subtilis subsp. subtilis str. 168; RNA-Seq 

SRP068910 SRR3124507.sra PARE rnc+ ^rnjA 
SRR3124508.sra PARE ^ rnc ^ rnjA 
SRR3124509.sra P sac -rnjA ^rny PARE 
SRR3124510.sra RNASeq +rnc rep I 
SRR3124511.sra RNASeq +rnc rep II 
SRR3124512.sra RNAsec ^rnc rep I 
SRR3124513.sra RNAsec ^rnc rep II 

Bacteroides 
fragilis 

SRP063781 SRR2584315.sra Bacteroides fragilis grown on glucose- replicate 2 
SRR2584332.sra Bacteroides fragilis grown on glucose- replicate 3 
SRR2584350.sra Bacteroides fragilis grown on glucose- replicate 1 
SRR2584375.sra Bacteroides fragilis grown on mucin O-linked glycans- replicate 3 
SRR2585000.sra Bacteroides fragilis grown on mucin O-linked glycans- replicate 2 
SRR2602448.sra Bacteroides fragilis grown on mucin O-linked glycans-replicate 1 
SRR2827509.sra GSM1919133: mRNA18_Mxn3, Mid log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827510.sra GSM1919132: mRNA17_Mxn2, Mid log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827511.sra GSM1919131: mRNA16_Mxn1, Mid log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827512.sra GSM1919130: mRNA21_Mcp3, Mid log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-

Seq 
SRR2827513.sra GSM1919129: mRNA20_Mcp2, Mid log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-

Seq 
SRR2827514.sra GSM1919128: mRNA19_Mcp1, Mid log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-

Seq 
SRR2827515.sra GSM1919127: mRNA24_MG3, Mid log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827516.sra GSM1919126: mRNA23_MG2, Mid log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827517.sra GSM1919125: mRNA22_MG1, Mid log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827518.sra GSM1919124: mRNA15, Late log phase, Xylose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827519.sra GSM1919123: mRNA14, Late log phase, Xylose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827520.sra GSM1919122: mRNA13, Late log phase, Xylose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827521.sra GSM1919121: mRNA3, Late log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827522.sra GSM1919120: mRNA2, Late log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827523.sra GSM1919119: mRNA1, Late log phase, Xylan carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827524.sra GSM1919118: mRNA12, Late log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827525.sra GSM1919117: mRNA11, Late log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827526.sra GSM1919116: mRNA10, Late log phase, Glucose carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827527.sra GSM1919115: mRNA6, Late log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827528.sra GSM1919114: mRNA5, Late log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827529.sra GSM1919113: mRNA4, Late log phase, Citrus Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827530.sra GSM1919112: mRNA9, Late log phase, Apple Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827531.sra GSM1919111: mRNA8, Late log phase, Apple Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 
SRR2827532.sra GSM1919110: mRNA7, Late log phase, Apple Pectin carbon source; Bacteroides xylanisolvens; RNA-Seq 

Escherichia coli SRP069023 SRS1268205 GSM2049277: TW09308 transcriptome from starvation growth_2; Escherichia coli; RNA-Seq 
SRS1268206 GSM2049276: TW09308 transcriptome from batch growth_2; Escherichia coli; RNA-Seq 
SRS1268207 GSM2049275: TW09308 transcriptome from chemostat growth_2; Escherichia coli; RNA-Seq 
SRS1268208 GSM2049274: TW11588 transcriptome from starvation growth_2; Escherichia coli; RNA-Seq 
SRS1268209 GSM2049273: TW11588 transcriptome from batch growth_2; Escherichia coli; RNA-Seq 
SRS1268210 GSM2049272: TW11588 transcriptome from chemostat growth_2; Escherichia coli; RNA-Seq 
SRS1268176 GSM2049271: IAI1 transcriptome from starvation growth_2; Escherichia coli; RNA-Seq 
SRS1268177 GSM2049270: IAI1 transcriptome from batch growth_2; Escherichia coli; RNA-Seq 
SRS1268179 GSM2049269: IAI1 transcriptome from chemostat growth_2; Escherichia coli; RNA-Seq 
SRS1268185 GSM2049268: MG1655 transcriptome from starvation growth_2; Escherichia coli; RNA-Seq 
SRS1268178 GSM2049267: MG1655 transcriptome from batch growth_2; Escherichia coli; RNA-Seq 
SRS1268180 GSM2049266: MG1655 transcriptome from chemostat growth_2; Escherichia coli; RNA-Seq 
SRS1268181 GSM2049265: TW09308 transcriptome from starvation growth_1; Escherichia coli; RNA-Seq 
SRS1268182 GSM2049264: TW09308 transcriptome from batch growth_1; Escherichia coli; RNA-Seq 
SRS1268183 GSM2049263: TW09308 transcriptome from chemostat growth_1; Escherichia coli; RNA-Seq 
SRS1268184 GSM2049262: TW11588 transcriptome from starvation growth_1; Escherichia coli; RNA-Seq 
SRS1268175 GSM2049261: TW11588 transcriptome from batch growth_1; Escherichia coli; RNA-Seq 
SRS1268186 GSM2049260: TW11588 transcriptome from chemostat growth_1; Escherichia coli; RNA-Seq 
SRS1268187 GSM2049259: IAI1 transcriptome from starvation growth_1; Escherichia coli; RNA-Seq 
SRS1268188 GSM2049258: IAI1 transcriptome from batch growth_1; Escherichia coli; RNA-Seq 
SRS1268189 GSM2049257: IAI1 transcriptome from chemostat growth_1; Escherichia coli; RNA-Seq 
SRS1268191 GSM2049256: MG1655 transcriptome from starvation growth_1; Escherichia coli; RNA-Seq 
SRS1268190 GSM2049255: MG1655 transcriptome from batch growth_1; Escherichia coli; RNA-Seq 
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SRS1268192 GSM2049254: MG1655 transcriptome from chemostat growth_1; Escherichia coli; RNA-Seq 
SRP056663 SRS886944 GSM1646318: Glucose time course, 336 hour time point, biological replicate 3, rRNA not depleted; 

Escherichia coli; RNA-Seq 
SRS886945 GSM1646317: Glucose time course, 168 hour time point, biological replicate 3, rRNA not depleted; 

Escherichia coli; RNA-Seq 
SRS886946 GSM1646316: Glucose time course, 48 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886947 GSM1646315: Glucose time course, 24 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886948 GSM1646314: Glucose time course, 8 hourt ime point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886949 GSM1646313: Glucose time course, 6 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886950 GSM1646312: Glucose time course, 5 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886951 GSM1646311: Glucose time course, 4 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886952 GSM1646310: Glucose time course, 3 hour time point, biological replicate 3, rRNA not depleted; Escherichia 

coli; RNA-Seq 
SRS886959 GSM1646309: Glucose time course, 336 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886953 GSM1646308: Glucose time course, 168 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886955 GSM1646307: Glucose time course, 48 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886954 GSM1646306: Glucose time course, 24 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886956 GSM1646305: Glucose time course, 8 hourt ime point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886957 GSM1646304: Glucose time course, 6 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886958 GSM1646303: Glucose time course, 5 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886960 GSM1646302: Glucose time course, 4 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886961 GSM1646301: Glucose time course, 3 hour time point, biological replicate 3; Escherichia coli; RNA-Seq 
SRS886962 GSM1646300: Glucose time course, 336 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886963 GSM1646299: Glucose time course, 168 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886964 GSM1646298: Glucose time course, 48 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886965 GSM1646297: Glucose time course, 24 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886968 GSM1646296: Glucose time course, 8 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886967 GSM1646295: Glucose time course, 6 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886966 GSM1646294: Glucose time course, 5 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886970 GSM1646293: Glucose time course, 4 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886969 GSM1646292: Glucose time course, 3 hour time point, biological replicate 2; Escherichia coli; RNA-Seq 
SRS886971 GSM1646291: Glucose time course, 336 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886974 GSM1646290: Glucose time course, 168 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886972 GSM1646289: Glucose time course, 48 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886973 GSM1646288: Glucose time course, 24 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886976 GSM1646287: Glucose time course, 8 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886975 GSM1646286: Glucose time course, 6 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886977 GSM1646285: Glucose time course, 5 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886979 GSM1646284: Glucose time course, 4 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 
SRS886978 GSM1646283: Glucose time course, 3 hour time point, biological replicate 1; Escherichia coli; RNA-Seq 

SRP043192 SRS634267 Exponential growing DS1 Strain - Biological replicate 
SRS634267 Exponential growing DS1 Strain. 
SRS634267 Type II persister cells of DS1 Strain - Biological replicate. 
SRS634267 Type II persister cells of DS1 Strain. 
SRS639031 GSM1413881: rpoS_N_strv_TEX; Escherichia coli BW38028; RNA-Seq 
SRS639030 GSM1413880: WT_N_strv_TEX; Escherichia coli BW38028; RNA-Seq 
SRS639029 GSM1413879: WT_glucose_stat_TEX; Escherichia coli BW38028; RNA-Seq 
SRS639028 GSM1413878: WT_glucose_log_TEX; Escherichia coli BW38028; RNA-Seq 
SRS639027 GSM1413877: rpoS_N_strv; Escherichia coli BW38028; RNA-Seq 
SRS639026 GSM1413876: WT_N_strv; Escherichia coli BW38028; RNA-Seq 
SRS639025 GSM1413875: WT_glucose_stat; Escherichia coli BW38028; RNA-Seq 
SRS639024 GSM1413874: WT_glucose_log; Escherichia coli BW38028; RNA-Seq 

Mycobacterium 
tuberculosis 

SRP056290 SRS875615 GSM1636561: HN878 RIF-R mutant with RpoB:S531L, replicate 3; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875616 GSM1636560: HN878 RIF-R mutant with RpoB:S531L, replicate 2; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875617 GSM1636559: HN878 RIF-R mutant with RpoB:S531L, replicate 1; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875619 GSM1636558: HN878 RIF-R mutant with RpoB:H526R, replicate 3; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875618 GSM1636557: HN878 RIF-R mutant with RpoB:H526R, replicate 2; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875620 GSM1636556: HN878 RIF-R mutant with RpoB:H526R, replicate 1; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875621 GSM1636555: HN878 RIF-R mutant with RpoB:H526D, replicate 1; Mycobacterium tuberculosis HN878; 
RNA-Seq 
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SRS875622 GSM1636554: HN878 RIF-R mutant with RpoB:D516V, replicate 3; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875623 GSM1636553: HN878 RIF-R mutant with RpoB:D516V, replicate 2; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875624 GSM1636552: HN878 RIF-R mutant with RpoB:D516V, replicate 1; Mycobacterium tuberculosis HN878; 
RNA-Seq 

SRS875632 GSM1636551: HN878 Beijing strain, replicate 3; Mycobacterium tuberculosis HN878; RNA-Seq 
SRS875625 GSM1636550: HN878 Beijing strain, replicate 2; Mycobacterium tuberculosis HN878; RNA-Seq 
SRS875626 GSM1636549: HN878 Beijing strain, replicate 1; Mycobacterium tuberculosis HN878; RNA-Seq 
SRS875629 GSM1636548: H37Rv grown in toloxapol, pH 5.5, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875627 GSM1636547: H37Rv grown in toloxapol, pH 5.5, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875631 GSM1636546: H37Rv grown in toloxapol, pH 7.0, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875633 GSM1636545: H37Rv grown in toloxapol, pH 7.0, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875630 GSM1636544: H37Rv grown in low iron, 1 week replicate 3; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875628 GSM1636543: H37Rv grown in low iron, 1 week replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875634 GSM1636542: H37Rv grown in low iron, 1 week replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875635 GSM1636541: H37Rv grown in low iron, 1 day, replicate 3; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875637 GSM1636540: H37Rv grown in low iron, 1 day, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875636 GSM1636539: H37Rv grown in low iron, 1 day, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875638 GSM1636538: H37Rv grown in high iron, replicate 3; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875640 GSM1636537: H37Rv grown in high iron, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875639 GSM1636536: H37Rv grown in high iron, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875645 GSM1636535: H37Rv grown on 0.4% glucose, replicate 3; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875641 GSM1636534: H37Rv grown on 0.4% glucose, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875614 GSM1636533: H37Rv grown on 0.4% glucose, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875613 GSM1636532: H37Rv grown on 0.2% glucose+0.1% butyrate, replicate 3; Mycobacterium tuberculosis 

H37Rv; RNA-Seq 
SRS875644 GSM1636531: H37Rv grown on 0.2% glucose+0.1% butyrate, replicate 2; Mycobacterium tuberculosis 

H37Rv; RNA-Seq 
SRS875643 GSM1636530: H37Rv grown on 0.2% glucose+0.1% butyrate, replicate 1; Mycobacterium tuberculosis 

H37Rv; RNA-Seq 
SRS875642 GSM1636529: H37Rv grown on 0.1% butyrate, replicate 3; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875646 GSM1636528: H37Rv grown on 0.1% butyrate, replicate 2; Mycobacterium tuberculosis H37Rv; RNA-Seq 
SRS875612 GSM1636527: H37Rv grown on 0.1% butyrate, replicate 1; Mycobacterium tuberculosis H37Rv; RNA-Seq 

SRP032513 SRS498419 GSM1257648: Pyruvate pH 5.7, Rep B; Mycobacterium tuberculosis; RNA-Seq 
SRS498418 GSM1257647: Pyruvate pH 5.7, Rep A; Mycobacterium tuberculosis; RNA-Seq 
SRS498417 GSM1257646: Pyruvate pH 7.0, Rep B; Mycobacterium tuberculosis; RNA-Seq 
SRS498416 GSM1257645: Pyruvate pH 7.0, Rep A; Mycobacterium tuberculosis; RNA-Seq 
SRS498415 GSM1257644: Glycerol pH 5.7, Rep B; Mycobacterium tuberculosis; RNA-Seq 
SRS498414 GSM1257643: Glycerol pH 5.7, Rep A; Mycobacterium tuberculosis; RNA-Seq 
SRS498413 GSM1257642: Glycerol pH 7.0, Rep B; Mycobacterium tuberculosis; RNA-Seq 
SRS498412 GSM1257641: Glycerol pH 7.0, Rep A; Mycobacterium tuberculosis; RNA-Seq 

SRP056155 SRS874204 GSM1633741: Resuscitation rep3; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874205 GSM1633740: Resuscitation rep2; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874206 GSM1633739: Resuscitation rep1; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874207 GSM1633738: Starvation day20 rep3; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874208 GSM1633737: Starvation day20 rep2; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874209 GSM1633736: Starvation day20 rep1; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874210 GSM1633735: Starvation day10 rep3; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874211 GSM1633734: Starvation day10 rep2; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874212 GSM1633733: Starvation day10 rep1; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874213 GSM1633732: Starvation day4 rep3; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874214 GSM1633731: Starvation day4 rep2; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874215 GSM1633730: Starvation day4 rep1; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874216 GSM1633729: Log phase control rep3; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874217 GSM1633728: Log phase control rep2; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 
SRS874218 GSM1633727: Log phase control rep1; Mycobacterium bovis BCG str. Pasteur 1173P2; RNA-Seq 

15 - Table 8.9 – Retrieved RNAseq datasets 

A list of the different RNAseq datasets that were retrieved in this study, listing the organism, the project 
and the individual sample ids. The description of the sample form the producer of the data is included. 
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Differentially expressed proteins – Split Cluster vs Wildtype (6AA) 
Protein Name Protein 

Symbol 
Log2 WT 
Average 
Counts 

Log2 Split 
Cluster 

Average 
Counts 

Difference -Log2 
P-value 

2-iminobutanoate/2-iminopropanoate deaminase yabJ 4.60 0.67 3.94 3.32 
Catalase-2 katE 3.09 0.67 2.42 2.49 
General stress protein 69 yhdN 2.97 0.67 2.31 1.31 
Oxalate decarboxylase OxdC oxdC 3.66 1.53 2.13 2.64 
Uncharacterized N-acetyltransferase YvbK yvbK 2.11 0.00 2.11 4.40 
UPF0331 protein YutE yutE 1.97 0.00 1.97 3.12 
FMN-dependent NADPH-azoreductase azr 2.25 0.33 1.92 1.82 
3-dehydroquinate dehydratase aroD 2.57 0.67 1.90 1.31 
tRNA N6-adenosine threonylcarbamoyltransferase tsaD 2.11 0.33 1.77 2.15 
Primosomal protein DnaI dnaI 2.41 0.67 1.74 1.22 
Uncharacterized protein YydD yydD 3.69 1.97 1.72 2.71 
Uncharacterized protein YddK yddK 3.11 1.39 1.72 2.98 
Teichoic acid translocation permease protein TagG tagG 1.72 0.00 1.72 3.62 
Ribosomal protein L11 methyltransferase prmA 2.24 0.53 1.71 1.26 
Flagellar hook-associated protein 2 fliD 3.00 1.33 1.67 2.13 
SPBc2 prophage-derived uncharacterized protein YopC yopC 2.00 0.33 1.67 2.13 
Guanine/hypoxanthine permease PbuG pbuG 2.00 0.33 1.67 2.13 
SPBc2 prophage-derived uncharacterized protein YonI yonI 1.67 0.00 1.67 2.13 
Putative niacin/nicotinamide transporter NaiP naiP 1.67 0.00 1.67 2.13 
Putative phosphinothricin acetyltransferase YwnH ywnH 2.50 0.86 1.64 1.59 
General stress protein 17M yflT 3.04 1.44 1.60 1.58 
UPF0111 protein YkaA ykaA 3.41 1.86 1.55 3.16 
General stress protein CTC ctc 3.53 1.99 1.54 1.63 
Redox-sensing transcriptional repressor Rex rex 1.86 0.33 1.53 1.88 
Regulatory protein RecX recX 1.86 0.33 1.53 1.88 
Putative metal-dependent hydrolase YfiT yfiT 2.30 0.86 1.44 1.37 
Putative ribonuclease YwqJ ywqJ 2.11 0.67 1.44 1.83 
Phosphoribosylglycinamide formyltransferase purN 4.19 2.77 1.42 2.24 
CCA-adding enzyme cca 2.08 0.67 1.41 1.57 
Antitoxin YxxD yxxD 2.27 0.86 1.41 1.23 
UPF0755 protein YrrL yrrL 3.32 1.92 1.40 1.82 
Protoporphyrinogen oxidase hemY 1.39 0.00 1.39 2.69 
UPF0118 membrane protein YueF yueF 1.39 0.00 1.39 2.69 
Uncharacterized protein YqkB yqkB 1.39 0.00 1.39 2.69 
Uncharacterized oxidoreductase YcsN ycsN 1.39 0.00 1.39 2.69 
sp|P94498|CYSH1_BACSU Phosphoadenosine phosphosulfate reductase cysH 3.70 2.32 1.38 4.55 
RNA polymerase sigma-B factor sigB 3.20 1.83 1.37 1.91 
SPBc2 prophage-derived uncharacterized protein YopQ yopQ 3.36 2.00 1.36 3.84 
Gluconokinase gntK 2.21 0.86 1.35 1.33 
DNA-binding protein HU 1 hupA 6.78 5.44 1.34 4.30 
HTH-type transcriptional regulator YodB yodB 1.33 0.00 1.33 1.79 
Hypoxanthine-guanine phosphoribosyltransferase hprT 5.05 3.72 1.33 2.96 
Anti-sigma-B factor antagonist rsbV 2.71 1.39 1.32 2.03 
Dihydroorotate dehydrogenase B (NAD(+)), electron transfer subunit pyrK 3.17 1.86 1.31 3.16 
Uncharacterized protein YvbH yvbH 2.50 1.19 1.30 2.43 
Flagellar protein FliL fliL 1.97 0.67 1.30 1.52 
Uncharacterized protein YvfG yvfG 3.06 1.83 1.23 2.08 
5'-3' exonuclease ypcP 2.21 1.00 1.21 3.46 
Purine nucleoside phosphorylase 1 punA 4.26 3.06 1.20 2.91 
Arginine repressor argR 2.39 1.19 1.19 1.91 
Putative lipoprotein YvcA yvcA 1.86 0.67 1.19 1.53 
Glucose 1-dehydrogenase 2 ycdF 1.53 0.33 1.19 1.27 
Citrate synthase 1 citA 1.19 0.00 1.19 2.44 
High-affinity proline transporter PutP putP 1.19 0.00 1.19 2.44 
Probable glucosamine-6-phosphate deaminase 2 gamA 1.19 0.00 1.19 2.44 
Uncharacterized PIN and TRAM-domain containing protein YacL yacL 1.19 0.00 1.19 2.44 
Putative exported peptide YydF yydF 1.19 0.00 1.19 2.44 
Central glycolytic genes regulator cggR 3.58 2.39 1.19 1.31 
Type-2 restriction enzyme BsuMI component YdiS ydiS 2.57 1.39 1.18 2.10 
General stress protein 20U dps 3.94 2.77 1.18 1.71 
Uncharacterized protein YtoQ ytoQ 3.03 1.86 1.16 1.94 
Uncharacterized ABC transporter ATP-binding protein YhaQ yhaQ 1.83 0.67 1.16 1.32 
Oligopeptide transport system permease protein OppC oppC 1.83 0.67 1.16 1.32 
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Xylose isomerase xylA 4.60 3.44 1.16 2.73 
DNA-directed RNA polymerase subunit delta rpoE 3.72 2.57 1.15 2.39 
Thioredoxin-like protein YdbP ydbP 3.66 2.53 1.13 1.75 
Uncharacterized protein YjlC yjlC 6.12 5.00 1.12 3.55 
Protein translocase subunit SecY secY 2.65 1.53 1.12 1.55 
Putative methyl-accepting chemotaxis protein YoaH yoaH 2.66 1.58 1.07 3.88 
Probable anti-sigma-M factor YhdL yhdL 3.04 1.97 1.07 1.83 
Multidrug resistance protein 3 bmr3 1.72 0.67 1.06 1.37 
Uncharacterized membrane protein YubF yubF 1.39 0.33 1.06 1.28 
Probable enoyl-CoA hydratase fadB 1.39 0.33 1.06 1.28 
Minor teichoic acid biosynthesis protein GgaA ggaA 1.39 0.33 1.06 1.28 
Quinol oxidase subunit 3 qoxC 1.39 0.33 1.06 1.28 
Uncharacterized protein YukE yukE 5.56 4.55 1.02 2.44 
Exodeoxyribonuclease 7 small subunit xseB 3.58 2.57 1.01 2.53 
Flagellar motor switch protein FliM fliM 2.73 1.72 1.01 2.52 
Succinate-semialdehyde dehydrogenase [NADP(+)] gabD 2.87 1.86 1.01 2.57 
sp|O06478|ALDH5_BACSU Putative aldehyde dehydrogenase YfmT yfmT 4.95 3.96 1.00 2.69 
Pyridoxine kinase pdxK 4.64 3.66 0.98 3.22 
Uncharacterized protein YcsD ycsD 1.97 1.00 0.97 1.98 
3-isopropylmalate dehydratase small subunit leuD 4.33 3.37 0.96 2.30 
sp|O32243|OPUCC_BACSU Glycine betaine/carnitine/choline-binding protein 
OpuCC 

opuCC 3.50 2.55 0.95 1.84 

3-dehydroquinate synthase aroB 5.34 4.39 0.95 3.19 
Homoserine kinase thrB 4.60 3.66 0.94 2.25 
Octanoyltransferase LipM lipM 3.05 2.11 0.94 2.36 
Putative O-methyltransferase YrrM yrrM 1.58 0.67 0.92 1.29 
Aminomethyltransferase gcvT 2.11 1.19 0.91 1.83 
Xanthine permease pbuX 2.11 1.19 0.91 1.83 
Putative sensory transducer protein YfmS yfmS 4.32 3.41 0.91 3.14 
Cysteine--tRNA ligase cysS 4.41 3.50 0.91 2.65 
50S ribosomal protein L29 rpmC 5.06 4.16 0.90 1.91 
Gamma-glutamyl phosphate reductase proA 4.29 3.41 0.88 3.41 
Probable 2-ketogluconate reductase yvcT 2.97 2.11 0.87 1.76 
Stage 0 sporulation protein A spo0A 1.86 1.00 0.86 2.47 
Uncharacterized HTH-type transcriptional regulator YvdT yvdT 1.86 1.00 0.86 2.47 
Ribonuclease 3 rnc 2.71 1.86 0.85 1.59 
UPF0234 protein yitk yitK 3.84 2.99 0.84 2.46 
Uncharacterized protein YjoA yjoA 3.25 2.41 0.84 1.91 
DNA topoisomerase 3 topB 4.05 3.21 0.84 1.91 
Putative heme-dependent peroxidase YwfI ywfI 2.80 1.97 0.83 1.56 
SPBc2 prophage-derived uncharacterized protein YokE yokE 2.21 1.39 0.82 1.68 
Uncharacterized protein YfjT yfjT 2.21 1.39 0.82 1.68 
Putative acetyltransferase YjbC yjbC 2.19 1.39 0.81 1.36 
Putative HMP/thiamine permease protein YkoC ykoC 2.19 1.39 0.81 1.36 
Uncharacterized protein YqeK yqeK 2.19 1.39 0.81 1.36 
Uncharacterized protein YvyC yvyC 2.00 1.19 0.81 1.84 
Glutamine synthetase glnA 7.32 6.53 0.80 2.41 
DNA translocase SftA sftA 3.84 3.04 0.80 2.18 
50S ribosomal protein L16 rplP 6.45 5.65 0.80 4.97 
Serine hydroxymethyltransferase glyA 6.52 5.73 0.79 2.67 
Putative cysteine ligase BshC bshC 3.80 3.01 0.79 1.42 
GTP pyrophosphokinase relA 4.71 3.93 0.78 2.62 
Putative cysteine protease YraA yraA 3.93 3.16 0.77 2.47 
Chemotaxis protein CheV cheV 4.95 4.20 0.76 4.46 
Ftsk domain-containing protein YukB yukB 2.97 2.21 0.75 1.47 
Carboxypeptidase 1 ypwA 4.30 3.54 0.75 4.00 
Chromosome partition protein Smc smc 3.37 2.64 0.73 1.65 
Pyridoxal 5'-phosphate synthase subunit PdxT pdxT 4.03 3.31 0.72 2.01 
sp|P39576|ILVE2_BACSU Branched-chain-amino-acid aminotransferase 2 ilvK 5.80 5.08 0.72 2.62 
UDP-N-acetylenolpyruvoylglucosamine reductase murB 4.34 3.62 0.72 3.23 
Putative N-acetylmuramoyl-L-alanine amidase YrvJ yrvJ 2.11 1.39 0.72 1.49 
UTP--glucose-1-phosphate uridylyltransferase gtaB 5.69 4.98 0.71 2.43 
GTP-sensing transcriptional pleiotropic repressor CodY codY 5.10 4.39 0.71 3.13 
Serine-protein kinase RsbW rsbW 3.77 3.06 0.71 2.52 
HTH-type transcriptional regulator Hpr hpr 2.57 1.86 0.71 1.64 
sp|O34577|CYSC1_BACSU Probable adenylyl-sulfate kinase cysC 3.20 2.50 0.70 1.49 
Glyoxal reductase yvgN 4.96 4.27 0.70 2.22 
Methionine--tRNA ligase metG 5.81 5.11 0.69 2.61 
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sp|O34916|DAPEL_BACSU N-acetyldiaminopimelate deacetylase ykuR 2.41 1.72 0.69 1.86 
Manganese transport system ATP-binding protein MntB mntB 5.09 4.41 0.67 3.90 
sp|P39120|CISY2_BACSU Citrate synthase 2 citZ 4.39 3.72 0.66 1.91 
Uncharacterized protein YpuA ypuA 3.32 2.66 0.66 2.38 
2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase dapH 5.26 4.60 0.66 3.16 
30S ribosomal protein S6 rpsF 6.67 6.01 0.66 2.15 
Flagellar motor switch protein FliG fliG 3.15 2.50 0.65 1.56 
Proline--tRNA ligase proS 5.70 5.05 0.65 2.43 
Putative transcriptional regulator YwtF ywtF 3.05 2.41 0.64 1.89 
Arginase rocF 6.91 6.27 0.64 2.33 
Ribonuclease J1 rnjA 6.01 5.38 0.64 3.35 
sp|P39816|PTW3C_BACSU Putative PTS system glucosamine-specific EIICBA 
component 

gamP 2.50 1.86 0.64 1.75 

Metalloregulation DNA-binding stress protein mrgA 2.94 2.30 0.63 1.60 
L-lactate dehydrogenase ldh 4.66 4.03 0.63 2.46 
Glucose-6-phosphate 1-dehydrogenase zwf 5.32 4.69 0.63 1.87 
Threonine--tRNA ligase 1 thrS 5.89 5.27 0.62 2.15 
DEAD-box ATP-dependent RNA helicase CshB cshB 4.68 4.06 0.62 1.52 
Sirohydrochlorin ferrochelatase sirB 2.94 2.32 0.61 3.17 
Zinc-transporting ATPase zosA 4.56 3.96 0.60 1.63 
sp|P70970|ECFA2_BACSU Energy-coupling factor transporter ATP-binding 
protein EcfA2 

ecfAB 2.32 1.72 0.60 1.91 

Methyl-accepting chemotaxis protein TlpB tlpB 4.56 3.96 0.60 2.14 
Methyl-accepting chemotaxis protein McpB mcpB 5.46 4.87 0.59 2.12 
Alkyl hydroperoxide reductase subunit C ahpC 8.02 7.43 0.59 2.52 
Asparagine synthetase [glutamine-hydrolyzing] 1 asnB 5.30 4.71 0.59 1.77 
NADPH-dependent 7-cyano-7-deazaguanine reductase queF 3.50 2.92 0.58 1.51 
Uncharacterized membrane protein YrrS yrrS 2.99 2.41 0.58 1.89 
Uncharacterized zinc protease YmfH ymfH 3.22 2.65 0.58 1.56 
Putative carbonic anhydrase YtiB ytiB 3.50 2.93 0.57 1.96 
Dihydroorotase pyrC 4.14 3.57 0.57 1.79 
RNA polymerase sigma factor SigA sigA 5.04 4.48 0.57 3.10 
Uncharacterized protein ymdB ymdB 3.50 2.94 0.56 2.18 
1-acyl-sn-glycerol-3-phosphate acyltransferase plsC 3.41 2.86 0.55 1.71 
Ribosome-binding factor A rbfA 2.66 2.11 0.55 1.87 
Chemotaxis protein CheA cheA 5.09 4.54 0.55 1.91 
Flagellar motor switch phosphatase FliY fliY 4.60 4.05 0.55 1.84 
Adenylate kinase adk 5.46 4.91 0.55 1.94 
Enolase eno 8.23 7.69 0.54 2.29 
Tryptophan--tRNA ligase trpS 3.41 2.87 0.54 2.11 
UDP-glucose 4-epimerase galE 3.90 3.37 0.54 2.76 
Valine--tRNA ligase valS 6.19 5.65 0.54 2.48 
UPF0435 protein YfkK yfkK 3.54 3.00 0.54 2.06 
L-cystine-binding protein TcyA tcyA 4.58 4.05 0.53 2.25 
2-oxoglutarate dehydrogenase E1 component odhA 5.80 5.27 0.53 2.66 
FeS cluster assembly protein SufD sufD 6.76 6.23 0.53 2.48 
Protein YtsP ytsP 2.94 2.41 0.53 2.08 
Adenylosuccinate lyase purB 6.31 5.79 0.52 3.15 
Superoxide dismutase [Mn] sodA 5.44 4.92 0.52 2.68 
Tyrosine--tRNA ligase 1 tyrS1 5.55 5.04 0.51 3.16 
2-isopropylmalate synthase leuA 7.07 6.56 0.51 3.33 
tRNA modification GTPase MnmE mnmE 3.62 3.11 0.50 1.91 
Glucose-6-phosphate isomerase pgi 6.54 6.04 0.50 2.45 
Isocitrate dehydrogenase [NADP] icd 6.36 5.86 0.50 3.85 
Cluster of Methyl-accepting chemotaxis protein McpA mcpA 5.18 4.68 0.50 1.90 
Orotidine 5'-phosphate decarboxylase pyrF 4.64 4.14 0.49 2.05 
4-hydroxy-tetrahydrodipicolinate synthase dapA 5.40 4.90 0.49 1.83 
Catabolite control protein A ccpA 5.12 4.62 0.49 3.10 
Phosphoenolpyruvate-protein phosphotransferase ptsI 7.19 6.70 0.49 2.48 
Lactate utilization protein A lutA 3.90 3.41 0.49 2.62 
Aspartate-semialdehyde dehydrogenase asd 6.10 5.61 0.49 2.56 
GMP synthase [glutamine-hydrolyzing] guaA 6.28 5.79 0.49 1.70 
Glutamyl-tRNA(Gln) amidotransferase subunit A gatA 6.18 5.70 0.48 2.07 
Uncharacterized protein YxkC yxkC 6.40 5.93 0.47 2.01 
Acetolactate synthase large subunit ilvB 6.31 5.85 0.45 2.25 
ATP-dependent zinc metalloprotease FtsH ftsH 6.12 5.67 0.45 1.78 
Oligopeptide transport ATP-binding protein OppF oppF 3.66 3.22 0.44 2.09 
Exodeoxyribonuclease 7 large subunit xseA 2.94 2.50 0.44 1.80 
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sp|P94390|PROD2_BACSU Proline dehydrogenase 2 putB 4.54 4.11 0.43 2.05 
Transaldolase tal 5.93 5.51 0.42 1.86 
Glycerol-3-phosphate dehydrogenase [NAD(P)+] gpsA 3.87 3.46 0.42 2.14 
sp|O34992|OPUCA_BACSU Glycine betaine/carnitine/choline transport ATP-
binding protein OpuCA 

opuCA 5.18 4.77 0.42 1.86 

Negative regulator of genetic competence ClpC/MecB clpC 6.12 5.71 0.41 2.33 
Putative nitrogen fixation protein YutI yutI 2.41 2.00 0.41 2.02 
sp|Q01625|MISCA_BACSU Membrane protein insertase MisCA misCA 2.41 2.00 0.41 2.02 
Phage shock protein A homolog ydjF 4.44 4.03 0.41 2.82 
Leucine--tRNA ligase leuS 5.35 4.95 0.39 2.67 
30S ribosomal protein S17 rpsQ 5.85 5.47 0.38 2.06 
ATP-dependent Clp protease ATP-binding subunit ClpX clpX 5.51 5.14 0.37 2.62 
Pyruvate carboxylase pyc 7.04 6.67 0.37 3.23 
DNA-directed RNA polymerase subunit beta' rpoC 7.48 7.11 0.37 4.12 
30S ribosomal protein S4 rpsD 7.01 6.66 0.35 2.21 
ATP synthase subunit beta atpD 6.65 6.30 0.35 3.46 
ATP-dependent Clp protease proteolytic subunit clpP 4.72 4.37 0.35 2.55 
Elongation factor Ts tsf 7.35 7.01 0.34 3.99 
Elongation factor G fusA 8.58 8.24 0.34 3.02 
Phenylalanine--tRNA ligase beta subunit pheT 6.82 6.48 0.33 3.76 
Sulfite reductase [NADPH] flavoprotein alpha-component cysJ 4.60 4.27 0.33 2.45 
Alanine--tRNA ligase alaS 5.56 5.24 0.33 2.69 
Uncharacterized ABC transporter solute-binding protein YclQ yclQ 4.74 4.44 0.30 3.32 
50S ribosomal protein L5 rplE 7.09 6.80 0.29 2.75 
Chorismate synthase aroC 5.58 5.89 -0.31 3.43 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 
dehydrogenase complex 

pdhC 7.36 7.70 -0.34 2.35 

Transketolase tkt 6.68 7.04 -0.37 2.75 
50S ribosomal protein L19 rplS 5.95 6.33 -0.37 2.35 
tRNA nuclease WapA wapA 5.95 6.34 -0.39 2.32 
50S ribosomal protein L30 rpmD 4.11 4.52 -0.41 2.42 
50S ribosomal protein L20 rplT 4.29 4.74 -0.45 1.84 
Phosphoglucosamine mutase glmM 4.32 4.79 -0.47 1.96 
Succinyl-CoA ligase [ADP-forming] subunit alpha sucD 4.48 4.96 -0.48 1.82 
Putative phosphatase YitU yitU 2.50 3.00 -0.50 2.34 
Immunity protein WapI wapI 2.99 3.50 -0.50 1.68 
UPF0173 metal-dependent hydrolase YtkL ytkL 3.22 3.73 -0.51 2.05 
Cysteine desulfurase SufS sufS 3.96 4.50 -0.53 2.05 
Putative ABC transporter substrate-binding lipoprotein YhfQ yhfQ 2.72 3.27 -0.55 1.69 
Thiazole tautomerase tenI 2.94 3.49 -0.56 1.92 
Malonyl CoA-acyl carrier protein transacylase fabD 3.70 4.26 -0.56 1.83 
Acireductone dioxygenase mtnD 2.94 3.50 -0.56 2.18 
Putative dipeptidase YkvY ykvY 3.05 3.62 -0.57 1.98 
Uncharacterized protein YcnI ycnI 2.21 2.81 -0.59 2.28 
Uncharacterized protein YwnB ywnB 1.72 2.32 -0.60 1.91 
Fumarate hydratase class II fumC 4.41 5.03 -0.61 2.56 
UDP-N-acetylglucosamine 2-epimerase mnaA 2.48 3.11 -0.62 1.49 
Ribose-phosphate pyrophosphokinase prs 4.77 5.41 -0.64 2.01 
50S ribosomal protein L4 rplD 5.85 6.52 -0.68 2.87 
sp|Q08788|SRFAD_BACSU Surfactin synthase thioesterase subunit srfAD 1.72 2.41 -0.69 1.86 
Aspartokinase 2 lysC 4.78 5.48 -0.70 1.63 
30S ribosomal protein S8 rpsH 4.97 5.69 -0.72 2.05 
Uncharacterized protein YneT yneT 1.39 2.11 -0.72 1.49 
Uncharacterized protease YrrO yrrO 2.21 2.94 -0.72 2.35 
4-hydroxy-tetrahydrodipicolinate reductase dapB 3.04 3.77 -0.72 1.82 
Putative NAD(P)H nitroreductase YodC yodC 3.20 3.93 -0.73 1.47 
Putative metal chaperone YciC yciC 6.75 7.49 -0.73 2.94 
Methionyl-tRNA formyltransferase fmt 4.18 4.92 -0.74 2.22 
30S ribosomal protein S10 rpsJ 5.01 5.76 -0.75 3.37 
50S ribosomal protein L35 rpmI 3.36 4.14 -0.78 2.49 
Transition state regulatory protein AbrB abrB 4.44 5.23 -0.79 1.68 
Uncharacterized isomerase YfhB yfhB 2.41 3.32 -0.91 2.77 
Ribonuclease PH rph 1.19 2.11 -0.91 1.83 
Sensor histidine kinase ResE resE 1.39 2.32 -0.93 2.06 
Probable ATP-dependent RNA helicase YfmL yfmL 1.86 2.80 -0.94 2.16 
Probable iron uptake system component EfeM efeM 2.48 3.44 -0.96 1.90 
Uncharacterized phosphatase PhoE phoE 1.53 2.50 -0.97 1.48 
Putative L,D-transpeptidase YciB yciB 2.16 3.16 -1.00 1.48 
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sp|P17620|RIBBA_BACSU Riboflavin biosynthesis protein RibBA ribBA 3.71 4.76 -1.05 1.90 
MIP18 family protein YitW yitW 0.33 1.39 -1.06 1.28 
Transcriptional regulatory protein ComA comA 0.33 1.39 -1.06 1.28 
Uncharacterized protein YoeB yoeB 1.72 2.80 -1.07 2.38 
Pur operon repressor purR 2.19 3.27 -1.08 2.23 
Elongation factor P efp 3.84 4.91 -1.08 2.83 
Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 KRT2 2.33 3.41 -1.08 1.31 
UPF0296 protein YlzA ylzA 1.00 2.11 -1.11 3.30 
Probable NAD-dependent malic enzyme 4 ytsJ 4.62 5.78 -1.16 3.81 
Holliday junction ATP-dependent DNA helicase RuvA ruvA 1.39 2.57 -1.18 2.10 
Fructosamine kinase FrlD frlD 0.67 1.86 -1.19 1.53 
Septum formation protein Maf maf 0.33 1.53 -1.19 1.27 
Uncharacterized transcriptional regulatory protein YvcP yvcP 0.00 1.19 -1.19 2.44 
Uncharacterized hydrolase YxeP yxeP 0.00 1.19 -1.19 2.44 
PtsGHI operon antiterminator glcT 0.00 1.19 -1.19 2.44 
Protein hit hit 1.39 2.60 -1.21 1.54 
Cell division protein SepF sepF 1.19 2.41 -1.21 2.32 
Isoprenyl transferase uppS 1.33 2.58 -1.25 1.70 
Iron(3+)-hydroxamate-binding protein YxeB yxeB 1.53 2.82 -1.29 1.46 
7-cyano-7-deazaguanine synthase queC 0.67 1.97 -1.30 1.52 
Uncharacterized protein YloU yloU 0.67 1.97 -1.30 1.52 
GTP pyrophosphokinase YjbM yjbM 0.86 2.19 -1.33 1.25 
Uncharacterized protein YhbE yhbE 0.33 1.72 -1.39 1.74 
50S ribosomal protein L21 rplU 3.22 4.62 -1.40 2.70 
Acetolactate synthase small subunit ilvH 2.99 4.46 -1.46 3.52 
2-hydroxymuconate tautomerase ywhB 1.19 2.66 -1.46 2.66 
General stress protein 16U yceD 4.09 5.58 -1.49 1.92 
Endoribonuclease YbeY ybeY 1.19 2.71 -1.51 2.24 
Uncharacterized protein YqeZ yqeZ 0.33 1.86 -1.53 1.88 
Stage V sporulation protein S spoVS 0.33 1.86 -1.53 1.88 
7-carboxy-7-deazaguanine synthase queE 0.67 2.21 -1.55 1.94 
Cluster of Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 (K1C10_CON-HUMAN) 

KRT10 2.00 3.63 -1.63 1.23 

Alkaline phosphatase synthesis transcriptional regulatory protein PhoP phoP 0.00 1.67 -1.67 2.13 
Putative aminopeptidase YsdC ysdC 1.58 3.27 -1.69 5.31 
DNA-entry nuclease inhibitor nin 0.00 1.83 -1.83 2.76 
6,7-dimethyl-8-ribityllumazine synthase ribH 3.84 5.68 -1.85 3.89 
Uncharacterized protein YxiF yxiF 0.00 1.86 -1.86 3.75 
2,3-dihydroxybenzoate-AMP ligase dhbE 0.67 2.57 -1.90 2.21 
Uncharacterized protein YbcI ybcI 1.19 3.11 -1.91 1.32 
Putative carboxypeptidase YodJ yodJ 0.53 2.46 -1.94 1.54 
Isochorismatase dhbB 0.33 2.30 -1.97 2.21 
LOG family protein YvdD yvdD 0.67 2.85 -2.19 2.37 
30S ribosomal protein S15 rpsO 3.94 6.15 -2.22 4.58 
Dimodular nonribosomal peptide synthase dhbF 0.86 3.27 -2.41 2.18 
Riboflavin synthase ribE 0.00 2.71 -2.71 3.75 

16 - Table 8.10 – Differentially expression proteins between split cluster and wild type 6AA 

A list of the all the significantly differentially expression proteins found in our proteomics experiment 
comparing the split cluster mutant and the wild type in MOPS minimal media supplemented with amino 
acids. The table includes the gene name and symbol as well as a the log2 counts of the protein peptides, 
the difference in these values and the negative log2 p-value. 
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8.5 List of Abbreviations 
 
HGT Horizontal Gene Transfer 
TCE  Translation Cell Envelope Cluster 
AmpR  Ampicillin resistance  
CmR  Chloramphenicol resistance  
ErmR Erythromycin Resistance 
MoClo  Modular Cloning  
OD  Optical density  
Ori  Origin of replication  
TSS Transcription start site 
PCR  Polymerase Chain Reaction  
qPCR quantiative PCR 
RFU  Relative fluorescent units  
SpcR  Spectinomycin resistance  

 


