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Summary of the thesis 

Metabolism is the core of what we consider to be a living cell. It covers all chemical reactions that are 

necessary to break down nutrients and convert them into energy and cellular building blocks for 

growth. These chemical reactions comprise a large metabolic network that is subject to tight feedback-

regulation of enzyme activities or abundances. However, even in intensively studied model organisms 

like Escherichia coli, the knowledge about the function of feedback-regulatory mechanisms and how 

they interact to control metabolism is still sparse. Therefore, the first goal of this study was to 

understand the function and relevance of metabolic feedback regulation using amino acid metabolism 

in E. coli as a case study. The second goal was to use the knowledge about metabolic feedback 

regulation to engineer microbial cell factories for the production of amino acids like L-arginine.  

In Chapter 1 we constructed a panel of 7 mutants with allosterically dysregulated amino acid pathways 

to uncover the relevance and function of allosteric feedback inhibition in vivo, which was so far only 

demonstrated by theoretical studies. By combining metabolomics, proteomics and flux profiling we 

could show that allosteric feedback inhibition is crucial to adjust a reserve of biosynthetic enzymes. 

Such enzyme overabundance originates from a sensitive interaction between control of enzyme 

activity (allosteric feedback inhibition) and enzyme abundance (transcriptional regulation). 

Furthermore, we used a metabolic model and CRISPR interference experiments to show that enzyme 

overabundance renders cells more robust against genetic perturbations.  

In Chapter 2 we increased fitness of a rationally engineered arginine overproduction strain by leaving 

a certain level of transcriptional regulation. Therefore, we titrated the transcription factor ArgR by 

CRISPRi and compared this different level of transcriptional regulation with an ArgR knockout strain. 

Using the CRISPRi approach we elevated the growth rates of an overproduction strain by two-fold 

compared to the knockout strain, without impairing arginine production rates and titer. Metabolomics 

and proteomics experiments revealed that slow growth of the knockout strain derives from limitations 

in pyrimidine nucleotide metabolism and that these limitations are caused by imbalances of enzyme 

level at critical branching points. Thus, we demonstrated the importance of balancing enzymes in an 

overproduction pathway and that CRISPRi is a suitable tool for this purpose 

In Chapter 3 we show how cells respond to genetic perturbation on the molecular scale. Therefore, 

we perturbed amino acid biosynthesis genes with CRISPRi and analyzed the transcriptional response 

with GFP-reporter plasmids and proteomics. These experiments revealed that cells elevate the 

expression of genes in a perturbed pathway to counteract a genetic perturbation (We will refer to this 

mechanism as transcriptional compensation). Metabolomics and flow cytometry data of the wild-type 
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and the allosteric mutant demonstrated the benefit of enzyme overabundance in response to genetic 

perturbations: Cells without overabundance showed a heterogenic transcriptional compensation even 

to mild perturbations, whereas in wild-type cells such mild perturbations were buffered by enzyme 

overabundance.  

In Chapter 4 we consider amino acid degradation pathways as an additional regulatory mechanism for 

the maintenance of end-product homeostasis Nutritional downshift experiments revealed increased 

robustness of allosteric mutants in which the respective degradation pathway was up-regulated. By 

dynamic metabolite measurements we showed that E. coli channels an excess of arginine into the 

degradation pathway. This overflow mechanism might be the reason for the robustness of allosteric 

mutants under dynamic conditions. 
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Zusammenfassung der Arbeit 

Stoffwechsel spielt eine zentrale Rolle in allen lebenden Organismen. Die Gesamtheit aller 

biochemischen Reaktionen gewährleistet den Abbau und Umwandlung von Substraten in Energie und 

Bausteine für zelluläres Wachstum. Solch biochemische Reaktionen sind in netzwerkartigen 

Strukturen angeordnet und unterliegen regulatorischen Mechanismen wie der Kontrolle von Enzym 

Aktivitäten (Allosterische Regulation) und -Abundanzen (Transkriptionelle Regulation). Dennoch ist 

selbst in Modellorganismen wie Escherichia coli wenig über die globalen Wirkweisen und 

Interaktionen dieser Regulationsmechanismen bekannt. Das Hauptziel dieser Thesis bestand darin, 

am Beispiel des Aminosäure Stoffwechsels von E. coli, die Funktion und Relevanz von 

Regulationsmechanismen für die lebende Zelle zu verstehen. Darüber hinaus sollte das gewonnene 

Wissen darauf verwendet werden, bakterielle Zellen für die biotechnologische Produktion von 

wertvollen Aminosäuren wie L-Arginin zu modifizieren.  

In Kapitel 1 wurde eine Zusammenstellung von sieben E. coli Punktmutanten generiert, in welchen die 

allosterische Inhibierung von jeweils einem Aminosäure Biosyntheseweg entfernt wurde. Damit sollte 

die bisher unklare Funktion von allosterischer End-Produkt Inhibierung in vivo demonstriert werden. 

Mit Hilfe von globalen Metabolit- und Proteomdaten, sowie Messungen des biosynthetischen Flusses 

konnte gezeigt werden, dass Zellen durch allosterische Inhibierung Enzymreserven generieren. Solche 

Enzymreserven werden durch eine sensitive Interaktion von allosterischer und transkriptioneller 

Regulation eingestellt. Weiterhin konnte durch eine mathematische Modellierung in Kombination mit 

CRISPRi-Experimenten nachgewiesen werden, dass Enzymreserven Zellen robuster gegen genetische 

Störungen machen.  

In Kapitel 2 wurde untersucht, ob das Wachstum eines biotechnologischen Arginin Produzenten durch 

verschiedene Level transkriptioneller Regulation verbessert werden kann. Dafür wurde der 

Transkriptionsfaktor ArgR mittels CRISPRi auf verschiedene Level titriert und mit einer ArgR Deletion 

verglichen. Durch die Titration von ArgR konnte die Wachstumsrate eines Überproduktionsstammes 

verdoppelt werden ohne dabei die Arginin Produktionsrate und den Titer negativ zu beeinflussen. 

Metabolit und Protein Messungen ergaben, dass der Wachstumsdefizit der Deletions-Mutante durch 

Limitierungen in der Pyrimidin Biosynthese entsteht. Diese Limitierungen entstehen wiederum durch 

Ungleichgewichte von Enzymen an metabolischen Schnittpunkten zwischen Arginin und Pyrimidin 

Biosynthesewegen. 

In Kapitel 3 wurden die molekularen Mechanismen in Reaktion auf genetische Perturbationen 

charakterisiert. Dafür wurden die finalen Experimente aus Kapitel 1 aufgegriffen und drei 
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verschiedene Aminosäure Produktionswege durch CRISPRi perturbiert und die transkriptionelle 

Reaktion mittels Fluoreszenz-Reporterplasmiden und Protein Messungen untersucht. Die 

Experimente ergaben, dass Zellen auf Störungen der Gen-Expression reagieren, indem sie die gesamte 

Expression des jeweiligen Biosyntheseweges anheben um einer Enzymlimitierung entgegenzuwirken. 

Anhand von Durchflusszytometry und dynamischen Metabolit Messungen konnte beobachtet 

werden, dass allosterische Mutanten ohne Enzymreserven eine heterogene und sensitivere 

transkriptionelle Reaktion auf genetische Störungen zeigen. 

In Kapitel 4 sollte untersucht werden, ob Zellen Aminosäure Abbauwege als Überlaufventil nutzen um 

End-produkt Homöostase zu gewährleisten. In dynamischen Experimenten mit Substratwechseln von 

Glukose zu Galaktose, zeigten Mutanten mit hochregulierten Abbauwegen einen Wachstumsvorteil. 

Mit Hilfe von dynamischen Metabolit Messungen konnte gezeigt werden, dass ein Überfluss an Arginin 

in den jeweiligen Abbauweg umgeleitet wird. Ein solcher Mechanismus könnte die Robustheit der 

allosterischen Mutanten in dynamischen Experimenten erklären.  
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General Introduction 

 

Regulation of bacterial metabolism 

Bacterial metabolism is a large biochemical network with thousands of different metabolites and 

enzymes (Guo et al., 2013). This metabolic network converts nutrients into energy and building blocks 

for cellular growth. Metabolism is organized into so-called metabolic pathways that enable step-wise 

synthesis or degradation of metabolites, by either spontaneous or enzyme-driven biochemical 

reactions. Such pathways can be distinguished into catabolic and anabolic reactions (Chubukov et al., 

2014). Catabolic pathways degrade nutrients to produce energy and essential pre-cursors. A typical 

catabolic pathway is the glycolysis which converts glucose to pyruvate under production of the high 

energy products ATP and NADH. Anabolic pathways instead are used to form essential cellular building 

blocks such as amino acids or nucleotides. Since environmental conditions are constantly changing, 

bacteria evolved regulatory mechanism to ensure a need-based and efficient usage of the metabolic 

capacities. Such regulatory mechanism can take place on different layers, such as control of gene 

expression (i.e. by transcription factors or attenuation), regulation on the translational (i.e. by small 

RNA’s or mRNA stability) and post-translational level (i.e. by adenylation or phosphorylation) or by 

direct enzyme-metabolite interactions that control enzymatic activity (i.e. allosteric regulation) 

(Figure 1). With these regulatory mechanisms, cells are able to maintain an equilibrium of intracellular 

conditions, the so-called homeostasis.  

The idea of homeostasis was already postulated in 1929 by Walter B. Cannon, who described the 

maintenance of acceptable ranges of physiological parameters such as blood glucose and core 

temperature (Cannon, 1929). He realized that a homeostatic system requires regulatory mechanisms 

that sense perturbations and force the system back to steady state conditions. Thereby Walter Cannon 

described the mechanism of feedback regulation for the first time in a biological context and 

postulated it as a requirement for physiological homeostasis. The next milestone was set in 1956 by 

Edwin Umbarger, who first observed the mechanism of feedback inhibition of enzymes by pathway 

end-products. He could show that the first enzyme of isoleucine biosynthesis of E. coli is inhibited by 

isoleucine, which was the first example of allosteric feedback inhibition. Only five years later Jaques 

Monod discovered the principles of transcriptional regulation in the context of lactose up-take and 

hydrolysis (Jacob and Monod, 1961). In the absence of lactose, the lacI repressor blocks transcription 

of lactose degradation enzymes by binding to the promotor region of the lac-operon. If lactose is 

available, a degradation product (allolactose) allosterically binds to the lacI-repressor and disrupts 
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binding to the lac promotor, which causes expression of lactose degradation enzymes. Up to this day, 

the lac operon is one of the best studied examples for transcriptional feedback regulation of gene 

expression.  

 

 

Figure 1. Metabolic pathways are regulated on different layers. The scheme shows a typical pathway 

regulation from amino acid biosynthesis including negative allosteric and transcriptional feedback 

regulation. The partial fill of the enzymes indicates that they are not working at full capacity 

(overabundance). TF indicates a transcription factor. Grey arrow indicates activation, grey bar arrow 

indicates inhibition.   

 

The both described mechanisms represent the first examples of two of the most common regulatory 

mechanism controlling metabolism: Allosteric regulation of enzyme activity and transcriptional 

control of enzyme abundance. These feedback mechanisms are thought to be crucial in providing 

metabolic robustness, the ability to maintain performance in the face of perturbations and uncertainty 

(Stelling et al., 2004). However, a direct experimental link between metabolic robustness and 

feedback mechanisms was only shown by theoretical analyses (Kitano, 2007). A kinetic modelling 

approach for instance showed that allosteric enzyme regulation significantly increases the stability of 
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a network (Grimbs et al., 2007). In the scope of metabolic robustness, recent theoretic studies 

observed that enzymes reserves might be key in the ability to adapt to changing environments 

(O’Brien, Utrilla and Palsson, 2016; Davidi and Milo, 2017). Such enzyme overabundance was then 

analyzed in more specific studies, that showed a benefit in quick activation of the pentose phosphate 

pathway upon oxidative stress (Christodoulou et al., 2018), and similar observations were made for 

overabundant ribosomes (Mori et al., 2017) and coenzymes (Hartl et al., 2017). However, beside this 

few studies, less is known about the function and the regulatory mechanisms that adjust enzyme 

overabundance. An open question is, to which extent do cells express enzymes in excess, in other 

words: How much enzyme is enough for a cell? This question indicates a critical trade-off between 

cost efficient (low enzyme level) and robust (high enzyme level) metabolic operations, which was also 

discussed by others (Kitano, 2007; Donati, Sander and Link, 2018). It needs to be clarified, which 

regulatory mechanisms allow to solve the efficiency-robustness trade-off.  

 

Metabolite level contain information for the cell 

The metabolome is a signaling platform that carries information about the current status of the cell in 

order to fine-tune anabolic and catabolic reactions as well as gene expression. A direct evidence that 

metabolites carry information was shown by Zamboni and colleagues, that measured >7000 

intracellular metabolite ions in 3800 E. coli single gene deletion strains (Fuhrer et al., 2017). Each of 

the single gene deletion caused a specific metabolic fingerprint that allowed tracking back the function 

of the deleted gene. With this approach they predicted metabolism-related function of 72 so far not 

annotated genes. Beside the impact of metabolites on transcription which will be reviewed later in 

more detail, information from metabolites can be processed on different layers. Many of these 

regulatory layers are based on metabolite-protein interaction, which involves binding of metabolites 

to the active site of enzymes as substrates or co-factors, binding to the allosteric site of enzymes or 

transcription factors. Metabolites were also shown to be crucial in the assembly and function of many 

protein complexes (Milroy et al., 2014). However, the global impact of metabolite-protein interaction 

is still ambiguous, due to the lack of systematic approaches for detection of these interactions, such 

as presented for protein-DNA (Mirzaei et al., 2013) or protein-protein interactions (Sokolina et al., 

2017). Picotti and colleagues recently presented an approach to systematically identify metabolite-

protein interactions, which is based on proteolysis and mass spectrometry (Piazza et al., 2018). The 

researchers treated a cell lysate with the metabolite of interest followed by digestion trough a broad-

specificity protease. Binding of the metabolite to a protein can block cleavage by the protease which 

then might result in different peptide fragments. Changes in the peptide patterns due to metabolite 
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treatment were then detected by label-free quantitative mass-spectrometry. This approach identified 

1678 metabolite-protein interactions of which more than 80% were not known. Taking into account 

that this study was performed with the best studied model-organism E. coli, suggests how less is 

known about the regulatory role of the metabolome.  

Regulatory Metabolite-Enzyme interactions 

Different multi-omics studies in different organisms showed that metabolic fluxes do not correlate 

with transcript level (Chubukov et al., 2013; Kerkhoven et al., 2016; Monk et al., 2016). A conclusion 

of this observation is that metabolic fluxes are mainly regulated by mechanisms on the post-

translational level, which highlights the role of direct enzyme-metabolite interactions such as allosteric 

feedback regulation. Allosteric regulation is classically defined by three characteristics: (i) the allosteric 

effector chemically differs from the substrate, (ii) binding of the effector causes a functional change 

of the protein and (iii) the effector binds at a site that topographically differs from the active site 

(Monod, Changeux and Jacob, 1963; Fenton, 2008).  

Due to the direct binding of an effector metabolite to an enzyme and the immediate effect on 

enzymatic activity, allosteric regulation is known to allow fast adaption to environmental changes. 

Thereby cells ensure that pathway flux is not higher than actually needed. In many cases the enzyme 

catalyzing the committed step of a pathway is feedback regulated by the end-product. For example, 

the first step of anabolic pathways branching from glycolysis or TCA, such as amino acid or nucleotide 

biosynthesis is regulated by an allosteric feedback from a downstream product of the pathway (Figure 

2). Thereby pathway influx for de novo synthesis is limited if not needed. In case of pyrimidine 

biosynthesis of E. coli it was shown, that disrupting allosteric feedback regulation leads to excretion 

of a pathway intermediate in order to maintain end-product homeostasis (Reaves et al., 2013). This 

study emphasized the role of allosteric regulation as a metabolic flux control, since such overflow 

mechanisms are generally an indicator for flux imbalances (Paczia et al., 2012). A recent study showed 

that E. coli controls flux through the pentose phosphate pathway (PPP) in response to oxidative stress 

by a negative allosteric feedback loop from NADPH to the G6P dehydrogenase (Christodoulou et al., 

2018). Upon oxidative stress, intracellular NADPH level decrease, which in turn causes a de-repression 

of the G6P dehydrogenase. The de-repression of the G6P dehydrogenase rapidly increases PPP-flux to 

replenish the NADPH pool. This study shows that allosteric feedback regulation can function like a 

valve that controls the influx into a metabolic pathway. Beside this flux control mechanisms of 

committed steps of metabolic pathways, it was shown that E. coli can also actively sense metabolic 

fluxes by allosteric enzyme-metabolite interactions. Heinemann and colleagues showed that the 

metabolite fructose‐1,6‐bisphosphate (FBP) functions as a glycolytic flux sensor by allosterically 
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activating the downstream enzymes pyruvate kinase and PEP carboxylase (Kochanowski et al., 2013). 

FBP accumulates in response to increasing glycolytic flux and allosterically elevates activity of both 

downstream enzymes until a threshold, at which lower glycolytic flux matches upper glycolytic flux. 

Furthermore, this system was also shown to act on the gene regulatory layer, by allosterically 

inhibiting activity of the transcription factor Cra, which represses glycolytic enzymes and activate 

gluconeogenesis enzymes. The allosteric inhibition of Cra is mediated by binding to fructose‐1‐

phosphate (F1P), which is a derivate of FBP (Bley Folly et al., 2018). For more than 25 years it was 

thought that FBP is the allosteric inhibitor of Cra (Ramseier et al., 1993), which was corrected only 

recently (Bley Folly et al., 2018) and shows the complexity of detecting and validating allosteric 

interactions. 

Although recent studies achieved fundamental progress in detecting metabolite-protein interactions 

(Piazza et al., 2018), it is still challenging to identify allosteric interactions that are functionally relevant 

under particular conditions (i.e. different conditional shifts) in vivo. A study addressing this problem 

switched E. coli between growth on pyruvate and 13C labeled glucose or fructose and dynamically 

measured fluxes and metabolite level. Combining these data with a kinetic model allowed systematic 

identification of allosteric interactions that govern the switch between gluconeogenesis and glycolysis 

(Link, Kochanowski and Sauer, 2013). Detecting and understanding metabolite-enzyme interactions is 

a requirement for the construction of biotechnological relevant cell factories and will thereby get 

more and more important in a variety of different organisms.  

Metabolites as signals for transcription 

Unnecessary protein production is a burden for the cell, which can have drastic influence on 

physiological parameters like division time or cell size (Kafri et al., 2016). Therefore, protein synthesis 

is subject to different regulatory mechanisms. Many of these mechanisms use metabolites as signals 

to ensure that proteins are only expressed when needed. Prominent mechanisms that use metabolite 

level to adjust gene expression to changing conditions are transcription factors, transcriptional 

attenuation, sigma factors and nucleoid proteins. Transcription factors for instance can have signal-

sensing domains that allosterically bind to metabolites, which causes an activity change, which either 

activates or represses the expression of a gene. Activation or repression of a gene is initiated by 

binding to the DNA and either promoting or blocking RNA-polymerase recruitment (Latchman, 1997).  

Transcriptional regulatory mechanisms are organized in so-called transcriptional regulatory networks 

(TRNs), which describe the relationship of thousands of genes and their transcriptional regulators. The 

TNR of E. coli is probably the most complete one and covers 210 out of the ~300 predicted 
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transcription factors and 4451 interactions between transcription factors and genes (Gama-Castro et 

al., 2016). Palsson and collegues showed that they can use TNRs to predict expression for 86 % of 1364 

transcriptional units of E. coli (Fang et al., 2017). TRN have hierarchical structures with different layers 

of regulation in which global transcriptional regulators can control the expression of other 

transcriptional regulators. A recent study explaining this hierarchical structure measured metabolite 

concentrations and transcription rates during growth on 26 different environmental conditions in E. 

coli (Christodoulou et al., 2017). The data revealed that 30% of the transcriptional changes of genes in 

central carbon metabolism across the different environments were caused by the two transcription 

factors Crp and Cra. Correlating the expression rates with the metabolome identified the three 

effector metabolites cyclic adenosine monophosphate (cAMP) and fructose‐1‐phosphate/fructose‐

1,6‐bisphosphate, respectively, that explained the activity of Crp and Cra. Another recent study used 

multiomics data sets and bioinformatics to analyze E. coli knockout (KO) strains during an adaptive 

laboratory evolution (ALE) experiment (McCloskey, S. Xu, et al., 2018). The results showed that gene 

knockouts caused imbalances of metabolite level which caused several transcriptional alterations that 

were re-balanced by mutations during evolution. These mutations allowed to adapt gene expression 

and metabolic fluxes in order to prevent the imbalances of metabolites. The authors claim that 

metabolite-transcription factor interactions have a dominant role in sensing and re-optimizing such 

perturbations during evolution.  

Despite these examples showing the relevance of metabolite-transcription factor interactions, our 

knowledge is still scarce. Even in the arguably best-studied model microbe E. coli, direct interactions 

with metabolites have only been shown for 47 out of the 210 transcription factors. Although scalable 

methods for detection of metabolite-protein interactions were previously described, we are still 

lacking systematic approaches to identify metabolite-transcription factor interactions that are 

relevant under certain conditions. A promising approach could be to combine computational with 

experimental analysis as recently shown for cancer cells by Zampieri and colleagues (Ortmayr, Dubuis 

and Zampieri, 2019). The researchers integrated transcriptomic and proteomic data with metabolic 

profiles of different cancer cell lines to unravel interactions between transcriptional regulators and 

metabolism. They discovered a global regulatory signature coordinating glucose and one-carbon 

metabolism. A similar approach could also be used to get a deeper view into interaction of 

transcriptional regulation and metabolism in bacterial cells.  
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Regulation of amino acid metabolism in E. coli 

Biosynthesis of amino acids is a central cellular process, which provides building blocks for protein 

synthesis and growth. Therefore, especially fast-growing cells without external supply of amino acids 

have to ensure sufficient biosynthetic capacity of the essential building blocks. E. coli for instance 

invests more than 15% of the total proteome into amino acid metabolism during growth on minimal 

medium. Similarly, during growth on methionine limiting media, E. coli was shown to devote 8% of the 

total protein synthesize capacity into the production of a single methionine enzyme (MetE) (Li et al., 

2014). According to this large investment of cellular resources, amino acid biosynthesis of E. coli is 

subject to a tight transcriptional feedback network in order to minimize unnecessary protein burden 

(Figure 2). A crucial role was shown for the four transcription factors ArgR (Arginine repressor), Lrp 

(Leucine-responsive regulatory protein), TrpR (Tryptophan repressor) and TyrR (Tyrosine repressor) 

which directly or indirectly control biosynthesis of all twenty amino acid biosynthesis pathways (Cho 

et al., 2012). ArgR and Lrp were shown to act on a global scale by activating or repressing the 

expression of 140 and 283 target genes. These transcription factors are organized in a hierarchical 

structure with ArgR also regulating the expression of Lrp and therefore having a total regulon size of 

423 target genes. ArgR is activated in response to increased arginine level and represses the 

expression of all enzymes in arginine and histidine and single enzymes from lysine (dapE), glutamate 

(gltBD) and aromatic amino acid biosynthesis (aroB, aroK).  

Beside the regulation of biosynthetic genes, these transcription factors also regulate need-based 

dependent expression of amino acid import and degradation. In response to high intracellular arginine 

level, ArgR for instance represses genes of the arginine import system (artJ, artMQIP) and activates 

genes involved in arginine degradation (AST-pathway) (Caldara, Charlier and Cunin, 2006). Beside 

transcription factors, transcriptional regulation in amino acid metabolism can also occur by 

transcriptional attenuation. Transcriptional attenuation is known for tryptophan, threonine, valine, 

histidine, leucine and isoleucine biosynthesis. The tryptophan (trp) operon in E. coli is a well described 

example of transcriptional attenuation: Transcription of the trp-operon is regulated by the so-called 

leader peptide (trpL) which is located up-stream of the genes coding for the trp enzymes and consists 

of a trp-specific attenuator region. If trp-laden tRNA`s are available in excess, the transcribed trpL 

mRNA forms a specific hairpin structure, which will cause dissociation of the RNA-polymerase from 

the DNA and accordingly terminate transcription. The combined mechanisms of transcriptional 

repression by TrpR and transcriptional termination by attenuation allow regulation of tryptophan 

biosynthetic enzymes over a range of 500- to 600-fold (Yanofsky, Kelley and Horn, 1984).  
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Beside the regulation by transcription factors and attenuation, expression of amino acid biosynthesis 

enzymes is additionally regulated by global metabolic feedback mechanism through cycling AMP and 

ppGpp signaling (Paul, Berkmen and Gourse, 2005; You et al., 2013). For example, in response to 

amino acid starvation, the alarmone ppGpp accumulates and triggers a stringent response that blocks 

activity of rRNA and tRNA promotors. Further ppGpp is an allosteric effector of the transcription factor 

DksA which binds and re-programs the RNA-polymerase to activate expression amino acid enzymes 

(Paul, Berkmen and Gourse, 2005). Although all the described mechanism (transcription factors, 

attenuation, global regulation) allow need-based regulation of enzyme abundance, it is not clear if 

enzyme levels are tuned for optimal efficiency or if enzyme overabundance (as described for 

ribosomes or co-enzymes) might also have a relevance in amino acid metabolism.  

In addition to the control of enzyme abundance, amino acid metabolism of E. coli is also tightly 

regulated on the level of enzyme activity. 16 out of 20 pathways are regulated by allosteric feedback 

inhibition, in which the amino acid end-product inhibits activity of the enzyme catalyzing the 

committed step of the pathway. Several studies showed removal of allosteric feedback inhibition from 

amino acid pathways by genetic point mutations in the allosteric sites of the enzymes. However, the 

majority of these studies had a strong focus in engineering strains for increased amino acid 

production. So far, to our knowledge no study systematically analyzed the consequences of allosteric 

feedback disruption to show the physiological relevance of allostery in amino acid metabolism.  
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Figure 2. Amino acid metabolism of E. coli. Regulatory mechanisms involve allosteric feedback 

regulation, transcriptional attenuation and transcription factors (indicated with the rounded boxes). 

Gene targets of the transcription factors are indicated with the corresponding color. Targets that are 

regulated by multiple transcription factors are indicated with affiliations (*) in the respective colors. 

Sources were Ecocyc, RegulonDB and Cho et al. 2012.  
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Methods to understand and engineer microbial metabolism 

The ‘omic’ technologies 

The most direct way to understand how microbial metabolism functions is to detect and quantify the 

components that make up a living cell. Those components are for example DNA (genes), transcripts, 

proteins and metabolites. Methods to globally measure these components, the so-called ‘omics’ 

technologies involving genomics, transcriptomics, proteomics or metabolomics were essentially 

improved during the last decades (Franzosa et al., 2015; Hasin, Seldin and Lusis, 2017). In systems 

biology these different omics technologies were integrated to get a holistic understanding about how 

cellular mechanisms act together on a global scale.  

Understanding metabolism requires reliable measurement of metabolite levels, such as intermediates 

and products from glycolysis, TCA cycle, PPP, nucleotide-, amino acid- and co-factor metabolism. 

Quantification of intra cellular metabolites is challenging due to high turnover rates, chemical 

instabilities and diversity. Therefore, sampling plays a crucial role for reproducible metabolomics data 

and relies on fast quenching and avoidance of cellular stress factors (Temperature shifts, mechanical 

stress). Mass spectrometry was established as a gold standard for rapid identification of a large 

number of different metabolites. Direct sample injection into a high-resolving mass spectrometer 

(Flow injection electrospray-time-of-flight mass spectrometry) allows detection of up to 300 

metabolites in short measurements of about 1 minute per sample (Fuhrer et al., 2011). Due to the 

short measurement times, flow injection was shown to be suitable for dynamic metabolome profiling 

in example during switches between starvation and growth (Link et al., 2015). However, such non-

targeted approaches do not allow absolute quantification of metabolites, since each signal is affected 

by the sample matrix and ionization efficiency. A strategy to address this problem was to add 

isotopically labeled internal standards to the samples. Fast LC-MS/MS methods enable to quantify 

more than 200 metabolites in absolute terms by measuring the ratio between their natural 12C and 

13C labeled form in a time optimized set up (Guder et al., 2017). By using short chromatographic 

columns, this method enabled to quantitatively measure primary metabolites in 2 minutes runs. Such 

approaches allow high-throughput screening of cellular metabolism, which has a high relevance in 

clinical or biotechnological research. For example, a similar study used optimized chromatographic 

parameters and internal standards to quantitatively measure metabolism of 7 industrial relevant E. 

coli strains by LC-MS/MS (McCloskey, J. Xu, et al., 2018). Despite short measurement times of 5 

minutes, this approach showed quantification of more than 100 metabolites and revealed significant 

differences in glycolytic, pentose phosphate, amino acid, energy and cofactor metabolism in between 

the 7 E. coli strains.  
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Beside the detection of metabolites, understanding a biological system also requires detection of gene 

expression. The development of high-throughput sequencing approaches (Next generation 

sequencing), enabled global measurement of gene expression profiles by sequencing of the single 

mRNAs. Current transcriptomics techniques allow detection of 109 mRNA sequences which would 

cover the entire human transcriptome (Mortazavi et al., 2008; Lowe et al., 2017). Quantification of 

transcript profiles under different conditions or perturbations can give insight into gene regulatory 

principles of biological system. For example, a comprehensive study in yeast measured gene 

expression signatures of 1484 knockout mutants to understand the regulatory logics of this organism 

(Kemmeren et al., 2014). The data were assembled into a genetic perturbation network that revealed 

a high number of metabolic feedbacks, with many metabolic genes assigned as key nodes in 

incoherent network motifs. However, transcriptomic analyses are not able to display the complete 

expression state of a cell, since different post-transcriptional mechanisms can affect protein synthesis 

(i.e. protein degradation, translation rates or protein export) (Liu, Beyer and Aebersold, 2016). 

Thereby, only direct measurement of protein level provides reliable information about the cellular 

expression state.  

Just like metabolomics, current proteomics techniques are also based on liquid chromatography 

coupled to mass spectrometry. In the so-called “Shotgun proteomics” approach, protein samples are 

first treated with a proteolytic digest and the resulting peptides are then fractionated and analyzed 

by LC-MS/MS (Wolters, Washburn and Yates, 2001; Zhang et al., 2013). The measured tandem mass 

spectra of a peptide sample were then compared to theoretical tandem mass spectra obtained from 

protein data bases. Thereby proteins can be identified due to the specific peptide spectra, which 

enables global measurement of a cellular proteome. Heinemann and colleagues used a shotgun 

proteomics approach to quantitatively measure the proteome of E. coli across 22 experimental 

conditions (Schmidt et al., 2016). The researchers determined level of more than 2300 proteins which 

covers approximately 55% of the predicted E. coli genes. The data was then systematically used to 

unravel growth rate dependent proteome allocations and to successfully identify novel types of post-

translational modifications. Moreover, such comprehensive data sets represent a valuable resource 

for research related to systems biology and other fields. A computational study by Palsson and co-

workers for instance, combined these proteome data with a genome scale model of E. coli which 

predicts costs and utilization of the proteome under different conditions (O’Brien, Utrilla and Palsson, 

2016). This work showed that almost the half of the total proteome mass of E. coli is unused in 

different environments and that this unused fraction explains >95% of the growth rate changes among 

the tested conditions. Reduction of this unused fraction increases growth rates of E. coli, for example 

during laboratory evolution experiments. Such protein reserves, which were already addressed 
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earlier, were suggested to provide robustness and readiness under varying environmental conditions 

within the scope of this solely computational analysis. Thus, integration of different omics techniques 

in addition to computational analysis enables a deep insight into biological systems, which has a high 

relevance in the field of synthetic biology or clinical research. Therefore, beside methods to 

understand biological systems it also requires methods to efficiently modify biological system which 

also drastically improved within the last decade.  

The era of the scissor: CRISPR/Cas 

Targeted modification of DNA is the basis of synthetic biology and enables the construction of 

organisms with novel properties. Furthermore, characterization of a gene function requires deletion 

of the respective loci in order to analyze consequences for the organism. Methods to modify DNA in 

a controlled fashion were already introduced in the 90`s with the discovery of zink finger nucleases 

(ZFN) (Kim, Cha and Chandrasegaran, 1996) or the use of lambda recombination for gene 

replacements (Murphy, 1998). These engineering techniques were further improved in the following 

years for example with the so-called transcription activator-like effector nucleases (TALENs) (Boch et 

al., 2009) which are similar to ZFNs based on restriction enzyme coupled DNA-recognition proteins. 

However, such methods are complicated to perform due to engineering of new enzymes or time-

consuming replacements of chromosomal markers. In the last decade, discovery and advancement of 

clustered, regularly interspaced, short palindromic repeats (CRISPR) associated to the endonuclease 

Cas9 brought gene editing to a new level (Doudna and Charpentier, 2014).  

The CRISPR/Cas system originates from an adaptive antiviral defense system of prokaryotes, that uses 

specific CRIPSR RNAs (crRNAs) to guide Cas proteins to interfere and cleave virus DNA (Barrangou et 

al., 2007; Karginov and Hannon, 2010). In 2012, Charpentier and colleagues showed that CRISPR/Cas 

is programmable and suggested the system for the first time as a gene editing tool (Jinek et al., 2012). 

The researchers used a Cas protein variant from Streptococcus pyogenes (Cas9) and programmed the 

endonuclease with engineered guide RNAs (gRNAs) to introduce specific double-strand breaks in the 

target DNA. A crucial finding was, that beside the homologous pairing sequence, target recognition of 

Cas9 requires a protospacer adjacent motif (PAM) which is the short consensus sequence NGG. From 

this point on, laboratories started to apply CRISPR/Cas9 in many different organisms with different 

specified protocols, all based on the same strategy (Doudna and Charpentier, 2014; Hsu, Lander and 

Zhang, 2014). The no-SCAR (Scarless Cas9 Assisted Recombineering) system for instance is a fast and 

efficient method for genome editing in E. coli (Reisch and Prather, 2015). This strategy combines 

lambda red recombination with CRISPR/Cas9-mediated counter selection. It is based on two plasmids 

containing all required components: The Cas9 gene, the specific single guide RNA (sgRNA) and three 
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genes that compose the lambda-red system. The host cells are transformed with homologous 

oligonucleotides that are integrated into the desired genomic loci by lambda red recombination. These 

oligonucleotides can be constructed for introducing point mutations (oligonucleotide comprises the 

desired base-pair exchange), gene deletions (oligonucleotide consists of 3’ and 5’ flanking regions of 

the target gene) or gene insertions (oligonucleotide consists of desired gene flanked by 3’ and 5’ 

regions of genomic context). After recombination, expression of Cas9 and sgRNA is induced and will 

cause double-strand breaks at the specific loci where no recombination took place. In mutants where 

successful recombination occurred, insertion of oligonucleotides caused altering of the PAM motif and 

thereby prevents binding of the Cas9/sgRNA complex. The Cas9 mediated counter selection is highly 

efficient and the procedure can be performed within 4 days. Conventional counter selection methods 

are based on antibiotic resistance cassettes which need to be removed by Flp recombinase leaving 

“scars” on the DNA. This constitutes a great advantage of the Cas9-mediated counter selection, since 

such scars can cause chromosomal instability and genomic rearrangements.  

Beside genome editing, CRISPR/Cas was also established as an efficient tool for control of gene 

expression. The CRISPR interference (CRISPRi) system is based on a catalytically dead Cas9 (dCas9) 

which binds to the DNA and sterically blocks transcription. Just like Cas9, dCas9 can be guided by 

sgRNA’s allowing specific control of target gene expression. A great advantage of this knockdown 

strategy is, that it allows control of multiple target genes in parallel (Qi et al., 2013). Further, combining 

CRISPRi with pooled sgRNA libraries enable genome-scale screening of gene functions, which has a 

high relevance in system biology and clinical research (Gilbert et al., 2014; Wang et al., 2018). Since 

CRISPRi can be applied in a variety of different organisms including human cells, such library approach 

can help to identify new targets that are associated to genetic diseases (Gilbert et al., 2014).  

 

Engineering regulation for synthetic biology 

Engineering microbes for increased production of chemicals has become a key strategy in different 

industrial branches. The limited supply of fossil fuels and increasing concerns for sustainability raised 

the demand for biological production. However, in order to compete with classical chemical 

production, biotechnology has to face different economic aspects. Critical aspects of engineering 

microbial cell factories are a high product titer (product concentration at the end of a bioprocess), 

which should be produced with a high rate (product formation over time) and with an efficient 

substrate yield (product molecule formed per substrate molecule) (Nielsen and Keasling, 2016). To 

efficiently produce specific molecules an important first decision is the choice of the host organism, 

since different organism have different properties that might be beneficial for certain demands. 
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Relatively well characterized organisms and therefore often used host organisms are for example E. 

coli, S. cerevisiae, Aspergillus niger, Bacillus subtilis, Corynebacterium glutamicum, or Chinese hamster 

ovary (CHO) cells (Nielsen and Keasling, 2016). However, as already mentioned before, our knowledge 

about regulation of metabolism in these organisms is still scarce, although understanding the 

metabolic principles of a potential production host is crucial for metabolic engineering approaches. 

Therefore, systems biology and omics technologies go hand in hand with synthetic biology. Integration 

of different omics data can help to unravel the regulatory network of an organism for example on the 

level of allosteric (Link, Kochanowski and Sauer, 2013; Piazza et al., 2018) and transcriptional (Fang et 

al., 2017) regulation. Such information can then be included into genome scale metabolic models to 

make in silico predictions about which genetic modifications are most likely to improve production. 

Flux balance analysis (FBA) for instance is based on genome scale models and can help to identify 

knock-out targets for optimization of metabolic fluxes towards a desired product. Beside gene knock-

outs, also self-inhibitory allosteric interactions between metabolites and enzymes might be crucial 

targets to optimize product flux.  

Removing allosteric feedback inhibition and thereby increasing the enzyme activity is a long-known 

strategy to enhance product formation (Csonka et al., 1988; Rajagopal et al., 1998). Potential targets 

to produce allosterically insensitive enzymes (allosteric binding site, active site) can be identified with 

rational protein design and then verified by mutagenesis followed by in vitro assays (Chen et al., 2014). 

Feedback resistance of the host strain is then either introduced by genomic point mutations (Sander 

et al., 2019) or by expressing the dysregulated enzyme from a plasmid (Ginesy et al., 2015). Beside 

increasing enzyme activity by removal of feedback inhibition, increasing enzyme abundance in a 

biosynthetic pathway is a further strategy to enhance product flux. Therefore, expression of specific 

enzymes can be increased by plasmid-based systems or genomic promotor modifications (Nielsen and 

Keasling, 2016). Those enzymes can also be expressed heterologously, as shown for the mevalonate 

pathway from S. cerevisiae which was introduced into E. coli for the production of isoprenoid pre-

cursors (Martin et al., 2003). A large number of biosynthetic pathways are subject to transcriptional 

feedback control by transcription factors or attenuation. Deletion of a transcriptional repressor causes 

up-regulation of the corresponding pathway without the need of overexpression-plasmids or 

promotor modifications. Removal of transcriptional control by attenuation is performed by deletion 

of the leader peptide as shown for the tryptophan pathway (Tröndle et al., 2018). This study achieved 

a tryptophan titer of 12.5 g L-1 by combining disruption of allosteric feedback inhibition with deletion 

of the transcriptional repressor TrpR and removal of the attenuator leader peptide trpL (Tröndle et 

al., 2018). Leaving either allosteric or transcriptional control might be sufficient to control biosynthetic 
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flux and therefore inhibits overproduction of the desired product as shown for arginine metabolism 

(Caldara et al., 2008).  

The final titer in a production vessel not only dependents on the biosynthesis itself, but also on the 

ability to export the products from the intra- to the extracellular environment. Excessive accumulation 

of intracellular metabolites can lead to toxicity and can thereby influence physiology and productivity 

of a cell. Therefore, identification and overexpression of exporter systems is a classical metabolic 

engineering approach that was used in many studies and can elevate the product titer by more the 3-

fold (Simic, Sahm and Eggeling, 2001; Ginesy et al., 2015; Lubitz et al., 2016). Beside modifying the 

pathway of interested itself, a further strategy is to re-directing the metabolic flux to a desired product 

by disrupting competing pathways. Different computational approaches based on FBA combined with 

genome-scale models can help to identify knock-out targets for optimized flux (Kim and Reed, 2010; 

Ranganathan, Suthers and Maranas, 2010; Cardoso et al., 2018). Gene knock-outs that were 

previously identified by computational predictions were shown to efficiently enhance production of 

valine (Park et al., 2007) and threonine (Lee et al., 2007) in E. coli or sesquiterpenes in S. cerevisiae 

(Asadollahi et al., 2009). The previously introduced CRISPRi was used as a tool for multiplexed 

knockdown of competing targets without the need of gene deletions as shown for isopentenol 

producing E. coli (Tian et al., 2019). Another approach engineered E. coli for enhanced production of 

peonidin 3-O-glucoside (P3G) by CRISPRi-mediated down-regulation of the methionine repressor 

MetJ. Blocking MetJ expression led to deregulation of the methionine pathway and increased 

availability of S-adenosyl-L-methionine (SAM). SAM is utilized for P3G formation and thereby CRISPRi 

against MetJ increased P3G titer more then 2-fold compared to an overproduction base strain (Cress 

et al., 2017).  

The previously described approaches are focused on increasing production of a certain compound by 

disruption of regulatory mechanisms. However, dysregulating cellular metabolisms often reduces 

fitness and productivity of a host. Thus, engineering regulation not only focusses on increasing 

production, but also on controlling and autoregulating an overproduction process. A promising 

approach to control production aims for balancing overproduction with overall metabolism by 

engineered feedback mechanisms. One of the first examples was presented by Farmer and Liao, who 

improved lycopene production in E. coli by a synthetic control system (Farmer and Liao, 2000). The 

researches engineered a regulatory control circuit that directed flux to lycopene production in 

response to the metabolic state of the cells. Increased glycolytic flux led to activation of the response 

regulator NtrC by sensing the level of the intracellular metabolite acetyl-phosphate. NtrC led to 

expression of the two enzymes phosphoenolpyruvate synthase (pps) and isopentenyl diphosphate 
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isomerase (idi) that were fused to a NtrC regulated promotor. These two key enzymes were shown to 

redirect flux into an artificially introduced lycopene overproduction pathway. This synthetic feedback 

circuit efficiently balanced production with the glycolytic state and thereby improved productivity by 

3-fold compared to the base strain for lycopene production. This study was the basis for engineering 

feedback circuits, as shown for controlling fuel production using a dynamic sensor-regulator system 

(Zhang, Carothers and Keasling, 2012), or constructing a genetically encoded metabolic switch to 

balance fatty acid production with the malonyl CoA pathway (Xu et al., 2014). These approaches have 

in common, that they use transcription factor-based systems that sense a metabolic input and directly 

regulate expression (activation or repression) of a metabolic gene.  

Voigt and colleagues showed that such transcription factor-based sensors can be coupled to CRISPRi 

and targeted proteolysis to control gene expression (Moser et al., 2018). Such sensors were 

programmed to respond to generic signals during a bioproduction process (consumption of feedstock, 

oxygen level and by-product formation) and activating expression of dCas9 and a targeted protease. 

dCas9 and Proteolysis were then used to inhibit expression of target genes on the transcriptional and 

translational level. Targets were for example genes during early and late stages of growth that 

normally cause by-product formation (acetate). A further strategy to dynamically control production 

in a bioprocess was to use the natural quorum sensing (QS) system, which relies on the accumulation 

of small-molecules in a cell population (Miller and Bassler, 2001; Gupta et al., 2017). Sensing of these 

small molecules allows density-dependent activation of control circuits to activate or repress target 

genes. Prather and co-workers used this approach for dynamic control of gene expression to balance 

‘growth mode’ and ‘production mode’. By placing the glycolytic enzyme Pfk1 under control of a QS 

regulated promotor, they were able to re-direct glycolytic flux in a cell-density-dependent manner and 

use it for the production of myo-inositol and glucaric acid. Thereby, specific titers were increased by 

ten- and fivefold respectively, compared to the strains without dynamic flux control.  

Summarizing the reviewed literature reveals a strategical change of metabolic engineering in the last 

decades: While previous work was mainly focused on increasing production, recent studies apply 

system level understanding and novel methods in order to coordinate microbial metabolism with 

production. This allows construction of stable microbial cell factories with higher robustness and 

productivity. 
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Summary 

Microbes must ensure robust amino acid metabolism in the face of external and internal 

perturbations. This robustness is thought to emerge from regulatory interactions in metabolic and 

genetic networks. Here, we explored the consequences of removing allosteric feedback inhibition in 

seven amino acid biosynthesis pathways in Escherichia coli (arginine, histidine, tryptophan, leucine, 

isoleucine, threonine and proline). Proteome data revealed that enzyme levels decreased in five of 

the seven dysregulated pathways. Despite lower enzyme levels flux through the dysregulated 

pathways was not limited, indicating that enzyme levels are higher than absolutely needed in wild-

type cells. We show that such enzyme overabundance renders the arginine, histidine and tryptophan 

pathway robust against perturbations of gene expression, using a metabolic model and CRISPR 

interference experiments. The results suggest a sensitive interaction between allosteric feedback 

inhibition and enzyme level regulation that ensures robust yet efficient biosynthesis of histidine, 

arginine and tryptophan in E. coli. 
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Introduction 

Regulation of microbial metabolism involves a wide range of mechanisms that act on different cellular 

layers and together control the abundance and activity of enzymes (Chubukov et al., 2014). An 

example is end-product inhibition of amino acid biosynthesis in Escherichia coli, which can act on 

enzyme abundance through transcriptional regulatory cues, and enzyme activities through allosteric 

feedback inhibition. However, since metabolic reaction rates are determined by both enzyme 

abundance and enzyme activity it has been difficult to disentangle the specific roles of the two 

regulatory layers, and to understand how they interact to control metabolism (Chubukov et al., 2013; 

Daran-Lapujade et al., 2007; ter Kuile and Westerhoff, 2001). 

Allosteric feedback inhibition of the committed step in biosynthetic pathways is thought to maintain 

homeostasis of end-products (Umbarger, 1956), and 16 out of 20 amino acids in E. coli feedback inhibit 

enzymes of their own biosynthesis pathway (Reznik et al., 2017). The consequences of dysregulating 

these enzymes were mainly studied in vitro (Schomburg et al., 2013), or in the context of 

biotechnological overproduction strains (Hirasawa and Shimizu, 2016). For the case of nucleotide 

biosynthesis in E. coli, a detailed in vivo study showed that removing allosteric feedback inhibition did 

not perturb nucleotide homeostasis (Reaves et al., 2013). In the absence of allosteric feedback 

inhibition, additional regulatory mechanisms accomplished proper control of the pathway by 

channeling the excess of nucleotides into degradation pathways (so-called directed overflow). 

Theoretical analyses, in contrast, suggest a key role of allosteric feedback inhibition in achieving end-

product homeostasis (Hofmeyr and Cornish-Bowden, 2000), metabolic robustness (Grimbs et al., 

2007), flux control (Kacser and Burns, 1973; Schuster and Heinrich, 1987) and optimal growth (Goyal 

et al., 2010). 

The abundance of enzymes in E. coli amino acid metabolism is mainly regulated at the layer of 

transcription, either by transcriptional attenuation (Yanofsky, 1981) or transcription factors (Cho et 

al., 2008, 2012). For example, a set of four transcription factors (ArgR, TrpR, TryR and Lrp) control 

expression of 19 out of 20 amino acid pathways, by sensing the availability of amino acids via allosteric 

binding (Cho et al., 2012). This regulation ensures that enzymes in amino acid pathways are only made 

when they are needed (Schmidt et al., 2016; Zaslaver et al., 2004). As a consequence of such need-

based enzyme level regulation, one would expect that enzyme levels are not higher than absolutely 

needed for amino acid biosynthesis. However, recent data suggest that cells express the majority of 

enzymes at higher levels than necessary to fulfill biosynthetic demands, and that such enzyme 

overabundance provides a benefit in changing environments (Davidi and Milo, 2017; O’Brien et al., 

2016). For example, enzyme overabundance enables a quick activation of the pentose phosphate 
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pathway upon stresses (Christodoulou et al., 2018), and similar benefits were attributed to 

overabundant ribosomes (Mori et al., 2017) and coenzymes (Hartl et al., 2017).  

Here we constructed seven E. coli mutants, each with a different feedback-dysregulated amino acid 

biosynthesis pathway (arginine, histidine, tryptophan, leucine, isoleucine, threonine and proline), and 

measured proteins, metabolites, fluxes and growth of the mutants. In all seven feedback-dysregulated 

pathways the concentration of amino acid end-products increased, and in five pathways we measured 

lower enzyme levels. Despite the lower enzyme levels biosynthetic flux was not limited, indicating that 

these enzymes are not operating at maximal capacity in wild-type cells. By combining theoretical and 

experimental analysis, we show that this enzyme overabundance provides a robustness benefit 

against genetic perturbations, in case of the arginine, tryptophan and histidine pathway. 

 

Results 

Dysregulating Allosteric Enzymes Changes Levels of Specific Amino Acids in E. coli 
 
To explore the function of allosteric feedback inhibition in the arginine, histidine, tryptophan, leucine, 

isoleucine, threonine and proline biosynthesis pathways, we first created a panel of seven 

allosterically dysregulated E. coli mutants (Figure 1A and Table S1). Using a scarless CRISPR method 

(Reisch and Prather, 2015), we introduced point mutations into genes encoding the allosteric enzyme 

that catalyzes the committed reaction in each pathway (argA, hisG, trpE, leuA, ilvA, thrA and proB). 

These mutations have been shown previously to abolish the allosteric interaction while not affecting 

enzyme activity, thereby allowing us to study regulation of the pathway in the absence of allosteric 

feedback (Caligiuri and Bauerle, 1991; Csonka et al., 1988; Doroshenko et al., 2013; Gusyatiner et al., 

2005; LaRossa et al., 1987; Lee et al., 2003; Rajagopal et al., 1998). For N-acetylglutamate synthase 

(ArgA), we confirmed with in vitro assays that the mutation does not affect enzymatic activity, and 

abolishes inhibition by arginine (Figure S1). To analyze metabolism of the mutants we quantified 

intracellular metabolites during exponential growth on glucose by LC-MS/MS (Guder et al., 2017). 

Stronger metabolic changes were restricted to amino acid biosynthesis, with specific increases 

between 2- and 16-fold of only the amino acid products of the dysregulated pathways (Figure 1B). 

Despite these changes within the dysregulated pathways, the remaining amino acid concentrations as 

well as the global metabolite profile remained relatively stable (Figure 1B and S2). Thus, dysregulating 

allosteric enzymes in E. coli amino acid biosynthesis elevated the intracellular concentration of the 

corresponding amino acid product.  
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Figure 1. Amino Acid Profile of Feedback-dysregulated E. coli Mutants 

(A) Seven amino acid pathways were dysregulated by genomic point mutations in the indicated genes. 

See also Table S1. Negative allosteric feedbacks of amino acids on enzymes in the biosynthetic 

pathways are shown as dotted lines. Negative transcriptional feedbacks of amino acids are shown as 

dashed lines. Boxes indicate enzymes in the biosynthesis pathways. 

(B) Relative concentrations of intracellular amino acids in wild-type E. coli and the seven dysregulated 

mutants. Bar plots show absolute concentrations of the amino acid in the dysregulated pathways. See 

also Figure S2. Data are represented as mean, and error bars are ± SD (n = 3).  

 

Lower Expression of Enzymes in Feedback-Dysregulated Pathways 

With the exception of proline biosynthesis, all of the dysregulated pathways are additionally 

controlled at the layer of enzyme abundance, either via transcription factors or transcriptional 

attenuation. To probe if elevated amino acid concentrations in our mutants affected enzyme levels in 

the corresponding pathways, we measured their proteomes (Figure 2A). The data covered relative 

abundances of 173 out of the 204 enzymes annotated to amino acid metabolism in the latest E. coli 

metabolic model (Monk et al., 2017). Enzyme expression was indeed lower in five of the seven 

dysregulated pathways (argA*, trpE*, hisG*, leuA*, thrA*), indicating that the elevated amino acid 

concentrations caused a compensatory downregulation of their associated pathway (Figure 2A). 

Enzyme levels did not change in the proB* and ilvA* mutant, which is expected because proline 
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biosynthesis lacks enzyme level regulation and isoleucine biosynthesis is subject to a second allosteric 

feedback that was not removed (Figure 1A and 2A). The leuA* mutant showed more global changes 

in enzyme levels than the other mutants. The high leucine concentration in this strain likely activates 

the leucine responsive transcription factor Lrp, which acts on many genes in amino acid metabolism 

(Cho et al., 2008). In the argA* mutant we observed an expected accompanying decrease in histidine 

biosynthesis enzymes, which are additional targets of the transcription factor ArgR (Gama-Castro et 

al., 2016). Apart from the compensatory downregulation of biosynthetic enzymes, enzymes in 

dedicated amino acid degradation pathways were upregulated in three mutants (AstC in the arginine 

mutant, TnaA in the tryptophan mutant and PutA in the proline mutant, Figure 2A). This likely 

constitutes an additional compensatory mechanism similar to the directed overflow reported for 

nucleotides (Reaves et al., 2013). 

To obtain additional evidence for lower enzyme levels in the dysregulated pathways, we used GFP-

promoter fusions and measured fluorescence in single cells (Figure 2B). GFP expression from an ArgR-

regulated promoter was indeed ~3-fold lower in the argA* mutant compared to the wild-type. 

Similarly, a TrpR-regulated promoter was ~3-fold stronger repressed in the trpE* mutant. The cell-to-

cell variation in GFP content was similar in wild-type cells and the mutants, thus indicating that all cells 

in the population of allosteric feedback mutants have lower enzyme levels in the dysregulated 

pathway. A GFP reporter with the thrL leader peptide was only 17% repressed in the thrA* mutant 

compared to the wild-type, which is consistent with the small decrease of enzymes levels in the 

dysregulated threonine pathway (Figure 2A and 2B). We also fused GFP to the hisL and leuL leader 

peptides, but they did not report repression by amino acids even when they were added to the 

medium (Figure S3). Probably transcriptional attenuation by hisL and leuL requires the genomic 

context, and cannot function on plasmids. In summary, proteome data revealed a lower expression of 

enzymes for five of the seven dysregulated pathways (argA*, trpE*, hisG*, leuA* and thrA*). GFP-

promoter fusions confirm this enzyme level regulation at the single cell level, and indicate that 

downregulation of enzymes in the argA*, trpE* and thrA* mutant occurs at the transcriptional layer.   
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Figure 2. Expression of Enzymes in Feedback-dysregulated Pathways 

(A) Abundance of 173 enzymes in amino acid metabolism (out of 204 enzymes in total), relative to the 

level in the wild-type. Data are represented as mean (n = 3). For each strain the enzymes in the 

dysregulated pathway are shown as colored dots. Enzymes in degradation pathways of arginine, 

tryptophan and proline are indicated by their names.  

(B) GFP-fluorescence measured by flow cytometry. GFP-promoter fusions were transformed in wild-

type cells and the indicated mutant. Upper panel: pPargA-gfp; middle panel: pPtrpL-gfp; lower panel: 

pPthrL-gfp. Histograms represent fluorescence of 10,000 single cells. Mean fluorescence was 

calculated from 10,000 single cells of n = 3 independent cultures. See also Figure S3. 

 

Allosteric Feedback Inhibition Enforces Enzyme Overabundance 

Next, we wondered if lower expression of enzymes limits the biosynthetic capacity of the mutants. 

First, we tested steady state growth on glucose minimal medium and seven other carbon sources 

(Figure S4). All mutants showed wild-type like growth, except the leuA* mutant, which grew in average 

10% slower than the wild-type. To test if lower enzyme levels affect biosynthetic capacity in dynamics 

shifts, we starved cells for carbon and measured growth resumption on glucose minimal medium 

(Figure 3A). During the initial phase of growth resumption all mutants had the same growth rate as 

the wild-type. Only the leuA*, ilvA* and thrA* mutants reached lower growth rates than the wild-type 

during the subsequent 4 hours. The three strains had also lower ODs after 20 hours starvation. 

Similarly, nutritional upshifts from galactose to glucose did not affect growth of the mutants (Figure 

S5). The three strains with highest reduction in enzyme levels (argA*, trpE* and hisG*) grew like the 

wild-type in all tested conditions, indicating that biosynthetic capacity is not limited by lower enzyme 
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level. The advantage of lower protein costs in these pathways was either too subtle to be detected by 

growth assays, or counterbalanced by negative effects of feedback-dysregulation.  

 

 

Figure 3. Growth and Biosynthetic Flux of Feedback-dysregulated E. coli Mutants  

(A) Growth resumption after 20 hours carbon starvation of wild-type E. coli and the seven 

dysregulated mutants. Cells were starved in minimal medium and glucose was added at t = 0 h. OD 

was measured in 5 minute intervals in a plate reader. Shown are means of n = 3 cultures. Inserts show 

the specific growth rate in h-1 during the same time period. Growth rates were estimated by linear 

regression over a moving 30 minute window. The same wild-type growth curve and growth rate is 

shown in each graph in black as a reference. See also Figure S4 and S5. 

(B) Decay of unlabeled amino acids in the wild-type E. coli (black) and the seven dysregulated mutants 

(color). The measured amino acid is indicated above each graph. Cells were loaded from shake flasks 

onto filters and perfused with 15N-medium for different lengths of time (0, 30, 60, 120 and 180 

seconds). Dots are means of n = 2 samples for each time point. Lines are means of 1000 fits of decay 

rates based on equations for kinetic flux profiling. Box plots show fluxes based on the 1000 fits, relative 

to the median flux estimate in the wild-type. Boxes contain 50% and whiskers 99% of the flux 

estimates.  

 

To directly probe biosynthetic capacity, we traced intracellular fluxes of amino acids with 15N labeling 

experiments (Figure 3B). Labeling of arginine, tryptophan and proline was similar in the respective 

mutant and the wild-type, whereas histidine, (iso)-leucine and threonine labeled slower in the 

mutants. However, it is important to consider that labeling rates depend on fluxes, and also on 

absolute pool sizes of amino acids. Because amino acid pools were higher in the mutants we used a 
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method for quantitative analysis of the labeling profiles to estimate fluxes (Yuan et al., 2008). To 

account for unknown labeling profiles of upstream nitrogen precursors, we calculated fluxes for a wide 

range of precursor labeling rates in the literature (Yuan et al., 2006). The flux estimates show that 

none of the mutants had lower flux through the dysregulated pathways than the wild-type (Figure 3B). 

In most cases biosynthetic flux was even higher, indicating that downregulation of enzyme levels could 

not fully compensate the loss of allosteric feedback inhibition in some of the mutants. This might be 

the reason for the growth-phenotype of the leuA*, ilvA* and thrA* mutants in dynamic growth 

experiments (Figure 3A). 

In conclusion, the feedback-dysregulated mutants showed the same or higher flux through the 

dysregulated amino acid pathways than wild-type cells, although in five mutants (argA*, trpE*, hisG*, 

leuA* and thrA*) enzyme levels in the dysregulated pathway were lower. Especially, the argA*, trpE* 

and hisG* mutant had ~2-fold lower enzyme levels in the dysregulated pathways compared to the 

wild-type, while fluxes were 1-2 fold higher and growth was unaffected. This indicates that these 

enzymes are not operating at maximal capacity in wild-type E. coli during growth on glucose. We then 

hypothesized that this enzyme overabundance emerges from allosteric feedback inhibition by 

maintaining low concentration of end-products, which in turn increases production of enzymes (e.g. 

by de-repression of transcription). Next, we explored this interplay between control of enzyme activity 

and enzyme abundance and its relevance for cellular metabolism. 

Interdependence of Allosteric Feedback Inhibition and Enzyme Level Regulation 

To obtain a better mechanistic understanding of the interplay between allosteric feedback inhibition 

and enzyme level regulation, we developed a kinetic model of metabolism and enzyme expression 

(Figure 4A). Briefly, the model includes two enzymes e1 and e2, and two metabolites m1 and m2 in a 

two-step pathway. The end-product m2 represents an amino acid, which is consumed in the last 

reaction for protein synthesis and growth. The end-product m2 feedback inhibits the expression of 

both enzymes, as well as the activity of the first enzyme. The first reaction and the expression of both 

enzymes follow simple inhibition kinetics, whereas the second reaction follows Michaelis-Menten 

kinetics (Figure 4A). As such this model is a simplified representation of an amino acid biosynthesis 

pathway that is controlled at two layers (Figure 1A). 

 



Chapter 1 
 

- 36 - 
 

 

Figure 4. A Kinetic Model Predicts a Robustness-Efficiency Tradeoff 

(A) Stoichiometry and structure of the kinetic model. m1 and m2 are metabolites, e1 and e2 are 

enzymes. Kinetics of the enzyme catalyzed reactions r1 and r2, as well as kinetics of enzyme expression 

rates β1 and β2 are sampled in the indicated intervals. 

(B) Steady state concentrations of e1, e2, m1 and m2 calculated with 5000 random parameter sets for 

the complete model (grey), and the model with only enzyme level regulation (blue). Boxes contain 

50% and whiskers 99% of the simulated concentrations. All concentrations are normalized to the 

median concentrations of the complete model. See also Figure S6 and S7. 

(C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of β2,max, for 5000 

simulations of the complete model (dots). The color of each dot shows the ratio of inhibition constants 

for allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the respective model. 

Robustness corresponds to the percentage downregulation of β2,max that was tolerated by each model. 

100% enzyme abundance corresponds to the maximum theoretical enzyme concentration in the 

model.  

 

As a starting point for the model analysis, we fixed the flux in the pathway to the amino acid 

requirement given by the growth rate of E. coli on glucose. We randomly sampled seven model 

parameters (maximal rates and binding constants) 5000 times from physiologically meaningful ranges 

based on literature values (Davidi and Milo, 2017; Li et al., 2014; Milo et al., 2010). For each of the 

thus derived 5000 parameter sets we calculated concentrations of e1, e2, m1 and m2, for a model 
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including feedback on enzyme activity and enzyme abundance (complete model, grey in Figure 4B), 

and also for a model including only feedback on enzyme abundance (single feedback model, blue in 

Figure 4B). The simulated concentrations of e1, e2, m1 and m2 matched qualitatively the measured 

protein and metabolite data: the two enzymes decreased in the single feedback model (Figure 2A), 

whereas the end-product m2 increased (Figure 1B). Also the simulated concentration of the 

intermediate m1 matched the measured increase of intermediates in amino acid pathways (Figure S6). 

Thus a simple model confirms our hypothesis that allosteric feedback inhibition enforces enzyme 

overabundance. In theory, other types of enzyme inhibition could cause a similar increase in enzyme 

expression. To test this, we replaced the allosteric feedback in the model with competitive product 

inhibition of the second reaction (Figure S7). However, removing competitive product inhibition was 

compensated by lower substrate concentrations (m1), and not by lower enzyme levels. This model 

result indicates that enzyme overabundance does not emerge from all types of enzyme inhibition.  

The Interplay of two Feedbacks solves a Robustness-Efficiency Tradeoff  

Next, we set out to investigate the function that emerges from the interplay between feedback on 

enzyme activity and enzyme abundance. While low enzyme levels are obviously advantageous due to 

lowering protein cost, high enzyme levels could provide a cellular benefit by improving robustness 

against perturbations in enzyme expression. To test this with the model, we made use of a numerical 

parameter continuation method to quantify robustness (Lee et al., 2014). This method iteratively 

decreases a model parameter until instabilities occur in the model. Robustness can then be defined 

as the percentage change of this parameter that was tolerated. Using this method we calculated 

robustness against perturbations of the maximal expression rate of the second enzyme (2,max) in the 

complete model with 5000 randomly sampled parameter sets (Figure 4C). Changing 2,max reflects 

genetic or environmental perturbations of gene expression that can lead to a bottleneck in the 

pathway. Consistent with our expectations, models with high enzyme levels showed increased 

robustness, while models with lower enzyme levels were more sensitive to perturbations of enzyme 

expression (Figure 4C). However, robustness was not proportional to the enzyme level: a relatively 

small increase of enzyme levels already conferred a large robustness benefit. Very high enzyme levels, 

in comparison, did not increase robustness substantially over more subtle changes in enzyme 

abundance. Our model thus reveals a tradeoff between protein costs and robustness, which can be 

solved by sensitively balancing enzyme levels.  

The optimal balance of enzyme levels occurs in models occupying the middle of the tradeoff frontier, 

those models with equally strong feedback on enzyme activity and enzyme abundance (indicated by 

similar inhibition constants Ki, black dots in Figure 4C). We then wondered if amino acid biosynthesis 
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in E. coli operates in the middle of the tradeoff frontier, meaning that both feedbacks are 

simultaneously active. In particular enzyme levels in the argA*, trpE* and hisG* mutant demonstrated 

that wild-type E. coli does not operate with minimal enzyme levels in these pathways (blue dots in 

Figure 4C). To test if enzymes in these pathways are maximally expressed (orange dots in Figure 4C), 

we removed their transcriptional regulation, which functions by different mechanisms: a transcription 

factor (arginine), transcriptional attenuation (histidine), or both (tryptophan). In the arginine and 

tryptophan pathway we deleted the respective transcription factor (∆argR and ∆trpR), and in histidine 

biosynthesis we removed the leader peptide hisL. Removing transcriptional regulation of all three 

pathways resulted in higher expression of enzymes in the respective pathway (Figure 4D): arginine 

enzymes increased between 5 and 60 fold, histidine enzymes about 6 fold, and tryptophan enzymes 

about 8 fold. This shows that E. coli does not operate at maximal expression of arginine, tryptophan 

and histidine enzymes, but rather in the middle of the tradeoff frontier. Previous studies that support 

this observation showed that ArgR binds to promoters of arginine genes more than 80% of the time 

when E. coli grows on glucose (Gerosa et al., 2013). Deletion of ArgR caused more global changes of 

amino acid enzymes than removing TrpR or HisL. This reflects the potential of ArgR to control 

metabolism of almost all amino acid pathways (Cho et al., 2012).  

Taken together, both model and dysregulated mutants indicate a regulatory interplay in the arginine, 

tryptophan and histidine pathway: removing transcriptional regulation increased enzyme levels 

(Figure 4D), whereas removing allosteric regulation decreased enzyme levels (Figure 2A). The model 

shows that if feedback on enzyme activity and enzyme abundance are simultaneously active, 

inhibition constant of the two feedbacks must have similar values (black dots in Figure 4C). Inhibition 

constants and binding affinities in the literature show that feedbacks on enzyme activity and enzyme 

abundance are indeed equally strong for many amino acids (Table S5), corroborating the existence of 

a two-pronged regulation strategy. 

Enzyme Overabundance Provides Robustness against Genetic Perturbations 

To test if arginine, tryptophan and histidine biosynthesis are more robust against perturbations of 

gene expression in wild-type cells than in the feedback-dysregulated mutants, we used CRISPR 

interference (CRISPRi) (Larson et al., 2013). We designed single guide RNAs (sgRNA) targeting the 

genes argE in arginine biosynthesis, hisB in histidine biosynthesis and trpA in tryptophan biosynthesis. 

The sgRNAs were cloned on a plasmid, which harbors an inducible dCas9 and the constitutively 

expressed sgRNA. The three CRISPRi plasmids and a control without target sequence were 

transformed into the wild-type, and also into the argA*, trpE* and hisG* mutants. This resulted in 16 

strains with all combinations of genetic perturbations and dysregulation of the three pathways (Figure 
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5A). All strains expressing the control sgRNA without target sequence grew almost identically and also 

induction of dCas9 did not affect growth (Figure 5B).  

Induction of dCas9 in strains with sgRNAs targeting argE, hisB and trpA reduced growth of all strains 

by more than 50% (Figure 5C). However, we observed the strongest growth defect when perturbing a 

gene in a dysregulated pathway. For example, CRISPRi of argE reduced growth of the argA* mutant 

more than twice as much as the other strains. Similarly the hisG* and trpE* mutant were most 

sensitive to perturbations of expression of hisB and trpA, respectively. The argA*mutant was also 

sensitive to a perturbation of hisB, which matches the lower expression of histidine enzymes in this 

mutant (Figure 2A). These data confirm that feedback-dysregulated mutants are indeed more 

sensitive to a perturbation of gene expression. Notably, the mutants were only more sensitive to a 

perturbation within pathways that had lower enzyme levels, and they did not lack a general 

robustness.  

While these data support the hypothesis that high enzyme levels render arginine, histidine and 

tryptophan biosynthesis more robust against perturbations of gene expression, bacteria would hardly 

face such strong perturbations in nature. Therefore, we designed the sgRNAs in such a way that the 

wild-type showed only a small growth defect without induction of dCas9 (Figure 5D). The mild 

perturbations in un-induced cultures still affected the respective mutants stronger than the other 

strains, causing instable growth and lower growth rates (Figure 5D). Thus, feedback-dysregulation 

renders the arginine, tryptophan and histidine pathways more sensitive against perturbations of gene 

expression, which may arise in nature due to the stochasticity of gene expression.  
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Figure 5. Enzyme Overabundance Achieves Robustness Against Perturbations of Gene Expression by 

CRISPR Interference.  

(A) CRISPR interference in wild-type cells and the allosteric feedback mutants argA*, hisG* and trpE*. 

Strains were transformed with single guide RNAs targeting genes of the arginine (argE), histidine (hisB) 

and tryptophan (trpA) pathway, as well as an empty sgRNA without target.  

(B) Growth of wild-type, argA*, hisG* and trpE* with the empty control sgRNA. Upper panels show 

un-induced cultures and lower panel induced cultures (100 µM IPTG). Growth curves show means 

from n=3 cultures cultivated in minimal glucose medium in a plate reader. Numbers are specific 

growth rates (in h-1), and were estimated by linear regression between OD 0.2 and 0.6. (c) Growth of 

wild-type, argA*, hisG* and trpE* with sgRNAs targeting argE, hisB and trpA. dCas9 expression was 

induced with 100 µM IPTG. Growth curves are means of n=3 cultures; two curves per graph show 

experiments that were performed at different days. Numbers and colors indicate specific growth rates 

(in h-1), which were estimated by linear regression between 5 and 15 hours. All axes have ranges shown 

in the lower left graph. 

(D) Same as C) but without induction of dCas9. Growth rates were estimated by linear regression 

between OD 0.2 and 0.6. All axes have ranges shown in the lower left graph. 
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Discussion 

In this study we explored the consequences of missing allosteric feedback inhibition in seven E. coli 

mutants with dysregulated amino acid biosynthesis pathways: arginine (argA*), histidine, (hisG*), 

tryptophan (trpE*), leucine (leuA*), threonine (thrA*), isoleucine (ilvA*), and proline (proB*). In all 

mutants, the amino acid product of the feedback-dysregulated pathway increased, showing that 

allosteric feedback inhibition is relevant to maintain end-products at a desired level. In five mutants 

(argA*, trpE*, hisG*, thrA*, and leuA*), we observed a downregulation of enzymes in the dysregulated 

pathways, presumably because high end-products caused stronger inhibition of enzyme expression. 

However, these low enzyme levels did not limit biosynthetic flux, thus indicating that wild-type cells 

maintain higher enzyme levels than would be necessary to ensure sufficient biosynthetic flux (enzyme 

overabundance). These results are consistent with enzyme overabundance in other pathways (Davidi 

and Milo, 2017; O’Brien et al., 2016), and the observation that enzymes are rarely operating at 

maximal capacity (Fendt et al., 2010; Hackett et al., 2016).  

Both model analysis and dysregulated mutants indicate that enzyme overabundance is enforced by 

allosteric feedback inhibition, which maintains low end-product levels and thereby increases 

production of enzymes. In case of amino acid biosynthesis it is likely that low end-products de-repress 

transcription, because amino acid levels are known signals for transcription factors and transcriptional 

attenuation (Cho et al., 2012). Additionally, GFP-promoter fusions indicated regulation at the 

transcriptional layer in the argA*, trpE* and thrA*mutant. It will be important to clarify if enzyme 

overabundance emerges also from other inhibitory interactions, which are abundant in metabolic 

networks (Alam et al., 2017). Besides inhibition of enzymes by metabolites, other sources for enzyme 

overabundance might be post-translational modifications. For example, it was recently shown that 

deleting kinases in yeast has a strong effect on enzyme levels (Zelezniak et al., 2018), pointing towards 

a similar interplay between post-translational modifications of enzymes and enzyme level regulation.  

The strongest and most localized decrease of enzyme levels occurred when we removed allosteric 

feedback inhibition in the arginine, tryptophan and histidine pathway. Removing transcriptional 

regulation in the same pathways caused higher expression of enzymes, which is in agreement with 

previous reports of a role for transcriptional regulation in minimizing protein costs in metabolic 

pathways (Chubukov et al., 2012; You et al., 2013). This antagonistic regulation by allosteric feedback 

inhibition and transcriptional regulation enables an optimal balance of enzyme levels in amino acid 

metabolism of wild-type cells. Optimization of enzyme levels has been shown for the global E. coli 

proteome (Scott et al., 2010; You et al., 2013), for the lac system (Dekel and Alon, 2005), and for a 

single enzyme in the methionine pathway (Li et al., 2014). Here we provided first indication that 
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enzyme abundance is optimized in the arginine, histidine and tryptophan pathway, to meet multiple, 

conflicting objectives – robustness and efficiency. Using a simplified model of amino acid metabolism, 

we show that cells can solve this tradeoff between protein costs and robustness through the interplay 

of allosteric feedback inhibition and enzyme level regulation. CRISPRi of metabolic enzymes in the 

dysregulated arginine, tryptophan and histidine pathways showed that allosteric feedback inhibition 

provides a substantial robustness benefit against perturbations of gene expression. While such 

robustness effects were attributed to allosteric feedback by previous modelling approaches (Chandra 

et al., 2011; Grimbs et al., 2007), we quantified it in vivo by studying mutants lacking allosteric control. 

During the lifetime of a cell, perturbations of gene expression could result from stochastic effects at 

the level of transcription or in response to fluctuating environments.  

In conclusion, our case study of E. coli amino acid metabolism demonstrated that regulation of enzyme 

activity and enzyme abundance are not isolated from each other, but interact to control metabolism. 

Allosteric feedback inhibition sets amino acid concentrations, which are signals for enzyme level 

regulation. Considering the high precision of metabolite concentrations (Fuhrer et al., 2017; Mülleder 

et al., 2016), it seems possible that the proposed regulatory principle goes beyond E. coli amino acid 

metabolism. 
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Material & Methods  

Experimental Model and Subject Details 

Strains and Culture 

E. coli MG1655 (DSMZ No. 18039) was the wild-type strain. Chemically competent E. coli TOP10 (One 

ShotTM TOP10, Invitrogen) were used for cloning. All mutants created in this study derive from the 

MG1655 strain and are listed in Key Resources Table. Genomic point mutations were created by 

scarless Cas9 Assisted recombineering (Reisch and Prather, 2015). Therefore, we constructed 7 

specific sgRNA-plasmids, derived from the backbone plasmid pKDsgRNA-ack (Addgene #62654). The 

sgRNAs consist of a gene specific 20 base pair region (argA: ggtcgagggattccgccatt; trpE: 

acacaactggtgaaaaagcg; hisG: tggaaaaactgaaagcgctg; thrA: tggtgctgattacgcaatca; leuA: 

cggtaaagatgcgctgggtc; ilvA: caacacgctgggtacgtact; proB: cgacaccctgcgagcgttgc), which pairs adjacent 

to a NGG PAM site. Each sgRNA-plasmid was transformed together with pCas9-CR4 (Addgene #62655) 

into MG1655 wild-type cells. The resulting strains were grown at 30°C (pKDsgRNA-ack is temperature 

sensitive at 37°C) and supplemented with arabinose (final concentration 1.2 %) to induce the λ-Red 

recombinase genes which are located on the sgRNA-plasmid. The induced strains were then 

transformed with the 70-80 bp homologous oligonucleotides (Table S2), which contain the desired 

base pair exchanges of PAM site and the point mutation disrupting allosteric feedback (argAH15Y, 

trpES40F, hisGE271K, thrAS345F, leuAG462D, ilvAL447F, proBD107N). Cells were plated on LB agar containing 100 

ng ml-1 anhydrotetracycline (aTc) to induce Cas9 expression, which recognizes the sgRNA adjacent to 

the PAM sequence and cleaves the chromosomal DNA. Only cells that successfully integrated the 

homologous oligonucleotides will survive due to the modified PAM sequence which prevents Cas9 

recognition. Thereby we counter selected for clones harboring the desired amino acid exchanges, 

which were verified by sequencing. The transcriptional knockout mutants ∆argR and ∆trpR were 

constructed with the same cloning procedure according to the noSCAR protocol, while ∆hisL was 

constructed by P1 Phage transduction with the donor strain JW2000-1 (∆hisL) from the Keio collection 

(Baba et al., 2006). 

All cultivations were performed using M9 minimal medium with 5 g L-1 glucose (or the respective 

carbon source in Figure S4). The M9 medium consisted of the following components (per liter): 7.52 g 

Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following components were sterilized 

separately and then added (per liter of final medium): 1 ml 0.1 M CaCl2, 1 ml 1 M MgSO4, 0.6 ml 0.1 M 

FeCl3, 2 ml 1.4 mM thiamine-HCL and 10 ml trace salts solution. The trace salts solution contained (per 

liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2  2 H2O, 120 mg MnSO4  H2O, 180 mg CoCl2  6 H2O. Where 

appropriate, 50 μg mL-1 kanamycin, 34 μg mL-1 chloramphenicol, 15 μg mL-1 gentamycin, 50 μg mL-1 
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spectinomycin or 100 μg mL-1 ampicillin was added. For cultivations in microtiter plates, LB pre-culture 

in 96-deep-well format plates were inoculated from glycerol stocks and grown to an exponential stage. 

From this first pre-culture a second M9 pre-culture in 96-deep-well plates was inoculated 1:100 and 

incubated overnight at 37 °C under shaking. Finally, 96-well flat transparent plates (Greiner Bio-One 

International) containing 150 µl M9 minimal medium were inoculated 1:150 from the overnight 

culture. Online measurements of optical density at 600 nm (OD600) were performed at 37°C with 

shaking in a plate reader (Epoch, BioTek Instruments Inc, USA; Spark 10M, Tecan Trading AG, 

Switzerland). For induction of CRISPRi, IPTG was added to the main culture to a final concentration of 

100 µM. Growth rates were calculated as dln(OD)/dt by linear regression over the indicated time 

windows. For cultivations in shake flask, 5 ml LB pre-culture in cultivation tubes were inoculated from 

glycerol stocks and grown to an exponential stage. From this first pre-culture, 5 ml of a second M9 

glucose pre-culture in cultivation tubes was inoculated 1:100 and incubated overnight at 37°C in a 

rotary shaker. For the main culture, a 500 ml shake flask containing 35 ml M9 minimal medium (5 g L-

1 glucose) was inoculated 1:150 from the overnight culture, and incubated at 37 °C under shaking at 

220 rpm.  

Method Details 

CRISPR Interference 

CRISPR interference experiments were performed with a single plasmid (pNUT1533) expressing the 

sgRNA from a constitutive and the dCas9 protein from an IPTG inducible Ptac promotor. For 

construction of this plasmid, the sgRNA and its constitutive promotor were amplified from the pgRNA 

plasmid (Addgene #44251) and the dCas9 gene was amplified from the pdCas9 plasmid (Addgene 

#44249). The promotor of dCas9 was replaced by an IPTG inducible Ptac promotor. To assure tight 

regulation of dCas9 expression, the gene coding for the lacIQ1 repressor (Glascock and Weickert, 

1998) was added to the vector. The two single fragments were joined together by PCR and the 

resulting fragment was inserted into pNUT542 with PacI and NotI restriction enzymes (New England 

Biolabs, USA). This plasmid was used as a backbone for cloning of the specific plasmids targeting the 

arginine (pNUT1533-argE), histidine (pNUT1533-hisB) and tryptophan pathway (pNUT1533-trpA). 

Therefore, sgRNAs guide sequences were customized by site-directed mutagenesis using the primer 

listed in Table S6.  

Metabolite Measurements 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were vacuum-filtered on a 0.45 µm pore size 

filter (HVLP02500, Merck Millipore). Filters were immediately transferred into 40:40:20 (v-%) 
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acetonitrile/methanol/water at -20°C for extraction. Extracts were centrifuged for 15 minutes at 

13,000 rpm at -9 °C. Centrifuged extracts were mixed with 13C-labeled internal standard and analyzed 

by LC-MS/MS, with an Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) as 

described previously (Guder et al., 2017). An Agilent 1290 Infinity II UHPLC system (Agilent 

Technologies) was used for liquid chromatography. Temperature of the column oven was 30 °C, and 

the injection volume was 3 μL. LC solvents A were water with 10 mM ammonium formate and 0.1% 

formic acid (v/v) (for acidic conditions); and water with 10 mM ammonium carbonate and 0.2% 

ammonium hydroxide (for basic conditions). LC solvents B were acetonitrile with 0.1% formic acid 

(v/v) for acidic conditions and acetonitrile without additive for basic conditions. LC columns were an 

Acquity BEH Amide (30 x 2.1 mm, 1.7 µm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 mm, 

5 µm) for basic conditions. The gradient for basic and acidic conditions was: 0 min 90% B; 1.3 min 40 

% B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. Absolute concentrations of amino acids in the 13C-

labeled internal standard were determined with authentic standards. Quantification of intracellular 

metabolite concentrations was based on the ratio of 12C and 13C peak heights, and a specific cell 

volume of 2 µL mg-1 was used to calculate the cell volume.  

Proteomics 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were transferred into 2 ml reaction tubes and 

washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL, 1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets 

were resuspended in 300 µl lysis buffer containing 100 mM ammonium bicarbonate, 0.5 % sodium 

laroyl sarcosinate (SLS) and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by 5 minutes 

incubation at 95 °C and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again 

incubated for 30 minutes at 90 °C followed by alkylation with 10 mM iodoacetamide for 30 minutes 

at 25 °C. To clear the cell lysate, samples were centrifuged for 10 minutes at 15,000 rpm and the 

supernatant transferred into a new tube. Proteins in the cell lysates were digested with 1 µg trypsin 

(Promega) overnight at 30 °C. To remove the SLS by precipitation, trifluoroacetic acid (TFA) was added 

to a final concentration of 1.5 % and rested at room temperature for 10 minutes. Samples were 

centrifuged for 10 minutes at 10,000 rpm and the supernatant used for C18 purification. The peptide 

purification was performed using the C18 microspin columns according to the manufactors 

instructions (Harvard Apparatus). Eluted peptide solutions were dried and resuspended in 0.1 % TFA. 

The concentration of peptides in the samples was measured with a colorimetric peptide assay 

(Pierce™ Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). Analysis of peptides was 

performed by liquid chromatography-mass spectrometry. Analysis of peptides was performed by 

liquid chromatography-mass spectrometry, carried out on a Q-Exactive Plus instrument connected to 
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an Ultimate 3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source (Thermo 

Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 µm x 42 cm) 

packed in-house with C18 resin (2.4 µm, Dr. Maisch GmbH, Germany). The following separating 

gradient was used: 98 % solvent A (0.15% formic acid) and 2 % solvent B (99.85 acetonitrile, 0.15 % 

formic acid) to 25 % solvent B over 105 minutes and to 35 % solvent B for additional 35 minutes at a 

flow rate of 300 nl/min. The data acquisition mode was set to obtain one high resolution MS scan at 

a resolution of 70,000 full width at half maximum (at m/z 200) followed by MS/MS scans of the 10 

most intense ions. To increase the efficiency of MS/MS attempts, the charged state screening modus 

was enabled to exclude unassigned and singly charged ions. The dynamic exclusion duration was set 

to 30 seconds. The ion accumulation time was set to 50 ms for MS and 50 ms at 17,500 resolution for 

MS/MS. The automatic gain control was set to 3x106 for MS survey scans and 1x105 for MS/MS scans. 

Label-free quantification (LFQ) of the data was performed using Progenesis QIP (Waters), and for 

MS/MS searches of aligned peptide features MASCOT (v2.5, Matrix Science) was used. The following 

search parameters were used: full tryptic search with two missed cleavage sites, 10ppm MS1 and 0.02 

Da fragment ion tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) 

as variable modification. Progenesis outputs were further processed with SafeQuant. 

Kinetic Flux Profiling 

Incorporation of 15N label into amino acids was measured with a filter cultivation method (Link et al., 

2013). Briefly, cells were cultured on M9 glucose medium, which contains unlabeled ammonium 

sulfate as sole nitrogen source. At mid-exponential phase when cells reached ODs between 0.4 and 

0.6, 2 mL of the culture was vacuum-filtered, and cell-loaded filters were continuously perfused with 

M9 glucose medium containing labeled ammonium-15N sulfate. Filters were repeatedly loaded and 

perfused with 15N-medium for different lengths of time: 0, 30, 60, 120 and 180 seconds. Subsequently, 

filters were immediately transferred into 40:40:20 (v-%) acetonitrile/methanol/water kept at -20 °C. 

Extracts were centrifuged for 15 minutes at 13,000 r.p.m. at -9 °C and the supernatant was directly 

used for LC-MS/MS. For LC separation of tryptophan, proline, threonine and (iso)leucine a ZIC-pHILIC 

column (150 x 2.1 mm, 5 µm, Merck) was used, and an Acquity BEH Amide (100 x 2.1 mm, 1.7 µm, 

Waters) for LC separation of histidine and arginine. Buffers were as described for metabolite 

measurements and gradients were for Acquity BEH Amide: 0 min 90% B; 2.6 min 40 % B; 3 min 40 % 

B; 3.4 min 90 % B; 5 min 90 % B. For ZIC-pHILIC: 0 min 90% B; 4.5 min 40 % B; 5 min 40 % B; 6 min 90 

% B; 8 min 90 % B. Transitions for all isotopologues per amino acid were measured by LC-MS/MS and 

the amount of each isotopologue was used to calculate the fraction of unlabeled amino acid FU as: 
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𝐹𝑈 = 
𝑀0

∑ 𝑀+𝑖𝑁
0

= 
𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 (𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐴𝐴) 

𝑆𝑢𝑚 𝑜𝑓 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 (𝑎𝑙𝑙 𝐴𝐴 isotopologues )
 

 

 

Where M0 is the amount of the unlabeled amino acid, M+1 is the amount of all isotopologues with one 

15N atom, etc. N is the number of 15N atoms in the amino acid: arginine (N = 4 from 2x glutamate, 1x 

glutamine, 1x aspartate), tryptophan (N = 2 from 1x glutamine, 1x serine), histidine (N = 3 from  ATP, 

1x glutamate), threonine (N = 1 from glutamate), proline (N = 1 from glutamate), iso-/leucine (N = 1 

from glutamate). Fluxes were estimated based on equations for kinetic flux profiling (Yuan et al., 

2008), which considers the decay of the unlabeled fraction FU: 

 

𝐹𝑈 = [
(1 − 𝑎)(1 − 𝑏)

𝑘𝑝𝑐 − 𝑘𝑎𝑎
] [𝑘𝑝𝑐 𝑒

−𝑘𝑎𝑎𝑡 − 𝑘𝑎𝑎  𝑒
−𝑘𝑝𝑐𝑡] + [1 − (1 − 𝑎)(1 − 𝑏)] 

The rate constant kaa is the flux into the amino acid (fluxaa) divided by their absolute concentration: kaa 

= fluxaa / caa. The rate constant kaa was obtained by fitting the equation to the measured unlabeled 

fraction FU. The rate constant kpc describes labeling of upstream nitrogen precursor. Because amino 

acids like arginine receive 15N label from several sources, the rate constant of precursor labeling kpc 

was unknown. To account for this uncertainty the parameter kpc was randomly sampled between 

boundaries of 0.8 min-1 and 14.2 min-1, which are the highest and lowest first order rate constants 

measured for nitrogen assimilation in E. coli (Yuan et al., 2006).  a and b consider amino acid 

production from degradation of protein and other macromolecules and they were estimable 

parameters within bounds of 0 and 0.2. 

GFP-promoter Fusions 

GFP reporter plasmids for detection of promotor activity of argA, trpL, hisL and leuL were obtained 

from a library of fluorescent transcriptional reporters for E. coli (Zaslaver et al., 2006). Since the 

original plasmids pUA66-PhisL-gfp and pUA66-PleuL-gfp lacked parts of the attenuator region, we 

modified the respective promotor resulting in the plasmids pPhisL-gfp and pPleuL-gfp. Therefore we 

amplified leader sequence including the rho-independent terminator of hisL and leuL from 

chromosomal DNA of E. coli MG1655 (PhisL: hisL_fwd_gfp ccgctcgaggctttcatcattgttgccg, hisL_rev_gfp 

ccgggatcccgcagaatatcaatcggc; PleuL: leuL_fwd_gfp ccgctcgagttgtcccctttttcctcg, leuL_rev_gfp 

ccgggatccgatggtttgcaccgattc). The resulting two single fragments were introduced into an empty 

pUA66 backbone with the restriction enzymes XhoI and BamHI. The threonine reporter plasmid which 

was not available in the library was constructed with the same strategy. The attenuator region of thrL 

was amplified with the primer pair thrA_fwd_gfp (ccgctcgagactgcaacgggcaatatg) and thrA_rev_gfp 
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(ccgggatcctcggcatcgctgatattg) and the single fragment was introduced into pUA66 (XhoI and BamHI) 

resulting in pPthrL-gfp. 

Flow Cytometry 

Activity of the argA, trpL and thrL promoter was assayed using plasmid-based GFP reporters that 

were described in the previous section. Strains for flow cytometry were cultivated in three 

independent shake flasks (100 ml) containing 10 ml M9 minimal medium (5 g L-1 glucose; 50 μg mL-

1 kanamycin) as described in Strains and Culture. After reaching an OD between 0.5 and 0.8 cells 

were diluted 1:2000 in tethering buffer (10 mM KH2PO4, 100 μM EDTA, 1 μM L-methionine and 

10 mM lactic acid, pH=7.0) and fluorescence was measured with BD LSRFortessa  SORP cell analyser 

(BD Biosciences, Germany). 488-nm lasers, 600 long pass and a 520/30 band pass filters were used 

for detection of green fluorescence. Per sample, fluorescence of 10,000 single cells was measured. 

Before the measurements, cell aggregates were dispersed by vigorous mixing. BD FACSDiva 

software version 8.0 (BD Biosciences, NJ, USA) and FlowJo v10.4.1 (FlowJo LLC, Ashland, OR, USA) were 

used for analysis of the acquired data. 

Purification and In Vitro Activity Assays of N-Acteylglutamate Synthase 

E. coli BL21 cells harboring the overexpression vector pET28a(+)-argA respectively pET28a(+)-

argA(H15Y) were cultivated at 37 °C (220 rpm) in 500 ml of LB medium (5 L shake flasks) containing 

30 µg ml-1 kanamycine. When cells reached OD600 0.6, the culture was shifted to 16 °C to cool down 

the cell broth. To induce protein expression, 10 µl of IPTG stock solution (final concentration is 10 µM) 

were added. The culture was incubated overnight at 16 °C (220 rpm). The cells were harvested by 

centrifugation at 6000 x g for 10 minutes at 4 °C. The supernatant was completely removed. The cell 

pellet was resuspended in Lysis buffer (50 mM NaH2PO4,  300 mM NaCl, 10 mM Imidazol) (2-5 ml per 

gram wet weight). 50 µl protease inhibitor cocktail and 5 mg of DNAse I powder were added. Lysis of 

cells was performed by french press (1100 bar). The lysate was centrifuged at 4,000 x g for 45 minutes 

at 4 °C to pellet the cellular debris. The supernatant was filtered using a 0.2-µm-pore-size syringe filter 

and transferred into a new collection tube. Purification was performed with columns purchased from 

GE Healthcare Life Science (His GraviTrap; 11-0033-99). 10 ml of equilibration buffer (50 mM NaH2PO4, 

300 mM NaCl, 20 mM Imidazol) was added to the column. As soon as equilibration buffer flowed 

through, up to 35 ml of filtered supernatant were added to the column. The column was washed twice 

with 10 ml washing buffer (same as equilibration buffer). Elution of the protein was performed 3 times 

with 3 ml elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazol). Protein concentration of 

all fractions was determined (660 nm protein assay, life technologies PIERCETM #22660). Activity of 
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purified N-acetylglutamate-synthase (ArgA) as well as for the feedback-resistant version ArgA (H15Y) 

was assayed in 30 mM TRIS buffer (with 40 mM L-glutamate, 0.65 mM N-acetyl-CoA and 10 mM 

MgCl2). To start the enzymatic reaction 10 µL of enzyme stock solution (0.15 mg/ml) was transferred 

to 90 µL assay buffer and mixed by pipetting up and down. To stop the reaction, 10 µL were transferred 

into 40 µl of 50:50 (v-%) acetonitrile/methanol at -20°C. Samples were taken every minute in a total 

time interval of 8 minutes. The reaction product N-acetylglutamate was measured by LC-MS and 

calibrated with authentic standards. 

Kinetic Model 

The stoichiometry of the model is shown in Figure 4A. Mass balancing results in the system 

of ordinary differential equations (ODEs), F, that is a temporal function of the state variables 

x and the kinetic parameters p: 

𝐹(𝑥, 𝑝) =
𝑑𝑥

𝑑𝑡
=

{
 
 
 

 
 
 
𝑑𝑚1

𝑑𝑡
= 𝑟1 − 𝑟2

𝑑𝑚2

𝑑𝑡
= 𝑟2 − 𝛼 µ

𝑑𝑒1
𝑑𝑡

= 𝛽1 − 𝑒1 µ

𝑑𝑒2
𝑑𝑡

= 𝛽2 − 𝑒2 µ

 

 

 

 

(Equation 1) 

The five reactions (r1, r2, β1, β2, µ) are described by the following kinetic equations: 

Reaction 1 is feedback inhibited by m2 according to normal inhibition kinetics: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1  
𝐾1

𝐾1 +𝑚2
 (Equation 2) 

 

In the model without allosteric regulation the equation reduces to: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1 (Equation 3) 

 

Reaction 2 follows Michaelis-Menten kinetics: 
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𝑟2 = 𝑘𝑐𝑎𝑡,2 𝑒2  
𝑚1

𝑚1 + 𝐾𝑚
 (Equation 4) 

 

Expression rates of enzyme 1 and enzyme 2 follow inhibition kinetics  

𝛽1 = 𝛽1,max  
𝐾2

𝐾2 +𝑚2
 (Equation 5) 

 

𝛽2 = 𝛽2,max   
𝐾2

𝐾2 +𝑚2
 (Equation 6) 

 

The growth rate depends on availability of the end-product m2: 

µ = µ𝑚𝑎𝑥  
𝑚2

𝑚2 + 𝐾µ
 (Equation 7) 

Dilution of metabolites by growth was not considered, due to large difference in time scales between 

growth dilution and metabolic flux. Dilution of enzymes by growth is included in equation 1, because 

the time scales of enzyme synthesis and growth dilution are closer. 

Together, the kinetic equations include eight kinetic parameters kcat1, kcat2, β1,max, β2,max, K1, K2, Km and 

α. The physiological ranges for these parameters were derived from literature values. The boundaries 

of enzyme turnover number (kcat,1 and kcat,2) are based on in vitro measured kcat values of enzymes in 

amino acid biosynthesis (Table S3) and have values between 930 min-1 and 4140 min-1. The maximal 

enzyme expression rates (β1,max and β2,max) are defined by the translation rate of ribosomes according 

to equation 8. The equation considers the following parameters that were derived from the 

Bionumbers Database (Milo et al., 2010): average translation rate (rT = 8.4 amino acids s-1), the median 

and abundance weighted protein length (L = 209 amino acids), the fraction of active ribosomes (fR = 

0.8), the cellular volume (Vc,0.6 = 3 x 10-15 L) at a growth rate of µ = 0.6 h-1, the Avogadro number (NA = 

6.02 x 1023 mol-1), the amount of ribosomes per cell at that growth rate (R0.6 = 8000 ribosomes cell-1) 

and the fraction of ribosomes (p) that synthesize the enzyme: 

𝛽𝑘,𝑚𝑎𝑥 = 
𝑟𝑡 ∙ 𝑅0.6 ∙ 𝑓𝑅
𝐿 ∙ 𝑁𝐴 ∙ 𝑉𝑐

∙ 𝑝 (Equation 8) 
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The limits of βk,max  are then derived by varying the fraction of ribosomes (p) that synthesize the 

enzymes in the pathway. According to the literature the maximal number for a single amino acid 

biosynthesis enzyme in E. coli is 7% (Li et al., 2014), therefore we set the boundaries to 1% and 10% 

(p = 0.01 - 0.1). The parameter limits for the Ki and Km values were set to 0.01 mM and 1 mM. The 

amino acid requirement (α = 86.6 mM) was a fixed parameter based on the average amino acid 

requirement of an E. coli cell (Table S4). We assumed that the amino acid limits the growth rate 

reaction only at very low concentrations. This reflects the low Km values of tRNA ligases. Therefor we 

fixed Kµ at a low value of 10-5 mM and set µmax to the measured growth rate on glucose of 0.6 h-1. 

Steady State and Robustness Analysis 

For steady state analysis a parameter set was randomly sampled from the intervals given above. With 

a specific parameter set the steady state concentrations of e1, e2, m1 and m2 were calculated 

numerically for each of the two models (complete model and single feedback model). Starting values 

of the numerical solver were 0.01 mM for m1 and m2, and 10-5 mM for e1 and e2. The convergence 

criterion was defined as <10-8 change in all variables. To test stability of the steady state we calculated 

eigenvalues of the Jacobian matrix, and tested if all eigenvalues are negative (λ < -10-5). This procedure 

was repeated until 5000 steady states (with different parameter sets) were achieved. Note that both 

models share the same parameter sets and reach the same steady state flux. In order to estimate 

robustness of the model against perturbations of the maximal enzyme expression rate 𝛽2,𝑚𝑎𝑥, we 

used a numerical parameter continuation method (Lee et al., 2014). The method is based on finding a 

connected path of steady state concentrations (xss: steady state concentration vector containing e1,ss, 

e2,ss, m1,ss, m2,ss), as a parameter, p, is varied. As the system is in steady state it follows that: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑆𝑆, 𝑝) = 0 (Equation 9) 

The derivative of 𝐹(𝑥𝑆𝑆, 𝑝) with respect to the parameters is also zero: 

𝑑𝐹(𝑥𝑆𝑆, 𝑝)

𝑑𝑝
=  

𝛿𝐹

𝛿𝑥𝑆𝑆
∙
𝑑𝑥𝑆𝑆
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0 (Equation 10) 

After rearranging Equation 10, Equation 11 is obtained: 

𝑑𝑥𝑆𝑆
𝑑𝑝

= −(
𝛿𝐹

𝛿𝑥𝑆𝑆
)
−1

∙
𝛿𝐹

𝛿𝑝
 (Equation 11) 

which describes the changes in the steady-state concentrations as a kinetic parameter is varied 

iteratively. The iteration stops when one of the following three stability criteria is no longer fulfilled. 
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1st criterion: all real parts of the eigenvalues of the system’s Jacobian need to be negative. This implies 

stability of a steady state. Furthermore, in equation 11 the inverse of the Jacobian Matrix (𝛿𝐹/𝛿𝑥𝑆𝑆) 

is required. The inversion is only possible as long as the matrix is regular. Once an eigenvalue reaches 

zero, the Jacobian becomes singular and matrix inversion is no longer possible. This bifurcation point 

defines the boundary between the stable and unstable parameter space. In other words: after this 

point is passed, the system no longer returns to a stable steady state. By checking the eigenvalues of 

the Jacobian at each step, we make sure that the iteration is terminated when one eigenvalue 

becomes bigger than λ = -10-5. 2nd criterion: all variables are required to be positive. 3rd criterion: a 

model is considered unstable when a certain time limit (t > 1 s) is exceeded, which can be the case 

when numerical errors occur during the numerical integration process. The maximum theoretical 

enzyme amount in the model was calculated as: 

0 = 𝛽𝑖,𝑚𝑎𝑥 − 𝑒𝑖,𝑚𝑎𝑥 µ (Equation 12) 

 

After rearranging equation 12 and substituting the upper parameter bound of the maximum protein 

translation rate (βi,max
ub ), the maximum theoretical enzyme amount of each enzyme is: 

𝑒𝑖,𝑚𝑎𝑥 =
𝛽𝑖,𝑚𝑎𝑥
𝑢𝑏

µ
=
8.5 ∙ 10−4 𝑚𝑀 𝑚𝑖𝑛−1

0.01 𝑚𝑖𝑛−1
=  0.085 𝑚𝑀 (Equation 13) 

 

Considering that the model includes two enzymes, the maximum amount of total enzyme is 0.17 mM, 

which was defined as the maximal enzyme level (100%).  

Quantification and Statistical Analysis 

Statistical analysis was done with MATLAB. The statistical details of each experiment can be found in 

the respective figure caption. For proteomics and metabolomics n represents the number of 

independent shake flask cultures. In growth assays, n represents the number of independent 

microtiter plate cultures. For in vitro assays, n represents the number of independent reaction vessels. 

Software 

All codes for model analysis are available in the Github repository: 

https://github.com/nfarke/Sander_et_al.  

  

https://github.com/nfarke/Sander_et_al
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Supplementary Material 

 

 

Figure S1. Related to Figure 1; In vitro kinetics of N-acetylglutamate-synthase (NAGS) from E. coli 

(ArgA) in the A native and B the allosteric feedback resistant version ArgA (H15Y). Dots represent 

means from n=2 independent assays (filled = no arginine; empty = 1 mM arginine). Activity of His-

tagged purified enzymes was assayed in 30 mM TRIS buffer (40 mM L-glutamate, 0.65 mM Acetyl-CoA 

and 10 mM MgCl2). For sampling 10 µL of reaction solution was transferred into 40 µL of 50:50 (v-%) 

acetonitrile/methanol at -20°C. The reaction product N-acteylglutamate was measured by LC-MS/MS. 

Specific activity in [µmol mg-1 min-1] was calculated from linear regression through the 8 time points. 
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Figure S2. Related to Figure 1; Relative concentrations of 110 intracellular metabolites in wild-type E. 

coli and seven dysregulated mutants (n = 3).  
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Figure S3. Related to Figure 2; GFP expression of promotor fusions PargA-gfp, PtrpL-gfp, PthrL-gfp, 

PhisL-gfp and PleuL-gfp in E. coli wild-type with and without addition of external amino acids. Bar plots 

show fold-changes of GFP per OD600 relative to the condition without external amino acids (n=3). Cells 

were grown in M9 minimal medium (5 g L-1 glucose) and GFP expression was measured in mid-

exponential phase at OD600 ~0.5 with a plate reader. Amino acids were supplemented to a final 

concentration of 2 mM.  
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Figure S4. Related to Figure 3; Growth of wild-type E. coli and 7 mutants (see also Figure 1A) on 

fructose (Fru), galactose (Gal), gluconate (Gnt), glucose (Glu), glycerol (Gly), pyruvate (Pyr), succinate 

(Suc), and xylose (Xyl). Shown are three cultivations in microtiter plates. The dashed line is the mean 

of the wild-type in the particular condition (n = 3). Numbers are the maximal growth rates in h-1, which 

is reached at the time indicated by dots. All x-axes range from 0 to 24 hours. All y-axes range from -4 

to 2 (lnOD600). 
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Figure S5. Related to Figure 3; Growth of wild-type E. coli and the seven dysregulated mutants in shifts 

from galactose to glucose. For up-shifts from galactose to glucose, cells were grown in M9 minimal 

medium with 5 g L-1 galactose and glucose was added to a final concentration of 5 g L-1 at an OD of 

0.1. Shown are means of n = 3 cultures. Inserts show the growth rate during the same time period. 

Growth rates were estimated by linear regression over a moving 30-minute window. The same wild-

type growth curve is shown in each graph in black as a reference.
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Figure S6. Related to Figure 4; Intermediates in dysregulated pathways measured by LC-MS in wild-

type E. coli and seven dysregulated mutants (n = 3). 
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Figure S7. Related to Figure 4;  

(A) Model with product inhibition, instead of allosteric feedback inhibition. Metabolite 2 inhibits 

reaction 2 by competitive product inhibition, which was modelled using the following equation:  

𝑟2 = 𝑘𝑐𝑎𝑡,2 ∙ 𝑒2 ∙
𝑚1

𝑚1 + 𝐾𝑚 ∙ (1 +
𝑚2
𝐾1)

    

(B) Steady state concentrations of e1, e2 m1 and m2 calculated with 5000 simulations for the complete 

model (grey), and the model with only enzyme level regulation (blue). Boxes contain 50% and whiskers 

99% of the simulated concentrations. All concentrations are normalized to the median concentrations 

of the complete model. 

(C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of β2,max for 5000 simulations 

of the complete model (dots). The color of each dot shows the ratio of inhibition constants for 

allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the respective model. 

Robustness corresponds to the percentage downregulation of β2,max that was tolerated by each model. 

100% enzyme abundance corresponds to the maximum theoretical enzyme concentration in the 

model. 
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Table S1. Related to Figure 1; Mutations in allosteric enzymes that were investigated in this study.  
 

 

 

Table S2. Related to Figure 1; Oligonucleotides for recombineering 

Gene Oligonucleotides for recombineering (5’-3’) 
Protospacer 
sequence (5’-3’) 

argA GTGGTAAAGGAACGTAAAACCGAGTTGGTCGAGGGAT 
TCCGCTATTCAGTTCCCTATATCAATACCCACCGGGGAA 

GGTCGAGGGATT 
CCGCCATT 

   
ilvA GGAATCACCGGGCGCGTTCCTGCGCTTTCTCAACACG 

CTGGGTACGTACTGGAACATTTCTTTGTTCCACTATCG 
CAACACGCTGG 
GTACGTACT  

   
hisG GTCAGCAGCAAAACCCTGTTCTGGGAAACTATGGAAA 

AACTGAAAGCGCTGGGGCCAGTTCAATTCTGGTCCTG 
TGGAAAAACTGA 
AAGCGCTG  

   
leuA CTGGTGAAATACAGCCTGACCGCCAAAGGACACGGTA 

AAGATGCGCTGGATCAGGTGGATATCGTCGCTAACTAC 
CGGTAAAGATGC 
GCTGGGTC  

   
proB ACCCGTGCTAATATGGAAGACCGTGAACGCTTCCTGAACGCTCGCGACAC

CCTGCGAGCGTTGCTCGATAACAATATC 
CGACACCCTGCG 
AGCGTTGC  

   
thrA GCGCGCGTCTTTGCAGCGATGTCACGCGCCCGTATTT 

TCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGC 
TGGTGCTGATTA 
CGCAATCA  

   
trpE CTTATCGCGACAATCCCACTGCGCTTTTTCACCAGTTGTGTGGGGATCGTC

CGGCAACGCTGCTGCTGGAATTCGCAGAT 
CGCTTTTTCACC 
AGTTGTGT  

 

 

 

Pathway Gene Enzyme Mutation Reference 

L-arginine 
 biosynthesis 

argA 
N-acetylglutamate 

synthase 
H15Y Rajagopal et al., 1998 

L-isoleucine 
 biosynthesis 

ilvA 
Threonine 
deaminase 

L447F LaRossa et al., 1987 

L-histidine 
 biosynthesis 

hisG 
ATP phosphoribosyl 

transferase 
E271K Doroshenko et al., 2013 

L-leucine 
 biosynthesis 

leuA 
2-isopropylmalate 

 synthase 
G462D Gusyatiner et al., 2002 

L-proline 
 biosynthesis 

proB 
Glutamate-5- 

kinase 
D107N Csonka et al., 1988 

L-threonine 
 biosynthesis 

thrA 
Aspartate 

kinase 
S345F Lee et al., 2003 

L-tryptophan 
 biosynthesis 

trpE 
Anthranilate 

synthase 
S40F Caligiuri and Bauerle, 1991 



Chapter 1 
 

- 65 - 
 

Table S3. Related to Figure 4; Literature kcat values for enzymes in amino acid biosynthesis. The 
values were collected from the BRENDA database, and from Davidi and Milo, 2017. - indicates that 
no value could be found in both sources. The 25th and 75th quartiles of these kcat values are 930 min-

1 and 4140 min-1, respectively. 
 

Name kcat, s-1 Name kcat, s-1 Name kcat, s-1 

argA 654.00 cysK 378.50 ilvN 40.00 

argB - cysM 24.00 leuA - 

argC - cysN - leuB 69.00 

argD - cysQ 11.00 leuC - 

argE 1800.00 dadX 33.66 leuD - 

argF - dapA 104.00 lysA 33.00 

argG - dapB 382.00 lysC 22.13 

argH - dapD 36.00 metA 22.00 

argI - dapE - metB 121.00 

aroA 32.00 dapF 84.00 metC 34.10 

aroB 14.00 gdhA 37.00 metE 3.50 

aroC 39.00 glnA 33.00 metH - 

aroD 75.00 gltB - metL - 

aroE 237.00 gltD - pheA 32.00 

aroF - glyA 10.00 proA 10.00 

aroG 4.20 hisA 7.20 proB 53.00 

aroH - hisB - proC 717.00 

aroK - hisC - prs - 

aroL - hisD 12.00 serA 29.00 

asd - hisF - serB - 

asnA - hisG - serC 1.80 

asnB 4.50 hisH - thrA - 

aspC - hisI - thrB 17.00 

avtA - ilvA - thrC - 

cysC 50.00 ilvB 38.50 trpA - 

cysD - ilvC 0.30 trpB - 

cysE 772.00 ilvD 69.00 trpC 18.77 

cysH - ilvE - trpE - 

cysI 47.00 ilvH - tyrA 71.00 

cysJ - ilvI - tyrB - 
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Table S4. Related to Figure 4; Amino acid requirements of E. coli (Monk et al., 2017). The mean of 

86.6 mM was used as parameter α in the model. 

 

Amino 
Acid 

Coefficients, 
mmol gdw

-1 
alpha, 
mM 

ala-L 0.499 166.4 

arg-L 0.287 95.8 

asn-L 0.234 78.1 

asp-L 0.234 78.1 

cys-L 0.089 29.7 

gln-L 0.256 85.2 

glu-L 0.256 85.2 

gly 0.595 198.4 

his-L 0.092 30.7 

ile-L 0.282 94.1 

leu-L 0.438 145.9 

lys-L 0.333 111.1 

met-L 0.149 49.8 

phe-L 0.180 60.0 

pro-L 0.215 71.6 

ser-L 0.210 69.9 

thr-L 0.247 82.2 

trp-L 0.055 18.4 

tyr-L 0.134 44.7 

val-L 0.411 137.1 

Mean 0.260 86.6 
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Table S5. Related to Figure 4; Inhibition constants of allosteric enzymes (Ki-value), transcriptional 
attenuation (tRNA-ligase Km-value) and metabolite-transcription factor interactions (Kd-value). 
Values were obtained from EcoCyc (Keseler et al., 2017), Brenda (Schomburg et al., 2002) or 
RegulonDB (Gama-Castro et al., 2016). When more than one value was available, an upper and a lower 
bound are given. The grey background indicates the seven pathways that were investigated during this 
work. The Ki of ArgA was measured in this work with in vitro assays. 
 

Biosynthesis 
pathway 

Allosteric Feedback 
Ki 

mM 
Transcriptional Feedback 

Km/d 
 mM 

Enzyme Metabolite LB UB Mechanism Protein Metabolite LB UB 

Arginine ArgA arg 0.15  Repressor ArgR arg 0.28 

Asparagine AsnA asn 0.12 Repressor AsnC asn 1 

Cysteine CysE cys 0.001      

Histidine HisG his 0.012 0.1 Attenuation his-tRNA ligase his 0.008 0.03 

Isoleucine IlvA ile 0.06 Attenuation ile-tRNA ligase ile 0.0036 1.3 

Leucine LeuA leu 0.28 Attenuation leu-tRNA ligase leu 0.0015 0.05 

Lysine DapA lys 0.21 3.9      

Methionine MetA met 0.1 4 Repressor MetJ 
sa
m 0.01 0.05 

Phenylalanin
e PheA phe 0.1 0.6  TyrR phe >0.18 

Proline ProB pro 0.02      

Serine SerA ser 0.005 0.37      

Threonine ThrA thr 0.097 
0.16

7 Attenuation thr-tRNA ligase thr 0.11 0.2 

Tryptophan TrpE trp 0.17 Repressor TrpR trp 0.16 

Tryptophan TrpE trp 
 

0.17 Attenuation trp-tRNA ligase trp 0.017 

Tyrosine TyrA tyr 0.1 Repressor TyrR tyr 0.18 

Valine IlvB val 0.078 0.1 Attenuation val-tRNA ligase val 0.0043 0.1 
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Table S6. Oligonucleotides used in this study. 

Oligonucleotide Sequence (5'-3') Description 
argA_Forward GGTCGAGGGATTCCGCCATTG 

TTTTAGAGCTAGAAATAGCAAG 
Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against argA 

argA_Reverse AATGGCGGAATCCCTCGACCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against argA 

ilvA_Forward AGTACGTACCCAGCGTGTTGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against ilvA 

ilvA_Reverse  CAACACGCTGGGTACGTACTG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against ilvA 

hisG_Forward  CAGCGCTTTCAGTTTTTCCAGT 
TTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against hisG 

hisG_Reverse  TGGAAAAACTGAAAGCGCTGG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against hisG 

leuA_Forward  GACCCAGCGCATCTTTACCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against leuA 

leuA_Reverse  CGGTAAAGATGCGCTGGGTCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against leuA 

proB_Forward  GCAACGCTCGCAGGGTGTCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against proB 

proB_Reverse CGACACCCTGCGAGCGTTGCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against proB 

thrA_Forward  TGATTGCGTAATCAGCACCAG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against thrA 

thrA_Reverse  TGGTGCTGATTACGCAATCAG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against thrA 

trpE_Forward  ACACAACTGGTGAAAAAGCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against trpE 

trpE_Reverse  

 
CGCTTTTTCACCAGTTGTGTG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against trpE 

argR_Forward  ATTCTTCAATGGACTGGAGGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against argR 

argR_Reverse  CCTCCAGTCCATTGAAGAATGT 
GCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against argR 

CPEC001 TTTATAACCTCCTTAGAGCTCGA Reverse primer for amplification of fragment 1 for pKDsgRNA 
CPEC002 CCAATTGTCCATATTGCATCA Forward primer for amplification of fragment 2 for pKDsgRNA 
Ec-F GTTTTAGAGCTAGAAATAGCAAGTTAA

AATAAGGC 
Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-ctrl 

Ec-F-argE-mm5 TTTTTCATTGTTGACACCCCTCGTTTTAG
AGCTAGAAATAGCAAGTTAAAATAAGG
C 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-argE 

Ec-F-trpA TTCTTTGCGCTCCTTCAACTGTTTTAGA
GCTAGAAATAGCAAGTTAAAATAAGGC 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-trpA 

Ec-F-hisB TCACTCGGCGGTTCGCTAATCAGTTTTA
GAGCTAGAAATAGCAAGTTAAAATAAG
GC 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-hisB 

Ec-R ACTAGTATTATACCTAGGACTGAGCTA
GC 

Reverse primer for amplification of customized pNUT1533 
plasmids 

ArgA_fwd_NdeI TGACCATATGATGGTAAAGGAACGTAA
AAC 

Amplification of genomic argA 

ArgA_rev_BamHI TGACGGATCCTTACCCTAAATCCGCCAT
CA 

Amplification of genomic argA 

ArgA_H15Y_fwd AGGGAACCGAATAGCGGAATCCCTC Forward primer for amplification pET28a(+)-argA 
ArgA_H15Y_rev ATATCAATACCCACCGGG Reverse primer for amplification pET28a(+)-argA 
hisL_fwd_gfp CCGCTCGAGGCTTTCATCATTGTTGCCG Forward primer for amplification of hisL attenuator region 
hisL_rev_gfp CCGGGATCCCGCAGAATATCAATCGGC Reverse primer for amplification of hisL attenuator region 
leuL_fwd_gfp CCGCTCGAGTTGTCCCCTTTTTCCTCG Forward primer for amplification of leuL attenuator region 
leuL_rev_gfp CCGGGATCCGATGGTTTGCACCGATTC Reverse primer for amplification of leuL attenuator region 
thrA_fwd_gfp CCGCTCGAGACTGCAACGGGCAATATG Forward primer for amplification of thrL attenuator region 
thrA_rev_gfp CCGGGATCCTCGGCATCGCTGATATTG Reverse primer for amplification of thrL attenuator region 
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Summary 

Removing transcriptional feedback regulation of metabolic pathways is a classical approach to 

enhance overproduction of chemicals in microbes. However, disrupting transcriptional regulation can 

have broad physiological consequences that decrease cellular growth and productivity. Here, we 

compared downregulation and deletion of the transcriptional repressor ArgR in arginine 

overproducing Escherichia coli. Different levels of ArgR downregulation were achieved with CRISPR 

interference (CRISPRi) and resulted in 2-times higher growth rates compared to deletion of ArgR, while 

specific arginine production was similar (~2 mmol gDW
-1 h-1). Metabolomics and proteomics data 

revealed that poor growth of the ArgR deletion strain was caused by a limitation of pyrimidine 

nucleotide biosynthesis, because a 17-fold overexpression of ornithine carbamoyltransferase (ArgI) 

perturbed the arginine-pyrimidine branch point. These results demonstrate that overexpression of 

enzymes in an engineered pathway can impair metabolism of the host, especially in case of branch 

point enzymes. Thus, balancing enzyme-levels is important to optimize industrial microbes and 

CRISPRi of a transcription factor is a versatile tool for this purpose. 

 

 

Graphical Abstract 
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Introduction 

Dysregulating cellular control mechanisms is a common approach to engineer microbes for 

overproduction of chemicals (Park et al., 2017). Control of metabolic pathways is often mediated by 

end-products that feedback inhibit transcription or enzymatic activity, and removing this layer of 

control can increase flux into overproduction pathways (Nielsen and Keasling, 2016; Lee and 

Wendisch, 2017). However, although removing feedback inhibition enhances overproduction, the 

missing regulation can have broad physiological consequences for the host that reduce cellular growth 

and robustness (He, Murabito and Westerhoff, 2016). This problem has been addressed by creating 

overproduction pathways with new control mechanisms, which sense for example the availability of 

intracellular metabolites (Farmer and Liao, 2000), or the concentration of pathway intermediates by 

synthetic feedback mechanisms (Zhang, Carothers and Keasling, 2012). Another approach is to 

separate growth and production phases by dynamically switching between these states using 

metabolic valves (Burg et al., 2016; Gupta et al., 2017). Instead of engineering new regulation, an 

alternative strategy could be to remove feedback regulation just partially, such that flux into the 

production pathway is high enough, but the host retains a certain level of regulation. Such partial 

removal of regulation could be achieved by downregulating a transcription factor, for instance by 

CRISPR interference.  

The CRISPR interference system consists of a catalytically deactivated Cas9 protein (dCas9) and a single 

guide RNA (sgRNA) that form a complex and block transcription (Lim et al., 2013). CRISPRi has been 

used to engineer new regulation by placing expression of dCas9 or the sgRNA under control of stress 

promoters (Ceroni et al., 2018), or to create synthetic feedbacks that control gene expression in 

response to glucose or acetate levels in the host (Moser et al., 2018). Other metabolic engineering 

approaches used CRISPRi to downregulate genes that are involved in competing pathways, which 

redirected flux towards desired products (Kim et al., 2017; Tian et al., 2019). CRISPRi was also used to 

downregulate the transcription factor MetJ in E. coli, in order to improve overproduction of O-

methylated anthocyanin (Cress et al., 2017). However, it is not known whether downregulation or 

complete deletion of a transcription factor is better for overproduction. 

Removing transcriptional feedback is especially important to overproduce amino acids and their 

intermediates, because transcription of genes in amino acid metabolism is tightly regulated in most 

organisms (Becker and Wittmann, 2012). Arginine, for instance, is a high demand product in the 

pharmaceutical and food-industry (Álvares et al., 2011; Nascimento, 2018), and has been produced 

with engineered E. coli strains that lacked allosteric feedback inhibition and transcriptional regulation 

in the arginine pathway (Ginesy et al., 2015). One of these E. coli strains achieved titers of 11.6 g L-1 
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arginine, but this strain grew slowly (Ginesy et al., 2015). One reason for the slow growth could be the 

deletion of the transcriptional repressor ArgR (Figure 1a), which has a regulatory function beyond 

arginine metabolism and controls 423 direct and indirect targets (Cho et al., 2012). However, because 

ArgR strongly represses genes in the arginine pathway even during growth on glucose minimal 

medium (Gerosa et al., 2013; Sander et al., 2019), it needs to be clarified if ArgR can be reduced to a 

level at which overproduction is sufficiently high, while cellular physiology is not affected by the 

missing regulation.  

Here we tested if downregulation of ArgR improves arginine overproduction compared to deletion of 

ArgR. Therefore, we first rationally engineered E. coli for arginine overproduction by dysregulating the 

first enzyme in the pathway (ArgAH15Y) and expressing an arginine transporter (ArgO). In this base 

strain we compared deletion of the arginine repressor ArgR (complete dysregulation) with CRISPRi 

mediated downregulation of ArgR to different levels (partial dysregulation). Both approaches achieved 

a specific arginine production of about 2 mmol gDW
-1 h-1, but the partial dysregulated strain grew 2-

times faster. Metabolomics data revealed that these differences in cellular growth originate from 

pyrimidine nucleotide biosynthesis, which competes with arginine biosynthesis at the branch point of 

ornithine carbamoyltransferase (ArgI) and aspartate carbamoyltransferase (PyrB). 

 

Results and Discussion 

To understand how feedback dysregulation affects physiology and overproduction of arginine in E. 

coli, we measured growth on minimal glucose medium and the concentration of arginine in the culture 

supernatant of wild-type E. coli (MG1655), and three dysregulated E. coli strains that derive from 

MG1655. The first dysregulated strain (argA*) lacked allosteric feedback inhibition of the N-

acetylglutamate synthase (ArgA) by arginine due to a genomic point mutation (H15Y) in the argA gene, 

which does not affect enzymatic activity of ArgA (Sander et al., 2019) (Figure 1a). The second strain 

(∆argR) lacked transcriptional feedback by arginine, due to deletion of ArgR (Sander et al., 2019). The 

third strain (argA*∆argR) was doubly dysregulated, because both feedback mechanisms were 

removed in this strain. Deletion of either allosteric or transcriptional feedback resulted in low arginine 

concentrations in the culture supernatant (<0.01 mmol gDW
-1), and only the doubly feedback 

dysregulated argA*∆argR strain produced higher amounts of arginine (2.23 mmol gDW
-1). The 

observation that overproduction of arginine requires dysregulation of both allosteric and 

transcriptional feedback regulation is consistent with previous reports about the interplay of the two 
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regulatory layers (Caldara et al., 2008; Sander et al., 2019). Thus, the loss of one feedback mechanism 

is compensated by the other, in order to avoid overproduction of arginine. 

 

Figure 1. Overproduction of arginine in E. coli.  

(a) Biosynthesis of arginine in E. coli is regulated by allosteric feedback inhibition (dotted line) and 

transcriptional regulation by ArgR (dashed line). Targets for metabolic engineering are indicated with 

pink boxes.  

(b) Growth rates (h-1) and biomass specific arginine yield (mmol gDW
-1) of E. coli wild-type, the allosteric 

mutant argA*, the transcriptional mutant ∆argR, the double mutant argA*∆argR and the double 

mutant expressing the arginine exporter argO (argA*∆argR + pargO). Extracellular arginine was 

measured at ODs of 0.4 and 0.7 to calculate the biomass specific arginine yield by linear regression. 

Standard deviations are based on n = 3 independent shake flask cultures.  

(c) Growth curves in micro-titer plates of wild-type E. coli, the allosteric mutant argA*, the 

transcriptional mutant ∆argR, the double mutant argA*∆argR and the double mutant expressing the 

argO exporter (argA*∆argR + pargO). 

 

Expressing the arginine exporter ArgO (Nandineni and Gowrishankar, 2004) in the doubly dysregulated 

strain further increased arginine levels to 11 mmol gDW
-1 (Figure 1b), and we will refer to this 

argA*∆argR + pargO strain as the KO-strain (KO for knockout of ArgR). A problem was that the KO-
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strain grew about 70% slower than the wild-type, which could be caused by: i) arginine overproduction 

(flux burden), ii) the missing transcriptional feedback regulation (regulatory burden) or iii) expression 

of the arginine exporter (intracellular arginine limitation) (Figure 1b, c). To exclude that expression of 

the arginine exporter ArgO depleted intracellular arginine and thereby reduced growth, we expressed 

ArgO in the wild-type, in the argA* strain and in the ∆argR strain. In none of the strains expression of 

ArgO caused a growth defect, showing that slow growth of the KO-strain did not result from expression 

of the arginine exporter (Figure S2). To understand the impact of a regulatory burden by missing ArgR 

regulation, we next sought to tune transcriptional feedback regulation by gradual downregulation of 

ArgR (instead of ArgR deletion). 

To gradually tune transcriptional feedback regulation in the arginine pathway, we downregulated ArgR 

with CRISPRi. Targeting different loci of a gene results in different levels of downregulation by 

CRISPRi(Larson et al., 2013), and therefore we designed 10 sgRNAs targeting different positions of the 

promoter and the coding region of the argR gene on the template strand (sgRNA 1-5) and on the non-

template strand (sgRNA 6-10) (Figure 2a). Plasmids with the 10 sgRNAs were individually transformed 

into the wild-type and the allosterically dysregulated argA* strain. dCas9 was expressed from a second 

plasmid pdCas9(Lim et al., 2013). This resulted in 20 strains, which were cultivated in 96-well plates 

and screened for arginine production by measuring arginine in the whole culture broth after 20 hours 

(Figure 2b). As expected on the basis of low arginine production in the ∆argR strain, arginine levels 

did not change in the wild-type with any of the 10 sgRNA’s targeting argR (Figure 2c). This is 

presumably caused by the remaining allosteric feedback regulation that compensates transcriptional 

dysregulation. In the argA* mutant, in contrast, downregulating of argR resulted in three different 

arginine levels: low <5 fold increase (sgRNA 1, 3, 4 and 5), medium 213-243 fold increase (sgRNA 2, 6, 

8, 9 and 10) and a strong increase of 613 fold in case of sgRNA 7 that targets the ATG region on the 

non-template strand (Figure 2c). These results are consistent with previous studies showing that 

repression efficiency is higher when targeting the non-template strand, than when targeting the 

template strand (Larson et al., 2013). An exception is sgRNA 2, which led to high arginine levels 

although it is targeting the template strand, most likely because sgRNA 2 binds to the -10 promotor 

region. Thus, by targeting different loci of the argR gene with CRIPSRi we could tune arginine 

overproduction in an allosterically dysregulated argA* strain. We then decided to characterize CRISPRi 

strains with sgRNA 7 (613-fold higher arginine levels) and sgRNA 10 (231-fold higher arginine levels) 

in more detail and compared them to deletion of ArgR.  
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Figure 2. Different levels of ArgR downregulation with CRISPRi results in different arginine 

production.  

(a) CRISPR interference of the argR gene at 10 different positions. sgRNA #1-5 target the template 

strand and sgRNA #6-10 the non-template strand.  

(b) Experimental set-up to screen arginine production in 20 strains with CRISPR interference. Wild-

type E. coli and the allosteric mutant argA* were each transformed with a plasmid that harbors dCas9 

and one of the 10 sgRNA plasmids (pgRNA#1-10). The resulting 20 strains were cultivated in 96-well 

plate cultures on glucose minimal medium (n = 4) and arginine was measured after 20 hours.  

(c) Relative arginine levels in the wild-type (black) and the allosteric mutant argA* (cyan) with 10 

different sgRNAs. Arginine levels were normalized to biomass and are shown relative to wild-type with 

sgRNA#1. Error bars are the standard deviation of n = 4 cultures. 

 

To compare deletion of ArgR with the two levels of ArgR downregulation, we used the argR-deletion 

strain argA*∆argR + pargO (KO-strain) as the reference strain. For the two knockdown strains we 

targeted argR in the allosteric mutant argA* that expressed the arginine exporter (argO). Therefore, 

we first cloned sgRNA 7 and sgRNA 10 (see Figure 2a) on a single CRISPRi plasmid that harbors both, 

dCas9 and the sgRNA (based on pNUT1527(Beuter et al., 2018)). This resulted in the two strains argA* 

+ pCRISPRi-argR#7 + pargO and argA* + pCRISPRi-argR#10 + pargO, and we will refer to these strains 

as CRISPRi#7 and CRISPRi#10, respectively.  

First, we tested how CRISPRi and deletion of ArgR affects the expression of enzymes in the arginine 

biosynthesis pathway and measured the proteome of the wild-type, the KO-strain, as well as the 
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strains CRISPRi#7 and CRISPRi#10. The abundance of all nine enzymes in the arginine pathway showed 

the expected pattern, which was: KO-strain > CRISPRi#7 > CRISPRi#10 > wild-type (Figure 3a). Thus, all 

dysregulated strains overexpressed arginine biosynthesis enzymes, with stronger overexpression in 

the strain with ArgR deletion than in the two CRISPRi strains. The degree of overexpression varied 

among the different enzymes, and N-acetylglutamate synthase (ArgA) as well as ornithine 

carbamoyltransferase (ArgI) were the two most strongly overexpressed enzymes in all strains. 

Notably, ArgA catalyzes the committed step of the arginine pathway and ArgI catalyzes a key reaction 

at the branch point between arginine and pyrimidine nucleotide biosynthesis (Figure 1a). 

 

Figure 3. Expression of enzymes in strains with CRISPRi of ArgR and deletion of ArgR.  

(a) Enzyme levels in the arginine biosynthesis pathway (relative to the wild-type). KO-strain (red), 

strain CRISPRi#7 (green) and strain CRISPRi#10 (blue). Error bars show standard deviations of 

proteomics samples from n = 3 independent shake flask culture.  

(b) Abundance of 156 enzymes in amino acid metabolism of E. coli (relative to wild-type, log2 scale). 

The colored dots are arginine biosynthesis enzymes. 

 

Apart from arginine enzymes, we inspected changes of the remaining 156 enzymes in amino acid 

metabolism that were covered by the proteomics data (Figure 3b). In the KO-strain, 40 enzymes 

changed more than 2-fold, while only 21 and 25 enzymes changed in CRISPRi#7 and CRISPRi#10, 

respectively. This shows that deletion of ArgR causes stronger and more global changes of amino acid 

enzymes than downregulation of ArgR. 
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Having established that the three arginine overproduction strains (KO, CRISPRi#7, CRISPRi#10) 

overexpress arginine biosynthesis enzymes differently, we wondered how this affects arginine 

production. Therefore, the KO-strain, CRISPRi#7, CRISPRi#10 and E. coli wild-type were cultivated in 

shake flasks on glucose minimal medium to measure growth and arginine concentration in the 

supernatant (three independent cultures per strain). Both CRISPRi#7 and CRISPRi#10 grew much 

better than the complete dysregulated KO-strain, and growth rates were consistent between 

independent experiments that were performed on different days (Figure 4a, b). CRISPRi#10 (lowest 

overexpression of arginine enzymes) grew almost like the wildtype, while CRISPRi#7 (medium 

overexpression of arginine enzymes) had a lower growth rate. Yet, CRISPRi#7 still grew ~50% faster 

than the KO-strain (strongest overexpression of arginine enzymes).  

To determine the specific arginine production rate, we measured extracellular arginine during the 

exponential growth phase and collected samples of the supernatant when cells reached optical 

densities of 0.2, 0.5 and 0.8 (Figure 4a). From these data we calculated the specific arginine production 

rate, which is directly related to the flux of arginine per cell (Figure 4a, S1). Surprisingly, specific 

arginine production was in a similar range in all three strains. CRISPRi#10 had almost the same specific 

rate as the KO-strain (2.2 and 2.3 mmol gDW
-1 h-1). Specific arginine production of the CRISPRi#7 strain 

was a bit lower (1.6 mmol gDW
-1 h-1). Similarly, arginine titer at the end of the exponential growth phase 

were comparable between the KO strain (1.03 g L-1), CRISPRi#7 (0.96 g L-1) and CRISPRi#10 (0.90 g L-1) 

(Figure 4b).  

Thus, the three strains express different amounts of arginine enzymes but flux through the arginine 

pathway is comparable. This indicates that other factors than enzyme abundance limit arginine 

overproduction (e.g. metabolic precursors and cofactors). Moreover, it seems that arginine 

overproduction per se is not burdensome for E. coli, because the KO-strain and CRISPRi#10 had the 

same arginine flux (2.2 mmol gDW
-1 h-1) but large differences in growth (Figure 4c). Therefore, we 

hypothesized that other factors than arginine flux influence growth of the production strains, and they 

may be caused by the different enzyme-levels in the arginine pathway.  
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Figure 4. Growth and specific arginine production in strains with CRISPRi of ArgR and deletion of 

ArgR.  

(a) Specific arginine production during exponential growth of wild-type E. coli (black), strain 

argA*∆argR + pargO (KO-strain, red), strain argA* pCRISPRi-argR#7 + pargO (CRISPRi#7-strain, green) 

and strain argA* pCRISPRi-argR#10 + pargO (CRISPRi#10-strain, blue). Specific arginine production 

was calculated by linear regression at the three time points, which are indicated in the growth curves 

with circles. Shown are means of n = 3 independent shake flask cultures.  

(b) Absolute arginine concentrations at the end of exponential growth phase of the same strains as in 

(a). Arginine was measured at the last time point, which is indicated in the growth curves with a circle. 

Shown are means of n = 3 independent shake flask cultures.  

(c) Summary of growth and specific arginine production of the KO-strain (red), CRISPRi#7 (green) and 

CRISPRi#10 (blue). Growth rates are calculated from the three time points indicated with circles in (a). 

The thickness of the arrows illustrates the relative amount of growth and production. 

 

To understand what caused the differences in growth rates of the KO-strain and the two CRISPRi 

strains we measured intracellular metabolites in these strains. Therefore, we collected samples of the 

wildtype, the KO-strain, as well as the CRISPRi#7 and CRISPRi#10 strains during exponential growth in 

shaking flasks and measured metabolites by LC-MS/MS (Guder et al., 2017). The metabolite data 

revealed changes in different parts of cellular metabolism, including central-, nucleotide-, cofactor- 

and amino acid metabolism (Figure 5). Across all 104 measured metabolites, the strongest decreases 

occurred in pyrimidine nucleotide metabolism of the KO-strain, and the first pyrimidine intermediate 

- carbamoyl-aspartate - was by far the most strongly decreased metabolite (Figure 5). However, while 

carbamoyl-aspartate decreased >100-fold in the KO-strain, the concentration of this metabolite was 



Chapter 2 
 
 

- 79 - 
 

much higher in the two CRISPRi strains (Figure 5). In the CRISPRi#10 strain for example, carbamoyl-

aspartate was only about 3-fold lower than in the wild-type. Similarly, other metabolites in pyrimidine 

nucleotide biosynthesis, in particular the end-products UTP and CTP were closest to wild-type levels 

in the CRISPRi#10 strain (Figure 5).  

 

 

 

Figure 5. Intracellular metabolite concentrations in strains with CRISPRi of ArgR and deletion of 

ArgR.  

Relative concentrations of 104 intracellular metabolites in the KO-strain, the CRISPRi#7-strain and the 

CRISPRi#10-strain. The bar plots show concentrations of pyrimidine nucleotide intermediates and 

end-products. Concentrations are relative to the wild-type. Bars show means of n = 3 samples from 

independent shake flasks, and error bars are standard deviations. 

 

In summary, metabolomics data revealed a pyrimidine nucleotide limitation especially in the KO-

strain. The low carbamoyl-aspartate concentration in the KO-strain indicates that the limitation occurs 

at the first step of the pathway, which is catalyzed by aspartate carbamoyltransferase (PyrB). A 

hypothesis is that the 17-fold overexpression of ornithine carbamoyltransferase (ArgI) in the KO-strain 

(Figure 3a) perturbs the ArgI-PyrB branch point, e.g. by leaving less substrate for PyrB. This would also 

explain why the pyrimidine limitation is less severe in the CRSIPRi#10 strain, because ArgI was only 3-

fold overexpressed in this strain. Thus, it seems that the overcapacity of ArgI impairs growth of the 

KO-strain, and not flux through the arginine pathway (which is comparable in the three strains, Figure 
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4a). Aspartate levels were also lower in the three overproduction strains than in the wild-type and this 

could additionally limit pyrimidine biosynthesis (Figure 5). 

Finally, we tested if pyrimidine nucleotides are indeed growth limiting in the arginine production 

strains, and supplemented the minimal glucose medium with the pyrimidine intermediate orotate, 

the pyrimidine precursor aspartate, the nucleoside cytidine and the nucleobase uracil. The KO-strain 

grew indeed 2.3-fold faster in the presence of the supplements, confirming that pyrimidine 

nucleotides are limiting growth of this strain (Figure 6). The growth rate of CRISPRi#7 increased 1.5-

fold with supplements, while growth rates of the wild-type and CRISPRi#10 were almost not affected 

(1.1-fold increase, Figure 6).  

 

 

Figure 6. Growth rates with (+) and without (-) supplementation of orotate, aspartate, cytidine and 

uracil (each 0.5 mM) for the wild-type, KO-strain, CRISPRi#7 and CRISPRi#10. Number above brackets 

show the fold change between growth rates with and without supplements. Growth rates (h-1) were 

calculated by linear regression over a 60 minutes window at OD 0.3. Shown are means of n = 3 

microtiter-plate cultures.  

 

Therefore, the limited supply of pyrimidine nucleotides seems responsible for slow growth of the KO-

strain, and ArgR-downregulation instead of ArgR-deletion almost abolishes this limitation. However, 

with supplements the growth rate of the KO-strain (0.46 h-1) was still below the wild-type growth rate 

(0.65 h-1), but similar to the growth rate of the strain with only ArgR deletion (∆argR, 0.47 h-1, Figure 

1b). This suggests that in addition to the pyrimidine limitation the global changes of amino acid 

enzymes (Figure 3b) impair growth of the KO-strain. 
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In conclusion, we could show that growth of an arginine overproduction strain can be improved by 

carefully balancing enzyme levels in the arginine pathway. The KO-strain with deletion of ArgR 

overexpressed arginine biosynthesis enzymes much stronger than strains with CRISPRi of ArgR 

(CRISPRi#7 and CRISPRi#10). Despite this, the specific arginine production of the three strains was in 

a similar range, showing that it was not arginine overproduction per se that caused differences in 

growth between the three strains. One reason for these differences was that deletion of ArgR caused 

stronger and more global changes of amino acid enzymes than downregulation of the transcription 

factors. These global changes probably cause protein burden if enzymes are upregulated or limit 

biosynthesis of other amino acids if enzymes are downregulated. Apart from global effects on amino 

acid metabolism, we concluded that overexpression of arginine biosynthesis enzymes was responsible 

for the slow growth of the ArgR deletion KO-strain. In particular the very high levels of ArgI caused a 

limitation in pyrimidine nucleotide biosynthesis, probably by perturbing enzyme ratios at the ArgI-

PyrB branch point. A solution to this problem could be additional overexpression of PyrB, to restore 

the ratio between ArgI and PyrB levels. These results show that if enzyme-levels are higher than 

needed for overproduction, they can impair cellular growth and thereby reduce productivity. It is 

especially important to balance the expression of branch point enzymes, because their abundance can 

affect other metabolic pathways of the host. Balancing expression of enzymes in overproduction 

pathways is possible with various methods (Jones, Toparlak and Koffas, 2015), and here we show that 

downregulating transcription factors with CRISPRi is an alternative approach. Since deletion of 

transcription factors is a common approach to engineer industrial microbes, the proposed CRISPRi 

strategy could be applicable to other pathways and products in order to design fitter and more robust 

overproduction strains.  
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Material and Methods 

Strains and Culture 

E. coli MG1655 (DSMZ No. 18039) was used as the wild-type. Chemically competent E. coli TOP10 (One 

ShotTM TOP10, Invitrogen Cat#C404003) were used for cloning. All mutants created in this study derive 

from the MG1655 strain and are listed in Table S3. For heterologous expression of the arginine 

exporter argO (KEGG T00007: b2923), the encoding gene was cloned into a p15A backbone (Addgene 

#44249; pdCas9-bacteria) by Gibson assembly (Figure S3). argO was expressed from a Ptet promotor 

which was not induced due to sufficient basal expression. The genomic point mutation that removes 

allosteric feedback of argA (H15Y) and deletion of argR were created by scarless Cas9 assisted 

recombineering (Reisch and Prather, 2015).  

All cultivations were performed in M9 minimal medium with 5 g L-1 glucose. The M9 medium consisted 

of the following components (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. 

The following components were sterilized separately and then added (per liter of final medium): 1 mL 

0.1 M CaCl2, 1 mL 1 M MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCL and 10 mL trace salts 

solution. The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2 2 H2O, 120 

mg MnSO4 H2O, 180 mg CoCl2 6 H2O. Where appropriate, 34 μg mL-1 chloramphenicol, 15 μg mL-1 

gentamycine, 50 μg mL-1 spectinomycin or 100 μg mL-1 ampicillin was added. For cultivations in 

microtiter plates, LB pre-cultures in 96-deep-well format plates were inoculated from glycerol stocks 

and incubated until the cells grew exponentially. From this first pre-culture a second M9 pre-culture 

in 96-deep-well plates was inoculated 1:100 and incubated overnight at 37 °C under shaking. Finally, 

96-well flat transparent plates (Greiner Bio-One International) containing 150 µL M9 minimal medium 

were inoculated 1:150 from the overnight culture. Online measurements of optical density at 600 nm 

(OD600) were performed at 37°C with shaking in a plate reader (Tecan Trading AG, Switzerland). Growth 

rates were calculated as dln(OD)/dt by linear regression during exponential growth. For cultivations in 

shake flasks, 5 mL LB pre-culture in cultivation tubes were inoculated from glycerol stocks and 

incubated until the cells grew exponentially. From this first pre-culture, 5 mL of a second M9 batch 

pre-culture (5 g L-1 glucose) in cultivation tubes was inoculated 1:100 and incubated overnight at 37°C 

in a rotary shaker. Finally, a 500 mL shake flask containing 25 mL M9 minimal medium (5 g L-1 glucose) 

were inoculated 1:150 from the overnight culture, and incubated at 37 °C under shaking at 220 rpm. 

CRISPR interference 

CRISPR interference of argR was performed according to Larson et al. 2013(Larson et al., 2013) with 

the plasmids pdCas9 (Addgene #44249) and pgRNA (Addgene #44251) (Table S4). The 10 different 

http://www.thermofisher.com/order/catalog/product/C404003
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gRNA plasmids were customized by site-directed mutagenesis with the forward primers EcF_argR#1-

10, carrying the 20-nt base-pairing sequence (protospacer) and the reverse primer EcR (Table S5).  

For arginine overproduction strains CRISPRi#7 and #10 we used a single plasmid (pNUT1533) 

expressing the respective sgRNA from a constitutive and the dCas9 protein from an IPTG inducible 

Ptac promotor (Sander et al., 2019). Therefore, the protospacer regions were customized by site-

directed mutagenesis using the primer EcF_#7, respectively EcF_#10 and the reverse primer EcR. All 

CRISPRi experiments were performed without addition of inducer.    

Sampling for measurement of intra- and extra cellular metabolites 

Shake flask cultivations on M9 glucose were performed as described above. For measurement of 

intracellular metabolites, cells were grown to an optical density (OD600) of 0.5 and 2 mL culture aliquots 

were vacuum-filtered on a 0.45 µm pore size filter (HVLP02500, Merck Millipore). Filters were 

immediately transferred into 40:40:20 (v-%) acetonitrile/methanol/water at -20°C for extraction. 

Extracts were centrifuged for 15 minutes at 13,000 rpm at -9 °C. Centrifuged extracts were mixed with 

13C-labeled internal standard and analyzed by LC-MS/MS (Guder et al., 2017).  

For measurement of extracellular arginine of the overproduction strains (Figure 3), 500 µL of cell 

culture were sampled at OD 0.2, 0.5 and 0.8 and transferred into a reaction tube. The extracellular 

arginine yield in Figure 1b derived from samples at OD 0.4 and 0.7. After 30 s centrifugation at 13,000 

rpm, 100 µL of the cell free supernatant were transferred into 400 µL 50:50 (v-%) 

acetonitrile/methanol at -20°C. Extracts were again centrifuged for 15 minutes at 13,000 rpm at -9 °C. 

Centrifuged extracts were mixed with 13C-labeled internal standard and analyzed by LC-MS/MS. 

Samples were diluted 1:10 with 40:40:20 acetonitrile/methanol/water if necessary. 

LC-MS/MS for metabolite measurements 

LC-MS/MS analysis was performed with an Agilent 6495 triple quadrupole mass spectrometer (Agilent 

Technologies) as described previously (Guder et al., 2017). An Agilent 1290 Infinity II UHPLC system 

(Agilent Technologies) was used for liquid chromatography. Temperature of the column oven was 

30°C, and the injection volume was 3 μL. LC solvents A were water with 10 mM ammonium formate 

and 0.1% formic acid (v/v) (for acidic conditions); and water with 10 mM ammonium carbonate and 

0.2% ammonium hydroxide (for basic conditions). LC solvents B were acetonitrile with 0.1% formic 

acid (v/v) for acidic conditions and acetonitrile without additive for basic conditions. LC columns were 

an Acquity BEH Amide (30 x 2.1 mm, 1.7 µm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 

mm, 5 µm) for basic conditions. The gradient for basic and acidic conditions was: 0 min 90% B; 1.3 min 

40 % B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. Relative quantification of intracellular metabolite 
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concentrations was based on the ratio of 12C and 13C peak heights and normalized to the OD. Absolute 

concentrations of arginine were determined with an authentic standard. 

Proteomics 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were transferred into 2 ml reaction tubes and 

washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL, 1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets 

were resuspended in 300 µL lysis buffer containing 100 mM ammonium bicarbonate, 0.5 % sodium 

laroyl sarcosinate (SLS) and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by 5 minutes 

incubation at 95 °C and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again 

incubated for 30 minutes at 90 °C followed by alkylation with 10 mM iodoacetamide for 30 minutes 

at 25 °C. To clear the cell lysate, samples were centrifuged for 10 minutes at 15,000 rpm and the 

supernatant transferred into a new tube. Proteins in the cell lysates were digested with 1 µg trypsin 

(Promega) overnight at 30 °C. Analysis of peptides was performed by liquid chromatography-mass 

spectrometry, carried out on a Q-Exactive Plus instrument connected to an Ultimate 3000 RSLC nano 

with a Prowflow upgrade and a nanospray flex ion source (Thermo Scientific). Peptide separation was 

performed on a reverse-phase HPLC column (75 µm x 42 cm) packed in-house with C18 resin (2.4 µm, 

Dr. Maisch GmbH, Germany). The following separating gradient was used: 98 % solvent A (0.15% 

formic acid) and 2 % solvent B (99.85 acetonitrile, 0.15 % formic acid) to 25 % solvent B over 105 

minutes and to 35 % solvent B for additional 35 minutes at a flow rate of 300 nl min-1. The data 

acquisition mode was set to obtain one high resolution MS scan at a resolution of 70,000 full width at 

half maximum (at m/z 200) followed by MS/MS scans of the 10 most intense ions. To increase the 

efficiency of MS/MS attempts, the charged state screening modus was enabled to exclude unassigned 

and singly charged ions. The dynamic exclusion duration was set to 30 seconds. The ion accumulation 

time was set to 50 ms for MS and 50 ms at 17,500 resolution for MS/MS. The automatic gain control 

was set to 3x106 for MS survey scans and 1x105 for MS/MS scans. Label-free quantification (LFQ) of 

the data was performed using Progenesis QIP (Waters), and for MS/MS searches of aligned peptide 

features MASCOT (v2.5, Matrix Science) was used. The following search parameters were used: full 

tryptic search with two missed cleavage sites, 10ppm MS1 and 0.02 Da fragment ion tolerance. 

Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) as variable modification. 

Progenesis outputs were further processed with SafeQuant. 
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Supplementary Material 

  

Figure S1. Biomass specific arginine yields and growth rates that were used to calculate the specific arginine 

production rates shown in Figure 4. (a) Biomass specific arginine yield (Yarg,x) of the KO-strain, the CRISPRi#7-

strain and the CRISPRi#10-strain was calculated by linear regression of arginine concentration (mmol L-1) and the 

biomass (gDW L-1) for 3 shake flask cultures per strain. (b) Growth rates () were calculated at the same time 

points by linear regression of ln biomass (gDW L-1) and the time (h). Specific arginine production rates follow as 

qarg = Yarg,x . . 
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Figure S2. Growth of E. coli wildtype (WT), WT + pargO, argA* + pargO and ∆argR + pargO. Cells were 

cultivated in glucose minimal medium (5 g L-1) and optical density (OD600) was measured in 10 minute 

intervals in a plate reader. Growth rates (h-1) were estimated by linear regression through 8 time 

points during exponential growth. Shown are means of n = 3 independent cultures.  
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Figure S3: Plasmid map of pargO. The plasmid was constructed from a pdCas9 backbone (Addgene 

#44249) and dCas9 was replaced by argO by gibson cloning. argO was expressed from the PLtetO-1 

promotor1.  

 

 

Table S1: Substrate specific arginine yield (g arginine/g glucose) and arginine concentration (g 

arginine/L) from wildtype, the KO-strain and the CRISPRi strains #7 and #10. Samples were taken from 

three independent shake flask cultures grown in glucose minimal medium (5 g L-1).  

  

 
g arginine/g glucose g arginine/L 

WT <0.01 <0.01 

KO 0.16 ± 0.02 1.03 ± 0.06 

CRISPRi#7 0.12 ± 0.02 0.96 ± 0.02 

CRISPRi#10 0.11± 0.02 0.9 ± 0.02 

 

Table S2: Growth rates of the wildtype, KO-strain, CRISPRi#7 and CRISPRi#10 after addition of orotate, 

aspartate, cytidine and uracil (each 0.5 mM). Growth rates (h-1) were calculated by linear regression 

over an 60 minutes window at OD 0.3. Cells were cultivated in glucose minimal medium (5 g L-1) and 

optical density (OD600) was measured in 10 minutes intervals in a plate reader. Shown are means of 

n = 3 cultures. 

 - Oro/Asp/Cyt/Ura + Oro/Asp/Cyt/Ura 

WT 0.65 ± 0.01 0.72 ± 0,02 

KO 0.20 ± 0.00 0.46 ± 0.01 

CRISPRi#7 0.51 ± 0.01 0.76 ± 0.03 

CRISPRi#10 0.68 ± 0.01 0.78 ± 0.03 
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Table S3: Oligonucleotides used in this study 

Oligonucleotide Sequence (5'-3') Description 

argA_Forward  
GGTCGAGGGATTCCGCCATTGTTTTAGAGCTAGA
AATAGCAAG 

Forward primer used with CPEC001 for 
amplification of fragment 1 for customized 
pKDsgRNA-argA(H15Y) 

argA_Reverse  
AATGGCGGAATCCCTCGACCGTGCTCAGTATCTCT
ATCACTGA 

Forward primer used with CPEC002 for 
amplification of fragment 1 for customized 
pKDsgRNA-argA(H15Y) 

argR_Forward  
ATTCTTCAATGGACTGGAGGGTTTTAGAGCTAGA
AATAGCAAG 

Forward primer used with CPEC001 for 
amplification of fragment 1 for customzied 
pKDsgRNA-∆argR 

argR_Reverse  
CCTCCAGTCCATTGAAGAATGTGCTCAGTATCTCT
ATCACTGA 

Reverse primer used with CPEC002 for 
amplification of fragment 2 for customzied 
pKDsgRNA-∆argR 

CPEC001 TTTATAACCTCCTTAGAGCTCGA 
Reverse primer for amplification of fragment 
1 for pKDsgRNA 

CPEC002 CCAATTGTCCATATTGCATCA 
Forward primer for amplification of fragment 
2 for pKDsgRNA 

argA(H15Y)_recomb 
GTGGTAAAGGAACGTAAAACCGAGTTGGTCGAG
GGATTCCGCTATTCAGTTCCCTATATCAATACCCAC
CGGGGAA 

Recombination fragment for introduction of 
H15Y point mutation 

∆argR_recomb 
ACAATAATGTTGTATCAACCACCATATCGGGTGAC
TTTCTCTGCCCCGTCGTTTCTGACGGCGGGGAAAA
TGT 

Recombination fragment for argR deletion 

EcR ACTAGTATTATACCTAGGACTGAGCTAGC 
Reverse primer for apmlification of 
customized pgRNA plasmids 

EcF_argR#1 
TAACATTATTTCAGCCTTCTTCgttttagagctagaaata
gcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#2 
AATGTTGTATCAACCACCATATgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#3 
AAAGAAGAGAAATTTAGCTCCCgttttagagctagaaa
tagcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#4 
ACCTCCAGTCCATTGAAGAATCgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#5 
GCGATTTTAGAGCTGTTCGACCgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#6 
TGCAAACAGTCAGCCCTGAAGAgttttagagctagaaa
tagcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#7 
GCTTCGcatAAGTCACCCGATAgttttagagctagaaata
gcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#8 
TCAAAGCCTTGCTCCTGCAACGgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#9 
TATCCAGCACCAGATTCTTCAAgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 

EcF_argR#10 
CAGCTCTAAAATCGCTTCGTACgttttagagctagaaat
agcaagttaaaataaggc 

Forward primer for amplification of 
customized pgRNA plasmids 
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Summary 

Cellular metabolism is constantly faced with genetic perturbation that might arise from mutations or 

stochastic effects. Such perturbations can disturb the expression of a gene and cause bottlenecks in 

biosynthetic pathways. Here, we analyze how cells respond to decreases of gene expression. 

Therefore, we targeted genes from arginine, tryptophan and histidine biosynthesis with CRISPR 

interference and recorded the transcriptional response with gfp-reporter plasmids (arginine and 

tryptophan) and proteomics (histidine). Perturbing all three amino acid pathways caused up-

regulation of the respective pathway enzymes in order to counteract the genetic bottleneck. Dynamic 

metabolite measurements revealed that the transcriptional compensation is initiated by a 30% 

decrease of the amino acid end-product which caused a transcriptional de-repression of the pathway 

enzymes. Previous experiments revealed significant instabilities of allosteric feedback mutants as a 

result of genetic perturbations (Chapter 1) and here we show that such perturbations cause oscillatory 

arginine level in the allosteric arginine mutant. Most likely, such oscillations cause a heterogenic 

transcriptional compensation in the allosteric mutant which was measured by flow cytometry. 

Moreover, flow cytometry data could show that the allosteric mutant with low enzyme level showed 

a transcriptional response even to mild perturbations, which are normally buffered by enzyme 

overabundance.  
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Introduction 

Cells have to maintain robustness of metabolic functions in the face of variations in gene expression 

which might cause bottlenecks in biosynthetic pathways. Changes in gene expression can arise from 

internal perturbations like mutations, that directly affect expression or activity of an enzyme, or 

perturb regulatory circuits that usually control enzyme level (Stelling et al., 2004). Further, genetic 

variation can derive from stochastic effects of gene expression which can cause a high cell-to-cell 

variability in a growing population (Elowitz et al., 2002; Ozbudak et al., 2002). Such fluctuations of 

gene expression can be an advantage under different conditions as shown for an increased fitness of 

B. subtilis under fluctuating environments (Çaǧatay et al., 2009) or in the resistance towards drugs as 

shown for E. coli (Balaban et al., 2004). However, beside this advantages cells obviously have to 

maintain performance of metabolic processes in a given condition. A third source for decreases in 

gene expression are artificial modifications in the scope of metabolic engineering. Nowadays different 

techniques like CRISPR interference are established tools to tune gene expression (Qi et al., 2013), for 

example to knockdown competing pathways (Kim et al., 2016) or disturb feedback regulation (Cress 

et al., 2017). It is of particular interest how cells respond to such artificial bottlenecks on the molecular 

scale. Therefore, we ask which mechanisms provide robustness towards genetic perturbations in 

order to maintain metabolic reactions?  

A simple protective strategy against genetic perturbations is redundancy of metabolic enzymes which 

can be described as genetic compensation (El-Brolosy and Stainier, 2017). After loss of function of an 

enzyme, alternative enzymes can get upregulated that are capable to catalyze the same chemical 

reaction. A metabolic network analysis in yeast revealed that up to 28 % of all metabolic gene 

knockouts that do not cause a phenotype, are compensated by alternative enzymes (Papp, Pál and 

Hurst, 2004). Beside expressing alternative enzymes, rerouting flux through alternative pathways is 

also a strategy to circumvent genetic perturbations. It is known that many organisms evolved 

alternative routes for catabolic and anabolic reactions. A prominent example for alternative metabolic 

routes, are the acetyl-CoA oxidizing pathways tricarboxylic acid cycle and glyoxylate shunt (Ahn et al., 

2016). A third strategy to face genetic fluctuations are enzyme reserves, so-called “enzyme 

overabundance”. Recently we demonstrated how E. coli adjusts overabundant enzyme level in amino 

acid metabolism by an interplay between metabolic feedbacks (Sander et al., 2019). A CRISPR 

interference mediated genetic perturbation of three amino acid pathways revealed instabilities of 

mutants lacking overabundance compared to wild-type cells. Different studies in different organisms 

suggest that expressing enzymes at higher level than actually needed might be a general strategy to 

make metabolism more robust against internal and external perturbations (Basan et al., 2015; O’Brien, 
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Utrilla and Palsson, 2016; Mori et al., 2017a). These studies demonstrated a phenotype for cells lacking 

enzyme overabundance either at the level of growth or theoretically. However, so far, no study was 

able to show the benefit of enzyme overabundance on the molecular scale.  

In this study we use gfp-promotor fusions to analyze the response to perturbations of gene expression. 

Perturbing arginine, tryptophan and histidine biosynthesis revealed a compensatory up-regulation of 

the respective pathway enzymes. For the arginine pathway we showed that transcriptional 

compensation is initiated by a slight decrease of the amino acid end-product. Systematic comparison 

between the wild-type and the allosteric mutant argA*, which was previously shown to be more 

sensitive towards genetic perturbations revealed a critical role of allosteric regulation for 

transcriptional compensation. The allosteric mutant failed to adjust arginine homeostasis which is the 

basis for a homogenic transcriptional response and the missing enzyme overabundance in this strain 

caused an increased sensitivity towards the genetic perturbations.  

 

Results & Discussion 

Transcriptional Compensation Counteracts Genetic Perturbations 

To analyze the mechanistic response to a genetic perturbation we transformed wildtype strains with 

CRISPR interference plasmids targeting genes from arginine (argE) and tryptophan (trpC) biosynthesis. 

The plasmids pCRISPRi-argE and pCRISPRi-trpC are based on the pNUT1533 plasmid (Resource table), 

expressing the respective sgRNA constitutively and the dCas9 protein from an IPTG inducible 

promotor. In order to measure changes of gene expression in the perturbed pathways we additionally 

transformed the strains with fluorescent transcriptional reporter plasmids. These reporter plasmids 

express gfp from an arginine (pPargA-gfp) and a tryptophan promotor (pPtrpL-gfp). This resulted in 

the strains WT + pCRISPRi-argE + pPargA-gfp and WT + pCRISPRi-trpC + pPtrpL-gfp (Figure 1a) to which 

we will further refer to as WT-arg and WT-trp. Both strains were cultivated in a plate reader and 

CRISPRi was induced after 2 hours. After induction of CRISPRi in the WT-arg strain, we observed a 

growth phenotype after 1 hour (Figure 1b). The delay between induction of CRISPRi and the reduced 

growth is presumably caused by the fact that the targeted enzymes need to be diluted by growth in 

order to observe a phenotype. Measuring the transcriptional response during this perturbation 

revealed strong changes in gene expression of the arginine promotor (Figure 1c, d). The gfp expression 

(GFP OD-1) from an argA promotor was 4-fold higher after induction of the genetic bottleneck (Figure 

1c) and the promotor activity (GFP OD-1 h-1) changed in the same range (Figure 1d). Interestingly, the 
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promotor activity increased already ~20 minutes after induction which is significantly faster compared 

to the response observed for cellular growth (Figure 1b) 

 

 

Figure 1. Transcriptional compensation in arginine and tryptophan biosynthesis pathways. 

(a) Wild-type was transformed with the gfp-reporter plasmid pPargA-gfp and IPTG-inducible pCRISPRi-

argE plasmid to assay the arginine pathway, resulting in WT-arg. The plasmids pPtrpL-gfp and IPTG-

inducible pCRISPRi-trpC were used to assay the tryptophan pathway resulting in WT-trp. 

(b) Growth of WT-arg with (solid line) and without (dashed line) induction by 0.1 mM IPTG. Cells were 

grown in a plate reader and curves show mean of n = 3 replicates. Grey line indicates supplementation 

of IPTG. Standard deviation is indicated with the grey shadow.  

(c) gfp expression (GFP OD-1) from an argA promotor in WT-arg with (solid line) and without (dashed 

line) induction by 0.1 mM IPTG. Data derive from the experiment shown in panel b.  

(d) Promotor activity of an argA promotor (GFP OD-1 h-1) in WT-arg with (solid line) and without 

(dashed line) induction by 0.1 mM IPTG. Data derive from the experiment shown in panel b. 

(e), (f) and (g) same as (a), (b), (c) but with the strain WT-trp.  

 

The increase of gene expression after the genetic perturbation was also observed for WT-trp (Figure 

1f, g). Perturbing trpC elevated expression of gfp from a trpL promotor and promotor activity 

increased by 60%. This is a less severe increase compared to WT-arg which is presumably due the fact 

that induction of CRISPRi against trpC had no effect on growth (Figure 1e). However, the enhanced 

transcription in the WT-trp strain indicates that the observed response is not caused by decreased 
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cellular growth. Arginine and tryptophan biosynthesis are both regulated by transcription factors 

(ArgR and TrpR) which repress expression of all pathway genes by sensing amino acid end-product 

level. Therefore, we wanted to test if this strong transcriptional response is limited to pathways that 

are directly controlled by specific transcription factors.  

Transcriptional Compensation in the Histidine Pathway 

Transcriptional regulation in amino acid metabolism is mediated by transcription factors or by 

transcriptional attenuation. A typical example of transcriptional attenuation in amino acid metabolism 

is the histidine pathway. The eight biosynthetic histidine enzymes are arranged in a single operon and 

we choose hisB as a target for CRISPRi perturbation since it is located in the middle of the operon 

(Figure 2a). Unfortunately, transcriptional gfp reporter plasmids that are sensitive to attenuation were 

not available and therefore we decided to directly measure protein level by LC-MS/MS in a wild type 

strain expressing CRISPRi against hisB (WT + gRNA-hisB) and compare them to a CRISPRi-control strain 

expressing a non-targeted sgRNA (WT + gRNA-ctrl). Protein data of WT + gRNA-hisB revealed 3-fold 

overexpression of the enzymes HisG and HisD which are coded upstream of the perturbed hisB gene. 

Interestingly, level of the third enzyme which is coded upstream of hisB, are decreased by 5-fold. This 

is presumably caused by polar effects of dCas9, which not only blocks expression of the target gene, 

but also of the adjacent genes. The CRISPRi target hisB and also the down-stream genes were strongly 

repressed, which provides important information about the general nature of CRISPRi. dCas9 not only 

blocks transcription of the target gene but also of the down-stream genes in an operon structure as 

already observed by others (Wu et al., 2015; Kim et al., 2017). However, we could confirm the 

observations made on the transcriptional level for WT-arg and WT-trp also on the protein level for WT 

+ gRNA-hisB: Perturbing the expression of a gene in a biosynthetic pathway elevates the expression 

of the surrounding genes (If not located down-stream of the target in an operon). We hypothesize 

that this might be a general strategy to compensate bottlenecks in a biosynthetic pathway, which can 

be caused by decreases in enzyme activity and abundance. Next we wanted to analyze the molecular 

mechanism and origin of this transcriptional compensation and decided to continue with WT-arg as 

case study since perturbation of arginine biosynthesis revealed the strongest effects.  
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Figure 2. Level of histidine enzymes in response to perturbation of hisB 

(a) Genes coding for enzymes of histidine de novo biosynthesis are organized in an operon. The 

schematic dCas9 illustration shows the position of binding on the hisB gene.  

(b) Enzyme level of HisG, HisD, HisC, HisB, HisH, HisA, HisF and HisI in wild-type with pdCas9 and 

pgRNA-ctrl (WT + gRNA-ctrl; black), respectively pgRNA-hisB (WT + gRNA-hisB, green). Samples were 

taken at an OD600 of 0.5 from glucose minimal medium shake flask cultures and were measured by 

liquid chromatography – mass spectrometry. Enzyme level shown mean of n = 3 independent 

replicates.  

 

Transcriptional Compensation Differs in the Wild-type and the Allosteric Mutant argA* 

We decided to include the allosterically dysregulated strain argA* in the further analysis, since we 

could show in the previous chapter, that feedback resistant mutants were more sensitive towards 

genetic perturbations. To get a better insight into the mechanistic response to genetic perturbations 

we compared WT-arg to the argA* mutant, which was also transformed with pCRISPRi-argE and 

pPargA-gfp resulting in argA*-arg. Expression of GFP and promotor activity were reduced by ~50% in 

the uninduced argA*-arg strain compared to the WT-arg, which corresponds to 50% decreased 

arginine enzymes in argA* reported in chapter 1 (Figure 3b and Figure 2a in Chapter 1). After induction 

of CRISPRi, WT-arg showed a similar response as shown in figure 1 with slightly decreased growth and 

an ~4-fold increased promotor activity (Figure 3a, b, c). The allosteric mutant argA*-arg showed a 

stronger growth defect in response to CRISPRi-argE induction which matches previous observations 

in chapter 1 (Figure 3a).  
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Figure 3. Transcriptional compensation of the wild-type compared to the allosteric mutant argA in 

response to perturbation of argE.  

(a) Growth of WT-arg (black) and argA*-arg (blue) with (solid line) and without (dashed line) induction 

by 0.1 mM IPTG. Cells were grown in a plate reader and curves show mean of n = 3 replicates. Grey 

line indicates supplementation of IPTG. Standard deviation is indicated with the grey shadow.  

(b) gfp expression (GFP OD-1) from an argA promotor in WT-arg (black) and argA*-arg (blue) with (solid 

line) and without (dashed line) induction by 0.1 mM IPTG. Cells were grown in a plate reader and 

curves show mean of n = 3. Grey line indicates supplementation of IPTG. Standard deviation is 

indicated with the grey shadow. 

(c) Promotor activity of an argA promotor (GFP OD-1 h-1) in WT-arg (black) and argA*-arg (blue) with 

(solid line) and without (dashed line) induction by 0.1 mM IPTG. Cells were grown in a plate reader 

and curves show mean of n = 3 replicates. Grey line indicates supplementation of IPTG. Standard 

deviation is indicated with the grey shadow. 

 

Transcriptional activity also increased in the argA*-arg strain after induction, however GFP expression 

and promotor activity were only 3-fold higher compared to the uninduced strain (Figure 3b, c). Thus, 

transcriptional compensation was stronger in WT-arg (4-fold increase) compared to argA*-arg (3-fold 

increase). Furthermore, the time until the transcriptional compensation occurred was delayed by 

approximately 1 hour in the argA*-arg compared to the WT-arg. These findings indicate a role of 

allosteric feedback regulation within this mechanism of transcriptional compensation. Since allosteric 

feedback regulation is known to control end-product homeostasis we suggested that the 

compensatory response might be caused by changes in the respective amino acid level. To test this 

hypothesis, we dynamically measured arginine level in the wild-type and the argA* mutant in 

response to CRISPRi against argE.  
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Interference of argE Causes Intracellular Arginine Oscillation in the Allosteric Mutant argA*  

To measure intracellular arginine level in response to a genetic perturbation, we cultivated the Wild-

type + pCRISPRi-argE and argA* + pCRISPRi-argE in shake flasks on glucose minimal medium and 

collected samples of intracellular metabolites during 2 hours (Figure 4a). The first sample was 

collected at time-point 0 before induction with IPTG. Cells were induced directly after this 

measurement and further samples post-induction were taken after 5, 10, 20, 30, 45, 60, 90 and 120 

minutes. The arginine level shown in figure 4 were quantified by LC-MS/MS and derive from two 

independent experiments on two different days (Day 1: solid lines; Day 2: dashed lines). For the 

wildtype we observed a decrease of intracellular arginine by ~1.5-fold after 10 minutes post-induction 

and the arginine level were constantly kept at this lower level in the subsequent 2 hours (Figure 4b). 

However, the argA* mutant showed oscillatory arginine level in the first hour after induction 

(Decrease of arginine by 2.5-fold followed by an increase of 3.5-fold and again decreased by 3.5-fold). 

Thus, the argA* mutant failed to adjust a homeostatic arginine level in the first hour after induction. 

This might be the reason for the delayed transcriptional compensation, which occurred ~1 hour later 

in the argA* mutant compared to the wildtype (Figure 3c). 

 

 

Figure 4. Dynamic arginine level of the wild type and the argA* mutant after perturbation of argE.  

(a) Experimental set-up for dynamic measurement of intracellular arginine level. Cells were cultivated 

in glucose minimal medium in shake flasks at 37°C. Filter samples were taken before (timepoint 0 min) 

and after (5, 10, 20, 30, 45, 60, 90 and 120 min) induction with 0.1 mM IPTG and were analyzed by LC-

MS/MS.  

(b) Relative arginine level of WT + CRISPRi-argE (black) and argA* + CRISPRi-argE (blue) over 2 hours 

after induction with 0.1 mM IPTG. Shown are two independent experiments performed on two 

different days (day 1: filled circles and solid lines; day 2: empty circles and dashed lines). Dashed grey 

line indicates arginine level in wild-type before induction.  
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In wildtype cells such oscillations are prevented by allosteric feedback regulation as suggested by the 

homeostatic arginine level. Thus, transcriptional compensation is mediated by a decrease of 

intracellular arginine, which presumably decreases the activity of the transcriptional repressor ArgR. 

The decreased ArgR activity causes transcriptional up-regulation of the arginine genes which, at least 

to a certain extent, eliminates the bottleneck. Our data indicate, that in order to ensure a proper 

transcriptional compensation, also allosteric feedback inhibition is involved by finetuning the arginine 

end-product level.  

Although these data have the potential to explain how wild type cells react to decreased enzyme level, 

it is still ambiguous why allosteric feedback mutants show such a strong growth phenotype in response 

to a genetic bottleneck (Chapter 1, Figure 5; Chapter 3, Figure 3a). The dynamic measurement of 

transcriptional activity in combination with the arginine level revealed instabilities especially in the 

first hour after induction of CRISPR interference against argE. However, the strong growth defect over 

20 hours can barely be explained by this data, especially because arginine level neither dropped below 

a critical threshold nor showed an excessive increase that could cause flux burden. Importantly, plate 

reader experiments with GFP-reporter and dynamic metabolite measurements, only allow claims on 

the population level. The effects on transcription and arginine level might be more significant on the 

single cell level. This hypothesis is supported by the oscillatory arginine dynamics in the first hour after 

induction. Induction of the CRISPRi bottleneck by addition of IPTG might synchronize the cellular 

response which disappears over time due to stochasticity on the population level. If such single cell 

effects would be relevant during transcriptional compensation of a metabolic bottleneck, we would 

expect increased heterogeneity in perturbed cultures.  

Genetic Perturbations Causes Cell-to-Cell Heterogeneity and Prove the Benefit of Enzyme 

Overabundance 

To probe transcriptional compensation in single cells, we measured gfp-expression from an arginine 

promotor (pPargA-gfp) by flow cytometry. Therefore, we used the strains WT-arg and argA*-arg (both 

harboring pCRISPRi-argE and pPargA-gfp) and compared them to the respective control strains WT-

ctrl and argA*-ctrl (both harboring pCRISPRi-ctrl and pPargA-gfp). To point out the differences 

between wild-type and argA* mutant we used the uninduced CRISPRi system, because it was 

previously shown that basal expression of dCas9 only perturbed growth of the argA* mutant, whereas 

the wild-type was almost not affected (Chapter 1). Flow cytometry data showed, that perturbing argE-

expression caused heterogenic gene expression in wild-type and the argA* compared to the 

respective control strains (Figure 5). WT-arg and argA*-arg both showed a wider distribution than WT-

ctrl and argA*-ctrl respectively. However, the heterogeneity of argA*-arg was more significant 
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compared to WT-arg and even divided in two sub-populations. We hypothesize that the heterogeneity 

of the argA* mutant derives from the previously described transcriptional compensation. As indicated 

by the arginine dynamics (Figure 4b), perturbing gene expression in argA* causes transcriptional 

compensation and subsequent oscillatory arginine level. Arginine oscillations on a single cell level are 

presumably stronger compared to the population level and might cause a wide range of promotor 

activity within a population.  

 

 

 

Figure 5. Single-cell fluorescence of gfp expressed from an argA promotor in the wild-type and the 

argA mutant after perturbation of argE.  

Histograms show fluorescence of WT-arg and argA*-arg both harboring pCRIPSPRi-argE and pPargA-

gfp (purple), each compared to the respective control strain harboring pCRIPSPRi-ctrl + pPargA-gfp 

(grey). Bar-plots show mean-fluorescence of the same strains including all cells above the gate 

threshold for green fluorescence (indicated with the dashed line). Fluorescence was measured by 

flow-cytometry for 10,000 single cells per strain. Error bars show standard deviation of n = 3 

independent cultivations.  

 

The differences between the wid-type and argA* are directly related to the previous reports about 

enzyme overabundance: The mild perturbation of argE is buffered in the wild-type by overabundant 

enzyme level and therefore mean expression of gfp from an arginine promotor was almost not 

affected (increase by 5%) (Figure 5). However, enzyme levels in the argA* mutant are catalyzing 

reactions with full capacity and therefore also mild perturbations caused a transcriptional response. 

Consequently, mean gfp expression from an arginine promoter was increased by 66% due to mild argE 

perturbation in the argA* mutant. These results demonstrate the benefit of enzyme overabundance 

on the molecular scale: Wildtype cells can react to genetic fluctuations by increasing activity of the 
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enzyme reserves, whereas allosteric mutants need to respond on the transcriptional level by 

increasing gene expression. Thus, in combination with the dynamic arginine level, these data can 

explain the significant growth phenotype of the allosteric mutants in response to genetic 

perturbations. The mutants are presumably constantly faced with oscillatory gene expression and fail 

to adjust homeostasis.  

 

Conclusions  

Here we show the mechanistic principles of transcriptional compensation in response to genetic 

perturbations for 3 amino acid pathways. After reduction of an enzyme below a critical threshold the 

cell senses a decrease of the amino acid end-product, which results in a de-repression of transcription. 

This de-repression leads to up-regulation of the pathway enzymes in order to counteract against the 

bottleneck. Importantly, wildtype cells adjust a new homeostatic state with constantly lower amino 

acid end-product level and higher enzyme expression. Our data indicate that this mechanism requires 

a sensitive interplay between allosteric and transcriptional feedback regulation and that allosteric 

mutants fail to adjust a homeostatic transcriptional response. Moreover, the flow cytometry data 

indicate that overabundant enzyme level in wild-type cells can buffer genetic perturbations, whereas 

the allosteric mutant, which has no enzyme reserves also responds to mild genetic perturbations by 

transcriptional compensation. Thus, by measuring transcriptional compensation we were able to 

detect a benefit of enzyme overabundance at the molecular scale. So far, the advantage of enzyme 

overabundance was only shown by growth reduction on the population level (Mori et al., 2017; 

Christodoulou et al., 2018; Sander et al., 2019) or by computational studies (O’Brien, Utrilla and 

Palsson, 2016).  

It needs to be clarified if the heterogeneity in the allosteric argA-mutant indeed derived from 

oscillatory gene expression or might be due to static sub-populations. Also plasmid loss might be a 

reason for single cells that show no or very low level of fluorescence. Therefore, we constructed a 

pPargA-gfp reporter plasmid that additionally expresses rfp under a constitutive promotor. Analysis 

of this plasmid system in future experiments with microscopic time-lapse imaging in microfluidic 

chambers could exclude plasmid loss or cell division effects. 

Beside the general understanding of a biological systems, these data are also important for the field 

of metabolic engineering. CRISPRi is a widely used tool to manipulate gene expression in metabolic 

pathways. Here we show that cells counteract such perturbations on the transcriptional level. Such 

transcriptional compensation causes up-regulation of the surrounding enzymes which can have an 
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effect on overall fitness of a host organism due to protein burden or overflow metabolism. Especially 

in combination with allosteric dysregulation, which is a common strategy in metabolic engineering, 

gene knockdown methods can strongly disturb metabolism and physiology of a cell.  

 

Material and Methods 

Strains and Culture 

All strains in this study were derived from E. coli MG1655 (DSMZ No. 18039) and are listed in the 

general resource table. Chemically competent E. coli TOP10 (One ShotTM TOP10, Invitrogen 

Cat#C404003) were used for cloning.  

All cultivations were performed in M9 minimal medium with 5 g L-1 glucose. The M9 medium consisted 

of the following components (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. 

The following components were sterilized separately and then added (per liter of final medium): 1 ml 

0.1 M CaCl2, 1 ml 1 M MgSO4, 0.6 ml 0.1 M FeCl3, 2 ml 1.4 mM thiamine-HCL and 10 ml trace salts 

solution. The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2 2 H2O, 120 

mg MnSO4 H2O, 180 mg CoCl2 6 H2O. Where appropriate, 34 μg mL-1 chloramphenicol, 15 μg mL-1 

gentamycine, 50 μg mL-1 spectinomycin or 100 μg mL-1 ampicillin was added. For plate reader 

experiments, LB pre-culture in 96-deep-well format plates were inoculated from glycerol stocks and 

grown to an exponential stage. From this first pre-culture a second M9 pre-culture in 96-deep-well 

plates was inoculated 1:100 and incubated overnight at 37 °C under shaking. Finally, 96-well flat 

transparent plates (Greiner Bio-One International) containing 150 µl M9 minimal medium were 

inoculated 1:150 from the overnight culture. Online measurements of optical density at 600 nm 

(OD600) were performed at 37°C with shaking in a plate reader (Tecan Trading AG, Switzerland). For 

cultivations in shake flask, 5 ml LB pre-culture in cultivation tubes were inoculated from glycerol stocks 

and grown to an exponential stage. From this first pre-culture, 5 ml of a second M9 batch pre-culture 

(5 g L-1 glucose) in cultivation tubes was inoculated 1:100 and incubated overnight at 37°C in a rotary 

shaker. Finally, a 500 ml shake flask containing 25 ml M9 minimal medium (5 g L-1 glucose) were 

inoculated 1:150 from the overnight culture, and incubated at 37 °C under shaking at 220 rpm. 

CRISPR interference 

CRISPR interference of hisB was performed according to Larson et al. 2013 (Larson et al., 2013) with 

the plasmids pdCas9 (Addgene #44249) and pgRNA (Addgene #44251). The gRNA plasmid was 

http://www.thermofisher.com/order/catalog/product/C404003
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customized by site-directed mutagenesis with the forward primers EcF_hisB, carrying the 20-nt base-

pairing sequence (protospacer) and the reverse primer EcR.  

For targeting argE and trpC we used single plasmid (pNUT1533) expressing the respective sgRNA from 

a constitutive and the dCas9 protein from an IPTG inducible Ptac promotor (Sander et al., 2019). 

Therefore, the protospacer regions were customized by site-directed mutagenesis using the primer 

EcF_argEmm5, respectively EcF_trpC and the reverse primer EcR. For induction of dCas9 expression 

we supplemented 0.1 mM IPTG to the medium.  

Sampling for measurement of intra cellular arginine 

Shake flask cultivations on M9 glucose were performed as described above. For measurement of 

intracellular arginine, 2 mL culture aliquots at the indicated time points 0, 5, 10, 20, 30, 45, 60, 90 and 

120 min were vacuum-filtered on a 0.45 µm pore size filter (HVLP02500, Merck Millipore). Filters were 

immediately transferred into 40:40:20 (v-%) acetonitrile/methanol/water at -20°C for extraction. 

Extracts were centrifuged for 15 minutes at 13,000 rpm at -9 °C. Centrifuged extracts were mixed with 

13C-labeled internal standard and analyzed by LC-MS/MS (Guder et al., 2017).  

Measurement of intra-cellular arginine by LC-MS/MS 

LC-MS/MS analysis was performed with an Agilent 6495 triple quadrupole mass spectrometer (Agilent 

Technologies) as described previously (Guder et al., 2017). An Agilent 1290 Infinity II UHPLC system 

(Agilent Technologies) was used for liquid chromatography. Temperature of the column oven was 

30°C, and the injection volume was 3 μL. LC solvents A were water with 10 mM ammonium formate 

and 0.1% formic acid (v/v) for acidic conditions. LC solvents B were acetonitrile with 0.1% formic acid 

(v/v). LC columns were an Acquity BEH Amide (30 x 2.1 mm, 1.7 µm) for acidic conditions. The gradient 

for acidic conditions was: 0 min 90% B; 1.3 min 40 % B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. 

Relative quantification of intracellular arginine concentrations was based on the ratio of 12C and 13C 

peak heights and normalized to the OD. 

Proteomics 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were transferred into 2 ml reaction tubes and 

washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL, 1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets 

were resuspended in 300 µl lysis buffer containing 100 mM ammonium bicarbonate, 0.5 % sodium 

laroyl sarcosinate (SLS) and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by 5 minutes 

incubation at 95 °C and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again 

incubated for 30 minutes at 90 °C followed by alkylation with 10 mM iodoacetamide for 30 minutes 
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at 25 °C. To clear the cell lysate, samples were centrifuged for 10 minutes at 15,000 rpm and the 

supernatant transferred into a new tube. Proteins in the cell lysates were digested with 1 µg trypsin 

(Promega) overnight at 30 °C. To remove the SLS by precipitation, trifluoroacetic acid (TFA) was added 

to a final concentration of 1.5 % and rested at room temperature for 10 minutes. Samples were 

centrifuged for 10 minutes at 10,000 rpm and the supernatant used for C18 purification. The peptide 

purification was performed using the C18 microspin columns according to the manufactors 

instructions (Harvard Apparatus). Eluted peptide solutions were dried and resuspended in 0.1 % TFA. 

The concentration of peptides in the samples was measured with a colorimetric peptide assay 

(Pierce™ Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). Analysis of peptides was 

performed by liquid chromatography-mass spectrometry, carried out on a Q-Exactive Plus instrument 

connected to an Ultimate 3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source 

(Thermo Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 µm x 42 

cm) packed in-house with C18 resin (2.4 µm, Dr. Maisch GmbH, Germany). The following separating 

gradient was used: 98 % solvent A (0.15% formic acid) and 2 % solvent B (99.85 acetonitrile, 0.15 % 

formic acid) to 25 % solvent B over 105 minutes and to 35 % solvent B for additional 35 minutes at a 

flow rate of 300 nl/min. The data acquisition mode was set to obtain one high resolution MS scan at 

a resolution of 70,000 full width at half maximum (at m/z 200) followed by MS/MS scans of the 10 

most intense ions. To increase the efficiency of MS/MS attempts, the charged state screening modus 

was enabled to exclude unassigned and singly charged ions. The dynamic exclusion duration was set 

to 30 seconds. The ion accumulation time was set to 50 ms for MS and 50 ms at 17,500 resolution for 

MS/MS. The automatic gain control was set to 3x106 for MS survey scans and 1x105 for MS/MS scans. 

Label-free quantification (LFQ) of the data was performed using Progenesis QIP (Waters), and for 

MS/MS searches of aligned peptide features MASCOT (v2.5, Matrix Science) was used. The following 

search parameters were used: full tryptic search with two missed cleavage sites, 10ppm MS1 and 0.02 

Da fragment ion tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) 

as variable modification. Progenesis outputs were further processed with SafeQuant. 

Flow Cytometry 

Cell-to-cell variability of pPargA-gfp activity in wild-type + CRISPRi-argE and argA* + CRISPRi-argE 

was assayed by flow cytometry. Strains for flow cytometry were cultivated in three independent 

shake flasks (100 ml) containing 10 ml M9 minimal medium (5 g L-1 glucose; 50 μg mL-1 kanamycin 

and 15 μg mL-1 gentamycine) as described in Strains and Culture. After reaching an OD between 0.5 

and 0.8 cells were diluted 1:2000 in tethering buffer (10 mM KH2PO4, 100 μM EDTA, 1 μM L-

methionine and 10 mM lactic acid, pH=7.0) and fluorescence was measured with BD LSRFortessa 

SORP cell analyser (BD Biosciences, Germany). 488-nm lasers, 600 long pass and a 520/30 band pass 
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filters were used for detection of green fluorescence. Per sample, fluorescence of 10,000 single cells 

was measured. Before the measurements, cell aggregates were dispersed by vigorous mixing. BD 

FACSDiva software version 8.0 (BD Biosciences, NJ, USA) and FlowJo v10.4.1 (FlowJo LLC, Ashland, OR, 

USA) were used for analysis of the acquired data.  
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Summary 

Microbes developed regulatory mechanism in order to efficiently use nutrients for generating energy 

and biomass. These regulatory mechanisms, as the previously described allosteric feedback inhibition, 

allow fast response to changing environments for need-based production of biomass precursors such 

as amino acids. However, dynamic experiments of allosteric feedback mutants revealed surprisingly 

high tolerance towards conditional shifts. Proteomics data showed up-regulation of degradation 

enzymes of the dysregulated arginine, tryptophan and proline biosynthesis pathways. Dynamic 

metabolite measurements of the allosteric arginine mutant (argA*) revealed that a transient excess 

of arginine is channeled into the arginine degradation pathway (AST-pathway). Thus E. coli might use 

degradation pathways in amino acid metabolism as a regulatory mechanism to maintain end-product 

homeostasis and to avoid wasteful metabolite accumulations. Targeting the AST-pathway by CRISPRi 

had stronger impact on growth of the argA* mutant compared to the wildtype.  
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Introduction 

Microbes are subject to a variety of self-regulatory mechanisms that control biosynthetic fluxes and 

intracellular metabolite pools. Regulation is crucial since microbes must ensure a constant set of 

intracellular conditions in constantly changing environments. The equilibrium of metabolic conditions, 

the so-called homeostasis was first postulated by Walter B. Cannon (Cannon, 1929). He realized that 

homeostasis requires feedback regulatory mechanisms that maintain constancy. Nowadays feedback 

mechanisms, such as allosteric feedback are often postulated to be crucial in maintaining end-product 

homeostasis (Hofmeyr and Cornish-Bowden, 2000) and fast adaption to changing conditions (Link, 

Kochanowski and Sauer, 2013). However, recent studies which removed allosteric feedback regulation 

from amino acid metabolism or pyrimidine metabolism of E. coli, revealed surprisingly high tolerance 

of such mutants towards dynamic conditions (Reaves et al., 2013; Sander et al., 2019).  

In case of pyrimidine metabolism, it was shown that pyrimidine homeostasis is accomplished by 

directed overflow metabolism. Increased pyrimidine pathway flux triggers degradation of the 

intermediate uridine monophosphate and allows homeostasis of pyrimidine triphosphates at the 

expense of uracil excretion (Reaves et al., 2013). It is unclear if cells use a similar strategy for 

maintenance of amino acid homeostasis. It is known that E. coli is subject to degradation pathways 

for 12 of the 20 amino acids, which might be potential routes for a mechanism similar to pyrimidine 

overflow metabolism (Biocyc, RegulonDB). Generally amino acid degradation pathways are 

considered as sources for nitrogen, carbon and energy (Reitzer, 2005). A well described example is the 

arginine degradation pathway (AST-pathway), which converts one molecule arginine to two molecules 

of ammonia and glutamate and can provide E. coli’s total nitrogen requirement (Schneider, Kiupakis 

and Reitzer, 1998). The AST-pathway consists of five enzymes whose genes are organized in an operon 

under positive control of the arginine repressor ArgR (Kiupakis and Reitzer, 2002). ArgR activates 

expression of the AST-operon in response to increased arginine level. Deletion of ast-genes (astB and 

astC) only caused a growth phenotype when arginine was used as the only nitrogen source, indicating 

that the prior role of the AST-pathway consists in nitrogen supply. However, it is unclear if degradation 

pathways like the AST-pathway could also be important in end-product maintenance, especially under 

such conditions of intra-cellular arginine excess.  

Here we show up-regulation of degradation pathways in allosteric dysregulated arginine, tryptophan 

and proline pathways of E. coli. Allosteric feedback mutants that are subject to a degradation pathway 

(arginine, tryptophan, proline) were more robust in conditional down shifts from glucose to galactose 

minimal medium compared to mutants in which the degradation pathway was not up-regulated 

(threonine), respectively to those where no degradation pathway is known (leucine, isoleucine). 
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Metabolite measurements during conditional down-shifts with the wildtype and the dysregulated 

arginine mutant (argA*) showed that a transient excess of arginine is channeled into the degradation 

pathway (AST-pathway). This arginine overflow mechanism was observed for the wildtype and argA*, 

however the AST-pathway showed a stronger activation in the allosteric mutant. Down-regulation of 

the AST-pathway by CRISPR interference caused decreased growth rates of the allosteric mutant 

argA*. 

 

Results 

Degradation Pathways are Up-Regulated in Robust Allosteric Mutants 

In the previous chapter we could show that enzyme level in allosteric dysregulated amino acid 

pathways decrease. However, decreased enzyme level did not affect the ability of the mutants to 

switch from starvation or slow growth to fast growth (readiness). To test if allosteric feedback 

regulation serves as a mechanism that quickly reduces biosynthetic flux in nutritional down shifts, we 

tested a switch from fast growth (glucose) to slow growth (galactose). Therefore, the seven allosteric 

feedback mutants were grown on glucose depletion medium (0.5 g L-1 glucose; 5 g L-1 galactose). After 

glucose depletion, we measured reduced growth rates for the leuA* (leucine), ilvA* (isoleucine) and 

thrA* (threonine) mutant, revealing a relevance of allosteric feedback inhibition in response to 

conditional shifts (Figure 1). However, the argA* (arginine), trpE* (tryptophan), hisG* (histidine) and 

proB* (proline) mutant grew like the wildtype (Figure 1). This indicates that either adaption of 

biosynthetic flux has no relevance for the respective pathways, or other mechanisms fulfill this 

function. A possible compensating mechanism might be mediated by amino acid degradation 

mechanisms. Importantly, proteomics data revealed that enzymes from degradation pathways were 

up-regulated only in the mutants that showed stable growth under dynamic conditions. We measured 

a strong increase of AstC (arginine degradation) in argA*, TnaA (tryptophan degradation) in trpE* and 

PutA (proline degradation) in proB* (Figure 2). For the mutants that showed decreased growth rates 

under dynamic conditions, no degradation pathway is known (leuA*, ilvA*) or degradation pathway 

showed no up-regulation respectively (thrA*).  
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Figure 1. Growth of wild-type E. coli and the seven dysregulated mutants in a shift from glucose to 

galactose. 

Cells were grown in M9 minimal medium with 0.5 g L-1 glucose and 5 g L-1 galactose. Shown are means 

of n = 3 cultures. Inserts show the growth rate during the same time period. Growth rates were 

estimated by linear regression over a moving 30 minute window. The same wild-type growth curve is 

shown in each graph in black as a reference. Published in Sander et al. 2019. 

 

In case of histidine no degradation pathway is known in E. coli, however we observed a strong up-

regulation of the glutaminase GlsA in the hisG* mutant, which could have a promiscuous activity for 

deamination of histidine (Figure 2). We hypothesize that the degradation pathways might have an 

additional role in mediating robustness and end product homeostasis by recycling an excess of amino 

acids. A similar overflow mechanism was recently discovered in pyrimidine biosynthesis. The strong 

activation of degradation pathways in our mutants indicates that directed overflow is also relevant for 

amino acid pathways.  
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Figure 2. Enzymes of amino acid degradation pathways are up-regulated in respective allosteric 

mutants.  

Enzymes in amino acid degradation pathways (27 out of all 50 enzymes) of seven allosteric 

dysregulated mutants relative to the wildtype (log2). Enzymes with fold-change (log2) ≥ 2 are 

indicated with their names. Published in Sander et al. 2019. 

 

AST Degradation Pathway Buffers Arginine Excess 

To test functioning of directed overflow we used arginine as a case study and dynamically measured 

intracellular metabolites during a transient excess of arginine. Therefore, we limited protein synthesis 

by switching the wildtype and the argA* mutant from external supply of methionine to de novo 

biosynthesis of methionine (Figure 3a). This switch should cause a transient methionine limitation and 

therefore an excess of other amino acids. If directed overflow buffers this excess in case of arginine, 

we expected an increase of arginine degradation during the methionine switch. Indeed, immediately 

after methionine depletion intracellular arginine increased in the dysregulated mutant (17-fold), and 

rapidly leveled off after 5 minutes (Figure 3b). After the acute increase of arginine, the first 

intermediate succinyl-arginine of the arginine degradation pathway (AST-pathway) starts 

accumulating (13-fold). The wildtype showed similar dynamics of arginine and succinyl-arginine 

pattern but smaller (3-fold) increases of both metabolites. This transient activation of arginine 

degradation suggests that amino acid overflow functions in dynamic fashion: When arginine exceeds 
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a certain threshold, it is recycled via degradation pathways. The high Km value of the first enzyme in 

the degradation pathway (AstA) in related species supports the hypothesis of a threshold-based 

activation of amino acid overflow (Tricot et al., 1994). Thus, we conclude that degradation pathways 

in amino acid metabolism might serve as an additional regulatory layer to provide end-product 

homeostasis. To test the physiological role of arginine degradation, we tested how downregulation of 

the AST pathway affects growth of the wildtype and the argA* mutant. 

 

 

 

Figure 3. Methionine depletion causes arginine overflow metabolism  

(a) Schematic methionine depletion. Switch from external supply of methionine to de novo synthesis 

causes a transient halt of protein synthesis which accordingly leads to an accumulation of the other 

amino acids including arginine.  

(b) Intracellular concentrations of arginine and the first degradation product succinyl-arginine during 

60 minutes of transient arginine excess. Arginine excess was created by limiting protein synthesis due 

to methionine depletion. 
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CRISPRi Knockdown of AST Pathway Reduces Growth and Gene Expression in Arginine Biosynthesis 

Previous studies observed a phenotypical relevance of the AST pathway in providing ammonia during 

growth on nitrogen limiting conditions. If the AST pathway also functions as a regulatory overflow 

mechanism, we would expect a growth phenotype of the argA* mutant when expression of the AST 

pathway is disturbed. To test this hypothesis, we targeted astC by CRISPRi. All genes coding for 

enzymes of the AST-pathway are organized in a single operon, with astC at the first position 

downstream of the promotor. Thus, blocking astC by CRISPRi should have an inhibitory impact on 

transcription of all genes downstream in the operon. The gRNA-plasmid (pgRNA; Addgene plasmid # 

44251) targeting astC and the plasmid harboring dCas9 (pdCas9; Addgene plasmid # 44249) were both 

transformed into the wildtype and the argA* mutant. In addition, we transformed a reporter plasmid 

with gfp fused to a promotor of an arginine pathway enzyme (pPargA-gfp) into both strains (Zaslaver 

et al., 2006), in order to analyze the effect on gene expression.  

Cultivating the strains in a plate reader revealed similar growth rates of 0.65 (h-1) for the wildtype and 

0.64 (h-1) for the argA* mutant without induction of the CRISPRi system (Figure 4a). Induction of 

CRISPRi against astC with anhydrotetracycline (aTc) resulted in reduced growth rates for both, the 

wildtype and argA*. However, growth rates of the argA* mutant decreased stronger by ~50% 

compared to the un-induced argA* mutant after initial 2 hours growth. Growth rates of the wildtype 

decreased only by 20 % after induction. The initial 2 hours are presumably the time until the total copy 

number of AST enzymes drops below a critical threshold due to transcriptional halt. The expression of 

PargA-gfp decreased by 30 % in both strains after induction, indicating reduced enzyme expression of 

the arginine pathway due to AST-knockdown (Figure 4b). PargA-gfp expression was always lower in 

the argA* mutant, matching previous results reporting decreased enzyme expression in allosteric 

mutants (Sander et al., 2019).  

In summary, we could show that the arginine degradation pathway is also relevant under steady state 

growth without nitrogen limitation. Knockdown of the AST-pathway caused decreased growth rates 

and reduced activity of an arginine pathway promotor. Importantly, knockdown of the AST-pathway 

was more critical for the argA* mutant. This indicates that the allosteric feedback inhibition can to 

some extent compensate the AST-pathway knockdown in the wildtype. We hypothesize that similar 

to pyrimidine metabolism (Reaves et al., 2013), allosteric feedback inhibition and degradation 

pathway could both be involved in maintaining end-product homeostasis.  
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Figure 4. Growth and promotor activity of the wild-type and the allosteric mutant argA* in response 

to CRISPRi against astC.  

(a) Growth of wildtype + CRISPRi-astC and argA* + CRISPRi-astC with and without addition of 0.1 mM 

aTc. Cells were grown in a plate reader in M9 minimal medium with 5 g L-1 glucose and optical density 

(OD600) was measured in 5 minute intervals. Shown are means of n = 3 cultures.  

(b) GFP expression of pPargA-gfp in wildtype + CRISPRi-astC and argA* + CRISPRi-astC with and 

without addition of 0.1 mM aTc. GFP was normalized to optical density and measured in 5 minute 

intervals.  

 

Discussion 

Here we could show that E. coli uses the AST degradation pathway as an overflow valve: An excess of 

intracellular arginine is channeled into the degradation pathway indicated by the dynamic increase of 

the catabolic intermediate succinyl-arginine. A CRISPRi mediated knockdown of the degradation 

pathway revealed decreased growth in glucose minimal medium without nitrogen limitation. Previous 

studies observed a growth phenotype only under nitrogen limiting conditions, indicating a sole 
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function of the AST pathway in providing ammonia (Schneider, Kiupakis and Reitzer, 1998). Thus, our 

results indicate an additional function of the AST pathway which consists in the maintenance of 

arginine end-product homeostasis. One reason why cells try to maintain metabolic homeostasis is that 

metabolites are important signals for enzyme expression (Donati, Sander and Link, 2018). Expression 

of arginine enzymes for instance is directly regulated by a negative transcriptional feedback in 

response to intracellular arginine level. Thus, a recurring arginine excess (i.e. due to stochastic effects 

or dynamic conditions) could imbalance enzyme expression, which might be the reason for impaired 

growth in the AST-knockdown strains. This hypothesis is supported by the decreased GFP expression 

from an arginine regulated promotor (PargA) after knocking-down the AST-pathway. However, the 

decreased promotor activity might also result from the decreased growth rates. This could be clarified 

in future experiments with different level of CRISPR interference, in order to find a condition in which 

growth rates are not affected but promotor activity is decreased.  

Importantly we measured a stronger activation of the AST-pathway in the allosterically dysregulated 

argA*-mutant (higher level of the intermediate succinyl-arginine and the degradation enzyme AstC). 

Also, the growth reduction after AST-knockdown was stronger in the argA*-mutant compared to the 

wildtype. This indicates that allosteric dysregulation is to a certain extent compensated by the 

degradation pathway. We hypothesize that both mechanisms fulfil a role in maintaining end-product 

homeostasis. While allosteric feedback inhibition regulates the influx into a metabolic pathway, 

degradation pathways might regulate the outflux. A similar mechanism was previously observed in 

pyrimidine metabolism, where end-product homeostasis is accomplished by directed overflow 

through degradation of the intermediate uridine monophosphate (Reaves et al., 2013). Also, in case 

of pyrimidine overflow metabolism, the mechanism was observed in an allosteric dysregulated 

mutant. It needs to be clarified if overflow metabolism can also be observed in other amino acid 

pathways and might compensate allosteric dysregulation in the other described mutants (Figure 1).  

The hisG* mutant was the only stable growing mutant in the down-shift experiments, that is not 

subject to a degradation mechanism in the respective dysregulated pathway (Figure 1). However, 

proteomic analysis of the hisG* mutant revealed a 5-fold increase of the glutaminase GlsA that is 

known to catalyze the deamination of glutamine to glutamate and free ammonia (NH4
+) (Brown et al., 

2008). Since deamination is a key step in all known amino acid degradation pathways of E. coli (Sawers, 

2006), GlsA could have a promiscuous function in a so far overlooked histidine degradation 

mechanism. Potential histidine degradation by GlsA will be tested in future experiments, for example 

with LC-MS based in vitro assays.  
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Material & Methods 

Strains and Culture 

All strains in this study were derived from E. coli MG1655 (DSMZ No. 18039) and are listed in the 

general resource table. Chemically competent E. coli TOP10 (One ShotTM TOP10, Invitrogen) were used 

for cloning.  

All steady state cultivations were performed using M9 minimal medium with 5 g L-1 glucose. For 

glucose depletion experiments, cells were cultivated in M9 medium with 0.5 g L-1 glucose and 5 g L-1 

galactose. The M9 medium consisted of the following components (per liter): 7.52 g Na2HPO4 2 H2O, 

5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following components were sterilized separately and then 

added (per liter of final medium): 1 ml 0.1 M CaCl2, 1 ml 1 M MgSO4, 0.6 ml 0.1 M FeCl3, 2 ml 1.4 mM 

thiamine-HCL and 10 ml trace salts solution. The trace salts solution contained (per liter): 180 mg 

ZnSO4 7 H2O, 120 mg CuCl2 2 H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. Where appropriate, 50 μg 

mL-1 kanamycin, 34 μg mL-1 chloramphenicol or 100 μg mL-1 ampicillin were added. For cultivations in 

microtiter plates, LB pre-culture in 96-deep-well format plates were inoculated from glycerol stocks 

and grown to an exponential stage. From this first pre-culture a second M9 pre-culture in 96-deep-

well plates was inoculated 1:100 and incubated overnight at 37 °C under shaking. Finally, 96-well flat 

transparent plates (Greiner Bio-One International) containing 150 µl M9 minimal medium were 

inoculated 1:150 from the overnight culture. Online measurements of optical density at 600 nm 

(OD600) were performed at 37°C with shaking in a plate reader (Epoch, BioTek Instruments Inc, USA; 

Spark 10M, Tecan Trading AG, Switzerland).  

For methionine depletion experiments, cells were cultivated in 25 ml M9 minimal medium (5 g L-1 

glucose) supplemented with 2 mM methionine. After reaching an OD600 of ~0.4, cells were vacuum 

filtered on a 0.45 µm pore size nitrocellulose filter (Millipore) and washed with 5 ml glucose minimal 

medium (pre-warmed). Cell laden filters were transferred to fresh and pre-warmed 25 ml M9 minimal 

medium (5 g L-1 glucose) in a 500 ml shake flask. Shake flask cultures were incubated at 37°C under 

continuous shaking at 210 rpm. Filter samples for quantification of intracellular metabolites were 

taken before methionine depletion and after 5, 10, 15, 30 and 60 minutes.  

Metabolite Measurements 

Shake flask cultivations for methionine depletion experiments were performed as described above. 

Immediately before and 5, 10, 15, 30 and 60 minutes after methionine depletion 2 mL culture aliquots 

were vacuum-filtered on a 0.45 µm pore size filter (HVLP02500, Merck Millipore). Filters were directly 
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transferred into 40:40:20 (v-%) acetonitrile/methanol/water at -20°C for extraction. Extracts were 

centrifuged for 15 minutes at 13,000 rpm at -9 °C. Centrifuged extracts were mixed with 13C-labeled 

internal standard and analyzed by LC-MS/MS, with an Agilent 6495 triple quadrupole mass 

spectrometer (Agilent Technologies) as described previously14.  

CRISPR interference  

CRISPR interference mediated knockdown of astC was performed according to Larson et al. 201315 

under usage of pdCas9 (Addgene #44249) and pgRNA (Addgene #44251). The gRNA plasmid was 

customized by site-directed mutagenesis with the forward primer EcF_astC 

(TCAAAGTTTTCACGCGTAATGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC), carrying the 20-nt 

base-pairing sequence (protospacer) and the reverse primer EcR 

(ACTAGTATTATACCTAGGACTGAGCTAGC). The protospacer region was designed to target the astC 

gene on the coding strand adjacent to the PAM motif TGG. Expression of dCas9 was induced with 0.1 

mM anhydrotetracycline (aTc).  
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Closing Remarks 

Key Findings 

Chapter 1 

Enzymes in amino acid metabolism of arginine, tryptophan, leucine, histidine, threonine, proline and 

isoleucine biosynthesis in E. coli do not operate at maximal capacity. Such enzyme overabundance is 

adjusted by an interaction of allosteric and transcriptional feedback regulation: Allosteric regulation 

maintains low end-product level, which causes inactivation of the transcriptional repression.  

Two-pronged metabolic feedback on allosteric and transcriptional layer solves a critical trade-off 

between efficiency (low enzyme level) and robustness (high enzyme level). Proteomic and 

computational data showed that enzymes in amino acid metabolism work in the middle of this trade-

off frontier. Removal of allosteric feedback inhibition causes low and efficient enzyme expression 

however cells are less robust against perturbations of gene expression. Removal of transcriptional 

regulation causes high and robust enzyme expression however cellular growth suffers from protein 

burden. 

CRISPR interference mediated perturbation of enzyme expression in arginine, histidine and 

tryptophan biosynthesis showed that wild-type cells (with overabundant enzyme level) are more 

robust compared to allosteric feedback mutants (without overabundant enzyme level).  

Removing allosteric feedback inhibition causes increased metabolic flux in histidine, isoleucine, 

threonine, leucine and proline biosynthesis, demonstrating a further role of allosteric regulation to 

control biosynthetic flux. However, biosynthetic flux in the allosteric arginine and tryptophan mutant 

is compensated by enzyme level regulation of the transcription factors ArgR and TrpR. Thus, 

biosynthetic flux in the allosteric arginine and tryptophan mutant is not increased.  

Chapter 2 

Overproduction of arginine in E. coli requires removal of allosteric and transcriptional feedback 

regulation, since both mechanisms have the ability to compensate the loss of the other. 

Overexpression of the arginine exporter ArgO further elevates the product yield by 5-fold.  
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CRISPRi-mediated knockdown of the arginine repressor ArgR enables testing different level of 

remaining transcriptional regulation. Different level of ArgR expression allows tuning of enzyme 

expression in the arginine biosynthesis pathway.  

A residual expression of ArgR results in two-times higher growth rates compared to the rationally 

engineered knockout strain. Despite this faster growth, arginine production is not lower in the CRISPRi 

strains (~2 mmol gDW-1 h-1).  

Metabolomics and proteomics data reveal that slow growth of the knockout strain derives from 

limitations in pyrimidine biosynthesis, which are caused by enzyme imbalances at the arginine-

pyrimidine branching point (17-fold overexpression of the ornithine carbamoyltransferase ArgI). 

CRISPRi against argR efficiently re-balances enzyme level and thereby restores pyrimidine 

metabolism.  

Chapter 3 

E. coli reacts to genetic perturbations in amino acid metabolism by elevating the gene expression in 

the respective biosynthetic pathway. Such ‘transcriptional compensation’ emerges from a decrease of 

the respective amino acid end-product, which causes transcriptional de-repression of the pathway 

enzymes. This mechanism is relevant for pathways regulated by a transcription factor (Arginine), 

transcriptional attenuation (Histidine) or both (Tryptophan).  

Allosteric feedback inhibition has a relevance for the mechanism of transcriptional compensation by 

re-adjusting end-product level in response to a genetic perturbation. Removing allosteric regulation 

causes metabolic imbalances in response to a genetic perturbation which causes a delayed 

transcriptional compensation.  

FACS reveal that such metabolic imbalances result in a significant transcriptional heterogeneity of the 

allosteric mutant compared to the wild-type, when faced with a genetic perturbation. These 

observations are related to the previous reports about enzyme overabundance (Chapter 1): High 

enzyme level in wild-type cells buffer genetic perturbations, whereas genetic perturbations in the 

allosteric mutant (enzymes are working at full capacity) cause metabolic and transcriptional 

instabilities.  

Chapter 4  

Allosteric arginine, tryptophan, histidine and proline mutants show no phenotype during conditional 

down-shift experiments from fast (Glucose) to slow (Galactose) growth. Proteomic data of the 



 Closing Remarks 
 
 

- 123 - 
 

allosteric mutants reveal up-regulation of the respective degradation pathways of arginine, 

tryptophan and proline metabolism. For histidine metabolism, no degradation pathway is known, 

although proteomic data show up-regulation of the glutaminase GlsA which might have a promiscuous 

role in histidine deamination.  

Dynamic metabolite measurements of the allosteric arginine mutant reveal that a transient excess of 

arginine during down-shift experiments is channeled into the degradation pathway. We conclude that 

amino acid degradation pathways are used as an overflow mechanism, providing end-product 

homeostasis in dynamic conditions.  

CRISPRi-mediated knockdown of the degradation pathway has stronger impact on growth of the 

allosteric mutants compared to the wild-type, indicating a critical role for amino-acid overflow in 

compensating allosteric dysregulation.  

 

Open Questions & Outlook 

How general is the novel function of allosteric feedback regulation in enforcing enzyme 

overabundance? 

In chapter 1 we showed that amino acid enzymes in E. coli do not work at fully capacity and that such 

overabundance renders the cell more robust against genetic perturbations. Mechanistically, 

overabundance of amino acid enzymes is adjusted by a sensitive interaction of allosteric and 

transcriptional feedback regulation. This arises the question, if these regulatory principles go beyond 

amino acid metabolism of E. coli. Indeed, different computational studies in E. coli and yeast indicate 

that cells express higher enzyme level than actually needed also in other parts of metabolism (Hackett 

et al., 2016; O’Brien, Utrilla and Palsson, 2016). Furthermore, the metabolic regulation on two layers 

(transcriptional and allosteric) which is the mechanistic basis of overabundance in amino acid 

metabolism, is a common used regulatory principle. For example, glycolysis is subject to 

transcriptional control by transcription factors such as Crp or Cra, and in addition tightly regulated by 

allosteric feedbacks on key enzymes like PfkA or PykF (Chubukov et al., 2014). Also, pyrimidine and 

purine biosynthesis pathways are regulated by combined allosteric and transcriptional feedbacks, 

similar to amino acid metabolism. Thus, we can conclude that at least all requirements are given to 

observe similar regulatory principles for the adjustment of enzyme overabundance in other parts of 

metabolism. A first step to test this assumption would be the construction of further allosteric 

feedback mutants of different metabolic pathways. Such strains could then be tested by a proteome 
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analysis combined with a global genetic perturbation analysis for example by CRISPRi. This could reveal 

changes in gene expression or genetic instabilities compared to the wild-type. Further, such strategy 

can also be applied for yeast or other eukaryotic cells to show that the system is not limited to 

prokaryotes.  

Is the CRISPRi approach targeted against ArgR useful for the biotechnological production of 

arginine? 

In chapter 2 we titrated expression of the transcription factor ArgR by CRISPRi and thereby doubled 

growth rates of an arginine overproduction strain without decreasing production rates. However, the 

presented approach represents a prove of principle and as such would not be applicable in an 

industrial process. The reason for this is the usage of plasmids and therefore antibiotics, but also the 

heterologous expression of the endonuclease Cas9 (although it lacks endonuclease activity). However, 

we think that our approach has a high relevance for industrial biotechnology, since production 

processes aim for time-efficiency and robustness. Thus, a next step in this study would be to make the 

engineered arginine production strains applicable for an industrial fermentation process. This would 

involve the genetic integration of the arginine exporter ArgO and using an alternative strategy to tune 

ArgR expression. Different expression level of ArgR could for instance be achieved by mutating the 

promotor instead of blocking transcription by CRISPRi.  

Is the titration of a transcription factor also relevant for other overproduction pathways? 

We could show the importance of balancing enzyme level in an overproduction pathway and that 

titration of a transcription factor is a suitable tool for this. Especially imbalances of enzymes at 

branching points can have drastic effects on the physiology of a production host. Therefore, we 

hypothesize that this strategy is also applicable to other overproduction pathways that are regulated 

by transcriptional repressors. Further case studies could be for instance the branched aromatic amino 

acid pathways that are regulated by the transcription factors TrpR and TyrR or the methionine 

pathway under control of MetJ. Our findings could have a particular relevance for global 

transcriptional regulators, such as Lrp which affects the expression of 38 % of the E. coli genes (Kroner, 

Wolfe and Freddolino, 2019) and is therefore often considered as a metabolic engineering target (Park 

and Lee, 2010). Knocking down instead of knocking out such global regulators might reduce the impact 

on global metabolism of the host strain.  
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Does allosteric dysregulation cause oscillations of metabolites and gene expression? 

In chapter 3 we observed instabilities of arginine level in the allosteric mutants which might be the 

reason for the heterogenic gene expression showed in the FACS experiment. A potential explanation 

would be, that allosteric feedback mutants are not able to adjust metabolic flux in the face of internal- 

or external perturbations. This might cause oscillatory arginine level for example during dynamically 

changing environmental conditions. However, although fast adaptation during dynamic condition was 

often postulated to be the key function of allosteric feedback inhibition it was so far not shown 

experimentally (Kochanowski, Sauer and Noor, 2015). A limiting factor is, that methods to quantify 

metabolite level or gene expression only allow observation of the population level. Oscillations of 

metabolite level or gene expression might be covered by the stochasticity of the population scale. 

Therefore, we have a strong need for methods allowing dynamic analysis of single cells. A promising 

approach might be microscopic time-lapse imaging in microfluidic chambers. Combining such an 

experimental approach with fluorescent sensors for gene expression (GFP-promotor fusions) and/or 

direct fluorescence sensors for metabolites (FRET-sensors) could uncover single cell oscillations.  
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Resource Table 

Resource Table: Listed are all strains, plasmids and other resources used in this doctoral thesis. Strains 

are listed as follows: Strain background: Name of the strain used in the study: Genotype.   

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial Strains  

Escherichia coli TOP10: F- mcrA Δ( mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 Δ lacX74 recA1 araD139 Δ( araleu)7697 galU galK rpsL 

(StrR) endA1 nupG 

Invitrogen, Thermo Fischer 

Scientific 

Cat#C404003 

Escherichia coli MG1655: wildtype: F-, lambda-, rph-1 DZMS-German Collection of 

Microorganisms and Cell 

Cultures 

DSM-No.: 18039 

MG1655: argA*: F-, lambda-, rph-1, argA(H15Y) This study N/A 

MG1655: ilvA*: F-, lambda-, rph-1, ilvA(L447F) This study N/A 

MG1655: hisG*: F-, lambda-, rph-1, hisG(E271K) This study N/A 

MG1655: leuA*: F-, lambda-, rph-1, leuA(G462D) This study N/A 

MG1655: proB*: F-, lambda-, rph-1, proB(D107N) This study N/A 

MG1655: thrA*: F-, lambda-, rph-1, thrA(S345F) This study N/A 

MG1655: trpE*: F-, lambda-, rph-1, trpE(S40F) This study N/A 

MG1655: ∆argR: F-, lambda-, rph-1, ∆argR This study N/A 

MG1655: ∆trpR: F-, lambda-, rph-1, ∆trpR This study N/A 

MG1655: ∆hisL: F-, lambda-, rph-1, ∆hisL This study N/A 

MG1655: wildtype CRISPRi-ctrl: F-, lambda-, rph-1, pNUT1533-ctrl This study N/A 

MG1655: wildtype CRISPRi-argE: F-, lambda-, rph-1, pNUT1533-argE This study N/A 

MG1655: wildtype CRISPRi-hisB: F-, lambda-, rph-1, pNUT1533-hisB This study N/A 

MG1655: wildtype CRISPRi-trpA: F-, lambda-, rph-1, pNUT1533-trpA This study N/A 

MG1655: argA* CRISPRi-ctrl: F-, lambda-, rph-1, argA(H15Y) 

pNUT1533-ctrl 

This study N/A 

MG1655: argA* CRISPRi-argE: F-, lambda-, rph-1, argA(H15Y) 

pNUT1533-argE 

This study N/A 

MG1655: argA* CRISPRi-hisB: F-, lambda-, rph-1, argA(H15Y) 

pNUT1533-hisB 

This study N/A 

MG1655: argA* CRISPRi-trpA: F-, lambda-, rph-1, argA (H15Y) 

pNUT1533-trpA 

This study N/A 

MG1655: hisG* CRISPRi-ctrl: F-, lambda-, rph-1, hisG (E271K) 

pNUT1533-ctrl 

This study N/A 

MG1655: hisG* CRISPRi-hisB: F-, lambda-, rph-1, hisG (E271K) 

pNUT1533-hisB 

This study N/A 

MG1655: hisG* CRISPRi-argE: F-, lambda-, rph-1, hisG (E271K) 

pNUT1533-argE 

This study N/A 

MG1655: hisG* CRISPRi-ctrl: F-, lambda-, rph-1, hisG (E271K) 

pNUT1533-trpA 

This study N/A 

MG1655: trpE* CRISPRi-ctrl: F-, lambda-, rph-1, trpE (S40F) 

pNUT1533-ctrl 

This study N/A 

MG1655: trpE* CRISPRi-trpA: F-, lambda-, rph-1, trpE (S40F) 

pNUT1533-trpA 

This study N/A 

MG1655: trpE* CRISPRi-argE: F-, lambda-, rph-1, trpE (S40F) 

pNUT1533-argE 

This study N/A 
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MG1655: trpE* CRISPRi-hisB: F-, lambda-, rph-1, trpE (S40F) 

pNUT1533-hisB 

This study N/A 

MG1655: pPargA-gfp: F-, lambda-, rph-1, This study N/A 

MG1655: argA* pPargA-gfp: F-, lambda-, rph-1, argA (H15Y) This study N/A 

MG1655: pPtrpL-gfp: F-, lambda-, rph-1, This study N/A 

MG1655: trpE* pPtrpL-gfp: F-, lambda-, rph-1, trpE (S40F) This study N/A 

MG1655: pPthrL-gfp: F-, lambda-, rph-1, This study N/A 

MG1655: thrA* pPthrL-gfp: F-, lambda-, rph-1, thrA (S345F) This study N/A 

MG1655: pPhisL-gfp: F-, lambda-, rph-1, This study N/A 

MG1655: hisG* pPhisL-gfp: F-, lambda-, rph-1, hisG (E271K) This study N/A 

MG1655: pPleuL-gfp: F-, lambda-, rph-1, This study N/A 

MG1655: leuA* pPleuL-gfp: F-, lambda-, rph-1, leuA (G462D) This study N/A 

MG1655: WT-arg: F-, lambda-, rph-1, pNUT1533-argE, pPargA-gfp This study N/A 

MG1655: WT-trpC: F-, lambda-, rph-1, pNUT1533-trpC, pPtrpL-gfp This study N/A 

MG1655: WT + gRNA-hisB: F-, lambda-, rph-1, pgRNA-hisB, pdCas9 This study N/A 

MG1655: WT + gRNA-ctrl: F-, lambda-, rph-1, pgRNA-ctrl, pdCas9 This study N/A 

MG1655: argA*-arg: F-, lambda-, rph-1, argA (H15Y), pNUT1533-argE, 

pPargA-gfp 

This study N/A 

MG1655: WT + CRISPRi-astC: F-, lambda-, rph-1, pgRNA-astC, pdCas9, 

pPargA-gfp 

This study N/A 

MG1655: argA* + CRISPRi-astC: F-, lambda-, rph-1, argA (H15Y), 

pgRNA-astC, pdCas9, pPargA-gfp 

This study N/A 

MG1655: argA*∆argR: F-, lambda-, rph-1, argA(H15Y), ∆argR This study N/A 

MG1655: Wildtype + pargO: F-, lambda-, rph-1, pargO This study N/A 

MG1655: argA* + pargO F-, lambda-, rph-1, argA(H15Y), pargO This study N/A 

MG1655: ∆argR + pargO F-, lambda-, rph-1, ∆argR, pargO This study N/A 

MG1655: argA* ∆argR + pargO (KO-strain): F-, lambda-, rph-1, 

argA(H15Y), ∆argR, pargO 

This study N/A 

MG1655: CRISPRi#7: F-, lambda-, rph-1, argA(H15Y), pCRISPRi-

argR#7, pargO 

This study N/A 

MG1655: CRISPRi#10: F-, lambda-, rph-1, argA(H15Y), pCRISPRi-

argR#10, pargO 

This study N/A 

MG1655: Wildtype CRISPRi-argR#1: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#1 

This study N/A 

MG1655: Wildtype CRISPRi-argR#2: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#2 

This study N/A 

MG1655: Wildtype CRISPRi-argR#3: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#3 

This study N/A 

MG1655: Wildtype CRISPRi-argR#4: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#4 

This study N/A 

MG1655: Wildtype CRISPRi-argR#5: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#5 

This study N/A 

MG1655: Wildtype CRISPRi-argR#6: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#6 

This study N/A 

MG1655: Wildtype CRISPRi-argR#7: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#7 

This study N/A 

MG1655: Wildtype CRISPRi-argR#8: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#8 

This study N/A 

MG1655: Wildtype CRISPRi-argR#9: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#9 

This study N/A 

MG1655: Wildtype CRISPRi-argR#10: F-, lambda-, rph-1, pdCas9, 

pgRNA-argR#10 

This study N/A 
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MG1655: argA* CRISPRi-argR#1: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#1 

This study N/A 

MG1655: argA* CRISPRi-argR#2: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#2 

This study N/A 

MG1655: argA* CRISPRi-argR#3: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#3 

This study N/A 

MG1655: argA* CRISPRi-argR#4: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#4 

This study N/A 

MG1655: argA* CRISPRi-argR#5: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#5 

This study N/A 

MG1655: argA* CRISPRi-argR#6: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#6 

This study N/A 

MG1655: argA* CRISPRi-argR#7: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#7 

This study N/A 

MG1655: argA* CRISPRi-argR#8: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#8 

This study N/A 

MG1655: argA* CRISPRi-argR#9: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#9 

This study N/A 

MG1655: argA* CRISPRi-argR#10: F-, lambda-, rph-1, argA(H15Y) 

pdCas9, pgRNA-argR#10 

This study N/A 

Plasmids 

pKDsgRNA-ack Reisch et al. 201539 Addgene 

plasmid # 62654 

pCas9-CR4 Reisch et al. 201539 Addgene 

plasmid # 62655 

pKDsgRNA-p15 Reisch et al. 201539 Addgene 

plasmid # 62656 

pdCas9 Qi et al. 2013 Addgene 

plasmid # 44249 

pgRNA Qi et al. 2013 Addgene 

plasmid # 44251 

pKDsgRNA-argA(H15Y) This study N/A 

pKDsgRNA-ilvA(L447F) This study N/A 

pKDsgRNA-hisG(E271K) This study N/A 

pKDsgRNA-leuA(G462D) This study N/A 

pKDsgRNA-proB(D107N) This study N/A 

pKDsgRNA-thrA(S345F) This study N/A 

pKDsgRNA-trpE(S40F) This study N/A 

pKDsgRNA-ΔargR This study N/A 

pKDsgRNA-ΔtrpR This study N/A 

pgRNA-hisB This study N/A 

pgRNA-astC This study N/A 

pgRNA-ctrl This study N/A 

pNUT542 Singh et al. 2017  

pNUT1533-ctrl This study N/A 

pNUT1533-argE This study N/A 

pNUT1533-trpA This study N/A 

pNUT1533-trpC This study N/A 

pNUT1533-hisA This study N/A 

pUA66-PargA-gfp: pPargA-gfp Zaslaver et al. 2006 N/A 

pUA66-PtrpL-gfp: pPtrpL-gfp Zaslaver et al. 2006 N/A 

pUA66-PhisL-gfp: pPhisL-gfp Zaslaver et al. 2006 N/A 
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pUA66-PleuL-gfp: pPleuL-gfp Zaslaver et al. 2006 N/A 

pUA66 based plasmid with pPthrA This study pPthrA-gfp 

pgRNA-argR#1 This study N/A 

pgRNA-argR#2 This study N/A 

pgRNA-argR#3 This study N/A 

pgRNA-argR#4 This study N/A 

pgRNA-argR#5 This study N/A 

pgRNA-argR#6 This study N/A 

pgRNA-argR#7 This study N/A 

pgRNA-argR#8 This study N/A 

pgRNA-argR#9 This study N/A 

pgRNA-argR#10 This study N/A 

pCRISPRi-argR#7 This study N/A 

pCRISPRi-argR#10 This study N/A 

pargO This study N/A 

Chemicals, Peptides, and Recombinant Proteins 

Acetonitrile Honeywell Riedel-de Haën Cat#14261-2L 

Methanol VWR Cat#83638.320 

Anhydrotetracycline Sigma-Aldrich Cat#1035708-

25MG 

IPTG Roth Cat#CN08.2 

Ampicillin Roth Cat#K029.2 

Kanamycin Roth Cat#T832.3 

Gentamycin Roth Cat#0233.3 

Spectinomycine Roth Cat# HP66.2 

Critical Commercial Assays 

PierceTM Quantitative Colometric Peptide Assay Thermo Fisher Scientific Cat#23275 

His GraviTrapTM Merck 11-0033-99 

Deposited Data 

kcat-values for enzymes in amino-acid biosynthesis (Table S3) (Schomburg et al., 2014) 

(Davidi and Milo, 2017) 

BRENDA 

doi:10.1016/j.co

pbio.2017.02.00

7 

Amino acid requirement of Escherichia coli (Table S4) (Monk et al., 2017) doi: 

10.1038/nbt.39

56 

Inhibition Constants (Table S5) (Keseler et al. 2017) 

(Schomburg et al., 2014) 

(Gama-Castro et al., 2016) 

EcoCyc 

BRENDA; 

RegulonDB 

Software and Algorithms 

Matlab Version 9.3.0.713579 (R2017b) for the modelling section and 

analysis of experimental data 

mathworks.com  
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