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Zusammenfassung 

Ziel dieser Arbeit war die Entdeckung von Substanzen, die an T. cruzi FPPS (TcFPPS) 

binden und nicht der Stoffklasse der Bisphosphonate angehören. Zu diesem Zwecke wurde reines 

und homogenes TcFPPS durch rekombinante Expression in E. coli Bakterien und anschlieβende 

Aufreinigung mittels IMAC und SEC erhalten (Kapitel 5.1). Darüber hinaus konnte ein 

zuverlässiges, reproduzierbares Kristallisationssystem etabliert werden, das Kristalle mit guten 

Diffraktionseigenschaften liefert. Das System weist ausgezeichnete Eigenschaften für Fragment-

basiertes Screening (FBS) auf, da es mit verschiedenen Kristallisationsplatten kompatibel war und 

Apo-Kristalle lieferte, die bis zu 24 h in 15% DMSO stabil waren und die Aufnahme von 

Datensätzen mit einer Auflösung von etwa 1,6 Å erlaubten. Die höchste erreichte Auflösung für 

einen TcFPPS Kristall lag bei 1,28 Å (PDB ID 6R09). 

Die allosterische Tasche in TcFPPS wurde mittels Sequenzanalyse und struktureller 

Überlagerung verschiedener FPPS Homologe untersucht (Kapitel 5.2). Dabei zeigte sich, dass die 

allosterische Region in FPPS weniger konserviert ist als das aktive Zentrum. Unterschiede 

zwischen Aminosäuren an äquivalenten Positionen, die die allosterische Region bilden, wurden 

festgestellt. Dies ist überraschend, wenn man davon ausgeht, dass dieses Enzym produktinhibiert 

ist, wie für das humane FPPS (hFPPS) gezeigt werden konnte. Ein interessante Beobachtung war, 

dass die Aminosäure Phe50 in TcFPPS eine Ausnahme in einer ansonsten hochkonservierten 

Position ist. Es scheint die Tasche durch sterische Hinderung zu blockieren. Allosterische 

Inhibitoren von hFPPS wiesen zwar Bindungsaffinität zu TcFPPS auf, aber die beiden erhaltenen 

Kristallstrukturen zeigten, dass diese an der Proteinoberfläche binden (Bindungsstelle S1 und S2, 

PDB IDs 6R08 bzw. 6R07). 

Die Novartis Haupt- und Fluor-Fragmentbibliotheken (1336 und 482 Verbindungen) wurden 

auf TcFPPS getestet, was zu 63 bzw. 45 validierten Fragmentbindern führte (Kapitel 5.3). Die 

Durchführung des gleichen Screenings mit T. brucei FPPS (TbFPPS), dem Erreger der 

Afrikanischen Schlafkrankheit, und Gegenkontrolle auf hFPPS zeigte, dass einige Verbindungen 

selektiv an nur eines, oder zwei der Proteine binden. Auffallend war, dass TcFPPS im Allgemeinen 

mehr Binder hatte als TbFPPS, und auch mehr selektive Binder im Vergleich zu TbFPPS. 

Nachfolgende Kristallisationsexperimente mit den Bindern der Haupt-Fragmentbibliothek führten 

zu 3D-Strukturen von zwei TcFPPS-Komplexen. Ein Ligand bindet an die Grenzfläche des 

Homodimers und der andere im aktiven Zentrum. Letzterer wurde mit Hilfe des Tools Pan-Dataset 

Density Analysis (PanDDA) identifiziert. FBS mittels Röntgenkristallographie wurden im XChem 

Labor in Harwell, Großbritannien, und im HTX Labor in Grenoble, Frankreich, durchgeführt 

(Kapitel 5.4). Der XChem-Screen identifizierte 35 Fragmentbinder (PDB IDs 5QPD – Z, 

5QQ0 – 9, 5QQA – B) in Bindungsstellen, die über das gesamte Protein verteilt waren. Dazu 
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gehören das aktive Zentrum, die allosterische Bindungsstelle, die Homodimer-Grenzfläche, 

Bindungsstellen an der Oberfläche und eine neue Tasche in unmittelbarer Nähe des aktiven 

Zentrums. Erstmals wurden Fragmente identifiziert, die an die allosterische Bindungsstelle von 

TcFPPS im offenen Zustand binden. Eine Drehung der Phenyl-Seitenkette von Phe50 führte zur 

Öffnung dieser vorherig geschlossenen Tasche. Der Screen im HTX Labor identifizierte acht 

weitere Fragmentbinder für die aktive und allosterische Tasche.  

Die ersten Optimisierungversuche eines Fragments zu einer Leitstruktur erfolgten mittels 

virtuellem Screening mit dem webbasierten Tool ANCHOR.QUERY. Sie ging von dem 

Fragmentbinder LUY aus (Kapitel 5.5) und mittels Eintopf-Mehrkomponentenreaktionen wurden 

11 Verbindungen synthetisiert (MCR-1 – 11). Allerdings war deren schlechte Löslichkeit in 

nachfolgenden Tests abträglich, und Kristallisationsexperimente führten nicht zu einem 

Strukturmodell eines Komplexes. Danach wurde der Ansatz des Fusionierens der Fragmente 

AWM, LVV, LUY, LDV und AWV für die chemische Optimierung gewählt (Kapitel 5.6). Eine 

Bibliothek von 12 Verbindungen (MCN-1 – 12) wurde durch reduktive Aminierung synthetisiert. 

Kristallstrukturen mit den Verbindungen MCN-1, -4 und -8 zeigten unerwartete Bindungsmodi. 

Anstatt an der Bindungsstelle der Ausgangsfragmente, binden die fusionierten Substanzen an die 

auf der Proteinoberfläche befindliche Bindungsstelle S1 (PDB IDs 6R09, 6R0A, 6R0B).  

Die 50 neuen Kristallstrukturen von TcFPPS-Fragment Komplexen, die in dieser Arbeit 

beschrieben sind, werden neue Impulse für die Medikamentenentwicklung für CD geben. Die 

große Vielfalt der chemischen Strukturen der Fragmente und die unterschiedlichen 

Bindungsstellen sind potenzielle Ansatzpunkte für Inhibitoren mit unterschiedlichen 

physikalisch-chemischen Eigenschaften und einer neuartigen Wirkungsweise, die helfen könnten, 

die mit den Bisphosphonaten verknüpften Einschränkungen zu überwinden. 
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Summary 

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas disease (CD), which mostly 

affects underprivileged populations in South and Central America. The current standard of care for 

this disease are the two empirically discovered drugs benznidazole and nifurtimox. They show low 

efficacy, difficulties in administration and severe side effects. Moreover, there are T. cruzi strains 

that have formed resistances. Thus, the development of a safe and efficient drug is urgently needed. 

T. cruzi is dependent on isoprenoid biosynthesis as ergosterol and other 24-alkylsterols are essential 

metabolites that cannot be acquired by other mechanisms. Therefore, it was hypothesised that 

enzymes along this pathway are promising drug targets. A number of compounds targeting these 

enzymes were tested and have been shown to inhibit parasite growth. Among those enzymes is 

farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the isoprenoid pathway, 

which is in the focus of this work. It catalyses the synthesis of farnesyl pyrophosphate (FPP), a 

C15 building block in sterol biosynthesis and in protein prenylation of signalling proteins. 

Bisphosphonates (BPs) are known active site-directed FPPS inhibitors, which exhibit ideal 

pharmacokinetics to target bone mineral and are used to treat bone diseases. BPs can also combat 

T. cruzi flagellates but are not ideal to treat CD due to their pharmacokinetics. In the search for 

new chemotypes, several non-BP inhibitors that bind to another pocket were found for human FPPS 

(hFPPS) by fragment based screening (FBS). Recently, it was shown that the product of FPPS, 

farnesyl pyrophosphate (FPP), can bind to this pocket and locks the enzyme in an open and inactive 

state, thus showing the allosteric character of this pocket.  

The current work aims at the discovery of non-BP inhibitors of T. cruzi FPPS (TcFPPS), 

which could be starting points for the development of a treatment against CD. Towards this goal, 

recombinant expression in E. coli cells and purification by means of IMAC and SEC yielded pure 

und homogenous TcFPPS (chapter 5.1). This includes unlabelled, 13C15N-labelled and in vivo 

biotinylated avi-tagged TcFPPS. Furthermore, a novel, reliable, highly reproducible, and 

well-diffracting crystallization system was established. The system exhibits excellent properties 

for FBS as it was compatible with different types of 96-well plates. Apo crystals were stable for up 

to 24 h in 15% DMSO and allowed collection of data sets with a diffraction limit of around 1.6 Å. 

The best achieved diffraction limit was 1.28 Å for a soaked TcFPPS crystal (PDB ID 6R09). 

The allosteric region in TcFPPS was investigated by means of sequence analysis and 

structural superimposition of various orthologous FPPSs (chapter 5.2). This revealed that the 

allosteric region is less conserved than the active site. Differences among residues in equivalent 

positions that form the allosteric site were observed, which is surprising if it is assumed that all 

FPPSs can be product inhibited as hFPPS. A remarkable finding is that residue Phe50 in TcFPPS 

is an exception in an otherwise highly conserved position. It causes steric hindrance of the pocket 
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in TcFPPS. An attempt to reposition established allosteric inhibitors of hFPPS showed binding 

affinity to TcFPPS but the two obtained crystal structures demonstrated their binding to sites on 

the protein surface (sites S1 and S2, PDB IDs 6R08 and 6R07, respectively). 

The Novartis core and fluorine library (1336 and 482 compounds) were screened on 

TcFPPS, which resulted in 63 and 45 validated fragment hits, respectively (chapter 5.3). 

Performing the same screen with T. brucei FPPS (TbFPPS), the causative agent of African sleeping 

sickness, and counter screening on hFPPS led to unique, pairwise and triple binders demonstrating 

selectivity at the early stage of FBS. Strikingly, TcFPPS has generally more binders than TbFPPS, 

and TcFPPS has many unique hits when compared to TbFPPS. Subsequent crystallization 

experiments with the core library hits resulted in 3D structures of two TcFPPS complexes. One 

ligand binds to the homodimer interface (site S12) and the other one in the active site. The latter 

was identified by using the statistical analysis tool Pan-Dataset Density Analysis (PanDDA). FBS 

by X-ray crystallography at the XChem facility in Harwell, UK, and the HTXlab in Grenoble, 

France, were conducted (chapter 5.4). The XChem screen identified 35 fragment binders (PDB IDs 

5QPD – Z, 5QQ0 – 9, 5QQA – C) in binding sites that were distributed over the entire protein. 

This includes the active site, the allosteric site, the homodimer interface, sites on the surface and a 

new site in close proximity to the active site. Strikingly, the first two fragments binding to the 

allosteric site of TcFPPS in its open state were identified. Rotation of the phenyl side chain of 

Phe50 led to opening of the former closed pocket. The HTXlab screen identified additional binders 

for the active and allosteric site. In total 1244 data sets were collected and analysed. This process 

was accelerated using PanDDA. 

The first fragment-to-lead optimization by means of virtual screening using the web-based 

platform ANCHOR.QUERY was based on fragment hit LUY (chapter 5.5). Compounds were 

synthesised using one-pot one-step multi-component reactions. Synthesis of 11 compounds 

(MCR-1 – 11) was successful, but poor solubility was detrimental in subsequent testing on 

TcFPPS and crystallization experiments did not lead to a structural model of a complex. A second 

fragment-to-lead optimization using a fragment merging approach for chemical optimization was 

based on the active site-directed binders AWM, LVV, LUY, LDV and AWV (chapter 5.6). 

A library of 12 compounds (MCN-1 – 12) was synthesised by reductive amination. X-ray 

structures revealed unexpected binding modes for compounds MCN-1, -4 and -8. Instead of 

retaining the binding site of the fragment, the merged compounds bind to the surface-directed 

binding site S1 (PDB IDs 6R09, 6R0A, 6R0B). Nevertheless, the 50 new crystal structures of 

TcFPPS-fragment complexes discussed in this work will pave the way for future drug discovery 

campaigns for CD. The large diversity of the fragments’ scaffolds and different binding sites are 

potential starting points for inhibitors with different physicochemical properties and a novel mode 

of action that might help to overcome the limitations related to the BP scaffold.  
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1. Introduction 

1.1 Chagas disease 

Chagas disease (CD) or American trypanosomiasis is a vector-borne disease caused by the 

parasite Trypanosoma cruzi (T. cruzi), a parasite that affects mostly underprivileged populations 

in Southern and Central America[1]. CD is one of 17 neglected diseases listed by the World Health 

Organisation (WHO)[2]. According to the WHO, six to seven million people are infected all over 

the world and more than 70 million people are at risk to get infected. Around 10.000 people die 

every year because of complications linked to this disease[2-3]. In Latin America, CD is a major 

public health burden[4] associated with the loss of approx. 546.000 disability-adjusted life-years 

(DALYs)[5]. This results in an estimated economic burden of more than seven billion dollar per 

year[6]. Countries outside Latin America account for an estimated 4.2% of DALYs and, 

disproportionately, for 21% of health care costs related to CD[5b]. In the last decades, public health 

programs significantly reduced the prevalence of CD through vector control programs, 

improvement of rural housing quality, better screening programs, and access to diagnostics and 

treatment. Nevertheless, CD remains the most prevalent parasitic disease in the Americas[4, 7].  

CD has been present in a sylvatic cycle in America for over 10 million years before the 

arrival of man[8]. Around 10.000 years ago it became an anthropozoonosis, meaning it primarily 

affected animals, but was also transmitted to humans in the context of agricultural activity and the 

domestication of animals[9]. Due to progressive deforestation and a concomitant decrease of wild 

animal populations, triatomine bugs, which are vectors of T. cruzi, lost their main food source. 

Thus, CD turned into an endemic zoonosis approx. 200 to 300 years ago[9b, 10]. In 1909, 

Carlos Chagas first described CD in humans and named T. cruzi as causative agent and triatomine 

bugs as its main vector[1b, 1c, 11]. In 1912, Emile Brumpt described the mode of natural transmission 

of the infection via the feces of the bug[12].  

Today, medication is based on two empirically discovered drugs, benznidazole and 

nifurtimox, which have limitations such as low efficacy in the chronic stage in adults, difficulties 

in administration, severe side effects and ineffectiveness in resistant T. cruzi strains[2, 13]. Thus, an 

effective drug as a reliable cure is lacking and there is no vaccine for disease prevention either[14]. 

In consequence, there is a continuing and compelling need for new drugs for a safe and efficacious 

anti-Chagas treatment[15].  
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1.1.1 Trypanosoma cruzi 

There are more than 150 species of blood-sucking bugs[16]. The most relevant vectors of 

CD are the genus Triatoma, known as kissing bug, (T. infestans, T. brasiliensis), Rhodnius 

(R. prolixus) and Panstrongylus (P. megistus). It is mostly assumed that the occurrence of suitable 

vector species is limited to Southern and Central America[17]. The parasite T. cruzi is a 

homoflagellate protozoan of the order Kinetoplastida and family Trypanosomatidae[1c, 18]. There 

are numerous strains that show phenotypic and genetic diversity and are divided into seven discrete 

typing units (DTUs), TcI to TcVI and Tcbat[19]. Some strains are of higher clinical significance 

than others, which is due to variations in drug susceptibility[20], virulence strength[21], and the 

availability to invade host tissues[22]
. Strains can be classified by a typing assay identifying key 

discriminant single nucleotide polymorphisms (SNPs)[23]. 

T. cruzi has the ability to infect and replicate in various tissue types of its host, including 

cardiac muscle cells, smooth muscle cells, skeletal muscle cells, neurons, macrophages, and 

dendritic cells[22, 24]. The parasite has a life cycle with four phases that occur in its insect vector and 

in the mammalian host: (1) Replicative but non-infectious epimastigotes are found in the vector’s 

digestive tract. (2) Epimastigotes differentiate into the metacyclic trypomastigotes form and are 

subsequently transferred to the mammalian host via contamination of the bite wound with the bug’s 

feces. (3) Trypomastigotes invade host cells and further differentiate into intracellularly replicative 

amastigotes. (4) Amastigotes differentiate back into trypomastigotes, which invade neighbouring 

cells after host cell disruption[18, 25]. The cycle is completed when blood-borne trypomastigotes are 

ingested by a triatomine bug[25b] (Figure 1).  

In vitro studies have shown that infectious trypomastigotes actively attach to and invade 

mammalian host cells within 5 to 10 min after infection, forming a parasitophorous vacuole[22, 26]. 

After 1 to 2 h the trypomastigote escapes this vacuole and differentiates into a replicative 

amastigote in the host cell cytoplasm[26]. After 5 to 6 d and several replication cycles, amastigotes 

occupy most of the cell volume, transform to trypomastigotes and rupture the host cell[27]. During 

this process, T. cruzi excretes proteins, such as cruzain, P21, phospholipase A and other soluble 

factors[25a] for protection against the host’s immune response and promotion of its own adhesion, 

recognition and invasion mechanisms by manipulating the host cell signalling pathways[25a, 28]. 

Complexity and timing of the T. cruzi life cycle in mammalian host cells are important 

factors in cell-based screening experiments where parasite growth is quantified in co-culture with 

mammalian host cells[24]. Since the amastigote stage is the replicative form in the mammalian 

host[1a] it is the preferred parasitic target stage in cell-based assays[29]. Zingales et al.[30] recommend 

to validate promising drug candidates for broad activity against each DTU in secondary screens. 



 

3 

 

Figure 1:  Life cycle of T. cruzi. Reprinted from Perez-Molina et al.[31] with permission from Elsevier.  

1.1.2 Infection 

In endemic regions, mainly in rural areas, natural vectorial transmission of T. cruzi via 

triatomine bugs takes place in the course of the bug’s nocturnal blood meal[4]. Infected triatomines 
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often excrete feces contaminated with parasites next to the bite wound[4]. By unintentional 

scratching of the itching bite site the parasites enter the wound or near mucosal surfaces[32]. Other 

infection routes are food born infection[6], congenital transfusion from mother to child[33], 

transfusion of contaminated blood or transplantation of organs[34] and accidental contact in 

laboratories[35].  

Food born infection occurs by ingestion of food or beverages contaminated with 

trypomastigotes in sylvatic and rural environments[6, 36]. Food contaminations occur through whole 

triatomine insects and their feces, or via feces of other vertebrates such as dogs, cats, bats, rats and 

armadillos[6, 36-37]. Taken together, these vectors still play a crucial role in orally transmitted CD, 

which often manifests with particularly severe symptoms due to high initial parasite loads[38]. Food 

preparation techniques such as drying[39] and heating[40] inactivates trypomastigotes, however, 

refrigeration and freezing[41] show little destructive effects. Vertical transmission from mother to 

child is becoming a more prominent infection route representing rates of up to one third of new 

infections[42]. Therefore, screening of pregnant women is critical to prevent disease prevalence[17, 

33, 43]. Infected newborns show high parasite loads in their blood, which allows relatively easy 

diagnosis[17, 44]. Another notable transmission route is the infection after transfusion of 

contaminated blood or transplantation of organs with persistent parasites[34]. Chemical sterilization 

of blood samples in endemic regions with gentian violet[34a] prevented transmission, but proved 

unacceptable due to purplish skin staining of transfusion patients[45]. Therefore, prevention of this 

route is achieved by better control of donors with serological screening[45].  

1.1.3 Disease stages 

After initial infection and an incubation period of 5 d to 40 d, the disease starts with the 

acute phase[4, 17]. While mostly asymptomatic and undetected in adults, children and a small subset 

of adults exhibit fever, headache, decreased appetite, swollen lymph nodes, and show the Romaña 

sign (swollen eyelid) or a Chagoma (swollen bite wound) (Figure 1)[1a, 17]. Around 5% of acutely 

infected patients, again mostly children, die of acute myocarditis (inflammation of the heart 

muscle) or meningoencephalitis (inflammation of the brain)[1a, 14].  

If the patient is left untreated, the acute phase is followed by an intermediate phase that 

lasts for 20 to 30 years[1a]. It is an asymptomatic phase, with no physical signs of disease[14]. Despite 

pathogen persistence, the levels of parasites in the blood are close to the detection limit, therefore 

making parasitaemia difficult to diagnose. About 70% of intermediate CD patients either clear the 

infection or just remain asymptomatic for the rest of their lives[1a].  

The remaining 30% develop clinical symptoms and become chronic CD patients. They 

experience irreversible damage to cardiac and gut tissues leading to abnormal heart rate, cardiac 

arrest, damage of the nervous system, and digestive tract lesions[1a, 14]. It was initially hypothesized 
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that the organ damage is caused by an autoimmune response[46], however, it was later stated to be 

a consequence of the inflammatory response triggered by parasite persistence in the patient[47]. 

Accordingly, T. cruzi pathology is related to its presence in muscle tissue during the chronic stage 

of the disease[1a]. The four most frequent and severe clinical manifestations are Chagastic 

cardiomyopathy, stroke, and megaoesophagus which are characterized by abnormal enlargement 

of the heart chambers, the colon and oesophagus, respectively (Figure 1)[1a, 15a, 17, 48]. In 

consequence, heart failure and failure of the gastrointestinal tract function are the most common 

causes of death[1a]. Despite ongoing efforts, the underlying mechanism that determines which 

patients develop chronic CD and which patients remain asymptotic are poorly understood[49]. 

Finally, patients undergoing immunosuppressive therapy or immunocompromised individuals, 

such as HIV patients, are at higher risk to experience reactivation of T. cruzi parasites[36, 50].  

1.2 Diagnosis 

The most appropriate diagnostic strategy depends on the clinical stage of CD[17]. During 

the acute phase[51], after congenital infection[52], and after transfusion transmission[53], parasite loads 

in the blood are high and trypomastigotes can be observed in peripheral blood smears under the 

microscope. The second often applied and much more sensitive method is the polymerase chain 

reaction (PCR) which assesses the presence of T. cruzi DNA in peripheral blood[54]. During the 

intermediate and chronic phase the levels of parasites in the blood are below the detection limit, 

therefore making parasitaemia difficult to diagnose. Even PCR can lead to false-negative results[55]. 

Verification of antibodies against T. cruzi in the host’s blood by use of trypomastigote excreted-

secreted antigens based Western blot analysis (TESA-WB) is an alternative option at this stages of 

disease[56]. It is recommended to use at least two different serological test methods to confirm a 

positive diagnosis because the rates of false-positive tests are high[4].  

Chemotherapy with benznidazole or nifurtimox reduces the parasite load below the 

detection limit making it difficult to determine treatment success or to attest cure[1a]. Microscopic 

quantification of parasitaemia provides a measure of parasite suppression, but is not sufficient to 

prove parasitological cure, as parasites can circulate at low levels in the blood or remain present in 

tissues[29, 57]. Parasitological tests are more sensitive but cannot guarantee a cure either. Among 

them are the aforementioned PCR and xenodiagnosis, in which the feces of previously uninfected 

bugs is analysed after they had been allowed to take a blood meal, and microscopy after a long 

term blood culture[29, 58]. Further conventional serological tests, such as enzyme-linked 

immunosorbent assay (ELISA), indirect immunofluorescence (IIF) and indirect hemagglutination 

assay (IHA) exist and are available for diagnosis[58-59].  
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Currently, new tests are under development. Parasitic persistence was assessed by 

simultaneous profiling of several T. cruzi antigens[60] and lately it was shown that the response of 

the single antibody AB3 is sufficient[61]. Apo lipoprotein A1 and fibronectin fragments were 

identified as potential markers predictive of cure[62]. In mice the most sensitive measure of cure 

after a completed drug treatment is obtained by a subsequent immunosuppressive therapy that 

causes a parasitaemia rebound, which can be detected by microscopy[63], blood culture[64] or PCR[64-

65]. Further research on reliable early diagnostic tools and techniques to determine therapeutic 

responses and evidence of cure are required. The identification of biomarkers to determine parasite 

clearance versus parasite persistence would allow to dramatically improve the treatment of patients 

and to evaluate new drugs to fight CD[7c, 37, 62, 66]. 

1.2.1 Medication and vaccines 

The ultimate goal of CD chemotherapy is to prevent disease manifestation. Whether this 

requires complete parasitological cure is unknown. For chronic patients, chemotherapy should 

prevent disease progression or reverse symptoms[24]. These requirements are partially met by 

benznidazole (BNZ) (1) and nifurtimox (NFX) (2) (Figure 2), the only available trypanocidal 

drugs which have been empirically introduced into clinical therapy in the 1970s and 1960s, 

respectively[67]. BNZ (Abarax®, former Rochagan®) was developed by HOFFMANN-LA ROCHE and 

is now produced by ELEA[68]. NFX (Lampit®) was developed by Bayer. They provide the drug that 

can be requested from the WHO[68].  

 

 

Figure 2:  Chemical structure of BNZ (1) and NFX (2). Key scaffolds are highlighted with a box. 

Both drugs are activated by type I nitroreductase followed by free-radical formation 

overwhelming the antioxidant capabilities of T. cruzi, as well as by the activity of the formed 

reduction intermediates which lead to lethal DNA strand breaks[13a, 69]. BNZ has the better safety 

and efficacy profile and is therefore used as first choice treatment[69a]. Long-term regimes with high 

dosages are required for an effective treatment[69b]. Treatment regimens suggest 5 to 7 mg · kg-1 per 

day of BNZ divided in two doses for adults for 60 days or 8 to 10 mg · kg-1 per day of NFX divided 

in three doses for 90 days[70]. Multiple doses are needed per day, as both drugs are rapidly 

metabolized by the cytochrome P450 system[71]. Severe side effects often prompt the 
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discontinuation of the treatment[69b]. The toxic effect of BNZ and NFX is associated with their 

chemical features. Both pharmaceuticals belong to the class of nitroaromatic drugs, which are 

known for chemistry-driven liver damage causing hepatitis (inflammation of the liver)[72]. Other 

side effects include dermatitis (inflammation of the skin), digestive intolerance (vomiting, 

anorexia), and peripheral neuropathy (damage to peripheral nerves)[73]. In addition, both 

compounds exhibit mutagenic properties[73]. These side effects often result in low patient 

compliance, specifically in intermediate phase patients which are usually symptom free[24, 74]. 

Nevertheless, treatment in the acute phase shows good efficacy in children, but limited 

efficacy in adults[68b]. Treatment success of chronic CD ranges from 20 to 50%[74-75]. The effect in 

advanced chronic patients is low[73a, 76] and efficacy is difficult to assess, since the patient groups 

vary in age distribution, length of CD manifestation and often suffer from additional diseases[75]. 

However, there is evidence that chronic patients treated with BNZ benefit from decrease in parasite 

levels and therefore medication is recommended [73a, 77]. The reasons for failure of treatment have 

not yet been fully explained, however, different evaluation methods, incomplete treatment, variable 

virulence among T. cruzi strains and differences between host’s immune system are contributing 

factors[68b].  

New therapeutic treatments are needed, not only to reduce side effects and toxicity but also 

because various T. cruzi strains show variable susceptibility to BNZ and NFX[68b, 69b]. The 

Colombian strain for example is highly resistant against both drugs[78]. T. cruzi strains with natural 

resistance against BNZ were shown to overexpress an ABCG-transporter gene that conveys drug 

resistance[79], but also type I nitroreductase and additional mechanisms play a role in 

drug-resistance[80]. 

To date, vaccines against CD are not available, however, preventive and therapeutic 

vaccines are currently being developed[81]. The recombinant antigens Tc24 and TSA-1 showed 

promising results in mice[81]. Recently, they have been tested by Villanueva-Lizama et al.[14] in a 

small group of infected humans (n = 20) and healthy volunteers (n = 19). Indeed, both antigens 

triggered a secondary immune response in Chagastic patients. According to the authors, a 

therapeutic vaccine aimed at preventing or delaying the development of chronic CD would be an 

alternative or complement to current drug treatment[14]. 

1.2.2 Control strategies 

Public health programs for vector control significantly reduced the prevalence of CD in 

the last decades[4, 7c]. However, CD control is highly heterogeneous between and within regions 

and countries and it is not eradicable at all because T. cruzi is also present in many different 

mammals[82]. Chemical vector control is a powerful way to reduce CD prevalence[83]. Spraying 

rural housings and the surrounding areas with insecticides by professional sprayers led to reduction 
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of triatomine bugs and thus reduction of transmission[68d, 83]. Among them was T. infestans, one of 

the main vectors in South America[84]. As a consequence, vectorial disease transmission was pushed 

back[83]. Some species developed insecticide resistance which is of growing concern today. An 

example is pyrethroid[85] and organophosphate[86] insecticide resistance of T. infestans reported for 

Argentina and Bolivia in the late 1990s. Mougabure-Cueto and Picollo[83] summarized the 

evolution of many different resistances. They reported on varying resistance profiles and 

mechanisms between resistant foci, suggesting an independent origin. Due to insecticide 

resistances, triatomines were observed after spraying with insecticides and the success of spraying 

campaigns was diminishing[83]. To control resistant foci, other known insecticides can be used for 

a while, but investigations on new insecticides will also be necessary[83].  

One more control tool to mitigate the consequences of pesticide resistances is the 

improvement of rural housings to minimize colonization by triatomines, and thus minimizing 

human-triatomine interactions and reducing vector-borne transmission of CD[83]. In this context, 

initiatives to improve housing of the WHO and Pan American Health Organization (PAHO) have 

led to significant improvements[7b].  

1.2.3 Chagas disease in non-endemic countries 

Due to increasing migration flows and travelling, CD became a global health threat in 

non-endemic areas[17, 68d, 82]. This includes Europe, the US, Canada, Asia and Australia[17, 68d, 74, 87]. 

The relevant mechanisms for transmission in non-endemic countries are congenital transmission 

from mother to child[52], blood transfusion and organ transplantation[34c, 53].  

Around 3.5 million Latin American immigrants live in Europe, mainly in Spain, Italy, 

France, the UK and Switzerland[17]. Approximating the number of Chagastic patients in Europe is 

difficult and estimates of CD prevalence vary widely due to different methodological 

approaches[17]. These problems are further exacerbated by qualitatively poor prevalence data from 

endemic regions[88]. Although only 4.290 cases have been confirmed in Europe, Bazile et al.[89] 

estimated that approx. 100.000 people are disease carriers.  

European countries lack federal screening programs, therefore, tests are rare, by far not 

exhaustive or even not consistent[17, 90]. According to Requena-Mèndez et al.[91], testing 

Latin-American migrants for CD would be cost-effective and should be supported. The 

identification of CD infection in pregnant women is a major challenge for the prevention and 

control of CD in non-endemic countries[90]. Some countries have reference centres, but apart from 

that access to diagnosis and treatment is often low[17]. That is at least in part because physicians are 

rarely confronted with CD and lack expertise to accurately diagnose symptoms[17, 88a]. As a first 

step to improve the patients’ situation, physicians need to be trained to recognize and treat 
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CD[17, 88a]. BNZ and NFX are classified as essential drugs by the WHO but are not registered in 

Europe and the US due to their severe side effects[1a, 17, 87a].  

In the US CD became a major concern not only due to migration, but also due to the spread 

of triatomine vectors[70, 92]. They were first described in South Texas in the 1930s[93] and in 

consequence vectorial transmission takes place[94]. Hotez et al.[93] name human migration, poverty, 

climate change, transborder traffic, sea transportation, among others as major external factors 

driving neglected diseases in Texas.  

1.3 Drug discovery landscape against Chagas disease 

Neglected diseases (NDs), such as CD, account for approx. 11% of the global disease 

burden[95], however, only 1.3% (21) of the drugs launched between 1975 and 2004 were for their 

treatment[96]. Thus, the resource investment is disproportionate to the disease burden[15b]. Usually, 

the discovery of novel therapeutics against NDs is driven by academia and non-profit organizations 

as the market for such drugs is not of financial interest to pharmaceutical companies[24]. In 

consequence, the public sector and non-profit organizations finance 90% of resources invested in 

research on NDs[15b, 97]. Within the last two decades, CD emerged in non-endemic countries, 

therefore triggering research interest in the US and in European countries[37]. Several public-private 

partnerships and initiatives, such as Global Health Innovative Technology (GHIT), the 

Bill & Melinda Gates Foundation and Drugs for Neglected Disease initiative (DNDi) were 

launched and became a driving force behind drug discovery for CD[7c, 98]. 

Ongoing efforts in drug research for CD include improvement of current treatments, label 

extension of drugs in clinical use, drug repositioning, and de novo drug discovery applied to 

phenotypic or target-based screening[7c, 37, 68d, 99]. Drug repositioning, also known as piggy-back or 

target hopping, in which well-known inhibitors against related targets and thus takes advantage of 

a former drug development process[15b, 100]. Several computational methods are available for drug 

repositioning that can either look for potential targets for a known drug or for potential drugs for a 

specific target[100]. Drug repositioning is inexpensive and saves resources and is thus increasingly 

used to discover novel drug candidates for NDs[101]. Drug discovery by a phenotypic approach 

examines the manifestation of parasitic infection without knowledge of the mechanism of action 

and hence the anti-parasitic activity, membrane permeability and host cell toxicity are directly 

tested[102]. In contrast, a target approach relies on a validated target, such as an enzyme that is 

essential in a metabolic pathway[103]. In this approach, differences in pathways, signalling cascades, 

and protein homologues between the protozoan parasite and the mammalian host are exploited to 

achieve drug selectivity[67, 104]. 
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A compound for CD chemotherapy first needs to cross the cell membrane of infected 

mammalian cells and secondly move through the cytoplasm to cross the membrane of 

amastigotes[104]. Unfortunately, parasite-host interactions, variability of T. cruzi strains, and disease 

progression are not fully understood to date[98]. Nevertheless, a target product profile (TPP) for CD 

was published by the DNDi[105] in 2006 and is constantly updated[24, 106]. It guides the efforts 

towards a curative drug acting by a trypanocidal mechanism[7c, 24, 106b]. The TPP dictates hit and 

lead criteria for in vitro and in vivo testing and adherence to the rules of Lipinski[107] and Veber[108], 

in order to increase the probability of good bioavailability when administered orally. Minimal side 

effects and low drug-drug interactions are required for better patient compliance. Despite these 

advances, minimal requirements for in vitro and in vivo screening strategies are poorly defined, 

which ultimately leads to poor chances to translate from model systems into clinical trials[7c]. This 

issue is further exacerbated by the fact that the experimentalists than run clinical trials utilizing 

diverse experimental models and definitions to rate success of curation. As a result clinical data 

suffer from poor comparability and require careful evaluation[7c]. Current research advances in drug 

discovery on CD are described in the next chapters and an overview of review articles is given in 

Table 27 in the Appendix.  

1.3.1 Clinical trials 

Currently three new drug candidates are tested for chemotherapy of CD. Two of them are 

the repositioned anti-fungal azoles, posaconazole (3) (Noxafil®, Schering Plough)[109] and the 

water-soluble prodrug E1224 (4) (Eisai, Bristol-Myers Squibb)[110] (Figure 3). They are potent 

inhibitors of sterol 14α-demethylase (CYP51) and block downstream ergosterol biosynthesis, 

which is essential for the parasite[111]. Posaconazole showed promising results in a patient[111c, 112] 

but it exhibited lower efficacy in the phase II clinical trials CHAGASAZOL (NCT01162967)[113] 

and STOP-CHAGAS (NCT01377480)[114] when compared to BNZ controls[113-115]. Unfortunately, 

similar results were found in the phase II clinical trial of E1224 (NCT01489228)[99a, 116]. Therefore, 

both azoles are inadequate as monotherapies[116], however, combination therapies of posaconazole 

or E1224 with BNZ are currently tested[99a]. E1224-BNZ combination showed promising results in 

mice[117] and the phase II clinical trial BENDITA (NCT03378661)[118] started recently. Based on 

these preliminary results it seems likely that combination chemotherapy may play a role in future 

treatment regimens against CD[111a, 119]. The use of additive or synergistic activity of drug 

combinations may result in higher activity, reduced dosages as well as a decreased incidence of 

drug resistance[120]. The third candidate, fexinidazole (5), is a nitroimidazole with antiprotozoal 

effect, and currently tested in clinical trials (Figure 3). It was initially described five decades ago 

and the DNDi successfully rediscovered the substance to treat African sleeping sickness as is 

supported by phase III studies[121]. Fexinidazole was already tested against T. cruzi in 1983[122] and 
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was shown to affect BNZ-resistant T. cruzi strains and to reduce the severity of myocarditis in 

2012[123]. Recently, the DNDi initiated two proof of concept studies to evaluate fexinidazole for 

the treatment of adult patients with CD (NCT02498782, NCT03587766)[124].  

 

 

Figure 3:  Chemical structures of compounds currently investigated in clinical trials. Posaconazole (3), prodrug 

E1224 (4) and fexinidazole (5) (key scaffolds are highlighted with a box). 

Despite these novel approaches, most of the 58 clinical trials on CD investigate 

optimization of treatment regimens for BNZ and NFX or focus on the treatment of clinical 

symptoms of chronic CD[99a]. This includes paediatric formulations, new dosage schemes for 

chronic CD in adults[7c, 99a], diagnostic methodologies[125], and treatment options in Chagastic 

cardiomyopathy[73a]. The phase III clinical trials of BENEFIT (NCT00123916)[73a, 126] and 

TRAENA (NCT02386358)[127] showed that BNZ treatment is highly beneficial in chronic CD[77, 

128]. The beta-blocker carvedilol (phase IV, NCT01557140)[129] and bisoprolol (phase III, 

CHARITY, NCT00323973)[130] were successfully tested for the treatment of chronic CD 

symptoms. Novartis announced to start a clinical trial in 2019 to assess the efficacy and safety of 

their cardiac drug Entresto® against Chagastic cardiomyopathy[131].  

1.3.2 Phenotypic approach 

The full T. cruzi genome was published in 2005[132], which enabled the generation of 

transgenic T. cruzi parasites that express well-established reporter proteins, such as 

β-galactosidase[133], tandem tomato fluorescence protein[134] or the firefly luciferase protein[29]. By 

extension the transgenic parasites enzyme activity, is detected by absorption measurements or by 

imaging after addition of colorimetric and luminescent substrates[75, 135]. Thus, reliable and robust 

phenotypic in vitro assays could be developed[15a, 68d] that are suitable for high-throughput screening 
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(HTS)[75], as well as high-content screening (HCS)[136]. Although these strains cannot cover the full 

extent of the T. cruzi genetic background[15a], they are highly valuable and behave biologically very 

similar to their wild-type counterparts[29, 133]. In contrast, the read out of tests that use different life 

stages of T. cruzi showed significant differences that have to be considered[20b]. Often intracellular 

amastigotes are targeted[29, 133, 137] as they are the replicative form in the mammalian host[1a]. 

Transgenic parasites also resulted in faster, more accurate, and more animal-friendly in vivo assays 

in mice, the predominant animal model for CD[138]. The severity of mice infected with transgenic 

parasites can quickly be monitored by detecting light through the skin after injection of 

luciferin[29, 135, 138b].  

In consequence of to the aforementioned innovations and validation of HCS for T. cruzi in 

2010[139], image-based HTS[137, 140] and HCS[15a, 141] identified a large number of clinically approved 

drugs that showed activity against T. cruzi[102, 140b]. In a subsequent process, which is called target 

deconvolution, molecular targets and mechanisms of actions were sought by applying target-based 

screening, genomics, proteomics, metabolomics studies of drug resistant strains and drug affinity 

responsive target stability (DARTS)[142]. In this context many hits were associated with sterol 

14α-demethylase (CYP51) inhibition[67, 143].  

Recent HCS campaigns led to a series of xanthines, such as GNF5689 (6)[141b] and 

5-amino-1,2,3-triazole-4-carboxamide derivatives (7)[144] which employ an unknown mode of 

action (Figure 4). HCS, subsequent target identification and optimization revealed highly potent 

and selective kinetoplastid proteasome inhibitors with a triazolopyrimidine core, such as 

GNF3849 (8)[145], with an EC50 of 16 nM (Figure 4). Thiazoles, such as compound 9, have 

emerged from the scaffold of NFX, which have effects similar to BNZ and were non-mutagenic[146]. 

The benzothiazole 10 was discovered by drug repurposing, screening the Open Access Malaria 

Box[147], but was not further developed due to low plasma drug concentrations[99a, 101b]. More 

promising was compound 11, a quinoline and derivative of lapatinib, a drug used in lung cancer 

treatment[99a, 148] (Figure 4). Also BNZ derivatives with retained aromatic nitro group, such as 

indazole 12[149], 1,2,3-triazole 13[150], and 1,2,4-tirazole 14[151] (Figure 4) were developed. 

Silva et al.[151] showed that the absence of the nitro group strongly decreases biological activity 

(compound 15, Figure 4). Ursolic acid (16) showed good in vitro and in vivo results[152] and 

recently a new formulation, applying nanoemulsion for oral intake, was developed[153] (Figure 4). 

Arylimidamides, such as DB766 (17), showed promising results against intracellular parasites and 

were also successfully tested against T. cruzi in 2018 (Figure 4)[154], however, some of them were 

toxic in mice[155].  
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Figure 4:  Chemical structures of the novel compounds active against T. cruzi. Key scaffolds are highlighted with 

a box. GNF5689 (6), 5-amino-1,2,3-triazole-4-carbocamide (7), GNF3849 (8), thiazole derivative 9, 

benzothiazole derivative 10 and quinoline derivative 11. BNZ derivatives: indazole 12, 1,2,3-triazole 13, 

1,2,4-tirazole 14, triazole without nitro group (15), ursolic acid (16) and arylimidamide DB766 (17). 

1.3.3 Target approach – focus on isoprenoid and sterol biosynthesis 

The elucidation of the T. cruzi genome sequence[132] enabled target-based drug discovery 

since it made all potential drug targets accessible for recombinant expression. Currently a large 

number of targets, for many of which a structure has been deposited in the PDB[100], and inhibitors 

of various chemotypes are studied for further development of new anti-Chagastic drugs[99a]. One of 

the pathways under investigation is ergosterol biosynthesis, which includes the mevalonate and 

isoprenoid pathway[111c, 156]. It is specific in kinetoplastids[156b] and according to genetic 

profiling[157], it is well understood in T. cruzi. Trypanosomes and humans have many isoprenoid 

and sterol precursors in common, but key steps differ: T. cruzi epimastigotes and amastigotes 

synthesise ergosterol and 24-alkylsterols, respectively, whereas humans produce cholesterol[157-158]. 

Epimastigotes and amastigotes cannot survive on assimilated cholesterol from their host[111d] and 
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blocking the pathway leads to depletion and lack of sterols resulting in changes of lipid bilayer 

integrity and hindrance of proliferation, therefore causing parasite death[156c, 159]. The in vitro and 

in vivo susceptibility to ergosterol biosynthesis inhibitors was demonstrated for several steps of the 

pathway, making these enzymes potential drug targets[13c, 156b] (Table 1, Figure 5).  

Table 1: Proteins as potential drug targets in T. cruzi.. 

Target enzyme inhibitor Citation 

hydroxymethylglutaryl-CoA reductase (HMGCR) statins [160] 

mevalonate kinase (MVK) feedback inhibition by intermediates [161] 

farnesyl pyrophosphate synthase (FPPS) nitrogen-containing bisphosphonates (N-BPs) [162] 

squalene synthase (SQS) quinuclidines [163] 

squalene epoxidase (SQLE) allylamines and hydrazones [164] 

lanosterol synthase or oxidosqualene cyclase (OSC) aminopropylindenes [165] 

sterol 14α-demethylase (CYP51) anti-fungal azoles [159] 

sterol 24-methyltransferase (S24MT) azasterols  [166] 

 

T. cruzi FPPS (TcFPPS), the target enzyme of this work, represents a metabolic branching 

point and rate limiting step in isoprenoid biosynthesis[156b, 167]. It catalyses the formation of farnesyl 

pyrophosphate (FPP)[168], an essential building block in biosynthesis of isoprenoids such as sterols, 

ubiquinones, dolichols and heme A. With over 30,000 known isoprenoids, sterol biosynthesis is 

quite diverse and its products are ubiquitous and crucial for the survival of the organism[169]. 

Inhibition of FPPS abrogates all downstream processes of sterol synthesis and other processes 

relying on FPP due to a lack of starting materials[162, 167, 170].  

One of the processes, dependent on FPP, is protein prenylation, a posttranslational 

modification important for the localization of the signalling proteins Ras, Rho and Rap to 

membranes and thus for intracellular signal transduction and cell cycle progression[167, 171]. Protein 

farnesyltransferase (PFT) transfers a farnesyl moiety from FPP to the thiol of a cysteine in a 

C-terminal CaaX motif (C: cysteine; a: amino acid with aliphatic side-chain; X: variable amino 

acid)[101d, 172]. Furthermore, FPP is needed for the formation of geranylgeranyl pyrophosphate 

(GGPP) used in geranylation of proteins catalysed by protein geranylgeranyl-transferase 

(PGGT)[173]
. Besides indirect inhibition such as processes downstream of FPPS, T. cruzi PFT and 

PGGT can also be directly inhibited. Repositioned human PFT inhibitors, used in cancer 

therapy[101d], as well as monophosphates[172a, 174] and benzophenone derivatives[172a, 174] are active 

in vivo and in vitro against T. cruzi PFT. N-BPs not only inhibit TcFPPS but also T. cruzi 

PGGT[173]. An overview of the ergosterol pathway and processes depending on FPP are depicted 

in Figure 5.  
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Figure 5:  Sterol biosynthesis pathway in T. cruzi. Metabolic steps start from Acetyl-CoA, lead to mevalonate 

(mevalonate pathway) and further to FPP (isoprenoid pathway) and give the final products ergosterol and 

24-alkylsterols (ergosterol pathway). Inhibitors are written in bold, downstream processes and final 

product are framed.  
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In many cases, inhibitors of T. cruzi enzymes involved in ergosterol biosynthesis were 

repositioned from their mammalian homologues. Statins, such as lovastatin (18), are well known 

inhibitors of human HMGCR used in the therapy[175] and were shown to inhibit T. cruzi 

HMGCR[160] (Figure 6). Likewise, quinuclidines active against mammalian SQS were found to 

inhibit T. cruzi SQS[111d]. Many compounds active against CYP51, the most studied target enzyme 

for CD chemotherapy[68d], were derived from phenotypic-based screening[67, 141c]. As mentioned 

earlier, the outcome of clinical trials with the anti-fungals posaconazole and ravuconazole failed to 

meet expectations. In 2019, coadministration of the CYP51 inhibitor VFV (19) with BNZ showed 

significantly better results in mice when compared to a monotherapy with BNZ[176] (Figure 6).  

Another target for anti-Chagastic drug treatment is cruzain, the most abundant cysteine 

protease in T. cruzi essential for intracellular replication, adhesion to host cells and modulation of 

the host’s immune response[25a, 177]. It was validated in mouse models and the vinyl sulfone 

derivative K777 (20) has proven to be a potent inhibitor[177b, 178] (Figure 6). Due to tolerability 

issues in primates, K777 did not proceed into clinical trials[179]. Currently, newly designed 

benzimidazoles are the most potent inhibitors of cruzain[98].  

 

 

Figure 6:  Chemical structures of lovastatin (18), VFV (19) and K777 (20).  

Other target enzymes are hexokinase[180], triosephosphate isomerase (TIM)[181], and 

glyceraldehyde 3-phosphate dehydrogenase[182], all of which play important roles in glycolysis. 

Further targets include topoisomerase, which is involved in DNA supercoiling and 

entanglement[183], trypanothione reductase[184] and nitroreductase type I[134], which are responsible 

for cell detoxification, and trans-sialidase, which is important in host cell invasion and immune 

evasion[185]. Additional approaches to combat flagellate growth are altering tubulin assembly[186] 

and affecting intracellular calcium homeostasis[187]. The antiarrhythmic drugs amiodarone and 

dronedarone[187] as well as the antiparkinsonian drug bromocryptine[188] change the mitochondrial 

electrochemical potential and lead to alkalinisation of acidocalcisomes, vacuole-type storage 

organelles, rich in pyrophosphate (PP), phosphate, and calcium ions[189].  
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1.4 Farnesyl pyrophosphate synthase (FPPS) 

Farnesyl pyrophosphate synthase (FPPS) (EC 2.5.1.10), also known as farnesyl 

diphosphate synthase (FDPS), was first described in 1959[190]. The fpps gene has been cloned to 

express and purify FPPS of fungi[191], yeast[192], avian[192], algae[193], humans[194], and also 

T. cruzi[195], the parasite of interest. In many organisms FPPS is a cytosolic enzyme, however, in 

some species FPPS is also localized in other cellular compartments[196]. So far all purified and 

characterized FPPSs are stable homodimeric enzymes of about 80 kDa size with a catalytic cleft in 

each monomer[167, 197]. In most reported FPPS crystal structures the two monomers are 

indistinguishable as they are related by crystallographic symmetry, such as in human 

FPPS (hFPPS)[168, 198] and avian FPPS[199], the very first solved FPPS crystal structure. In the E. coli 

FPPS crystal structure, the monomers are not related by symmetry, but show only minor 

differences[200].  

FPPS plays an important role as key enzyme and rate limiting step in isoprenoid 

biosynthesis[167, 201] (chapter 1.3.3, Figure 5) catalysing the formation of the C15 building block 

farnesyl pyrophosphate (FPP) from C5 precursors[168, 202]. FPPS condensates dimethylallyl 

diphosphate (DMAPP) with its isomer isopentyl diphosphate (IPP) to form intermediate geranyl 

pyrophosphate (GPP), and consecutively condensates GPP with a second IPP to form FPP[162b, 167, 

203]. The reaction runs via a consecutive and stereoselective head-to-tail condensation yielding 

exclusively (E,E)-FPP[167] (Figure 7 (A)). Despite the availability of crystal structures, it is 

mechanistically unclear why homodimer formation is required for catalysis, however, it was 

suggested that the two subunits do not act independently[203]. 

 

 

Figure 7: Scheme of the condensation reaction catalysed by FPPS. (A) Condensation reaction catalysed by FPPS. 

(B) Proposed reaction mechanism via carbocation intermediate. 

The comparison of FPPS structures revealed seven conserved regions forming an active 

site cleft featuring prominent aspartate residues of two highly conserved aspartate-rich motifs 
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(DDXXD, D: aspartate; X: variable amino acid), which orient their side-chains into this cavity. 

The latter residues are important for catalytic activity[195, 200, 203-204]. They are called first and second 

aspartate-rich motif, abbreviated as FARM and SARM, and they are part of the region II and VI, 

respectively. These are α-helical regions forming the opposing sites of the major cleft, which is 

approx. 12 Å in diameter in the open-state and approx. 8 Å in the closed-state[167]. The monomer is 

composed of a two-helix N-terminal hairpin followed by an orthogonal central eight-helix bundle 

and a bundle of three short helices that protrudes perpendicular from the central bundle[162b, 197, 

199-200] (Figure 8).  

 

 

Figure 8: Overview of the structure of FPPS. (A) Monomeric hFPPS with conserved regions I – VII (PDB ID 

5JA0[205]). (B) Active cleft in open-state hFPPS (grey cartoon, regions are coloured, residues of the 

FARM and SARM are shown as sticks, PDB ID 5JA0[205]). (C) Active cleft of hFPPS in open-state and 

closed-state are superimposed (PDB ID 5JA0[205] and 2F8Z[168]). (D) hFPPS homodimer with chain A 

coloured in blue to red gradually moving from the N-terminus to the C-terminus. Helices are labelled 

accordingly. Chain B is depicted in grey (PDB ID 5JA0[205]). (E) A 90° rotation about the horizontal axis 

of the structure depicted in (D) (PDB ID 5JA0[205]). 



 

19 

The canonical substrates DMAPP and GPP, bind via their pyrophosphate moiety to three 

Mg2+ ions which in turn are coordinated by the carboxylate groups of the aspartates of the FARM 

and SARM. The binding site is therefore referred to as DMAPP or allylic binding site. IPP is 

binding in close proximity, to the so-called IPP or homoallylic binding site, which features 

conserved arginine and lysine residues[170a]. Whilst many crystal structures of FPPS in complex 

with IPP are available[168, 198], the only available structure of FPPS in complex with DMAPP is 

derived from Galus galus (PDB ID 1UBY[206]) (Figure 9 (A)). 

 

 

Figure 9:  Pocket landscape of hFPPS. (A) Superimposition of closed-state FPPS (grey cartoon, IPP bound, 

PDB ID 2F8Z[168]) and open-state hFPPS (blue cartoon, FPP bound, PDB ID 5JA0[205]). Additionally, 

DMAPP and Mg2+ ions (green spheres) are superimposed (PDB ID 1UBY[206]), backbone not shown). 

(B) Surface representation of open-state FPPS with FPP bound (PDB ID 5JA0[205]). (C) Surface 

representation of closed-state FPPS (PDB ID 2F8Z[168]). In (A) – (C) all ligands are represented by sticks. 

Carbon, oxygen, and sulphate atoms are coloured in pink, red, and orange, respectively. 

The way of substrate binding and conformational changes during the course of catalysis 

were elucidated by superimposition of crystal structures of unliganded FPPS and FPPS in 

complexes with its substrates and N-BPs[168, 198, 200]. The conformational changes from an open 

inactive hFPPS conformation into a close active conformation can be described as a two-step rigid 

body motion of the last 130 C-terminal residues[168]. Upon initial occupancy of the allylic site by 

DMAPP or GPP, the active site undergoes conformational rearrangement and the IPP binding site 

is fully formed by tightening of the FARM and SARM motifs. This intermediate state represents 

the partially-closed conformation. Subsequently, binding of IPP to the homoallylic site induces 

further rearrangement of the highly basic four-residue C-terminal tail, thereby closing the 
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homoallylic site and shielding the active site from the solvent exposure. This represents the 

fully-closed state[168, 205]. The mechanism of catalysis was proposed to involve dissociation of 

DMAPP into a carbocation that reacts with the double bond of IPP, and a pyrophosphate leaving 

group that subsequently subtracts a proton at the C-2 position of the former IPP moiety yielding 

GPP as first intermediate (Figure 7 (B)). The enzyme reverts back to the open-state, releases the 

pyrophosphate, translocates GPP, returns back to the fully-closed state and after a subsequent cycle 

of catalysis it releases FPP[162b, 205]. The dimer interface constitutes a rigid core and is not affected 

by the conformational switch[168]. For activity the bivalent metal ions Mg2+ or Mn2+ are required as 

they enable binding of DMAPP and GPP[207]. The 4th and 5th amino acids upstream of FARM were 

shown to play a role in product chain length determination as their aromatic side-chains form a 

hydrophobic floor of the pocket[208].  

In addition to the aforementioned active site, an allosteric site adjacent to the IPP binding 

site and close to the C-terminal tail was described in some FPPS structures[209]. Recently, the 

binding of FPP to the allosteric pocket in hFPPS was reported, thus suggesting feedback inhibition 

of FPPS by its own product[205] (Figure 9). 

1.4.1 T. cruzi FPPS 

TcFPPS is a physiological homodimer[170a] in which each monomer has a length of 

362 residues and a molecular weight of 41.2 kDa[202b]. TcFPPS is localized in the cytosol of the 

parasite[196]. The optimum catalytic activity of TcFPPS was observed at a Mg2+ concentration of 

1 mM to 5 mM and pH 8.5[195]. 

The proteins tertiary structure of a monomeric unit can be described as a two-helix 

N-terminal hairpin (helices A and B) followed by an orthogonal central eight-helix bundle (helices 

C to J) that is connected by loops with two exceptions[162b, 210]. Between helices F and G an 

11-residue insertion loop is formed by the residues Lys179-Thr189 with a reverse turn at 

Pro182[162b, 210]. This insertion is unique to trypanosomal FPPS[162b, 210]. Between helices H and I are 

three short helices, named α1 to α3, which protrude perpendicular and orthogonal to the central 

eight-helix bundle. Helix α1 and helix α2 form an antiparallel hairpin and α3 is connecting back to 

the eight-helix bundle[162b] (Figure 10). The homodimer interface is composed of the N-terminal 

hairpin and helices E, F, G and D, which form together an interface of approx. 6028 Å[162b]. The 

insertion loops contribute to the dimer interface as the loop of monomer B is located above the 

hairpin of monomer A and vice versa[162b]. To date, their function is unknown[204]. Taken together, 

with the exception of the 11-residue insertion, the TcFPPS tertiary and quaternary structure 

correspond to those of other FPPSs (chapter 1.4). 

A BLAST search of the protein data base showed an identity of 35% to 39% and a 

similarity of 48% to 55% for the amino acid sequence of TcFPPS with other representative FPPSs 
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(mammalian, plant and yeast)[195]. Sequence alignment of TcFPPS and TbFPPS with hFPPS, avian 

FPPS and others showed that the residues involved in catalysis are conserved in the trypanosomal 

FPPS[162b, 195, 202b, 204]. In T. cruzi FPPS the FARM and SARM, which interact with the 

pyrophosphate moiety of DMAPP or GGP via bivalent ions, are residues Asp98-Asp99-Ile100-

Met101-Asp102 in helix D and Asp250-Asp251-Val252-Met253-Asp254 in helix H, 

respectively[162b]. While FARM is perfectly conserved in TcFPPS, TbFPPS and hFPPS, the residues 

of the SARM in trypanosomal FPPS differ from the ones in human and avian FPPS (Asp-Asp-Tyr-

Leu-Asp). Furthermore, in trypanosomal FPPS the 4th and 5th residue upstream of FARM are 

histidine (His93 in TcFPPS) and tyrosine (Tyr94 in TcFPPS), but in human and avian FPPS 

phenylalanine residues are at these positions[170a, 204]. IPP is bound to the enzyme by interacting 

directly with the arginine residues Arg51, Arg108 and Arg360 and to the lysine residues Lys48 

and Lys362[162b, 170a]. Whilst the afore enumerated residues are conserved, the four-residue 

C-terminal tail slightly differs between TcFPPS (Lys359-Arg360-Lys361-Lys362) and hFPPS 

(Lys350-Arg351-Arg352-Lys353)[162b]. 

 

 

Figure 10:  Crystal structure of TcFPPS. (A) Cartoon representation of TcFPPS homodimer (PDB ID 1YKL[162b], 

chain A coloured in blue to red gradually moving from the N-terminus to the C-terminus and labelled 

helices A – J, α1 – α3 and insertion loop (insert), chain B is depicted in grey). (B) A 90° rotation of the 

structure depicted in (A) about the horizontal axis. 

To summarize, comparative studies of trypanosomal FPPS and human FPPS revealed that 

most of their active site residues are conserved and in consequence the enzyme-substrate and 

enzyme-N-BP interactions are very similar[162b, 195, 202b, 204, 211]. Huang et al.[211] stated that the high 

level of conservation leads to difficulties when designing parasite-specific drugs. However, the 

slight differences, such as between the 4th and 5th residue upstream of FARM offer some options 

for the development of TcFPPS-specific inhibitors[204] and inhibition assays performed on the same 

inhibitors using various FPPSs already showed different potencies[212].  
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1.4.2 Human FPPS identified as target enzyme of active site-directed N-BPs 

BPs (21) had already been used in the clinic for decades to treat bone diseases which are 

related to osteoclast-mediated bone loss, such as osteoporosis, post-menopausal osteoporosis, 

osteitis, Paget’s disease of bone, hypercalcemia and tumour metastases in bone mineral[213]. In 1966 

and 1969 studies confirmed the positive effect of simple BPs, such as etidronate (22) and 

clodronate (23), on calcification of bone mineral[214] (Figure 11). Later they were found to function 

via formation of non-hydrolysable ATP analogues, which trigger osteoclast apoptosis[215]. Further 

development led to several FDA-approved nitrogen-containing bisphosphonates (N-BPs), which 

are orders of magnitude more potent than first generation BPs[216]. Their mode of action, inhibition 

of FPPS and blockade of carotenoid biosynthesis, was first described in a patent in 1998 for their 

use as bleaching herbicides[217].  

 

 

Figure 11: Chemical structure of bisphosphonates. Generic BP scaffold (21), etidronate (22), clodronate (23), 

pamidronate (PAM) (24), alendronate (ALE) (25), ibandronate (26), risedronate (RIS) (27), zoledronate 

(ZOL) (28), minodronate (29) and pyrophosphate (PP) (30). 

One year later, tests identified that also recombinant hFPPS[218] is targeted by N-BPs[215a, 

219]. Among these drugs are the primary amines pamidronate (PAM) (24) (Aredia®, Novartis)[220] 

and alendronate (ALE) (25) (Fosamax®, Merck)[171c, 221], the tertiary amine ibandronate (26) 

(Boniva®, Roche)[222] and nitrogen atoms localized within an aromatic ring, such as risedronate 

(RIS) (27) (Actonel®, Merck)[223], zoledronate (ZOL) (28) (Zometa®, Novartis)[220], and 

minodronate (29) (Onobis®, Ono pharmaceuticals and Astellas Pharma)[224] (Figure 11). 

Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro match 

inhibition of bone resorption in vivo by N-BPs[168, 213c, 225]. N-BPs have a high affinity to the bone 

mineral hydroxyapatite and accumulate accordingly in bone mineral[226], where they are taken up 

by osteoclasts via fluid-phase endocytosis[227]. The inhibition of FPPS in osteoclasts results in a 

lack of FPP which blocks downstream processes, disrupts sterol biosynthesis and disables 
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prenylation of cell signalling proteins[216]. Finally, intracellular accumulation of IPP and subsequent 

formation of the cytotoxic ATP analogue ApppI, an ester formed of IPP and AMP, triggers 

osteoclast apoptosis thus preventing bone resorption[167, 228]. 

N-BPs are pyrophosphate (PP) analogues and therefore inhibit hFPPS by competing with 

its natural PP substrates[168, 198]. Replacement of the oxygen bridge in the PP backbone (P-O-P) (30) 

with a carbon (P-C-P) resulted in BPs (21) which are metabolically stable due to their 

non-hydrolysable backbone (Figure 11). The carbon backbone allowed various substituents, which 

are referred to as R1 and R2 from hereon[214c, 229]. N-BPs are characterized by a hydroxyl-group as 

substituent R1, mimicking the pKa value of the pyrophosphoric acid and various R2 side chains that 

contain nitrogen atom(s) (24 – 30) (Figure 11). Crystal structures revealed that N-BPs bind to the 

active site. They span the site usually occupied by DMAPP[168, 198], as their phosphate backbone 

mimics the major interactions of PPs. These are electrostatic interactions with three Mg2+ ions, 

which are coordinated by the residues of the FARM and SARM, and interactions with the three 

basic side-chains Arg112, Lys200 and Lys257[168, 230] (Figure 12). The R2 side-chain binds to the 

hydrophobic cleft that normally accommodates the growing isoprenoid chain. N-BPs bind to FPPS 

with protonated R2 side-chain, i.e. as pyridinium, imidazolium, alkylammonium or 

amidinium-containing species[231], thus mimicking the carbocation transition state, specifically 

when the nitrogen atom is at C-4 position[232]. 

 

Figure 12:  Active site of FPPS. (A) Binding of ZOL (28) in the active site (PDB ID 2F8Z[168], grey cartoon with 

coloured conserved regions, ZOL in stick representation, carbon, oxygen, nitrogen and phosphorous 

atoms coloured in pink, red, blue and orange, respectively, Mg2+ green spheres, residues of the FARM 

and SARM are also shown in stick representation). (B) Representation as in (A) rotated by 180 ° and 

tilted by 70 ° (yellow dashes indicate interactions, residues forming main interactions in stick 

representation) (C) Representation of (B) superimposed with ibandronate (26) (PDB ID 2F94[168], stick 

representation, C in yellow,) and minodronate (29) (PDB ID 3B7L, stick representation, C in green). 

N-BPs are classified as slow, tight-binding inhibitors[198, 233]. Their time-dependent 

inhibition is caused by the conformational change of the enzyme upon inhibitor binding[228b]. RIS 
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and ZOL showed initial IC50 values of roughly 1.0 µM and 0.5 µM, respectively, however, after 

incubation they showed final IC50 values of 57 nM and 41 nM, respectively[225b]. Rondeau et al.[168] 

described that IPP binds to the hFPPS-N-BP complex with a stabilizing effect due to full pocket 

closure. Binding of chemically stable N-BPs locks the enzyme in the closed-state, keeping FPPS 

from cycling through its three conformational-states needed throughout catalysis and therefore, 

N-BP binding is considered to be near irreversible[234]. Hence, inhibition by N-BPs is contrary to 

competitive inhibition where displacement occurs with increasing substrate concentrations[168].  

1.4.3 T. cruzi FPPS inhibition by N-BPs 

In 1999, Urbina et al.[189] published that T. cruzi contains large amounts of PP, of which 

23% is stored in acidocalcisomes. In addition, they showed in vitro and in vivo inhibition of 

amastigote proliferation by the N-BPs PAM, ALE and RIS without toxicity to host cells[189]. With 

the uncovering of FPPS as target enzyme of N-BPs in the same year (chapter 1.4.2), a phase of 

extensive testing of BPs as potential drug repositioning candidates on TcFPPS started in the hope 

that they could be used to treat CD[189, 195, 212, 235]. Montalvetti et al.[195] expressed recombinant 

TcFPPS and successfully demonstrated its inhibition by PAM, ALE and RIS, confirming that 

N-BPs target TcFPPS, too. The IC50 values against T. cruzi amastigotes of PAM, ALE and RIS 

were determined to 60 µM, 147 µM and 123 µM, respectively[212]. In vivo testing of RIS showed 

90% reduction of parasite loads in the blood of infected mice and significantly increased animal 

survival, suggesting trypanocidal activity of the compound[212, 236]. PAM showed inhibition of 

intracellular replication of amastigotes in in vitro assays and also reduced parasitaemia in mice[13c]. 

Hence, FPPS function is essential for T. cruzi viability in animal models of infection[170b, 212, 237]. 

Similar to the findings in human osteoclasts, the analysis of sterols in treated parasites showed that 

TcFPPS inhibition disrupts sterol biosynthesis and blocks downstream processes such as 

prenylation[195, 212, 238], which was shown to directly affect T. cruzi cell growth[174, 239]. 

Non-nitrogenous BPs, such as clodronate and etidronate, did not affect parasite proliferation[212]. 

Further insights were provided by crystal structures. The first predicted 3D model of 

TcFPPS was based on avian FPPS[195] and was followed by an X-ray structure of unliganded 

TcFPPS (PDB ID 1YHK) published by Gabelli et al.[162b] in 2006. They also crystallized 

protein-ligand complexes of TcFPPS with its natural substrates IPP and Mg2+ or DMAPP and 

Mg2+ alongside with ALE (PDB ID 1YHM) and RIS (PDB ID 1YHL), respectively[162b]. As shown 

for hFPPS, ALE was active site-directed in TcFPPS, mimicking  the major interactions of the 

allylic substrate, interacting with Mg2+ ions coordinated by the FARM and SARM (Asp98, Asp102 

and Asp250)[162b]. In addition, the 3D structure revealed a conformational change in form of a 

hinge-like closure of the FPPS binding site when bound to these substrates[162b]. Again, these 

findings are very similar to the findings for hFPPS. Binding of N-BPs to TcFPPS with long 
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side-chains was shown to be enabled by the movement of residues Tyr94 and 

Gln167[162b, 170a, 202b, 211].  

Huang et al.[211] did further co-crystallization experiments with ZOL (PDB ID 3IBA) and 

minodronate (PDB ID 3ICK) in the presence of IPP, confirming the binding mode of N-BPs[211]. 

However, the complexes showed partial asymmetry within the homodimer depending on the crystal 

structure. The authors related this finding to the binding event of the N-BPs[211]. Nevertheless, it is 

not present all crystal structures. As of 2019, 14 TcFPPS structures[162b, 170a, 211] have been deposited 

in the protein data bank[240] (Appendix, Table 28). They were all refined in the same hexagonal 

space group (P6122) but correspond two different sizes of unit cells. In the first case, the cell 

dimensions a = b = 58 Å and c = 390 Å with one monomer in the asymmetric unit resulting in a 

homodimer generated by crystallographic symmetry. The second has the cell dimensions 

a = b = 103 Å and c = 390 Å and three monomers in the asymmetric unit. Crystallographic 

symmetry produces one symmetry constrained homodimer and two unconstrained homodimers 

with no imposed symmetry conditions allowing for slightly different subunits, as described by 

Huang et al.[211]  

The activity of N-BPs against T. cruzi was repeatedly explained by accumulation in the 

parasites’ acidocalcisomes which were reported to behave equivalent to human bone mineral, 

hence facilitating their antiparasitic action[163b, 200, 206, 229, 232, 243]. Acidocalcisomes have an average 

diameter of around 200 nm and their number and location per cell varies[241]. In T. cruzi 

epimastigotes more than 40 vacuoles of varying size were observed[241]. In amastigotes the vacuoles 

are arranged in rows near the cell periphery and in trypomastigotes they are located close to the 

flagellum[242]. 

1.4.4 BPs and treatment of non-bone diseases 

BPs became the most transformative drugs of the last 25 years[243] due to their importance 

in treatment of bone diseases and rare occurrence of side effects according to their highly selective 

binding to bone mineral representing ideal pharmacokinetics (PKs) to treat this type of diseases[244]. 

Furthermore, synthesis of BPs is straightforward and cost-efficient[197, 245]. The high degree of 

evolutionary conservation of the active site of FPPS explains why N-BPs inhibit FPPS from various 

sources[198]. Acidocalcisomes, needed for selectivity of the treatment[170b, 189, 246], also exist in other 

Trypanosoma (T. brucei[247]), and also in Leishmania (L. donovani[248], L. major[249]), Toxoplasma 

(T. gondii[250]) and Plasmodium (P. vivax[251]). In consequence, N-BPs showed good inhibitory 

activity against many parasitic species in vitro and in vivo, e.g. RIS showed in vivo activity against 

T. brucei in mice[204], PAM, ALE and RIS were active in in vivo experiments with L. donovani and 

T. gondii[252] and various BPs showed growth inhibition of P. vivax[253]. Thus, BPs have been 

regarded as good drug candidates to treat tropical and neglected diseases[170b].  
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However, BPs are charged hydrophilic compounds that accumulate strong and rapid 

binding to bone mineral. They exhibit poor membrane permeability and bioavailability, undergo 

rapid renal clearance and therefore exhibit very low concentrations in serum and non-skeletal 

tissues[254]. In consequence, BPs are inappropriate to treat diseases which are not related to bone 

mineral[168, 230]. Thus, new and non-bisphosphonate FPPS inhibitors, which should be characterized 

by low affinity to bone mineral and less rapid removal from systematic circulation, are of interest 

as they may be better suited for non-skeletal related indications, such as CD[209a]. When used as 

antimicrobial, such FPPS inhibitors would also need to be selective as broad inhibition of hFPPS 

may result in toxicity[255]. Novel inhibitors would also be beneficial in tumour treatment, where 

inhibition of hFPPS was shown to trigger γẟ T cells activation, thus providing immuno-surveillance 

against tumours[256]. Another indication could be neurodegenerative diseases, such as Alzheimer’s 

disease, which was previously linked to high levels of FPPS[257]. Even for the treatment of bone 

diseases such inhibitors could be beneficial, as they could distribute more evenly in bone mineral 

and minimise adverse effects associated with N-BP treatment[254d], such as osteonecrosis of the jaw 

and atypical femoral fractures[244, 258].  

Approaches to optimize PK properties and to reduce bone affinity by changing the BP 

moiety or reducing polarity by introducing side-chains with increasing lipophilicity were made, 

but remained ultimately unsuccessful[168, 259]. Attempts to move away from the BP scaffold were 

unsuccessful because the resulting compounds did not mimic the natural substrate comparably well 

as BPs[259]. Recently reported non-BP inhibitors, binding to an allosteric site previously addressed 

in hFPPS, could lead to a breakthrough as they are assumed to have the potential to treat infectious 

diseases and soft-tissue cancer[209a, 209b, 230, 260]. 

1.4.5 Research on T. cruzi FPPS inhibitors 

Rational modification of BPs to improve affinity to TcFPPS or to change their PK 

properties, while maintaining high ligand affinity started early on. Among them were BPs derived 

from fatty acids, such as alkyl-1,1-bisphosphonates 31 and 34, 1-hydroxy-1,1-bisphosphonates 32 

and 35 and 1-amino-1,1-bisphosphonates 33 and 36 to 40[235, 238c, 261] (Figure 13). The latter showed 

growth inhibition of amastigotes but had no effect against epimastigotes[235, 238c, 261]. Compound 39 

inhibited TcFPPS at nanomolar level and was thus more potent than previously tested 1-hydroxy-

1,1-bisphosphonates[235, 238c, 261] (Figure 13). The structure activity relationship (SAR) of 

R1 substituents attached at C-1 positions showed that, 1-hydroxy (32) and 1-amino (33) have higher 

binding affinities than 1-alkyl (31)[235, 238c, 261]. Linear α-fluoro-1,1-bisphosphonates 41 to 49 were 

found to neither inhibit TcFPPS nor being efficient in vitro[262]. These findings showed that the 

substituent at C-1 plays an important role, and although it is not actively involved in binding of 
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Mg2+ ions it influences the pKa of the geminal phosphonate moieties and thus changes its capacity 

for coordination[197]. 

Linear 2-alkylaminoethyl-1,1-bisphosphonate derivatives (50-54) inhibit growth of 

amastigotes with IC50 values between 38 nM and 1.84 µM[170a, 263] and were later described as 

potent SQS inhibitors, too[264] (Figure 13).  

 

 

Figure 13: Chemical structures of BPs 31 to 87. Compounds were tested on TcFPPS and/or in vitro against 

amastigotes and/or trypomastigotes and structure of generic BPs (box) patented as anti-parasitic agents.  

Complexes of these compounds together with Mg2+ and IPP were crystallized by 

Aripiralla et al.[170a] (PDB IDs 4DWB, 4DXY, 4DWG, 4EIE, 4DZW). The obtained 3D structures 

were used in molecular modelling but the resulting 2-alkylaminoehtyl-1-hydroxy-1,1-

bisphosphonic acids 55 to 59, representing 1-hydroxy analogues of the potent series 50 to 54, were 

neither active against TcFPPS nor the parasite, however, several of them were active against 

T. gondii FPPS and T. gondii tachyzoites [162a] (Figure 13). Long chain length sulphur-containing 

BPs, such as thioethers 60 to 68, sulfoxides 69 to 75 and a methyl-sulfonium derivative 76 were 

tested. Compounds 60 to 62, 66 to 68 and 77 were active against TcFPPS but less potent than RIS. 

Compounds 61 to 68 were more potent against T. gondii FPPS. Compounds 72 to 74 and all 

sulfoxides 69 to 75 were only successfully tested against T. gondii[265] (Figure 13). Further 
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sulphur-containing BPs 77 and 78 and 2-alkylaminoethyl-1-fluoro-1,1-bisphosphonates 79 to 86, 

tested by Galaka et al.[266], were inactive. In addition, they synthesised and tested compound 87, 

which had been proposed by Aripiralla et al. [170a] but has proven to be inactive in vitro and had 

negligible affinity for the enzyme (Figure 13). Some of the aforementioned BPs inhibiting TcFPPS 

are protected by a patented generic BP that confirms BPs as anti-trypanosomal agents with known 

mode of action[267] (Figure 13).  

Despite all previously described investigations and efforts of patent protection, the 

disadvantage of poor oral bioavailability of BPs[268] remained. To address this problem, BP metal 

complexes were formed and tested for TcFPPS inhibition in 2010[269]. The concept to use 

synergisms of metals and drugs was introduced in the development of anti-Chagastic chemotherapy 

in 1993 for the anti-fungal azol-derivative clotrimazol[270]. Indeed, the metal complexes of RIS, 

[NiII (RIS)2(H2O)2] · H2O and [MII (RIS)2] · 4 H2O, with M = Cu, Co or Mn, showed enhanced 

anti-proliferative effects against amastigotes and dramatically improved IC50 values of 2.7 nM and 

2.9 nM, respectively[269a]. PAM and ALE complexes showed to be more potent, too[269a]. A 

promising finding was the interaction of the metal complexes with albumin in the blood, which 

functioned as transport vehicle to tissues[269a]. In addition, binding to plasma proteins was shown 

to prolong the plasma half-life which can be beneficial in drug therapy[271]. The latest results for 

ibandroante metal complexes were inconclusive, as the inhibitory effect on the protein under 

in vitro conditions was disproportionally small when compared to the effect in the cell under in vivo 

conditions. This observation indicates that additional targets might be affected once the compound 

is exposed to whole cells[272].  

There are few efforts that go beyond BPs. Recent computational drug repositioning for 

TcFPPS showed that the anti-viral foscarnet (88) showed a good overlap with the binding position 

of ALE making it a top candidate for further investigation[100] (Figure 14).  

 

 

Figure 14: Chemical structure of foscarnet (88) and compounds from the ZINC database: monophosphate 

derivative, ZINC2139872 (89), guanosine monophosphate, ZINC1532555 (90), ZINC12296728 (91), 

ZINC01730395 (92).  

The latest virtual screening campaign on TcFPPS used a pharmacophore model based on 

the best known TcFPPS inhibitors and identified four natural products in the ZINC database[273]: 
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The monophosphate derivative 89, guanosine monophosphate (90) and two derivatives 91 and 92 

thereof await in-depth validation[274] (Figure 14). In summary, most compounds evaluated for 

TcFPPS are BPs and recent approaches underscored the potential of monophosphate derivatives 

for clinical applications. To date, N-BPs are the substance class with the strongest reduction of 

parasitaemia[238b]. Structural data of TcFPPS and TcFPPS in complexes with N-BP inhibitors are 

available and pave the way for further development[104]. 

1.4.6 Allosteric site binding of novel scaffold inhibitors 

In 2010, Jahnke et al.[209a] addressed the issue of BPs being too specific for bone minerals, 

in order to use them effectively in cancer treatment, however, they found inhibitors of new 

compound classes inhibiting hFPPS activity. This inhibitors are the benzothiophenes 93 to 95 and 

the indoline 96 which were identified in a fragment-based lead discovery approach and showed 

only weak interactions with FPPS characterized by IC50 values >500 µM (Figure 15). Studying 

them by a series of NMR experiments uncovered their binding to an additional pocket of the 

protein. In contrast to the allylic binding site, binding to the allosteric site in hFPPS is independent 

of Mg2+ ions[209a]. 3D structures of the protein-fragment complexes obtained by crystallography 

(PDB IDs 3N1V, 3N1W, 3N3L, 3N45) showed that this pocket is adjacent to the IPP binding site 

and close to the C-terminus[209a]. It is formed by helices C, G, H and J as well as the B-C and H-I 

loop. The hydrophobic floor and back faces of the pocket are shaped by residues Tyr10, Phe206, 

Phe239, Leu344, and Ile348. The front site is defined by the positively charged residues Lys57, 

Arg60 and Lys347 and the polar Asn59 and Thr63[209a, 275]. The described distribution of amino 

acids leads to an amphipathic pocket (Figure 16). 

By merging useful features of the SAR studies of their fragment series, Jahnke et al.[209a] 

designed and synthesised benzindole derivatives 97 (PDB ID 3N6K) and 98 that lack affinity to 

bone mineral and exhibit IC50 values of 200 nM and 80 nM, respectively (Figure 15)[209a]. The 

mechanism of action for hFPPS inhibition by these allosteric binders was hypothesized to be as 

follows: The negatively charged benzindole inhibitors prevent IPP from binding via repulsive 

electrostatic interactions as the binding sites are in close spatial proximity. When a benzindole-type 

inhibitor is bound, the C-terminal tail (Lys350-Arg351-Arg352-Lys353) remains disordered and 

hence cannot reinforce full pocket closure which is required for catalysis. Furthermore, the 

mechanism that drives conformational rearrangement from an open to a closed-state and vice versa 

is likely to be disrupted upon binding of such an inhibitor[209a]. Taken together, by exploiting a 

previously uncharacterised binding pocket of hFPPS, compounds with a novel scaffold were 

discovered that entail new and desired properties, thereby overcoming previous limitations of 

BPs[275-276].  
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Jahnke et al.[209a] suggested the term allosteric binding pocket for the site adjacent to the 

active site, because they hypothesized that it might play a regulatory role in a kind of feedback 

inhibition, a process that was first described by Changeux in 1961[277]. Recently Park et al.[205] 

showed that hFPPS is indeed product inhibited by binding of its own condensation product FPP to 

this pocket and locking of the enzyme in the open, inactive conformation. The crystal structure of 

hFPPS in complex with FPP (PDB ID 5JA0) revealed an induced-fit conformational change 

accompanied by FPP binding, allowing accommodation of its tail[205]. Tyr10 swings out from helix 

A, thereby generating space for the FPP tail and induces a tilt in helix A that lead to some more 

side-chain rearrangements. Thus, this binding site will be referred to as allosteric site of FPPS. All 

other sites described in this work will be termend additional binding sites although they might also 

function like an allosteric pocket. 

 

 

Figure 15:  Chemical structure of hFPPS inhibitors with a new scaffold. Fragments found by FBS and optimization: 

benzothiophenes 93 to 95, indoline 96; benzindoles 97 and 98. Integrated lead finding lead to indole 99, 

salicylic acid derivative 100, quinolines 101 and 102, lead compound 103 and quinolines 104 and 105 

(key scaffolds are highlighted with a box). 
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In 2015, Marzinzik et al.[230] published two more chemical lead series binding to the 

allosteric binding pocket of hFPPS: quinolines and salicylic acids which were found by integrated 

lead discovery. The most potent inhibitors they identified were an indole derivative 99 (PDB ID 

5DJP) and a salicylic acid derivative 100 (PDB ID 5DIQ), exhibiting IC50 values of 7.1 µM and 

6.8 µM, respectively (Figure 15, Figure 16). The indole 99 was evolved by iterative medicinal 

chemistry efforts into a quinoline 101 (PDB ID 5DGN) with an improved IC50 of 1.2 µM and was 

further developed into 102 with an IC50 of 24 nM, ultimately being 300-fold more potent than the 

starting compound 37 (Figure 15, Figure 16). A library synthesis of salicylic acid derivatives 

resulted in 103 with an IC50 value of 17 nM thus being 400-fold more potent than the starting 

compound 100 (Figure 15). Also Liu et al.[260] synthesised a series of quinolines. The most potent 

substances among them were 104 and 105, both with an IC50 of 3.5 µM (Figure 15). Neither the 

quinoline nor the salicylic acid series identified for hFPPS induced such significant conformational 

change[209a, 230] than observed for FPP[205]. 

 

Figure 16: FPPS in complex with allosteric inhibitors. (A) Open-state FPPS with allosteric inhibitor 93 (grey cartoon 

and surface representation, PDB ID 3N1W[209a]). Superimposition with DMAPP and IPP (backbones not 

shown, Mg2+ green spheres, PDB IDs: 1UBY[206], 2F8Z[206]). (B) Allosteric pocket with inhibitor 93 

(grey cartoon, residues forming the pocket in stick representation, PDB ID 3N1W[209a]). In (A) and (B) 

C, O, S and Cl atoms are coloured in pink, red, orange and green, respectively.(C) Allosteric pocket with 

inhibitors 97, 100 and 101 (ligands in stick representation; carbon atoms in orange, blue and cyan, 

respectively, backbones not shown, PDB IDs 3N6K[209a], 5DIQ[230] and 5DGN[230]). 

As crystal structure analysis showed, the described scaffolds are bound to the previously 

novel allosteric pocket in the open state of the enzyme. The compounds have no affinity for bone 

mineral and were claimed to represent a potential lead series for the treatment of non-bone 

diseases[230]. However, both compound series showed low cellular permeability, resulting from the 

carboxylic acid functionality and replacement by a tetrazole had limited success[230]. Replacement 

by a phosphate moiety increased the bone affinity and reduced ligand affinity, but the compounds 

maintained binding to the allosteric site[254d]. Patents for a whole range of quinoline derivatives[278] 
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and salicylic acid derivatives[279] were filed in 2009 and 2010, respectively. All other patented FPPS 

inhibitors in the period from 2006 to 2010 were BPs[280].  

Efforts to exploit the allosteric pocket of FPPS for therapeutic purposes are ongoing[205]. 

The pocket is dubbed the Achilles’ heel of FPPS[230] and binders are expected to have a wide range 

of applications, e.g. in cancer treatment[230], as cholesterol-lowering agents, and whenever 

excessive lipid production causes disease [205, 230], as well as in neurodegenerative diseases[276], and 

as anti-parasitic agents, notably for CD, leishmaniasis and malaria[230]. In fact, ligands of this pocket 

in FPPS of the gram-negative bacterium Pseudomonas aeruginosa were described in 2015 by 

Schmidberger et al.[209b]. They claimed that the allosteric site is significantly less conserved than 

the active site between human and bacterial FPPSs, allowing the development of a selective 

inhibitor for each enzyme[209b]. In 2017 the allosteric pocket and potential inhibitors were described 

for FPPS of Plasmodium falciparum the causative agent of Malaria[209c]. To date, an allosteric 

pocket or inhibitors binding to sites other than the active site have not been described for 

trypanosomal FPPS.  

1.4.7 Further approaches in FPPS inhibition 

Gao et al.[281] pioneered a new class of BP-based derivatives replacing a hydroxyl group 

of a phosphorous moiety by a geranyl moiety. Compounds 106 and 107 showed IC50 values of 

7.8 nM and 13 nM for rat FPPS, respectively (Figure 17). The authors surmise that these types of 

compounds might interact with the allylic and homoallylic binding site. The same group envisioned 

fluorescent BP derivatives (108, 109) as active site inhibitors of multiple enzymes involved in early 

steps of isoprenoid biosynthesis. Both were successfully tested on the rat enzymes mevalonate 

kinase (MVK), phosphomevalonate kinase (PMK), mevalonate 5-disphosphate decarboxylase 

(MDD) and FPPS with increasing potency starting with IC50 values in the single digit µM range 

for MVK to IC50 values in the double digit nM range for FPPS[282] (Figure 17).  

Docking studies based on allosteric inhibitors of hFPPS[209a] resulted in the discovery of 

bisamidines[275]. The most potent was bisamidine 110 with an IC50 of 1.8 µM[275]. It was 

co-crystallized later by Liu et al.[283] and found to bind to at the protein surface (PDB ID 

4RXA)[197, 283]. Thienopyrimidine bisphosphonates, such as compound 111, were described as 

inhibitors with several binding positions either binding to the DMAPP binding site in the presence 

of Mg2+ ions (PDB ID 4JVJ) or the IPP binding site in the absence of Mg2+ ions (PDB ID 4LPG)[284]. 

Although not of biological relevance this showed that BPs with hydropathic cores can be directed 

to the allosteric site[276]. Thienopyrimidine monophosphates, such as compound (112) exclusively 

bound to the allosteric pocket (PDB ID 4LPH) and showed an in vitro potency similar to the 

benzindole derivative 97[276] (Figure 17). Previous attempts to remove one phosphate moiety, 

turning a BP into a mono-phosphate, led to complete loss of potency[225b].  
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Substituted indoles and azabenzimidazoles, such as compound 113 and 114, respectively, 

were shown to bind to all three binding sites in hFPPS and were thus named chameleon 

inhibitors[285] (Figure 17). Multiple binding modes and events were previously reported; IPP 

binding with a 2:1 stoichiometry to hFPPS[198], binding of two homo-risedronate molecules to 

T. brucei FPPS (PDB ID 4RXC)[283] and DMAPP binding to the IPP binding site in TcFPPS 

(PDB ID 1YHL)[162b]. Binding to the IPP site in hFPPS was demonstrated for the non-BPs 

taxodione (115) (PDB ID 4P0V) and arenarone (116) (PDB ID 4P0W), compounds with known 

anti-bacterial and anti-tumour activity[286] (Figure 17). Furthermore, hFPPS was identified as a 

target of N6-iso-pentenyladenosine (117) and NMR and docking studies suggested active 

site-directed binding for this non-BP scaffold[287] (Figure 17). In a recent virtual screening, 

guanosine monophosphate and derivatives thereof were identified as potential binders of 

TcFPPS[274].  

 

 

Figure 17:  Chemical structure of BP-based and other inhibitors. BP-based inhibitors 106 and 107, fluorescent BP 

derivatives 108 and 109, bisamidine 110, thienopyrimidine bisphosphonate 111, thienopyrimidine 

monophosphate 112, benzindole 97 (showed for comparison), substituted indole 113 and azabenz-

imidiazole 114, taxodione (115), arenarone (116) and N6-isopentenyladenosine (117). 



Introduction 

34 

1.5 Fragment-based lead discovery (FBLD) 

For several years, biochemical and cell-based HTS was the dominant approach in lead 

discovery, which led to many initial starting points[288]. However, issues with false positives 

constantly occurred[289] and in some cases only a few hits were observed[290], although libraries for 

HTS contain up to 106 lead- or drug-like compounds[291]. Instead of further increasing the number 

of tested compounds, fragment-based screening (FBS) used libraries that contained around 102 to 

104 smaller compounds, so-called fragments that are screened against a target protein[292]. 

Fragments are characterized by a MW ranging from 110 to 300 Da with less than 20 heavy 

(non-hydrogen) atoms[293]. A retrospective analysis of 145 fragment-to-lead campaigns showed 

that the starting fragments and the final lead compounds had an average number of 15 and 28  heavy 

atoms, respectively[294]. As chemical space increases by approx. 8-fold with each added heavy 

atom[295], 1000 fragments with a MW of 190 Da cover chemical space as effectively as 

108 compounds of 280 Da or 1018 compounds of 440 Da[292]. When fragments are screened instead 

of larger compounds, it is more likely to identify motifs that match the protein’s requirements[293a], 

because fragments can only form few interactions due to their limitation in size, while larger 

compounds can form many more interactions, and for some of which a higher chance is given to 

be counterproductive[293a].  

Usually, fragments bind to hot spots of binding in the protein[296], and in most cases all 

binding sites of a given protein can be mapped with fragments[297]. Furthermore, fragment screens 

can also reveal unknown and secondary binding sites of proteins[298], which was lately shown for 

FPPS[209a, 209b] and K-Ras[299]. Hence, FBS can stimulate new interest in known targets[292]. 

However, fragment screening hits are characterized by low affinity with an equilibrium 

dissociation constant (Kd), ranging from 0.1 mM to 10 mM and thus, sensitive biophysical methods 

are needed for their detection[292, 300]. The properties of the fragment hits are decisive for the success 

of the subsequent optimization process into drug-like molecules[291]. Lead compounds, which were 

derived by optimization of fragments, were shown to have more-drug-like properties, e.g. lower 

MW and/or lower lipophilicity, when compared to starting compounds of higher complexity 

derived from HTS campaigns. The latter can only be adjusted slightly because their size leaves 

little room for improvement[291]. In short, the advantages of FBS compared to HTS are a smaller 

screening library, higher hit rates and the smaller and less lipophilic fragments hits that have proven 

to be good starting points for chemical optimization[293b, 301]. Nevertheless, a potent lead can fail 

long after the incipient screening phase. Potential roadblocks are poor ADME (absorption, 

distribution, metabolism, excretion) properties, poor cell permeability, unexpected toxicity and/or 

the lack of the desired biological response[102]. 

One of the first fragment-based lead discovery (FBLD) campaigns was conducted by 

Shuker et  al.[302] in 1996. In a so called structure-activity relationship (SAR) study by NMR, they 
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identified ligands that were bound to different sites and their chemical linkage resulted in potent 

inhibitors[302-303]. Since then a whole range of tools and procedures for FBLD were developed[293b], 

some of them by companies, such as Abbott[304], Astex[305], Sunesis[306] and Vernalis[293c]. To date, 

after 23 years of investment, FBLD is frequently used in academia and pharmaceutical companies 

and has resulted in many fragment-to-lead success stories[292, 293b, 307]. Currently, there are approx. 

30 compounds in clinical trials, and two of them were approved as drugs[293b, 308]. 

Basically, all FBLD campaigns include four steps: assembly of a suitable fragment library, 

identification of fragment hits by biophysical screening, biophysical characterization and structure 

determination and finally fragment-to-lead optimization by chemical optimization[292] (Figure 18). 

Biophysical methods to screen the fragment library against the target protein need to be robust and 

sensitive to identify the low affinity binders. Methods matching these criteria are nuclear magnetic 

resonance (NMR) spectroscopy[309], surface plasmon resonance (SPR)[310], differential scanning 

fluorimetry (DSF)[311], X-ray crystallography[312] and mass spectrometry (MS)[313]. The methods 

vary in their affinity detection range and thus cover the range of binding affinities within a 

fragment-to-lead optimization process[293c, 314]. NMR and X-ray crystallography require larger 

amounts of protein (10s of mg) than all other methods (<1 mg)[292] (Figure 18).  

 

 

Figure 18:  Overview of FBLD and methods used for fragment screening. (A) Four major steps made in FBLD. 

(B) Affinity ranges of fragment screening methods for the detection of compound binding to 

macromolecular targets. Binding affinities for compounds of different size and levels of FBLD are 

indicated. Figure (B) was adapted from Hubbard et al.[314] 

For a screening campaign the optimal combination or sequential application of the 

previously enumerated techniques has to be identified. They can either be applied independently 

of each other or consecutively in a screening cascade or funnel format, with the highest sensitivity 

and throughput run first[300b, 312]. In the first case, the resulting hit lists are analysed with attention 

to similarities and deviations[315]. In both cases, the number of fragment hits can be significantly 
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reduced, even if many compounds have been tested. Hit lists of different methods can differ 

significantly and result in quite little overlap[315-316], and the outcome of a screening cascade is 

limited by the least sensitive and robust method[292, 293b]. Throughout the whole FBLD campaign, 

target enabling plays an important role, as it includes production of pure, functional and 

homogenous protein, setup of robust assays and methods for the generation of binding models[292]. 

1.5.1 Fragment libraries 

Fragment libraries with high fragment diversity and good coverage of chemical space 

ensure holistic testing and increase the chance to identify fragments that are binders[291-292, 317]. 

Although many libraries have been compiled in the last two decades, it is unknown how diverse 

these are, because compound lists are usually not disclosed as they are considered a competitive 

advantage or confidential for company know-how[291]. Nevertheless, criteria for library assembly 

have been published in several publications[291, 295b, 297a, 318].  

A set of physicochemical properties frame the selection of fragment-like compounds to 

guarantee high solubility (>2 mM in aqueous solution) and optimal interactions with the target 

protein[292, 295a, 314]. Fragment complexity can be limited according to the rule-of-three (Ro3), which 

includes an MW ≤300 Da, a logarithm of the partition coefficient (logP) ≤3, a number of H-bond 

donors (HBD) ≤3, and a number of H-bond acceptors (HBA) ≤6[305]. The Ro3 originated from 

Lipinski’s rule-of-five (Ro5)[107], where the numerical values are equal or an even multiple of five. 

It is assumed that 1060 possible organic compounds comply with the Ro5[107, 319]. Apart from the 

Ro3 and Ro5, further criteria considered in library assembly are the Heavy Atom Count (HACnt) 

ranging from 5 to 18, the topological polar surface area (PSA) ≤90 Å2, the number of rotatable 

bonds ≤3, and the aromatic ring count ≤3[320]. Some libraries contain a number of special fragments, 

such as compounds with a higher amount of sp3-hypbridized carbon atoms for shape diversity[321], 

fragments derived from natural products[322], or compounds with CFn groups[323]. Recently, libraries 

of ligands with even lower molecular-weight were reported[324]. When the desired boundaries are 

settled, surface plasmon resonance (SPR) and ligand-observed NMR can help to identify sticky 

compounds or self-aggregators[293b, 325]. In addition, compounds are assessed for reactive or toxic 

groups, so called structural alerts[326], likely to produce pan-assay interference (PAINS)[327]. They 

are discarded if necessary.  

When a new library should fill gaps in chemical space, additional filtering tools to access 

novelty, such as extended connectivity fingerprints (ECFP4) are applied or data analysis tools, such 

as principal component analysis (PCA) and principal moments of inertia (PMI) are applied, to 

compare the new compound set with already known libraries[291]. Some scientist claim that 

increasing the diversity and novelty of the compound collection is a constant concern[291, 328]. 

However, libraries are often assembled from commercially available substances and synthesised 
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compounds, which share common parent scaffolds[291, 329]. By 2012 drug space showed 351 ring 

systems and 1197 frameworks[330], whereby only a small number of new ring systems entered drug 

space each year[331]. The SHAPES strategy even fosters known scaffolds, as it looks for fragments 

that match known therapeutic agents[332]. According to Schuffenhauer et al.[333], the number of 

commercially available reagents is still much larger than any compound collection and when 

proprietary fragments are included there is potential for novelty.  

For medicinal chemistry efforts, fragments should contain a suitable functional group, such 

as carboxylic acids, amines and alcohols, and masked linker groups[333]. Functional groups can also 

serve as linker in subsequent optimization but when they form the key interaction to the protein, 

their chemical modification will likely results in an affinity loss[332, 334]. The use of building 

block-like fragments with masked linking groups proved to be a highly useful strategy[302, 326c, 335]. 

In addition, it enables screening of scaffolds that are highly reactive in their unmasked form, such 

as isocyanates, aldehydes and acid chlorides[333]. The concept of fragment pairs considers masked 

screening fragments and the corresponding building blocks, and hence, the linking strategies, as 

well as the masking or capping reactions have to be specified before the library is assembled[333]. 

In chemically-poised libraries, fragments can be deconstructed in two scaffolds that are based on 

the most commonly used chemical reactions, and thus allow rapid parallel synthesis of fragment 

analogues[336].   

Finally, high compound quality, with regards to purity, stability and solubility, as well as 

suitable plating formats are key requirements for the successful deployment of a compound 

library[291]. Compound quality controls, careful handling and appropriate storage are essential to 

guarantee and maintain their quality, because impurities can significantly increase the number of 

false-positives[291], when screened at high compound concentrations, e.g. at 1 mM in protein-

observed NMR experiments[309b]. 

1.5.2 Fragment-based screening by NMR 

The finding of the physical basis and key developments of NMR spectroscopy were 

associated by several Nobel Prizes. Stern and Rabi, as well as Bloch and Purcell were awarded 

with the Nobel Prize in physics in 1943, 1944 and 1952, respectively[337]. Whilst Stern discovered 

the magnetic moments of protons[338], Rabi was the first to record the magnetic properties of atomic 

nuclei[339] and Bloch and Purcell were the first, who independently of each other conducted an 

NMR experiment[340]. NMR spectroscopy is based on the fact that atomic nuclei have a magnetic 

moment and a nuclear spin. They align to an external magnetic field in few, defined orientations 

with a specific energy, according to the laws of quantum mechanics. Exposure of the sample to 

radio waves of certain frequencies make the nuclear spins to invert the population between energy 

levels. If the frequency matches the characteristic frequency of the nuclei (resonance or Lamor 
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frequency), an electromagnetic resonance can be detected and can be plotted as function of 

frequency. The nuclear resonance frequencies depend not only on the type of atomic nuclei but 

also on their chemical environment[341]. Among others, Purcell mentioned the possibility to use 

NMR as a tool for chemical analysis[342]. Modern NMR experiments are based on the work of Ernst 

and Wüthrich, who were awarded with the Nobel Prize in Chemistry in 1991 and 2002, 

respectively[337a]. Ernst found that applying short, intense pulses of radio waves instead of slow, 

sweeping radio waves increased the sensitivity of NMR spectra dramatically. The signal was 

recorded as function of time and many pulses summed up, before they are transferred into a 

frequency-resolved NMR spectrum using Fourier transformation (FT)[343]. He also developed many 

pulse sequences for 2D NMR experiments[344]. Wüthrich showed that NMR spectroscopy can also 

be used for the elucidation of 3D structures of proteins in solution[345].  

NMR spectroscopy was the first method used for fragment screening[302] and to date, 

NMR-based screening is a well-established and commonly used technology in drug discovery[293b, 

302]. NMR experiments are sensitive, detect interactions in solution[309b] and can be divided in 

ligand-observed and protein-observed experiments[346]. Thus, NMR experiments can be applied 

sequentially in order to do a comprehensive FBS campaign by NMR spectroscopy including 

screening of fragments and validation of primary hits[309b]. Gossert and Jahnke developed a concept, 

named validation cross, to easily keep track of the validation and integrity status of a fragment hit 

throughout such a cascade of experiments[309b]. For primary screening, ligand-observed 

experiments are favoured, as they require less protein than protein-observed experiments. They are 

label free, have no upper size limit in molecular weight for the target protein and can identify 

binders from mixtures, if each fragment has at least one distinct peak in the overlay of all recorded 

1D spectra[292, 309b, 346b, 347]. Typical one-dimensional ligand-observed NMR experiments are 

saturation transfer difference (STD), T1ρ relaxation, water-ligand observed via gradient 

spectroscopy (waterLOGSY) and 19F T2 experiments[293b, 348].  

STD experiments are based on the transfer of magnetization from the protein to the bound 

fragment[349]. The experiment is based on the Nuclear Overhauser Effect (NOE)[350], which enables 

the transfer of magnetisation trough space instead of chemical bonds. The peaks of binders show a 

decrease in signal intensity and can be easily identified, when compared to compound blanks. 

Although STD NMR is commonly used, false positives can result from saturation of fragment 

methyl protons and thus STD experiments should be used in combination with other 

experiments[351]. T1ρ relaxation experiments are based on the fact that spin-spin relaxation time 

(T2) differs for ligand nuclei that are free in solution and for ligand nuclei that are bound in a 

complex[352]. T2 is slow for free ligands, as they tumble very fast in solution and faster for ligands, 

which formed a complex and thus tumble as slow as the protein. To detect a change in T2, the spins 

are recorded after allowing relaxation for a short and for a long time (spin lock time). The 

comparison of the two spectra shows a significant broadening in linewidth and a loss of signal 
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intensity for binders. The reduction of the signal intensity varies, as it is dependent on the mass 

difference between binder and protein. Measuring compound blanks is an easy way to prevent false 

positives that may occur for example due to aggregation of the compound[309b]. WaterLOGSY is 

based on the transfer of magnetisation from bulk water through space to the ligand[353], thus also 

using the NOE[350]. Magnetisation is transferred to the ligand via its hydration shell in solution and 

from water molecules located at the ligand-protein interface. Due to phase shifting, the two cases 

differ in their algebraic sign. Chemical shifts of compounds forming a protein-ligand complex have 

a positive sign, whereas chemical shifts of free ligands have a negative sign[353b]. Including an 

internal standard helps phasing the spectra correctly and measuring compound blanks is an easy 

way to prevent false positives which can easily occur as exchangeable protons give positive signals, 

too. Gossert and co-workers developed polarization optimized PO-waterLOGSY[346b], which 

reduced the measurement time by a factor of five[346b]. Such time savings are a huge advantage 

when measuring large numbers of samples in screening mode. 19F NMR has become the tool of 

choice for fluorine containing fragments in drug discovery[354]. The wide chemical shift range of 

19F and the strong chemical shift anisotropy allow mixtures of >30 CF3-fragments without 

overlapping of signals[309a, 323]. For 19F T2 experiments, the Carr-Purcell-Meiboom-Gill Sequence 

(CPMG)[355] is commonly used to measure T2 relaxation times. The readout is similar to T1ρ 

relaxation experiments, as also T2 relaxation times differ for fragments free in solution or when 

binding to a protein[292]. Binders are detected due to their increase of linewidth, which can even 

lead to disappearance of the signal in the background of the spectrum. Unfortunately, 1D 

experiments do not give information on the binding mode but when applied as an reporter 

screen[356] they can make use of known ligands and identify completive binding to known binding 

sites[351].  

Chemical shift changes in protein-observed NMR spectra are considered as gold standard 

for fragment screening[293b, 309b]. Frequently used methods are HSQC experiments[302] or 

SOFAST-HMQC experiments[357], which correlate the chemical shifts of a nitrogen or carbon atom 

to an attached or neighbouring proton, respectively. However, these two-dimensional methods 

require isotope-labelled protein, as the natural abundance of the isotopes 15N and 13C is 0.37% and 

1.1%, respectively[358]. Protein-observed NMR is better suited for proteins with a MW <30 kDa for 

15N labelling and <100 kDa for 13C labelling[309b]. Resonance assignment can reveal the ligand 

binding site[359] and in some cases measuring the chemical shift differences in a dose response 

series can provide the Kd
[360].  

A big advantage of NMR over other screening techniques is the large number of different 

experiments that make the method very versatile[361]. 1D 1H spectra for quality control can be 

measured from the same sample tube by applying solvent suppression and the excitation sculpting 

principle (zgesgp pulse program)[362]. If the compound stability and solubility are monitored, 
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misinterpretation of results due to erroneous assumptions is avoided and the number of false 

positives and false negatives is decreased[292, 309b].  

1.5.3 Fragment-based screening by X-ray crystallography 

Crystals of haemoglobin were first described by Hunefeld in 1840[363]. Throughout the late 

19th and early 20th century, crystallization became a powerful purification tool for naturally 

occurring peptides and proteins from supersaturated extracts[364]. Many Nobel Prize winners are 

associated with crystallography[365], among them are Sumner[366], Northrop[367] and Stanley[368], who 

were awarded in 1946 with the Nobel Prize in chemistry for their work on purification and 

crystallization of urease, pepsin and the tobacco mosaic virus, respectively[369]. The basis for the 

development of X-ray crystallography was the discovery of X-rays by Röntgen[370] in 1895, the 

observation of diffraction patterns of crystals by von Laue in 1912[371] and the formulation of 

Bragg’s law in 1913[372]. When a well-ordered single crystal interacts with electromagnetic 

radiation[373], a part of the X-rays are scattered in all directions whereas others diffract, according 

to Bragg’s law[374]. It describes 3D diffraction as a reflection of an incipient X-ray beam by 

imaginary planes in the crystal lattice which occurs if the interference is constructive. For a planar 

interspacing d and an incident angle θ, this is true if the path difference between waves with the 

wavelength λ is equal to an integer number n (Figure 19). The minimum distance dmin that can be 

resolved corresponds to the maximum angle θmax and is called resolution of the diffraction pattern. 

High resolution is directly related to higher crystalline order[364].  

 

 

Figure 19:  Bragg’s law. Reflection of X-rays by imaginary planes in a crystal lattice. 

The first protein structure elucidated by X-ray crystallography was the structure of 

myoglobin, which was published by Kendrew[375] in 1958 and was awarded with the Nobel Prize 

in chemistry in 1962[376]. At this time, the diffraction spots (reflections) were detected on 

photographic film and analysed to elucidate the protein crystal structure[376]. Then and now, the 

coordinates of the reflections represent a pattern which provides information about the 

crystals’ space group. The measured intensities contain information about the molecules forming 

the lattice[377]. Each reflection contains information from all atoms in the crystal as it results from 
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interactions of all atoms in the crystal at the same angle. The phases of the reflections cannot be 

measured, which is known as phase problem in crystallography and therefore the electron density 

distribution ρ throughout the unit cell cannot be calculated by applying a Fourier transformation 

from the recorded reflection data[373, 378]. Perutz and co-workers[379] solved the phase problem in 

1954 by using multiple isomorphous replacement through heavy atom soaks and hence decisively 

assisted Kendrew’s work on myoglobin. Molecular replacement (MR) uses the phases of an 

unravelled structure of a homologue to phase a new protein structure. Owing to the large number 

of available crystal structures it became the major procedure used today[380]. 

In the last decades, methods in and around crystallography developed tremendously and 

turned X-ray crystallography into a cornerstone of structural biology[372]. It is the most powerful 

and common method to elucidate the three-dimensional structures of macromolecules such as 

proteins, nucleic acids, protein or nucleic acid complexes and their complexes with low-molecular 

weight ligands [373, 381]. The development began when many proteins with low abundance in natural 

systems and membrane proteins became available through genetic engineering, recombinant 

expression and better handling, using special reagents[364, 372]. Protein crystals are usually soft, 

contain a large amount of water, are fragile, limited in size, and are sensitive to temperature 

changes. They can disintegrate upon dehydration, in consequence they show poor optical properties 

and poorly diffract X-ray radiation. Therefore, key steps in X-ray crystallography were the 

introduction of cryo-crystallography[382], in which crystals are measured at 100 K to minimize 

radiation damage, which allowed the usage of high intensity synchrotron radiation[383]. 

Recent developments turned the method into a high throughput technique. Therefore and 

because X-ray crystallography is particularly sensitive and simultaneously allows high fragment 

concentrations, it became a hit identification tool in FBS[384]. This was first demonstrated by 

Nienaber et al.[304] and Hartshorn et al.[385] in 2002 and 2005, respectively. The developments 

included miniaturisation and automation of crystallization trials[386], sophisticated crystal handling 

with robots[387], stable, brighter and tuneable radiation sources[388] and high speed detectors with 

high resolution[389]. Today’s beamlines are software driven and run mostly in automation, which 

includes strategy routines for optimal collection of diffraction images[388, 390] and automatic data 

processing pipelines[391] that replace the labour-intensive and time-consuming manual 

processing[392]. The subsequent manual refinement work of the crystallographer towards a final 

structural model is accelerated by software tools, which can identify and/or place ligands[391a, 393] 

or ions[394]. The quality of the obtained 3D structure results from a combination of the diffraction 

quality of the crystal, the optimized data collection strategy, and the quality of data processing and 

refinement[395].  

Despite all advances, identification of fragment hits remained difficult when compared to 

more potent ligands, because their low affinity can result in partial occupancy, causing weak and 

ambiguous electron density that can be misleading[394, 396]. High-quality diffraction data with a 
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resolution of at least 2.5 Å are needed to evaluate such weak density[397] and when an automatic 

processing pipeline is set up to identify fragment hits. Special attention is required, e.g. when 

placing water molecules[384a]. Recently, Pearce et al.[393a] developed a multi-crystal approach, called 

Pan-Dataset Density Analysis (PanDDA). The software computes a background electron density 

estimate as a mean of ground-state measurements from apo structures and in a second step, 

significant changes from the mean are identified by a weighted subtraction of the background from 

each electron density map. The resulting partial-difference map is termed event map and 

corresponds to the bound fraction in the crystal, i.e. ligand binding event. Thus, PanDDA allows 

sensitive detection of binding sites as it reveals regions of an individual data set that represent a 

statistical outlier[393, 398]. This approach was shown to be ideal for data analysis of high-throughput 

fragment screening campaigns by X-ray crystallography[399]. In Europe, such campaigns can be 

conducted at the XChem lab[400] at the Diamond Light Source in Harwell, UK, at the HTX lab[387b] 

at the EMBL in Grenoble, France, and at the BESSY II MX-beamlines of the Helmholtz-Zentrum 

in Berlin, Germany[401]. Both sites offer state of the art equipment, and access to fragment libraries. 

However, the presence of a well-established crystallization system yielding high quality crystals 

of the apo protein of interest that are suited for soaking experiments remains an absolute 

requirement[385]. 

To establish such crystallization system, a pure and homogenous protein formulation is 

brought to supersaturation under various conditions. In most cases this leads to precipitation, but 

sometimes it leads to nuclei formation and subsequent crystal growth until the equilibrium is 

re-established[364]. There is no comprehensive theory to guide crystallization efforts and in 

consequence, protein crystallography is empirical and trial and error is the main method to 

succeed[364]. The most common technique to achieve supersaturation is vapour diffusion in hanging 

drops or sitting-drops[364]. Others are free interface diffusion, dialysis, and batch crystallization[364]. 

To find and optimize crystallization conditions, either commercial screening matrices are used in 

a shotgun approach, or all parameters are varied as systematically as possible in several test 

campaigns[364, 402]. A combination of both strategies is applied, when crystal quality or size obtained 

from primary conditions need further optimization[364]. Commercial screening matrices cover a 

wide range of conditions and are done on micro-scale in plastic multi-chambered trays. Thus, they 

explore a large range of crystallization conditions while using little material and became the method 

of choice when facing a new crystallization problem[364]. The most important variables in a 

crystallization system include the precipitant of the macromolecule, such as salts, polymers and 

organic solvents, pH and temperature[364]. These variables can be correlated to each other resulting 

in a non-linear problem[364, 403]. When the formation of stable nuclei is an obstacle, seeding is used 

to directly induce crystal growth, by adding crystalline material from various sources[364]. Seeds 

are added by pipetting or they are introduced by using whiskers or horse hair, which results in a 

so-called streak seeding[404]. An effective method, used during crystallization screening, is 
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microseed matrix screening (MMS)[405]. In this method, a seed stock is prepared from protein 

crystals with the seed bead method[406] and used as an additive in a matrix condition screen of the 

same protein. 

With a well-established crystallization system for the apo protein, it can still be difficult to 

obtain structures of protein-ligand complexes by soaking or by co-crystallization[378]. For soaking, 

apo crystals of known structure and good quality are prepared and incubated with the ligands of 

interest[378]. The symmetrically arranged protein chains in a protein crystal are loosely packed and 

interact only by a few contacts with their neighbouring chains[364]. Large solvent channels traverse 

the protein crystal and account for 30 to 80% of its volume[407]. Fragments can penetrate the 

preformed crystal through these channels by diffusion and bind to the protein, what makes soaking 

a simple method, which can achieve high throughput and good reproducibility[373, 378]. The success 

of soaking experiments depends on the accessibility of the desired binding site through channels 

in the crystal lattice, the channel size, which typically varies from 20 to 100 Å[408], the channel 

configuration, e.g. shape, surface charge distribution, viscosity of the bulk solvent, solubility of the 

ligand in the mother liquor and ligand affinity[364]. Conformational changes required for ligand 

binding might not be tolerated by the crystal packing[409]. An alternative to soaking is 

co-crystallization, where protein and ligand are mixed to form the complex in solution which is 

then crystallized. Each new complex can differ from the apo protein as well as from other 

complexes and therefore the system does not necessarily crystallize under the known conditions of 

the apo protein. If every complex leads to a new crystallization problem, co-crystallization 

becomes a demanding and time consuming effort[378].  

1.5.4 Fragment-to-lead optimisation 

After the identification of low affinity fragment hits, the fragment hit-to-lead optimization 

starts, which is also known as lead generation[292, 378, 410]. Usually, so called SAR-by-archive and 

SAR-by-catalogue studies are made directly after finishing the fragment screen and without any 

knowledge of the binding pose of the fragment hit, to test substructures and similar compounds[411]. 

As a second step, medicinal chemisty is applied in iterative cycles of design and testing to develop 

the potency, selectivity, activity and pharmacokinetic properties of the fragment hit[67, 99b, 136c, 295b, 

410, 412]. Fragment optimization relies on the fact that each interacting part of the molecule 

contributes to the free energy of binding[413]. Initially, fragments form few interactions, which 

results in low affinity. Optimization leads to additional binding interactions and a gain in binding 

affinity[413-414]. In most cases, three-dimensional structures of protein-ligand complexes are 

accessible, often by X-ray crystallography[378], and thus the iterative optimization is driven by 

rational compound design[24]. This process is called structure-based lead design (SBLD), 

structure-based drug design (SBDD) or structure-aided drug design (SADD) and represents the 
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decisive advantage of target-based approaches over cell-based approaches[378, 415]. Several case 

studies demonstrated its success[416]. Prominent examples are inhibitors of HIV-1 protease[417], 

HIV-1 integrase[418], and influenza neuraminidase[419]. The three main strategies in SBDD when 

associated with FBLD are fragment linking, fragment growing and fragment merging (Figure 

20)[333, 412b]. In fragment linking, fragments that are located in close proximity to each other, are 

linked by a suitable spacer[292]. Finding a spacer with the right length and geometry is important, 

to avoid negative effects on binding[420]. This was successfully done in the first FBLD 

campaign[302], the development of Venetoclax[421], and others[422].  

 

 

Figure 20:  Main strategies in SBDD. After the fragment screening, SAR-by-archive and/or SAR-by-catalogue 

studies are applied, followed by SBDD, either using linking, growing or merging. Figure was adapted 

from Lamoree et al.[292] 

Fragment growing is the most commonly used strategy in SBDD[292, 293b]. Here, a new 

series of compounds is extended step by step using a single group to identify further interactions 

and to be able to distinguish between beneficial and detrimental effects[397]. This approach led to 

the development of Vemurafenib[423], as well as to compound AT9283, an inhibitor of the Aurora 

kinase activity[424], and compound AUY922, an inhibitor of chaperone Hsp90[425]. Fragment 

merging combines scaffolds that originate from multiple crystal structures and also takes results of 

other screening campaigns, such as docking studies and literature searches into account[292, 426]. 

Examples are an inhibitor of PDPK1 kinase[426] and the compound BEP800, another inhibitor of 

the chaperone Hsp90[425, 427]. A lead compound inhibiting mitochondrial branched-chain 

aminotransferase (BCATm), resulted from merging a hit derived from FBS with a hit derived from 

HTS[428].  

All in all, SBDD contains a significant number of options for chemical optimization. Thus, 

it requires a large amount of decision-making[292], which is guided by synthetic accessibility, the 

best design opportunities offered by the binding pocket, and the resulting binding affinities[412b]. 

Characterization of ligand binding and determination of Kd by SPR[310b], isothermal titration 
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calorimetry (ITC)[429] or NMR[360a] plays an important role in the optimization process. For 

prioritizing FBS hits and optimized compounds, the ligand efficiency (LE) is a good indicator, as 

the value of the whole ligand and of added atoms to the molecule can be estimated by the LE. It is 

defined as the binding free energy per non-hydrogen atom[430]. If the ligand binding event does not 

cause conformational changes, in silico docking studies, such as dynamic un-docking (DUCK)[431], 

or virtual screening of compound libraries, such as ANCHOR.QUERY[432], can deliver additional 

knowledge and guidance for the optimization process[292]. Further in silico approaches are 

FTMAP[433] and Molecular Dynamics simulations with mixed solvents (MDmix)[434], which map 

the protein surface for binding of functional groups. Using structural information from docking 

studies, NMR[345], or covalent fragments (e.g. tethering[306]) can help to optimize fragments in the 

absence of crystal structures[411]. 
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2. Aim of the thesis 

Millions of people, mostly underprivileged populations in South and Central America, 

suffer from Chagas disease (CD). They have an urgent need for novel drugs exhibiting reduced 

adverse effects and increased efficacy. A novel mechanism of action is preferred to circumvent 

emerging resistance against benznidazole and nifurtimox, the current standard of cure. T. cruzi is 

dependent on isoprenoid biosynthesis as ergosterol and other 24-alkylsterols are essential 

metabolites that cannot be acquired by other mechanisms. Therefore, it was hypothesised that 

enzymes along this pathway are promising drug targets. A number of compounds targeting these 

enzymes were tested and have been shown to inhibit parasite growth. Among those enzymes is 

farnesyl pyrophosphate synthase (FPPS), which is in the focus of this work. It catalyses the 

synthesis of farnesyl pyrophosphate (FPP), a C15 building block in sterol biosynthesis and in 

protein prenylation of signalling proteins. Therefore, it is a key branch-point enzyme in the 

isoprenoid pathway.  

Nitrogen-containing bisphosphonates (N-BPs) are blockbuster drugs for bone diseases that 

inhibit FPPS by mimicking its allylic substrate. The N-BPs pamidronate and risedronate showed 

efficacy in mice infected with T. cruzi. Unfortunately, N-BPs have inappropriate pharmacokinetics 

to treat CD as they avidly bind to bone mineral and show poor bioavailability. Nevertheless, BPs 

and BP analogues are the only and well-studied lead series. Thus, finding binders of T. cruzi FPPS 

(TcFPPS) based on novel scaffolds with suitable drug properties is desirable and the aim of this 

thesis. A recent success story was the identification of non-bisphosphonate inhibitors of 

human FPPS (hFPPS) that bind to an allosteric binding site. Early fragment hits were developed 

by medicinal chemistry into three lead series with up to low nanomolar affinity. The distinct mode 

of inhibition and different physicochemical properties of these inhibitors overcome the limitations 

related to the N-BP scaffold.  

Encouraged by the findings for hFPPS and owing to the paucity of lead series available for 

TcFPPS, this work focuses on the early phase of the drug discovery process. The goal is to identify 

TcFPPS binders of a novel scaffold, to explore potential binding sites in TcFPPS and to start 

structure-based lead discovery. For this purpose, fragment-based screening will be applied, using 

different biophysical methods, such as NMR and X-ray crystallography. Regions other than the 

active site are less conserved and are thought to have higher potential for specific inhibitors over 

the human homologue. Thus, revealing further binding sites in TcFPPS would give rise to new 

options to develop inhibitors of a novel scaffold specific for TcFPPS and would give new impulses 

for the drug discovery for CD. The overarching goal, which exceeds the scope of this thesis, is the 

development of a tool compound to prove the concept of allosteric inhibition of TcFPPS.  
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3. Materials  

3.1 Chemicals 

Table 2: List of used chemicals. All solvents listed had the purity grade pro analysi (p. a.). 

Chemical Manufacturer 

Acetic acid SIGMA 

Acetonitrile, LC-MS CHROMASOLV® FLUKA 

Aspartic acid FLUKA 

Biotin SIGMA-ALDRICH 

BisTris FLUKA 

2,5-Dichlorobenzo[d]thiazole, 95% ABCR 

CaCl2 MERCK 

Chloramphenicol APPLICHEM 

2-Chlorobenzothiazole, 99% ALDRICH 

7-Chloro-1H-indole-3-carbaldehyde MATRIX SCIENTIFIC 

2-Chloro-5-(trifluoromethyl)benzo[d]thiazole, 95% ENAMINE 

CoCl2 · 6H2O RIEDEL-DE HAËN 

cOmplete™, protease inhibitors, EDTA-free ROCHE DIAGNOSTICS 

CuCl2 · 2H2O MERCK 

d6-DMSO  EURISOTOP 

D2O EURISOTOP 

DCM BRENNTAG SCHWEIZERHALL AG 

DCM, 99.8% anhydrous SIGMA 

DMSO SIGMA-ALDRICH 

DSS CAMBRIDGE ISOTOPE LABORATORIES INC. 

DTT, 1.0 M in H2O SIGMA 

Ethylacetate, 99 – 100% BRENNTAG SCHWEIZERHALL AG 

FeCl3 · 6 H2O SIGMA-ALDRICH 

Folic acid (vitamin B9) SIGMA-ALDRICH 

D-(+)-Glucose FLUKA 
13C-D-(+)-Glucose ALDRICH 

Glycerol SIGMA-ALDRICH 

Guanidine · HCl SIGMA 

Guanidine · HCl solution, 8.0 M in H2O SIGMA 

H3BO3 FLUKA 

HCl in dioxan, 4.0 M SIGMA-ALDRICH 

Heptane, mixture of isomers BRENNTAG SCHWEIZERHALL AG 

5-Hydroxy-1H-indole-3-carbaldehyde J&W PHARMLAB 

Imidazole SIGMA-ALDRICH 

IPTG SIGMA LIFE SCIENCE 

Kanamycin sulphate SIGMA LIFE SCIENCE 

KH2PO4 FLUKA 

α-Lactose · H2O SIGMA 

MgSO4 SIGMA 

7-Methoxy-1H-indole-3-carbaldehyde BIOFINE INTERNATIONAL  

MnCl2 · 4 H2O MERCK 
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Na2HPO4 MERCK 

Na2MoO4 · 2 H2O SIGMA-ALDRICH 

Na2SeO3 · 5 H2O SIGMA-ALDRICH 

Na2SO4, anhydrous SIGMA LIFE SCIENCE 

NaCl SIGMA-ALDRICH 

NH4Cl SIGMA LIFE SCIENCE 
15NH4Cl CAMBRIDGE ISOTOPE LABORATORIES INC. 

NiCl2 · 6 H2O RIEDEL-DE HAËN 

Nicotinamide FLUKA 

D-Pantothenic acid (vitamin B5) SIGMA-ALDRICH 

2-(Piperazin-1-yl)benzo[d]thiazole, 95% CHEMBRIDGE CORPORATION 

PPG antifoam, polypropylene glycol 2000 VWR CHEMICALS 

Protein standard, Precision Plus Protein Kaleidoscope BIORAD 

Pyridoxal hydrochloride SIGMA 

Riboflavin (vitamin B2) SIGMA 

SOC medium FLUKA 

Sodium triacetoxyborohydride SIGMA-ALDRICH 

SYPRO® Orange, 5 mM (5000x) in DMSO SIGMA 

TCEP · HCl SIGMA 

d16-TCEP·HCl CAMBRIDGE ISOTOPE LABORATORIES INC. 

TEA, anhydrous  SIGMA 

Tert-butyl piperazine-1-carboxylate COMBI-BLOCKS 

Tert-butyl 3-formyl-1H-indole-1-carboxylate, 95% ABCR 

Thiamine hydrochloride (vitamin B1) FLUKA 

TRIS TRIZMA® Base SIGMA LIFE SCIENCE 

TRIS · HCl, TRIZMA® hydrochloride SIGMA LIFE SCIENCE 

d11-TRIS CAMBRIDGE ISOTOPE LABORATORIES INC. 

Tryptone SIGMA-ALDRICH 

Water, CHROMASOLV® Plus, for HPLC SIGMA-ALDRICH 

Yeast extract SIGMA-ALDRICH 

ZnSO4 · 7 H2O SIGMA 

3.2 Plasmids and E. coli strains 

1. Plasmid encoding for TcFPPS, Uniprot ID Q8WS26, ec_opt, Met64-Lys425 in pACE0, T7 

promotor, lac operon, 5596 bp, Kanr 

N – His6-tag – HRV 3C cleavage site – TcFPPS64-425 – C 

2. Plasmid encoding for Avi-tagged TcFPPS, Uniprot ID Q8WS26, ec_opt, Met64-Lys425, in 

pACE-GP9, T7 promotor, lac operon, 5683 bp, Kanr 

N – His6-tag – spacer (3xGGGS) – HRV 3C cleavage site – Avi-tag –  TcFPPS64-425 – C  

3. Plasmid encoding for hFPPS, Uniprot ID P14324, ec_opt, Met67-Lys419, in pACE0, 

T7 promotor, lac operon, 5569 bp, Kanr 

N – His6-tag – HRV 3C cleavage site – hFPPS67-419 – C 

4. Plasmid encoding for Avi-tagged hFPPS, Uniprot ID P14324, ec_opt, Met67-Lys419, in 

pACE-GP9, T7 promotor, lac operon, 5656 bp, Kanr 

N – His6-tag – spacer (3xGGGS) – HRV 3C cleavage site – Avi-tag – hFPPS67-419 – C  
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5. Plasmid encoding for human rhinovirus 3C protease (HRV 3C), Uniprot ID P03303, 

Gly1-Gln182, T7 promotor, lac operon, 6722 bp, Kanr 

N – MBP – Thrombin cleavage site – HRV 3C1538-1719 – His6-tag – C 

6. Plasmid encoding for E. coli bifunctional ligase/repressor (BirA), Uniprot ID P06709, 

Met1-Lys321, in pACYC184, araBAD promoter, araC operon, Camr. 

N – His6-tag – BirA1-321 – C 

 

All previously listed constructs were designed by Dr. Felix Freuler, NIBR, Novartis 

Pharma AG, Basel, Switzerland. Plasmids 1. and 3. were purchased from INVITROGEN GENEART 

and were obtained as lyophilized plasmids that were dissolved at 0.1 µg · µL-1 in TE buffer and 

stored at -80 °C. Plasmids 2. and 4. were cloned by Simon Haenni and Lena Muenzker, NIBR, 

Novartis Pharma AG, Basel, Switzerland. These plasmids were dissolved at 0.1 µg · µL-1 in elution 

buffer (MARCHEREY-NAGEL kit, no  740615.50) and stored at -80 °C.  

For transformation competent E. coli BL21 (DE3) (genotype: fhuA2 [lon] ompT gal (λ DE3) 

[dcm] ∆hsdS λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5, T1 phage 

resistance, 0.05 mL per tube, NEW ENGLAND BIOLABS) were used. For expression of in vivo 

biotinylated avi-tagged protein, the above listed E. coli strain was transformed with a plasmid 

encoding for bifunctional ligase/repressor (BirA). They were kindly provided as competent cells 

by Cecile Delmas, NIBR, Novartis Pharma AG, Basel, Switzerland. 

3.3 Proteins 

All enzymes listed in Table 3 have been overexpressed in E. coli and purified as part of 

this work. The hFPPS was expressed and purified in collaboration with Lena Muenzker, NIBR, 

Novartis Pharma AG, Basel, Switzerland. In some measurements TbFPPS (Uniprot ID Q86C09) 

was included. It was expressed and purified as part of the doctoral thesis of Lena Muenzker. In 

addition, Pierce™ bovine serum albumin (BSA) standard at 1.5 mg · mL-1 and  2.0 mg · mL-1, 

THERMO FISHER SCIENTIFIC, were used. 
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Table 3: List of expressed and purified enzymes. 

Enzyme MW 

(Da) 

Correction factor A280 EC  

1 mg · mL-1 

TcFPPS 41313 1.412 

13C15N-labelled TcFPPS 43657 1.412 

Biotinylated avi-tagged TcFPPS 43352 1.430 

hFPPS 40686 1.346 

13C15N-labelled hFPPS 43007 1.346 

Biotinylated avi-tagged hFPPS 42724 1.330 

HRV 3C 62853 1.110 

3.4 Chromatography resins 

For protein purification affinity chromatography columns (Ni-NTA Superflow 5 mL, 

QIAGEN), desalting columns (HiPrep™ 26/10, GE HEALTHCARE) and a size exclusion column 

(HiLoadTM SuperdexTM 16/60 S200, GE HEALTHCARE) were used. For buffer exchange pre-packed 

desalting columns (PD-10, Sephadex™ B-25 Medium, GE HEALTHCARE) were used. For 

purification of chemical reaction mixtures two types of pre-packed normal phase silica flash 

columns (RediSep® Rf, 12 g, TELEDYNE ISCO and FlashPure12 g, silica 40 µm irregular, BÜCHI) 

were used. Thin layer chromatography was performed on precoated silica gel plates (0.2 mm, 

particle size 25 µM, FLUKA). 

3.5 Buffers and solutions 

All buffers and solutions were prepared with ultrapure water (Millipore) and sterile filtered 

(0.22 µm). The pH was adjusted using HCl or NaOH.  

Table 4: List of buffers, solutions and media for protein expression and purification. 

Solution / medium Composition 

TE buffer 10 mM TRIS·HCl, pH 8.0, 0.1 mM EDTA 

SOC medium, FLUKA 20 g · L-1 tryptone, 5 g · L-1  yeast extract, 4.8 g · L-1 MgSO4, 

3.603 g · L-1 dextrose, 0.5 g · L-1  NaCl, 0.186 g · L-1 KCl 

LB medium 10 g · L-1 tryptone, 5 g · L-1 yeast extract, 10 g · L-1 NaCl 

MDG medium 25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4,  

0.2 × metals, 0.5% (w/v) D-(+)-glucose, 0.25% (w/v) aspartic acid 

1000x metals 50 mM FeCl3 · 6 H2O, 20 mM CaCl2, 10 mM MnCl2 · 4 H2O, 10 mM ZnSO4 · 7 H2O, 

2 mM CoCl2 · 6 H2O, 2 mM CuCl2 · 2 H2O, 2 mM NiCl2 · 6 H2O,  

2 mM Na2MoO4 · 2 H2O, 2 mM Na2SeO3 · 5 H2O, 2 mM H3BO3 
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modAI medium 25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4,  

1 × metals, 2.5% (w/v) tryptone, 5% (w/v) yeast extract, 1.0% (w/v) glycerol,  

0.1% (w/v) D-(+)-glucose, 0.4% (w/v) α-lactose 

100x BME vitamin mix 50 g · L-1 thiamine hydrochloride, 10 g · L-1 D-pantothenic acid, 10 g · L-1 biotin,  

10 g · L-1 pyridoxal hydrochloride, 10 g · L-1 folic acid, 10 g · L-1 nicotinamide,  

1 g · L-1 riboflavin 

13C15N-uniform labelling 

medium 

50 mM Na2HPO4, 50 mM KH2PO4, 5 mM Na2SO4, 2 mM MgSO4,  

0.4% (w/v) 13C-D-(+)-glucose, 0.25 % (w/v) 15NH4Cl, 1 × BME vitamin mix,  

0.2 × metals 

Lysis buffer 50 mM TRIS, pH 8.0, 300 mM NaCl, 5 mM imidazole, 2 mM TCEP · HCl,  

10% (v/v) glycerol 

Elution buffer 50 mM TRIS, pH 8.0, 150 mM NaCl, 200 mM imidazole, 2 mM TCEP · HCl,  

10% (v/v) glycerol 

SEC buffer 50 mM TRIS, pH 8.0, 200 mM NaCl and 2 mM TCEP · HCl 

Table 5: List of buffers for NMR spectroscopy. 

Buffer Composition 

TRIS buffer 10 mM d11-TRIS, pH 8.0, 150 mM NaCl, 1 mM d16-TCEP · HCl 

BisTris buffer 25 mM BisTris, pH 6.5, 50 mM NaCl, 2 mM TCEP · HCl 

Hepes buffer 25 mM d18-Hepes, pH 7.4, 150 mM NaCl, 1 mM TCEP · HCl, 2 mM MgCl2,  

0.01% (v/v) Tween, 10% (v/v) D2O, 150 µM DSS 

 

Seven commercial crystallization screens were purchased in deep well block format: 

AmSO4 Suite, Cryos Suite, JCSG+ Suite and MBClass II Suite from QIAGEN and Index HT, PegRx 

HT and SaltRx HT from HAMPTON RESEARCH. For final crystallization conditions, the buffers and 

reservoir solutions listed in Table 6 were used. Some of the screened conditions were prepared for 

further investigations. Crystallization plates were prepared with a pipetting robot (Formulator) 

from stock solutions (Table 7).  

Table 6: List of buffers and solutions for crystallization. 

Buffer Composition 

Low salt protein buffer 10 mM TRIS, pH 7.4, 25 mM NaCl, 2 mM TCEP · HCl 

Seed stock buffer 80 mM NaOAc, pH 5.0, 160 mM (NH4)2SO4, 20% (w/v) PEG 4000,  

20% (v/v) glycerol 

Reservoir 24-well plate 80 mM MES, pH 6.5, 8.5 mM ZnSO4, 19.42% (v/v) PEG MME 550,  

15% (v/v) glycerol 

Reservoir 96-well plate 80 mM MES, pH 6.5, 4 mM ZnSO4, 12.36% (v/v) PEG MME 550,  

11.57% (v/v) glycerol 
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Table 7: List of stock solutions used for crystal plate preparation with the formulator. 

Stock  Vendor / preparation 

2.5 M ammonium citrate dibasic, pH 4.7 – 4.8 HAMPTON RESEARCH 

75% (v/v) glycerol Prepared from 100% glycerol, SIGMA-ALDRICH 

1.0 M MES, pH 5.2 HAMPTON RESEARCH 

1.0 M MES, pH 7.1 HAMPTON RESEARCH 

1.0 M NaOAc · 3 H2O, pH 3.6 HAMPTON RESEARCH 

1.0 M NaOAc · 3 H2O, pH 5.6 HAMPTON RESEARCH 

3.5 M (NH4)2SO4 HAMPTON RESEARCH 

8.0 M NH4OAc, pH 4.0 – 5.4 HAMPTON RESEARCH 

50% (w/v) PEG 3350 HAMPTON RESEARCH 

50% (w/v) PEG 4000 HAMPTON RESEARCH 

75% (v/v) PEG MME 550 Prepared from 100% PEG MME 550, FLUKA 

50% (w/v) PEG MME 2000 HAMPTON RESEARCH 

1 M TRIS, pH 7.0 HAMPTON RESEARCH 

1 M TRIS, pH 9.0 HAMPTON RESEARCH 

2 M ZnSO4 · 7 H2O HAMPTON RESEARCH 

 

All other used buffers and solutions that were used in various experiments are listed in the 

following table. 

Table 8: List of other buffers and solutions. 

Buffer Composition 

SDS-PAGE running buffer 25 mM TRIS, pH 8.3 192 mM glycine, 0.1% (w/v) SDS 

SDS sample buffer NuPage® LDS Sample buffer 4x, NOVEX LIFE TECHNOLOGIES 

SDS-PAGE staining solution Instant Blue™, EXPEDEON 

DSF buffer 25 mM BisTris, pH 6.5, 50 mM NaCl, 2 mM TCEP · HCl 

Solubility and stability screen Solubility and Stability Screen II, HAMPTON RESEARCH 

SPR buffer 50 mM Hepes, pH 7.4, 150 mM NaCl, 2 mM TCEP · HCl, 2 mM MgCl2,  

0.01% (v/v) Tween 

SPR buffer with DMSO 50 mM Hepes, pH 7.4, 150 mM NaCl, 1 mM TCEP · HCl, 2 mM MgCl2,  

0.01% (v/v) Tween, 0.9% (v/v) DMSO 

LC-MS cleaning solution 7.62 M guanidine hydrochloride, 48 mM DTT 

LC-MS eluate A 0.05% TFA 

LC-MS eluate B 0.04% TFA in acetonitrile 

HPLC cleaning solution 20 mM TRIS, pH 8.0, 6 M guanidine, 100 mM NaCl, 10 mM DTT 

HPLC eluate A 90% (v/v) acetonitrile, 0.1% (v/v) TFA 

HPLC eluate B 0.1% (v/v) TFA 
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3.6 Fragment libraries 

The 4th generation Novartis core fragment library contained 1408 fragments, which were 

available in 176 mixtures of eight compounds as 50 mM d6-DMSO stock solutions (6.25 mM per 

compound) that were divided on two 96-well plates. In some mixtures compounds had been 

replaced by an equal amount of d6-DMSO and at the time of the screen 1336 compounds were 

available. All compounds were also available as singles as 50 mM d6-DMSO stock solution for 

follow up experiments. The fragments fulfilled the following criteria: MW ≤300 Da, clogP <3, 

1 – 3 aromatic rings, maximal linker length 1 – 3 bonds, rotatable bonds <3, HBD <3 and HBA <5, 

solubility >200 µM in aqueous solution. 

The 1st generation Novartis fluorine library contained 540 CF3-compounds in 18 mixtures 

of 30 compounds as 50 mM d6-DMSO stock solutions (1.66 mM per compound). In some mixtures 

compounds were replaced by an equal amount of d6-DMSO leading to 470 CF3-compounds that 

were screened. Additionally, 1 mixture with 12 CF2-compounds was screened.  

The 1st generation Diamond-SGC poised library (DSPL)[336] contained 406 fragments as 

singles (380 used) as 500 mM DMSO compound stocks on 384-well Echo-compatible source 

plates. 

The Edelris keymical fragments™[435] contained 279 fragments as singles as 250 mM 

d6-DMSO compound stocks on a 384-well Echo-compatible source plate. The library was enriched 

in 3D fragments and compliant to the Ro3.  

The Enamine Golden fragment library[436] contained 500 fragments as singles as 100 mM 

DMSO compounds stocks on 96-well source plates. All fragments fulfilled the following criteria: 

MW = 140 – 300 Da, HBD <3 and HBA <3, rotatable bonds <3, HACnt = 10 – 21, 1 – 4 rings, ≤2 

aromatic rings, ≤3 fused rings and clogP = -0.5 – 3. All compounds are described with 

1176 different Bemis-Murcko loose frameworks[437].  

3.7 Equipment and devices 

Table 9: List of used devices and tools. 

Equipment / Device, trade name Manufacturer 

Acoustic liquid handling system, ECHO 550 LABCYTE 

Batch disperser, Polytron® PT 1200 E POLYTRON 

Benchtop centrifuge, centrifuge 5810 R EPPENDORF 

Centrifugation bottles, Nalgene™, 500 mL THERMO SCIENTIFIC 

Centrifuge, Sorvall RC 3BP THERMO SCIENTIFIC 

Centrifuge, Avanti J30 I BECKMAN COULTER 
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Chromatography system, automated purification, Äktaxpress™ AMERSHAN BIOSCIENCE 

Chromatography system, SEC, Äkta Avant 25 GE HEALTHCARE 

Cryoloops, CrystalCap™ SPINE HT Cryoloops, various sizes HAMPTON 

Cryoloops, Dual-thickness MicroLoops LD™ MITEGEN, LLC 

Crystal harvester, Crystal Shifter OXFORD LAB TECHNOLOGIES 

Crystallization plate, VDX micro plate, 24-well, 18 mm, greased HAMPTON RESEARCH 

Crystallization plates, 96-well, 2 drop and 3 drop, SwissCi/MRC HAMPTON RESEARCH 

Crystallization plate, 96-well CrystalDirect™ MITEGEN, LLC 

Crystallization plate storage and imager, Rock Imager® system FORMULATRIX INC 

Cuvettes, Cuvettes PS semi-micro VWR 

Deepwell block, Masterblock 2 mL sterile 96-well v-shape GREINER BIO-ONE 

Dynamic light scattering, DynaPro Plate Reader WYATT TECHNOLOGY 

Electrophoresis chamber, Mini-Protean Tetra-System with PowerPAC™ Basic BIORAD 

Fermentor, Labfors 5 with fermentor cleaning system LabCIP INFORS HT 

Spin filtration, Amicon Ultra-15, MWCO 30 kDa MERCK MILLIPORE 

Filter, Glass fibre prefilter, non-sterile MERCK 

Filter units, Millipore® Stericup™, 0.10 µm and 0.45 µm, PVDF, 1000 mL MERCK MILLIPORE 

Filter units, inlet for 2 mL tube 0.22 µM and 0.45 µm MILLIPORE 

Flash column chromatography system, CombiFlash® Rf200 TELEDYNE ISCO 

Flash column chromatography system, Reveleris® X2 GRACE MATERIALS TECHNOLOGIES 

French press, EmulsiFlex-C50 AVESTIN 

Gel imager, Gel Doc™ EZ Imager BIORAD 

HPLC, 1290 Infinity II LC System AGILENT TECHNOLOGIES 

Incubator, INCU-line VWR 

Micro centrifuge, Centrifuge 5415 R EPPENDORF 

Microwave, Microwave 1700 KOENIG 

Microwave synthesiser, Initiator™ BIOTAGE 

UV-Vis spectrometer, microvolume, NanoDrop™ OneC THERMO SCIENTIFIC 

NMR spectrometer, DPX 401 MHz BRUKER 

NMR spectrometer, AVANCE™ 500 MHz BRUKER 

NMR spectrometer, AVANCE™ III HD 600 MHz, with SampleJet™ BRUKER 

NMR spectrometer, AVANCE™ 600 MHz, quadruple cryoprobe, SampleJet™ BRUKER 

NMR spectrometer, AVANCE™ 800 MHz, with SampleJet™ BRUKER 

NMR tubes, SampleJet™ Rack, 96-format for 3 mm tubes BRUKER BIOSPIN AG 

Normalizing solution for SPR, BIAnormalizing solution GE HEALTHCARE 

PCR detection system, CFX384 real-time PCR detection system BIORAD 

Photometer, BioPhotometer UV/VIS EPPENDORF 

Pipettes, Multichannel, 10 µL, 50 µL , 200 µL  THERMO SCIENTIFIC 

Pipettes, Research plus®, 2.5 µl, 10 µl, 100 µl, 200 µl and 1000 µl EPPENDORF 

Pipetting robot for crystallization, Cartesian PixSys 4200 GENOMIC SOLUTIONS 

Pipetting robot for crystallization, Mosquito with humidity chamber TTP LABTECH 

Pipetting robot for reservoir solutions, Formulator FORMULATRIX INC. 

Pipetting robot, automated, CyBi-well simultaneous pipettor CYBIO 

Pipetting robot for NMR sample preparation, Freedom evo TECAN 

Pipetting system, 96 manual, Liquidator™ METTLER-TOLEDO INC. 
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Plate sealant crystallization, Adhesive PCR Sealing Foil sheets, aluminium THERMO SCIENTIFIC 

Plate sealant crystallization, Crystal clear sealing film HAMPTON RESEARCH 

Plate sealant used in DSF, Microseal® B Adhesive sealing film BIORAD 

Plate shaker, MixMate® EPPENDORF 

Plate, DSF, 384-well, Hard-shell 384 microplate BIORAD 

Plate, SPR/NMR, 96-well Greiner plate GREINER 

Plate, DLS, 384-well, Corning® 384-well microplate SIGMA-ALDRICH 

Preparative LC, AutoPurification™ mass-directed HPLC system WATERS 

Sample bags, Whirl-Pak® Stand-up bag NASCO 

SDS-PAGE gels, Mini-PROTEAN® TGX™ Precast gels, 4-20%, 15-well BIORAD 

Seed bead tube, Seed Bead™ HAMPTON RESEARCH 

Sensor ship, Series S Sensor chip SA GE HEALTHCARE 

Shaking incubator, Thermomixer comfort 2 mL EPPENDORF  

Shaking incubator, Shaker X KUHNER 

SPR machine, Biacore T200 GE HEALTHCARE 

SPR vials, 4 mm and 7 mm with rubber cap type 3 and 5, respectively GE HEALTHCARE 

Supercritical fluid chromatography-MS, Investigator Semi-prep 15 SFC-MS WATERS 

UPLC-ESI-Q-TOF-MS, Xevo-G2-S QTof, Zspray™ source, ESI, modular 

Lockspray™ interface, Acquity™ UPLC system 

WATERS 

Water bath, TW12 JULABO 

3.8 Software 

Table 10: List of used software. 

Name and version Source / Reference 

ChemBioDraw® Ultra, 14.0 PERKINELMER 

UNICORN™, version 5.31 GE HEALTHCARE LIFE SCIENCE  

Glide, Release 2018-1 SCHRÖDINGER, LLC 

IconNMR BRUKER BIOSPIN 

MS Office 2016 MICROSOFT 

PyMOL, up to version 2.2.3 SCHROEDINGER, LLC 

TopSpin, up to version 3.2 BRUKER 

TopSpin FBS tool, test version BRUKER 

RockMaker, up to version 3.12.4.1  FORMULATRIX INC. 

Mnova MESTRELAB RESEARCH 

PoseView  University of Hamburg, Accessed via ProteinsPlus, 

http://proteins.plus/ 

ProtParam tool ExPASy web server[438], https://www.expasy.org/ 

fitKD NOVARTIS, in-house script by Armin Widmer 

gedit Python text editor 

AnchorQuery™ University of Pittsburgh, http://anchorquery.csb.pitt.edu/ 
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4. Methods 

4.1 Recombinant protein expression and purification 

4.1.1 Transformation of E. coli 

For LB agar plates 200 mL autoclaved LB medium were heated for 2 min in a microwave, 

mixed, cooled down to 60 °C to add 50 µg · mL-1 kanamycin and poured into 100 × 15 mm plates. 

Plates were stapled to reduce condensation while the agar solidified and then, plates were stored at 

4 °C and used within two weeks. For enzyme production by overexpression in E. coli BL21(DE3), 

competent bacteria were transformed with the corresponding plasmid. 1 µL of plasmid preparation 

was added to one aliquot of cells (0.05 mL), gently mixed by tapping, incubated on ice for 30 min, 

heat shocked for 1 min at 42 °C in a water bath and again incubated on ice for 5 min. 400 µL of 

SOC medium were added and the cells incubated in a shaking incubator for 1 h at 37 °C at 500 rpm. 

150 µL of the solution were plated on an LB agar plate and incubated at 37 °C, overnight. The 

plate was visually inspected for single colonies, which were either directly picked for a cell 

preculture or the plate was stored at 4 °C and colonies were picked within two weeks. 

4.1.2 Expression and purification of FPPS 

For the cell culture in a fermentor two precultures were prepared. For preculture I two 

colonies from LB agar plates were picked, transferred to 2 mL of LB medium containing 

50 µg · mL-1 kanamycin and were incubated in a shaking incubator at 37 °C for 6 h at 200 rpm. 

For preculture II, preculture I was transferred to 40 mL MDG medium containing 50 µg · mL-1 

kanamycin and was further incubated in a shaking incubator overnight at 37 °C and 200 rpm. The 

next morning, 1.5 L of modified auto induction (modAI) medium were pre-heated in a fermentor 

to 37 °C, inoculated with preculture II (final OD600 around 8) and 0.1% (v/v) PPG antifoam were 

added. The cell culture was stirred at 37 °C, pH 7.0, pO2 80% and 900 rpm. The OD600 was 

frequently checked and at an OD600 of 10, the temperature was reduced to 18 °C for overnight 

growth. The next morning, the cell culture (final OD600 around 70) was drained to sample bags and 

cells were harvested by centrifugation at 3566 × g for 30 min at 4 °C. Cell pellets were stored 

at -80 °C until purification. 

For purification a cell pellet was thawed and resuspended in 10 mL lysis buffer per 1 g of 

cell pellet. One EDTA free protease inhibitor tablet (cOmplete™) was added per 100 mL of 
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solution and the mixture homogenized with a batch disperser. After disruption of the cells by 

passing them four times through a French press, the cell debris was removed by centrifugation at 

15000 × g for 60 min at 4 °C and the supernatant filtered through a 0.45 µm filter unit equipped 

with a glass fibre prefilter.  

The filtrate was subjected to immobilized metal affinity chromatography (IMAC) at 4 °C 

using a chromatography system for an automated multi-step purification processes 

(ÄKTAxpress™ running on UNICORN™). The filtrate was loaded on a Ni-NTA column (Ni-NTA 

Superflow 5 mL), eluted with elution buffer and automatically loaded onto a desalting column 

(HighPrepTM 26/10), which was equilibrated in lysis buffer. The eluate was collected in a falcon 

tube and incubated overnight for His6-tag cleavage with 0.25 mg HRV 3C. Successful cleavage 

was confirmed by LC-MS. A reverse IMAC purification step on a second Ni-NTA column 

(Ni-NTA Superflow 5 mL) yielded the tag-free protein. Fractions were combined according to their 

purity determined by SDS-PAGE and LC-MS and the protein concentration determined by 

measurement of the absorbance at 280 nm. The protein solution was concentrated at 2300 × g in a 

spin filtration device (Amicon Ultra-15, MWCO 30 kDa) at 4 °C up to concentration of 

30 mg · mL-1 and subjected to further purification. 

Size exclusion chromatography (SEC) was the last polishing purification and buffer 

exchange step. Depending on the amount of protein to be purified, several runs were made, the 

fractions analysed by SDS-PAGE and combined accordingly to get one final and homogeneous 

protein batch. Per run 2 mL to 3 mL concentrated protein solution was injected with a maximum 

protein amount of 60 mg. The column (HiLoadTM SuperdexTM 16/60 S200) was run in SEC buffer 

at 4 °C with a flow rate of 1 mL · min-1. The concentration of the final protein batch was determined 

by measuring the absorbance at 280 nm, concentrated if necessary by centrifugation in a spin 

filtration device (Amicon Ultra-15, MWCO 30 kDa) and analysed by SDS-PAGE, HPLC and 

LC-MS. The solution was flash frozen in small aliquots in liquid nitrogen and stored at -80 °C until 

further use for up to three years. 

4.1.3 Expression and purification of 13C15N-labelled FPPS 

For the expression and purification of 13C15N-labelled protein the same methods and 

devices have been used as described in chapter 4.1.2, with the following deviations: For the cell 

culture 1 L of 13C,15N-uniform labelling medium with 50 µg · mL-1 kanamycin was prepared. 

While sterile filtering through a 0.22 µm filter unit, 10 ml 100 × BME vitamin mix and 0.2 ml 

1000 × metals were added. For preculture II 100 mL of the medium were inoculated with 

preculture I and incubated in a shaking incubator overnight at 37 °C and 200 rpm (final OD600 

around 6). The remaining 900 mL of medium were stored at 4 °C overnight and were pre-heated 

in the fermentor to 37 °C the next day and inoculated with preculture II. At an OD600 of around 3 
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the temperature was reduced to 18 °C. For further growth 6 g 13C-D-(+)-glucose were solved in 

water and added resulting in a final amount of 1.0% (w/v) 13C-D-(+)-glucose. The expression was 

induced 5 min later by 0.5 mM IPTG and the culture stirred for overnight growth (final OD600 

around 15). The SEC column was either run in SEC buffer or in a BisTris buffer suitable for later 

NMR measurements. The labelling rate was calculated based on the mass difference of the 

measured mass, determined by LC-MS, and the theoretically expected mass for 100% deuterated 

protein. Atomic numbers were calculated by uploading the protein sequence to the web-based 

ProtParam tool from ExPASy[438]. 

4.1.4 Expression and purification of in vivo biotinylated Avi-tagged FPPS 

For the expression and purification of in vivo biotinylated protein the same methods and 

devices have been used as described in chapter 4.1.2, with the following deviations: In addition to 

50 µg · mL-1 kanamycin, 36 µg · mL-1 chloramphenicol were added to all media. The OD600 of the 

cell culture was frequently checked and at an OD600 around 3 the expression of BirA was induced 

with 4 g · L-1 L-arabinose and shortly after 200 µM biotin were added. At an OD600 of 10 the 

temperature was reduced to 18 °C for overnight growth. 

4.1.5 Expression and purification of HRV 3C 

For the expression and purification of HRV 3C the same methods and devices have been 

used as described in chapter 4.1.2, with the following deviations: Instead of a full purification 

procedure only one IMAC step was conducted and followed by desalting to lysis buffer. 

Consequently, the protein was used for His6-tag cleavage with N-terminal MBP-tag and C-terminal 

His6-tag enabling the separation of this cleavage enzyme from the enzyme of interest by means of 

reverse IMAC.  

4.1.6 Protein characterization by mass spectrometry 

Mass spectrometry (MS) was performed on protein samples to analyse the status of 

tag-cleavage, the final protein batch, the 13C15N-labelling or biotinylation rate and protein 

degradation. For the measurements an UPLC-ESI-Q-TOF-MS system from WATERS was used, 

composed of a Xevo-G2-S QTof with a Zspray™ source, positive-ion electrospray ionization (ESI) 

and modular Lockspray™ interface, coupled to an Acquity™ UPLC system. A 10 min standard 

method designed for proteins was used. Separation in UPLC was done on a reversed-phase column 

(Acquity UPLC BEH C4, 2.1 mm × 100 mm column, 1,7 µm) running an acetonitrile gradient of 
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5% to 60% at a flow rate of 0.5 mL · min-1 and at a column temperature of 80 °C. A sample volume 

of 1 µL to 5 µL, containing 0.5 µg to 10 µg protein, were injected. Before and after sample 

application the system was washed by injecting 10 µL of a cleaning solution. Mass spectra over a 

mass range from 700 m/z to 3000 m/z were acquired with a deconvolution range from 10 kDa to 

150 kDa using maximum entropy (MaxEnt).  

4.1.7 Protein characterization by SDS-PAGE 

SDS-PAGE was used to estimate purity and amount of protein after purification by IMAC 

and SEC. Samples were mixed with SDS sample buffer, heated to 95 °C for 5 min at 500 rpm in a 

shaking incubator and loaded to 4% to 20% Mini-PROTEAN TGX Precast Protein Gels (BIORAD). 

Sample volumes between 2 µL and 8 µL were loaded. For size comparison, 4 µL Precision Plus 

Protein Kaleidoscope Protein Standard was used. Gels were run for 35 min at 200 V in SDS 

running buffer in a Mini Protein Tetra system and were afterwards stained overnight in a 

Coomassie staining solution (Instant Blue™) with subsequent destaining in deionized water 

(2 × for 1 h). For documentation gels were imaged in a gel imager.  

4.1.8 Determination of protein concentration 

Protein concentration was determined by measuring the absorbance at 280 nm. This was 

done throughout the purification process for monitoring purposes, for final sample analysis and 

during buffer exchange and sample concentration steps. The absorbance at 280 nm was measured 

as 1 Abs = 1 mg · mL-1. 2 µL of sample were pipetted onto the measurement pedestal of a 

microvolume UV-Vis spectrometer (NanoDrop™ OneC). The corresponding sample buffer was 

used as blank. The protein concentration of the sample was determined by correcting the measured 

concentration with the corresponding extinction correction factor, as listed in Table 3. Triplicates 

were measured and the mean calculated to minimize the error.  

In some cases protein concentration and purity were additionally determined by high 

pressure liquid chromatography (HPLC). The measurements were performed on a 1290 Infinity II 

LC System from AGILENT TECHNOLOGIES employing a 100 × 2 mm column packed with 

POROS R1, 10 µm (DR. MAISCH GMBH) calibrated with BSA. The column ran in 80:20 (v/v) of 

eluate A and eluate B at a flow rate of 0.8 mL · min-1 with maximum pressure of 400 bar. Injections 

of 30 µL sample were done in duplicates or triplicates. To prevent overloading of the column, the 

sample was diluted to 100 µg · mL-1 in water, based on previous absorbance experiments at 

280 nm, resulting in a maximum amount of 3 µg of protein. Before and after sample application 

the system was washed by injecting 10 µL of a cleaning solution. Data were collected and 
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processed automatically using MassHunter Walkup Software and ChemStation Rev. B.04.03, 

AGILENT TECHNOLOGIES. Chromatograms were manually reintegrated if necessary.  

4.2 Nuclear magnetic resonance spectroscopy  

4.2.1 General procedures 

Proteins where either already stored in NMR buffer or the buffer was exchanged prior to 

NMR sample preparation either using PD-10 desalting columns according to the manufacturer’s 

gravity protocol or spin filtration devices (Amicon Ultra-15, MWCO 30 kDa). The latter were 

washed with water and the desired buffer before washing the protein five times with the approx. 

10-fold of the own sample volume. Compounds were stored in 90% d6-DMSO and 10% D2O (v/v) 

as 100 mM stock. In case of poor solubility 50 mM or 25 mM stocks were prepared. Titration series 

were also done in 90% d6-DMSO and 10% D2O (v/v). An amount of 10% D2O (v/v) was added to 

all NMR samples. To allow standardization and quality control (chemical shift, signal intensity, 

line width) of samples and ensure comparability of different samples, DSS was added as an internal 

standard. For multiple samples a master mix was prepared and dispersed to single samples to 

minimize differences between the individual samples. Additional to sample tubes containing 

protein and compound, a protein blank (protein in sample buffer) and a d6-DMSO blank (protein 

in sample buffer and d6-DMSO equivalent to the amount in sample tubes) were measured. If not 

stated differently, samples with a sample volume of 170 µL were prepared and measured in 3 mm 

NMR spine tubes. A pipetting robot (Freedom evo) was used when large numbers of samples were 

prepared. 

Experiments were performed on a BRUKER AVANCE™ III HD 600 MHz spectrometer 

and a BRUKER AVANCE™ 800 MHz spectrometer, both equipped with a 5 mm triple resonance 

inverse cryoprobe 1H/13C/15N with deuterium lock and z-gradient, operating at a an 1H resonance 

frequency of 600.23 MHz and 800.19 MHz, respectively. 19F spectra were collected on a BRUKER 

AVANCE™ 600 MHz spectrometer, equipped with a 5 mm quadruple cryoprobe 1H/19F/13C/15N at 

an 1H resonance frequency of 600.13 MHz. All spectrometers were equipped with a sample 

changer cooled to 4 °C (SampleJet™) to store samples until acquisition. NMR spectra were 

acquired at a temperature of 296 K, if not otherwise stated. Prior to every measurement the lock 

was set to D2O. Then the impedance matching and coil tuning to the sample was done and the 

magnetic field shimmed. The 90° pulse (p1) was calibrated and when necessary, also the soft pulse 

for water suppression was calibrated. Usually, 1D 1H NMR experiments (zgesgp, 128 scans) were 

recorded for each sample before and after the actual experiment to monitor sample quality. To 

determine compound solubility for subsequent experiments, such as SPR, samples with 1 mM 
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compound were prepared in the corresponding buffer system and 180 µM DSS were added as 

internal standard. 1D 1H NMR experiments (zgesgp, 128 scans) were recorded and for solubility 

estimation, an aromatic signal with known number of protons was integrated and normalized to the 

DSS peak. Experiments were set up in IconNMR and spectra were analysed in Topspin.  

4.2.2 Ligand-observed NMR 

In a fragment-based screen the Novartis core fragment library was screened at 10 µM 

protein and 200 µM compound (ratio 1:20) to detect interactions with TcFPPS using waterLOGSY 

and T1ρ experiments[348, 360a]. The needed amount of compound mixtures for 18.5 µM compound 

in 180 µL were ordered from the Novartis compound management. For sample preparation, protein 

was quickly thawed in the hand balm and buffer exchanged to d11-TRIS buffer using 

PD-10 desalting columns. A master solution containing 10 µM protein, 10% D2O and 150 µM DSS 

was prepared. With a pipetting robot the master mix was added to the compound mixtures, the 

samples were mixed and 175 µL transferred to 3 mm NMR spine tubes. For each sample a zgesgp 

(128 scans), a T1ρ 10 ms, a T1ρ 200 ms (128 scans) and a waterLOGSY (256 scans) experiment 

were recorded on a BRUKER AVANCE™ III HD 600 MHz spectrometer. Acquisition time were 

approx. 4 min, 6 min, 7 min and 18 min, respectively, leading to an overall acquisition time of 

4.3 d. Spectra of blanks of the compound mixtures in the same buffer system were already 

available. For data analysis association files of the recorded spectra and the corresponding 

compound blanks were created in TopSpin and visually inspected. First, the aromatic signals were 

considered and, if necessary, also the aliphatic signals. For T1ρ experiments the strength of 

linewidth broadening and loss of intensity was determined as difference of the signal intensities in 

T1ρ 10 ms and T1ρ 200 ms spectra. A compound was considered as primary fragment hit, when 

the effect of signal broadening was >20% and the readout in waterLOGSY was also positive. To 

exclude false-positives, which occurred due to effects in the mixture, the same series of 

experiments were repeated for all identified fragment hits as singletons at 1 mM compound 

concentration. Confirmed hits were further employed to protein-observed NMR spectroscopy for 

validation. 

In a second fragment-based screen the Novartis fluorine library was screened at 3.7 µM 

protein and 18.5 µM compound (ratio 1:5). Interactions with TcFPPS were detected using 

19F CPMG NMR experiments. The needed amount of compound mixtures for 18.5 µM compound 

in 180 µL were ordered from the Novartis compound management. For compound mixture blanks, 

a master mix of BisTris buffer with 10% D2O and 100 µM DSS was prepared and added to the 

compound mixtures with a pipetting robot. The samples were mixed and 175 µL transferred to 

NMR tubes. A zgesgp (128 scans), 19F CPMG 80 ms (512 scans) and a 19F CPMG 400 ms 

(512 scans) were recorded of each sample on a BRUKER AVANCE™ 600 MHz spectrometer, 
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equipped with a quadruple cryoprobe. Acquisition times were approx. 4.8 min, 18.3 min and 

21.2 min, respectively, leading to an overall acquisition time of 15 h. For the fragment screen, 

protein was quickly thawed in the hand balm, filtered (0.45 µm, 4 °C) and the concentration 

determined by measuring the absorbance at 280 nm. Protein was added to the compound mixture 

blanks with the pipetting robot (dilution by 2.5%), mixed, and the same NMR experiments were 

recorded again. For data analysis a test version of the Topspin FBS tool was used. The strength of 

linewidth broadening and loss of intensity was determined as difference of the signal intensities in 

19F CPMG 80 ms and 19F CPMG 400 ms spectra. Primary hits with an effect of signal reduction 

≥40% were further employed to protein-observed NMR spectroscopy for validation. 

4.2.3 Protein-observed NMR 

Primary fragment hits identified by ligand observed NMR were validated in an orthogonal 

method by screening uniform 13C15N-labelled TcFPPS for interactions with these fragments with a 

2D protein-observed NMR technique. The tested primary hits derived from previously described 

fragment screens by ligand-observed NMR of the 6th Novartis core library and the Novartis fluorine 

library. Compounds were ordered as powder from the Novartis compound archive and stocks 

prepared according to the general procedure. Validation tests were conducted at a protein 

concentration of 30 µM and a compound concentration of 1 mM (Novartis core library) and 

700 µM (Novartis fluorine library), respectively, recording a zgesgp (512 scans, 10 min) and a 

[13C, 1H]-SOFAST-HMQC[357a, 357b] (32 scans, 42 min) at 31.85 °C on a Bruker AVANCE™ 

800 MHz spectrometer. Prior to sample preparation protein was quickly thawed in the hand balm, 

filtered (0.45 µm, 4 °C) and the buffer exchanged to BisTris buffer in a spin filtration device 

(Amicon Ultra-15, MWCO 30 kDa). A master mix containing protein, 10% D2O and 150 µM DSS 

was made and samples of 170 µL were prepared by adding the corresponding amount of compound. 

If chemical shift differences occurred between a sample and the DMSO blank, a primary fragment 

hit was successfully validated. Compounds were categorized into weak, medium and strong binder 

according to the number and strength of chemical shift differences.  

Protein-observed NMR experiments were also used to test compounds from various 

sources for their interaction with TcFPPS. This includes: allosteric inhibitors of hFPPS (1), 

compound analogues (2), primary fragment hits by X-ray crystallography (3) and compounds 

synthesised in medicinal chemistry campaigns (4). In cases (1) and (2) compounds were ordered 

from the Novartis compound archive. In case (3) they were purchased from Enamine or 

abcr GmBH. Stocks were prepared according to the general procedures. For experimental set up, 

the methods and devices, which have been previously described, were used with the following 

specifications: Inhibitors to bind to the allosteric pocket of hFPPS (1) were tested at 1 mM. 

Compound analogues (2) were measured around the Kd concentration of the parental compound. 
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If necessary the compound stocks were diluted to reach a manually pipettable volume between 

1 µL and 2 µL. In addition to a protein blank and a DMSO blank, the starting compound was 

measured at the selected concentration for better comparison. Primary fragment hits by X-ray 

crystallography (3) were tested at 700 µM. The majority of compounds synthesised in the medicinal 

chemistry campaign (4) showed poor solubility in SPR buffer (>1 mM in aqueous buffer). 

Nevertheless, 700 µM compound were added to the NMR samples to measure at saturation level.  

4.2.4 Kd determination 

To determine the Kd of some compounds that were positively tested in protein-observed 

NMR, the same experiments, a zgesgp (512 scans, 10 min) and a [13C, 1H]-SOFAST-HMQC 

(32 scans, 42 min), were performed for a series of samples with constant protein concentration and 

increasing compound concentrations. A dilution series of the compound stock was prepared and 

equal volumes of the dilutions were added to protein samples that were derived from a master mix, 

to ensure comparability by keeping the d6-DMSO and protein concentration on a constant level. 

Additionally, a protein blank and a d6-DMSO blank were measured to exclude chemical shifts of 

protein resonances caused by d6-DMSO. Signal shifts were analysed with fitKD. To generate an 

overlay of spectra in fitKD, an input file with the file locations of the spectra, d6-DMSO blank and 

the corresponding compound concentrations was generated with gedit. Curve generation by 

plotting the chemical shift versus the ligand concentration, curve fit and Kd calculations were done 

automatically by fitKD, based on a series of chemical shifts that were manually selected. The Kd 

was determined for the 1H dimension of several signals to check if it is in the same range.  

4.3 Crystallization at Novartis laboratories 

4.3.1 General procedures 

For crystallization trials at the Novartis laboratories 96-well SwissCi/MCR plates (2-drop) 

and 24-well VDX micro plates (18 mm, greased) were used, employing the sitting drop vapour 

diffusion technique and the hanging drop vapour diffusion technique, respectively. Experiments 

on both plate types were designed in RockMaker and the reservoir solutions were pipetted from 

stock solutions directly into the plates with a Formulator pipetting robot and mixed manually. A 

manual pipetting system (Liquidator™) was used to add the reservoir solution to 96-well plates 

when commercial crystallization screens or other deep well blocks were used.  

In general, sitting drops were set up in 96-well plates at nanoliter scale with a Mosquito 

pipetting robot, which was equipped with a humidity chamber (60% - 70% humidity). Drops of 
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300 nL protein formulation were pipetted in multi-dispersion mode. Then 100 nL – 200 nL 

reservoir solution were added in batch mode and when applicable 100 nL – 200 nL seed dilution 

were added in multi-dispersion mode. Drops were equilibrated against 80 µL reservoir solution. 

Promising conditions were selected for transfer and optimization in 24-well plates or optimization 

in 96-well plates. A direct transfer of parameters of the initial hits were tested and parameters, such 

as precipitant amount, salt concentration, and pH, were also changed in small increments to meet 

conditions for optimal crystal growth. Only one parameter was changed within a row or column at 

a time. In general, hanging drops were pipetted manually into the centre of a round cover slide 

(18 mm, siliconized). Drops of 1.0 µL – 1.2 µL protein formulation were pipetted, 0.5 µL – 1.8 µL 

reservoir solution were added and if applicable another 0.4 µL seed dilution were added 

successively to the drop. Drops were equilibrated against 500 µL reservoir solution. Sitting drops 

were set up as described above. Crystallization plates were set up and incubated at 20 °C. Plates 

were imaged at regular intervals for a week or in case of screening experiments over a period of 

90 d in a Rock Imager system. Images were visually inspected in RockMaker.  

Two different types of protein formulations were used: 6.81 mg · mL-1 TcFPPS in SEC 

buffer (50 mM TRIS, pH 8.0, 200 mM NaCl, 2 mM TCEP · HCl), which is referred to as protein 

formulation I from hereon, or 12.20 mg · mL-1 – 12.70 mg · mL-1 TcFPPS in low-salt buffer 

(10 mM TRIS, pH 7.4, 25 mM NaCl, 2 mM TCEP · HCl), which is referred to as protein 

formulation II. Both protein formulations were stored at -80 °, were quickly thawed in the hand 

palm and kept on ice until pipetting. The formulation in low-salt buffer was obtained by buffer 

exchange from TcFPPS stored in SEC buffer. Samples were quickly thawed, filtered (0.45 µm, 

4 °C), transferred to a spin filtration device (Amicon Ultra-15, MWCO 30 kDa), which was 

previously washed with water and low salt buffer, and washed 5 times with the approx. 10-fold of 

the new sample buffer and finally concentrated. This protein solution was either directly used for 

plate set up or aliquoted, flash frozen in liquid nitrogen and stored at -80 °C for later usage. Seed 

dilutions were either used after storage at 4 °C or were quickly thawed in the hand palm when 

stored at -80 °C, kept on ice and vigorously shaken before pipetting. 

4.3.2 Screening for crystallization conditions and optimization I 

In order to find new crystallization conditions seven commercially available crystallization 

screens (AmSO4 Suite, Cryos Suite, JCSG+ Suite, MBClass II Suite, Index HT, PegRx HT and 

SaltRX HT) were tested. Drops of 300 nL protein formulation I and 200 nL reservoir solution 

(3:2 (v/v)) were set up. In a first round of optimization on 24-well plates (Table 11), drops of 

1.2 µL protein formulation I and 0.8 µL reservoir (3:2 (v/v)) were pipetted. First crystals appeared 

after 1 d – 3 d and reached full size after 3 d – 5 d. In a 2nd round of optimization (Table 11), drops 

of 1.0 µL protein formulation I and 0.5 µL reservoir (2:1 (v/v)) were pipetted. In a 3rd round 
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(Table 11), the most promising variations of round 1 of reservoir condition H1 of the Cryos Suite 

were further optimized. Drops of 1.0 µL protein formulation I and 0.5 µL reservoir (2:1 (v/v)) were 

pipetted. 

Table 11: List of conditions transferred and optimized in 24-well plates. 

Round 1    

Screen  well Variation along row pH variation along column 

Cryos Suite G11 ± 5% PEG MME 2000 4.4 to 5.0 

Cryos Suite H1 ± 5% PEG 4000 4.4 to 5.0 

Index HT D5 ± 5% PEG 3350  4.4 to 5.0 

Index HT G9 20-30 PEG 3350 8.1 to 8.7 

SaltRX HT B4 ± 200 mM ammonium citrate dibasic 4.4 to 5.0 

Round 2    

Screen  well Variation along row pH variation along column 

Cryos Suite G11 10% - 25% PEG MME 2000 ± 5% glycerol 

Cryos Suite H1 5% - 20% PEG 4000 10% - 20%  glycerol 

SaltRX HT B4 none pH at 5.0, 5.4 and 5.6 

Round 3    

Screen  well composition  

Cryos Suite H1 80 mM NaOAc · 3 H2O, pH 4.6, 160 mM (NH4)2SO4, 20% PEG 4000, 20% glycerol  

Cryos Suite VarA6 80 mM NaOAc · 3 H2O, pH 4.4, 160 mM (NH4)2SO4, 25% PEG 4000, 20% glycerol 

Cryos Suite VarD5 80 mM NaOAc · 3 H2O, pH 5.0, 160 mM (NH4)2SO4, 20% PEG 4000, 20% glycerol 

4.3.3 Seed crystals  

Seed crystals were grown on 24-well plates. Drops of 1.0 µL of protein formulation I and 

0.5 µL reservoir (160 mM (NH4)2SO4, pH 5.0, 80 mM NaOAc, 20% (w/v) PEG 4000 and 

20% (v/v) glycerol) (2:1, (v/v)) were pipetted. First crystals appeared after 1 d to 2 d and reached 

full size after 3 d to 4 d. For seed stock preparation the seed bead method[406] was used. Fresh 

crystals from two wells were crushed mechanically with a small metal spatula. Obtained seed 

crystals were added to 100 µL reservoir in a seed bead tube and further crushed by vigorous 

vortexing. A dilution series of 1:10, 1:100, 1:1000 and 1:10 000 (v/v) (1 mL each) was prepared in 

seed crystal reservoir. Solutions were stored at 4 °C for several months or aliquoted, flash frozen 

in liquid nitrogen and stored at -80 °C. Residual reservoir solution was collected and stored 

at -80 °C to allow further dilutions. When a new seed stock was prepared, it was tested once which 

dilution led to a high number of wells with 5 to 10 crystals per plate. In most cases dilutions of 

1:100 or 1:1000 were used. When a larger amount of seed stock was prepared, crystals from 

multiple wells were crushed and added to 200 µL reservoir. A seed stock was used until it was used 
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up or no more crystals grew. TcFPPS seed crystals older than 6 d could not be used for seed stock 

preparation because they did not deliver a high quality seed stock. 

4.3.4 Screening for crystallization conditions and optimization II 

In a second round of crystallization condition screening in 96-well plates, four 

commercially available screens (AmSO4 Suite, Cryos Suite, Index HT and SaltRX HT) were 

rescreened. In the first well, drops of 300 nL protein formulation II and 200 nL reservoir solution 

(3:2 (v/v)) were set up. In the second well, MMS was applied. Drops of 300 nL of protein 

formulation II, 200 nL reservoir solution and 100 nL seed stock (first seed stock, chapter 4.3.3) 

(3:2:1 (v/v)) were set up.  

The reservoir condition 80 mM MES, pH 6.5, 8.5 mM ZnSO4, 19.42% (v/v) PEG 

MME 550, 15% (v/v) glycerol (well G7, Cryos Suite) was transferred to 24-well plates (Round 1). 

Drops of 1.2 µL protein formulation II, 0.8 µL reservoir solution and 0.4 µL seed dilution 

(3:2:1 (v/v)) (chapter 4.3.3) were set up. Crystals appeared after 1 d and reached full size after 3 d. 

At a later stage, optimization experiments were started in 96-well plates (Round 2) to overcome 

problems with occurring precipitate on 24-well plates and to enable fragment screening by X-ray 

crystallography. The reservoir solution was changed, while all other parameters were left 

unchanged (300 nL protein formulation II, 200 nL reservoir solution, 100 nL seed dilution, 

3:2:1 (v/v)), (Table 12, Optimization).  

Table 12: Optimization of reservoir condition in 96-well plates. 

Optimization   

Variation along row Variation along column Additional deviations from initial condition 

8% - 20% (v/v) PEG MME 550 4 mM - 11 mM ZnSO4 none 

8% - 20%  (v/v) PEG MME 550 2 mM - 9 mM ZnSO4 none 

8% - 20%  (v/v) PEG MME 550 7% - 15% (v/v) glycerol 4 mM ZnSO4 

pH 5.8 - 6.8 40 mM - 110 mM MES 4 mM ZnSO4, 13.86% (v/v) glycerol 

17.85% (v/v) PEG MME 550  

Selection 
  

Well Composition  

E5 80 mM MES, pH 6.5, 4 mM ZnSO4, 12.36% (v/v) PEG MME 550, 11.57% (v/v) glycerol 

F6 80 mM MES, pH 6.5, 4 mM ZnSO4, 13.45% (v/v) PEG MME 550, 12.71% (v/v) glycerol 

F9 80 mM MES, pH 6.5, 4 mM ZnSO4, 16.73% (v/v) PEG MME 550, 12.71% (v/v) glycerol 

G1 80 mM MES, pH 6.5, 4 mM ZnSO4, 17.85% (v/v) PEG MME 550, 13.86% (v/v) glycerol 
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Promising conditions (Table 12, Selection) were reproduced in 96-well plate to investigate 

reproducibility, the number of wells with crystals per plate and precipitate formation in the 

crystallization drops. To ensure comparability, all experiments were performed with the same seed 

dilution. Finally, apo crystals in 96-well plates were grown with a drop ratio of (3:2:1) or (3:1:2). 

First crystals appeared after 1 d – 3 d and reached full size within 2 d – 3 d. The percentage of wells 

with crystals per plate ranged from 40% to 95%. 

4.3.5 Soaking  

Validated hits derived from the Novartis core library were subjected to soaking 

experiments. Fresh and fully grown TcFPPS apo crystals, which were set up in 24-well plates 

(chapter 4.3.4, Round 1) were used for soaking. In general, 2 – 3 crystals were transferred to a 

10 µL drop of reservoir solution or a mix of protein buffer, reservoir solution and seed buffer (3:2:1, 

(v/v)) that contained 5 mM to 75 mM compound and 4.5% to 13.5% (v/v) DMSO. Crystals were 

soaked for 2 min to 24 h. At an early stage 100 mM compound stocks in 90% d6-DMSO and 

10% D2O (v/v) were used to prepare the soaking solutions. At a later stage 250 mM or 500 mM 

compound stocks were used to increase concentration and/or minimize the amount of DMSO. 

Compounds from the medicinal chemistry campaign at the University of Groningen and 

compounds from the medicinal chemistry campaign at Novartis were also subjected to soaking 

experiments, using fresh and fully grown TcFPPS apo crystals from 96-well plates (chapter 4.3.4, 

Round 2 and 3). Drops of 105 nL of 100 mM or 500 mM compound stock were added by manual 

pipetting to 600 nL crystallization drops, resulting in 15 mM or 75 mM compound and 13.4% (v/v) 

DMSO. The stock solution was pipetted to the edge of the drop to minimize the osmotic shock for 

the crystals. Crystals were soaked for approx. 24 h and in most cases, a back-up crystal was only 

soaked for approx. 4 h. Some compounds were purified as trifluoracetates and had to be 

neutralized. Equal amounts of the stock and 90% d6-DMSO and 10% 5 M NaOH (v/v) were mixed 

and added to the crystallization drop, resulting in a final compound concentration of 37.5 mM. 

4.3.6 Co-crystallization 

Validated hits derived from the Novartis core library were subjected to co-crystallization. 

This includes hits that (1) were distinct for TcFPPS, (2) formed the intersection of TcFPPS, 

TbFPPS and hFPPS or (3) formed the intersection with hFPPS. Crystallization drops were set up 

in 24-well plates as described in chapter 4.3.4 with the following deviations: Instead of 0.8 µL 

reservoir solution, 0.8 µL of a mix of 100 mM compound stock and reservoir was added. For 

(1) co-crystallization was conducted at a compound concentration of 2.564 mM (17x compound 

excess, dilution of 100 mM stock in the reservoir 1:13 (v/v)), 2.5% (v/v) DMSO). For (2) and (3) 
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experiments were conducted at 5.138 mM (34x compound excess, dilution of the 100 mM stock in 

the reservoir 2:13 (v/v)), 5.0% (v/v) DMSO). For each compound four crystallization drops were 

set up.  

4.3.7 Data collection at the Swiss Light Source 

Crystals were manually mounted in cryoloops (CrystalCap™ SPINE HT Cryoloops), flash 

frozen and stored in liquid nitrogen for data collection. If the reservoir did not contain any 

cryoprotectant, a backup crystal was mounted after incubation with 2 M (NH4)2SO4 and 18% (v/v) 

glycerol or 2.5 M LiSO4 for 30 s. Diffraction data were collected at 100 K on a Pilatus 6M detector 

(25 Hz, DECTRIS)[439] at beamline PXII (X10SA) of the Swiss Light Source (SLS), Paul Scherrer 

Institut, Villigen, Switzerland. The beamline provided monochromatic radiation at a wavelength 

of 0.99995 Å to 1.00000 Å. For a full dataset, 720 images at 0.25 °, with an exposure time of 0.25 s 

per image were recorded. 

4.3.8 Data processing, structure determination and refinement 

Diffraction data were indexed and integrated with XDS[391c], release 20180226, and 

symmetry-related reflections were scaled in AIMLESS[440], release 0.7.2. Further diffraction data 

processing was carried out using Global Phasing Pipedream automatic pipeline[391a], which used 

autoPROC[441], version 1.1.7, and Phaser[442], version 2.8.2, for MR. PDB ID 4DWG[170a] was used 

as search model in MR to solve the first apo TcFPPS structure. For this purpose ligand coordinates 

were removed from the file. From then on, various in-house models of apo TcFPPS were used as 

search model, thus indirectly making use of the phases of PDB ID 4DWG. In addition to visual 

inspection of density maps, statistical data analysis by PanDDA[393b] was used to identify data sets 

with binding events. For this purpose, PanDDA was run on autoPROC input files and using 

DIMPLE[443]. Stepwise manual model correction was done in Coot[444], release 0.8.9.1, and the 

structure was refined using BUSTER[445], version 2.11.7. Ligands were manually fitted into 

difference electron density and occupancy refinement was done with the help of the geometry 

module GELLY within BUSTER. Rfree values[446] were generated from randomly selected 5 % of 

unique reflections excluded from the refinement. All TcFPPS crystals were in space group P6122 

with a monomer per asymmetric unit. X-ray data collection and refinement statistics are 

summarized in Table 29 in the Appendix.  
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4.3.9 Data deposition and accession codes 

Crystal structures were deposited in the PDB with the status on hold for publication. The 

file upload was prepared with pdb_extract, version 3.24. The apo protein structure of TcFPPS was 

deposited under PDB ID 6R04. The structures of TcFPPS in complex with CS-18 (JNE), CS-33 

(JMN), 93 (3N2), 119 (GO1), MCN-1 (JMK), MCN-4 (JMT) and MCN-4 (JMW) were 

deposited under PDB IDs 6R05, 6R06, 6R07, 6R08, 6R09, 6R0A and 6R0B, respectively. 

4.4 Crystallization at XChem laboratories 

A fragment screen by X-ray crystallography was conducted in collaboration with the PhD 

student Elliot Nelson in Frank von Delft´s lab at the SGC, Oxford, UK. The fragment screen was 

performed at beamline I04-1 and associated laboratories of the Diamond Light Source, Harwell, 

UK, in a one-week on-site stay in October 2017. A workflow for the set-up of high-throughput 

X-ray screening experiments was implemented on site, called XChem facility[400]. 

4.4.1 Crystallization experiments and fragment screen 

All materials needed for crystallization were shipped to the UK either at 4 °C or on dry 

ice. Shipped material included 12.21 mg · mL-1 TcFPPS in low salt buffer (10 mM TRIS, pH 7.4, 

25 mM NaCl, 2 mM TCEP · HCl), TcFPPS seed crystal dilution (160 mM (NH4)2SO4, pH 5.0, 

80 mM NaOAc, 20% (w/v) PEG 4000, 20% (v/v) glycerol) and reservoir buffer (4 mM ZnSO4, 

80 mM MES, pH 6.5, 12.36% (v/v) PEG MME 550, 11.57% (v/v) glycerol). The plate set up was 

conducted at Novartis laboratories (chapter 4.3.1). In brief: Protein and seed stock dilution were 

quickly thawed in the hand palm and kept on ice until pipetting. The sitting drop vapour diffusion 

technique was employed in 2-drop and 3-drop 96-well SwissCi/MRC plates filled with 80 µL and 

20 µL reservoir solution, respectively. Drops were set up on seven 2-drop SwissCi/MRC plates 

and seven 3-drop SwissCi/MRC plates at 20 °C by mixing 300 nL protein solution, 200 nL 

reservoir solution and 100 nL seed stock dilution using a Mosquito pipetting robot (without 

humidity chamber). The crystallization plates were incubated at 20 °C and imaged in a Rock Imager 

system. Crystals appeared after 3 d – 4 d on both plate types with rates of wells with crystals of 

approx. 40%. Methodology details of the XChem fragment screening platform can be found on its 

webpage[400], in the literature[447], and is briefly described here: An Echo acoustic liquid handling 

system was used to transfer individual fragments as multiple 2.5 nL acoustic droplets to crystal 

drops[448]. To generate the transfer scheme, images of the crystallization plates were visually 

inspected in TeXRank[449]. Crystallization drops were ranked according to the presence and quality 



Methods 

70 

of crystals and in selected drops a position for the compound transfer, which was as far away from 

the crystal as possible in order to minimize the osmotic shock when adding the compound by 

acoustic dispensing[448], was chosen. To access crystal stability to DMSO, soaks with 2.5%, 5.0%, 

7.5%, 10%, 15% and 20% (v/v) DMSO for incubation times of approx. 1 h 20 min and 3 h 30 min 

were conducted and crystal diffraction was tested. Crystals showed unchanged diffraction power 

for the maximum DMSO amount and soaking time. Fresh crystals were soaked with fragments 

from the Diamond-SGC Poised library[336] (DSPL) and the Keymical fragments library (KFL) by 

EDELRIS. For soaking 74.5 mM of the DSPL fragments were delivered to the crystallization drops 

from 500 mM 100% DMSO stock solution and 37.25 mM of the KFL fragments were delivered 

from 250 mM 100% DMSO stock solutions (15% DMSO). In many cases the actual compound 

concentration in the crystallization drops was lower, due to lower compound solubility in the 

aqueous buffer system. The soaking time ranged from approx. 3 h to 4 h.  

4.4.2 Data collection at the Diamond Light Source 

Without additional cryoprotectant, crystals were mounted in Dual-thickness 

MicroLoops LD™ (MITEGEN, LLC), which matched the crystal size. Mounting was done in semi-

automation at a speed of approx. 60 crystals per hour by using the Crystal Shifter 

(OXFORD LAB TECHNOLOGIES). The crystals were flash frozen and stored in liquid nitrogen for 

data collection. X-ray diffraction data were collected at 100 K in automated and unattended loop 

centring mode[447] on a Pilatus 6M-F (25 Hz, DECTRIS) at beamline I04-1[387a] at the Diamond Light 

Source, Harwell, UK, running at a fixed wavelength of 0.92 Å.  

4.4.3 Data processing, structure determination and refinement 

During data collection, diffraction data were immediately processed with the Diamond 

autoprocessing pipeline, which uses xia2,[450] DIALS,[391e] XDS[391c], POINTLESS,[451], 

DIMPLE[443], REFMAC5[452] and CCP4[453]. Finally, diffraction data were indexed and integrated 

with XDS[391c], and symmetry-related reflections were scaled in AIMLESS[440], release 0.5.32. 

Results were displayed in the ISPyB data management system[454]. For MR the structural model of 

unliganded TcFPPS (in-house) was used (MR with PDB ID 4DWG[170a]). Data were further 

processed by PanDDA[393b] in XChemExplorer[392a]. In pandda.inspect visual inspection of all 

events was done in Coot[444a] and 85 ligands were manually modelled into the bound-state models. 

Ensemble models were generated using the pandda.export function. Iterative refinement and 

manual model building was performed using REFMAC5[452], version 5.8.0189, or Phenix[455], 

version 1.13_2998, and Coot[444a], respectively. Ligand restraints were generated with AceDRG[456], 
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Grade[457] and Phenix.elbow[458]. X-ray data collection and refinement statistics are summarized in 

Table 35 in the Appendix.  

4.4.4 Data deposition and accession codes 

The coordinates of the bound-state models of 35 structures of TcFPPS in complex with 

LT7, AWG, AWM, AWV, LUS, GQM, JGJ, LUY, M0J, LV1, LDV, GQP, LV4, LV7, LVD, 

LVP, LVV, JHS, LWA, JH7, LWD, JH1, AYV, LWV, LX4, MJ4, LXA, LX7, JJM, LXJ, 

LXM, LXS, M0D, LZV and LZY have been deposited as a group in the PDB with the status on 

hold for publication under PDB IDs 5QPD – Z, 5QP0 – 9, 5QPA and 5QPB, respectively. 

Additionally, a ground state model was deposited under PDB ID 5QPC. In addition, files that 

document the PanDDA analysis have been made publicly available on Zenodo under 

DOI 10.5281/zenodo.2649077. For each processed dataset a model of the unbound state, structure 

factors, an average map for the corresponding resolution bin, a PanDDA Z-map and as many 

PanDDA event maps as existing. For datasets with a fragment bound, additionally the refined 

ground state model and bound state model as separate PDB files, restraint files for Phenix and 

Refmac used for ensemble refinement as well as ligand restraints.  

4.5 Crystallization at EMBL laboratories 

A proposal for remote access to the facility of the High Throughput Crystallization 

laboratory (HTXlab), EMBL Outstation, Grenoble, France, and beam time at the European 

Synchrotron Radiation Facility (ESRF) was granted by the iNEXT framework (European Union’s 

framework programme for research and innovation Horizon 2020, grant agreement ID 653706, 

project number 2847). A fragment screen by X-ray was performed with the help of the web-based 

Crystallization Information Management System (CRIMS v.4). The author thanks the staff from 

the HTXlab and the scientist from the ESRF for set up of the crystallization plates and data 

collection. 

4.5.1 Crystallization experiments and fragment screen 

The crystallization protocol for 2-drop 96-well SwissCi/MRC plates (chapter 4.3.4) was 

successfully transferred to CrystalDirect™ plates at Novartis laboratories and was shared with the 

HTXlab staff. All needed materials were shipped on dry ice to the HTX facility, including 

12.21 mg · mL-1 TcFPPS in low salt buffer (aliquoted and flash frozen in liquid nitrogen), TcFPPS 

seed stock and seed dilutions (aliquoted and flash frozen in liquid nitrogen), seed stock buffer and 
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reservoir solution (4 mM ZnSO4, 80 mM MES, pH 6.5, 12.36% (v/v) PEG MME 550 and 

11.57% (v/v) glycerol in a deep well block, 96x 1.8 mL, prepared with a Formulator pipetting 

robot). The sitting-drop vapour diffusion technique was employed by setting up drops of 150 nL 

protein solution, 50 nL reservoir solution and 100 nL seed stock dilution in CrystalDirect™ plates 

using a Cartesian PixSys 4200 crystallization robot. The crystallization plates were incubated at 

20 °C in a Rock Imager system and the images were remotely accessed for visual inspection. After 

2 d – 3 d crystals grew to full size with 50% - 75% wells per plate that showed crystals. Wells 

suitable for soaking experiments were selected. 

Fresh crystals were soaked with fragments of the Enamine Golden Fragment Library 

through diffusion, by adding 53 nL 100 mM compound stock solution to a 300 nL crystallization 

drop using a Cartesian PixSys 4200 pipetting robot. This lead to a final concentration of 10 mM 

compound and 15% (v/v) DMSO in the drop. Crystals were incubated for 20 h to 24 h.  

4.5.2 Data collection at the European Synchrotron Radiation Facility 

Automated high-throughput crystal harvesting and cryo-cooling was performed with the 

CrystalDirect™ technology as described elsewhere[386b, 387b] and is briefly described here: After 

inserting a crystal plate in the system, crystals were located on the plate (scanner, SUNNY 

TECHNOLOGY), crystallization liquid was aspirated through a small hole in the foil in two intervals 

à 500 ms and a crystallization pin was glued next to it. A laser (Satsuma femtosecond laser, 

AMPLITUDE SYSTEMS) excised the film around the crystal and the crystallization pin tip. Finally, 

the resulting crystal pins were transferred by a robotic arm from the plate to liquid nitrogen for 

flash freezing and storage until data collection. Diffraction data were collected at 100 K using 

X-ray centering[390b] mode on a Pilatus3 2M or Pilatus 6M (DECTRIS) at the European Synchrotron 

Radiation Facility (ESRF), Grenoble, France, at the fully automated MASSIF-1 beamline 

(ID30A-1)[388b, 390b] or at ID30B[390a], respectively. For a full data set 3600 diffraction images in a 

360 ° rotation range with 0.1 ° oscillation steps were collected.    

4.5.3 Data processing, structure determination and refinement 

Diffraction data were processed with the ESRF autoprocessing pipeline, which uses 

EDNA[459], GrenADES[460], autoPROC[441], XDSAPP[391d], xia2_DIALS[391e, 450]. Results were 

displayed in the ISPyB data management system[454] and fed into CRIMS, version 4.0. Data were 

processed by the Global Phasing Pipedream automatic pipeline[391a], which uses autoPROC[441], 

Phaser[442] for MR and ligand placement with RHOFIT[461]. For MR the structural model of 

unliganded TcFPPS (in-house) was used (MR with PDB ID 4DWG[170a]). Results were displayed 

in CRIMS. Data were transferred to Novartis laboratories and were reprocessed as described in 
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chapter 4.3.8. X-ray data collection and refinement statistics are summarized in Table 37 in the 

Appendix.  

4.5.4 Data deposition and accession codes 

Crystal structures were deposited in the PDB with the status on hold for publication. The 

file upload was prepared with pdb_extract, version 3.25. The structures of TcFPPS in complex with 

HTX-1 (LEQ) and HTX-8 (LDW) were deposited under PDB IDs 6SI5 and 6SHV, respectively. 

Structural models of HTX-2 to HTX-7 are described in this work but have not been deposited in 

the PDB. 

4.6 Structure aided lead design 

4.6.1 Virtual screening 

For virtual screening the interactive web-based application ANCHOR.QUERY 

(http://anchorquery.csb.pitt.edu and Koes et al.[462]) was used for rational SBLD. Crystal structures 

of TcFPPS complexes, which resulted from the XChem screen (chapter 4.4), were used for the 

query construction. The protein backbone and the ligand were separately loaded and an anchor 

mimic in the ligand was recognized by the software (ANCHOR.QUERY supports seven residues 

as starting point for the query: Trp, Tyr, Phe, Val, Leu, Asp and Glu). A pharmacophore query was 

created by adding additional features of the ligand, e.g. ions, hydrogen donors/acceptors or 

hydrophobic rings. A rapid pharmacophore search was conducted to screen the library for matching 

compounds. A root mean square deviation (RMSD) alignment was applied and the aligned poses 

further refined by minimisation. Additional filters were applied, such as selecting certain reaction 

types and limiting the MW to 450 Da. The output coordinate files were visually inspected in PyMol 

with attention to quality of the binding poses and possible interactions of the compounds with 

adjacent binding site residues.  

4.6.2 Docking  

Virtual inspection and superimposition of various crystal structures of TcFPPS complexes 

in PyMOL led to a number of candidates that were proposed for synthesis. To evaluate their biding 

position, they were employed to in silico docking.  

Compound series MCN-1 to MCN-8: Ligands to be docked were prepared with 

Schrödinger LigPrep and the protein structure with thiazole AWM was prepared with the Protein 
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Preparation wizard[463] at standard settings. Ligands were then docked with Glide[464] (release 

2018-1) using standard precision (SP) docking and default settings. Docking studies were 

conducted by Rainer Wilcken, NIBR, Novartis Pharma AG, Basel, Switzerland.  

Compound DNDi-1: The compound was washed, and a single low-energy conformer was 

generated with RDKit (v2018.09.1), using the MMFF94 force field, according to a previously 

described procedure[465]. DNDi-1 was docked with MOE (v2016.08.02) to PDB ID 1YHL[162b]. The 

protein structure was imported into MOE, and protonated using the LigX tool and Protonate3D, 

adding explicit hydrogens and performing in situ rigid minimisation, to a gradient of 

0.1 kCal/Mol/Angstrom. For docking, 30 placements were performed with triangle-matching, 

followed by ten rounds of minimisation under Amber10:EHT[466]. The pose with best S-score 

(-15.99) was chosen for further consideration. Docking studies were conducted by Ryan Byrne, 

who is a PhD student on the AEGIS project in the group of Prof. Gisbert Schneider at the ETH 

Zürich, Switzerland. 

4.7 Medicinal chemistry at the University of Groningen 

4.7.1 General procedures 

All chemicals and solvents purchased were used without further purification. All 

isocyanides were kindly provided by Markella Konstantinidou and other group members from the 

lab of Prof. Alexander Dömling, University of Groningen, the Netherlands. There they were made 

in-house by either performing the Hoffman or Ugi procedure. All microwave radiation reactions 

were carried out in a BIOTAGE Initiator™ Microwave Synthesiser. The solvent was removed 

in vacuo and the crude reaction mixture was purified by flash column chromatography (FCC) using 

a Reveleris® X2 flash chromatography system by GRACE MATERIALS TECHNOLOGIES. Samples 

were dry loaded on normal phase FlashPure columns (12 g, silica 40 µm irregular, BÜCHI). Thin 

layer chromatography was performed on FLUKA precoated silica gel plates (0.2 mm thick, particle 

size 25 µm). According to thin layer chromatography, pure fractions were pooled and the solvent 

removed in vacuo. The final product was washed with TCM and dried under high-vacuum. 1H and 

13C NMR spectra were recorded on a BRUKER AVANCE™ 500 MHz spectrometer. Chemical 

shifts ẟ were reported in parts per million (ppm) and coupling constants J in Hertz (Hz). Spin 

multiplicity was designated as follows: s, singlet; brs, broad singlet; d, doublet; dd, doublet of 

doublets; ddd, doublet of doublet of doublets; t, triplet; dt, doublet of triplets; dq, doublet of 

quartets; td triplet of doublets, and m, multiplet. ESI-MS was performed on a WATERS Investigator 

Semi-prep 15 SFC-MS instrument. All data are consistent with the assigned structures. 
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4.7.2 Synthetic procedures 

Synthetic procedure A: Groebke-Blackburn-Bienaymé products; Reactions were carried 

out at 1 mmol scale. A microwave reaction vial was filled with 1 mL of acetonitrile. Aldehyde 

(1 mmol, 1 eq), amidine (1 mmol, 1 eq), catalyst (0.2 mmol, 0.2 eq) and isocyanide (1 mmol, 1 eq) 

were added under stirring. The reaction mixture was subjected to microwave radiation for 1 h at 

120 °C. Synthetic procedure B: Tetrazoles by Ugi-4CR; Reactions were carried out at 1 mmol 

scale. A 2 mL screwcap glass vial, equipped with magnetic stirrer, was filled with 1 mL MeOH. 

Aldehyde (1 mmol), amine (1 mmol) and isocyanide (1 mmol) were added in this order under 

stirring at RT. When everything was dissolved, finally trimethylsilyl azide (1 mmol) was added. 

The vial was closed tightly and the mixture further stirred overnight at RT. Synthetic procedure C: 

β-lactams; Reactions were carried out at 1 mmol scale. A microwave reaction vial was filled with 

1 mL of 2,2,2-trifluoroethanol (TFE). β-amino acid (1 mmol, 1 eq), aldehyde (1 mmol, 1 eq) and 

isocyanide (1 mmol, 1 eq) were added under stirring. The reaction mixture was subjected to 

microwave radiation for 1 h at 100 °C.  

4.7.3 Experimental procedures and characterization data 

6-([1,1'-biphenyl]-4-yl)-N-(tert-butyl)imidazo[2,1-b]thiazol-5-amine (MCR-1) 

 

Synthesised according to synthetic procedure A using [1,1'-biphenyl]-4-

carbaldehyde (182 mg, 1.0 mmol), thiazol-2-amine (100 mg, 1.0 mmol), 

Sc[OTf]3 (98 mg, 0.2 mmol) and 2-isocyano-2-methylpropane (113 µl, 

1.0 mmol). FCC in PE:EA (0% – 100% EA in PE). Product eluates at 

34% EA. 191 mg of MCR-1 obtained as off-yellow solid. Yield 55%. 1H NMR (500 MHz, 

CDCl3-d) δ 8.06 (d, J = 8.2 Hz, 2H), 7.67 (t, J = 8.1 Hz, 4H), 7.46 (t, J = 7.7 Hz, 2H), 7.37 (d, 

J = 4.8 Hz, 2H), 6.71 (d, J = 4.5 Hz, 1H), 1.12 (s, 9H). 13C NMR (126 MHz, CDCl3-d) δ 145.67, 

140.87, 139.7, 139.23, 134.32, 128.80, 127.50, 127.19, 126.94, 126.82, 125.68, 117.90, 111.52, 

55.91, 30.37. Calc. exact mass for C21H21N3S [M]+ 347.15, SFC found [M+H]+ 348.21. 

 

N-mesityl-2-phenethylimidazo[1,2-a]pyridin-3-amine (MCR-2) 

 

Synthesised according to synthetic procedure A using 3-phenylpropanal 

(131 µl, 1 mmol), pyridin-2-amine (110 mg, 1.0 mmol), Sc[OTf]3 (98 mg, 

0.2 mmol) and 2-isocyano-1,3,5-trimethylbenzene (145 mg, 1.0 mmol). 

FCCin DCM:MeOH (0% – 10% MeOH in DCM). Product eluates at 5% 

MeOH. 285 mg of MCR-2 obtained as a brown syrup. Yield 79%. 1H NMR 
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(500 MHz, CDCl3-d) δ 7.92 – 7.89 (m, 1H), 7.55 – 7.51 (m, 1H), 7.23 – 7.18 (m, 2H), 7.17 – 7.09 

(m, 2H), 6.97 – 6.91 (m, 2H), 6.82 (s, 2H), 6.75 (td, J = 6.6 Hz, 0.8 Hz, 1H), 4.71 (s, 1H), 

2.83 – 2.78 (m, 2H), 2.77 – 2.72 (m, 2H), 2.27 (s, 3H), 1.91 (s, 6H). 13C NMR (126 MHz, CDCl3-d) 

δ 142.08, 141.09, 139.04, 138.87, 130.98, 130.02, 128.58, 128.21, 127.13, 125.80, 123.43, 122.18, 

122.05, 116.84, 111.84, 35.36, 29.83, 20.50, 18.20 Calc. exact mass for C24H25N3 [M]+ 355.20, 

SFC found [M+H]+ 356.27. 

 

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(1H-imidazol-2-yl)methyl)-2-phenylethan-1-amine (MCR-3) 

 

Synthesised according to synthetic procedure B using 1H-imidazole-

2-carbaldehyde (96 mg, 1.0 mmol), 2-phenylethan-1-amine (126 µl, 

1.0 mmol), 2-isocyano-2-methylpropane (113 µl, 1.0 mmol) and TMS 

azide (131 µl, 1.0 mmol). FCC in DCM:MeOH (0% – 10% MeOH in 

DCM). Product eluates at 5% MeOH. 169 mg of MCR-3 obtained as off-yellow solid. Yield 52%. 

1H NMR (500 MHz, CDCl3-d) δ 7.26 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 7.13 – 7.09 (m, 2H), 

7.01 (s, 2H), 5.72 (d, J = 1.5 Hz, 1H), 2.86 (td, J = 7.1 Hz, 6.7 Hz, 2.8 Hz, 2H), 2.74 (td, J = 6.9 Hz, 

3.3 Hz, 2H), 1.74 (s, 9H). 13C NMR (126 MHz, CDCl3-d) δ 154.14, 144.76, 139.38, 128.72, 128.52, 

126.36, 62.44, 52.89, 48.45, 36.20, 29.95 Calc. exact mass for C17H23N7 [M]+ 325.20, SFC found 

[M+H]+ 326.30. 

 

N-((1H-imidazol-2-yl)(1-mesityl-1H-tetrazol-5-yl)methyl)-2-phenylethan-1-amine (MCR-4) 

 

Synthesised according to synthetic procedure B using 1H-imidazole-

2-carbaldehyde (96 mg, 1.0 mmol), 2-phenylethan-1-amine (126 µl, 

1.0 mmol), 2-isocyano-1,3,5-trimethylbenzene (145 mg, 1.0 mmol) 

and TMS azide (131 µl, 1.0 mmol). FCC in PE:EA (0% – 100% EA 

in PE). Product eluates at 60% EA. 91 mg of MCR-4 obtained as brown solid. Yield 24%. 1H NMR 

(500 MHz, CDCl3-d) δ 7.24 – 7.19 (m, 2H), 7.17 (d, J = 7.1 Hz, 1H), 7.05 (d, J = 6.9 Hz, 2H), 6.99 

(t, J = 6.9 Hz, 4H), 5.20 (s, 1H), 2.88 – 2.74 (m, 2H), 2.66 (td, J = 7.0 Hz, 4.0 Hz, 2H), 2.36 (s, 

3H), 1.87 (s, 3H), 1.64 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 155.56, 143.85, 141.39, 139.25, 

135.82, 135.48, 129.64, 129.50, 128.73, 128.62, 128.45, 126.27, 51.08, 48.44, 35.87, 21.25, 17.30, 

16.97. Calc. exact mass for C22H25N7 [M]+ 387.22, SFC found [M+H]+ 388.28. 
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N-((1-mesityl-1H-tetrazol-5-yl)(6-methylpyridin-2-yl)methyl)-2-phenylethan-1-amine (MCR-5) 

 

Synthesised according to synthetic procedure B using 6-methyl-

pyridine-2-carboxaldehyde (121 mg, 1.0 mmol), 2-phenyl-ethan-1-

amine (126 µl, 1.0 mmol), 2-isocyano-1,3,5-trimethyl-benzene 

(145 mg, 1.0 mmol) and TMS azide (131 µl, 1.0 mmol). FCC in 

PE:EA (0% – 10% EA in PE). Product eluates at 35% EA. 366 mg of 

MCR-5 obtained as off-orange syrup. Yield 89%. 1H NMR (500 MHz, CDCl3-d) δ 7.35 

(t, J = 7.7 Hz, 1H), 7.27 (s, 1H), 7.17 – 7.13 (m, 2H), 7.10 – 7.06 (m, 1H), 7.05 – 7.02 (m, 2H), 

6.90 (dd, J = 7.7 Hz, 3.1 Hz, 3H), 6.80 (s, 1H), 4.84 (s, 1H), 2.85 – 2.76 (m, 1H), 2.76 – 2.65 (m, 

3H), 2.59 (s, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 1.74 (s, 3H), 1.40 (s, 3H). 13C NMR (126 MHz, CDCl3) 

δ 157.94, 156.32, 155.84, 140.58, 139.19, 136.69, 135.71, 134.82, 129.03, 129.00, 128.98, 128.32, 

128.08, 125.86, 122.35, 118.78, 58.75, 48.81, 36.04, 23.85, 20.88, 16.91, 16.67. Calc. exact mass 

for C25H28N6 [M]+ 412.24, SFC found [M+H]+ 423.32. 

 

N-((1-mesityl-1H-tetrazol-5-yl)(pyridin-3-yl)methyl)-2-phenylethan-1-amine (MRC-6) 

 

Synthesised according to synthetic procedure B using pyridine-

3-aldehyde (93 µl, 1.0 mmol), 2-phenylethan-1-amine (126 µl, 

1.0 mmol), 2-isocyano-1,3,5-trimethylbenzene (145 mg, 1.0 mmol) 

and TMS azide (131 µl, 1.0 mmol). FCC in PE:EA (0% – 100% EA in 

PE). Product eluates at 70% EA. 329 mg of MRC-6 obtained as yellow syrup. Yield 83%. 1H NMR 

(500 MHz, CDCl3-d) δ 8.38 (dd, J = 4.8 Hz, 1.7 Hz, 1H), 8.01 (d, J = 2.3 Hz, 1H), 7.47 (dt, 

J = 8.0 Hz, 1.9 Hz, 1H), 7.16 – 7.09 (m, 2H), 7.09 – 7.03 (m, 2H), 7.02 – 6.97 (m, 2H), 6.92 (s, 

1H), 6.77 (s, 1H), 4.63 (s, 1H), 2.79 – 2.72 (m, 1H), 2.71 – 2.63 (m, 3H), 2.24 (s, 3H), 1.75 (s, 3H), 

1.11 (s, 3H). 13C NMR (126 MHz, CDCl3-d) δ 156.07, 149.67, 148.87, 141.14, 138.94, 135.40, 

134.93, 134.56 , 133.09, 129.40, 129.30, 128.36, 128.30, 128.20, 126.02, 123.51, 55.00, 48.47, 

35.88, 20.91, 16.93, 16.35. Calc. exact mass for C24H26N6 [M]+ 398.22, SFC found [M+H]+ 399.27. 

 

N-((1-mesityl-1H-tetrazol-5-yl)(quinolin-4-yl)methyl)-2-phenylethan-1-amine (MCR-7) 

 

Synthesised according to synthetic procedure B using quinoline-

4-carbaldehyde (157 mg, 1 mmol), 2-phenylethan-1-amine (126 µl, 

1.0 mmol), 2-isocyano-1,3,5-trimethylbenzene (145 mg, 1.0 mmol) 

and TMS azide (131 µl, 1.0 mmol). FCC in PE:EA (0% – 100% EA in 

PE). Product eluates at 50% EA. 280 mg of MCR-7 obtained as 

brownish solid. Yield 62%. 1H NMR (500 MHz, CDCl3-d) δ 8.52 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 
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7.72 (s, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.17 – 7.05 

(m, 4H), 7.02 (d, J = 7.1 Hz, 2H), 6.89 (s, 1H), 6.69 (s, 1H), 4.89 (s, 1H), 2.88 – 2.79 (m, 1H), 

2.77 – 2.68 (m, 3H), 2.24 (s, 3H), 1.75 (s, 3H), 1.08 (s, 3H). 13C NMR (126 MHz, CDCl3-d) 

δ 156.07, 149.71, 147.71, 141.11, 139.00, 135.38, 134.68, 134.63, 130.02, 129.81, 129.36, 129.31, 

128.91, 128.53, 128.36, 128.24, 127.63, 127.12, 126.90, 126.07, 55.30, 48.57, 35.96, 20.92, 16.97, 

16.47. Calc. exact mass for C28H28N6 [M]+ 448.24, SFC found [M+H]+ 449.29. 

 

4-((1-(1-(tert-butyl)-1H-tetrazol-5-yl)-3-phenylpropyl)amino)benzamide (MCR-8) 

 

Synthesised according to synthetic procedure B using 

3-phenylpropanal (131 µl, 1.0 mmol), 4-aminobenzamide (136 mg, 

1.0 mmol), 2-isocyano-2-methylpropane (113 µl, 1.0 mmol) and TMS 

azide (131 µl, 1.0 mmol). FCC in DCM:MeOH (0% – 100% MeOH in 

DCM). Product eluates at 6% MeOH. 194.1 mg of MCR-8 obtained 

as fluffy white powder. Yield 51%. 1H NMR (500 MHz, Chloroform-d) δ 7.63 (d, J = 8.8 Hz, 2H), 

7.29 – 7.24 (m, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.11 (d, J = 6.9 Hz, 2H), 6.52 (d, J = 8.7 Hz, 2H), 

6.33 (d, J = 5.4 Hz, 2H), 5.47 – 5.35 (m, 1H), 4.93 (dt, J = 10.1 Hz, 6.9 Hz, 1H), 2.84 (dt, 

J = 14.5 Hz, 7.5 Hz, 1H), 2.76 (dt, J = 13.9 Hz, 6.8 Hz, 1H), 2.35 (q, J = 7.1 Hz, 2H), 1.57 (s, 9H). 

13C NMR (126 MHz, CDCl3-d) δ 169.50, 155.75, 149.44, 140.17, 129.51, 128.73, 128.66, 126.61, 

123.07, 112.80, 61.95, 48.12, 36.47, 31.92, 30.04. Calc. exact mass for C21H26N6O [M]+ 378.22, 

SFC found [M+H]+ 379.27. 

 

N-((1-mesityl-1H-tetrazol-5-yl)(6-methylpyridin-2-yl)methyl)-[1,1'-biphenyl]-4-amine (MRC-9)  

 

Synthesised according to synthetic procedure B using 

6-methylpyridine-2-carboxaldehyde (121 mg, 1 mmol), [1,1' bi-

phenyl]-4-amine (169 mg, 1.0 mmol), 2-isocyano-1,3,5-trimethyl-

benzene (145 mg, 1.0 mmol) and TMS azide (131 µl, 1.0 mmol). 

FCC in PE:EA (0% – 100% EA in PE). 453 mg of MCR-9 obtained 

as brown syrup. Yield 98%. 1H NMR (500 MHz, Chloroform-d) δ 7.53 – 7.43 (m, 3H), 7.44 – 7.38 

(m, 3H), 7.37 (t, J = 7.7 Hz, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.00 (d, J = 7.6 Hz, 

1H), 6.98 (s, 1H), 6.91 (s, 1H), 6.75 (d, J = 8.6 Hz, 2H), 5.95 (d, J = 7.0 Hz, 1H), 5.80 (d, 

J = 7.0 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H), 1.68 (s, 3H), 1.56 (s, 3H). 13C NMR (126 MHz, CDCl3) 

δ 157.92, 156.38, 154.90, 145.15, 140.82, 140.73, 137.30, 136.41, 135.14, 131.29, 129.26, 128.96, 

128.57, 127.87, 126.20, 126.15, 122.73, 118.79, 113.70, 53.98, 23.98, 21.14, 17.24, 16.66. 

Calc. exact mass for C29H28N6 [M]+ 460.24, SFC found [M+H]+ 461.34. 
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2-(2-(3-hydroxyphenyl)-4-oxoazetidin-1-yl)-N-phenethylacetamide (MRC-10) 

 

Synthesised according to synthetic procedure C using 3-amino-3-(3-

hydroxyphenyl)propanoic acid (181 mg, 1.0 mmol), polyoxy-

methylene (30 mg, 1.0 mmol) and (2-isocyanoethyl) benzene (138 µl, 

1.0 mmol). FCC in DCM:MeOH (0% – 100% MeOH in DCM). 

Product eluates at 5% MeOH. 303.5 mg of MRC-10 obtained as 

orange to brownish syrup. Yield 93%. 1H NMR (500 MHz, Chloroform-d) δ 7.24 – 7.17 (m, 2H), 

1.41 – 1.19 (m, 0H), 8.57 (s, 1H), 7.28 (t, J = 7.3 Hz, 3H), 7.14 (dd, J = 7.0 Hz, 1.7 Hz, 2H), 6.86 

(dd, J = 8.0 Hz, 2.4 Hz, 1H), 6.79 (t, J = 2.1 Hz, 1H), 6.76 – 6.69 (m, 2H), 4.62 (dd, J = 5.1 Hz, 

2.3 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.50 – 3.38 (m, 3H), 3.34 (dd, J = 15.0 HZ, 5.2 Hz, 1H), 2.84 

(dd, J = 14.9 Hz, 2.4 Hz, 1H), 2.75 (t, J = 7.2 Hz, 2H). 13C NMR (126 MHz, CDCl3-d) δ 168.99, 

167.67, 157.58, 138.51, 138.44, 130.39, 128.74, 128.66, 126.63, 118.04, 116.21, 113.11, 55.43, 

46.53, 44.32, 40.84, 35.25. Calc. exact mass for C19H20N2O3 [M]+ 324.15, SFC found 

[M+H]+ 325.24. 

 

2-(2-(3-hydroxyphenyl)-4-oxoazetidin-1-yl)-2-(6-methylpyridin-2-yl)-N-phenethylacet amide 

(MCR-11)  

 

Synthesised according to the synthetic procedure C using 3-amino-3-

(3-hydroxyphenyl)propanoic acid (181 mg, 1.0 mmol), 6-methyl-

picolinaldehyde (121 mg, 1.0 mmol) and (2-isocyano ethyl)benzene 

(138 µl, 1.0 mmol). FCC in DCM:MeOH (0% – 100% MeOH in 

DCM). Product eluates at 5% MeOH. 197 mg of racemic MCR-11 

obtained as orange to brownish syrup. Yield 47%. 1H NMR (500 MHz, CDCl3-d, shifts for both 

enantiomers are given) δ 8.67 (brs, 2H), 7.70 (q, J = 6.2 Hz, 2H), 7.54 (td, J = 7.7, 1.3 Hz, 1H), 

7.37 (td, J = 7.8 Hz, 1.8 Hz, 1H), 7.25 – 7.10 (m, 8H), 7.08 (s, 1H), 7.07 (s, 1H), 7.05 (d, J = 7.6 Hz, 

1H), 7.04 (d, J = 7.6 Hz, 1H), 7.02 – 6.95 (m, 3H), 6.93 (brs, 1H) 6.91 (brs, 1H), 6.82 (dd, 

J = 7.9 HZ, 2.4 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.72 – 6.68 (m, 2H), 6.56 (d, J = 7.6 Hz, 1H), 

5.24 (s, 1H), 5.19 (s, 1H), 4.74 (dd, J = 5.4 Hz, 2.5 Hz, 1H), 4.71 (dd, J = 5.4 Hz, 2.6 Hz, 1H), 3.55 

(dq, J = 13.2 Hz, 6.8 Hz, 1H), 3.47 (dq, 1H), 3.39 – 3.25 (m, 3H), 3.25 – 3.16 (m, 1H), 2.89 (dd, 

J = 14.9 Hz, 2.6 Hz, 1H), 2.81 (dd, J = 15.0 Hz, 2.4 Hz, 1H), 2.76 (t, J = 7.0 Hz, 2H), 2.53 (td, 

J = 7.0 Hz, 2.9 Hz, 2H), 2.34 (s, 3H), 2.32 (s, 3H).13C NMR (126 MHz, CDCl3-d, shifts for higher 

abundant enantiomer are given) δ 169.08 (s, 1C), 167.70, 158.10, 157.15, 153.53, 139.55, 138.65, 

137.39, 129.60, 128.70, 128.46, 126.36, 122.9, 120.46, 117.90, 116.03, 113.18, 62.15, 55.38, 

46.06, 40.96, 35.19, 24.10. Calc. exact mass for C25H25N3O3 415.19, SFC found [M+H]+ 416.26. 
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4.8 Medicinal chemistry at Novartis 

4.8.1 General procedures 

All chemicals and solvents purchased were used without further purification. FCC was 

performed on a CombiFlash® Rf 200 by TELEDYNE ISCO. Samples were injected directly onto 

prepacked 12 g RediSep® Rf normal phase silica flash columns. Preparative LC was done on a 

AutoPurification™ mass-directed HPLC system by WATERS, applying Method A: TFA gradient, 

Sunfire 30 × 150, C18, 50 mL · min-1, H2O+TFA/acetonitrile, 1.0 min 95/5, 11.0 min  20/80, 

11.1 min 0/100, 14.0 min 0/100 or Method B: NH4HCO3 gradient, XBridge 30 × 150, C18, 

50 mL · min-1, H2O+NH4HCO3/acetonitrile, 1.0 min 95/5, 11.0 min  20/80, 11.1 min 0/100, 

14.0 min 0/100. Evidence of the chemical structure of synthesised compounds was provided by 

analytical data including NMR spectra and high resolution MS. 1H NMR spectra of precursors and 

intermediates were recorded on a Bruker DPX 401 MHz. 1H and 13C NMR spectra of final products 

were recorded on a BRUKER AVANCE™ 600 MHz spectrometer equipped with a 5 mm TXI probe 

(1H/13C/15N) with deuterium lock and triple-axis. Chemical shifts ẟ were reported in ppm. 

Multiplicity was designated as followed: s, singlet; brs, broad singlet; d, doublet; dd, doublet of 

doublets; ddd, doublet of doublet of doublets; t, triplet; dt, doublet of triplet; td triplet of doublets; 

and m, multiplet. Purity analysis and mass spectra were performed on a WATERS Acquity 

UPLC/SQD MS (ESI +/-).  High resolution mass spectrometry of final products was performed on 

an Ultimate 3000 UHPLC by coupled to a Q Exactive Plus mass spectrometer by THERMO 

SCIENTIFIC using electrospray ionisation in positive ion modus. The high mass accuracy below 

1.5 ppm was obtained by using a lock mass. The elemental composition was derived from the mass 

spectra acquired at the high resolution of about 35’000. All data were consistent with the assigned 

structures. 

4.8.2 General synthetic procedure for amination of 2-chlorobenzothiazoles 

For the amination of 2-chlorobenzothiazoles a sustainable chemistry approach described 

by Kumar et al.[467] was used. Unlike classical reaction conditions, 2-chlorobenzthiazoles and 

amines are taken in water and stirred at RT or up to 100 °C.  
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4.8.3 Experimental procedures and characterization data  

tert-butyl 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)piperazine-1-carboxylate (MCN-S1) 

 

2,5-dichlorobenzo[d]thiazole (400 mg, 1.96 mmol, 1.0 Eq) and 

tert-butyl piperazine-1-carboxylate (730 mg, 3.92 mmol, 2.0 Eq) 

were taken in water (7.5 mL) and stirred at RT overnight. Product 

formation was monitored by LC-MS. After additional stirring for 6 h at 80 °C, the reaction mixture 

was worked up with EA (2x 10 mL) and 0.1 M HCl. Combined organic phases were dried over 

anhydrous Na2SO4, concentrated and purified by FCC (Heptane:EA, product eluates at 20% EA). 

Concentrating the pure fractions yielded 538 mg of the product as white solid with 92% purity 

(yield 71%). 1H NMR (400 MHz, DMSO-d6) δ 7.81 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 

7.11 (dd, J = 8.4 Hz, 2.1 Hz, 1H), 3.58 (dd, J = 6.6 Hz, 3.7 Hz, 4H), 3.49 (dd, J = 6.5 Hz, 3.7 Hz, 

4H), 1.43 (s, 9H). Calc. exact mass for C16H20ClN3O2S 353.10, LC-MS found [M+H]+ 354.2. 

 

tert-butyl 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)piperazine-1-carboxylate (MCN-S2) 

 

2-chloro-5-(trifluoromethyl)benzo[d]thiazole (500 mg, 

2.10 mmol, 1.0 Eq) and tert-butyl piperazine-1-carboxylate 

(784 mg, 4.20 mmol, 2.0 Eq) were taken in water (7.5 mL) and 

stirred at RT overnight. Product formation was monitored by LC-MS. After additional stirring for 

6 h at 80 °C, the reaction mixture was worked up with EA (2x 10 mL) and 0.1 M HCl. Combined 

organic phases were dried over anhydrous Na2SO4 and concentrated. 628.4 mg of the product were 

obtained as white solid with 99% purity (yield 76%). 1H NMR (400 MHz, DMSO-d6) δ 8.03 (d, 

J = 8.2 Hz, 1H), 7.73 (s, 1H), 7.39 (d, J = 8.3 Hz, 1H), 3.62 (dd, J = 6.3 Hz, 4.0 Hz, 4H), 3.58 – 3.46 

(m, 4H), 1.44 (s, 9H). Calc. exact mass for C17H20F3N3O2S 387.12, LC-MS found [M+H]+ 388.3. 

 

5-chloro-2-(piperazin-1-yl)benzo[d]thiazole (MCN-S3) 

 

tert-butyl 4-(5-chlorobenzo[d]thiazol-2-yl)piperazine-1-carboxylate 

(MCN-S1), 534 mg, 1.51 mmol) was taken in 8 mL 4.0 M HCl in dioxan 

and stirred overnight at RT. Concentrating the reaction mixture yielded 

445 mg of the HCl salt of the product as white solid with 97% purity (yield 99%). 1H NMR 

(400 MHz, DMSO-d6, as HCl salt) δ 9.39 (brs, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 2.1 Hz, 

1H), 7.16 (dd, J = 8.4 Hz, 2.1 Hz, 1H), 3.82 (t, J = 5.4 Hz, 4zH), 3.30 – 3.22 (m, 4H). Calc. exact 

mass for C11H12ClN3S 253.75, LC-MS found [M+H]+ 254.2. 
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2-(piperazin-1-yl)-5-(trifluoromethyl)benzo[d]thiazole (MCN-S4) 

 

tert-butyl 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)piperazine-1-car-

boxylate (MCN-S2), 629.4 mg, 1.62 mmol) was taken in 8 mL 4.0 M 

HCl in dioxan and stirred at RT for 4 h. Concentrating the reaction mixture yielded 534 mg of  the 

HCl salt of MCN-S4 as white solid with 97% purity (yield 99%). 1H NMR (400 MHz, DMSO-d6, 

as HCl salt) δ 9.60 (brs, 2H), 8.09 (d, J = 8.2 Hz, 1H), 7.78 (s, 1H), 7.44 (dd, J = 8.3 Hz, J = 1.1 Hz, 

1H), 3.93 – 3.84 (m, 4H), 3.29 – 3.23 (m, 4H). Calc. exact mass for C12H12F3N3S 287.07, LC-MS 

found [M+H]+ 288.2. 

4.8.4 General synthetic procedure for the reductive amination of aldehydes 

The reductive amination of aldehydes with sodium triacetoxyborohydride used here are 

similar to standard conditions[468]. Reaction times were chosen in accordance with 

Jeankumar et al.[469] To a solution of 2-piperazinebenzothiazole (1.0 mmol) and the corresponding 

indoleacetaldehyde (1.1 mmol) in dry DCM (2 mL) under argon atmosphere catalytic amounts of 

acetic acid were added. The reaction mixture was stirred at RT for 6 h and cooled to 0 °C. Sodium 

triacetoxyborohydride (1.5 mmol) was added and the stirring continued at RT overnight. The 

reaction mixture was extracted by further dilution with DMC (5 mL) and water (5 mL). The 

aqueous phase was back-extracted with DCM (2x 10 mL). If needed brine solution was added. 

Combined organic phases were dried over anhydrous Na2SO4, filtered, concentrated in vacuo, 

resolved in acetonitrile:H2O (9:1) and purified by preparative LC-MS using either method A or 

method B, yielding the TFA salt or free base, respectively. When using the HCl salts of the 

2-piperazinebenzothiazole (1.0 mmol) deprotonation was done in-situ by adding TEA (1.5 mmol). 

After stirring for 30 min at RT, the corresponding indoleacetaldehyde (1.1 mmol) and acetic acid 

were added (7.0 mmol). Subsequent steps were done as previously described.  

4.8.5 Experimental procedures and characterization data of benzothiazole series  

tert-butyl 3-((4-(benzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indole-1-carboxylate (MCN-S5) 

 

The compound was synthesised according to the above general 

procedure using tert-butyl 3-formyl-1H-indole-1-carboxylate 

(50 mg, 0.204 mmol, 1.0 Eq), 2-(piperazin-1-yl)benzo[d]thiazole 

(49.2 mg, 0.224 mmol, 1.1 Eq) and sodium triacetoxyborohydride 

(64.8 mg, 0.306 mmol, 1.5 Eq). The combined, dried, filtered and 

in vacuo concentrated organic fractions yielded 92 mg of the TFA salt of MCN-S5 as brownish 
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coloured syrup with a purity of 92% (yield 93%). Calc. exact mass for C25H28N4O2S 448.19, 

LC-MS found [M+H]+ 449.4. No further analytics done.  

 

2-(4-((1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole (MCN-1) 

 

tert-butyl 3-((4-(benzo[d]thiazol-2-yl)piperazin-1-yl) methyl)-1H-

indole-1-carboxylate (MCN-S5), as TFA salt, 92 mg, 0.204 mmol) 

was solved in a mixture of 1 mL DCM and 1 mL TFA and stirred 

at RT for 1h. The in vacuo concentrated sample was purified by 

preparative LC-MS (method A). Freeze-drying of the pure fractions yielded 66.5 mg of the TFA 

salt of MCN-1 as a red solid with 89% purity (yield 63%). 1H NMR (600 MHz, DMSO-d6, as TFA 

salt) δ 11.57 (d, J = 2.6 Hz, 1H), 10.11 (s, 1H), 7.88 – 7.72 (m, 2H), 7.59 (d, J = 2.6 Hz, 1H), 7.51 

(dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.32 (ddd, J = 8.3 Hz, 7.7 Hz, 1.3 Hz, 1H), 

7.18 (ddd, J = 8.1 Hz, 6.9 Hz, 1.2 Hz, 1H), 7.15 – 7.10 (m, 2H), 4.57 (s, 2H), 4.21 (d, J = 14.1 Hz, 

2H), 3.55 (d, J = 12.4 Hz, 2H), 3.46 (t, J = 13.7 Hz, 2H), 3.34 – 3.17 (m, 2H). 13C NMR (151 MHz, 

DMSO-d6, as TFA salt, TFA signal not included) δ 167.56, 151.98, 136.02, 130.86, 128.88, 127.38, 

126.20, 121.94, 121.85, 121.47, 119.72, 119.04, 118.59, 111.97, 102.31, 50.67, 49.29, 45.06.  

Calc. exact mass for C20H20N4S 348.15, FTMS found [M+H]+ 349.15. 

 

2-(4-((7-methoxy-1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole (MCN-2) 

 

The compound was synthesised according to the above general 

procedure using 7-methoxy-1H-indole-3-carb-aldehyde (50 mg, 

0.285 mmol, 1.0 Eq), 2-(piperazin-1-yl)benzo[d]thiazole 

(68.9 mg, 0.314 mmol, 1.1 Eq) and sodium triacetoxyboro-

hydride (91 mg, 0.428 mmol, 1.5 Eq). The in vacuo concentrated sample was purified twice by 

preparative LC-MS (method A). Freeze-drying of the pure fractions yielded 41.4 mg of the TFA 

salt of MCN-2 as an off-white solid with 100% purity (yield 30%). 1H NMR (600 MHz, DMSO-d6, 

as TFA salt) δ 11.68 (d, J = 2.8 Hz, 1H), 10.15 (brs, 1H), 7.82 (dd, J = 7.9 Hz, 1.2 Hz, 1H), 

7.55 – 7.45 (m, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.32 (ddd, J = 8.3 Hz, 7.3 Hz, 1.3 Hz, 1H), 7.13 (td, 

J = 7.6 Hz, 1.2 Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 4.54 (s, 2H), 4.20 (d, 

J = 14.0 Hz, 2H), 3.93 (s, 3H), 3.64 – 3.50 (m, 2H), 3.45 (t, J = 12.8 Hz, 2H) , 3.27 – 3.24 (m, 2H). 

13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal not included) δ 167.55, 151.98, 146.35, 

130.85, 128.96, 128.34, 126.19, 126.14, 121.93, 121.46, 120.46, 119.04, 111.22, 102.85, 102.24, 

55.24, 50.74, 49.26, 45.05. Calc. exact mass for C21H22N4OS 378.15, FTMS found [M+H]+ 379.16. 
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2-(4-((7-chloro-1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole (MCN-3) 

 

The compound was synthesised according to the above general 

procedure using 7-chloro-1H-indole-3-carbaldehyde (50 mg, 

0.278 mmol, 1.0 Eq), 2-(piperazin-1-yl)benzo[d]thiazole 

(67.2 mg, 0.306 mmol, 1.1 Eq) and sodium triacetoxyborohydride 

(89 mg, 0.418 mmol, 1.5 Eq). The in vacuo concentrated sample was purified by preparative 

LC-MS (method A). Freeze-drying of the pure fractions yielded 101.8 mg of the TFA salt of 

MCN-3 as an off-white solid with 96% purity (yield 71%). 1H NMR (600 MHz, DMSO-d6, as TFA 

salt) δ 11.96 (d, J = 2.8 Hz, 1H), 10.31 (brs, 1H), 7.87 – 7.78 (m, 2H), 7.66 (d, J = 2.7 Hz, 1H), 

7.51 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.32 (ddd, J = 8.3 Hz, 7.3 Hz, 1.3 Hz, 1H), 7.27 (dd, J = 7.5 Hz, 

0.8 Hz, 1H), 7.14 (q, J = 7.9 Hz, 2H), 4.58 (s, 2H), 4.20 (d, J = 14.0 Hz, 2H), 3.54 (d, J = 12.5 Hz, 

2H), 3.49 (s, 2H), 3.33 – 3.15 (m, 2H). 13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal 

not included) δ 167.54, 151.99, 132.86, 130.86, 130.12, 129.39, 126.19, 121.93, 121.46, 121.39, 

120.79, 119.03, 117.84, 116.30, 103.84, 50.37, 49.34, 45.07. Calc. exact mass for C20H19N4ClS 

382.10, FTMS found [M+H]+ 383.11. 

 

3-((4-(benzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indol-5-ol (MCN-4) 

 

The compound was synthesised according to the above general 

procedure using 5-hydroxy-1H-indole-3-carbaldehyde 

(64.7 mg, 0.401 mmol, 1.0 Eq), 2-(piperazin-1-yl)benzo[d] 

thiazole (80 mg, 0.365 mmol, 1.0 Eq) and sodium triacetoxy-

borohydride (116.0 mg, 0.547 mmol, 1.5 Eq). The in vacuo concentrated sample was purified twice 

by preparative LC-MS (method B). Freeze-drying of the pure fractions yielded 32 mg of MCN-4 

as a white solid with 92% purity (yield 22%). 1H NMR (600 MHz, DMSO-d6) δ 10.67 – 10.62 (m, 

1H), 8.60 (brs, 1H), 7.76 – 7.69 (m, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.14 (d, 

J = 8.7 Hz, 2H), 7.09 – 7.02 (m, 1H), 6.97 (d, J = 2.3 Hz, 1H), 6.60 (dd, J = 8.6 Hz, 2.3 Hz, 1H), 

3.60 (s, 2H), 3.56 – 3.49 (m, 4H) 3.34 (brs, 2H), 2.53 – 2.50 (m, 2H).  13C NMR (151 MHz, 

DMSO-d6) δ 168.05, 152.48, 150.30, 130.90, 130.37, 128.29, 125.95, 125.27, 121.18, 121.14, 

118.53, 111.65, 111.35, 109.44, 103.03, 53.32, 51.80, 48.18. Calc. exact mass for C20H20ON4S 

364.14, FTMS found [M+1]+ 365.14. 
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tert-butyl 3-((4-(5-chlorobenzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indole-1-carboxylate 

(MCN-S6) 

 

The compound was synthesised according to the above general 

procedure using 5-chloro-2-(piperazin-1-yl)benzo[d]thiazole 

as HCl salt (MCN-S3) (70.0 mg, 0.241 mmol, 1.00 Eq), TEA 

(50 µl, 0.362 mmol, 1.50 Eq), tert-butyl 3-formyl-1H-indole-1-

car-boxylate (65.1 mg, 0.265 mmol, 1.10 Eq), acetic acid 

(100 µl, 1.747 mmol, 7.24 Eq) and sodium triacetoxyborohydride (77.0 mg, 0.362 mmol, 1.50 Eq). 

The in vacuo concentrated sample was purified by preparative LC-MS (method A). Freeze-drying 

of the pure fractions yielded 86.9 mg of the TFA salt of MCN-S6 as a white solid with 92% purity 

(yield 56%). 1H NMR (400 MHz, DMSO-d6, as TFA salt) δ 10.17 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 

7.96 (s, 1H), 7.87 (dd, J = 10.6 Hz, 8.0 Hz, 2H), 7.54 (d, J = 2.1 Hz, 1H), 7.51 – 7.25 (m, 2H), 7.17 

(dd, J = 8.4 Hz, 2.1 Hz, 1H), 4.57 (s, 2H),  4.32 – 4-13 (m, 4H), 3.64 – 3.39 (m, 4H), 1.65 (s, 9H).  

Calc. exact mass for C25H27ClN4O2S 482.59, LC-MS found [M+H]+ 483.3. 

 

2-(4-((1H-indol-3-yl)methyl)piperazin-1-yl)-5-chlorobenzo[d]thiazole (MCN-5) 

 

tert-butyl 3-((4-(5-chlorobenzo[d]thiazol-2-yl)piperazin-1-yl) 

methyl)-1H-indole-1-carboxylate (MCN-S6), as TFA salt, 

(92 mg, 0.204 mmol) was solved in a mixture of 1 mL DCM 

and 1 mL TFA and stirred at RT for 1h. The in vacuo 

concentrated sample was purified by preparative LC-MS (method A). Freeze-drying of the pure 

fractions yielded 51.6 mg of the TFA salt of MCN--5 as a white solid with 99% purity (yield 61%). 

1H NMR (600 MHz, DMSO-d6, as TFA salt) δ 11.57 (d, J = 2.7 Hz, 1H), 10.16 (s, 1H), 7.86 (d, J 

= 8.4 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 2.6 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 7.46 

(dd, J = 8.1 Hz, 0.9 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.12 (ddd, J = 8.0 Hz, 6.9 Hz, 1.1 Hz, 1H), 4.57 

(s, 2H), 4.25 – 4.16 (m, 2H), 3.55 (d, J = 12.4 Hz, 2H), 3.48 (t, J = 13.4 Hz, 2H), 3.27 (brs, 2H). 

13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal not included) δ 169.09, 153.24, 136.02, 

130.87, 129.58, 128.88, 127.37, 122.84, 121.85, 121.65, 119.72, 118.58, 118.37, 111.97, 102.28, 

50.66, 49.25, 44.99. Calc. exact mass for C20H19ClN4S 382.10, FTMS found [M+1]+ 383.11. 
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5-chloro-2-(4-((7-methoxy-1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole (MCN-6) 

 

The compound was synthesised according to the above 

general procedure using 7-methoxy-1H-indole-3-carbalde-

hyde (85 mg, 0.482 mmol, 2.0 Eq), 5-chloro-2-(piperazin-1-

yl)benzo[d]thiazole (MCN-S3), HCl salt, 70 mg, 

0.241 mmol, 1.0 Eq) and sodium triacetoxyborohydride (128 mg, 0.603 mmol, 2.5 Eq). The 

mixture was stirred for 36 h. The in vacuo concentrated sample was purified by preparative LC-MS 

(method A). Freeze-drying of the pure fractions yielded 72.3 mg of the TFA salt of MCN-6 as a 

yellow solid with 85% purity (yield 48%). 1H NMR (600 MHz, DMSO-d6, as TFA salt) δ 11.68 

(d, J = 2.7 Hz, 1H), 10.13 (brs, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 2.1 Hz, 1H), 7.48 (d, 

J = 2.7 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.16 (dd, J = 8.5 Hz, 2.1 Hz, 1H), 7.05 (t, J = 7.8 Hz, 

1H), 6.74 (d, J = 7.7 Hz, 1H), 4.54 (s, 2H), 4.20 (d, J = 14.1 Hz, 2H), 3.93 (s, 3H), 3.58 – 3.42 (m, 

4H), 3.25 (brs, 2H).  13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal not included) 

δ 169.08, 153.24, 146.35, 130.87, 129.58, 128.95, 128.36, 126.14, 122.84, 121.65, 120.47, 118.37, 

111.22, 102.82, 102.24, 55.24, 50.75, 49.24, 44.98. Calc. exact mass for C21H21ClN4OS 412.11, 

FTMS found [M+1]+ 413.12. 

 

5-chloro-2-(4-((7-chloro-1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole (MCN-7) 

 

The compound was synthesised according to the above general 

procedure using 5-chloro-2-(piperazin-1-yl)benzo[d]thiazole 

as HCl salt (MCN-S3) (70 mg, 0.241 mmol, 1.0 Eq), TEA 

(67 µl, 0.482 mmol, 2.0 Eq), 7-chloro-1H-indole-3-carbalde-

hyde (47.7 mg, 0.265 mmol, 1.1 Eq), acetic acid (97 µl, 1.688 mmol, 7.0 Eq) and sodium 

triacetoxy-borohydride (77.0 mg, 0.362 mmol, 1.5 Eq). The in vacuo concentrated sample was 

purified by preparative LC-MS (method A). Freeze-drying of the pure fractions yielded 57.9 mg 

of the TFA salt of MCN-7 as an off-white solid with 98% purity (yield 44%). 1H NMR (600 MHz, 

DMSO-d6, as TFA salt) δ 11.95 (s, 1H), 10.31 (brs, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.79 (d, 

J = 8.0 Hz, 1H), 7.66 (d, J = 2.7 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 

7.19 – 7.11 (m, 2H), 4.57 (s, 2H), 4.27 – 4.14 (m, 2H), 3.65 – 3.33 (m, 4H), 3.26 (brs, 2H). 

13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal not included) δ 169.08, 153.25, 132.87, 

130.86, 130.12, 129.57, 129.38, 122.83, 121.64, 121.39, 120.78, 118.35, 117.84, 116.29, 103.8, 

50.39, 49.32, 45.00. Calc. exact mass for C20H18Cl2N4S 416.06, FTMS found [M+1]+ 417.07. 

  



 

87 

3-((4-(5-chlorobenzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indol-5-ol (MCN-8) 

 

The compound was synthesised according to the above 

general procedure using 5-chloro-2-(piperazin-1-yl)benzo 

[d]thiazole as HCl salt (MCN-S3), 70.0 mg, 0.241 mmol, 

1 Eq), TEA (67 µl, 0.482 mmol, 2.0 Eq), 5-hydroxy-

1H-indole-3-carbaldehyde (42.8 mg, 0.265 mmol, 1.1 Eq), acetic acid (97 µl, 1.688 mmol, 7.0 Eq) 

and sodium triacetoxyborohydride (128.0 mg, 0.603 mmol, 2.5 Eq). The in vacuo concentrated 

sample was purified by preparative LC-MS (method B). Freeze-drying of the pure fractions yielded 

2.37 mg of MCN-8 as an off-white solid with 88% purity (yield 2%). Poor solubility and difficult 

phase separation during extraction caused a very low yield. Therefore no NMR spectra have been 

recorded. Calc. exact mass for C20H19ClN4OS 398.10, LC-MS found [M+1]+ 399.2. 

 

tert-butyl 3-((4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indole-1-

carboxylate (MCN-S7) 

 

The compound was synthesised according to the above 

general procedure using 2-(piperazin-1-yl)-5-(trifluorome-

thyl)benzo[d]thiazole as HCl salt (MCN-S4), 100 mg, 

0.309 mmol, 1.0 Eq), TEA (86 µl, 0.618 mmol, 2.0 Eq), 

tert-butyl 3-formyl-1H-indole-1-carboxylate (83 mg, 

0.34 mmol, 1.1 Eq), acetic acid (159 µl, 2.78 mmol, 9.0 Eq) and sodium triacetoxyborohydride 

(98.0 mg, 0.463 mmol, 1.5 Eq). The in vacuo concentrated sample was purified by preparative 

LC-MS (method A). Freeze-drying of the pure fractions yielded 95.2 mg of the TFA salt of 

MCN-S7 as a white solid with 92% purity (yield 45%). 1H NMR (400 MHz, DMSO-d6, as TFA 

salt) δ 10.08 (s, 1H), 8.10 (dd, J = 11.4, 8.4 Hz, 2H), 7.96 (brs, 1H), 7.89 (d, J = 7.4 Hz, 1H), 7.78 

(s, 1H), 7.52 – 7.33 (m, 3H), 4.58 (brs, 2H), 4.24 (brs, 2H), 1.66 (s, 9H). Calc. exact mass for 

C26H27F3N4O2S 516.18, LC-MS found [M+1]+ 517.30. 

 

2-(4-((1H-indol-3-yl)methyl)piperazin-1-yl)-5-(trifluoromethyl)benzo[d]thiazole (MCN-9) 

 

tert-butyl 3-((4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)pi-

perazin-1-yl)methyl)-1H-indole-1-carboxylate (MCN-S7), as 

TFA salt, 93.2 mg, 0.148 mmol) was solved in a mixture of 

1 mL DCM and 1 mL TFA and stirred at RT for 1h. The 

in vacuo concentrated sample was purified by preparative LC-MS (method A). Freeze-drying of 

the pure fractions yielded 95.2 mg of the TFA salt of MCN-9 as a white solid with 97% purity 
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(yield 63.7%). 1H NMR (600 MHz, DMSO-d6, as TFA salt) δ 11.57 (d, J = 2.7 Hz, 1H), 10.17 (brs, 

1H), 8.08 (d, J = 8.2 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.59 (d, J = 2.6 Hz, 1H), 7.50 – 7.42 (m, 2H), 

7.18 (ddd, J = 8.1 Hz, 6.9 Hz, 1.2 Hz, 1H), 7.13 (ddd, J = 7.5 Hz, 6.9 Hz, 1.0 Hz, 1H), 4.57 (s, 2H), 

4.25 (d, J = 14.1 Hz, 2H), 3.60 – 3.39 (m, 4H), 3.29 (brs, 2H). 13C NMR (151 MHz, DMSO-d6, as 

TFA salt, TFA signal not included) δ 169.13, z152.11, 136.03, 135.27, 128.89, 127.38, 127.14 (q, 

J = 31.5 Hz), 124.47 (q, J = 270.10 Hz), 122.64, 121.86, 119.73, 118.58, 117.93, 115.06 (d, 

J = 3.5 Hz, 1C), 111.97, 102.27, 50.68, 49.24, 45.06. Calc. exact mass for C21H19F3N4S 416.13, 

FTMS found [M+1]+ 417.14. 

 

2-(4-((7-methoxy-1H-indol-3-yl)methyl)piperazin-1-yl)-5-(trifluoromethyl)benzo[d]thiazole 

(MCN-10) 

 

The compound was synthesised according to the above 

general procedure using 2-(piperazin-1-yl)-5-(trifluoro-

methyl)benzo[d]thiazole as HCl salt (MCN-S4) (78 mg, 

0.241 mmol, 1.0 Eq), TEA (67 µl, 0.482 mmol, 2.0 Eq), 

7-methoxy-1H-indole-3-carbaldehyde (46.4 mg, 0.265 mmol, 1.1 Eq), acetic acid (124 µl, 

2.168 mmol, 9.0 Eq) and sodium triacetoxyborohydride (77.0 mg, 0.361 mmol, 1.5 Eq). The 

in vacuo concentrated sample was purified by preparative LC-MS (method A). Freeze-drying of 

the pure fractions yielded 60.5 mg of the TFA salt of MCN-10 as a white solid with 94% purity 

(yield 42.1%). 1H NMR (600 MHz, DMSO-d6, as TFA salt) δ 11.68 (s, 1H), 10.21 (s, 1H), 8.08 (d, 

J = 8.2 Hz, 1H), 7.77 (d, J = 1.8 Hz, 1H), 7.49 (d, J = 2.7 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 1.8 Hz, 

1H), 7.37 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 4.54 (s, 2H), 4.24 

(d, J = 14.0 Hz, 2H), 3.93 (s, 3H), 3.60 – 3.45 (m, 4H), 3.26 (brs, 2H).  13C NMR (151 MHz, 

DMSO-d6, as TFA salt, TFA signal not included) δ 169.12, 152.11, 146.35, 135.26, 128.96, 128.34, 

127.13 (q, J = 31.6 Hz), 126.15, 124.47 (q, J = 272.3 Hz), 122.63, 120.46, 117.92, 115.04 (d, 

J = 3.3 Hz), 111.22, 102.81, 102.23, 55.24, 50.76, 49.22, 45.06. Calc. exact mass for C22H21F3N4OS 

446.14, FTMS found [M+1]+ 417.15. 

 

2-(4-((7-chloro-1H-indol-3-yl)methyl)piperazin-1-yl)-5-(trifluoromethyl)benzo[d]thiazole 

(MCN-11) 

 

The compound was synthesised according to the above 

general procedure using 2-(piperazin-1-yl)-5-

(trifluoromethyl)benzo[d]thiazole as HCl salt (MCN-S4), 

(78.0 mg, 0.241 mmol, 1.0 Eq), TEA (67 µl, 0.482 mmol, 

2.0 Eq), 7-chloro-1H-indole-3-carbaldehyde (47.6 mg, 0.265 mmol, 1.1 Eq), acetic acid (124 µl, 
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2.168 mmol, 9.0 Eq) and sodium triacetoxyborohydride (77.0 mg, 0.361 mmol, 1.5 Eq). The in 

vacuo concentrated sample was purified by preparative LC-MS (method A). Freeze-drying of the 

pure fractions yielded 60.5 mg of the TFA salt of MCN-11 as a white solid with 94% purity (yield 

42%). 1H NMR (600 MHz, DMSO-d6, TFA salt) δ 11.95 (d, J = 2.7 Hz, 1H), 10.31 (brs, 1H), 8.08 

(d, J = 8.2 Hz, 1H), 7.86 – 7.76 (m, 2H), 7.66 (d, J = 2.7 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 1.8 Hz, 

1H), 7.28 (d, J = 7.5 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 4.58 (s, 2H), 4.32 – 4.16 (m, 2H), 3.64 – 6.44 

(m, 4H), 3.28 (brs, 2H). 13C NMR (151 MHz, DMSO-d6, as TFA salt, TFA signal not included) 

δ 169.11, 152.11, 135.26, 132.87, 130.14, 129.38, 127.14 (q, J = 31.7 Hz), 124.47 (q, J = 271.4 Hz), 

122.63, 121.40, 120.80, 117.92, 117.84, 116.30, 115.05 (d, J = 3.2 Hz), 103.79, 50.39, 49.29, 45.06. 

Calc. exact mass for C21H18ClF3N4S 450.09, FTMS found [M+1]+ 451.10. 

 

3-((4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indol-5-ol (MCN-12)  

 

The compound was synthesised according to the above 

general procedure using 2-(piperazin-1-yl)-5-(trifluoro-

methyl)benzo[d]thiazole as HCl salt (MCN-S4), 100 mg, 

0.309 mmol, 1.0 Eq), TEA (86 µl, 0.618 mmol, 2.0 Eq), 

5-hydroxy-1H-indole-3-carbaldehyde (54.8 mg, 0.34 mmol, 1.1 Eq), acetic acid (124 µl, 

2.162 mmol, 7.0 Eq) and sodium triacetoxyborohydride (98 mg, 0.463 mmol, 1.5 Eq). The in vacuo 

concentrated sample was purified by preparative LC-MS (method B). Freeze-drying of the pure 

fractions yielded 29.2 mg of MCN-12 as a white solid with 88% purity (yield 19%). 1H NMR 

(600 MHz, DMSO-d6) δ 10.65 (d, J = 2.5 Hz, 1H), 8.60 (s, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.70 (d, 

J = 1.7 Hz, 1H), 7.36 (dd, J = 8.3 Hz, 1.8 Hz, 1H), 7.17 – 7.11 (m, 2H), 6.97 (d, J = 2.3 Hz, 1H), 

6.60 (dd, J = 8.6 Hz, 2.4 Hz, 1H), 3.65 – 3.53 (m, 6H), 2.52 (t, J = 5.1 Hz, 4H). 13C NMR (151 MHz, 

DMSO-d6) δ 169.37, 152.60, 150.29, 134.78, 130.88, 128.27 (q, J = 31.1 Hz), 125.26, 124.52 (q, 

J = 271.3 Hz), 122.20, 117.15 (d, J = 3.7 Hz), 117.14, 114.60 – 114.35, 111.63, 111.34, 109.35, 

103.00, 53.23, 51.70, 48.22. Calc. exact mass for C21H19F3N4OS 432.12, FTMS found 

[M+1]+ 433.13.  

4.9 Surface plasmon resonance 

Surface plasmon resonance (SPR) experiments were established for orthogonal fragment 

screening and Kd determination of fragment hits identified by NMR spectroscopy or X-ray 

crystallography. In addition, compounds derived from medicinal chemistry efforts were examined. 

Experiments were conducted at 22 °C on a Biacore T200 using the Biacore T200 Control Software. 

Biotinylated avi-tagged FPPS was immobilized on a Series S Sensor chip SA carrying a 
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carboxymethylated dextran matrix pre-immobilized with streptavidin. While one flow channel 

functioned as reference channel, biotinylated avi-tagged TcFPPS, TbFPPS and hFPPS were 

immobilized on the three remaining channels, thus allowing parallel testing on the three 

homologues. Experiments were run in collaboration with Lena Muenzker, NIBR, Novartis Pharma 

AG, Basel, Switzerland. 

For an experiment 2.0 L of SPR buffer were prepared and to 1.3 L thereof 0.9% (v/v) 

DMSO were added. The device was primed with dd H2O, the chip docked and pre-conditioned by 

three injections of a solution containing 50 mM NaOH and 1 M NaCl, followed by two injections 

of dd H2O, all at a flow rate of 30 µL · min-1. Then the device was primed with SPR buffer, the 

chip normalized with normalizing solution (70% glycerol) and then rinsed with SPR buffer at 

30 µL · min-1 to obtain a stable base line. Biotinylated avi-tagged FPPSs were thawed, filtered 

(0.45 µm) and diluted to 50 µg · mL-1 (approx. 1:50) in SPR buffer. Proteins were immobilized in 

intervals, starting with 1 min, at a flow rate of 10 µg · mL-1. Injections were repeated and time 

spans adjusted if necessary to achieve a final load of 2500 RUs to 3500 RUs. Protein 

immobilization was followed by several injections of SPR buffer without DMSO to check for 

baseline drifting. After loading was completed, the device was primed twice with SPR buffer with 

DMSO and the flow channels rinsed with SPR buffer with DMSO at a flow rate of 50 µL · min-1 

with injections for 20 min. For excluded volume correction (EVC) calibration an eight point 

dilution series from 0.4% to 1.7% (v/v) DMSO in SPR buffer was pipetted. The preparation of 

compound dilution varied depending on experiment design (fragment screening or Kd 

determination). In both cases, compound solubility in SPR buffer was previously tested in an NMR 

experiment (chapter 4.2.1). Compounds were prediluted in a solution of 90% d6-DMSO and 

10% D2O (v/v) to a concentration 100x higher than the final sample on the SPR source plate. In 

screening mode compounds were tested at the highest possible concentration, but at a maximum 

of 500 µM (pre-dilution 50 mM). For Kd determination twofold dilution series with 12 dilution 

points (up to the highest possible concentration but to a maximum of 500 µM) were pipetted into 

a 96-well plate. Finally, an SPR source plate (96-well Greiner bio-one PP-microplate) was prepared 

by further dilute the predilutions or dilution series 1:100 in SPR buffer. The plate was covered with 

a microplate foil, mixed at 600 rpm for 2 min at RT and centrifuged for 1 min at 200 × g. 

Additionally, compound control samples with a compound concentration around the Kd value were 

prepared. Since no potent binder was available for all three proteins, two controls were used: 

Compound 50 µM CS-18 for TcFPPS and 200 µM compound 97 at for TbFPPS and hFPPS. 

Further, 2 mL of SPR buffer with DMSO, referred to as start-up solution, and a fresh pipetted mix 

of SPR buffer with 0.9% DMSO, referred to as buffer, were prepared.  

A run started with 20 injections of the start-up solution, which were followed by 

24 injections of samples. A sample was injected for 30 s at a flow rate of 30 µL · min-1 and was 

followed by a dissociation period of 60 s or 180 s. The device ran in automation for approx. 18 h 



 

91 

per run. Analysis, curve fitting and Kd calculations were done in the Biacore T200 Evaluation 

Software. Base line drift and compound behaviour on the control channel were evaluated. Curves 

were fitted assuming a 1:1 stoichiometry using affinity analysis because the observed interactions 

mainly had very fast on and off rates. 
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5. Results 

5.1 Target enabling 

A prerequisite for biochemical and structural work is the production of pure, homogenous 

and monodisperse protein. Whilst expression and purification of TcFPPS as well as medium 

resolution crystal structures were described in the literature[162b, 170a, 211], the expression and 

purification of isotope-labelled TcFPPS, biotinylated TcFPPS, and high resolution structures have 

not been reported to date. This thesis describes the development of a robust, reproducible and 

highly ordered i.e. well diffracting crystal system that enables FBS by X-ray crystallography. In 

the following chapter the exploration for such a crystallization system and the development of a 

soaking protocol is described. Crystal structures of ligand-protein complexes that were obtained in 

the soaking experiments described here are discussed in detail in later chapters.  

5.1.1 Recombinant protein expression and purification 

E. coli BL21(DE3) cells were used as expression system for all proteins expressed and 

purified in this work. In order to improve protein-expression, the plasmids used were codon 

optimized for E. coli to increase expression rates (in-house plasmid design, Felix Freuler, Novartis 

Pharma AG, Basel). Protocols used for protein expression in high-density shaking cultures using 

auto-inducing medium were similar to the procedures described in literature[470]. TcFPPS and 

hFPPS were successfully expressed with a cleavable N-terminal His6-tag. After overnight growth 

in a fermentor OD600 values of around 70 were measured accounting for approx. 5.6 · 1010 cells 

per mL of medium. Harvesting yielded cell pellets of approx. 120 g (wet weight) that were purified 

in batch. In brief, mechanical cell lysis in a French Press was followed by protein purification 

applying IMAC, cleavage of the His6-tag with HRV 3C protease, reverse IMAC, and SEC. 

Purification yielded ≥95% pure, homogenous and monodisperse protein as indicated by 

SDS-PAGE gels and LC-MS (Figure 21). 
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Figure 21: Purification of TcFPPS. (A) SEC profile of approx. 60 mg TcFPPS (HiLoadTM SuperdexTM 16/60 S200, 

1 mL · min-1, 50 mM TRIS, pH 8.0, 200 mM NaCl, 2 mM TCEP · HCl). (B) Overview of purification 

steps on a SDS-PAGE gel (Coomassie blue stained): Lysate obtained after cell lysis, flow-through of 

IMAC, protein after purification by IMAC-reverse-IMAC, and after purification by SEC (final TcFPPS 

sample) were loaded. (C) Cut-out from the LC spectrum of the LC-MS run of the final TcFPPS sample.  

TcFPPS purification yielded 1.75 mg protein per gram of cell pellet corresponding to 

130 mg per L of medium. For hFPPS the yield of the purification was even higher. The expression 

of 13C15N-labelled TcFPPS and hFPPS in minimal medium led to a decrease in cell densities. After 

overnight cell growth, the cell density showed OD600 values of 13 accounting for 

approx. 1.04 · 1010 cells per mL of medium. The harvested cell pellets were approx. 10 times less 

in weight (wet weight) when compared to expression in auto-inducing medium. Nevertheless, the 

protein yields of the purifications per g of cell pellet were higher. All proteins were obtained at a 

purity ≥95%. LC-MS studies revealed high labelling rates of TcFPPS and hFPPS with 13C and 15N. 

Avi-tagged TcFPPS and hFPPS got completely biotinylated by in vivo biotinylation using E. coli 

cells that were expressing BirA (Table 13). In summary, pure protein was obtained in sufficient 

amounts for structural experiments and fragment screening campaigns. 

Table 13: List of purified proteins. 

Enzyme Yield per g pelleta 

(wet weight) 

Purityb MW calc. MW obs. 

[M+H]+ 

Labelling / 

biotinylation rate 

 (mg)   (%) (Da) (Da) (%) 

TcFPPS 1.8 ≥95 41313.21 41314.0 - 

13C15N-labelled TcFPPS 3.8 95 43657.61 43580.0 97.31 

Biotinylated avi-tagged TcFPPS 1.8 96 43350.48 43352.4 100 

hFPPS 2.2 ≥97 40686.56 40686.7 - 

13C15N-labelled hFPPS 2.9 99 43007.50 43288.6 96.92 

Biotinylated avi-tagged hFPPS 2.4 99 42723.34 42725.7 100 

a Yields varied slightly between batches. The values given are examples. 
b Purity is given according to LC. 
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5.1.2 High resolution crystals of T. cruzi FPPS – The power of MMS 

To find appropriate crystallization conditions for TcFPPS that result in high resolution 

crystal structures, commercial screening matrices were used in a shotgun approach. In the first 

round, seven screens were tested on 2-drop 96-well SwissCi/MRC plates, employing the 

sitting-drop vapour diffusion technique. Drops of a 3:2 (v/v) mixture of 6.81 mg · mL-1 TcFPPS in 

SEC buffer (50 mM TRIS, pH 8.0, 200 mM NaCl, 2 mM TCEP · HCl) and screening solution were 

pipetted. This resulted in 4.09 mg · mL-1 TcFPPS in the crystallization drop. After incubation of 

the plates at 20 °C for a period of 90 d, most crystallization drops showed precipitate and only a 

few conditions with crystals were identified (Table 14, Var A). These were found in wells G11 

and H1 from the Cryos Suite by QIAGEN, wells D5 and G9 of the Index HT by HAMPTON 

RESEARCH and well B4 from the SaltRX HT also by HAMPTON RESEARCH (Table 15 (A)). These 

conditions were selected for optimisation on 24-well VDX plates, employing the hanging-drop 

vapour diffusion technique. A direct transfer of parameters of the initial hits was tested and 

variables, such as precipitant concentration, salt concentration, and pH, were changed in small 

increments/decrements to identify conditions for optimal crystal growth. Whilst condition 

Index_D5 yielded salt crystals, condition Index_G9 was not reproducible. However, the other three 

conditions were further optimized. Crystals that grew in variations of condition SaltRX_B4 

remained small in size and all tested variations of condition Cryos Suite_G11 showed precipitation. 

Crystals from two variations of Cryos Suite_H1 looked promising, but were not monocrystalline 

and hence, they were selected for a third round of optimisation. This time a drop ratio of protein 

formulation to reservoir of 2:1 (v/v) was used. Thus, the initial protein concentration was increased 

to 4.54 mg · mL-1. This condition reliably yielded crystals that were first detected after 1 d – 2 d 

and were fully grown after 3 d – 4 d, however, the crystals grew as agglomerates ranging from 

200 µm – 500 µm. These agglomerates were subsequently used to prepare seed stocks for 

microseeding.  

A second round of condition screening was conducted to increase the scope of starting 

conditions. Four of the previously tested commercial screens were rescreened, using a protein 

formulation at approx. twice the original concentration to enhance protein concentration in the 

drop. In addition, a protein formulation in a low salt buffer was prepared using a spin filtration 

column to make use of the conditions at low ionic strength. This modification showed only slight 

improvements when compared to the first screening round (Table 14, Var B), and no additional 

conditions were found for further optimisation. In a third screening round, microseed matrix 

screening (MMS)[405b] was applied to overcome poor nucleation performance[364]. Crystallization 

drops were set up of protein formulation, reservoir solution and seed stock in a ratio of 3:2:1 (v/v) 

resulting in 6.31 mg · mL-1 TcFPPS. Applying MMS revealed many more wells with crystals when 

compared to the non-seeded trials. This finding is consistent with the observation of D’Arcy and 
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co-workers[471]. The number of wells with large amounts of TcFPPS microcrystals was even higher 

than the ones with crystals (Table 14, Var C), which shows that it is difficult to find the correct 

concentration of nuclei, when seeding is applied for the first time[364]. 

Table 14: Screening for crystallization conditions of TcFPPS. 

A) Results of visual inspection of the crystallization plates by visual inspection over a period of 90 d. 
B) No 1 to 7 are commercial condition screens, variations A to C conditions used for screening. 

Some crystals from the third screening round were chosen and their diffraction properties 

were tested at beamline X10SA of the Swiss Light Source (SLS), Villigen, Switzerland. X-ray data 

were collected at 100 K and diffraction patterns with diffraction limits ranging from 1.8 Å to 4.5 Å 

were obtained (Table 15 (B)). The best crystal grew in condition G7 of the Cryos Suite by QIAGEN, 

which was composed of 80 mM MES, pH 6.5, 8.5 mM ZnSO4, 19.42% (v/v) PEG MME 550, 

15% (v/v) glycerol (Figure 22 (B)). The condition was successfully transferred to 24-well plates 

applying the hanging drop vapour diffusion technique. Whilst the volumes were adjusted to the 

new set up, all other variables, such as buffer composition and ratios were kept constant. Hexagonal 

protein crystals appeared after 1 d – 2 d and grew to full size of approx. 150 µm × 50 µm × 50 µm 

after 3 d – 4 d (Figure 22 (C)). These crystals diffracted up to a resolution of 1.5 Å and therefore, 

this condition was selected for soaking experiments. Notably, crystals that were older than one 

week did not diffract and therefore, fresh apo crystals were used in all experiments. Thus, seed 

stocks and seed dilutions were regularly prepared. Seed stocks could be reproduced well and they 

A) Precipitation  

(%) 

Clear drop  

(%) 

Microcrystal 

(%) 

Crystal 

(%) 

Var 

No 
A B C A B C A B C A B C 

1 77 79 46 19 16 18 0 1 24 0 0 8 

2 46 43 26 46 32 20 0 4 28 4 7 16 

3 52 - - 42 - - 1 - - 1 - - 

4 27 - - 68 - - 0 - - 1 - - 

5 35 62 37 60 31 45 1 2 6 1 1 8 

6 38 - - 58 - - 0 - - 0 - - 

7 47 59 22 47 36 55 1 1 13 1 0 2 
 

B)             

No Commercial condition screen, 96 conditions Var      

1 AmSO4 Suite,  QIAGEN 
A protein in SEC buffer 

6.81 mg · mL-1, mixed 3:2 with reservoir 2 Cryos Suite,  QIAGEN 

3 JCSG+ Suite, QIAGEN 
B 

protein in low salt buffer 

12.62 mg · mL-1,  mix 3:2 with reservoir 
4 MBClass II Suite,  QIAGEN 

5 Index HT, HAMPTON RESEARCH 

C 

protein in low salt buffer 

12.62 mg · mL-1,  mix 3:2:1 with 

reservoir and seed stock 
6 PegRX HT,  HAMPTON RESEARCH 

7 SaltRx HT,  HAMPTON RESEARCH 
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could be stored at 4 °C for up to three months or at -80 °C for an even longer period (Table 16, 

Figure 22 (A)).The number of wells per plate that showed crystals particularly of a reasonable size 

were strongly dependent on the quality and concentration of the used seed dilution. With an 

increase in the number of crystals per drop the average size of the crystals decreased. Strikingly, 

crystal size did not influence diffraction quality. An apo TcFPPS structure with a diffraction limit 

of 1.47 Å and with good data collection and refinement statistics was deposited under PDB ID 

6R04. The TcFPPS apo crystal belonged to the hexagonal space group P6122 and had the unit-cell 

parameters of a = b = 57.65 Å, c = 397.59 Å and α = β = 90 ° and γ = 120 °. Assuming the 

presence of one protein chain per asymmetric unit, the specific volume VM, also known as 

Matthews coefficient was 2.30 Å3 · Da-1 and accordingly the solvent content was estimated to 47% 

(Appendix, Table 29).  

Table 15: Reservoir conditions that yielded TcFPPS crystals. 

Screena  Well Reservoir composition 

Cryos Suite G11 85 mM NaOAc · 3 H2O, pH 4.6, 170 mM (NH4)2SO4, 15% (v/v) glycerol,  

25.5% (w/v) PEG MME 2000 

Cryos Suite H1 80 mM NaOAc · 3 H2O, pH 4.6, 160 mM (NH4)2SO4, 20% (v/v) glycerol,  

20% (w/v) PEG 4000 

Index HT D5 100 mM NaOAc · 3 H2O, pH 4.5, 25% (w/v) PEG 3350 

Index HT G9 100 mM TRIS, pH 8.5, 200 mM NH4OAc, 25% (w/v) PEG 3350 

SaltRX HT B4 100 mM NaOAc · 3 H2O, pH 4.6, 180 mM ammonium citrate dibasic 

Screenb  Well Reservoir composition Diffraction limit 

(Å), comment 

AmSO4 Suite E7 0.1 M citric acid, pH 4.0, 1.6 M (NH4)2SO4 3.5, 4.0, ice rings 

AmSO4 Suite G3 0.1 M NaOAc · 3 H2O, pH 4.6, 1.0 M (NH4)2SO4 no diffraction 

AmSO4 Suite H6 2.2 M (NH4)2SO4, 20% (w/v) glycerol 2.0 

Cryos Suite G11 85 mM NaOAc · 3 H2O, pH 4.6, 170 mM (NH4)2SO4, 

15% (v/v) glycerol, 25.5% (w/v) PEG MME 2000 

2.2 

Cryos Suite F8 0.08 M sodium cacodylate, pH 6.5, 0.16 mM Mg(OAc)2 · 4 H2O, 

20% (v/v) glycerol, 16.0% (w/v) PEG 8000 

2.2, 2.7 

Cryos Suite G2 0.095 M HEPES sodium salt, pH 7.5, 0.19 M CaCl2 · 2 H2O,  

26.6% (v/v) PEG 400, 5% (v/v) glycerol 

salt 

Cryos Suite G7 0.085 M MES, pH 6.5, 0.0085 M ZnSO4,  

19.42% (v/v) PEG 550 MME, 15.0% (v/v) glycerol 

1.8 

Index HT G3 0.1 M Bis-Tris, pH 6.5, 0.2 M Li2SO4 · H2O, 25% (w/v) PEG 3350 2.9 

Index HT G4 0.1 M HEPES, pH 7.5, 0.2 M Li2SO4 · H2O, 25% (w/v) PEG 3350 3.0, 4.5, anisotropic 

a Conditions of the 1st round of screening (variation A, see Table 14). 
b Conditions of the 3rd round of screening (variation C, see Table 14). 

Soaking experiments were conducted with apo crystals grown in 24-well plates. Crystal 

stability in DMSO containing conditions was highly variable and in many cases diffraction quality 
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decreased when the DMSO concentration and/or soaking times were increased. Crystals started to 

show cracks perpendicular to the long axis when incubated with the compound. Thus, several 

soaking experiments were conducted and several data sets were collected to determine the highest 

tolerated DMSO concentration and the longest soaking time that did not compromise crystal 

diffraction quality. For most compounds a data set of a soaked crystal could be collected with a 

diffraction limit ranging from 1.5 Å – 3.4 Å. Among these the compound concentrations and 

soaking times differed widely from 5 mM – 75 mM and 5 min to overnight, respectively. To 

overcome the high variability in tolerance to DMSO and the resulting experimental error, apo 

crystals were grown in drops that contained 4.5% DMSO in the crystallization drop, therefore 

effectively priming the crystals for subsequent DMSO exposure. In the subsequent soaking 

experiment the same amount of DMSO was used (PDB ID 6R06, results described in 

chapter 5.3.2). 

Notwithstanding first successful soaking experiments that were set up manually, the 

variability in DMSO tolerance and the 24-well plate format were not suited for high-throughput 

crystallization experiments. Therefore, further optimization experiments were conducted on 2-drop 

96-well SwissCi/MRC plates applying the sitting-drop vapour diffusion technique. The 

concentration of buffer, salt and precipitant were changed in small increments/decrements to meet 

conditions for optimal crystal growth. The finally optimized reservoir solution contained 53% less 

ZnSO4, 36% less PEG MME 550 and 23% less glycerol (80 mM MES, pH 6.5, 4 mM ZnSO4, 

12.36% (v/v) PEG MME 550, 11.57% (v/v) glycerol). Experiments were conducted at a ratio of 

protein formulation, reservoir and seed dilution of 3:2:1 (v/v) in the drop (Figure 22 (D)). Later, 

also a drop ratio of 3:1:2 (v/v) was used. In both cases, crystals obtained could support soaks with 

up to 15% DMSO for up to 24 h, which is exceptionally high.  

 

 

Figure 22: TcFPPS crystals. (A) Seed crystals. (B) Hexagonal crystals with the best diffraction in the third round of 

condition screening, applying MMS (well G7, Cryos Suite, QIAGEN). (C) Apo crystals on 24-well plates 

applying hanging drop vapour diffusion. (D) Apo crystals on 2-drop 96-well plates (drop ratio 

3:2:1 (v/v)) applying sitting drop vapour diffusion. Scale and drop size are given in each picture.  

After this crystallization system was established at the Novartis laboratories, crystallization 

experiments were also transferred to other laboratories to conduct FBS by X-ray crystallography. 

At laboratories of beamline I04-1 at the Diamond Light Source in Harwell, UK, TcFPPS crystals 
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were grown in 3-drop 96-well SwissCi/MRC plates. Instead of 80 µL reservoir, which was used 

on 2-drop plates, drops were equilibrated against 30 µL reservoir. At laboratories of the HTX lab 

in Grenoble, France, CrystalDirect™ plates were used. In addition, drop volumes were downsized 

to 300 nL and a ratio of protein formulation to reservoir to seed dilution of 3:1:2 (v/v) was used in 

the drop setup. This resulted in 80% of wells with crystals per plate, which was a prerequisite to 

pass an evaluation phase and enter the screening phase. Consider Table 16 for final buffer 

conditions and plate setups. A comprehensive overview of all crystallization experiments 

conducted with TcFPPS are given in Table 30 in the Appendix. 

Table 16: Crystallization conditions of TcFPPS. 

Formulation/Buffera Composition 

TcFPPS in SEC buffer 

(Formulation I)  

6.81 mg · mL-1 TcFPPS in 50 mM TRIS, pH 8.0, 200 mM NaCl, 2 mM TCEP · HCl 

TcFPPS in low salt buffer 

(Formulation II) 

12.20 mg · mL-1 – 12.70 mg · mL-1 TcFPPS in 10 mM TRIS, pH 7.4, 25 mM NaCl,  

2 mM TCEP · HCl 

Reservoir 24-well seeds 80 mM NaOAc, pH 5.0, 160 mM (NH4)2SO4, 20% (w/v) PEG 4000, 20% (v/v) glycerol 

Reservoir 24-well 80 mM MES, pH 6.5, 8.5 mM ZnSO4, 19.42% (v/v) PEG MME 550, 15% (v/v) glycerol 

Reservoir 96-well 80 mM MES, pH 6.5, 4 mM ZnSO4, 12.36% (v/v) PEG MME 550, 11.57% (v/v) glycerol 

Seed buffer 80 mM NaOAc, pH 5.0, 160 mM (NH4)2SO4, 20% (v/v) PEG 4000, 20% (v/v) glycerol 

Usageb Well Plate Drop  Ratio Components 

   (µL) (v/v)  

Seed crystals 24 VDX 18 mm 1.5 2:1 Formulation I : reservoir 24-well seeds 

Apo crystals 24 VDX 18 mm 2.4 3:2:1 Formulation II : reservoir 24-well : seed dilution 

Apo crystals 96 2-, 3-drop SwissCi/MRC 0.6 3:2:1 Formulation II : reservoir 96-well : seed dilution 

Apo crystals 96 2-drop SwissCi/MRC 0.6 3:1:2 Formulation II : reservoir 96-well : seed dilution 

Apo crystals 96 CrystalDirect™ plates 0.3 3:1:2 Formulation II : reservoir 96-well : seed dilution 

a Protein formulations and buffers used in crystallization trials.  
b Set up of crystallization plates for different purposes and in different formats. 

5.1.3 Discussion 

When fragment binding is investigated by X-ray crystallography, a diffraction limit of at 

least 2.5 Å is highly desirable[397] as problems resulting from the weak diffraction power of small 

fragments and the often experienced partial ligand occupancies are exacerbated at low and medium 

resolution [392b]. Conversely, high resolution data were shown to make the identification of bound 

fragments easier and more reliable[384, 397, 440]. To date, 14 crystal structures of TcFPPS with an 

average diffraction limit of 2.36 Å were deposited in the PDB [162b, 170a, 211] (Appendix, Table 28). 

While this resolution is technically feasible for FBS, high-throughput screenings would highly 

benefit from a diffraction limit below 2.0 Å.  
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The developed crystallization system yielded TcFPPS crystals with high-quality 

diffraction. The reservoir buffer contains cryoprotectant that reliably prevents formation of 

ice rings and made treatment with an additional cryoprotectant prior to flash-freezing superfluous. 

Other benefits are easy, quick and gentle crystal handling, because crystals can be easily picked 

from the mother liquor. Furthermore, cryoprotectants dilute the mother liquor, which is 

disadvantageous for soaking experiments. While early soaking experiments followed the method 

of trial and error, further optimization in 2-drop 96-well SwissCi/MRC plates resulted in conditions 

that allowed soaking in up to 15% DMSO for up to 24 h. A further strength of the crystallization 

conditions found for TcFPPS was demonstrated by the use of a wide variety of plate formats and 

successful transfer to other laboratories. A weakness is the aging of the TcFPPS crystals, which 

resulted in a loss of diffraction power. This observation was already reported in the literature for 

TcFPPS crystals and was related to the decrease in reducing agent in the crystallization drop over 

time [162b].  

All TcFPPS crystals measured as part of this work belonged to the hexagonal space group 

P6122 (No. 178, International Tables for Crystallography[377b]) and showed unit-cell parameters of 

approx. a = b = 58 Å, c = 397 Å and α = β = 90 ° and γ = 120 °. The 14 previously published 

TcFPPS structures also belong to this space group and show similar cell dimensions [162b, 170a, 211] 

(Appendix, Table 28). The length of the unit cell axis is inversely-proportional to the distance 

between Bragg reflections. Hence, reflections along the c-axis are very close to each other. 

However, with the advent of Pilatus detectors (DECTRIS)[389, 439] that enable data collection at 

extremely fine oscillation angles[472], reflections were successfully resolved spatially and data 

processing and refinement resulted in 3D structures with good statistics. P6122 is a high symmetry 

space group, which allows fast collection of complete, highly redundant data sets. Collected 

data sets of TcFPPS crystals achieved 17- to 19-fold redundancy, ensuring good data quality. 

Remarkably, the crystals had a high diffraction limit in spite of a long c-axis of nearly 400 Å in 

length. An apo TcFPPS structure with a diffraction limit of 1.47 Å was deposited under PDB ID 

6R04. The crystal structure of TcFPPS in complex with compound MCN-1 (chapter 5.5.1) had 

even a diffraction limit of 1.28 Å, which is the highest diffraction limit ever obtained for a TcFPPS 

crystal. Notably, of the approx. 136.000 crystal structures deposited in the PDB there are only 

seven structures at a resolution of 1.5 Å or better with a least one unit cell axis longer than 390 Å 

(PDB ID 4UFQ (1.45 Å)[473], 4Y9V (0.90 Å), 3SGZ (1.35 Å)[474], 3PQH (1.30 Å)[475], 3QR7 

(0.94 Å)[475], 3GIP (1.50 Å)[476], 1OCY (1.50 Å)[477]) underscoring the superb crystal quality with 

small reflection spots and data collection setup of the presented experiments. Taken together, this 

work has identified a novel, reliable, highly reproducible, and well-diffracting crystallization 

system for TcFPPS that exhibits excellent properties for FBS and therefore paves the way for future 

studies aiming to identify TcFPPS binders. 
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5.2 Testing of allosteric inhibitors of human FPPS against 

T. cruzi FPPS – A phenylalanine as game changer? 

Allosteric inhibitors of a novel scaffold were identified for hFPPS[209a]. More recently, 

hFPPS was found to be inhibited by FPP, its own product[205]. Product inhibition is governed by 

FPP binding to the allosteric site, thereby keeping the enzyme in an open and inactive state[205]. 

This site was also described for FPPS of P. aeruginosa[209b] and P. falciparum[209c], but has not yet 

been described for TcFPPS. The only FPPS inhibitors used in the clinic are active site-directed 

nitrogen-containing bisphosphonates (N-BPs), which exhibit high affinity to bone mineral. Hence, 

they are ideal to treat bone diseases[213, 244]. Inhibiting FPPS with compounds of a novel scaffold 

and by a novel mechanism of action has high potential for the treatment of non-bone related 

diseases[209a]. Here, the allosteric region in TcFPPS is investigated by means of sequence analysis 

and structural superimposition of various orthologous FPPSs. In an attempt to reposition 

established inhibitors, eight known allosteric hFPPS inhibitors were tested for their binding affinity 

to TcFPPS.  

5.2.1 Results 

TcFPPS64-425 and hFPPS67-419 are homologous proteins that share 34.1% sequence identity 

and 50.1% sequence similarity as indicated by a global sequence alignment using the 

Needleman-Wunsch algorithm[478] (Appendix, Figure 62). A ClustalX multiple alignment of the 

amino acid sequence of TcFPPS and 200 homologues of other source organisms with a sequence 

identity ranging from 35% – 95% was conducted to generate a ConSurf model that illustrates the 

level of sequence conservation within the enzyme on a scale ranging from high variability (score 1) 

to high conservation (score 9)[479]. As expected, the generated ConSurf model shows that 

conservation is very high for residues directly involved in catalysis[162b]. Residues forming the 

allylic site, which includes the aspartate-rich motifs FARM and SARM, and residues forming the 

homoallylic site are highly conserved (score 9). However, the residues in the allosteric region are 

less conserved. The residues forming the pocket in hFPPS[168] differ from the corresponding 

residues in TcFPPS. Five of the corresponding residues are the same, two are similar and two differ. 

The polar residue Asn59 and the hydrophobic residue Ile348 of hFPPS are replaced by the aromatic 

residues Phe50 and the polar residue Thr357 in TcFPPS (Figure 23, Table 17 and Appendix, 

Figure 63).  

 



Results 

102 

 

Figure 23: ConSurf model of FPPS illustrating sequence variability. (A) 3D structure of TcFPPS coloured by 

sequence conservation. The model was generated using The ConSurf Server[479]. An alignment of the 

sequence of TcFPPS (PDB ID 6R04, this work) against the sequences of 200 homologues with an identity 

ranging from 35% to 95% was done using ClustalX[480]. (B) Allylic and homoallylic pocket of TcFPPS 

(PDB ID 6R04, this work). Superimposition with DMAPP, Mg2+ (PDB ID 1UBY[206]) and IPP 

(PDB ID 2F8Z[206]) (backbones not shown). (C) Allosteric region of TcFPPS. Superimposition with 

compound 93 (PDB ID 3N1W[209a], backbone not shown). (D) Surface of the pockets and cavities in the 

allosteric region in TcFPPS (PDB ID 6R04, this work). (E) Surface of the pockets and cavities in the 

allosteric region in hFPPS (PDB ID 3N1W[209a]). (F) Allosteric pocket in hFPPS with compound 93 

bound. H-bond is indicated with a dashed line. Distance is given in Å (PDB ID 3N1W[209a]).  

In open-state hFPPS, the allosteric binding site is a large pocket between helices C, G, H 

and J that is in close proximity next to the homoallylic site[168]. It was shown to accommodate 

ligands with up to three aromatic rings that keep the enzyme in the open-state[209a]. The crystal 

structure of hFPPS in complex with the benzothiophene 93, which was discovered by a fragment 

screening campaign using by NMR spectroscopy[205, 209a], shows that residue Asn59 forms a H-bond 

with the carboxyl function of the inhibitor. In crystal structures of unliganded hFPPS (PDB IDs 

2F7M[168], 4XQR, 4XQS and 4XQT),  the pocket does already exist and the conformation of Asn59 

is nearly the same when compared to structures with an allosteric inhibitor (e.g. PDB ID 

3N1W[209a]) or with bound FPP (PDB ID 5JA0[205]). In the apo crystal structure of TcFPPS such a 

wide pocket does not exist. The space between helices C and J is narrower and the residue Phe50 
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protrudes perpendicular from helix C into the protein (Figure 23 (C)). Hence, Phe50 separates the 

pocket into two parts, changing the size and properties of the pocket. Comparison of the surface 

representations of the pockets in TcFPPS and hFPPS show this difference (Figure 23 (D,E)). In 

addition, superimposition of the 3D structures of TcFPPS with hFPPS in complex with compound 

93 shows that residue Phe50 of TcFPPS clashes with the hFPPS ligand (Figure 23 (C)).  

Table 17: Comparison of the residues forming the allosteric pocket in TcFPPS and hFPPS. 

Protein Residues forming the allosteric pocket 

TcFPPS - Lys48 Phe50 Arg51 Thr54 Tyr213 Phe246 Val353 Lys356 Thr357 

hFPPS Tyr10 Lys57 Asn59 Arg60 Thr63 Phe206 Phe239 Leu344 Lys347 Ile348 

similaritya none | . | | : | : | . 

a Lines indicate identical residues, colons indicate similar residues, and points indicate mismatch. 

 

Superimposition of the apo structure obtained as part of this work with all 14 published 

TcFPPS crystal structures[162b, 170a, 211] shows that Phe50 was refined in different conformations, but 

all conformers have a very similar impact on the pocket (Figure 24). This is observed in structures 

with the natural substrate IPP bound, but also in apo structures or in structures with 

bisphosphonates bound in the allylic site. Superimposition of the apo structure of TcFPPS with 

hFPPS in complex with inhibitor 93 shows that the equivalent residue Asn59 is rotated by 112 ° 

and hence, points towards the protein surface (Figure 24 (D)). 

 

 

Figure 24:  TcFPPS crystal structures – focus on residue Phe50. (A) Overlay of all deposited X-ray structures (PDB 

IDs 1YHK (green, position indicated with an arrow with dashed line), 1YHL (cyan), 1YHM 

(light yellow), 3IBA (nude), 3ICK (dark violet), 3ICM (orange), 3ICN (green), 3ICZ (petrol), 3ID0 

(magenta), 4DWB (sand), 4DWG (violet), 4DXJ (grey), 4DZW (blue) and 4E1E (blue)[162b, 170a, 211]) and 

apo structure generated as part of this work (PDB ID 6R04, pink, position indicated by an arrow). 

(B) TcFPPS with IPP or DMAPP bound only (PDB IDs 1YHL, 1YHM, 3IBA, 3ICK, 3ICM, 3ICN, 3ICZ, 

4DWB, 4DXJ, 4DZW and 4E1E[162b, 170a, 211], colours as in (A)) (C) Apo structures 1YHK[162b] (green, 

position indicated with an arrow with dashed line) and 6R04 (pink, position indicated with an arrow), as 

well as 3ID0 (magenta) and 4DWG (violet) (no ligand in the homoallylic binding site) 

(D) Superimposition of apo structure (PDB ID 6R0A, pink) with crystal structure of hFPPS (PDB ID 

3N1W, yellow). 

Despite the prominent role of Phe50 in TcFPPS as residue blocking the allosteric pocket, 

this structural variant appears to be an exception. In fact, hFPPS (UniProt ID P14324), TbFPPS 
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(UniProt ID Q86C09) and a further 190 out of 200 homologues show an asparagine at this position 

while eight homologues show a deviating residue (Appendix, Figure 64). Tyrosine is found in the 

FPPS of three plant species, glutamine in FPPS of horses and bats and histidine in the FPPS of two 

monkey species. Thus, TcFPPS is not the only homologue with an aromatic side chain at this 

position, but the only one with a hydrophobic residue at this position that cannot contribute to 

H-bonding (Table 18).  

Table 18:  FPPSs from organism that show amino acids other than the conserved Asp. 

Position in alignmenta Uniprot ID Organism Species Residue 

192 Q8WS26 T. cruzi Trypanosoma cruzi Phe 

105 A0A140GWW0 rubber tree Hevea brasiliensis Tyr 

106 A0A140GWW3 manioc Manihot esculenta Tyr 

107 B9S9Y3 castor oil plant Ricinus communis Tyr 

173 K9K3N0 horse Equus caballus Gln 

174 S7PKH9 Brandt’s bat Myotis brandtii Gln 

175 and 176 F7GUQ3, B0CM97 white-tufted-ear marmoset Callithrix jacchus His 

177 F7FI27 rhesus macaque Macaca mulatta His 

a Consider Figure 64 in the Appendix for an excerpt from the alignment of all homologues. 

Eight known hFPPS allosteric inhibitors of different size and affinity were selected to test 

their binding affinity to TcFPPS by protein-observed NMR spectroscopy (Figure 25, Appendix, 

Table 31). Among them were the fragments 93, 94 and 95, the first allosteric inhibitors, which 

were discovered using FBS by NMR[209a]. An SBLD campaign resulted in the compounds 118 

and 119 that were further optimized to the lead compounds 97 and 98[209a]. The eighth compound 

selected, was quinoline 101, which was discovered by the same team[230].  

 

 

Figure 25: Chemical structures of a selection of allosteric inhibitors of hFPPS. IC50 values are given, according to 

Jahnke et al.[209a] and Marzinzik et al. [230]. 

Whilst the fragment hits exhibited IC50 values >500 µM against hFPPS, the lead 

compounds exhibited IC50 values in the nanomolar range. Crystal structures of hFPPS in complex 
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with compounds 93, 94, 95, 97 and 101 demonstrate their binding to the allosteric site (PDB IDs 

3N1W, 3N1V, 3N3L, 3N6K[209a] and 5DGN[230], respectively).  

 [13C1H]-SOFAST-HMQC experiments were conducted with samples of 1 mM compound 

and 30 µM 13C15N-labelled TcFPPS. All compounds showed chemical shift changes of weak to 

medium strength when compared to the DMSO control containing the equivalent amount of DMSO 

(Table 19, Figure 26). Lead 98 showed the strongest chemical shift changes (Figure 26 (E)) and 

fragment 95 showed the weakest chemical shift changes (Figure 26 (C)). Information about the 

binding site of the ligands could not be extracted from the NMR experiments, because the size of 

the homodimer did not allow any resonance assignments. For binding site determination X-ray 

crystallography was conducted (Table 19).  

Table 19: Testing allosteric inhibitors of hFPPS against TcFPPS. 2D NMR and soaking experiments. 

  2D NMR X-ray crystallography - soaking 

Compound MW Shifting signals Compound DMSO Time PDB ID 

 (Da) Number, strength (mM) (%)   

93 226.68 17, weak to medium 25 9 overnight 6R07 

94 240.71 19, medium - - - - 

95 206.20 few, weak - - - - 

97 269.26 24, medium to strong 5 – 50 4.5 – 13.5 30 min – overnight - 

98 336.31 30, strong 10 9 overnight - 

101 299.33 >25, strong - - - - 

118 242.30 25, medium to strong 25 9 overnight - 

119 288.09 14, medium to strong 25 9 overnight 6R08 

 

Apo TcFPPS crystals were grown using the hanging drop vapour diffusion technique on 

24-well VDX plates. Crystallization drops were a mix of 1.2 µL 12.36 mg · mL-1 TcFPPS (in 

10 mM TRIS, pH 7.4, 25 mM NaCl, 2 mM TCEP · HCl), 0.8 µL reservoir (80 mM MES, pH 6.5, 

8.5 mM ZnSO4, 19.42% (v/v) PEG MME 550, 15% (v/v) glycerol) and 0.4 µL TcFPPS micro seeds 

(in 80 mM NaOAc, pH 5.0, 160 mM (NH4)2SO4, 20% (v/v) PEG 400, 20% (v/v) glycerol). The 

drops were equilibrated against 500 µL reservoir. Soaking was conducted by transferring fresh 

crystals to a mixture of protein buffer, reservoir solution and seed buffer in a ratio of 3:2:1 (v/v), 

thus mimicking the mother liquor at the time point of the drop setup. Depending on the 

concentration of the compound stock solution, crystals were soaked with five of the hFPPS 

inhibitors at concentrations ranging from 5 mM to 50 mM, which corresponded to 4.5% – 13.5% 

DMSO. Diffraction data were collected at beamline X10SA of the Swiss Light Source, Villigen, 

Switzerland. Data sets from crystals soaked with all five compounds were successfully collected, 
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Figure 26: [13C1H]-SOFAST-HMQC spectra of hFPPS allosteric site binders tested on TcFPPS. (A) – (H) 

Compounds 93, 94, 95, 97, 98, 101, 118 and 119, respectively. Each image shows a cut-out from an 

overlay of the [13C1H]-SOFAST-HMQC spectrum of the DMSO control (red, DMSO concentration 

equivalent to the DMSO concentration in the sample) and the corresponding sample (blue, 1 mM 

compound and 30 µM protein in 25 mM BisTris, pH 6.5, 50 mM NaCl, 2 mM TCEP · HCl, 10% D2O, 

150 µM DSS) measured at 305 K.  
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but data processing and refinement revealed that only compounds 93 and 119 had successfully 

formed a complex with TcFPPS and showed binding to distinct cavities located at the protein 

surface. Data collection and refinement statistics were comparable to those of the TcFPPS 

apo structure (PDB ID 6R04) (chapter 5.1, Appendix, Table 29). The diffraction limit for the 

TcFPPS-93 complex and the TcFPPS-119 complex was 1.57 Å and 1.44 Å, respectively. 

Structural models were deposited in the PDB under PDB IDs 6R07 and 6R08. 

Two molecules of fragment 93 (93-1 and 93-2) bind per subunit of FPPS in a groove on 

the protein surface and at the dimer interface (Figure 27). The bottom of the cavity is formed by 

helix G and its sides are formed by helices F and H, and the connecting loop of helices A and B of 

subunit B. Ligand 93-1 was refined to an occupancy of 0.82 and is well resolved as the unbiased 

mFo – DFc difference electron density map contoured at 3.0 σ indicates (summary of density maps, 

Appendix, Figure 65 (A – C)). 

 

 

Figure 27: Crystal structure of TcFPPS in complex with compound 93 (PDB ID 6R07, this work). (A) Homodimer 

with bound ligands (front view, cartoon representation, subunit A coloured in gradient from blue to red 

from N-terminus to C-terminus, subunit B coloured in grey. Ligands shown in stick representation. 

Zn2+ ions are shown as green spheres. (B) Binding site of ligands 93-1 and 93-2. The final 2Fo – Fc 

electron density map is contoured at 1.0 σ and represented as liquorice coloured mesh. Waters are shown 

as red spheres. Interactions are shown as dashed line. Distances are given in Å. (C) 2D structure diagram 

of ligand 93-1 interacting with TcFPPS. Diagram was generated using PoseView[481]. (D) Binding site of 

ligands 93-1 and 93-2. Subunit A and B shown in surface representation.  
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The two main interactions of this ligand are π-stacking of the benzothiophene core with 

Phe210 in helix G and an H-bond of the carboxyl group with His240 in helix H. In addition, the 

carboxyl group forms a second H-bond to a water molecule that in turn interacts with two additional 

water molecules that form H-bonds with Glu236 and the carbonyl oxygen of Asn233. Hydrophobic 

interactions are formed with Lys158. The halogen substituent of ligand 93-1 is interacting in a 

multipolar interaction with the carboxyl group of ligand 93-1 (bond length 3.8 Å, angle 108 °). The 

sulphur atom of the benzothiophene core is 4.2 Å away from Tyr26 of subunit B and therefore too 

far for an H-bond interaction. Ligand 93-2 is a tentative interpretation of the initial difference map. 

It was refined to an occupancy of 0.59 and is less well defined than ligand 93-1 as seen in the 

mFo – DFc difference electron density map contoured at 3.0 σ (summary of density maps, 

Appendix, Figure 65 (A – C)). It shows hydrophobic interactions with residues Asp151, Leu155, 

Ala227 and Met232. The respective binding poses and the electron density map for both ligands 

are depicted in Figure 27. 

Intermediate 119 binds to a solvent exposed cleft formed by helices H, I and α3. Residues 

Phe256 and Gln318 form the opposite walls and Phe321 the bottom of the cavity (Figure 28).  

 

 

Figure 28: Crystal structure of TcFPPS in complex with compound 119 (PDB ID 6R08, this work). (A) Homodimer 

with bound ligands (top view, cartoon representation, subunit A coloured in gradient from blue 

(N-terminus) to red (C-terminus), subunit B coloured in grey). Ligands shown in stick representation. 

Zn2+ ions are shown as green spheres. (B) Binding site of ligand 119. The final 2Fo – Fc electron density 

map is contoured at 1.0 σ and represented as liquorice coloured mesh. Interactions are shown as dashed 

line. Distances are given in Å. (C) Binding site of ligand 119. Protein shown in surface representation. 

The aromatic core of 119 shows π-stacking with residue Phe256 of helix H and 

hydrophobic interactions with Val252 and Gln318 of helixes H and I, respectively. Gln318 also 

forms an H-bond to the indole nitrogen. A halogen bond with a length of 3.2 Å and an angle of 

159 ° is formed by the benzothiophene’s chlorine substituent in position seven and the carbonyl 

oxygen of Tyr312. At an occupancy of 0.61, the indole backbone with its chlorine substituents is 

fully encompassed by the contour at 3.0 σ of the mFo – DFc difference electron density map 

(summary of density maps, Appendix, Figure 65 (D – F)). The carboxymethyl group is not defined 
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in the map. This is likely a consequence of its solvent exposure and a concomitant lack of 

directional and spatially constraining interactions. The resulting higher flexibility is reflected in 

higher B-factors further supporting this hypothesis. The binding poses and electron density maps 

are depicted in Figure 28.  

The soaking experiments that resulted in the crystal structures of 93 and 119 were 

conducted as overnight soaks at 25 mM compound and 9% DMSO. Compound 118 was soaked 

under the same conditions and compound 97 even at a compound concentration of 50 mM. Only 

ligand 98 was soaked at a lower concentration of 10 mM (Table 19). Exact solubility of the 

compound in the crystallization buffer is not known, but at a protein concentration of 180 µM 

TcFPPS in the crystallization drop, the nominal compound concentration of 10 mM is estimated to 

a 56-fold excess.  

5.2.2 Discussion 

Structural comparisons between TcFPPS and hFPPS presented in this work revealed 

differences among residues in equivalent positions that form the allosteric site. Furthermore, a 

ConSurf model[479] based on an alignment of 200 FPPS homologues to TcFPPS revealed that the 

allosteric region is less conserved than the allylic and homoallylic binding site, which is surprising 

considering that all FPPSs are likely to be product inhibited as shown for hFPPS[209a]. A remarkable 

finding is that residue Phe50 in TcFPPS is an exception in an otherwise highly conserved position. 

Asparagine is the most common amino acid in this position and in rare cases histidine, tyrosine and 

glutamine were observed. The phenyl residue in this position is unique to TcFPPS and is the only 

residue that cannot contribute to H-bonding. In addition, on first glance it seems to block the 

allosteric pocket. The only homologues also showing an aromatic side chain at this positon are the 

FPPS of white-tufted-ear marmoset (UniProt ID F7GUQ3 and B0CM97) and rhesus macaque 

(UniProt ID F7FI27), which exhibit a histidine in this position and FPPS of rubber tree (UniProt 

ID A0A140GWW0), manioc (UniProt ID A0A140GWW3) and castor oil plant (UniProt ID 

B9S9Y3), which show a tyrosine in this position. Crystal structures of these FPPSs are not 

available, and it can only be speculated that the histidine residue has a similar effect on the pocket 

landscape as residue Phe50 in TcFPPS. Whether residue Phe50 undergoes conformational changes 

to give space for the accommodation of binders in this allosteric pocket has yet to be shown. A 

mutation at this position may affect product inhibition in TcFPPS by tacking impact on the binding 

at the FPP site. However, future structural and biochemical studies are required to determine these 

enzyme properties and their putative importance for the function of the protein. In case TcFPPS 

would be affected by product inhibition, it is likely that an induced-fit mechanism drives 

conformational rearrangement. In the case of FPP binding, this would also require a widening of 

the pocket, which is not necessarily important for inhibitors with a different chemical structure or 



Results 

110 

binding mode. In hFPPS the pocket is wide enough to accommodate FPP, but conformational 

transformation of residue Tyr10 is required to enable FPP binding[205].  

Therefore, it is not surprising that the known allosteric hFPPS inhibitors, 93 and 119, do 

not bind in the allosteric site of TcFPPS. Instead two distinct binding cavities were discovered on 

the protein surface that have not been described in the literature to date. They are remote from any 

other known binding site of TcFPPS and are not in any way related to the allosteric region. One of 

these sites is an elongated groove formed at the dimer interface that is large enough to 

accommodate two copies of fragment 93. The fragment showed chemical shift changes with weak 

to medium strength in protein-observed NMR, which is expected for weakly interacting fragments 

even if they are measured at high concentrations[292, 300]. Compound 119 binds to a small cleft 

formed by helices H, I and α3 and protrudes partially into the solvent. Only the aromatic moiety 

forms interactions with the protein and both carboxyl groups of 119 are not involved in any 

interactions. Thus, the compound is lacking binding affinity generated by H-bonds. In contrast, the 

crystal structure of hFPPS complex shows that H-bond formation of this carboxyl groups are key 

interactions of the compound that exhibits an IC50 of 6.0 µM against hFPPS[209a]. Whether binding 

of compounds 93 and 119 in these two cavities on the protein surface have an influence on the 

activity of TcFPPS has not been investigated in additional experiments but it seems unlikely given 

their binding position. 

It is unclear why the compounds 97, 98 and 118, were not visible in the X-ray structure 

although chemical shift changes in protein-observed NMR had been of similar count and strength. 

Lead 98 was soaked at a lower concentration (Table 19), which still equalled a nominal excess of 

56-fold over the protein concentration. Compounds 93 and 119 were already not fully occupied in 

the structural model, and potentially the protein-fragment interactions of compounds 97, 98 

and 118 are overall too weak, the koff rate is too high or the binding pose is not compatible with the 

geometry of TcFPPS in crystalline state. Although the current findings did not show 

conformational changes in the allosteric region to accommodate the aromatic allosteric inhibitors 

found for hFPPS, it does not necessarily mean that the targeted binding site is not accessible by 

other molecules. Binding can be conceivable with a well matching ligand or when following a 

co-crystallization experiments. It cannot be excluded that co-crystallization might have been 

superior to soaking experiments in the current case, in particular with regard to the enabling of the 

required conformational changes. This is exemplified in tRNA-guanine transglycosylase (TGT), 

where only co-crystallization disclosed the ligand-induced conformational changes[482]. However, 

on the basis of the aforementioned analysis of the allosteric region in TcFPPS and particularly due 

to the steric hindrance provoked by Phe50, it is dubious whether the known allosteric hFPPS 

inhibitors could bind to TcFPPS in a similar way and with a high affinity. As structural differences 

between pathogenic and human proteins can be exploited to engineer inhibitor selectivity[483], this 

work paves the way for future drug discovery campaigns. 
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5.3 FBS by NMR and hit follow up by X-ray crystallography 

Structural superimposition of the allosteric sites of hFPPS and TcFPPS revealed 

pronounced differences in their architecture and, unsurprisingly, hFPPS inhibitors did not show 

high affinity binding towards the TcFPPS allosteric site (chapter 5.2). FBS by NMR is a commonly 

used method for hit identification that probes all binding sites of a protein in solution[309b]. This 

method previously resulted in the identification of allosteric hFPPS inhibitors [209a] and was 

successfully applied also for TcFPPS in this work. Screening of two fragment libraries by 

ligand-observed NMR and validation by protein-observed NMR revealed 109 novel fragment hits 

for TcFPPS. 63 of them were subjected to X-ray crystallography, which revealed a novel active 

site-directed inhibitor of a non-BP scaffold, as well as a binder at the dimer interface. Counter 

screens against hFPPS were done in collaboration with Lena Muenzker, NIBR, Novartis 

Pharma AG, Basel, Switzerland. Furthermore, comparisons with TbFPPS, the enzyme investigated 

by Lena Muenzker, were made.  

5.3.1 NMR 

Ligand-observed NMR T1ρ[360b] and waterLOGSY[353b] experiments were conducted to 

screen 1336 fragments (in mixtures of 8 compounds) of the Novartis core library against TcFPPS 

(methods section 4.2.2). The minimum criterion for hit selection was identification of a positive 

signal in the waterLOGSY experiments[353b]. A further cut-off criterion was the signal decrease 

observed in T1ρ[360b] experiments. In total, 81 fragments were identified that showed a signal 

broadening ranging from >10% to <20% and 216 fragments showed signal broadening >20%. The 

latter were considered as initial fragment hits corresponding to a hit rate of 19%. In Figure 29, 

waterLOGSY and T1ρ spectra for the fragment hit CS-18 are depicted as an example. The hit list 

was reduced for validation in protein-observed NMR by comparing it against a list of fragment hits 

for TbFPPS, which was screened applying identical conditions. Comparison led to the selection of 

three sets of fragments: 47 fragment hits formed the intersection of the two hit lists, 46 were 

selective for TcFPPS and nine fragments were selective for TbFPPS. Rescreening these initial hits 

as singletons in ligand-observed NMR confirmed 65 fragment hits for TcFPPS. These were further 

subjected to protein-observed NMR experiments ([13C15N]-SOFAST-HMQC) for validation 

(methods section 4.2.3). 
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Figure 29: NMR experiments that led to hit identification of compound CS-18 and CS-33. (A) Positive signal of 

CS-18 in waterLOGSY. (B) Signal decrease of CS-18 by 50% in T1ρ. (C) Mixture of eight compounds 

showing two doublets for compound CS-18. (D) Protein-observed NMR (([13C15N]-SOFAST-HMQC) 

of fragment CS-33. Here at 700 µM compound concentration. Nevertheless, validation was conducted at 

1 mM compound concentration. 

The same experiment was performed with TbFPPS. In parallel, counter screening against 

hFPPS in ligand- and protein-observed NMR was conducted. This led to a validated hit list for both 

trypanosomal FPPSs and enabled comparison with affinities measured for hFPPS. The hit 

distribution is visualized in a Venn diagram in Figure 30 (A). Strikingly, TcFPPS has generally 

more binders (63 fragment hits) than TbFPPS (25 fragment hits) and TbFPPS has few unique hits 

when compared to TcFPPS. At this early stage of fragment screening, 27 hits are selective for 

trypanosomal FPPS as they did not show affinity to hFPPS. Notably, all experiments were carried 

out under identical experimental conditions. Publicly known fragments are listed in Table 32 and 

their chemical structures are depicted in Figure 66 in the Appendix.  
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Figure 30:  Core library screen and fluorine library screen reveal selectivity. (A) Core library screen 

(1336 compounds): Hits identified were validated in ligand-observed NMR after their identification in 

ligand-observed NMR (hit criteria: effect in T1ρ ≥20% for TcFPPS and hFPPS and >20% for TbFPPS, 

positive read out in waterLOGSY for all three FPPSs). (B) Fluorine library screen (482 compounds): 

Hits identified were validated in protein-observed NMR after successful testing as singletons on TcFPPS 

or TbFPPS and counter screen on hFPPS. Hit criteria for signal decrease in 19F CPMG NMR 

experiments: ≥40% for TcFPPS, ≥20% for TbFPPS and ≥30% hFPPS. 

Screening of the Novartis fluorine library (482 compounds in mixtures) also resulted in the 

identification of fragment hits for TcFPPS (methods section 4.2.2). Setting the cut-off criterion for 

the signal decrease observed in 19F CPMG NMR experiments to >40% resulted in 52 fragment hits 

for TcFPPS corresponding to a hit rate of 11%. Repeating the ligand-observed NMR experiments 

with these 52 hits as singletons and testing in protein-observed NMR experiments 

([13C15N]-SOFAST-HMQC) validated 46 fragment hits for TcFPPS (methods section 4.2.3). 

Comparisons with the hits identified for TbFPPS and counter screenings against hFPPS resulted in 

unique, pairwise and triple binders which are depicted in a Venn diagram in Figure 30 (B)). Whilst 

TcFPPS again shows a higher number of hits than TbFPPS, the number of fragment hits shared by 

all three FPPSs is smaller when compared to the screen of the core library. Once more, a large 

number of hits selectively binds to TcFPPS and half of the hits is selective for trypanosomal FPPS. 

Publicly known fragments are listed in Table 33 and their chemical structures are depicted in 

Figure 67 in the Appendix.  

These findings are remarkable, because TcFPPS and TbFPPS are close homologues with 

approx. 69.0% amino acid sequence identity and 83.2% similarity (Table 20 and Appendix, 

Figure 68). Alignment to human FPPS reveals an identity to TcFPPS and TbFPPS of 35.13% and 

37.13%, respectively (Table 20 and Appendix, Figure 69). Whilst the overall protein architecture 

is the same for all FPPS enzymes (see chapter 1.4), one and two insertional loops are found in 

TcFPPS and TbFPPS, respectively. In TcFPPS, this is an insertion loop of 11 residues, which is 

located between helices F and G and is formed by residues Lys179-Thr189 with a reverse turn at 

Pro182[162b, 210]. In TbFPPS, the loops are a 10-residue insertion and an 11-residue insertion formed 

by residues Ser65-Asp74 and Lys184-Thr194. The latter corresponds to the 11-residue insertion in 

TcFPPS[204] and is unique to trypanosomal FPPS[162b, 210] (Appendix, Figure 70). 
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Table 20: Sequence identity and similarity between TcFPPS, TbFPPS and hFPPS. 

Alignment parameters TcFPPS / TbFPPSa (%) Enzyme Identity matrixb (%) 

   TCFPPS TbFPPS hFPPS 

Identity 69.0 TcFPPS 100.00 70.36 35.28 

Similarity 83.2 TbFPPS 70.36 100.00 37.13 

Gaps 1.9 hFPPS 35.28 37.13 100.00 

a Alignment of TcFPPS and TbFPPS using Emboss Needle, applying the Needleman-Wunsch algorithm[478] 

  (Appendix, Figure 68). 
b Identity matrix of TcFPPS, TbFPPS and hFPPS, which was generated using Clustal (v.12.1) (Appendix, Figure 69). 

Another notable difference between the three enzymes is that TcFPPS and hFPPS are tight 

homodimers with a non-observable domain exchange rate in solution, while TbFPPS does exhibit 

domain exchange in solution (MS studies, Oscar Alba-Hernandez, oral communication). When 

comparing the chemical structures of the fragment hits, no overrepresentation of certain parent 

scaffolds or subset of functional groups could be observed (see Appendix, Figure 66 and 

Figure 67)).  

5.3.2 Follow up of validated fragment hits 

Follow up of the validated fragment hits of the Novartis core library included Kd estimation 

by NMR spectroscopy (methods section 4.2.4), as well as soaking and co-crystallisation 

experiments in order to elucidate their binding position (methods sections 4.3.5 and 4.3.6). 

[13C1H]-SOFAST-HMQC spectra of a titration series of five of the publicly known compounds that 

showed strong chemical shift changes in the protein-observed NMR were recorded. Chemical shift 

changes of selected spectra were plotted and the Kd values were calculated and averaged 

(Figure 31, Table 21). Kd values ranged from 61 µM to 1308 µM. Compound CS-18 showed the 

best Kd value and was also among the compounds with the largest decrease observed in T1ρ 

experiments (Appendix, Table 32). Based on the estimated Kd values and the heavy atom count 

(HAC), the ligand efficiencies (LE) were calculated (LE = RT · ln(Kd) · HAC-1)[430a] (Table 21). 

They ranged from 0.23 kcal · mol-1 to 0.44 kcal · mol-1 with fragments CS-22 and CS-18 exhibiting 

the strongest LE’s (0.44 kcal · mol-1 and 0.38 kcal · mol-1, respectively). 

 

 

Figure 31: Chemical structure of fragment hits listed in Table 21. 
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Table 21: Kd estimation by NMR spectroscopy and ligand efficiencies for five selected fragment hits.  

Compound MW Concentration 

range 

Titration 

points 

Signals 

considered 

Mean Kd 

value 

HAC Ligand 

efficiency  

 (Da) (µM)  (count) (count) (µM) (count) (kcal · mol-1) 

CS-13 220.66 30 – 4000 6 5 611 15 0.29 

CS-17 261.76 51.2 – 5000 5 2 1053 18 0.23 

CS-18 198.27 25 – 2000 7 7 61 15 0.38 

CS-20 192.24 51.2 – 5000 6 6 1805 13 0.29 

CS-22 122.17 51.2 – 5000 6 4 1308 9 0.44 

 

Information about the binding site of the ligands could not be extracted from the 

protein-observed NMR experiments, because resonance assignment was not available. Therefore, 

X-ray crystallography was conducted for binding site determination. All 63 validated fragment hits 

of the core library screen were subjected to co-crystallization experiments (methods section 4.3.6). 

Experiments were started with the fragment hits unique for TcFPPS at a compound concentration 

of 2.6 mM (2.5% DMSO). In crystallization trials with the fragment hits overlapping for TcFPPS, 

TbFPPS and hFPPS, or overlapping between TcFPPS and hFPPS, a compound concentration of 

5.2 mM (5% DMSO) was chosen. Although crystals grew in the presence of most compounds and 

data sets of crystals co-crystallized with 58 of the compounds exposed could be successfully 

collected, data processing and visual inspection of the resulting electron density maps did not reveal 

protein-ligand complexes.  

However, soaking experiments were more successful. The set-up of a soaking protocol 

was previously described in chapter 5.1. Soaking experiments were started with the compounds 

listed in Table 19 and further extended to 40 validated fragment hits. Fragment CS-18, termed 

JNE from hereon, formed a protein-ligand complex that was observed in the mFo – DFc difference 

electron density map (summary of density maps, Appendix, Figure 71 (A-C)). Data processing 

and refinement resulted in a 3D structure with good data collection and refinement statistics that 

were comparable to those of the TcFPPS apo structure (PDB ID 6R04) (chapter 5.1, Appendix, 

Table 29). The ligand occupancy was refined to 0.86 and a structural model of the 

TcFPPS-JNE complex with a diffraction limit of 1.57 Å was deposited under PDB ID 6R05 

(Appendix, Table 29). Fragment JNE binds at the dimer interface and thus, it forms interactions 

with subunit A and subunit B of the protein (Figure 32 (A))). As for all previously described 

TcFPPS crystal structures in this work, the two TcFPPS monomers are related by crystallographic 

two-fold symmetry. A large dimer interface is formed along the twofold-symmetry axis 

corresponding to the tightly coupled physiological homodimer[211]. The key interactions formed by 

the nitrogen atoms of fragment JNE are H-bonds with residue Glu183 of subunit B, which is 

located in the insertion loop. In addition, the ligand shows π-stacking with residue Phe116 and 
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van der Waals interactions with residues Pro111 and Lys110. These two residues are located in the 

loop turn D-E of subunit A (Figure 32 (B) – (D)). Despite the interesting location of the binding 

site at the dimer interface, the site is otherwise exposed to the solvent and is far from the active 

centre of TcFPPS. Testing compound JNE on hFPPS in protein-observed NMR revealed that JNE 

also interacts with hFPPS, but chemical shift changes were minimal and an estimation of the Kd 

value was not possible. This is in agreement with structural features of hFPPS, which lacks the 

insertion loop and therefore has no equivalent binding site. 

 

 

Figure 32: Crystal structure of TcFPPS in complex with JNE (CS-18) (PDB ID 6R05, this work). (A) Homodimer 

with bound ligands (top view, cartoon representation, subunit A coloured in gradient from the N-terminus 

(blue) to the C-terminus (red), subunit B coloured in grey, ligands shown in stick representation coloured 

in pink. Zn2+ ions are shown as green spheres). (B) Binding site of ligand JNE. Final 2Fo – Fc electron 

density map is contoured at 1.0 σ and represented as liquorice coloured mesh. Residues forming the 

binding site are represented as sticks. Interactions are shown as black coloured dashed line. Distances are 

given in Å. (C) 2D structure diagram of ligand JNE interacting with TcFPPS. Diagram was generated 

using PoseView[481]. (D) Binding site of ligands JNE. Monomer A and B shown in surface representation. 

Final 2Fo – Fc electron density map is contoured at 1.0 σ and represented as liquorice coloured mesh. 

Since no further protein-ligand complexes were found by classical data processing and 

visual inspection of the initial mFo – DFc and 2mFo – DFc density maps, the data sets were 

additionally analysed by Pan-Dataset Density Analysis (PanDDA). This approach uses statistical 

methods to identify binding events in a batch of data sets rather than analysing the reflections of 

single data sets. The developer of PanDDA described protein-ligand complexes as a 

crystallographic superposition of a ground state (apo form) and a bound-state (any kind of 
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additional binding event). These two states exist at the same time on a pro rata basis. Thus, the 

measured electron density is only fully explained by an ensemble model. When running the 

PanDDA software, the first analysis step is to compute a background electron density estimate as 

a mean of ground-state measurements based on apo structures and data sets without binding 

events[393]. In a second step, significant changes from the mean are identified by a weighted 

subtraction of the background from each electron density map. The resulting partial-difference map 

is termed event map and corresponds to the bound fraction in the crystal, i.e. a ligand binding event. 

As PanDDA reveals regions of an individual data set that represent a deviation from the mean, it 

allows sensitive detection of binding sites[398]. 

Electron-density background subtraction was conducted using 302 TcFPPS data sets of 

apo crystals, co-crystals and soaked crystals (data set parameters and quality, Appendix, 

Figure 72). Analysis identified fragment hit CS-33 as an active site-directed binder that was 

overlooked by classical data processing and manual inspection of the electron density maps 

(chemical structure, Figure 33 (I)). Whilst partial occupancy and presence of two rotamers of the 

side chain of residue Tyr94 led to obscured classical electron density maps, PanDDA maps clearly 

show the binding event of CS-33, which is termed JMN from hereon. In the crystal structure of 

apo TcFPPS (PDB ID 6R04), which was elucidated as part of this work, the side chain of Tyr94 is 

present in two rotamers at nearly equal occupancies (Figure 33 (A)), however, JMN can only bind 

when Tyr94 is present as rotamer B. 

Conformational changes of Tyr94 have previously been reported upon binding of N-BPs 

with longer alkyl-chain substituents[170a, 211]. The initial 2mFo – DFc electron density map shows 

overlapping density for rotamer A of Tyr94 with the ligand and full coverage of the amino acid 

and the ligand when contoured at 0.5 σ and 1.0 σ (Figure 33 (B, C)). When contouring the initial 

2mFo – DFc electron density map at 1.5 σ the ligand is poorly defined (Figure 33 (D)) and also in 

the mFo – DFc difference electron density map contoured at 3.0 σ the ligand is not fully defined 

(Figure 33 (G)). When looking at the PanDDA event map, which represents the bound fraction, 

and at the map of the ground state, the binding event can be easily identified (Figure 33 (E, F)). 

Nevertheless, the structural model could be refined by splitting Tyr94 in rotamer A and B and 

accompanying the latter with the ligand to avoid clashes when running a refinement 

(Figure 33 (H)). The ligand occupancy was refined to 0.63 and a structural model of the 

TcFPPS-JME complex with a diffraction limit of 1.56 Å was deposited under PDB ID 6R06. Data 

collection and refinement statistics are given in Table 29 in the Appendix. 
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Figure 33: PanDDA event maps led to identification of fragment binder JMN (CS-33) (PDB ID 6R06, this work). 
(A) Crystal structure of apo TcFPPS (PDB ID 6R04). Residue Tyr94 depicted in its final 2Fo – Fc electron 

density map contoured at 1.0 σ. Occupancies are indicated. (B) – (D) Fragment JMN and residue Tyr94 

depicted in the inital 2mFo – DFc electron density map contoured at 0.5 σ, 1.0 σ and 1.5 σ, respectively. 

Occupancies are indicated. (E) Event map contoured at a level equivalent to 2.0 σ reveals that Tyr94 is 

only found in one conformation in the bound state. (F) In the ground state map only rotamer A of Tyr94 

is defined. (G) Fragment JMN and residue Tyr94 depicted in the initial mFo – DFc electron density map 

(green mesh) contoured at 3.0 σ. (H) Fragment JMN and residue Tyr94 depicted in the final 2Fo – Fc 

electron density map contoured at 0.5 σ, 1.0 σ and 1.5 σ, respectively. Occupancies are indicated. 

(I) Chemical structure of JMN. 

Ligand JMN binds to the allylic binding site of TcFPPS (Figure 34), which is the binding 

site of its cognate substrate DMAPP (see chapter 1.4). The pocket is located between helix D and F, 

is terminated by the dimer interface (helix E of subunit B) (Figure 34 (C, D)) and opens up towards 

the homoallylic (IPP) binding site (Figure 34 (E)). The base of the pocket is formed by the 

aromatic and polar residues Tyr94, Thr163 and Tyr211. The sides of the pocket are formed by the 

backbone of Tyr94 and Thr163, residues Leu95, Lys 207 and Thr208 and Ile129 of the opposing 

dimer mate. The top of the binding site is lined by residues Gln167, Asp98 and Asp250, the latter 

of which coordinate Zn2+ ions (Figure 34 (B)). Fragment JMN shows π-stacking with Tyr94, 

H-bonding with Tyr211 and van der Waals interactions with residues Thr163 and Thr208 as well 

as with Ile129 of the opposing dimer mate (Figure 34 (B)). A sulphate ion was modelled in the 

coordination sphere of one of the Zn2+ ions (Zn2), but the angle for H-bonding with the ligand is 
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not ideal. Superimposition of TcFPPS-JMN and TcFPPS in complex with N-BPs (PDB ID 

3IBA[211], 4DWG[170a] and 3ICM[211]) shows that JMN occupies the same space as the side chains 

of the N-BPs (Figure 34 (F)). 

 

 

Figure 34: Crystal structure of TcFPPS in complex with JMN (PDB ID 6R06, this work). (A) Homodimer with 

bound ligands (top view, cartoon representation, subunit A coloured in gradient from the N-terminus 

(blue) to the C-terminus (red), subunit B coloured in grey. Ligands shown in stick representation coloured 

in pink. Zn2+ ions are shown as green spheres. (B) Ligand JMN binding in the active site. Residues 

forming the binding site are represented as sticks. Interactions are shown as black coloured dashed line. 

Distances are given in Å. (C) – (E) JMN in its binding pocket (F) Superimposition of TcFPPS in complex 

with JMN, ZOL (PDB ID 3IBA[211]) and N-BPs with longer alkyl side chains (PDB IDs 4DWG[170a] and 

3ICM[211]). 

5.3.3 Discussion 

Fragment screening by NMR successfully identified TcFPPS binders based on a novel 

parent scaffold. The results of the NMR screen was different for the two trypanosomal FPPSs, 

TcFPPS and TbFPPS. Notably, hit rates for TcFPPS were higher than for TbFPPS, however, an 

underlying structural explanation for this observation is not apparent. Furthermore, the hit lists 

differed and counter screening indicated TcFPPS selectivity at an early stage. Therefore, binders 

that were either selective for TcFPPS or TbFPPS were identified. Nevertheless, hits that are not 

selective at the stage of fragment screening can potentially be optimized into selective binders by 
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medicinal chemistry efforts, exploiting the differences in local arrangement and composition of 

residues in both proteins.  

Although a large number of compounds was screened, subsequent selection and validation 

led to a moderate number of TcFPPS fragment hits. Subsequent crystallization experiments 

resulted only in two crystal structures. The selection criteria employed for the preselection of 

fragments for testing in protein-observed NMR might have had an impact on this outcome. In this 

work, comparison with the hit lists of TbFPPS prioritized hits that were either selective for one of 

the trypanosomal FPPSs or formed their intersection, which is not congruent with the hits that 

showed the strongest effects in T1ρ experiments. Focusing on these hits might have resulted in a 

higher hit rate in crystallisation experiments. Furthermore, it cannot be ruled out that experimental 

soaking conditions were incompatible with at least a subset of compound-protein interactions, 

e.g. the protonation state of the compounds might have changed due to differences in the pH. 

However, in the past, NMR, SPR, and/or DSF have proven to be valuable tools for fragment hit 

selection and prioritization for subsequent X-ray crystallography experiments[378, 384a]. However, 

biophysical screening methods were shown to not reliably predict the majority of X-ray binders. 

Vice versa, X-ray crystallography does not necessarily provide 3D structures of proteins in 

complex with a compound selected by other biophysical methods, although it is a highly sensitive 

method[315a]. Schiebel et al.[384] showed that it is a reliable technique for fragments characterized 

even by low affinities and advocated X-ray crystallography as primary screening method. This 

study demonstrates that sophisticated software tools, such as PanDDA, help to identify weakly 

bound fragment hits that are difficult to identify by manual data analysis. This tools will also help 

unexperienced crystallographers to reliably identify hits. 

Based on its binding mode, fragment JNE is unlikely to interfere with enzymatic function 

of TcFPPS, however, additional experiments to determine this hypothesis are warranted. The 

crystal structure of TcFPPS in complex with JMN gives new impulses for the discovery of novel 

active site TcFPPS inhibitors, although more new crystal structures would be advantageous to start 

a structure-based lead discovery campaign. 
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5.4 FBS by X-ray crystallography – The power of PanDDA 

X-ray crystallography is a very sensitive method[315a] and was shown to be suitable as hit 

identification tool in fragment screening[304, 384a, 385]. Therefore, FBS of TcFPPS by X-ray 

crystallography was used to discover novel ligands and identify potential allosteric ligand-binding 

sites within the enzyme. Two of such screening campaigns were conducted: The first was run in 

collaboration with Elliot Nelson, PhD student of Frank von Delft, at the XChem facility, which is 

located at the Diamond Light Source (DLS), Harwell, UK[400]. The second campaign was run in 

the HTX lab of Jose Marquez at the EMBL outstation and at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France. Remote access to this facility was funded under the 

infrastructure for NMR, EM and X-rays for translational Research (iNEXT) grant agreement 

number ID 653706 (project number 2847). Both campaigns identified fragment hits in various 

binding sites spread over the entire protein. The key findings were 10 fragment binders in the active 

site, 10 fragment binders in the allosteric site and a fragment binding at a novel binding site, which 

is in close proximity to the active site. 

5.4.1 Results of the XChem campaign 

All experiments, including crystallization trials, soaking experiments and data collection 

were conducted on site. Therefore, all necessary materials, including the protein formulation, seed 

solution, buffers and other reagents were shipped to the UK. Crystallization experiments and later 

large-scale protein-ligand structure determination were assisted by the XChemExplorer graphical 

workflow tool (XCE)[392a]. Crystal plates were set up according to the protocol developed at 

Novartis laboratories in Basel, Switzerland (methods section 4.4 and chapter 5.1).  

685 apo TcFPPS crystals were individually soaked with 406 compounds from the 

Diamond-SGC poised library (DSPL) and 279 compounds from the Keymical fragments library 

(KFL) by EDELRIS. They were soaked for a mean soaking time of 3 h 32 min at 74.5 mM 

(15% DMSO) and 37.25 mM (15% DMSO), respectively. Whilst the DSPL contains fragments 

that are poised for straight forward follow up by chemical elaboration[336], the KFL is a 3D-enriched 

fragment library that contains natural product-like compounds[435]. 666 crystals showed diffraction 

after the soaking procedure and diffraction data were recorded at beamline I04-1 at the DLS. 

573 crystals yielded diffraction data that could be successfully processed (Table 22). In addition, 

eight data sets of apo TcFPPS crystals and 19 data sets of TcFPPS crystals soaked with varying 

amounts of DMSO were successfully processed, resulting in a total number of 600 data sets suited 

for analysis (Table 22). All crystals belonged to the hexagonal space group P6122, and had unit-cell 

parameters of approx. a = b = 58 Å, c = 396 Å, and α = β = 90 ° and γ = 120 ° with one TcFPPS 

monomer per asymmetric unit. The diffraction limit ranged from 1.40 Å to 3.26 Å with an average 



Results 

122 

diffraction limit of 1.77 Å. 14% of crystals had a diffraction limit ≤1.5 Å and 58% had a diffraction 

limit ≤1.7 Å. This large number of data sets, their crystallographic homogeneity and good average 

diffraction limit enabled statistical data analysis by Pan-Dataset Density Analysis (PanDDA)[393] 

(Table 22, Appendix, Figure 73). The concept of this data analysis tool was previously described 

in chapter 5.3.2. 

Table 22: Key parameters of the data sets suited for analysis. 

Variable Value 

Space group P6122 (No. 178, International Tables for Crystallography[377b]) 

Mean unit cell axis a / b / c (Å) 57.82 (0.10) / 57.82 (0.10) / 395.96 (0.76) 

Range of diffraction limit (Å) 1.40 – 3.26  

Mean diffraction limit (SD) (Å) 1.77 (0.25) 

Mean Rfree / Rwork (SD) 0.261 (0.024) / 0.216 (0.019) 

Mean (Rfree - Rwork) (SD) 0.045 (0.013) 

 

A ground-state model was built based on 60 data sets that did not indicate any additional 

binding events. Running PanDDA for all 600 data sets with this ground-state model identified 

297 putative binding events that were spread of the whole protein (Figure 35 (A)) and distributed 

over 208 data sets due to multiple binding events in some of the data sets. The events are clustered 

arbitrarily into 16 non-overlapping sites (S1 – S16) (Figure 35 (A) and (B)). Based on visual 

inspection of the events, 85 ligands were manually modelled. Iterative rounds of model building 

and refinement confirmed 54 ligands that were modelled in 51 events. As 12 structures contain 

multiply bound copies of the same fragments, the number of ligands modelled corresponds to 

35 unique fragment hits that are spread over nine binding sites (Figure 35 (B)). Ligand occupancy 

ranged from 0.53 to 1.00 with an average occupancy of 0.73 (Appendix, Table 34), which is 

comparably high, as PanDDA was shown to identify ligands to a minimal occupancy of 0.26[398]. 

The diffraction limit of the 35 refined structural models ranged from 1.41 Å to 2.20 Å with a mean 

diffraction limit of 1.64 Å, hence showing a slightly better mean diffraction limit when compared 

to all data sets (1.77 Å) (Figure 35 (C)). PanDDA identified events in nearly all less resolved 

structures, none of which led to modellable structures.  

The key finding of the fragment screen are the ligands, which are bound to sites that are 

buried inside the protein. Five fragment hits were identified in the allosteric region of TcFPPS, 

which was previously described for TcFPPS (chapter 5.2). Additionally, one ligand in a small and 

novel cavity was discovered. The event was clustered together with the allosteric site binders. For 

clarity this binding site was renamed and referred to as binding site SX from hereon. Furthermore, 

seven ligands with non-BP scaffolds were identified in the active site of TcFPPS. An event on the 

protein surface was clustered together with the active site binders. For clarity this binding site was 
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renamed and referred to as binding site SY from here onwards. All remaining sites, S1, S2, S4, S5, 

S11, S12 and S16, are cavities on the surface and further descriptions will focus on the ligands 

bound to the active site and to the allosteric region. Interestingly, DSPL fragments account for a 

100% of fragments buried by the protein, as well as the majority of all hits (83%). The overall hit 

rate for the DSPL and the KFL equals 8.8% and 2.5%, respectively. 

 

 

Figure 35: Data analysis with PanDDA revealed 35 fragment hits. (A) Binding events clustered into 

16 non-overlapping binding sites (front view (left), back view (right)). (B) Histogram of arbitrary binding 

sites with events. Superimposition of events: 297 in total, 85 fitted ligands and 51 part of a structural 

model. (C) Histogram of X-ray diffraction limit of soaked TcFPPS crystals. Superimposition of data sets: 

600 analysed, 206 with an event, and 35 structural models.  

An overview of all 35 crystal structures is depicted in Figure 36. The chemical structures 

of all ligands, their MW, occupancy and binding position in the crystal structure, coverage in the 

final 2mFo – DFc electron density maps and residual mFo – DFc difference electron density maps 

and the PanDDA event map that lead to their identification are depicted in Figure 74 in the 

Appendix. The bound-state structural models of the TcFPPS-ligand complexes (PDB IDs 

5QPD – Z, 5QQ0 – 9, 5QQA – B) and a TcFPPS ground-state model (PDB ID 5QQC) containing 

all structure features of the unbound models were deposited in the PDB. Data accompanying the 

PDB deposition, such as log files of the data processing and PanDDA event maps were uploaded 

to the open archive Zenodo (DOI 10.5281/zenodo.2649077). Data collection and refinement 

statistics are given in Table 35 in the Appendix. A summary of density maps for the ligands 
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discussed in detail in this chapter, including initial mFo – DFc difference electron density maps and 

2mFo – DFc electron density maps, are given in Figure 75 in the Appendix.  

 

 

Figure 36: Overview of crystal structures obtained by FBS by X-ray crystallography at the XChem facility (PDB 

IDs 5QPD – Z, 5QQ0 – 9, 5QQA – B, this work). (A) Overview of ligands binding across TcFPPS. Front 

view (left) and back view (right). Binding sites are indicated. (B) Fragment cluster at the allosteric site. 

(C) Site SX (renamed, hit was clustered as allosteric site binder). (D) Fragment cluster at the active site. 

(E) – (I) Fragment binding sites distal from the active and allosteric site: S1, S2, S4, S5 and S12, 

respectively. Number of hits and percentage of hits at that site are indicated.  

Allosteric site binders  

 

To identify allosteric binders, the area between helices C, G, H and J and the B-C and H-I 

loop was examined and the five fragments, LV4, 4YV, M0J, LT7 and GQM, were observed 

(Figure 37, Appendix, Figure 74 (1 – 5) and summary of density maps Figure 75 (1 – 5)). 
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Figure 37: Chemical structure of the fragment hits identified for the allosteric region. Compounds are derived from 

the DSPL. MW in Da, ligand occupancy, 1-BDC and PDB ID are indicated.  

Three of the fragments, LV4, AYV and M0J, have similar chemical structures and have 

highly overlapping binding positions. Their key interaction is π-stacking with residue Phe50 

(Figure 38 (A) – (D)) that is found in a conformation that blocks the allosteric pocket by steric 

hindrance (previously described in chapter 5.2). The three ligands bind in close proximity to the 

binding site of IPP, a natural substrate of FPPS. In the absence of IPP, a sulphate ion is bound there, 

which forms H-bonds with ligands LV4, AYV and M0J. 

 

 

Figure 38:  Crystal structures of allosteric site binders of TcFPPS. (A) Crystal structures of TcFPPS in complex with 

LV4, 4YV and M0J (PDB IDs 5QPP, 5QPZ and 5QPL, this work). (B) Ligand LV4. (C) Ligand AYV. 

(D) Ligand M0J. (E) Ligand LT7 (PDB ID 5QPD, this work). (F) Ligand GQM (PDB ID 5QPI, this 

work). (G) Ligands LV4, 4YV, M0J, LT7 and GQM. (H) Close up of phenyl side-chain of Phe50 in all 

five crystal structures. In all images the protein backbone is shown in grey coloured cartoon 

representation. Compounds and residue Phe50 are highlighted in colours. 

The two other ligands, LT7 and GQM, caused an induced fit of residue Phe50 that led to 

the opening of the allosteric pocket and enabled ligand binding (Figure 38 (E) and (F)). The phenyl 

moiety of Phe50 is rotated by 108 ° and 125 ° upon binding of LT7 and GQM, respectively 

(Figure 38 (H)). This is the first demonstration that conformational changes of the side chain of 
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Phe50 can take place and an allosteric site is formed, which corresponds to the allosteric site 

observed in hFPPS[205, 209a]. Superimposition of all five structures shows the difference between the 

two types of binding events in the allosteric region (Figure 38 (G)). Depicting LT7 and GQM in 

their binding sites shows that the allosteric pocket formed in TcFPPS is a narrow channel that opens 

widely towards the catalytic cleft of the protein. The base of the pocket is formed by residues Thr54 

and Val353 and the sites are formed by residues Phe50, Arg51, Thr212, Tyr213, Phe246 and 

Lys356 (Figure 39 (A) – (C)). The key interactions formed by fragment LT7 is π-stacking of its 

phenyl and oxodiazole moiety with residues Phe50 and Tyr213 (Figure 39 (D)). 

 

 

Figure 39: Allosteric binding site and allosteric binders LT7 and GQM of TcFPPS. (A) Allosteric pocket with LT7 

and GQM bound (PDB IDs 5QPD and 5QPI, this work). (B) Binding site of LT7. (C) Binding site of 

GQM. In all images TcFPPS is shown as grey coloured cartoon representation. Compounds and residue 

Phe50 are highlighted in green and yellow in the comples of TcFPPS-LT7 and TcFPPS-GQM, 

respectively. (D) and (E) 2D structure diagram of ligands LT7 and GQM, respectively, interacting with 

TcFPPS. Diagram was generated using PoseView[481]. 

Ligand GQM forms an H-bond with residue Thr54. In addition, its phenol and pyrazole 

moiety show π-stacking with residue Phe50 and Tyr213, respectively (Figure 39 (E)). LT7 and 

GQM were refined with occupancies of 0.60 and 0.54, showing that conformational changes and 

ligand binding did not take place in all protein copies in the crystal. For both ligands, coverage in 

the final 2Fo – Fc map was weaker when compared to the event map and it is also weaker when 
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compared to the maps of fragments LV4, AYV and M0J (Appendix, Figure 74). Whilst ligands 

LT7 and M0J exclusively bind to the allosteric site, the other three ligands have secondary and/or 

tertiary binding sites on the protein surface with partly higher occupancies. Fragments GQM and 

LV4 also bind to site S1 (occ. 0.82 and 0.72, respectively). In addition, fragment LV4 binds twice 

to site S2 (occ. 0.54) and AYV also binds to site S5 (occ. 0.70) (Appendix, Figure 74). Such 

multiple binding is often seen for fragments[399b] showing that ligands can also bind to cavities on 

the TcFPPS surface. 

Structural comparison of TcFPPS in complex with LT7 and GQM to hFPPS in complex 

with FPP[205] revealed that the allosteric pocket in TcFPPS is still narrower than in hFPPS 

(Figure 40 (A, B)), where the alkyl chain of FPP protrudes from the pocket towards the protein 

surface (Figure 40 (C, D)). Thus, FPP is only partly embedded by the protein and gets exposed to 

the solvent. The fragments bound to the allosteric pocket in TcFPPS have exit vectors to the solvent 

in its open-state (Figure 40 (E, F)). However, to accommodate FPP helix J would need to move 

by approx. 1.3 Å (Figure 40 (A, B)). As demonstrated, such widening of the pocket is not 

necessary for binding of compounds with a different scaffold (Figure 40 (E – G)).  

 

 

Figure 40: Size of allosteric pocket in TcFPPS and comparison with hFPPS. (A) Superimposition of TcFPPS in 

complex with GQM (PDB ID 5QPI (this work) grey cartoon, ligand and Phe50 highlighted in yellow) 

and hFPPS in complex with FPP (PDB ID 50AJ[205], blue-green cartoon) (B) Wide allosteric pocket in 

hFPPS with FPP bound (PDB ID 5JA0[205]) (C) Superimposition of TcFPPS in complex with GQM 

(PDB ID 5QPI (this work) yellow) and LT7 (PDB ID 5QPD (this work) green) and hFPPS in complex 

with FPP (PDB ID 50AJ[205], cyan). Right site: view rotated by 90 °. (D) – (G) Surface representation of 

hFPPS in complex with FPP (cyan) (PDB ID 5JA0[205]) and TcFPPS in complex with LT7 (PDB ID 

5QPD (this work) green), GQM (PDB ID 5QPI (this work) yellow) and AYV (PDB ID 5QPZ (this work) 

orange), respectively. 
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Novel binding site in close proximity to the IPP binding site 

 

Fragment LWA is the only hit that was identified at a novel site, called SX, that is formed 

by helix D and B and the two loop turns B-C and D-E (Figure 41 (A, B, D), Appendix, 

Figure 74 (6) and summary of density maps, Figure 75 (6)). This binding site is in close proximity 

to the IPP binding site. The fragment has an exit vector towards the IPP binding site and a small 

exit vector towards the solvent formed between loop turn D-E and residue Leu45, which resembles 

the transition point from helix B into the loop turn B-C (Figure 41 (A) and (B)). Fragment LWA 

forms H-bonds with residues Arg108, Pro111 and Trp113 and van der Waals interactions with 

Arg107 (Figure 41 (C)).  

 

 

Figure 41:  Identification of ligand LWA with the help of maps generated by PanDDA. (A) Crystal structure of FPPS 

in complex with LWA, which is shown in its binding pocket (PDB ID 5QPV (this work)). (B) Proximity 

to IPP binding site. (C) 2D structure diagram of ligands LT7 and GQM interacting with TcFPPS. 
Diagram was generated using PoseView[481]. (D) Induced loop shifts upon ligand binding (bound state: 

yellow cartoon, ground state: grey cartoon). (E) Ensemble model: LWA and water molecules in the 

2Fo – Fc electron density map of the ensemble model contoured at 1.0 σ. (F) Bound-state model: LWA 

with the background-subtracted PanDDA event map (1-BDC = 0.21) contoured at 0.42 (equals 2.0 σ). 

PanDDA analysis was helpful to identify this binding event. The occupancy of LWA was 

refined to 0.53, hence the 2Fo – Fc electron density map represents the ground- and bound-state to 

almost equal shares. In the bound fraction, loop turns D-E and B-C shift, as well as the sulphate 
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ion located in the IPP binding site. In addition, water ions are present in the ground-state fraction. 

As a result, the electron density map is difficult to interpret when looking at a classical electron 

density map of the ensemble model (Figure 41 (E)). In contrast, the event map resembles the 

bound ligand only and allows modelling of the ligand easily (Figure 41 (F)), demonstrating the 

utility of PanDDA. 

 

Active site binders 

 

Apart from the discovery of novel ligands for the allosteric binding site and site SX, 

PanDDA identified 58 putative binding events in the active site. Many of them could be attributed 

to changes in the binding of metal ions coordinated by Asp98 and Asp250 that are located in the 

FARM and SARM, respectively. Whilst Mg2+ ions had been modelled in this position in the input 

model and in the ground-state model, well-defined electron density maps of active site-directed 

binders clearly showed that these positions are occupied by Zn2+ ions. In hFPPS the bivalent ions 

Mg2+, Mn2+
, and Zn2+ were shown to have the same octahedral coordination spheres, which are 

formed by aspartic acids of the FARM and SARM, water ions and N-BPs, such as ALE, PAM and 

ZOL[168]. Thus, Zn2+ ions were modelled at this positions for all 35 deposited structures. Their 

occupancies were refined and their water spheres restrained if necessary (work of Elliot Nelson). 

Seven fragments, LDV, AWV, LUS, MJ4, AWM, LVV and LUY, were modelled and 

successfully refined in the active site (Figure 42 and summary of density maps, Appendix, 

Figure 75 (7-13)).  

 

 

Figure 42: Chemical structure of the fragment hits identified for the active site. Compounds are derived from the 

DSPL. MW in Da, ligand occupancy, 1-BDC and PDB ID are indicated. 

The binding poses of the seven ligands can be divided into two categories. Ligands LDV, 

AWV, LUS and MJ4 protrude from the allylic site (DMAPP binding site) towards the homoallylic 

binding site (IPP binding site). In their crystal structures the allylic site is not fully accessible due 

to the conformation of residues Tyr94 and Gln167 (Figure 43 (A)). These residues have previously 

been shown to move, thus forming a channel between helices D and F and allow binding of N-BPs 
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with longer alkyl chains[170a, 211]. This change is observed here for ligands AWM, LVV and LUY 

(Figure 43 (B) and (C)). The previously reported fragment JMN which was discovered by FBS 

by NMR is also binding at this site (chapter 5.3.2). The difference between the pocket landscapes 

can be shown by depicting the protein backbone in surface representation (compare Figure 43 (A) 

and (B)). The base of the open channel is formed by the aromatic and polar residues Tyr94, Thr163 

and Tyr211. Its sites are formed by the backbone of Tyr94 and Thr163, residues Leu95, Lys 207 

and Thr208 and Ile129 of the opposing dimer mate. The site at the top of the channel is formed by 

residue Gln167 and the aforementioned residues Asp98 and Asp250 that coordinate the Zn2+ ions 

(Figure 43 (C)).  

 

 

Figure 43: Crystal structures of TcFPPS in complex with active site-directed binders. (A) Complex with LDV 

(yellow), AWV (orange), LUS (violet) and MJ4 (blue-green) (top view) (PDB IDs 5QPN, 5QPG, 5QPH 

and 5QQ2 (this work)). (B) Complex with AWM (cyan), LVV (magenta) and LUY (green) (top view) 

(PDB IDs 5QPF, 5QPT and 5QPK (this work)). (C) Residues forming the active site that accommodates 

the ligands shown in (A) and (B) (front view). Backbones of TcFPPS in complex with LDV and AWM 

are shown reveal conformational changes of Gln167 and Tyr94 (highlighted in yellow and cyan for 

binding of LDV and AWM respectively, ligands not shown). 

The benzothiazole moiety of AWM and the phenyl moieties of LVV and LUY show 

π-stacking with Tyr94. Ligand AWM and the fragments LDV and AWV contribute in H-bonding 

with a sulphate ion that is part of the coordination sphere of a Zn2+ ion (Zn2). The sulphate ion 

could only be modelled in the presence of these three ligands (Figure 44 (A), AWV not shown). 

The binding position of the sulphate ion is very similar to the position occupied by the phosphate 

moiety of BPs. In addition, the aromatic moiety of AWM, LVV and LUY occupy the same space 

then the side chains of the BPs (Figure 44 (F) – (H), LVV and LUY not shown). In addition the 

indole moiety of LDV and AWV directly contributes in H-bonding with Asp250 (Figure 44 (B), 

AWV not shown). The methyl substituent of fragment LVV in para position contributes in van der 

Waals interactions with Ile129 of the opposing dimer mate (Figure 44 (E)). This interaction has 

previously been observed for ligands with long alkyl chains (e.g. PDB ID 4EIE[170a]). Fragment 
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LUY can act as hydrogen donor and forms H-bonds with the carbonyl oxygen of Lys207 and the 

side chains of residues Thr208 and Tyr211 (Figure 44 (C)). 

 

 

Figure 44: Crystal structures of TcFPPS in complex with active site binders. (A) Binding site of AWM (cyan) and 

LDV (yellow) (front view) (PDB IDs 5QPF and 5QPN (this work)). H-bond with sulphate ion is 

indicated by dashed lines. Distance is given in Å. (B) – (E) 2D structure diagram of ligands LDV, LUY, 

AWM, and LVV respectively, interacting with TcFPPS. Diagrams were generated using PoseView[481] 

(F) Binding site of AWM (top view). (G) Superimposition of TcFPPS in complex with AWM (PDB ID 

5QPF (this work)) and TcFPPS in complex with BPs (PDB IDs 3IBA[211] (violet), 3ICM[211] (light green) 

and 4DWG[170a] (light yellow). (H) View of (G) rotated by 90 °. 

All other ligand binding events are surface binders that are of less interest. Nevertheless, 

they have been refined and deposited for reasons of completeness and some of them are described 

in brief here. Site S1 was previously observed as binding site of the hFPPS allosteric inhibitor 119 

(PDB ID 6R08, chapter 5.2). It is a small and surface exposed pocket that is formed by helices H, 

I and α3. In most cases, it buries the aromatic moiety of the fragments, which show π-stacking with 

residue Phe256 as key interaction. Sites S2 and S12 are at the dimer interface, and in consequence 

some of the ligands binding there interact with subunit A and B. Site S2 is an elongated groove 

formed by helices F, G and H of subunit A and loop turn A-B of subunit B. Two molecules of 

ligand LV4 (PDB ID 5QPP) bind to this cavity. This site was previously reported to host the hFPPS 
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allosteric inhibitor 93, when bound to TcFPPS (PDB ID 6R07, chapter 5.2). Ligand LTX 

(PDB ID 5QQA) has a similar binding position as fragment JNE (PDB ID 6R05) that was 

discovered in the previously described FBS by NMR campaign (chapter 5.3.2). Both ligands form 

interactions with the loop turn D-E and show H-bonding with residue Gln183, which is located in 

the insertion loop of subunit B. Thus, the dimer interface is enlarged upon binding of these ligands. 

 

Follow up of fragment binders with orthogonal biophysical methods 

 

To test ligand affinity to TcFPPS in an orthogonal biophysical method, protein-observed 

NMR experiments were conducted with the most interesting fragment hits that could be purchased 

(Table 23). [13C1H]-SOFAST-HMQC spectra were recorded from samples containing 30 µM 

protein and 700 µM compound. Whilst the majority of the compounds showed no or very weak 

chemical shift changes, spectra of the allosteric site binder GQM and the active site binder LUY 

showed medium to strong chemical shift changes (Table 23, Appendix, Figure 76). 

Table 23: Results of 2D NMR experiments of fragment hits identified by X-ray crystallography. 

Compound MW  

(Da) 

Brief description of binding site Strength of chemical shift 

changes in 2D NMR 

AYV 224.12 allosteric, stacking with Phe50 very weak 

M0J 294.11 allosteric, stacking with Phe50 very weak 

GQM 190.07 allosteric, open pocket medium to strong 

LWA 234.10 site SX very weak 

LDV 228.34 active, protruding to IPP site very weak 

AWV 228.34 active, protruding to IPP site no effect 

LUS 297.18 active, protruding to IPP site no effect 

AWM 233.10 active, channel to interface weak 

LVV 239.10 active, channel to interface very weak 

LUY 237.13 active, channel to interface medium to strong 

 

The active site-directed fragment LUY showed the strongest chemical shift (Figure 45 (A) 

and Appendix, Figure 76 (J)). [13C1H]-SOFAST-HMQC spectra were recorded for a titration 

series of this compound, ranging from 7.81 µM to 1 mM in order to estimate its binding affinity. 

Signal shifts were plotted and for two signal series the Kd value was calculated to approx. 54±9 µM 

and 33±5 µM, respectively (Figure 45 (B) – (D)).  

The compounds listed in Table 23 were also employed to SPR experiments using a 

Biacore T200 and a standard buffer system (50 mM Hepes, pH 7.4, 150 mM NaCl, 2 mM 

TCEP · HCl, 2 mM MgCl2, 0.01% (v/v) Tween). For the SPR experiments, in vivo biotinylated 

avi-tagged TcFPPS had been successfully expressed and purified (chapter 5.1). Immobilisation on 
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streptavidin coated chips lead to a stable baseline with a very low baseline shift. Unfortunately, 

reliable and robust results were not obtained due to super stoichiometric binding. The expected 

fragment binding response for a 1:1 fragment-protein interaction model was exceeded by several 

times. In addition, a suitable positive control was lacking, because no compound was available that 

exhibited high affinity to TcFPPS and an 1:1 interaction model (data not shown).  

 

 

Figure 45: Spectra of ligand-observed NMR experiments with fragment hits identified by X-ray crystallography. 
(A) Cut-out from an overlay of the [13C1H]-SOFAST-HMQC spectrum of the DMSO control (red) and 

the corresponding sample (blue) at 700 µM LUY and 30 µM protein in 25 mM BisTris, pH 6.5, 50 mM 

NaCl, 2 mM TCEP · HCl, 10% D2O, 150 µM DSS at 31.85 °C. (B) Superimposition of spectra recorded 

for a titration series of compounds. Buffer conditions and cut-out shown as in (A). (C) and (D) Dose 

response curves of LUY for the signals highlighted in (B). 

5.4.2 Discussion 

The fragment screen by X-ray crystallography at the XChem facility uncovered the first 

fragments with various scaffolds binding to the allosteric site of TcFPPS. This is remarkable as the 

pocket appears to be sealed due to steric hindrance by residue Phe50 in all previously published 

crystal structures of TcFPPS[162b, 170a, 211], as well as in structures elucidated as part of this work so 

far. Sequence comparison of 200 homologues from various organisms with TcFPPS showed that 

Phe50 is an exception in a conserved position. In 191 of the homologues an asparagine was found. 

Among these homologues are hFPPS (UniProt ID P14324) and also FPPSs from other parasitic 

sources, such as TbFPPS (UniProt ID Q86C09) (chapter 5.2). Thus it was so far unknown whether 



Results 

134 

this allosteric pocket, which was first identified in human FPPS[205, 209a], also exists in TcFPPS. 

Rotation of the phenyl side-chain of Phe50 by 108 ° and 125 ° upon binding of fragments LT7 and 

GQM, respectively, induces the opening of the pocket. However, the resulting pocket is still 

narrower than the pocket in hFPPS. It can only be speculated that backbone shifts could take place 

to allow binding of FPP. Nevertheless, as demonstrated here, this is not necessary for binding of 

fragments LT7 and GQM. In addition to these two ligands that bind to the allosteric pocket in its 

open-state, ligands LV4, AYV, M0J bind to the allosteric pocket in its closed-state. All five 

identified fragments show π-stacking with Phe50 as key interaction with the protein. As this residue 

resembles a structural difference to the human protein, it can be exploited to design inhibitors with 

the required specificity[483]. 

Furthermore, an interesting novel binding site, named SX, was discovered. It is in close 

proximity to the homoallylic site, which holds also true for the allosteric pocket. Ligand LWA 

shows a high number of H-bonds. However, observed chemical shift changes in 

[13C1H]-SOFAST-HMQC experiments were very weak at a compound concentration of 700 µM. 

This might be due to the fact that the binding site is more difficult to access in comparison to the 

others and a series of loop shifts takes place in the event of ligand binding, which also affects the 

homoallylic binding site. Whether this novel site provides a promising perspective for TcFPPS 

inhibition has yet to be investigated.  

Seven active site-directed fragments of a novel and non-BP scaffold were identified. These 

fragments can inspire design of active site-directed FPPS inhibitors that can overcome the 

disadvantages associated with high affinity to bone mineral, which is exhibited by BPs alongside 

their FPPS binding[226, 238b]. This has limited the usage of BPs in the treatment of CD, but so far 

nitrogen-containing BPs are the only known FPPS inhibitors used for the treatment of bone 

diseases[213]. Superimposition of crystal structures of TcFPPS in complex with the fragments 

AWM, LVV and LUY and TcFPPS in complex with BPs (PDB IDs 3IBA[211], 3ICM[211], 

4DWG[170a]) show that their aromatic side-chains share the same binding site. Similar to the natural 

FPPS substrates, DMAPP and GGPP, the phosphate moieties of the BPs form ionic interactions 

with Mg2+ ions that in turn are coordinated by aspartic acid residues of the conserved regions 

FARM and SARM. The sulphate ion associated with binding of AWM, LDV and AWV suggest 

that binding affinity of these active site-directed fragments could be improved by adding a 

functional group that can coordinate bivalent metal ions. Unfortunately, it is to be expected that the 

most potent scaffold will be again a bisphosphonate. Previous attempts to remove one phosphate 

moiety, turning a BP into a mono-phosphate, led to complete loss of potency[225b]. A different and 

more promising approach to design active-site inhibitors of a novel scaffold is to take the structural 

information provided by the TcFPPS complexes with fragments LDV and AWV that protrude from 

the allylic site. Their indole moieties can directly contribute in H-bonding with Asp250, which is 

located in the SARM.  
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Applying FBS by X-ray crystallography on TcFPPS was a success resulting in many more 

crystal structures than the previously conducted stepwise campaign (chapter 5.3). This observation 

is in agreement with reports in the literature[315a, 484]. Screening at high compound concentrations 

also increases the number of ligands with weak affinity and fragments binding to less specific sites. 

Crystallization conditions can favour ligands with certain interactions and binding may occur due 

to extremely high compound concentrations or due to the proteins immobilisation in the crystal 

lattice[293b]. Screening of the DSPL against TcFPPS was more successful than screening the KFL 

(hit rates 8.8% and 2.5%, respectively). The latter only accounts for six of the 35 fragment hits. 

This cannot only be explained by the higher number of data sets analysed of crystals soaked with 

DSPL fragments (37%). One reason could be that they were soaked at half of the compound 

concentration than the DSPL fragments. Nevertheless, at an initial concentration of 180 µM 

TcFPPS in the crystallization drop 37.25 mM equals a 207-fold excess. Therefore, it is more likely 

that 3D fragments were less suited to bind to TcFPPS, especially to sites buried in the protein.  

Analysis with PanDDA accelerated hit identification significantly. The enhanced means 

of data analysis allowed reliable hit identification of fragments characterised by low affinities and 

partial occupancy, as well as at binding sites that undergo conformational changes. Good examples 

are identification of fragments LWA, LT7, M0J, AWM, LVV and LUY. However, the current 

study also shows that data sets with a diffraction limit ≤2.5 Å are most likely to be identifiable and 

modellable hits using PanDDA. 

The numerous crystal structures of FPPS-fragment complexes, the large diversity of their 

scaffolds and different binding sites are potential starting point for SBLD, molecular docking and 

pharmacophore analysis. This includes starting points for allosteric site binders suggesting two 

different binding modes. Although, whether either starting point is suited to generate a lead series 

with high-affinity is currently unknown. In addition, starting points for novel and non-BP 

active site-directed binders are given that might show lower affinities to bone mineral and thus 

could be suited for the treatment of non-bone related diseases. Some of the ligands have only weak 

affinities, which was demonstrated by 2D NMR experiments, but the binding affinity has little to 

say about the suitability of a compound for chemical optimization. Crystal structures of weakly 

bound fragments or promiscuous binding can provide valuable information about favourable 

binding poses in each site[399b]. The poised concept of fragments in the DSPL library[336] will enable 

rapid follow up of these hits. Likewise, a SAR by catalogue study will is possible, as most of the 

DSPL fragments were purchased from Enamine, who offer analogue libraries for rapid fragment 

elaboration[485]. The crystal structures provided in this work will pave the way for future drug 

discovery campaigns for TcFPPS. 
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5.4.3 Results of the HTX lab campaign 

Irina Cornaciu and Damien Clavel were in charge of the screening campaign, which 

encompassed soaking experiments with 531 compounds of the Enamine Golden Library. They 

were provided with the crystallization protocol and all necessary materials in order to run 

crystallization and soaking experiments at the HTX lab and data collection at the ESRF. All 

processes were managed in the Crystallization Information Management System (CRIMS) that was 

accessible remotely. First on-site crystallization trials resulted in an adjusted protocol for the setup 

of crystallization drops employing the sitting drop vapour diffusion technique on CrystalDirect™ 

plates. Rates of 50% – 80% of drops with crystals per plate could only be reproduced when mixing 

protein formulation, reservoir solution and seed dilution in a ratio of 3:1:2 (v/v)). In the provided 

protocol a ratio of 3:2:1 (v/v) had been used. 

Drops with crystals suitable for soaking were selected by visual inspection. A Mosquito 

pipetting robot was used to transfer 14.9 mM compound (15% DMSO), and apo TcFPPS crystals 

were individually soaked for approx. 21 h with 531 compounds. Automated high-throughput 

crystal harvesting and cryo-cooling was performed with the CrystalDirect™ technology[386b, 387b]. 

Here, crystals are harvested by laser photolation on the foil the crystals had been growing on. Thus, 

in some cases several crystals were harvested on a single pin and allowed data collection from 

single crystals soaked with the same compound. 652 data sets were collected at beamlines 

ID30A-1[388b, 390b] and ID30B[390a] of the ESRF and 644 of them could be successfully processed. 

All crystals belonged to the hexagonal space group P6122, and had unit-cell parameters of 

approx. a = b = 58 Å, c = 397 Å, and α = β = 90 ° and γ = 120 ° with one TcFPPS molecule per 

asymmetric unit. The diffraction limit ranged from 1.41 Å to 3.49 Å with an average diffraction 

limit of 2.15 Å. 2% had a diffraction limit ≤1.5 Å and 13% had a diffraction limit ≤1.7 Å. This 

large number of data sets, their crystallographic homogeneity and good average diffraction limit 

enabled statistical data analysis with PanDDA[393, 398] (Table 24, Appendix, Figure 77). 

PanDDA identified 309 putative binding sites that got clustered arbitrarily into 

21 non-overlapping sites (Figure 47 (B)). Based on manual inspection of all events in Coot, 

54 ligands were modelled into the bound-state models of 45 data sets and their ensemble models 

were generated using pandda.export. Nevertheless, model building and refinement work focused 

on the most interesting eight fragment hits HTX-1 to HTX-8. HTX-1 to HTX-5 bind in the active 

site and HTX-6 to HTX-8 in the allosteric site (Figure 47 (A, C, D)). Their chemical structures 

are depicted in Figure 46. The diffraction limit of the eight structural models ranged from 1.71 Å 

to 2.10 Å with a mean diffraction limit of 1.82 Å. Hence, they show a slightly better mean 

diffraction limit than compared to all data sets (2.15 Å) (Table 36). All eight ligands were well 

resolved as the PanDDA event map contoured at a contour-level equivalent to 2.0 σ indicates 

(summary of density maps, Appendix, Figure 78 (1 – 8)). When looking at the density maps of the 
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single data sets only, ligands HTX-1 and HTX-8 were also well resolved in the unbiased 

mFo – DFc difference electron density map contoured at 3.0 σ and the 2mFo – DFc electron density 

map of the unfitted model contoured at 1.0 σ (summary of density maps, Appendix, Figure 78 

(1, 8)). The ligands occupancies were refined to 0.82 and 0.58, respectively, and structural models 

were deposited under PDB IDs 6SI5 and 6SHV (Appendix, Table 37). 

Table 24: Key parameters of the data sets suited for analysis that were obtained from the HTX campaign. 

Variable Value 

Space group P6122 (No. 178, International Tables for Crystallography[377b]) 

Mean unit cell axis a / b / c (SD) (Å) 57.98 (0.21) / 57.94 (0.21) / 396.77 (0.88) 

Diffraction limit (Å) 1.41 – 3.49 

Mean diffraction limit (SD) (Å) 2.15 (0.43) 

Mean Rfree / Rwork (SD) 0.260 (0.030) / 0.191 (0.015) 

Mean (Rfree - Rwork) (SD) 0.143 (0.041) 

 

 

Figure 46: Chemical structure of fragment hits identified for the allosteric and active site of TcFPPS. Compounds 

are derived from the Enamine Golden Library. MW in Da and 1-BDC are indicated. 

The allosteric binders HTX-1 to HTX-5 show π-stacking with residue Phe50 as key 

interaction, but have two different binding modes. Fragments HTX-1, HTX-2 and HTX-3 bind to 

the allosteric pocket in its open-state (Figure 47 (E – H)). To accommodate these ligands, the 

allosteric pocket opens by rotation of the phenyl side chain of residue Phe50 by approx. 120 ° 

(Figure 47 (L)). This type of conformation change and binding pose of ligands was previously 

observed for fragments LT7 and GQM (Figure 38 (E, F, H)) and was described in more detail in 

chapter 5.4.1. Fragments HTX-4 and HTX-5 bind to the pocket in its closed-state 

(Figure 47 (I – K)). This binding pose was previously described for fragments LV4, AYV and 
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M0J (Figure 38 (A – D)). In addition, the chemical structure of HTX-4 is similar to fragments 

AYV and M0J (Figure 46 and Figure 37). 

The active site binders HTX-6 to HTX-8 show the same binding pose as earlier described 

for fragments AWM, LVV and LUY (chapter 5.4.1, Figure 43 (B)). Their key interaction is a 

π-stacking with residue Tyr94. Compounds HTX-6, HTX-7 show very similar chemical structures 

and are chemical analogues of fragment AWM (Figure 46 and Figure 42). 

 

 

Figure 47: Overview of crystal structures obtained by FBS by X-ray crystallography at the HTX lab. (A) Overview 

of ligands binding across TcFPPS. Front view. Binding sites are indicated. (B) Data analysis with 

PanDDA: Binding events clustered into 21 non-overlapping binding sites (front view (left). Back view 

(right)). (C) Fragments HTX-1 to HTX-5 binding in the allosteric site (HTX-1: PDB ID 6SI5 (this 

work)). Residue Phe50 is shown in stick representation. (D) Fragments HTX-6 to HTX-8 binding to the 

active site (HTX-8: PDB ID 6SHV (this work)). (E) – (H) Allosteric binders HTX-1 to HTX-5: 

Superimposition and single views (I) – (K) Allosteric binders HTX-4 and HTX-5: Superimposition and 

single views. (H) Rotamers found for residue Phe50 in all structures with allosteric binders. 
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5.4.4 Discussion 

The fragment screen at the HTX lab identified additional allosteric site binders of TcFPPS 

in the open- and closed-state of the pocket, hence, adding potential starting points for medicinal 

chemistry campaigns to develop a TcFPPS inhibitor with a novel mode of action. The same holds 

true for the active site. Interestingly, some of the fragments from the HTX lab campaign have very 

similar scaffolds to the fragment hits identified in the XChem screen. Thus, they provide a positive 

control, which is only possible in crystallization experiments when chemical analogous compounds 

are tested. 
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5.5 SBLD by virtual screening in ANCHOR.QUERY 

Here the virtual screening tool ANCHOR.QUERY was used to discover novel 

active site-directed binders of a different and non-BP scaffold for TcFPPS. Such compounds could 

exhibit lower affinities to bone mineral and might be able to overcome the inappropriate PK 

properties of BPs[244]. Starting point were fragment binders, which were recently discovered within 

the scope of this work in an FBS by X-ray crystallography at the XChem facility, Harwell, UK 

(chapter 5.4). When using the ANCHOR.QUERY approach, the proposed compounds can be 

synthesised by multi component reactions (MCR)[486]. Eleven scaffolds were generated using the 

fragment hit LUY as a template, but unfortunately they could not be validated experimentally. The 

herein described work was conducted in collaboration with Markella Konstantinidou, who is a PhD 

student on the AEGIS project in the group of Prof. Alexander Dömling, during a one month visit 

at the University of Groningen, the Netherlands.  

5.5.1 Results of virtual screening and synthesis by MCR 

ANCHOR.QUERY is an interactive web-based pharmacophore search technology, which 

virtually screens a library of more than 31 million compounds and approx. 2 billion preformed 

conformers[462, 487]. These compounds can be easily synthesised from cheap and commercially 

available starting material by one-step, one-pot MCRs[462]. The application and use of 

ANCHOR.QUERRY were described elsewhere[432, 462]. In brief: ANCHOR.QUERY was 

developed to target protein-protein interactions. Therefore, all compounds in the library contain an 

anchor motif that is bioisosteric to an amino acid. This anchor biases interactions with the protein 

and allows rapid pharmacophore searches. A 3D structure of a protein-ligand complex is required 

to generate a query. The software identifies an anchor motif within the ligand and a pharmacophore 

query is created by adding additional features to the anchor, such as charged groups, hydrogen 

donors/acceptors or hydrophobic rings. Then, the library is screened for matching compounds, 

which are spatially aligned by a root mean square fit and energy-minimized. Additional filters, 

such as selecting certain reaction types and threshold limitations of the MW can be applied[462]. 

Screening was focused on ligand LUY, which is an active site-directed binder with a 

non-BP scaffold that showed convincing binding signals in protein-observed NMR spectroscopy 

and its Kd was estimated to be 40 µM (chapter 5.4). All ANCHOR.QUERY-generated 

pharmacophore models based on ligand LUY included the phenyl anchor and various additional 

motifs including a nitrogen group as donor, aromatic rings with positive charge and hydrophobic 

rings. In all queries, three scaffolds occurred more frequently: N-bridgehead hetero-bicyclic 

compounds, such as AQ-1 to AQ-3, tetrazoles, such as AQ-4 to AQ-6, and β-lactams, such as 

AQ-7 to AQ-9 (Figure 48).  
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Figure 48: Compounds suggested by ANCHOR.QUERY. (A) TcFPPS in complex with LUY. (B) – (J) Docked 

binding poses of compounds are shown in superimposition with TcFPPS in complex with LUY: (B) – (D) 

N-bridgehead thiazoles (E) – (G) tetrazoles (H) – (J) β-lactams. 

A small library of eleven compounds was synthesised including all three scaffolds. Among 

them are the N-bridgehead thiazole MCR-1 and imidazole MCR-2, seven tetrazoles MCR 3 to 

MCR-9 and the β-lactams MCR-10 and MCR-11. Synthesised scaffolds deviated from the 

scaffolds suggested by ANCHOR.QUERY, because starting materials that were already available 

in the laboratory were used. Compounds MCR-1 and MCR-2 are based on AQ-1 to AQ-3. They 
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were synthesised by the one-pot reaction of aldehyde, amidine and isocyanide using scandium 

trifluoromethanesulfonate as a catalyst and under microwave radiation. Purification by flash 

column chromatography (FCC) yielded the products MCR-1 and MCR-2 with yields of 55% and 

79%, respectively. The corresponding MCR is called Groebke-Blackburn-Bianaymé reaction 

(GBBR)[488] (Figure 49). 

 

 

Figure 49: GBBR to give compounds MCR-1 and MCR-2. Moieties that are in common with AQ-1 and AQ-2, 

AQ-2 and AQ-3 are highlighted in red, blue and orange, respectively. 

A series of tetrazoles was synthesised by a four-compound condensation, the Ugi-tetrazole 

reaction[489]. It is a one-pot reaction of aldehyde, amine, isocyanide and TMS azide, which is stirred 

at room temperature, overnight. Purification by FCC yielded the products MCR-3 to MCR-9 with 

yields ranging from 24% to 89% (Figure 50).  

 

 

Figure 50: Ugi-4CR to give compound MCR-3 to MCR-9. Reaction scheme shown for MCR-3. MCR-4 to MCR-9 

were also synthesised by an Ugi-4CR. Yields are indicated. Moieties that are in common with AQ-4, 

AQ-5 and AQ-6 are highlighted in blue, orange and pink, respectively. 
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Two β-lactams were synthesised in a one-pot reaction of β-amino acid, aldehyde and 

isocyanide under microwave radiation. Purification by FCC yielded the product MCR-10 with a 

high yield of 93% and MCR-11 as a racemate with a yield of 47% (Figure 51). 

 

Figure 51: β-lactams MCR-10 and MCR-11 synthesised by an one-pot MCR. Yields are indicated. Moieties 

that are in common with compounds AQ-8 and AQ-9 or only AQ-8 are highlighted in blue and red, 

respectively. 

The synthesised compounds were employed for affinity testing and structure determination 

experiments. First, solubility tests in SPR buffer were conducted by 1D NMR spectroscopy using 

DSS as an internal standard. Whilst some of the compounds were insoluble others showed a 

solubility ranging from 40 µM to 1 mM. The compounds with good to high solubility were tested 

at a single concentration in SPR. Unfortunately, no binding could be detected or the compounds 

were even misbehaving and showed a negative signal on the reference channel. Then, 2D NMR 

experiments were conducted with all compounds measuring [13C1H]-SOFAST-HMQC spectra of 

samples that contained 700 µM compound and 30 µM 13C15N-labelled TcFPPS. In consequence, 

most compounds were measured at saturation. However, spectra showed only a few (three to seven) 

and weak chemical shift changes for all compounds. Thus, the readout was weaker when compared 

to compounds that were previously measured in protein-observed NMR (chapter 5.2).  

Regardless of these unsatisfactory results, the compounds were employed to soaking 

experiments. TcFPPS apo crystals were grown on 96-well SwissCi/MRC plates employing the 

sitting-drop vapour diffusion technique. Crystallization drops were mixed of 300 nL 

12.36 mg · mL-1 TcFPPS (in 10 mM TRIS, pH 7.4, 25 mM NaCl,  2 mM TCEP · HCl), 100 nL 

reservoir (80 mM MES, pH 6.5, 4 mM ZnSO4, 12.36% (v/v) PEG MME 550, 11.57% (v/v) 

glycerol) and 200 nL seed dilution (in 80 mM NaOAc, pH 5.0, 160 mM (NH4)2SO4, 20% (v/v) 

PEG 400, 20% (v/v) glycerol). Apo crystals were soaked at a nominal compound concentration of 

75 mM or 37.5 mM, which both corresponded to 15% DMSO. As all 11 compounds showed 

precipitation in the crystallization drop, the actual concentration in solution was lower. Crystals 

were fished after 4 h and 21 h of soaking. Data sets could be collected of all 11 crystals soaked for 

21 h. They showed good diffraction limits of approx. 1.7 Å. Nevertheless, data processing and 
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visual inspection of the electron density maps showed that none of the compounds had formed a 

protein-ligand complex.  

Furthermore, fragment LWA, which binds to the novel binding site SY, was used as a 

starting point for ANCHOR.QUERY. The software could not identify an anchor scaffold and 

hence, the benzamide moiety was run with a tyrosine anchor or phenylalanine anchor instead. 

ANCHOR.QUERRY proposed compound AQ-10, which makes optimal use of the pocket. To 

synthesise the compound with an amide substituent (MCR-12) in accordance to ligand LWA. It 

can be synthesised running a Groebke-Blackburn-Bienaymé reaction (Figure 52). Unfortunately, 

synthesis of the required isocyanide failed (communication with Markella Konstantinidou). Hence 

the synthesis of the compound was not pursued further. 

 

 

Figure 52: Virtual screening proposed ligand binding site SX. (A) Relative position of binding site SX to the three 

known binding sites in TcFPPS. Superimposition of ligand LWA (cyan) and compound AQ-10 (yellow). 

Binding pose of AQ-10 originated from ANCHOR.QUERRY. (B) Ligands shown in its binding 

pocket SX. (C) Binding pose and possible interactions formed by AQ-10. (D) Chemical structure of 

LWA and reaction scheme for a compound similar to AQ-10. 

We also tested the 3D structures of TcFPPS in complex with ligands LT7 and GQM as 

starting point for ANCHOR.QUERY. Running a meaningful virtual screen was difficult here, 

because the allosteric pocket opens up widely towards the homoallylic site and is close to the 

protein surface. All pharmacophore searches identified compounds that showed poor binding 

poses. Most of them showed a small number of interactions with the protein and protruded wide 

into the solvent space. Therefore, these queries were not considered any further.  
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5.5.2 Discussion 

Unfortunately, none of the eleven compounds synthesised using fragment hit LUY as a 

template for ANCHOR.QUERRY showed increased affinity to TcFPPS. Soaking experiments at 

high compound concentrations, which benefit weakly bound fragments did not lead to a 

3D structure of a protein-ligand complex. Possible reasons for the failure of the presented attempts 

could be that the synthesised compounds were increased in size too ambiguously. While the starting 

compound LUY had an MW of 237.3 Da the average MW of MCR-1 to MCR-11 was 386.8 Da. 

Poor solubility of some of the compounds was clearly an issue and thus, solubility should be a 

selection criterion for future compound synthesis. In case, channel size in the preformed 

apo crystals was a limitation for the large compounds to be soaked, co-crystallization experiments 

could have circumvent this issue. With a MW of 295.34, compound LXM (PDB ID 5QQ7) was 

the largest compound soaked into a preformed TcFPPS crystal (chapter 5.4).  

In addition, the synthesised compounds deviated from the compounds proposed from 

ANCHOR.QUERY, because starting materials that were available in the working group were used. 

This might also have an impact on the results. Nevertheless, ANCHOR.QUERY was previously 

demonstrated to be a useful tool to morph weakly bound fragments into potent tool compounds[432] 

and it was already successfully applied to query fragments identified by X-ray crystallography[487]. 

Thus, further investment and synthesis of additional compounds might be worthwhile for this 

project as well.  
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5.6 Fragment-to-lead optimization using fragment merging 

As described in chapter 5.4, active site-directed binders were identified in an FBS 

campaign by X-ray crystallography at the XChem facility, Harwell, UK. These binders have a 

novel, non-BP scaffold and therefore, compounds based on them likely exhibit lower affinities to 

bone mineral, hence, overcoming the inappropriate PK properties of BPs[244]. Fragment merging 

was employed as an optimization strategy for these fragments and twelve compounds were 

synthesised. Unfortunately, they did not show increased potency and X-ray crystallography 

revealed that they were binding to a previously discovered cavity on the protein surface. 

5.6.1 Results of the fragment-to-lead optimization 

The crystal structures of all seven active site-directed fragment hits obtained in the FBS 

campaign were examined manually in Coot. The binding modes of ligands LDV, AWV, AWM, 

LUY and LVV suggested that fragment merging is the best strategy for chemical optimization of 

the fragment hits. Superimposition of the crystal structures of TcFPPS in complex with LDV and 

AWV showed that these two ligands with very similar chemical structures show a perfect overlap 

(Figure 53 (A) and (D)). Superimposing these two with the crystal structure of TcFPPS in complex 

with AWM demonstrates that the mehtylpiperidine moiety of LDV and the azacycloheptan moiety 

of AWV overlap with the methylpiperazine moiety of AWM (Figure 53 (B)). Furthermore, 

superimposition of the TcFPPS-AWM complex with crystal structures of the TcFPPS-LUY 

complex and the TcFPPS-LVV complex confirmed the binding position of an aromatic moiety, 

either benzothiazole (AWM) or phenyl rings (LUY, LVV) (Figure 53 (C)). Based on compounds 

LDV and AWM, either a piperidine or a piperazine would be possible to link the benzothiazole 

and the indole moiety (Figure 53 (D)). The piperazine was chosen, as it makes the desired 

compounds easily accessible by amination reactions. Moreover, the piperazine scaffold in ligand 

AWM was already masked by a methyl group and thus, a different carbon substituent in this 

positon should be easily tolerated without major changes of its physicochemical properties.  

In addition, fragment LUY suggested that aliphatic substituents can be accommodated in 

the pocket and might promote additional interactions. Therefore, the commercially available 

benzothiazoles with chloro- and trifluoro-methyl substituents might be good starting points. The 

crystal structures did not provide any concrete hints for substituents at the indole moiety, but adding 

polar groups or aliphatic substituents in order to form additional interactions, e.g. with residues 

Gln91 or Leu95 could be a promising approach to improve the interactions. Commercially 

available are three indole carbaldehydes with the following substituents: 7-methoxy, 7-chloro and 

5-hydroxy.  
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Figure 53: Binders of TcFPPS that were starting points for fragment merging. (A) Superimposition of LDV (yellow) 

and AWV (orange) (PDB IDs 5QPG and 5QPN (this work)). (B) Superimposition of LDV, AWV and 

AWM (cyan) (PDB IDs 5QPF, 5QPN and 5QPG (this work)). (C) Superimposition of AWM, LVV 

(violet) and LUY (green) (PDB IDs 5QPF, 5QPT and 5QPK (this work)). (D) Chemical structures of the 

fragments LDV, AWV, AWM, LVV and LUY that led to merger MCN-1. Certain moieties are 

highlighted with an ellipsoid: indole in light yellow, piperazine in light red, benzothiazole in light blue, 

phenyl in cyan, spacer in red.  

Considering all possible combinations of building blocks with and without substituents, a 

fragment follow-up library of 12 compounds, MCN-1 to MCN-12, was chosen for synthesis 

(Figure 54). All 12 compounds were synthesised by reductive amination in a one-pot reaction 

conducted in two steps. In this reaction, first the 2-(piperazin-1-yl)benzo[d]thiazole formed an 

imine with the indole-3-carbaldehyde and was protonated to an iminium cation under acidic 

conditions. For the second reaction step, sodium triacetoxyborohydride was added, forming the 

desired amine MCN-1 under reduction of the iminium cation (Figure 54). 
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Figure 54: Chemical structures of compounds MCN-1 to MCN-12, which were chosen for synthesis and reaction 

scheme of reductive amination. 

Two out of three desired 2-piperazinebenzothiazoles had to be synthesised, as they were 

not commercially available (Figure 55).  

 

 

Figure 55: Synthesis of MCN-S3 and MCN-S4. C-N bond formation and deprotection of MCN-S1 and MCN-S2 

yielded the 2-pierazinebenzothiazoles MCN-S3 and MCN-S4 respectively. Purities and yields are given 

for each compound. 

A sustainable chemistry approach was chosen for C-N bond formation, which was 

published by Kumar et al.[467] The reaction was performed with slight adaptations (methods 

section 4.8.3). In brief, no product formation was observed after overnight stirring and thus, the 

reaction mixture was stirred for an additional 6 h at 80 °C in a pressure tube. This led to complete 



Results 

150 

product formation. Purification by flash column chromatography yielded the products in high 

purity and good yield. The free amines were obtained with high purity and in high yields after 

cleavage of the Boc protecting group Figure 55).  

After all starting materials were available, all twelve products were synthesised by 

reductive amination (Figure 54). For this purpose, the piperazine derivatives were mixed with the 

aldehydes and dissolved in DCM. Catalytic amounts of acetic acid were added and the reaction 

mixture stirred for 6 h at RT in a pressure tube under argon atmosphere. Then, the reaction mixture 

was cooled to 0 °C, the reducing agent was added, and the mixture was stirred for another 6 h at 

RT. Impurities were extracted with water and the organic phases were combined and concentrated 

in vacuo for final purification by preparative LC-MS. The unsubstituted indole-3-carbaledhyde 

was used with Boc protecting group in the reductive amination, resulting in intermediates 

MCN-S5, MCN-S6 and MSN-S7, which were obtained with high purities and medium to high 

yields (Figure 56). The final products MCN-1, MCN-5, MCN-9 were obtained after cleavage of 

the Boc protecting group in DCM:TFA 1:1 (v/v) and subsequent purification by preparative LC. 

All three products were obtained at high purities and good yields. (Figure 56). 

 

 

Figure 56: Synthesised compound MCN-1, MCN-5 and MCN-9 Deprotection of the intermediates MCN-S5, 

MCN-S6 and MCN-S7 yielded the final products MCN-1, MCN-5 and MCN-9, respectively. Purities 

and yields are given for each compound. 

The three remaining indole-3-carbaldehydes could not be purchased with BOC-protection 

group at the indole amine. Nevertheless, the desired products formed and the introduction of a 

protective group was not necessary. Hence, products MSN-2 to MSN-4, MSN-6 to MSN-8 and 

MSN-10 to MSN-12 could be obtained in a one-step synthesis. While purities were good to 

excellent, the yields were modest with exception of MCN-8 (Figure 57).  
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Figure 57: Synthesised compounds MCN-2 – MCN-4, MCN-6 – MCN-8 and MCN-10 – MCN-12. Purities and 

yields are given for each compound.  

The synthesised compounds were utilised in several experiments to investigate their 

binding affinities (Table 25).  

Table 25: Results of 2D NMR experiments of the compound series MCN-1 to MCN-12. 

Compound Chemical shift changes in 

2D NMR 

Strength of chemical shift changes 

in 2D NMR 

Solubility in SPR buffer 

 count count (µM) 

MCN-1 30 strong 60 

MCN-2 30 mostly weak <10 

MCN-3 10 very weak 15 

MCN-4 30 medium to strong 180 

MCN-5 2 weak <10 

MCN-6 5 weak 65 

MCN-7 2 weak <10 

MCN-8 30 medium to strong 20 

MCN-9 10 weak <10 

MCN-10 none - 13 

MCN-11 2 weak <10 

MCN-12 30 medium 50 

 

First, solubility tests in SPR buffer were conducted by 1D NMR spectroscopy using DSS 

as an internal standard. Whilst five compounds showed poor solubility in the SPR buffer, six 

showed solubility only in double digit µM range. Compound MCN-4 showed the best solubility at 

180 µM. To determine binding affinities by SPR, it is desired to measure dilution series of 

compounds up to 5-fold or 10-fold higher than the expected Kd in order to reach a 

plateau/saturation. Due to their low solubility in SPR buffer, it was unlikely to collect spectra that 
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would result in sufficient dose-response curves unless the Kd values would be in the single digit 

µM range. Thus, 2D NMR experiments were conducted to test affinity to TcFPPS and to assess the 

strength of the chemical shift changes. [13C1H]-SOFAST-HMQC were conducted in aqueous buffer 

with samples that contained 700 µM compound and 30 µM 13C15N-labelled TcFPPS. Therefore, all 

compounds were measured at saturation. Whilst seven compounds showed chemical shift changes 

for a number of signals, the remaining five showed weak chemical shift changes for a small number 

of signals or for none at all (Table 25).  

A series of samples at different concentrations of compound MCN-4 were collected, 

ranging from 31.25 µM to 1.00 mM. 1D spectra showed that its solubility in the aqueous NMR 

buffer is ≥500 µM, but ≤1 mM (Figure 58).  

 

 

Figure 58: MCN-4 is a binder of TcFPPS that shows a clear dose response in 2D-NMR. (A) 1D spectra that 

demonstrate compound solubility up to 500 µM. (B) Cut-out from an overlay of the 

[13C1H]-SOFAST-HMQC spectrum of the DMSO control (red) and the corresponding sample (blue) at 

500 µM compound and 30 µM protein in 25 mM BisTris, pH 6.5, 50 mM NaCl, 2 mM TCEP · HCl, 

10% D2O, 150 µM DSS at 305 K. (C) Chemical structure of MCN-4. (D) Chemical shift changes 

demonstrating dose response for clarity three spectra are shown.  

Superimposition of the NMR spectra of samples with different compound concentration 

showed a clear dose-response proving that compound MCN-4 binds to TcFPPS. Nevertheless, 

saturation was not reached and the binding affinity could not be determined. Therefore, the Kd was 

determined to have a lower limit of >500 µM rendering SPR experiments unfeasible (Figure 58). 

Utilizing all 12 compounds, soaking experiments were performed with apo TcFPPS crystals that 
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were grown on 96-well plates (methods section 4.3.5). High-resolution diffraction data were 

collected after two rounds of crystallization trials for 10 compounds (Table 26).  

Table 26: Soaking experiments with MCN-1 to MCN-12.

Compound TFA salt Data collection soaking trial 1a Data collection soaking trial 2b PDB ID 

 yes / no 
  

 

MCN-1 yes crystal showed no diffraction collected (4 h and 7 h soak) 6R09 

MCN-2 yes crystal showed no diffraction collected (4 h and 7 h soak) - 

MCN-3 yes crystal showed no diffraction crystal showed no diffraction - 

MCN-4 no collected (17 h soak) - 6R0A 

MCN-5 yes crystal showed no diffraction collected (4 h and 7 h soak) - 

MCN-6 yes crystal showed no diffraction crystal showed no diffraction - 

MCN-7 yes crystal showed no diffraction collected (4 h and 7 h soak) - 

MCN-8 no collected (17 h soak) - 6R0B 

MCN-9 yes crystal showed no diffraction collected (4 h and 7 h soak) - 

MCN-10 yes collected (4 h soak) - - 

MCN-11 yes crystal showed no diffraction collected (4 h and 7 h soak) - 

MCN-12 no collected (17 h soak) - - 

a Soaking trial 1 was performed at a nominal compound concentration of 75 mM (15% DMSO).  
b Soaking trial 2 was performed after neutralizing the TFA salts by equimolar amounts of base at a compound 

  concentration of 37.5 mM (15% DMSO). 

Data processing and refinement lead to crystal structures of TcFPPS in complex with three 

of the synthesised compounds, MCN-1, MCN-4 and MCN-8. Strikingly, these compounds were 

not harboured in the enzyme’s active site. This result was unexpected, because the fragment 

merging approach was based on an almost perfect overlap suggesting that the binding site of the 

merged compound should be retained. In addition, docking using the software tool Glide[464] 

showed that compound MCN-1 could bind to the desired binding site without steric clashes. The 

binding poses differed slightly when docking the molecule with a protonated piperazine moiety or 

when docked in protonated state, but in both cases the binding poses were in good agreement with 

the binding poses of the fragment hits LDV and AWM. Nevertheless, all three compounds bind in 

the region corresponding to the binding site S1 (Figure 59 (A)), which is a small cavity on the 

protein surface formed by helices H, I and α3. The site was previously described in this work as 

binding site for lead compound 119 (PDB ID 6R08, chapter 5.2). In addition, several fragments 

identified in the FBS campaign were binding to this site. This included compounds AWM, LVV 

and AWV, which show site S1 as secondary binding site.  

Ligands MCN-1, MCN-4 and MCN-8 were refined to an occupancy of 0.77, 0.85 

and 0.73, respectively. Whilst ligand MCN-4 is excellently resolved as the mFo – DFc difference 

electron density map contoured at 3.0 σ indicates (summary of density maps, Appendix, 

Figure 79 (D – F)), ligands MCN-1 and MCN-8 were not entirely resolved (summary of density 
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maps, Appendix, Figure 79 (A – C) and (J – L)). The diffraction limits of the complexes are 

1.28 Å, 1.32 Å and 1.61 Å, and the coordinates have been deposited under PDB IDs 6R09, 6R0A, 

and 6R0B, respectively. Notably, the crystals structure of TcFPPS in complex with MCN-1 has 

the best diffraction limit ever obtained for a TcFPPS crystal. For collection and refinement statistics 

see Table 29 in the Appendix.  

Ligands MCN-1, MCN-4 and MCN-8 mainly show unspecific hydrophobic interactions 

and π-stacking with residue Phe256. The angles and distances to residue Gln318 are not ideal for 

H-bonding (Figure 59 (C) – (E)).  

 

 

Figure 59: Merged compounds bind to the surface-directed site S1 of TcFPPS. Figure is continued on the next page. 

For legend also see next page.  
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Figure 59: See also previous page. (A) Crystal structure of TcFPPS in complex with MCN-1 (PDB ID 6R09 (this 

work) residues interacting with the ligand are also depicted in stick representation). (B) Superimposition 

of the crystal structures of TcFPPS in complex with the compounds MCN-1, MCN-4, MCN-8, LDV, 

AWV and AWM (PDB IDs PDB IDs 6R09, 6R0A, 6R0B, 5QPN, 5QPG and 5QPF, respectively (this 

work) ligands and SO4
2+ ions are shown in stick representation, the protein backbone is shown in cartoon 

representation and Zn2+ ions are shown as green coloured spheres. (C) – (E) 2D structure diagram of 

ligands MCN-1, MCN-4, MCN-8, respectively, interacting with TcFPPS. Diagram was generated using 

PoseView[481] (F) Superimposition of the crystal structures of MCN-1, MCN-4 and MCN-8. (G) – (I) 

Binding site of ligands MCN-1, MCN-4 and MCN-8, respectively. Protein shown in surface 

representation. Refined 2Fo – Fc electron density map is contoured and represented as liquorice coloured 

mesh. Positive and negative Fo – Fc electron density map is contoured at 3.5 σ and represented as green 

and red coloured mesh, respectively.  

Superimposition shows a perfect overlap of ligands MCN-1 and MCN-4. Ligand MCN-8 

has a similar binding mode to compounds MCN-1 and MCN-4, but due to its chlorine substituent 

it is shifted upwards (Figure 59 (D) – (G)). For the derivative MCN-4 a secondary binding site at 

a crystal contact was observed corresponding to the SY site (summary of density maps, Appendix, 

Figure 79 (G – I)) that was previously observed for compound M0D, which was also identified in 

the FBS campaign by X-ray crystallography. 

5.6.2 Literature review revealed promising compounds with similar scaffolds 

An in-depth literature review revealed a compound with nanomolar activity for T. cruzi in 

the ChEMBL database. It is N-((1H-imidazol-2-yl)methyl)-N-(4-(benzo[d]thiazol-2-yl)phenyl) 

methanesulfon-amide (DNDi-1, CHEMBL2448735), which had been tested in vitro against 

TcFPPS  and exhibited an IC50 of 0.1 nM (Assay ID CHEMBL2448754). It was developed and 

tested by Keenan et al.[490] from the Drugs for Neglected Disease initiative (DNDi) and belongs to 

a series of compounds named CM74. A selection of compounds of this series is depicted in 

Figure 60. Whilst DNDi-1 has the benzothiazole scaffold in common with the herein synthesised 

compound series MCN-1 to MCN-12, a phenyl moiety forms the central moiety instead of a 

piperazine. In case these compounds bind to TcFPPS and are active site-directed, its sulphonamide 

moiety, might interact with the FARM and SARM in the way bisphosphonates interact with these 
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conserved regions. The hypothesis that the scaffolds might bind to the active site of FPPS is 

underscored by the fact that sulphates were previously observed to bind to this position. 

Additionally, crystal structures of TcFPPS described in this work accommodate a sulphate ion in 

close proximity to the active site-directed binders AWM, AWV and LDV (chapter 5.4).  

 

 

Figure 60: Chemical structure of MCN-1, compounds from the CM74 series[491] and RIS (27) and ZOL (28). Smiles 

codes and numbering of the compounds from the CM74 series in the Keenan publication[490] are given in 

Table 38 in the Appendix.  

Indeed, molecular docking of compound DNDi-1 into the closed-state TcFPPS (PDB ID 

1YHL[162b]) using the software tool Amber10:EHT[466] suggested its binding to the active site. The 

docking pose shows that the sulphonamide moiety interacts with the Mg2+ ions that are coordinated 

by Asp98 and Asp102 of FARM and Asp250 of the SARM. Whilst the benzothiazole moiety of 

fragment AWM is accommodated by a channel formed by helices D and F, the imidazole moiety 

of DNDi-1 is protruding into this channel. Overlays with the crystal structures of TcFPPS in 

complex with the N-BPs RIS and ZOL show that their aromatic side chains occupy the same space. 

The benzothiazole moiety of DNDi-1 is suggested to protrude into the IPP binding site where the 

nitrogen can form H-bonds with Lys48 and Gln91 (Figure 61). Structural comparison of TcFPPS 

in complex with N-BPs, which are strong and rapid active site-directed inhibitors, shows that the 

aromatic moieties of the N-BPs risedronate (27, RIS, Actonel®, Merck)[223] and zoledronate 

(28, ZOL, Zometa®, Novartis)[220] occupy the same space as the imidazole moiety of DNDi-1. In 

addition, the benzothiophene moiety of compound DNDi-1 protrudes from the DMAPP binding 

site into the IPP binding site (Figure 61). Superimposition of the ligands reveals that the compound 
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would be able to occupy the DMAPP and IPP binding site. Whether these compounds bind to 

TcFPPS awaits testing. 

 

 

Figure 61: Docking model of DNDi-1 binding to TcFPPS and comparison to crystal structures of TcFPPS in 

complex with the N-BPs ZOL and RIS and its natural substrate IPP and DMAPP (bound in the IPP site). 
(A) Docking pose of DNDi-1 binding to TcFPPS (PDB ID 1YHL[162b]). (B) Crystal structure of TcFPPS 

in complex with ZOL and IPP bound (PDB ID 3IBA[211]). (C) Crystal structure of TcFPPS in complex 

with RIS and DMAPP (PDB ID 1YHL[162b]). (D) Superimposition with crystal structure of TcFPPS in 

complex with ZOL and IPP (PDB ID 3IBA[211]) and RIS and DMAPP (PDB ID 1YHL[162b]) (backbones 

not shown). 

5.6.3 Discussion 

The binding modes of compounds MCN-1, MCN-4 and MCN-8 were unexpected. 

Although the compounds remained flat and unbranched scaffolds, it is tempting to speculate that 

the compounds did not bind to the active site because their increased size after merging might 

provoke steric clashes with the protein channel directing the compound to the active site. 

Co-crystallization experiments could have circumvent this issue. Nevertheless, in such 

experiments, steric crowding might be further exacerbated by the lack of electrostatic charges and 

the resulting poor compound solubility. Competition with other ligands occupying the binding site 

is unlikely, because the applied crystallization conditions were very similar to the ones which led 

to the identification of the fragment hits. Another reason why the compounds do not target the 

active site could be that the interactions formed by the merged fragments are not specific enough. 

Drwal et al.[492] reported that the binding mode between a fragment and a related drug-like ligands 

is conserved. Polar interactions are better conserved.  When looking at the fragments LDV and 

AWV that have been uses as starting points, there is only one energetically favoured H-bond 

formed by the indole moiety of fragments to Asp250. A second H-bond is formed by the piperidine, 

azepane and piperazine moiety of LDV, AWV and AWM, respectively. Nevertheless, this bond is 

not formed directly with the protein, but via a sulphate and Zn2+ ion. As the piperazine moiety is 

now part of the linker, its pKa values should differ from the ones found for the fragments. Even if 

docking experiments of MCN-1 in the protonated and un-protonated forms suggested very similar 
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binding poses, the un-protonated state would lead to the loss of the H-bond. The third important 

interaction is the π-stacking observed for the benzothiazole moiety of ligand AWM. However, this 

interaction is not specific. At binding site S1, π-stacking of the ligands with residue Phe256 is the 

key interaction. 

Nevertheless, these findings are also vital for the design of novel compounds in a second 

iteration. One starting point is to vary the pKa of the linking moiety. Determining the correct pKa 

value is difficult, because protonation and pKa values change in protein-ligand binding[493]. An 

increased pKa value leads to higher basicity and therefore will assure protonation and the ability 

to contribute as a charge-assisted H-bond. In addition, higher basicity will increase solubility in 

aqueous buffers. Other linking moieties that have higher pKa values are pyrrolidine or a piperidine. 

Another option could be an open-chain spacer, such as N-methylethane-1,2-diamine, which has a 

tertiary amine which is protonated in neutral aqueous buffer systems. Another option is to add 

nitrogen groups to the molecule to enable additional H-bond formation. Instead of an indole moiety, 

a 1H-pyrrolo[3,2-c]pyridine could contribute in a second H-bond. The findings related to 

compounds of the CM74 series suggest that a substituent that could directly interacting via 

Zn2+ ions and the aspartate-rich motifs FARM and SARM should be considered. These options 

require iterative exploration to ultimately lead to a high-affinity binder. In addition, compounds 

with higher solubility in aqueous buffer systems should be prioritized to enable testing with 

biophysical methods. 
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6. Concluding remarks and outlook 

As demonstrated in this work, unlabelled, 13C15N-labelled and biotinylated avi-tagged 

T. cruzi farnesyl pyrophosphate synthase (TcFPPS) can be obtained in sufficient amounts and 

purity for fragment screening campaigns, structural experiments, and biophysical characterisation. 

Furthermore, the novel, reliable, highly reproducible, and well-diffracting crystallization system 

that was established for TcFPPS exhibits excellent properties for fragment-based screening (FBS). 

This crystallization system had significant impact on this work but will also pave the way for future 

studies aiming to identify TcFPPS binders and contribute to structure-based lead design of TcFPPS 

inhibitors. 

The FBS by NMR campaigns identified 109 validated fragment hits. Several of them were 

further exploited by X-ray crystallography and revealed a first active site binder of a novel, 

non-bisphosphonate (non-BP) scaffold. Its identification underscored the power of Pan-Dataset 

Density Analysis (PanDDA) when dealing with partially bound fragments that require 

conformational changes of amino acid side chains. In addition, PanDDA accelerated analysis of 

the large batches of diffraction data sets obtained throughout this work. FBS by X-ray 

crystallography revealed several binders of a novel scaffold in the active site and also in additional 

binding sites in TcFPPS, which are spread over the entire protein. Thus, applying FBS by X-ray 

crystallography on TcFPPS was superior to previously conducted stepwise screening by NMR 

spectroscopy and follow-up in crystallisation experiments. The fragments identified by FBS by 

X-ray crystallography could provide opportunities to develop novel inhibitors for TcFPPS and will 

give new ideas for the drug discovery for Chagas disease. This applies in particular to the binders 

identified in the allosteric site of TcFPPS. All ligands that have been identified in this region show 

π-stacking with the phenyl side chain of residue Phe50 as key interaction with the protein but show 

two different binding modes. As this residue resembles a structural difference between the 

pathogenic FPPS and the human FPPS, it can be exploited to engineer inhibitor specificity. In 

addition, a novel mode of action and different physicochemical properties of inhibitors such as 

lower affinities to bone mineral might help to overcome the limitations related to the BP scaffold.  

Even though a potent lead compound was not discovered in the first cycle of 

fragment-to-lead optimization employing fragment merging and by virtual design, the fragment 

hits and the 50 crystal structures of TcFPPS-fragment complexes provided in this work will pave 

the way for future lead discovery campaigns. The large diversity of scaffolds and the 

accommodation in different binding sites are potential starting point for SBLD, molecular docking 

and pharmacophore analysis. Hence, they may result in a tool compound that could prove the 

concept of allosteric inhibition of TcFPPS.
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Appendix 

Table 27: Latest review articles on current efforts in drug discovery against CD. 

First author Year Topics covered Citation 

Paucar 2016 Overview of collaborative alliances; overview of clinical trials; 

target product profile (TPP) 

[7c] 

Ferreira 2016 Overview of collaborative partnerships; target-based approaches: focusing 

on cruzain and CYP51; phenotypic-based approaches 

[98] 

Moraes 2016 Methodology: HTS, HCS, Target-based screening [67] 

Salomão 2016 Detailed CD portrait, HCS, proteomics, drug repositioning, target enzymes: 

CYP51, cruzain, trypanothione reductase, flashlight on nitro compounds, 

clinical trials  

[68d] 

Bermudez 2016 Treatment: BNZ, NFX; targets: nitroreductase type I, ergosterol synthesis, 

toposisomerase inhibitors, cruzain, trans-sialidase, New compounds: 

repositioning 

[37] 

Scarim 2018 Phenotypic-based and target-based screening: nitroreductase, cruzain, SQS, 

FPPS 

[99a] 

Alonso-Padilla 2014 Short review on HTS [75] 

Zingales 2014 Stain diversity [30] 

Keenan 2015 CYP51, clinical trials, sterol biosynthesis [491] 

Duschak 2016 Extremely detailed review on targets and patented drugs for CD in the 

last 15 years 

[156b] 

Sanchez-Sanchez 2016 Targets: triosephosphate isomerase, glyceraldehyde 3-phosphate 

dehydrogenase, trypanothione reductase, cruzain, squalene synthase, 

FPPS and CYP51 

[494] 

Rodriguez 2016 Patent review [104] 

Gilbert 2013 Target-based and phenotypic-based [136c] 

Clayton 2010 List of clinical trials and target-based approaches [111b] 
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Table 28: Crystal structures of TcFPPS and TcFPPS complexes published by 2019. 

No PDB ID citation Diffraction limit 

(Å) 

Ligands 

1 IYHK [162b] 2.10 apo protein, SO4
2- 

2 IYHL [162b] 1.95 risedronate, DMAPP, SO4
2-, Mg2+, 

3 IYHM [162b] 2.50 alendronate, IPP, Mg2+, SO4
2- 

4 3IBA [211] 2.40 zoledronate, IPP, Mg2+, SO4
2- 

5 3ICK [211] 2.40 minodronate, IPP, Mg2+, SO4
2- 

6 3ICM [211] 2.20 1-(2-hydroxy-2,2-bis-phosphono-ethyl)-3-penyl-pyridinium, 

IPP, Mg2+, SO4
2- 

7 3ICN [211] 2.40 3-fluoro-1-(2-hydroxy-2,2-bis-phosphonoethyl)pyridinium, 

IPP, Mg2+, SO4
2- 

8 3ICZ [211] 2.15 3-[(1E)-but-1-en-1-yl]-1-(2,2-diphosphonoethyl)pyridinium, 

IPP, Mg2+ 

9 3ID0 [211] 2.81 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium, 

Mg2+, SO4
2- 

10 4DWB [170a] 2.10 [2-(pentylamino)ethane-1,1-diyl]bis(phosphonicacid), 

IPP, Mg2+, Na+, SO4
2-, acetate ion 

11 4DWG [170a] 2.01 [2-(heptylamino)ethane-1,1-diyl]bis(phosphonicacid), Mg2+, 

Na+, SO4
2-, acetate ion, di(hydroxyethyl)ether 

12 4DXJ [170a] 2.35 [2-(propylamino)ethane-1,1-diyl]bis(phosphonicacid), IPP, Mg2+, 

Na+, SO4
2-, acetate ion, triethylene glycol, di(hidroxyethyl)ether 

13 4DZW [170a] 3.05 [2-(cyclohexylamino)ethane-1,1-diyl]bis(phosphonicacid), 

IPP, Mg2+, SO4
2- 

14 4E1E [170a] 2.65 [2-(hexylamino)ethane-1,1-diyl]bis(phosphonicacid), IPP, Mg2+, Na+ 
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Table 29:  Data collection and refinement statistics of TcFPPS crystal structures. 

PDB ID 6R04 6R05 6R06 6R07 

compound     

PDB identifier apo JNE JMN 3N2 

naming in this thesis apo CS-18 CS-33 93 

     

Data collection     

X-ray source X10SA, SLS X10SA, SLS X10SA, SLS X10SA, SLS 

Wavelength (Å) 0.99991 0.99981 0.99999 0.99984 

Space group P6122 P6122 P6122 P6122 

Cell dimensions     

    a = b, c (Å) 57.65, 397.59 58.11, 396.69 58.065, 397.51 58.07, 397.51 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 66.26 – 1.47 

(1.50 – 1.47)a 

66.12 – 1.57 

(1.60 – 1.57)a 

50.29 – 1.56 

(1.59 – 1.56)a 

65.75 – 1.57 

(1.60 – 1.57)a 

Rmerge 0.060 (2.813)a 0.099 (3.102)a 0.097 (3.043)a 0.082 (4.446)a 

Unique reflections 68742 (3327)a 57627 (2762)a 58053 (2851)a 56620 (2739)a 

I / σI 20.8 (0.9)a 15.1 (0.8)a 15.5 (0.8)a 19.4 (0.7)a 

Completeness (%) 100 (100)a 100 (100)a 99 (100)a 99.7 (100)a 

Redundancy 18.1 (17.6)a 18.0 (18.3)a 17.8 (18.1)a 18.8 (18.8)a 

CC 1/2 1.000 (0.380 )a 0.998 (0.417)a 1.000 (0.342)a 1.000 (0.342)a 

     

Refinement     

Resolution (Å) 49.930 – 1.469 22.62 – 1.57 50.286 – 1.559 50.09 – 1.57 

No. reflections 68734 57590 58053 56619 

Rwork / Rfree 0.1868 / 0.2123 0.1832 / 0.2085 0.1954 / 0.2236 0.1885 / 0.2139 

No. atoms     

    Protein 2863 2843 2781 2843 

    Ligand/ion 16 34 54 39 

    Water 287 262 249 268 

B-factors Protein     

    Protein (Å2) 35.85 34.20 36.35 35.62 

    Ligand/ion (Å2) 44.85 37.27 38.32 36.56 

    Water (Å2) 45.46 45.39 43.41 47.25 

R.m.s. deviations     

    Bond length (Å) 0.01 0.01 0.01 0.01 

    Bond angles (°) 0.91 0.89 0.88 0.88 

Molprobity statistics     

    Ramachandran     

    Favoured (%) 98.04 98.31 98.60 99.15 

    Outliers (%) 0.00 0.00 0.00 0.00 

    Allowed (%) 1.96 1.69 1.4 0.85 

    All-atom clash score 1.04 1.05 1.36 1.04 

    Solvent content (%) 47.54 47.54 47.40 45.59 

a Values in parentheses are for the highest resolution shell. 

Table is continued on the next page.  



Appendix  

164 

 

Table 29 continued.  

PDB ID 6R08 6R09 6R0A 6R0B 

compound     

PDB identifier GO1 JMK JMT JMW 

naming in this thesis 119 MCN-1 MCN-4 MCN-8 

     

Data collection     

X-ray source X10SA, SLS X10SA, SLS X10SA, SLS X10SA, SLS 

Wavelength (Å) 0.99985 1.00000 1.00003 1.00003 

Space group P6122 P6122 P6122 P6122 

Cell dimensions     

    a = b, c (Å) 57.90, 398.23 58.11, 397,07 58.19, 395,89 58.09, 396.95 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 49.75 – 1.44 

(1.46- 1-44)a 

66.19 – 1.28 

(1.30 – 1.28)a 

65.98 – 1.32 

(1.34 – 1.32)a 

50.31 – 1.61 

(1.64 – 1.61)a 

Rmerge 0.053 (4.737)a 0.103 (4.077)a 0.074 (4.580)a 0.092 (3.595)a 

Unique reflections 74408 (3629)a 96670 (5120)a 95142 (4654)a 52572 (2540)a 

I / σI 23.1 (0.6)a 11.7 (0.7)a 16.7 (0.6)a 16.9 (0.7)a 

Completeness (%) 100.0 (100.0)a 92.3 (100.0)a 99.3 (99.6)a 98.9 (100.0)a 

Redundancy 18.7 (19.5)a 18.6 (18.6)a 18.7 (19.0)a 18.0 (17.5)a 

CC 1/2 1.000 (0.362)a 0.998 (0.462)a 1.000 (0.337)a 1.000 (0.318)a 

     

Refinement     

Resolution (Å) 48.62 – 1.44 66.179 – 1.28 65.98 – 1.32 50.310 – 1.612 

No. reflections 74407 96670 95139 52297 

Rwork / Rfree 0.1906 / 0.2130 0.2090 / 0.2319 0.1998 / 0.2151 0.1906 / 0.2295 

No. atoms     

    Protein 2868 2863 2852 2852 

    Ligand/ion 25 37 63 38 

    Water 335 264 363 278 

B-factors Protein     

    Protein (Å2) 34.49 27.91 26.86 35.29 

    Ligand/ion (Å2) 49.06 39.66 36.58 55.20 

    Water (Å2) 47.65 37.75 40.82 45.03 

R.m.s. deviations     

    Bond length (Å) 0.01 0.01 0.01 0.01 

    Bond angles (°) 0.90 0.93 0.94 0.90 

Molprobity statistics     

    Ramachandran     

    Favoured (%) 98.60 98.32 98.88 98.88 

    Outliers (%) 0.00 0.00 0.00 0.00 

    Allowed (%) 1.40 1.68 1.12 1.12 

    All-atom clash score 1.02 1.56 1.20 0.69 

    Solvent content (%) 47.19 47.42 47.42 47.38 

a Values in parentheses are for the highest resolution shell. 
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Table 30: Overview of crystallization experiments with TcFPPS. 

Experiment  Protein  Plate Drop Volumes  Ratio  Protein in 

    prot, res, seed prot:res:seed crystallization drop 

   (µL) (µL) (v/v) (mg · mL-1) 

Condition screen I Formulation Ia 2-drop 96-well SwissCi/MRC 0.5 0.3, 0.2, - 3:2 4.09 

Optimization I (Round 1) Formulation Ia 24-well VDX 18 mm 2.0 1.2, 0.8, - 3:2 4.09 

Optimization I (Round 2, Round 3) and seed crystals Formulation Ia 24-well VDX 18 mm 1.5 1.0, 0.5, - 2:1 4.54 

Condition screen II  Formulation IIb 2-drop 96-well SwissCi/MRC 0.5 0.3, 0.2, - 3:2 7.57 

Condition screen II with MMS Formulation IIb 2-drop 96-well SwissCi/MRC 0.6 0.3.0.2, 0.1 3:2:1 6.31 

Optimization II (Round 1) and apo crystals Formulation IIb 24-well VDX 18 mm 2.4 1.2, 0.8, 0.4 3:2:1 6.31 

Optimization II (Round 2) and apo crystals Formulation IIb 2-drop 96-well SwissCi/MRC 0.6 0.3, 0.2, 0.1 3:2:1 6.31 

Optimization II (Round 2) and apo crystals Formulation IIb 3-drop 96-well SwissCi/MRC 0.6 0.3, 0.2, 0.1 3:2:1 6.31 

Optimization II, (Round 3) and apo crystals Formulation IIb 2-drop 96-well SwissCi/MRC 0.6 0.3, 0.1, 0.2 3:1:2 6.31 

Optimization II, (Round 3) and apo crystals Formulation IIb CrystalDirect™ plates 0.3 0.15, 0.05, 0.1 3:1:2 6.31 

a  Protein formulation I is 6.81 mg · mL-1 TcFPPS in high salt buffer (50 mM TRIS, pH 8.0, 200 mM NaCl, 2 mM TCEP · HCl) 
b Protein formulation II is 12.20 mg · mL-1 – 12.70 mg · mL-1 in low salt buffer (10 mM TRIS, pH 7.4, 25 mM NaCl, 2 mM TCEP · HCl). For comparison, all experiments with   

Formulation II were calculated with at 12.62 mg · mL-1. 
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Table 31: Allosteric inhibitors of hFPPS that were selected for binding test to TcFPPS. 

No. Smiles string MW CAS Reaxys ID Ref. 

93 O=C(CC1=CSC2=CC=C(C=C12)Cl)O 226.68 17266-30-7 12244795 [209a] 

94 CC(C(C=C1Cl)=C(C=C1)S2)=C2CC(O)=O 240.71 51527-19-6 8057736 [209a] 

95 COC1=CC2=C(C=C1)C(CC(O)=O)=CO2 206.2 69716-05-8 384045 [209a] 

97 OC(C1=CC2=CC=C3C=CC=CC3=C2N1CC(O)=O)=O 269.26  24135224 [209a] 

98 OC(C1=CC2=CC=C3C=CC=CC3=C2N1CC4=CC(C(O)=O)=NO4)=O 336.31  24889801 [209a] 

101 OC(C1=NC(C(C2=CC=CC3=CC=CC=C23)=CC=C4)=C4C=C1)=O 299.33 1185407-78-6 19750428 [230] 

118 OC(CC1=CSC2=CC=C3C(C=CC=C3)=C21)=O 242.3 108900-25-0 14690 [209a] 

119 ClC1=CC(Cl)=CC2=C1NC(C(O)=O)=C2CC(O)=O 288.09  24889800 [209a] 

 

 

|Q8WS26|TcFPPS     1 ----------MASMERFLSVYDEVQAFLLDQLQSKYEIDPNRARYLRIMM     40 

                               ....:.|:..:.::...|.:......||....|| |:.:: 

|P14324|hFPPS      1 MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIAR-LKEVL     49 

 

|Q8WS26|TcFPPS    41 DTTCLGGKYFRGMTVVNVAEGFLAVTQHDEATKERILHDACVGGWMIEFL     90 

                     :...:||||.||:|||......:...:.|..:.:|    |...||.:|.| 

|P14324|hFPPS     50 EYNAIGGKYNRGLTVVVAFRELVEPRKQDADSLQR----AWTVGWCVELL     95 

 

|Q8WS26|TcFPPS    91 QAHYLVEDDIMDGSVMRRGKPCWYRFPGVTTQCAINDGIILKSWTQIMAW    140 

                     ||.:||.|||||.|:.|||:.|||:.|||... ||||..:|::....:.. 

|P14324|hFPPS     96 QAFFLVADDIMDSSLTRRGQICWYQKPGVGLD-AINDANLLEACIYRLLK    144 

 

|Q8WS26|TcFPPS   141 HYFADRPFLKDLLCLFQKVDYATAVGQMYDVTSMCDSNKLDPEVAQPMTT    190 

                     .|..::|:..:|:.||.:..|.|.:||..|:.:....|           . 

|P14324|hFPPS    145 LYCREQPYYLNLIELFLQSSYQTEIGQTLDLLTAPQGN-----------V    183 

 

|Q8WS26|TcFPPS   191 DFAEFTPAIYKRIVKYKTTFYTYLLPLVMGLLVSEAAASVEMNLVERVAH    240 

                     |...||...||.||||||.||::.||:...:.::......|....:::.. 

|P14324|hFPPS    184 DLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMAGIDGEKEHANAKKILL    233 

 

|Q8WS26|TcFPPS   241 LIGEYFQVQDDVMDCFTPPEQLGKVGTDIEDAKCSWLAVTFLGKANAAQV    290 

                     .:||:||:|||.:|.|..|...||:||||:|.|||||.|..|.:|...|. 

|P14324|hFPPS    234 EMGEFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVVQCLQRATPEQY    283 

 

|Q8WS26|TcFPPS   291 AEFKANYGEKDPAKVAVVKRLYSKANLQADFAAYEAEVVREVESLIEQLK    340 

                     ...|.|||:|:..|||.||.||.:.:|.|.|..||.:....:.:||||.. 

|P14324|hFPPS    284 QILKENYGQKEAEKVARVKALYEELDLPAVFLQYEEDSYSHIMALIEQYA    333 

 

|Q8WS26|TcFPPS   341 VKSPTFAESVAV---VWEKTHKRKK    362 

                     ...|.     ||   :..|.:||:| 

|P14324|hFPPS    334 APLPP-----AVFLGLARKIYKRRK    353 

 

Length: 375 

 

Identity:     128/375 (34.1%) 

Similarity:   188/375 (50.1%) 

Gaps:          35/375 ( 9.3%) 

 

Score: 537.5 

 

Figure 62: Pairwise sequence alignment of TcFPPS and hFPPS. Lines indicate identical residues, colons indicate 

similar residues, and points indicate mismatch. Sequence alignment was made using Emboss Needle 

(https://www.ebi.ac.uk/Tools/psa/emboss_needle/), which uses the Needleman-Wunsch algorithm[478]. 

 

https://www.ebi.ac.uk/Tools/psa/emboss_needle/
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Figure 63:  Sequence alignment of TcFPPS and hFPPS. The secondary structure is shown for TcFPPS (PDB ID 

1YHK [162b]). Spirals indicate α-helices. Red background, red letters and blue boxes indicate identical 

residues, similar residues and conserved positions, respectively. Blue arrows highlight residues that form 

the allosteric pocket in hFPPS and numbers indicate the corresponding residues in TcFPPS and hFPPS. 

Alignment was made using Clustal Omega[495] and EsPrit (v.3.0)[496]. 
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Figure 64: Alignment and ConSurf model reveal that Phe50 in TcFPPS is an exception. FPPS homologues included 

in the alignment against TcFPPS64-425 and conservation score for the residues in position 49 to 60. 

Position of Phe50 is marked with a yellow box. Residues in this position that are an exception are marked 

with a yellow circle. Figure is continued on the next page. Model for level of sequence variability was 

generated on the website http://consurf.tau.ac.il/2016/. Running Parameter: PDB file 6R04, chain 

identifier A, Alignment: Multiple sequence alignment was built using CLUSTALW, the homologues 

were collected from CLEAN_UNIPROT, homologue search algorithm: HMMER, HMMER E value: 

0.0001, number of HMMER iterations: 1, 200 sequences that sample the list of homologues to the query 

were selected by the user, maximal %ID between sequences: 95, minimal %ID for homologues: 35, 

Conservation Scores: Method of calculation: Bayesian, model of substitution for proteins: best fit. 

  

http://consurf.tau.ac.il/2016/
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Figure 64 continued.  
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Figure 65: Summary of density maps of the ligands 93-1, 93-2 and 119. (A) – (C) Ligand 93-1 and 93-2 

(PDB ID 6R07): mFo – DFc difference electron density map contoured at 3.00 σ, 2mFo – DFc electron 

density map contoured at 1.0 σ and 2Fo – Fc electron density map contoured at 1.00 σ, respectively. 

(D) – (F) Ligand 119 (PDB ID 6R08): mFo – DFc difference electron desity map contoured at 3.0 σ, 

2mFo – DFc electron density map contoured at 1.0 σ and 2Fo – Fc electron density map contoured at 

1.0 σ, respectively. 
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Table 32: Hits derived from the Novartis core library screen against TcFPPS. 

Noa Smiles string MW CAS 

PubChem ID 

Reaxys ID 

Hitb 

Tc 

Hitb  

Tb 

Hitb  

h 

TcFPPS: Effect  

in T1ρc 

(%) 

TbFPPS: Effect  

in T1ρc 

(%) 

hFPPS: Effect  

in T1ρc 

(%) 

CS-1 C(C1C=C(C(NC(C)=O)=CC=1)Cl)(C2CC2)C(OC)=O 281.72 63061-43-8 1 0 0 25, 23, 20, 20 6, 6 <5 

CS-2 C2(C1C=C(C(OC)=CC=1)OC)=C(N(C)N=C2C)N 247.30 8986549 1 0 0 40, 35, 34 <5 14, 13, 12 

CS-3 C2(C(C1=CC=NC=C1)=O)N(N=CC=2)C 187.20 63960949 1 0 0 26, 18, 14 <5 <5 

CS-4 C2(C(N1CCOCC1)=O)=C(C=C(N)C=C2)Cl 240.70 926201-77-6 1 0 0 26, 24, 16 7, 6 <5 

CS-5 C2(N1CCN(C)CC1)=NC(=C(C(OCC)=O)C=N2)N 265.31 682789-28-2 1 0 0 23, 22, 14 10, 9, 7 7 

CS-6 N2=NC(C1=CC=C(C(=O)N)C=C1)=CS2 205.22 28274622 1 0 0 25, 18 7, 5 10, 8, 6 

CS-7 C3(N1CCN(C)CC1)=CC2C(=CC=CC=2)N=C3 227.31 78641-22-2 1 0 0 40, 32, 27 8, 8, 7 12, 9, 9 

CS-8 C2(NC(NC1CCCCC1)=O)=CC(=NC(=N2)C)C 248.32 4412025 1 0 0 45, 40 6, 0 7, 7 

CS-9 C23N(CC1C=CC(Cl)=CC=1)C=NC=2N=CN=C3NC 273.72 110171704 1 1 0 22, 21, 18, 8 30, 15, 13, 11 <5 

CS-10 C1(C3C(N(C)C2C(N=1)=CC=CC=2)=CC=CC=3)N4CCNCC4 292.40 69041412 1 1 0 42,38 27, 24, 32, 22 5 

CS-11 C1(CS(C)(=O)=O)C(=CC=CC=1Cl)Cl 239.11 20018-02-4 0 1 1  32, 14, 11 37, 36, 23 

CS-12 C12(CC3CC(C1)CC(C2)C3)NCCN 194.31 37818-93-2 1 1 1 35, 31, 19 26, 21, 16 30, 19, 18 

CS-13 N(C1=CC(=CC=C1)Cl)C2C=C(N=CN=2)N 220.66 872511-13-2 1 1 1 30, 30 31, 23, 22, 14 57, 43, 33 

CS-14 C12C(=C(C=C(C=1)OC)N)N=CC=C2 174.20 90-52-8 1 1 1 35, 30, 28 26 ,21, 15 50, 33, 30, 28 

CS-15 C1(=CC=C(Cl)C=C1)OCCCN2C=CN=C2 236.70 3599333 1 1 1 46, 45, 22 33, 26, 21, 9, 9  32, 27, 26, 26 

CS-16 C23C(CN1C=CN=C1N2)=CC(OC)=C(C=3OC)OC 261.29 13345518 1 1 1 50, 46 35, 28, 26, 20 22, 22 

CS-17 C23C(N1CCN(C)CC1)=NC(Cl)=CC=2C=CC=C3 261.78 11441642 1 1 1 27, 20, 14 29, 28, 25,13,13 29, 26, 14 

CS-18 C1(N=C(C=CC=1)C)NCC2C=CC=CC=2 198.27 70644-47-2 1 1 1 62, 60, 50 29, 27, 14 39, 38, 33 

CS-19 C23C1=C(CCCC1)SC=2N=CN=C3N(C)C 233.32 871807-58-8 1 1 1 60, 32, 30 23, 16 59, 23 

CS-20 C2(C1N=C(N)SC=1)=C(C=CC=C2)O 192.22 60135-72-0 1 1 1 51, 50, 40 22, 22, 17, 8 65 

CS-21 C1=CC=C2C(=C1)CC(N2C(=O)OCC3=CC=CC=C3)CO 283.32 135829-04-8 1 1 1 60, 27, 22 28, 21 29, 21 

CS-22 C1(C=CC=C(N=1)N)CC 122.17 21717-29-3 1 1 1 37, 36, 34, 21 20, 18, 17, 14 26, 23, 21, 13, 8 
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CS-23 C2(OC1C=CC(O)=CC=1)C(=CC(Cl)=CN=2)Cl 256.10 60075-03-8 1 1 1 45, 40, 38 48, 37, 33 45, 32 

CS-24 C23(N(C(C1=CC=CC=C1C2)=O)C)CCCCC3 229.31 21868-94-0 1 1 1 38, 23, 22, 21, 18 21, 20, 19, 15, 12 38, 21, 20, 7 

CS-25 C2(C1C=CN=CC=1)N=C(N=CC=2)NC 186.21 66522-26-7 1 0 1 33, 21, 19 <5 36, 25, 21, 21 

CS-26 C1(C(=CC(CCNC(C)=O)=CC=1)OC)OCC2=CC=CC=C2 299.37 39731-97-0 1 0 1 35, 28, 26, 25 10, 7, 6 24, 20, 19, 18 

CS-27 C2(N1C(CCC1)=O)C(=CC=C(C=2)Cl)C 209.69 82077906 1 0 1 21, 18 10, 8 35, 27, 21 

CS-28 C12=C(SC=C1C(O)=O)C=CC=C2 178.21 5381-25-9 1 0 1 39, 34, 28 9 44, 40, 26 

CS-29 C2(NC(N1CCOCC1)=O)C=C(C(C)=CC=2)C 234.30 4464839 1 0 1 27, 24, 20, 17 5, 4 39, 28, 20, 19 

CS-30 C12=C(C=C(N)C=C1)OCC2 135.19 57786-34-2 1 0 1 35, 14, 7, 6 <5 55, 55, 46 

CS-31 C12=C(C=CC=C1OCC(NC)=O)C=CC(=N2)C 230.27 3135-42-0 1 0 1 36, 29, 28, 25 6, 3 42, 36, 35, 31 

CS-32 C1(C(=CC=CC=1Cl)Cl)OCC(O)=O 221.02 575-90-6 1 0 1 26, 24 6 50 

CS-33 [C@@H]2(OC1C=C(C(C)=CC=1)C)[C@H](CN(CC#C)CC2)O 259.33 13315827 1 0 1 27, 22, 20 10, 9, 7 39, 35, 33 

CS-34 C1(C(=CC(Cl)=CC=1)N)CO 157.60 37585-16-3 1 0 1 21, 20, 19 <5 30, 22, 20 

CS-35 C2(C1C(=CC=CC=1)Cl)=C(N=CO2)C(OC)=O 237.62 89204-91-1 1 0 1 38, 35, 15 5 44, 12, 

CS-36 N2=C(C=C(OC1=CC=C(C=C1)C)N=C2)Cl 220.66 124040-99-9 1 0 1 24, 23, 18, 4 5, 5 32, 19, 8 

CS-37 C12=C(C=CC(=C1)S(NC(NC)=O)(=O)=O)C=CC=C2 264.30 23548392 1 0 1 48, 47, 2 x 29 6 2 x 46, 24, 22 

CS-38 C12C(NC(=C1)C(OC)=O)=CC=CC=2 175.20 1202-04-6 1 0 1 45, 34, 29 5, 5, 0 39,  33, 31, 30 

CS-39 C2(C1=CC=CC=C1Br)NN=NN=2 225.05 73096-42-1 1 0 1 33, 32, 19 <5 42, 40, 39 

CS-40 C1(=NC(=CS1)C(O)=O)C2C=CC(C)=CC=2 219.28 17228-99-8 1 0 1 46, 42, 38, 14, neg, 13, 7 54, 21, 17 

a Only publically known compounds are listed. 
b Fragment hits that are ranked with a one for the corresponding protein showed a positive effect in waterLOGSY experiments. 
c Signal decrease for several signals is given ranked by its strength.  
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Figure 66: Chemical structures of fragment hits from the Novartis core library. Only publically known hits are shown. See Table 32.  
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Table 33: Hits derived from the Novartis fluorine library screen against TcFPPS. 

Noa Smiles string MW CAS Hit Hit  Hit  TcFPPS: Effect in 19F CPMGb 

   PubChem ID TcFPPS TbFPPS hFPPS  

   Reaxys ID    mix (%), single (%) 

FS-1 FC(F)(F)C1=CC=C(NC(OC)=O)C=C1 219.16 23794-77-6 1 0 0 46, 47 

FS-2 FC(F)(F)C1=NN=C(NC2=CN=CC=C2)S1 246.21 2725838 1 0 0 44, 51 

FS-3 O=C(C1=CN=CC=C1)NC2=NC=C(C(F)(F)F)C=C2 267.21 84350204 1 0 0 48, 50 

FS-4 O=C(NC)C1=CC(C(C(F)(F)F)=N2)=C(S1)N2C 263.24 44769570 1 0 0 47, 51 

FS-5 O=C(NC1=CC=C(C=C1)C(F)(F)F)C2=C(C)ON=C2C 284.24 13679250 1 0 0 60, 42 

FS-6 FC(C1=CC=C(NC(C2=CN=CC=C2)=O)C=C1)(F)F 266.22 25617-45-2 1 0 0 53, 52 

FS-7 NC1=CC(C(F)(F)F)=CC=C1N2CCOCC2 246.23 784-57-6 1 0 0 41, 54 

FS-8 N#CC(C(C(F)(F)F)=C1)=CC=C1NC(C)=O 228.19 97760-99-1 1 0 0 52, 58 

FS-9 OC1=C(C(F)(F)F)C=C([N+]([O-])=O)C=C1C(F)(F)F 275.10 13784430 1 1 0 27, 31 

FS-10 FC(F)(F)C1=CC(/C=N/NC(N)=N)=CC(C(F)(F)F)=C1 298.20 23557-66-6 1 1 0 45, 47 

FS-11 FC(F)(F)C(C=C1)=CC(N)=C1[N+]([O-])=O 206.13 402-14-2 1 1 1 66, 50 

FS-12 FC(F)(F)C1=NC(NC2=CC=C(Cl)C=C2)=NC(N)=N1 289.63 53387-70-5 1 1 1 44, 42 

FS-13 FC(F)(F)C1=NN2C(C(C3=CC=CS3)=C1)=NN=C2 270.24 760142 1 1 1 47, 50 

FS-14 NC1=CC(C(F)(F)F)=CC=C1C(OC2)=NC2(C)C 258.22 1361005-81-3 1 1 1 60, 66 

FS-15 NC1=C(C(NC2=CC(C(F)(F)F)=CC=C2)=O)C=CC=C1 280.25 20878-52-8 1 1 1 51, 45 

FS-16 FC(F)(F)/C(C1=CSC=C1)=N/O 195.18 138395-47-8 1 1 1 23, 32 

FS-17 ClC1=C(C(F)(F)F)C=C([N+]([O-])=O)C(N)=C1 240.59 35375-74-7 1 1 1 34, 36 

FS-18 CC1=CC([N+]([O-])=O)=C(C(F)(F)F)C=C1N 220.18 129319121 1 1 1 37, 34 

FS-19 NC1=NC2=CC=C(C(F)(F)F)C=C2S1 218.20 777-12-8 1 1 1 27, 44 

FS-20 FC(F)(F)C1=CC(Cl)=C(C2=CN=C(N=C2)N)N=C1 274.63 1483168 1 0 1 60, 64 

FS-21 OC(CO1)=C(C1=O)C2=CC=CC(C(F)(F)F)=C2 244.19 28370057 1 0 1 55, 70 

FS-22 CC1=NN(C=C2C3=CC(C(F)(F)F)=CC=C3)C(N=C2)=N1 278.24 13322897 1 0 1 41, 64 

FS-23 FC(F)(F)C(C=C1Br)=CC(N)=C1N 255.02 113170-72-2 1 0 1 41, 23 
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FS-24 NC1=CC(N2C=NC(C)=C2)=CC(C(F)(F)F)=C1 241.21 641571-11-1 1 0 1 13, 41 

FS-25 FC(F)(F)C1=C(C=CC=C1)C2=NC(C3=CC=NC=C3)=NO2 291.23 1486742 1 0 1 40, 42 

FS-26 FC(F)(F)C1=CC(Cl)=C(N=C1)C2=CNN=C2 247.61 1473368 1 0 1 47, 43 

FS-27 FC(F)(F)C1=CC=CC(NC2=NC=NN2)=C1 228.19 2766475 1 0 1 60, 60 

FS-28 NC1=CC(C2=CC=CC=N2)=CC(C(F)(F)F)=C1 238.21 11405061 1 0 1 18, 26 

FS-29 O=C1N(CC2=CC(C(F)(F)F)=CC=C2)C(CSC1)=O 289.28 1478957 1 0 1 50, 58 

FS-30 FC(F)(F)C1=CC=C(C2=NC(C)=C(CO)S2)C=C1 273.29 317318-96-0 1 0 1 50, 62 

FS-31 O=C1N2C(N(CC=C)CC2)=NC3=CC=C(C(F)(F)F)C=C13 295.29 85964-93-8 1 0 1 56, 65 

FS-32 N#CC1=CC(C2=CC=CC(C(F)(F)F)=C2)=CNC1=O 264.21 76053-36-6 1 0 1 50, 47 

FS-33 FC(F)(F)C1=CC=C(NC2=NC(C)=CC(C)=N2)C=C1 267.28 4644876 1 0 1 50, 50 

FS-34 FC(F)(F)C1=CC(N)=CC=C1N2C=CN=C2 227.20 351324-53-3 1 0 1 50, 70 

FS-35 N#CC1=NNC2=CC=C(C(F)(F)F)C=C21 211.13 72218411 1 0 1 32, 21 

a Only publically known compounds are listed. 
b Hit criteria for effect in 19F CPMG ≥20% 
  



Appendix  

176 

 

 

Figure 67: Chemical structures of fragment hits from the Novartis fluorine library. Only publically known hits are shown. See Table 33. 
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|Q8WS26|TcFPPS     1 MASMERFLSVYDEVQAFLLDQLQSKYEIDPNRARYLRIMMDTTCLGGKYF     50 

                      ..|:.|:.||||:|.|||::|:.|:::||||.||||.|||||||||||. 

|Q86C09|TbFPPS     1 -MPMQMFMQVYDEIQMFLLEELELKFDMDPNRVRYLRKMMDTTCLGGKYN     49 

 

|Q8WS26|TcFPPS    51 RGMTVVNVAEGFLAVT------QHDEATKERILHDACVGGWMIEFLQAHY     94 

                     ||:||::|||..|:::      :.|.|.::|:||||||.||||||||||| 

|Q86C09|TbFPPS    50 RGLTVIDVAESLLSLSPNNNGEEDDGARRKRVLHDACVCGWMIEFLQAHY     99 

 

|Q8WS26|TcFPPS    95 LVEDDIMDGSVMRRGKPCWYRFPGVTTQCAINDGIILKSWTQIMAWHYFA    144 

                     ||||||||.||.|||||||||.|.||.|||||||::|||||.:||.|:|| 

|Q86C09|TbFPPS   100 LVEDDIMDNSVTRRGKPCWYRHPDVTVQCAINDGLLLKSWTHMMAMHFFA    149 

 

|Q8WS26|TcFPPS   145 DRPFLKDLLCLFQKVDYATAVGQMYDVTSMCDSNKLDPEVAQPMTTDFAE    194 

                     |||||:||||.|.:|||.|||||:||||||.|||||||:|:||.|||||| 

|Q86C09|TbFPPS   150 DRPFLQDLLCRFNRVDYTTAVGQLYDVTSMFDSNKLDPDVSQPTTTDFAE    199 

 

|Q8WS26|TcFPPS   195 FTPAIYKRIVKYKTTFYTYLLPLVMGLLVSEAAASVEMNLVERVAHLIGE    244 

                     ||.:.|||||||||.:|||||||||||:||||..:|:|.:.|.:|.|:|| 

|Q86C09|TbFPPS   200 FTLSNYKRIVKYKTAYYTYLLPLVMGLIVSEALPTVDMGVTEELAMLMGE    249 

 

|Q8WS26|TcFPPS   245 YFQVQDDVMDCFTPPEQLGKVGTDIEDAKCSWLAVTFLGKANAAQVAEFK    294 

                     ||||||||||||||||:||||||||:||||||||||||.||::||||||| 

|Q86C09|TbFPPS   250 YFQVQDDVMDCFTPPERLGKVGTDIQDAKCSWLAVTFLAKASSAQVAEFK    299 

 

|Q8WS26|TcFPPS   295 ANYGEKDPAKVAVVKRLYSKANLQADFAAYEAEVVREVESLIEQLKVKSP    344 

                     ||||..|..|||.|:|||.:|:||.|:.||||.|..:|:.|||:|::.|| 

|Q86C09|TbFPPS   300 ANYGSGDSEKVATVRRLYEEADLQGDYVAYEAAVAEQVKELIEKLRLCSP    349 

 

|Q8WS26|TcFPPS   345 TFAESVAVVWEKTHKRKK    362 

                     .||.||..:|.||:||:| 

|Q86C09|TbFPPS   350 GFAASVETLWGKTYKRQK    367 

 

Length: 368 Identity:     254/368 (69.0%) 

  Similarity:   306/368 (83.2%) 

  Gaps:           7/368 ( 1.9%) 

Score: 1374.5 

Figure 68: Pairwise sequence alignment of TcFPPS and TbFPPS. Lines indicate identical residues, colons indicate 

similar residues, and points indicate mismatch. Sequence alignment was made using Emboss Needle 

(https://www.ebi.ac.uk/Tools/psa/emboss_needle/), which applies the Needleman-Wunsch 

algorithm[478]. 

 

  



Appendix  

178 

 

|Q8WS26|TcFPPS ----------MASMERFLSVYDEVQAFLLDQLQSKYEIDPNRARYLRIMMDTTCLGGKYF 50 

|Q86C09|TbFPPS -----------MPMQMFMQVYDEIQMFLLEELELKFDMDPNRVRYLRKMMDTTCLGGKYN 49 

|P14324|hFPPS  MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEI-GDAIARLKEVLEYNAIGGKYN 59 

                             : *:. :.::  .* ::   : ::  :    *: ::: ..:****  

 

|Q8WS26|TcFPPS RGMTVVNVAEGFLAVTQH------DEATKERILHDACVGGWMIEFLQAHYLVEDDIMDGS 104 

|Q86C09|TbFPPS RGLTVIDVAESLLSLSPNNNGEEDDGARRKRVLHDACVCGWMIEFLQAHYLVEDDIMDNS 109 

|P14324|hFPPS  RGLTVVVAFRELVEPRK----------QDADSLQRAWTVGWCVELLQAFFLVADDIMDSS 109 

               **:**: . . ::                   *: * . ** :*:***.:** *****.* 

 

|Q8WS26|TcFPPS VMRRGKPCWYRFPGVTTQCAINDGIILKSWTQIMAWHYFADRPFLKDLLCLFQKVDYATA 164 

|Q86C09|TbFPPS VTRRGKPCWYRHPDVTVQCAINDGLLLKSWTHMMAMHFFADRPFLQDLLCRFNRVDYTTA 169 

|P14324|hFPPS  LTRRGQICWYQKPGVGLDA-INDANLLEACIYRLLKLYCREQPYYLNLIELFLQSSYQTE 168 

               : ***: ***: *.*  :. ***. :*::    :   :  ::*:  :*:  * : .* *  

 

|Q8WS26|TcFPPS VGQMYDVTSMCDSNKLDPEVAQPMTTDFAEFTPAIYKRIVKYKTTFYTYLLPLVMGLLVS 224 

|Q86C09|TbFPPS VGQLYDVTSMFDSNKLDPDVSQPTTTDFAEFTLSNYKRIVKYKTAYYTYLLPLVMGLIVS 229 

|P14324|hFPPS  IGQTLDLLTA-----------PQGNVDLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMA 217 

               :**  *: :               ..*:..**   ** ******::*:: **:. .: :: 

 

|Q8WS26|TcFPPS EAAASVEMNLVERVAHLIGEYFQVQDDVMDCFTPPEQLGKVGTDIEDAKCSWLAVTFLGK 284 

|Q86C09|TbFPPS EALPTVDMGVTEELAMLMGEYFQVQDDVMDCFTPPERLGKVGTDIQDAKCSWLAVTFLAK 289 

|P14324|hFPPS  GIDGEKEHANAKKILLEMGEFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVVQCLQR 277 

                     :   .:.:   :**:**:*** :* *  *.  **:****:* *****.*  * : 

 

|Q8WS26|TcFPPS ANAAQVAEFKANYGEKDPAKVAVVKRLYSKANLQADFAAYEAEVVREVESLIEQLKVKSP 344 

|Q86C09|TbFPPS ASSAQVAEFKANYGSGDSEKVATVRRLYEEADLQGDYVAYEAAVAEQVKELIEKLRLCSP 349 

|P14324|hFPPS  ATPEQYQILKENYGQKEAEKVARVKALYEELDLPAVFLQYEEDSYSHIMALIEQYAAPLP 337 

               *.  *   :* ***. :  *** *: **.: :* . :  **     .:  ***:     * 

 

|Q8WS26|TcFPPS TFAESVAVVWEKTHKRKK 362 

|Q86C09|TbFPPS GFAASVETLWGKTYKRQK 367 

|P14324|hFPPS  P--AVFLGLARKIYKRRK 353 

                    .  :  * :**:* 

 

Percent Identity  Matrix 

 

|Q8WS26|TcFPPS   35.28  100.00   70.36 

|Q86C09|TbFPPS   37.13   70.36  100.00 

|P14324|hFPPS   100.00   35.28   37.13 

 

Figure 69: Sequence alignment and identity matrix of hFPPS, TcFPPS and TbFPPS. Asterisks indicate fully 

conserved residues, colons indicate conserved substitutions of residues (strongly similar properties), and 

points indicate semi-conserved substitutions of residues (weakly similar properties). Sequence alignment 

was made using Clustal Omega (v.1.2.4.) (https://www.ebi.ac.uk/Tools/msa/clustalo/). Identity matrix 

was generated using Clustal (v.12.1). 
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Figure 70: Sequence alignment of TcFPPS with the sequence of TbFPPS and hFPPS. In the top the secondary 

structure of TcFPPS (PDB ID 1YHK) is shown. Spirals indicate α-helices, TT strict β-turns and arrows 

indicate β-strands. Red background indicates identical residues, red letters indicate similar residues, and 

blue boxes indicate conserved positions. Sequence alignment was made using EsPrit (v.3.0)[496]. 

  



Appendix  

180 

 

Figure 71: Summary of density maps of the ligands JNE and JMN. (A) – (C) Ligand JNE (PDB ID 6R05): 

mFo – DFc difference electron desity map contoured at 3.0 σ, 2mFo – DFc electron density map contoured 

at 1.0 σ and 2Fo – Fc electron density map contoured at 1.0 σ, respectively. (D) – (F) Ligand JMN 

(PDB ID 6R06): mFo – DFc difference electron desity map contoured at 3.0 σ, 2mFo – DFc electron 

density map contoured at 1.0 σ and 2Fo – Fc electron density map contoured at 1.0 σ, respectively. 
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Figure 72: 302 in-house datasets analysed with PanDDA. (A) Resolution limit. (B) R-free and R-work. (C) RMSD 

to reference structure. (D) Unit cell volume variation. (E) Cell axis variation. (F) Cell angle variation. 

On the y-axis the count is plotted. 
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Figure 73: Datasets analysed of the XChem campaign with PanDDA. (A) Resolution limit. (B) R-free and R-work. 

(C) RMSD to reference structure. (D) Unit cell volume variation. (E) Cell axis variation. (F) Cell angle 

variation. On the y-axis the count is plotted. 
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Table 34: Overview of 35 structural models that resulted from the XChem campaign. 

No X-tal PDB ID PDB ID XChem identifier Smiles string MW Siteb Occupancy Soaking 

time 

Diffraction 

limit 
   liganda   (Da)   (hh:mm) (Å) 

1 x0051 5QPD LT7 FMOPL000293a Cc1ccc(cc1)c2nc(on2)C[NH2+]C(C)C 232.31 6 0.60 03:22 1.93 

2 x0058 5QPE AWG FMOPL000295a c1ccc(c(c1)N)Nc2[nH]c3ccccc3n2 224.27 5 0.82 03:27 1.77 

3 x0064 5QPF AWM FMOPL000478a C[NH+]1CCN(CC1)c2nc3ccccc3s2 234.34 1 / 3 0.082 / 0.82 03:31 1.50 

4 x0076 5QPG AWV FMOPL000291a c1ccc2c(c1)c(c[nH]2)C[NH+]3CCCCCC3 229.35 1 / 3 0.95 / 0.79 03:38 1.58 

5 x0086 5QPH LUS FMOPL000315a CCC1CCC(CC1)[NH+]2CCOCC2 198.33 3 0.66 03:46 1.86 

6 x0106 5QPI GQM FMOPL000554a COc1ccc(c(c1)O)c2cc[nH]n2 190.20 6 0.54 03:58 1.67 

7 x0129 5QPJ JGJ FMOPL000465a C[C@H](c1ccccc1)NC(=O)COC 193.25 1 / 6  0.82 / 0.66 03:21 1.41 

8 x0163 5QPK LUY FMOPL000586a c1ccc(cc1)CCNc2[nH]c3ccccc3n2 237.31 3 0.56 03:39 1.50 

9 x0165 5QPL M0J FMOPL000464a C[C@@H](CNC(=O)Nc1ccccc1)O 194.23 6 0.66 03:40 1.41 

10 x0168 5QPM LV1 FMOPL000500a c1cc(cc(c1)O)NC(=O)Nc2ccc(cc2)F 246.24 5 0.72 03:24 1.68 

11 x0196 5QPN LDV FMOPL000576a CC1CC[NH+](CC1)Cc2c[nH]c3c2cccc3 229.35 3 0.77 03:43 1.45 

12 x0197 5QPO GQP FMOPL000574a c1ccc2c(c1)ncn2Cc3ccc(cc3)F 226.25 2 0.94 03:43 1.60 

13 x0231 5QPP LV4 FMOPL000512a c1ccc(c(c1)NC(=S)N)OC(F)(F)F 236.21 1/2/2/6 0.72/0.54/0.54/0.67 03:52 1.48 

14 x0232 5QPQ LV7 FMOPL000631a CC(=O)Nc1ccccc1C(=O)NN 193.21 1 0.94 03:52 1.49 

15 x0246 5QPR LVD XST00001145b c1ccc(cc1)CONC(=O)N 166.18 2 0.86 04:00 1.67 

16 x0273 5QPS LVP FMOPL000644a c1ccc(c(c1)NNC(=O)c2ccno2)F 221.19 4 / 5 0.68 / 0.82 02:56 1.61 

17 x0284 5QPT LVV FMOPL000642a Cc1ccc(cc1)C[NH+]2CCS(=O)(=O)CC2 240.34 1 / 3 / 11 0.68/0.58/0.74 03:04 1.46 

18 x0286 5QPU JHS FMOPL000733a CC(=O)NCC1(CCOCC1)c2ccccc2 233.31 2 0.88 03:04 1.44 

19 x0304 5QPV LWA FMOPL000416a c1cc(ccc1C(=O)N)NC(=O)[C@@H]2CCCO2 234.26 SX (6) / 16 0.53 / 1.00 03:21 1.60 

20 x0310 5QPW JH7 FMOPL000632a Cn1c(cc(=O)[nH]1)Nc2ccccc2 189.22 1 / 5 0.88 / 0.87 03:24 1.72 

21 x0316 5QPX LWD FMOPL000534a c1ccc(cc1)C(=O)Nc2ccc3c(c2)cccn3 248.29 4 / 5 0.70 / 0.70 03:01 1.67 

22 x0321 5QPY JH1 FMOPL000449a CCn1cc(cn1)C(=O)NCc2ccc(cc2)F 247.27 5 0.70 03:36 1.67 

23 x0325 5QPZ AYV FMOPL000524a CC(CO)(CO)NC(=O)Nc1ccccc1 244.26 5 / 6 0.70 / 0.72 03:38 1.62 

24 x0336 5QQ0 LWV XST00000046b c1ccc(c(c1)N)N2CCOCC2 178.24 11 0.78 03:46 1.60 

25 x0355 5QQ1 LX4 FMOPL000699a C1CCC(C1)C(=O)N2CCNC(=O)C2 196.25 2 0.70 03:58 1.97 
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26 x0359 5QQ2 MJ4 FMOPL000693a Cc1ccc(s1)C[NH2+]C[C@@H](C)O 186.29 3 0.62 04:06 1.73 

27 x0360 5QQ3 LXA FMOPL000672a COCC(=O)NCc1[nH]c2ccccc2n1 219.24 2 / 2 / 12 0.84 / 0.84 / 0.64 04:06 1.60 

28 x0406 5QQ4 LX7 FMOPL000276a c1cc(ccc1NC(=S)N)OC(F)(F)F 236.21 2 / 5 / 12 0.78 / 0.66 / 0.74 01:56 1.58 

29 x0411 5QQ5 JJM PKTTA024495b Cc1cccc(c1)Nc2c3cnn(c3ncn2)C 239.28 5 0.78 02:00 1.68 

30 x0483 5QQ6 LXJ FMOOA000530a O=C(N1CC[C@@H]2CNC(=O)[C@H]2CC1)c3ccccc3 258.32 11 0.66 03:01 1.94 

31 x0515 5QQ7 LXM FMOOA000562a OC[C@@H]1CN([C@@H]2[C@H]1Oc3ccccc23)C(=O)c4ccccc4 295.34 5 0.64 03:20 1.61 

32 x0516 5QQ8 LXS FMOOA000563a CCN1C(=O)CN([C@H]2[C@H](O)[C@@H]3O[C@H]2c4ccccc34)C1=O 288.30 2 0.78 03:21 1.62 

33 x0520 5QQ9 M0D FMOOA000567a NC(=O)CN1C[C@H](O)[C@@H]2C[C@@H]1Cc3c2[nH]c4ccccc34 285.35 SY (3) 0.76 03:24 1.61 

34 x0596 5QQA LZV FMOOA000648a CCOC(=O)C1CN2N(CCC2=O)C13CCCC3 252.31 2 0.70 04:07 2.20 

35 x0623 5QQB LZY FMOOA000676a O=C1CCNc2ccccc2CN1CC3CC3 230.31 2 0.66 03:45 1.58 

a Fragment binder of crystal structures 1 – 29 and 30 – 35 derived from the Diamond-SGC poised library (DSPL) library and Keymical fragments library (EDELRIS). 
b Binding sites 3 and 6 correspond to the active and allosteric binding site, respectively 
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Table 35: XChem campaign: Data collection and refinement statistics of the TcFPPS structural models. 

PDB ID 5QPD 5QPE 5QPF 5QPG 5QPH 

compounda      

PDB identifier LT7 AWG AWM AWV LUS 

XChem identifier FMOPL000293a FMOPL000295a FMOPL000478a FMOPL000291a FMOPL000315a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.83, 395.30 57.86, 395.38 57.90, 395.16  58.03, 396.05 57.85, 396.78 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 197.67 – 1.93 197.66 – 1.77 98.82 – 1.50 198.04 – 1.58 132.29 – 1.86 

 (1.98 – 1.93)b (1.82 – 1.77)b (1.54 – 1.50)b (1.62 – 1.58)b (1.91 – 186)b 

Rmerge 0.188 (2.834)b 0.201 (2.981)b 0.122 (2.130)b 0.095 (1.845)b 0.18 (3.638)b 

Unique reflections 31230 40215 65050 54689 34907 

I / σI 12.2 (2.49)b 11.5 (1.86)b 12.9 (1.64)b 16.6 (2.72)b 11.5 (2.40)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 98.2 (95.6)b 100 (100)b 

Redundancy 18.2 (19.3)b 18.3 (17.5)b 16.6 (11.8)b 17.8 (14.7)b 18.3 (19.4)b 

Refinement      

Resolution (Å) 65.88 – 1.93 65.90 – 1.77 49.74 – 1.50 66.01 – 1.58 66.13 – 1.86 

No. reflections 29365 37756 64258 51049 32708 

Rwork / Rfree 0.201, 0.259 0.198, 0.247 0.213, 0.248 0.198, 0.237 0.202, 0.256 

No. atoms      

    Protein 2860 2871 2880 2871 2871 

    Ligand/ion 33 37 63 60 30 

    Water 301 317 330 336 304 

B-factors overall (Å2) 33.27 24.58 22.18 24.51 31.71 

R.m.s. deviations      

    Bond length (Å) 0.019 0.021  0.011 0.020 

    Bond angles (°) 1.646 1.854  1.711 1.833 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 98 98 98 98 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 2 2 2 2 2 

Solvent content (%) 46.68 46.75 46.79 47.15 46.91 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 

Table is continued on the next pages.  
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Table 35 continued. 

PDB ID 5QPI 5QPJ 5QPK 5QPL 5QPM 

compounda      

PDB identifier GQM JGJ LUY M0J LV1 

XChem identifier FMOPL000554a FMOPL000465a FMOPL000586a FMOPL000464a FMOPL000500a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.82, 396.38 57.96, 396.75 58.13, 397.40 58.02, 395.55 57.98, 395.53 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 198.22 – 1.67 98.97 – 1.41 198.72 – 1.50  197.85 – 1.41 131.84 – 1.68 

 (1.71 – 1.67)b (1.45 – 1.41)b (1.54 – 1.50)b (1.45 – 1.41) (1.72 – 1.68)b 

Rmerge 0.122 (2.504)b 0.098 (1.884)b 0.075 (2.110)b 0.095 (1.992) 0.206 (3.175)b 

Unique reflections 47494 78126 65934 78228 46981 

I / σI 11.5 (1.83)b 13.7 (1.84)b 16.8 (2.16) 13.1 (1.55)b 11.0 (1.66)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100) 100 (100)b 100 (100)b 

Redundancy 18.0 (15.6)b 15.7 (9.7)b 16.7 (11.9) 15.5 (9.6)b 18.1 (15.7)b 

Refinement      

Resolution (Å) 66.06 – 1.67 65.96 – 1.41 66.23 – 1.50 65.93 – 1.41 65.92 – 1.68 

No. reflections 43318 73169 61504 73370 44134 

Rwork / Rfree 0.203, 0.254 0.197, 0.226 0.203, 0.240 0.197, 0.228 0.209, 0.254 

No. atoms      

    Protein 2871 2889 2871 2871 2871 

    Ligand/ion 44 44 33 30 38 

    Water 304 331 305 331 321 

B-factors overall (Å2) 32.16 22.44 28.57 22.55 24.62 

R.m.s. deviations      

    Bond length (Å) 0.030 0.031 0.028 0.026 0.029 

    Bond angles (°) 1.884 2.515 2.241 2.440 2.033 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 99 99 99 99 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 1 1 1 1 2 

Solvent content (%) 46.80 46.97 47.51 47.06 46.96 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QPN 5QPO 5QPP 5QPQ 5QPR 

compounda      

PDB identifier LDV GQP LV4 LV7 LVD 

XChem identifier FMOPL000576a FMOPL000574a FMOPL000512a FMOPL000613a XST00001145b 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 58.13, 395.33 57.89, 395.79 57.99, 395.77 57.91, 396.13 58.20, 397.61 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 197.65 – 1.45 198.04 – 1.60 197.91 – 1.48 198.00 – 1.19 29.37 – 1.67 

 (1.49 – 1.45)b (1.64 – 1.60)b (1.52 – 1.48)b (1.53 – 1.49)b (1.71 – 167)b 

Rmerge 0.143 (2.190)b 0.212 (2.642)b 0.222 (2.035)b 0.082 (2.045)b 0.090 (0.829)b 

Unique reflections 72358 54030  67934 66315 48552 

I / σI 12.9 (2.26)b 7.6 (1.75)b 7.3 (1.49)b 16.2 (1.99)b 18.8 (1.83)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 100 (100)b 100 (100)b 

Redundancy 16.2 (10.9)b 17.4 (14.5)b 16.4 (11.5)b 16.7 (12.0)b 17.8 (15.2)b 

Refinement      

Resolution (Å) 50.35 – 1.45 65.96 – 1.60 65.96 – 1.48 66.02 – 1.49 66.36 – 1.67 

No. reflections 71542 49443 63377 61689 45886 

Rwork / Rfree 0.209, 0.229 0.227, 0.269 0.205, 0.240 0.200, 0.235 0.176, 0.216 

No. atoms      

    Protein 2871 2871 2880 2871 2871 

    Ligand/ion 38 31 76 30 28 

    Water 316 327 317 333 333 

B-factors overall (Å2) 19.02 18.81 22.50 26.65 30.23 

R.m.s. deviations      

    Bond length (Å)  0.022 0.022 0.027 0.023 

    Bond angles (°)  2.193 2.193 2.411 1.946 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 99 98 98 99 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 1 2 2 1 2 

Solvent content (%) 47.24 46.86 47.04 46.94 47.67 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QPS 5QPT 5QPU 5QPV 5QPW 

compounda      

PDB identifier LVP LVV JHS LWA JH7 

XChem identifier FMOPL000644a FMOPL000642a FMOPL000733a FMOPL000416a FMOPL000632a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.83, 395.38 57.88, 395,53 57.98, 395.14 57.83, 397.47 57.82, 395.41 

    α, β, γ () 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 131.77 – 1.61 197.79 – 1.46 197.64 – 1.44 132.49 – 1.60 131.81 – 1.72 

 (1.65 – 1.61)b (1.50 – 1.46)b (1.48 – 1.44)b (1.64 – 1.60)b (1.76 – 1.72)b 

Rmerge 0.181 (2.804)b 0.092 (1.860)b 0.100 (1.545)b 0.144 (2.381)b 0.220 (3.863)b 

Unique reflections 52840 70386 73456 54109 43644 

I / σI 11.1 (1.88)b 14.5 (1.83)b 13.5 (2.00)b 14.1 (1.89)b 9.8 (1.62)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 100 (100)b 100 (100)b 

Redundancy 17.7 (17.8)b 16.3 (11.1)b 16.1 (10.7)b 17.6 (14.6)b 18.2 (16.4)b 

Refinement      

Resolution (Å) 65.90 – 1.61 65.92 – 1.46 65.86 – 1.44 66.24 – 1.60 65.90 – 1.72 

No. reflections 49652 65872 68819 50836 41036 

Rwork / Rfree 0.198, 0.233 0.192, 0.229 0.196, 0.225 0.196, 0.237 0.187, 0.231 

No. atoms      

    Protein 2871 2871 2871 2871 2871 

    Ligand/ion 53 68 38 45 44 

    Water 307 328 332 312 325 

B-factors overall (Å2) 21.52 23.84 22.64 28.93 25.66 

R.m.s. deviations      

    Bond length (Å) 0.023 0.029 0.027 0.020 0.042 

    Bond angles (°) 2.044 2.229 2.422 2.000 1.994 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 99 99 98 97 99 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 1 1 2 3 1 

Solvent content (%) 46.68 46.80 46.94 46.97 46.68 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QPX 5QPY 5QPZ 5QQ0 5QQ1 

compounda      

PDB identifier LWD JH1 AYV LWV LX4 

XChem identifier FMOPL000523a FMOPL000449a FMOPL000524a XST0000046b FMOPL000699a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.92, 395.05 57.82, 395.68 57.85, 394.63 57.78, 395.05 57.78, 396.81 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 131.68 – 1.67 197.84 – 1.67 131.53 – 1.62 131.6 – 1.60 198.39 – 1.97 

 (1.71 – 1.67)b (1.71 – 1.67)b (1.66 – 1.62)b (1.64 – 1.60)b (2.02 – 1.97)b 

Rmerge 0.139 (3.259)b 0.180 (2.838)b 0.117 (2.724)b 0.229 (5.786)b 0.239 (3.101)b 

Unique reflections 47624 47553 51803 53687 29547 

I / σI 12.2 (1.79)b 10.5 (1.89)b 14.0 (1.67)b 10.3 (1.67)b 9.0 (1.71)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 100 (100)b 100 (100)b 

Redundancy 17.8 (15.4)b 17.9 (15.5)b 17.7 (14.9)b 17.6 (14.7)b 18.2 (18.9)b 

Refinement      

Resolution (Å) 65.84 – 1.67 65.95 – 1.67 65.77 – 1.62 65.84 – 1.60 66.14 – 1.97 

No. reflections 44598 44692 48675 50494 27717 

Rwork / Rfree 0.204, 0.255 0.194, 0.238 0.200, 0.244 0.189, 0.220 0.199, 0.254 

No. atoms      

    Protein 2871 2871 2871 2871 2871 

    Ligand/ion 73 34 53 42 30 

    Water 311 325 316 322 312 

B-factors overall (Å2) 29.69 22.12 27.77 25.48 33.86 

R.m.s. deviations      

    Bond length (Å) 0.021 0.020 0.021 0.025 0.018 

    Bond angles (°) 1.899 1.967 2.024 2.219 1.696 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 98 98 99 99 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 2 2 1 1 2 

Solvent content (%) 46.81 46.72 46.62 46.54 46.78 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QQ2 5QQ3 5QQ4 5QQ5 5QQ6 

compounda      

PDB identifier MJ4 LXA LX7 JJM LXJ 

XChem identifier FMOPL000693a FMOPL000672a FMOPL000276a PKTTA024495b FMOOA000530a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.83, 395.66 57.72, 3.96.82 57.82, 396.08 57.86, 395.19 57.82, 396.68 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 131.90 – 1.73 198.40 – 1.60 396.07 – 1.58 197.60 – 1.68 198.30 – 1.94  

 (1.77 – 1.73)b (1.64 – 1.60)b (1.62 – 1.58)b (1.72 – 1.68)b (1.99 – 1.94)b 

Rmerge 0.192 (3.355)b 0.149 (3.642)b 0.145 (2.439)b 0.243 (3.272)b 0.332 (4.033)b 

Unique reflections 42945 53792 55931 46752 30877 

I / σI 11.4 (1.81)b 10.6 (1.61)b 13.5 (2.24)b 9.6 (1.77)b 8.0 (1.70)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 100 (100)b 100 (100)b 

Redundancy 18.2 (16.5)b 17.6 (14.7)b 17.5 (14.1)b 18.0 (15.7)b 18.3 (19.3)b 

Refinement      

Resolution (Å) 65.94 – 1.73 66.14 – 1.60 66.01 – 1.58 65.86 – 1.68 66.11 – 1.94 

No. reflections 40240 50142 52019 43993 28988 

Rwork / Rfree 0.198, 0.238 0.196, 0.242 0.205, 0.245 0.193, 0.237 0.201, 0.249 

No. atoms      

    Protein 2871 2871 2871 2871 2871 

    Ligand/ion 33 65 60 39 35 

    Water 308 319 320 329 302 

B-factors overall (Å2) 26.05 29.3 22.91 20.43 26.76 

R.m.s. deviations      

    Bond length (Å) 0.023 0.038 0.046 0.023 0.020 

    Bond angles (°) 1.879 2.009 2.606 1.971 1.727 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 98 98 99 98 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 2 2 1 2 2 

Solvent content (%) 46.72 46.68 46.77 46.71 46.84 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QQ7 5QQ8 5QQ9 5QQA 5QQB 

compounda      

PDB identifier LXM LXS M0D LZV LZY 

XChem identifier FMOPL000562a FMOPL000563a FMOOA000567a FMOOA000648a FMOOA000676a 

Data collection      

X-ray source I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS I04-1, DLS 

Wavelength (Å) 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 0.91587 Å 

Space group P6122 P6122 P6122 P6122 P6122 

Cell dimensions      

    a = b, c (Å) 57.76, 396.04 57.78, 396.94 57.68, 395.94 57.81, 396.97 57.76, 394.81 

    α, β, γ ()  90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 198.02 – 1.61 132.37 – 1.62 131.99 – 1.61 198.52 – 2.20 78.96 – 1.58 

 (1.65 – 1.61)b (1.66 – 1.62)b (1.65 – 1.61)b (2.26 – 2.20)b (1.62 – 1.58)b 

Rmerge 0.144 (3.170)b 0.136 (2.343)b 0.097 (2.772)b 0.537 (4.882)b 0.124 (2.533)b 

Unique reflections 52786 52032 52625 21537 55626 

I / σI 10.4 (1.71)b 10.8 (1.78)b 14.8 (1.81)b 7.9 (2.13)b 11.6 (2.03)b 

Completeness (%) 100 (100)b 100 (100)b 100 (100)b 100 (100)b 100 (100)b 

Redundancy 17.7 (14.8)b 17.6 (14.9)b 17.7 (14.9)b 18.2 (18.4)b 17.3 (14.00)b 

Refinement      

Resolution (Å) 66.01 – 1.61 66.16 – 1.62 65.99 – 1.61 66.16 – 2.20 65.8 – 1.58 

No. reflections 48936 18732 49393 20151 51823 

Rwork / Rfree 0.192, 0.233 0.198, 0.235 0.191, 0.238 0.204 – 0.276 0.195 – 0.230 

No. atoms      

    Protein 2871 2871 2871 2871 2871 

    Ligand/ion 38 37 37 34 31 

    Water 308 307 314 306 310 

B-factors overall (Å2) 28.21 28.26 30.61 37.5 27.35 

R.m.s. deviations      

    Bond length (Å) 0.023 0.024 0.024 0.016 0.363 

    Bond angles (°) 2.062 2.095 2.191 1.538 2.146 

Molprobity statistics      

    Ramachandran      

    Favoured (%) 99 98 99 98 98 

    Outliers (%) 0 0 0 0 0 

    Allowed (%) 1 2 1 2 2 

Solvent content (%) 46.65 46.81 46.48 46.87 46.49 

a Fragment binders were previously listed in Table 34.  
b Values in parentheses are for the highest resolution shell. 
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Table 35 continued. 

PDB ID 5QQC 

compound  

compound apo (ground-state) 

  

Data collection  

X-ray source I04-1, DLS 

Wavelength (Å) 0.91587 Å 

Space group P6122 

Cell dimensions  

    a = b, c (Å) 57.68, 396.51 

    α, β, γ ()  90, 90, 120 

Resolution (Å) 132.19 – 1.62 

 (1.66 – 1.62)a 

Rmerge 0.100 (2.734)a 

Unique reflections 51799 

I / σI 15.0 (1.81)a 

Completeness (%) 100 (100)a 

Redundancy 17.7 (14.9)a 

Refinement  

Resolution (Å) 66.09 – 1.62 

No. reflections 48589 

Rwork / Rfree 0.192 – 0.227 

No. atoms  

    Protein 2871 

    Ligand/ion 16 

    Water 291 

B-factors overall (Å2) 30.73 

R.m.s. deviations  

    Bond length (Å) 0.022 

    Bond angles (°) 2.015 

Molprobity statistics  

    Ramachandran  

    Favoured (%) 99 

    Outliers (%) 0 

    Allowed (%) 1 

Solvent content (%) 46.57 

a Values in parentheses are for the highest resolution shell. 
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Figure 74: Overview of all ligands modelled in 35 crystal structures. Fragment hits are spread over several different 

sites in TcFPPS and multiple binding events lead to a total of 51 events with ligands. Fragment binders 

were previously listed in Table 34. (1) – (5) Allosteric site binders. (6) Novel binding site SX. (7) – (13) 

Active site binders. (14) – (21) Binding site S1. (22) – (32) Binding site S2. (33) and (34) Binding site S4. 

(35) – (44) Binding site S5. (45) Binding site S3. (46) – (48) Binding sites S11. (49) and (50) Binding 

site S12. (51) Binding site S16. All images follow the same scheme: On the left the PDB ID is given for 

the crystal and the PDB ID, MW, origin (DSPL or EDELRIS library), occupancy in the crystal and 

chemical structure are given for the ligand. In the middle the ligand is depicted in stick representation 

with its final 2Fo – Fc electron density map shown as liquorice coloured mesh contoured at 1.0 σ and its 

Fo – Fc positive and negative difference electron density map shown as green and red coloured mesh, 

respectively, contoured at 3.0 σ. On the right the event map that lead to ligand identification in PanDDA 

inspect is shown as violet coloured mesh at twice the 1-BDC value which corresponds to a level of 2.0 σ 

TcFPPS is shown in cartoon and surface representation and is coloured by element: C, O, N and S in 

grey, red, blue and yellow respectively. Figure is continued on the next pages.  
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 74 continued. 
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Figure 75: Summary of density maps of ligands binding in the allosteric, SX and active site of TcFPPS. 

(1) – (5) Maps of allosteric site binders LV4, AYV, M0J, LT7 and GQM, respectively. (6) Maps of 

ligand LWA. (7) – (13) Maps of active site binders LDV, AWV, LUS, MJ4, AWM, LVV and LUY, 

respectively. On the left, the event maps are shown contoured at twice the 1-BDC value, which 

corresponds to a level of 2.0 σ (violet mesh). In the middle the maps of the input files are shown: the 

mFo – DFc positive difference electron density maps contoured at 3.0 σ (green mesh) and the 2mFo – DFc 

electron density maps contoured at 1.0 σ (blue mesh). On the right, the refined maps of the final model 

are shown: the 2mFo – DFc electron density maps contoured at 1.0 σ (liquorice mesh) in superimposition 

with the mFo – DFc positive and negative difference electron density maps (green and red coloured mesh, 

respectively) contoured at 3.0 σ, respectively. Figure is continued on the next pages.  
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Figure 75 continued. 
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Figure 75 continued. 
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Figure 76: Spectra of ligand-observed NMR experiments with fragment hits identified by X-ray crystallography. 
(A) – (J) Compounds AYY, M0J, GQM, LWA, LDV, AWV, LUS, AWM, LVV and LUY 

respectively. Each image shows a cut-out from an overlay of the [13C1H]-SOFAST-HMQC spectrum of 

the DMSO control (red) and the corresponding sample (blue) at 700 µM compound and 30 µM protein 

in 25 mM BisTris, pH 6.5, 50 mM NaCl, 2 mM TCEP · HCl, 10% D2O, 150 µM DSS at 31.85 °C. Image 

is continued on the next page.  
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Figure 76 continued. 
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Figure 77: Datasets of the HTX campaign analysed with PanDDA. (A) Resolution limit. (B) R-free and R-work. 

(C) RMSD to reference structure. (D) Unit cell volume variation. (E) Cell axis variation. (F) Cell angle 

variation. On the count is plotted on the y-axis. 
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Table 36: Ligands identified in the FBS by X-ray crystallography at the HTX lab. 

Compounda Smiles string MW Binding site Crystal ID Soak Diffraction limit 1-BDC 

  (Da)   (hh:mm) (Å)  

HTX-1 Cn1cc(C(=O)N2CCc3sccc3C2)ccc1=O 274.34 allosteric, open CRU-CD022463_F08-2_x1 23:32 2.10 0.21 

HTX-2 Nc1nnc(Cc2ccccc2)s1 191.25 allosteric, open CRU-CD022464_F10-3 26:11 1.76 0.22 

HTX-3 Cc1ccsc1-c1nnc(N)o1 118.21 allosteric, open CRU-CD022834_H11-2 21:44 1.86 0.20 

HTX-4 Cc1cccnc1NC(=O)NC1CCN(C2CC2)C1 260.34 allosteric, close CRU-CD022480_D03-2 22:20 1.71 0.21 

HTX-5 Cl.Fc1cccc(Cl)c1CC1CNC1 199.65 allosteric, close CRU-CD022779_C02-2 24:34 1.71 0.19 

HTX-6 c1ccc2oc(C3CCNCC3)nc2c1 202.26 active CRU-CD022464_B12-2 25:09 1.76 0.24 

HTX-7 c1ccc2sc(C3CCCN3)nc2c1 204.29 active CRU-CD022464_H12-2 26:11 1.81 0.15 

HTX-8 Nc1ccc(Oc2ccc(F)cc2)cn1 204.20 active CRU-CD022833_D02-2 29:15 1.81 0.20 

a All listed compounds are part of the Enamine Golden Library. 
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Table 37: Data collection and refinement statistics of 

TcFPPS crystal structures from the HTX 

campaign. 

PDB ID 6SI5 6SHV 

compounda   

PDB identifier LEQ LDW 

naming in this thesis HTX-1 HTX-8 

Data collection   

X-ray source id30b, ESRF id30b, ESRF 

Wavelength [Å] 0.97625 Å 0.97625 Å 

Space group P6122 P6122 

Cell dimensions   

    a = b, c [Å] 58.06, 396.79 58.21, 398.31 

    α, β, γ []  90, 90, 120 90, 90, 120 

Resolution [Å] 29.31 – 2.10 44.98 – 1.81 

 (2.13– 2.10)b (1.84 – 1.81)b 

Rmerge 0.172 (2.109)b 0.099 (1.223)b 

Unique reflections 24665 (1185) 38338 (1850) 

I / σI 16.6 (2.3)b 15.1 (2.1)b 

Completeness [%] 99.7 (99.2)b 100 (100)b 

Redundancy 35.9 (37.5)b 12.3 (12.2)b 

Refinement   

Resolution [Å] 66.13 – 2.10 44.98 – 1.80 

No. reflections 24665 38338 

Rwork / Rfree 0.200, 0.260 0.196, 0.230 

No. atoms   

    Protein 2788 2801 

    Ligand/ion 29 36 

    Water 159 206 

B-factors overall [Å2]  34.05 

R.m.s. deviations   

    Bond length [Å] 0.01 0.01 

    Bond angles [°] 0.92 0.87 

Molprobity statistics   

    Ramachandran   

    Favoured [%] 98.86 98.85 

    Outliers [%] 0.00 0.00 

    Allowed [%] 1.14 1.15 

Solvent content [%]  47.8 

a Fragment binders were previously listed in Table 36.  
b Values in parentheses are for the highest resolution shell. 
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Figure 78: Summary of density maps of ligands identified in the HTX campaign: allosteric and active site binders 

of TcFPPS. (1) – (5) Maps of allosteric site binders HTX-1 to HTX-5. (6) – (8) Maps of active site 

binders HTX-6 to HTX-8, respectively. On the right site, the event maps are shown contoured at twice 

the 1-BDC value, which corresponds to a level of 2.0 σ. In the middle the mFo – DFc difference electron 

density maps contoured at 3.0 σ and the 2mFo – DFc electron density maps contoured at 1.0 σ of the input 

files are shown. On the right site, the 2Fo – Fc electron density maps contoured at 1.0 σ of the final 

structural model of HTX-1 and HTX-8 is shown in superimposition with the Fo – Fc difference electron 

density maps contoured at 3.0 σ, respectively. Figure is continued on the next pages.  
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Figure 78 continued.  
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Figure 79:  Summary of density maps of the ligands MCN-1, MCN-4 and MCN-8. (A) – (C) Ligand MCN-1 

(JMK) in site S1 (PDB ID 6R09): mFo – DFc difference electron desity map contoured at 3.0 σ, 

2mFo – DFc electron density map contoured at 1.0 σ and 2Fo – Fc electron density map contoured at 1.0 

σ, respectively. (D) – (F) Ligand MCN-4 (JMT) in site S1 (PDB ID 6R0A): mFo – DFc difference 

electron desity map contoured at 3.0 σ, 2mFo – DFc electron density map contoured at 1.00 σ and 2Fo – Fc 

electron density map contoured at 1.0 σ, respectively. (G) – (H) Ligand MCN-4 (JMT) in site SY (PDB 

ID 6R0A): mFo – DFc difference electron desity map contoured at 3.0 σ, 2mFo – DFc electron density 

map contoured at 1.0 σ and 2Fo – Fc electron density map contoured at 1.0 σ, respectively. 

(J) – (L) Ligand MCN-8 (JMW) in site S1 (PDB ID 6R0B): mFo – DFc difference electron desity map 

contoured at 3.0 σ, 2mFo – DFc electron density map contoured at 1.00 σ and 2Fo – Fc electron density 

map contoured at 1.0 σ, respectively. 
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Table 38: List of compounds of the CM74 series. 

No Smiles string MW Number 

in Keenan 

et al.[490]  

DNDi-1 O=S(N(CC1=CN=CN1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3)(C)=O 384.47 26 

DNDi-2 CC(N(CC1=CN=CN1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3)=O 348.42 24 

DNDi-3 CCN(CC1=CN=CN1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3 334.44 25 

DNDi-4 O=C(N(CC1=CC=CN=C1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3)C 359.45 14 

DNDi-5 CCN(CC1=CC=CN=C1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3 345.46 15 

DNDi-6 O=S(N(CC1=CC=CN=C1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3)(C)=O 395.50 16 

DNDi-7 O=C(CN)N(CC1=CC=CN=C1)C2=CC=C(C=C2)C3=NC(C=CC=C4)=C4S3 374.46 17 

DNDi-8 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CN=CN3)C(C)=O 327.33 27 

DNDi-9 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CN=CN3)CC 313.35 26 

DNDi-10 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CN=CN3)S(C)(=O)=O 363.38 29 

DNDi-11 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CC=CN=C3)C(C)=O 338.36 18 

DNDi-12 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CC=CN=C3)CC 324.37 19 

DNDi-13 FC1=CC(C2=CC=C(F)C=C2)=CC=C1N(CC3=CC=CN=C3)S(C)(=O)=O 374.41 20 

DNDi-14 FC1=CC(C2=NC3=C(S2)C=CC=C3)=CC(N(CC4=CN=CN4)C(C)=O)=C1 366.41 21 

DNDi-15 FC1=CC(C2=NC3=C(S2)C=CC=C3)=CC(N(CC4=CN=CN4)CC)=C1 352.43 22 

DNDi-16 FC1=CC(C2=NC3=C(S2)C=CC=C3)=CC(N(CC4=CN=CN4)S(=O)(C)=O)=C1 402.46 23 
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