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Zusammenfassung 

Die meisten biomolekularen Interaktionen finden im wässrigen Medium statt. Daher ist es 

wichtig die Interaktionen zwischen Proteinen und Wassermolekülen in der Wirkstoff-

Forschung zu berücksichtigen. Die Untersuchung dieser Interaktionen mittels experimenteller 

Methoden ist anspruchsvoll, daher werden häufig Computer-Simulationen verwendet um die 

molekularen Details von Protein-Wasser oder Ligand-Wasser-Interaktionen zu studieren. 

Im zweiten Kapitel der vorliegenden Doktorarbeit wird die Entwicklung, Parametrisierung und 

Erprobung eines Ansatzes vorgestellt, der zur Berechnung der Solvatations-Beiträge in Protein-

Ligand Bindungsreaktionen verwendet werden kann. Der Ansatz verwendet eine umfassende 

Menge an Trajektorien aus Moleküldynamik-Simulationen in Kombination mit GIST 

Berechnungen um Modelle zu erhalten, mit welchen die relativen Beiträge zur Protein-Ligand 

Solvatations-Thermodynamik vorhergesagt werden können. Um den Ansatz zu validieren 

wurde das Model System Thrombin mit einem Satz von 53 Liganden mit bekannter 

Kristallstruktur und ITC Profilen untersucht. Dabei wurde herausgefunden, dass die Bindungs-

Thermodynamik von insgesamt 186 Paaren von Liganden genau vorhergesagt werden kann. 

Die relative Freie Energie der Bindung für diese 186 Paare kann dabei schon alleinig aus der 

Desolvatation des freien Liganden ermittelt werden. Im Weiteren werden vollständige 

thermodynamische Profile für Protein-Ligand Bindungsreaktionen korrekt vorhergesagt. 

Im dritten Kapitel wird der zuvor vorgestellte Ansatz verwendet um eine Strategie zu 

entwickeln die es ermöglicht Wirkstoffe mit gewünschter Solvatations-Thermodynamik 

auszustatten. Für diesen Zweck werden die Thrombin-Liganden (gleiche Liganden Serie wie 

im vorrangegangenen Kapitel 2) in kleinere molekulare Bausteine zerlegt. Im nächsten Schritt 

wird die Solvatations-Thermodynamik eines jeden Bausteins im Liganden ebenso wie für den 

isolierten Baustein in wässriger Lösung berechnet. Dabei wurden sehr diverse Eigenschaften 

für die verschieden Bausteine gefunden, was deren Potential zum Entwurf von Liganden mit 

einer großen Bandbreite von Solvatations-Charakteristika ermöglicht. Ebenso wurden 

Fernstrukturierungseffekte von Wassermolekülen entdeckt. Diese Effekte konnten nur durch 

die Zerlegung der Liganden und der korrespondierenden GIST-Integrale in einzelne Bausteine 

ermöglicht werden. Die Fernstrukturierungseffekte treten im ungebundenen Liganden auf und 

beschreiben die verstärkte Strukturierung von Solvens-molekülen auf einer Baueinheit bedingt 

durch das Vorhandensein einer anderen Baueinheit auf einer entfernten Seite des Liganden. Im 

Weiteren wurde gezeigt, dass die Fluorierung von Baueinheiten zu erhöhten unvorteilhaften 
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Desolvatationseigenschaften führt. Die Fluorierung führt daher zu einer reduzierten 

Bindungsaffinität. Die Forschungsarbeiten aus Kapitel 2 und 3 wurden mit Hilfe des 

Computerprograms Gips durchgeführt, welches im Zuge dieser Doktorarbeit entwickelt wurde. 

In Kapitel 4 wird der Mechanismus und die Zeitskala der Desolvatation für eine Protein-Ligand 

Dissoziationsreaktion für die von Trypsin und Thrombin im Komplex mit Benzamidin und 

N-amidinopiperidin untersucht. Die Untersuchung wird durchgeführt mittels „Umbrella 

Sampling“ und LoCorA Rechnungen. LoCorA ist eine Methode zur Analyse von 

Besetzungszeiten von Wassermolekülen auf der Oberfläche von Aminosäuren. Damit wurde 

herausgefunden, dass Wassermoleküle ungefähr 1.3 ns in der apo Bindetasche von Thrombin 

verweilen, wohingegen sie in der apo Bindetasche von Trypsin um eine Größenordnung kürzer 

verweilen (0.3 ns). Dieser Unterschied wird mit Solvens-Kanälen im Falle von Thrombin, und 

mit einem Solvens-Reservoir im Falle von Trypsin erklärt. Die Solvens-Kanäle bedingen, dass 

Wassermoleküle die gleichen Besetzungszeiten für beide Komplexe zeigen im Falle von 

Thrombin. Durch das Fehlen dieser Kanäle in Trypsin gibt es hier jedoch unterschiedliche 

Besetzungszeiten für die beiden Komplexe. Der LoCorA Ansatz ist implementiert in das 

Computerprogram LoCorA (gleicher Name wie der Ansatz selbst), welches im Zuge dieser 

Doktorarbeit entwickelt wurde. 

Weitere Studien die im Zuge dieser Doktorarbeit durchgeführt und mit experimentellen 

Untersuchungen kombiniert wurden, sind in Kapitel 5 dieser Dissertation zu finden. Zu jeder 

dieser Studien ist eine separate Zusammenfassung und Erläuterung bezüglich der Eigenanteile 

vorangestellt zu finden. 
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Abstract 

Most biomolecular interactions occur in aqueous environment. Therefore, one must consider 

the interactions between proteins and water molecules when developing a drug molecule against 

a target protein. The study of these interactions is challenging using experimental techniques 

alone, therefore computer simulations are commonly used to study the molecular details of 

protein-water or ligand-water interactions.  

In the first study presented in this doctoral dissertation (Chapter 2), the development, 

parameterization and testing of an approach is presented that can be used to calculate the 

solvation contribution in protein-ligand binding thermodynamics. The approach uses an 

extensive amount of molecular dynamics trajectories in conjunction with GIST calculations in 

order to obtain models that can predict relative protein-ligand solvation thermodynamics. In 

order to validate the approach, the model system thrombin is investigated using a set of 53 

ligands with experimentally characterized protein-ligand structures and ITC profiles. We found 

that the binding thermodynamics of 186 congeneric pairs of ligands can be accurately described 

using our solvation-based models. The relative free energy of binding for these 186 pairs can 

be calculated from the desolvation free energy of the ligand molecules alone. Furthermore, 

complete thermodynamic profiles for protein-ligand binding reactions (i.e. free energy, 

enthalpy and entropy of binding) are accurately predicted by incorporating GIST solvent data 

from the unbound ligand as well as the protein-ligand complex. 

In Chapter 3, the aforementioned approach is applied to develop a strategy that enables to equip 

drug molecules with a desired set of solvation thermodynamics properties. For this purpose, the 

thrombin ligands (same ligand series as in previous Chapter 2) and the corresponding GIST 

integrals are decomposed into smaller building block molecules. In the next step, the solvation 

thermodynamics for the building blocks in the ligand molecule as well as the solvation 

thermodynamics for the isolated building block in aqueous solution are calculated. We found 

greatly varying solvation thermodynamics for the different building blocks, demonstrating their 

potential to design ligands with a wide range of solvation characteristics. Also, we found that 

the building block decomposition of ligand molecules and the corresponding GIST integrals 

can be readily used to understand remote solvent structuring effects. These effects occur in the 

unbound ligand molecule and describe the enhanced solvent structuring on a building block in 

the ligand molecule due to the presence of another building block at a distal site of the ligand. 

Furthermore, we demonstrated that the fluorination of building blocks leads to an increased 
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unfavorable desolvation free energy and thus disfavors binding for the presented dataset. The 

research presented in Chapter 2 and Chapter 3 was accomplished with the computer program 

Gips that was developed as part of this doctoral dissertation. 

In the following Chapter 4, the mechanism and time scale of desolvation is being analyzed for 

the protein-ligand dissociation reaction of trypsin and thrombin in complex with benzamidine 

and N-amidinopiperidine. The analysis is carried out using umbrella sampling free energy 

calculations and LoCorA calculations. The LoCorA approach is a method for the analysis of 

residence times of water molecules on the surface of amino acids. It was found that water 

molecules reside approximately 1.3 ns in the binding pocket of thrombin, whereas in trypsin 

they are residing one order of magnitude shorter (0.3 ns). This difference is explained with 

special solvent channels that connect the interior of the binding pocket to bulk solvent 

environment. The solvent channels are present in thrombin but not in trypsin. Furthermore, the 

selectivity profiles of benzamidine and N-amidinopiperidine are related to a solvent-mediated 

free energy barrier that is present in thrombin but not trypsin. Also due to the presence of the 

solvent channels, the water molecules show similar residence time for both complexes in the 

case of thrombin but differing residence times in the case of the two trypsin complexes. The 

LoCorA approach is implemented in the computer program LoCorA (same name as the 

approach itself), which was developed as part of this doctoral dissertation. 

In the course of this doctoral dissertation, further computational studies were carried out in 

combination with experimental ones. These can be found in chapter 5 of this dissertation. Each 

of these studies is preceded by a separate abstract and a statement concerning the author 

contribution. 
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1 Introduction 

1.1 Drug Discovery is a Multi-Objective Optimization Problem 

Aspects of drug discovery in pre-clinical efforts consist mainly of research comprising the 

elucidation and identification of a single or multiple target proteins, screening of large 

compound libraries and the optimization of promising compounds. Also, new compounds are 

tested for potential to toxic side effects, which may prevent the initialization of subsequent 

clinical stages. At this stage of research and development, methods from multiple scientific 

disciplines (such as medicine, chemistry, physics and computer science) contribute to the 

collective research objective. This multitude of scientific disciplines is necessary due to the 

complexity of drug discovery itself, which must be treated as a multi-objective optimization 

problem. Often, vast amounts of data must be processed, filtered and interpreted in order to 

validate experimental findings or suggest new experiments that eventually lead to novel 

therapeutically active compounds.1 The multi-objective character of pre-clinical drug discovery 

may be divided into three main aspects (this is by no means meant to be a comprehensive list): 

[A] Identification and validation of the target protein 

[B] Finding a drug molecule that binds tightly to the target protein 

[C] Finding a drug molecule that binds selectively to the target protein 

[D] Finding a drug molecule that meets ADME-Tox (Absorption-Distribution-

Metabolism-Excretion-Toxicology) requirements 

In the initial step, a drug target protein is identified and validated (aspect [A]). As this is the 

first step in a cascade of development steps, it is most crucial for the success of a drug discovery 

campaign. During this initial phase, in vitro experiments are used to select the potential drug 

target but also animal models such as the zebrafish are used.2 In human cancer research, the 

vast knowledge of molecular mechanisms and pathophysiology is exploited for mechanism-

based target identification strategies.3 As soon as a protein has been identified as a potential 

drug target, a bioassay is established that enables the assessment of its biological activity. This 

is an important step, as it is used in the following steps for the selection and optimization of 

lead compounds. Although target-based strategies are seemingly efficient they are often 

criticized as they are associated with a decline in the number of compounds that enter clinical 

phases.4 
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A good drug molecule must bind tightly to a target protein (aspect [B]), thus the molecule is 

optimized with respect to its specific set of molecular interactions to a target protein. Its 

interactions with the target protein result in an effect on the cellular level and thus may lead to 

a therapeutic effect. In the best possible case, information about molecular interactions are 

gained by studying the three-dimensional structure of the protein and the drug molecule using 

experimental techniques such as X-ray crystallography5–7 or NMR8–10 spectroscopy. However, 

in many real-world scenarios, experimentally valid information about the three-dimensional 

structure is not available. In these cases, researches must use a homology model11 of the target 

protein. A homology model is a computationally predicted structure of the target protein that is 

based on various data sources mostly extracted from previously characterized and structurally 

related proteins. These models can be obtained (almost entirely) based on the amino acid 

sequence. However, it must be noted that in some cases the identity of the target protein is not 

known at all. Nonetheless, it is still possible to design active molecules without precise 

knowledge of the target structure.12–15 In any case, i.e. whether structural data are available or 

not, it is important to have a design objective that is based on a rationally-driven hypothesis 

about the molecular interactions of the involved biomolecules (for instance proteins, DNA, 

RNA or tRNA) and a drug molecule. A rational design hypothesis is often driven by physics-

based models of the drug molecule and the target protein. These models may represent 

molecules on various levels of detail, ranging from the electronic structure to the (coarse) semi-

atomistic scale. Thus, it is quite common in contemporary drug discovery to use these models 

together with a massive integration of computational approaches and resources into routine 

research and development workflows.15–21 In cases where physics-based models cannot be 

derived straightforwardly, one usually tries to learn from well-studied model protein systems 

in order to extrapolate to the actual system under study. It must be noted that although the use 

of structural data is extremely convenient, also other approaches such as QSAR (quantitative 

structure activity relationship) or QSPR (quantitative structure property relationship) are 

successfully applied.20,22–25 These approaches do not necessarily require information about the 

structure of the target molecular system. 

Another aspect of pre-clinical drug discovery is selectivity (aspect [C], see previous page).26,27 

Selectivity can be defined as the property of a molecule to bind more preferentially to a single 

target protein than to another protein (or a group of other proteins). In an ideal scenario, a 

potential drug molecule must be able to discriminate its target protein and the corresponding 

binding site from other proteins and binding sites, at least in pre-clinical investigations to 
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validate a given target. Failure to do so may result in unwanted side effects in later clinical 

phases, which may cause the rejection of a candidate molecule from further assessments. 

Nevertheless, particularly in the field of GPCRs many cases are known where mixed action 

against a set of targets make the quality of the desired therapeutic action. One example of these 

so-called “dirty drugs” is the anti-psychotic drug Chlorpromazine.28 

In order to circumvent situations in which unwanted side effects occur, pre-clinical research 

and development efforts aim at designing clinical candidates with an optimal selectivity profile, 

also to elucidate their mode of action. Computational approaches can efficiently accelerate this 

part of the design process by incorporating models from different proteins into the optimization 

of a drug molecule.19,29 It is important to note that under high concentrations of a ligand 

molecule, binding to a non-preferred protein may occur to a therapeutically relevant amount. 

Thus, the concept of selectivity must not be treated as an absolute measure for the 

discrimination between proteins but as a relative one. 

Lastly, ADME-Tox is a critical aspect in pre-clinical drug discovery (aspect [D]) that relates to 

other disciplines such as pharmacokinetics, pharmacology and toxicology. The acronym 

ADME-Tox stands for absorption, distribution, metabolism, excretion and toxicology. These 

properties are commonly linked to physical properties by the Lipinski’s rule of five, which 

readily estimates a compound’s drug-likeness based on its molecular weight, logP value and 

number of hydrogen bond donors/acceptors.30,31 The absorption of a drug molecule is described 

by the pathway that the drug undergoes while it enters the human body and different 

administration pathways can be selected. The pathway critically affects the bioavailability of 

the drug and thus is an important factor that must be taken into account early on in the drug 

development process. The bioavailability is often directly related to basic physical properties 

such as solubility, lipophilicity or pH stability.25,32 The aspect of distribution relates to the 

transport of the drug compound to its effector site. Usually the drug is first circulated through 

the body via the bloodstream and then gets distributed to the effector site(s). There are special 

cases where the distribution is hindered by barriers, such as the blood-brain barrier, which 

requires special strategies to be overcome effectively.33 Once the drug has entered the body, it 

undergoes various paths of chemical decomposition, which are referred to as metabolism. Most 

of the known metabolic decomposition processes take place in the liver. In this organ, 

predominantly a special group of proteins, the cytochrome P450 enzymes, carry out the 

molecular modifications of drug molecules into smaller molecular species using a cascade of 

oxidation steps. These smaller molecular species are called metabolites and can be more active 
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than the parent drug or even toxic compounds can be generated. Thus, the metabolic paths as 

well as the identity of possible metabolites must be considered while developing a drug 

molecule. In some cases, the occurrence of metabolites is specifically desired as they have 

superior activity compared to the parent drug (e.g. pro-drug).  

Excretion involves the various mechanisms by which a drug (also its metabolites) can exit the 

body. A major exit pathway runs via the kidneys, where drugs and metabolites are excreted in 

the form of urine. Other exit pathways involve the excretion via feces, lungs or the skin. 

The final aspect of ADME-Tox is the toxicological behavior of the compound. A key parameter 

for the characterization of the toxicity of a drug compound is its lethal dose. In this context, 

various in silico approaches have emerged that attempt to predict the toxicity of a compound 

based on comprehensive data sets.34,35 

 

1.2 Molecular Recognition as a Rationale to Drive Drug Discovery 

As already introduced in the previous subsection about the origin and need to design tight-

binding drug molecules, molecular interactions are used as a fundamental concept to understand 

the behavior of a potential drug compound with respect to a target protein. When using the term 

“drug”, one usually refers to a functional representation of a molecule that is ultimately related 

to some sort of therapeutic use. However, in the context of molecular interactions, one must 

correctly refer to the term “ligand” (derived from the Latin word ligandus, which is the 

gerundive form of ligo, meaning “bind”), as one will only consider the fact that the molecule, 

i.e. the ligand, physically interacts (it “binds”) with the protein. The ligand and protein shape 

an assembly, termed protein-ligand complex (or for short “complex”), that is the basis for all 

thermodynamic and structural considerations. 

The fact that ligands are able to bind to macromolecules with a specific set of interactions is 

often referred to as a molecular recognition process,36–38 which was also awarded with the 1987 

Nobel Prize in Chemistry. The intuitively emerging picture in this context divides the reaction 

partners into a host (e.g. a protein) and a guest (e.g. a peptide substrate) molecule. The host and 

the guest molecule undergo molecular interactions based on their molecular complementarity. 

Based on this principle, very successful computational approaches, such as molecular docking, 

have emerged and are routinely applied in drug discovery pipelines in order to perform a so-

called “virtual screening” of large compound libraries.18,19 The molecular interactions that 

effectively form any sort of molecular complementarity are electrostatic interactions, van der 
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Waals interactions, π-π interactions, halogen bonding or hydrogen bonding.39,40 It must be 

noted that these various types of interactions cannot always be strictly separated from each other 

as they are partly related to similar fundamental physical principles. The concept of molecular 

recognition is related to the simplified assumption of a lock-and-key-model as commonly 

employed to illustrate enzyme-substrate interactions. This implies that a ligand fits into a 

protein, as a key fits into a lock. This very static picture of protein-ligand interaction neglects 

the dynamic and highly coupled behavior of the large amount of molecular degrees of freedom 

that are present in macromolecular species (such as proteins) and the multiple solvent 

molecules. Moreover, it is known that some proteins are highly adaptive and can open 

additional (transient) subpockets upon binding of the ligand. Depending on whether the ligand 

induces the opening of the pocket or if the protein opens the pocket on its own, this process is 

called either induced-fit or conformatoinal selection. In any case, it is a superior model of 

protein-ligand complex formation as it directly relates to the various degrees of freedom given 

for a macromolecule such as a protein. Computational methods that explicitly consider the 

molecular degrees of freedom, such as molecular dynamics or Monte Carlo simulations, have 

emerged over the last years and are now an important part of drug discovery.41 These methods 

are suitable in cases where high-throughput processing is not desirable, as an enhanced level of 

molecular detail is necessary in order to understand the system under study. In the present 

doctoral dissertation, this concept was realized and will be further introduced in the section 

“Computers and Molecular Interactions”. 

 

1.3 The Use of Thermodynamics in the Study of Protein-Ligand 

Interactions 

In the previous subsection, the concept of molecular interactions and its relationship to 

molecular recognition has been introduced. It was outlined, how this concept is critical in the 

development of drug molecules. However, so far it was not explained how exactly our 

considerations on the atomistic level relate to actual physical observables, such as equilibrium 

constants, turn-over rates or some read-out from a biophysical experiment. 

The relation between atomistic considerations and actual experiments is established by using 

concepts from chemical thermodynamics. Thermodynamics as a branch of physics deals with 

measurable macroscopic physical quantities such as temperature, pressure, volume, heat or 

work. Relations between these quantities are established by an axiomatic set of laws (the four 
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laws of thermodynamics), which introduce important physical quantities such as internal energy 

or entropy. At this point, a fundamental equation for the calculation of protein-ligand 

thermodynamics is introduced: Δ�� = −���	
� 

(1-1) 


� =�
����
�  

(1-2) 

In eq. (1-1), Δ�� is known as the standard Gibbs free energy and is a measure for the maximal 

amount of reversible work that can be performed by a system. It is calculated from the universal 

gas constant R (8.3144 J·mol-1·K-1), the absolute temperature T and the equilibrium binding 

constant KB. The equilibrium binding constant KB is defined as the product of the activities ai 

of all N species in the system with stoichiometric coefficients vi (see eq. (1-2)) at standard 

conditions. For practical considerations, the activity of some species Xi can be well 

approximated by its equilibrium concentration [Xi]. Thus, for the case of protein-ligand 

interactions, the equilibrium binding constant for some binding reaction P+L�PL may be 

formulated as follows: 


� = 1
� = [��][�][�] 
(1-3) 

In eq. (1-3), KD is the dissociation constant, which is the inverse of the binding constant. The 

dissociation constant can be interpreted as the equilibrium concentration of ligand [L], at which 

the equilibrium concentrations of the protein-ligand complex [PL] and the free protein [P] are 

equal. Thus, KD is an intuitive measure for the ability of a ligand molecule to bind to a protein 

and can be readily obtained by measuring equilibrium concentrations. 

As has been shown by eq. (1-1), there is a direct relationship between the binding constant and 

the standard Gibbs free energy. The standard Gibbs free energy can be decomposed into 

standard enthalpy, Δ��, and standard entropy, Δ��, contributions Δ�� = Δ�� − �Δ�� 

(1-4) 

These contributions are especially insightful, as they are a means to the composition of the 

standard Gibbs free energy and consequently, also of the equilibrium constant (see eq. (1-1)). 
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The binding standard enthalpy, Δ��, is generally assumed to be a measure of the change in 

internal energy upon binding due to molecular interactions (neglecting contributions from 

pressure-volume work). The difference between standard enthalpy and standard Gibbs free 

energy is the standard entropy multiplied by the absolute temperature of the system. If the 

temperature of the system is >0 K (which must be the case due to the third law of 

thermodynamics), then all atoms are under thermal motion. However, due to molecular 

interactions, the protein and ligand molecule are locked together and cannot move freely. Thus, 

the system is put under restraints which countervail the intrinsic random thermal motions of the 

system due to its temperature. These restraints lead to a decrease in entropy and consequently 

to an increase in standard Gibbs free energy (see eq. (1-4)). The standard enthalpy and entropy 

of binding can be readily obtained from experimental techniques, such as isothermal titration 

calorimetry. Thus, eq. (1-4) directly provides access to equilibrium binding properties on the 

molecular level. 

From the argumentation above, it is evident that enthalpy and entropy are mutually coupled as 

both are dependent on the strength of molecular interactions. So far, one would intuitively 

assume that enthalpy and entropy must compensate each other, since an increase in molecular 

interaction energy would increase the restraints on the molecules, thus countervailing entropy. 

However, in many cases enthalpy and entropy do not compensate each other completely. Also, 

there are several cases where they actually reinforce each other. This has led to several 

controversies about our general understanding of entropy.42–44 As proteins are a system of many 

tightly coupled mechanical degrees of freedom, the binding of a ligand molecule can result in 

enhanced thermal motion in the actual binding site.45  

Another critical aspect of binding thermodynamics is arising from interactions with water 

molecules.46–50 Water is a ubiquitous substance and biomolecules are generally adapted to an 

aqueous environment.51 Consequently, also protein binding sites are to a certain amount filled 

with water molecules. The water molecules in protein binding sites generally have different 

properties than the unbound water molecules in bulk water phase. As soon as a ligand molecule 

(i.e. a drug molecule or substrate molecule) binds into the binding pocket, water molecules are 

released from the binding pocket into bulk water phase. Although not fully understood,52 the 

process is generally regarded as being entropically beneficial, as the water molecules 

experience fewer restraints in the bulk water phase as in the protein binding pocket. The 

entropic benefit is balanced with the gain or loss in interaction energy by the breaking or making 

of bonds in the binding pocket and bulk water phase (see also Figure 1-1). In this context, 
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hydrophobic surface patches in protein pockets are of special interest as water molecules 

become restrained as soon as they are bound, however at a minimal amount of solute-solvent 

interaction energy.46,53 Thus, the release of those water molecules into bulk water phase is 

expected to result in minimal energetic cost and maximal entropic gain. This concept is 

commonly referred to as classical hydrophobic effect. A shift in interactions of hydrophobically 

bound water molecules upon ligand binding can lead to a gain in binding affinity of several 

orders of magnitude.53 Thus, an improved understanding of the thermodynamics and molecular 

interactions established by water molecules can greatly improve drug discovery efforts. 

 

Figure 1-1: Schematic representation of a binding mechanism. The contributions to binding 
free energy due to various interactions are highlighted (∆GSolv: free energy from solvation 
contributions; ∆Gqq: free energy from charge-charge interaction contributions). This example 
depicts the S1 binding pocket of thrombin with a benzamidine head-group of a typical 
thrombin-inhibitor.  
 

1.4 Biomolecular Solvation: The Structural Perspective 

In the previous subsection, the relation between molecular interactions and thermodynamics 

was established. In the second part, the important contributions of water molecules to protein-

ligand binding thermodynamics were explained. In the following subsection, several aspects 

relevant for the experimental elucidation of protein-water interactions will be introduced. 

From the experimental structural perspective, water molecules are hard to capture. Even in 

modern high-resolution X-ray protein crystallography, hydrogen atoms are (usually) not 

resolved and consequently, the orientation of water molecules cannot be determined explicitly. 
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However, in many cases the environment of water molecules allows only for quite a limited 

number of possible orientations due to hydrogen bonding constraints. Protein crystallographic 

structure determination based on neutron scattering reveals the position of hydrogen atoms and 

thus also the orientation of water molecules.54 However, these measurements usually take very 

long and are experimentally in many cases not feasible. 

The completely different method NMR is also often used in drug development. It has many 

advantages compared to crystallography both with respect to sample preparation but also with 

respect to the fact that it captures the solution dynamics of the protein. However, it cannot be 

used in all cases and for meaningful evaluations even requires isotope labeling of the protein.8 

Also, the resolution is often worse compared to structures determined by crystallographic 

experiments. As water molecules enter and leave the binding site of a protein at frequencies 

that are often faster than the timescale accessible by NMR, water-water or water-solute 

interactions cannot be resolved in most cases. 

Experimental techniques have individual limitations that must be taken into account when used 

to rationalize the thermodynamics of protein-ligand binding reactions. In many cases, the 

interplay between biomolecular solvation and protein-ligand binding thermodynamics can be 

readily analyzed using crystallography. One popular example is the protein thrombin, an 

enzyme from the family of serine proteases, which is a well-studied model system. Furthermore, 

it is of therapeutic relevance due to its important role in the human blood coagulation cascade. 

A comparative example of two crystal structures of thrombin-inhibitor complexes can be seen 

in Figure 1-2. In this example, one can see that the polar meta-pyridyl moiety interacts with a 

water molecule in the S1 binding pocket (Figure 1-2A). This water molecule is able to further 

interact with two other water molecules and with Asp189. In the analogous derivative with a 

phenyl moiety (Figure 1-2B), only three water molecules are present due to missing polar 

interactions of water molecules with the aromatic ring. Due to the missing water molecule, also 

the other two water molecules have less interaction partners available in the S1 binding pocket. 

This lack of interactions causes an increase in the binding enthalpy value of ∆∆H = 4.1 kJ·mol-

1 for the transition of the pyridyl moiety (Figure 1-2A) to the phenyl moiety (Figure 1-2B). At 

the same time, the value of the entropy contribution to the free energy of binding decreases 

by -T∆∆S = -10.0 kJ·mol-1 due to missing restrictions imposed on the water molecules in the 

presence of the phenyl group. This illustrates the thermodynamic interpretation of molecular 

entropy as presented in the previous section. 
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Figure 1-2: Example of the S1 binding pocket in crystal structures of thrombin-inhibitor 
complexes. The dashed grey lines indicate hydrogen bonding interactions, whereas the dashed 
green lines indicate interactions with the aromatic system. The part of the ligand that is shown 
in the crystal structure is also highlighted in the 2d depiction of the ligand. (A) Crystal structure 
2ZFF; (B) Crystal structure 3P17. 
 

1.5 Computers and Molecular Interactions 

1.5.1 Approaches for the Treatment of Molecular Interactions in Computer Programs 

In the previous section, the scientific field of drug discovery, specifically pre-clinical drug 

discovery, was introduced. The main focus of this section concentrated on the role of molecular 

interactions and biomolecular solvation in the context of molecular recognition. In order to gain 

insights into molecular interactions and biomolecular solvation, computers and computer 

simulations are routinely applied in drug discovery. In the following section, the main 

approaches for the treatment of molecular interactions in computational chemistry software 

packages are introduced. 

In order to bridge the gap between experimentally determined structure and thermodynamic 

data, computational approaches are frequently applied. Depending on the features of the 

underlying system, different computational methods are used and, in many cases, a combination 

of multiple methods is applied. In the field of drug discovery, molecular dynamics simulations 

have emerged as a powerful computational technique, as they provide sufficient atomistic detail 

at reasonable computational costs. In molecular dynamics simulation, it is common to use a 
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molecular mechanics force field for the calculation of the interaction energy between atoms, 

but also for the internal mechanical degrees of freedom. These molecular mechanics force fields 

(or for short only “force fields”) are essentially an additive approach for the calculation of the 

system energy based on classical mechanics. Most force fields have the general functional form: 

 ������� = � !"#$#���� + �"!" !"#$#���� 
(1-5) � !"#$#���� = � !"#���� + �&"'($���� + �)!*+�!"���� 
(1-6) �"!" !"#$#���� = �$($,���� + ��#-���� 
(1-7) 

 

In eq. (1-5), the total system molecular mechanics energy, �������, takes the configuration of 

the system, ��, as its argument (see eq. (1-5)). The total system energy is calculated from 

individual energetic contributions accounting for interactions between mutually bonded atoms 

(i.e. atoms that are one, two or three bonds apart), � !"#$#, and interactions between nonbonded 

atoms (i.e. atoms that are more than two bonds apart or in different molecules), �"!" !"#$#. 

These two terms are further broken down into several individual contributions (see eqs. (1-6) 

and (1-7)), which have the following meaning: 

 

1.) � !"#: The energy of bond stretching, e.g. a C-C bond in an alkyl chain. Typically 

calculated from Hooke’s law with the general functional form 

��.� = /0�. − .��0 

(1-8) 

k: force constant 

d0: equilibrium bond length 

 

2.) �&"'($: The energy of the angular stretching deformations of three consecutive atoms, 

e.g. the H-O-H angle in a water molecule. This energy functional is also approximated 

with Hooke’s law (see eq. (1-8)). 
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3.) �)!*+�!": The energy of a torsion potential based on four atoms, e.g. the O-C-N-H torsion 

in an amide group. The functional form for the calculation of this energy term slightly 

varies between different force fields. It is most common to use a series of cosine 

functions, which is expressed as 

��1� = 2 3�1 + cos�	1 − 7��)!*+�!"+  

(1-9) 

A: amplitude 

n: periodicity 

τ : torsion angle 

φ: phase factor 

 

4.) �$($,: The energy due to the pairwise interaction between the partial charges on two 

atoms, e.g. the electrostatic interaction between an oxygen atom of a water molecule 

and a hydrogen atom in an amide group. The electrostatic interaction energy between 

two atoms i and j, is modelled by a classical Coulomb potential of the general functional 

form 

��8�9� = − 14;<� =�=98�9  

(1-10) 

qi,qj: atomic charge of i and j 

ε0: vacuum electric permittivity 

rij: seperation between i and j 

 

5.) ��#-: The energy due to pairwise van-der-Waals interactions, e.g. between an sp2 

carbon atom in the tyrosine side chain and the oxygen atom in a water molecule. For a 

pair of atoms i and j, these interactions are typically modeled by a Lennard-Jones 

potential: 

��8�9� = 3�98�9>0 − ?�98�9@  

(1-11) 
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Aij, Bij: Lennard-Jones parameters atom pair ij 

rij: separation between i and j 

 

The various functional forms introduced above (eqs. (1-8)-(1-11)) require several parameters. 

A common approach for obtaining these parameters, is to fit the individual force field terms to 

high-level ab initio data.55,56 Other approaches use data from NMR experiments in order refine 

force field parameters,56,57 which is helpful for adjusting the stability of secondary structure 

elements in protein structures. Another commonly used approach is to fit the parameters to 

experimentally derived values of liquid state properties (such as density, heat of evaporation) 

for various compounds.58,59 In many cases, a mixture of all these types of parameterization have 

emerged and many different force field derivatives exist that are optimized for a specific set of 

physical conditions or class of molecules. 

Most molecular mechanics force fields are not able to explicitly treat chemical reactions 

(although exceptions such as ReaxFF exist60,61). However, quite often chemical reactions occur 

in addition to the non-covalent interactions and therefore must be taken into account. In these 

cases, molecular systems are treated based on quantum chemical calculations. Also, the mixed 

treatment of interactions using quantum chemical and molecular mechanics is quite popular,62 

especially when investigating enzymatic reactions,63 light-induced reactions64 or protonation 

reactions.65 However, quantum chemistry calculations are very time-consuming compared to 

force field type calculations. Therefore, one must decide whether it is worth using quantum 

chemistry calculations based on the expected insights gained by these calculations. As a popular 

alternative to high-level quantum chemistry calculations, semi-empirical quantum chemistry 

methods based on the AM166 or PM667 functionals have been developed and come at a reduced 

computational cost. 

In a completely different approach, the molecular mechanics force field is entirely heuristic (or 

knowledge-based) and does not dictate an explicit functional form to the molecular 

potential.68,69 In this context, one usually uses the term “scoring function” instead of “force 

field”, as it is not based on the physical representation of forces. In heuristic scoring functions, 

large structural databases (such as the PDB or CSD) are scanned for the occurrence of specific 

interatomic separations of all sorts of atom types.68,69 From the distribution of these 

occurrences, one can calculate a score for all pairs of atom types based on their interatomic 

separation. The score for a pair of atoms essentially reports how “good” or how “bad” their 

current interatomic separation is with respect to the corresponding (knowledge-based) 
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distribution of interatomic separations. These scoring functions are applied for evaluating 

results from docking calculations or crystal structures. The main benefit of heuristic scoring 

functions is, compared to entirely physics-based force fields, their ability to judge a result based 

on actual experimental evidence from a manifold of experiments.70 At the same time, this 

strength can also be seen as a caveat, as the accuracy and precision of any heuristic scoring 

function is entirely limited to and biased by the data it is derived from. Thus, care must be taken 

when using heuristic scoring functions outside the scope of their parameterization. 

 

1.5.2 Computational Approaches for the Dissection of Molecular Solvation 

Thermodynamics 

In the previous subsection, several general approaches for the calculation of molecular 

interactions using computer programs have been introduced. Special emphasis has been taken 

on force fields, which are mainly used in this doctoral dissertation. Other approaches, such as 

quantum chemistry and heuristic scoring functions were also explained briefly. In the following 

subsection, computational approaches that allow for the structural and thermodynamic 

characterization of water molecules are introduced. 

Ever since researchers investigated protein-ligand interactions using X-ray crystallography, 

water molecules that mediate contacts between protein and ligand or solvate residues in an apo 

protein binding pocket have attracted computational chemists. In several successful attempts, 

the binding free energy contributions of these water molecules were estimated using alchemical 

methods.71,72 In the context of this class of methods, specialized approaches such as GCMC73–

76 or JAWS74,77 have emerged. Despite their accuracy, these methods are usually quite time 

consuming and therefore do only allow for investigating few cases at a time. As an alternative 

to these computationally intensive methods, other approaches such as WaterMap,78,79 GIST,80–

83 SZMAP84,85 or Grid Cell Theory86–88 have been developed. From these approaches, 

WaterMap and GIST have become quite popular in drug discovery. Both approaches are based 

on the theoretical framework of inhomogeneous solvation theory89–91 (developed by Themis 

Lazaridis) and are used for post-processing of molecular ensembles generated from molecular 

dynamics or Monte Carlo simulations. In WaterMap and GIST, solvent energy and solvent 

entropy contributions are calculated relative to bulk solvent energy and bulk solvent entropy. 

Thus, one effectively calculates the energy and entropy calculations for transferring a water 

molecule from a specific position at the solute surface (e.g. a binding site) to pure bulk solvent. 

The fundamental difference between the two approaches is in their spatial representation of 
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solvation thermodynamics properties, i.e. density, enthalpy and entropy: In WaterMap, 

solvation properties are averaged over spherical regions (typically with radius 1 Å) called 

hydration sites (see Figure 1-3A). These hydration sites often over-simplify the non-spherical 

density distribution around a density maximum. Nonetheless, this approach has resulted in 

several successful studies, in which the insights on the solvation properties have greatly 

enhanced the process of drug optimization.50,92,93 In GIST (grid inhomogeneous solvation 

theory), the properties of the water molecules are spatially represented as a three-dimensional 

grid (see Figure 1-3B). This allows for approximating the non-spherical density distribution of 

water molecules by small grid cells, typically with dimensions of 0.5x0.5x0.5 Å. A caveat of 

the grid-based approach is the necessity of more sampling (i.e. longer timescales in the case of 

molecular dynamics simulations) than for hydration sites in order to achieve convergence. 

Typically, convergence of water properties estimated with hydration sites is achieved in less 

than 10 ns, whereas for a GIST grid up to 50-100 ns of simulation time are required.82 

The use of GIST for the analysis of solvation properties using molecular dynamics simulations 

is becoming increasingly popular. In several investigations, GIST has been used successfully 

in order to improve virtual screening results81,94. However, care must be taken since GIST 

results are usually limited to a single or only few conformations of a solute molecule. Thus, 

multiple GIST calculations with different solute conformations must be carried out in order to 

obtain a reasonable estimate for the different solvation properties. 

 

 
Figure 1-3: A: Hydration sites in the binding pocket of Caspase 3. B: Water occupancy map 
displayed at three times bulk solvent density as obtained from a GIST calculation. The figure 
is extracted from Haider et al.95 
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2 Protein-Ligand Complex Solvation Thermodynamics: 

Development, Parameterization and Testing of GIST-based 

Solvent Functionals 

2.1 Abstract 

We present a set of solvent functional-based models which calculate the binding contributions 

resulting from solvation free energy, enthalpy and entropy for a set of 53 thrombin ligands. Our 

solvent functionals are based on molecular dynamics simulations in conjunction with GIST 

processing and are calibrated using accurate experimental data from ITC measurements. We 

found, that excellent agreement with experimentally derived enthalpy-entropy factorization can 

be achieved by considering both the solvation thermodynamics of the protein-ligand complex 

as well as the desolvation of the ligand molecule in solution. We demonstrate, that the 

desolvation free energy of the ligand drives the actual binding process, whereas contributions 

from the protein-ligand complex are necessary for the discrimination between individual 

ligands. 
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2.2 Introduction 

The importance of molecular solvation and desolvation is undoubtedly highly appreciated in 

the field of drug design47,48,96, but at the same time it has always been debated quite 

controversially97,98. Over the last years, water molecules became recognized as an active 

contributor to protein-ligand binding and contributed to our understanding of molecular 

recognition50, allosteric regulation99 or preorganization phenomena.43,100 This gain in 

understanding is mainly due to important advancements in computational techniques such as 

WaterMap79, SZMAP84,85, GIST101, JAWS77, GCMC74 or SPAM102. Also, the impressive 

improvement of high-resolution crystallography in routine application of drug design projects 

using synchrotron radiation enhanced our current structure-based understanding of 

biomolecular solvation as the basis for binding thermodynamics. However, at the moment it is 

by far not straightforward to integrate solvation features into rationally derived Structure-

Affinity-Relationships (SAR), although some early attempts with GIST already have been 

proven to be promising.94 One of the main obstacles is the difficulty how to partition the overall 

binding free energy into contributions that solely come from interactions of solvent molecules, 

solute molecules or mixtures thereof. During a Structure-Based Drug Discovery (SBDD) 

campaign, it is crucial to know the precise location of water molecules in order to predict the 

next candidate ligand molecule with optimized binding properties. For that, it is necessary to 

characterize the water structure of all end-states during the ligand-binding reaction. However, 

the water-structure of the unbound ligand usually is not known a priori, which complicates 

SBDD in so far as it is not known if a potential water molecule in the protein-ligand bound 

structure is picked up during the binding process or if it is already bound to the ligand molecule 

in solution. In the first case, the water molecule might have a stronger impact on binding affinity 

than in the latter case. The pre-bound state of the ligand molecule in the bulk solvent phase is 

usually not investigated, although there are clear indications that this state can give the 

predominant contribution to the thermodynamic binding profiles.43,100 In the current work, we 

make use of the water structure from all end-states of the ligand binding reactions. 

Usually, the configuration space of solvent molecules is strongly coupled to the configuration 

of the solute molecules, however this dependency decreases with increasing distance from the 

solute surface. With spatially resolved end-state approaches to solvation thermodynamics like 

Grid Inhomogeneous Solvation Theory (GIST), one can make use of this assumption by only 

considering the thermodynamics of the solvent molecules in proximity to the solvent surface. 

This simplifies the problem drastically. In this study, we will also make use of GIST and will 
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use this method for the construction of a rational SAR, based solely on solvent contributions. 

These solvent contributions are rationalized by building different physically motivated models 

which use data from molecular dynamics (MD) simulations and associated GIST calculations 

in order to predict solvation free energy and enthalpy (energy). The functional form of all these 

models was based on the previously described displaced-solvent functional.78,82 The term 

solvent functional simply refers to a mathematical formulation of a function that uses the three-

dimensional distribution of solvent energy, entropy and density as independent variables. This 

functional employs different (initially unknown) parameters that are required to transform these 

distributions into scalar values for solvent free energy, energy or entropy. As an enhancement 

to the literature-described displaced-solvent functional based on GIST,82 we suggest novel 

displaced-solvent functionals that require fewer parameters than the original one while at the 

same time not compromising predictive power. 

We selected a highly congeneric series of 53 ligands binding to thrombin for which high-

resolution crystal structures are available and for which free energy, enthalpy and entropy data 

were determined by ITC and SPR (48 with ITC data and 5 with SPR data).49,103–111 This series 

of thrombin binders was sorted into matching pairs, such that the affinity difference between 

ligands within a given pair can predominantly be attributed to a difference in solvation. The 

resulting 186 pairs are used to further parameterization and testing of our solvent functionals. 

In the following, the term GIST data will be used in order to refer to the general combination 

of solvent energy, entropy and density distributions obtained from GIST calculations. Also, 

note that we will use the term “energy” when referring to computed energies and the term 

“enthalpy” when referring to experimentally determined enthalpies. Throughout this work, we 

will compare calculated energy values and measured enthalpy values with each other. However, 

it must be noted that they do not strictly correspond to the same physical quantity, since enthalpy 

includes a contribution from pressure-volume work. This term is usually negligible in 

condensed phase systems and therefore enthalpy can be well approximated by energy. 

In the first part of this work, we will introduce the new solvent functionals and how they are 

applied to the different states (protein-ligand complex, ligand in aqueous solution) of the 

system. In the second part, we apply these solvent functionals in order to build models that (1) 

calculate solvation free energies based only on protein pocket desolvation (the already 

established displaced-solvent formalism), (2) calculate free energies based on both, the protein-

ligand complex and the ligand molecule alone (full binding-displacement treatment), and (3) 

calculate free energies with optimized solvation enthalpies. 
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2.3 Materials and Methods 

As a prerequisite of this study, we carried out MD simulations for the apo protein, each protein-

ligand complex and each unbound ligand in solution. From these simulations, we calculated 

solvent energy, entropy and density using the GIST79,80,82 method and developed, parameterized 

and tested different solvent functionals. These solvent functionals calculate the solvation 

portion of the free energy, energy and entropy of protein-ligand association processes. The 

solute atoms in each MD simulation must be restrained to a reference structure. However, this 

positional fixation diminishes the influence of protein flexibility on the solvation 

thermodynamics. To cope with this, we assume that the effect of flexibility is most important 

for the apo protein, since in a protein-ligand complex, atoms become more firmly fixated due 

to interactions between the ligand and the protein. Therefore, we carried out unrestrained MD 

simulations of the apo protein and split the conformations observed along the trajectory into 

clusters. For the most representative structure from each cluster, MD simulations with 

positional restraints were carried out in triplicates and subsequently used as input for our GIST 

calculations. For the protein-ligand complexes as well as the unbound ligand molecules, only 

fully restrained MD simulations were carried out, keeping the complex spatially fixed to the 

conformation found in the crystal structure. They served directly as input for GIST. The 

complete workflow is outlined in Figure 2-1. 
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Figure 2-1: Overview of the workflow used in this study. The lower-case letters [a]-[h] refer 
to specific steps as referenced in the main text. 
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2.3.1 Structure Preparation 

The pdb accession codes for the thrombin apo structure112 as well as the ligand-bound thrombin 

structures49,103–111 are listed in the Supporting Information. All structures were prepared 

(curating for missing sidechains, assigning protonation states) using the structure preparation 

utility implemented in MOE113. For the ligand partial charge calculation, we initially 

decomposed the ligand molecules into amino-acid moieties with acetyl, N-methyl, N-dimethyl 

and methylsulfonate (-SO2CH3) capping groups (Figure 2-1, step [a]). This choice of capping 

groups is justified by the fact that all ligand molecules (see Figure 2-1, step [b] for a 

representative example or the Supporting Information for a complete list) contain amide and 

sulfonamide linker groups. Then, we performed a multimolecule and multiconformational 

RESP (restrained electrostatic potential) fitting based on these amino-acid moieties.55,114 The 

ESP (electrostatic potential) of these were obtained from the HF/6-31G* level of theory 

(b3lyp/6-31G* structure optimization) calculated using Gaussian09.115 Then, GAFF force-field 

parameters116 were assigned to the ligand molecules and missing force-field parameters were 

assigned using antechamber and parmchk2 from the AmberTools17 package.117 The protein, 

ligand, structurally bound sodium ions as well as the water molecules from the crystal structure 

were combined and assigned force-field parameters using tLEaP. For the protein, we used the 

Amber FF14SB57 force field together with the TIP4P-Ew water model.118 The system was 

embedded in a truncated octahedron simulation box filled with water molecules. The box was 

build such that the minimum distance between each solute and crystallographically determined 

water molecule and any box edge was at minimum 16 Å. The systems were neutralized by 

placing chloride counter-ions at random positions in the bulk water phase of the simulation 

boxes using the addIonsRand utility of tLEaP. After creating the simulation boxes and saving 

the parameter and starting structure files to disk, we randomly stripped off water molecules 

from the bulk phase (ca. 1% of all water molecules), such that all systems contained exactly the 

same total number of water molecules (13348). The complete building procedure was repeated 

for each of the three replicates per system (i.e. each system contained different positions of 

counter ions and initial water configurations).  

The procedure was repeated analogously for the building of the simulation boxes of the apo 

structure with the same total number of water molecules as in the protein-ligand complexes. 

The simulation boxes of the ligand molecules were prepared analogously, however with a total 

number of 3500 water molecules for each ligand simulation box. 
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2.3.2 Molecular Dynamics Simulations of the apo Protein 

For the apo protein, we initially performed MD simulations in order to obtain multiple 

representative conformations of the apo binding pocket. These conformations were used as 

starting structures for the latter GIST analysis (see [b] in Figure 2-1).  

We performed an energy minimization (250 steps of steepest descent, 250 steps of conjugate-

gradient optimization) of the system, keeping the solute atoms fixed at their crystallographic 

positions using a harmonic potential with a force constant of 25 kcal·mol-1·Å-2. After the first, 

a second minimization was carried out, using a force constant of only 5 kcal·mol-1·Å-2. In the 

next step, the system was kept harmonically restrained using a force constant of 25 kcal·mol-

1·Å-2 and heated to 300 K within 25 ps using an integration time-step of 1 fs. At this temperature, 

the system was equilibrated to a target pressure of 1 bar in an NPT ensemble within 100 ps 

using the Berendsen barostat119. During this NPT run, the positional restraints were removed 

gradually and the integration time step was switched to 2 fs. A final 1 ns equilibration run was 

carried out in the NVT ensemble. Triplicate production MD runs were carried out for 600 ns 

and coordinates were saved to disk every 10 ps. 

During all runs, periodic boundary conditions were applied using the particle-mesh Ewald 

method with a real-space cutoff of 9 Å. We used the Langevin dynamics thermostat with a 

collision frequency γ = 2 ps-1 and different random seeds for each run. During all molecular 

dynamics runs, we applied the SHAKE119 algorithm to all bonds involving hydrogen atoms. 

We used pmemd and its GPU implementation pmemd.cuda120–122 from the Amber16 package 

for energy minimization and molecular dynamics runs.117 

 

2.3.3 Conformational Clustering along the Trajectory of the apo Protein 

The conformations in the combined trajectories of the apo protein were clustered (see c) in 

Figure 2-1) based on RMSD using the average linkage clustering implementation of cpptraj 

(V17)123. Only every 10th frame of each trajectory was included in the clustering using the 

sievetoframe utility from the clustering routine of cpptraj. Clustering was based on the non-

hydrogen atoms of the following binding-site residues: D234, S235, V255, S256, W257, G258, 

E259, G260, C261, Y267, G268, F269, Y270, H73, Y77, W80, W122, E124, L125, L126, I209, 

D229, A230, C231, E232, G233. These protein binding site residues were selected, since they 

bear at least one atom within 4 Å of the ligand in the protein-ligand complex of PDB-code 

3RML. They choice of this ligand was arbitrary, but represents the binding pose of all ligands 

in the dataset reasonably well. The combined apo trajectories were found to be well described 
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by three clusters (see Supporting Information for plots showing Davies-Bouldin Index and 

pseudo F-statistic for different clustering solutions). 

 

2.3.4 Molecular Dynamics Simulations for GIST Analysis 

In this step, MD simulations were carried out (step [d] in Figure 2-1) in order to sample water 

configurations that later could be processed with the GIST approach. 

Initially, the system energy was minimized using 2500 steps of steepest descent and 2500 steps 

of conjugate gradient minimization, while keeping the non-hydrogen atoms of the solute 

harmonically restrained to their starting positions with a force constant of 25 kcal·mol-1·Å-2. In 

a second minimization run, again 2500 steps of steepest descent and 2500 steps of conjugate 

gradient minimization were carried out with a weaker force constant of 2 kcal·mol-1·Å-2. Then, 

the system was heated to 300 K within 25 ps using an integration time-step of 1 fs and positional 

restraints with a force constant of 25 kcal·mol-1·Å-2. At a temperature of 300 K, the system was 

equilibrated to a target pressure of 1 bar using the Berendsen barostat119 within 5 ns. In a final 

equilibration run, the system was simulated for 5 ns in the NVT ensemble. Triplicate production 

MD runs were carried out for 50 ns each. The coordinates of the system were saved to disk 

every 2 ps. 

For the simulations with positional restraints on the apo protein, only those non-hydrogen atoms 

that were considered in the clustering procedure (i.e. the binding site, see also step [c]), were 

also restrained during the complete minimization, equilibration and simulation procedure. All 

other non-hydrogen atoms were allowed to move freely. For the protein-ligand complexes and 

the separated ligand molecules in the water phase, all non-hydrogen atoms were considered for 

the restraining procedure. 

For all energy minimization and MD runs, the same periodic boundary condition, thermostat 

and SHAKE settings were used as described for the unrestrained MD simulations of the apo 

protein. 

 

2.3.5 Post-Processing of Trajectories and GIST Calculations 

All molecular dynamics trajectories with positional restraints on the solute atoms were post-

processed with the GIST79,101 routine (step [e] in Figure 2-1) as implemented in cpptraj 

(V17)123. The GIST grids for each trajectory had 100x100x100 grid voxels with 0.5 x 0.5 x 

0.5 Å side lengths per grid cell. The grid box was placed at the center of geometry of the ligand 

molecules in the case of protein-ligand complexes and ligand molecules in solution. For the apo 
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protein, the center of geometry defined by the amino acids D234, S235, V255, S256, W257, 

G258, E259, G260, C261, Y267, G268, F269, Y270, H73, Y77, W80, W122, E124, L125, 

L126, I209, D229, A230, C231, E232 and G233 was used as the center of the grid box. These 

residues were selected according to the same criteria as in step [c]. 

The 100x100x100 grid was evenly split into eight smaller grids of 52x52x52 (including one 

additional grid voxel in each dimension to account for missing entropy calculations in the 

outmost layer of grid voxels) with the SplitVolume.py python script.124 This allowed us to 

effectively carry out the complete GIST calculation by means of eight significantly reduced 

“small” GIST calculations. The processed eight small GIST grids were finally combined back 

into the original GIST grid by using the data parsing routines of our Gips program. For 

visualization purposes, the GIST maps were processed with gistpp80,125 and load into 

PyMOL.126,127 

 

2.3.6 MM-GBSA and MM-3DRISM Calculations 

The MM-GBSA128 and MM-3DRISM129 calculations were carried out using the mmpbsa.py128 

program from the AmberTools17 package. We processed frames extracted every 100ps from 

the trajectories that were generated for the processing with GIST. For the GBSA calculations, 

we used the Onufriev, Bashford, Case (OBC) variant with modified α,β and γ together with 

mbondi2 radii (igb = 5 option in sander).130,131 For the 3D-RISM calculations, we used the 

Gaussian Fluctuation132,133 approximation. 

 

2.4 Theoretical Background 

We will initially introduce three different so-called basic solvent functionals (termed F4, F5 

and F6 according to the number of parameters), which bear resemblance to solvent functionals 

from the early work on WaterMap.78 After that, we will explain how state-specific parameter 

settings are applied to the basic solvent functionals, in order to model solvent free energy and 

solvent energy at once. In the last part of this section, we will introduce the concept of global 

and state-specific parameter settings. 

Generally, the solvent functionals use the raw solvent entropy, energy and density data from 

our GIST calculations of the apo protein (step [f] in Figure 2-1), the complex (step [g]), the 

ligand in solution (step [h]) or the combination of protein-ligand complex and unbound ligand 

(step [i]) as input data. From the input GIST data, the solvent functionals calculate solvent free 



Chapter 2 

28 

energy, entropy and energy for a solute species. We used different solvent functionals with 

varying combinations of global and state-specific parameter settings. A set of optimal 

parameters for the different solvent functionals was obtained by training with experimentally 

determined protein-ligand binding thermodynamics. In a first attempt, we trained our solvent 

functionals only with free energy data as it was commonly undertaken in similar 

approaches.78,82 However, within this approach the explicit entropy and energy terms in the 

solvent functionals can (freely) compensate/reinforce each other unless further boundary 

conditions are installed and consequently do not necessarily represent the actual enthalpy-

entropy factorization, as obtained from experiment. Therefore, we also fitted the energy term 

in the solvent functionals to experimental enthalpy data, in addition to the fitting of free energy, 

in order to explicitly account for enthalpy-entropy factorization. Depending on the state of a 

protein-ligand binding reaction (i.e. the protein-ligand complex state or the unbound state of 

the ligand) that the GIST data are derived from, each state can have the same or specific set of 

parameters or individual parameters. When each state is described by the same set of 

parameters, the latter will be referred to as “global parameter setting”. When each state is 

described by individual parameters, then the latter will be referred to as “state-specific 

parameter setting”. 

The solvent functionals for the calculation of solvent free energy, energy and entropy were 

constructed from the well-known Helmholtz free energy equation: 

 A�B!(�� = A�B!(�� − �A�B!(�� ≈ A�B!(�� − �Δ�B!(��  

(2-1) 

Here, Δ�+!(�� , Δ�+!(�� and Δ�+!(��  are the standard solvation free energy, solvation enthalpy and 

solvation entropy of binding, respectively. The solvation enthalpy term is approximated by the 

solvation energy, as contributions from pressure-volume work are negligible. As GIST is a grid-

based approach, each of the aforementioned quantities is calculated separately for each 

individual grid voxel k. Consequently, the solvation energy value of a single grid voxel k is 

calculated as  

Δ�B!(��8/DDD�� = �BE�8/DDD�� + 2G�EE�8/DDD�� − �EE� H(/�I 

(2-2) 

In eq. (2-2), the solvation energy term, Δ�B!(��8/DDD��, is the sum of the water-water interaction 

energy, �EE�8/DDD��, referenced to water-water interaction energy in bulk water, �EE� H(/�, and the 

solute-water interaction energy, �BE�8/DDD��. The factor of 2 accounts for the fact that by 
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convention GIST water-water energies are calculated as one-half the mean interaction energy 

of the water molecules in voxel k with all other water molecules in the system.82 The water-

water interaction energy in bulk water is specific for the water model and calculated in separate 

MD simulations containing only water molecules. All energy terms are effectively calculated 

from the molecular mechanics force field of the MD simulation.  

The solvation entropy term is approximated by the one-body translational and orientational 

entropy contributions of voxel k, calculated as  

 −�Δ�B!(��8/DDD�� = −�Δ�)*&"+�8/DDD�� − �Δ�!*�$")�8/DDD�� 
(2-3) 

The derivation of those contributions will not be repeated here, since it has already been 

comprehensively introduced in the work by Lazaridis et al.89,91 and Kurtzman et al.79. Note, 

that we will use the term entropy, Δ�B!(�, in order to refer to the entropic contribution to free 

energy, �Δ�B!(�, which is effectively the entropy scaled by the thermodynamic temperature of 

the system. Throughout this work, all systems are treated at 300 K and the entropic 

contributions to free energy are all calculated at this temperature. 

In GIST, the thermodynamic quantities are essentially obtained by spatially integrating over 

probability, entropy and energy distributions. However, the direct integration of these 

distributions is problematic, since some regions do not contribute to binding and others suffer 

from high level of noise in energy and entropy (particular regions with a low occupancy of 

water molecules). Therefore, the individual grids are not integrated directly, but coupled to a 

filtering mechanism, which uses a simple step-function formalism as will be explained in the 

following. 
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2.4.1 The F4 Solvent Functional 

The basic solvent functional employed a set of four parameters for the calculation of solvation 

energy and entropy contributions: 

Δ�+!(��JK� = ρ�2M/N�8/DDD��Δ�+!(��8/DDD��O+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-4) 

−TΔ�+!(��JK� = −ρ�2M/N�8/DDD���Δ�+!(��8/DDD��S+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-5) 

O+�8/DDD�� = T1, VW	Δ�+!(��8/DDD�� > O,!0, [\ℎO8^VSO  

(2-6) 

N+�8/DDD�� = T1, VW	N�8/DDD�� > N,!0, [\ℎO8^VSO 

(2-7) 

S+�8/DDD�� = T1, VW	−�Δ�+!(��8/DDD�� > S,!0, [\ℎO8^VSO  

(2-8) 

 

Here, _�is the one-body solvent density of pure water at 25°C and 1 bar for the water model in 

use (in this work, TIP4P-Ew118) in units of Å-3 and Vk is the volume of grid voxel k. The 

quantities Δ�+!(��8/DDD��, Δ�+!(��8/DDD�� and N�8/DDD�� represent the solvent energy, entropy and density 

values at grid point k located at 8/DDD�on the grid G. The solvent density, N�8/DDD��, is calculated as the 

average number of water molecules in grid voxel k, normalized to the average number of water 

molecules in the same volume in pure bulk water. Consequently, the solvent density at k is 

given in multiples of bulk water density, ρ0 (0.0332 Å-3 for the TIP4P-Ew water model used in 

this study). The thermodynamic quantities solvent energy and entropy referenced herein, are all 

normalized to the average number of water molecules in the respective grid voxel (for a 

discussion about normalized energies and entropies, please refer to reference 79). In eq (2-4), O+�8/DDD�� and N+�8/DDD�� are the solvent energy and density step functions, which evaluate to 1 if the 

solvent energy or density at 8/DDD� exceed the cutoff value O,! or N,!, respectively (see eqs. (2-6) 

and (2-7), respectively). The entropy term, Δ�+!(�, uses the entropy step function S+�8/DDD��, which 

evaluates to 1 if the entropy at 8/DDD� exceeds the cutoff value S,! and evaluates to 0 otherwise. The 
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volume step function, P+�8/DDD��, evaluates to 1 if grid point 8/DDD� is inside the molecular volume of 

the ligand molecule and goes to 0 if grid point k is outside the molecular volume (these step 

functions were already explained elsewhere82). In other words, it explicitly defines the 

boundaries for the volume integration of the GIST data. In this work, we could not use the 

molecular volume of the ligand molecules directly, since for ligand-bound structures or the free 

ligand in solution, the molecular volume of the ligand would be part of the solvent-excluded 

volume and therefore not account for GIST-based solvation contributions. For this reason, we 

used a volume that included the molecular volume of the ligand molecule plus its first solvation 

shell, which includes all water molecules within a distance of 33̊ from the molecular surface of 

the ligand molecule (see also below, Soft Solvent Surfaces). This distance was used for the 

calculation of the primary solvation layer volume for all ligands. Although this is not strictly 

accurate, since the thickness of a layer of water molecules varies depending on the roughness 

of the surface and the conformation of the solute molecule. 

 

2.4.2 The F6 Solvent Functional 

Instead of directly using the value of the energy, Δ�+!(��8/DDD��, or entropy, Δ�+!(��8/DDD��, quantities 

at grid point k, weighting parameters for energy, Eaff, and entropy, Saff, are introduced. With 

these weighting parameters, an effective energy and entropy contribution to binding affinity is 

assigned to each grid value that exceeds the cutoff criteria introduced above. This approach was 

already introduced in prior work82 and is formulated as follows: 

Δ�+!(��J@� = �&aa2O+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-9) 

−TΔ�+!(��J@� = −�&aa2S+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-10) 

Equations (2-9) and (2-10) are analogously formulated to eqs. (2-4) and (2-5), but contain the 

scalar weighting parameters �&aa and �&aa instead of the actual grid quantities Δ�+!(��8/DDD�� and Δ�+!(��8/DDD��. Since the weighting parameters are not known a priori, they must be obtained 

during a parameter optimization process. 
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2.4.3 The F5 Solvent Functional 

In another attempt, we simplified eqs. (2-9) and (2-10), by using only a single general weighting 

parameter 
&aa, for both energy and entropy: 

Δ�+!(��Jb� = 
&aa2O+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-11) 

−TΔ�+!(��Jb� = −
&aa2S+�8/DDD��N+�8/DDD��P+�8/DDD��Q
/  

(2-12) 

2.4.4 Soft Solvent Surfaces 

If the spatial integration volume of the ligand molecule cuts through a region highly occupied 

by water molecules, which also contributes a notable fraction to the total solvation 

thermodynamics, the final value of Δ�+!(��8/DDD�� or Δ�+!(��8/DDD�� depends on only few grid points. 

Depending on whether these grid points are included in the evaluated region, i.e. whether P+ 
evaluates to 1 or not, they might have a large impact on the final result. In such cases, the value 

of P+ would depend on the relative position and orientation of the grid used for evaluation with 

respect to the ligand. Of course, one could counteract this by using increasingly smaller grid 

voxels, but that would have a negative impact on the convergence of the GIST quantities. 

Therefore, we used soft surfaces, which replace the strict classification of “inside” or “outside” 

a given surface volume with a fuzzy classification which allows for an attenuation of P+ in the 

vicinity of the surface. For that, we scaled P+with a distance-dependent exponential function: 

P+�8/DDD�� =
cde
df 1 VW	.�8/DDD�� < 0	
exp k−.�8/DDD��S l VW	0 < .�8/DDD�� < m

0 VW	.�8/DDD�� > m
 

(2-13) .�8/DDD�� = min&∈��|8/DDD� − 8&DDD�| − �&� 
(2-14) 

In eq. (2-13), .�8/DDD�� is the distance between grid point k and the surface of the molecule and s 

is a softness parameter that controls how strong P+�8/DDD�� decays in the vicinity of the surface (see 

Figure 2-2 for a graphical representation). The softness cutoff parameter c determines how far 

the softness of the surface reaches into the reaming part of the grid. We found empirically that 

values of s=1 and c=2 give reasonable results. The distance .�8/DDD�� is calculated using eq. (2-14) 



Development, Parameterization and Testing of GIST-based Solvent Functionals 

33 

which gives the distance of grid point k and its closest atom a with radius Ra in molecule M. 

Negative values of .�8/DDD�� indicate that the grid point is inside the occupied volume of the 

molecule, whereas positive values indicate that the grid point is outside the volume.  

Alternatively, one could also use Gaussian distributions centered on each grid voxel, as 

commonly used in molecular interaction field analysis.70 Another common strategy to prevent 

overly dominant contributions from only few grid points is to smooth the three-dimensional 

distribution by assigning the average over all neighboring grid values to each grid point. 

 
Figure 2-2: Illustrating the soft surface approach. The red region is inside the molecule and the 
volume indicator function evaluates to one. The soft region starts at the surface of the molecule 
(where .�8�/� becomes zero) and exponentially decreases up to the cutoff c. Beyond the cutoff, 
the volume indicator function is set to zero. 

 

2.4.5 Displaced-Solvent Functionals 

The use of displaced-solvent functionals was pioneered in the work of Abel et al.78, using 

hydration sites, and later by Kurtzman et al.82, using GIST, in order to calculate the desolvation 

free energy contribution of the protein binding site. In our work, we also used this rational 

approach in order to correlate the desolvation of the protein binding site with relative free 

energies of matched ligand pairs. In addition, we also separately tested how well binding 

affinity can be correlated with ligand desolvation or protein-ligand complex solvation 

contributions. We will generally refer to a solvent functional with the nomenclature S/F, where 

S indicates the state (PL for protein-ligand complex, L for ligand in aqueous solution, P for apo 
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protein) of the system that was used for generating the GIST data. F indicates the basic solvent 

functional (F4 to F6) that was applied to the GIST data. For instance, the solvent functional 

P/F6 is the solvent functional that was used in prior work of Kurtzman et al.82 If GIST data 

from two states, (bound and unbound) were employed in the GIST functional, we will refer to 

it as S1-S2/F. Here, S1 and S2 refer to the initial and final state, respectively (e.g. S1: PL and 

S2: L) and the thermodynamic quantities are calculated from the differences between those 

states accordingly, e.g. Δ���1 − �2� =Δ���1� −Δ���2�. 
It is worth noting that the raw GIST data actually reports quantities that describe the process of 

solvation in the direction of actual solvation (i.e. solute-solvent association) and not desolvation 

(i.e. solute-solvent dissociation). Although the direction of the process is allowed to vary freely 

for the P/F5, P/F6, L/F5 and L/F6 functionals by not explicitly imposing a sign on the weighting 

parameters (Eaff /Saff, and Kaff), a constant sign must be set for the solvent functionals involving 

P/F4 and L/F4. As can be seen from eqs. (2-4)-(2-5), basic functional F4 is calculated from the 

actual grid values, therefore these values must reflect the direction of the process (solvation vs. 

desolvation) in order to give a physically correct representation. For this reason, the signs of  

Δ�B!(��JK�
 and −�Δ�B!(��JK�

 (see eqs. (2-4), (2-5), respectively) were inverted for solvent functionals 

P/F4 and L/F4. This is necessary since all solvent functionals of type S/F, with S=P, L are based 

on protein-pocket desolvation or ligand desolvation, respectively. Also, it must be noted that 

the signs of Δ�+!(��8/DDD�� and −�Δ�+!(��8/DDD�� in eqs. (2-4),(2-5) were not inverted at all. 

In the case of P/F4, P/F5 and P/F6 GIST data from multiple conformations of the protein were 

considered (as outlined in the MD protocol above). Therefore, the GIST data from these 

individual conformations were weighted according to their populations (calculated from the 

clustering). 

 

2.4.6 Enhancing the Solvent Functionals by Employing State-Specific Parameter 

Settings 

In order to let the solvent functional capture more of the different solvent distributions in the 

binding pocket and in the unbound state, we developed different schemes in which the protein-

ligand complex state was assigned to different cutoff parameters in comparison to the unbound 

state of the ligand. In these so-called state-specific parameter settings, the parameters still have 

the same physical meaning in all states, which allows for their comparison across the different 

states. The general form of solvent functionals that employ either state-specific or global 

parameter settings is S1-S2/F/R, where S1 and S2 are different states, F is the basic functional 
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and R is the parameter setting. For instance, � = sNtu�vw�, Ntu�w�, Otu�'�, Stu�'�x defines a set of 

parameters with individual solvent density cutoff parameters, Ntu�vw�, Ntu�w�, for the protein-ligand 

complex and ligand in aqueous solution, but uses global (i.e. the same in all states) energy and 

entropy cutoff parameters, Otu�'�, Stu�'�. The rationale behind this idea is that a high solvent density 

cutoff for the protein-ligand complex is necessary in order to identify the highly populated 

solvent regions in the binding pocket that actually contribute to solvation free energy and those 

that do not contribute. In the unbound state, water molecules are bound less tightly to the 

ligand’s surface than in the binding pocket and a much lower solvent density cutoff must be 

applied. Therefore, a solvent density cutoff that is empirically adjusted to both, the protein-

ligand complex and the unbound state, will not adequately represent either of them.  

Furthermore, we tested a solvent functional which used individual parameters for each of the 

three cut-off values. In that case, the parameter settings are defined as � =
sNtu�vw�, Otu�vw�, Stu�vw�, Ntu�w�, Otu�w�, Stu�w�x. Note that the weighting parameters, Kaff  (basic solvent 

functional F5) and Eaff , Saff (basic solvent functional F6) are always global parameters and 

therefore identical for all states. 
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Table 2-1: List of all solvent functionals that were tested and parameterized in this work. 
Solvent Functional Fa)  S1b) S2b) R Global 

parametersc)e) 

R State- specific 

S1d) e) 

R State- specific 

S2d) e) 

P/F4 F4 P — n.a. n.a. n.a. 

P/F5 F5 P — n.a. n.a. n.a. 

P/F6 F6 P — n.a. n.a. n.a. 

PL/F4 F4 PL — n.a. n.a. n.a. 

PL/F5 F5 PL — n.a. n.a. n.a. 

PL/F6 F6 PL — n.a. n.a. n.a. 

L/F4 F4 L — n.a. n.a. n.a. 

L/F5 F5 L — n.a. n.a. n.a. 

L/F6 F6 L — n.a. n.a. n.a. 

PL-L/F4/syz{�y�, |z{�y�, }z{�y�x F4 PL L Ntu�'�, Otu�'�, Stu�'� n.a. n.a. 

PL-L/F5/syz{�y�, |z{�y�, }z{�y�x F5 PL L Ntu�'�, Otu�'�, Stu�'� n.a. n.a. 

PL-L /F6/syz{�y�, |z{�y�, }z{�y�x F6 PL L Ntu�'�, Otu�'�, Stu�'� n.a. n.a. 

PL-L/F4/~yz{����, yz{���,	|z{�y�, }z{�y� � 
F4 PL L �	Otu�'�, Stu�'�� �Ntu�vw�, Ntu�w�� n.a. 

PL-L/F5/~yz{����, yz{���,	|z{�y�, }z{�y� � 
F5 PL L �	Otu�'�, Stu�'�� �Ntu�vw�, Ntu�w�� n.a. 

PL-L /F6/~yz{����, yz{���,	|z{�y�, }z{�y� � 
F6 PL L �	Otu�'�, Stu�'�� �Ntu�vw�, Ntu�w�� n.a. 

PL-L/F4/~yz{����, |z{����, }z{����,yz{���, |z{���, }z{��� � F4 PL L n.a. �Ntu�vw�, Otu�vw�, Stu�vw�� sNtu�w�, Otu�w�, Stu�w�x 
PL-L/F5/~yz{����, |z{����, }z{����,yz{���, |z{���, }z{��� � F5 PL L n.a. �Ntu�vw�, Otu�vw�, Stu�vw�� sNtu�w�, Otu�w�, Stu�w�x 
PL-L/F6/~yz{����, |z{����, }z{����,yz{���, |z{���, }z{��� � F6 PL L n.a. �Ntu�vw�, Otu�vw�, Stu�vw�� sNtu�w�, Otu�w�, Stu�w�x 
a) The basic solvent functionals used for this solvent functional. For the basic solvent functionals we applied 

eqs. (2-4),(2-5) for F4, eqs, (2-11),(2-12) for F5 and eqs. (2-9),(2-10) for F6. 
b) The states S1 and S2 can be either P (apo protein binding pocket), PL (protein-ligand complex) or L (ligand 

molecule in aqueous solution). For some functionals, S2 cannot be assigned due to the nature of the 
functional. In these cases, S2 is specified as “—“ 

c) Parameter settings for global parameters 
d) Parameter settings for the state- specific parameter settings of states S1 and S2. 
e) Parameter settings are designated as “not available” (n.a.), if the functional does not allow for a parameter 

setting of this type (global, S1 state-specific or S2 state-specific). 
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2.4.7 Objectives and Parameter Optimization 

In order to adjust optimal sets of parameters for the different basic solvent functionals 

(represented by eqs. (2-4)-(2-5), (2-9)-(2-10) and (2-11)-(2-12)) that are employed in the 

solvent functionals, we constructed appropriate training and test datasets (see next section for 

details on the datasets). The parameters were obtained by fitting the solvent functionals to 

relative experimental free energies or to relative experimental free energies and enthalpies 

simultaneously. In the first case, the optimization problem is singular and the underlying 

objective is the squared sum of residuals of the free energy differences for all N pairs in the 

dataset: 


8N�V		 �2GΔΔ�+!(���� �3?���� − ΔΔ�+!(�������3?���� + �QI0�
� � 

(2-15) 

In eq. (2-15), we included a constant CG, which accounts for systematic deviations between 

calculated and experimental data. In order to solve the optimization problem depicted by 

eq. (2-15), we used the basin-hopping optimization strategy134 as implemented in PyGMO135. 

Briefly, basin-hopping is an optimization algorithm, which uses a Metropolis Monte Carlo 

search in parameter space in combination with a local minimization of the objective function, 

eq. (2-15). We used 2500 Monte Carlo steps in combination with SLSQP local minimization136. 

The basin-hopping optimizer was allowed to stop earlier if no improvement of the objective 

function was found after 100 iterations. The local minimizer stopped when a minimization step 

changed no parameter by more than the 10-8th of the respective parameter value at that step. A 

partial brute-force search, as carried out in a previous study82, was not applicable in our work, 

since each individual protein-ligand complex as well as each individual ligand in solution was 

associated with its own GIST dataset. The multitude of GIST data that is processed therefore 

leads to a drastic increase in computing time for a single evaluation of the solvent functional. 

The simultaneous optimization of energy and entropy is a multi-objective optimization problem 

and therefore requires a different optimization treatment. For this, we used NSGA2,137 a genetic 

optimization algorithm, in order to simultaneously optimize free energy and enthalpy (energy). 

The two objectives consist of the minimization of the squared sum of residuals of free energy 

(eq. (2-15)) and energy (eq. (2-16)) for all N pairs: 


8N�V		 �2GΔΔ�+!(���� �3?���� − ΔΔ�+!(�������3?���� + ��I0�
� � 

(2-16) 
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Both eqs. (2-15) and (2-16) are coupled to each other, as they both contain the solvent energy. 

Both free energy and energy can have individual systematic deviations between calculated and 

experimental data, individual additive constants CE and CG were applied for the free energy and 

energy objective, respectively. 

For the genetic optimization algorithm, we used 200 populations with a distribution index for 

crossover, ηc, and mutation, ηm, of 10. The populations were evolved over 2500 generations. 

After the optimization was complete, we saved the final parameters from each population and 

devided them into non-dominated fronts using the fast_non_dominated_sorting routine from 

the PyGMO library. The front with the lowest domination level was sorted using the 

sort_population_mo routine from the PyGMO library. From this front, we kept only the first 

solution per optimization attempt (note that a single best solution cannot be obtained in 

multiobjective optimization).  

The final parameters for both single and double objective optimization were trained and tested 

from 10 random sets of 5-fold cross validation. We applied the same set of random splits in the 

optimization of every solvent functional. In order to further evaluate the model performance, 

we also trained the solvent functionals based on 10 random sets obtained by shuffling the 

dependent data (i.e. free energy and enthalpy (energy)). 

During the optimization calculations, the parameters of the solvent functionals were allowed to 

vary freely within predefined boundaries. For the weighting parameters Eaff, Saff (F6) and Kaff 

(F5) the allowed parameter range was [-3,+3] kcal·mol-1 and for the energy and entropy cutoff 

parameters it was [-10,+10] kcal·mol-1. Note, that as the entropy contribution already contains 

the thermodynamic temperature of the system (300 K in all cases, see also the section 

Theoretical Background), the unit of the entropy-dependent parameters is given as kcal·mol-1. 

For the solvent density cutoff parameter we applied [+1,+8] ρ0 (with ρ0 being the bulk solvent 

density, as introduced above) and for the constants CG and CE [-3,+3] kcal·mol-1. With these 

boundaries, we cover the density distribution in the binding site. The energy distribution is 

covered in the range of approximately ± 5 standard deviation units around the mean value (-

0.04 kcal·mol-1). In order to allow for similar coverage of the energy and entropy cutoff 

parameter space, we allowed both values to vary in the same boundaries. The boundaries are 

wide enough, such that the optimized parameters do not include much bias towards a specific 

parameter range. 
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2.4.8 The Thrombin Dataset 

In this study, we investigate the contribution of solvation to binding affinity for a set of 53 

ligands binding to the serine-protease thrombin for which crystal structures and experimental 

thermodynamic profiles (see Figure 2-3 for an overview) were obtained from different 

sources49,103–111 (see Supporting Information for a detailed list). 

Since it is very difficult to distinguish between those contributions to binding affinity which 

come from solvent molecules and those which do not, it is most convenient to work with pairs 

of molecules. The pairs under investigation must be combined such that the overwhelming part 

of the difference in binding affinity between the paired molecules originates from small changes 

likely linked to a difference in the solvation pattern. In order to ascertain that the pairs are 

aligned with respect to this strategy, we applied several filtering criteria in order to find 

appropriate pairs among all possible pairs of the dataset. Specifically, the following filtering 

criteria were applied: 

Charged Head Group: Many thrombin binders contain a positively charged P1 head group 

(since thrombin is a serine-protease, we apply the nomenclature of Schechter and Berger138 in 

order to refer to the different portions of the ligand), which interacts with the charged D189 

deeply buried in the S1 binding pocket.49 This charge-charge interaction imposes an important 

feature to the binding properties of these compounds, which cannot be found similarly in 

ligands that do not bear this charged P1 head group. This could be problematic with respect to 

our solvent functionals for two reasons: 1) The underlying physical principle of the solvent 

functionals employed in this work does not explicitly account for charge-charge interactions of 

the solute. 2) The parameters of the solvent functional could be falsely trained considering 

particularly this charge-charge interaction. Therefore, only pairs in which both ligands bear a 

positively charged head group that interacts with D189 are regarded as a valid pair. 

N-Terminus at the distal P3/4 site: Another common feature of the compounds in the dataset is 

the distal ligand portion, which binds to the S3 and S4 pockets of thrombin. Only in cases where 

the ligands contained a charged ammonium group (formally the N-terminus of the peptide-like 

ligand scaffold) at both molecules, they were handled as a valid pair. 

Sulfonamide Group at the distal P3/4 site: The introduction of a sulfonamide linker between a 

glycine and terminal benzyl group gives rise to considerable preorganization of the ligands 

(formation of a β-turn-type conformation) in solution prior to binding (unpublished results). 

Since the imposed effect of preorganization is also not covered by the underlying physical 
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model applied here, we only considered pairs where both molecules had a sulfonamide moiety 

at this position as in that way preorganization effects will cancel out in the pairwise comparison. 

Total Charge: The total charge of the compounds dictates the total number of counter ions 

necessary to provide charge-neutral simulation boxes. Since desolvation of the counter ions is 

not considered in the solvent functional, we allowed only such pairs where both ligands had the 

same total charge. 

This resulted in a total number of 253 pairs. We further reduced this dataset by eliminating all 

pairs that had a Tanimoto fingerprint similarity (based on the Daylight-like fingerprints as 

descriptors, calculated using RDKit139) of less than 0.7. This last step effectively filtered out all 

pairs that differed in size and had chemically very dissimilar P1 and P3 portions. The dataset 

resulting from the last filtering step consisted of 186 pairs (see Supporting Information). This 

final set showed a broad distribution of free energies and enthalpies as outlined in Figure 2-3). 

 

 

Figure 2-3. Plots showing the free energy versus energy (left) and entropy versus energy (right) 
distributions for all 186 matching ligand pairs. The solid black lines indicate zero difference in 
entropy (left) and zero difference in free energy (right). The dashed lines indicate ±1 kcal·mol-1 
and ± 2 kcal·mol-1 difference in entropy (left) and free energy (right). 
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2.5 Results and Discussion 

In this section, solvation free energy calculations are presented based on the solvent functionals 

introduced above (see also Table 2-1). In the first part, we will present solvent functionals that 

calculate solvent free energies based on solvent molecules from a single state, S/F, this includes 

the so-called displaced-solvent approach. In order to assess the accuracy and predictively of 

these S/F type solvent functionals, they we will be trained and tested with experimentally 

determined binding free energy data. In the second part, we will use contributions from two 

different states, S1-S2/F/R, for the calculation of solvent free energies and energies. For the S1-

S2/F/R type solvent functionals, we will use experimentally determined binding free energy in 

conjunction with binding enthalpy data in order to train and test the parameters in our solvent 

functionals. This approach will be called the ‘full binding-displacement approach’ and includes 

GIST data from the protein-ligand complex and the ligand. Hence, it effectively captures the 

displacement of the water molecules from the unbound state of the ligand and the solvent 

molecules picked up during binding. This approach will be necessary for accounting explicitly 

for experimentally observed solvent energy contributions alongside the experimentally 

observed free energies. 

In this section we will justify the performance of the individual solvent functionals based on 

the correlation of the test data as obtained from five-fold cross validation. The corresponding 

performance of the solvent functionals with training data can be found in the Supporting 

Information. 

 

2.5.1 Solvent Free Energy Calculated from a Single State Approach (S/F type) 

Assessing Model Performance. Initially, we investigated the GIST solvation free energy 

obtained from either the uncomplexed protein binding pocket (apo form of the protein), the 

protein-ligand complex or the ligand alone in the bulk phase. In all cases, we used the same set 

of (randomly chosen) splits that divided the dataset into training and test data. The performance 

of the solvent functionals was evaluated using five-fold cross validation. We found that the 

ligand alone in aqueous solution gives GIST data that are best suited to establish a solvent 

functional that accurately predicts the binding free energy (see Figure 2-4Α for an overview of 

the test set performance). The solvent functionals L/F4, L/F5 and L/F6 (Figure 2-4A, red) give 

the highest correlation and clearly perform better than similar functionals that were trained 

using shuffled data (see Figure 2-4C). For all solvent functionals, the mean unsigned error 

(MUE) is considerably low (<0.5 kcal·mol-1, see Figure 2-4B). This demonstrates that our 
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solvent functionals exhibit excellent accuracy. However, care must be taken since the 

functionals, especially the ones obtained from the ligand molecules (L/F4 to L/F6), reveal low 

MUE for the shuffled datasets, as well (see Figure 2-4D). This phenomenon can possibly be 

explained by the spread of data of the considered dataset and an enhanced accumulation of data 

points in the [-1,+1] kcal·mol-1 region. For comparison, if one would use the mean of the 

experimental values from the training data sets in order to predict the test data sets, one would 

still have an MUE of 1.1 kcal·mol-1. The solvent functionals based on GIST data from the 

protein binding pocket, P/F4 to P/F6 (Figure 2-4, blue), performed well but worse than the ones 

based on the ligands alone. From the ones based on the protein binding pocket, the F6 basic 

solvent functional performs best. This is the functional, which was also employed in previous 

work.82 Interestingly, all the solvent functionals derived with GIST data from the protein-ligand 

complex, PL/F4, PL/F5 and PL/F6 (Figure 2-4, green), performed worst amongst all the single-

state displaced-solvent approaches. Unfortunately, they do not perform significantly worse 

using shuffled data. This result is somewhat surprising, since the considered high-resolution 

crystallographic data on protein-ligand complexes reflect the best available experimentally 

validated structural information about the water molecules. At the same time, it is also the most 

complex system, which probably suffers most from the physically artificial positional restraints 

used throughout the MD simulation applied to generate the GIST data. In the specific case of 

thrombin, the side chain of Glu192, located on top of the S1 binding pocket, demonstrates 

pronounced flexibility in most of the crystal structures, but as the simultaneously recorded ITC 

data show, the orientation of Glu192 is crucial for the affinity of the formed complex.109 By 

restraining the protein to its crystallographic coordinates, the conformational flexibility of this 

amino acid is most likely not captured adequately. Consequently, the solvent thermodynamics 

may be biased towards a single conformation, which is not adequate for some protein-ligand 

complexes. 
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Figure 2-4. Boxplots showing correlation based on the test data from five-fold cross validation 
and MUE for displaced-solvent functionals (X={F4,F5,F6}) P/FX (blue), PL/FX (green) and 
L/FX (red). The correlations and MUE are based on 10 random replicates of five-fold cross 
validation. A: Pearson r for the actual dataset (p<0.05 for all correlation coefficients); B: MUE 
for the actual dataset; C: Pearson r for shuffled data; D: MUE for the shuffled dataset. 
 
Evaluating the Model Parameters. Since the investigated solvent functionals have 

physicochemical motivation, their parameters can be interpreted in a way to gain insights into 

the physical processes that they try to capture by the applied solvent functional. As can be seen 

in Figure 2-5, the fluctuations of some parameters are quite large. This is in part due to the 

rather extended parameter range, which allowed the energy and entropy cutoff parameters to 

vary between -10 to +10 kcal·mol-1 and the solvent density cutoff from 1 to 8 ρ0. This is a 

fundamental difference to prior work,82 which allowed only for positive energy and entropy 

cutoff values, eCO and sCO, respectively. However, we think that the inclusion of negative values 

is justified, due to the fact that we investigate relative differences between ligands. In this 

situation, the exact nature of the reference state (bulk water phase) becomes obsolete and 

consequently the exact zero-point of Δ�+!(� and �Δ�+!(� is not relevant. But nonetheless, the 

sign of the cutoff values is important for evaluating the quality of the water molecules at a 

specific location in the binding site. We interpret the median of the parameter values, instead 

of their mean value, since several parameter distributions have a long tail and therefore it is not 
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meaningful to report the mean value. A graphical overview of the median and quartile values 

can be found in Figure 2-5. The numerical values of the individual median, 1st and 2nd quartile 

values for all functionals can be found in the Supporting Information. 

For the solvent functionals based on the apo protein, the median energy cutoff parameter, eCO, 

is negative for P/F5 and P/F6 (-6.56 and -4.35 kcal·mol-1, respectively) and positive for P/F4 

(0.62 kcal·mol-1). Thus, solvent functionals P/F5 and P/F6 capture water molecules with an 

energy lower than the mean in the bulk solvent, whereas solvent functional P/F4 captures water 

molecules with an energy slightly above bulk solvent energy. Also, for P/F5 and P/F6, eCO is 

found to have a tail into the positive regime, indicated by the 75 percentile values of 

0.88 kcal·mol-1 and 2.97 kcal·mol-1, respectively. The energy weighting parameter, Eaff as well 

as the universal weighting parameter Kaff, are found at negative median values for P/F5 and 

P/F6, respectively. This seems to be counterintuitive, since the energy cutoff parameter, eCO, 

allows only for water molecules that are by -6.56 and -4.35 kcal·mol-1 more stable than in bulk 

water phase. Consequently, the displacement of energetically stable water molecules should not 

be favorable in terms of free energy. However, ligands which are able to displace water 

molecules that are energetically more stable in the binding pocket than in bulk phase, replace a 

protein-water interaction by a stable protein-ligand interaction. Most probably, this is the reason 

for the good performance of this approach. The negative sign in the energy cutoff together with 

the negative weighting parameter indicates that these water molecules can be used to probe for 

stable protein-ligand interactions. A result that would not be possible by only considering 

contributions from energetically unfavorable (i.e. eCO>0 kcal·mol-1) water molecules. In 

contrast to P/F5 and P/F6, the much simpler P/F4 functional with its positive energy cutoff 

parameter, correctly identifies only water molecules which are energetically less stable than in 

bulk water phase. 

A similar behavior, although with different sign, is found for the entropy cutoff parameter, sCO. 

For this parameter, median values of 5.57, 4.41 and 0.08 kcal·mol-1 were found for functionals 

P/F4, P/F5 and P/F6, respectively. Although this parameter does not fluctuate much for P/F4, 

we found more pronounced fluctuations for P/F5 and P/F6. The negative entropy weighting 

parameter, Saff, is expected to a certain degree as it indicates that the displacement of 

entropically unfavorable water molecules leads to a gain in binding free energy. The solvent 

density cutoff, gCO, was found to have only small fluctuations and median values of 2.07, 4.46 

and 5.41 ρ0 for the three functionals. This already indicates that solvent density values in the 

range of 4.5 to 5.5 ρ0 are appropriate for evaluating the contributions of water molecules in the 
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apo pocket using the P/F5 and P/F6 functionals. For the P/F4 functional, a lower solvent density 

value of about 2 ρ0 is appropriate. Likely, the low solvent density value reflects the high energy 

cutoff value found for this functional. 

 

 

Figure 2-5. Boxplots showing distribution of the parameters for different functionals and 
datasets. The inner box indicates the upper to lower quartile range, the whiskers indicate the 
lowest and highest datum that is still within 1.5 IQR. All parameters are in units kcal·mol-1, 
except gCO, which is given in multiples of bulk density ρ0. A, C, E: P /F4, P /F5, P/F6 (blue); 
B, D, F:  L/F4, L/F5, L/F6 (red). 
 

We refrain from interpreting the parameters of the solvent functionals derived from the protein-

ligand complexes (PL/F4, PL/F5 and PL/F6), since these did not result in adequate correlations 

with the experimental data (see Figure 2-4). Additionally, they did not significantly outperform 
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the solvent functionals trained with shuffled data, which speaks against the predictive power of 

these functionals. 

For the L/F4, L/F5 and L/F6 functionals, only GIST data from MD simulations of the ligand 

molecules in aqueous solution were used. The energy as well as the entropy cutoff for L/F4 are 

low (-4.35 and -2.79 kcal·mol-1, respectively). With an energy and entropy cutoff being that 

low, all major solvation sites on the ligand’s surface contribute to binding affinity. 

Consequently, this solvent functional suggests that binding affinity is significantly determined 

by contributions from solvation energy and entropy of the ligand alone. For the other solvent 

functionals, L/F5 and L/F6, the energy cutoff parameters are observed at negative median 

values (-3.35 and -4.20 kcal·mol-1, respectively), whereas the entropy cutoff parameters are 

close to zero for both functionals (-0.57 and -0.36 kcal·mol-1, respectively). Contrary to solvent 

functional L/F4, rather large fluctuations are observed. The overall negative sign for the energy 

cutoff parameter in solvent functionals L/F4, L/F5 and L/F6 indicates that water molecules with 

an energy lower than in bulk solvent are effectively considered in the free energy score. As the 

entropy cutoff parameters of L/F5 and L/F6 are close to zero, water molecules with mostly 

entropically beneficial displacement upon binding are considered. Furthermore, the solvent 

density cutoff was found to be close to 2 ρ0 for all three solvent functionals. The fluctuations 

for this parameter were low for L/F4 and L/F5, but can increase up to 8 ρ0 in the case of L/F6. 

The negative sign for the median values for the weighting parameter, Kaff and Eaff
  (-0.16 and -

0.27 kcal·mol-1), indicates, as in the case of P/F5 and P/F6, a favorable free energy contribution 

from the displacement of water molecules that are bound energetically favorable compared to 

bulk water phase. The large and negative entropy weighting parameter, Saff (-1.36 kcal·mol-1), 

indicates that the displacement of entropically unfavorable water molecules leads to a large gain 

in free energy. Consequently, according to the solvent functional, entropy and energy seem to 

reinforce each other in the context of ligand desolvation. 

It should be noted that the binding affinity has only negligible correlation of 8 = 0.15 with the 

logP value (calculated with the Crippen140 logP implementation in RDKit139) of the molecules 

studied in this work. Consequently, we assume that the solvent functionals do not capture the 

solubility or hydrophobicity of the ligand molecules, but the actual solvation thermodynamics 

within the binding process. 

 

Distribution of the Water Molecules in the S1 Subpocket. The S1 subpocket plays a key role 

in the substrate recognition process of thrombin. It contains D189 deeply buried at the bottom 
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of this pocket and this amino acid interacts with the positively charged amino acid sidechains 

of the bound substrate. Another amino acid, Y228, next to D189, does not interact directly with 

the substrate, but poses an apolar counterpart to the charged D189 residue. As such, it 

accommodates weakly bound water molecules on top of the aromatic side chain, which can lead 

to a boost in binding affinity upon displacement.54,104 This residue also plays a crucial role for 

the development of inhibitors as it can be involved in favorable chlorine-π-interactions.  

As can be seen from Figure 2-6A and Figure 2-6B, the regions which contribute with favorable 

entropy (red) to the free energy of binding are located mainly on top of the carboxylate group 

of D189 for the P/F4 and P/F5 functionals, respectively. Since the entropy cutoff value for P/F4 

is sCO=5.6 kcal·mol-1, only entropically unfavorable water molecules contribute to free energy. 

Interestingly, these water molecules do not contribute to solvation energy, as suggested by the 

missing scoring regions in the energy map (blue, Figure 2-6A right) on top of D189. The energy 

cutoff value is at eCO = 0.6 kcal·mol-1 for P/F4, consequently it includes energy contributions, A�+!(��8�/�, from solvent molecules in regions that can only decrease the solvation energy 

(consider the negative sign for Δ�B!(��JK�
 in P/F4, as explained in the Methods section). These 

regions are located on top of the sidechain of Y228 and reflect the fact that the solvation of this 

sidechain is accompanied by weak solute-water interactions as well as an unfavorable 

arrangement of water molecules in the binding pocket.  

Solvent functional P/F5 does have the lowest energy cutoff parameter value (eCO = -

6.6 kcal·mol-1), of all the protein pocket desolvation solvent functionals. Consequently, it 

includes the energetically favorable water molecules (region with quite low Δ�B!(�) on top of 

D189 (Figure 2-6B, right). As already mentioned before, this likely reflects the fact that water 

molecules on top of the charged side chain serve as a probe for energetically favorable 

interactions between protein and ligand at this site. 

According to P/F6, the water molecules that are favorable to displace with respect to entropy, 

are also in proximity to the carboxylate group of D189. However, these entropy scoring regions 

also distribute across the binding pocket (see Figure 2-6C, left) which is due to the lower 

entropy cutoff for this functional as compared to P/F4 and P/F5. Regarding solvent energy, the 

P/F6 functional favors water molecules bearing an energy lower than in bulk solvent (eCO = -

4.4 kcal·mol-1). However, the cutoff value for this solvent functional is just high enough, such 

that water molecules on top of D189 are not considered for scoring in the energy term (see 

Figure 2-6C, right). However, the water molecules on top of Y228 are energetically unfavorable 

with respect to bulk water phase, which was also observed for solvent functional P/F4. 
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Figure 2-6. Entropy (red) and energy (blue) maps in the S1 subpocket of thrombin contoured 
at the median cutoff parameter values for the different solvent functionals. A: Representation 
of the distribution of the sum in eqs. (2-4) and (2-5) for the P/F4 functional contoured at 
eCO = 0.6 kcal·mol-1, sCO = 5.6 kcal·mol-1, gCO = 2.7 ρ0. B: Representation of the distribution of 
the sum in eqs. (2-11) and (2-12) for the P/F5 functional contoured at eCO = -6.6 kcal·mol-1, 
sCO = 4.4 kcal·mol-1, gCO = 4.5 ρ0. C: Representation of the distribution of the sum in eqs. (2-9) 
and (2-10) for the P/F6 functional contoured at eCO = -4.4 kcal·mol-1, sCO = 0.1 kcal·mol-1, 
gCO = 5.4 ρ0. 
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2.5.2 Solvent Free Energy from Two-State Full Binding-Displacement Treatment (S1-

S2/F type) 

Performance Considerations. In the second part of this work, we considered contributions 

from both the protein-ligand complex and the ligand molecule in the same calculation. The 

performance of functionals PL-L/F4, PL-L/F5 and PL-L/F6 show a considerably worse 

performance than the corresponding ones based on the individual displacement treatments. The 

functional PL-L/F4 shows a median correlation coefficient of only 0.4, which corresponds to 

just the same performance that was observed for optimization using shuffled data for this 

functional (see Figure 2-7A and C). This speaks against any predictive power of this functional. 

However, the other functionals PL-L/F5 and PL-L/F6 did perform better and slightly 

outperformed those trained on shuffled data. In line with this, the solvent functionals obtained 

with PL-L/F4 could also not achieve better accuracy than the ones trained on shuffled data, 

indicated by the MUE (see Figure 2-7B and D). For F5 and F6 however, improved accuracy 

over shuffled data was observed, indicated by the low MUE values. Due to the not quite 

satisfying performance of these functionals, we refrain from interpreting the parameters further 

with respect to potential implications for the water molecules in the system. 
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Figure 2-7: Boxplots showing Pearson correlation coefficient and MUE for solvent functionals 
PL-L/F4 to PL-L/F6 using GIST from both the protein-ligand complex and the ligand molecule 
in solution. A: Pearson r for the actual dataset (p<0.05 for all correlation coefficients); B: MUE 
for the actual dataset; C: Pearson r for shuffled data; D: MUE for the shuffled dataset. 
 

2.5.3 Solvation Free Energy including Explicit Optimization of Solvation Energy 

The solvent free energy methods discussed so far are not parameterized using any explicit 

consideration of experimentally derived enthalpy or entropy contributions. Thus, no correlation 

between experimental and calculated enthalpy-entropy factorization is observed for the simple 

solvent functionals such as P/F6 (see Figure 2-8). In order to achieve correct enthalpy-entropy 

factorization, we performed optimization of the GIST functionals for the free energy data and 

the energy simultaneously using multiobjective optimization (see Methods section). In this 

approach, the free energy is calculated in the same way as it is in the single-objective approach, 

except that the parameters that affect the solvation energy (i.e. eCO, gCO, Eaff and Kaff) are 

optimized for the experimental enthalpy differences as well. By this, the solvent functional uses 

the entropy of solvation as a compensation for the difference between free energy and energy. 
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Figure 2-8: Comparison of calculated and experimental relative enthalpy values (left) and 
relative entropy values (right) calculated with the P/F6 solvent functional. 
 

Performance of the Solvent Functionals. The solvent functionals P/F4, P/F5, P/F6, PL/F4, 

PL/F5, PL/F6, L/F4, L/F5 and L/F6 generally do not perform in a satisfactory way with respect 

to reproducing values of the experimental free energies (see Figure 2-9A) as obtained from 

multiobjective optimization. Although some agreement between experiment and calculation 

was found for the energy of solvation from P/F6 and L/F6, no clear correlation was found for 

PL/F4 to PL/F6 (see Figure 2-9B). We argue that the unsatisfactory agreement between 

calculated and experimental values is due to differently dominating contributions to solvation 

energy and entropy resulting from the unbound state or the bound state of the ligand. 

Specifically, we assume that either the ligand desolvation or the solvation of the protein-ligand 

complex contribute the lion’s share to specific quantities. For this assumption, the two states 

must be handled differently, using individual cutoff values for the solvent density, entropy and 

energy, as introduced in the Theoretical Background section above. We tested two different 

functionals, one that employs different cutoff values for the solvent density in each state, but 

global (i.e. similar) entropy and energy cutoff values for each state (� = Ntu�vw�, Ntu�w�, Otu�'�, Stu�'� 
for each solvent functional PL-L/F4/R, PL-L/F5/R and PL-L/F6/R). The other functionals use 

different solvent density, energy and entropy cutoff values in each state (� =
Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w� for each solvent functional PL-L/F4/R, PL-L/F5/R and PL-

L/F6/R). As a reference, we also analyzed the global (i.e. they are the same in each state) cutoff 

parameter setting for each state (� = Ntu�'�, Otu�'�, Stu�'� for each solvent PL-L/F4/R, PL-L/F5/R 

and PL-L/F6/R). These solvent functionals are similar to PL-L/F4, PL-L/F5 and PL-L/F6, 

which were already investigated in the first part of the Results section (see Figure 2-7 for an 

overview of their performance based on training/testing with free energy data).  
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For the solvent functional that employs individual solvent density cutoff values for each state 

(� = Ntu�vw�, Ntu�w�, Otu�'�, Stu�'�), we observed little agreement of free energy and energy with 

experimental values for the F4 basic functional (see Figure 2-9 C,D magenta). For basic 

functionals F5 and F6, equal median performance was observed for the free energy, although 

F6 shows somewhat higher fluctuations than its F5 counterpart. In contrast to the solvent free 

energy, the solvent energy was observed to be in better agreement with F5. This is a bit 

puzzling, since the performance of F6 should not be worse than the performance of F5, as F5 

can be treated as a subtype of F6, where Eaff = Saff. 

In the case of the solvent functional that uses individual solvent density, energy and entropy 

parameter settings for each state (� = Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�), satisfactory 

performances were found for both solvent free energy as well as solvent energy (see Figure 2-9 

C,D grey) for basic functionals F5 and F6. It is worth noting that no significant correlation could 

be determined for these functionals with shuffled data (see Supporting Information). Lastly, it 

must be emphasized that the functional with all-global parameter settings (� = Ntu�'�, Otu�'�, Stu�'�), 
did not result in anything that could reliably reproduce the experimental free energy or enthalpy 

(see Figure 2-9 C,D brown). 
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Figure 2-9: Boxplots showing the Pearson correlation coefficient for free energies and 
enthalpies calculated using different solvent functionals and multiobjective optimization. The 
inner box indicates the upper to lower quartile range, the whiskers indicate the lowest and 
highest datum that is still within 1.5 IQR. A,B: Solvent free energy and energy calculated with 
displaced-solvent functionals based on (with F={F4,F5,F6}) P/F (blue), PL/F (green) and L/F 
(red); C,D: Solvent free energy and energy calculated with full binding-displacement treatment. 
 

The Parameters of the Functionals. In the following, the functionals with explicit 

multiobjective training of solvent free energy and energy are discussed. We only discuss the 

ones which actually were able to reproduce the experimentally observed enthalpy-entropy 

factorization. Therefore, only the parameter settings � = Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w� with 

basic functionals F5 and F6 will be discussed. 

As can be seen from Figure 2-10B, basic functional F6 results in a broad scatter of the ligand 

entropy cutoff parameter, Stu�w�, whereas the other parameters do not fluctuate strongly. For basic 

functional F5, overall less fluctuations than for basic functional F6 were observed (see Figure 

2-10A). The median value of Kaff in F5 (0.22 kcal·mol-1) as well as both Eaff and Saff of F6 (0.17 

and 0.01 kcal·mol-1) are positive. Thus, the solvent functionals score the solvation contributions 

from the protein-ligand complex to oppose binding, whereas the desolvation contributions from 

the ligand molecule boost binding (i.e. they lower the free energy). Furthermore, the value of 
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the entropy weighting parameter, Saff, is almost 20 times lower than the energy weighting 

parameter, Eaff, with basic solvent functional F6. This can be due to the fact that during 

multiobjective optimization, entropy was only considered implicitly as the compensating 

difference between free energy and enthalpy. But most likely, this reflects the fact that the 

spread of experimental entropy is by far less than the corresponding spread in enthalpy 

(cf. Figure 2-3) in our dataset. 

For both basic functionals F5 and F6, the median values for solvent energy, entropy and density 

cutoff parameters are found to be quite similar (see also the Supporting Information for a 

complete list of the numerical values). The median value of the energy cutoff parameter for the 

ligand molecule, Otu�w�, is slightly negative (-0.95 kcal·mol-1), whereas the value for the protein-

ligand complex is positive and very high in value (8.03 kcal·mol-1). The low energy cutoff for 

the ligand together with the high solvent density cutoff value (6.93 ρ0) for the ligand effectively 

allows only highly occupied regions around the ligand that are energetically only slightly 

stabilized. In line with the high density cutoff parameter values, also high values for the entropy 

cutoff parameters for the protein-ligand complex, Stu�vw�, as well as the ligand, Stu�w�, are observed 

(7.83 and 3.95 kcal·mol-1, respectively). 

Most of the regions with high solvent density and energy (e.g. next to apolar patches) are 

recognized to fix water molecules that can be easily removed upon a favorable gain in solvation 

energy and free energy of binding. These regions can be large in size, thus indicating that the 

desolvation of the ligand molecule has a large contribution to the (negative) total free energy. 

These contributions can actually be overwhelming and thus overcompensate other contributions 

from the protein-ligand complex (see also Figure 2-11 for an overview of the ligand free energy 

factorization). As already mentioned, the protein-ligand complex contributions seem to oppose 

binding due to the positive sign of Kaff and Eaff for basic functionals F5 and F6. This is further 

substantiated by the high positive energy cutoff value for the protein-ligand complex as well as 

the high solvent density cutoff value (9.97 ρ0). Thus, these regions contain (partly) entrapped 

water molecules that are unfavorable in energy with respect to bulk solvent. These water 

molecules should be rather replaced in the protein-ligand complex in order to gain free energy. 

Since the solvent energy contributions from the protein-ligand complex do oppose binding it is 

suggested that they rather discriminate between the individual ligand molecules and by that, 

contribute to the selectivity of the individual ligands with respect to the binding to the target 

protein. 
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Figure 2-10: Boxplots showing the parameters for different solvent functionals obtained from 

multiobjective optimization with parameter settings	� = Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�. The 
inner box indicates the upper to lower quartile range, the whiskers indicate the lowest and 
highest datum that is still within 1.5 IQR. All parameters are in units kcal·mol-1, except Ntu�w�/Ntu�vw�, which are given in multiples of bulk density ρ0. A: Parameters for the F4 basic 
functional; B: Parameters for the F5 basic functional; C: Parameters for the F6 basic functional. 

 

It must be emphasized that the weighting parameters Eaff, Saff or Kaff were allowed to vary freely 

in the interval [-3;+3] kcal·mol-1 during parameter optimization. Thus, the fact that the solvation 

of the protein-ligand complex opposes binding and the desolvation of the ligand favors binding 

was not enforced at any point during parameter optimization. Also, it must be noted that the 

solvent free energy values of the protein-ligand complex alone do not correlate strongly with 

experiment for the solvent functionals discussed in this section (r = 0.30). Whereas for the 

ligand alone reasonable correlation with experimental free energy was found (r = 0.75). These 

correlations are quite similar to the observed performance of solvent functionals PL/F6 and 

L/F6. However, the individual energies of the protein-ligand complex and the ligand do not 

appear to correlate with experimental enthalpy (both r = 0.40). This indicates that the free 

energy of solvation for the binding reaction can readily be calculated from the ligand in solution 

alone but rather not from the protein-ligand complex. However, for the calculation of solvation 

energy, the contribution of both states, the protein-ligand complex and the ligand, are necessary 

in order to obtain reasonable correlation with experiment. 

As already noted, the desolvation of the pre-bound state of the ligand contributes the lion’s 

share to the solvation free energy. This is also illustrated in Figure 2-11, which displays an 

overview of the solvent free energies and energies calculated with PL-

L/F6/Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�. From this overview it is apparent that the desolvation 

energy of the ligand molecule has the largest impact on the total solvation free energy. The 

contributions of the protein-ligand complex are smaller (approximately one third the amount of 
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the contributions of the ligands), but they scatter more pronouncedly and therefore contribute 

significantly to the discrimination of ligand molecules that have similar desolvation behavior. 

 

 

Figure 2-11: Overview of the energy-entropy factorization as obtained from the PL-

L/F6/Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w� solvent functional. All quantities are units kcal·mol-1. 
The error bars indicate the confidence interval at the 95% level. 
 

2.5.4 Spatial Distribution of the Solvent Molecules in the Unbound and Bound State 

As can be seen from Figure 2-12B and D, solvent molecules scatter around the positively 

charged terminal amino group exposed to the surface of the ligands 1 and 2 in their unbound 

state. This amino group is present in many of the thrombin ligands with a D-Phe-Pro scaffold 

considered in the evaluated data set. In the case of 2, considerably more water molecules than 

for 1 are found in proximity to this amino group in the unbound state of the ligand. Furthermore, 

solvent molecules matching the energy cutoff are found on top of the aromatic portion in the 

unbound state of 2, whereas they are clearly missing in the unbound state of 1. In the bound 

state of both ligands (see Figure 2-12A and C), water molecules occupy a hydrophobic 

subpocket in the vicinity of W60, below the so-called 60s loop. These water molecules are also 

found in the apo crystal structure of the protein, however at rather shifted positions in the 

protein-ligand crystal structures. The occupation of this region with water molecules opposes 

binding and compensates the overall beneficial desolvation of both ligands in an unfavorable 

way. Ligand 1 also entraps a water molecule between its pyridine group and Y228, which is 

missing for ligand 2. The energetic contribution of this entrapped water molecule is highly 

unfavorable with respect to the bulk water phase. Thus, 2 binds tighter to the protein than 1, as 

shown by the calculated free energy difference of ∆∆G(calc)(1�2) = -2.4±0.8 kcal·mol-1 

accompanied by a change in solvation energy of ∆∆H(calc) (1�2) = -2.3±0.6 kcal·mol-1. Overall, 

the process is driven by solvent energy, which is in agreement with the experimental free energy 
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difference of ∆∆G(exp)(1�2) = -2.5±0.2 kcal·mol-1 and the dominating experimental enthalpy 

difference of ∆∆H(exp) (1�2) = -2.3±0.2 kcal·mol-1. 

 

 

Figure 2-12: Example of unfavorable solvent energy regions calculated for ligands 1 and 2 in 
their unbound and bound states (both in the crystallographically observed binding pose). The 

maps were generated with the PL-L/F6/Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w� functional. The 
parameter values are the median values found for this particular functional. A, B: Solvent 
energy map for the bound and unbound state of 1 (PDB 3SV2)103; C,D: Solvent energy for the 

bound and unbound state of 2 (PDB 2ZF0)104. The bound states are countered at Otu�vw� =8.03	�m
� ⋅ �[��> and Ntu�vw� = 9.97	_�. The unbound states are contoured at Otu�w� =−0.95	�m
� ⋅ �[��> and Ntu�w� = 3.95	_�. The errors for free energy and enthalpy (energy) 
display 1 stand. dev. (both for the experimental and calculated values). 
 

2.5.5 Comparison with Other Methods 

In order to see if our approach is in principle comparable to other methods, we applied the 

generalized Born surface area implicit solvation method (GBSA) and the 3D reference 

interaction site model (3D-RISM) to our systems. For both methods, we calculated their 

agreement with relative free energy differences from the experiment. Also, we benchmarked 

their performance with the addition of the internal molecular mechanics energy of the solute 

molecules (the MM-GBSA and MM-3DRISM approach). We used these methods for 
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comparison, since the required computing time for them lies between GIST and advanced free 

energy methods such as the Free Energy Perturbation (FEP) technique. 

Once the MD simulations and GIST calculations are carried out, the computing time for our 

approaches depends heavily on the applied solvent functional and the parameter range that is 

allowed during the optimization of the parameters. For a typical solvent functional like P/F4, 

our program Gips obtains a set of converged (for convergence and termination criteria, see 

Methods section) parameter values after 1 hr of computing time using 20 cores on an Intel Xeon 

Skylake Gold 6148 processor at the Goethe-HLR compute cluster located at Goethe University 

Frankfurt. A multiobjective optimization, as with the PL-L/F6/Ntu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w� 
functional, usually takes about 10 hrs with the same processor type and number of cores. Thus, 

our approach is quite compatible to MMGBSA or MM-3DRISM approaches in terms of 

computing time. The comparison with advanced free energy methods based on alchemical 

transformation would not be feasible in the context of this study, particularly considering the 

required computational efforts. 

The different methods and their correlation with experimental data are presented in Table 2-2 

together with a comparison with our solvent functionals. The implicit solvation methods, both 

with and without the addition of the solute energy, were not able to reproduce the trend in 

binding free energy. In detail, the widely-used MM-GBSA approach (entry MM-GBSA / PL-

L) based on the contributions of the protein-ligand complex and the free ligand molecule in 

solution did not capture the trend in binding free energy correctly. Only the consideration of 

the ligand molecule itself, both with and without consideration of the solute energy, were able 

to achieve moderate correlations of 0.58 and 0.59, respectively. With the 3D-RISM approach, 

no correlation was found, with and without the solute energy, if the protein-ligand complex was 

considered in the calculations. However, with the ligand molecule alone, we found considerable 

correlation of 0.75 with the 3D-RISM approach. 
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Table 2-2: Overview of GBSA and 3D-RISM performance compared with our solvent 
functionals. 

Method a) ∆∆G Pearson r c) ∆∆Η Pearson r c) 

P/F4 b) 0.76 -0.15 

P/F5 b) 0.78 0.00 

P/F6 b) 0.78 0.05 

L/F4 b) 0.81 -0.07 

L /F5 b) 0.86 -0.06 

L /F6 b) 0.88 -0.06 

PL-L/F5/yz{����, yz{���, |z{����, }z{���, |z{����, }z{��� b) 0.71 0.72 

PL-L/F6/yz{����, yz{���, |z{����, }z{���, |z{����, }z{��� b) 0.72 0.70 

GBSA / PL -0.27 0.16 

GBSA / L 0.59 0.18 

GBSA / PL-L -0.26 0.17 

MM-GBSA / PL -0.40 0.06 

MM-GBSA / L 0.58 0.25 

MM-GBSA / PL-L -0.35 -0.35 

3D-RISM / PL 0.12 0.00 

3D-RISM / L 0.75 0.26 

3D-RISM / PL-L 0.13 0.01 

MM-3D-RISM / PL 0.07 -0.02 

MM-3D-RISM / L 0.69 0.29 

MM-3D-RISM / PL-L 0.09 0.01 

a) PL: Based only on the protein-ligand complex; L: Based only the ligand molecule; PL-L: Based on 
both the protein-ligand complex and the ligand. The PL-L approach corresponds to the standard 2-
trajectory strategy in MMPBSA-type end-state analysis. 

b) This work. 
c) Pearson correlation between calculated and experimental free energy and enthalpy. The correlation 

is based on the pairwise relative differences as used throughout this work. 
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2.6 Comparative Analysis of the Applied Functionals 

We demonstrated that displaced-solvent functionals like P/F6 can be used to calculate the 

solvation contribution of the free energy of binding based on the displacement of solvent 

molecules from the protein binding pocket. However, much simpler functionals like P/F4, 

which only require four parameters, can be applied to calculate the same quantity and achieve 

similarly satisfactory correlation with experimental data. Apart from the advantage that a 

functional with fewer parameters potentially requires less fine-tuning in the individual 

application, the simpler functional showed less fluctuations. Overall, this indicates that such a 

functional is less dependent on the quality and distribution of the training data. The fact that 

solvent displacement from the protein-binding pocket is such a good predictor for binding free 

energy suggests that displaceable solvent molecules are likely found at positions in the protein 

binding pocket that can be substituted by favorable interactions to a bound ligand molecule. 

Surprisingly, an even increased performance, as compared to the solvent displacement based 

on the protein pocket desolvation, can be achieved by considering the contributions of the 

ligand molecules alone. This conclusion is particularly remarkable, as it suggests that the 

binding free energy differences across the series of considered thrombin ligands can be 

described entirely by the desolvation of the ligand molecules alone. However, this would 

suggest that these solvent functionals (L/F4, L/F5 and L/F6) assign the same binding free 

energy towards any arbitrary protein. On first sight, this suggestion cannot be correct, since it 

is well known that many thrombin ligands have strongly deviating binding properties already 

towards other related serine-proteases such as trypsin or factor Xa.141–143 It is much more likely 

that the solvent functional parameters are trained on regions across the surface of the unbound 

ligand molecule which do contribute to solvation free energy such that they effectively correlate 

with binding free energy. Of course, would our ligands be trained with binding thermodynamic 

data towards a different protein (e.g. trypsin or factor Xa), then different parameters would be 

found and consequently different regions on the surface of the unbound ligand molecule would 

be affected, as already shown with 3D-QSAR models.24,143 Our findings imply that the water 

molecules and their thermodynamic properties across the surface of the unbound ligand 

molecule already constitute a blueprint of the binding free energy potentially gained by the 

interactions with the protein binding pocket. With other words, ligands capable to shed off 

tightly bound water molecules upon binding, must replace the lost water -ligand interactions by 

stable protein-ligand interaction. Most probably, this is the reason for the good performance of 

the L/F4, L/F5 and L/F6 functionals. 
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Taken together, the desolvation of water molecules from the binding pocket as well as the 

desolvation of the ligand molecule from the bulk water phase correlate well with the relative 

differences in binding free energy obtained from experiment, since they both serve sufficiently 

well as structural and thermodynamic representation of the interactions gained upon binding. 

In light of these considerations, it is understandable that the analysis of only the protein-ligand 

complex will not be able to capture the overall free energy of binding as it does not include any 

interactions of the ligand in the bulk phase prior to the formation of the protein-ligand complex. 

This is further underlined by the lack of a clear correlation between the binding free energy and 

the solvation free energy calculated using PL/F4, PL/F5 and PL/F6. 

However, the formed protein-ligand complex is important for the consideration of the energetic 

contributions to the binding process. With the solvent functional that was trained with GIST 

data from both the protein-ligand complex and the ligand molecule, we were able to describe 

the free energy of binding as well as the enthalpy (energy) of binding. The free energy of 

binding seems to be mainly driven by the energetically dominating ligand desolvation 

contributions, however, the actual discrimination between ligands results from the enthalpic 

inventory of both, the complex and the ligand. The functionals suggest that ligand desolvation 

is essentially driven by the shedding of tightly bound water molecules with unfavorable energy 

compared to the bulk phase. In the protein-ligand complex, bound water molecules only 

contribute to binding if they are very unfavorable and consequently high in energy with respect 

to bulk water. 

The striking performance of the solvent functionals based on GIST ligand data in our approach 

to predict differences in free energy of binding across a series of molecules is reminiscent of a 

very popular method developed about 30 years ago, the so-called 3D-QSAR method (e.g. 

CoMFA144 and CoMSIA145). In this approach a set of ligands has to be mutually aligned with 

conformations assumed to resemble the bound ligand geometries at the binding site of a target 

protein. With increasing availability of crystal structures of protein-ligand complexes, the 

mutual alignment has be assisted more and more by modeling the ligands into the binding site 

of the crystallographically characterized proteins. For data evaluation, the thus aligned ligands 

are embedded into an equally-spaced grid and by use of a molecular probe along with a distance 

dependent functional form, interaction potential values were assigned to the intersections of the 

surrounding grid. The correlation of the binding affinity with trends in the data assigned to the 

various grid points is achieved by PLS analysis. Besides the correlation of binding affinity with 
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the aligned molecules, the coefficients obtained at the different grid intersections allowed to 

spatially detect areas that vary and thus explain trends in the affinity data across the data set. 

As functional form to map the binding properties of the ligands, various functionals have been 

applied, among them potentials taken from force fields (Coulomb, Lennard-Jones, potentials 

from Goodford’s GRID146 or the HINT147 program). In our current work, we map the Amber 

force-field by an MD simulation and the obtained maps provide the input for our GIST analysis. 

As an advantage, a water probe detects donor and acceptor properties and via the local 

populations produced insights into the entropic aspect are made available. 

The 3D-QSAR approaches achieve impressive predictive power even though their conceptional 

limitations with respect to features of the surrounding protein binding site, solvation properties 

or entropic considerations are evident, leaving the persisting question why 3D QSAR performs 

so well. Possibly our current work provides some answers to this nasty topic. As pointed out, 

our GIST analysis using only the ligand data allows screening the solvation thermodynamic 

properties across the ligand surfaces and thus constitutes a kind of blueprint of the binding free 

energy potentially gained by the interactions formed by the ligands in the protein binding 

pocket. Via the indication of displaceable solvent molecules, likely positions are found that can 

be substituted by favorable interactions once a ligand is bound in the protein binding pocket. 

Clearly, 3D QSAR does not capture features involving differences in the solvation patterns of 

the protein-ligand complexes. However, our GIST analysis of the protein-ligand complexes 

shows that bound water molecules only contribute to binding if they are very unfavorable and 

consequently high in energy with respect to bulk water phase. Likely, these situations are less 

frequent across congeneric series of ligands, but definitely, when present, they will contribute 

to false correlations in the 3D QSAR evaluations. 

Admittedly, our study is based on one comprehensive data set and further evaluations of other 

data sets have to show the general validity of our considerations. Nonetheless, our approach has 

proven to show excellent agreement with a broad range of experimental thermodynamic data 

covered by our dataset. Moreover, our approach is comparable in computing time with other 

well-studied free energy methods, such as MM-GBSA and MM-3D-RISM, but considerably 

outperforms those methods in terms of accuracy and predictive power. 

 

2.7 Conclusion 

In this work, we presented a significant advance in considering solvation phenomena in drug 

discovery. Our work is based on GIST calculations and demonstrates how this method can be 
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used to develop models that are able to explain experimental enthalpy-entropy factorization. 

Furthermore, we demonstrated how our approach is used to partition solvent thermodynamics 

into individual contributions from the protein-ligand complex and the ligand in the bulk phase 

prior to complex formation. Furthermore, we introduced a much simpler form of the already 

widely used displaced-solvent functionals. This new form uses fewer parameters and is 

demonstrated to be less sensitive towards the composition of the training set. Admittedly, the 

method has been developed and assessed only on one comprehensive data set of thrombin 

ligands. We believe the approach has potential for general applicability, since we used a 

comprehensive dataset of ligand molecules covering a variety of chemical features. However, 

it is necessary to carry out further investigations in order to elucidate the general applicability 

of the approach. Nevertheless, the study allows some insights why methods such as 3D-QSAR 

analysis provide results with high predictive power. 

We hope that our work will further stimulate the consideration and subsequently the 

implementation of solvation-based design strategies in the arsenal of tools for the design of 

novel drug molecules. Explicit solvation models are an underestimated and often poorly 

understood aspect in our current design strategies of late-stage drug discovery. We seek to make 

such methods more transparent and hopefully enhance their use in the future with the present 

study. 

The methods developed in this work are available within the Gips (GIST-based processing of 

solvent functionals) software project. It is available free of charge to the scientific community 

from the GitHub page of the lead author (https://github.com/wutobias). 
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2.8 Supporting Material 

2.8.1 PDB Accession Codes 

Ligand bound structures:  

Reference [104] 2ZC9, 2ZDA, 2ZDV, 2ZF0, 2ZFF. 

Reference [105] 2ZFP, 3DHK, 2ZGX, 2ZO3, 3DUX. 

Reference [110] 3BIU, 3BIV. 

Reference [103] 3P17, 3QTO, 3SI3, 3SI4, 3SV2, 3QTV, 3SHC ¸3QWC, 3QX5. 

Reference [49] 3RLW, 3RLY, 3RM0, 3RM2, 3RML, 3RMM, 3RMN, 3RMO, 3T5F, 3UWJ. 

Reference [111] 3UTU. 

Reference [108] 4BAK, 4BAM, 4BAN, 4BAO, 4BAQ. 

Reference [109] 4UD9, 4UDW, 4UE7, 5AF9, 5AFZ. 

Reference [107,148] 6GBW, 5JFD, 5LCE, 5JZY, 5LPD 

Reference [106] CC01, CC04, CC05, CC08, CC10, CC11. 

Reference [112] Apo structure: 2UUF.  
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2.8.2 Ligand Smiles Codes 

Table S2-3: Smiles codes for all ligand molecules in this study 
PDB Smiles Code 

2ZDV [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cccc(F)c1 
2ZC9 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cccc(Cl)c1 
2ZF0 Cc1cccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)c1 
2ZFF [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccccc1 
2ZFP CC[C@@H]([NH3+])C(=O)N1CCC[C@H]1C(=O)NCc1cccc(Cl)c1 
2ZGX CC[C@@H]([NH3+])C(=O)N1CCC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1 
2ZDA NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)cc1 
2ZO3 NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])C(c2ccccc2)c2ccccc2)

cc1 
3BIV NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)C[NH2+]C2CCCCC2)cc1 
3BIU NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)C[NH2+]C2CCCC2)cc1 
3DHK [NH3+][C@@H](C(=O)N1CCC[C@H]1C(=O)NCc1cccc(Cl)c1)C(c1ccccc1)c1ccccc1 
3DUX [NH3+][C@H](CC1CCCCC1)C(=O)N1CCC[C@H]1C(=O)NCc1cccc(Cl)c1 
3P17 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cccnc1 

3QTV C[n+]1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)cc1 
3QTO C[n+]1cccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)c1 
3QWC C[n+]1ccc(Cl)c(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)c1 
3QX5 C[n+]1ccc(Cl)cc1CNC(=O)[C@@H]1CCCN1C(=O)[C@H]([NH3+])Cc1ccccc1 
3RLY C[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1 
3RLW NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)CNS(=O)(=O)Cc2ccccc2)cc1 
3RM0 CC(C)[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+]

)cc1 
3RM2 NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC2CCCCC2)NS(=O)(=O)

Cc2ccccc2)cc1 
3RMM C[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccc1C[NH3+] 
3RML [NH3+]Cc1ccc(Cl)cc1CNC(=O)[C@@H]1CCCN1C(=O)CNS(=O)(=O)Cc1ccccc1 
3RMN CC(C)[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccc1C[NH3

+] 
3RMO [NH3+]Cc1ccc(Cl)cc1CNC(=O)[C@@H]1CCCN1C(=O)[C@@H](CC1CCCCC1)NS(=O)(=O

)Cc1ccccc1 
3SHC [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccn1 
3SI3 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccccn1 
3SI4 C[n+]1ccccc1CNC(=O)[C@@H]1CCCN1C(=O)[C@H]([NH3+])Cc1ccccc1 
3SV2 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccncc1 
3T5F CC(C)C[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccc1C[NH

3+] 
3UTU COc1ccc(S(=O)(=O)N[C@@H](CC(=O)NCc2ccc(C#N)cc2)C(=O)N2CCC[C@H]2C(=O)NCc

2ccc(C(N)=[NH2+])cc2)cc1Cl 
3UWJ CC(C)C[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccc(C(N)=[NH2

+])cc1 
4BAK CCCNC(=O)C[NH2+][C@@H](C(=O)N1CC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1)C1C

CCCC1 
4BAN CNC(=O)C[NH2+][C@@H](C(=O)N1CC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1)C1CCC

CC1 
4BAM CN(C)C(=O)C[NH2+][C@@H](C(=O)N1CC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1)C1C

CCCC1 
4BAO NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCN2C(=O)[C@H]([NH2+]CC(N)=O)C2CCCCC2)c

c1 
4BAQ CCNC(=O)C[NH2+][C@@H](C(=O)N1CC[C@H]1C(=O)NCc1ccc(C(N)=[NH2+])cc1)C1CC

CCC1 
4UDW [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccc1Cl 
4UE7 NC(=[NH2+])N1CCCCC1 
5AF9 COc1ccc(C(=O)Nc2ccccn2)cc1 
4UD9 NC(=O)c1ccc(Cl)s1 
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5AFZ NC(=[NH2+])c1ccc(CNC(=O)CNC(=O)[C@@H](Cc2ccccc2)NS(=O)(=O)Cc2ccccc2)cc1 
5LCE [NH3+][C@H](CC1CCCCC1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)ccc1CO 
5JZY NC(=[NH2+])c1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])CC2CCCCC2)cc1 
5LPD [NH3+]Cc1ccc(Cl)cc1CNC(=O)[C@@H]1CCCN1C(=O)[C@H]([NH3+])CC1CCCCC1 
CC01 Nc1cc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)ccn1 
CC04 Nc1ccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)cn1 
CC05 COc1cccc(CNC(=O)[C@@H]2CCCN2C(=O)[C@H]([NH3+])Cc2ccccc2)c1 
CC08 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccc(O)cc1 
CC10 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1ccc(Cl)s1 
CC11 [NH3+][C@H](Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cccc(O)c1 

6GBW NC(=[NH2+])NCCC[C@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(Cl)
ccc1C[NH3+] 

5JFD NC(=[NH2+])NCCC[C@@H](NS(=O)(=O)Cc1ccccc1)C(=O)N1CCC[C@H]1C(=O)NCc1cc(
Cl)ccc1C[NH3+] 

 

2.8.3 Experimental Thermodynamic Data 

Table S2-4: Experimental Thermodynamic profile for the thrombin binders in this work. 
PDB ∆G [kcal·mol-1] ∆H [kcal·mol-1] ∆ΤS [kcal·mol-1] 
2ZC9 -8.46 -8.86 -0.41 
2ZDA -11.01 -9.58 1.46 
2ZDV -7.48 -3.13 4.35 
2ZF0 -8.31 -6.81 1.50 
2ZFF -7.57 -3.25 4.32 
2ZFP -7.48 -8.00 -0.53 
2ZGX -9.58 -9.24 0.33 
2ZO3 -11.58 -11.35 0.21 
3BIU -8.46 -4.04 4.42 
3BIV -8.65 -2.51 6.14 
3DHK -9.46 -10.89 -1.43 
3DUX -9.20 -7.86 1.34 
3P17 -6.16 -4.23 1.93 

3QTO -5.71 -4.47 1.24 
3QTV -5.73 -5.64 0.10 
3QWC -5.80 -5.35 0.45 
3QX5 -5.66 -5.57 0.10 
3RLW -10.72 -3.42 7.31 
3RLY -10.17 -3.80 6.38 
3RM0 -11.25 -3.30 7.95 
3RM2 -12.83 -2.72 10.10 
3RML -11.42 -8.46 2.96 
3RMM -11.27 -7.67 3.61 
3RMN -12.95 -8.65 4.30 
3RMO -13.02 -6.85 6.16 
3SHC -7.52 -7.24 0.29 
3SI3 -5.97 -4.73 1.24 
3SI4 -5.11 -3.70 1.41 
3SV2 -5.78 -4.47 1.31 
3T5F -12.97 -7.19 10.08 
3UTU -14.09 -9.60 4.49 
3UWJ -12.40 -2.48 9.91 
4BAK -12.10 -5.55 6.55 
4BAM -12.14 -5.49 6.64 
4BAN -11.61 -5.48 6.13 
4BAO -11.33 -5.10 6.23 
4BAQ -12.01 -5.77 6.24 
4UD9 -4.54 -7.09 -2.56 
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4UDW -8.96 -10.77 -1.82 
4UE7 -5.45 -3.68 1.77 
5AF9 -4.11 -3.75 0.36 
5AFZ -9.27 -4.94 4.32 
5JFD -10.39 -12.44 -2.05 
5LCE -8.91 -12.56 -3.65 
5JZY -9.34 -13.21 -3.87 
5LPD -10.89 -13.04 -2.01 
CC01 -8.38 -19.35 -10.82 
CC04 -8.77 -19.35 -10.58 
CC05 -7.71 -8.05 -0.32 
ZC08 -7.28 -7.33 -0.05 
CC10 -7.62 -9.41 -1.79 
CC11 -7.50 -12.54 -5.02 

6GBW -9.29 -8.93 0.33 

 

2.8.4 Clustering Statistics 

 
Figure S2-13: Davies-Bouldin index (left) and pseudo F-statistics (right) for clustering 
solutions with N=1,…,30 using the average linkage algorithm as outlined in the main text. 
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2.8.5 Parameter Statistics for Displaced-Solvent Calculations 

Table S2-5. Parameters for single-state solvent functional trained with free energy. 
Solvent 

Functionala) 
Eaff b) eco Saff sco gco C 

 

 

 

P 

F4 N.A. 0.62/ 
-0.09/ 
0.96 

N.A. 5.57/ 
5.56/ 
5.61 

2.70/ 
2.43/ 
2.91 

-0.11/ 
-0.14/ 
-0.08 

F5 -0.05/ 
-0.06/ 
-0.04 

-6.56/ 
-7.22/ 
0.88 

N.A. 4.41/ 
0.21/ 
4.75 

4.46/ 
4.00/ 
4.76 

0.28/ 
0.26/ 
0.30 

F6 -0.05/ 
-0.07/ 
0.43 

-4.35/ 
-6.06/ 
2.97 

-0.65/ 
-1.65/ 
-0.31 

0.08/ 
-3.45/ 
5.42 

5.41/ 
4.98/ 
5.92 

0.16/ 
0.12/ 
0.24 

 

 

PL 

F4 N.A. -3.53/ 
-4.04/ 
-1.93 

N.A. -4.59/ 
-7.08/ 
-0.93 

1.36/ 
1.15/ 
1.76 

-0.01/ 
-0.02/ 
0.05 

F5 -0.61/ 
-0.85/ 
-0.37 

-3.67/ 
-5.36/ 
-0.80 

N.A. -0.60/ 
-5.39/ 
4.23 

6.52/ 
2.77/ 
8.94 

0.20/ 
-0.27/ 
0.63 

F6 2.22/ 
1.88/ 
2.67 

3.06/ 
2.93/ 
3.34 

-0.76/ 
-0.87/ 
-0.37 

-3.49/ 
-4.99/ 
-0.65 

3.11/ 
2.19/ 
3.84 

0.19/ 
0.14/ 
0.21 

 

 

L 

F4 N.A. -4.35/ 
-5.47/ 
-3.25 

N.A. -2.79/ 
-4.38/ 
-0.61 

2.04/ 
2.02/ 
2.53 

-0.00/ 
-0.03/ 
0.16 

F5 -0.16/ 
-0.26/ 
-0.10 

-3.35/ 
-7.15/ 
-0.55 

N.A. -0.57/ 
-1.80/ 
2.96 

1.68/ 
1.47/ 
1.80 

0.10/ 
0.07/ 
0.13 

F6 -0.27/ 
-2.36/ 
-0.18 

-4.20/ 
-6.60/ 
-3.96 

-1.36/ 
-1.86/ 
0.37 

-0.36/ 
-3.35/ 
2.11 

1.75/ 
1.65/ 
6.05 

0.15/ 
0.05/ 
0.24 

The units of all parameters are expressed in units of kcal·mol-1, except gCO, which is given in multiples of ρ0. The 
reported values are the value for median, the 1st quartile and the 2nd quartile.  

a) Functional F4 to F6 are as described in the main text used for fitting procedure. 
b) For functional F5, this is the generic affinity parameter Kaff. 
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Table S2-6. Parameters for two-state solvent functionals trained with free energy. 
Solvent 

Functionalsa) 
Eaff b) eco Saff sco gco C 

 

 

 

 

PL/L 

F4 N.A. -1.01/ 
-3.09/ 
4.51 

N.A. 7.23/ 
-1.29/ 
7.40 

7 .26/ 
6.54/ 
8.50 

-0.86/ 
-1.83/ 
0.52 

F5 0.09/ 
0.06/ 
0.10 

3.08/ 
2.71/ 
3.26 

N.A. 5.84/ 
5.60/ 
6.12 

9.36/ 
8.53/ 
9.63 

-0.07/ 
0.14/ 
-0.03 

F6 0.08/ 
0.05/ 
0.10 

3.03/ 
2.79/ 
3.12 

0.08/ 
0.04/ 
0.10 

5.91/ 
5.22/ 
6.05 

8.72/ 
6.25/ 
9.59 

-0.05/ 
-0.07/ 
-0.02 

The units of all parameters are expressed in units of kcal·mol-1, except gCO, which is given in multiples of ρ0. The 
reported values are the value for median, the 1st quartile and the 2nd quartile.  

a) Functional F4 to F6 are as described in the main text used for fitting procedure.  
b) For functional F5, this is the generic affinity parameter Kaff. 
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Table S2-7. Parameters for single-state solvent functionals trained with free energy and 
enthalpy. 

Solvent 
Functionalsa) 

Eaff b) eco Saff sco gco CG
 
 CE 

 

 

P 

F4 N.A. -5.88/ 
-7.47/ 
-5.85 

N.A. 5.94/ 
5.86/ 
7.09 

5.12/ 
4.30/ 
6.13 

-0.86/ 
-0.93/ 
-0.80 

1.12/ 
1.06/ 
1.18 

F5 -0.12/ 
-0.14/ 
-0.11 

-7.26/ 
-8.38/ 
-6.83 

N.A. 5.15/ 
5.05/ 
5.19 

7.39/ 
6.29/ 
7.54 

-0.93/ 
-0.99/ 
-0.85 

1.11/ 
1.05/ 
1.14 

F6 -0.09/ 
-0.30/ 
-0.03 

-4.70/ 
-7.31/ 
0.78 

-8.29/ 
-9.73/ 
-5.61 

6.01/ 
5.96/ 
6.04 

4.38/ 
2.87/ 
8.39 

-0.94/ 
-1.05/ 
-0.83 

1.05/ 
1.03/ 
1.11 

 

 

PL 

F4 N.A. -4.04/ 
-4.04/ 
5.89 

N.A. 0.03/ 
0.00/ 
2.61 

1.14/ 
1.14/ 
5.44 

-1.11/ 
-1.19/ 
-1.05 

1.14/ 
1.11/ 
1.22 

F5 6.81/ 
-2.92/ 
7.99 

2.80/ 
0.22/ 
2.84 

N.A. 5.97/ 
4.28/ 
6.44 

3.42/ 
3.40/ 
9.61 

-1.16/ 
-1.23/ 
-1.10 

1.24/ 
1.17/ 
1.29 

F6 2.12/ 
-2.33/ 
6.66 

1.53/ 
0.22/ 
2.84 

3.98/ 
-1.57/ 
10.00 

4.90/ 
3.18/ 
7.36 

3.53/ 
3.10/ 
8.06 

-1.16/ 
-1.23/ 
-1.08 

1.21/ 
1.06/ 
1.28 

 

 

L 

F4 N.A. 5.25/ 
4.90/ 
5.29 

N.A. 0.00/ 
-0.00/ 
-0.00 

1.00/ 
1.00/ 
1.03 

-1.15/ 
-1.18/ 
-1.05 

1.14/ 
1.08/ 
1.22 

F5 -9.95/ 
-10.00/ 
-9.64 

-0.56/ 
-0.56/ 
-0.52 

N.A. 4.00/ 
4.00/ 
4.00 

7.59/ 
7.17/ 
7.59 

-0.91/ 
-0.94/ 
-0.85 

1.13/ 
1.09/ 
1.19 

F6 -10.00/ 
-10.00/ 
-8.91 

-0.58/ 
-0.94/ 
-0.56 

2.37/ 
-4.91/ 
3.28 

2.65/ 
2.34/ 
3.27 

6.99/ 
6.94/ 
7.45 

-0.92/ 
-1.01/ 
-0.82 

1.12/ 
1.07/ 
1.13 

The units of all parameters are expressed in units of kcal·mol-1, except gCO, which is given in multiples of ρ0. The 
reported values are the value for median, the 1st quartile and the 2nd quartile.  

a) Functional F4 to F6 are as described in the main text used for fitting procedure.  
b) For functional F5, this is the generic affinity parameter Kaff. 
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Table S2-8. Parameters for two-state solvent functionals trained with free energy and enthalpy. 
Solvent 

Functionala) 
Eaff b) Otu�'�  Otu�vw� 

Otu�w� Saff Stu�'�  Stu�vw� Stu�w� Ntu�'�  Ntu�vw� Ntu�w� CG CE 

 

PL-L/ 

Otu�'�, Stu�'�, 
Ntu�'� 

 

  

F4 N.A. 10.00/ 
10.00/ 
10.00 

N.A. N.A. 9.46/ 
8.81/ 
9.68 

N.A. 9.99/ 
9.91/ 
9.99 

N.A. 0.00/ 
0.00/ 
0.00 

0.00/ 
0.00/ 
0.04 

F5 0.41/ 
0.19/ 
0.45 

8.55/ 
7.71/ 
8.62 

N.A. N.A. 7.03/ 
6.42/ 
7.42 

N.A. 5.96/ 
5.94/ 
8.71 

N.A. 0.00/ 
0.00/ 
0.00 

0.11/ 
0.01/ 
0.19 

F6 0.10/ 
0.09/ 
0.11 

8.55/ 
2.85/ 
8.56 

N.A. 0.72/ 
0.53/ 
0.78 

7.54/ 
7.54/ 
7.54 

N.A. 6.35/ 
5.96/ 
9.90 

N.A. 0.00/ 
0.00/ 
0.00 

0.00/ 
0.00/ 
0.01 

 

PL-L/ 

Otu�'�, Stu�'�, 
Ntu�vw�, Ntu�w�

F4 N.A. 9.99/ 
9.99/ 
10.00 

N.A. N.A. 9.14/ 
8.76/ 
9.67 

N.A. 9.61/ 
9.38/ 
9.98 

2.76
/ 

2.54
/ 

2.80 

-1.16/ 
-1.39/ 
-1.08 

1.04/ 
1.00/ 
1.17 

F5 0.12/ 
0.10/ 
0.18 

0.79/ 
-5.51/ 
7.66 

N.A. N.A. 6.20/ 
6.20/ 
7.07 

N.A. 9.48/ 
9.48/ 
9.79 

6.54
/ 

2.75
/ 

6.95 

-1.06/ 
-1.15/ 
-0.88 

1.17/ 
1.04/ 
1.23 

F6 0.08/ 
0.07/ 
0.12 

-0.56/ 
-4.26/ 
1.50 

N.A. 0.27/ 
-5.44/ 
0.46 

7.55/ 
7.49/ 
7.97 

N.A. 9.73/ 
9.49/ 
9.94 

4.96
/ 

2.52
/ 

6.49 

-1.01/ 
-1.14/ 
-0.85 

1.13/ 
1.07/ 
1.17 

 

PL-L/ 

 

Otu�vw�, Stu�w�,
Stu�vw�, Stu�w� 
Ntu�vw�, Ntu�w�
 

 

F4 N.A. 10.00/ 
10.00/ 
10.00 

-
1.17/ 

-
1.17/ 
-1.17 

N.A. 9.39/ 
8.71/ 
9.76 

4.54/ 
4.53/ 
4.58 

9.37/ 
9.37/ 
9.38 

3.25
/ 

3.25
/ 

3.26 

-1.31/ 
-1.41/ 
-1.14 

1.08/ 
1.04/ 
1.21 

F5 0.22/ 
0.15/ 
0.29 

7.80/ 
7.43/ 
8.25 

-
0.75/ 

-
0.95/ 
-0.47 

N.A. 7.88/ 
7.54/ 
7.96 

4.08/ 
3.99/ 
4.52 

6.37/ 
5.47/ 
9.15 

6.94
/ 

6.92
/ 

7.03 

-0.70/ 
-0.78/ 
-0.57 

1.05/ 
1.02/ 
1.11 

F6 0.17/ 
0.16/ 
0.29 

8.03/ 
7.43/ 
8.56 

-
0.95/ 

-
0.96/ 
-0.65 

0.01/ 
-0.14/ 
0.61 

7.83/ 
6.83/ 
7.89 

3.95/ 
-

0.96/ 
5.15 

9.97/ 
5.63/ 
9.99 

6.93
/ 

6.88
/ 

6.95 

-0.65/ 
-0.79/ 
-0.57 

1.03/ 
0.96/ 
1.14 

The units of all parameters are expressed in units of kcal·mol-1, except gCO, which is given in multiples of ρ0. The 
reported values are the value for median, the 1st quartile and the 2nd quartile.  

a) Functional F4 to F6 are as described in the main text used for fitting procedure. 

b) For functional F5, this is the generic affinity parameter Kaff. 
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2.8.6 Correlation Statistics for Training Data Based on Actual Datasets 

 
Figure S2-14: Boxplots showing correlation based on the training data from five-fold cross 
validation for solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}) using the actual 
datasets. A: Pearson r for the actual dataset; B Pearson r for the shuffled dataset. 
 

 
Figure S2-15: Boxplots showing correlation based on training data from five-fold cross 
validation for solvent functionals PL-L/F (with F={F4,F5,F6}) using the actual datasets. A: 
Pearson r for the actual dataset; B Pearson r for the shuffled dataset. 



Development, Parameterization and Testing of GIST-based Solvent Functionals 

73 

 
Figure S2-16: Boxplots showing the Pearson correlation coefficient based on training data from 
actual datasets. The inner box indicates the upper to lower quartile range, the whiskers indicate 
the lowest and highest datum that is still within 1.5 IQR. A,B: Free Energy and Enthalpy 
calculated with displaced-solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}); C,D: 
Free Energy and Enthalpy calculated with full binding-displacement treatment. 
  



Chapter 2 

74 

2.8.7 Correlation Statistics for Test Data Based on Shuffled Datasets 

 

Figure S2-17: Boxplots showing the Pearson correlation coefficient based on test data from 
shuffled datasets. The inner box indicates the upper to lower quartile range, the whiskers 
indicate the lowest and highest datum that is still within 1.5 IQR. A,B: Free Energy and 
Enthalpy calculated with displaced-solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}); 
C,D: Free Energy and Enthalpy calculated with full binding-displacement treatment. 
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2.8.8 Correlation Statistics for Training Data Based on Shuffled Datasets 

 

Figure S2-18: Boxplots showing the Pearson correlation coefficient based on training data from 
shuffled datasets. The inner box indicates the upper to lower quartile range, the whiskers 
indicate the lowest and highest datum that is still within 1.5 IQR. A,B: Free Energy and 
Enthalpy calculated with displaced-solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}); 
C,D: Free Energy and Enthalpy calculated with full binding-displacement treatment. 
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2.8.9 MUE statistics for actual and shuffled data for different solvent functionals 

 

Figure S2-19: Boxplots showing the MUE based on test data from actual datasets. The inner 
box indicates the upper to lower quartile range, the whiskers indicate the lowest and highest 
datum that is still within 1.5 IQR. A,B: Free Energy and Enthalpy calculated with displaced-
solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}); C,D: Free Energy and Enthalpy 
calculated with full binding-displacement treatment. 
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Figure S2-20: Boxplots showing the MUE based on test data from shuffled datasets. The inner 
box indicates the upper to lower quartile range, the whiskers indicate the lowest and highest 
datum that is still within 1.5 IQR. A,B: Free Energy and Enthalpy calculated with displaced-
solvent functionals P/F, PL/F and L/F (with F={F4,F5,F6}); C,D: Free Energy and Enthalpy 
calculated with full binding-displacement treatment. 
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3 Mapping Solvation Thermodynamics on Building Blocks: A 

Strategy to Design Better Binders 

3.1 Abstract 

The previously developed approach is applied in order to analyze the solvation thermodynamics 

of thrombin inhibitors with respect to individual building blocks. The building blocks are 

obtained by performing a virtual decomposition of the series of thrombin ligands that were 

already investigated in the previous chapter. For each of these building blocks, solvation 

thermodynamics are computed using molecular dynamics simulations, GIST and Gips. We find 

remote solvent structuring effects on the surface of an unbound ligand, which explains the 

experimentally determined differences in binding free energy. Furthermore, we demonstrate 

that fluorination of the building blocks has a huge influence on the desolvation energy of an 

unbound ligand molecule and thus explains an increased binding enthalpy value. 
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3.2 Introduction 

During the binding of a ligand to its receptor, a complex process involving multiple 

intermediate steps is passed. Usually, most of these steps are hardly accessible and cannot be 

explored with sufficient detail by experimental techniques. In order to shed light on some of 

these hardly accessible steps, computer simulations have proven to be a valuable tool to enhance 

our understanding of association processes on the atomistic level. One of these, admittedly 

poorly understood steps during association are molecular solvation and desolvation processes 

of protein and ligand molecules. During the binding of a ligand to a receptor molecule, the 

ligand molecule sheds several layers of water molecules (see schematic depiction in Figure 

3-1). Also, the protein binding pocket gets, depending on the situation before binding, partly or 

fully, dried upon the association of the ligand. Once the ligand molecule is accommodated in 

the binding pocket, water molecules are allowed to spatially rearrange in the binding pocket 

and finally, a new solvation shell around the formed complex is assembled. By that, the water 

molecules can interact with the protein and/or ligand molecules, but they can also oppose the 

binding process by adopting a less favorable arrangement in the formed protein-ligand complex. 

All these individual steps are associated with a contribution to the solvation free energy, and 

therefore also impact the enthalpy and entropy contributions to binding. Since these steps are 

determined by individual structural properties of the interacting species, they can be optimized 

and exploited to improve binding of a ligand to its receptor, in terms of affinity as well as with 

respect to selectivity. However, the molecular interactions established by water molecules are 

often poorly understood or difficult to visualize intuitively and therefore hard to predict. In this 

regard, local solvation effects on the surface of a formed protein-ligand complex as well as on 

the unbound ligand molecule prior to binding are often treated implicitly as local modulation 

of the dielectric constant, instead of considering explicit distributions of water molecules. From 

the perspective of high-resolution crystallography, it is well known that the spatial arrangement 

of water molecules on the surface of the formed protein-ligand complex has a clear impact on 

the thermodynamics of binding.48,96 By that, the contributions to solvation thermodynamics 

arising from the interactions of water molecules with the protein-ligand complex can be used 

to enhance the binding affinity of ligands to its receptor. Moreover, the explicit treatment of 

water molecules using molecular dynamics (MD) simulations allows to explicitly estimate the 

solvation thermodynamics from the ensemble of water molecules surrounding the ligand 

molecule in the complex as well as in solution prior to binding. 
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Figure 3-1: Schematic binding reaction for the inhibition of trypsin-like serine-proteases. 
 

In the past, structure-based drug discovery efforts focused on an optimal orchestration of 

protein-ligand interactions. Following this strategy, medicinal chemists design at first place 

ligand molecules that occupy the binding site of a protein in such a way that a set of most 

favorable interactions is established. The progression of the ligand design is usually guided by 

an in-depth knowledge of the spatial arrangement of the atoms at the binding site as well as by 

optimally matching the interaction patterns unique to this spatial arrangement. Therefore, the 

use of structure-based methods (i.e. NMR or X-ray crystallography) have gained great 

importance in rational drug discovery. The applicability and availability of high-resolution 

protein crystallography fostered the development of efficient docking programs, which have 

led to further advancement of structure-based design strategies. With the available docking 

tools, researchers can readily screen large databases of candidate molecules against a given 

protein binding site. However, the involvement and furthermore the dynamics of water 

molecules are usually not captured adequately by docking algorithms, since the insertion of 

water molecules and the coverage of all possible water configurations would add too many 

degrees of freedom to the docking problem in order to keep it computationally tractable. 

Molecular dynamics (MD) simulations and free energy perturbation techniques (FEP) on the 

other hand can handle these additional degrees of freedom. However, these techniques come at 

much higher computational costs and therefore are usually not applicable in a high-throughput 

virtual screening campaign. Due to these unfavorable restrictions, drug molecules are usually 

neither optimized with respect to protein-solvent-ligand interactions, nor with respect to 
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interactions formed to solvent molecules in aqueous solution prior to binding. Nevertheless, 

they can be determinant for the thermodynamic binding profile.43 Interactions of the protein-

solvent-ligand type can readily be optimized, since the routine usage of synchrotron radiation 

enables the exploration of high-resolution protein crystal structures. But also, in-depth 

understanding of these interactions using experimental techniques requires exhaustive coverage 

of chemical variations within a congeneric ligand series. Interactions of the ligand and water 

molecules prior to binding are usually not explored sufficiently - mainly because not many 

methods are accurate enough to capture solution ensembles. Nuclear magnetic resonance 

(NMR) spectroscopy techniques are usually the first choice in this context, however the 

locations of water molecules and their binding properties across the surface of an unbound 

ligand molecule are often not possible to explore on the NMR time-scale. 

For the reasons mentioned above, and probably many more could be listed, drug discovery 

efforts do not consider structure-thermodynamics relationships simply as they are not easy to 

translate into design parameters that highlight contributions of water molecules in the binding 

process. Due to these missing considerations in the search for alternative scaffolds or the 

decoration of existing ones, we supposedly miss putative drug candidates during pre-clinical 

studies, which bind favorably due to their solvation and desolvation properties. Here, we 

propose a new strategy that is based on computer simulations and combines solvation 

thermodynamics with a kind of fragment-based drug discovery strategy. We will use our 

previously introduced solvent functionals in order to describe the solvation thermodynamics of 

the ligand in its protein-bound state as well as in its pre-bound state in aqueous solution. The 

spatial contributions found by these solvent functionals are readily decomposed by dismantling 

the original ligand into fragment-like substructures, called in the following building blocks 

(BB). They are generated by using chemically intuitive decomposition rules (Figure 3-2). In the 

current case, the peptidomimetic ligand scaffolds is cleaved along the various peptide bonds. 

The solvation properties of the BBs within the molecule are compared with respect to the 

properties of the entire ligand, as well as with the properties of a minimal representation of the 

building blocks (MRBB, here capping the splitted amide bonds) in aqueous solution (see Figure 

3-2). As a system to test our model, we investigated ligands for the serine protease thrombin - 

a key factor in the human blood coagulation cascade for which are high-resolution crystal 

structures and experimentally determined thermodynamic profiles from isothermal titration 

calorimetry (ITC) or surface plasmon resonance (SPR) are available. In the present study, we 

highlight an unconsidered aspect of drug discovery, namely the correlation of thermodynamic 
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and structural data with solvation and desolvation properties of BBs and their mutually 

enhancement or loss in binding contributions due to solvation features. 

 

 

Figure 3-2: Overview of the building block decomposition strategy for a typical thrombin 
ligand (in this case, PDB code 3DHK105). The ligand molecule is cleaved at the amide bonds in 
order to obtain BBs, which are essentially instructions for a topology-based decomposition of 
the molecules. The BBs can readily be capped with N-dimethyl (NDME), N-methyl (NME) or 
acetyl (ACE) capping groups in order to obtain MRBBs. 
 

3.3 Results 

In this study, we used a set of 53 thrombin ligands, which were determined by crystal structure 

analysis and corresponding binding thermodynamic data were available from ITC or SPR (48 

with ITC data and 5 with SPR data). The ligands were combined into 186 matching pairs, such 

that the binding affinity between the ligand molecules in the pair is attributed to a difference in 

solvation or desolvation. This dataset was already used for the derivation of parameters for 

solvent functionals based on grid inhomogenous solvation theory80,83,101 (GIST) and MD 

simulations in our previous contribution. 

In this section, we will shortly summarize our previously presented GIST-based solvent 

functionals. Then, we will analyze the distribution of BBs across the dataset. In the subsequent 

main part of this results section, we will analyze the spatial decomposition of the solvent 

functionals based on the substructural BBs derived from the ligand molecules. The individual 
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contributions of the different BBs are compared across different ligands as well as with the 

corresponding capped BBs in aqueous solution. 

 

3.3.1 GIST-based solvent functionals 

The term solvent functional refers simply to a mathematical formulation of a function that uses 

the three-dimensional distribution of solvent free energy, entropy and solvent density relative 

to the bulk phase as independent variables. A solvent functional employs different parameters 

that are required to transform these distributions into scalar values describing the solvent free 

energy, enthalpy or entropy. The parameters are obtained by fitting the solvent functionals to 

experimental data. The three-dimensional distributions of solvent free energy, entropy and 

solvent density (see GIST80,83,101) are calculated from the energies and spatial coordinates of 

water molecules found by molecular dynamics simulations of the protein-ligand complexes as 

well as the ligand molecules alone in aqueous solution. The solvent energy and entropy values 

are always reported as the difference to bulk water phase. Similarly, the solvent density 

evaluated across volume elements (so-called voxels) of a grid embedding the studied molecules 

is reported in terms of multiples of the mean bulk solvent density ρ0. Such derived solvent free 

energy, entropy and density distributions are discretized on the embedding grids that were 

centered on the studied molecules. Across these grids, only those grid voxels were considered 

showing a value that exceeded a predefined solvent energy and entropy threshold (cutoff 

parameters in the calculation of solvation energies and entropies). In addition, a solvent density 

cutoff value had to be defined, which permits only those grid voxels to be considered in the 

calculations that exceed a parameterized solvent density cutoff value. In other words, only grid 

voxel that are occupied by more than a previously-defined number of water molecules, 

corresponding to the solvent density cutoff value, are considered in the calculation of the 

solvent thermodynamics. The energy, entropy and density cutoff parameters are derived 

separately for the protein-ligand complex and the ligand molecule in aqueous solution. Details 

can be found in our previous contribution. 

As defined by our solvent functional, only grid voxels around the protein-ligand complexes 

contribute to the protein-ligand solvation, if they are highly occupied (>9.97 ρ0) by water 

molecules and exhibit unfavorable in solvent energy contributions (>8.03 kcal·mol-1) compared 

to the mean energy value in bulk water phase. The solvent functional scores the contribution of 

these water molecules effectively as an energetically unfavorable quantity in the calculation of 
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the total solvation enthalpy. Consequently, these water molecules also contribute unfavorably 

to the solvation free energy of the formed protein-ligand complex. Furthermore, only those grid 

voxel around the protein-ligand complex that are considered to contain entropically unfavorable 

water molecules (>7.83 kcal·mol-1) are evaluated as entropy contribution to the free energy of 

the protein-ligand complex desolvation. The solvent functional scores the placement of these 

water molecules into the protein-ligand complex as an unfavorable contribution to solvation 

free energy. 

Only grid voxels around the ligand molecule found by the MD simulations of the unbound state 

that are highly populated (>6.93 ρ0) by water molecules have been considered in the calculation. 

The energy of these water molecules is allowed to be slightly favorable (>-0.95 kcal·mol-1), 

compared to their mean energy value in bulk water phase. However, most of the water 

molecules considered by this cutoff criterion will have an unfavorable (>0 kcal·mol-1) energy 

contribution. From the perspective of desolvation entropy, only those grid voxel around the 

ligand in the case of the unbound situation, which contain entropically unfavorable water 

molecules (>3.95 kcal·mol-1) are effectively considered. According to our solvent functional, 

the desolvation entropy of the ligand is scored as favorable contribution to the total free energy 

of the binding process. Consequently, this gain in binding free energy due to ligand desolvation 

is due to water molecules associated with the surface of the unbound ligand that are firmly fixed 

in terms of their translational and orientational degrees of freedom compared to bulk water 

phase. 

Since the total contribution to the free energy of binding resulting from the protein-ligand 

complex solvation and the ligand desolvation is calculated as Δ� = Δ��vw� − Δ��w�, the 

desolvation of the unbound ligand molecule is considered as a favorable contribution to 

solvation free energy (both in terms of energy and entropy) and the solvation of the protein-

bound ligand molecule is considered as an unfavorable contribution to solvation free energy 

(also, both in terms of energy and entropy). For a comprehensive interpretation of the 

parameters of the solvent functional, please see the Supporting Information. 

 

3.3.2 Distribution of Building Blocks across the Dataset 

The BBs are generated by splitting the amide as well as sulfonamide bonds in the ligand 

molecules (see Figure 3-2; for a more comprehensive description, see Methods section). 

Subsequently, a total of 58 unique BBs and MRBBs was obtained. This number is further 
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reduced by keeping only those matching pairs of ligand molecules, and accordingly their 

corresponding BBs, that mutually differ by only one single BB. The resulting final library 

contained 44 BBs distributed over 125 pairs of ligand molecules. The BBs are devised into 

different groups according to their location in the protein binding pocket. Since the target 

protein thrombin is a trypsin-like protease, we applied the Schechter and Berger 

nomenclature138 in order to classify each BB with respect to its sub-pocket occupancy. 

Accordingly, the sub-pockets are assigned as S1, S2, S3 and SA (A=Aryl, s. below) and the 

occupying portions are designated as P1, P2, P3 and PA (Figure 3-3). The nomenclature for the 

sub-pocket occupancy of S1-S3 is derived from the positions at which the natural substrate 

(fibrinogen) accommodates its amino acid side chains next to the cleavage site. We named the 

so-called aryl binding pocket “SA
”, which is the fourth pocket, often also designated as S3/4 

pocket. It is populated by the distal Phe and Leu side chains (P8/P9) of the natural substrate.149 

 

 

Figure 3-3: Binding pocket of thrombin (PDB 2ZFF104) with sub-pocket annotation according 
to Schechter and Berger138. 
 

As can be seen from the overview of all BBs in our dataset (Figure 3-4), most of the variations 

in the ligand series was introduced by varying the P1 head groups occupying the S1 pocket. The 

P2, P3 and PA portions have been modified less throughout the dataset. Most notably, B1 (L-

Proline) is the most widely used P2 portion for thrombin inhibitors. From the investigated 53 



Chapter 3 

86 

ligand molecules, 47 contained this BB at position P2. The only other P2–type BB is B29 with 

five occurrences. From all BBs at positions P3/PA, B0 (D-Phenylalanine) is the one which is 

most frequently used with 22 occurrences in the 53 ligand set.  
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Figure 3-4: Overview of all BBs with capping groups attached. The coloring is accordance 
with the sub-pocket annotation: P1 portion, orange; P2 portion, green; P3/PA-portion, red. 
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3.3.3 Building Block Solvent Thermodynamics 

As can be seen in Figure 3-5, the average thermodynamic contributions of the BBs in the bound 

as well as the unbound ligands vary greatly. Some tend to have strong solvent free energy 

signatures in the unbound state of the ligand, but do not contribute to a gain in solvent free 

energy in the bound complex (e.g. B9). Some others have almost similar contributions in the 

bound as well as the unbound state of the ligand and therefore have compensating 

thermodynamic signatures (e.g. B7). 

One example for a BB with a deviating thermodynamic signature in the bound and unbound 

state is B1. The calculated average solvation free energy for this BB is 2.0 kcal·mol-1 in the 

unbound state (Figure 3-5B), but only 0.2 kcal·mol-1 in the bound state (Figure 3-5A). 

Interestingly, the MRBB of B1 (Figure 3-5C) reveals a solvation free energy of 0.7 kcal·mol-1, 

which is inbetween the bound and the unbound form. Thus, cooperative effects resulting from 

other BBs in the unbound state have a large influence on this apolar BB. But also in the bound 

state when this BB is embedded in the ligand, interactions with the protein likely compensate 

for the difference between the MRBB and the bound ligand. Another related BB is B9, which 

is similar to B1, except that it has one additional phenyl group attached to the benzylic 

methylene group in PA. The average solvation free energy of B9 is 3.3 kcal·mol-1 in the unbound 

state and 0.2 kcal·mol-1in the bound state. Remarkably, the calculated solvation free energy of 

the MRBB of B9 is 1.0 kcal·mol-1 and therefore close to the value found for the related B1. 

These two BBs are found in thrombin ligands 1 and 2 (see Figure 3-6), which have an 

experimentally measured difference in binding free energy (∆G(1�2) = ∆G(2)- ∆G(1)) 

of -1.0 kcal·mol-1 (see also Table 3-2 for a comprehensive overview). The calculated relative 

free energy difference for this pair is -1.7 kcal·mol-1. In 1, the value of the solvation free energy 

for B1 in the unbound state was 2.3 kcal·mol-1 and the calculated value for the solvation free 

energy of B9 in the unbound state of ligand 2 was 3.1 kcal·mol-1. 
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Figure 3-5: Overview of the average BB contributions to the protein-ligand complex solvation 
(A), ligand solvation (B) and MRBB molecule (C) in aqueous solution. The lines assigned to 
the bars indicate the observed value range of the BB contributions across all ligand molecules. 
The color of the bar encodes the assignment of the BBs to their position in the ligand (P1, P2 
and P3/PA) and is in accordance with the previous figures. The units on the y-axis are in 
kcal·mol-1. 
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Table 3-1: BB free energy decomposition for the ligands discussed in this work. 

Ligand a) BB P3/PA 
b) BB P2

 b) BB P1
 b) 

∆G ∆H ∆G ∆H ∆G ∆H 

1 (2ZC9) 

 

B1 B2 B3 

c)bound 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0.1 

d)unbound 2.3±0.7 2.6±0.9 2.3±0.7 2.6±0.8 1.6±0.5 1.8±0.5 

2 (3DHK) 

 

B9 B2 B3 

bound 0.3±0.2 0.3±0.2 0.3±0.2 0.3±0.2 0.3±0.1 0.3±0.1 

unbound 3.1±0.9 3.5±1.0 1.9±0.5 2.1±0.6 3.2±0.9 3.6±1.0 

3 (2ZFF) 

 

B1 B2 B7 

bound 0.1±0.0 0.1±0.0 0.1±0.1 0.1±0.0 1.1±0.4 1.1±0.4 

unbound 1.9±0.5 2.1±0.6 2.0±0.6 2.2±0.6 1.6±0.5 1.8±0.5 

4 (2ZF0) 

 

B1 B2 B6 

bound 0.3±0.2 0.3±0.2 0.2±0.2 0.2±0.2 0.2±0.2 0.2±0.2 

unbound 2.3±0.7 2.6±0.8 2.4±0.7 2.6±0.8 1.8±0.6 1.9±0.6 

5 (2ZDV) 

 

B1 B2 B5 

bound 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0.2 0.2±0.2 

unbound 1.9±0.6 2.1±0.7 1.9±0.6 2.1±0.7 1.4±0.4 1.6±0.5 

a) Ligand molecule and corresponding pdb code in parenthesis. The coloring of the BBs in the 2d depictions 
are in accordance with the color code from the previous figures (P1 portion, orange; P2 portion, green; 
P3/PA-portion, red). 

b) All units are in kcal·mol-1. Error indicates 1 standard deviation from the mean estimated from the test set 
results of 10 random repetitions of 5-fold cross-validation (see our previous contribution). 

c) Free energy contribution of this BB in the bound state of the ligand. 
d) Free energy contribution of this BB in the unbound state of the ligand. 

 

As can be seen from the solvation free energy maps for the MRBB of B1 and B9 (see Figure 

3-6 C and F, respectively), the additional phenyl moiety in B9 leads to further, highly populated, 

water positions on top of both phenyl moieties. Furthermore, populated regions close to the 

protonated amino group are observed. Both solvation features are perfectly mirrored in the 

unbound state of ligand molecules 1 and 2 (see Figure 3-6 B and E, respectively) but they get 



Mapping Solvation Thermodynamics on Building Blocks 

91 

lost upon protein binding (see Figure 3-6 A and D). However, as the difference between B1 and 

B9 in the unbound state amounts only to 0.8 kcal·mol-1 and only to 0.1 kcal·mol-1 in the bound 

state, these BBs alone cannot constitute the major contribution to the total calculated difference 

in binding free energy of -1.7 kcal·mol-1 between 1 and 2 (see Table 3-2). Quite unexpectedly, 

it is B3 (the P1 portion), the BB that is found identically in both ligand molecules, that 

contributes major part of the difference in solvation free energy. The calculated free energy 

contribution of B3 in the unbound state of 1 is 1.6 kcal·mol-1 whereas in the unbound state of 2 

it contributes 3.2 kcal·mol-1. Thus, the contribution of B3 is twice as large in the unbound state 

of 2 than in the unbound state of 1. It becomes greatly enhanced compared to its corresponding 

MRBB (0.7 kcal·mol-1). In this MRBB, the BB accommodates water molecules on top of both 

faces of the m-chlorophenyl ring (see Figure 3-7). The accommodation of these water molecules 

is further enhanced by the presence of the amide group which promotes the formation of an 

open ring-like solvent density distribution encompassing the N-H and the C=O groups. This 

solvent density is partly retained once B3 is embedded into ligand 1 or 2. In the bound state, 

the calculated free energy contribution of B3 is similar for both ligands (0.1 kcal·mol-1) due to 

their similar water structure in the S1 sub-pocket.105 The difference between 1 and 2 in the 

unbound state is caused by the enhanced stability of water molecules on top of B3 in ligand 2. 

These water molecules are more efficiently entrapped by 2 due to the presence of the second 

phenyl ring in B9, which is not present in B1 in case of 1 (Figure 6B and E). Thus, the 

contribution of B3 in P1 position is dominated by the remote solvent structuring induced by B1 

vs. B9 in the P3/PA position.  

Furthermore, in the bound state of 1 and 2, additional water molecules become energetically 

entrapped unfavorably (compared to bulk water phase) beneath the side chain of Trp60D from 

the 60s loop (Figure 3-6A, D). However, the contribution of waters at this site are similar for 

both ligands and thus cannot contribute to the difference in affinity. Interestingly, in the crystal 

structure of the apo form of the protein a water molecule is observed at the position below 

Trp60D (see Figure 3-8A), which, however, is absent in the crystal structure with 2 (see Figure 

3-8B). In this structure, no direct interactions of this water molecule or Trp60D with other 

symmetry-related crystal mates in the solid state packing were observed. Nonetheless, our 

observation might still indicate that the water molecule is missing in the crystal structure of 

bound 2 due to the crystal environment or the cryogenic conditions during the experiment. 
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Figure 3-6: Solvent free energy maps for the thrombin complexes of 1 (PDB 2ZC9)104 and 2 
(PDB 3DHK)105, the unbound ligands and MRBBs B1 and B9. A, D: Protein-ligand complex 
of ligands 1 and 2 with corresponding solvent free energy maps, which were generated with 

energy and density cutoff values of Otu�vw� = 8.03	�m
� � �[��> and Ntu�vw� = 9.97	_�, 
respectively. B, E: Ligand molecules 1 and 2 with corresponding solvent free energy maps, 

generated with energy and density cutoff values Otu�w� = −0.95	�m
� � �[��> and Ntu�w� =6.93	_�, respectively. C, F: solvent free energy maps for MRBB B1 and B9, generated with 

energy and density cutoff values of Otu������ = −0.95	�m
� � �[��> and Ntu������ = 3.0	_�. The 
displayed conformations are cluster representatives of the most populated cluster for the 
conformational ensemble of B1 and B9 (71.0% and 99.0% occupancy, respectively). 
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Figure 3-7: Solvent free energy map for MRBB B3 generated with cutoff values Otu������ =−0.95	�m
� � �[��> and Ntu������ = 3.0	_�. The displayed conformer is the cluster 
representative of the most populated cluster (51.6% occupancy) for the conformational 
ensemble of MRBB B3. 
 

 

 

Figure 3-8: Solvent free energy map of the complex with ligand 2 superimposed with the water 
molecules (red spheres) found in the crystal structure of the apo form of thrombin (A) and found 
in the crystal structure with 2 (B). The grey circle (left) highlights the water molecule beneath 
Trp60D from the apo structure, which perfectly matches with the computed solvent free energy 
map. The maps were generated with energy and density cutoff values for the ligand molecule Otu�w� = −0.95	�m
� � �[��> and Ntu�w� = 6.93	_�, respectively. 
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In a second example, the difference in solvation free energy is dominated by the difference in 

solvation that is attributed to the P1 portion. This portion was subject of many drug optimization 

efforts in the context of trypsin-like proteases, since the P1 portion occupies the S1 sub-pocket, 

which is responsible for selectivity discrimination either of substrates but also of developed 

inhibitors. As can be seen from Figure 3-5A and Table 1 (last column), the P1 building block 

B7 is one of the few BBs which has compensating free energy contributions in the bound and 

unbound state. In contrast, the structurally related P1 building blocks B5 and B6 have negligible 

contributions in the bound state of the ligand (both 0.2 kcal·mol-1) and mainly contribute 

through the unbound state of the ligands (1.4 kcal·mol-1 and 1.8 kcal·mol-1, respectively) to the 

value of the total free energy. The calculated differences in solvent thermodynamics between 

the BBs cannot be attributed to unique properties of the BBs themselves, as the solvation free 

energy of the MRBBs are quite similar in these cases (B5 0.6 kcal·mol-1 ; B6 0.7  kcal·mol-1; 

B7 0.6 kcal·mol-1). The calculated solvation free energy for B7 in the bound state of 3 is 

1.1 kcal·mol-1, which is close to the calculated value of 1.6 kcal·mol-1 for the unbound state of 

this BB. The unfavorable solvation free energy of ligand 3 in the unbound state is due to the 

energetically unfavorable interaction of a water molecule trapped between Tyr228 and the 

phenyl moiety (see Figure 3-9A). Energetically frustrated water molecules in the vicinity of the 

phenyl ring of B7 are also found in the simulations of the unbound state of 3 (see Figure 3-9B), 

thus we experience almost compensating contributions for both states. The free energy 

contribution of the related B3, the m-chloro derivative, has the same free energy contribution, 

1.6 kcal·mol-1, as B7 in the unbound state but only 0.2 kcal·mol-1 in the bound state. Thus, the 

calculated free energy difference for 3�1 is -1.4 kcal·mol-1. Although the calculated value is 

not within the experimental error range (-0.9±0.2 kcal·mol-1), our model successfully identifies 

1 as the more affine ligand in this comparison.  

The related ligand 4 bears a methyl group at meta position of the phenyl ring as part of the P1 

portion. The corresponding B6 behaves quite similar to its meta-chloro analogue B3 with 

respect to the solvation free energy of the MRBB (0.7 kcal·mol-1 and 0.6 kcal·mol-1, 

respectively), but also with respect to the contributions to the bound and unbound state of the 

ligands. The calculated contributions of B6 to the free energy of 4 are 0.2 kcal·mol-1 and 

1.8 kcal·mol-1 in the bound and unbound state, respectively. The missing unfavorable 

contribution in the bound state of 4 (as compared to 3) is due to the lack of (trapped) water 

molecules between Tyr228 and the phenyl portion of B6 (see Figure 3-9D). The calculated 

difference for the comparison 3�4 is -1.6 kcal·mol-1 and thus quite similar to the one calculated 
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for the comparison 3�1 (-1.4 kcal·mol-1). Within the error range of the calculation it would not 

be possible to decide which of the ligands, 1 or 4, is more potent than 1. However, the 

experimental uncertainties of the relative differences for 3�1 and 3�4 are also too high in 

order to effectively discriminate between ligands 1 and 4. 

 

Table 3-2: Relative free energies for some protein-ligand binding reactions. 
Ligand 

comparison 

∆∆GCalc a) b) ∆∆HCalc a) b) ∆∆GExp a) c) ∆∆HExp a) c) 

1 d)�2 d) -1.7±0.5 1.9±0.5 -1.0±0.2 -2.0±0.4 

3 e)�1 d) -1.4±0.7 -1.7±0.8 -0.9±0.2 d) -5.6±0.4 

3 e)�4 e) -1.6±0.4 -1.6±0.5 -0.7±0.2 -3.6±0.3 

3 e)�5 e) -0.4±0.5 -0.6±0.4 +0.1±0.1 +0.1±0.3 

1 d)�5 e) +1.0±0.4 +1.1±0.5 +1.0±0.2 +5.7±0.4 

a) All units are in kcal·mol-1. Error given as 1 standard deviation from the mean. 
b) Standard deviation estimated from the test set results of 10 random repetitions of 5-fold cross-validation 

(see our previous contribution). 
c) Standard deviation estimated from triplicate ITC measurements and error propagation. However, for 3 

the standard error for the free energy and enthalpy was estimated to 0.12 (0.5 kJ·mol-1) and 0.24 kcal·mol-

1  (1 kJ·mol-1), respectively, since here no standard error from triplicate measurements was available. 
d) Reference 105 
e) Reference 104 

The solvation free energy of the m-fluoro substituted MRBB B5 is 0.6 kcal·mol-1 and thus 

similar to the value found for the m-chloro substituted BB B3. Furthermore, the shape of the 

solvent density of the two MRBBs is virtually identical (cf. Figure 3-7 and Figure 3-9 I). 

Building block B5 is embedded into 5, which has an experimental free energy of binding that 

is indistinguishable from the one measured for 3 (∆∆GExp(3�5) = 0.1±0.1 kcal·mol-1). Our 

calculations also confirm this observation (∆∆GCalc(3�5) = 0.4±0.5 kcal·mol-1), albeit with a 

greater range of error compared to the experiment. Furthermore, our model accurately 

calculates the experimental difference between 5 and 1 (∆∆GExp(1�5) = 1.0±0.2 kcal·mol-1) as 

∆∆GCalc(1�5) = 1.0±0.4 kcal·mol-1. The reason for the low calculated binding affinity of 5 is its 

high desolvation penalty: It lacks energetically unstable water molecules in its unbound state 

and thus experiences a loss in solvation free energy of 0.4 kcal·mol-1, 0.4 kcal·mol-1 and 

0.2 kcal·mol-1 at the P3/PA (B1), P2 (B2) and P1 (B7�B3) portions compared to ligand 1. 

Finally, the solvation pattern of the unbound ligand 5 (see Figure 3-9H) suggests that fewer 

energetically unstable water molecules seem to occupy the region between the ammonium 

group and the P1 portion compared to 3 and 4. Thus, the fluorinated ligand 5 reduces the number 



Chapter 3 

96 

of energetically unfavorable water molecules (compared to bulk water phase) on the surface of 

the unbound ligand molecule and is therefore more expansive to desolvate. 

The less favorable desolvation of the fluorinated ligand 5 is most likely due to an enhanced 

bond dipole of the C-F bond compared to the C-Cl bond (see Figure 3-10C and D) and the 

enhanced bond dipole of the neighboring C-H bonds (cf. Figure 3-10A, C and D). According 

to our calculation of partial charges based on the RESP method, the carbon atom attached to 

the fluorine atom has a charge of +0.20 charge units, whereas the carbon atom attached to the 

chlorine atom has a charge of -0.04 charge units. For the halogen atoms, fluorine has a charge 

of -0.19 and chlorine atom -0.12. Thus, the fluorinated ligand 5 is expected to be engaged in 

more stable (hydrogen bond-like) interactions with the surrounding solvent molecules than the 

chlorinated derivative 1. This is also emphasized by energetically more favorable (-

2.2 kcal·mol-1) solute-water interactions (based on the raw interaction energies extracted from 

the force field) in the first solvation layer of B3 compared to B5. In addition, the raw water-

water interactions (based on the raw interaction energies extracted from the force field) in the 

first solvation layer of B5 are more favorable (-3.3 kcal·mol-1) compared the ones of B3. This 

effect is likely not only due to the enhanced electrostatic interactions of the fluorinated species, 

but also due to the smaller atomic volume of the fluorine atom compared to chlorine. This 

difference opposes more favorable water-water interactions experienced by the water molecules 

in the first hydration layer of the fluorinated B5 compared to the chlorinated B3. The increase 

in solvation free energy for fluorinated phenyl moieties compared to their non-fluorinated 

analogues was already studied using quantum chemical calculations.150 
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Figure 3-9: Solvent free energy maps for MRBBs of B7, B6 and B5 together with the maps 
found for the thrombin complexes with 3 (PDB 2ZFF), 4 (PDB 2ZF0) and 5 (PDB 2ZDV). A, 
D, G: Protein-ligand complex of ligands 3, 4 and 5 with corresponding solvent free energy 

maps. The maps were generated with energy and density cutoff values of Otu�vw� = 8.03	�m
� ��[��> and Ntu�vw� = 9.97	_�; B, E, H: Ligand molecules 3, 4 and 5 with corresponding solvent 

free energy maps. The maps were generated with energy and density cutoff values of Otu�w� =−0.95	�m
� � �[��> and Ntu�w� = 6.93	_�; C, F, I: MRBBs and solvent free energy maps for B7, 
B6 and B5. The maps were generated with energy and density cutoff values for the MRBB 

molecules of Otu������ = −0.95	�m
� � �[��> and Ntu������ = 3.0	_�. The displayed 
conformations are the cluster representatives of the most populated cluster for the 
conformational ensembles of B7, B6 and B5 (40.0%, 54.0% and 51.0%occupancy, 
respectively). 
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Figure 3-10: Partial charge distribution for MRBB B7, B6, B5 and B3 as obtained by the RESP 
charge calculation. The same charges as in the BBs were also used in the ligands. Small 
deviations from the expected total sum of zero for the charges in this depiction are due to round-
offs. The actual charges that were used in the force field have a precision of 10-8 and have a 
total sum of charges equal to zero. 
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3.4 Discussion 

We presented a novel strategy to partition and spatially map contributions of molecular 

solvation thermodynamics onto protein-ligand binding following chemically intuitive 

decomposition rules that split given ligands of a dataset in reoccurring building blocks (BBs). 

As a set of peptidomimetic ligands was investigated, the splitting into smaller sub-structural 

BBs occurred at primary and secondary amide groups or primary sulfonamide groups. A virtual 

library of 44 BBs was annotated with solvation thermodynamic properties using capped analogs 

(MRBBs) of the BBs and the whole ligand molecules in the unbound and protein-bound state. 

The thermodynamic properties were calculated by analyzing molecular dynamics trajectories 

with a GIST-based solvation functional that was specifically optimized for this dataset. Our 

solvation functional suggests, as already mentioned in our previous contribution, that the 

desolvation of unfavorably bound water molecules on the surface of the unbound ligand 

accounts for the main contribution to the free energy of binding. In contrast, the differences in 

the solvation of the protein-ligand complexes are determined particularly in regions that contain 

in some complexes energetically very unfavorable water molecules. 

The BBs have greatly varying free energy values, depending on the ligand scaffold in which 

they are embedded. Thus, strong cooperative effects between the individual BBs forming the 

entire ligand are observed. In the unbound state of the ligands, the solvation free energy of a 

BB can be greatly enhanced by another BB, even when it is located at a distal site. In the 

intriguing case of the congeneric pair 1�2, we have found enhanced solvent structuring around 

the P1 site in the unbound state of 2 which bears, compared to 1, an additional phenyl ring at 

the remote P3 site. In a previous contribution,105 the difference in binding free energy could not 

be unambiguously explained by the crystal structures alone, since the gain in hydrophobic 

contact area of only 10 Å2 of 2 over 1 was too small to explain the trend in binding free energy. 

Furthermore, 2 binds with a stronger enthalpic signal than 1, which somewhat contradicts 

(according to the classical hydrophobic effect) the observation that the additional phenyl group 

of 2 displaces more water molecules from the binding pocket than 1. Our explanation based on 

the remote solvent stabilization for the observed difference in binding affinity would most likely 

not be considered in a drug optimization process, since cooperative solvation effects present in 

the unbound state prior to protein binding are usually not investigated. Instead, it appears rather 

tempting to attribute the difference in binding affinity directly to the interactions of the phenyl 

group with the protein or the individual physicochemical properties attributed to the phenyl 
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group. Most likely however, the marked cooperative influence of a phenyl group attached to a 

remote portion at the ligand scaffold would not be assumed as affinity enhancing factor. In a 

putative next step of optimization, the design strategy would try to keep the di-phenyl group at 

the P3/PA site and optimize the P1 occupant while retaining the unfavorable solute-water 

interactions in the unbound state of the ligand induced by the remote solvent stabilization 

between the P3/PA and P1 portions. 

In another congeneric series, we demonstrated how varying decorations (-H (3), -CH3 (4), -Cl 

(1), -F (5)) of the P1 phenyl portion affect the solvation free energy of the protein-ligand 

complex and the unbound ligand in solution. Ligand 3 with an unsubstituted P1 phenyl ring 

entraps a water molecule at an energetically unfavorable site between its P1 portion and Tyr228 

of the protein. Due to this energetically unfavorable situation, 3 is less potent than its meta-

methyl and meta-chloro analogs 4 and 1, respectively. This interpretation differs from a 

previous study, in which the differences in binding affinity were attributed to distinct 

contributions attributed to the displacement of solvent molecules from the binding site.79 In this 

previous study, the difference between the fluorinated 5 and its chlorinated derivative 1 was 

mainly based on the different volume of the fluorine and chlorine atoms and their resulting 

difference in solvent displacement volume. Whereas in our work, the differing water 

interactions in the vicinity of a fluorine-substituted phenyl moiety and a chlorine-substituted 

phenyl moiety are considered. Our solvation functional suggests a decrease in solvation free 

energy for unbound 5 due to a more tightly binding of water molecules which makes 

accordingly the desolvation of 5 less favorable than of 1. 

Due to the fact that in our approach, the contributions of the water molecules in the unbound 

and bound state are effectively considered, renders our model a physically more realistic picture 

of the formed protein-ligand complex. A caveat is however, that the bioactive conformation, or 

a reasonable estimate of it, must be known a priori to the calculation. However, this is a 

common problem in any free energy calculation method and, in particular, in molecular field-

based 3D-QSAR approaches.  

Particular with respect to the latter 3D-QSAR approaches (e.g. CoMFA144 and CoMSIA145), 

methods still very popular in medicinal chemistry and drug design, our study might suggest 

some intriguing insights. In 3D-QSAR, a set of ligands is mutually aligned in their (assumed) 

bioactive conformations and embedded into an equally spaced 3D grid. Subsequently, by means 

of a molecular probe placed at the intersections of the grid, the exposed properties and spatial 

differences of the ligands are scanned using some kind of molecular interaction potential (in 
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the simplest case Lennard-Jones and Coulomb potentials, but more sophisticated potentials 

have been applied). Overall, the generated input data for the relative comparison of the ligands 

reminds about our spatial maps generated by exploring the solvation properties around our 

molecules using MD trajectory data generated with water molecules and analyzed with the 

GIST method.  

Major criticism of the 3D-QSAR approaches related to the lack of consideration of the protein 

environment that definitely provides a much stronger differentiated interaction pattern than an 

encompassing grid scanned with a uniform molecular probe. Furthermore, the 3D-QASR 

methods seem to fully ignore the entropic contributions of the free energy of binding. Therefore, 

it always appeared as a miracle that 3D-QSAR methods performed so well in relating structural 

ligand data with binding affinities.   

Our GIST analysis using a novel functional for evaluation, admittedly collected at one data set, 

suggests that the desolvation of unfavorably bound water molecules on the surface of the 

unbound ligands accounts for the main contribution to the free energy of binding. This, as in 

3D-QSAR, requires an alignment of the ligands and a mapping of the ligand properties across 

their surfaces by a force-field implemented in the applied MD simulation. The subsequent 

analysis by our GIST functional reminds about the data evaluations used in 3D-QSAR. 

Possibly, a significant portion of the binding properties are already encoded in the desolvation 

properties of the ligands. Contributions arising from features in the protein relate to more 

special situations involving water molecules that significantly deviate from their properties in 

the bulk phase and become entrapped at energetically unfavorable sites. Obviously, a large part 

of the intuitively assumed modulations of the distinct interactions formed within the highly 

structured environment of a binding pocket and which can be exploited to bind a ligand are 

compensated by the individual desolvation costs required for the displacement of water 

molecules from the binding site. Therefore, scanning the ligands only with a simple probe 

provides already a relevant picture to reasonably predict affinity data. Perhaps these 

considerations explain to some degree why 3D-QSAR performs so surprisingly well.  

 

3.5 Conclusion 

In this work, we demonstrated how the solvation thermodynamic properties obtained from 

GIST-based solvent functionals can be readily decomposed into individual contributions from 

chemically meaningful BBs. With our approach, drug candidates can be optimized using 
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solvation as an active and intuitively accessible design parameter. The decomposition into BBs 

is effectively a mean to navigate through chemical space using mapped solvation properties 

obtained from a physically meaningful model. In the next step, our approach must be evaluated 

experimentally by linking it to a generative method in order to foster its full potential. Further 

testing against different target proteins is also needed, however the training with reasonable 

structural and thermodynamic data is of great importance. 

Our approach is implemented in the latest version of Gips. It is available from the GitHub page 

of the first author (github.com/wutobias) accompanied with a tutorial on how to derive solvation 

properties based on BBs. The BB decomposition can be carried out automatically using the 

Recap151 algorithm as implemented in RDKit139, or using a custom BB definition (as used in 

this work). 

 

3.6 Methods 

In this section, we describe the procedure for decomposing a set of 53 thrombin ligands into 44 

unique BBs. In the following, these are used to calculate the spatial decomposition of GIST-

based solvent functionals. As a point of reference, we also carried out MD simulations and 

GIST calculations of the BBs. The calculation of the GIST grids that are the input for our 

solvation functionals, was already introduced in our last contribution using the same dataset of 

thrombin ligands. For this reason, the structure preparation procedure as well as the molecular 

dynamics protocol applied to all protein-ligand complexes and the ligands separately will not 

be described here. The MRBB molecules (see Figure 3-11) required a different treatment than 

the entire ligand and protein structures regarding the structure preparation and simulation 

protocol. For this reason, the structure preparation and simulation protocol of the MRBBs is 

described in the following section. 
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Figure 3-11: Overview of the workflow employed in this study. The terms unrestraint and 
restraint MD simulations refer to simulations without and with positional restraints on the non-
hydrogen atoms, respectively. The lower-case letters a)-e) refer to different steps in the 
workflow as referenced in the following. 
  



Chapter 3 

104 

3.6.1 The Dataset 

The dataset that is investigated in this study consists of 53 thrombin ligands characterized by 

crystal structures and thermodynamic profiles using ITC and SPR measurements49,103–111. These 

ligands were mutually paired such that any difference in binding thermodynamics can, most 

likely, be attributed predominantly to changes in the solvation/desolvation properties. This 

dataset was already introduced in our previous contribution. 

 

3.6.2 Decomposition of the Ligands into BBs and MRBBs 

For the generation of a virtual BB library (see a) in Figure 3-11), we searched for all primary 

and secondary amide groups, as well as all primary sulfonamide groups in the set of ligand 

molecules. For the amide groups, the bond between the carbonyl carbon atom and the adjacent 

nitrogen atom was cleaved. The formally created C- and N-terminal ends of the cleaved bond 

were capped using NME (N-methyl) and ACE (acetyl) capping groups, respectively. If the 

cleaved bond was part of a secondary amide group, the N-terminal ends were capped using 

NDME (N-dimethyl). For the sulfonamide groups, the bond between the sulfur and nitrogen 

atom was cleaved. Here, an NME group was attached to the S-terminal end and a 

methylsulfonate (-SO2CH3) group was attached to the N-terminal end. After the BB 

decomposition and capping procedure, a BB has effectively become an MRBB molecule 

without any open valences. Finally, all redundant entries in the resulting set of MRBBs and 

BBs are eliminated, resulting in a library of 44 unique BBs. 

 

3.6.3 Structure Preparation 

For each entry in the BB library, a conformational ensemble of at most three conformers per 

BB was generated using Omega152,153 from the OpenEye suite of programs. For each conformer, 

a geometry optimization at the b3lyp/6-31G* level was carried out, followed by the calculation 

of the ESP at the HF/6-31G* level using the Gaussian09 program.115 Partial atomic charges 

were calculated from the ESP by a multimolecule and multiconformational RESP fitting55,114 

using the resp program from the AmberTools17 program package.117 The restraints on the 

partial charges were applied in accordance with the original work published on the derivation 

of partial charges for the Amber force field. The complete procedure was carried out using an 

in-house workflow. 

For each entry in the BB library, GAFF atom types and force field parameters116 were assigned 

using parmchk2 and tLeAP. The simulation boxes with the shape of a truncated octahedron 
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were filled with TIP4P-Ew water molecules118, such that the distance between any solute atom 

and the box edges is no longer than 16 Å. Then, sodium or chlorine counter ions were added at 

random positions in order to ensure net neutrality using the addIonsRand utility of tLeAP. From 

the resulting parameter and structure files, water molecules were removed by random 

(approximately 1% of the initially placed water molecules), such that each system contained 

exactly 2000 water molecules in total. The energetically most favorable geometry from each 

conformer ensemble that was generated for the partial charge calculation, was used as the 

starting structure for the subsequent molecular dynamics runs. 

 

3.6.4 Unrestraint MD Simulations 

We initially performed MD simulations without any positional restraints in order to get an 

ensemble of conformations for the MRBB molecules (see b) in Figure 3-11). All minimization 

manipulations were carried out using the pmemd program from Amber16 and all molecular 

dynamics runs were carried out using the GPU accelerated pmemd.cuda120–122. During all 

following operations, periodic boundary conditions were applied using a 9.0 Å cutoff for the 

direct space sum. The SHAKE algorithm119 was used on all bonds involving hydrogen atoms 

during the molecular dynamics runs. All simulations parameters were kept at their default 

values except stated otherwise. Each simulation was carried out in triplicates. 

Initially, each MRBB had positional restraints on all non-hydrogen atoms of the starting 

structure using a harmonic force constant of 25 kcal·mol-1·Å-2. In the first step, the potential 

energy of the system was minimized with 250 steps of steepest descent and 250 steps of 

conjugate gradient optimization. Then, the system was heated gradually to 300 K within 25 ps 

using an integration time-step of 1 fs. At this temperature and with an integration time-step of 

2 fs, the system was equilibrated to a target pressure of 1 bar using the Berendsen barostat154, 

while gradually lowering the positional restraints within 100 ps. In a last step, the system was 

equilibrated under NVT conditions for 1 ns. Final production MD runs were carried out for 

50 ns for each MRBB. Coordinates were saved to disk every 10 ps. 

 

3.6.5 Conformational Clustering 

The conformations of the MRBB molecules (see c) in Figure 3-11) were clustered based on the 

local symmetry-corrected RMSDs of all non-hydrogen atoms using average linkage, single 

linkage and complete linkage clustering as implemented in cpptraj123 (V17). For the clustering, 
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every second frame from the triplicate MD runs was sieved off using the sievetoframe utility. 

In order to keep the computational effort in a reasonable range, we only considered the 

clustering solutions for two and three clusters for each clustering algorithm. This strategy 

resulted in a maximum number of 396 MD simulations and GIST calculations to run (3 replica 

* 3 clusters * 44 MRBB molecules). From each of the clustering algorithms, the conformational 

ensemble was clustered into two and three clusters. Then, from the three clustering algorithms 

and two different clustering (N = 2,3) solutions for each clustering algorithm, the clustering 

solution that had the lowest Davies–Bouldin index was chosen. In the Davies-Bouldin index, 

the ratio between within-cluster scatter and between-cluster separation is considered. This index 

is a common measure to identify a cluster solution that has compact clusters well separated 

from each other. The number of conformational clusters for each MRBB as well as their 

population statistics can be found in the Supporting Information. 

 

3.6.6 Restraint MD Simulations 

For each cluster from the optimal clustering solution, the most representative conformation (i.e. 

the frame from the MD trajectory that is closest to the cluster centroid) was selected as the 

starting structure for restraint MD simulations (see d) in Figure 3-11). The structure preparation 

for these MD simulations was analogous to the one for the unrestraint MD simulations (see step 

b)). During the following energy minimization and MD runs, all non-hydrogen solute atoms 

were fixed to the coordinates from their starting structure using a harmonic potential. Langevin 

dynamics (γ = 2 ps) were applied to keep the system at constant temperature. All parameters 

were kept similar to the protocol that was used during the unrestraint simulations (see step b)), 

except when stated otherwise. Each simulation was carried out in triplicates. 

In the first step, the energy of the system was minimized using 2500 steps of steepest descent 

and 2500 steps of conjugate gradient optimization. All non-hydrogen solute atoms were 

positionally restraint to their initial coordinates (i.e. to the cluster representative structure) using 

a harmonic potential with a force constant of 25 kcal·mol-1·Å-2. In a second minimization, 2500 

steps of steepest descent and 2500 steps of conjugate gradient optimization were carried out, 

while using a force constant of 2 kcal·mol-1·Å-2for the positional restraints. Then, the system 

was heated to 300 K within 25 ps using an integration time step of 1 fs and a harmonic force 

constant of 25 kcal·mol-1·Å-2 to keep the positions of the solute atoms fixed. At this temperature 

the system was equilibrated to a target pressure of 1 bar within 5 ns using the Berendsen 
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barostat154. The integration time step is now switched to 2 fs. Finally, the system is equilibrated 

for 5 ns under NVT conditions. Final production runs were carried out for 30 ns and coordinates 

were saved to disk every 2 ps. 

 

3.6.7 GIST Calculations 

The solvent energies and entropies were calculated and mapped on a three-dimensional 

rectangular grid using the GIST79,80 (see e) in Figure 3-11) implementation of cpptraj (V17). 

For each MRBB, the grid box was centered at the center-of-mass of the MRBB molecule. The 

dimensions of the grid box were chosen such, that the distance of every edge to its closest atom 

of the MRBB was 3 Å. Each grid voxel had dimensions 0.5x0.5x0.5 Å. 

 

3.6.8 GIST-based Solvent Functionals 

The GIST-based solvent functionals were used as introduced in our previous contribution. For 

the MRBB molecules, we used the ligand-bound density, entropy and energy cutoff parameters 

(Ntu�w�, Stu�w� and Stu�w�, respectively) from the PL-L/F6/GNtu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�I 

functional. However, this required the correction of the density cutoff parameter, Ntu�w�, in order 

to reflect the difference in the molecular volume of the entire ligand molecules and the MRBB 

molecules. This parameter correction procedure is outlined in the Supporting Information. 

 

3.6.9 Spatial Decomposition of Solvent Functionals 

GIST is a spatially resolved approach to solvation thermodynamics. Within this approach, the 

spatial distribution of solvent molecules and their corresponding thermodynamic properties are 

obtained from spatial integrals over a grid that is superimposed onto the solute molecule of 

interest (or parts of it). The spatial integrals can be readily decomposed into sub-integrals, which 

reflect the topology of the solute molecule. These sub-integrals allow one to rewrite any integral 

over enthalpies or entropies from GIST as follows (expressed as sums, instead of integrals): 

 

�� =2P�8�/�N�8�/�3�8�/�Q�
/ =22���8�/�P�8�/�N�8�/�3�8�/�Q�

/
�
�  

(3-1) 
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������ =2���8�/�P�8�/�N�8�/�3�8�/�Q�
/  

(3-2) 

�� =2�������
�  

(3-3) 

In Eq. (3-1), AL is either the enthalpy or the entropy calculated by using a grid GL obtained from 

a GIST calculation of the ligand molecule L (either in solution or in the protein-bound state). 

The value of AL at grid voxel 8�/ is denoted as 3�8�/�, the volume indicator function is P�8�/� and 

evaluates to 1, if the grid voxel is within the molecular volume of the ligand molecule and to 0 

otherwise. The normalized density is given by N�8�/� and can be interpreted as a weighting 

function for 3�8�/�. The most right side of the equation contains the binary BB indicator function 

bi, which is assigned a value of 1, if grid voxel k is inside the molecular volume of BB i, and a 

value of 0 otherwise (for a graphical depiction of the spatial decomposition approach, see Figure 

3-12). The index i runs over all B BBs that are contained in the ligand molecule. Thus, for each 

BB, Bi, its fractional contribution of the total value of AL, can be expressed as ������ from 

eq. (3-2). Consequently, the value of AL, can be expressed as a sum over the contributions from 

all BBs that are contained in molecule L, ������, using eq. (3-3). 

In addition to the MD simulations and GIST calculations that were carried out for the ligand 

molecule, we carried out MD simulations and GIST calculations for MRBB molecules in 

aqueous solution (see Figure 3-11). From these, a similar spatial decomposition of the GIST 

grids has been be carried out as in the case of the entire ligand molecules (see Figure 3-12). The 

spatial decomposition is carried out for the same atoms as in the case of the BBs in the entire 

ligand molecule. A similar approach as in the case of the entire ligand molecule has been be 

used to calculate the thermodynamic solvation quantities (i.e. solvation energy and solvation 

entropy), ���, from a MRBB molecule Bi as: 

��� =2���8�/�P�8�/�N�8�/�3�8�/�
Q �
/  

(3-4) 

In eq. (3-4), the quantities b¢�r�¤�v�r�¤�g�r�¤� and A�r�¤� have the same meaning as in eq. (3-1), 

however here they are based on the grids, ���, obtained from a GIST calculations of the MRBB 
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molecule (see Figure 3-12). Thus, the results obtained from the analysis of the BB in the entire 

ligand molecule and the MRBB are readily compared to each other in order to quantify the 

perturbation of an individual BB upon assembling into the entire ligand molecule. 

 

 

Figure 3-12: Schematic two-dimensional illustration of the spatial decomposition of the GIST 
grids. The colored grid voxel show the BB indicator functions b1, b2 and b3 as outlined in 
eq. (3-1). Any BB indicator function is zero at white grid voxels (i.e. without any assigned 
color). The molecule in this example (cf. Figure 3-11) is a thrombin inhibitor taken from PDB 
code 3DHK105 and its corresponding MRBBs B9, B2 and B3. 
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3.7 Supporting Material 

3.7.1 PDB Accession Codes 

Ligand bound structures:  

Reference [104] 2ZC9, 2ZDA, 2ZDV, 2ZF0, 2ZFF. 

Reference [105] 2ZFP, 3DHK, 2ZGX, 2ZO3, 3DUX. 

Reference [110] 3BIU, 3BIV. 

Reference [103] 3P17, 3QTO, 3SI3, 3SI4, 3SV2, 3QTV, 3SHC ¸3QWC, 3QX5. 

Reference [49] 3RLW, 3RLY, 3RM0, 3RM2, 3RML, 3RMM, 3RMN, 3RMO, 3T5F, 3UWJ. 

Reference [111] 3UTU. 

Reference [108] 4BAK, 4BAM, 4BAN, 4BAO, 4BAQ. 

Reference [109] 4UD9, 4UDW, 4UE7, 5AF9, 5AFZ. 

Reference [107,148] 6GBW, 5JFD, 5LCE, 5JZY, 5LPD 

Reference [106] CC01, CC04, CC05, CC08, CC10, CC11. 

 

3.7.2 List of ligand pairs 

Table S3-3: List with PDB codes of all ligand pairs that differed only by a single BB. 
PDB-code ligand 1 PDB-code ligand 2 PDB-code ligand 1 PDB-code ligand 2 PDB-code ligand 1 PDB-code ligand 2 

3QWC 3QTV 3DUX 2ZC9 3RM0 3RLY 
3SI4 3QTV CC05 2ZC9 3UWJ 3RLY 

3QTV 3QTO CC08 2ZC9 3RM2 3RLY 
3QX5 3QTV CC10 2ZC9 3UWJ 3RM0 
3SI4 3QWC CC11 2ZC9 3RM2 3RM0 

3QWC 3QTO 3P17 2ZFF 3UWJ 3RM2 
3QX5 3QWC 3SV2 2ZFF 3DHK 2ZC9 
3SI3 2ZF0 4UDW 2ZFF 3RM2 3RLW 
2ZF0 2ZDV CC05 2ZFF   
3SHC 2ZF0 CC08 2ZFF   
2ZF0 2ZC9 CC10 2ZFF   
2ZFF 2ZF0 CC11 2ZFF   
3P17 2ZF0 3SV2 3P17   
3SV2 2ZF0 4UDW 3P17   

4UDW 2ZF0 CC05 3P17   
CC05 2ZF0 CC08 3P17   
CC08 2ZF0 CC10 3P17   
CC10 2ZF0 CC11 3P17   
CC11 2ZF0 3QX5 3QTO   
3SI3 2ZDV 4UDW 3SV2   
3SI3 3SHC CC05 3SV2   
3SI3 2ZC9 CC08 3SV2   
3SI3 2ZFF CC10 3SV2   
3SI3 3P17 CC11 3SV2   
3SV2 3SI3 CC05 4UDW   

4UDW 3SI3 CC08 4UDW   
CC05 3SI3 CC10 4UDW   
CC08 3SI3 CC11 4UDW   
CC10 3SI3 3DHK 2ZFP   
CC11 3SI3 3DUX 2ZFP   
3SHC 2ZDV 2ZO3 2ZGX   
2ZDV 2ZC9 5JZY 2ZGX   
2ZFF 2ZDV 5LCE 3DUX   
3P17 2ZDV 4BAO 4BAN   
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3SV2 2ZDV 4BAO 4BAM   
4UDW 2ZDV 4BAQ 4BAO   
CC05 2ZDV 4BAN 4BAM   
CC08 2ZDV 4BAQ 4BAN   
CC10 2ZDV 4BAQ 4BAM   
CC11 2ZDV 3BIV 3BIU   
3SHC 2ZC9 CC08 CC05   
3SHC 2ZFF CC10 CC05   
3SHC 3P17 CC11 CC05   
3SV2 3SHC CC10 CC08   

4UDW 3SHC CC11 CC08   
CC05 3SHC CC11 CC10   
CC08 3SHC 3RMM 3RML   
CC10 3SHC 3RMN 3RML   
CC11 3SHC 3T5F 3RML   
2ZGX 2ZDA 3RMO 3RML   
2ZO3 2ZDA 3RMN 3RMM   
5JZY 2ZDA 3T5F 3RMM   
3SI4 3QTO 3RMO 3RMM   
3SI4 3QX5 3T5F 3RMN   
2ZFF 2ZC9 3RMO 3RMN   
3P17 2ZC9 3T5F 3RMO   
3SV2 2ZC9 3RLY 3RLW   

4UDW 2ZC9 3RM0 3RLW   
2ZFP 2ZC9 3UWJ 3RLW   

 

3.7.3 The GIST-based Solvent Functional and its Parameters 

The GIST-based solvent functional and the corresponding parameter were already introduced 

in our previous work. We will make use of the PL-L/F6/GNtu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�I 

functional. The characteristic feature of this solvent functional is the use separate energy, 

entropy and density parameters for the protein-ligand complex (PL) as well as the ligand (L) in 

aqueous solution. The grids from the GIST calculation are processed with the F6 base 

functional, which employs a set of energy, entropy and density cutoff values (Otu, Stu and Ntu) 

in order to filter the grid voxels for appropriate values of energy, entropy and density. These 

grid voxels are then employed for the calculation of solvation energies and entropies by 

assigning an energy and an entropy weighting factor (Eaff and Saff) to each grid voxel that passes 

the filter criteria. The sum of all these weighted grid voxel that are within the first solvation 

layer of a ligand give the solvation energy and entropy of a ligand (or a BB of it). The values 

found for the individual parameters that were used in this study are listed in Table S3-4. These 

parameter values were obtained from 10 randomized attempts of five-fold cross-validation and 

was carefully evaluated against shuffled data generated with the same dataset. 

The positive value for Eaff results in a solvation energy contribution from the protein-ligand 

complex, �B!(��vw�,	 which opposes binding. However the solvation energy contribution from the 

ligand molecule, �B!(��w�
., in aqueous solution actually favors binding, since the solvation energy 

of the binding reaction is calculated as Δ�B!(� = �B!(��vw� − �B!(��w�
. The high value for the energy 
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cutoff parameter for the protein-ligand complex and the corresponding density cutoff 

parameter, 8.13 kcal·mol-1 and 8.31 ρ0, respectively, allow only for grid voxel that are very 

unfavorable in solvation energy and are highly populated (approximately 8 times higher than 

bulk water phase). As a result, only in few regions in the pocket grid voxel are found that 

actually exceed these cutoff parameter values. These correspond to water molecules that are 

found on the surface of the protein-ligand complex and are not placed favorably with respect to 

energy. In the context of structure-based ligand design, one would want to replace this water 

molecule with an apolar moiety or modifiy the ligand such that it interacts energetically 

favorable with this water molecule. The energy cutoff parameter for the ligand molecule is close 

to zero (-0.95 kcal·mol-1) and its density cutoff parameter (6.93 ρ0) is close to the density 

parameter of the protein-ligand complex. This combination of energy and density cutoff 

parameters for the ligand effectively identifies water molecules in high density regions on the 

surface of the unbound ligand molecule with a total energy that is close to (or higher) than their 

in energy bulk water. By that, the solvation energy of the ligand is dominated by high density 

regions with unfavorable energy. 

The entropy weighting factor, Saff, is positive and close to the value found for the energy Eaff. 

The positive sign of this factor is anticipated, since it indicates that the binding of water 

molecules in the protein-ligand complex is entropically unfavorable and the desolvation of the 

ligand molecule is entropically favorable since water molecules are released into bulk (note, 

that the GIST functionals use the negative the entropy term, -T∆S). The entropy cutoff 

parameter for the protein-ligand complex is very high, 7.83 kcal·mol-1, and therefore only is 

fulfilled in regions that have very tightly bound water molecules, like structural water 

molecules. The cutoff parameter for the ligand molecules is lower, 3.95 kcal·mol-1 and 

identifies bound water molecules on the surface of ligand. 
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Table S3-4. Parameters for the PL-L/F6/GNtu�vw�, Ntu�w�, Otu�vw�, Stu�w�, Otu�vw�, Stu�w�I solvent functional. 

Eaff
 a) e) |z{���� b) e) |z{��� b) e) Saff

 a) e) }z{���� c) e) }z{��� c) e) yz{���� d e)) yz{��� d) e) 

0.17/ 
0.16/ 
0.29 

8.03/ 
7.43/ 
8.56 

-0.95/ 
-0.96/ 
-0.65 

0.01/ 
-0.14/ 
0.61 

7.83/ 
6.83/ 
7.89 

3.95/ 
-0.96/ 
5.15 

9.97/ 
5.63/ 
9.99 

6.93/ 
6.88/ 
6.95 

a) Weighting factors for energy, Eaff, and entropy, Saff in kcal·mol-1. 

b) Energy cutoff parameters for the protein-ligand complex (PL), Otu�vw�, and the ligand molecule in aqueous 

solution, Otu�w�, in kcal·mol-1. 

c) Entropy cutoff parameters for the protein-ligand complex (PL), Stu�vw�, and the ligand molecule in aqueous 

solution, Stu�w�, in kcal·mol-1. 

d) Density cutoff parameters for the protein-ligand complex (PL), Ntu�vw�, and the ligand molecule in aqueous 

solution, Ntu�w�. This quantity is given in multiples of ρ0. 
e) The first value indicates the median of the parameters obtained from all training/testing attempts with this 

functional. The second and third values represent the upper to lower quartile range of the parameters 
obtained all training/testing attempts. 

 

3.7.4 Correction of the Density Cutoff Parameter for the MRBB 

In order to be able to compare solvation thermodynamic properties from the MRBBs with the 

BBs in the ligands, it is important compare the same amount of water molecules in both 

environments of the respective BB. The amount of water molecules, which are considered in 

the calculation of solvation energy and entropy is controlled by the density cutoff parameter, Ntu. As outlined in our previous work on GIST functionals, this parameter controls whether or 

not a grid voxel k must be considered in the calculation or not. If the normalized water density 

at grid voxel k, N�8�/�, exceeds the density cutoff value, Ntu, then this grid voxel is considered 

in the calculation. If the normalized water density at this grid voxel is lower than the cutoff 

value, then the grid voxel is not considered in the calculation.  

The BB in the ligand is able to accommodate a higher number of water molecules, than in an 

isolated environment. This is due to cooperative effects between the BB and the other BBs in 

the molecule, which enhance the solute-water interactions and thereby increase the probability 

to find a water molecule in the vicinity of the solute surface. Therefore, we searched for the 

density cutoff value, which results in the approximate same number of water molecules for the 

BB in MRBB and the BB embedded in the ligand. This corresponds to finding the density cutoff 

parameter value of the MRBB, Ntu������, which minimizes the difference in the number of water 

molecules between the BB embedded in the ligand and the BB mapped to the MRBB molecule. 
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Δ¨ = _�2©2M/���8�/�N�8�/�N+G8�/, Ntu�w�IQ�
/ ª − ©2M(N�8�(�N+G8�(, Ntu������IQ 

( ª�
�  

(S3-5) 

N+�8�, Ntu� = T 1, VW	N�8�� > N,!0, [\ℎO8^VSO 

(S3-6) 

In eq. (S3-5), the difference in the number of water molecules is denoted as Δ¨, the grid that 

covers the ligand molecule is called GL and the grid that covers the MRBB molecule is called 

GB. The volume of a grid voxel from GL is denoted Vk and from the grid GB, it is called Vl. The 

density function is called N and the corresponding density step function is NB. We scanned the 

average difference in the number of water molecules calculated for all ligand molecules in the 

dataset, 〈Δ¨〉, against different density cutoff parameter values for the MRBB molecule, 

Ntu������. Furthermore, we carried out this scan for different values of the additive parameter, 

Ra, that is added to the radius of each atom during the molecular volume calculation using a 

water probe. The greater this parameter is, the greater also will be the molecular volume and by 

that, it effectively controls the size of the molecular volume. As can be seen from see Figure 

S3-13, 〈Δ¨〉, drops to a minimum at a cutoff parameter value of 3 ρ0. The same behavior is 

observed for different values of the additive parameter, Ra, which indicates a consistent number 

of water molecules in the different radial increments within the first solvation layer at this level 

of the density. 
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Figure S3-13: Average difference in the number of water molecules, 〈Δ¨E&)〉, between the 
MRBB and the BB embedded into the molecule calculated with different density cutoff values Ntu. Each line represents a different volume definition per atom. 
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3.7.5 Building Block Thermodynamics for each Ligand. 

Table S3-5: Thermodynamic contributions for each BB in each molecule. 
PDB BB ∆G(PL) +/- s.d. ∆H(PL) +/- s.d. T∆S(PL) +/- s.d. 
3QTV   1   0.1   0.1   2.5   0.7   0.1   0.1   2.8   0.9   0.0   0.0  -0.3  0.7 
3QTV   2   0.1   0.1   2.5   0.7   0.1   0.1   2.8   0.9   0.0   0.0  -0.3  0.7 
3QTV   16   1.3   0.7   1.8   0.5   1.3   0.7   2.1   0.6   0.0   0.2  -0.2  0.5 
3QWC   1   0.1   0.1   2.4   0.7   0.1   0.1   2.6   0.8   0.1   0.1  -0.2  0.7 
3QWC   2   0.0   0.0   2.4   0.7   0.0   0.0   2.6   0.8   0.0   0.0  -0.2  0.7 
3QWC   17   0.8   0.5   2.1   0.6   0.6   0.4   2.2   0.7   0.1   0.2  -0.1  0.6 
3SI4   1   0.1   0.1   2.1   0.6   0.1   0.1   2.4   0.8   0.0   0.0  -0.3  0.6 
3SI4   2   0.1   0.1   2.1   0.6   0.1   0.1   2.4   0.7   0.0   0.0  -0.3  0.6 
3SI4   27   0.6   0.5   1.8   0.5   0.5   0.5   2.1   0.6   0.0   0.2  -0.2  0.5 
3QTO   1   0.0   0.1   1.9   0.6   0.0   0.0   2.2   0.7   0.0   0.1  -0.3  0.6 
3QTO   2   0.0   0.0   1.9   0.6   0.0   0.0   2.2   0.7   0.0   0.0  -0.3  0.6 
3QTO   15   0.0   0.3   1.7   0.5   0.1   0.1   1.8   0.6   -0.0   0.3  -0.2  0.5 
3QX5   1   0.1   0.0   2.2   0.6   0.1   0.0   2.4   0.7   0.0   0.0  -0.3  0.6 
3QX5   2   0.1   0.0   2.1   0.6   0.1   0.0   2.4   0.7   0.0   0.0  -0.3  0.6 
3QX5   18   0.1   0.1   1.7   0.5   0.1   0.0   1.9   0.6   0.0   0.2  -0.2  0.5 
2ZF0   1   0.3   0.2   2.3   0.7   0.3   0.2   2.6   0.8   0.0   0.0  -0.2  0.7 
2ZF0   2   0.2   0.2   2.4   0.7   0.2   0.2   2.6   0.8   0.0   0.0  -0.2  0.7 
2ZF0   6   0.2   0.2   1.8   0.6   0.2   0.2   1.9   0.6   0.0   0.2  -0.2  0.5 
3SI3   1   0.3   0.2   1.6   0.5   0.3   0.2   1.9   0.5   0.0   0.1  -0.3  0.6 
3SI3   2   0.2   0.1   1.6   0.5   0.2   0.1   1.8   0.5   0.0   0.0  -0.3  0.6 
3SI3   26   0.3   0.2   1.2   0.4   0.2   0.1   1.4   0.4   0.1   0.2  -0.2  0.4 
2ZDV   1   0.2   0.1   1.9   0.6   0.2   0.1   2.1   0.7   0.0   0.1  -0.2  0.6 
2ZDV   2   0.2   0.1   1.9   0.6   0.2   0.1   2.1   0.7   0.0   0.0  -0.2  0.6 
2ZDV   5   0.2   0.2   1.4   0.4   0.2   0.1   1.6   0.5   0.0   0.2  -0.2  0.4 
3SHC   1   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.7   0.0   0.0  -0.3  0.6 
3SHC   2   0.0   0.0   2.1   0.6   0.0   0.0   2.3   0.7   0.0   0.0  -0.3  0.6 
3SHC   25   0.2   0.2   1.5   0.5   0.2   0.2   1.7   0.5   0.0   0.1  -0.2  0.4 
2ZC9   1   0.2   0.1   2.3   0.7   0.2   0.1   2.6   0.9   0.0   0.0  -0.3  0.7 
2ZC9   2   0.2   0.1   2.3   0.7   0.2   0.1   2.6   0.8   0.0   0.0  -0.3  0.7 
2ZC9   3   0.2   0.1   1.6   0.5   0.2   0.1   1.8   0.5   0.0   0.1  -0.2  0.5 
2ZFF   1   0.1   0.0   1.9   0.5   0.1   0.0   2.1   0.6   0.0   0.0  -0.2  0.6 
2ZFF   2   0.1   0.0   2.0   0.6   0.1   0.0   2.2   0.6   0.0   0.0  -0.2  0.6 
2ZFF   7   1.1   0.4   1.6   0.5   1.1   0.4   1.8   0.5   0.0   0.1  -0.1  0.5 
3P17   1   0.1   0.1   1.6   0.5   0.1   0.1   1.8   0.6   0.0   0.1  -0.3  0.6 
3P17   2   0.1   0.1   1.6   0.5   0.1   0.1   1.8   0.6   0.0   0.0  -0.3  0.6 
3P17   14   0.2   0.2   1.2   0.4   0.1   0.1   1.4   0.4   0.0   0.2  -0.2  0.4 
3SV2   1   0.4   0.2   1.9   0.6   0.3   0.2   2.1   0.7   0.0   0.1  -0.3  0.6 
3SV2   2   0.3   0.2   1.9   0.6   0.3   0.2   2.1   0.7   0.0   0.0  -0.3  0.6 
3SV2   28   1.3   0.5   1.5   0.5   1.2   0.6   1.7   0.5   0.0   0.2  -0.2  0.5 
4UDW   37   0.1   0.1   2.4   0.7   0.0   0.1   2.7   0.8   0.0   0.1  -0.3  0.7 
4UDW   2   0.0   0.0   2.4   0.7   0.0   0.0   2.7   0.8   0.0   0.0  -0.3  0.7 
4UDW   1   0.0   0.2   1.8   0.5   0.0   0.0   2.0   0.6   -0.0   0.2  -0.2  0.6 
2ZFP   8   0.2   0.1   1.7   0.5   0.2   0.1   2.0   0.6   0.0   0.0  -0.2  0.5 
2ZFP   2   0.2   0.1   1.4   0.4   0.2   0.1   1.6   0.5   -0.0   0.1  -0.2  0.4 
2ZFP   3   0.1   0.1   1.7   0.5   0.1   0.1   2.0   0.6   0.0   0.0  -0.2  0.5 
3DHK   9   0.3   0.2   3.1   0.9   0.3   0.2   3.5   1.0   0.0   0.0  -0.3  0.7 
3DHK   2   0.3   0.2   1.9   0.5   0.3   0.2   2.1   0.6   0.0   0.1  -0.2  0.5 
3DHK   3   0.3   0.1   3.2   0.9   0.3   0.1   3.6   1.0   0.0   0.1  -0.4  0.8 
CC05   1   0.2   0.1   2.2   0.6   0.2   0.1   2.5   0.7   0.0   0.0  -0.3  0.6 
CC05   2   0.2   0.1   2.2   0.6   0.2   0.1   2.5   0.7   0.0   0.0  -0.3  0.6 
CC05   40   0.2   0.1   1.6   0.4   0.2   0.1   1.8   0.5   0.0   0.1  -0.2  0.4 
CC08   2   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.8   0.0   0.0  -0.3  0.6 
CC08   41   0.0   0.0   2.0   0.6   0.0   0.0   2.3   0.7   0.0   0.0  -0.3  0.6 
CC08   1   0.5   0.4   1.9   0.6   0.5   0.4   2.2   0.7   0.0   0.1  -0.2  0.6 
CC10   42   0.0   0.0   2.2   0.7   0.0   0.0   2.5   0.8   0.0   0.0  -0.3  0.6 
CC10   2   0.0   0.0   2.2   0.7   0.0   0.0   2.5   0.8   0.0   0.0  -0.3  0.6 
CC10   1   0.3   0.3   1.5   0.5   0.3   0.3   1.7   0.5   0.0   0.2  -0.2  0.4 
CC11   2   0.0   0.0   2.2   0.7   0.0   0.0   2.5   0.8   0.0   0.0  -0.3  0.7 
CC11   43   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.7   0.0   0.0  -0.3  0.6 
CC11   1   0.0   0.1   1.8   0.6   0.0   0.0   2.0   0.6   0.0   0.1  -0.3  0.6 
2ZDA   1   0.2   0.1   2.4   0.7   0.2   0.1   2.8   0.9   0.0   0.0  -0.3  0.7 
2ZDA   2   0.2   0.1   2.4   0.7   0.2   0.1   2.7   0.8   0.0   0.0  -0.3  0.7 
2ZDA   4   1.3   0.5   2.5   0.8   1.2   0.6   2.8   0.9   0.0   0.2  -0.3  0.7 
2ZGX   8   0.2   0.2   2.1   0.7   0.2   0.2   2.5   0.9   0.0   0.0  -0.3  0.7 
2ZGX   2   1.6   0.6   2.3   0.8   1.6   0.6   2.6   0.9   0.0   0.1  -0.3  0.7 
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2ZGX   4   0.1   0.1   2.2   0.8   0.1   0.1   2.6   0.9   0.0   0.0  -0.4  0.7 
2ZO3   9   0.0   0.0   3.6   1.0   0.0   0.0   4.0   1.2   0.0   0.0  -0.4  0.9 
2ZO3   2   1.7   0.6   3.1   1.0   1.7   0.7   3.5   1.2   0.0   0.2  -0.4  0.8 
2ZO3   4   0.0   0.1   3.7   1.1   0.0   0.0   4.1   1.3   0.0   0.1  -0.4  0.9 
5JZY   12   0.3   0.1   2.5   0.8   0.3   0.1   2.9   1.0   0.0   0.0  -0.4  0.8 
5JZY  2   1.6   0.6   2.7   0.9   1.5   0.6   3.1   1.0   0.1   0.2  -0.4  0.8 
5JZY  4   0.3   0.1   2.7   0.9   0.3   0.1   3.1   1.0   0.0   0.1  -0.4  0.8 
3DUX   12   0.1   0.1   2.1   0.6   0.1   0.1   2.4   0.7   0.0   0.0  -0.3  0.6 
3DUX   2   0.1   0.1   1.7   0.5   0.1   0.1   1.9   0.6   0.0   0.1  -0.2  0.5 
3DUX   3   0.1   0.1   2.1   0.6   0.1   0.1   2.4   0.7   0.0   0.0  -0.3  0.6 
5LCE   12   0.0   0.0   2.4   0.7   0.0   0.0   2.8   0.8   0.0   0.0  -0.3  0.7 
5LCE  2   0.0   0.0   2.4   0.7   0.0   0.0   2.8   0.8   0.0   0.0  -0.3  0.7 
5LCE  39   0.0   0.1   2.2   0.7   0.0   0.0   2.5   0.7   0.0   0.1  -0.3  0.6 
4BAO   35   1.7   0.9   3.0   0.9   1.7   0.9   3.4   1.1   0.0   0.1  -0.4  0.9 
4BAO   30   0.0   0.0   2.5   0.8   0.0   0.0   2.9   0.9   0.0   0.0  -0.4  0.8 
4BAO   4   0.0   0.0   2.8   0.9   0.0   0.0   3.3   1.0   0.0   0.0  -0.4  0.9 
4BAN   32   1.7   0.9   2.6   0.7   1.7   0.9   2.9   0.9   0.0   0.2  -0.3  0.6 
4BAN   30   0.0   0.0   2.0   0.6   0.0   0.0   2.2   0.7   0.0   0.0  -0.2  0.5 
4BAN   4   0.0   0.0   2.4   0.7   0.0   0.0   2.7   0.8   0.0   0.0  -0.3  0.6 
4BAN   13   0.0   0.0   2.7   0.8   0.0   0.0   3.0   0.9   0.0   0.0  -0.3  0.7 
4BAM   33   0.9   0.4   2.7   0.8   0.8   0.4   3.0   0.9   0.1   0.1  -0.3  0.6 
4BAM   30   0.0   0.0   2.5   0.7   0.0   0.0   2.8   0.8   0.0   0.0  -0.3  0.6 
4BAM   4   0.0   0.0   2.8   0.8   0.0   0.0   3.2   1.0   0.0   0.0  -0.4  0.7 
4BAM   34   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.7   0.0   0.0  -0.3  0.6 
4BAQ   32   0.8   0.2   2.9   0.8   0.7   0.2   3.3   1.0   0.0   0.2  -0.3  0.8 
4BAQ   30   0.0   0.0   2.7   0.8   0.0   0.0   3.0   0.9   0.0   0.0  -0.3  0.7 
4BAQ   4   0.0   0.0   3.1   0.9   0.0   0.0   3.4   1.0   0.0   0.0  -0.4  0.8 
4BAQ   36   0.0   0.0   2.1   0.6   0.0   0.0   2.3   0.7   0.0   0.0  -0.2  0.6 
4BAK   31   1.5   0.4   2.7   0.8   1.4   0.4   3.1   0.9   0.0   0.1  -0.3  0.7 
4BAK   32   0.2   0.1   2.5   0.7   0.2   0.1   2.9   0.8   0.0   0.0  -0.3  0.7 
4BAK   30   0.2   0.1   3.0   0.9   0.2   0.1   3.3   1.0   0.0   0.0  -0.4  0.8 
4BAK   4   0.0   0.0   2.1   0.6   0.0   0.0   2.3   0.7   0.0   0.0  -0.2  0.5 
3BIU   10   0.0   0.0   2.0   0.7   0.0   0.0   2.4   0.8   0.0   0.0  -0.4  0.8 
3BIU   2   1.6   0.6   2.5   0.8   1.5   0.6   2.9   0.9   0.0   0.1  -0.4  0.7 
3BIU   4   0.0   0.0   2.1   0.8   0.0   0.0   2.5   0.8   0.0   0.0  -0.4  0.8 
3BIV   11   0.0   0.0   2.3   0.7   0.0   0.0   2.6   0.9   0.0   0.0  -0.4  0.7 
3BIV   2   1.6   0.8   2.4   0.7   1.6   0.8   2.7   0.9   0.0   0.2  -0.3  0.6 
3BIV   4   0.0   0.0   2.2   0.7   0.0   0.0   2.6   0.8   0.0   0.0  -0.3  0.7 
3RML   19   0.0   0.0   1.2   0.4   0.0   0.0   1.3   0.4   0.0   0.0  -0.1  0.3 
3RML   20   0.0   0.0   1.1   0.3   0.0   0.0   1.3   0.4   0.0   0.0  -0.1  0.3 
3RML   2   0.0   0.0   1.2   0.4   0.0   0.0   1.4   0.4   0.0   0.0  -0.2  0.3 
3RML   24   0.0   0.1   1.1   0.3   0.0   0.0   1.3   0.4   0.0   0.1  -0.1  0.3 
3RMM  19   0.2   0.1   1.7   0.5   0.2   0.1   1.9   0.6   0.0   0.0  -0.2  0.4 
3RMM  21   0.1   0.0   1.4   0.4   0.1   0.0   1.6   0.5   0.0   0.0  -0.2  0.4 
3RMM  2   1.0   0.4   1.7   0.5   1.0   0.4   2.0   0.6   0.0   0.1  -0.2  0.5 
3RMM  24   0.2   0.1   1.7   0.5   0.2   0.1   2.0   0.6   0.0   0.0  -0.2  0.5 
3RMN   19   0.0   0.0   1.7   0.5   0.0   0.0   2.0   0.6   0.0   0.0  -0.2  0.4 
3RMN   22   0.0   0.0   1.7   0.5   0.0   0.0   1.8   0.5   0.0   0.0  -0.2  0.4 
3RMN   2   1.0   0.5   1.6   0.5   0.9   0.5   1.9   0.5   0.0   0.1  -0.2  0.4 
3RMN   24   0.0   0.0   1.8   0.5   0.0   0.0   2.1   0.6   0.0   0.0  -0.2  0.5 
3T5F   19   0.2   0.1   1.9   0.6   0.2   0.1   2.1   0.6   0.0   0.0  -0.2  0.5 
3T5F   29   0.0   0.0   1.7   0.5   0.0   0.0   1.9   0.5   0.0   0.0  -0.2  0.4 
3T5F   2   1.2   0.6   1.8   0.5   1.1   0.6   2.0   0.6   0.0   0.1  -0.2  0.4 
3T5F   24   0.6   0.3   1.9   0.6   0.6   0.3   2.2   0.7   0.0   0.1  -0.2  0.5 
3RMO   19   0.0   0.0   2.0   0.6   0.0   0.0   2.2   0.7   0.0   0.0  -0.2  0.5 
3RMO   23   0.0   0.0   1.9   0.5   0.0   0.0   2.1   0.6   0.0   0.0  -0.2  0.5 
3RMO   2   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.7   0.0   0.0  -0.3  0.5 
3RMO   24   1.0   0.6   1.8   0.5   1.0   0.6   2.1   0.6   0.0   0.1  -0.2  0.5 
3RLW   19   0.1   0.0   1.2   0.4   0.1   0.0   1.3   0.4   0.0   0.0  -0.2  0.3 
3RLW   20   2.1   0.9   1.8   0.6   2.1   0.9   2.1   0.6   0.0   0.2  -0.2  0.5 
3RLW   2   0.0   0.0   0.8   0.3   0.0   0.0   0.9   0.3   0.0   0.0  -0.1  0.2 
3RLW   4   0.1   0.0   1.3   0.4   0.1   0.0   1.5   0.5   0.0   0.0  -0.2  0.3 
3RLY   19   0.2   0.1   1.5   0.5   0.2   0.1   1.7   0.6   0.0   0.0  -0.2  0.4 
3RLY   21   1.3   0.6   1.9   0.6   1.2   0.6   2.1   0.7   0.0   0.1  -0.3  0.5 
3RLY   2   0.1   0.0   1.3   0.4   0.1   0.0   1.5   0.5   0.0   0.0  -0.2  0.4 
3RLY   4   0.2   0.1   1.5   0.5   0.2   0.1   1.7   0.6   0.0   0.0  -0.2  0.4 
3RM0   19   0.1   0.1   1.6   0.5   0.1   0.1   1.9   0.6   0.0   0.0  -0.2  0.5 
3RM0   22   1.7   0.8   2.4   0.7   1.7   0.8   2.7   0.8   0.0   0.1  -0.3  0.6 
3RM0   2   0.0   0.0   1.5   0.5   0.0   0.0   1.7   0.5   0.0   0.0  -0.2  0.4 
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3RM0   4   0.1   0.1   1.7   0.5   0.1   0.1   1.9   0.6   0.0   0.0  -0.2  0.5 
3UWJ   19   0.1   0.1   1.5   0.4   0.1   0.1   1.7   0.5   0.0   0.0  -0.2  0.4 
3UWJ   29   1.9   1.1   2.2   0.6   1.9   1.2   2.5   0.7   0.0   0.1  -0.3  0.6 
3UWJ   2   0.0   0.0   1.3   0.4   0.0   0.0   1.5   0.5   0.0   0.0  -0.2  0.4 
3UWJ   4   0.1   0.1   1.6   0.5   0.1   0.1   1.8   0.6   0.0   0.0  -0.2  0.5 
3RM2   19   0.1   0.1   1.6   0.5   0.1   0.1   1.8   0.6   0.0   0.0  -0.2  0.5 
3RM2   23   2.1   1.3   1.8   0.5   2.1   1.3   2.0   0.6   0.0   0.2  -0.2  0.5 
3RM2   2   0.0   0.0   1.6   0.5   0.0   0.0   1.8   0.5   0.0   0.0  -0.2  0.5 
3RM2   4   0.1   0.1   1.8   0.5   0.1   0.1   2.0   0.6   0.0   0.0  -0.2  0.5 
5JFD   19   0.2   0.1   2.3   0.7   0.2   0.1   2.6   0.8   0.0   0.0  -0.3  0.6 
5JFD  38   0.1   0.1   2.0   0.6   0.1   0.1   2.3   0.7   0.0   0.0  -0.3  0.6 
5JFD  2   1.2   0.6   1.9   0.5   1.1   0.6   2.1   0.6   0.0   0.1  -0.2  0.5 
5JFD  24   0.2   0.1   2.5   0.8   0.2   0.1   2.9   0.9   0.0   0.0  -0.4  0.8 
6GBW   44   0.0   0.0   2.1   0.6   0.0   0.0   2.4   0.7   0.0   0.0  -0.2  0.6 
6GBW   2   0.0   0.0   1.4   0.5   0.0   0.0   1.6   0.5   0.0   0.0  -0.2  0.4 
6GBW   19   0.1   0.1   1.9   0.6   0.0   0.0   2.1   0.6   0.0   0.2  -0.2  0.5 
6GBW   24   0.0   0.0   2.2   0.7   0.0   0.0   2.4   0.8   0.0   0.0  -0.3  0.6 

All units are kcal·mol-1. Standard deviations estimated from the test set results of 10 random repetitions of 5-fold 
cross-validation. 
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3.7.6 Building Block Thermodynamics for each MRBB. 

Table S3-6: Thermodynamic contributions for each BB in each MRBB molecule. 
BB ∆G(PL) +/- s.d. ∆H(PL) +/- s.d. T∆S(PL) +/- s.d. Cluster 

Population 
1   0.7   0.2   0.8   0.2   -0.1   0.2   0.71 0.23 0.07  
2   0.7   0.2   0.8   0.2   -0.1   0.2   0.55 0.36 0.10  
3   0.6   0.2   0.7   0.2   -0.1   0.1   0.52 0.48  
4   0.9   0.3   1.0   0.3   -0.1   0.2   0.60 0.40  
5   0.6   0.2   0.7   0.2   -0.1   0.1   0.51 0.49  
6   0.7   0.2   0.7   0.2   -0.1   0.1   0.54 0.46  
7   0.6   0.2   0.6   0.2   -0.1   0.1   0.40 0.32 0.28  
8   0.5   0.2   0.6   0.2   -0.1   0.2   0.92 0.08  
9   1.0   0.3   1.1   0.3   -0.1   0.2   0.99 0.01  
10   0.7   0.2   0.8   0.2   -0.1   0.2   0.94 0.04 0.02  
11   0.8   0.3   0.9   0.3   -0.1   0.2   0.88 0.12  
12   0.8   0.3   0.9   0.3   -0.1   0.2   0.83 0.10 0.08  
13   0.3   0.1   0.3   0.1   -0.0   0.1   0.99 0.01  
14   0.7   0.2   0.8   0.2   -0.1   0.2   0.52 0.48  
15   0.9   0.3   1.0   0.3   -0.1   0.2   0.51 0.49  
16   0.9   0.3   1.0   0.3   -0.1   0.2   0.51 0.49  
17   1.0   0.3   1.1   0.3   -0.1   0.2   0.52 0.48  
18   0.9   0.3   1.1   0.3   -0.1   0.2   0.50 0.50  
19   0.5   0.2   0.6   0.2   -0.1   0.1   0.61 0.20 0.18  
20   0.6   0.2   0.7   0.2   -0.1   0.1   0.47 0.30 0.23  
21   0.6   0.2   0.7   0.2   -0.1   0.1   0.99 0.01  
22   0.8   0.2   0.9   0.3   -0.1   0.2   0.82 0.17 0.01  
23   1.1   0.3   1.3   0.4   -0.1   0.3   0.57 0.43  
24   1.1   0.3   1.2   0.4   -0.1   0.2   0.52 0.48  
25   0.7   0.2   0.8   0.2   -0.1   0.1   0.48 0.38 0.14  
26   0.6   0.2   0.6   0.2   -0.1   0.1   0.48 0.34 0.18  
27   0.9   0.3   1.0   0.3   -0.1   0.2   0.52 0.48  
28   0.6   0.2   0.7   0.2   -0.1   0.1   0.52 0.29 0.18  
29   0.8   0.3   0.9   0.3   -0.1   0.2   0.98 0.01 0.01  
30   0.6   0.2   0.7   0.2   -0.1   0.1   0.64 0.36  
31   0.4   0.1   0.5   0.1   -0.1   0.1   0.41 0.30 0.28  
32   1.2   0.4   1.3   0.4   -0.2   0.3   0.95 0.04 0.01  
33   1.2   0.4   1.4   0.4   -0.2   0.3   0.71 0.29  
34   0.2   0.1   0.3   0.1   -0.0   0.1   0.52 0.48  
35   1.2   0.4   1.3   0.4   -0.2   0.3   0.97 0.03  
36   0.3   0.1   0.4   0.1   -0.0   0.1   0.60 0.20 0.19  
37   0.8   0.2   0.9   0.3   -0.1   0.2   0.53 0.47  
38   1.2   0.4   1.3   0.4   -0.2   0.3   0.97 0.03  
39   0.8   0.3   0.9   0.3   -0.1   0.2   0.53 0.47  
40   0.8   0.2   0.9   0.3   -0.1   0.2   0.52 0.48  
41   0.7   0.2   0.8   0.2   -0.1   0.2   0.50 0.50  
42   0.7   0.2   0.8   0.2   -0.1   0.2   0.50 0.50  
43   0.7   0.2   0.7   0.2   -0.1   0.2   0.51 0.49  
44  1.2   0.4   1.4   0.4   -0.2   0.3   0.49 0.44 0.08 

All units are kcal·mol-1. Standard deviations estimated from calculations with the sets of parameters that were 
obtained from 10 random repetitions of 5-fold cross-validation with the test/training sets from the actual ligand 
molecules. 
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4 The Role of Water Molecules in Protein-Ligand Dissociation: 

An Analysis of the Mechanisms and Kinetics of Biomolecular 

Solvation using Molecular Dynamics 

4.1 Abstract 

In the following chapter, the mechanism and time scale of desolvation is being analyzed for the 

protein-ligand dissociation reaction of trypsin and thrombin in complex with benzamidine and 

N-amidinopiperidine. The analysis is carried out using umbrella sampling free energy 

calculations and LoCorA calculations. The LoCorA approach is a method for the analysis of 

residence times of water molecules on the surface of amino acids. It was found that water 

molecules reside approximately 1.3 ns in the binding pocket of thrombin, whereas in trypsin 

they are residing one order of magnitude shorter (0.3 ns). This difference is explained with 

special solvent channels that connect the interior of the binding pocket to bulk solvent 

environment. The solvent channels are present in thrombin but not in trypsin. Furthermore, the 

selectivity profiles of benzamidine and N-amidinopiperidine are related to a solvent-mediated 

free energy barrier that is present in thrombin but not trypsin. Also due to the presence of the 

solvent channels, the water molecules show similar residence time for both complexes in the 

case of thrombin but differing residence times in the case of the two trypsin complexes. 
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4.2 Introduction 

The study of drug-protein association kinetics is one of the most challenging, but at the same 

time, one of the most insightful aspects of early-stage drug discovery.155,156 It ultimately reveals 

insights into aspects of the binding mechanism, and in this context provides information about 

whether binding affinity is dominated by the association or the dissociation process. 

Nevertheless, the mechanism itself and its various intermediate steps are usually hardly 

understood and often not accessible on the atomistic level by experimental techniques alone. 

Often, the lifetime of several intermediate steps during association and dissociation remain 

hidden under the global binding event, but can be elucidated by computer simulations.157,158 

These intermediate steps can occur on a time-scale which is too fast to be detected by 

experiments or cannot be sufficiently discriminated from other steps in the process. From all 

these intermediate steps, solvation and desolvation of drug molecules are one of the most 

intriguing yet unknown events. It was already noted earlier that they play a crucial role in the 

association process of G-protein-coupled receptors159 or Hsp90156. From an experimental 

perspective, several techniques have emerged for the investigation of hydration dynamics of 

biomolecules, such as terahertz spectroscopy160, NMR161–164 or femto-second infrared 

spectroscopy165. In addition, computer simulations have been used to complemented 

experimental results and gain an in-depth understanding on the atomistic level.166,167 

During the protein-ligand association process, a ligand molecule (i.e. a drug or substrate 

molecule) undergoes desolvation, i.e. it loses its hydration layer, and binds to the protein 

binding pocket. Similarly, during the dissociation process, the ligand molecule as well as the 

binding site must both resolvate themselves by several layers of water molecules. However, not 

only the end-states of this process (i.e. the fully bound or fully unbound states) must be 

considered, but also intermediate steps along the association/dissociation path. Alongside these 

complex steps, other intermediate interactions are possible, such as the attachment of a ligand 

to apolar surface patches of the protein.157  

The acknowledgement of biomolecular solvation in the context of binding thermodynamics is 

contrasted by the lack of research that is devoted to mechanistic insights and kinetics of 

biomolecular solvation. Consequently, we likely miss a considerable portion of putative drug 

molecules exhibiting solvation directed selectivity profiles, due to our lack of understanding of 

solvation mechanistic features. Furthermore, many important endogenous substrate molecules 

(such as peptides), are likely tailored with respect to their solvation and desolvation mechanisms 
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in order to achieve an optimal selectivity profile. It is already known for DNA molecules that 

the time-scale of hydration processes is ultimately linked to their structure and function.168 

In the current contribution, we present a systematic study on the role of water molecules during 

the dissociation process of N-amidinopiperidine and benzamidine from the serine proteases 

trypsin and thrombin. The two proteins are both from the large family of serine proteases and 

are very similar in the structural arrangement next to the catalytic center. The studied ligands 

molecules are both fragment-like in size and reminiscent of drugs like Melagatran169,170 or the 

natural peptide substrates.149 The two ligand molecules bind with opposing preference to both 

proteins (see Table 4-1). Furthermore, they share a very similar binding mode in the binding 

pockets of thrombin and trypsin (cf. Figure 4-1C/E and D/F). However, the apo forms of both 

proteins display two completely different water structures surrounding the charged side chain 

of Asp198: In apo thrombin, the carboxylate group of Asp198 is solvated by a network of three 

water molecules (see Figure 4-1A), whereas in trypsin, the same carboxylate group is solvated 

by only two water molecules (see Figure 4-1B). Since data from neutron diffraction are 

available for trypsin, disclosing details about the orientation of hydrogen atoms, the water 

molecules seem to be able to adopt two different configurations in which their orientations are 

mutually depended on each other. Most interestingly, a water inventory, called water reservoir, 

is found below Asp189 in the case of trypsin. In the case of thrombin, the water reservoir is 

replaced by a water channel, which facilities the water exchange with bulk water molecules. 

We will elucidate the mechanism of the binding process, by analysis of the Potential of Mean 

Force (PMF) along the reaction coordinate of the protein-ligand dissociation by means of 

Umbrella Sampling (US). For each individual window along the reaction coordinate, we will 

investigate the mean residence time (MRT) of translation of the water molecules that assemble 

around key residues in the binding site or around the ligand molecule. For this temporal 

characterization of the solvation mechanism, we will use the Local Correlation Analysis 

(LoCorA) approach, which was partly introduced in our previous contribution.54 We will 

analyze the temporal properties of the water molecules qualitatively in order to understand the 

functional role of the water reservoir and water channels in trypsin and thrombin, respectively. 

We found that the solvation of the apo binding pocket of thrombin and trypsin occur on 

completely different time-scales. In thrombin, water molecules are seemingly stable in the apo 

binding pocket and do only exchange on the scale of nanoseconds. On the contrary, water 

molecules in the apo binding pocket of trypsin exchange approximately one order of magnitude 

faster than in thrombin. This difference in exchange rate is due to the presence of water channels 
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in the binding pocket of thrombin, which are lacking in trypsin. However, trypsin has a reservoir 

instead of water channels, which facilitate the unbinding of ligand molecules. Due to the fact 

that water molecules can readily exit the binding pocket of thrombin through a different path 

than the ligand molecules enter the binding pocket, the exchange rate of solvent molecules in 

the binding pocket does not vary between different protein-ligand complexes. However, in the 

case of trypsin the solvent exchange rate in the binding pocket greatly varies between the two 

complexes. Furthermore, the binding mechanism of the ligand molecules critically depends on 

the presence of water molecules in intermediate states. In these states, water molecules can 

intercalate between key residues of the protein and the ligand molecule. This intercalation 

behavior is also reflected by high water residence times in these states. 
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Figure 4-1: Experimentally determined structures of trypsin (top row, neutron structures) and 
thrombin (bottom row, X-ray structures) of the S1 subpocket. A,D: thrombin and trypsin in their 
apo state; B,E: in complex with benzamidine; C,F: in complex with N-amidinopiperidine. 
Structures A,B,C are based on a joint refinement from neutron/X-ray scattering. The different 
colors (magenta, cyan) of apo trypsin (A) indicate two mutually exclusive water configurations 
(47% and 53% populated)54. 
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Table 4-1: Experimental binding affinities for N-amidinopiperidine and Benzamidine. 

Ligand 

(Selectivity Index) 

Trypsin a) Thrombin b) 

 

N-amidinopiperidine 

(1.86) 

 

366 ± 105 µM 

-4.68 ± 0.17 kcal·mol-1 

 

197 ± 74 µM  

-5.45 ± 0.24 kcal·mol-1 

 

Benzamidine 

(0.05) 

 

23.8 ± 5.3 µM  

-6.31 ± 0.12 kcal·mol-1 

 

455 ± 109 µM  

-4.57 ± 0.17 kcal·mol-1 

The binding affinities of N-amidinopiperidine and benzamidine towards thrombin and trypsin are reported in terms 
of Kd (upper value) and ∆G0 (lower value). 

a) Reference Schiebel et al.54 
b) Reference Rühmann et al.171 
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4.3 Theoretical Background 

In this section, we will elaborate on the theoretical background and underlying principles that 

are part of the LoCorA approach used in this study. In the first part, we will introduce the local 

coordinate systems aligned to the solute as well as the solvent molecules. We will describe, 

how our approach enabled us to obtain positions and orientations of solvent molecules with 

respect to the positions and orientations of solute molecules. In the second part of this 

Theoretical Background section, we will introduce the concept how to calculate the 

translational and orientational time correlation functions (TCF). Furthermore, we will introduce 

a weighted double-exponential decay function that we used to explain the computed TCF as the 

basis for all further temporal-mechanistic considerations. 

 

4.3.1 Local Coordinate Systems 

The acronym LoCorA stands for Local Correlation Analysis, and is a approach to derive 

translational and orientational MRT of water molecules in the local coordinate system of solute 

molecules. Local coordinate systems are assigned to amino acid side chains and the ligand 

molecules by using individual subsets of atoms on the respective solute moiety S. For the x-

axis (�D��B,­�), a subset of two atoms is used in order to define a position vector. For the z-axis 

(�D��B,®��, a subset of three or more atoms is used and each distinguishable combination of 

position vectors without consideration of order from this subset of atoms is used to build a set 

of planes. The mean orientation vector of these planes, i.e. the vector perpendicular to the plane, 

then gives the z-axis of the local coordinate system. Finally, the y-axis (�D��B,¯�� is calculated as 

the cross product of the x-axis and z-axis. The origin (�D��B,��� is calculated as the mean position 

vector from the atoms used to define the three coordinate axis. 

For instance, in the local coordinate system assigned to the tyrosine side chain, the x-axis was 

defined by a vector connecting the Cγ and Cζ atoms, whereas the z-axis was defined by the 

plane spanned by the Cγ, Cδ, Cε and Cζ atoms (see Figure 4-2D). The origin was placed in the 

center of the aromatic ring. 

For each water molecule j, an internal coordinate system with axis vectors °DDD�9�B,­�, °DDD�9�B,¯�, °DDD�9�B,®� and origin °DDD�9�B,�� with respect to the local coordinate system of solute S (defined by 

�D��B,­�, �D��B,¯�, �D��B,®� and origin �D��B,��) is defined using the following axis definitions (see also 

Figure 4-2E): The x-axis of the water molecule is defined as the O-H bond vector (based on 
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hydrogen atom H1), whereas the z-axis is defined as the vector perpendicular to the plane 

spanned by the two O-H bond vectors. The y-axis is calculated as the cross-product of x-axis 

and z-axis. For any S, only the water molecules within the first hydration shell of the atom 

subset used for the definition of S are considered (see Results section). 

 

Figure 4-2: Definition of the local coordinate systems for (A) benzamidine, (B) N-amidinopiperidine, (C) 
aspartate side chain, (D), tyrosine side chain, (E) water.  
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4.3.2 Calculation of Mean Residence Times 

In the previous paragraph, we have defined an internal coordinate system for the water 

molecules in the reference frame of a solute molecule (with corresponding coordinates for the 

origin). From that, we will now derive expressions that allow for the calculation of water MRT 

based on a bimodal process that comprises a slow and a fast relaxation component. 

For each water molecule j, we define a survival function ?9�B��\� that indicates, if at time t the 

origin of the water coordinate system, °DDD�9�B,��, assigned to water molecule j is part of the first 

hydration shell of the solute atom subset (�) = 1) or not (�) = 0): 

?9�B��\� = s��, �>, … , �), … , ��²x9�+� 
�) ∈ [0,1] 

(4-1) 

From the survival function, ?9�B� (eq. (4-1)), the time-correlation function (TCF) for the 

translation, �)*&"+�B�
, and orientation, �!*�$")�B,­�

, �!*�$")�B,¯�
, �!*�$")�B,®�

 for all water molecules, Nf, is 

calculated from the temporal evolution of a molecular system. The TCF describes the self-

correlation of the (binary) water population between different points in time of the system. The 

time between two points in time is called the lag time t’. The translational and orientational 

TCFs are defined as follows (for the orientation only the TCF for x is shown, but the TCF for 

the y and z components are defined analogously): 

�)*&"+�B� �\′� =2 2 ?9�B��\′��?9�B����)´µ)
/¶)

�²�)´
)¶�

�·
9¶�  

(4-2) 

�*!)�B,­��\′� = 2 2 �" G°DDD�9,)´�B,­� � °DDD�9,�)µ)¸��B,­� I 	?9�B��\′��?9�B����)´µ)
/¶)

�²�)´
)¶�

�·
9¶�  

(4-3) 

In eq. (4-3), the function �" G°DDD�9,)´�B,­� � °DDD�9,�)µ)¸��B,­� I represents the n-th order Legendre Polynomial 

of the scalar product of the axis-vectors °DDD�9,)´�B,­� and °DDD�9,�)µ)¸��B,­� . In the present work, we use the 
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1st order Legendre Polynomial, which is simply �>��� = �. It must be noted that all TCFs were 

normalized, such that ��0� = 1.  

From the definition of the TCF in eqs. (4-2) and (4-3), one cannot directly obtain a quantitative 

estimate of the MRT of the water molecules. Therefore, we follow an approach of Pettit et al.172 

and fitted the TCF from eqs. (4-2) and (4-3) to a double-exponential decay that reflects the 

bimodal behavior of hydration water: 

�)*&"+�B� �\´� = )̂*&"+�B� ⋅ exp �− \´1)*&"+,>�B� � + G1 − )̂*&"+�B� I ⋅ exp	�− \´1)*&"+,0�B� � 

(4-4) 

�!*�$")�B,­� �\´� = *̂!)�B,­� ⋅ exp �− \′1*!),>�B,­�� + G1 − *̂!)�B,­�I ⋅ exp	�− \′1*!),0�B,­�� 

(4-5) 

In eqs. (4-4) and (4-5), τ1 and τ2 are the MRT for the slow and the fast component of the TCF, 

respectively. The MRT can also be interpreted in terms of a rate constant via the expression 

� = >¹, and thus reveals the number of water molecules per unit time that undergo diffusion 

away from the first hydration shell of the solute site. The weighting factor w, is constrained to 

be on the interval [0,1] and is effectively proportional to the number of water molecules that 

undergo slow (τ1) or fast (τ2) exchange with the environment beyond the first hydration shell. 

Note that eq (4-5) contains the TCF of the x component of the local frame of the water 

molecules. It is needless to say that the same equation will be used analogously for the 

calculation of the MRTs of the y and z components. 

In the work of Pettitt et al., eqs. (4-4) and (4-5) were applied in the calculation of rate constants 

for the MRT of water molecules in spherical hydration sites and included the prefactor W0, 

which accounts for the average number of water molecules occupying a spherical hydration 

site. In our work, we did not include this prefactor, as our TCF were normalized. Nonetheless, 

we will report the average number of water molecules that populate a solute. 

Our approach is distinct from the formulation of the stable state picture (SSP) of Laage and 

Hynes,173 which was also employed in the calculation of MRT around DNA base pairs.174 In 

one very popular approach, first introduced by Impey, Madden, and McDonald (referred to as 

the IMM approach),175 a transient recrossing time (also referred to as tolerance time), t*, is 

applied in the calculation of ?9�B��\� in order to account for unsuccessful exchange attempts. 
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These events typically occur in cases of a low energy barrier between the first and second 

hydration layer. Once a water molecule has left the first hydration shell and cannot stabilize 

itself in the second hydration shell within time t*, it will have to return (recross) into the first 

hydration shell. This event is treated as if this water would have never left the first hydration 

layer. As noted elsewhere,173 this approach has several caveats, therefore we did not employ it 

in our studies. This is also justified, because the MRTs of water molecules in our study are 

mostly far beyond typical values of t*=2.0 ps. Nonetheless, for the purpose of benchmarking 

we implemented the IMM approach in our program LoCorA. 
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4.4 Results 

In the first part of this section, we will investigate the proportions of water molecules assembled 

around single amino acids and ligand molecules in bulk solvent, which we will use as a point 

of reference when computing water MRTs and occupancies in proteins. This is followed by a 

brief analysis of the spatial structure and MRTs of water molecules in the binding pocket of 

uncomplexed thrombin and trypsin. In the second part of this section, we will elucidate the 

mechanism of drug dissociation in protein-ligand complexes formed by benzamidine and 

N-amidinopiperidine with trypsin and thrombin. In the last part, we will focus specifically on 

the role of water molecules and will compute the MRTs of water molecules assembling at key 

residues along the dissociation path of ligand molecules from the binding site. 

We validated our approach by analyzing the translational and orientational MRT of an 

individual water molecule in pure bulk water. We compared these computed values with the 

ones from other water models reported in literature as well as with experimental values. We 

found that our calculated translational MRTs are in agreement with computed values reported 

in literature as well as with experimental values. The orientational lifetimes differ slightly from 

the ones reported in literature, which is explained by the different definitions of orientational 

states. Since the temporal analysis of bulk solvent has already been studied extensively, and 

here serves purely as a benchmark, we will not discuss it in the main text but provide a detailed 

analysis in the Supporting Material. 

 

4.4.1 Residence Times of Water Molecules Assembling next to Reference Solute 

Molecules 

The length of the MRT is generally very sensitive to the definition of the physical states that 

they are supposed to characterize during the MD simulation. In our case, we investigated the 

lifetime of water molecules residing at amino acids in protein binding pockets or adjacent to 

ligand molecules in the bulk phase. During these MD simulations, all molecules were 

completely unrestrained and were allowed to move freely. We defined (though quite arbitrarily) 

that a water molecule resides next to an amino acid (or ligand molecule), if it populates the first 

hydration layer of this amino acid (or ligand molecule). Since the “thickness” and “roughness” 

(roughness in terms of different intermediate polyhedron geometries) of a hydration layer 

depends on the environment of the solute, we chose capped amino acids in the pure bulk solvent 

as reference point. Under these conditions, the amino acids are maximally solvent-exposed and 
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have minimal influence by other amino aicds. As capping groups, we selected acetyl (ACE) for 

the N-terminus and N-methyl (NME) for the C-terminus in order to mimic the backbone 

sequence with adjacent amino acid residues (see Figure 4-3A for the 2D-depiction of ACE-Asp-

NME). Note that we did not use any tolerance time to allow for transient recrossing (i.e. we set 

t*=0 ps) during the following calculations. 

For capped aspartate (ACE-Asp-NME), we found the first hydration shell of the (deprotonated) 

carboxylate group to be best described by water molecules up to 4.1 Å, as indicated by the first 

local minimum of the radial distribution function (RDF, see purple line in Figure 4-3A). This 

corresponds to approximately six water molecules in the semi-spherical region around the 

oxygen atoms of the carboxylate group, as evident from a plot of the number of water molecules 

(	E�8�, see dashed purple line in Figure 4-3A). Water molecules in this region were previously 

identified with strong solute-solvent interactions, however they also showed depleted solvent-

solvent interactions due to their unfavorable arrangement with respect to each other.176 The first 

hydration layer of the tyrosine side chain corresponds to approximately two water molecules 

(see cyan dashed line in Figure 4-3B) on top of the aromatic portion and exceeds up to 3.5 Å as 

indicated by the corresponding RDF plot (see cyan line in Figure 4-3A). Note that the second 

hydration layer of the tyrosine side chain is bigger than the first one (at approximately 6.0 Å), 

but also contains water molecules coordinating the hydroxyl group (not shown). 

In the case of the amidino moiety in N-amidinopiperidine and benzamidine, we found that the 

first hydration shell is confined in a region up to 4.8 Å for both ligands (see Figure 4-3B). This 

region comprises approximately 10 water molecules (see dashed lines in Figure 4-3B), which 

are mostly assembling around the amidine hydrogen atoms. Thereby, these water molecules act 

as hydrogen bond acceptors with respect to their interactions with the positively charged 

amidino moiety. 

For the water MRTs around the charged side chain of the aspartic acid in ACE-Asp-NME, we 

found a slow time component of τ1 = 9.7 ps for the translation of the water molecules (see Table 

4-2). For the orientational relaxation of the water molecules, we found \>­ = 5.9	ºS for the slow 

component of the water x-axis with respect to the solute frame of reference defined by the 

carboxylate group. By that, the relaxation time value of the water x-axis is about 1.5 ps higher 

than the corresponding relaxation of the z-axis (\>® = 4.3	ºS). This difference in relaxation time 

behavior is due to the fact that the x-axis of the water molecules corresponds to the O-H bond 

vector, which is spatially restricted more firmly than the z-axis (perpendicular to the H-O-H 
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plane), due to hydrogen bonding interactions between the water molecules and the carboxylate 

group. We assume that while a water molecule interacts with the carboxylate group, one of its 

O-H bond vectors remains rather fixed and the other O-H bond vector tangles in space. The y-

axis of the water molecules shows similar relaxation time for the slow component (\>̄ =
5.7	ºS). Since this y-axis bisects the two O-H bond vectors of the water molecules, we assume 

that water molecules potentially also undergo interactions with the carboxylate group in which 

both hydrogen atoms are involved in a hydrogen bond. 

In the case of the apolar tyrosine side chain in ACE-Tyr-NME, an MRT of τ1 = 3.3 ps was 

computed. This value indicates a much faster exchange rate (approx. one third faster) of water 

molecules from the first hydration shell of the apolar tyrosine side chain compared to the 

negatively charged aspartate side chain. Also, the orientational relaxation behavior of the water 

molecules on top of the apolar aromatic side chain seems to be rather isotropic, as all axis from 

the water coordinate system show quite similar relaxation times (\>® = 2.1	ºS, \>̄ = 2.4	ºS, 

\>­ = 2.3	ºS) in the solute frame of reference. The relaxation time of the y- and x-axis are 

slightly elevated, which indicates a weak influence of the hydroxyl group on the orientational 

behavior of the water molecules. 

For the two small molecule ligands, benzamidine and N-amidinopiperidine, we computed quite 

comparable values for the slow components of the τ1 MRT of 4.6 ps and 4.1 ps, respectively. 

Thus, water molecules assembling at the amidino group show a higher exchange rate compared 

to the corresponding value found for the carboxylate group of the aspartic acid side chain. The 

individual components of the orientational relaxation times are quite similar for both molecules, 

benzamidine and N-amidinopiperidine. This is anticipated, as water molecules act as hydrogen 

bond acceptor towards the amidino group and no preferred orientation of the O-H bond vector, 

corresponding to the x-axis of the water coordinate system, is expected. This results in a slightly 

reduced directionality of the three coordinate axis of these water molecules accompanied with 

an enhanced isotropic orientational behavior. 
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Figure 4-3: Radial distribution functions g(r) (solid lines, plots to the left) and coordination 
number n(r) (dashed lines, plots to the left) with respect to water oxygen atoms around defined 
subsets of atoms. The definition of the atom subsets (colored circles imposed to the 2D-
depictions) is in accordance with Figure 4-2. (A) Amino acid side chain of a capped aspartate 
residue (purple) and capped tyrosine residue (cyan), (B) amidine portion of benzamidine (blue) 
and N-amidinopiperidine (orange). The blue isosurfaces on the right display the distribution of 
water oxygen atoms countered at 1.5 ρ0 (ρ0: bulk water density, 0.0332 Å-1) around the 
respective solute atom subset. The vertical arrows assigned to the RDF plots indicate the 
positions of the boundary of the first hydration layer. The coordination number n(r) is calculated 

from the RDF integral: 	�8� = 4;_� » 8′0N�8′�.8′*� . 
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Table 4-2: Overview of water MRTs at reference solute molecules. 
Residue Component w τ1 [ps] τ2 [ps] 

NME-Asp-ACE 〈°DDD��B,��〉�² 0.4 ± 0.4 9.7 ± 0.2 0.7 ± 0.1 

〈°DDD��B,®�〉�² 0.5 ± 0.2 4.3 ± 0.2 0.3 ± 0.1 

 〈°DDD��B,¯�〉�² 0.5 ± 0.2 5.7 ± 0.2 0.4 ± 0.1 

〈°DDD��B,­�〉�² 0.5 ± 0.1 5.9 ± 0.1 0.4 ± 0.1 

NME-Tyr-ACE 〈°DDD��B,��〉�² 0.5 ± 0.1 3.3 ± 0.2 0.5 ± 0.1 

〈°DDD��B,®�〉�² 0.5 ± 0.1 2.1 ± 0.1 0.3 ± 0.1 

 〈°DDD��B,¯�〉�² 0.5 ± 0.1 2.4 ± 0.1 0.3 ± 0.1 

〈°DDD��B,­�〉�² 0.5 ± 0.1 2.3 ± 0.1 0.3 ± 0.1 

Benzamidine 

(amidine) 

〈°DDD��B,��〉�² 0.5 ± 0.2 4.6 ± 0.1 0.7 ± 0.1 

〈°DDD��B,®�〉�² 0.5 ± 0.1 2.2 ± 0.1 0.3 ± 0.1 

 〈°DDD��B,¯�〉�² 0.5 ± 0.1 2.5 ± 0.1 0.3 ± 0.1 

〈°DDD��B,­�〉�² 0.5 ± 0.1 2.4 ± 0.1 0.3 ± 0.1 

N-Amidinopiperidine 

(amidine) 

〈°DDD��B,��〉�² 0.4 ± 0.3 4.1 ± 0.1 0.6 ± 0.1 

〈°DDD��B,®�〉�² 0.5 ± 0.1 2.1 ± 0.1 0.3 ± 0.1 

 〈°DDD��B,¯�〉�² 0.5 ± 0.1 2.3 ± 0.1 0.3 ± 0.1 

〈°DDD��B,­�〉�² 0.5 ± 0.1 2.3 ± 0.1 0.3 ± 0.1 
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4.4.2 Mean Residence Time of Water Molecules in the apo Protein Binding Pocket 

Before any ligand molecule is accommodated in the binding pocket of a protein, the binding 

pocket is filled with water molecules. These water molecules are, unless they are structurally 

tightly bound to the protein, able to exchange with other regions on the (solvent accessible) 

surface of the protein or the bulk water environment. The time-scale of this exchange is largely 

dependent on the environment of the water molecule in the binding pocket. This dependency is 

due to interactions of the water molecule and amino acids that form the binding pocket, but also 

due to the other water molecules that are accommodated in the binding pocket. The shape of 

the binding pocket as well as the electrostatic properties of the amino acids effectively 

determine the frequency by which water molecules enter or leave the protein binding pocket. 

We investigated these time-dependent processes for key amino acids in the protein binding 

pocket of thrombin and trypsin. Most important are the amino acid residues are Asp189 and 

Tyr228 and are located at the bottom of the S1 specificity pocket (c.f. Figure 4-1). The first 

hydration shell around these amino acids, which confines the water molecules considered in the 

MRT calculation, was defined according to our analysis of the RDF computed on the basis of 

the capped amino acids (i.e. ACE-Asp-NME and ACE-Tyr-NME) in pure bulk water as 

introduced in the previous subsection. 

The distribution of water molecules in the S1 binding pocket of thrombin and trypsin generally 

matches well with the positions of the water molecules as found in the crystal structures, which 

were refined to a resolution of 1.26 Å and 0.99 Å for thrombin112 and trypsin,54 respectively. In 

trypsin, two major solvent sites, W1 and W2, are found adjacent to the carboxylate group of 

Asp189, even though for solvent site W2 water molecules also populate positions in between 

the carboxylate group of Asp189 and W3 topping Tyr228 (see Figure 4-4A). In the apo binding 

pocket of thrombin, W1 is located more distal to Asp189 as compared to trypsin, which agrees 

well with the crystal structure (see Figure 4-4B). Another solvent site, W4, is topping solvent 

sites W1 and W2 in both apo pockets and is located close to the exit of the S1 subpocket. In 

trypsin, this solvent site is heavily populated, as indicated by the pronounced solvent density 

distribution of this site. Another solvent site, W3, is found on top of the aromatic portion of the 

Tyr228 side chain in both proteins. In both proteins, the computed density distribution at this 

position agrees fairly well with the experimentally determined water molecule. An important 

structural feature of the two serine proteases thrombin and trypsin, is the water reservoir located 

below Asp189 (see Figure 4-4A and B). As already noted in our previous contribution,54 this 

reservoir provides water molecules that are needed for the association and dissociation process. 
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The MRTs of the water molecules in the binding pocket of thrombin are considerably longer 

than the corresponding MRT values in trypsin. This observation generally holds true for both 

key amino acids, Asp198 and Tyr225 (see Table 4-3). The slow MRT for Asp198 in thrombin 

is approximately 1.2 ns on average, which is about 10 times the value (0.15 ns) computed for 

the same residue in trypsin. However, the consideration of average values is somewhat 

misleading in the case of thrombin, since MRT results from a bimodal distribution of two 

separate Gaussian distributions with mean values at 1.2 ns and 2.3 ns (see Figure 4-4D). This 

bimodal Gaussian distribution clearly explains the high standard deviation from the mean found 

for this MRT. Furthermore, it indicates the occurrence of two distinct solvation mechanisms 

present in the case of thrombin, which is not the case in trypsin as evidenced by a uniform 

monomodal distribution (see Figure 4-4C). In the following, we will only consider the broad 

distribution at lower τ1 values (about 60%) in order to only capture the slower of the two MRTs 

in thrombin. In order to remain consistent and consider comparable MRTs for all residues, we 

performed a similar analysis in all other cases for both, the apo proteins and all protein-ligand 

complexes. 

In all cases, the value of the orientation time constant of the water z-axis was lower than for the 

other two remaining axis. The same observation was made already for the reference solute 

molecules (see Table 4-2). As noted above, this indicates that once a water molecule establishes 

a hydrogen bond along its y- or x-axis, it tumbles (i.e. the orientation decays) slower along the 

axis of this hydrogen bond. Notably, the opposite was found for the water molecules assembling 

at Asp189 in thrombin. Here, the water z-axis decays with a τ1 time constant of 1153 ps, 

whereas the y- and x-axis decay at 1030 ps and 1012 ps, respectively. Although the standard 

deviation of the values is quite large, this notable exception may indicate completely different 

water rearrangement mechanisms in thrombin compared to trypsin. These water rearrangements 

may include a dominant pendulum-like movement of the water molecules around their z-axis, 

which allows for a mutual hydrogen-bond switching between the two hydrogen bonds of a 

single water molecule. 

Interestingly, the MRT value of the fast component, τ2, for water molecules residing at Asp189 

is lower in case of thrombin compared to trypsin (12.0 ps for thrombin and 15.5 ps for trypsin). 

In the case of Tyr228, the fast component is extremely low (< 1.5 ps) for trypsin and thus likely 

corresponds to fast recrossing events between the first hydration shell of the apolar tyrosine 

side chain and its second hydration layer. However, the τ1 component of the water molecules 
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at Tyr228 in the case of thrombin (8.6 ps) is more than twice the value of trypsin (3.4 ps). The 

value for trypsin is very close to the one calculated for capped tyrosine amino acid  in bulk 

solvent ACE-Tyr-NME (3.3 ps), which indicates that the protein environment in trypsin does 

facilitate fast exchange between water molecules in the first hydration shell of Tyr228. Thus, 

the protein environment does not perturb the solvation dynamics of Tyr228 in case of trypsin, 

whereas it clearly perturbs the solvation dynamics in thrombin resulting in an enhanced MRT. 
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Figure 4-4: Solvent density map (blue mesh) and 2mFo-DFc electron density (red surface) in 
the S1 sub pocket of trypsin (A) and thrombin (B). The solvent density map is contoured at 2 ρ0 
and calculated from the distribution of water oxygen atoms in an MD simulation of the apo 
protein. The electron density map is contoured at 1.5 σ (trypsin: 5MOP, thrombin: 2UUF. The 
plots in (C) and (D) show the normalized probability density distribution of the slow component 
of the MRT, τ1, for water molecules solvating Asp189 in trypsin and thrombin, respectively. 
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Table 4-3: Overview of water MRTs at key residues in the binding site.a) 
Protein Residue Component w τ1 [ps] τ2 [ps] 

 
 

Thrombin 

 
 
 
 

Asp198 

〈°DDD��B,��〉�² 0.5 ± 0.1 1216.4 ± 537.8 12.0 ± 5.1 〈°DDD��B,®�〉�² 0.5 ± 0.2 1153.4 ± 668.3 7.6 ± 2.8 〈°DDD��B,¯�〉�² 0.5 ± 0.2 1029.9 ± 444.9 8.4 ± 3.0 〈°DDD��B,­�〉�² 0.5 ± 0.2 1012.2 ± 462.6 8.5 ± 3.3 

 
 

Trypsin 

〈°DDD��B,��〉�² 0.5 ± 0.2 148.5 ± 41.0 15.5 ± 10.2 〈°DDD��B,®�〉�² 0.5 ± 0.1 108.4 ± 34.3 3.2 ± 2.5 〈°DDD��B,¯�〉�² 0.5 ± 0.1 120.3 ± 35.6 4.3 ± 3.1 〈°DDD��B,­�〉�² 0.5 ± 0.1 120.4 ± 35.2 4.5 ± 3.2 

 
 

Thrombin 

 
 
 
 

Tyr228 

〈°DDD��B,��〉�² 0.5 ± 0.1 8.6 ± 2.4 1.1 ± 0.4 〈°DDD��B,®�〉�² 0.5 ± 0.1 6.9 ± 1.8 0.5 ± 0.2 〈°DDD��B,¯�〉�² 0.5 ± 0.1 7.4 ± 2.0 0.6 ± 0.2 〈°DDD��B,­�〉�² 0.5 ± 0.1 7.3 ± 1.9 0.6 ± 0.2 

 
 

Trypsin 

〈°DDD��B,��〉�² 0.5 ± 0.2 3.4 ± 1.4 0.9 ± 0.2 〈°DDD��B,®�〉�² 0.5 ± 0.1 1.9 ± 0.7 0.4 ± 0.1 〈°DDD��B,¯�〉�² 0.5 ± 0.1 2.3 ± 0.9 0.5 ± 0.2 〈°DDD��B,­�〉�² 0.5 ± 0.1 2.2 ± 0.8 0.5 ± 0.1 

a) Error indicates ± 1 standard deviation from the mean value. 
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4.4.3 Investigating the Dissociation Mechanism 

In the following, we investigate the dissociation mechanism of benzamidine and N-

amidinopiperidine from the binding pocket of thrombin and trypsin by means of US 

simulations. The dissociation path was described by the distance between the geometric center 

of the amidino moiety of the ligand molecule and the terminal carboxylate group in the side 

chain of Asp189 found in the bottom of the S1 pocket (see Figure 4-5). Due to the high 

similarity between the two proteins as well as the two ligand molecules, the assigned reaction 

coordinate can be universally applied to all four protein-ligand complexes 

(benzamidine/trypsin, benzamidine/thrombin, N-amidinopiperidine/trypsin, N-

amidinopiperidine/thrombin). The reaction coordinate was scanned from 3 to 10 Å in steps of 

0.1 Å, resulting in 71 windows per protein-ligand complex. The PMF was estimated using the 

weighted histogram analysis method (WHAM) estimator.177,178 

 

 

Figure 4-5: Binding pocket of thrombin in complex with benzamidine. The dashed orange line 
indicates the assigned reaction coordinate used for the umbrella sampling MD simulations. The 
reaction coordinate is defined as the distance between the centers of the carboxylate group (Cβ, 
Cγ, Oδ1 and Oδ2) of Asp189 and the amidino moiety of the ligand. Note that the reaction 
coordinate is defined analogously for the other protein-ligand complexes. 
 

4.4.4 Dissociation Mechanism of Trypsin Complexes 

Initially, an overall similar global minimum on the PMF profile along the reaction coordinate 

was found at d = 3.3 Å in the bound structures of both ligands in trypsin (see Figure 4-6A, state 

a). This global minimum matches perfectly well with the values found in the crystal structures 

(3.3 Å for N-amidinopiperidine and 3.2 Å for benzamidine). Both ligands adopt a bidentate salt 

bridge with Asp189, which is further stabilized by 2.8 water molecules on average in the case 



Chapter 4 

142 

of benzamidine (see state a in Figure 4-6B and the blue line in Figure 4-7A) and 3.3 water 

molecules in the case of N-amidinopiperidine (see state a in Figure 4-6C and the orange line in 

Figure 4-7A).  

In the following, benzamidine passes a much steeper barrier on the FES (free energy surface) 

compared to N-amidinopiperidine (see step b in Figure 4-6A). This difference in barrier height 

of approximately 3 kcal·mol-1 is due to the difference in the PMF of the protein-ligand 

complexes at the intermediate state b. The explanation for this difference observed at state b 

are differences in the solvation mechanisms of the amidino groups. At state b, water molecules 

intercalate between the partly dissociated amidino groups of the ligands and the carboxylate 

group of Asp189. These water molecules originate from a water reservoir located below Asp189 

accommodating five water molecules in the case of benzamidine and six water molecules in the 

case N-amidinopiperidine. The water molecules in this reservoir remain fixed as long as the 

ligand molecule remains fully bound to the protein and thus blocks the only water exchange 

site to the water reservoir. For both protein-ligand complexes, the number of water molecules 

in the first hydration shell of Asp189 increases by 0.5 compared to the previous state a (see 

blue and orange lines in Figure 4-7A). In the case of benzamidine, one water molecule 

intercalates between the carboxylate group of Asp189 and the amidino group (see step b in 

Figure 4-6B), whereas in the case of N-amidinopiperidine two water molecules bridge between 

the ligand and Asp189 (see step b in Figure 4-6C). In the case of N-amidinopiperidine, these 

interactions are further stabilized by the water molecule found on top of Tyr228. Since in step 

b the major interaction between the ligand and the protein is broken, it can be attributed as one 

of the key steps in the ligand dissociation pathway. 

In the final dissociation step c, the amidino groups of the ligand molecules orient toward the 

solvent-exposed part of the binding pocket (see step c in Figure 4-6B and C), whereas the apolar 

portion still penetrates into the S1 binding pocket. Both ligands flip their orientation upon 

dissociation instead of escaping the binding pocket with the apolar part leaving first. In the case 

of benzamidine, the amidine-carboxylate salt bridge is fully replaced by the coordination of one 

water molecule. Contrary, in the case of N-amidinopiperidine two water molecules interact with 

the abandoned carboxylate moiety of Asp189, while, at the same time, these water molecules 

are able to exchange with water molecules from the bulk water phase (see step c in Figure 

4-6C). Thus, the additional water molecule found for N-amidinopiperidine is likely a 

consequence of the increased flow of water molecules into the pocket at a lower PMF than 

computed for benzamidine. The total (time-averaged) number of water molecules assembling 
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around Asp189 increases by 0.7 between the initial state a and the final state c in both trypsin 

complexes. 

The free energy difference between bound and dissociated state of benzamidine in trypsin 

amounts to -7.8 kcal·mol-1, which overestimates the experimentally determined value (-

6.3 kcal·mol-1, see also Table 4-1). For the corresponding N-amidinopiperidine complex, we 

computed a free energy of -4.5 kcal·mol-1. This value matches rather well with the experimental 

value of -4.7 kcal·mol-1. Note that we did not anticipate the full unbinding mechanism for any 

of the studied protein-ligand complexes, as in the present work we focused on perturbations of 

water structure in the binding pocket. The majority of these perturbations take place in the initial 

phase of the dissociation events once the ligand starts to escape from the binding pocket. 
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Figure 4-6: Overview of the dissociation mechanism of the protein-ligand complexes of 
benzamidine-trypsin (left) and N-amidinopiperidine-trypsin (right). A: PMF along the reaction 
coordinate d for the dissociation of trypsin-ligand complexes (see Figure 4-5 for the definition 
of the reaction coordinate); B, C: representative snapshots from the MD simulation at key steps 
a, b and c for benzamidine (B) and N-amidinopiperidine (C). 
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Figure 4-7: Number of water molecules, NW, in the first hydration (r < 4.1 Å) layer of Asp189 
along the reaction coordinate of the protein-ligand dissociation in (A) trypsin and (B) thrombin. 
The orange line corresponds to the protein-ligand complex formed with N-amidinopiperidine 
and the blue line corresponds to the protein-ligand complex formed with benzamidine. The 
semi-transparent areas represent 1 standard deviation. 
 

4.4.5 Dissociation Mechanism of Thrombin Complexes 

In the case of thrombin both ligands are bound to the protein by forming a bidentate salt bridge 

between the amidino moiety and the carboxylate group of Asp189 (see step a in Figure 4-8B, 

C). In both protein-ligand complexes, Asp189 is solvated by approximately 3.0 water molecules 

on average (see orange and blue lines in Figure 4-7B). These water molecules are in exchange 

with the bulk solvent via two water channels (see step a in Figure 4-8B). Of these, the first one 

(water channel A) is located below the binding site of the ligand and a second one (water 

channel B) is located below the backbone atoms of Asp189. It must be noted, that in the crystal 

structure only water channel B was observed.  Additionally, water channel B contains a sodium 

ion which is coordinated through multiple water molecules. Although water channel B is 

located at the same site as the water reservoir in trypsin (s. above), they must be treated 

differently. While the number of water molecules in the water reservoir of trypsin remains fixed 

up to state c, the number of water molecules can vary in the case of thrombin at each step during 

the ligand dissociation path. 

In the following step b, both ligand molecules are able to adopt two different binding modes b1 

and b2. Of these two binding modes, b1 represents a stable intermediate with two interstitial 

water molecules mediating a contact between ligand and carboxylate group of Asp189 (see step 
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b1 in Figure 4-8B, C). In the bound state b2, both ligand molecules interact with the water 

molecule located on top of Tyr228 and another water molecule mediating the contact to Asp189 

(see step b2 in Figure 4-8B, C). On average, 4.3 water molecules (see orange line in Figure 

4-7B) solvate the carboxylate group of Asp189 in binding mode b (i.e. the average over b1 and 

b2) of the N-amidinopiperidine complex. This is already close to the value of 4.5 water 

molecules that is achieved in the final state c. In both protein-ligand complexes, the two binding 

modes b1 and b2 are populated to about 50% each (see Figure S2 in the Supporting Information). 

The analogous state b in trypsin, occurs only with one single binding mode (see Figure S1 in 

the Supporting Information). The differences in free energy between states a and b are 

approximately 2 kcal·mol-1 for benzamidine and 1 kcal·mol-1 for N-amidinopiperidine. 

Contrary to trypsin, this difference on the FES is not accompanied by a steeper increase of the 

PMF next to state a in the case of benzamidine (see blue line in Figure 4-8A) compared to N-

amidinopiperidine (see orange line in Figure 4-8A). 

In the final state c, both ligands orient their amidino function towards the solvent, while still 

burying the apolar part in the binding pocket. In both cases, Asp189 is fully solvated by 

approximately 4.5 water molecules in the case of the N-amidinopiperidine complex and 4.3 

water molecules in the case of benzamidine complex (see Figure 4-7B). In both complexes a 

rather similar rise in the number of water molecules assembling around Asp189 was observed. 

The time-averaged number of water molecules at this site increases by 1.5 in both complexes. 

This value is twice as high as in trypsin, indicating an enhanced flow of water molecules through 

the water channels in the case thrombin. 

We computed a free energy difference of -2.3 kcal·mol-1 between the bound and dissociated 

state of the thrombin-benzamidine complex. For the thrombin-N-amidinopiperidine complex, 

we computed a free energy difference of -1.5 kcal·mol-1. Both values are calculated smaller 

compared to experimentally determined values and also suggest a different affinity ranking 

compared to experiment (-4.6 kcal·mol-1 for benzamidine and -5.6 kcal·mol-1 for N- 

amidinopiperidine, see Table 4-1). Possibly, the experimental values cover additional affinity 

contributions not considered in our simulations. 
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Figure 4-8: Overview of the dissociation mechanism of the protein-ligand complexes of 
benzamidine-thrombin and N-amidinopiperidine-thrombin. A: PMF along the reaction 
coordinate d for both thrombin complexes (see Figure 4-5 for the definition of the reaction 
coordinate); B, C: Representative snapshots from the MD simulation at key steps a, b and c for 
benzamidine (B) and N-amidinopiperidine (C). 
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4.4.6 Desolvation Time-scale during Ligand Dissociation 

Generally, upon dissociation of the ligand molecule out of the protein binding pocket, the ligand 

molecule as well as the amino acids in the binding pocket have to change their interaction 

patterns. This change involves the perturbation of ligand-protein interactions along with 

modulations of the interactions with water molecules accommodating in the binding pocket. 

The time-scale at which water molecules undergo these modulations are investigated in the 

following paragraph. Mean residence time values are computed along the dissociation path of 

the ligand from the binding site using the trajectories from the US simulations. In the following, 

we will assume that the τ1 time constant dominates the overall kinetics of the water molecules 

in the binding pocket such that 1!�$*&(( ≅ 1>. This assumption is further supported by the 

observed huge difference (hundred to thousand fold) between τ1 and τ2 for the water molecules 

in the binding pocket of the apo protein (see Table 4-3). Therefore, we will only investigate the 

τ1 time constant and not consider any contributions from τ2 in our analysis of the time-scale of 

the water molecules upon ligand dissociation. In the following, the orientation time-scales of 

the water molecules are not being analyzed, as they are qualitatively identical to the 

translational MRT values (see Supporting Information). 

 

4.4.7 Desolvation Time-Scale of Trypsin Complexes 

In the initial state of the trypsin complexes (state a), the water molecules next to the carboxylate 

group of Asp189 hold completely differing MRT values between the two complexes (see Figure 

4-9B). Most likely, the difference in water MRT is due to one more water molecule in the water 

reservoir in the case of the N-amidinopiperidine (c.f. Figure 4-6B and C). As already pointed 

out in the analysis of NME-Asp-ACE as well as in reference 176, water molecules adjacent to the 

charged side chain of aspartic acid show unfavorable water-water interactions, likely due to the 

fact that all O-H bond vectors point into the direction of the carboxylate group. This unfavorable 

state leads to low MRT values for the water molecules next to Asp189 in the case of the 

N-amidinopiperidine-trypsin complex. However, in the corresponding benzamidine complex 

one water molecule less is available to establish interactions to Asp189 leading to less 

unfavorable water-water interactions. Thus, the MRT of water molecules adjacent to Asp189 is 

higher in the case of the benzamidine complex compared with the N- amidinopiperidine 

complex. The water fluctuations in the first hydration shell of Asp189 are restricted only to 

water molecules in the water reservoir below Asp189. This is evidenced by the 500-fold 
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increased MRT for water molecules adjacent to the amidino moiety of N- amidinopiperidine 

compared to the corresponding moiety in benzamidine (see Figure 4-9A). These water 

molecules are shared between the first solvation layer of the amidino group of the ligand and 

the first solvation layer of the side chain of Asp189 and thus exclude water molecules below 

Asp189 (in the water reservoir). 

In state b of the trypsin-complexes, the MRT of the water molecules next to the amidino moiety 

of N-amidinopiperidine is at its maximum value (1450 ps), whereas it is lower for the water 

molecules next to the benzamidine ligand (see Figure 4-9A, 500 ps). The latter MRTs reach 

their maximum at about 5.1 Å. The much higher MRT of water molecules next to the amidino 

moiety in the case of N-amidinopiperidine-trypsin complex is due to its additional water 

molecule, which is lacking in the corresponding benzamidine complex (c.f. Figure 4-6B and 

C). 

In final state c, the residence time for the water molecules at amidino moiety and the ones at 

Asp189 have reached their reference values (see dotted lines in Figure 4-9A and B). 

 

4.4.8 Desolvation Time-Scale of Thrombin Complexes 

As already noted above, thrombin does not contain a water reservoir but water channels below 

Asp189 (see Figure 4-8B and C). These channels facilitate a constant flow of water molecules 

into and out of the binding pocket while the ligand is still bound. Due to this constant flow of 

water molecules, the MRT of water molecules next to the amidino moiety take the same value 

in state a of both thrombin complexes (Figure 4-9C). Moreover, the MRT of the water 

molecules next to Asp189 are also virtually identical in state a (Figure 4-9D). 

In state b, the MRT of water molecules next to the amidino moiety in the benzamidine complex 

is 1050 ps and thus higher than the value of 600 ps computed for the corresponding 

N-amidinopiperidine complex. Similarly, water molecules next to Asp189 have higher MRTs 

in the case of the benzamidine complex (800 ps) compared to the N-amidinopiperidine (600 ps) 

complex. However, the observed standard deviations for the MRTs at state b are generally so 

high that no clear difference between the two complexes can be made. This is in line with the 

structural perspective, since both complexes seemed to be rather similar at this state (c.f. Figure 

4-8B and C). 

At state c of the thrombin complexes, the MRTs of the water molecules next to the ligand 

converge to the value found for the ligand in bulk solvent (4.1 ps, see dotted line in Figure 

4-9C). The MRT values of water molecules next to Asp189 fluctuate between state b and state 
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c and do not fully reach the value of apo thrombin. This is most likely due to the large 

fluctuations and the multiple solvation processes observed in apo thrombin (see also Figure 

4-4D). Also, it must be mentioned that even at d = 10 Å, the ligand is not fully unbound but all 

key interactions are already broken. 
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Figure 4-9: Overview of the slow MRT component τ1 calculated for all US windows along the 
reaction coordinate using the LoCorA approach. The displayed water MRTs were computed 
using eq. (4-4) in the local solute coordinate system of the ligand amidino group (left column 
A, C) or the carboxylate group of Asp189 (right column B, D) calculated for protein-ligand 
complexes of trypsin and thrombin. The dotted lines indicate the MRT values for the pure 
ligands in bulk solvent (A, C) or Asp189 in apo trypsin (B) or apo thrombin (D). 
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4.5 Discussion 

In the present contribution, we first investigated the spatial and temporal fluctuations of water 

molecules in the apo state of thrombin and trypsin. We then elaborated on the mechanism of 

the dissociation process of benzamidine and N-amidinopiperidine from the two proteins using 

US simulations. During this elaboration, we focused on the spatial and temporal fluctuation of 

water molecules upon ligand dissociation from the binding site along the predefined reaction 

coordinate. 

 

4.5.1 Water Escape Mechanisms in the apo Binding Sites 

We found that water molecules show very long MRTs (in the range of ns) next to the 

carboxylate group of Asp189 in the S1 pocket of thrombin, whereas around Asp189 in trypsin, 

the computed MRTs corresponds only to one tenth (only in the range of 100 ps) of the values 

in thrombin. This indicates that the two very similar proteins show very distinct solvation and 

desolvation mechanisms for Asp189, which is a key residue in substrate recognition. This 

difference likely contributes to the different selectivity profiles of the two proteins, as a ligand 

(or a substrate) has to compete with water molecules about the binding to the side chain of 

Asp189. In trypsin, the water molecules associated with Asp189 escape more frequently from 

the first hydration shell. Therefore, a ligand has a high probability to find a dewetted binding 

position at Asp189, accordingly it can bind more easily. Due to the principle of microscopic 

reversibility, these same considerations increase the barrier for the ligand dissociation from the 

binding site. The critical role of the water molecules in the binding mechanism is also reflected 

by the generally higher barriers on the FES for trypsin compared to thrombin.  

In addition, we found only a single most probable value for the MRT in trypsin, whereas a 

bimodal Gaussian distribution was found for thrombin (Figure 4-5). This suggests that only a 

single water escape mechanism exists in trypsin. For thrombin, two major escape mechanisms 

are possible which reflect the fact that thrombin has multiple entry and exit channels to the S1 

binding pocket. Through these channels, water molecules can exchange with bulk solvent, 

which was also noted elsewhere.179 

We argue that the occurrence of two different water escape mechanisms in thrombin has a 

functional role for the protein. We can only speculate about this functionality, but we believe 

that external factors, such as ligands that bind to a remote site or modulations of the ionic 

strength due to changes in the local salt concentration, can alter the preference for these two 
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water escape mechanisms. Thus, a shift in the probability of these mechanisms also shifts the 

protein’s ability to recognize ligand molecules, as the water molecules associated with the first 

hydration shell of Asp189 leave more frequently into the bulk. Consequently, trypsin should 

experience less influence of external factors as only one single solvent escape mechanism can 

be observed. 

 

4.5.2 Water Molecules and the Ligand Dissociation Mechanism 

We found different mechanisms taking place during the dissociation of N-amidinopiperidine 

and benzamidine from the protein binding pockets of thrombin and trypsin. The difference 

between the mechanisms in the two proteins is mainly due a different water inventory below 

Asp189: In the case of trypsin, this inventory is called water reservoir and has a fixed number 

of water molecules as soon as a ligand molecule is accommodated in the protein binding pocket. 

In the case of thrombin, this inventory is called water channel and is proposed to have a varying 

number of water molecules, independent of the binding state of the protein. 

Upon the dissociation of benzamidine from trypsin, one water molecule first intercalates 

between ligand and Asp189 in the S1 binding pocket. This is in contrast to the dissociation of 

N-amidinopiperidine from trypsin, where two water molecules intercalate between the ligand 

and Asp189. These observations confirm our previous investigations on the role of water 

molecules in the binding mechanism of trypsin complexes.54 It must be noted that the PMF 

profile likely will increase at higher reaction coordinate values. However, for our considerations 

mainly concerning the water molecules in the binding pocket, the scanned range of reaction 

coordinates is sufficient. 

In the present contribution, we found that N-amidinopiperidine assembles water molecules with 

long MRTs in the fully bound end-state with trypsin. This is in contrast to the corresponding 

end-state of the benzamidine-trypsin complex, as the water molecules in this complex exhibit 

shorter MRTs. Interestingly, the opposite distribution of MRTs was found for water molecules 

next to Asp189 in the two complexes of trypsin. These observations are explained with one 

additional water molecule in the N-amidinopiperidine-trypsin complex. The additional water 

molecule leads to unfavorable water-water interactions next to Asp189 and thus facilitates 

shorter MRTs of water molecules in the first hydration shell of Asp189. This seems only to 

affect water molecules in the water reservoir below Asp189 and not the water molecules next 

to the amidine group of the N-amidinopiperidine ligand. The additional water molecule in the 

complex of N-amidinopiperidine is seemingly recruited by the ligand in state c of the binding 
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reaction (see Figure 4-5C), as at this stage water molecules from the bulk water phase are in 

exchange with the protein binding pocket. The overall higher range of MRTs computed for the 

water molecules next to the amidine group in the N-amidinopiperidine-trypsin complex 

indicates a higher desolvation barrier as compared to the corresponding benzamidine-trypsin 

complex. The difference in barrier height may explain the lower binding affinity of N-

amidinopiperidine towards trypsin (c.f. Table 4-1). It must be noted that one cannot directly 

deduce the barrier height from the time-constants, since the pre-exponential factor (for an 

Arrhenius-type analysis) is not known. For this purpose, one would have to carry out the same 

analysis at different temperatures and obtain the pre-exponential factor as well as the activation 

barrier from an Arrhenius plot. 

Concerning the thrombin complexes of benzamidine and N-amidinopiperidine, we found a 

different solvation mechanism upon ligand dissociation than for trypsin. For both complexes, 

the MRTs of the ligand-associated water molecules are similar in the fully bound state, which 

is in contrast to the deviating MRTs observed for the two trypsin complexes in the fully bound 

state. This can be explained by the two water channels (see Figure 4-8B) present in thrombin 

but absent in trypsin. These exit channels enable the escape of water molecules from the binding 

site by a path that is not blocked by the ligand molecule. Thus, the MRTs of water molecules 

in thrombin do not dependent on the ligand molecule that is bound to the binding pocket. 

However, in trypsin it clearly depends on the type of ligand molecule that is accommodated in 

the binding pocket, as there no water channels exist and the water molecules must enter through 

the same path as the ligand. 

We computed lower MRTs for ligand-associated water molecules in the intermediate states of 

the N-amidinopiperidine-thrombin complex compared to the corresponding benzamidine-

complex, although it is not completely clear why this difference occurs. These intermediate 

states involve bridging water molecules between the amidino group of the ligand and the 

carboxylate group of Asp189. We conclude that the low MRTs of water molecules adjacent to 

N-amidinopiperidine indicate a lower desolvation barrier of the intermediate states in the 

N-amidinopiperidine compared to the corresponding barrier in the benzamidine complex. The 

constant increase of the MRTs of water molecules at Asp189 in both complexes (see Figure 

4-9D) indicates a constantly increasing (desolvation) barrier for water molecules and 

consequently lower the frequency of their escape from the binding pocket upon ligand 

dissociation. 

A further, quite remarkable difference between the thrombin and trypsin complexes, is the fact 
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that thrombin exhibits a bimodal distribution with two geometries in state b (see Figure 4-8B, 

C and Figure S2 in the Supporting Information), whereas trypsin only shows a pathway with 

one single intermediate state (Figure 4-6B, C and Figure S1 in the Supporting Information). 

Thus, in thrombin the intermediate state b is stabilized entropically, whereas in trypsin no 

entropic contribution was observed. 
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4.6 Conclusion 

In the first part of this contribution, we investigated the solvation mechanism of the binding 

pocket of apo thrombin and trypsin. We found that two fundamentally different solvation 

mechanisms are at play in these two proteins. These differences are due to the occurrence of 

water channels, which are present in thrombin, but are absent in trypsin. Trypsin on the other 

hand has a so-called water reservoir, which is a water inventory holding a fixed number of water 

molecules. Our mechanistic considerations and analysis of MRTs of ligand-associated water 

molecules led to the conclusion that the desolvation time-scale is dependent on the ligand and 

the (fixed) number of water molecules in the water reservoir in the case of trypsin, whereas it 

is quite independent from the ligand in the case of thrombin due to water channels. 

Our investigation sheds light on the presently unpopular but physically reasonable idea that 

ligand binding mechanisms are not only driven by protein-ligand interactions, but also by 

solvation barriers of the protein as well as the ligand molecule. And even for such similar 

proteins as thrombin and trypsin, drastic differences are observed that are hard to record by 

experiment alone. Selectivity of drug molecules towards a specific target protein is important 

for the development of successful drug molecules. With our contribution, we highlight the 

concept of solvation barriers as an additional dimension in the development for selective drug 

molecules. 

Our approach, LoCorA, is integrated into a software package that can be obtained from the 

GitHub page of the lead author of this contribution (https://github.com/wutobias). 
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4.7 Materials and Methods 

In this section, we will outline the procedure that was used for conducting the various biased 

and unbiased MD simulations of this work. Also, we will give additional details for the 

calculation of the TCF from the LoCorA approach. In the first part, we will explain the structure 

preparation procedure, followed by the procedure applied for the generation of structure and 

parameter files. This is followed by a description of our protocol used for carrying out unbiased 

as well as biased (i.e. umbrella sampling) MD simulations. For the whole procedure, we used 

the Amber16 program package.117 From the Amber package, we used pmemd for all 

minimization runs and the GPU implementation pmemd.cuda120–122 for all MD runs. 

During our study, we derived all TCFs and MRTs from an NVT ensemble of the system. This 

is quite uncommon in the context of residence time calculations or derivation of kinetic 

properties in general. Usually one would use an NVE ensemble and not have a thermostat 

actively changing the velocity distribution of the system. However, in our case it was necessary, 

since we had to derive the PMF and MRT from the same set of trajectories. In order to calculate 

the PMF, it was necessary to have a molecular ensemble with a defined thermodynamic 

temperature, which made the use of a thermostat inevitable to our approach. 

 

4.7.1 Structure Preparation 

The structures were obtained from the PDB website. For trypsin, we used 5MOP, 5MOQ and 

5MNP as input for the MD simulations of the apo protein, the benzamidine complex and the 

N-amidinopiperidine complex, respectively. For thrombin, we used 2UUF, 4UEH and 4UE7 

for the MD simulations of the apo protein, the benzamidine complex and the 

N-amidinopiperidine complex, respectively. All structures were prepared (building missing 

atoms, assigning protonation states) using MOE.113 Also, we used MOE to assign am1-bcc 

charges180,181 for the ligand molecules. The protein atoms were treated with the FF14SB amber 

force field57 and the ligand is treated using the GAFF force field.116 Missing parameters for the 

ligand molecule were assigned using parmchk2 from the AmberTools17 package.117 All 

parameters were combined using tLEaP and all atoms were embedded into a truncated 

octahedron simulation box filled with water molecules. Throughout all simulations, we used 

the TIP4P-Ew water model.118,182 In order to ensure net charge neutrality, we used the addions2 

utility of tLEaP and added one sodium ion to the apo simulation box of thrombin, one sodium 

ion the benzamidine-thrombin complex and one chlorine ion to the N-amidinopiperidine-
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thrombin complex to achieve overall charge neutrality. In the case of trypsin, we added eight 

chlorine ions to the apo protein, nine chlorine ions to the benzamidine-trypsin complex and 

nine chlorine ions to the N-amidinopiperidine-trypsin complex. For the simulation boxes of the 

ligand molecules, we placed one ligand molecule in the simulation box and added one chlorine 

counter ion. The ligand molecules were treated as protonated in all simulations, according to 

our calculations using the protonate3D utility of MOE. All simulation boxes contained 13348 

water molecules for the protein-ligand complexes as well as the apo proteins, and 2300 water 

molecules for the ligand molecules in solution. 

 

4.7.2 Unbiased MD simulations 

During all simulation runs, we applied periodic boundary conditions using the periodic-mesh 

Ewald technique as implemented in Amber16 pmemd.cuda together with a 9 Å real-space 

distance cutoff. Furthermore, all bonds involving hydrogen atoms were constrained using the 

SHAKE119 algorithm. All runs were carried out in triplicates and each run was started from a 

different (assigned randomly) random seed for the velocities. 

For the apo structures as well as the ligand molecules in solution, we carried out classical 

(unbiased) MD simulations. We initially performed an energy minimization of the system while 

keeping the solute heavy atoms fixed to their crystallographic positions using a harmonic spring 

potential with a force constant of 25 kcal·mol-1·Å-2. This energy minimization was carried out 

using 250 steps of steepest descent and 250 steps of conjugate gradient minimization. In an 

additional second energy minimization, the force constant was reduced to 2 kcal·mol-1·Å-2, all 

other parameters were kept similar to the first minimization. Then, the system was heated to 

300 K within 25 ps using an integration time step of 1 fs, while still keeping the atoms fixed 

with a force constant of 25 kcal·mol-1·Å-2. The system was kept at this temperature for all 

following runs using a Langevin dynamics thermostat with a collision frequency of γ = 2 ps-1. 

The integration time step was increased to 2 fs and the restraints were switched off gradually, 

while equilibrating the system within 100 ps to a target pressure of 1 bar using the Berendsen 

barostat119. In a final step, the system was equilibrated under NVT conditions for a duration of 

1 ns without any restraints.  

Final production MD trajectories were carried out for 200 ns for the apo proteins as well as the 

ligand molecules in solution. The coordinates of all atoms were saved to disk every 0.5 ps. 
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4.7.3 Umbrella Sampling MD simulations 

For the biased sampling of configurations along the reaction coordinate (see Figure 4-5 for the 

definition of the reaction coordinate), the latter was devised into 71 equally spaced windows 

with a width of 0.1 Å ranging from 3.0 to 10.0 Å. Each window was sampled in triplicates and 

each replicate was started from a randomly chosen snapshot extracted from a 1 ns MD run of 

the fully bound protein-ligand complex. These short 1 ns MD runs for every protein-ligand 

complex were generated by the protocol for unbiased MD simulations as introduced above. 

Furthermore, each run was started from a different (assigned randomly) random seed for the 

velocities. 

The starting structure for each window in the system was optimized with 250 steps of steepest 

descent energy minimization followed by 250 steps of conjugate gradient energy minimization. 

After that, the system was heated to 300 K within 25 ps using an integration time step of 1 fs. 

At this temperature, the system was equilibrated to a target pressure of 1 bar within 50 ps under 

NPT conditions using the Berendsen thermostat, followed by a 50 ps NVT equilibration run. 

The equilibrated protein-ligand complexes were pulled gently to the target reaction coordinate 

value within 1 ns using the steered MD183,184 functionality in pmemd.cuda. 

At the final reaction coordinate value, the system was again minimized, heated and equilibrated 

as carried out right before the steered MD step. However, this time the system was restrained 

using a harmonic potential centered at the target reaction coordinate value with a force constant 

of 5 kcal·mol-1·Å-2.  

Final production MD runs were carried out for 10 ns for each of the three replicates in each 

window. Similar to the simulations of the apo proteins and the unbound ligand molecules, the 

coordinates of all atoms were saved to disk every 0.5 ps. 

 

4.7.4 PMF Analysis 

The PMF along the reaction coordinate was obtained by means of WHAM177,178 as implemented 

in the program wham.185 

4.7.5 Trajectory processing with LoCorA 

The trajectories from the biased and unbiased simulations were post-processed using LoCorA, 

which is an in-house developed program available to the scientific community at 

https://github.com/wutobias. The local coordinate system of the amino acid side chains and the 

ligand portions were defined as outlined in Figure 4-2 of the Theoretical Background section. 
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In order to obtain an error estimate for the MRT parameters in eqs. (4-4) and (4-5), we 

performed block bootstrapping on the time-series of the survival function ?9�B��\� (see 

eq. (4-1)). The same bootstrapping blocks that were used for ?9�B��\′�, were also used in the 

bootstrapping of the axis-vectors for the water coordinate system °DDD�9,)´�B,­�, °DDD�9,)´�B,¯�, °DDD�9,)´�B,®�. In 

order to obtain a globally optimal solution of the parameters in eqs.  (4-4) and (4-5), we applied 

a short basin-hopping134 optimization run in conjunction with the L-BFGS-B186,187 local 

minimizer. The basin-hopping optimization run evolved for a maximum of 30 steps and was 

allowed to stop if no improved solution was found after 10 steps. The parameter optimization 

was carried out using the SciPy package188 for scientific computing in Python. 

All TCF were calculated from 1000-fold block bootstrapping and each block had a length of 

6 ns. For the final analysis, we discarded all bootstrapped solutions to eqs. (4-4) and (4-5) that 

had an R2 of less than 0.95 with the computed TCF from the MD simulation.  

Input files for LoCorA will be provided as part of the Supporting Information upon publication 

of this manuscript. 
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4.8 Supporting Material 

4.8.1 Temporal Properties of Bulk Water Molecules 

Initially, we calculated the MRT of water molecules around an individual water molecule in the 

pure bulk water phase. The calculation of the MRT in bulk water, i.e. the MRT of a water 

molecule in the local coordinate system of another water molecule, is especially insightful. In 

the bulk state, water molecules usually exhibit faster relaxation behavior than in the 

environment of a solute molecule. Therefore, it serves as a reference state and also allows for 

the comparison with experimentally determined translational and orientational time constants 

of water molecules from NMR or fsIR (femto-second infrared). 

Throughout this study, we used the four-site water model TIP4P-Ew.118,182 An overview about 

the calculated MRTs calculated from a 1 ns MD trajectory (0.01 ps per frame in the MD 

trajectory) is summarized in  

Table S4-4. We found that the translational MRTs for the TIP4P-Ew water model (5.6 ± 0.6 ps) 

are in good agreement with reference values from the SPC-E water model (6.0 ps).173 Note that 

for this comparison we used a TCF with a tolerance time (t*=2 ps) according to the IMM 

approach (see the Theoretical Background section). The orientational MRTs are differing from 

the ones calculated by the SPC-E water model and also deviate from the ones found by 

experiment. This is most likely due to the different definitions of this quantity: In our work, we 

do not make any assumptions about the state of the water molecule at the beginning of a time 

series (i.e. at \´ = 0). In other studies,189,190 the orientation times are calculated for water 

molecules that just have lost a hydrogen bond to another water molecule and interimly tumble 

in space before they establish a new hydrogen bond to an adjacent water molecule. Due to this 

concept, it is also termed reorientation time and has led to the development of the jump-

model.189 In our work, the orientational MRTs are shorter (1.2 ± 0.2 ps) than the above defined 

reorientation gap calculated for the SPC-E water model (2.5 ps)189 or the experiment suggesting 

2-7.5 ps.189,190 Most likely, this is due to the fact that water molecules that lost a hydrogen bond 

to another water molecule are still weakly bound to previously contacted water molecule. 

Effectively they are still under the mutual influence of the dipoles of each other and thereby 

experience enhanced orientation time constants compared to our model of water orientation, 

which includes water molecules in all possible states. Nonetheless, we want to emphasize that 

our approach suggests values falling close to those references. Clearly, the interpretation of 

reorientation times based on swapped hydrogen bonding seems amenable, but probably will be 
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misleading in the case of hydrophobic environments, where no generalized short-ranged 

geometric preferences between hydrogen-bond acceptor and donor (between solvent and 

solute) is given as in the bulk water phase. 

Equations (4) and (5) reflect the bimodal behavior of the water translation and orientation 

kinetics in the first hydration shell. This characteristic behavior is further reflected in a plot of 

the raw TCF data (Figure S4-10): At very short lag times, the transition from fast to slow 

relaxation can be seen as an offset in the TCF (at about 0.1 ps). The initial fast decay 

corresponds to water molecules that do not stabilize sufficiently well in the first hydration shell 

and leave immediately. These water molecules can be involved in fast recrossing processes at 

the boundary between first and second hydration shell. Since the orientational TCF is 

conditioned on the translational TCF, the orientational TCF cannot decay any faster than the 

translational TCF. In our considerations, the decay of the orientational TCF is about twice as 

fast as the corresponding decay of the translational TCF. Most likely, this is due to the suggested 

jump-mechanism189 of water molecules undergoing the breaking and making of hydrogen 

bonds accompanied by large angular jumps. 

 

 
Figure S4-10: Time-correlation function for the translation (blue) and orientation with respect 
to the z-axis (orange) of water molecules in bulk water. The transparent area indicates 
± 1 standard deviation. 
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Table S4-4: Residence times and weighting factors calculated for bulk water.a) 
Water 

Model 

Component 

b) 

τint [ps]c) τ [ps]c) τ1 [ps]e) τ2 [ps] e) w [ps] e) 

 
TIP4P-Ew 
(t*=0 ps) 

〈°DDD��B,��〉�² 2.0 ± 0.4 2.4 ± 0.5 2.7 ± 0.6 0.2 ± 0.1 0.4 ± 0.2 〈°DDD��B,®�〉�² 0.8 ± 0.1 1.1 ± 0.1 1.3 ± 0.1 0.1 ± 0.1 0.5 ± 0.1 〈°DDD��B,¯�〉�² 0.9 ± 0.2 1.2 ± 0.2 1.4 ± 0.3 0.1 ± 0.1 0.5 ± 0.1 〈°DDD��B,­�〉�² 0.9 ± 0.1 1.2 ± 0.1 1.4 ± 0.1 0.1 ± 0.1 0.5 ± 0.1 

 
TIP4P-Ew 
(t*=2 ps)f) 

〈°DDD��B,��〉�² 4.6 ± 0.4 5.6 ± 0.6 5.8 ± 0.7 0.1 ± 0.1 0.4 ± 0.3 〈°DDD��B,®�〉�² 1.0 ± 0.1 1.5 ± 0.2 1.6 ± 0.2 0.1 ± 0.1 0.5 ± 0.1 〈°DDD��B,¯�〉�² 1.2 ± 0.2  1.6 ± 0.3 1.8 ± 0.3 0.1 ± 0.1 0.5 ± 0.1 〈°DDD��B,­�〉�² 1.2 ± 0.1 1.6 ± 0.2 1.8 ± 0.2 0.1 ± 0.1 0.5 ± 0.2 

SPC-E 
(t*=2 ps) 

〈°DDD��B,��〉�² n.a.k) 6.0 g) n.a. n.a. n.a. 

SPC-E 
(t*=0 ps) 

〈°DDD��B,­�〉�² 1.7 h),j) 2.5 h), j) n.a. n.a. n.a. 

Experiment 〈°DDD��B,­�〉�² n.a. 2-7.5 i), j) n.a. n.a. n.a. 

a) Mean values and standard deviations are obtained from 1000 block bootstrapping 
attempts based on a 1 ns trajectory. Each block was 50 ps in length and the time step 
between two MD frames in the block was 0.01 ps. 

b) Reference coordinate system for components is based on the local coordinate system of 
another (central) water molecule with similar coordinate system definition as for all 
other water molecules (see Figure 2 in the main text). 

c) Calculated from a full integral over the TCF. 
d) Calculated from fitting a single exponential function to the TCF. 
e) Calculated from eqs. (4) and (5). 
f) Calculated with a transient recrossing time of t*=2ps. 
g) See Ref. [173] 
h) See Ref. [189] 
i) See Refs. [189,190] 
j) Calculated from the reorientation behavior of water molecules in water-water hydrogen 

bonding. 
n.a.: a value for this quantity is not available 
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Figure S4-11: Distribution of the distance between the amidine group of the ligand and the 
aromatic side chain portion of tyr228 in trypsin at reaction coordinate value of d = 4.5 Å 
(corresponds to state b in the main text). 



The Role of Water Molecules in Protein-Ligand Dissociation 

165 

 

Figure S4-12: Distribution of the distance between the amidine group of the ligand and the 
aromatic side chain portion of tyr228 in thrombin at reaction coordinate value of d = 4.5 Å 
(corresponds to state b in the main text). 
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Figure S4-13: Orientation time-constants of water molecules adjacent to the amidino group of 
the ligand (left column) and the Asp189 side chain (left column) for stages along the 
dissociation path in trypsin. 
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Figure S4-14: Orientation time-constants of water molecules adjacent to the amidino group of 
the ligand (left column) and the Asp189 side chain (left column) for stages along the 
dissociation path in trypsin. 
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5 Additional Studies 

Remark 

In this section, a set of additional studies is presented that were conducted and published during 

the time of my doctoral studies at Marburg University. In almost all studies, molecular 

interactions involving water molecules are in the focus of the investigation. All of these studies 

involved collaborative work with experimental research such as protein crystallography or ITC. 

For almost all of these studies (see introductory remarks for author contribution statement), I 

designed and conducted the computational modelling work. Due to the limited space in this 

doctoral dissertation, only the abstract and an author contribution statement are listed for each 

individual study. 
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Strategies for Late-stage Optimization: Profiling Thermodynamics by 
Preorganization and Salt Bridge Shielding 

 

Sandner, A; Hüfner-Wulsdorf, T.; Heine, A.; Steinmetzer, T.; Klebe, G, in revision. 

 

Introductory Remark 

In this study, I carried out molecular dynamics simulations and according to these, suggested 

preorganization mechanisms that explained the relationship between the thermodynamic profile 

and the observed structure. Furthermore, I supported the interpretation of the experimental 

findings. 

 

Abstract 

Structural fixation of a ligand in its bioactive conformation may, due to entropic reasons, 

improve affinity. We present a congeneric series of thrombin ligands with a variety of 

functional groups triggering preorganization prior to binding. Fixation in solution and complex 

formation have been characterized by crystallography, ITC and MD simulations. First, we show 

why these preorganizing modifications do not affect the overall binding mode and how key 

interactions are preserved. Next, we demonstrate how preorganization thermodynamics are 

largely dominated by enthalpy, rather than entropy due to the significant population of low-

energy conformations. Furthermore, a salt bridge is shielded by actively reducing its surface 

exposure and thus, leading to an enhanced enthalpic binding profile. Our results suggest that 

the consideration of the ligand solution ensemble by molecular dynamics simulation is 

necessary to predict preorganizing modifications that enhance the binding behavior of already 

promising binders. 
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Paradoxically, Most Flexible Ligand Binds Most Entropy-Favored: 
Intriguing Impact of Ligand Flexibility and Solvation on Drug-Kinase 
Binding. 

 

Wienen-Schmidt, B.; Jonker, H.R.A.; Wulsdorf, T.; Gerber, H.D.; Saxena, K.; Kudlinzki, D.; 

Sreeramulu, S.; Parigi, G.; Luchinat, C.; Heine, A.; Schwalbe, H.; Klebe, G. J. Med. Chem. 

2018, 61, 5922-5933. 

 

Introductory Remark 

In this study, I carried out molecular dynamics simulations in combination with solvation and 

conformation entropy calculations. Furthermore, I validated my calculations with data obtained 

from NMR experiments (experiments carried out by H.R.A. Jonker), particularly to study the 

ligand properties in aqueous solution prior to protein binding. 

 

Abstract 

Biophysical parameters can accelerate drug development, e.g. rigid ligands may reduce entropic 

penalty and improve binding affinity. We studied systematically the impact of ligand 

rigidification on thermodynamics using a series of fasudil derivatives inhibiting protein kinase 

A by crystallography, isothermal titration calorimetry, nuclear magnetic resonance and 

molecular dynamics simulations. The ligands varied in their internal degrees of freedom but 

conserve the number of heteroatoms. Counterintuitively, the most flexible ligand displays the 

entropically most favored binding. As experiment shows, this cannot be explained by higher 

residual flexibility of ligand, protein or formed complex nor by a deviating or increased release 

of water molecules upon complex formation. NMR and crystal structures show no differences 

in flexibility and water release although strong ligand-induced adaptations are observed. 

Instead, the flexible ligand entraps more efficiently water molecules in solution prior to protein 

binding and by releasing these waters, the favored entropic binding is observed. 
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On the Implication of Water on Fragment-to-Ligand Growth in Kinase 
Binding Thermodynamics 

 

Wienen-Schmidt, B.*; Wulsdorf, T.*; Jonker, H. R.A.; Saxena, K.; Kudlinzki, D.; Linhard, V.; 

Sreeramulu, S.; Heine, A.; Schwalbe, H.; Klebe, G. ChemMedChem 2018, 13, 1988-1996. 

 

*these authors contributed equally. 

 

Introductory Remark 

In this study, I carried out molecular dynamics simulations and solvation thermodynamics 

calculations. I supported the interpretation of experimental findings and suggested possible 

SARs according to my calculations. 

 

Abstract 

A ligand-binding study is presented focusing on thermodynamics of fragment expansion. The 

binding of four compounds with increasing molecular weight to protein kinase (PKA) was 

analyzed. The ligands display affinities between low-micromolar to nanomolar potency despite 

their low-molecular weight. Binding free energies were measured by isothermal titration 

calorimetry (ITC), revealing a trend towards more entropic and less enthalpic binding with 

increase in molecular weight. All protein-ligand complexes were analyzed by crystallography 

and solution NMR spectroscopy. Crystal structures and solution NMR data are highly 

consistent and no major differences in complex dynamics across the series are observed that 

would explain the differences in the thermodynamic profiles. Instead, molecular dynamics 

simulations reveal that the thermodynamic trends result either from differences in the solvation 

patterns of the conformationally more flexible ligands in aqueous solution prior to protein 

binding or local shifts of the water structure in the ligand-bound state. Our data thus provide 

evidence that changes in the solvation pattern constitute an important parameter for the 

understanding of thermodynamic data in protein-ligand complex formation. 
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Price for Opening the Transient Specificity Pocket in Human Aldose 
Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and 
Computational Analysis 

 

Rechlin, C.; Scheer, F.; Terwesten, F.; Wulsdorf, T.; Pol, E.; Fridh, V.; Toth, P.; Diederich, 

W.E.; Heine, A.; Klebe, G. ACS Chemical Biology 2017, 12, 1397-1415. 

 

Introductory Remark 

For this study, I carried out molecular dynamics simulations and hydration site analysis. Based 

on the results of my calculations, I supported the formulation of a hypothetical induced fit 

binding mechanism. 

 

Abstract 

Insights into the thermodynamic and kinetic signature of the transient opening of a protein-

binding pocket are presented resulting from accommodation of suitable substituents attached to 

a given parent ligand scaffold. As target, we selected human aldose reductase, an enzyme 

involved in development of late-stage diabetic complications. To recognize a large scope of 

substrate molecules, this reductase opens a transient specificity pocket. The pocket-opening 

step was studied by X-ray crystallography, microcalorimetry and surface plasmon resonance 

using a narrow series of 2-carbamoyl-phenoxy-acetic acid derivatives. Molecular dynamics 

simulations suggest that pocket opening only occurs once an appropriate substituent is attached 

to the parent scaffold. Transient pocket opening of the uncomplexed protein is hardly recorded. 

Hydration-site analysis suggests that up to five water molecules penetrating into the opened 

pocket cannot stabilize this state. Sole substitution with a benzyl group stabilizes the opened 

state and the energetic barrier for opening is estimated to about 5 kJ/mol. Additional decoration 

of the pocket-opening benzyl substituent with a nitro group results in a huge enthalpy-driven 

potency increase, whereas an isosteric carboxylic-acid group reduces potency 1000-fold and 

binding occurs without pocket opening. We suggest a ligand induced-fit mechanism for the 

pocket-opening step, which however, does not represent the rate-determining step in binding 

kinetics. 
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A False-Positive Screening Hit in Fragment-Based Lead Discovery: Watch 
out for the Red Herring 

 

Cramer, J.; Schiebel, J.; Wulsdorf, T.; Grohe, K.; Najbauer, E.E.; Ehrmann, F.R.; Radeva, N.; 

Zitzer, N.; Linne, U.; Linser, R.; Heine, A.; Klebe, G. Angew. Chem. Int. Ed. 2017, 56, 1908–

1913. 

 

Introductory Remark 

For this study, I calculated NICS values, electrophilicity indices and partial charges on DFT 

level using quantum chemistry methods. With my findings, I supported experimental findings 

about the reactivity of the investigated fragment molecule. 

 

Abstract 

With the rising popularity of fragment-based approaches in drug development, more and more 

attention has to be devoted to the detection of false-positive screening results. In particular, the 

small size and low affinity of fragments drives screening techniques to their limit. The pursuit 

of a false-positive hit can cause significant loss of time and resources. Here, we present an 

instructive and intriguing example about the origin of misleading assay results for a fragment 

that emerged as most potent binder for the aspartic protease endothiapepsin (EP) across multiple 

screening assays. This molecule shows its biological effect mainly after conversion to another 

entity through a reaction cascade that involves major rearrangements of its heterocyclic 

scaffold. The formed ligand binds EP through an induced-fit mechanism involving remarkable 

electrostatic interactions. Structural information in the initial screening proved to be crucial for 

the identification of this false-positive hit. 
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Intriguing role of water in protein-ligand binding studied by neutron 
crystallography on trypsin complexes. 

 

Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, Tobias E.; Cavalli, A.; 

Ostermann, A.; Heine, A.; Klebe, G. Nature Communications 2018, 9, 1-30. 

 

Introductory Remark 

In this study, I analyzed residence times and orientation times of water molecules in the apo 

binding pocket of trypsin. Furthermore, I compared the computed distribution of water 

orientations with the ones observed during neutron scattering experiments. 

 

Abstract 

Hydrogen bonds are key interactions determining protein-ligand binding affinity and therefore 

fundamental to any biological process. Unfortunately, explicit structural information about 

hydrogen positions and thus H-bonds in protein-ligand complexes is extremely rare and 

similarly the important role of water during binding remains poorly understood. Here, we report 

on neutron structures of trypsin determined at very high resolutions ≤1.5 Å in uncomplexed and 

inhibited state complemented by X-ray and thermodynamic data and computer simulations. Our 

structures show the precise geometry of H-bonds between protein and the inhibitors N-

amidinopiperidine and benzamidine along with the dynamics of the residual solvation pattern. 

Prior to binding, the ligand-free binding pocket is occupied by water molecules characterized 

by a paucity of H-bonds and high mobility resulting in an imperfect hydration of the critical 

residue Asp189. This phenomenon likely constitutes a key factor fueling ligand binding via 

water displacement and helps improving our current view on water influencing protein–ligand 

recognition. 
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Diamandoid Amino Acid-Based Peptide Kinase A Inhibitor Analogues 

 

Müller, J.; Kirschner, R. A.; Berndt, J. P.; Wulsdorf, T.; Metz, A.; Hrdina, R.; Schreiner, P. R.; 

Geyer, A.; Klebe, G. ChemMedChem 2019, 14, 663-672. 

 

Introductory Remark 

In this study, I carried out molecular dynamics simulations together with Dr. Alexander Metz. 

I analyzed the molecular dynamics trajectories using MMGBSA calculations in conjunction 

with various structural descriptors and suggested (together with Dr. Alexander Metz) a set of 

promising peptides for synthesis. 

 

Abstract 

The incorporation of diamondoid amino acids (DAAs) into peptide-like drugs is a general 

strategy to improve lipophilicity, membrane permeability, and metabolic stability of peptidomi-

metic pharmaceuticals. We designed and synthesized five novel peptidic DAA-containing 

kinase inhibitors of protein kinase A using a sophisticated molecular dynamics protocol and 

solid-phase peptide synthesis. By means of a thermophoresis binding assay, NMR, and crystal 

structure analysis, we determined the influence of the DAAs on the secondary structure and 

binding affinity in comparison to the native protein kinase inhibitor, which is purely composed 

of proteinogenic amino acids. Affinity and binding pose are largely conserved. One variant 

showed 6.5-fold potency improvement, most likely related to its increased side chain 

lipophilicity. A second variant exhibited slightly decreased affinity presumably due to loss of 

hydrogen-bond contacts to surrounding water molecules of the first solvation shell. 
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Impact of Surface Water Layers on Protein-Ligand Binding: How Well Are 
Experimental Data Reproduced by Molecular Dynamics Simulations in a 
Thermolysin Test Case? 

 

Betz, M.; Wulsdorf, T.; Krimmer, S. G.; Klebe, G. J. Chem. Inf. Model 2016, 56, 223-233. 

 

Introductory Remark 

In this study, I supported the interpretation of the results and also provided python scripts that 

enabled the spatial integration over hydration sites. 

 

Abstract 

Drug binding involves changes of the local water structure around proteins including water 

rearrangements across surface-solvation layers around protein and ligand portions exposed to 

the newly formed complex surface. For a series of thermolysin-binding phosphonamidates, we 

discovered that variations of the partly exposed P2′-substituents modulate binding affinity up 

to 10 kJ·mol-1 with even larger enthalpy/entropy partitioning of the binding signature. The 

observed profiles cannot be completely explained by desolvation effects. Instead, the quality 

and completeness of the surface water network wrapping around the formed complexes provide 

an explanation for the observed structure−activity relationship. We used molecular dynamics 

to compute surface water networks and predict solvation sites around the complexes. A fairly 

good correspondence with experimental difference electron densities in high-resolution crystal 

structures is achieved; in detail some problems with the potentials were discovered. Charge-

assisted contacts to waters appeared as exaggerated by AMBER, and stabilizing contributions 

of water-to-methyl contacts were underestimated. 
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