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Zusammenfassung 
 

Das Feld der synthetischen Biologie zielt darauf ab die Ingenieursprinzipien des „Design-Build-

Test-Learn“ Kreislaufs auf die Implementierung synthetischer genetischer Schaltkreise, welche das 

Verhalten biologischer Systeme beeinflussen, anzuwenden. Um dieses Ziel zu erreichen verwenden 

Projekte der synthetischen Biologie eine Reihe komplett charakterisierter biologiescher Bauteile. 

Diese können nach rationalen, Modell gestützten Gesichtspunkten, stufenweisen zu komplexen 

synthetischen Schaltkreisen kombiniert werden. Die Konstruktion aus einfachen, charakterisierten 

Bauteilen stellt einen optimalen Startpunkt für das Testen synthetischer Schaltkreise dar. Deren 

Design ist allerdings durch die beschränkte Verfügbarkeit von DNA-Bausteinen limitiert. Für 

gewöhnlich bestehen sie nur aus einer Handvoll von Transkriptionsregulatoren, welche zusätzlich 

häufig aus natürlichen Systemen entliehen wurden. Dies kann zu Kreuzreaktionen zwischen den 

implementierten Schaltkreisen und Wirt, und damit einem Verlust der Funktion führen. Eine der 

Herausforderungen der synthetischen Biologie ist daher die Entwicklung solcher synthetischen 

Systeme mit minimalen Kreuzreaktionen (Orthogonalität).  

Das Ziel dieses Projektes ist es, die Einschränkungen verbreiteter transkriptioneller Regulatoren 

durch die Anwendung von Extra-Zytoplasmischen σ-Faktoren (ECF) zu überwinden. ECFs sind die 

kleinsten und einfachsten alternativen σ-Faktoren welche Promotoren mit hoher Spezifität 

erkennen. Sie stellen einen der wichtigsten Mechanismen der Signalübertragung in Bakterien dar. 

Ihre Aktivität ist häufig von Anti σ-Faktoren kontrolliert. Auch wenn gezeigt wurde, dass Anti-σ-

Faktoren negative Effekte auf den Wirt haben können stellen sie eine attraktive Möglichkeit dar 

ECFs zu regulieren. Zu diesem Zeitpunkt kennen wir tausende ECF σ-Faktoren aus einem Großteil 

der Bakterien-Phyla. Durch bioinformatische Analysen sind sie und auch das dazugehörige Anti-σ-

Faktoren identifizierbar. 

 All diese Eigenschaften machen ECFs zu optimalen Kandidaten für das Design orthogonaler, 

synthetischer Schaltkreise. Um ECF σ-Faktoren als Standardbausteine in der synthetischen Biologie 

zu etablieren, haben wir zuerst eine Methode für Hochdurchsatzmessungen entwickelt. Diese 

basiert auf Mikro-Plate-Reader Experimenten, bei denen hochsensible Lumineszenz-Reporter 

verwendet werden. Dank ihres niedrigen Hintergrundrauschens sind sie Fluoreszenz-Reportern 

überlegen, da sie eine größere dynamische Spanne abdecken können. Von Nachteil ist das 

Durchscheinen emittierten Lichts von einem Töpfchen in die benachbarten, was die dort 

gemessenen Werte beeinflusst. Um diese Einschränkung zu überwinden haben wir einen 

computergestützten Algorithmus entwickelt der dieses Durchscheinen aus dem Signal herausrechen 

kann um die tatsächlichen Werte zu erhalten.  

In dieser Arbeit zeigen wir, dass der Algorithmus auch Signale knapp über dem Hintergrund 

erhält und universell für verschiedene experimentelle Bedingungen einsetzbar ist. Um die 

Assemblierung großer, ECF basierter Schaltkreise zu vereinfachen haben wir eine Sammlung von 

ECF Bausteinen in E. coli konstruiert. Diese Sammlung ermöglicht, in Kombination mit einer 

anderen Sammlung kompatibler Bausteine, eine die Kombination quasi aller ECFs in großen 

Schaltkreisen. Zusätzlich ermöglicht es die Integration der so gebauten synthetischen Schaltkreise 

in vier verschiedenen Phagen-Insertions-Loci (att) im E. coli Genom. Das erlaubt den direkten 

Übergang zwischen Plasmid basierter Expression und Expression von gnomisch integrierten 

Schaltkreisen. Dadurch wird die Zahl der möglichen Konfigurationen jedes Schaltkreises erheblich 
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erhöht.  Zusätzlich konnten wir zeigen, dass die vier att-Loci sich bezüglich der Expression 

integrierter synthetischer Schaltkreise zueinander orthogonal verhalten.  

Um ECF basierte, synthetische Schaltkreise rational Planen zu können haben wir das 

dynamische Verhalten von 15 ECF σ-Faktoren, sowie deren Anti-σ-Faktoren und zugehörigen 

Promoter, charakterisiert. Abschließend können wir feststellen, dass ECFs funktionieren, 

unterschiedliche Affinitäten zu ihren zugehörigen Promotoren haben und dabei nicht Toxisch 

wirken. Unsere Ergebnisse zeigen, dass die dynamische Spanne sowie die Stärke des Eingangs und 

Ausgangssignals, der ECF-basierten Schalter abhängig von der Kopienzahl der ECF und 

Zielpromotor eingestellt werden kann. Durch die Kombination von bis zu drei ECF-Schaltern 

konnten wir genetische Zeitmesser bauen. Dies waren die ersten synthetischen Schaltkreise mit 

mehreren ECFs. Die ECF Zeitmesser können eine Auswahl von Zielgenen zeitversetzt aktivieren 

und ihr verhalten kann mittels eigens entwickelter mathematischer Modelle vorhergesagt werden.  

Um die dynamische Spanne der ECF Konstrukte zu erhöhen fügten wir Anti-σ-Faktoren hinzu. 

Dabei vielen uns schnell negative Effekte auf das Wachstum von E. coli auf für die wir nach 

Lösungen suchten. Wir konnten demonstrieren, dass diese negativen Effekte teilweise verringert 

werden können, wenn gekürzte, lösliche Varianten der Anti-σ-Faktoren verwendet werden. Darauf 

aufbauend fanden wir, dass die Toxizität komplett behoben werden kann, wenn diese chromosomal 

integriert werden. Abschließend, nachdem wir zeigen konnten, dass Anti-σ-Faktoren verwendet 

werden können um einstellbare Verzögerungen in der ECF Expression zu erreichen, konstruierten 

wir ECF/AS-Selbstmord Schalter. Diese Schaltkreise erlauben das Einstellen eines Zeitverzögerten 

Zelltods in E. coli und können als Prototypen für die zukünftige Entwicklung von ECF/AS-

basierten Autolyse-Schaltkreisen dienen. 
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Abstract 
 

The synthetic biology field aims to apply the engineering 'design-build-test-learn' cycle for the 

implementation of synthetic genetic circuits modifying the behavior of biological systems. In order 

to reach this goal, synthetic biology projects use a set of fully characterized biological parts that 

subsequently are assembled into complex synthetic circuits following a rational, model-driven 

design. However, even though the bottom-up design approach represents an optimal starting point 

to assay the behavior of the synthetic circuits under defined conditions, the rational design of such 

circuits is often restricted by the limited number of available DNA building blocks. These usually 

consist only of a handful of transcriptional regulators that additionally are often borrowed from 

natural biological systems. This, in turn, can lead to cross-reactions between the synthetic circuit 

and the host cell and eventually to loss of the original circuit function. Thus, one of the challenges 

in synthetic biology is to design synthetic circuits that perform the designated functions with minor 

cross-reactions (orthogonality).  

 To overcome the restrictions of the widely used transcriptional regulators, this project aims to 

apply extracytoplasmic function (ECF) σ factors in the design novel orthogonal synthetic circuits. 

ECFs are the smallest and simplest alternative σ factors that recognize highly specific promoters. 

ECFs represent one of the most important mechanisms of signal transduction in bacteria, indeed, 

their activity is often controlled by anti-σ factors. Even though it was shown that the overexpression 

of heterologous anti-σ factors can generate an adverse effect on cell growth, they represent an 

attractive solution to control ECF activity. Finally, to date, we know thousands of ECF σ factors, 

widespread among different bacterial phyla, that are identifiable together with the cognate 

promoters and anti-σ factors, using bioinformatic approaches.  

All the above-mentioned features make ECF σ factors optimal candidates as core orthogonal 

regulators for the design of novel synthetic circuits. In this project, in order to establish ECF σ 

factors as standard building blocks in the synthetic biology field, we first established a high 

throughput experimental setup. This relies on microplate reader experiments performed using a 

highly sensitive luminescent reporter system. Luminescent reporters have a superior signal-to-noise 

ratio when compared to fluorescent reporters since they do not suffer from the high auto-

fluorescence background of the bacterial cell. However, they also have a drawback represented by 

the constant light emission that can generate undesired cross-talk between neighboring wells on a 

microplate. To overcome this limitation, we developed a computational algorithm that corrects for 

luminescence bleed-through and estimates the “true” luminescence activity for each well of a 

microplate. We show that the correcting algorithm preserves low-level signals close to the 

background and that it is universally applicable to different experimental conditions. 

In order to simplify the assembly of large ECF-based synthetic circuits, we designed an ECF 

toolbox in E. coli. The toolbox allows for the combinatorial assembly of circuits into expression 

vectors, using a library of reusable genetic parts. Moreover, it also offers the possibility of 

integrating the newly generated synthetic circuits into four different phage attachment (att) sites 

present in the genome of E. coli. This allows for a flawless transition between plasmid-encoded and 

chromosomally integrated genetic circuits, expanding the possible genetic configurations of a given 

synthetic construct. Moreover, our results demonstrate that the four att sites are orthogonal in terms 

of the gene expression levels of the synthetic circuits.  
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With the purpose of rationally design ECF-based synthetic circuits and taking advantage of the 

ECF toolbox, we characterized the dynamic behavior of a set of 15 ECF σ factors, their cognate 

promoters, and relative anti-σs. Overall, we found that ECFs are non-toxic and functional and that 

they display different binding affinities for the cognate target promoters. Moreover, our results 

show that it is possible to optimize the output dynamic range of the ECF-based switches by 

changing the copy number of the ECFs and target promoters, thus, tuning the input/output signal 

ratio. Next, by combining up to three ECF-switches, we generated a set of “genetic-timer circuits”, 

the first synthetic circuits harboring more than one ECF. ECF-based timer circuits sequentially 

activate a series of target genes with increasing time delays, moreover, the behavior of the circuits 

can be predicted by a set of mathematical models. 

In order to improve the dynamic response of the ECF-based constructs, we introduced anti-σ 

factors in our synthetic circuits. By doing so we first confirmed that anti-σ factors can exert an 

adverse effect on the growth of E. coli, thus we explored possible solutions. Our results demonstrate 

that anti-σ factors toxicity can be partially alleviated by generating truncated, soluble variants of the 

anti-σ factors and, eventually, completely abolished via chromosomal integration of the anti-σ 

factor-based circuits. Finally, after demonstrating that anti-σ factors can be used to generate a 

tunable time delay among ECF expression and target promoter activation, we designed ECF/AS-

suicide circuits. Such circuits allow for the time-delayed cell-death of E. coli and will serve as a 

prototype for the further development of ECF/AS-based lysis circuits.   
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In this introductory chapter, we briefly introduce one the major challenge in synthetic biology, 

defining the principle of “orthogonality”. Then, we illustrate different DNA manipulation strategies 

that are currently used for the generation of synthetic circuits, highlighting their advantages and 

limitations. Finally, we introduce Extracytoplasmic function (ECF) σ factors and their regulators, 

anti-σ factors, as a strategy to enhance the context-independency of synthetic circuits. 

1.1 Facing the unpredictability of the living systems: a major challenge in synthetic biology  

 

Synthetic biology is described as a field that aims to apply engineering principles (such as 

standardization, modularity, and simplicity) to the biological systems, with the aim of engineering 

them to perform new tasks1. To date, even though the engineering of the biological systems has 

brought impressive accomplishments2–4, synthetic biology projects are frequently frustrated when 

engineering faces the complexity of the living cell5. Such complexity arises from the 

interconnection of all the compounds within the living cell that generates context-dependences and 

poses a challenge in the development of synthetic circuits6. Indeed, context-dependences can affect 

both the host and the performance of the heterologous genetic circuit, leading ultimately to the 

unpredictability of the system behavior7. For instance, the expression of a synthetic circuit can lead 

to toxic side effects on the host cell, due to competition for shared cellular resources, such as 

metabolites, RNA polymerase or ribosomes8. At the same time, the natural cellular processes, such 

expression of endogenous transcription factors, as well as different genetic backgrounds, can affect 

the functionality and the stability of a heterologous genetic circuit5. Hence, one of the major 

challenges in synthetic biology consists in the development of truly context-independent (i.e. 

orthogonal) genetic circuits that perform their function with minor cross-reactions. To achieve this 

goal, the synthetic biology field aims to apply a rational, model-driven design that allows for a 

robust characterization of the individual genetic parts. This allows their combination in complex 

circuits that feature a predictable response under certain conditions9. However, only by combining 

the rational design approach, together with the development of strategies that limit the context-

dependence, the SynBio field will ultimately succeed in minimizing the undesired cross-reactions 

with the host cell and increase the orthogonality of the genetic circuits. 

 

1.2 DNA manipulation strategies for the design of synthetic circuits 

 

In synthetic biology, the rational design of genetic circuits can be facilitated by implementing 

engineering principles, such as standardization, modularity, and simplicity. Indeed, the use of 

standardized, modular DNA parts, will improve the engineering 'design-build-test-learn' cycle in 

biology, encouraging, at the same time, the sharing of genetic parts and facilitating automated 

processes10. In the design of synthetic circuits applying a bottom-up approach, each DNA-encoded 

component such as a promoter or an open reading frame can be considered as an isolated part1. 

Ideally, a robust characterization of these individual parts allows their combination in increasingly 

complex circuits. Within this vision, simple genetic parts (such as promoters, ribosome binding 

sequences, coding sequences, and terminators) are combined in transcription units, which are 

further combined to assemble biosynthetic pathways, that can ideally lead to the generation of 

synthetic genomes9. Thus, another challenge for synthetic biology consists in the establishment of 

standardized assembly methods that allow for a hierarchical assembly and ideally, for the 
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generation of part libraries. Such libraries allow a combinatorial approach in the circuit assembly 

and simplify the sharing of the genetic parts within the SynBio community.  

Along the years the scientific community established a plethora of DNA manipulation strategies 

to achieve modularity and standardization goals. The BioBrick standard was established more than 

a decade ago and represented one of the first attempt to standardize a restriction enzyme-based 

DNA assembly method. In the Biobrick standard, DNA parts have standardized flanking sequences 

that are useful for the assembly by traditional restriction/ligation methods11,12. With BioBrick it 

became possible to create a series of modular biological parts that could be shared and easily 

assembled in different combinations9. The reusability and simplicity of BioBricks make them 

popular, thus helping the augmentation of the genetic parts encoded in this standard. However, 

despite the standardization advantages, Biobricks have some drawbacks. For instance, the length of 

the fusion scar (that is generated by the assembly of two BioBricks parts), can act as a destabilizing 

sequence in E. coli13, and the presence of an in-frame stop codon in the fusion scar is problematic 

when assembling fusion proteins9. Moreover, the DNA sequences need to be cured for eventual 

restriction sites, relative to the endonucleases used in the digestion procedure. Even though the 

scientific community attempted to alleviate these issues -e.g. by shortening the fusion sites14, 

creating standards to assist assembly of fusion proteins9 and using enzymes with rare restriction 

sites15 no Biobrick-based method allows scar-less assembly of the genetic parts. Moreover, the 

BioBrick parts can only be assembled in pairs, and the digestion and ligation processes take place in 

separate reactions. This makes the construction of multipart constructs time-consuming and labor-

intensive.  

There are different techniques that allow for scar-less assembly of DNA fragments and that do 

not require classic digest-ligation reactions, such as overlap extension polymerase chain reaction 

(OE-PCR)16 and its evolution: Circular Polymerase Extension Cloning (CPEC)17. However, the 

assembly of DNA parts with these techniques relies on PCR-amplification, which is prone to errors 

when applied to large genetic constructs18.  

A major innovation in the scar-less DNA assembly techniques came with the development of the 

Isothermal Assembly Reaction (Gibson assembly)19 and the Ligase cycling Reaction (LCR)20. 

These methodologies allow for ordered assembly of multiple genetic parts and do not strictly 

depend on PCR-amplification. In particular, Gibson assembly relies on overlapping sequences 

encoded on the genetic parts and three enzymes (5' exonuclease, DNA polymerase and DNA ligase) 

that work in a one-pot reaction (Figure 1.1). During the assembly procedure, the 5' exonuclease 

digests the 5' end of double-stranded DNA fragments and generates 3' single-stranded overhangs. 

Thus, two or more DNA fragments that have 20-40bp of homology at their ends can anneal to each 

other thanks to the resulting complementary overhangs. The polymerase fills in any remaining 

regions of single-stranded DNA and then the ligase fuses the nicks, generating a single DNA 

fragment. A major benefit of this method is that it allows the assembly of large DNA constructs, 

even bacterial artificial chromosomes (BACs)19. However, one of the drawbacks of the Gibson 

assembly is that it does not enable the assembly of more than four DNA parts with more than 50% 

of clones being correct20.  
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Figure 1.1. Gibson assembly. Two DNA fragments (blue and orange) sharing terminal sequence overlaps 

(black) are joined into a covalently sealed molecule in a one-step isothermal reaction. T5 exonuclease 

removes nucleotides from the 5’ ends of double-stranded DNA molecules, complementary single-stranded 

DNA overhangs anneal, Phusion DNA polymerase fills the gaps and Taq DNA ligase seals the nicks. T5 

exonuclease is heat-labile and is inactivated during the 50 °C incubation.  

 

A solution to this problem was given by de Kok and collaborators, that developed the DNA 

assembly via LCR that allows the assembly of up to 12 DNA parts, with 60−100% of correct 

individual clones20. The one-step, scarless DNA assembly via LCR uses single-stranded bridging 

oligos that are complementary to the ends of DNA parts to be assembled. The procedure includes an 

initial denaturation at high temperature followed by a temperature downshift that allows the 

annealing of the upper (or lower) strands of neighboring DNA, on both halves of the provided 

bridging oligo. Then a thermostable ligase joins the neighboring DNA parts via a phosphodiester 

bond without the introduction of any scar sequence. In the subsequent 

denaturation−annealing−ligation temperature cycles, the assembled strand serves as a template for 

the assembly of the other strand from neighboring DNA parts. Finally, by applying multiple 

temperature cycles, many DNA parts are assembled into complex DNA constructs (Figure 1.2). 
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Figure 1.2. LCR assembly. In the first temperature cycle custom single-stranded bridging oligos, 

complementary to the ends of neighboring DNA parts, serve as a template to bring the upper strands of 

denatured DNA parts together, after which a thermostable ligase joins the DNA fragments. In the second and 

subsequent temperature cycles, the assembled upper strand serves as a template for ligation of the lower 

strand. Multiple denaturation−annealing−ligation temperature cycles are used for assembly of many DNA 

parts into complex DNA constructs.  

 

Both LCR and Gibson assembly, do not require the restriction/digestion step, thus increasing the 

speed of the assembly and facilitating the generation of complex synthetic DNA constructs. Hence, 

both methodologies have great advantages, for instance speeding up the construction or 

modification of plasmids21. However, even though in both methodologies the assembly of the 

genetic parts does not rely on PCR-amplification, the generation of the DNA parts involved in the 

reaction is often achieved with this technique. This implies the limitation in the DNA fragment sizes 

described above and even though the chemical synthesis of the genetic fragments represent a 

solution, to date, it is still a costly and slow process. Finally, both LCR and Gibson assembly do not 

favor the storage of the single genetic parts, thus limiting the combinatorial assembly and the 

sharing of the parts on a large scale.  

The need for assembly techniques that allow for scaling-up the combinatorial assembly, led to 

the development of new methods based on Type IIs restriction enzymes. These enzymes have the 

peculiarity of cutting outside their recognition sequence, generating 4 bp overhangs22,23. The 
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utilization of Type IIs restriction enzymes led to the invention of the Golden Gate assembly method, 

in which the customization of the 4bp overhangs allows for the assembly of neighboring fragments. 

Indeed, the design of DNA parts with compatible overhangs allows their directional cloning and 

since Type IIS restriction sites are eliminated during the cloning procedure, digestion and ligation 

reactions can take place in the same tube at the same time. Thus, Golden Gate cloning allows fast 

and reliable multi-part DNA assembly, but it also requires the accurate design cloning vectors. 

Indeed, the destination vector must have the appropriate Type IIS restriction sites and overhangs, in 

order to be compatible with the other DNA fragments involved in the assembly reaction. 

 

1.2.1 The Modular Cloning (MoClo) system 

  

A major enhancement of the original Golden Gate Assembly framework came with the 

development of the Modular Cloning (MoClo) system that enables not only the hierarchical 

assembly of multigene constructs but also the combinatorial assembly of large (33kb in the original 

publication) genetic circuits from a library of fully reusable parts24. The design of synthetic circuits 

greatly benefits from a combinatorial approach in the circuit assembly allowing, for instance, to 

randomize the topology of a circuit25. Thus, the MoClo system represents a precious resource for 

the circuit design in the synthetic biology field. The MoClo system provides a series of vectors that 

are equipped with a lacZa fragment (for blue/white selection) flanked by two pairs of different Type 

IIS restriction sites (BpiI and BsaI), for the generation of pre-defined 4bp overhangs called fusion 

sites (Figure 1.3). The DNA sequences of the fusion sites determine the order of the multi-part 

assembly and, different resistance cassettes, together with the positioning of the two pairs of Type 

IIS restriction sites, define different hierarchically organized MoClo levels (0, 1, M and P)24,26. 

Thus, by the addition of the appropriate Type IIS restriction site and compatible fusion sites, a given 

DNA fragment can be cloned into the MoClo vector system, generating a MoClo part. 

Subsequently, the design characteristics of the MoClo, allow for the assembly of several parts 

encoded within a MoClo level, into a MoClo destination vector belonging to a higher level.  

 

 

 
Figure 1.3. Level 0 MoClo destination vector.  The positioning of the two pairs of Type IIs restriction sites 

(BpiI and BsaI) allows the generation of pre-defined 4bp overhangs (fusion sites). In level 0 vectors, BpiI 

restriction sites are used for cloning a DNA fragment into the destination vector, while BsaI restriction sites 

allow the combination of multiple level 0 parts into level 1 destination vectors. The lacZa fragment allows 

the screening for successful cloning events, through blue/white colony selection.   
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The entry vectors of the MoClo system are defined as level 0 (Figure 1.3). Upon PCR 

amplification, oligo annealing, or gene synthesis, a genetic part can be easily cloned in one of 16 

different level 0 vectors, via Golden Gate cloning, generating a level 0 part. Up to 8 level 0 parts 

can be then assembled in any level 1 destination vector, generating transcription units (TUs) (Figure 

1.4).  

 

 

Figure 1.4. Assembly of multiple level 0 parts into a level 1 destination vector. Up to 8 levels 0 parts can 

be assembled in a level 1 destination vector via Golden Gate cloning. The simultaneous digestion of the 

genetic parts and of the destination vector, using the same Type IIs restriction enzyme (BsaI), generates 

compatible fusion sites, determining the order of the multi-part assembly. The digestion and ligation 

reactions take place in the same tube at the same time in a 5 h reaction. The deactivation of the enzymes is 

induced by two temperature shift steps (50° C and 80° C) lasting 10 min each. The selection for successful 

cloning events is facilitated by the presence of the lacZa fragment in the destination vector, that is eliminated 

during the cloning procedure. A different pair of Type IIs restriction sites (BpiI), present in the destination 

vector, allows, in a further reaction, for the assembly of multiple level 1 parts into a level M destination 

vector. 
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There are two sets of level 1 destination vectors (each one including 7 vectors) that can be used 

for cloning the TUs in forward or in reverse orientation, starting from the same set of level 0 parts. 

Independently from the orientation, up to six level 1 TUs can be then cloned into level M vectors, 

and subsequently, up to 6 level M parts can be assembled into level P vectors. Finally, the system 

allows for a continuous assembly of parts from level P to level M and vice versa, allowing the 

design of complex genetic pathways (Figure 1.5). The possibility of continuous cycling between 

level M and level P assembly was not available in the original MoClo system, in which the final 

destination vectors for the circuits assembly were defined as level 2. However, a further revision of 

the system, by their own inventors, introduced this possibility, using a novel set of destination 

vectors (level M and level P), together with a series of so-called “end-linkers”. For a detailed 

explanation of the end-linkers and their utilization for cloning the constructs in level M and P 

vectors, we recommend consulting the original publication26. 

 

 

Figure 1.5 Hierarchal assembly of multiple genetic parts within the MoClo framework. Up to 8 

fragments, from a library of level 0 parts, can be assembled in transcription units encoded in level 1 vectors, 

which in turn serve to generate level M genetic circuits. Up to six level M genetic circuits can be combined 

in level P destination vectors, generating complex genetic pathways. The MoClo system allows for 

continuous cycling between level M and level P assembly. 

With the availability of 16 levels 0 entry vectors and the above-described features, the MoClo 

represent an optimal choice to generate a library of genetic parts, that can then be used to generate 

complex synthetic circuits in a fast and reliable way. Indeed, the one-pot assembly reaction is 

performed within 5 hours and the different antibiotic resistances of the destination vectors in 

combination with the blue/white selection guarantee a high cloning efficiency (99% of white 

colonies per reaction24). Moreover, the scars left between the parts after the assembly (fusion sites), 

are relatively short (4bp), thus limiting the impact on the design of the genetic constructs. In 

addition, some MoClo vectors are specifically designed to accommodate coding sequences, by 

having the fusion site “AATG”. This can match the canonical start codon of a gene, allowing, for 

instance, the establishment of a precise nucleotide spacing between the start codon and the upstream 

RBS sequence. Finally, in case the genetic parts need to be cured for eventual Type IIs restriction 
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sites, this can be easily performed simultaneously when cloning the parts in level 0 vectors, as 

described by Weber et al.,24. 

Concluding, simple library generation and combinatorial assembly from reusable parts make the 

MoClo a valuable tool for synthetic biology application. Indeed, to date, MoClo-based strategies are 

used for the generation of libraries of genetic parts27,28. Moreover, the MoClo system is being 

further implemented and optimized29,30. This will inevitably lead to a further increase of the MoClo 

capabilities and promote the sharing of MoClo-encoded standard parts. While synthetic synthesis of 

the genetic constructs will probably represent the definitive solution for synthetic DNA circuit 

design, at the moment the cost and the speed of this approach still limit its utilization. Hence, to 

date, all the characteristics described above, make the MoClo and derived methodologies one of the 

best DNA manipulation strategies for the bottom-up design of synthetic circuits.  

 

1.3 Reducing the cross-talk between the synthetic circuits and the host cell: chromosomal 

integration  

 

As mentioned in Section 1.2, the generation of complex synthetic circuits and metabolic 

pathways can count on the utilization of several DNA assembly methods mainly based on Gibson 

Assembly19, Ligase cycling reaction20 and Golden Gate cloning31. However, even though these 

systems allow for complex genetic circuit generation13, the constructs are ultimately assembled on 

expression vectors. The use of such vectors as chassis for encoding the genetic circuits is 

advantageous in terms of speed of circuit generation and manipulation, however, the presence of 

medium and high-copy plasmids in the bacterial host can generate undesired 32,33. Indeed, plasmid 

maintenance as well as, high expression of heterologous genetic constructs, can cause a metabolic 

burden to the cell and therefore toxic effects34–36. Hence, lowering the copy number of the 

constructs using low copy number plasmids, or via chromosomal integration is often a solution to 

reduce the impact of the heterologous circuits on the host cell. To this end, different methods for 

integrating DNA from plasmids into the E. coli chromosome have been developed37–41.  

The most widely used integration methodologies are based on the λ Red recombinase-mediated 

integration (Recombineering)42. Recombineering in Escherichia coli relies on short (50 base pairs) 

homology regions, that are used to target any position in the genome, and on the expression of three 

genes of the bacteriophage λ Red (gam, bet, and exo). The integration procedure involves the 

electroporation of linear DNA molecules, usually in the form of PCR products, and the expression 

of the genes of the bacteriophage λ Red. Thus, gam gene product, Gam, prevents an E. coli 

nuclease, RecBCD, from degrading linear DNA fragments, allowing preservation of transformed 

linear DNA in vivo. The bet gene product, Beta, is an ssDNA binding protein that promotes 

annealing of two complementary DNA molecules, and together with the exo gene product, Exo, (5′ 

to 3′ dsDNA exonuclease) insert the linear DNA at the target locus, defined by the homology 

regions43. 

Even though the method allows for efficient gene knockouts, deletions, and point mutations, it 

was not designed with the intent of generating and integrating large synthetic circuits. To 

circumvent this limitation, different Recombineering-based strategies such as KIKO vectors37, and a 

two-plasmid system38 have been developed, allowing the integration of high molecular weight DNA 

(up to 50kb) into the E. coli chromosome. However, these strategies often rely on PCR-

amplification and traditional restriction digest and ligation, which limit the speed of circuit 
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construction/integration and do not allow for recycling of genetic parts. Recently an innovation was 

developed by Schindler et. al., providing a series of MoClo-compatible vectors that facilitate the 

generation of large genetic constructs and their integration via lambda Red-based recombination30. 

However, all recombineering-based strategies still suffer from another limitation, which is the lack 

of well-characterized orthogonal loci. For instance, it was shown that protein expression and 

metabolite production in E. coli may be influenced by the location of their integrations sites on the 

genome44 and even though five novel open reading frames were identified as suitable integration 

loci for synthetic circuits in E. coli, the integration efficiency and expression of genetic constructs 

in these loci varied significantly45. 

An alternative way to perform chromosomal integration is represented by strategies based on 

site-specific recombination46. Conditional-replication, integration, and modular (CRIM)-based 

plasmids carry different phage attachment (attP) sites and can be used to insert large DNA 

fragments at bacterial phage-attachment (attB) sites. The site-specific recombination is driven via 

expression of phage-derived integration (int) gene encoded on a helper plasmid. The integration 

procedure is very simple, requiring only the transformation of the bacterial strain with a CRIM 

plasmid, the relative helper plasmid, and a temperature shift that induces the phage-derived 

integrase. Since the helper plasmid is also temperature sensitive for replication, the integration of 

the CRIM and the cure of the helper plasmid are simultaneous (Figure 1.6). Moreover, CRIM 

plasmids possess the γ conditional origin of replication of R6K that depends on the trans-acting π 

protein (encoded by pir) for replication. Hence, successful integration events can easily be selected 

by transforming CRIM plasmids in pir- host in the presence of antibiotic selection39.  

The described characteristics make CRIM plasmids a fast and reliable strategy for chromosomal 

integration in E. coli. However, even though the system was further improved40, so far CRIM-based 

integration methods lacked standardization, limiting the speed of DNA assembly/integration and not 

allowing for the reusability of genetic parts. Moreover, the att sites used for the chromosomal 

integration has, so far, never been characterized in terms of orthogonality of the genetic circuits 

expression. 

 

 

Figure 1.6. Chromosomal integration framework using Conditional-replication, integration, and 

modular (CRIM) plasmids in E. coli. The co-transformation of a CRIM-based plasmid and the cognate 

helper plasmid is followed by a temperature shift that induces the expression of the integrase, driving the 

site-specific recombination event at the specific phage attachment site. The proprieties of the system allow 

for the integration and curing of the helper plasmid in the same incubation step and easy selection for 

recombinant clones after overnight incubation. 
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1.4 Extracytoplasmic function (ECF) σ factors, as novel orthogonal regulators 

 

Synthetic circuit components interact with the host organism at different levels47. This can lead 

to unexpected behavior of the synthetic circuit or even loss of its functionality6. One of the reasons 

for such cross-interactions between the heterologous circuit and the host cell is the usage of 

transcriptional factors (TFs) as core building blocks of complex synthetic circuits. For instance, 

commonly used transcriptional regulators, such as LacI48, AraC49, and TetR50 are borrowed from 

natural regulatory systems and thus particularly prone to cross-interact with the host, leading 

ultimately to context-dependences. Moreover, even though bacterial TFs are well-characterized, 

they are limited in number, thus, narrowing the possibility of designing complex synthetic circuits 

that feature orthogonality. Finally, commonly used TFs are generally specific for the different 

bacterial species, thus limiting the functionality of a given synthetic circuit, when placed in different 

genetic backgrounds. The synthetic biology field would then highly benefit from the development 

of a new class of orthogonal, universal, transcriptional regulators51. To this end, in recent years 

orthogonal regulators were derived from natural systems, including dCas952, small transcription-

activating RNAs53, translational riboswitches54, as well as extracytoplasmic function (ECF) σ 

factors.  

The ECF σ factors family has been identified 25 years ago as a distinct group of σ70-like 

factors55. Initially, ECF σ factors were found to regulate genes with extracytoplasmic functions in 

response to extracytoplasmic signals, thus inspiring the name of the group55  (Figure 1.7A, B). 

However, currently, there are members of the family that are known to sense also intra-cellular 

signals and control responses that primarily influence the cytoplasm56.  

The distinct characteristic of ECFs is that they are the smallest and simplest alternative σ-factors. 

Indeed, they only possess the conserved domains σ2 and σ4, lacking domain 1 and domain 3, that in 

σ70-like factors recognize sequences present downstream and upstream the −10 promoter element, 

respectively57. Thus, ECF σ2 and σ4 domains are sufficient to recruit the RNA polymerase to highly 

specific promoters. In particular, ECF σ2 is responsible for the recognition of the -10 element and 

promoter melting58, while ECF σ4 recognize the -35 elements (Figure 1.7C). 
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Figure 1.7. ECF σ and signal transduction. (A) the ECF σ factor (green) is kept inactive by a cognate anti-

σ factor (purple). (B) A stressful signal triggers the release of the ECF σ factor. The Figure shows the 

regulated proteolysis of the anti-σ factor, one of the mechanisms of ECF σ release (Section 1.5). (C) The 

ECF σ factor recruits the RNA polymerase to the ecf promoter. ECF σ4 and ECF σ2 subunits recognize the -

35 and -10 promoter elements respectively. (D) The ECF σ factors up-regulate the expression of genes 

involved in the adaptive response and, often, of an ecf operon encoding ecf and anti-σ factor genes. 

 

To date, we know that there are, on average, 6 ECFs per genome59, moreover ECFs have been 

classified into 56 major and 32 minor phylogenetically distinct ECF subgroups, based on sequence 

similarity59–62. Since the majority of ECFs are regulated by positive feedback (Figure 1.7D), it is 

possible to identify their target promoter sequences by genetic context analysis59,63. Ecf promoters 

appear to be group specific, therefore, the consensus promoter sequence of an ECF group is distinct 

from the one of the other ECF groups. Moreover, the ecf promoters are different from the promoters 

recognized by σ70 and since bioinformatic approaches allow the identification of ECF σ and cognate 

promoters, the increase of available annotated genomes will lead to an expansion of their number. 

Finally, since the core RNA polymerase is strongly conserved among different bacteria, ECF σs are 

potentially functional in different bacterial species. 

All the described features make ECFs exceptional candidates as novel orthogonal regulators for 

SynBio applications. Indeed, in 2013, Rhodius and collaborators demonstrated that at least 20 

heterologous ECF σ factors in E. coli specifically activate their target promoters – with minor cross-

activation of native, or other ECF target promoters63(Figure 1.8A). Moreover, ECF σ4 and σ2 

domains appear to be modular, being able to recognize the -35 and the -10 elements independently. 
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Indeed, the combination of σ4 and σ2 from two different sigma factors, along with the respective 

−35 and −10 promoter sequences, allowed the construction of chimeric σ-factors with new promoter 

specificity63(Figure 1.8B). This pioneering study confirmed that heterologous ECFs, in combination 

with their cognate promoters, are functional in E. coli and that they exhibit orthogonal 

characteristics. However, in order to extensively use ECF σ factors, they now have to be precisely 

characterized, identifying their advantages and potential limitations when embedded in synthetic 

circuits. Moreover, prior to this study, ECFs have only been used to design ECF-promoter genetic 

switches63,64, or regulatory circuits65, featuring only one ECF, while the possibility of combining 

them in more complex synthetic circuits has never been explored. 

 

Figure 1.8. Activity and orthogonality of ECF σ factors in E. coli. Orthogonality matrix of 20 ECF-

promoter pairs (A) and 2 chimeric ECF-promoter pairs (B) tested in E. coli. The Figure was adapted from63, 

distributed under the terms of the Creative Commons Attribution Non-Commercial License CC BY-NC. 

 

1.5 Anti-σ factors, as ECF σ factors regulators 

 

The ability to control the activity of transcriptional regulators is a fundamental characteristic in 

synthetic circuit engineering51. In nature, ECF σ factors represent one of the mechanisms of signal 

transduction in bacteria59, thus precise control of their activation state in response to external signals 

represent one of their key features. ECF σ factors belonging to group ECF41 and ECF42, are known 

to possess a C-terminal extension that seems to be fundamental to regulate the state of these ECFs66. 

However, this is a rare mechanism for controlling ECF activity. Indeed, in the majority of cases, 

ECFs are encoded in an operon together with an anti-σ (AS) factor59. Anti-σ factors are 

transmembrane or cytosolic proteins that bind and block the cognate ECF-σ factor forming an 

inactive complex. Upon the arrival of a stressful stimulus AS factor releases the ECF that can then 

activate target promoters expressing genes that are involved in the stress response. In membrane-

anchored AS factors, the N-terminus resides in the cytoplasm and contains a σ-factor binding 

domain, followed by a transmembrane domain (TM) and a periplasmic C-terminus responsible for 

sensing extracellular stimuli. Soluble AS factors show a significant degree of sequence and 
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structural similarity to membrane-anchored AS factors, at least in the domain that binds the cognate 

σ-factor67 nevertheless the mechanisms of their release is generally different. Currently, there are 

four known mechanisms to release an ECF from the bind with its cognate AS68. We can distinguish 

between mechanisms that belong to membrane-anchored AS factors and the ones that belong to 

soluble AS factors.  

For membrane-anchored AS factors, regulated proteolysis represents the best-understood 

mechanism of ECF releasing and it has been studied in great detail for two of the paradigmatic 

ECF/AS: σE-RseA from E. coli, and σW-RsiW of B. subtilis69
. In both cases, the accumulation of 

misfolded proteins in the periplasm triggers the proteolytic cleavage of the extracellular domain of 

the AS factor and its single transmembrane helix, releasing the ECF/AS pair into the cytoplasm. 

The remaining soluble portion of the AS factor is then degraded by the ClpXP protease70,71. Another 

mechanism of ECF releasing from membrane-anchored AS is given by protein-protein interaction 

cascades. This is a mechanism in which the paradigm is represented by FecI/FecR like proteins, that 

are usually involved in regulating iron-siderophore uptake59
. In this case, the AS FecR keeps the 

ECF inactive, while the activation of the ECF is triggered by the binding of the substrate (Fe3+) to 

an outer membrane porin (FecA). The presence of the substrate is then signaled with a protein-

protein interaction cascade via FecR, to the intracellular σ factor FecI, triggering its activation. In 

some cases, FecR-like proteins are also required for ECF activity, even though the mechanism of 

this positive role is not fully understood72,73. The third mechanism of ECF releasing involves 

conformational changes in the AS factor. The conformational changes in the AS factor can be 

triggered in response to the binding of cobalt and nickel ions to an extracellular sensor protein, as it 

has been shown for the transmembrane AS factor CnrY74. However, conformational changes are 

mainly known for being the main mechanism of ECFs release from soluble AS factors, in response 

to redox or oxidative stress75,76
. The fourth known mechanism of ECF release applies only to 

soluble AS factors and is represented by partner-switching based on σ factor mimicry77. In this 

mechanism, a response regulator possesses a receiver domain at the C-terminus that interacts with a 

cognate transmembrane histidine kinase. In contrast, the N-terminus of the response regulator has a 

sequence similarity to the regulated ECF σ factor. Under stressful conditions, the transmembrane 

sensor kinase phosphorylates the response regulator, causing its conformational change. The new 

conformation allows the N-terminal domain to bind the soluble AS factor, therefore releasing the 

cognate ECF σ78. 

Despite the described release mechanisms, AS factors represent one of the best options to control 

ECF activity, making them a valuable tool to modulate the response of ECF-based genetic circuits. 

Indeed, Rhodius and collaborators identified at least 12 anti-σ factors that were able to repress the 

activity of cognate ECF σs, with minor cross-reactions63(Figure 1.9). However, the variety of 

stimuli that trigger ECF release from the ECF/AS complex poses a challenge in the development of 

context-independent AS factors. Moreover, it has been shown that AS factors overexpression in E. 

coli, can lead to growth defects63. Hence, these issues must be addressed in order to extensively use 

AS factors and enhance the control of ECF-based synthetic circuits.  
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Figure 1.9. Activity and orthogonality of anti-σ factors in E. coli. The crossreactivity of 12 anti-σ factors 

on a set of 12 cognate ECF σ factors, assayed in E. coli. The Figure was taken from63, distributed under the 

terms of the Creative Commons Attribution Non-Commercial License CC BY-NC. 

1.6 Aim of the project  

The aim of this project resides in using Extracytoplasmic function (ECF) σ factors to design 

novel, orthogonal, synthetic circuits in Escherichia coli. ECF σ factors are the smallest and simplest 

alternative σs. Briefly, ECFs differ from σ70-factors, having just two domains, σ4 and σ2, that are 

enough to recruit the RNA polymerase to orthogonal target promoters63,79. ECFs are widespread 

among different bacterial phyla, and they are identifiable together with the cognate promoters and 

anti-σ factors, using bioinformatic approaches59. Thus, the increase of available annotated genomes 

will lead to the expansion of their number. Moreover, ECF σ4 and σ2 domains are modular, thus, 

their combination from two different σ factors allows the construction of chimeric σ-factors, that 

recognize specific chimeric promoters, that does not exist in nature63. This approach eventually 

allows for increasing ECF specificity and orthogonality. Finally, since the core RNA polymerase is 

strongly conserved among bacteria, ECF σ-based circuits are potentially functional in different 

bacterial species. Thus, for all the above-mentioned features, ECF σ factors represent optimal 

candidates as core orthogonal regulator for the design of novel synthetic circuits.  

In order to establish ECF σ factors as standard building blocks in the synthetic biology field, in 

this study we aim to characterize them in the context of synthetic circuit design, identifying their 

features, advantages and potential limitations. To do so, we first aim to establish a high throughput 

experimental setup that allows for a precise quantitative characterization of the genetic circuits. 

Thus, we aim to establish an easy and reliable cloning framework that allows for the modular 

assembly of multiple, reusable, genetic parts, following a bottom-up approach. With the purpose of 

rationally design ECF-based synthetic circuits, we want to assemble a set of ECF σ factors-switches 

and evaluate the impact of ECF σ expression on the growth of E. coli. The ECF-switches will also 

serve to characterize the dynamics of activation of ecf target promoters in our experimental 

conditions. Next, we aim to generate the first synthetic circuit harboring more than one ECF, 

verifying if ECF σs feature a robust and predictable quantitative behaviour. Moreover, we aim to 

explore the possibility of implementing anti-σ factors in ECF-based circuits. To do so, we will 

analyze the impact of their expression on cellular growth and isolate them from the variety of 
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extracellular stimuli that trigger their activation. Finally, we aim to combine ECF and anti-σ factors 

in order to design threshold gate circuits, that allow for a time tunable control of ECF σ factors 

activation and, in turn, delayed downstream protein expression. 

 



 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Establishment of a highly sensitive reporter system for synthetic 

circuit evaluation 
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This chapter introduces the experimental settings that we extensively used in this work. First, we 

introduce the E. coli strain that served as reporter system. Next, we present a luminescence reporter 

as an alternative to the widely used fluorescent reporters, for the evaluation of genetic circuit 

output. Finally, we introduce a novel computational method for the correction of luminescence 

bleed-through and the estimation of the "true" luminescence activity, in microplate-reader 

experiments. 

2.1 E. coli reporter strain SV01 

In this project, we aim to explore the possibility of using ECFs factors as core regulators for 

novel synthetic circuits. However, to date, ECF activity can be regulated mainly through AS factors. 

There are a variety of stimuli that trigger ECF release from ECF/AS complexes (as described in the 

introductory Section 1.5) and most of them are related to stressful conditions. Thus, the inherent 

complexity in reproducing the signals that trigger ECFs activation poses a challenge in using AS 

factors to control of ECF activity. We then reasoned that commonly used transcriptional regulators 

(such as TetR50, LacI48, and AraC49) represent, to date, the best mechanism to control ECF σ 

expression in novel synthetic circuits.  

In designing synthetic circuits the synthetic biology field uses extensively the above-mentioned 

well-characterized transcriptional regulators. These regulators are part of the natural regulatory 

system, thus, they are prone to context-dependencies. In order to reduce the cross-interactions 

between these regulators and the host, the scientific community has engineered a variety of E. coli 

strains. In particular, due to the exogenous nature of TetR and CI parts, there are many E. coli 

strains that are suitable for harboring synthetic regulatory networks built from these parts. However, 

the choice is limited for the networks that use the LacI and AraC parts, as they are endogenous to E. 

coli80. For instance, the majority of E. coli strains lead to an all-or-none response by the araBAD 

promoter (PBAD), in which cells both display full expression or only basal expression, while gradual 

induction cannot be achieved81. This all-or-none phenomenon occurs because the expression of the 

inducer transporter (encoded by araE) is also controlled by the inducer itself through a positive 

feedback mechanism81. This, in combination with the stochastic expression of araE prior to the 

induction, determines the heterogeneous response of the cell population especially at low 

concentrations of the inducer L-arabinose81. Moreover, it has been shown, that the positive feedback 

control, together with the stochastic expression of araE,  leads,  at intermediate arabinose 

concentrations, to a highly variable time delay in the induction of the arabinose promoter, within the 

cell population82. Finally, the majority of E. coli strains contain arabinose-metabolizing genes, 

which results in a decrease in the effective concentration of L-arabinose as the cells utilize it. 

A solution to these problems is represented by the E. coli strain MK01 generated by M. 

Kogenaru and S. Tans80. This strain is a derivative of BW2778383 and it is suitable for gene 

regulatory networks involving both the AraC and LacI transcription factors. Indeed, it carries a 

deletion for the arabinose metabolizing genes, and abolished the all-or-none response, with a copy 

of the low-affinity high-capacity transporter, AraE, under the control of an arabinose-independent 

promoter. Moreover, the endogenous lacI copy is knocked out, thus allowing precise control of 

genetic circuits containing the LacI regulator as well80. For the proprieties described above, this 

strain represented an optimal candidate as reporter strain for our synthetic circuits, however, MK01 

carries a chloramphenicol cassette in the lacI locus, flanked by LoxP sites. In order to allow 

maximum flexibility for further applications presented in this study, we recombined the 
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chloramphenicol cassette from MK01, using the Cre recombinase84 (as described in Section 7.3) 

and generated the strain SV01 (Table 2.1). This strain, with all the appealing characteristics 

described above, represent the reporter strain used in all the experiments that will follow. 

 

Strain Genotype 

SV01 

F- λ-  rph-1 DE(araD-araB)567, lacZ4787(del)::rrnB-3 

DE(rhaD-rhaB)568, hsdR514 DE(araH-araF)570(::FRT) 

araEp-532(del)::FRT Phi P_cp8 araE535, lacI(del)::Lox 
 

Table 2.1 E. coli SV01 strain genotype. The strain was generated by removing the chloramphenicol 

cassette from MK01.  

2.2 A luciferase reporter for a high sensitive circuit dynamic evaluation 

Many applications in synthetic biology require a precise quantification of gene expression at a 

high time resolution. High throughput methodologies such time-course microplate reader 

experiments are then fundamental tools in the field since they allow for the simultaneous, real-time 

monitoring of growth and reporter gene activity of multiple bacterial cultures distributed over the 

wells of a microplate85. Using these methodologies it is possible to resolve minute differences in 

gene expression dynamics and to measure simultaneously many strains and experimental 

conditions. For these reasons, we reasoned that microplate reader experiments represent the best 

strategy to analyze and characterize the behavior of novel synthetic circuits. 

In order to characterize synthetic circuits dynamic in microplate experiments, it is necessary to 

use a sensitive reporter to monitor the output signal of the genetic circuits. The reporters used for 

microplate experiments ranges from fluorescent proteins to luciferase enzymes, both of which 

present advantages and disadvantages. Fluorophores absorb energy from a light source at a certain 

wavelength and emit light at a different wavelength, therefore having the advantage of possessing 

different spectral characteristics. This allows, for instance, the combination of different 

fluorophores in a given strain to monitor the activity of different promoters or the expression of 

different genes. However, one of the biggest disadvantage using fluorophores is given by the auto-

fluorescence of bacterial cells86,87 and of certain commonly used media such LB medium. This can 

lead to increased background noise, therefore limiting the dynamic range. Bioluminescence, on the 

other hand, is produced by luciferase enzymes during the oxidation of the substrate luciferin88 and 

presents the advantage of having virtually zero background signal in organisms not harboring 

luciferase genes89. This feature makes luciferase an attractive reporter system that is widely used to 

monitor gene expression dynamics90–95. To show the potential of the luciferase operon as reporter 

system, we compared, in microplate experiments, the kinetic response of a strain harboring a 

plasmid-borne arabinose-inducible promoter fused with a gfp reporter gene96, or with the 

luxCDABE operon from Photorhabdus luminescens97. We assayed both strains in transparent 

MOPS minimal media (as described in Section 7.1 and 7.10) for 10 h, inducing the cultures at time 

t=0 hour (h) with different arabinose concentrations (Figure 2.1).  
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Figure 2.1. Comparison of the dynamical response of GFP activity and luciferase activity. PBAD-gfp (A) 

and PBAD-lux (B) constructs dynamical responses are compared after the addition of various concentrations of 

arabinose at t=0 h. The reporter activities are shown in relative fluorescent units (A) and relative 

luminescence units (B), normalized by the optical density measured at 600 nm. The maximal fold induction 

for each construct is indicated. The red dashed line represents the low detection limit of the plate reader for 

fluorescent (A) and luminescent (B) signals. The results are averaged from at least two independent 

biological assays and error bars denote standard deviations.  

The results show, for the uninduced PBAD-gfp construct (Figure 2.1A, black curve), a background 

activity ~2x102 Relative Fluorescent Units normalized by the optical density measured at 600 nm 

(RFU/OD600), which is close to the minimal sensitivity of the machine – defined as three times the 

standard deviation of the fluorescence signal registered in a well filled with media, divided by the 

averaged OD600 values registered in the same well (~102 RFU/OD600; Figure 2.1A, red dashed line). 

This can actually mask any signal below this threshold (e.g. in the case of the construct encoded on 

low copy plasmids or chromosomally integrated). Moreover, the empty vector control strain also 

showed a signal ~2x102 RFU/OD600  (Figure 2.1A, purple curve), due to the autofluorescence of E. 

coli described above, and this could actually mask the PBAD promoter basal activity. Indeed, the 

same promoter fused with the luciferase reporter showed a basal activity ~104 Relative Luminesce 

Units (RLU)/OD600 (Figure 2.1B, black curve), while the non-luminescent control strain displayed 

values <100 RLU/OD600 (Figure 2.1B, purple curve), which are below the detection limit of the 

machine – defined as three times the standard deviation of the luminescence signal registered in a 

well filled with media, divided by the averaged OD600 values registered in the same well (~4x102 

RLU/OD600; Figure 2.1B, red dashed line). Therefore, the use of the luciferase reporter revealed a 

basal activity of the PBAD promoter, in absence of inducer, ~50-fold higher than the one registered 

using the fluorescent reporter GFP, thus increasing the resolution. Moreover, PBAD-lux showed a 

higher dynamic range (~1000x between the uninduced and the fully-induced strain) when compared 

to PBAD-gfp (~150x between the uninduced and the fully-induced strain). Finally, when comparing 

qualitatively the temporal response of the two reporters upon induction, we noticed that the 

luciferase reporter signals reached the maximum values prior than the GFP reporter, for each 

inducer concentration (Figure 2.1A, B). This is due to the slower chromophore maturation times 

when compared with luciferase enzymes, which folds cotranslationally and are enzymatically active 
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upon folding98. Therefore, using the luciferase operon it is possible to increase resolution, dynamic 

range, and temporal response of the circuit output – properties that can be beneficial to evaluate 

more complex synthetic circuits. For these reasons, we extensively adopted the luciferase cassette 

as a reporter system to monitor the output signal in our novel synthetic circuits.  

2.3 Deconvolution of luminescence cross-talk in high-throughput experiments 

The results of this section are published in Paper I (Mauri et al., 2019) 

In the previous section, we showed that the luciferase cassette is an optimal candidate as a 

reporter system to evaluate complex synthetic circuits. However, the luminescent reporters have the 

draw-back represented by the constant light emission, that often leads to undesired cross-talk 

between neighboring wells on a microplate99. This is due to the fixed distance between the 

microplate surface and the detector that allows the light emitted from neighboring wells to be 

detected as a false-positive signal. Although manufacturers produced black, light-absorbing 

microplates that limit such luminescence “bleed-through”, we found that a light emitting strain 

placed in a single well of the plate illuminated more than 50% the other empty wells (Figure 2.2A). 

The bleed-through can then significantly bias the measurement of luminescent signals, especially in 

a scenario where positive and negative controls are placed in neighboring wells. To circumvent this 

problem, many labs either fill their microplates only sparsely or discard reading wells clearly 

affected by luminescence cross-talk100 and thus lose significant throughput in their analyses. In our 

laboratory, in order to utilize extensively luminescent reporters, we developed a computational 

method that corrects for luminescence cross-talk and to estimate the “true” luciferase activity in 

each well of a microplate. The method, developed by Dr. Marco Mauri, is inspired by 

computational approaches in super-resolution microscopy, in which the point-spread function of the 

microscope setup is used to infer the accurate positions and intensities of light-emitting 

molecules101.  Similarly, the algorithm uses the measurements of a calibration plate (in which only a 

single high luminescent strain is present) to estimates the “light-spread function” of the microplate 

reader setup. Subsequently, the algorithm uses a deconvolution strategy to estimate the most likely 

configuration of true luminescence activities that can explain the observed light intensities in all 

wells of the microplate.  

2.3.1 Deconvolution procedure 

Convolution is a mathematical operation on two functions to produce a third function that 

expresses how the shape of one is modified by the other102. Deconvolution on the opposite is an 

algorithm-based process that reverses the effects of convolution on recorded data. In the case of a 

microplate reader experiment, the signal generated by multiple luminescent strains represents the 

convolved data recorded by the detector.  In order to deconvolve these data, we estimated the 

luminescence bleed-through. To do so, we analyzed a so-called “calibration plate” in which only a 

single well (positioned in well E5) of a black 96-well was inoculated with a luminescent 

Escherichia coli strain (GFC153). The other wells of the microplate instead, were inoculated with 

cells of a non-luminescent E. coli strain SV01. The luminescent strain (GFC0153) harbors a 

plasmid-borne, copy of the luxCDABE operon from Photorhabdus luminescens97 fused to an 

arabinose-inducible promoter (Table 9.1). After two hours of incubation (referred to as t=0 h), 

expression of the lux operon was fully induced by adding arabinose at a final concentration of 0.2% 
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and luminescence activity was monitored over time in a Tecan Infinite F200 PRO microplate reader 

(Figure 2.2B).  

 

Figure 2.2. Quantification of luminescence bleed-through in the calibration microplate. (A) The 

calibration plate was prepared with a single highly luminescent spot in the well E5. All data are background-

subtracted and averaged over three experimental replicates. The background was obtained by averaging the 

signal of the wells indicated by the white crosses in the inset over the time before addition of arabinose 

(induction time). The 3D-plot shows the observed luminescence signal at 270 minutes after the induction. 

(B) Time evolution of the observed luminescence signal of the E-row. The red line represents the instrument 

sensitivity value, defined as three times the standard deviation of the background value. (C) Luminescence 

bleed-through factor of the two shells closest to E5, in blue and green. Values were obtained dividing the 

observed signal from a specific well by the signal recorded in E5. The dashed lines indicate the time range 

over which the bleed-through was averaged to obtain in (D) the bleed-through factor as a function of the 

distance from E5 (green dots). The black solid line is the parameter-free prediction of the bleed-through. This 

figure was adapted with permission from Paper I (Mauri et al., 2019). Copyright 2019 American Chemical 

Society. 

This concentration of arabinose allows full saturation of the arabinose promoter as shown in 

Figure 2.1B. After induction, luminescence activity in the well E5 increased about 10.000-fold from 

102 to 106 RLU. At the same time, we observed a significant increase of apparent luminescence 

activities in a radius of three to four wells surrounding E5, with the highest values of 103 RLU 

reached in closest proximity to the light-producing strain (Figure 2.2A and B). This value is about 

600-fold above the average background luminescence of the non-luminescent strain (  

RLU). We also defined an instrument sensitivity  RLU given by three times the standard 
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deviation of the background luminescence (black plate in Figure 2.2A and red dashed line in Figure 

2.2B). Any signal below the instrument sensitivity cannot be statistically distinguished from the 

background value. Next, we analyzed the calibration plate, looking at the correlation between the 

luminescence bleed-through and the magnitude of light-emission from well E5. To this end, we 

defined the bleed-through factor B in a given well (m,n) at time t as the ratio between the observed, 

background-subtracted luminescence intensities O in well (m,n) and in well (E5) 

.          (1) 

Here m = 1, 2, … , 8 indicates the row of the microplate and n = 1, 2, …, 12 the column. From 

this we can then obtain, the entries of a bleed-through matrix B with values that can range between 

the background-subtracted luminescence intensity over E5 signal (no bleed-through) and 1 (full 

bleed-through). The experimental data plotted in Figure 2.2C show that as soon as the intensity in a 

well exceeds the instrument sensitivity of s (Figure 2.2C dashed line), the bleed-through factor 

becomes almost constant in time and only dependent on the distance from the emitting well. To 

quantify this dependency, we time-averaged the bleed-through factor and plotted it as a function of 

the distance from the emitting well (Figure 2.2D). As noted before, we can observe a 1000-fold 

initial decrease of the time-averaged bleed-through factor in the wells immediately neighbouring the 

emitting well, followed by a slower decline – still exceeding machine sensitivity up to four wells 

away from the emitter. The relationship between the bleed-through and the distance from the 

emitting well can be elucidated with a mathematical model that depends only from the height of the 

detector and the distance between the centers of neighbouring wells. The mathematical model 

allows for a parameter-free prediction of the bleed-through factor and agrees well with the 

experimental data (black line in Figure 2.2D).  

Given that luminescence bleed-through can be described by a simple, distance-dependent factor, 

Dr. Marco Mauri developed an algorithm that was able to estimate bleed-through factors on a more 

complex plate, with many different luminescent wells of different intensities. The algorithm by 

estimating the “light spread function” from the calibration plate (where only a single luminescent 

strain is present) generates a deconvolution matrix (Dbest). The algorithm then uses the matrix Dbest 

to correct the bleed-through of any other measurement obtained under the same technical 

conditions.  

 

2.3.2 Experimental evaluation of the bleed-through correction algorithm 

To evaluate the robustness of the algorithm we first corrected the bleed through of the calibration 

plate, in which all wells except for E5 do not emit luminescence (Figure 2.3). After applying the 

deconvolution strategy, the luminescence bleed-through visible in the raw data (Figure 2.3A, B) 

was removed (Figure 3C, D), revealing the “true” experimental setup.  
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Figure 2.3. Deconvolution of luminescence signals in the calibration microplate. Luminescence values 

on the calibration plate 270 minutes after the induction of E. coli strain GFC0153 (in well E5) with 0.2% 

arabinose (A, C) and its time evolution in the wells of row E (B, D) for raw signal (A, B) and after applying 

the deconvolution algorithm (C, D). This figure was adapted with permission from Paper I (Mauri et al., 

2019). Copyright 2019 American Chemical Society. 

To test if the algorithm was able to remove bleed-through signals and at the same time 

preserving true luminescence signals close to the background, we designed a microplate experiment 

with the configuration illustrated in Figure 2.4.  
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Figure 2.4. Deconvolution of luminescence signals in the test microplate. Luminescence values on the 

test plate 270 minutes after the induction of E. coli strain GFC0153 with varying concentrations of arabinose 

(in wells A5-H5: 0%, 10-6%, 10-5%, 2x10-5%, 5x10-5%, 10-4%, 10-3%, 2x10-1%; in wells A7-H7: 2x10-1%, 10-

3%, 10-4%, 5x10-5%, 2x10-5%, 10-5%, 10-6%, 0%; in wells B6 and G6: 0%) (A, B). The time evolution of 

luminescence values is shown in the wells of row B (B, D) for raw signal (A, B), after applying the 

deconvolution algorithm (C, D). This figure was adapted with permission from Paper I (Mauri et al., 2019). 

Copyright 2019 American Chemical Society. 

This arrangement simulates a typical experimental condition were two wells (B6 and G6) were 

filled with weakly luminescent cultures resulting from the basal activity of a plasmid-borne, 

arabinose-inducible promoter (PBAD) fused with the luciferase reporter. Strong luminescent signals 

(obtained with the full induction of the arabinose promoter) were placed in the immediate 

neighborhood (wells A5-H5 and A7-H7). In this way, the signals of the weakly luminescent strains 

were completely masked by bleed-through from the strongly luminescent strains (Figure 2.4A). 

Moreover, comparing the luminescence of the second raw of the plate (B1-B12; Figure 2.4B) it is 

evident that the raw signal of the weakly luminescent strain (B6) is almost identical to the raw 

signal of a non-luminescent strain (B8). Applying the deconvolution algorithm, most of the spurious 

signals were removed and low-level luminescence in wells B6 and G6 could be clearly 

discriminated from the non-luminescent wells (Figure 2.4C, D and Figure 2.5A). Moreover, 

performing an independent measurement of the weak signals in the absence of bleed-through 

(Figure 2.5B), we obtained a signal that was strikingly identical (within the error tolerances), to the 

one recovered in presence of bleed-through (Figure 2.5C). This clearly shows that the 
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deconvolution procedure faithfully removes spurious bleed-through signals while preserving true 

luminescence signals close to background values. 

 

Figure 2.5. Comparison between deconvolution results and independent measurement. The 

luminescence values of wells B6 and G6 of the deconvolved test plate (A) as compared to independent 

measurements in the absence of bleed-through, for which E. coli strain GFC0153 in wells B6 and G6 was not 

induced with arabinose (B). Black and red lines in (C) represent the independently measured and the 

deconvolved signal, respectively. This figure was reprinted with permission from Paper I (Mauri et al., 

2019). Copyright 2019 American Chemical Society. 

In order to evaluate the robustness of the algorithm, we then analyzed different experimental 

setups. First, we evaluated if the correction algorithm was affected by a lower luminescence value 

in the calibration plate. To this end, we used a modified calibration plate with 6-fold weaker 

luminescence signal than in Figure 2.3 (Figure 2.6A) and corrected the raw data showed in Figure 

2.4A.  
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Figure 2.6. Quantification of luminescence bleed-through in the black calibration microplate for a 

calibration plate with low luminescence intensity. (A) The black calibration plate was prepared with a 

single mildly luminescent spot in the well E5. All data are background-subtracted and averaged over two 

experimental replicates. The background was obtained by averaging the signal of the wells indicated by the 

white crosses in the inset over the time before the addition of arabinose (induction time). The 3D-plot shows 

the observed luminescence signal at 270 minutes after the induction with 2x10-5% arabinose. (B) Time 

evolution of the observed luminescence signal of the E-row. The red line represents the instrument 

sensitivity value, defined as three times the standard deviation of the background value. (C) Luminescence 

bleed-through factor of the two shells closest to E5, in blue and green. Values were obtained dividing the 

observed signal from a specific well by the signal recorded in E5. The dashed lines indicate the time range 

over which the bleed-through was averaged to obtain in (D) the bleed-through factor as a function of the 

distance from E5 (green dots). The black solid line is the parameter-free prediction of the bleed-through. This 

figure was reprinted with permission from Paper I (Mauri et al., 2019). Copyright 2019 American Chemical 

Society. 

The results show almost identical values to the deconvolution obtained with the original 

calibration plate (Figure 2.7A, B, C). If we compare the bleed-through factors of the two calibration 

plates (strong and weak luminescence intensities) we can notice that they appear to be equal within 

error tolerances in a radius of 3 wells around the light-emitting well (Figure 2.7D). Beyond this 

distance, the bleed-through factors in the calibration plate with weak luminescence signal are 

slightly overestimated because the signal intensity drops below background levels. Thus, although 

the most accurate estimate for the deconvolution kernel is obtained with the strongest possible 

luminescence signal on the calibration plate, the deconvolution approach is robust with respect to 

(limited) variations in the maximal signal intensity on the calibration plate.  
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Figure 2.7. Deconvolution procedure using a calibration plate with low luminescence intensity. (A) 

Deconvolution of luminescence signals in the test microplate by using the calibration plate with low 

luminescence intensity. Luminescence values on the test plate 270 minutes after the induction of E. coli 

strain GFC0153 with varying concentrations of arabinose (in wells A5-H5: 0%, 10-6%, 10-5%, 2x10-5%, 

5x10-5%, 10-4%, 10-3%, 2x10-1%; in wells A7-H7: 2x10-1%, 10-3%, 10-4%, 5x10-5%, 2x10-5%, 10-5%, 10-6%, 

0%; in wells B6 and G6: 0%). (B) The time evolution of luminescence values is shown in the wells of row B 

after applying the deconvolution algorithm. (C) the luminescence values of wells B6 (top) and G6 (bottom) 

of the deconvolved test plate as compared to independent measurements in the absence of bleedthrough, for 

which E. coli strain GFC0153 in wells B6 and G6 was not induced with arabinose, as described in the main 

text. Black and red lines represent the independently measured and the deconvolved signal, respectively. (D) 

Comparison between bleed-through factor generated from the strongly induced luminescent strain (induced 

with 0.2% arabinose), from Figure 2.2 and the weakly induced luminescent strain (induced with 2x10-5% 

arabinose), from Figure 2.6 as a function of the distance from E5 as blue diamonds and green points, 

respectively. This figure was adapted with permission from Paper I (Mauri et al., 2019). Copyright 2019 

American Chemical Society. 

Next, we analyzed how wells with different optical density influence bleed-through over the 

plate. To do so, we designed a calibration plate were on one half (columns 1 to 5) was filled with 

the non-luminescence E. coli strain SV01 and the and on the other half (columns 6 to 12) with water 

(Figure 2.8A, B). The results show that the bleed-through factors are not influenced by the OD of 

surrounding wells (Figure 2.8C), indicating that the optical properties within individual wells do not 

critically affect bleed-through.  
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Figure 2.8. Optical density influence on the luminescence bleed-through. (A) Arrangement of the 

calibration plate: left half (columns 1 to 5) was filled with the non-luminescent E. coli strain SV01 and right 

half (columns 6 to 12) with water. Water and bacterial strain SV01 have two orders of magnitude difference 

in the measured OD600 (10-4 and 10-2, respectively), as shown from the OD600 measured along row E of the 

plate (B). (C) Bleed-through factors of water (blue diamonds), SV01 (magenta diamonds) and from the 

original calibration plate in Figure 2.2D (green diamonds). This figure was reprinted with permission from 

Paper I (Mauri et al., 2019). Copyright 2019 American Chemical Society. 

To further assess the robustness of the algorithm, we tested how different levels of luminescence 

bleed-through would affect the results of the deconvolution process. To this end, we designed a test 

plate (Figure 2.9), in which low, medium and strong luminescence signals (in columns 2, 7 and 12) 

were positioned adjacent to identical gradients of luminescence intensities (in columns 1, 6 and 11). 

Luminescence gradients were obtained by inducing a chromosomally integrated PBAD-luxCDABE 

reporter construct (strain GFC0214), while the low, medium and strong luminescence signals were 

obtained by non-luminescent E. coli strain, and E. coli strain GFC0153 induced with medium and 

high arabinose levels respectively. 170 minutes after induction with arabinose the raw data for the 

luminescence gradients are biased by the bleed-through strengths of the other luminescent strains 

(Figure 2.9A). This can be appreciated plotting dose-response curves of the (raw) luminescence 

gradients (Figure 2.9C), that show a 100-fold increase of the apparent basal promoter activity at 0% 

arabinose ranging from 5 RLU at low bleed-through (column 1) to 500 RLU at high bleed-through 

(column 11). Strikingly, after deconvolution, the dose-response curves at different bleed-through 

strength collapse on the curve with low bleed-through (Figure 2.9D). Furthermore, all wells loaded 

with media and the non-luminescent strain (Figure 2.9B) are also corrected for the apparent 

luminescence that appeared in the raw data (Figure 2.9A). This demonstrates that independently of 

the strength of the luminescence bleed-through that affects the plate, our algorithm is able to 

recover the real signals within error accuracy. 
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Figure 2.9. Effect of different bleed-through strengths on deconvolution. Luminescence values on the 

plate 170 minutes after the induction of E. coli strain GFC0214 (columns 1, 6 and 11), and of non-

luminescent E. coli strain SV01 (columns 2, 5 and 10) with varying concentrations of arabinose (in rows 1-7:  

10-2%, 8x10-5%, 4x10-5%, 2.5x10-5%, 1.6x10-5%, 1.3x10-5%, 10-5%, 0%). Luciferase expression in E. coli 

strain GFC0153 (columns 7 and 12) was induced with 2 x10-5% and 0.2% arabinose. Raw and deconvolved 

luminescence intensities in (A) and (B), respectively, were obtained from three independent biological 

replicates. (C) The comparison of luminescence intensities in column 1 (red dots), 6 (green dots) and 11 

(blue dots) at 170 minutes after induction with arabinose. (D) After deconvolution of the luminescence 

signals from (C), the three dose-response curves collapse on each other. Data points and error bars represent 

mean and standard deviations from three experimental replicates. This figure was reprinted with permission 

from Paper I (Mauri et al., 2019). Copyright 2019 American Chemical Society. 

To ultimately test the deconvolution algorithm we designed a test plate where highly luminescent 

strains of different intensities were arranged to yield the letters “LUX” in the well of a transparent 

plate (Figure 2.10A). This kind of plate does not protect against luminescence bleed-through at all, 

indeed, a single highly luminescent strain illuminates the whole microplate (Figure 2.10C, D) with 
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highest values of 104 RLU reached in the closest wells to the light-producing strain. Figure 2.10B 

illustrates the raw data of the test plate were bleed-through (in grey) masked real signals (green and 

blue lines representing “L” and “U”, respectively), which are not even close to the background 

value.   However, after generating a new correction plate (Figure 2.10C) and applying the 

deconvolution algorithm described above, we were able to recover the “true” signals composing the 

letters “LUX” (2.5x104 RLU, 8x104 RLU and 2x105 RLU respectively) on the plate and reduce 

spurious bleed-through signals, as shown in Figure 2.10F. 

 

 

Figure 2.10. Deconvolution of luminescence signals in a transparent microplate. Luminescence values at 

137 minutes and time evolution of the calibration plate, raw test plate and deconvolved test plate in (A, B), 

(C, D) and (E, F), respectively. In the test plate, we arranged luminescent E. coli strain GFC0153 to compose 

the word “LUX”. All wells in the letter “L” were induced with 10-5% arabinose, those in the letter “U” with 

2x10-5% arabinose and those in “X” with 5x10-5% arabinose. Panel (B) shows the time evolution of 

luminescence in row E in the calibration plate. Panels (D) and (F) show the time evolution of the wells in (C) 

and (E), respectively, that contribute to “L” (green), “U” (blue), “X” (red), as well as the remaining wells 

(grey). Data points and error bars represent mean and standard deviations from three experimental replicates. 

This figure was adapted with permission from Paper I (Mauri et al., 2019). Copyright 2019 American 

Chemical Society. 

Overall, the results of all experiments showed the precision and reliability of our bleed-through 

correction algorithm. Indeed, we were able to correct the data obtained from different experimental 

setups involving high and low luminescent strains, placed in close proximity in the well of a 

microplate. In all cases, we were able to recover the otherwise masked weak luciferase signal, 

within error tolerance.  

2.4 Summary 

In this chapter, we introduced the E. coli strain SV01, as reporter strain to characterize novel 

synthetic circuits. This strain has the endogenous lacI copy knocked out, to allow for networks 

containing LacI. Moreover, it allows for a graded, arabinose-dependent induction of PBAD promoter. 
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These modifications make SV01 a perfect candidate for the utilization of circuits encoding classical 

transcriptional regulators, like the lactose operon regulator (LacI48) and the arabinose operon 

regulator (AraC49), in addition to the tetracycline operon regulator (TetR50), due to its exogenous 

nature. In this study, the use of such regulators is fundamental, due to the complexity of the natural 

mechanisms that control ECF σ factor activation.  

High throughput methodologies such plate reader experiments, represent an optimal choice to 

characterize multiple synthetic circuits at the same time, in a single experiment. In order to 

extensively use microplate experiments for the characterization of our synthetic circuits, we 

introduced a luciferase reporter to measure the circuit output. We showed that this reporter 

increases both resolutions, time response and dynamic range of the circuit output, when compared 

with the widely used GFP fluorophore (Figure 2.1). However, in microplate experiments, the finite 

distance between photodetector and microplate leads to the false positive detection of luminescence 

activities from neighboring wells on the microplate. As demonstrated in Section 2.3, the 

luminescence bleed-through clearly biases results and therefore limits the otherwise exquisite 

signal-to-background ratio of luminescence reporters. Hence, we developed a deconvolution 

method to estimate the true luminescence intensities in all wells of a fully filled microplate. Since 

our method successfully applied to luminescence data obtained from several different experimental 

setups, we applied our correction algorithm to all the microplate reader experiments, performed 

with strains harboring a luciferase reporter, presented in this study. 



 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ECF toolbox: a modular framework for fast ECF σ-based circuit 

generation, from a library of genetic parts 
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This chapter illustrates the generation of an ECF toolbox, that represents a framework for the fast 

modular assembly of ECF σ-based, synthetic circuits. The toolbox, based on the MoClo system, 

contains novel MoClo compatible vectors, that we designed for the expression and the 

chromosomal integration of the genetic circuits in E. coli. Moreover, it contains a library of genetic 

parts, encoded in the MoClo standard, that we precisely characterized in order to generate ECF σ-

based synthetic circuits. 

3.1 A novel MoClo expression vector: pSVM-mc 

In Section 1.2.1, we introduced the MoClo framework24,26 as one of the finest DNA manipulation 

strategies for the bottom-up design of synthetic circuits. The system, based on Golden gate 

assembly31, includes a series of vectors organized in levels (0-1-M and P), for the assembly of the 

genetic parts in circuits with increasing complexity. Thus, a library of level 0 part, can be combined 

into a level 1 destination vector, generating a transcription unit (TU). Multiple TUs can then be 

assembled into level M and subsequently, from level M to level P generating more complex genetic 

pathways (Figure 1.5). However, since the MoClo was mainly designed to simplify the multi-part 

assembly, the majority of MoClo vectors possess a high copy number origin of replication (pMB1 

or ColE1 ori). This allows for high plasmid yield during the cloning process but can lead to cellular 

stress when the plasmid is used as reporter vector. Indeed, the maintenance of such a high copy 

number plasmid can generate metabolic burden to the cell103. However, the MoClo toolbox also 

provides a level P destination vector (pICH82094) that features a high copy number origin of 

replication (ColE1) before cloning and a medium origin of replication (p15A) after cloning26. 

Hence, this plasmid represents a suitable medium copy reporter vector, however, existing only in 

level P, it limits the speed of circuit generation when starting from level 1 parts. Indeed, due to the 

characteristics of the system, level 1 parts have first to be cloned into a level M destination vector, 

to then be sub-cloned in a level P vector.  

In order to address this problem, we created a variant of this medium copy vector, possessing 

level M fusion sites. To do so, we used Gibson assembly, PCR-amplifying the plasmid backbone 

from pICH82094, including the kanamycin resistance cassette and the medium copy number origin 

of replication. We then amplified the multicloning site of pICH82094, using primers that provide 

the homology region necessary for the Gibson assembly and at the same time allowed the exchange 

of the MoClo fusion sites from level P to level M. Finally we fused the two PCR products, 

generated the new MoClo reporter plasmid pSVM-mc, possessing two origins of replication and 

level M compatibility (Figure 3.1 and Section 7.4).  
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Figure 3.1. Blueprint of MoClo compatible reporter vector pSVM-mc. The vector possesses a double 

origin of replication (ColE1 and p15a) and a kanamycin resistance cassette (KMR). During the cloning 

procedure, the use of the Type IIs restriction enzyme BpiI allows the generation of level M compatible 

fusion sites (TGCC-GGGA) and simultaneous excision of a DNA fragment containing lacZα and the high 

copy number origin of replication ColE1. Like the original MoClo level M and P destination vectors, pSVM-

mc must be used in combination with the appropriate end-linker, (see Section 1.2.1) that will add a second 

BsaI site for further cloning of the parts in level P-compatible destination vectors (see main text for 

compatibility with level P vectors).  

 

The majority of the complex synthetic circuits, analyzed in this study, are assembled, on average, 

by a combination of 5 level 1 TUs. Thus, encoding the genetic circuits into the original level P 

medium copy vector would have required, for each assembly, an extra intermediate cloning step 

using level M destination vectors. Hence, the novel pSVM-mc vector offers the fastest way for 

assembling MoClo encoded level 1 parts onto a medium copy expression plasmid. However, since 

this vector possess the same resistance cassette of level P vectors (kanamycin), a genetic circuit 

encoded on pSVM-mc does not allow, in principle, cycling between level M and level P. The usage 

of the same resistance cassette, in pSVM-mc and level P vectors, is due to the fact that during the 

vector construction we were not able to implement the original level M resistance cassette 

(spectinomycin), in combination with the medium origin of replication p15A. This is probably due 

to the promoter characteristics of the spectinomycin cassette, that did not allow the proper 

expression of the antibiotic gene when the construct was encoded on a lower copy plasmid. 

However, this represents a minor limitation, mainly because the genetic constructs encoded on 

pSVM-mc represent the finalized version of a circuit that, usually, do not require further expansion. 

Moreover, we further developed a new class of level M and P MoClo compatible vectors (presented 

in the following section) possessing additional resistance cassettes. Even though these vectors are 

meant to be used for the chromosomal integration of MoClo compatible genetic constructs, they can 

also be used as classic MoClo cloning vectors. 
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3.2 Expanding the MoClo: CRIMoClo vectors 

The results of this section are included in Paper II (under review in Journal of Biological 

Engineering) 

 

As illustrated in the introductory Section 1.2, the MoClo system represents a valuable tool for 

synthetic biology, allowing for simple library propagation and combinatorial assembly from 

reusable parts24. However, even though the system allows for complex genetic circuit generation, to 

date all circuits are assembled on low and multi-copy plasmids. Encoding the genetic constructs on 

multi-copy plasmids presents certain advantages (e.g. amplification of the output signal of a 

synthetic circuit, or increasing the production yield of a recombinant protein), however, it may also 

lead to overproduction of proteins. This can, in turn, generate adverse effects on growth and stress 

responses that are not present at lower levels of expression104. To circumvent these issues, a general 

strategy consists in lowering the copy number of the genetic constructs via chromosomal 

integration. As introduced in Section 1.3, currently there are different strategies for integrating 

DNA from plasmids into the E. coli chromosome,  mainly based on recombineering-based 

strategies37,38,42 and bacteriophage integrases39,40. However, these methodologies are normally 

limited in terms of speed and modularity of the circuits assembly. Thus, it would be desirable, to 

have a system that combines the advantages of the combinatorial assembly, with a highly efficient 

chromosomal integration strategy. While a lambda Red-based recombination framework, that 

facilitated the generation and the integration of multi-part genetic constructs, was provided by 

Schindler et. al.30, a similar system has never been developed for strategies that rely on 

bacteriophage integrases.  

 The principal system that utilizes bacteriophage integrases for the chromosomal integration is 

based on “Conditional-replication, integration, and modular” (CRIM) plasmids39, which features 

were described in detail in Section 1.3. Briefly, these plasmids allow for the insertion of large DNA 

fragments at different bacterial phage-attachment (attB) sites. The integration is due to site-specific 

recombination and it is driven via expression of phage-derived integrase (int) encoded on a helper 

plasmid. Thanks to the proprieties of the system the integration of the CRIM and the cure of the 

helper plasmid occur simultaneously. Moreover, since CRIM plasmids can only replicate in a host 

carrying the pir gene, the integrant clones can be easily selected by transforming a pir- host with 

CRIM plasmids, under antibiotic selection39 (Figure 1.6). These characteristics make CRIM 

plasmids a fast and reliable strategy for E. coli chromosomal integration, however, as introduced 

above, CRIM-based methods lack standardization, thus limiting the speed of DNA 

assembly/integration. Moreover, the phage attachment (att) sites have never been characterized in 

terms of gene expression orthogonality. Hence, in order to increase the speed of circuit generation 

and integration, allowing at the same time the recycling of the genetic parts, we decided to combine 

the most valuable CRIM features with the modularity of the MoClo system. By doing so, we 

created a set of 32 novels CRIMoClo plasmids that facilitate the generation and the integration of 

synthetic circuits, built from reusable MoClo genetic parts. Further, we compared the expression 

levels of various reporter constructs, when integrated, using CRIMoClo plasmids, into 4 different 

phage attachment sites, thus assaying the suitability of the 4 att sites for the orthogonal expression 

of synthetic circuits. 
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3.2.1 CRIMoClo features 

 

As illustrated previously, the MoClo system provides a series of vectors that are organized in 

different levels (0. 1, M and P) defined by a specific resistance cassette and different 4bp 

overhangs. Since in the MoClo system the basic DNA parts and the transcription units are encoded 

in level 0 and level 1 vectors24,26, we generated CRIMoClo plasmids possessing level M 

(pAGM8031) and level P (pICH75322) fusion sites. Thus, like in the original MoClo framework, 

up to six level 1 TUs can be cloned in CRIMoClo level M destination vectors, as well as in MoClo 

level M destination vectors. Subsequently, up to six level M parts (encoded on MoClo or 

CRIMoClo plasmids) can be assembled to level P destination vectors of both systems. Thus, since 

both CRIMoClo M and CRIMoClo P plasmids can also be integrated into the genome of E. coli, the 

system allows for a seamless transition between MoClo destination vectors, MoClo compatible 

expression vectors and chromosomal integration (Figure 3.2). 

 

 
Figure 3.2. Joint use of CRIMoClo plasmids (level M and P) with other vectors in the MoClo system. 

Any transcription unit generated in Level 1 can be cloned into high/medium copy number MoClo plasmids 

or be chromosomally integrated using CRIMoClo plasmids. The design of CRIMoClo plasmids allows for a 

seamless transition between the two systems. 

 

Within the level M and P cloning sites of CRIMoClo plasmids, we maintained the lacZ gene 

from E. coli, for blue/white selection and added a high copy number origin of replication (ColE1) 

derived from MoClo vector pICH820924. CRIMoClo plasmids also possess the γ conditional origin 

of replication of R6K, which requires the trans-acting π protein (encoded by pir) for replication, 

allowing them to replicate at a medium (15 per cell) plasmid copy number in pir+ E. coli hosts, but 

not in normal (non-pir) hosts105. This setup with dual origins of replication allows propagation of 

the CRIMoClo vectors at high copy number before cloning a construct (relying on ColE1), and their 

conversion into suicide vectors after cloning (relying on R6K), which in turn allow efficient 

chromosomal integration in non-pir hosts (see below). Moreover, in our design, the MoClo cloning 

module is flanked by bacterial (rgnB) and phage λ (tL3) terminators to insulate the insert from 

transcriptional read-through. Last, each CRIMoClo vector exists in four variants that differ in the 

selectable resistance markers, allowing high flexibility while maintaining the capability of 

switching between level M and level P. CRIM plasmids can be integrated efficiently in different 

phage attachment sites into the chromosome of E. coli and other bacteria39. To maintain this feature, 
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CRIMoClo plasmids possess four phage attachment sites (attHK022, attP21, attϕ80, attλ) that showed 

the highest integration efficiency before39(Figure 3.3A). A detailed description of the strategies used 

for the generation of CRIM plasmids is available in Section 7.5. 

 

 
Figure 3.3. CRIMoClo vectors and chromosomal integration. (A) Blueprint of CRIMoClo plasmids. 

Each plasmid has a MoClo-compatible cloning cassette (purple box), flanked by two terminators (RGB and 

tL3 depicted in grey) and followed by a selectable resistance marker (orange arrows), a γ conditional-

replication origin (grey box), both enclosed between two FRT sites (grey arrows). All CRIMoClo plasmids 

have one of four different phage attachment sites (green boxes) for the integration into the chromosome by 

site-specific recombination. (B) Locations of chromosomal attB sites into the annotated genome of E. coli 

BW25113 (left) and site-specific recombination of CRIMoClo-based plasmid into the attHK022 (right). 

The chromosomal integration into one of the attB sites follows the same strategy of CRIM plasmids 

(Figure 3.3B), where a non-pir E. coli strain carrying a CRIM helper plasmid (expressing the 

integrase specific to the respective attB site on the chromosome39) is transformed with the 

CRIMoClo-based plasmid. Alternatively, CRIMoClo and helper plasmids can be efficiently co-

transformed (see Section 3.2.3) using the transformation and storage solution (TSS) 
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methodology106. Independent of the preferred strategy, expression of the integrase gene encoded in 

the helper plasmid is induced at elevated temperatures during the transformation procedure (as 

described in Section 7.6), and since the helper plasmids are also temperature-sensitive for 

replication, integration and curing of the helper plasmid occur in the same incubation step. Single 

integration events can be then screened by colony PCR with four primers (P1-P2-P3-P4; see Table 

3.1) that allow the distinction between single, multiple, and no integration events (as described 

previously39). Like the original CRIM plasmids, CRIMoClo plasmids can also be excised efficiently 

from the chromosome by another round of helper plasmid transformation and excisionase (Xis) 

expression39. 

attB site PCR fragment size (bp) 

 
P1-P2 P2-P3 P3-P4 P1-P4 

HK022 499 583 824 740 

P21 767 881 620 506 

ф80 611 797 732 546 

λ 787 712 666 741 

 

Table 3.1. The predicted size of PCR fragments for attB sites, using primers P1-P2-P3-P4. Successful 

integration events at each attB site are revealed by two fragments generated by P1-P2 and P3-P4 (highlighted 

in green). Recombinants with two (or more) CRIMoClo plasmids at the attB site show, in addition, a third 

fragment generated by P2-P3. False positives (non-integrants) are revealed by the PCR product generated by 

P1 to P4 (highlighted in red).  

 

Based on this design we created a combinatorial set of 32 CRIMoClo plasmids featuring all 

permutations of four phage attachment sites (attHK022, attP21, attϕ80, attλ), four resistance cassettes 

(chloramphenicol, kanamycin, spectinomycin, gentamicin) and compatibility with two MoClo 

levels (M and P).  In theory, this now allows efficient assembly and chromosomal integration of 

synthetic genetic circuits in only four days, starting from level 1 transcription units. Moreover, the 

availability of each plasmid with one of four resistance cassettes should allow, in principle, 

sequential integration in different att sites without the necessity of recombining the resistance 

cassette after each integration step. 

 

3.2.2 Insulation and robustness of gene expression at attB sites  

 

To demonstrate the versatility of CRIMoClo plasmids for synthetic biology applications, we 

evaluated the modularity of chromosomal integration into the four attB sites. To this end, we 

compared the expression of the same reporter constructs integrated into each of the attB sites. The 

position of the integration sites (attB) in the chromosome of E. coli BW25113 (the closest parental 

strain of our reporter strain SV01 with an annotated genome) is shown in Figure 3.3B. Since 

essential chromosomal genes lie between the different integration sites and since all CRIMoClo 

plasmids are integrated into the same relative orientation, recombination among them does not lead 
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to genome instability, as previously described39. In order to evaluate the gene expression of the four 

attB sites, we used the PBAD-lux reporter construct illustrated in the previous sections. We, 

therefore, sub-cloned this transcription unit, encoded on MoClo level 1 vector, in all 16 CRIMoClo 

M plasmids (all combinations of four different att sites and four selection markers) simultaneously 

in 1 day. After construct verification and plasmid isolation (day 2) we integrated them in the four 

different phage attachment sites (attHK022, attP21, attϕ80, attλ) of E. coli strain SV01 (day 3). On day 4 

we tested the clones with colony PCR and strikingly, single integration events showed a success 

rate of 97% for all att sites and selection markers.  

The expression of the luciferase cassette was benchmarked by growing strains in defined 

minimal media and assaying luciferase activity continuously for 8 h after the addition of the inducer 

(Figure 3.4A). We found that in all loci the luciferase signal was not detectable in the absence of the 

inducer, while, after induction, the luciferase operon was expressed from all promoters (∼10,000- to 

100,000-fold over empty vector control depending on the inducer concentration). Strikingly, in all 

loci, the expression dynamics (corresponding to different inducer levels) measured in the different 

att sites, are almost identical. In fact, when quantitatively comparing the luciferase activities 

between the different loci, we find a striking correlation of the detected signals for each arabinose 

concentration at individual time points (Figure 3.5A). This shows that integration into the four att 

sites leads to highly reproducible gene expression behavior, suggesting that the loci can be used in 

an interchangeable and orthogonal manner for the chromosomal integration of synthetic circuits. 
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Figure 3.4. Dynamical response of luciferase activity measured from four phage attachment sites. 

Comparison of the dynamical response of luciferase activity of the PBAD-lux construct integrated into attHK022, 

attP21, attϕ80, attλ in forward (A) and reverse (B) orientation, after the addition of indicated concentrations of 

arabinose at t=0 h. The results are averaged from at least two independent biological assays and error bars 

denote standard deviations. 
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Since each CRIMoClo plasmid exists with four different resistance cassettes (Figure 3.3A), we 

wanted to test the potential influence of the resistance cassettes on reporter activity after 

chromosomal integration. To this end, we integrated and measured the expression level of PBAD-lux 

integrated into all att sites, using CRIMoClo plasmid possessing different selection markers (Figure 

3.5B and Appendix Figure 9.1-9.3). The results show again virtually any difference in the 

expression level, suggesting that also the different resistance cassettes can be used interchangeably. 

  

 
Figure 3.5. Orthogonality of reporter gene expression between different integration sites and between 

different resistance cassettes used for integration. (A) Correlation graphs between the luciferase activities 

in Figure 3.4A, obtained from PBAD-lux integrated into different att sites. Each data point represents mean 

and standard deviation measured at a the same time point in Figure 3.4A, while the color code indicates the 

inducer concentration as in Figure 3.4 (B) Correlation graphs between luciferase activities obtained from 

PBAD-lux integrated into attHK022, using CRIMoClo plasmids with four indicated resistance cassettes 

(chloramphenicol, kanamycin, spectinomycin, gentamicin). All data indicate averages from at least two 

independent biological assays and error bars denote standard deviations.  

The position and orientation of genes on the chromosome may affect the expression pattern of a 

neighboring transcription unit (TU), e.g., due to transcription-induced DNA supercoiling, affecting 

the activity of neighboring promoters107. Even though the different CRIMoClo plasmids are 

integrated into the same relative direction, the orientation of the cloned construct can be easily 

inverted using the proprieties of the MoClo system (e.g. starting with level 1 parts cloned in reverse 

orientation). To test whether the expression of a TU is influenced by its orientation in the four att 

sites on the genome, we integrated PBAD-lux in reverse orientation in all loci (Figure 3.4B). The 

results show again no difference in the expression level of the construct from the different att sites. 

Moreover, the expression levels of constructs cloned in forward and reverse orientation are virtually 
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identical (Figure 3.4A and 3.4B), indicating that the circuits are well insulated from the genetic 

context and that the att sites are not affected by effects such DNA supercoiling.  

Overall, these results show that the four phage attachment sites are well-insulated from their 

genetic context and that the different positions and orientations of the transcription units on the 

chromosome do not influence the dynamics of reporter gene expression. Therefore, our experiments 

demonstrate orthogonality of the four phage attachment sites of the CRIMoClo system, which 

makes them ideally suited for synthetic biology applications. 

 

3.2.3 Multi-locus integrations 

 

The high-efficiency of site-specific recombination combined with the availability of four 

different resistance cassettes should, in principle, enable fast and reliable multi-locus integrations. 

To demonstrate this, we sequentially integrated four different reporter cassettes into the E. coli 

chromosome, without removing the selectable marker after each integration step. The novel 

transcription units were built fusing the inducible PBAD
 
 promoter with different reporter genes (gfp, 

mCherry, mTurquoise). To achieve sequential multi-integration, we used the E. coli strain harboring 

PBAD-lux in attHK022 (GFC0214) characterized above, and integrated PBAD-gfp in attP21, as described 

in Section 7.7. The newly generated strain (GFC0505) was then used for the integration of PBAD-

mCherry in attϕ80 (GFC0533) and subsequently PBAD-mTurquoise in the last available att site (attλ), 

generating strain GFC0547. We analyzed the expression level of the different reporter constructs 

expressed in the newly generated strains (single, double, triple and quadruple integration) and 

compared them with single integration strains, were each reporter construct was integrated in one of 

the four phage attachment sites individually (GFC0214, GFC0514, GFC0531, GFC0544 harboring 

PBAD-lux::attHK022, PBAD-gfp::attP21, PBAD-mCherry::attϕ80, PBAD-mTurquoise::attλ, respectively). All 

the strains were monitored within time course experiments for optical density (measured at 600 nm) 

and the four reporter activities (also when one or more of the reporters were absent) following the 

expression of the reporters, in presence and absence of the inducer. The histogram in Figure 3.6 

shows the dynamic range (reporter signal of induced strain, divided by reporter signal of uninduced 

strain), measured after 10 h, of all single integrant strains in comparison with strains generated with 

single, double, triple or quadruple integration events.  
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Figure 3.6. Dynamic range of four reporter constructs measured from four phage attachment sites. 

The dynamic range of four different arabinose-inducible reporter constructs, integrated sequentially into the 

genome of E. coli in four phage attachment sites (attHK022, attP21, attϕ80, attλ) and control strains in which the 

same reporter systems are integrated singularly in one of four phage attachment site. The dynamic range is 

measured as the luminescence induced with 0.2% of arabinose, divided by the basal activity of the promoter 

in the absence of arabinose. All data indicate averages from at least two independent biological assays and 

error bars denote standard deviations. 

 

Overall, we found that the transcription units were functional after the integration (Figure 3.6). 

The luciferase construct showed the highest dynamic range (∼3.8x104-fold induction), followed by 

mCherry (∼3.5x103-fold induction), GFP (∼8.9-fold induction) and mTurquoise (∼1.4-fold 

induction). Moreover, the signal measured in the strains that lack one or more reporter system 

(single, double, and triple integration), was not detectable in case of GFP and mCherry, or close to 

the lower detection limit for mTurquoise, indicating the absence of cross-talk among different 

reporters. Strikingly the dynamic range values for single integrant strains are identical (within the 

error tolerances) to the one calculated for single, double triple and quadruple integration strains 

(Figure 3.6), showing that the sequential integration of each reporter construct does not affect the 

expression level of the previously integrated ones. Also, the simultaneous presence of multiple 

copies of PBAD in the same strain does not lead to instability or change in reporter expression levels, 

suggesting that the potential recombination among the loci does not occur. Finally, these results 



ECF toolbox: a modular framework for fast ECF σ-based circuit generation, from a library of genetic parts 

45 
 

show that the multi-integration strategy using CRIMoClo plasmids is highly flexible and does not 

require time-consuming removal of resistance cassettes after the individual integration steps. 

Overall, our experiments showed that the CRIMoClo system allows for the generation of genetic 

circuits from reusable, MoClo-compatible parts and their reliable integration into 4 att sites into the 

genome of E. coli. We showed that the expression levels of a reporter construct from each locus is 

highly similar and independent by the orientation. Moreover, utilizing four different resistance 

module CRIMoClo system allows for easy, fast, and reliable multiple integrations. With these 

features the CRIMoClo system brings the combinatorial assembly to the next step, making possible 

a flawless transition between plasmid-encoded and chromosomally integrated genetic circuits. 

Finally, used together, MoClo and CRIMoClo systems, allow for the generation and simultaneous 

utilization of plasmid-borne and chromosomally integrated genetic modules. We will extensively 

use this possibility in the next chapters, showing how the combination of the two systems allows 

fine-tuning the stoichiometry of the different components of a synthetic circuit, maximizing the 

downstream output signal dynamic. 

 

3.3 A library of parts encoded according to the MoClo standard 

 

In the previous sections, we presented our expansions to the MoClo system, that now can count 

on a novel medium copy number expression vector, as well as on a set of 32 modular CRIMoClo 

plasmids for fast and reliable chromosomal integration. As mentioned above the MoClo framework 

represent an attractive solution to perform combinatorial assembly from a library of genetic parts. 

Hence, in this section, we present our MoClo-encoded part library that served as a base for the 

construction of all the genetic circuits analyzed in this study.  

As mentioned previously, the entry vectors of the MoClo system are defined as level 0, thus we 

encoded our library of basic genetic parts within different destination vectors belonging to this 

level. As illustrated in Section 1.2.1, upon PCR amplification with primers that include the Type IIS 

restriction site BpiI and the appropriate fusion sites, a genetic part can be easily cloned in one of 16 

different level 0 vectors, generating a level 0 part. It is important to notice that this is the only step 

in the MoClo system that requires PCR amplification, indeed, the next cloning steps only require 

the level 0 parts generated by the user and an empty MoClo vector belonging to the next level. 

According to the proprieties of the MoClo framework, any transcription unit assembled in level 1 

must begin with a part cloned in a level 0 vector having the left fusion site “GGAG” and end with a 

part cloned in a level 0 vector having the right fusion site “CGCT”24(Figure 3.7). In order to fulfill 

this requirement, we cloned the different genetic parts of the library (promoters, ribosome binding 

sequences, coding sequences, and terminators) in specific level 0 vectors (pICH41233, pICH41246, 

pICH41308, pICH41276 respectively24) as illustrated in Figure 3.7.  
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Figure 3.7. MoClo level 0 vectors and positioning of MoClo-encoded library parts. Yellow boxes 

indicate the position (within different level 0 destination vectors) and the category of different library parts. 

The original names of the MoClo vectors (pICH and pAGM series) and the sequence of the 4bp fusion sites 

are indicated. We assigned codes from 0-1 to 0-16 to the MoClo vectors in order to simplify the 

identification of specific MoClo-encoded parts within the library. The complete list of our level 0 part library 

is reported in Table 9.3. 

We selected these vectors in order to maintain maximum flexibility for future expansion of the 

library. For instance, a coding sequence that is normally cloned in the vector pICH41308 can be 

also cloned in the vector pAGM1287 and fused with a protein tag cloned in the vector pAGM1301 

(Figure 3.7). In this way is still possible to join the newly generated tagged sequence with the 

promoters, ribosome binding sequences and terminators already present in the library. We also 

cloned short (15bp) and long (300bp) random DNA sequences that cover each level 0 position. We 

refer to these sequences as dummy (Du) sequences, as they can be used to substitute any part in a 

transcription unit. In this way we facilitate, for instance, the creation of an operon, using 

transcription units that lack the promoter or the terminator. Dummy sequences are also suitable for 

the generation of insulator elements, especially in combination with terminators (see Section 3.3.4). 

Finally, for easy identification of the library parts, we named the level 0 vectors from 0-1 to 0-16, as 

indicated in Figure 3.7. Thus, for instance, all the parts encoded in the vector pICH41233 will be 

named pXX0-1, where “XX” represents the initials of the creator of the part and 0-1 identifies the 

position of the part within the library (Figure 3.7).  

Promoters, ribosome binding sites (RBS), coding sequences (CDS) and terminators are the basic 

DNA components that serve for the generation of genetic circuits. Hence, we selected these DNA 

parts from different sources in order to build our library encoded in MoClo level 0 vectors. In order 

to precisely control the transcription in the synthetic circuit, the library includes three inducible 

promoter parts (PBAD
108

, Ptet
109

, PLlac0-1
110) together with their regulatory proteins (AraC49 TetR50, 

LacI48) encoded in divergent orientation. In this way, we ensured to maintain the stoichiometry 

between the promoter and the regulatory protein (see Section 3.3.1). In addition, the library contains 

two members of the iGEM Anderson constitutive promoter collection, having low and medium 
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strength (BBa_J23117, BBa_J23108; http://parts.igem.org/Promoters/Catalog/Anderson). Finally, 

the library includes 15 ecf promoters that previously showed high fold induction and high 

orthogonality in E. coli63(see Section 3.3.3). 

In order to tune the translational efficiency of the mRNA, we included in the library 12 ribosome 

binding sites (RBS) possessing different strengths111(see Section 3.3.2). Moreover, we also added 

12 synthetic terminators, to mediate transcriptional termination. These terminators have sufficient 

sequence diversity to reduce homologous recombination when used together in a design112, a 

fundamental characteristic in order to combine them in complex synthetic circuits (see Section 

3.3.4). To monitor gene expression we added to the library five different reporters, including four 

fluorophores (GFP mut-396, YFP113, mCherry80, mTurquoise114) and the luciferase cassette from 

Photorhabdus luminescens97. Finally, to control the expression of the synthetic circuits the library 

contains 15 ECF σ factors, 14 anti-σ factors63, and 21 truncated (soluble) anti-σ factors variants that 

we created in this study (see Section 3.3.3 and Section 5.2). 

Upon their incorporation in the library, all the genetic parts were sequenced. Moreover, in some 

cases, we also performed some modifications, prior to their insertion into the library. For instance, 

we added a different strong terminator sequence at the end of each gene encoding the regulatory 

proteins TetR, AraC, and LacI (see Section 7.8). This allows the usage of these parts in complex 

genetic circuits, limiting the interference with the expression of neighboring genes. Further, some 

coding sequences required the removal of BpiI or BsaI restriction sites (Table 9.3). In this case, we 

ensured to perform synonymous mutations generating, at the same time, a codon with the same, or 

enhanced translation efficiency in E. coli. A detailed description of the strategies used for the 

generation of the parts included library is available in Section 7.8. The complete list of the level 0 

part library is available in Table 9.3.  

 

3.3.1 Part characterization: Promoters 

 

Most of the synthetic regulatory circuits built to date are based on classic transcriptional 

regulators such as TetR, AraC or LacI. These regulators and the relative inducible promoters allow 

for precise tuning of the expression level, upon different inducer concentrations. Another advantage 

is represented by the fact that different inducers can also be used at the same time, allowing for the 

combination of these promoters in a single bacterial cell110. Finally as introduced in Section 2.1, the 

usage of such regulators is also essential to control the expression of ECF σ factors. For the above-

mentioned reasons, we decided to include the three mostly orthogonal inducible promoters, that are 

controlled by these regulators, in our library. 

In case of TetR, we included the natural cognate promoters Ptet, that in the “OFF-state” (absence 

of the inducer) is tightly repressed and can be activated, over a broad dynamic range, by tuning the 

amounts of the non-toxic inducer anhydrotetracycline (ATc)50. Indeed, the repression of Ptet by 

TetR is very efficient and orthogonal, due to a high binding constant of TetR to the operator 

sequence tetO and its low affinity for non-operator sequences when compared with other 

repressors115,116. In case of AraC, we also included the natural cognate promoter PBAD, since it was 

recently demonstrated, by Kogenaru and Tans, that this promoter modulates the gene expression 

with a high (up to 898-fold) output dynamic range80. Moreover, the authors measured the promoter 

activity using the SV01 closely related strain MK01 (see Section 2.1), thus enhancing our chances 

of obtaining a similarly high fold-induction, by using this promoter in our experimental conditions. 



ECF toolbox: a modular framework for fast ECF σ-based circuit generation, from a library of genetic parts 

48 
 

In the same work, the authors also show that the natural Plac promoter, controlled by the LacI 

repressor, modulates the gene expression only up to 23-fold80. For this reason, in the case of LacI, 

we selected the IPTG inducible promoter PLlac0-1 created by Lutz and Bujard110. In their work, they 

used the phage lambda promoter PL, that is commonly induced by inactivating the repressor cI 857 

via a temperature shift, and replaced the cI binding sites with sequences encoding the operator of 

the lac operon (lacO1). In this way, they obtained an IPTG inducible promoter whose activation 

was not dependent by temperature shift (like in the case of PL), nor by the activating complex 

CRP/cAMP (like in the case of Plac) and that displayed a dynamic range ~600 fold110.  

To extensively use these promoters and control gene expression in our synthetic circuits, we 

characterized their dynamic response to the inducers, in our experimental conditions. These include 

the MOPS minimal medium that we use for our assays (see Section 7.1), and our reporter systems 

(plasmid-borne with an average copy number of 50 per cell, or chromosomally integrated) 

expressed in the strain SV01. In order to characterize the three inducible promoters, we generated 

three different TUs, where each of the promoters was fused with the luciferase cassette (PBAD-lux, 

Ptet-lux, and PLlac0-1-lux). We tested these constructs encoded on the medium copy plasmid pSVM-

mc and when chromosomally integrated, assaying the response of the luciferase upon the addition 

of the relative inducers (arabinose, ATc, IPTG) at increasing concentrations (Figure 3.8). 
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Figure 3.8. Comparison of the dynamical response of three inducible promoters measured in two 

genetic configurations. Comparison of the dynamical response of luciferase activity, expressed from three 

inducible promoters in two genetic configurations, after the addition of the indicated concentrations of 

inducers at t=0 h (grey dashed line). The reporter activities are shown in relative luminescence units, 

normalized by the optical density measured at 600 nm. The red dashed line represents the low detection limit 

of the plate reader. The constructs indicated in A, C, E are encoded on the medium copy number plasmid 

pSVM-mc, while the constructs indicated in  B, D, F are integrated at the phage HK022 attachment site into 

the genome of E. coli. The indicated fold inductions are measured as the luminescence induced with the 

highest inducer concentration indicated, divided by the basal activity of the promoter in the absence of 

inducer at time t = 6 h. The results are averaged from at least two independent biological assays and error 

bars denote standard deviations.  

Overall we found that all the promoters are inducible with the TUs encoded in both 

configurations (plasmid-borne; Figure 3.8A, C, E and chromosomally integrated; Figure 3.8B, D, 

F). Interestingly, the plasmid-borne Ptet promoter, showed, for ATc inductions below 10ng/mL, ~2 

fold decay in luciferase signal from t = 5h to the end of the measurement (Figure 3.8C). Since the 
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ATc is light sensitive117, we reasoned that the signal decay may be caused by the relatively low ATc 

concentrations, together with the high levels of light produced by the strains. This seems to be 

confirmed by the fact that the signal decay is less pronounced (<2 fold) in the chromosomally 

integrated construct, that show ~2 fold lower RLU/OD600 signal for the same inducer concentrations 

(Figure 3.8C, D). Moreover, the signal decay is completely absent for the two highest, induction 

levels (ATc 10 ng/mL and ATc 100 ng/mL) that allow full saturation of the Ptet promoter in both 

genetic configurations (Figure 3.8C, D).  

To compare the characteristics of all promoters, we reported, in Figure 3.8, the fold inductions 

(calculated taking the luciferase signal relative to the highest induction level divided by the basal 

activity of the uninduced constructs) of all strains, 6 hours after inducer addition. The promoters 

display marginal differences in the dynamic range when encoded on medium copy plasmid (~500-

3000-fold induction; Figure 3.8A, C, E), while the dynamic ranges show more variability when the 

constructs are integrated into the chromosome (~100-200000-fold-induction; Figure 3.8B, D, F). In 

particular, the Ptet promoter presents the same dynamic range when encoded on plasmid or 

chromosomally integrated, due to the fact that in the two configurations the luciferase signals in 

both ON (ATc 100 ng/mL) and OFF (ATc 0 ng/mL) states scale ~10-fold (Figure 3.8C, D; red and 

black curves). In contrast, the constructs driven by PBAD and PLlac0-1 did not show a proportional 

shift of the luciferase signals of the ON and the OFF states, when going from multi-copy to single 

copy. Indeed, when chromosomally integrated, PLlac0-1 shows, 6 hours after inducer addition, a 

signal in the OFF state ~50 RLU/OD600 (Figure 3.8F; black curve), generating a 40-fold reduction, 

when compared with the signal of the plasmid-encoded construct in the same conditions (Figure 

3.8E; black curve ~2x103 RLU/OD600). In contrast, by comparing the two ON states of the plasmid-

borne and the chromosomally integrated constructs (Figure 3.8E, F; red curves), we found a signal 

~106 RLU/OD600 and ~5x103 RLU/OD600 respectively. This generates a 200-fold signal reduction, 

between the ON states, when the construct is expressed in single copy. This apparent lack of 

proportional shift of the OFF and ON signals (40-fold and 200-fold, respectively), when going from 

multi-copy circuit to single copy circuit, could arise by the plate reader detection limit. Indeed, the 

baseline signal of the chromosomally integrated PLlac0-1-lux construct (from the beginning to the end 

of the measurement) is below the detection limit of the instrument (~4x102 RLU/OD600; Figure 3.8; 

red dashed lines). We can then assume that the “true” baseline signal of the chromosomally 

integrated construct is also reduced by 100-fold (like in the case of the ON signal), but masked by 

the instrument sensitivity. This would bring the baseline signal value from ~2x103 RLU/OD600 

(plasmid-encoded construct) to ~10 RLU/OD600 (chromosomally integrated construct) and, as 

result, to an identical dynamic range for the two genetic configurations (~500-fold-induction; Table 

3.2). 

 Comparing the plasmid-borne and the chromosomally integrated PBAD-lux constructs, 6 hours 

after inducer addition, we observed a signal reduction of 300-fold for the OFF state (from ~3x103 

RLU/OD600 to ~10 RLU/OD600; black lines in Figure 3.8A, B) and of 5-fold for the ON state (from 

~107 RLU/OD600 to ~2x106 RLU/OD600; red lines in Figure 3.8A, B). Therefore, the surprisingly 

low signal values obtained for chromosomally integrated PBAD promoter in the OFF state (below the 

detection limit), confers to this promoter the highest dynamic range (200000-fold induction) among 

all inducible promoters in both configurations (Figure 3.8 and Table 3.2). The precise molecular 

reasons for this severe baseline down-shift remain elusive. However, a possible explanation 

involves the formation of the DNA loop, required for PBAD repression in the absence of arabinose118. 
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Indeed, even though the formation of the DNA loop needs the presence of supercoiling tension118, 

the loop could be less stable when the promoter is encoded on medium copy plasmid, due to 

hypersupercoiling of the plasmid DNA119,120. This, in turn, would lead to a tighter PBAD regulation 

when the PBAD-lux construct is chromosomally integrated and, consequently, to the higher dynamic 

range displayed by the construct in this genetic configuration. 

Summarizing, the results of the experiments performed using the highly sensitive luciferase 

reporter, showed for all inducible promoters a certain level of leakiness when the reporter construct 

is encoded on medium copy plasmids (Figure 3.8 A, C, D), from ~103 RLU/OD600 (PLlac0-1-lux) to 

~104 RLU/OD600 (PBAD-lux). This must be taken into account, especially in the evaluation of 

genetic switches and more complex circuits, driven by these promoters. However, since PBAD 

promoter displayed virtually zero basal activity when chromosomally integrated (baseline below the 

instrument detection limit), and it has the highest dynamic range in both configurations (Table 3.2), 

we conclude that it represents the first choice to induce genes expression in our synthetic circuits. 

Promoter Plasmid (fold induction) Chromosome (fold induction) 

PBAD ~3000x  ~200000x  

Ptet ~1000x  ~1000x  

PLlac0-1 ~500x  ~500x*  
 

Table 3.2. Dynamic ranges of three inducible promoters fused with a luciferase reporter in two genetic 

configurations. The dynamic range is measured as the luminescence signal obtained using the highest 

inducer concentration (Arabinose 0.2%, ATc 100 ng/mL, IPTG 100 mM), divided by the basal activity of the 

promoter in the absence of inducer at t=6 h. *The value was calculated assuming a baseline signal in the 

absence of inducer=10 RLU/OD600. 

3.3.2 Part characterization: Ribosome binding sequences 

The initiation of protein synthesis in Escherichia coli and other bacteria involves the recognition 

by the 30S ribosomal subunit of specific elements in the mRNA near the start codon of a coding 

region. These elements, represented by the initiation codon and the Shine-Dalgarno (S/D) sequence, 

define the ribosome-binding sequence (RBS). Between these two elements lies a spacer region 

which has variable length and nucleotide composition111. In previous work, R. Vellanoweth and J. 

Rabinowitz generated a series of synthetic RBSs varying the length of the spacer between the S/D 

sequence and the initiation codon. Hence, starting from a strong (-UAAGGAGG- ΔG = -99.1 kJ 

mol-1) and weak (-AAGGA- ΔG = -53.8 kJ mol-1) S/D sequence, they generated and measured a 

library of 11 strong and 10 weak RBSs111.  

In the generation of the synthetic circuit, the ability to tune protein production is a valuable 

feature, hence, we decided to clone 6 strong and 6 weak RBSs, from the previously generated 

collection111, and include them in our library. In the original work of R. Vellanoweth and J. 

Rabinowitz the different RBSs were tested using a β-Galactosidase activity assay121, however, a 

characterization of the dynamic response of the different RBSs, at a higher resolution, was missing. 

Hence, to characterize the RBSs that we included in the library,  we used them to drive the 

translation of the luciferase operon, fused with the PBAD promoter and assayed the constructs in time 

course experiments. To compare their dynamic response upon different arabinose concentrations, 

we plotted dose-response curves at time point 2 h after induction (Figure 3.9). 
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Figure 3.9. Translation efficiency of 12 RBSs, in the function of increasing arabinose induction levels. 

The different constructs harbor an arabinose-inducible PBAD promoter, fused with a luciferase operon using 

one of 12 different RBSs. The strong (st) and weak (wk) RBSs posses different translational strength and are 

listed according to increasing strength, as reported by R. Vellanoweth and J. Rabinowitz111. The luciferase 

activity (reported as relative luminescence units normalized by optical density measured at 600 nm) is 

reported 2 h after the addition of the indicated arabinose concentrations. The red dashed line represents the 

low detection limit of the plate reader. The results are averaged from at least two independent biological 

assays and error bars denote standard deviations. 

 

Overall the results in Figure 3.9 show, for the strong RBSs (st3, st4, st5, st7, st8), a similar 

luciferase level (between 5x106 and 107 RLU/OD600), obtained using the two higher arabinose 

concentrations (10-2% and 2x10-1%). In contrast, for mild arabinose inductions (2x10-5% and 10-4 

%) RBS st3 shows values that are 10-300-fold lower than the one obtained for the other strong 

RBSs (Figure 3.9). We observed similar behavior, when comparing the signal relative to these 

RBSs, in presence low arabinose inductions (10-5% and 10-6%) and in the uninduced condition. 

Indeed, for low arabinose inductions, RBS st3 displays values below the detection limit (<4x102 

RLU/OD600), while the other strong RBSs have values that range between 2x103 RLU/OD600 (RBS 

st4) and 2x105 RLU/OD600 (RBS st8). Moreover, in the uninduced condition, we can observe that 

the signal for the RBSs st4, st5, st7, st8, and st11 is overall similar, ranging from 6.5x102 

RLU/OD600 (RBS st4) to 7x103 RLU/OD600 (RBS st8) while the one obtained for RBS st3 is again 

below the detection limit (<4x102 RLU/OD600). 

   Analyzing the dynamic response of the weak RBSs (Figure 3.9; wk2, wk4, wk5, wk6, wk7, 

wk11), we found an overall similar behavior to the one observed in the strong RBSs (Figure 3.9; 

“st” series). Indeed, all weak RBSs displayed a similar luciferase level for the two higher arabinose 

concentrations (between 3x106 and 107 RLU/OD600 for 10-2% and 2x10-1% respectively), while for 

mild arabinose inductions (2x10-5 % and 10-4 %) two RBSs (Figure 3.9; wk2, wk4) display values 

∼10-100-fold lower than others. Interestingly, in the uninduced condition, only RBS wk6 and wk7 
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presented a detectable signal (∼103 RLU/OD600), while all the others displayed signals below the 

detection limit (<4x102 RLU/OD600).  

Summarizing, our results show that we can distinguish two classes for the strong (class 1: st4, 

st5, st7, st8 st11; class 2: st3), and two classes for the weak (class1: wk6, wk7, wk5, wk11; class 2: 

wk2, wk4,). RBSs. In both cases, the members of each class displayed a similar dynamic response. 

Indeed, class 1-RBSs and class 2-RBSs confer a higher or lower expression level for mild arabinose 

inductions, respectively, while the expression at full induction is overall similar. In case of low (10-

6%) and no-induction, the RBSs within each class presents a similar pattern to the one described 

above, with class 1-RBSs displaying higher expression levels than class 2-RBSs (with the exception 

of class1-RBS wk5 and wk11 that displayed values below the detection limit for 0 and 10-6% 

arabinose). We then conclude, that at least one RBS from each class represents an interesting choice 

to variate the gene translation efficiency in novel synthetic circuits. 

3.3.3 ECF σ, ecf promoters, and anti-σ factors 

In this project, we focus on developing synthetic circuits using ECF σ factors. As introduced in 

Section 1.4 and Section 1.5, V. Rhodius and collaborators screened different heterologus ECF σ 

factors as well as their cognate anti-σ factors for functionality in E. coli63. In their work, they found 

20 ECF σs that were able to activate their target promoters showing limited cross-reactivity with 

non-target  ECF promoters, as well as 12 AS factors that can regulate the cognate ECFs (Figure 

1.8A and Figure 1.9). Thus, starting from the best 20 orthogonal ECF σ previously characterized, 

we excluded E. coli endogenous ECF σ (ECF02_2817), as well as ECF03_1198 and ECF33_423, 

due to the high toxic effect on cell growth showed previously63. Moreover, we excluded 

ECF42_4454 and ECF41_491 due to the possession of a c-terminal extension that modulates ECF 

activity and can lead to unexpected behavior66. Therefore, we selected the remaining set of 15 

orthogonal ECF σs and their cognate promoters and included them in our library.  

Anti-σ factors (AS) are transmembrane or cytosolic proteins that bind and block the cognate ECF 

σ factor keeping it inactive (see Section 1.5). To control ECF activity in our synthetic circuits we, 

therefore, included in the library the AS factors that regulate the ECFs we previously selected. 

Among them, ECF32 does not have a known AS factor, therefore, we included the remaining 14 

cognates AS factors in our library63. Moreover, we generated and included in the library 21 

truncated, soluble, AS factor variants that are described in Chapter 5. The ECFs and anti-σ factors 

present in our library will be deeply analyzed in Chapter 4 and Chapter 5. 

 

3.3.4 Insulation of neighboring transcription units  

Terminators are nucleic acid sequences that mark the end of a gene or an operon and enhance the 

dissociation of RNA polymerase, terminating the transcription. In synthetic biology, strong 

terminators are highly desirable since strong promoters are frequently used to generate circuits 

containing multiple transcription units encoded on a relatively short stretch of linear DNA. This 

leads to a high flux of RNA polymerase from the first promoter of the circuit, that can then interfere 

with the expression of the following transcription units. A strategy to efficiently terminate 

transcription consists of using multiple strong terminators in series. However, the limited number of 

available natural strong terminator lead to their reuse and therefore can generate homologous 

recombination122. Indeed, the presence of multiple DNA stretch with ∼20 base pairs of complete 
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homology, is enough for significant recombination in E. coli, thus generating instability of the 

synthetic circuit123. In order to solve this problem, the laboratory of C. Voigt characterized 582 

natural and synthetic terminators, finding 39 strong terminators (>50-fold reduction in downstream 

expression) that also have enough sequence diversity to reduce homologous recombination when 

used together in a circuit112. 

In order to mark the end of our transcription units and build insulator elements, that block the 

interaction between adjacent TUs, we arranged the 39 synthetic terminators according to strength 

and selected the 12 strongest for our library. Next, to assess the termination efficiency of these 

terminators in our circuits and to infer the best insulation strategy for our genetic circuits, we 

assembled, on medium copy plasmids, the circuits illustrated in Figure 3.10A.  

 

Figure 3.10. Insulation of neighboring transcription units from transcriptional read-through and other 

polar effects. (A) Different DNA constructs carrying a variable number of non-redundant transcriptional 

terminators described by Chen Y. et al., 112, 300 base pairs of random-non-coding DNA30, as well as 

alternating orientations between an upstream transcription unit and a downstream luciferase reporter gene 

cassette. (B) Downstream luciferase activity of the genetic circuits illustrated in (A) 4 h after the addition of 

indicated concentrations of arabinose. The luciferase activity is reported as relative luminescence units 

normalized by optical density measured at 600 nm. The results are averaged from at least two independent 

biological assays and error bars denote standard deviations. This figure was taken from Paper III (Pinto et. 

al., 2018) by permission of Oxford University Press. 

 

All the circuits (from 1 to 5) are composed of two transcription units. In the first transcription 

unit, the PBAD promoter drives the expression of ecf28, an alternative ECF σ factor used as a dummy 

coding sequence, which is terminated by the strongest terminator (L3S2P11) in the previously 

mentioned collection112. In the second transcription unit, we placed a promoter-less dummy 

sequence of 15 random base pairs (indicated by the red cross), upstream the lux operon. We, 

therefore, measured the luciferase signal in the absence and in the presence of the inducer and 

plotted the results as dose-response curves  (Figure 3.10B). In the case of the first circuit, we 

observed a basal signal of 2x105 RLU/OD600 followed by ∼10-fold increase to 2,5x106 RLU/OD600 
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upon full promoter induction (Figure 3.10A; 1). The basal signal seems to be caused by the 

combination of the basal activity of the PBAD promoter that we observed previously (cfr. Figure 

3.8A) together with the incomplete termination of the transcription by L3S2P11. We reasoned that 

the close proximity of the terminator to the following lux-containing transcription unit could lead to 

suboptimal termination efficiency. In this scenario, the presence of ribosomes translating the 

spurious mRNA containing also the second transcription unit could interfere with the formation of 

the secondary structure necessary for efficient termination. To further investigate this phenomenon 

we increased the distance of the two transcription units, placing between them a spacer of 300 

random base pairs30, that we analyzed with the software Bprom 

(http://www.softberry.com/berry.phtml?topic=bprom) to ensure that no promoter-like sequence was 

present (Figure 3.10A; 2). Strikingly the only augmentation of the distance between the two 

transcription units lowered both the basal signal  (5x104 RLU/OD600) and the full induced signal 

(7x105 RLU/OD600). To further improve the insulation we added a single (L3S3P21112), Figure 

3.10A; 3) or double (rrnBT1T221 Figure 3.10A; 4) terminator following the 300 base pairs element. 

This further lowered both the basal signal  (<102 RLU/OD600 and 2x103 RLU/OD600) and the full 

induced signal (2-3x104 RLU/OD600), yet, in both cases, we still observed high luciferase activity 

(∼100-fold above background) at high arabinose concentrations. Only assembling the last circuit 

(Figure 3.10A; 5) with a convergent arrangement of the transcription units we finally obtained an 

output signal close to the background. In this construct we also added a new insulating element 

(composed by the two additional synthetic terminators L3S3P22, L3S2P55112 and a different 

promoter-less 300bp random DNA sequence30) after the second transcription unit, to prevent any 

read through from the plasmid backbone.  

Summarizing, to characterize the chosen synthetic terminators and decide for the best insulation 

strategy in our genetic circuits, we decided to use the highly sensitive lux reporter instead of the 

previously used fluorophores112. This allowed analyzing the termination efficiency with a higher 

resolution, demonstrating the limits of natural and synthetic terminators. This must be taken into 

account when generating genetic circuits that include more than one TU in close proximity. Only 

with the combination of insulating elements and the convergent arrangement we achieved complete 

insulation of the two TUs. Therefore, we conclude that the alternation of convergent and divergent 

arrangements of the TUs represents an optimal choice for encoding multiple TUs in a synthetic 

circuit. 

3.4 Summary 

In this chapter, we introduced our expansions to the MoClo system, represented by a new 

medium copy reporter vector (pSVM-mc) for the fast assembly of synthetic circuits from level 1 

parts (Section 3.1). Moreover, to add more degrees of freedom to the possible configurations of a 

given synthetic circuit, we generated 32 CRIMoClo vectors. These vectors allow for an easy 

assembly and chromosomal integration of MoClo-compatible genetic circuits. Using CRIMoClo 

plasmids we characterized the expression levels from four different phage attachment (att) sites in 

the genome of E. coli. Our results showed that the four att sites are orthogonal and suitable for the 

simultaneous expression of different genetic constructs (Section 3.2). 

Next, we introduced a novel MoClo-compatible library of genetic parts, giving an overview of 

the dynamic response of three distinct inducible promoters (Figure 3.8) and showing the translation 

efficiency of 12 different ribosome binding sequences (Figure 3.9). Moreover, we identified the best 
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insulation strategy to clone multiple transcription units in close proximity, avoiding any interference 

such as transcriptional-readthrough (Figure 3.10).  

All the genetic parts presented above, together with the level 0 dummies, the new MoClo vector 

pSVM-mc, and the 32 CRIMoClo plasmids constitute the ECF toolbox (Table 9.2, Table 9.3, and 

Figure 3.11). We developed this toolbox with the aim of facilitating the generation of large 

synthetic ECF-based circuits in different genetic configuration, from a library of reusable parts. The 

design characteristics of the toolbox allow further expansions, e.g. to include more ECF σ factors 

and cognate promoters. Moreover, even if the toolbox is designed for E. coli, it allows, in principle, 

the generation of genetic constructs that can be sub-cloned into vectors suitable for the expression 

in a different model organism. We, therefore, consider the ECF toolbox as a valuable tool to 

generate ECF-based synthetic constructs and in order to prove it, we extensively used it for the 

generation of all the genetic circuits described in this study (Tables 9.3-9.6). 

 

 

3.11. ECF Toolbox. A MoClo-based genetic toolbox for the fast and reliable assembly, expression and 

chromosomal integration of ECF-based synthetic circuits in E. coli. 



 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. ECF σ factors as the core of novel, orthogonal synthetic circuits 
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The previous chapters introduced the ECF toolbox and our typical experiment setup that were 

used for the construction and the evaluation of different genetic constructs, respectively. This 

chapter focus on using ECF σ factors to generate genetic circuits with increasing complexity. First, 

we characterize 15 distinct ECF/Pecf-switches analyzing the dynamic of their target promoter 

activation among different ECF expression levels and in different genetic configurations (e.g. 

plasmid encoded and chromosomally integrated). Next, we combine different ECF-switches, 

designing ECF σ factor cascades, featuring the functionality of “genetic timers” – circuits that 

activate a series of ECF σ factor genes with increasing time delays. Moreover, we validate our 

experimental results, by using mathematical models that can describe and predict the behavior of 

the circuits. Finally, we show that the design of ECF-based “genetic timers” can be applied also in 

the phylogenetically distant organism Bacillus subtilis. 

4.1 ECF σ factors characterization 

In Section 3.3.3 we illustrated our selection of 15 out of 20 orthogonal ECFs previously screened 

by V. Rhodius and collaborators63. In order to rationally assemble these ECFs and their target 

promoters in genetic circuits with increasing complexity, we first analyzed their dose-response 

characteristics, as well as their effects on the growth of the bacterial cells, in our experimental 

conditions. To this end, we assembled 15 ECF-switches, in the medium copy plasmid pSVM-mc, in 

which an arabinose-inducible promoter (PBAD) controls the expression of an ECF, that can then 

activate his target promoter fused with the lux operon (Table 9.5). These ECF-switches were then 

introduced into our reporter strain SV01, described in Section 2.1, generating the GFC strains 

reported in Table 9.1. We then used microplate experiments to monitor the growth of the bacterial 

strains in MOPS minimal media (Section 7.1), measuring the optical density at 600 nm (OD600), as 

well as the reporter signal over time, upon ECF σs expression achieved using different inducer 

concentrations (Section 7.10). Using this experimental setup we generated time evolution plots 

(Figure 4.1). In these graphs, we display, for each ECF-switch, the OD600 in the function of time, as 

well as and the reporter signal, indicated as relative luminescent units (RLU), divided by OD600.  
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Figure 4.1. Time evolution of bacterial density and luciferase activity, obtained from 15 ECF-switches. 

The bacterial density is indicated as the optical density measured at 600 nm. The reporter activities are 

shown in relative luminescence units, normalized by the optical density measured at 600 nm. The black 

dashed line indicates the time point for the addition of the indicated concentrations of inducer (t=0 h). All 

ECF-switches were introduced in E. coli strain SV01 on medium copy plasmid pSVM-mc (Table 9.5) 

generating the GFC strains listed in Table 9.1. The genetic organization of the parts composing the switches 

is indicated in the main text and in Table 9.1 and Table 9.5. The results are averaged from at least two 

independent biological assays and error bars denote standard deviations. 

Analyzing the OD600, we observed that for the majority of the strains, the overexpression of the 

ECF σ factor does not interfere with the cell growth, in particular for mild induction levels (Figure 

4.1; OD600 graphs). Indeed, in these conditions, the strains displayed, overall, an exponential growth 

(obtained as indicated in Section 7.10), with a doubling time ∼175 min. In contrast, in the strains 
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harboring, ECF16, ECF20, and ECF37 even the induction intermediate arabinose concentrations 

(>10-5%) seem to cause deleterious effect on the cell growth, when compared with the same strains 

induced with lower arabinose concentrations. To better compare the growth defects, caused by 

increasing ECF expression levels, in different ECF-switches, we plotted the OD600 (6 hours after 

ECF induction) in the function of the arabinose concentrations (Figure 4.2). The results confirm that 

ECF expression in ECF16, ECF20, and ECF37 switches, with arabinose induction superior to 10-5% 

lead to >2-fold decrease in the 6-h OD600, when compared with the uninduced switches. These 

growth defects can be caused by the burden to the cellular machinery due to protein overexpression, 

or by the cross-reaction between the overexpressed ECFs and stress-related pathways as it will be 

further discussed in Section 6.4.  

 

Figure 4.2. ECF σ factors toxicity evaluation. Bacterial density (indicated as the optical density measured 

at 600 nm) achieved by 15 E. coli strains, carrying the indicated ECF-switch circuits, 6 hours after the 

induction with the indicated arabinose concentrations. All ECF-switches were introduced in E. coli strain 

SV01 on medium copy plasmid pSVM-mc (Table 9.5) generating the GFC strains listed in Table 9.1. The 

genetic organization of the parts composing the switches is indicated in the main text. The results are 

averaged from at least two independent biological assays and error bars denote standard deviations. 

Analyzing the luciferase signals of all the switches we observed, overall, the ability of ECFs of 

recognizing and activating their target promoters (Figure 4.1; RLU/OD600 graphs). Overall, we 

found that different ECF-switches display different basal activities, as well as different maximum 

signal output levels, that then lead to different dynamic ranges. To better compare the differences in 

the baseline signal and in the output dynamic range, we plotted the luciferase signal, registered 6h 

after induction from all ECF-switches, in the function of the inducer concentration, generating dose-

response curves (Figure 4.3). 
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Figure 4.3. Dose-response characteristics of plasmid-borne ECF-switches. The dose-response 

characteristics of 15 ECF target promoter activities, were measured, in plasmid-encoded ECF-switch circuits, 

as a function of ECF σ expression levels, 6 hours after the induction with the indicated arabinose 

concentrations. All ECF-switches were introduced in E. coli strain SV01 on medium copy plasmid pSVM-

mc (Table 9.5) generating the GFC strains listed in Table 9.1. The genetic organization of the parts 

composing the switches is indicated in the main text. The results are averaged from at least two independent 

biological assays and error bars denote standard deviations. 

Comparing the dose-response curves of all the switches, we notice that four ECFs (ECF16, 

ECF20, ECF22, and ECF31) have a particularly strong basal signal level (∼107 RLU/OD600) with 

almost no fold-change between the OFF (uninduced) and ON (induced) state. However, overall, all 

the other ECF-switches appear to be inducible with a minimal and maximal dynamic range between 

5-fold (ECF11) and 500-fold (ECF17), thus indicating their ability to tune gene expression levels. 

Analyzing the dose-response curves we observed a high variation in the basal activity level for 

different ECFs (>1000-fold comparing all the basal activities). We then reasoned that such 

differences could arise by the cross-reaction of endogenous σ factors, that activate a-specifically the 

ECF σ promoters, or by the basal expression of the ECFs in absence of the inducer. To further 

investigate these hypotheses we constructed a series of negative controls were the 15 ecf promoters 

were fused with the lux operon and measured the output signal in absence of the expression of the 

cognate ECF σ factor (Figure 4.4). 
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Figure 4.4. Comparison of 15 ecf promoters activity in the absence of cognate ECF σs. Pecf promoters 

activity was measured in E. coli SV01 using plasmid-borne Pecf-lux constructs. The red dashed line 

represents the plate reader low detection limit. All the construct were introduced in E. coli strain SV01 on 

medium copy plasmid pSVM-mc (Table 9.5) generating the GFC strains listed in Table 9.1. The results are 

averaged from at least two independent biological assays and error bars denote standard deviations. 

 

The results show that 80% of the ecf promoters, in the absence of the cognate ECF, generate a 

luciferase signal <4x102 RLU/OD600 thus, within the low detection limit of the plate reader (Figure 

4.4; red dashed line). When looking at the ecf promoters of the switches that were constitutively ON 

in the previous experiment (Figure 4.3; ECF16, ECF20, ECF22, ECF31), we did not observe, in the 

case of Pecf16, Pecf20, and Pecf22, a detectable luciferase signal in absence of the cognate ECFs (Figure 

4.4). This indicates that these promoters are not cross-activated by endogenous σs. In contrast, the 

promoter Pecf31 showed a basal activity ∼2x103 RLU/OD600 even in the absence of the cognate 

ECFs, suggesting cross-reaction with other σ factors present in the cell (Figure 4.4). However, the 

basal activity registered in the ECF31-Pecf31/switch is ∼4500-fold higher when compared with the 

control lacking the ECF σ factor (Figure 4.3; pink curve ∼9x106 RLU/OD600 and Figure 4.4; Pecf31 

∼2x103 RLU/OD600). We, therefore, concluded that also in the case of ECF31 the cross-reactivity 

with endogenous σs do not explain the high basal activities we registered in the relative ECF-

switch. 

In order to justify the constitutive activation of these ECF-switches, we then took into account 

the characteristics of the inducible PBAD promoter. Our previous analysis revealed that even in the 

absence of inducer, the promoter has a certain basal activity when encoded on medium copy 

plasmid (Figure 3.8A). This suggests that when the promoter drives the expression of an ECF σ, a 

certain amount of σ factors is produced, even in the OFF state. Depending on the binding 

proprieties of the ECFs and considering that the ECF-switches are encoded on medium copy 

plasmids, the number of ECF produced by the basal PBAD activity can reach the threshold of cognate 

promoter activation, thus generating the high basal activities (close to promoter saturation levels) 

that we observed in these ECF-switches (Figure 4.3).  

To validate this hypothesis, we lowered the expression level of all the circuits by cloning them in 

CRIMoClo plasmids and integrating them into the chromosome of E. coli at the attHK022. We, 
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therefore, measured the dynamic response of the circuits using time course experiments and plotted 

the results as dose-response curves 6 hours after the addition of the inducer (Figure 4.5).  

 

Figure 4.5. Dose-response characteristics of chromosomally integrated ECF-switches. The dose-

response characteristics of 15 ECF target promoter activities, were measured in chromosomally integrated 

ECF-switch circuits, as a function of ECF σ expression levels, 6 hours after the induction with the indicated 

arabinose concentrations. All ECF-switch circuits were integrated into the chromosome of E. coli strain 

SV01 at the phage HK022 attachment site, using the pSV plasmid series (Table 9.6) and generating the GFC 

strains listed in Table 9.1. The red dashed line represents the plate reader low detection limit. The results are 

averaged from at least two independent biological assays and error bars denote standard deviations. 

Interestingly, with this genetic configuration all the previously constitutively ON ECF-switches 

appear to be inducible (Figure 4.5; ECF16: 27.5-fold induction, ECF20: 24-fold induction, ECF22: 

200-fold induction, ECF31: 800-fold induction, between the OFF and the ON state). This suggests 

that these ECFs possess a high affinity for their target promoters, that together with the basal 

activity of PBAD leads to constitutive activation of the relative plasmid-encoded ECF-switches. The 

result of the experiments also shows that some ECFs (e.g. ECF14, ECF28, and ECF34) present a 

much lower dynamic range (10 to 20-fold) when compared with the same circuits encoded on 

medium copy plasmids (Figure 4.5 and Figure 4.3 respectively). This suggests a low affinity of 

these ECFs for their target promoters, that together with their expression from single-copy circuits, 

results in a basal promoter activity that falls below the lower detection limit, and a sub-optimal 

promoter activation, even in presence of maximum PBAD induction levels.  

The results obtained from these experiments (Figure 4.3 - Figure 4.5) support the hypothesis that 

different ECF σ factors have different binding affinities for the target promoters. Indeed, lowering 
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the copy number of the switches encoding for ECFs with a high promoter binding affinity allows 

for the reduction of their basal activity, while maintaining a strong activity in the presence of high 

level of inducer. Consequently, this leads to an increased output dynamic range. In contrast, 

lowering the copy number of ECF-switches where the ECFs display a low promoter binding affinity 

results in a severe reduction of their basal activity (below the detection limit) and in non-saturating 

levels of target promoter activation. This, in turn, leads to a reduction of the circuits output dynamic 

range.  

Assuming that ECF σ factors can activate the target promoter with different strengths, we further 

characterized the dynamic range of all ECF-switches by tuning the input/output signal ratio. To this 

end, we integrated the PBAD-ecf portion (input) of the circuit into the chromosome and placed the 

cognate Pecf-lux reporter system (output) on medium copy plasmids. We then measured the 

luciferase signal of the circuits using time course experiments and plotted the results as dose-

response curves 6 hours after the addition of the inducer (Figure 4.6). 

 

 

Figure 4.6. Dose-response characteristics of 15 ECF-switches encoded in mixed genetic configuration. 

The dose-response characteristics of ECF target promoter activities, in ECF-switch circuits encoded in mixed 

configuration (see main text), were measured as a function of ECF σ expression levels, 6 hours after the 

induction with the indicated arabinose concentrations. In all circuits the PBAD-ecf genetic module was 

integrated into the chromosome of E. coli strain SV01 at the phage HK022 attachment site, using the pSV 

plasmid series (Table 9.5). Subsequently, the Pecf-lux reporter constructs (encoded on pSVM-mc plasmids 

(Table 9.5) were introduced into the newly engineered strains, generating the GFC strains listed in Table 9.1. 

The red dashed line represents the plate reader low detection limit. The results are averaged from at least two 

independent biological assays and error bars denote standard deviations. 
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The results in Figure 4.6 show that in this configuration all ECF-switches are inducible, with a 

fold-change between the OFF and the ON state that ranges between 800-fold (ECF32) and 3,5-fold 

(ECF20). Compared with the single copy configuration (Figure 4.5), this arrangement of the two 

genetic modules (PBAD-ecf and Pecf-lux) guarantee the availability of a higher number of cognate 

promoters, while maintaining a low level of basal ECF expression from PBAD. For the ECFs that 

present a low promoter binding affinity (e.g. ECF14, ECF28, ECF34) this results in an increased 

number of “free” ECF promoters that these ECFs can bind, thus improving the signal output level in 

these switches. At the same time, for the ECFs that present high promoter binding affinity (ECF16, 

ECF20, ECF22, ECF31), the lower levels of basal ECF expression (when compared with plasmid-

encoded switches, Figure 4.3) avoids the saturation of the promoters prior to the induction, allowing 

a certain level of inducibility of the relative ECF-switches (Figure 4.6) with values that ranges from 

3.5-fold (ECF20) to 8.5-fold (ECF31). 

Taken together, the results show that our setup allows for highly sensitive monitoring of ECF 

target promoter activity. We confirmed that ecf promoters are orthogonal in respect of endogenous 

E. coli σ factors (Figure 4.4) and that ECFs have a broad range of binding affinities for their 

cognate promoters. Hence, changing the copy of the switches, we were able to tune their dynamic 

range (Figure 4.3, Figure 4.5, Figure 4.6). Interestingly, there is great variability in the dynamic 

range when the switches are encoded on plasmids or chromosomally integrated, that in some cases 

can not be explained simply by a reduction of the circuits copy number. For instance, ECF11-switch 

shows ∼2-fold-induction in the plasmid configuration (Figure 4.3) and ∼2000-fold-induction in the 

single-copy configuration (Figure 4.5). This is somehow similar to the effects we observed 

previously in the PBAD-lux constructs compared in two genetic configurations (Figure 3.8A, B). 

Thus, in the case of the ECF-switches, this dynamic range variability between the two genetic 

configurations seems to arise by the different repression levels of the PBAD promoter, together with 

the different binding affinities of the ECFs and the cognate promoters.  

Finally, as we showed with the experiments presented in this section, the dynamic range of each 

ECF-switch can be tuned by varying the inducer concentration and the copy number of the 

components of the switch. Hence, using this strategy, it is possible to adjust the input/output signal 

ratio, to match the characteristics that are required to assemble ECF-switches in higher order 

circuits.  

 

 4.2 Engineering ECF σ factor-based genetic-timer circuits in E. coli 

The results of this section are published in Paper II (Pinto et al., 2018) 

In the previous section, we showed that the majority of ECFs that we selected for this study had 

zero or low toxic effect on cell growth (Figure 4.2). Moreover, we showed that, overall, ECFs 

displayed highly titratable induction of the target promoters, that, overall, can be tuned by varying 

the inducer concentrations and the copy number of the constructs (Figure 4.3, Figure 4.5, Figure 

4.6). These features suggest that, theoretically, it is possible to combine multiple ECFs in a higher 

order circuit. Indeed, multiple ECF-switches can be in principle combined together, generating an 

ECF cascade where an inducible promoter drives the expression of the first ECF, which then 

activates expression of a second ECF, etc. until the final target gene is activated. We expect for such 

a circuit, upon induction, an overall increase in the time delay for the signal production that will 

scale with the increasing cascade length. The time delay is due to the finite time required for the 
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production and the accumulation of each ECF, that is necessary for inducing the expression of the 

following ECFs in the cascade. Such gene regulatory cascades would serve as proof of concept for 

using multiple ECF σ factors as orthogonal regulators and will help in understanding whether their 

characteristics are suitable for combining them into larger circuits.  

To assess our hypothesis, we focused on using ECF28 and ECF32 to generate ECF σ factor 

cascades with increasing complexity. We chose to these ECFs because they had no detectable 

deleterious effects on cell growth (Figure 4.2) and they showed a high fold-inductions of the target 

promoter (30-fold and 100-fold, respectively), in the plasmid-borne configuration (Figure 4.3). 

Moreover, their promoters resulted to be inducible also in the chromosomally integrated 

configuration (Figure 4.5; ECF28 ∼20-fold induction, ECF32 ∼150-fold induction).  

We first analyzed the timing behavior in the induction of ECF28 and ECF32 switches that we 

generated previously, in comparison with a control strain harboring a PBAD-lux construct. To this 

end, we measured their kinetic response in luciferase activity after the addition of the inducer 

(arabinose) at different concentration. Moreover, to compare circuit dynamics between switches 

cascades of different length, we defined their response time as the time between the addition of the 

highest inducer concentration and the time at which luciferase activity first exceeds its pre-

induction activity more than 2-fold (Figure 4.7). 
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Figure 4.7. Time delayed response of synthetic ECF cascades in E. coli. (A) All circuits shown in the 

cartoons of (B-F) were introduced in E. coli strain SV01 on medium copy plasmid pSVM-mc (Table 9.5) 

generating the GFC strains listed in Table 9.1. Panels (B-F) show the dynamical response of luciferase 

activity (shown in relative luminescence units normalized by the optical density measured at 600 nm) in 

synthetic ECF cascades featuring no (B), one (C, D) and two (E, F) ECF σ factors, after the addition of 

various concentrations of arabinose at t=0 h (black solid line). The time delay of gene induction (black 

dashed line) is indicated for the highest arabinose concentration used (10-4%) and was defined as the time 

when luciferase activity first exceeded the pre-induction value by 2-fold. Maximal fold induction is also 

indicated. The experimental response dynamics (circles) was recorded during exponential growth, as 

described in Section 7.10. The response dynamics of the computational model (solid colored lines) was 

obtained by a simultaneous fit of all experimental data in (B-F). This figure was taken from Paper III (Pinto 

et. al., 2018) by permission of Oxford University Press. 

The results show that the activation of the luciferase in the ECF28 and ECF32 switches was 

delayed by 15–30 minutes, when compared to the PBAD-lux construct (Figure 4.7B, C, D). This 

suggests that upon induction, functional ECF σ factors have to gradually accumulate to the 

threshold required for the activation of the cognate ECF promoter fused with the luciferase reporter, 

generating a certain time delay. To test our hypothesis we assembled negative controls of the 

switches which lack the cognate ecf promoter or ECF σ factor (Figure 4.8). 
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Figure 4.8 Dynamic response of 1-step timers in comparison with negative control circuits lacking the 

cognate ecf promoter, or the ecf gene. All circuits shown in the cartoons of (A-F) were introduced in E. 

coli strain SV01 on medium copy plasmid pSVM-mc (Table 9.5) generating the GFC strains listed in Table 

9.1 The graphs show the dynamical response of luciferase activity (shown in relative luminescence units 

normalized by the optical density measured at 600 nm) after the addition of various concentrations of 

arabinose at t=0 h (black solid line). The response dynamics of the computational model is shown in solid, 

colored lines in panels A and B. This figure was taken from Paper III (Pinto et. al., 2018) by permission of 

Oxford University Press. 

 

The results show that there is no significant increase in luciferase activity upon induction of the 

PBAD promoter when the cognate ecf promoter is missing (Figure 4.8 C, D). Moreover, the controls 

in Figure 4.8 E and F confirm that the ecf promoters alone are not recognized by endogenous σ 

factors. This suggests that the delayed response we observed (Figure 4.7C, D) is specific to the slow 

accumulation of ECF σ factors and consequent target promoters activation. Hence, based on the 

observed time delay and the fact that each circuit involves the expression of one ecf gene, we refer 

to these switches as 1-step timer circuits from now on. 

After obtaining a 15-30 minutes time delay, using single ECFs in the 1-step timer circuits we 

measured the time delay in circuits were ECF28 and ECF32 were combined into 2-step timer 

cascades in different permutations (Figure 4.7E, F). Strikingly, we found that the activation of the 

luciferase, upon the induction of the first ECF, was delayed by 100 minutes (Figure 4.7E) and 
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85minutes (Figure 4.7F). The results confirm our assumption that the time delay for the reporter 

activation scales with the length of the ECF cascade. Moreover, we can observe that the variability 

of time delays measured in the independent biological replicates (Figure 4.7; horizontal error bars) 

is less than 5 minutes. Thus, indicating the robustness of the circuit performance within the cell 

population.  

Despite the reproducible timing, however, the results also show a reduced output-dynamic range 

that scales with the length of the cascade. Indeed, the PBAD-lux control strain (which we refer to as 

0-step timer) showed the highest fold induction (2200-fold) upon arabinose addition, followed by 

the 1-step timers (30-fold for ECF28, 45-fold for ECF32) and the 2-step timers (6-fold for both). 

The loss of output dynamic range is mainly caused by the baseline activity of the circuits that 

increase for longer cascades. Indeed, the 0-step timer display a basal signal ~104 RLU/OD600 

(Figure 4.7B; dark blue curve), while the 1-step timers and the 2-step timers ~2x105 RLU/OD600
 and 

~6x105 RLU/OD600 even in absence of the inducer (Figure 4.7C, D, E, F; dark blue curves). To 

investigate if the baseline activity increase, observed in the 2-step timers, was caused by off-target 

promoter activation of the ECFs, we build 2-step timers negative controls in which the second ECF 

of the cascade is not present (Figure 4.9). 
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Figure 4.9. Dynamic response of 2-step timers (A, B) compared with the corresponding negative 

control circuits lacking the second ecf gene in the cascade (C, D). All circuits shown in the cartoons of 

(A-D) were introduced in E. coli strain SV01 on medium copy plasmid pSVM-mc (Table 9.5) generating the 

GFC strains listed in Table 9.1. The graphs show the dynamical response of luciferase activity (shown in 

relative luminescence units normalized by the optical density measured at 600 nm) after the addition of 

various concentrations of arabinose at t=0 h. The luciferase activity detected in the negative controls, indicate 

promoter activation by the non-cognate ECFs. However, this activity is 300-fold (C) and 1000-fold (D) 

lower than the activities obtained by the cognate ECFs in (A) and (B). This figure was taken from Paper III 

(Pinto et. al., 2018) by permission of Oxford University Press. 

 

The results show limited cross-reaction between ECF28-Pecf32 (30-fold between the uninduced 

and the induced strain; Figure 4.9C) and ECF32-Pecf28 (10-fold between the uninduced and the 

induced strain; Figure 4.9D). However, the overall non-cognate target promoter activity in the two 

controls is 300-fold and 1000-fold weaker than the regulation by the cognate ECF (Figure 4.8), 

indicating that the increasing baseline activity in the 2-step timers is not caused by non-specific 

ECF promoter activation. 
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To explain such increase baseline activity we took in account several factors such as the basal 

activity of the PBAD promoter, the copy number of the genetic circuits and the binding affinity of the 

ECFs for their target promoters. First, we looked at the luciferase activity in the 0-step timer circuit. 

This circuit displayed a baseline signal of 104 RLU/OD600 even in the absence of induction (Figure 

4.7B). This suggests the existence of a certain basal activity of the PBAD promoter, observed also in 

previous experiments (Figure 3.8A) that, in this case, leads to the production of a certain number of 

ECFs even in the OFF state. Since the circuits are encoded on medium copy plasmids, the number 

of ECFs produced can then reach the threshold required for the activation of their target promoter, 

causing, in the 1-step timers, the production of the luciferase and therefore an increase in the signal 

baseline activity. The binding affinity of specific ECFs for their target promoter will then cause the 

specific differences in the baseline shift between the two different 1-step timers. For instance, in the 

case of ECF32 1-step timer, the baseline activity is higher than the one in the ECF28 1-step timer, 

suggesting a higher binding affinity of ECF32 for his target promoter. Hence, in the 2-step timers, 

the first ECF, produced in absence of the inducer by the basal activity of the PBAD promoter, will 

bind to the cognate promoter producing the second ECF. The promoter binding affinity, together 

with the high copy number of the target promoters will then lead to the production of an even higher 

number of the second ECF, thus, causing a further upshift of the baseline signal. Finally, the fact 

that each ECF σ factor produces more ECF σ of the downstream step in the cascade, will inevitably 

lead, for longer ECF cascades, to an amplification of the baseline signal until full downstream 

promoter saturation. To test this hypothesis, we added another ECF to the cascades (ECF34) to 

build 3-step timer circuits with the ECFs in two different permutations (Figure 4.10A, B).  
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Figure 4.10. Dynamic response of 3-step timers in E. coli (A, B) compared with the corresponding 

negative control circuits lacking the second ecf gene in the cascade (C, D). All circuits shown in the 

cartoons of (A-D) were introduced in E. coli strain SV01 on medium copy plasmid pICH8209426 (Table 9.6) 

generating the GFC strains listed in Table 9.1. The graphs show the dynamical response of luciferase activity 

(shown in relative luminescence units normalized by the optical density measured at 600 nm) after the 

addition of various concentrations of arabinose at t=0 h. The response dynamics of the computational model 

is shown in solid colored lines in panels A and B. This figure was taken from Paper III (Pinto et. al., 2018) 

by permission of Oxford University Press. 

 

Interestingly, both 3-step timers showed a baseline activity higher than the 2-step timers, that 

lead to an almost loss of their output dynamic range. Analyzing the negative controls, where ECF34 

is not present (Figure 4.10C, D) we can also observe 500-fold induction between the induced and 

uninduced circuits that is probably caused by cross-reaction of ECF28 and ECF32 with the ecf34 

promoter. However, the signal generated by the cross-reactivity is not strong enough to justify alone 

the increased baseline activity of the 3-step timers. Thus, we confirmed that longer ECF cascades 
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encoded on medium copy plasmids lead to an amplification of the baseline signal and, as result, to a 

limited fold induction, due to the fact that the last promoter of the cascade is already close to 

saturating level. 

Since the high copy number of the circuits was one of the factors determining the signal baseline 

amplification, and therefore the loss of signal transmission, we decided to use CRIMoClo plasmids 

to chromosomally integrate and test the 1- and 2-step timers (Figure 4.11). 

 

Figure 4.11. Single-copy autonomous timer circuits in E. coli. (A) All circuits shown in the cartoons of 

(B-F) were integrated into the chromosome of E. coli strain SV01 at the phage HK022 attachment site, using 

the pSV plasmid series (Table 9.5) and generating the GFC strains listed in Table 9.1. Panels (B-F) show the 

dynamical response of luciferase activity (shown in relative luminescence units normalized by the optical 

density measured at 600 nm) in synthetic ECF cascades featuring no (B), one (C, D) and two (E, F) ECF σ 

factors, after the addition of various concentrations of arabinose at t=0 h (black solid line). The time delay of 

gene induction (black dashed line) is indicated for the highest arabinose concentration (10-4%) and was 

defined as the time when luciferase activity first exceeded the pre-induction value by 2-fold. Maximal fold 

induction is also indicated. This figure was taken from Paper III (Pinto et. al., 2018) by permission of Oxford 

University Press. 

The results show that in this configuration, even the full activation of the PBAD promoter 

generates a reduction in the output signal in the 1-step timers when compared with the 0-step timer 

(250-fold-reduction for ECF28 1-step timer and 2.5-fold-reduction for ECF32 1-step timer; Figure 

4.11B, C, D). The signal reduction can be explained by the number of ECFs produced, that is ~50-

times lower when the circuits are encoded into the chromosome, together with the binding affinity 

of the ECF for their target promoters, that not allows full promoter saturation with the number of 

available ECFs. This hypothesis is confirmed when looking at the results of the 2-step timers 
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integrated into the chromosome, where we can observe an even lower final output signal (up to 500-

fold-reduction) when compared to the 0-step timer (Figure 4.11B, E, F). This is due to the fact that 

the number of the first ECF produced is not enough to fully activate the target promoter, leading to 

the production of an even lower number of the second ECF and therefore causing a loss of output 

dynamic range that scales with the length of the cascade. 

However, when looking at the timing of the circuit activation we can observe how integrated 

ECF28 1-step timers (Figure 4.11C) showed a time delay of 130 minutes (100 minutes more than 

the same circuit encoded on plasmid; Figure 4.7C), while the two 2-step timers (Figure 4.11E, F) 

displayed a time delay of 140 and 135 minutes (40 and 50 minutes more than the same circuit 

encoded on plasmid; Figure 4.7E, F). This general increase of the time delay, suggests that lowering 

the copy number of our timer circuits can effectively lower the baseline signal of the switches and 

consequently improve the signal transmission. 

Even though we obtained convincing qualitative results that supported our hypothesis on the 

behavior of the timer circuits, we wanted to test whether the experimental data could be rationalized 

at a quantitative level. In particular, we asked if the dynamics and fold change of the 1- and 2-step 

timer were in quantitative agreement. To this end, we developed a set of computational models for 

all the ECF timer circuits. These models take into account the transcription and translation rates of 

the two ECF σ factors, as well as the lux reporter cassette, the degradation and/or dilution of the 

resulting mRNA and protein species, binding of the ECF σ factor to the RNA polymerase core, as 

well as binding of the resulting holoenzymes to their cognate promoters (Figure 4.12).  

 

Figure 4.12. Graphic representation of the parameters included in the computational model for ECF 

cascades. In the model, we included transcription and translation of genes and mRNAs of ecfX, ecfY and the 

lux cassette, with transcription rates αi and translation rates βi (i = X, Y, lux). In addition, degradation and/or 

dilution of mRNA and protein species occur at rates λi and δi, respectively, ECF σ factors bind to core RNA 

polymerase with an equilibrium dissociation constant KEi and the resulting holoenzymes bind to their cognate 

promoters with a dissociation constant KEi-P (i = X, Y). All the details of the model are published in Paper 

III (Pinto et al., 2018). This figure was adapted from Paper III (Pinto et. al., 2018) by permission of Oxford 

University Press. 

We then tested the reliability of the model by fitting our model to the data of the 0-step timer 

(Figure 4.7B; solid lines). Doing so, we derived the kinetic parameters that describe the PBAD 

promoter as well as the luciferase reporter. Then we kept fixed those parameters and varied only the 

parameters specific to the individual ECF σ factors, thereby fitting the models of the 1- and 2-step 

timers simultaneously to the experimental data. Notably, all experimental data are well captured by 

models sharing a single set of parameters, indicating that ECF28 and ECF32 display the same 
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quantitative behavior in both 1- and 2-step timers (Figure 4.7 C, D, E, F; solid lines). Indeed, the 

fact that we were able to capture the dynamics of all circuits using a set of models that shares the 

same parameters for the same ECF σ factors, indicates that they display orthogonality when 

embedded in the different circuits. Finally, our models confirm the hypothesis that we made to 

explain the loss of output dynamic range in the timer circuits. Indeed, according to the model, the 

copy number of the circuits as well as the ECF promoters characteristics lead to an amplification of 

the baseline activity in ECF cascades encoded on plasmids (Figure 4.7; solid lines) and to a quick 

decay of circuits maximal output signal in ECF cascades integrated into the chromosome (Figure 

4.11; not shown). Moreover, the model predicts that the optimal circuit copy number, to achieve 

maximal signal transmission, depends on the strength of the ECF promoters involved. Stronger ECF 

promoters require lower circuit copy number, while weaker ECF promoters require a higher circuit 

copy number.  

Once we validated our experimental observations we tested how our timer circuits respond going 

from an ON state (full induction) to an OFF state (no induction). To do so we precultured the 

bacterial strain harboring the 0- 1- and 2- step timers in presence of the highest arabinose 

concentration used previously (10−4%). Then, we removed the inducer, by washing the cells with 

inducer free media, and followed the dynamic of the luciferase signal in a microplate reader. The 

results (Figure 4.13) show that after inducer removal (t=0) the luciferase signal first increased ∼2-

fold within 0.5–2 hours and then decreased with different rates.  

 

 

Figure 4.13. Switching synthetic ECF cascades from ON to OFF state. Decay of luciferase activity in (A) 

plasmid-encoded timer circuits, when cells are shifted from inducer-rich (10-4% arabinose) to inducer-free 

medium at t = 0h. The strains used in (A) are the same described in Figure 4.7. Symbols and error bars 

indicate mean and standard deviation from three independent biological replicates. (B) show the 

computational prediction (dashed lines) for the switching kinetics from ON to OFF state in the models for 

the timer circuits, when the transcription rate of the inducible promoter is shifted to its basal value at t = 0 h. 

Solid lines in (A and B) correspond to fits of an exponentially decaying function, which was used to infer the 

experimental and theoretical signal half-life times reported in (C). Note that the time interval for these fits 

(2.5 - 5 h in A and B) was restricted to a period of constant exponential growth (not shown in the figure). 

This figure was adapted from Paper III (Pinto et. al., 2018) by permission of Oxford University Press. 

This somewhat unexpected increase in luciferase activity after inducer removal (Figure 4.13A) is 

presumably caused by a transient decrease in the growth rate after the washing step, which results in 

a decreased protein dilution rate and hence in increased accumulation of luciferase enzymes. 

However, overall, we observed that the decay of luciferase signal scales with the length of the ECF-
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cascade (Figure 4.13C). Indeed, in the 0-step timer, we observed a decay of the signal (half-life 130 

min) that is only slightly faster than the cell doubling time in these experiments (∼175 min), 

suggesting that the luciferase enzymes are generally stable and gets diluted due to cell growth. In 

the ECF28 1-step timer we measured a luciferase half-life of ∼200 min, suggesting that the ECFs 

present have first to be diluted and/or degraded in order to turn OFF the cognate promoter and 

consequently the luciferase production. Interestingly the luciferase in the ECF32 1-step timer 

showed a much shorter half-life (∼130 min), suggesting a faster degradation rate i.e. less stable 

ECF σ factor. Finally, the two-step timers displayed a longer half-life of the luciferase (∼320-400 

min) leading to ∼2–4 fold increase in signal half-life times when compared with the 0-step timer. 

These results confirm the qualitative expectation that more time is required in order to degrade 

and/or dilute the two ECFs in the 2-step timers and consequently switching OFF the downstream 

promoter. Strikingly when we simulated these experiments, using our mathematical model and the 

parameters inferred before, we were able to predict similar results to the experimental data, 

including the growth-rate induced peak in luciferase signal (Figure 4.13B, C). Although the signal 

half-life time predicted by the model is slightly higher than determined experimentally, the model 

captures the temporal hierarchy of switching kinetics across the different cascades very well – 

including also the rapid OFF-switching of the ECF32-containing 1-step timer. Taking together both 

the experimental and the model prediction results, we were able to validate the general behavior of 

the timer circuits, including the peculiar characteristics of the ECF σ factors involved. 

4.2.1 ECF σ factor-based genetic-timer circuits in B. subtilis 

In the previous section, we showed the orthogonal behavior of ECF σ factors in E. coli and the 

possibility of combining them in cascades of different length that resulted in the activation of a 

reporter gene with an increasing time delay. Since ECF σ factors are widespread among different 

bacterial phyla, it would be interesting to test if ECF-based circuit could be implemented in a 

different model organism. The gram-positive Bacillus subtilis is one of the most used model 

organism and it is phylogenetically distant from E. coli, thus represents an optimal candidate to test 

the implementation of ECF-based genetic circuits.  Parallel to our project, our collaborators (T. 

Mascher and D. Pinto) used the PliaI inducible promoter124 and the luciferase reporter, to identify 

ECF σ factors that displayed to be functional in B. subtilis. Among 10 different ECF/promoter pairs 

analyzed, belonging to the Proteobacteria, Actinobacteria and Firmicutes they identified three 

ECFs (ECF41, ECFUN, and ECF105) that were non-toxic, did not show cross-regulation and were 

able to activate their target promoter. Indeed, the titration of ECF41, ECFUN, and ECF105 switches 

lead to a 100-, 30- and 15-fold induction from the OFF to the ON state, respectively, while the 

negative control strains not expressing the ECF σ factors showed target promoter activities close to 

the luminescence background (data not shown). Thus, they used ECF41 and ECFUN to assemble 

and characterize 0- 1- and 2-step timers in B. subtilis (Figure 4.14). 
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Figure 4.14. Time delayed response of synthetic ECF cascades in B. subtilis (measured by D. Pinto in 

the laboratory of Thorsten Mascher125). (A) All circuits shown in the cartoons of (B-F) were integrated 

into the chromosome of B. subtilis 168. Panels (B-F) show the dynamical response of luciferase activity 

(shown in relative luminescence units normalized by the optical density measured at 600 nm) in synthetic 

ECF cascades featuring no (B), one (C, D) and two (E, F) ECF σ factors, after the addition of various 

concentrations of bacitracin at t=0 h (black solid line). The time delay of gene induction (black dashed line) 

is indicated for the highest bacitracin concentration (10 g/ml) and was defined as the time when luciferase 

activity first exceeded the pre-induction value by 2-fold. Maximal fold induction is also indicated. The 

experimental response dynamics (circles) was recorded throughout growth, as described in Paper III (Pinto 

et. al., 2018). The response dynamics of the computational model (solid colored lines) was obtained by a 

simultaneous fit of all experimental data in (B-F), showing that the behavior of all 5 circuits can be explained 

with one self-consistent set of physiological parameters. The details of the computational model and the 

parameters are described in Paper III (Pinto et. al., 2018). This figure was adapted from Paper III (Pinto et. 

al., 2018) by permission of Oxford University Press. 

Strikingly the timer circuits show, like in the case of E. coli, an increased time delay between the 

promoter induction and the luciferase signal production that scales with the length of the cascade. In 

particular, the 1-step timers built using ECF41 and ECFUN display a time delay of 15 minutes and 

20 minutes respectively, while the 2-step timers with the ECFs in different permutations have a time 

delay of 40 minutes. The timer circuits were integrated into the genome and notably, we observed 

again a reduced output signal for longer ECFs cascades. In particular, the output-dynamic decreased 

from ∼200-fold induction in the 0-step timer to ∼15–100-fold induction in the 1-step timers. The 

reduced dynamic range is in agreement with the result obtained in E. coli and is also captured by 

our mathematical models. Finally, these results clearly demonstrate that more complex ECF circuits 

can also be functionally implemented in B. subtilis, where they display similar characteristics to 

ECF circuits tested in E. coli. 
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4.3 Summary 

In order to generate ECF-based circuit with increasing level of complexity, in this chapter, we 

first characterized 15 distinct ECF-Pecf switches in our reporter system. Overall we found that ECFs 

are non-toxic and functional, although they displayed different levels of promoter activation (Figure 

4.1-4.6). This seems to be mainly caused by the different binding affinities of the ECFs for the 

cognate target promoters. By changing the copy number of the ECFs and tuning the input/output 

signal ratio we showed that it is possible, in principle, to optimize the output dynamic range of the 

ECF-switches. We, therefore, combined ECF-switches into more complex circuits, generating ECF 

σ factor cascades, that activate a series of ECF σ factor genes with characteristic time delays. We 

showed that optimizing the output dynamic range, varying the copy number of the components, can 

improve the signal transmission in ECF σ cascades. Moreover, the results show that the proof of 

concept of such “genetic-timer circuits” is also applicable in the phylogenetically distant organism 

Bacillus subtilis and that the dynamic characteristics of the circuits, in both organisms, can be 

captured by a set of mathematical models sharing a single set of parameters (Section 4.2). 

Summarizing, all the ECF σ features illustrated in this chapter make ECFs great candidates to be 

used as orthogonal regulators in synthetic circuits. However, their characteristics, so far pose a 

challenge for assembling multiple ECF-switches into complex circuits. For instance, as we showed 

in Section 4.2, high basal activity of a switch can lead to the undesired the activation of the next 

switch in series and ultimately to the loss of output-dynamic range. Thus, the control of the basal 

activity of the ECF-switches embedded in a circuit represents a key feature to optimize the signal 

transmission in complex multi-ECF circuits. Previously, it was demonstrated that the addition of a 

sequestering molecule into a switch allows to control the activity of a transcriptional regulator and 

to lower the background signal126. ECF σ factors, in nature, are often regulated by anti-σ factors that 

can bind and block the ECFs, keeping it inactive. Hence, in order to add a new layer of control, we 

decided to introduce anti-σ factors in our ECF-based genetic circuits. 



 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Implementation of anti-σ factors in ECF σ-based synthetic circuits 
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In the previous chapter, we implemented 15 ECF-switches and combined three of them in 

“genetic-timer circuits”, where the induction of ECF cascades of different length, was activating a 

reporter gene with increasing time delay. However, we also observed a general decrease of signal 

output-dynamic range and, consequently loss of signal transmission that was scaling with the length 

of the ECF-cascade. This is due to the different binding characteristics of the ECFs for their target 

promoters, together with the different number of ECFs produced in each genetic configuration. 

Indeed, in plasmid-borne circuits, the decrease of output dynamic range was caused by the 

increasing level of baseline signals that was scaling with the number of ECFs in the cascade. In 

nature, signal transmission of σ factor cascades (e.g. the sporulation cascade of Firmicutes 

bacteria), heavily relies on the expression of anti-σ factors127. Anti-σ factors (AS) are 

transmembrane or cytosolic proteins and represent one of the mechanisms of signal transduction in 

bacteria59. Generally, an AS factor bind and block the cognate ECF σ factor keeping it inactive. 

Hence, AS factors represent one of the best options to control ECF activity and improve the 

dynamic response of ECF σ based synthetic circuits by reducing the ecf basal promoter activity. 

Moreover, using AS factors allows, in principle, to establish a time tunable time delay between ECF 

production and downstream promoter activation. Hence, in order to increase our control of ECF 

activity, and to establish a tunable time delay, we implemented anti-σ factors in our genetic circuits.  

As illustrated in Section 1.5, AS factors can be toxic when expressed at a high level in E. coli. 

Moreover, the release of ECFs from membrane-anchored AS factors can be triggered by a variety of 

external stimuli. In this chapter, in order to use AS factors, we first analyze the effects of their 

overexpression on the growth of our reporter strain. Thus, we generate soluble, truncated, AS factor 

variants to alleviate the observed growth defects and isolate the AS factors activity from external 

stimuli. We then focus on using AS factors to generate ECF/AS threshold gate circuits. Using such 

circuits, we evaluate the ability of AS factors in establishing non-linear dynamic response and a 

tunable time delay in ECF-switches, for increasing ECF levels. Finally, we focus on a set of AS 

factors to design time-tunable suicide circuits in E. coli. 

 

5.1 Toxicity evaluation of wild type anti-σ factors 

 

In Chapter 4, we analyzed the dynamic range of 15 ECF σ factors by building ECF-switches 

(Figure 4.3, 4.5, 4.6). Among these ECFs, 14 have a known AS factor. In order to implement these 

AS factors in our circuits, we first evaluated their ability in sequestering the cognate ECFs into 

inactive complexes and, at the same time, the effects of their overexpression on cell growth. To do 

so, we designed 14 new circuits by adding the cognate AS factors to the previously generated ECF-

switches (Figure 4.3). In each circuit, we maintained the inducible PBAD promoter driving the 

expression of an ecf gene and added a second inducible promoter (Ptet) to control the expression of 

the cognate AS factor. Each circuit maintains the relative ecf promoter fused with the luciferase 

reporter, to measure the output signal of the circuit for increasing AS levels (Figure 5.1). 
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Figure 5.1. Genetic organization of the modules in ECF-AS-switch circuits. The basal activity of an 

arabinose-inducible PBAD promoter drives the expression of an ECF σ factor. The expression of the cognate 

AS factor (that regulates the ECF activity) is controlled by an ATc inducible Ptet promoter. The light signal 

produced by the relative ecf promoter, fused with the luciferase operon, represent the output of the circuit. 

 

Our previous results showed that all plasmid-borne ECF-switches possess certain basal activities, 

even in the absence of inducer, due to their binding characteristics for the cognate promoters and to 

the basal activity of the PBAD promoter (Figure 4.3). Therefore, to evaluate AS activity, we relayed 

on this basal signal, assembling the AS-circuits on medium copy plasmids and measuring the 

changes in the baseline signal (RLU/OD600), during time-course experiments, were we only induced 

the AS expression. During the experiments, we also measured the optical density at 600 nm (OD600) 

of all strains, in order to evaluate growth defect among AS induction. Finally, to compare the 

toxicity and the activity of different AS factors we plotted, for each circuit, the OD600 and 

luminescence normalized by the OD600 (RLU/OD600) values, in absence (ATc 0ng/mL) and in 

presence (ATc 100ng/mL) of AS, 6 h after the induction (Figure 5.2 A, B). 

 

 
Figure 5.2. Characterization of wild type AS factors. All circuits were introduced in E. coli strain SV01 

on medium copy plasmid pSVM-mc (Table 9.5) generating the GFC strains listed in Table 9.1. (A) bacterial 

density (indicated as the optical density measured at 600 nm) achieved by 14 E. coli strains carrying the 

indicated ECF/AS circuits (the circuit is named after the AS factor) and a positive control strain (C+), 6 

hours after the induction with 0 (-AS) and 100 (+AS) ng/mL ATc. The positive control (C+) is an E. coli 

strains carrying a plasmid-borne Ptet-lux construct. (B) Luciferase activity (shown in relative luminescence 

units normalized by the optical density measured at 600 nm) of the strains described in (A), 6 hours after the 

induction with 0 (-AS) and 100 (+AS) ng/mL ATc. The results are averaged from at least two independent 

biological assays and error bars denote standard deviations. 
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Overall, our result shows that AS overexpression has a deleterious effect on cell growth. Indeed, 

most of the AS factors cause a reduction in the 6h-OD600 to 50% or higher of the uninduced strain 

(Figure 5.2A). There are, however, two exceptions represented by AS17 and AS20 that did not 

show any toxic effect. In contrast, AS16, AS22, and AS31 resulted to be particularly toxic, causing 

a >75% fold-reduction in the 6h-OD600 when compared with the uninduced strain (Figure 5.2A). 

Analyzing the luminescence signal in absence and presence of AS factors (Figure 5.2B) we noticed, 

overall, the ability of the AS factors of lowering the signal produced by the basal activity of the 

cognate ECFs (from ~2-fold; AS27 to ~64-fold; AS16, between uninduced and fully induced AS 

conditions). The non-toxic AS17 and AS20 are also able to lower the ECF activity (Figure 5.2B; 

~2-fold and ~14-fold respectively), confirming that these AS factors are functional and at the same 

time non-toxic. However, especially for highly toxic AS factors (e.g. AS16), it is not possible to 

discriminate at which extent the baseline signal reduction is caused by AS activity, or by reduced 

viability of the strains. 

With the results obtained from these experiments, we gained a general overview of AS toxicity 

and activity. Overall, AS appeared to be functional, but exhibited also a medium/high level of 

toxicity that, in some cases, could enhance the luciferase signal reduction. Thus, in order to use AS 

factors in synthetic circuits and to better characterize their activity, the toxicity of the AS factors 

have to be reduced. To do so, we decided to generate AS truncations. 

 

5.2 Toxicity evaluation of truncated, soluble anti-σ factors 

 

Anti-σ factors are often transmembrane proteins and since the space in the cell membrane is 

limited128, we reasoned that purely the possession of a transmembrane domain of a strongly 

expressed protein could significantly reduce the viability of the host. As introduced in Section 1.5, 

the σ factor binding domain is encoded in the N-terminal portion of the AS factor. In 

transmembrane AS factors, the N-terminal domain is situated in the cytoplasm and it is followed by 

a transmembrane domain and a periplasmic C-terminus that is responsible for sensing extracellular 

stimuli59. Therefore, to generate AS truncations, we required to remove the transmembrane domain 

of the proteins, avoiding the deletion of any portion that is important for ECF-binding. To this end, 

the former master student in our laboratory Angelika Diehl predicted the secondary structure and 

the transmembrane domains of AS factors using Jared129 and TOPCONS130 respectively. Using this 

approach, she successfully identified transmembrane domains in 12 over the 14 selected AS factors. 

In particular, AS15 is known to be already soluble and therefore it was not possible to generate a 

truncated variant68. AS16, on the other hand, is predicted to have 6 transmembrane domains and an 

N-terminus portion of only 25 amino acids. Within this number of amino acid, it is possible to 

accommodate only 1.5 ɑ-helices that seems to be not enough for the binding of the ECF σ factor56. 

Moreover, we found highly conserved residues in the otherwise variable transmembrane domains. 

These conserved residues face the cytoplasm, suggesting that they are important for ECF binding. 

For the reasons described above we then decided to not generate a truncated variant of this AS. 

For all the other AS factors, after identifying a suitable site for cutting the transmembrane 

domain, we generated, by PCR amplification, and Golden gate assembly, AS truncations (Table 

9.3). To ascertain at least one functional construct, we generated, if possible, two truncation variants 

of different length for each AS. Moreover, to prevent the exposition of degradation-tags at the C-

terminus and to eventually allow protein purification, we added a C-terminal FLAG-tag to each AS 
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truncation131. Using this approach, we generated 21 FLAG-tagged soluble AS factors that possess 

only the N-terminal domain responsible for the ECF binding (Table 5.1). 

 

 N-terminus  Trunc. 1 Trunc. 2 

Name Length/Aa TM Length/Aa 

AS11_987 72-109 0 109 80 

AS14_1324 156 1 146 87 

AS17_1691 114 1 94 - 

AS20_992 86-75 1 86 75 

AS22_4450 39 4 39 - 

AS26_4464 98 1 93 80 

AS27_4265 118 1 109 77 

AS28_1088 77 1 71 67 

AS31_34 45 2 45 22 

AS34_1384 105 1 100 87 

AS37_2513 80 1 74 48 

AS38_1322 156 1 155 - 
 

Table 5.1. Anti-σ factor truncations. The original names of the AS factors assigned by V. Rhodius et al.,63 

are indicated. TM: Number of transmembrane domains. Trunc: truncation. 

 

To evaluate the effects of AS-truncations overexpression on cell growth, we assembled AS-

circuits as illustrated previously (Figure 5.1). Briefly, the circuit, encoded on medium copy plasmid, 

contains two distinct inducible promoters (PBAD and Ptet) that drive the expression of an ECF σ 

factor and the cognate AS factor truncation respectively. The relative Pecf promoter, fused with the 

luciferase cassette, is used to assay AS activity. We evaluated the toxicity and the activity of the 

AS-truncations by measuring the OD600 and the changes in the luciferase signal (RLU/OD600), 

produced by the basal ECF activity in absence (ATc 0ng/mL) and in the presence (ATc 100ng/mL) 

of AS, respectively (Figure 5.3).  
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Figure 5.3. Characterization of truncated AS factor variants. All circuits were introduced in E. coli strain 

SV01 on medium copy plasmid pSVM-mc (Table 9.5) generating the GFC strains listed in Table 9.1. (A) 

bacterial density (indicated as the optical density measured at 600 nm) achieved by 21 E. coli strains carrying 

the indicated ECF/AS circuits (the circuit is named after the AS truncation variant) and a positive control 

(C+), carrying a plasmid-borne Ptet-lux construct, 6 hours after the induction with 0 (-AS) and 100 (+AS) 

ng/mL ATc. (B) Luciferase activity (shown in relative luminescence units normalized by the optical density 

measured at 600 nm) of the strains described in (A), 6 hours after the induction with 0 (-AS) and 100 (+AS) 

ng/mL ATc. The results are averaged from at least two independent biological assays and error bars denote 

standard deviations. 

 

Figure 5.3 shows the OD600 and the luciferase signal (RLU/OD600) of 21 AS-truncation and a Ptet-

lux control at time 6 h from AS induction. Analyzing the growth of strains in which the AS 

expression was not induced, we observed, in all the strains, an OD600 ~0.1 (Figure 5.3A; black bars). 

This is similar to the result obtained for wild type AS (Figure 5.2A; black bars) and indicates an 

overall non-toxic effect on cell growth of uninduced AS circuits (wild type or truncated). After the 

induction of AS factor truncations, half of the strains presented overall growth defects, showing a 

reduction in the 6hr-OD600 to 50% or lower of the uninduced strain (Figure 5.3A; grey bars). An 

exception is represented by AS22 truncation, that alleviated enormously the toxicity, from ~76% 

6h-OD600 reduction of the wild type AS, to ~30% 6h-OD600 reduction of the truncated variant 

(Figure 5.2A; AS22, Figure 5.3A; AS22 t1). Moreover, all other truncations resulted to be equally, 

or less toxic, than the relative wild type AS possessing equal or higher 6h-OD600 (Figure 5.2A and 

Figure 5.3A; grey bars). The results also show that, if available, the truncation 2 (shorter AS 

variant) exhibited, overall, less toxicity then truncation 1 (higher 6hr-OD600 when compared to 

truncation 1).  

Analyzing the luciferase signal, (Figure 5.3B) we noticed, upon induction, a general ability of 

the AS truncations of lowering the luciferase signals (from ~2-fold, AS27 t1, to ~100-fold, AS14 t1, 

t2), indicating that AS truncations are still able to bind the cognate ECF σ factors. Overall, for a 
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given AS truncation, there is almost no difference in activity between the two truncations (Figure 

5.3B; equal RLU/OD-fold reduction when comparing truncation 1 and truncation 2) with the 

exception of AS31 (~35 and ~8 RLU/OD-fold reduction for t1 and t2 respectively). Moreover, 

when comparing the fold reduction in luciferase signal between wild type (Figure 5.2B) and 

truncated AS (Figure 5.3B) we observed, overall, similar results, with the exception of AS14. 

Strikingly, the truncations of this particular AS factor showed an increased ability in binding the 

cognate ECF, enhancing the ~4-fold signal reduction of the wild type (Figure 5.2B; AS14)  to ~100-

fold for both the truncated variants (Figure 5.3B; AS14 t1,  AS14 t2). 

Summarizing, our results suggest that truncated AS are generally functional, being able to block 

the ECFs and lowering the activation of the ecf target promoters. Moreover, AS truncations are 

equally or less toxic than the wild type counterpart, indicating that the deletion of the 

transmembrane domains partially reduced the toxicity of the AS factors. The residual toxic effect in 

AS truncation could then be explained by cross-reaction between the soluble AS factors and 

endogenous sigma factors required for the basal cellular processes. Hence, the overexpression of 

AS factors encoded on medium copy plasmids, even in the soluble form, could lead to the growth 

defects we observed. Since toxic proteins expressed from medium and high copy plasmids can 

generate undesired effects on cellular physiology34,35, lowering the copy number of the toxic 

construct, is often a solution. Hence, to ultimately alleviate the AS toxicity, we decided to analyze 

the AS truncation-circuits in single copy configuration. 

 

5.3 Characterization of chromosomally integrated anti-σ factor circuits 

 

As a test case study, we first chromosomally integrated and evaluated the wild type AS16-based 

circuit. We chose this wild type AS factor because previously resulted to be the most toxic and 

active AS (Figure 5.2). We, therefore, wanted to evaluate how the expression in single copy of this 

AS would affect its toxicity and activity. We then measured, using time-course experiments, the 

luciferase activity and the OD600 of strains harboring the AS16-based circuit on medium copy 

plasmid, or chromosomally integrated (Figure 5.4). 
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Figure 5.4. Toxicity and activity of plasmid-borne and chromosomally integrated ECF/AS16 circuit. 

Comparison of ECF/AS16 circuit (A) encoded on medium copy plasmid (B, D) and chromosomally 

integrated (C, E). Luciferase activity (shown in relative luminescence units normalized by the optical density 

measured at 600 nm) from an ECF16 σ-dependent promoter (B, C), and optical density measured at 600 nm 

(D, E) in absence (ATc 0 ng/mL), or presence (ATc 100 ng/mL) of cognate anti-σ. The growth defects 

observed when the circuit is encoded on medium copy number plasmids (D) are abolished when the circuit 

integrated into the genome (E), while the ability of the anti-σ of sequestering the cognate ECFσ is maintained 

(B, C). The data indicate averages from three independent biological assays and error bars denote standard 

deviations. 

 

The results for the plasmid-borne circuit showed, 6 h after induction, a decrease of 5-fold in the 

OD600 values together with ~60-80-fold reduction of the luciferase signal (Figure 5.4B, D). As 

previously illustrated, in this case, it is not possible to discriminate if the reduction of luciferase 

signal is due to the inhibiting activity of the AS on the ECF σ factor, or to the AS overexpression 

that causes a growth defect in the strain analyzed. However, when examining the same ECF/AS 

circuit integrated into the chromosome, we also observed a significant decrease in the luciferase 

signal (~30-fold; Figure 5.4C), while the OD600 values of the AS-induced and uninduced conditions 

resulted almost identical (Figure 5.4E). These results indicate that in the chromosomally integrated 
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circuit, the AS factor retained the ability to sequester the cognate ECF σ factor, while the toxicity 

effects observed on medium copy plasmid were completely abolished. 

After evaluating the behavior of the wild type AS16 and confirming that expressing the AS 

factor in single copy completely abolish the growth defects observed previously, we deiced to 

integrate all the truncated AS circuits (together with AS15 and AS16 which do not possess 

truncated variants) into the genome of E. coli. To do so, we used CRIMoClo vectors to sub-clone 

and subsequently chromosomally integrate the previously generated AS circuits (Figure 5.3). 

Strikingly, we found that all single copy AS circuits did not cause a toxic effect on cell growth. 

Indeed, all the strains displayed similar 6h-OD600 values in both uninduced and induced conditions 

(Figure 5.5A).  

 

 
Figure 5.5. Characterization of chromosomally integrated truncated AS factor variants. All circuits 

were integrated into the chromosome of E. coli strain SV01 at the phage HK022 attachment site, using the 

pSV plasmid series (Table 9.5) and generating the GFC strains listed in Table 9.1. (A) bacterial density 

(indicated as the optical density measured at 600 nm) achieved by 23 E. coli strains carrying the indicated 

ECF/AS circuits (the circuit is named after the AS or the AS truncation variant) and a positive control (C+; 

Ptet-lux), 6 hours after the induction with 0 (-AS) and 100 (+AS) ng/mL ATc. (B) Luciferase activity (shown 

in relative luminescence units normalized by the optical density measured at 600 nm) of the strains described 

in (A), 6 hours after the induction with 0 (-AS) and 100 (+AS) ng/mL ATc. The red dashed line represents 

the plate reader low detection limit. The results are averaged from at least two independent biological assays 

and error bars denote standard deviations. 

 

Analyzing the AS functionality (Figure 5.5B) we found that AS11 t1-t2, AS16, AS20 t1-t2, 

AS22 t1 presented a fold reduction on the luciferase signal, ranging from 2-fold (AS22 t1) to 30-

fold (AS16). In contrast, AS26 t1, and AS31 t2 appear to have lost the ability to sequester the 

cognate ECF σ factors when compared to plasmid-borne circuits (cfr. Figure 5.3B). This suggests 

that the activity observed previously in the plasmid-configuration was mainly due to the growth 

defects caused by the AS overexpression (Figure 5.3A). In the case of AS27 t1-t2 variants (Figure 

5.5B), we obtained similar luciferase values in the presence and the absence of expression of the AS 



Implementation of anti-σ factors in ECF σ-based synthetic circuits  

89 
 

factor truncations (~4x102 RLU/OD600). These values are close to the detection limit of the plate 

reader, however, overall, AS27 and its truncations did not show a significant ability in reducing the 

ECF activity, also in all other experiments (min. 0-fold reduction in Figure 5.3B; AS27t2, – max. 2-

fold reduction in Figure 5.2B; AS27), thus, we assume that this AS does not bind efficiently to the 

cognate ECF σ. Finally, in the case of the other AS-circuits (Figure 5.5B; ECF14 t1-t2, AS15, AS17 

t1, AS26 t2, AS28 t1-t2, AS31 t1, AS34 t1-t2, AS37 t1-t2, AS38 t1) the basal ECF activity 

generated a low luciferase signal that is below the detection limit of the plate reader (~4x102 

RLU/OD600). Therefore, for these circuits, it was not possible to evaluate AS activity accurately.  

In order to recover the luciferase signal in these circuits, we repeated the experiment inducing 

full ECFs expression prior to and during the measurement, using 0.2% arabinose (saturating 

concentration of the PBAD promoter; cfr. Figure 3.8B). Then, we followed the dynamic of OD600 and 

luciferase signal (RLU/OD600) in the absence (ATc 0ng/mL) and in the presence (ATc 100ng/mL) 

of AS, respectively (Figure 5.6). 

 

 
Figure 5.6. Characterization of chromosomally integrated truncated AS factor variants in the presence 

of high ECF σ levels. All circuits were integrated into the chromosome of E. coli strain SV01 at the phage 

HK022 attachment site, using the pSV plasmid series (Table 9.5) and generating the GFC strains listed in 

Table 9.1 Luciferase activity (shown in relative luminescence units normalized by the optical density 

measured at 600 nm) of 10 E. coli strains carrying the indicated ECF/AS circuits (the circuit is named after 

the AS or the AS truncation variant), 6 hours after the induction with 0 (-AS) and 100 (+AS) ng/mL ATc. 

The red dashed line represents the plate reader low detection limit. The results are averaged from at least two 

independent biological assays and error bars denote standard deviations. 

 

Using this experimental setup, we were able to register a detectable the signal for ECF15, ECF17 

ECF28, ECF31, and ECF38 showing at the same time AS activity for AS15, AS17, AS28t2, 

AS31t1 (Figure 5.6; from 10-fold: AS31 t1 to 120-fold: AS17 t1). In contrast, in the case of AS28t1 

and AS38 t1, we did not observe any change in the luciferase level among AS induction, suggesting 

a poor ability of these AS factors in regulating the cognate ECFs. In the case of ECF14 and ECF34, 

the overnight induction did not produce a detectable luciferase signal (Figure 5.6; AS14 t1-t2, AS34 

t1-t2, black bars), even in presence of high level of inducer (0.2% arabinose). This can be explained 

by looking at the dose-response curves generated for the corresponding chromosomally integrated 

ECF-switches (Figure 4.5). Indeed, among all the switches ECF14 and ECF34, exhibited the lowest 

activity at full arabinose induction when expressed in single copy (~2x103 RLU/OD600). This 

combined with the presence of AS factors, produced by the basal activity of the Ptet promoter (cfr. 

Figure 3.8D), can explain the low signal (below the plate reader detection limit) that we registered 

in this experiment (Figure 5.6).However, this observation also implies a certain ability of these AS 

truncation in binding the cognate ECFs. Finally, the strains carrying AS26 t2 and AS37 t1-t2 
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displayed severe slow growth during the experiment (in all the biological replicates), after full 

overnight induction of ECF sigma factors, therefore were excluded from this analysis. In case of 

AS37 t1 and t2, the reduced growth can be attributed to the toxic effect given by the overexpression 

of the relative ECF as shown in Figure 4.2, while the reasons for the slow growth observed in strain 

encoding the ECF/AS26 t2 circuit remain elusive. However, these AS factor truncations appeared to 

be active when assayed on medium copy plasmids (Figure 5.2B), even though they displayed, at the 

same time, toxic effects on cell growth (>50% fold-reduction in the 6h-OD600), therefore, we 

cannot exclude that they are at least partially functional. 

 

5.4 Anti-σ factor threshold gate circuits 

 

In the previous sections, we showed that AS factors are able to bind the ECFs sequestering them 

into transcriptionally unproductive ECF σ/anti-σ factor complexes. Thus, in this section, we show 

our experiments to determine if AS factors can be effectively used to lower the baseline signal of 

ECF-switches. We reasoned that if we set a certain expression level of AS factor, the pool of 

induced ECFs have to overcome the AS threshold in order to activate the target promoter. This will, 

in principle, generate a non-linear dynamic response of the ecf promoters and a sharper transition 

between the OFF and the ON state of the switches, for increasing levels of ECFs. Moreover, the 

introduction of different levels of AS factors in ECF/AS-switches could lead, in principle, to the 

generation different time delays between ECF expression and downstream promoter activation. 

To test our hypothesis we designed an experiment selecting the AS truncations that in the 

previous experiments displayed reduced toxicity and high activity (Figure 5.3B and Figure 5.5B; 

AS11 t2, AS14 t2, AS20 t2, AS22 t1, AS26 t2, AS27 t1, AS28 t2, AS31 t1, AS34 t1, AS37 t1, 

AS38 t1). Moreover, to simplify the experimental procedure, we wanted to assay all the switches at 

the same time, using the same inducer concentrations. Thus, we decided to use a configuration of 

the different genetic modules that ensured low AS toxicity and high reporter activity. Therefore, we 

engineered the bacterial strains integrating the PBAD-ecf and the Ptet-anti-σ modules into the genome 

and subsequently transformed them with medium copy plasmid encoding the luciferase reporter 

gene fused with the relative ecf promoter. In this way we are able, in principle, to express safely the 

AS factors even at inducer levels close to Ptet promoter saturation (Figure 3.8D; aTC >1 ng/mL), 

without incurring in toxic effects (as shown in Figure 5.5A). Moreover, as previously showed in 

Section 4.1, this configuration (chromosomally integrated PBAD-ecf and plasmid-borne Pecf-lux) 

guaranteed an overall high level of output luciferase signal, upon the different concentration of 

arabinose induction (Figure 4.6).  

In order to set two different AS levels, and knowing the Ptet promoter have a certain basal 

activity (cfr. Figure 3.8D), we grew the strains during the entire experiment, in absence (ATc 0 

ng/mL) and in  presence (ATc 2.5 ng/mL) of inducer, in order to set a low and a high AS expression 

level (cfr. Ptet promoter induction in Figure 3.8D). We then measured the circuits dynamic behavior, 

among different level of ECF expression and grouped the results according to the ability of the AS 

of lowering the luciferase signal produced by the basal ECF activity (Figure 5.7 and Figure 5.8).  
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Figure 5.7. Characterization of 6 threshold gate ECF/AS circuits. Dynamic response of threshold gated 

ECF/AS circuits. All PBAD-ecf and Ptet-anti-σ TUs were integrated into the chromosome of E. coli strain 

SV01 at the phage HK022 attachment site, using the pSV plasmid series (Table 9.5). Subsequently, the Pecf-

lux reporter system (encoded on pSVM-mc plasmids, Table 9.5) were introduced into the newly engineered 

strains, generating the GFC strains listed in Table 9.1. The graphs show, for each circuit (named after the AS 

truncation variant), the dynamical response of luciferase activity (shown in relative luminescence units 

normalized by the optical density measured at 600 nm) after the addition of arabinose at the indicated 

concentrations at t=0 h (solid black lines), in presence of low (ATc 0 ng/mL) and high (ATc 2.5 ng/mL) AS 

threshold levels. The maximum fold induction is indicated. The merged panels show the signals obtained for 

low (faded curves) and high (solid curves) AS expression, in the uninduced (arabinose 0 %) and highly 

induced (arabinose 2x10-4%) strains. The time delay of ecf induction (dashed lines) is indicated for the 

highest arabinose concentration (2x10-4%) and was defined as the time when luciferase activity first 

exceeded the pre-induction value by 2-fold. The experimental response dynamics were recorded during 

exponential growth, as described in Section 7.10 The results are averaged from at least two independent 

biological assays and error bars denote standard deviations. 
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Figure 5.8. Characterization of 5 threshold gate ECF/AS circuits (and positive control). Dynamic 

response of threshold gated ECF/AS circuits. All PBAD-ecf and Ptet-anti-σ TUs were integrated into the 

chromosome of E. coli strain SV01 at the phage HK022 attachment site, using the pSV plasmid series (Table 

9.5). Subsequently, the Pecf-lux reporter system (encoded on pSVM-mc plasmids, Table 9.5) were introduced 

into the newly engineered strains, generating the GFC strains listed in Table 9.1. The positive control strain 

(GFC310; Table 9.1) possess a Ptet-lux construct integrated at the phage HK022 attachment site. The graphs 

show, for each circuit (named after the AS truncation variant), the dynamical response of luciferase activity 

(shown in relative luminescence units normalized by the optical density measured at 600 nm) after the 

addition of arabinose at the indicated concentrations at t=0 h (solid black lines), in presence of low (ATc 0 

ng/mL) and high (ATc 2.5 ng/mL) AS threshold levels. The maximum fold induction is indicated. The 

merged panels show the signals obtained for low (faded curves) and high (solid curves) AS expression, in the 

uninduced (arabinose 0 %) and highly induced (arabinose 2x10-4%) strains. The time delay of ecf induction 

(dashed lines) is indicated for the highest arabinose concentration (2x10-4%) and was defined as the time 

when luciferase activity first exceeded the pre-induction value by 2-fold. The experimental response 

dynamics were recorded during exponential growth, as described in Section 7.10. The results are averaged 

from at least two independent biological assays and error bars denote standard deviations. 

The control strain (Ptet-lux) in Figure 5.8 shows the two levels of gene expression obtained from 

the chromosomally integrated Ptet promoter, using ATc at concentrations of 0 and 2.5 ng/mL. The 

basal signal (~103 RLU/OD600) is consistent with the one registered previously (Figure 3.8D). 

Moreover, the induction with ATc at 2.5 ng/mL leads to a signal ~106 RLU/OD600 that is close to 

promoter saturation (cfr. Figure 3.8D). This confirms that using these levels of ATc inducer allows 

setting a low and a high expression level from the Ptet promoter, that in turn results in a low and 

high AS expression in our ECF/AS circuits. 

In the low AS expression condition (Figure 5.7, Figure 5.8; left panels), we observed, overall, the 

ability of the different ECFs of activating the target promoters with different fold inductions (from 

~14-fold in ECF/AS20 t2 to ~30000-fold ECF/AS28 t2). In the high AS expression condition 

(Figure 5.7 and Figure 5.8 middle panels) the results show that some circuits displayed a variance in 

the basal activity levels (circuits in Figure 5.7) and others were the baseline signal did not show 

significative differences (circuits Figure 5.8). In particular, in Figure 5.8, ECF/AS22 t1 and 

ECF/AS26 t2 circuits displayed almost identical basal activity in presence of low and high AS 

expression levels (~2x105 RLU/OD600 and ~2x104 RLU/OD600 respectively), suggesting a weak 

ECF/AS factor binding affinity. In contrast, even though ECF/AS14 t2, ECF/AS27 t2, and 

ECF/AS31 t1, showed identical baseline signal values for low and high AS induction, they were no 

more inducible, when growing the strain in the presence of a high AS expression level (Figure 5.8; 

AS14 t2, AS27 t2, AS31 t1 – left and middle panels). This suggests a strong AS factor binding 

affinity for the cognate ECFs that is then unable to activate the target promoter. In the case of 

ECF/AS14 t2 this can be confirmed by the fact that the baseline signal is below the detection limit 

of the plate reader (~4x102; Figure 5.8, not shown), thus, we cannot appreciate the baseline signal 

down-shift between low and high AS expression levels. In contrast, when looking at ECF27/AS27 

t2 and ECF31/AS31 t1 we notice identical baseline signals for low and high AS expression levels 

(Figure 5.8; AS27 t2, AS31 t1, low AS expression and high AS expression panels ~3-x103 

RLU/OD600). This apparent lack of AS factor activity can be explained by looking at the promoter 

activity of these ECFs in the control experiment showed in Figure 4.4. Indeed, both Pecf27 and Pecf31 

presented a baseline signal ~3x103 RLU/OD600 even in absence of the cognate ECF σ factor. This 

suggests that also in threshold gate experiment (Figure 5.8) AS27 t2 and AS31 t1 are highly 
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functional, binding the cognate ECFs in inactive complexes (also in case of high ECF expression 

levels) and that the baseline signal observed in the experiment is caused by cross-reaction between 

the ecf promoters and endogenous σ-factors.  

All the other ECF/AS switches analyzed (Figure 5.7) showed, overall, lower baseline signal 

values and higher output dynamic ranges, when comparing low and high AS expression conditions 

(Figure 5.7 left and middle panels). In particular, setting a high AS expression level produced 

dynamic ranges of the circuits from ~150-fold-induction of ECF/AS38 t1 to ~1000000-fold-

induction of ECF/AS20 t2 (Figure 5.7; middle panels). This suggests that the AS factors are 

sequestering the cognate ECFs, thus reducing the target promoter activity at low ECF levels. This, 

in some cases (e.g. ECF/AS20 t2 and ECF/AS37 t1), generates also a digital-like, sharper transition 

between the OFF and the ON state for increasing ECF levels (Figure 5.7; ECF/AS20 t2 and 

ECF/AS37 t1, middle panels).  

In order to assay if AS factors are able to generate a threshold effect that delays the ECF σ target 

promoter activation, we merged the curves obtained for low and high AS expression, showing only 

the signals for uninduced and fully induced ECF expression (Figure 5.7 and Figure 5.8 merged 

panels). The result of the merged graph of Figure 5.7 and Figure 5.8 show, overall, similar time 

delays (measured as the time when luciferase activity first exceeded the pre-induction value by 2-

fold, for maximum arabinose induction) among the different circuits (18-35 min) in the low AS 

expression condition (Figure 5.7 and Figure 5.8; faded curves). In contrast, the time delays of the 

circuits in the high AS condition showed more variability (from 20 to 85 minutes; Figure 5.7 and 

Figure 5.8; solid colored curves). Moreover, in the case of AS14 t2, AS27t2, and AS31 t1, we can 

only appreciate the time delays obtained in the low AS expression condition (Figure 5.8; faded 

curves). This is probably due to the fact that, in these switches, the induced ECFs did not exceed the 

threshold level set by a high AS expression level. In the other ECF/AS switches analyzed in Figure 

5.8 (AS22, AS26) we obtained identical time delays, when comparing low and high AS expression 

conditions (Figure 5.8; faded curves, and solid colored curves, respectively). These results confirm 

the poor ability of these AS in binding the cognate ECFs. This was hypothesized previously by 

looking at the lack of baseline downshift (Figure 5.8) and it is further confirmed by the fact that 

setting a higher AS expression level did not lead to increased time delays in ECF σ target promoter 

activation (Figure 5.8; merged panels). 

In contrast, comparing the time delays, set by the low and high AS expression levels, of the 

switches in Figure 5.7 (AS factors that are able to lower ECFs basal activity), we observed 

differences, in the time delays set by the low and high AS conditions, in 5 out of 6 ECF/AS circuits 

(Figure 5.7; merged panels). Indeed, with the exception of ECF/AS20, all the circuits presented 

increasing time delays, in ECF σ target promoter activation, for increasing expression levels of the 

AS. In particular, the longer time delays were obtained in ECF/AS28 t2 (35 and 60 min when 

comparing low and high AS levels) and ECF/AS34 t1 (25 and 85 min when comparing low and 

high AS levels). Interestingly, overall, the results show that the time delay does not scale with the 

efficiency of AS in lowering the baseline signal. For instance, upon high AS expression levels 

ECF/AS20 t2 (Figure 5.7; AS20 t2) showed the highest baseline down-shift (800-fold) but 

displayed the shortest time delay (~20 min). Moreover, despite the great baseline downshift, there is 

no difference in the time delay obtained for low and high AS expression. This suggests that 

together, the number of ECF and AS factors, the ECF promoter binding affinity and the AS factor 

binding affinity for the cognate ECF, all play a role in determining the circuit output dynamic and 
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time delay. To assay this hypothesis and further evaluate if the time delay can be tuned by using 

different levels of AS expression, we focused our analysis on a specific ECF/AS switch and 

encoded it in pSVM-mc medium copy plasmid.  

We used ECF/AS14 t2 circuit, that in the previous configuration (were ecf and anti-σ factor 

genes were expressed in single copy and Pecf-lux was encoded medium copy plasmid; Figure 5.8) 

did not show any fold change upon ECF expression, in presence of high AS induction. AS14 

truncations previously appeared to be particularly active (Figure 5.3B and 5.5B). Moreover, by 

looking at the dose-response curves of the ECF14-switch circuits encoded in mixed configuration 

(Figure 4.6), we noticed that the switch has the smallest fold induction (~100-fold between the 

uninduced and full induction condition). Taken together, these results suggest that in the threshold 

gate experiment (Figure 5.8), the number of ECF14, produced by inducing the chromosomally 

integrated PBAD promoter, was not enough to overcome the threshold level set by the AS factor, thus 

not allowing the activation of the target promoter. Therefore, by increasing the copy number of the 

circuit components we expect to increase the output signal. Finally, since AS14 t2 did not show 

high toxicity levels when expressed from medium copy plasmid, (displaying less than 50% 

reduction in 6h-OD600 when compared with the uninduced strain; Figure 5.3A) we hypothesized 

that this ECF/AS pair was an optimal candidate to perform the threshold gate experiment with the 

switch encoded medium copy plasmid.  

To precisely characterize the dynamic behavior of all the components of the switch we followed 

the changes in both ECF and AS expression by using two different fluorescent proteins. Therefore, 

we assembled two distinct operons in which we placed a gfp a mCherry gene, present in our library, 

downstream the PBAD-ecf and the Ptet-anti-σ constructs respectively. The circuit output was then 

evaluated by using the cognate Pecf promoter fused with the luciferase reporter. In order to set 

different time delays among ECF expression and output signal production, we used different ATc 

concentrations (0, 1 and 2.5 ng/mL) that allowed different levels of AS expression. Finally, we 

followed the dynamic evolution of all the output signals, among different levels of ECF induction 

(Figure 5.9). 
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Figure 5.9. Dynamic response of plasmid-borne ECF14/AS14 t2 threshold gate circuit. The circuit was 

introduced in E. coli strain SV01 on medium copy plasmid pICH8209426 (Table 9.6) generating the strain 

GFC0549 (Table 9.1). The graphs show the dynamical response of mCherry (A), GFP (B) and luciferase (C) 

activity (shown in relative fluorescence, or luminescence units normalized by the optical density measured at 

600 nm) after the addition of various concentrations of arabinose at t=0 h in presence of low (ATc 0 ng/mL), 

medium (ATc 1 ng/mL) and high (ATc 2.5 ng/mL) AS expression levels. The mCherry (A) and GFP (B) 

signals monitor AS and ECF production respectively. The luciferase signal (C) indicates the ecf promoter 

activity. The time delay of gene induction (dashed lines) is indicated for the highest arabinose concentration 

(0.2%) and was defined as the time when GFP or luciferase activities first exceeded the pre-induction value 

by 2-fold. The experimental response dynamics were recorded during exponential growth, as described in 

Section 7.10. The results are averaged from at least two independent biological assays and error bars denote 

standard deviations. 

Looking at the mCherry channel it is possible to appreciate the different levels of Ptet promoter 

activity that in turn set different thresholds of AS (Figure 5.9A). The mCherry signal (Figure 5.9A) 

shows some variation, even in absence of AS inducer, during the time course-experiment (a sharp 

increase ~2-fold, followed by a decrease ~3-fold). A change in Ptet promoter activation was also 

observed previously, as discussed in Section 3.3.1. However, in case of the results of the experiment 
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in Figure 5.9A, the deactivation of the ATc due to light production could only explain the results 

obtained for the signals where the Ptet promoter was induced (Figure 5.9A; ATc 1 ng/mL and ATc 

2.5 ng/mL). Thus the exact reasons behind the changes in the activation dynamics of the Ptet 

promoter, during the experimental procedure, remain elusive. Following the dynamic changes in the 

GFP channel (Figure 5.9B), it is possible to notice that the ECF expression appear to be robust upon 

different inducer levels, being almost identical among the different levels of AS expression. 

Moreover, we calculated identical time delays (25 min) among the maximum induction of the PBAD 

promoter and ECF/GFP production in all three AS condition (Figure 5.9B). Thus, the ECF gene 

expression from the PBAD promoter is consistent in all the assayed conditions. The results obtained 

in the luciferase channel (Figure 5.9C) show that ECF/AS14 t2 circuit, encoded on medium copy 

plasmid, is able to produce a detectable luciferase signal among all level of ECF induction, 

confirming that increasing the copy number of the circuit allowed the recovery of the output signal. 

Moreover, by increasing the level of AS expression we were, overall, able to lower the baseline 

signal (Figure 5.9; 2-fold luciferase baseline reduction comparing ATc 0ng/mL and ATc 

2.5ng/mL). This confirms our previous hypothesis on the baseline downshift being masked by the 

low detection limit, in the ECF/AS14 t2 circuit tested in mixed configuration (Figure 5.8; low and 

high AS expression). Finally, despite the small changes observed in the basal luciferase signal 

down-shift, the three AS levels lead to distinct time delays between the ECF induction and target 

promoter activation. In particular, we calculated, for the highest ECF expression level, ~15min, 

~25min, and ~60min for low, medium and high AS thresholds respectively (measured as the time 

when luciferase activity, induced with 0.2% arabinose, first exceeded the pre-induction value by 2-

fold). Moreover, since for a given induction of the PBAD promoter, the time delay for ECF 

production remains constant (Figure 5.9B; 25 min), while the delay for Pecf activation scales with 

the threshold set by AS, we can ultimately confirm that the observed time delay is caused by the 

formation of ECF/AS complexes. 

Summarizing, the results confirmed that is possible to use an AS factor to set different threshold 

levels that will, in turn, delay the time between ecf induction and target promoter activation. For 

fixed ecf expression levels, the delay can be set varying the inducer concentrations of the AS factor. 

However, since the inducible Ptet promoter showed some variance even in the absence of inducer, 

we further tested the circuit, using two different constitutive promoters to drive the expression of 

the AS factors. We used a weak (PJ23117) and strong (PJ23108) E. coli constitutive promoters (present 

in our library; Table 9.3) to drive the expression of the AS factor, thus establishing two fixed AS 

threshold levels (Figure 5.10).  
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Figure 5.10. Dynamic response of plasmid-borne ECF14/AS14 t2 threshold gate circuit with AS factor 

expression controlled by constitutive promoters. The circuit was introduced in E. coli strain SV01 on 

medium copy plasmid pICH8209426 (Table 9.6) generating the strains GFC0550, GFC551 (Table 9.1). The 

graphs show the dynamical response of mCherry (A), GFP (B) and luciferase (C) activity (shown in relative 

fluorescence, or luminescence units normalized by the optical density measured at 600 nm) after the addition 

of various concentrations of arabinose at t=0 h in presence of low (weak constitutive promoter, PJ23117), and 

high (strong constitutive promoter, PJ23108) AS expression levels. The mCherry (A) and GFP (B) signals 

monitor AS and ECF production respectively. The luciferase signal (C) indicates the ecf promoter activity. 

The time delay of gene induction (dashed lines) is indicated for the highest arabinose concentration (0.2%) 

and was defined as the time when GFP or luciferase activities first exceeded the pre-induction value by 2-

fold. The experimental response dynamics were recorded during exponential growth, as described in Section 

7.10. The results are averaged from at least two independent biological assays and error bars denote standard 

deviations. 

 

Interestingly the results show more stable expression of the AS operon when it is fused with the 

weak and the strong constitutive promoters (Figure 5.10A; ~2x103 RLU/OD600 and ~104 

RLU/OD600 respectively). This suggests that the changes observed previously in the Ptet promoter 

activation (Figure 5.9A) were related to changes in the regulation of the promoter activity.  
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Comparing the mCherry signals obtained with the inducible and constitutive promoters we observe 

that the signal relative to the weak constitutive promoter (~2x102 RLU/OD600) is ~1.5x higher than 

the one obtained previously, using ATc at 0 ng/mL (Figure 5.10A and Figure 5.9A). Moreover, the 

mCherry signal relative to the strong constitutive promoter (~104 RLU/OD600) is close to the one 

obtained in the strain induced with 2.5 ng/mL ATc (Figure 5.8A; ~104 RLU/OD600 before signal 

decay). When comparing the time delays observed in the GFP channel (Figure 5.10B; 25 min) we 

observe perfect agreement with the results obtained previously (Figure 5.9B; 25 min) confirming 

that different levels of AS expression do not influence the expression of the ECFs from the PBAD 

promoter. Finally also in the experiment in Figure 5.10 we were able to set distinct time delays 

between ECF production and downstream promoter activation (Figure 5.10C). Indeed for maximum 

ECF induction, we calculated time delays of 20 and 45 min in low and high AS expression 

conditions. Moreover, by comparing the two experiments in Figure 5.9 and Figure 5.10 we can 

qualitatively correlate the time delays necessary for the activation of the ecf promoter with the 

mCherry signals and thus with the AS expression level. Indeed, the time delay generated by AS 

expression from the weak constitutive promoter in Figure 5.10C (20 min) is higher to the one 

generated by AS expression using ATc at 0 ng/mL (15 min), like in the case of the mCherry signals 

of the two constructs (Figure 5.9A and Figure 5.10A). The same applies, to the time delay generated 

by AS expression from the strong constitutive promoter (Figure 5.9C; 55 min) that is close and the 

one obtained using ATc at 2.5 ng/mL (Figure 5.9C; 60 min). Indeed we obtained, for these 

constructs, also similar mCherry signals, as discussed above (Figure 5.9A and Figure 5.10A).  

Summarizing, the results presented in this section confirmed the hypothesis that using AS factors 

can effectively reduce the ECF target promoter activity, generating a non-linear dose-response 

behavior for increasing ECF levels. Using threshold gate circuits, we were able to further 

characterize the differences in the interaction dynamic between the selected ECFs and their cognate 

AS factors (Figure 5.7 and Figure 5.8). Overall, we found AS factors (e.g. AS22 t1 and 26 t2) that 

did not generate a reduction in the basal promoter activity (Figure 5.8), and AS factors (AS20 t1 

and AS34 t1) that showed a high impact on the basal promoter activity (Figure 5.7; 800-fold and 

100-fold reduction respectively). In our experimental conditions, we were also able to generate a 

sharp transition between the OFF and the ON state of the switches in the presence of high AS 

expression levels (Figure 5.7; AS20 t2, AS37 t1). Moreover, the results presented in the merged 

panels in Figure 5.7 suggest that, in most cases, setting different AS expression levels allows for the 

establishment of distinct time delays between ECF production and downstream promoter activation. 

However, the time delay does not seem to depend only by the ability of the AS factors in lowering 

the signal produced by the basal activity of the ECFs, but also by the binding proprieties of the 

ECFs for the target promoters and by the amount of ECFs and AS factors produced.  

Finally, the results of the experiments illustrated in Figure 5.9 and Figure 5.10 confirms that the 

time delays observed in the ECF/AS switches are due to the time required for the production and 

maturation of ECF σ factors, that have to accumulate and overcome the threshold level set by the 

AS factors, in order to activate their target promoters. Moreover, our experiments demonstrate that 

is possible to tune the time delay by variating the level of ECF and AS expression. This can be 

achieved, for instance, using different inducer concentrations for both ECF and AS factor or varying 

the copy number of the genes. Moreover, we also demonstrated that is possible to simplify the 

experimental procedure by setting different AS expression levels using constitutive promoters with 

different transcriptional strengths. 
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5.5 ECF/anti-σ factor suicide circuits 

 

After evaluating the toxicity of AS factors and characterizing their dynamics in binding the 

cognate ECF σ factors in our experimental conditions, we used them to generate novel time tunable 

ECF/AS factors circuits. We aimed to generate a prototype of a self-destruction circuit in E. coli. 

Synthetic circuits that allow the programmed lysis of the bacterial cells represent a valuable tool in 

synthetic biology. Indeed, such circuits would allow for the recovery of intracellularly expressed 

proteins avoiding using mechanical and chemical cell disruption techniques that can cause protein 

denaturation and require the purchase of expensive reagents, respectively132. Moreover, such 

circuits would allow for the production and the release of recombinant proteins which secretion is 

difficult to achieve133.  

In the previous section, we demonstrated that is possible to establish a tunable time delay 

between ECF expression and target promoter activation. Therefore, we reasoned that using the 

previously generated ECF/AS switches and fusing the ecf promoter with a bacterial toxin, it is 

possible, in principle, to generate circuits that kill the cells with a tunable time delay. Such suicide 

circuits will serve as proof of concept for a future design of a time tunable self-destruction circuit in 

E. coli using ECF and AS factors.  In order to generate a suicide circuit, we decided to use the CcdB 

toxin that poisons the gyrase-DNA complex, blocking the passage of polymerases, leading to 

double-strand breakage of the DNA and death of the bacterial cells134. In order to clone the ccdB 

gene in our library, we used the E. coli strain DB3.1 that has a mutation in the DNA gyrase that 

does not allow the interaction with CcdB, therefore abolishing its toxic effects135. The strategy we 

choose was to use the CcdB-resistant strain DB3.1 to assemble plasmid-borne Pecf-ccdB constructs 

(Table 9.5). We then transformed these plasmids into previously generated bacterial strain 

possessing PBAD-ecf and the Ptet-anti-σ constructs integrated into the genome, generating the GFC 

strains in Table 9.1. To avoid basal ccdB expression that would lead to premature cell death, or 

adaptive mutations, we choose the ECF/AS pairs that in the previous experiments did not showed 

basal activity in the low AS expression condition (Figure 5.7, Figure 5.8), i.e. ECF/AS14 t2, 

ECF/AS 28t2, ECF/AS34 t1, ECF/AS37 t2. By further expressing the AS factors in these strains, 

when they were carrying the Pecf-ccdB plasmids, we then ensured virtually zero basal activity from 

the ecf promoters, preserving the cellular viability. We assayed the strains in plate reader 

experiments, monitoring the optical density at 600 nm, among different ECF induction levels 

(Figure 5.11). By pre-culturing the strains in the presence of two different ATc concentrations, we 

introduced two different AS threshold levels that the ECFs have to overcome before they can 

activate their target promoter expressing the toxin. Moreover, for each strain, we washed the cells 

with inducer-free media, prior to starting the measurement (Section 7.10). In this way, the AS 

factors produced overnight dilutes during the plate reader experiment, due to cell replication, 

generating a third, lower AS threshold level (Figure 5.11).  
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Figure 5.11. Characterization of ECF/AS suicide circuits in E. coli (bacterial density). Time evolution 

of bacterial density (indicated as the optical density measured at 600 nm) of 4 suicide circuits, for no- (0%, 

black lines) and full (0.2%, red lines) arabinose induction, in presence of low (ATc=0 ng/mL), medium 

(ATc=1 ng/mL) and high (ATc=2.5 ng/mL) AS threshold levels. In all circuits (named after the AS factor 

truncation) the PBAD-ecf and Ptet-anti-σ modules were integrated into the chromosome of E. coli strain SV01 

at the phage HK022 attachment site, using the pSV plasmid series (Table 9.5). Subsequently, the gene 

encoding toxin ccdB, fused with one of the different ecf promoters (encoded on pSVM-mc plasmids, Table 

9.5) was introduced into the newly engineered strains, generating the GFC strains listed in Table 9.1. The 

results are averaged from at least two independent biological assays and error bars denote standard 

deviations. 
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Overall, the results show a severe change in the OD600 values (Figure 5.11, red curves) ~4 h after 

ECF σ factor induction (t=0), while the uninduced strains grow exponentially with the typical 

doubling time in our experimental setup ~175 min (Figure 5.11, black curves). The toxic effect is 

more evident for the lowest AS threshold level (Figure 5.11; aTC 0 ng/mL panels) and it seems to 

reduce for increasing AS expression levels (Figure 5.11; aTC 1 ng/mL and aTC 2.5 ng/mL panels). 

To better estimate the effect of ECF, and thus of ccdB, expression, on cellular growth among 

different AS levels and to compare the time required to generate the growth defects in the different 

conditions, we plotted the results shown in Figure 5.11 as growth rates of the bacterial strains in the 

function of time (Figure 5.12) 
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Figure 5.12. Characterization of ECF/AS suicide circuits in E. coli (growth rates). Time evolution of 

growth rate (indicated as the optical density measured at 600 nm in the function of time expressed in hour) of 

4 suicide circuits illustrated in Figure 5.11. The time delay of ccdB expression is indicated for the highest 

arabinose concentration (0.2%) and was defined as the time were Growth rate (OD600/h), first show a 70% 

reduction of the pre-induction value (dashed lines). The results are averaged from at least two independent 

biological assays and error bars denote standard deviations. 

 

The results confirm that the induction of the ECF, in all strain, leads to growth defects (defined 

as a 70% reduction of the growth rate of the uninduced strain), especially in case of a low AS 

expression level. Analyzing the time delay of the circuits (defined as the time where the growth rate 

(OD600/h), first show a 70% reduction of the pre-induction value; black dashed lines) in the washed 
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strains (Figure 5.12; left panels) we observed that AS14 t2 was able to generate the longest delay 

(405 min) between ECF expression and growth rate reduction. Moreover, in the same strain, 

increasing level of AS expression lead to zero growth defects (Figure 5.12; middle and right 

panels). This is a further confirmation of the results obtained previously (Figure 5.3B, Figure 5.6B, 

Figure 5.8) that showed how the proprieties of this ECF and relative AS truncation allow for a 

strong reduction of ECF activity. The results in Figure 5.12 also show that in three circuits, 

increasing concentrations of AS generate increasing time delays, between ECF expression and 

70%-growth rate reduction.  

In order to ensure that the growth defect we observed were due to the CcdB toxin and not due to 

ECF toxicity, we also analyzed the OD600 values of the corresponding ECF-switches (not harboring 

the ccdB gene) expressed in single copy (Figure 5.13).  

 

 
Figure 5.13. Effects on the bacterial density of ECF expression from chromosomally integrated ECF-

switches. Bacterial density (indicated as the optical density measured at 600 nm) achieved by 4 previously 

characterized (Figure 4.5) E. coli strains carrying the indicated ECF-switches circuits and a positive control 

(C+), 6 hours after the induction with 0 (black bars) and 0.2% (grey bars) of arabinose. The positive control 

(C+) represents E. coli strains carrying a plasmid-borne PBAD-lux construct. The results are averaged from at 

least two independent biological assays and error bars denote standard deviations. 

 

The result shows how the expression of ECF14, ECF28, and ECF34 do not result in a toxic 

phenotype (6h-OD600 fold reduction <20% of the uninduced strain). In contrast, we noticed that the 

expression of ECF37 caused a 44% fold-reduction in the 6h-OD600 of the uninduced strain. This 

result is coherent with the high toxic effect displayed by ECF37 when encoded on medium copy 

plasmid (Figure 4.2). Since ECF/AS37 t1 suicide circuit did not display increasing time delays in 

the generation of the growth defects, among different AS expression levels, we wanted to further 

assay if in this circuit the growth defects are due to the ccdB expression. Thus we repeated the 

experiment by using an ECF/AS37 t1 control strain, were the Pecf promoter drives the expression of 

the luciferase reporter. The results, in Figure 5.14, shows that even if there are some growth defects 

in the induced strains, especially in the washed condition (4% growth rate reduction of the pre-

induction value, Figure 5.14 left panels), the toxic effects are lighter than the one observed in the 

strain carrying the CcdB toxin (70% growth rate reduction of the pre-induction value, Figure 5.12 

left panel). We then conclude that the growth defects of the strain carrying the ECF/AS37 t1 suicide 

circuit, observed in Figure 5.12 are caused by ECF driven ccdB expression, even though it was not 

possible to generate a time delay by increasing the level of AS factor. 
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Figure 5.14. Time evolution of bacterial density and growth rate of ECF/AS37 control circuit. The 

ECF/AS37 t1 control circuit, do not encode for the CcdB toxin. The bacterial density is indicated as the 

optical density measured at 600 nm. The growth rate is indicated as the optical density measured at 600 nm 

in the function of time (h). The results are averaged from at least two independent biological assays and error 

bars denote standard deviations. 

 

Summarizing, the experiments presented in this section demonstrated that AS factors can lower 

the ECF activity also in suicide circuits, allowing the establishment of a time delay between gene 

expression and cellular death. However, comparing the result obtained in Figure 5.12 and Figure 5.7 

we observed qualitative agreements and discrepancies. For instance, in Figure 5.7 ECF/AS28 t2 

shows, for low AS expression, a longer time delay when compared with ECF/AS34 t2 (35 min and 

25 min respectively; Figure 5.7, faded curves). This is in agreement with the result obtained for the 

corresponding suicide circuits in Figure 5.12 (AS28 t2 time delay=305 min, AS34 t1 time 

delay=270 min). However, when looking at the time delays of the two strains in presence of a high 

AS expression level in the threshold experiment (Figure 5.7; merged panels, solid curves) we 

observed a smaller time delay in ECF/AS28 t2 circuit (60 min), than the one obtained for 

ECF/AS34 t2 circuit (85 min). This contrasts with the result obtained in the corresponding suicide 

circuits (Figure 5.12; right panels), where these switches showed the opposite behavior (AS28 t2 

time delay=370 min, AS34 t1 time delay=285 min). The discrepancies can be explained by the fact 

that in the suicide circuit experiments (Figure 5.12) we used a higher maximal arabinose 

concentration than the one used in the threshold gate experiment in Figure 5.7 (0.2% and 2x10-4% 

respectively). This is due to the fact that we did not observe significative growth defects, by 

inducing the suicide circuits with 2x10-4% arabinose (data not shown). However, these 

discrepancies in the results confirm that the differences in the dynamical reduction of ECF activity, 

obtained in the threshold gate experiments (Figure 5.7, Figure 5.8) cannot be completely explained 

simply by the affinity between a given AS truncation and cognate ECF σ factor. However, our 
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threshold gate experiments (Figure 5.7, Figure 5.8), still serve as a good qualitative indicator for the 

discrimination of the ECF/AS factor pairs that show interesting characteristics, such as time-

delayed activation or digital-like activation of the ecf promoter.  

 

5.6 Summary 

 

The experiments presented in this chapter, prove that it is possible to successfully implement AS 

factors into ECF-switches, in order to reduce ECF basal activity and set time tunable delays for ecf 

promoter activation. The analysis presented in Sections 5.1-5.3 gives a general overview of the 

toxicity and activity of the AS factors that we chose to design synthetic circuits. Overall, the results 

of the analysis on AS toxicity confirmed that most of AS factors we chose can cause severe growth 

defects upon their overexpression (Figure 5.2A). In order to solve this issue, we generated soluble, 

truncated AS factors. Using the truncated version of AS factors we partially alleviated the toxicity 

(Figure 5.3A), generating soluble AS variants that are equally or less toxic than wild type AS 

factors, when encoded on medium copy plasmids. Thus, our results confirm that the toxic effect can 

partially arise from the overexpression of transmembrane proteins. However, only expressing AS 

truncations from chromosomally integrated circuits, we were able to fully recover cell viability in 

all strains (Figure 5.5). Using different experimental approaches we also showed that both wild type 

and truncated AS are able to bind cognate σ factors (Figure 5.2-5.6). The effects of AS factors 

expression generate different levels of output signal reduction. This can be due to different binding 

affinities of the AS factors for the cognate ECFs, combined with the different binding affinities of 

the ECFs for the target promoters. Finally, even though we did not perform any experiment to 

validate this hypothesis, the AS truncations could allow a more robust ECF-binding that is not 

influenced by external stimuli, since these AS factors do not possess any transmembrane domain.  

After showing the different degree of AS toxicity and activity, we evaluated if AS factors can be 

used to introduce a non-linear dynamic response and a tunable time delay in our synthetic circuits. 

Thus, we selected, for each AS truncation, the best performing variant (i.e. less toxic and more 

active) and further characterized the dynamic of interaction between ECF σ and AS factors, by 

tuning their expression levels. We proved the hypothesis that using AS factors allow to decrease the 

baseline expression in ECF-switches, thus implementing a digital-like OFF/ON switching behavior 

and ultimately increasing the output dynamic range (Figure 5.7-5.8). Moreover, we were also able 

to generate 8 functional ECF/AS threshold gate circuits, where increasing AS expression levels 

generate increasing time delays among ECF expression and target promoter activation (Figure 5.7, 

Figure 5.8). However, we also observed that the effects of AS expression on the dynamic of ECF σ 

activity is susceptible to changes that depend on the affinity of the AS for the cognate ECF, the 

promoter binding affinity of the ECF and from the number of ECF and AS produced. This must be 

taken into account in the design of ECF/AS based synthetic circuits, and indicates that a broader 

characterization of the ECF/AS circuits that infers a higher number of possible conditions is needed, 

in order to rational design ECF/AS based circuits. Nonetheless, simply by utilizing the qualitative 

results of our experiments (Figure 5.7-5.8), we were able to select 4 AS factors truncations to 

successfully implement 4 prototype ECF/AS self-destruction circuits. Even though the behaviour of 

our suicide circuits can be largely improved, we proved that the dynamic interaction between ECF 

and AS factor can be used to generate different type of circuits featuring a time-tunable delay. 
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The synthetic biology field aims to use a forward-engineering approach, to modify existing 

biological systems and create new biological parts or networks1. Within this approach, the creation 

of synthetic circuits follows a bottom-up strategy,  in which each DNA-encoded component is 

considered as an isolated part and their combination allows for the generation of higher order 

circuits that feature increasing complexity9. Hence, in the rational design of synthetic circuits, a 

robust characterization of the individual parts is fundamental to reveal their features and limitations 

and better understand how to interconnect them in increasingly complex circuits.  
As introduced in Chapter 1, a robust characterization of the genetic parts under certain conditions 

is only one of the challenges in synthetic biology. Indeed, the performance of the synthetic circuits, 

embedded in living organisms, are often affected by the interconnection of all the compounds 

within the cell that generate context-dependence. Thus, another challenge in the synthetic biology 

field is the development of strategies that minimize the context-dependence and increase the 

orthogonality of the synthetic circuits. 

In this chapter will first discuss our effort to establish a high throughput experimental setup that 

allows for a precise quantitative characterization of the genetic circuits. Next, we will examine the 

ECF toolbox, our optimized framework for the generation of different genetic parts and synthetic 

circuits, analyzing the results of our characterization of the genetic building blocks. Finally, we will 

discuss our findings on the possibility of implementing ECF σ factors as orthogonal regulators in 

novel synthetic circuits.  

 

6.1 A robust experimental setup for synthetic circuit evaluation 

 

In this study, we aim to establish ECF σ factors as transcriptional regulators for novel synthetic 

circuits, thus we first had to characterize them thoroughly in the context of synthetic circuit design. 

This required the establishment of a robust experimental setup that allows for a precise quantitative 

characterization of the genetic circuits that we generate and for a comparison of their features. To 

this end, we developed the experimental setup described in Chapter 2. We first selected an E. coli 

strain the allows for the utilization of the commonly used transcriptional regulators (TetR50, LacI48 

and AraC49). This was necessary since ECF σ factor regulation, in nature, occurs mainly through 

anti-σ factors that respond to a broad range of stimuli that in most cases are unknown, or difficult to 

reproduce experimentally (Section 1.5). Thus, in order to create ECF transcriptional circuits, we 

have to use an inducible promoter to initiate ECF expression. To this end, we selected the E. coli 

strain MK01 that like the majority of E. coli strains is suitable for utilizing genetic constructs 

regulated by the TetR, due to the exogenous nature this regulator. Additionally, MK01 is not able to 

metabolize the arabinose and abolished the all or none response of E. coli to this inducer, allowing 

for networks embedding the AraC regulator. Finally, the strain has the endogenous lacI copy 

knocked out, thus increasing the context independency of networks featuring this regulator80. With 

simple recombination using the Cre-Lox system (Section 2.1 and Section 7.3), we removed the 

chloramphenicol cassette present in MK01, generating the E. coli strain SV01 that maintains all the 

above-mentioned features and allows for the utilization of the chloramphenicol selection marker 

(Table 2.1). This allowed, for instance, to assay the quadruple integration using CRIMoClo 

plasmids (Section 3.2.3). Moreover, the strain resulted to be suitable for reliable induction using 

different inducers simultaneously (see Chapter 5) and a valuable choice, especially for AraC 

regulated networks. Indeed, we obtained a highly reproducible response to the induction using 
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different arabinose concentrations, when comparing the different experiments in this study. 

Moreover, the bacterial population showed a homogeneous response to the inducer, as showed in 

the ECF-cascade experiment (Figure 4.7).  For these reasons, SV01 represents an optimal E. coli 

strain for the development of complex circuits, embedding multiple classical transcriptional 

regulators, as well as ECF and anti-σ factors.  

The quantitative characterization of synthetic circuits benefits from methodologies that allow for 

the simultaneous high throughput analysis of different genetic constructs with a high resolution. To 

this end, in Section 2.2 we introduced our standard experimental setup. This consists of the usage of 

plate reader experiments together with a highly sensitive reporter. We showed that the luciferase 

cassette from Photorhabdus luminescens97 allows the increase of resolution, dynamic range, and 

temporal response, of the circuit output signal when compared with the commonly used GFP 

fluorescent reporter. This confirms that luciferase reporters represent a valid system to measure 

gene expression dynamics in E. coli92,94. To date, the characterization of the basic genetic parts such 

as promoters and terminators is often performed using fluorophores27,28,64,112,136
, while we encourage 

the use of luminescent reporters, with their exquisite signal-to-background ratio. To this end, we 

developed an algorithm that fixes one of the major limitations in using luciferase reporters in high 

throughput analysis, such as plate reader experiments. This limitation arises from the constant 

emission of light from the luminescent reporters that can generate bleed-through (i.e. light-

scattering) in neighboring wells of the microplate. Indeed, a light emitting strain placed in a single 

well can illuminate more than 50% the other empty wells (Figure 2.2A), biasing the measurement 

of luminescent signals. In Section 2.3 we extensively demonstrated how our bleed-through 

correcting algorithm can reveal the “true” luminescence intensities in all wells of a fully filled 

microplate (black and transparent). Moreover, in Paper I (Mauri et al., 2019) we show that the 

method can be also applied to a different plate reader. Thus, the robustness of the results we 

presented suggests that the approach could also be applicable to other experimental setups (e.g. cell-

free expression experiments measured in 384-well or 1536-well format), ultimately encouraging the 

usage of luminescent reporters in high throughput analysis. 

 

6.2 ECF toolbox: MoClo expansion  

 

The general idea within the circuit design in the synthetic biology field is to treat the basic 

biological components of the synthetic circuits (such as promoters, ribosome binding sequences, 

coding sequences, and terminators) like building blocks, that can be assembled in different 

combinations, generating genetic circuits with increasing order of complexity. To this end, the 

Synbio field benefits from every methodology that allows for hierarchical combinatorial assembly, 

sharing of the parts, and generation of standardized part libraries.  

In Section 1.2 we illustrated the different available methodologies for the manipulation of the 

DNA and the design of genetic constructs highlighting how the MoClo represents, to date, one of 

the best frameworks for the generation of the synthetic circuit from reusable parts. Indeed, the 

presence of small (4bp) scars in between the assembled parts and the necessity of curing the DNA 

sequences for two Type IIs restriction sites is a small price to pay, in order to use a framework that 

allows for the generation of libraries of parts and their combinatorial assembly in circuits with 

increasing levels of complexity. For these reasons, we decided to adopt extensively the MoClo 

system as a base for the generation of the ECF toolbox, presented in this study.  
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Chapter 3 introduces our expansions to the MoClo system that are part of the ECF toolbox. 

These include the new expression vector pSVM-mc that allows for a faster assembly of reporter 

constructs from MoClo level 1 parts (Section 3.1), together with 32 CRIMoClo vectors that can be 

used for the generation and the chromosomal integration of the genetic circuits from MoClo 

compatible parts (Section 3.2). The latter are particularly interesting because even though the 

expression of plasmid-encoded circuits present certain advantages (e.g. higher protein expression 

yield and higher signal output over single copy constructs), lowering the copy number of a construct 

allows to solve problems such as cellular metabolic burden that can arise from the expression of 

plasmid-borne genetic constructs32,33,36. Thus, in Section 3.2 we presented our efforts in fusing the 

MoClo features with the ones of the CRIM plasmids that allow for chromosomal integration by site-

specific recombination39. In particular, we showed how our system allows for the generation of 

genetic circuits from reusable, MoClo-compatible parts and their easy integration into four att sites 

into the genome of E. coli. Moreover, we achieved another fundamental goal for the expression of 

synthetic circuits, i.e. the context-independence of the integration loci. The results presented in 

Figure 3.4-3.6 demonstrate how the utilization of CRIMoClo plasmids allow for easy sequential 

multiple integrations, of the genetic constructs, in four E. coli phage attachment sites. Strikingly our 

results show that the gene expression from the four loci is robust and well isolated from the genetic 

context. This represents a major innovation since, to date, there is a lack of orthogonal and well-

characterized loci for the chromosomal integration in E. coli137. Finally, as further improvement, the 

CRIMoClo vectors could be modified by adding the gene encoding for the integrase protein, 

following the strategy presented by St-Pierre and collaborators40. This would avoid the necessity of 

co-transforming the host with the helper plasmid (that carries the integrase gene) and will open the 

possibility of performing a simultaneous integration of different constructs in different loci. 

Concluding, the CRIMoClo framework allows for filling the gap between easy circuit generation 

and chromosomal integration, facilitating the assay of the constructs in different genetic 

configurations. Indeed, it was recently demonstrated that the copy number of a circuit can also 

affect the behavior and the performances of a synthetic circuit138
. Thus, CRIMoClo and similar 

systems30, represents a fundamental innovation in the synthetic biology field, since they allow for a 

flawless transition between plasmid-encoded and chromosomally integrated genetic circuits, adding 

another degree of freedom to the possible configurations of a given synthetic circuit.  

 

6.3 ECF toolbox: part library 

 

Aside from our additions to the MoClo system, the ECF toolbox includes a set of well-characterized 

genetic parts that are described in Chapter 3, Chapter 4 and Chapter 5. It is important to notice that 

the ECF toolbox is the first framework that features a library for use in bacterial systems that is 

fully compatible with the original MoClo vectors. Indeed the only other available library, which 

parts are encoded in MoClo vectors, was developed for plant transformation139. On the other hand, 

the other known bacterial DNA part libraries such as CIDAR27 and EcoFlex28 apply the same 

combinatorial assembly principles of the MoClo, but they are not compatible with the original 

MoClo system. This is because they also aim to define two new assembly standards since the 

genetic parts are assembled on a set of custom destination vectors. In particular, the CIDAR focuses 

more on an automated workflow for the combinatorial assembly27, while the EcoFlex aims to 

provide a combinatorial library toolbox for different biological applications in E. coli28. However, 
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both systems, compared with the MoClo present some limitations. For instance, they feature an 

overall smaller number of cloning vectors, that limits the flexibility of the circuit design (e.g. lack 

of the possibility of cloning the TUs in reverse orientation from a set of genetic parts). Moreover, in 

both systems, the genetic circuits are ultimately cloned into a level M or level P equivalent 

destination vectors, without the possibility of further circuit expansion. For these reasons, in this 

study, we decided to use the original MoClo system to encode the level 0 library of parts and 

expand it by creating the CRIMoClo system. 

In Section 3.3.1 we illustrated the selection and the characterization of the three inducible 

promoters (PBAD, Ptet, PLlac0-1) included in our library. The analysis performed using a highly 

sensitive luciferase reporter revealed a broad induction range of the promoters (Table 3.2). 

Interestingly both, PBAD and PLlacO-1 promoters displayed dynamic ranges that are in good agreement 

with the results obtained previously. In particular, Kogenaru and Tans measured up to 898-fold 

induction for the PBAD promoter in the SV01 parental strain MK01, while we were able to achieve 

3000-fold induction (Figure 3.8A). Moreover, Lutz and collaborators measured a dynamic range of 

620-fold for PLlac0-1 promoter, that is a result similar to the one that we obtained (Figure 3.8D; 500-

fold induction). The discrepancies we observed between the promoter fold-inductions arise 

probably from the different reporter proteins and plasmids backbones used in the analysis. Indeed, 

the PBAD construct measured by Kogenaru and Tans was encoded on a plasmid possessing the p15A 

origin of replication (like in the case of our genetic constructs), in contrast, their reporter system 

was represented by the fluorescent protein mCherry. Thus, our 3-fold higher dynamic range can be 

explained with the higher sensitivity of the luciferase cassette, illustrated in Section 2.2.  In case of 

PLlacO-1, Lutz, and collaborators, in their original work, measured the promoter by fusing it with a 

luciferase reporter (like in our construct), but encoding the resulting construct on plasmids 

possessing the high copy number origin of replication ColE1 (50-70 copies per bacterial cell). Thus, 

the lower copy number of our reporter plasmid pSVM-mc (20-50 copies per bacterial cell) could 

explain the 1.2-fold lower dynamic range that we obtained. These striking correlations between 

similar constructs, but different experimental conditions (such as media, and detection methods) 

confirm that these two promoters display a high orthogonal behavior.  

In case of Ptet, we obtained a high fold-induction (1000-fold) in both plasmid-borne and 

chromosomally integrated circuit (Figure 3.8C, D), by using the original Ptet promoter of the 

transposon Tn10, which sequence was described by Chalmers and collaborators109. However, this 

result cannot be directly compared to the original measurement of the promoter activity since it was 

performed using a tetA–lacZ translational fusion as reporter system140. An alternative choice, for an 

ATc inducible promoter, could be represented by a different version of the phage λ promoter 

developed by Lutz and collaborators (PLtet0-1) that displayed a dynamic range of 3670-fold 

induction. However, due to time limitations and since the main goal of this study resides in the 

development of ECF-based circuits, we did not include this promoter in the library. Nonetheless, 

the design characteristics of our library facilitate and encourage the integration of a newly improved 

version of each part. For instance, further implementations could include the above-mentioned ATc 

inducible promoter, as well as different Ptet synthetic promoter variants141 and novel synthetic 

inducible promoters that respond to the induction with different aptamers, and commonly used 

inducers142
.  

Section 3.3.2 shows our experiment on 11 ribosome binding sequences possessing different 

translational strength. We included these RBSs in the library, with the aim of tune the protein 
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production in ECF-based synthetic circuits. The results (Figure 3.9) find good agreement with the 

RBSs strength classification performed previously111 and allowed to appreciate differences in the 

dynamic response of different RBS, especially in response to mild inducer concentrations that were 

not described before111. According to these findings, we classified the RBSs into two classes, which 

possess different characteristics. We concluded that at least one RBS from each class represents a 

valuable choice to variate the gene translation efficiency in novel synthetic circuits. However, in the 

ECF-based circuits that we generated, we always used the strong (st8) RBS that guarantees, overall, 

optimal translation efficiency over a broad range of inducer concentrations (Figure 3.9). This is due 

to the fact that designing each ECF-based circuit, testing also different RBSs, would have led to an 

extremely high labor-intensive and time-consuming process. Finally, if necessary, our library of 

RBSs can be easily expanded e.g. by including the RBSs described by Chris Anderson 

(https://parts.igem.org/Ribosome_Binding_Sites/Prokaryotic/Constitutive/Anderson). 

In Section  3.3.4 we introduced the terminator sequences that are included in our library, 

represented by the 12 strongest recombination-resistant, synthetic terminators developed by Chen 

Y. and collaborators112. Even though we did not re-measured the strength of all terminator 

sequences, the results of our experiments, performed using the luciferase reporter, display the limits 

of the termination strength of both natural and synthetic terminators (Figure 3.10). However, even if 

we observed a certain degree of transcriptional read through, we registered a similar termination 

strength when comparing the strong natural terminators rrnBT1T221 and the strong synthetic 

terminator L3S3P21112 (Figure 3.10; construct 3 and construct 4). This suggests that, at least in one 

case, the synthetic terminators represent a comparable alternative, in terms of termination strength, 

to the natural E. coli terminators. In the same section, we also investigated on the best strategy to 

insulate two neighboring TUs of a synthetic circuit. The aim was to acquire knowledge on the best 

strategy for the insulation of multiple genetic modules placed in close proximity. Our findings 

indicate that even though the termination efficiency can be improved by spacing the two 

transcription units with random DNA sequences (~300 base pairs), only the convergent orientation 

of the TUs guarantee complete insulation. Even though we do not think that our results represent 

universal design rules, they point out to the necessity of testing different organization of the genetic 

modules in multipart synthetic circuits, in order to find the configuration that offers the maximum 

insulation.  

 

6.4 ECF toolbox: ECF σ and anti-σ factors 

 

In Section 4.1 and Section 5.1-5.3 we characterized the ECF σ anti-σ and anti-σ truncation 

variants, included in the ECF toolbox library. To date, our study and the pioneering work of 

Rhodius and collaborators63 represent the first efforts in characterizing a large pool of heterologous 

ECF σ in E. coli. Thus, we only have one term of comparison for the results that we obtained in the 

characterization of ECF- and ECF/AS-switches. Overall, we found that our results are consistent 

with the ones obtained previously, an indication of the robust and reproducible behavior of ECFs 

and anti-σ factors in different experimental conditions. In this section, we will compare the results 

obtained in the two characterizations, explaining the possible reasons behind the similarities and the 

differences that we observed.  

In Figure 4.2 we show the effects of ECF overexpression on cellular growth, measured as 

bacterial density. Overall, we found that only the overexpression of ECF16, ECF20, and ECF37 
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lead to >2-fold decrease in the 6-h OD600 for low arabinose induction (10-5%) when compared with 

the uninduced strain. Interestingly none of these ECFs were considered toxic (<75% 8-h OD600 

when compared with a wild type strain) in the previous characterization63. Moreover, in the 

previous publication, ECF20 was, surprisingly, the less toxic σ factor among all 86 tested ECFs63. 

To explain these discrepancies in the results, we took into account the different media used in the 

experiments. Indeed, Rhodius and collaborators performed their assays in LB media, while our 

experiments were performed using the MOPS minimal medium (see Section 7.1). We chose to use 

this minimal medium because we found that it allows the establishment of a long (10-13h) 

continuous exponential growth of the SV01-based strains and represents an optimal time window to 

assay the dynamic performances of complex genetic circuits (see Section 7.10). However, the use of 

such a minimal medium could lead to the observed growth defects due to the nutrients reduced 

condition, when compared with the nutrient-rich LB media. Thus, since the ECF-switches 

embedding ECF16, ECF20, and ECF37 also displayed a high level of luciferase signal (~107 

RLU/OD600; Figure 4.3). the growth defects could be caused by the metabolic burden to the cellular 

machinery due to protein overexpression in these strains grown in nutrients reduced condition. 

However, when looking at the luciferase signals, generated by of all other ECF-switches (Figure 

4.3), we found that some ECF-switches (e.g. ECF31-switch) led to a luciferase signal that is 

identical to the one obtained for the toxic ECFs, while, at the same time, they did not cause the 

same growth defects (Figure 4.2). This suggests that the growth defects, observed in our 

experimental conditions when overexpressing ECF16, ECF20 and ECF37, are likely related to 

cross-reactions with E. coli stress-pathways. To test this hypothesis, we reserve to test these ECFs 

in LB media. However, the results obtained for all other ECF-switches (Figure 4.2) confirmed that 

80% of the ECFs included in our library did not cause relevant growth defects, even when grown in 

minimal media and in presence of high concentrations of the inducer.  

Analyzing the output signal of the ECF-switches we found that ECFs display different fold-

inductions when comparing the uninduced and the induced conditions (Figure 4.3). This is mainly 

caused by the different basal activities of the ecf promoters in the presence of uninduced ECF. 

Indeed, the majority of the ECFs displayed similar luciferase signals, comprised between 4x106 

RLU/OD600 and 107 RLU/OD600, when fully induced (Figure 4.3). The highly variable baseline 

signals were also observed by Rhodius and collaborators, that measured an overall variability of 

100-fold in the basal OFF state in the presence of uninduced ECF63. In our experimental setup, we 

were able to show a higher difference (1000-fold), among all the basal activities of the uninduced 

switches, probably due to the higher resolution offered by the luciferase reporter (Figure 4.3). 

Moreover, our further experiments on the ECF-switches and controls, (Figure 4.4 to Figure 4.6) 

overall, confirmed that E. coli σ factors do not interact with heterologous ecf promoters and that the 

different basal activities of the ECF-switches are caused by a broad range of ECFs binding affinities 

for the target promoters. In addition, we showed that the dynamic range of the ECF-switches can be 

controlled, in principle, by varying the number of ECFs and target promoters. This can be achieved 

by using different genetic configurations (e.g. multi copy, single copy), as well as by using different 

inducer concentrations, as shown in Figure 4.3, Figure 4.5 and Figure 4.6. However, the variability 

of the ECF-switches dynamic response poses a challenge in combining them in higher order 

circuits, as it will be discussed in Section 6.5. 

An alternative way to tune the response of ECF-switches relies on controlling ECF activity 

through AS factors. Previously Rhodius and collaborators found that in most cases the 
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overexpression of AS factors lead to growth defect in E. coli63. Thus, in order to implement AS 

factors in our library and in our circuit design, we assayed the effects of their overexpression on 

SV01 growth, in our experimental conditions. Overall, we found that 7 out of 14 tested AS factors 

caused a reduction in the 6h-OD600 to 50% of the relative uninduced strain (Figure 5.2A). 

Moreover, we found that AS16, AS22, and AS31 resulted to be highly toxic, causing a >75% OD600 

reduction 6h after the induction, when compared with the uninduced strains. In their original work, 

Rhodius and collaborators also indicated that AS16 and AS31 caused a 75% reduction in the OD600 

values (8 h after induction), but they found AS22 to be non-toxic. Moreover, in their analysis AS14, 

ECF28 were highly toxic (>75% 8h-OD600 when compared with a wild type E. coli strain), while in 

our experiments they reduced the 6h-OD600 of 45% and 46% respectively. These small 

discrepancies are probably due to the different experimental conditions, as discussed above in the 

case of the ECF toxicity. However, both experiments, overall, confirmed that AS overexpression 

can generate an adverse effect on the viability of the host cell. Finally, the previous analysis was 

only showing which AS factors were causing (or not causing) a >75% reduction in the 8h-OD600
63, 

while our results highlight, for each AS factor, the differences between the uninduced and the 

induced AS condition. This allowed to better compare the level of toxicity of the different AS 

factors, showing, for instance, that the overexpression of AS17 and AS20 results in an identical 

OD600 phenotype when comparing the uninduced and the induced conditions (Figure 5.2A). 

Analyzing AS factors activity (Figure 5.2B) we found that all AS factors we tested are able to 

repress their target ECF activity, from 2- to 63-fold (AS17 and AS16 respectively). This is in 

perfect agreement with the results obtained in the previous study, were the AS factors that we chose 

for our library were also able to repress the ECF activity >2-fold63. We also found, overall, good 

correlations with the extent of ECF activity reduction by the AS. For instance, among the tested AS 

factors, in both analysis AS17 resulted to be the weakest AS (~2-fold reduction) while AS16 

appeared to be strongest AS (>10-fold reduction). 

Since the overexpression of transmembrane proteins leads to growth defects in E. coli128, in 

order to diminish the adverse effects caused by AS factors overexpression, we additionally 

generated 21 truncated, soluble AS variants (Table 5.1). Analyzing the effects of the overexpression 

of truncated AS factors, we found that all truncated variants resulted to be equally or less toxic than 

the wild type AS factors. In particular, we found that AS11 truncation 1 was the most toxic 

truncation variant displaying the same 6h-OD600 reduction (65%) of the wild type AS. In contrast, 

AS22 truncation resulted to be the less toxic AS when compared with the un-truncated variant. 

Indeed, AS22 truncation showed 46% less toxicity when compared to the wild type AS. This 

striking result seems to be related to the fact that this AS has 4 predicted TM domains, thus their 

deletion allowed for a higher alleviation of the toxicity, when compared to other AS factors 

possessing 1 or 2 predicted TM domains.  

When looking at the activity of the AS truncations we found that all the truncations, except AS27 

t2, were functional, with the highest activity showed by AS14 t1 and t2 (Figure 5.3B; 100-fold 

reduction of basal luciferase activity). Analyzing the AS27 we found that the overexpression of the 

wild type AS27 showed the smallest activity (2-fold ECF repression) together with a 60% reduction 

in the OD600 (Figure 5.2). On the other end, the truncation 1 exhibited similar values in both activity 

and toxicity when compared with the wild type, while the truncation 2 resulted less toxic (30% 

reduction in the OD600) but not active (Figure 5.3). Thus, we conclude that the limited reduction in 

ECF27 activity by the wild type AS27 and AS27 t1 is probably caused by the observed growth 
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defects and that this AS factor and the truncated variants possess overall a poor ability to reduce the 

activity of the cognate ECF.  

The striking performances of AS14 truncations, that resulted to be ~23-fold more active than the 

wild type AS (Figure 5.3B), seems to be related to a higher affinity of the truncations for the 

cognate ECF σ factor, together with the low promoter binding affinity showed by ECF14 (Figure 

4.3). A similar result was not observed for the truncations of other AS factors that in the wild type 

form showed similar signal fold reduction to the one produced by AS14 and have, at the same time, 

cognate ECFs with similar promoter binding affinity to the one showed by ECF14 (Figure 5.3B; 

AS28, AS34). Indeed, even though ECF28 and ECF34 showed weaker promoter binding affinity 

then ECF14 (Figure 4.3), the relative AS factor truncations resulted similarly active to the 

corresponding wild type AS factors. We then conclude that the AS14 truncations particularly 

enhanced the ability of the AS in sequestering the cognate ECF, even when compared with other 

AS truncations. The reason for such enhanced activity is not clear. We speculate that the higher 

affinity of the AS14 truncations for the cognate ECF could be due to higher accessibility of the 

ECF-binding interface in the soluble AS factors. However, this hypothesis does not explain why 

this effect, that should be an overall feature of the AS truncations, applied only to this particular AS. 

A more fascinating explanation takes into account the fact that the truncations of AS14 could be 

less sensitive to the stimulus that triggers the ECF release in the corresponding wild type AS. Thus, 

being uncoupled by the sensing domain, AS14 truncations will keep the ECFs into the inactive form 

in a more stable way than the wild type AS. However, this hypothesis can still not be confirmed, 

since the details of the mechanism of activation of AS14-like factors has not been studied yet68. 

Concluding, our extensive AS analysis found good agreement with the previous results63. In 

particular, all AS factors resulted to be able to reduce ECF activity more >2-fold. Moreover, we 

found good agreement with AS17 and AS16 that resulted to be in both analyses the less and most 

active AS respectively. By showing that AS17 possess a non-toxic phenotype we confirmed that the 

2-fold signal reduction observed in the strain carrying this AS was caused by AS activity. We were 

also able to confirm the result obtained for AS16. Indeed, by expressing this AS together with the 

target ECF σ factor in single copy (Figure 5.4), we showed that, even in perfectly viable cells, the 

AS is still able to repress the cognate ECF by 30-fold (the highest fold-reduction also in 

chromosomally integrated AS circuits). Moreover, both analysis, also showed that in the majority of 

the cases, the overexpression of the AS factors in E. coli can lead to a toxic phenotype. We showed 

that the toxic effect can be partially alleviated by generating soluble variants of the AS factors, that 

also maintains their activity, and it is completely abolished by expressing the AS factors in single 

copy.  

The toxic effect showed even by the overexpression of the truncated AS variants is probably due 

to cross-reactions with endogenous σ factors of E. coli. Interestingly, 9 out of 14 tested AS factors 

belong to the same phylum of E. coli (Proteobacteria), thus there is a higher chance that they 

recognize the endogenous σ factors. Moreover, a closer look at the results revealed that among the 5 

AS factors (AS14, AS17, AS22, AS27, AS34) that belong to different phyla (Actinobacteria and 

Cyanobacteria59), AS14, AS17, and AS34 showed respectively 41%, 0%, and 44% reduction in the 

6h-OD600 of the uninduced strain (Figure 5.2A). These values are generally lower than the one 

observed for other AS factors and even though this is not a general rule, it suggests that AS factors 

of a phylogenetically different organism, may act in a more orthogonal way, in respect to 

endogenous σ factors. Finally, since the Proteobacteria are currently one of the overrepresented 
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phyla in the ECF group classification, a further availability of sequences from organisms belonging 

to underrepresented phyla, and their inclusion in the ECF classification, will lead to the expansion 

of the available ECF and AS sequences. 

 

6.5 ECF σ synthetic regulatory circuits 

 

After discussing our experimental setup and about the ECF toolbox, in this section, we want 

finally discuss our findings on the implementation of ECF σ factors, as orthogonal core regulators 

and anti-σ factors, as ECF activity modulators, in novel synthetic circuits. After the work of Virgil 

and collaborators63 and prior to this study, ECF σ factors were only used to generate insulated 

switches64, or regulatory circuits65 featuring one ECF. Thus, in this study we aimed to generate the 

first synthetic circuits harboring multiple ECFs, verifying at the same time if multi-ECF circuits 

feature orthogonality and predictability. To this end in Section 4.2, we introduced our ECF σ factor-

based genetic-timer circuits, as proof of concept of multi-ECF-circuits.  

The genetic-timer circuits harbor an increasing number of ECF-switches that are connected in 

series, such as that the output of a switch is the input of the next switch in the cascade, with the last 

switch producing an output signal. We refer to these circuit as 0-, 1-, 2- and 3-step timers, 

depending on the number of ECFs included. We expected, for such circuits, an increasing time 

delay between induction of the first ECF and signal production that scales with the length of the 

cascade. The time delay is due to the time required for ECF production, maturation, and 

accumulation until the activation threshold of the target promoter is reached. Strikingly the results 

we obtained confirmed our expectations. Indeed, all timer circuits, encoded in two genetic 

configurations (plasmid-borne and chromosomally integrated), displayed an increasing time delay 

among ECF induction and output signal production, that scales with the number of ECFs embedded 

in the cascade (Figure 4.7 and Figure 4.11). Our results then demonstrate that it is possible to create 

synthetic regulatory circuits using heterologous ECFs in E. coli. Moreover, the results obtained by 

our collaborators (Figure 4.14) show that similar ECF-based regulatory circuits can also be 

implemented a different bacterial species. Finally, our mathematical model confirmed that ECFs 

display an orthogonal behavior. This due to the fact that the quantitative parameters that describe 

the single ECF-switches in the model are constant, even when these switches are embedded in 

higher order circuits. These striking results also suggest that in principle we can predict the behavior 

of different ECF-switches cascades, by starting from the characterization of the single genetic 

components. Thus, we could find new combinations of the ECF-switches that lead to better results, 

in terms of time delay or signal transmission within the ECF-cascade. Aside from being a proof-of- 

concept for the implementation of multi-ECF circuits in E. coli and B. subtilis, our ECF-based 

regulatory cascades could also serve for biotechnological applications that rely on enzyme 

pathways. For instance, they could increase the yield of a product by tuning the expression timing 

of the enzymes in a pathway. This has been previously achieved by connecting the expression of all 

the pathway components to the bacterial growth phase143. In contrast, by using our ECF-based timer 

circuits, we could establish a precise time hierarchy between the expression of the individual 

pathway components. This would allow, for instance, to delay the expression of the last enzyme that 

catalyzes the formation of a toxic compound, until sufficient intermediates have accumulated144.  

Aside from the positive findings, our experiments on the timer circuits unveiled also a general 

negative feature of our ECF-based regulatory circuits, represented by an overall loss of output 
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dynamic range and thus of signal transmission, that scales with the length of the cascade. This is the 

results of the general promoter binding characteristics of the ECFs, together with the genetic 

organization of the ECF-switches. Indeed, it is important to notice that ECFs bind to the RNA 

polymerase as monomers, so they activate the target promoters in a non-cooperative manner 

following Michaelis-Menten kinetics (Hill coefficient=1). Previous theoretical studies predicted that 

in non-cooperative regulatory cascades, without feedback, the signal propagation critically depends 

on a precise fine-tuning of input and output-dynamic ranges145. These observations were confirmed 

by our experimental results. Indeed, we showed that the copy number of the circuits and the binding 

affinities of the different ECFs for their target promoters are the key features to tune and improve 

the signal propagation. The effects of the different ECF binding affinities, together with the effects 

of the ECF and ecf promoters copy number variation are shown in Figure 4.7 and Figure 4.11. For 

instance, looking at the 1-step timers encoded on plasmids we can observe how ECF32 has a higher 

binding affinity for the cognate promoter when compared with ECF28 (Figure 4.7). This lead to the 

behavior observed in the 2-step timer. Indeed, when ECF28 drives the production of ECF32, its 

lower affinity for the promoter is counterbalanced by the high affinity of ECF32 for the cognate 

promoter, that generates a certain baseline lux signal (Figure 4.7E; 6x105 RLU/OD600). On the other 

end, when ECF32 drives the production of the ECF28, the high affinity for the cognate promoter is 

counterbalanced by a weaker affinity of ECF28 for the target promoter that ultimately results in a 

weaker baseline signal (Figure 4.7F 4x105 RLU/OD600). This general correlation between promoter 

affinity and copy number is confirmed by the results obtained by chromosomally integrated timer 

circuits (Figure 4.11). Indeed, ECF32 shows again a higher binding affinity for the target promoter 

than ECF28. Thus, when the two ECFs are combined in a 2-step timer, even though ECF28 

produces a very low amount of ECF32, these ECFs can still generate a detectable signal, since they 

have a high affinity for the target promoters (Figure 4.11E). On the other end, in the second 2-step 

timer permutation (Figure 4.11F), the strong Pecf32 leads to the production of a high number of 

ECF28 σ factors, that consequently can still produce a detectable signal, despite the lower binding 

affinity for its cognate target promoter.  

A different factor that could affect the response of the different ecf promoters is related to the 

stability of the ECFs. Figure 4.13 display the different half-lives of the luciferase signal produced 

by the ECFs in the two 1-step timers. The results show a faster luciferase signal decay for ECF32 1-

step timer (luciferase half-life ∼130 min), suggesting a higher instability of ECF32 when compared 

to ECF28 (luciferase half-life in ECF28 1-step timer ∼200 min). The higher instability of ECF32 

can also be correlated to the faster response of the circuits where Pecf32 drives the output signal 

production. Indeed, faster protein degradation leads to faster attainment of the protein steady state 

and therefore faster promoter activation. Hence, the ability of ECF32 of turning on the target 

promoter in a faster way than ECF28 could raise by a combination of a higher promoter binding 

affinity together with a faster degradation of the ECF σ factor. 

Overall, these results confirm that varying the copy number and by choosing ECFs with different 

promoter binding affinities (and eventually by tuning the protein stability) we can modulate the 

input/output signals of the switches and improve the signal transmission. Moreover, our 

mathematical model, described in detail in Paper II (Pinto et al., 2018), predicts that the optimal 

signal transmission can only be achieved when the output of a switch match the input of the next 

switch of the cascade. Thus, by fitting the model to the data obtained from different ECF-switches 

in the different genetic configuration we could discover, in principle, the best conditions (ECF to 
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use, circuit copy number, inducer level) that guarantee an optimized signal propagation in ECF-

based timer circuits.  

 

6.6 ECF σ/anti-σ synthetic circuits 

 

A different approach to improve signal transmission in transcriptional circuits consists of 

introducing cooperativity in promoter activation of the genetic switches. Indeed, cooperativity that 

generates a more digital OFF/ON switching behavior, allows for decreasing the required input range 

from an upstream circuit, matching more easily the induction threshold of the next switch in the 

cascade146. One way to increase the cooperativity in transcriptional circuits ìs represented by the 

introduction of a sequestering molecule that binds a circuit component146. Sequestration can be 

achieved by using sRNAs that bind to mRNA inhibiting its translation, or decreasing its 

stability147,148, or by using proteins that bind to the transcription factors and form inactive 

complexes126,149. In the case of ECFs, their activity and the temporal expression can be controlled 

by AS factors63,65. In Section 6.4 we discussed the characterization of the AS factors and their 

truncated variants present in our library. Here, we will discuss their application in ECF-based 

synthetic circuits. With the experiments performed using 11 AS truncations (Figure 5.7 and Figure 

5.8) we aimed to assay if the overexpression of these AS factors can lower the ECF-switches 

baseline. Moreover, we tested if AS factors can be used to set a time delay between ECF expression 

and downstream promoter activation. The results showed that 7 out of 11 highly expressed AS 

factor truncations, were able to lower the baseline activity in corresponding ECF-switches, from 

minimum 2-fold (AS37 t1) to maximum of 800-fold (AS20 t1). In the case of these two particular 

AS factors, we also observed a sharper transition between the OFF and the ON state of the circuit, 

under high AS concentration condition (Figure 5.7). This is an interesting feature since in gene 

regulation it is desirable to switch between two extreme expression values while only using a 

relatively small change in the concentration of the controlling protein150. Thus, the achievement of 

such “ultrasensitive” response in ECF/AS circuits is a valuable feature of the ECF regulators, in the 

context of synthetic biology. Indeed, it has been shown that ultrasensitivity allows to improve the 

robustness and to reduce the noise propagation in circuits built using different regulators than 

ECFs151,152. 

When looking at the dynamical activation of ecf promoters in ECF/AS circuits, we found that in 

the experimental conditions we used, most of AS factors were able to establish distinguishable time 

delays between ECF production and target promoter activation among different AS expression 

levels (Figure 5.7 and Figure 5.8 merged panels). However, we also found that the time delay does 

not depend only by the ability of the AS in lowering the baseline signal produced by the ECFs. 

Indeed, ECF/AS20 t1 and ECF/AS37 t1 circuits, that exhibited the highest fold-reduction in the 

baseline signal (800-fold, and 100-fold upon maximum induction, respectively) also showed one of 

the smallest difference in the time delay, when comparing low and high AS expression levels 

(Figure 5.7, merged panels). In contrast, the ECF/AS38 t1 circuit that showed only a 2-fold 

reduction of the uninduced ECF baseline signal, still achieved a time delay of 12 minutes in the 

promoter activation, when comparing low and high AS expression levels (Figure 5.8, merged 

panels). Thus the results suggest that aside from the capacity of the AS in sequestering the ECF and 

reduce the baseline signal, the time delay is also determined by the binding proprieties of the ECFs 

for the target promoters and by the amount of ECF and AS factors produced. This was confirmed by 
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the experiments presented in Figure 5.9 and Figure 5.10 where we were able to recover the signal in 

the circuit ECF14/AS14 t2, that was absent for high AS expression (Figure 5.8), tuning, at the same 

time, the time delay, by increasing the copy number of the circuit. Finally, the results show that the 

ECF/AS circuits, having highly active AS (>10-fold reduction of ECF basal activity) and ECFs with 

a weak binding affinity for their promoters, feature an analog increase of the output signal, together 

with the longest time delays (Figure 5.8; AS14 t2 N/D; Figure 5.7; AS28 t1 60 min, Figure 5.7; 

AS34 t1 85 min – for high AS expression levels). Interestingly, in case of ECF/AS14 t2, increasing 

the copy number of circuit allowed to maintain long time delays (60 min for the highest AS 

expression level) while generating at the same time a sharper sigmoidal curve in the output signal 

between the OFF and the ON state (Figure 5.9). However, a similar result was not reproducible for 

ECF/AS28 t1 and ECF/AS34 t1 (data not shown). This is an indication that simply changing the 

copy number of the ECF and AS modules in the genetic circuit does not always result in a different 

ECF/AS circuit behavior. 

Concluding, the results discussed in this section suggest that AS factors can successfully be 

implemented in order to control and tune ECF-based circuits. However, they also demonstrate that 

it is necessary to screen the ECF/AS circuits at a higher resolution, by using more genetic 

configurations to variate the proportions between ECF and AS factors, together with the conditions 

that allow fine-tuning ECF and AS production. Nonetheless, our coarse grain characterization 

allows to insight some of the ECF/AS interaction features that will help in the development of 

ECF/AS circuits. To demonstrate it we selected 4 ECF/AS factors pairs to design novel synthetic 

circuits in E. coli, featuring a tunable time-delay  

Our aim is to apply the ECF regulators together with the AS factors to design circuits that allow 

the time-programmable lysis of the bacterial cell. As illustrated in Section 5.5 synthetic self-

destruction circuits allow for the generation of a product of interest and its release in the 

extracellular medium, avoiding the usage of natural secretion systems, or invasive cell disruption 

techniques. Indeed, besides the several advantageous characteristics of E. coli (e.g. fast growth and 

high protein yields), its inability to easily secrete recombinant proteins into the extracellular 

medium remains a drawback for industrial production processes153. Moreover, the usage of 

mechanical and chemical cell disruption techniques can cause protein denaturation, may require the 

purchase of expensive reagents, and sometimes it is not applicable at an industrial scale132. To date, 

we know different self-destruction circuits that allow the release of recombinant proteins produced 

in E. coli and they have been developed by using classical transcriptional regulators132,154,155. In this 

study, we aimed to build a time tunable suicide circuits in E. coli, by using ECF and AS factors. 

Such circuits will serve as prototypes for the future implementation of autonomous ECF/AS self-

destruction circuits. The development of such circuits, featuring ECF and anti σ factors, would 

allow for the increase of the orthogonality of the self-destruction circuits and for the establishment 

of a tunable time delay between the generation of the product of interest and the cell disruption. 

Indeed, in the previous iterations of the self-destruction circuits, the time delay between the 

generation of the product of interest and the cell disruption was only depended by the time 

necessary for the accumulation of the different functional proteins after the induction of the lysis 

genes. Moreover, even though the cell lysis was triggered by different mechanisms (e.g. different 

inducer levels, heat-shock or glucose availability) the generation of the product of interest and the 

activation of the cell disruption were generally controlled by two separate mechanisms132,154,155. In 

contrast, by using ECFs and AS factors as regulators of the circuits it is possible, in principle, to set 
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different time delays for the cell disruption and, at the same time, automatize the generation of the 

product and the cell lysis upon the addition of only one inducer. 

As illustrated in Section 5.5 we built a prototype of such circuit by using 4 different ECF/AS 

pairs, together with the CcdB toxin generating 4 E. coli suicide circuits. The results demonstrated 

that the time delay for the activation of the ecf promoters by the ECFs, that in turn causes the 

growth defect in the host (70% reduction of the growth rate when compared with the uninduced 

strain), can be effectively tuned by using different levels of AS factors (Figure 5.12). Indeed, we 

observed distinct time delays for 3 out of 4 ECF/AS circuits. Moreover, even though the 

experimental conditions were different, ECFAS28 t1 and ECF/AS34 t2 circuits showed a good 

qualitative agreement, in the time delays, with the circuits harboring the same ECF/AS pairs, 

assayed in the threshold gate experiments (Figure 5.7 and Figure 5.8). Indeed, in both experiments, 

ECF/AS28 t1 pair produced a luminescent signal and caused growth defects at a faster rate than 

ECF/AS34 t2, in the low AS expression condition. This confirms that our ECF/AS characterization 

can give good qualitative indications on the promising ECF/AS pairs in terms of generation of time 

delay in gene expression. However, even though our suicide circuits confirmed that we can in 

principle generate a time-programmable adverse effect on the host, they still need to be deeply 

improved. Indeed, the CcdB toxin primarily poisons the gyrase-DNA complex, leading to double-

strand breakage of the DNA and death of the bacterial cells134, but does not directly induce their 

lysis. Hence, the usage of a different kind of genes, such as a lytic gene156, is necessary to achieve 

the cellular disruption. Moreover, our prototype does still not produce any product of interest, 

before the time-delayed production of the toxin. Indeed, as illustrated in Section 5.5, we used the 

same genetic configuration of the threshold gate circuits (PBAD-ecf and Ptet-anti- σ integrated into the 

genome) and replaced the luciferase reporter construct with a Pecf-ccdB construct. However, the 

gene(s) encoding for a product of interest, could be in principle controlled by the same promoter 

that drives the ecf expression (PBAD) by creating an ecf operon. For instance, we could include the 

gene dspB, encoding for the enzyme responsible for biofilm degradation157. This enzyme represents 

a valuable product since it can detach and disperse the biofilm cells of A. actinomycetemcomitans, 

that colonizes the human oral cavity causing juvenile periodontitis158. Additionally, the MoClo 

framework would allow for the easy generation of an operon encoding for different enzymes that 

overall target bacterial biofilm, such as glycoside hydrolases159, as well as protease, amylase, and 

pectinase160.  

In the experiments presented in Figure 5.9 and Figure 5.10, we showed that in ECF/AS circuits 

the accumulation of a protein encoded by a gene embedded in an ecf operon is a feasible possibility. 

Indeed, in these experiments, we produced a GFP protein from an ecf operon that reached a 

maximum value ~8x103 RFU/OD600 for the largest time-delay in the luciferase expression (Figure 

5.9B, C; right panels, time delay=60 min). Consequently, the time delay set by using one AS factor 

would allow a certain product generation, before cell lysis. Alternatively, a more complex scenario 

involves the usage of two ECFs and relative target promoters, together with two cognate AS factors, 

as illustrated in Figure 6.1. 
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Figure 6.1. Autonomous ECF/AS self-destruction circuit. Blueprint of a self-destruction circuit featuring 

two ECF/AS pairs. Two different AS factors allow setting different AS threshold levels that, in turn, will 

allow the accumulation of a product of interest before cellular lysis.  

 

In this case, the expression of the AS factors, using constitutive or inducible promoters, will 

establish two AS thresholds. AS1 will mainly be responsible for lowering the basal activity of the 

first ECF in the cascade, avoiding signal propagation prior to the induction. AS2, on the other end, 

will set the time delay for the activation of the ecf2 promoters and the cell lysis. Thus, the induction 

of the ecf1 operon will lead to the immediate generation of the product (encoded by gene x) that will 

start to accumulate, while ECF1 σ will bind to the target promoter only after exceeding the 

threshold set by AS1. Thus, after a certain time delay set by AS1, ecf2 will be produced, but its 

target promoter will only be activated when ECF2 will overwhelm the threshold set by AS2, 

ultimately leading to the lysis of the cells. This kind of circuit will then possess two distinct time 

delays: the first set by AS1, for the activation of the ecf1 promoter and the second, set by AS2, for 

the activation of the ecf2 promoter. In this scenario, the time delay among the generation of a 

product of interest and cell lysis will be longer than the one generated by using only one AS factor. 

Additionally, the time delay can be tuned at a greater level, for instance by varying the 

concentration of the two AS factors. Strikingly, the generation of such a circuit, composed of 5 

genetic modules, is already feasible using the tools included in the ECF toolbox. However, the 

dose-response characteristics of ECF σ and AS factors described in this study, together with the 

number of possible permutations and genetic configurations of the different modules embedded in 

the circuit, pose a challenge in terms of conditions that have to be tested, in order to achieve the 

desired circuit behavior. Nonetheless, the results obtained for the ECF-based timer circuits 

presented in this work (Section 4.2), suggest that mathematical modeling could assist the generation 

of the self-destruction circuit. For instance, in the experiments presented in Figure 5.9 and Figure 

5.10, we demonstrated that the AS expression can be monitored and correlated with a certain time 
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delay between ECF induction and gene expression. Thus, it should be possible to generate for each 

ECF/AS module a mathematical model that describes its behavior (such as baseline reduction and 

time delay duration) in different conditions (such as genetic configuration and inducers levels). 

Finally, like in the ECF-based timer circuit, the orthogonality of the ECF-based modules should 

allow for the prediction of the optimal experimental conditions to achieve the best performances 

when the modules are combined in more complex circuits.  

6.7 Conclusions 

In this study, we aimed to establish ECF σ factors as alternative building blocks for the 

generation of synthetic circuits. In order to achieve our goal and to provide more tools for the 

synthetic biology community, we developed the ECF toolbox. The toolbox contains vectors for the 

expression and the chromosomal integration of the synthetic circuits, together with a MoClo-

encoded library of parts which include, commonly used genetic building blocks, as well as, ECF, 

ecf promoters and anti σ factors. We showed that our toolbox, relying on the well established 

MoClo framework, allows a bottom-up, fast and modular assembly of multiple, reusable, genetic 

parts, in different genetic configurations. Next, using a high throughput experimental setup we 

characterized different genetic parts encoded in the part library, determining the best strategy for a 

rational design of ECF-based synthetic circuits. This led to the characterization of 15 ECF σ 

switches that we used to assemble higher order circuits. Indeed, by combining multiple ECF-

switches into ECF-cascades we created the first synthetic ECF regulatory circuit harboring more 

than one ECF. We showed that the ECFs embedded in our timer circuits exhibit a robust, 

quantitative behavior that can be also predicted by a series of mathematical models. Next, we 

explored the possibility of implementing anti-σ factors in ECF-based circuits. By doing so we 

generated 21 soluble truncated variants of the AS factors. Overall, the truncations appeared to be 

functional and equally or less toxic than the wild type AS. Additionally, we showed that the 

chromosomal integration of the AS factors and truncated variants, abolish completely their toxicity, 

allowing at the same time to control ECF activity. Finally, by combining ECF and anti-σ factors in 

different genetic configurations, we proved that AS factors can be used to design threshold gate 

circuits, allowing for a time-tunable control of ECF σ factors activity and, in turn, time-delayed 

downstream protein expression.  

Overall, this study revealed the multiple advantages of applying ECF σ factors in the context of 

synthetic biology such as predictability and orthogonality of the ECF-based circuits. However, we 

also encountered one of the biggest limitations in synthetic circuit design using ECF σ factors and 

the cognate AS factors. Indeed, the numerous experimental conditions that have to be tested in 

order to achieve the desired result, pose a serious challenge in the development of ECF-based 

synthetic circuits. Nevertheless, the characteristics of the ECF toolbox enhances the possibility of 

performing a high throughput combinatorial circuit assembly, for instance by using the highly 

automated Drop-on-Demand Technology161. Moreover, the numerous generated circuits could be 

screened for functionality in highly automated frameworks, by using robotic platforms162. Finally, 

as demonstrated in this study, a quantitative analysis of the results and the generation of 

mathematical models allows for the characterization and the prediction of the behaviour of the 

circuits. Thus, the combination of precise and robust high throughput analysis, together with a 

rational model-driven design, will ultimately assist and ease the generation of ECF-based synthetic 

circuits. 



 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

7. Materials and methods 



Materials and methods   

125 
 

7.1. Bacterial Strains and growth conditions.  

 

E. coli strains used in this study are listed in Table 9.1. The strains were cultivated in LB (LB 

Broth Miller, Sigma Aldrich Cat.No. L3522) medium or MOPS minimal medium (TEKNOVA 

Cat.No. M2106; 0.5% glycerol as carbon source) at 37 °C shaking at 250rpm. To maintain 

plasmids, the following antibiotics were used: chloramphenicol at 25μg/ml, kanamycin at 50 μg/ml, 

spectinomycin at 100μg/ml, gentamicin at 10μg/ml. For the selection of single-copy integrants 

antibiotics were added as follows: chloramphenicol at 6μg/ml, kanamycin at 10μg/mL, 

spectinomycin at 35μg/ml, gentamicin at 5μg/ml. For the blue-white screening, LB plates 

containing isopropyl β-D-1-thiogalactopyranoside (IPTG) at 0.1mM and 5-Bromo-4-chloro-3-

indolyl-β-D-galactoside (X-Gal) at 40μg/ml were used. 

 

7.2. Molecular biology techniques.  

 

Oligonucleotides were provided by Sigma-Aldrich (Germany). PCR reactions were performed 

using Q5 High-Fidelity DNA Polymerase (New England Biolabs) or Taq DNA Polymerase (New 

England Biolabs). PCR mixtures were purified using the E.Z.N.A. Cycle-Pure Kit (Omega Bio-

Tek). For gel extraction, Zymoclean Gel DNA Recovery Kit (Zymo Research, Germany) was used. 

Phosphorylation of the 5’OH of linear DNA fragments was performed using T4 Polynucleotide 

Kinase (T4 PNK) provided by New England Biolabs. Type IIs restriction enzymes (BpI and BsaI) 

and T4 DNA ligase were purchased from Thermo Scientific (Germany). DNA sequence verification 

was performed by Eurofins Genomics (Germany). Transformation of different chemically 

competent E. coli strains was performed according to the Inoue method163 or using the 

transformation and storage solution (TSS) methodology106. 

 

7.3. Recombination of the chloramphenicol cassette from E. coli strain SV01 

 

E. coli strain MK01 carries a chloramphenicol selection marker, flanked by two loxP sites. In 

order to remove the chloramphenicol cassette we used the Cre-lox system as follows. The plasmid 

pCM157, (tetracycline resistant)164 encoding an IPTG inducible cre recombinase gene, was 

transformed in chemically competent MK01 cells. The cells were incubated for 30 min on ice and 

transformed by heat shock. 950μL of liquid LB was then added to the transformation mix, and the 

cells were recovered for 45 min at 37 °C. 40μL of the transformation mix was plated on LB plates 

containing IPTG at a final concentration of 1 mM (inducing the expression of the Cre recombinase) 

and incubated overnight at 37°C. 20 emerging colonies were re-streaked twice on LB plates without 

antibiotic selection for loss of plasmid pCM157. 10 single colonies were then streaked on LB plates 

without antibiotic selection, LB plates containing chloramphenicol selection and LB plates 

containing tetracycline. 2 colonies that displayed loss of pCM157 (not being able to grow on 

tetracycline agar plates) and at the same time displayed successful recombination events (no being 

able to growth on chloramphenicol agar plates) were tested by colony PCR for loss of the 

chloramphenicol cassette and grown overnight at 37°C in LB media without antibiotic selection. 

The pre-cultures were then used for the creation of bacterial glycerol stocks.  
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7.4. pSVM-mc MoClo vector construction.  

 

The pSVM-mc vector generated in this study was created via Gibson assembly19. The plasmid 

backbone of the MoClo vector pICH8209426 was PCR-amplified, using the primers GF0078-

GF0079 (Table 9.7). The multiple cloning site of pICH82094, was PCR-amplified using the primers 

GF0080-GF0081 (Table 9.7) that provide the homology region necessary for the Gibson assembly 

and at the same time allowed the exchange of the MoClo fusion sites from level P to level M. Each 

PCR product was digested (37 °C 1 h) using DpnI endonuclease, to destroy the methylated template 

used in the PCR reaction. Subsequently, the PCR products were purified via gel extraction and 

fused by Gibson assembly19. The reaction was set as follows: 50ng of backbone DNA (0.03pmol) 

were mixed with 0.09pmol of insert and Gibson Reaction Mix (New England Biolabs) in a final 

volume of 20μL. Gibson reaction was performed for 1 h at 50 °C. 2μL of the reaction mix were 

transformed in 50μL of chemically competent DH5α cells as described by163, plated on selective 

agar plates and incubated overnight at 37 °C. 10 different emerging colonies were assayed by 

colony PCR using the primers GF070-GF071 (Table 9.7). The plasmids were isolated from the 

positive clones and further verified by restriction digest using BsaI and BpiI. Two correctly digested 

plasmids were finally sequenced to determine the correctness of the nucleotide sequence in the 

insert region. 

 

7.5. CRIMoClo vectors construction.  

 

CRIMoClo vectors generated in this study (Table 9.2) were assembled using Ligase Cycling 

Reaction (LCR)20 and Gibson Assembly19. For the construction of the first 8 CRIMoClo vectors 

(level M and P with chloramphenicol resistance and 4 att sites), DNA fragments were PCR 

amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs) and the primers 

reported in Table 9.7. In particular, the tL3 terminator together with one of four different phages 

attachment sites (attHK022, attP21, attϕ80, attλ) was amplified using the universal forward primer 

GF0524 in combination with the reverse primers GFC0525-GFC0526-GFC0530, using CRIM 

plasmids pAH68, pAH81, pAH15339 as templates. The amplification of attλ from pAH12039 was 

performed in two-step using the primers GFC0524-GFC0527 and GFC0528-0529 to remove an 

undesired BpiI restriction site. The γ conditional origin of replication of R6K was amplified from 

pAH6839 using the primers GFC0531 and GFC0532, while the chloramphenicol resistance cassette 

was amplified from pKD342 using the primers GFC0533-GFC0534. The rgnB terminator was 

amplified from pAH6839 using the primers GFC0535-GFC0536. Finally, the MoClo multicloning 

region was amplified with the primers GFC0537-GFC0538 using pSVM-mc (created in this study) 

and pICH8209426 as Level M and Level P templates respectively. The generated fragments (blunt-

end and 5′ phosphorylated) were fused via ligase cycling reaction (LCR) according to de Kok et 

al.,20. In particular 0.3 U Taq ligase (New England Biolabs), 3 nM DNA parts, 30 nM bridging 

oligonucleotides (Table 9.7), and 8% (v/v) DMSO were applied. The following conditions were 

used: 2 min at 94 °C and then 50 cycles of 10 seconds at 94°C, 30 seconds at 60°C, and 60 seconds 

at 65°C, followed by incubation at 4°C. The newly generated set of plasmids (Table 9.2) were used 

as template for the assembly of the next 8 CRIMoClo plasmids having the kanamycin resistance 

cassette, using Gibson assembly19. In particular, the backbones from pSV004, pSV006, pSV008, 

pSV077, pSV016, pSV018, pSV080, pSV079 and the kanamycin cassette from pSVM-mc were 
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PCR amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs) using the primers 

GF0807-GF0532 and GF0805-GF0808. The generated fragments were fused via Gibson 

assembly19, setting a reaction were 50ng of backbone DNA (0.03pmol) were mixed with 0.09pmol 

of insert (represented by the resistance cassette) and Gibson Reaction Mix (New England Biolabs) 

in a final volume of 20μL. Gibson reaction was performed for 1 h at 50 °C. The resulting plasmids 

were then used as template to generate 8 gentamicin and 8 spectinomycin resistant CRIMoClo 

plasmids, using Gibson assembly19. In particular, the backbones (pSV125, pSV126, pSV127, 

pSV128, pSV219, pSV220, pSV221, pSV222) were PCR amplified using Q5 High-Fidelity DNA 

and the primers GF0945-GF0532 in order to maintain the promoter of the kanamycin cassette. 

These fragments were then fused with the spectinomycin and gentamicin coding sequences 

(amplified from pMA33330 and pABC221 using the primers GF0858-GF0947 and GF0856-GF0949 

respectively) via Gibson assembly, following the protocol described above. 

 

7.6. CRIMoClo plasmid integration using competent cells pre-transformed with the helper 

plasmid.  

 

The chromosomal integration of the CRIMoClo plasmids was performed similarly as described 

by Haldimann and Wanner39. In particular, 2μL of purified plasmid was added to 50μL chemically 

competent E. coli SV01 cells, carrying one of the CRIM helper plasmids (pAH69, pAH121, pINT 

ts, pAH12339). The cells were incubated for 30 min on ice and transformed by heat shock. 950μL of 

liquid LB was then added to the transformation, and the cells were incubated at 37°C for 1 h and at 

42°C for 30 min (to induce the phage-derived integrase (int) gene and simultaneously cure the 

helper plasmid). 80μL of the transformation were spread onto selective agar plates and incubated at 

37°C overnight. The emerging colonies were tested by colony PCR using the primers P1–P2–P3–

P4. The nucleotide sequences of P1 and P4 primers (specific for each attB site) are reported in 

Table 9.7 (GF0512 to GF0521), together with the nucleotide sequences of P2 and P3 (Table 9.7; 

GF0971-GF0521). The positive colonies were purified once non-selectively and then tested for 

antibiotic resistance for stable integration and loss of the helper plasmid.  

 

7.7. CRIMoClo plasmid integration using TSS competent cells.  

 

As an alternative way to achieve integration (e.g. in the multi-integration experiment described 

in Section 3.2.3) we prepared competent cells using the TSS method106. A single clone of E. coli 

SV01 was picked from LB agar plates and pre-cultured in 3ml of LB media at 37°C, shaking 

250rpm. When OD600 reached 0.5-0.8, the cells were chilled in ice for 10 minutes and then 500μL 

of cell culture were mixed with 500μL of TSS 2x and left in ice for 45 minutes. Subsequently, 50μg 

of purified CRIMoClo-based plasmid and 50μg of the cognate helper plasmid were added to the cell 

mixture and left in ice for 45 minutes, followed by 1 hour at 30°C and 30 minutes at 42°C shaking 

at 250rpm. 200μL of the cell culture was then plated on selective plates and grown overnight at 

37°C. In the case of strains possessing multiple resistance cassettes, we selected only for the 

resistance of the latest integrated construct. The emerging colonies were tested by colony PCR 

using the primers P1–P2–P3–P4 (see Section 7.6), purified once non-selectively and then tested for 

antibiotic resistance for stable integration and loss of the helper plasmid. 
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7.8. Generation of the Level 0 part library.  

 

The complete part library used in this study, encoded on MoClo level 0 plasmids, is listed in 

Table 9.3 that indicates also the primers and the templates utilized to generate the part inserts (by 

PCR-amplification or oligonucleotides annealing), together with the MoClo destination vectors 

used for each part. The constructs that required to be cured for BpiI and BsaI restriction sites are 

also indicated. The cure of undesired BpiI and BsaI sites was performed according to Wanner et al., 

as described in Section 3.3. To generate the genetic parts present in the library we used PCR-

amplification or annealing of DNA oligonucleotides. In the case of PCR-amplification, the PCR 

products were verified by electrophoresis with 1, or 2% agarose gels and purified by gel extraction 

or column purification, following the protocols of the manufactures. The purified product was used 

to clone the insert into the appropriate MoClo destination vector, following the procedure described 

in Section 7.9. In case of annealing of DNA oligonucleotides, the reaction of annealing and the 

phosphorylation of the 5'OH was performed as follow: 2 µL of 100 µM oligonucleotides stock were 

mixed with 2 µL 10X T4 DNA ligase buffer, 1 µL of T4 Polynucleotide Kinase and 15 µL of sterile 

water. The reaction mixture was incubated at 37 °C for 1 hour and at 65 °C for 20 minutes to heat 

inactivate the T4 PNK. An aliquot of reaction mix was then used to clone the insert into the 

appropriate MoClo destination vector, following the procedure described in Section 7.9.  

In the generation of the part pSV0-1_002, encoding the PBAD promoter and the repressor AraC, 

we added the synthetic terminator L3S3P00112 at the end of the araC gene. To do so, we first 

generated the terminator L3S3P00 by oligonucleotides annealing using the primers GF0046-

GF0047 (Table 9.7). Subsequently we PCR-amplified araC, together with the PBAD promoter, from 

pAraC-pBAD-mCherry-v280 using the primers GFC0034-GFC0010 (Table 9.7). The parts were 

then fused by Golden gate assembly, into the MoClo destination vector pICH41233, using the 

procedure described in Section 7.9.  

In the generation of the part pSV0-1_004, encoding the PLlacO-1 promoter and the repressor LacI, 

the two parts were generated independently and fused by Golden gate assembly. In particular, the 

promoter PLlacO-1
110

 was generated by oligonucleotides annealing using the primers GF0050-GF0051 

(Table 9.7). The LacI repressor together with the rrnbT1 terminator was PCR-amplified by pLacI-

Ptrc-eYFP-v2 donated by Kogenaru M. & Tans S.80, using the primers GF0035-GF0032, GF0033-

GF0006, GF0007-GF0037 (Table 9.7) that were designed to remove, at the same time, 2 undesired 

BpiI sites. The different parts were then fused by Golden gate assembly, into the MoClo destination 

vector pICH41233, using the procedure described in Section 7.9. 

In the generation of pSV0-1_005 encoding the Ptet promoter and the repressor TetR we added the 

synthetic terminator L3S1P13112 at the end of the tetR gene. To do so, we first generated the 

terminator L3S1P13 by oligonucleotides annealing using the primers GF0048-GF0049 (Table 9.7). 

Subsequently we PCR- amplified tetR, together with the Ptet promoter50, from pCATTRE18 donated 

by the laboratory of Torsten Waldminghaus using the primers GFC0038-GFC0039 (Table 9.7). The 

parts were then fused by Golden gate assembly, into the MoClo destination vector pICH41233, 

using the procedure described in Section 7.9.  
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7.9 Modular Cloning (MoClo) reactions (Golden gate assembly).  

 

The MoClo-encoded parts and synthetic circuits, as well as the integrative CRIMoClo-based 

plasmids generated in this study, are listed in Tables 9.3-9.6. All constructs were assembled on 

MoClo24,26 and CRIMoClo vectors (generated in this study), using linear DNA fragments (PCR-

amplificated products, or phosphorylated annealed oligonucleotides) or the MoClo-encoded parts 

listed in Table 9.3 (level 0 parts), Table 9.4 (level 1 parts), Table 9.5 (level M parts). Each table 

indicates the list of the parts used to generate the constructs and a brief description of the constructs. 

All MoClo reactions were set up using 15 fmol of each DNA part (PCR product or plasmid), 1μL 

of the required restriction enzyme (BsaI or BpiI), 1 μL of T4DNA ligase (5 U/μL) and 2 μL of 

Thermo ligase buffer (10x), in a final reaction volume of 20 μL. The reaction was incubated in a 

thermocycler for 5 h at 37 °C, 10 min at 50 °C and 10 min at 80 °C. 2 μL of the reaction mixture 

was then added to 50 μL chemically competent E. coli DH5α cells (E. coli DH5α λpir cells in case 

of CRIMoClo constructs), incubated for 30 min on ice and transformed by heat shock. 950μL of 

liquid LB was then added to the transformation, and the cells were recovered for 45 min at 37 °C. 

40 μL of the transformation mix was plated on selective LB-IPTG-X-Gal plates and incubated 

overnight at 37 °C. The emerging colonies were tested by colony PCR and restriction digestion.  

 

7.10. Microplate reader assays.  

 

Microplate reader assays were performed in a Tecan Infinite F200 pro machine using the black 

and transparent 96-well plates from GREINER (catalog No.: 655097 and 655101). For each E. coli 

strain, a single bacterial colony was picked from selective plates and grown in liquid LB medium, 

supplemented with appropriate antibiotics, until stationary phase (37 °C shaking at 250 rpm; 7-8 

hours). The day-cultures were diluted 1:6000 into MOPS minimal medium (Section 7.1), 

supplemented with appropriate antibiotics and grown overnight (37 °C shaking at 250 rpm) until 

they reached an optical density at 600 nm (OD600) of 0.5–0.6. The cultures were then diluted to an 

OD600 of 0.05 in fresh MOPS minimal medium (Section 7.1), without antibiotic selection. This 

allows for the synchronization of the cell cultures and the collection of population-wide data. 100 

μL of the culture dilutions were loaded in the wells of a 96-well plate. The plate was incubated for a 

minimum of 8 h to a maximum of 12 h (37 °C with shaking) and OD600, as well as luminescence, 

were measured every 5 minutes (10 minutes in case of sequential fluorescence/luminescence 

measurements). In all experiments, for inducing gene expression, cells were induced, after two 

hours of incubation, with the final concentrations of inducer described in each section of this study, 

and incubation was resumed. The entire procedure described above, allows obtaining a continuous 

exponential growth of E. coli SV01 (Section 7.3), with and a doubling time ~175min. This 

represents an optimal time window for assaying the dynamical response of the genetic circuits. 

In the experiment described in Section 4.2 (switching ECF-cascades from the ON to the OFF 

state), all cultures were grown in the conditions described above, supplementing the MOPS minimal 

medium (Section 7.1) with 10-4 % arabinose (to induce gene expression prior to the measurement).  

The cultures were grown overnight (37 °C shaking at 250 rpm) until they reached an optical density 

at 600 nm (OD600) of 0.5–0.6. The cultures were then washed twice using fresh arabinose-free 

MOPS minimal medium, then diluted to an OD600 of 0.05 in fresh arabinose-free MOPS minimal 

medium, and incubated in a microplate reader as described above.  
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In the experiments described in Section 5.4 (ECF/AS threshold gate circuits), for each E. coli 

strain, a single bacterial colony was picked from selective plates and grown in liquid LB medium, 

supplemented with appropriate antibiotics, until stationary phase (37 °C shaking at 250 rpm; 7-8 

hours). The day-cultures were diluted 1:6000 into MOPS minimal medium (Section 7.1), 

supplemented with appropriate antibiotics and the indicated concentrations of ATc, in order to set 

different thresholds of AS expression. The diluted cultures were grown overnight (37 °C shaking at 

250 rpm) until they reached OD600 of 0.5–0.6. The cultures were then diluted to an OD600 of 0.05 in 

fresh MOPS minimal medium, supplemented with the indicated concentrations of ATc, without 

antibiotic selection and assayed in a plate reader experiment as described above. 

In the experiment described in Section 5.5 (ECF/AS suicide circuits), all E. coli strain, following 

the introduction of plasmids encoding the ccdB toxin, were grown (in both solid and liquid phases) 

in presence of ATc at a final concentration of 1 ng/mL and 2.5 ng/mL. For each strain, a single 

bacterial colony was picked from selective plates and grown in liquid LB medium, supplemented 

with ATc (at the concentrations indicated above) and appropriate antibiotics, until stationary phase 

(37 °C shaking at 250 rpm; 7-8 hours). The day-cultures were diluted 1:6000 into MOPS minimal 

medium (Section 7.1), supplemented with appropriate antibiotics and ATc at the above-mentioned 

concentrations. The cultures were grown overnight (37 °C shaking at 250 rpm) until they reached 

an optical density OD600 of 0.5–0.6. An aliquot of the bacterial cultures grown in the presence of 

ATc [1 ng/mL] was then washed twice using fresh ATc-free MOPS medium and diluted to an 

OD600 of 0.05 in fresh MOPS minimal medium. The remaining cultures (grown in presence of ATc 

[1 ng/mL] and [2.5 ng/mL]), were also diluted to an OD600 of 0.05 in fresh MOPS minimal medium 

supplemented ATc at the above-mentioned concentrations. 100 μL of all culture dilutions were 

loaded in the wells of a 96-well plate. The plate was incubated for 12 h (37 °C with shaking) and 

OD600 was measured every 5 minutes. After two hours of incubation, cells were induced with 0 and 

0.2% arabinose and incubation was resumed. 

 

7.11. Analysis of plate reader measurements and luciferase bleed-through correction.  

 

All the data generated with plate reader experiments were obtained using a Tecan Infinite F200 

pro machine. The data were evaluated using Microsoft Excel and MathWorks Matlab software to 

produce all the graphs and the analysis presented in this study. 

The raw optical density (measured at 600nm – OD600) data obtained from microplate reader 

measurements were background-corrected by subtracting OD600 values obtained from a control well 

containing the growth medium alone. The resulting values were used for generating the graphs and 

perform the analysis as described in each section of this study. 

The raw fluorescence data obtained from microplate reader measurements were background-

corrected by subtracting fluorescence values obtained from a control well containing the growth 

medium alone. The resulting values were used for generating the graphs and perform the analysis as 

described in each section of this study. 

The raw luminescence data obtained from microplate reader measurements were background-

corrected by subtracting luminescence values obtained from a control well containing the growth 

medium alone. The data were then corrected for luminescence bleed through (i.e. light-scattering) 

from neighboring wells on the microplate, by using the de-convolution algorithm introduced in 

Section 2.3 and published in Paper I (Mauri et al., 2019). The resulting values were used for 
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generating the graphs and perform the analysis as described in each section of this study. The 

computational model mentioned in Section 4.2 was developed by Hao Wu and it is described in 

detail in Paper III (Pinto et al., 2018). 
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9.1 Bacterial strains and plasmids used in this study 

 

E. coli strains 

Name Genotype Resistance Reference Description 

DH5α 

F- Φ80lacZΔM15 Δ(lacZYA-

argF) U169 recA1 endA1 

hsdR17 (rK-, mK+) phoA 

supE44 thi-1 gyrA96 relA1 λ- 

NalR Grant et al., 1990 cloning strain 

DH5α λpir cf. DH5α, λ+ NalR 
Miller and 

Mekalanos, 1988 
cloning strain 

MK01 

MG1655 rph-1, λ-, Δ(araD-

araB)567, ΔlacZ4787(::rrnB-

3), Δ(araH-araF)570(::FRT), 

ΔaraEp-532(::FRT), 

φPcp8araE535, Δ(rhaD-

rhaB)568, hsdR514, 

ΔlacI(::cat) 

CmR 
Kogenaru and Tans, 

2014 
reporter strain 

SV01 

MG1655 rph-1, λ-, Δ(araD-

araB)567, ΔlacZ4787(::rrnB-

3), Δ(araH-araF)570(::FRT), 

ΔaraEp-532(::FRT), 

φPcp8araE535, Δ(rhaD-

rhaB)568, hsdR514, 

ΔlacI(::Lox) 

- This study reporter strain 

DB3.1 

F- gyrA462 endA1 Δ(sr1-recA) 

mcrB mrr hsdS20(rB-, mB-) 

supE44 ara-14 galK2 lacY1 

proA2 rpsL20(SmR) xyl-5 λ- 

leu mtl1 

StrR Bernard et al., 1993 cloning strain 

GFC0089 cf.SV01 + pSVM-mc_074 KmR This study Insulator test construct 

GFC0117 cf.SV01 + pSVM-mc_095 KmR This study Insulator test construct 

GFC0119 cf.SV01 + pSVM-mc_097 KmR This study Insulator test construct 

GFC0132 cf.SV01 + pSVM-mc_111 KmR This study ECF 28-switch/1-step timer 

GFC0133 cf.SV01 + pSVM-mc_112 KmR This study ECF 32-switch/1-step timer 

GFC0134 cf.SV01 + pSVM-mc_113 KmR This study Insulator test construct 

GFC0136 cf.SV01 + pSVM-mc_115 KmR This study ECF switch  neg. control 

GFC0137 cf.SV01 + pSVM-mc_116 KmR This study ECF switch  neg. control 

GFC0138 cf.SV01 + pSVM-mc_117 KmR This study 2-step timer ecf28 Pecf32 

GFC0139 cf.SV01 + pSVM-mc_118 KmR This study 2-step timer ecf32 Pecf28 

GFC0141 cf.SV01 + pSVM-mc_120 KmR This study 2-step timer ecf28 neg. control 

GFC0143 cf.SV01 + pSVM-mc_122 KmR This study 2-step timer ecf32 neg. control 

GFC0153 cf.SV01 + pSVM-mc_038 KmR This study PBAD-lux reporter construct  

GFC0155 cf.SV01 + pSVM-mc_133 KmR This study ECF/AS14 circuit 

GFC0156 cf.SV01 + pSVM-mc_134 KmR This study ECF/AS15 circuit 

GFC0157 cf.SV01 + pSVM-mc_135 KmR This study ECF/AS16 circuit 

GFC0158 cf.SV01 + pSVM-mc_136 KmR This study ECF/AS17 circuit 

GFC0159 cf.SV01 + pSVM-mc_137 KmR This study ECF/AS20 circuit 
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GFC0160 cf.SV01 + pSVM-mc_138 KmR This study ECF/AS22 circuit 

GFC0161 cf.SV01 + pSVM-mc_139 KmR This study ECF/AS26 circuit 

GFC0162 cf.SV01 + pSVM-mc_140 KmR This study ECF/AS27 circuit 

GFC0163 cf.SV01 + pSVM-mc_141 KmR This study ECF/AS28 circuit 

GFC0164 cf.SV01 + pSVM-mc_142 KmR This study ECF/AS31 circuit 

GFC0165 cf.SV01 + pSVM-mc_143 KmR This study ECF/AS34 circuit 

GFC0166 cf.SV01 + pSVM-mc_144 KmR This study ECF/AS37 circuit 

GFC0167 cf.SV01 + pSVM-mc_145 KmR This study ECF/AS38 circuit 

GFC0168 cf.SV01 + pSVM-mc_146 KmR This study ECF 14-switch 

GFC0169 cf.SV01 + pSVM-mc_147 KmR This study ECF 15-switch 

GFC0170 cf.SV01 + pSVM-mc_148 KmR This study ECF 16-switch 

GFC0171 cf.SV01 + pSVM-mc_149 KmR This study ECF 17-switch 

GFC0172 cf.SV01 + pSVM-mc_150 KmR This study ECF 20-switch 

GFC0172 cf.SV01 + pSVM-mc_151 KmR This study ECF 22-switch 

GFC0173 cf.SV01 + pSVM-mc_152 KmR This study ECF 26-switch 

GFC0175 cf.SV01 + pSVM-mc_153 KmR This study ECF 27-switch 

GFC0176 cf.SV01 + pSVM-mc_154 KmR This study ECF 31-switch 

GFC0177 cf.SV01 + pSVM-mc_155 KmR This study ECF 34-switch 

GFC0178 cf.SV01 + pSVM-mc_156 KmR This study ECF 37-switch 

GFC0180 cf.SV01 + pADM-mc_160 KmR This study ECF14/AS14 t1-switch 

GFC0181 cf.SV01 + pADM-mc_161 KmR This study ECF14/AS14 t2-switch 

GFC0182 cf.SV01 + pADM-mc_162 KmR This study ECF17/AS17 t-switch 

GFC0183 cf.SV01 + pADM-mc_163 KmR This study ECF20/AS20 t1-switch 

GFC0184 cf.SV01 + pADM-mc_164 KmR This study ECF20/AS20 t2-switch 

GFC0185 cf.SV01 + pADM-mc_165 KmR This study ECF22/AS22 t-switch 

GFC0186 cf.SV01 + pADM-mc_166 KmR This study ECF26/AS26 t1-switch 

GFC0187 cf.SV01 + pADM-mc_167 KmR This study ECF26/AS26 t2-switch 

GFC0188 cf.SV01 + pADM-mc_171 KmR This study ECF28/AS28 t1-switch 

GFC0189 cf.SV01 + pADM-mc_172 KmR This study ECF28/AS28 t2-switch 

GFC0191 cf.SV01 + pADM-mc_169 KmR This study ECF27/AS27 t1-switch 

GFC0192 cf.SV01 + pADM-mc_170 KmR This study ECF27/AS27 t2-switch 

GFC0193 cf.SV01 + pADM-mc_173 KmR This study ECF31/AS31 t1-switch 

GFC0194 cf.SV01 + pADM-mc_174 KmR This study ECF34/AS34 t1-switch 

GFC0195 cf.SV01 + pADM-mc_175 KmR This study ECF34/AS34 t2-switch 

GFC0196 cf.SV01 + pADM-mc_176 KmR This study ECF37/AS37 t1-switch 

GFC0197 cf.SV01 + pADM-mc_177 KmR This study ECF37/AS37 t2-switch 

GFC0198 cf.SV01 + pADM-mc_178 KmR This study ECF38/AS38 t1-switch 



Appendix   

145 
 

GFC0199 cf.SV01 + pADM-mc_179 KmR This study ECF31/AS31 t2-switch 

GFC0200 cf.SV01 + pSVM-mc_180 KmR This study Ptet-lux reporter construct  

GFC0202 cf.SV01 + pSVM-mc_157 KmR This study ECF 38-switch 

GFC0214 cf.SV01, PBADlux::HK022 CmR This study Reporter construct (ch int.) 

GFC0216 cf.SV01, PBADlux::P21 CmR This study Reporter construct (ch int.) 

GFC0218 cf.SV01, PBADlux::φ80 CmR This study Reporter construct (ch int.) 

GFC0219 cf.SV01 + pSVM-mc_182 KmR This study ECF 11-switch 

GFC0220 cf.SV01 + pSVM-mc_183 KmR This study ECF/AS11 circuit 

GFC0221 cf.SV01 + pSVM-mc_184 KmR This study ECF11/AS11 t1-switch 

GFC0222 cf.SV01 + pSVM-mc_185 KmR This study ECF11/AS11 t2-switch 

GFC0235 
cf.SV01, PBAD-ecf11 Pecf11-lux 

Ptet-as11 t1::HK022 
CmR This study ECF11/AS11 t1-switch (ch. int.) 

GFC0236 
cf.SV01, PBAD-ecf11 Pecf11-lux 

Ptet-as11 t2::HK022 
CmR This study ECF11/AS11 t2-switch (ch. int.) 

GFC0237 
cf.SV01, PBAD-ecf14 Pecf12-lux 

Ptet-as14 t1::HK022 
CmR This study ECF14/AS14 t1-switch (ch. int.) 

GFC0238 
cf.SV01, PBAD-ecf14 Pecf12-lux 

Ptet-as14 t2::HK022 
CmR This study ECF14/AS14 t2-switch (ch. int.) 

GFC0239 
cf.SV01, PBAD-ecf15 Pecf15-lux 

Ptet-as15::HK022 
CmR This study ECF15/AS15-switch (ch. int.) 

GFC0240 
cf.SV01, PBAD-ecf16 Pecf16-lux 

Ptet-as16::HK022 
CmR This study ECF16/AS16-switch (ch. int.) 

GFC0241 
cf.SV01, PBAD-ecf17 Pecf17-lux 

Ptet-as17 t::HK022 
CmR This study ECF17/AS17 t1-switch (ch. int.) 

GFC0243 
cf.SV01, PBAD-ecf20 Pecf20-lux 

Ptet-as20 t1::HK022 
CmR This study ECF20/AS20 t1-switch (ch. int.) 

GFC0244 
cf.SV01, PBAD-ecf20 Pecf20-lux 

Ptet-as20 t2::HK022 
CmR This study ECF20/AS20 t2-switch (ch. int.) 

GFC0245 
cf.SV01, PBAD-ecf22 Pecf22-lux 

Ptet-as22 t::HK022 
CmR This study ECF22/AS22 t1-switch (ch. int.) 

GFC0246 
cf.SV01, PBAD-ecf26 Pecf26-lux 

Ptet-as26 t1::HK022 
CmR This study ECF26/AS26 t1-switch (ch. int.) 

GFC0247 
cf.SV01, PBAD-ecf26 Pecf26-lux 

Ptet-as26 t2::HK022 
CmR This study ECF26/AS26 t2-switch (ch. int.) 

GFC0248 
cf.SV01, PBAD-ecf27 Pecf25-lux 

Ptet-as27 t1::HK022 
CmR This study ECF27/AS27 t1-switch (ch. int.) 

GFC0249 
cf.SV01, PBAD-ecf27 Pecf25-lux 

Ptet-as27 t2::HK022 
CmR This study ECF27/AS27 t2-switch (ch. int.) 

GFC0250 
cf.SV01, PBAD-ecf28 Pecf19-lux 

Ptet-as28 t1::HK022 
CmR This study ECF28/AS28 t1-switch (ch. int.) 

GFC0251 
cf.SV01, PBAD-ecf28 Pecf19-lux 

Ptet-as28 t2::HK022 
CmR This study ECF28/AS28 t2-switch (ch. int.) 

GFC0252 
cf.SV01, PBAD-ecf31 Pecf31-lux 

Ptet-as31 t1::HK022 
CmR This study ECF31/AS31 t1-switch (ch. int.) 

GFC0253 
cf.SV01, PBAD-ecf31 Pecf31-lux 

Ptet-as31 t2::HK022 
CmR This study ECF31/AS31 t2-switch (ch. int.) 

GFC0254 
cf.SV01, PBAD-ecf34 Pecf18-lux 

Ptet-as34 t1::HK022 
CmR This study ECF34/AS34 t1-switch (ch. int.) 

GFC0255 
cf.SV01, PBAD-ecf34 Pecf18-lux 

Ptet-as34 t2::HK022 
CmR This study ECF34/AS34 t2-switch (ch. int.) 

GFC0256 
cf.SV01, PBAD-ecf37 Pecf39-lux 

Ptet-as37 t1::HK022 
CmR This study ECF37/AS37 t1-switch (ch. int.) 

GFC0257 
cf.SV01, PBAD-ecf37 Pecf39-lux 

Ptet-as37 t2::HK022 
CmR This study ECF37/AS37 t2-switch (ch. int.) 

GFC0258 
cf.SV01, PBAD-ecf38 Pecf38-lux 

Ptet-as38 t::HK022 
CmR This study ECF38/AS38 t1-switch (ch. int.) 
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GFC0295 
cf.SV01, PBAD-ecf11 Pecf11-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0296 
cf.SV01, PBAD-ecf14 Pecf12-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0297 
cf.SV01, PBAD-ecf15 Pecf15-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0298 
cf.SV01, PBAD-ecf16 Pecf16-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0299 
cf.SV01, PBAD-ecf17 Pecf17-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0300 
cf.SV01, PBAD-ecf20 Pecf20-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0301 
cf.SV01, PBAD-ecf22 Pecf22-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0302 
cf.SV01, PBAD-ecf26 Pecf26-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0303 
cf.SV01, PBAD-ecf27 Pecf25-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0304 
cf.SV01, PBAD-ecf28 Pecf19-

lux::HK022 
CmR This study ECF switch/1-step timer (ch. int.) 

GFC0305 
cf.SV01, PBAD-ecf31 Pecf31-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0306 
cf.SV01, PBAD-ecf32 Pecf32-

lux::HK022 
CmR This study ECF switch/1-step timer (ch. int.) 

GFC0307 
cf.SV01, PBAD-ecf34 Pecf18-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0308 
cf.SV01, PBAD-ecf37 Pecf39-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0309 
cf.SV01, PBAD-ecf38 Pecf38-

lux::HK022 
CmR This study ECF switch (ch. int.) 

GFC0310 cf.SV01, Ptetlux::HK022 CmR This study Reporter construct (Ch int.) 

GFC0311 
cf.SV01, PBAD-ecf32 Pecf19-lux 

Pecf32-ecf28::HK022 
CmR This study 2-step timer (ch. Int) 

GFC0325 cf.SV01 + pSVM-mc_205 KmR This study Insulator test construct 

GFC0335 cf.SV01 + pSVP-mc_009 KmR This study 3-step timer ecf28 ecf32 Pecf34 

GFC0336 cf.SV01 + pSVP-mc_010 KmR This study 3-step timer ecf28 ecf32 neg. control 

GFC0337 cf.SV01 + pSVP-mc_011 KmR This study 3-step timer ecf32 ecf28 Pecf34 

GFC0338 cf.SV01 + pSVP-mc_012 KmR This study 3-step timer ecf32 ecf28 neg. control 

GFC0339 
cf.SV01, PBAD-ecf28 Pecf32-lux 

Pecf19-ecf32::HK022 
CmR This study 2-step timer (ch. Int) 

GFC0360 
cf.SV01, PBAD-ecf11 Ptet-as11 

t2::HK022 + pSVM-mc_216 
CmR + KmR This study 

ECF11/AS11 t1 (ch. int.+reporter 

plasmid) 

GFC0361 
cf.SV01, PBAD-ecf14 Ptet-as14 

t2::HK022 + pSVM-mc_217 
CmR + KmR This study 

ECF14/AS14 t2 (ch. int.+reporter 

plasmid) 

GFC0365 
cf.SV01, PBAD-ecf20 Ptet-as20 

t2::HK022 + pSVM-mc_221 
CmR + KmR This study 

ECF20/AS20 t2 (ch. int.+reporter 

plasmid) 

GFC0366 
cf.SV01, PBAD-ecf22 Ptet-as22 

t1::HK022 + pSVM-mc_222 
CmR + KmR This study 

ECF22/AS22 t1 (ch. int.+reporter 

plasmid) 

GFC0367 
cf.SV01, PBAD-ecf26 Ptet-as26 

t2::HK022 + pSVM-mc_223 
CmR + KmR This study 

ECF26/AS26 t2 (ch. int.+reporter 

plasmid) 

GFC0368 
cf.SV01, PBAD-ecf27 Ptet-as27 

t2::HK022 + pSVM-mc_224 
CmR + KmR This study 

ECF27/AS27 t2 (ch. int.+reporter 

plasmid) 

GFC0369 
cf.SV01, PBAD-ecf28 Ptet-as28 

t2::HK022 + pSVM-mc_225 
CmR + KmR This study 

ECF28/AS28 t2 (ch. int.+reporter 

plasmid) 

GFC0370 
cf.SV01, PBAD-ecf31 Ptet-as31 

t1::HK022 + pSVM-mc_226 
CmR + KmR This study 

ECF31/AS31 t1 (ch. int.+reporter 

plasmid) 

GFC0371 
cf.SV01, PBAD-ecf34 Ptet-as34 

t1::HK022 + pSVM-mc_227 
CmR + KmR This study 

ECF34/AS34 t1 (ch. int.+reporter 

plasmid) 

GFC0372 
cf.SV01, PBAD-ecf37 Ptet-as37 

t1::HK022 + pSVM-mc_228 
CmR + KmR This study 

ECF37/AS37 t1 (ch. int.+reporter 

plasmid) 
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GFC0373 
cf.SV01, PBAD-ecf38 Ptet-as38 

t::HK022 + pSVM-mc_229 
CmR + KmR This study 

ECF38/AS38 t1  (ch. int.+reporter 

plasmid) 

GFC0389 
cf.SV01, PBAD-ecf11::HK022 + 

pSVM-mc_216 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0390 
cf.SV01, PBAD-ecf14::HK022 + 

pSVM-mc_217 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0391 
cf.SV01, PBAD-ecf15::HK022 + 

pSVM-mc_218 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0392 
cf.SV01, PBAD-ecf16::HK022 + 

pSVM-mc_219 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0393 
cf.SV01, PBAD-ecf17::HK022 + 

pSVM-mc_220 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0394 
cf.SV01, PBAD-ecf20::HK022 + 

pSVM-mc_221 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0395 
cf.SV01, PBAD-ecf22::HK022 + 

pSVM-mc_222 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0396 
cf.SV01, PBAD-ecf26::HK022 + 

pSVM-mc_223 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0397 
cf.SV01, PBAD-ecf27::HK022 + 

pSVM-mc_224 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0398 
cf.SV01, PBAD-ecf28::HK022 + 

pSVM-mc_225 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0399 
cf.SV01, PBAD-ecf31::HK022 + 

pSVM-mc_226 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0400 
cf.SV01, PBAD-ecf32::HK022 + 

pSVM-mc_209 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0401 
cf.SV01, PBAD-ecf34::HK022 + 

pSVM-mc_227 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0402 
cf.SV01, PBAD-ecf37::HK022 + 

pSVM-mc_228 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0403 
cf.SV01, PBAD-ecf38::HK022 + 

pSVM-mc_229 
CmR + KmR This study ECF switch (ch. int.+reporter plasmid) 

GFC0404 cf.SV01, PLlac0-1lux::HK022 CmR This study Reporter construct (Ch int.) 

GFC0432 cf.SV01 + pSVM-mc_263 KmR This study Reporter construct (RBS test) 

GFC0433 cf.SV01 + pSVM-mc_264 KmR This study Reporter construct (RBS test) 

GFC0434 cf.SV01 + pSVM-mc_265 KmR This study Reporter construct (RBS test) 

GFC0435 cf.SV01 + pSVM-mc_266 KmR This study Reporter construct (RBS test) 

GFC0436 cf.SV01 + pSVM-mc_267 KmR This study Reporter construct (RBS test) 

GFC0437 cf.SV01 + pSVM-mc_268 KmR This study Reporter construct (RBS test) 

GFC0438 cf.SV01 + pSVM-mc_269 KmR This study Reporter construct (RBS test) 

GFC0439 cf.SV01 + pSVM-mc_270 KmR This study Reporter construct (RBS test) 

GFC0440 cf.SV01 + pSVM-mc_271 KmR This study Reporter construct (RBS test) 

GFC0441 cf.SV01 + pSVM-mc_272 KmR This study Reporter construct (RBS test) 

GFC0442 cf.SV01 + pSVM-mc_274 KmR This study Reporter construct (RBS test) 

GFC0484 cf.SV01, PBADlux::HK022 KmR This study Reporter construct (ch int.) 

GFC0485 cf.SV01, PBADlux::P21 KmR This study Reporter construct (ch int.) 

GFC0486 cf.SV01, PBADlux::φ80 KmR This study Reporter construct (ch int.) 

GFC0487 cf.SV01, PBADlux::λ KmR This study Reporter construct (ch int.) 

GFC0500 cf.SV01, PBADlux::λ CmR This study Reporter construct (ch int.) 

GFC0505 
cf.SV01, PBADlux::HK022, 

PBADgfp::P21 
CmR + KmR This study Reporter construct (ch int.) 
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GFC0509 cf.SV01, PBADlux::HK022 CmR This study Reporter construct (ch int.) 

GFC0510 cf.SV01, PBADlux::P21 CmR This study Reporter construct (ch int.) 

GFC0511 cf.SV01, PBADlux::φ80 CmR This study Reporter construct (ch int.) 

GFC0512 cf.SV01, PBADlux::λ CmR This study Reporter construct (ch int.) 

GFC0514 cf.SV01, PBADgfp::P21 KmR This study Reporter construct (ch int.) 

GFC0518 
cf.SV01, PBAD ecf22 Pecf22-lux 

Ptet-as22::HK022 
CmR This study ECF22/AS22-switch (ch. int) 

GFC0521 cf.SV01, PBADlux::HK022 GmR This study Reporter construct (ch int.) 

GFC0522 cf.SV01, PBADlux::P21 GmR This study Reporter construct (ch int.) 

GFC0523 cf.SV01, PBADlux::φ80 GmR This study Reporter construct (ch int.) 

GFC0524 cf.SV01, PBADlux::λ GmR This study Reporter construct (ch int.) 

GFC0525 cf.SV01, PBADlux::HK022 SpcR This study Reporter construct (ch int.) 

GFC0526 cf.SV01, PBADlux::P21 SpcR This study Reporter construct (ch int.) 

GFC0527 cf.SV01, PBADlux::φ80 SpcR This study Reporter construct (ch int.) 

GFC0528 cf.SV01, PBADlux::λ SpcR This study Reporter construct (ch int.) 

GFC0531 cf.SV01, PBADmCherry::φ80 SpcR This study Reporter construct (ch int.) 

GFC0533 

cf.SV01, PBADlux::HK022, 

PBADgfp::P21, 

PBADmCherry::φ80 

CmR + KmR 

+ SpcR 
This study Reporter construct (ch int.) 

GFC0544 cf.SV01, PBADmTurquoise::λ GmR This study Reporter construct (ch int.) 

GFC0547 

cf.SV01, PBADlux::HK022, 

PBADgfp::P21, 

PBADmCherry::φ80, 

PBADmTurquoise::λ 

CmR + KmR 

+ SpcR + 

GMR 

This study Reporter construct (ch int.) 

GFC0549 cf.SV01 + pSVP-mc_025 KmR This study ECF/AS circuit (ch. int.) 

GFC0550 cf.SV01 + pSVP-mc_026 KmR This study ECF/AS circuit (ch. int.) 

GFC0551 cf.SV01 + pSVP-mc_027 KmR This study ECF/AS circuit (ch. int.) 

GFC0558 
cf.SV01, PBAD-ecf14 Ptet-as14 

t2::HK022 + pSVM-mc_294 
CmR + KmR This study 

ECF14/AS14 t2 suicide circuit (ch. 

int.+reporter plasmid) 

GFC0561 
cf.SV01, PBAD-ecf28 Ptet-as28 

t2::HK022 + pSVM-mc_297 
CmR + KmR This study 

ECF28/AS28 t2 suicide circuit (ch. 

int.+reporter plasmid) 

GFC0562 
cf.SV01, PBAD-ecf34 Ptet-as34 

t1::HK022 + pSVM-mc_298 
CmR + KmR This study 

ECF34/AS34 t1 suicide circuit (ch. 

int.+reporter plasmid) 

GFC0563 
cf.SV01, PBAD-ecf37 Ptet-as37 

t1::HK022 + pSVM-mc_299 
CmR + KmR This study 

ECF37/AS37 t1 suicide circuit (ch. 

int.+reporter plasmid) 

GFC0564 cf.SV01 + pSVM-mc_216 KmR This study ECF switch  neg. control 

GFC0565 cf.SV01 + pSVM-mc_217 KmR This study ECF switch  neg. control 

GFC0566 cf.SV01 + pSVM-mc_218 KmR This study ECF switch  neg. control 

GFC0567 cf.SV01 + pSVM-mc_219 KmR This study ECF switch  neg. control 

GFC0568 cf.SV01 + pSVM-mc_220 KmR This study ECF switch  neg. control 

GFC0569 cf.SV01 + pSVM-mc_221 KmR This study ECF switch  neg. control 

GFC0570 cf.SV01 + pSVM-mc_222 KmR This study ECF switch  neg. control 

GFC0571 cf.SV01 + pSVM-mc_223 KmR This study ECF switch  neg. control 

GFC0572 cf.SV01 + pSVM-mc_224 KmR This study ECF switch  neg. control 



Appendix   

149 
 

GFC0573 cf.SV01 + pSVM-mc_225 KmR This study ECF switch  neg. control 

GFC0575 cf.SV01 + pSVM-mc_227 KmR This study ECF switch  neg. control 

GFC0576 cf.SV01 + pSVM-mc_228 KmR This study ECF switch  neg. control 

GFC0577 cf.SV01 + pSVM-mc_229 KmR This study ECF switch  neg. control 

GFC0578 cf.SV01, + pSVP-mc_028 KmR This study PLlac0-1-lux reporter construct 

 

Table 9.1. E. coli strains utilized in this study. The name, the genotype, the antibiotic resistance and a 

description of the strains are reported. The strains are listed in alphabetical order. CmR: chloramphenicol 

resistance, GmR: gentamicin resistance, KmR: kanamycin resistance, NalR: nalidixic acid resistance, SpcR: 

spectinomycin resistance, StrR: streptomycin resistance. Ch. int: chromosomal integration. 

 

CRIMoClo vectors 

Name att site Resistance Parental MoClo vector Helper plasmid 

pSV004 HK022 CmR pSVM-mc (Level M) pAH69  

pSV006 P21 CmR pSVM-mc (Level M) pAH121 

pSV008 φ80 CmR pSVM-mc (Level M) pAH123 

pSV077 λ CmR pSVM-mc (Level M) pINT ts 

pSV125 HK022 KmR pSVM-mc (Level M) pAH69 

pSV126 P21 KmR pSVM-mc (Level M) pAH121 

pSV127 φ80 KmR pSVM-mc (Level M) pAH123 

pSV128 λ KmR pSVM-mc (Level M) pINT ts 

pSV183 HK022 SpcR pSVM-mc (Level M) pAH69 

pSV184 P21 SpcR pSVM-mc (Level M) pAH121 

pSV185 φ80 SpcR pSVM-mc (Level M) pAH123 

pSV186 λ SpcR pSVM-mc (Level M) pINT ts 

pSV187 HK022 GmR pSVM-mc (Level M) pAH69 

pSV188 P21 GmR pSVM-mc (Level M) pAH121 

pSV189 φ80 GmR pSVM-mc (Level M) pAH123 

pSV190 λ GmR pSVM-mc (Level M) pINT ts 

pSV016 HK022 CmR pICH82094 (Level P) pAH69 

pSV018 P21 CmR pICH82094 (Level P) pAH121 

pSV080 φ80 CmR pICH82094 (Level P) pAH123 

pSV079 λ CmR pICH82094 (Level P) pINT ts 

pSV219 HK022 KmR pICH82094 (Level P) pAH69 

pSV220 P21 KmR pICH82094 (Level P) pAH121 

pSV221 φ80 KmR pICH82094 (Level P) pAH123 

pSV222 λ KmR pICH82094 (Level P) pINT ts 

pSV239 HK022 SpcR pICH82094 (Level P) pAH69 
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pSV240 P21 SpcR pICH82094 (Level P) pAH121 

pSV241 φ80 SpcR pICH82094 (Level P) pAH123 

pSV242 λ SpcR pICH82094 (Level P) pINT ts 

pSV243 HK022 GmR pICH82094 (Level P) pAH69 

pSV244 P21 GmR pICH82094 (Level P) pAH121 

pSV245 φ80 GmR pICH82094 (Level P) pAH123 

pSV246 λ GmR pICH82094 (Level P) pINT ts 

 

Table 9.2. CRIMoClo vectors. The table reports the name of the plasmids, the att site used for the 

chromosomal integration, the antibiotic resistance, the MoClo parental vector (with which CRIMoClo 

vectors share the position of the Type IIs restriction sites and the fusion sites) and the original CRIM helper 

plasmid necessary for the expression of the integrase gene. CmR: chloramphenicol resistance, GmR: 

gentamicin resistance, KmR: kanamycin resistance, SpcR: Spectinomycin resistance. 

 

Level 0 library 

Name 
Genetic part: 

Promoter 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pSV0-1_002 
PBAD promoter + 

araC + L3S3P00 
pICH41233 

pAraC-pBAD-

mCherry-v2 + 

synthetic DNA 

GF0034 

GF0046 

GF0010 

GF0047 

[Kogenaru M, Tans S  J, 

2014] [Chen Y et al., 2013] 

pSV0-1_004 

PllacO-1 promoter 

+ lacI (corrected 

2 BpiI sites) 

pICH41233 

pLacI-Ptrc-eYFP-

v2-1 + synthetic 

DNA 

GF0007 

GF0033 

GF0035 

GF0006 

GF0032 

GF0037 

[Kogenaru M, Tans S  J, 

2014] [Lutz R, Bujard H, 

1997] 

pSV0-1_005 
Ptet promoter + 

tetR + L3S1P13 
pICH41233 

CATTRE18 + 

synthetic DNA 

GF0038 

GF0048 

GF0039 

GF0049 

[Bertram R, Hillen W, 2007] 

[Chen Y et al., 2013] 

pSV0-1_007 BBa_J23108 pICH41233 Synthetic DNA GF0054 GF00055 
http://parts.igem.org/Promot

ers/Catalog/Anderson 

pSV0-1_008 BBa_J23117 pICH41233 Synthetic DNA GF0056 GF0057 
http://parts.igem.org/Promot

ers/Catalog/Anderson 

pSV0-1_041 Pecf11_3726 pICH41233 pVRb11_3726 GF0133 GF0087 Rhodius V A et al., 2013 

pSV0-1_010 Pecf12_up807 pICH41233 pVRb12_up807 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_020 Pecf15_up436 pICH41233 pVRb15_up436 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_011 Pecf16_3622 pICH41233 pVRb16_3622 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_021 Pecf17_up1691 pICH41233 pVRb17_up1691 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_012 Pecf20_992 pICH41233 pVRb20_992 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_022 Pecf22_up1147 pICH41233 pVRb22_up1147 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_013 Pecf26_up601 pICH41233 pVRb26_up601 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_023 Pecf25_up4311 pICH41233 pVRb25_up4311 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_014 Pecf19_up1315 pICH41233 pVRb19_up1315 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_015 Pecf31_34 pICH41233 pVRb31_34 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_016 Pecf32_1122 pICH41233 pVRb32_1122 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_017 Pecf18_up1700 pICH41233 pVRb18_up1700 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_024 Pecf39_up1413 pICH41233 pVRb39_up1413 GF0086 GF0087 Rhodius V A et al., 2013 

pSV0-1_025 Pecf38_up1322 pICH41233 pVRb38_up1322 GF0086 GF0087 Rhodius V A et al., 2013 
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Name 
Genetic part: 

RBS 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pSV0-9_001 RBS st8 pICH41246 Synthetic DNA GF0058 GF0059 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pSV0-9_002 RBS wk2 pICH41246 Synthetic DNA GF0017 GF0018 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_006 RBS st3 pICH41246 Synthetic DNA GF0448 GF0449 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_007 RBS st4 pICH41246 Synthetic DNA GF0450 GF0451 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_008 RBS st5 pICH41246 Synthetic DNA GF0452 GF0453 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_009 RBS st7 pICH41246 Synthetic DNA GF0454 GF0455 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_010 RBS st11 pICH41246 Synthetic DNA GF0456 GF0457 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_011 RBS wk2 pICH41246 Synthetic DNA GF0458 GF0459 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_012 RBS wk4 pICH41246 Synthetic DNA GF0460 GF0461 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_013 RBS wk5 pICH41246 Synthetic DNA GF0462 GF0463 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_014 RBS wk6 pICH41246 Synthetic DNA GF0464 GF0465 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_015 RBS wk7 pICH41246 Synthetic DNA GF0466 GF0467 
Vellanoweth R L, 

Rabinowitz J C, 1992 

pJM0-9_017 RBS wk11 pICH41246 Synthetic DNA GF0470 GF0471 
Vellanoweth R L, 

Rabinowitz J C, 1992 

Name 
Genetic part: 

CDS 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pSV0-15_001 

gfp-mut3-1 

(BsaI site 

corrected) 

pICH41308 pGFPamyE 
GF0011, 

GF0013 

GF0012, 

GF0014 
Bisicchia  P,  et. al., 2010 

pSV0-15_002 YFP pICH41308 pSac-Cm-YFP GF0042 GF0043 Kuchina A, et al.,2011 

pSV0-15_003 mCherry pICH41308 
pAraC-pBAD-

mCherry-v2 
GF0040 GF0041 

Kogenaru M, Tans S  J, 

2014 

pMC0-4_010 mTurquoise pICH41308 Gene synthesis - - Goedhart, J. et al., 2012 

pSV0-15_024 luxCDABE pICH41308 pBBR-MCS5 

GF0134, 

GF0136, 

GFC0138 

GF0135, 

GFC0137, 

GFC0139 

Gödeke J et al., 2011 

pSV0-15_005 ecf11_987 pICH41308 pVRa11_987 GF0088 GF0132 Rhodius V A et al., 2013 

pSV0-15_006 ecf14_1324 pICH41308 pVRa14_1324 GF0090 GF0091 Rhodius V A et al., 2013 

pSV0-15_016 ecf15_436 pICH41308 pVRa15_436 GF0092 GF0093 Rhodius V A et al., 2013 

pSV0-15_007 ecf16_3622 pICH41308 pVRa16_3622 GF0094 GF0095 Rhodius V A et al., 2013 

pSV0-15_020 ecf17_1691 pICH41308 pVRa17_1691 GF0096 GF0097 Rhodius V A et al., 2013 

pSV0-15_008 ecf20_992 pICH41308 pVRa20_992 GF0098 GF0099 Rhodius V A et al., 2013 

pSV0-15_017 ecf22_4450 pICH41308 pVRa22_4450 GF0100 GF0101 Rhodius V A et al., 2013 

pSV0-15_009 ecf26_4464 pICH41308 pVRa26_4464 GF0102 GF0103 Rhodius V A et al., 2013 

pSV0-15_018 ecf27_4265 pICH41308 pVRa27_4265 GF0104 GF0105 Rhodius V A et al., 2013 

pSV0-15_010 ecf28_1088 pICH41308 pVRa28_1088 GF0106 GF0107 Rhodius V A et al., 2013 

pSV0-15_011 ecfF31_34 pICH41308 pVRa31_34 GF0108 GF0110 Rhodius V A et al., 2013 

pSV0-15_012 ecf32_1122 pICH41308 pVRa32_1122 GF0110 GF0111 Rhodius V A et al., 2013 

pSV0-15_013 ecf34_1384 pICH41308 pVRa34_1384 GF0112 GF0113 Rhodius V A et al., 2013 

pSV0-15_019 ecf37_2513 pICH41308 pVRa37_2513 GF0114 GF0115 Rhodius V A et al., 2013 

pSV0-15_021 ecf38_1322 pICH41308 pVRa38_1322 GF0116 GF0117 Rhodius V A et al., 2013 
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pSV0-15_025 as11_987 pICH41308 pVRc11_987 GF0244 GF0245 Rhodius V A et al., 2013 

pSV0-15_026 as14_1324 pICH41308 pVRc14_1324 GF0246 GF0247 Rhodius V A et al., 2013 

pSV0-15_027 as15_436 pICH41308 pVRc15_436 GF0248 GF0249 Rhodius V A et al., 2013 

pSV0-15_028 as16_3622 pICH41308 pVRc16_3622 GF0250 GF0251 Rhodius V A et al., 2013 

pSV0-15_039 as17_1691 pICH41308 pVRc17_1691 GF0363 GF0364 Rhodius V A et al., 2013 

pSV0-15_029 as20_992 pICH41308 pVRc20_992 GF0252 GF0253 Rhodius V A et al., 2013 

pSV0-15_030 as22_4450 pICH41308 pVRc22_4450 GF0254 GF0255 Rhodius V A et al., 2013 

pSV0-15_040 as26_4464 pICH41308 pVRc26_4464 GF0365 GF0366 Rhodius V A et al., 2013 

pSV0-15_031 as27_4265 pICH41308 pVRc27_4265 GF0256 GF0257 Rhodius V A et al., 2013 

pSV0-15_041 as28_1088 pICH41308 pVRc28_1088 GF0367 GF0368 Rhodius V A et al., 2013 

pSV0-15_032 as31_34 pICH41308 pVRc31_34 GF0258 GF0259 Rhodius V A et al., 2013 

pSV0-15_042 as34_1384 pICH41308 pVRc34_1384 GF0369 GF0370 Rhodius V A et al., 2013 

pSV0-15_033 as37_2513 pICH41308 pVRc37_2513 GF0260 GF0261 Rhodius V A et al., 2013 

pSV0-15_034 as38_1322 pICH41308 pVRc38_1322 GF0262 GF0263 Rhodius V A et al., 2013 

pSV0-15_068 ccdB pICH41308 pMA333 GF0998 GF0999 Schindler D et al., 2016 

pAD0-13_001 as11_987 t1 pAGM1287 pVRc11_987 GF0244 GF0406 Rhodius V A et al., 2013 

pAD0-13_011 as11_987 t2 pAGM1287 pVRc11_987 GF0244 GF0407 Rhodius V A et al., 2013 

pAD0-13_012 as14_1324 t1 pAGM1287 pVRc14_1324 GF0246 GF0408 Rhodius V A et al., 2013 

pAD0-13_002 as14_1324 t2 pAGM1287 pVRc14_1324 GF0246 GF0409 Rhodius V A et al., 2013 

pAD0-13_003 as17_1691 t1 pAGM1287 pVRc17_1691 GF0363 GF0410 Rhodius V A et al., 2013 

pAD0-13_005 as20_992 t1 pAGM1287 pVRc20_992 GF0252 GF0412 Rhodius V A et al., 2013 

pAD0-13_006 as20_992 t2 pAGM1287 pVRc20_992 GF0252 GF0413 Rhodius V A et al., 2013 

pAD0-13_007 as22_4450 t pAGM1287 pVRc22_4450 GF0254 GF0414 Rhodius V A et al., 2013 

pAD0-13_008 as26_4464 t1 pAGM1287 pVRc26_4464 GF0365 GF0415 Rhodius V A et al., 2013 

pAD0-13_009 as26_4464 t2 pAGM1287 pVRc26_4464 GF0365 GF0416 Rhodius V A et al., 2013 

pAD0-13_013 as27_4265 t1 pAGM1287 pVRc27_4265 GF0256 GF0417 Rhodius V A et al., 2013 

pAD0-13_014 as27_4265 t2 pAGM1287 pVRc27_4265 GF0256 GF0418 Rhodius V A et al., 2013 

pAD0-13_015 as28_1088 t1 pAGM1287 pVRc28_1088 GF0367 GF0419 Rhodius V A et al., 2013 

pAD0-13_016 as28_1088 t2 pAGM1287 pVRc28_1088 GF0367 GF0420 Rhodius V A et al., 2013 

pAD0-13_017 as31_34 t1 pAGM1287 pVRc31_34 GF0258 GF0421 Rhodius V A et al., 2013 

pAD0-13_018 as31_34 t2 pAGM1287 pVRc31_34 GF0258 GF0422 Rhodius V A et al., 2013 

pAD0-13_019 as34_1384 t1 pAGM1287 pVRc34_1384 GF0369 GF0423 Rhodius V A et al., 2013 

pAD0-13_020 as34_1384 t2 pAGM1287 pVRc34_1384 GF0369 GF0424 Rhodius V A et al., 2013 

pAD0-13_021 as37_2513 t1 pAGM1287 pVRc37_2513 GF0260 GF0425 Rhodius V A et al., 2013 

pAD0-13_022 as37_2513 t2 pAGM1287 pVRc37_2513 GF0260 GF0426 Rhodius V A et al., 2013 

pAD0-13_010 as38_1322 t1 pAGM1287 pVRc38_1322 GF0262 GF0427 Rhodius V A et al., 2013 

Name 
Genetic part: 

Terminator 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pSV0-11_001 L3S2P21 pICH41276 Synthetic DNA GF0019 GF0020 Chen Y et al., 2013 

pSV0-11_002 L3S2P11 pICH41276 Synthetic DNA GF0021 GF0022 Chen Y et al., 2013 

pSV0-11_003 L3S3P21 pICH41276 Synthetic DNA GF0060 GF0061 Chen Y et al., 2013 

pSV0-11_004 L3S3P22 pICH41276 Synthetic DNA GF0062 GF0063 Chen Y et al., 2013 

pSV0-11_005 L3S2P55 pICH41276 Synthetic DNA GF0064 GF0065 Chen Y et al., 2013 

pSV0-11_009 L3S3P11 pICH41276 Synthetic DNA GF0264 GF0265 Chen Y et al., 2013 
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pSV0-11_010 L3S3P23 pICH41276 Synthetic DNA GF0266 GF0267 Chen Y et al., 2013 

pSV0-11_011 L3S2P24 pICH41276 Synthetic DNA GF0268 GF0269 Chen Y et al., 2013 

pSV0-11_012 L3S1P22 pICH41276 Synthetic DNA GF0270 GF0271 Chen Y et al., 2013 

pSV0-11_013 L3S1P47 pICH41276 Synthetic DNA GF0272 GF0273 Chen Y et al., 2013 

pSV0-11_014 L3S3P45 pICH41276 Synthetic DNA GF0274 GF0275 Chen Y et al., 2013 

pSV0-11_015 L3S2P44 pICH41276 Synthetic DNA GF0276 GF0277 Chen Y et al., 2013 

pJM0-1_033 L3S3P22 RC pICH41233 Synthetic DNA GF0349 GF0350 Chen Y et al., 2013 

pSV0-1_052 rrnb T2 RC pICH41233 Synthetic DNA GF0677 GF0678 Chen Y et al., 2013 

pYE-11_003 rrnB T1-T2 pICH41276 Synthetic DNA - - Döhlemann J et al., 2017 

Name 

Genetic part: 

Dummy 

sequence 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pSV0-1_028 Dummy 15bp pICH41233 Synthetic DNA GF0158 GF0159 this study 

pSV0-2_002 Dummy 15bp pAGM1263 Synthetic DNA GF0196 GF0197 this study 

pSV0-3_002 Dummy 15bp pAGM1276 Synthetic DNA GF0198 GF0199 this study 

pSV0-4_002 Dummy 15bp pICH41258 Synthetic DNA GF0200 GF0201 this study 

pSV0-5_002 Dummy 15bp pAGM1299 Synthetic DNA GF0202 GF0203 this study 

pSV0-6_002 Dummy 15bp pAGM1301 Synthetic DNA GF0204 GF0205 this study 

pSV0-7_002 Dummy 15bp pICH53388 Synthetic DNA GF0206 GF0207 this study 

pSV0-8_001 Dummy 15bp pICH53399 Synthetic DNA GF0208 GF0209 this study 

pJM0-9_005 Dummy 15bp pICH41246 Synthetic DNA GF0353 GF0354 this study 

pSV0-11_008 Dummy 15bp pICH41276 Synthetic DNA GF0278 GF0279 this study 

pSV0-12_001 Dummy 15bp pAGM1251 Synthetic DNA GF0671 GF0672 this study 

pSV0-13_028 Dummy 15bp pAGM1287 Synthetic DNA GF0673 GF0674 this study 

pSV0-14_003 Dummy 15bp pICH41295 Synthetic DNA GF0210 GF0211 this study 

pSV0-15_022 Dummy 15bp pICH41308 Synthetic DNA GF0212 GF0213 this study 

pSV0-16_001 Dummy 15bp pICH41331 Synthetic DNA GF0675 GF0676 this study 

pSV0-1_027 Dummy 300bp pICH41233 Synthetic DNA GF0174 GF0175 Schindler D et al., 2016 

pSV0-2_001 Dummy 300bp pAGM1263 Synthetic DNA GF0176 GF0177 Schindler D et al., 2016 

pSV0-3_001 Dummy 300bp pAGM1276 Synthetic DNA GF0178 GF0179 Schindler D et al., 2016 

pSV0-4_001 Dummy 300bp pICH41258 Synthetic DNA GF0180 GF0181 Schindler D et al., 2016 

pSV0-5_001 Dummy 300bp pAGM1299 Synthetic DNA GF0182 GF0183 Schindler D et al., 2016 

pSV0-6_001 Dummy 300bp pAGM1301 Synthetic DNA GF0184 GF0185 Schindler D et al., 2016 

pSV0-7_001 Dummy 300bp pICH53388 Synthetic DNA GF0186 GF0187 Schindler D et al., 2016 

Name 
Genetic part: 

FLAG tag 

Destination 

vector 
Donor 

Primer 

forward 

Primer 

reverse 
Reference 

pAD0-6_003 FLAG Tag pAGM1301 Synthetic DNA GF0431 GF0432 Hopp T et al., 1988 

 

Table 9.3. ECF toolbox level 0 library. MoClo-encoded level 0 parts generated in this study and composing 

the ECF toolbox library. The parts are listed according to type. Internal name abbreviations: (pSV) generated 

by Stefano Vecchione; (pAD) generated by Angelika Diehl, (pJM) generated by Julia Manning. The original 

name of MoClo destination vectors, in which the parts are encoded, as well as the original names of the 

donor plasmids and the primers used for the PCR-amplification, or oligonucleotides annealing are indicated. 
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Level 1 transcription units and insulator elements 

Internal name Donor 
Destination 

vector 
Description 

pAD1-5L_0034 
pSV0-1_005 + pSV0-9_001 + pAD0-13_001 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as11 t1 + FLAG tag 

pAD1-5L_0035 
pSV0-1_005 + pSV0-9_001 + pAD0-13_011 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as11 t2 + FLAG tag 

pAD1-5L_0036 
pSV0-1_005 + pSV0-9_001 + pAD0-13_012 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as14  t1 + FLAG tag 

pAD1-5L_0037 
pSV0-1_005 + pSV0-9_001 + pAD0-13_002 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as14  t2 + FLAG tag 

pAD1-5L_0038 
pSV0-1_005 + pSV0-9_001 + pAD0-13_003 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as17  t + FLAG tag 

pAD1-5L_0040 
pSV0-1_005 + pSV0-9_001 + pAD0-13_005 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as20  t1 + FLAG tag 

pAD1-5L_0041 
pSV0-1_005 + pSV0-9_001 + pAD0-13_006 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as20  t2 + FLAG tag 

pAD1-5L_0042 
pSV0-1_005 + pSV0-9_001 + pAD0-13_007 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as22  t + FLAG tag 

pAD1-5L_0043 
pSV0-1_005 + pSV0-9_001 + pAD0-13_008 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as26  t1 + FLAG tag 

pAD1-5L_0044 
pSV0-1_005 + pSV0-9_001 + pAD0-13_009 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as26  t2 + FLAG tag 

pAD1-5L_0045 
pSV0-1_005 + pSV0-9_001 + pAD0-13_013 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as27  t1 + FLAG tag 

pAD1-5L_0046 
pSV0-1_005 + pSV0-9_001 + pAD0-13_014 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as27  t2 + FLAG tag 

pAD1-5L_0047 
pSV0-1_005 + pSV0-9_001 + pAD0-13_015 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as28  t1 + FLAG tag 

pAD1-5L_0048 
pSV0-1_005 + pSV0-9_001 + pAD0-13_016 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as28  t2 + FLAG tag 

pAD1-5L_0049 
pSV0-1_005 + pSV0-9_001 + pAD0-13_017 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as31  t1 + FLAG tag 

pAD1-5L_0050 
pSV0-1_005 + pSV0-9_001 + pAD0-13_018 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as31  t2 + FLAG tag 

pAD1-5L_0051 
pSV0-1_005 + pSV0-9_001 + pAD0-13_019 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as34  t1 + FLAG tag 

pAD1-5L_0052 
pSV0-1_005 + pSV0-9_001 + pAD0-13_020 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as34  t2 + FLAG tag 

pAD1-5L_0053 
pSV0-1_005 + pSV0-9_001 + pAD0-13_021 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as37  t1 + FLAG tag 

pAD1-5L_0054 
pSV0-1_005 + pSV0-9_001 + pAD0-13_022 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as37  t2 + FLAG tag 

pAD1-5L_0055 
pSV0-1_005 + pSV0-9_001 + pAD0-13_010 + 

pAD0-6_003 + pSV0-11_011 
pICH47772 Ptet as38  t + FLAG tag 

pJM1-2L_0014 
pSV0-14_003 + pSV0-4_001 + pSV0-5_002 + pSV0-

6_002 + pYE-11_003 
pICH47742 Insulator 300bp + double term. 

pJM1-3R_002 
pSV0-1_014 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf19 luxCDABE 

pJM1-3R_003 
pSV0-1_015 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf32 luxCDABE 

pJM1-3R_004 
pSV0-1_016 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf18 luxCDABE 
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pSV1-1L_0003 
pSV0-1_002 + pSV0-9_001 + pSV0-15_004 + pSV0-

11_001 
pICH47732 PBAD mCherry 

pSV1-1L_0005 
pSV0-1_002 + pSV0-9_001 + pSV0-15_001 + pSV0-

11_001 
pICH47732 PBAD gfp 

pSV1-1L_0006 
pSV0-1_005 + pSV0-9_003 + pSV15_001 + pSV0-

11_001 
pICH47732 Ptet lux 

pSV1-1L_0007 
pSV0-1_004 + pSV0-9_003 + pSV15_001 + pSV0-

11_001 
pICH47732 PO-1 lux 

pSV1-1L_0011 
pSV0-1_002 + pSV0-9_001 + pSV0-15_005 + pSV0-

11_002 
pICH47732 PBAD ecf11 

pSV1-1L_0012 
pSV0-1_002 + pSV0-9_001 + pSV0-15_006 + pSV0-

11_002 
pICH47732 PBAD ecf14 

pSV1-1L_0013 
pSV0-1_002 + pSV0-9_001 + pSV0-15_007 + pSV0-

11_002 
pICH47732 PBAD ecf16 

pSV1-1L_0014 
pSV0-1_002 + pSV0-9_001 + pSV0-15_008 + pSV0-

11_002 
pICH47732 PBAD ecf20 

pSV1-1L_0015 
pSV0-1_002 + pSV0-9_001 + pSV0-15_009 + pSV0-

11_002 
pICH47732 PBAD ecf26 

pSV1-1L_0016 
pSV0-1_002 + pSV0-9_001 + pSV0-15_010 + pSV0-

11_002 
pICH47732 PBAD ecf28 

pSV1-1L_0017 
pSV0-1_002 + pSV0-9_001 + pSV0-15_011 + pSV0-

11_002 
pICH47732 PBAD ecf31 

pSV1-1L_0018 
pSV0-1_002 + pSV0-9_001 + pSV0-15_012 + pSV0-

11_002 
pICH47732 PBAD ecf32 

pSV1-1L_0019 
pSV0-1_002 + pSV0-9_001 + pSV0-15_013 + pSV0-

11_002 
pICH47732 PBAD ecf34 

pSV1-1L_0028 
pSV0-1_002 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux 

pSV1-1L_0029 
pSV0-1_002 + pSV0-9_001 + pSV0-15_016 + pSV0-

11_002 
pICH47732 PBAD ecf15 

pSV1-1L_0030 
pSV0-1_002 + pSV0-9_001 + pSV0-15_020 + pSV0-

11_002 
pICH47732 PBAD ecf17 

pSV1-1L_0031 
pSV0-1_002 + pSV0-9_001 + pSV0-15_017 + pSV0-

11_002 
pICH47732 PBAD ecf22 

pSV1-1L_0032 
pSV0-1_002 + pSV0-9_001 + pSV0-15_018 + pSV0-

11_002 
pICH47732 PBAD ecf27 

pSV1-1L_0033 
pSV0-1_002 + pSV0-9_001 + pSV0-15_019 + pSV0-

11_002 
pICH47732 PBAD ecf37 

pSV1-1L_0034 
pSV0-1_002 + pSV0-9_001 + pSV0-15_021 + pSV0-

11_002 
pICH47732 PBAD ecf38 

pSV1-1L_0088 
pSV0-1_052 + pJM0-9_005 + pSV0-13_028 + pSV0-

11_013 
pICH47732 Insulator term.+300bp+term. 

pSV1-1L_0140 
pSV0-1_002 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS st3) 

pSV1-1L_0141 
pSV0-1_002 + pJM0-9_007 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS st4) 

pSV1-1L_0142 
pSV0-1_002 + pJM0-9_008 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS st5) 

pSV1-1L_0143 
pSV0-1_002 + pJM0-9_009 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS st7) 

pSV1-1L_0144 
pSV0-1_002 + pJM0-9_010 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS st11) 

pSV1-1L_0145 
pSV0-1_002 + pJM0-9_011 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk2) 
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pSV1-1L_0146 
pSV0-1_002 + pJM0-9_012 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk4) 

pSV1-1L_0147 
pSV0-1_002 + pJM0-9_013 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk5) 

pSV1-1L_0148 
pSV0-1_002 + pJM0-9_014 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk6) 

pSV1-1L_0149 
pSV0-1_002 + pJM0-9_015 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk7) 

pSV1-1L_0151 
pSV0-1_002 + pJM0-9_017 + pSV0-15_024 + pSV0-

11_001 
pICH47732 PBAD lux (RBS wk11) 

pSV1-1L_0162 
pSV0-1_002 + pSV0-9_001 + pMC0-4_010 + pSV0-

11_001 
pICH47732 PBAD mTurquoise 

pSV1-1L_0163 
pSV0-1_002 + pSV0-9_001 + pSV0-15_006 + pSV0-

11_008 
pICH47732 PBAD ecf14 no terminator 

pSV1-1R_0003 
pSV0-1_028 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Du15 luxCDABE 

pSV1-1R_0006 
pSV0-1_002 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47802 PBAD lux reverse orientation 

pSV1-2L_0007 
pSV0-14_003 + pSV0-4_001 + pSV0-5_002 + pSV0-

6_002 + pSV0-11_003 
pICH47742 Insulator 300bp + terminator 

pSV1-2L_0008 
pSV0-14_003 + pSV0-4_001 + pSV0-5_002 + pSV0-

6_002 + pSV0-11_008 
pICH47742 Insulator 300bp 

pSV1-2L_0122 
pSV0-1_028 + pSV0-9_001 + pSV0-15_001 + pSV0-

11_001 
pICH47742 du15 0-1 gfp  

pSV1-3L_0034 
pSV0-1_028 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47751 Du15 luxCDABE 

pSV1-3L_0111 cfr. 1-2L_0007 pICH47751 Insulator 300bp + terminator 

pSV1-3R_0011 
pSV0-1_041 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf11 luxCDABE 

pSV1-3R_0012 
pSV0-1_010 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf12 luxCDABE 

pSV1-3R_0013 
pSV0-1_020 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf15 luxCDABE 

pSV1-3R_0014 
pSV0-1_011 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf16 luxCDABE 

pSV1-3R_0015 
pSV0-1_021 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf17 luxCDABE 

pSV1-3R_0016 
pSV0-1_012 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf20 luxCDABE 

pSV1-3R_0017 
pSV0-1_022 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf22 luxCDABE 

pSV1-3R_0018 
pSV0-1_013 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf26 luxCDABE 

pSV1-3R_0019 
pSV0-1_023 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf27 luxCDABE 

pSV1-3R_0020 
pSV0-1_017 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf31 luxCDABE 

pSV1-3R_0021 
pSV0-1_024 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf39 luxCDABE 

pSV1-3R_0022 
pSV0-1_025 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47822 Pecf38 luxCDABE 

pSV1-3R_0045 
pSV0-1_010 + pSV0-9_001 + pSV0-15_068 + pSV0-

11_001 
pICH47822 Pecf12 ccdB 

pSV1-3R_0048 
pSV0-1_014 + pSV0-9_001 + pSV0-15_068 + pSV0-

11_001 
pICH47822 Pecf19 ccdB 
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pSV1-3R_0049 
pSV0-1_016 + pSV0-9_001 + pSV0-15_068 + pSV0-

11_001 
pICH47822 Pecf18 ccdB 

pSV1-3R_0050 
pSV0-1_024 + pSV0-9_001 + pSV0-15_068 + pSV0-

11_001 
pICH47822 Pecf39 ccdB 

pSV1-4L_0004 
pJM0-1_033 + pJM0-9_005 + pSV0-4_002 + pSV0-

5_001 + pSV0-6_002 + pSV0-11_005 
pICH47761 Insulator term.+300bp+term. 

pSV1-4R_0003 
pSV0-1_010 + pSV0-9_001 + pSV0-15_024 + pSV0-

11_001 
pICH47831 Pecf12  luxCDABE 

pSV1-5L_0014 
pSV0-1_014 + pSV0-9_001 + pSV0-15_012 + pSV0-

11_010 
pICH47772 Pecf19 ecf32 

pSV1-5L_0015 
pSV0-1_016 + pSV0-9_001 + pSV0-15_010 + pSV0-

11_010 
pICH47772 Pecf32 ecf28 

pSV1-5L_0016 
pSV0-1_014 + pSV0-9_001 + pSV0-15_022 + pSV0-

11_010 
pICH47772 Pecf19 Du15 

pSV1-5L_0017 
pSV0-1_016 + pSV0-9_001 + pSV0-15_022 + pSV0-

11_010 
pICH47772 Pecf32 Du15 

pSV1-5L_0020 
pSV0-1_005 + pSV0-9_001 + pSV0-15_025 + pSV0-

11_011 
pICH47772 Ptet as11 

pSV1-5L_0021 
pSV0-1_005 + pSV0-9_001 + pSV0-15_026 + pSV0-

11_011 
pICH47772 Ptet as14 

pSV1-5L_0022 
pSV0-1_005 + pSV0-9_001 + pSV0-15_027 + pSV0-

11_011 
pICH47772 Ptet as15 

pSV1-5L_0023 
pSV0-1_005 + pSV0-9_001 + pSV0-15_028 + pSV0-

11_011 
pICH47772 Ptet as16 

pSV1-5L_0024 
pSV0-1_005 + pSV0-9_001 + pSV0-15_039 + pSV0-

11_011 
pICH47772 Ptet as17 

pSV1-5L_0025 
pSV0-1_005 + pSV0-9_001 + pSV0-15_029 + pSV0-

11_011 
pICH47772 Ptet as20 

pSV1-5L_0026 
pSV0-1_005 + pSV0-9_001 + pSV0-15_030 + pSV0-

11_011 
pICH47772 Ptet as22 

pSV1-5L_0027 
pSV0-1_005 + pSV0-9_001 + pSV0-15_040 + pSV0-

11_011 
pICH47772 Ptet as26 

pSV1-5L_0028 
pSV0-1_005 + pSV0-9_001 + pSV0-15_031 + pSV0-

11_011 
pICH47772 Ptet as27 

pSV1-5L_0029 
pSV0-1_005 + pSV0-9_001 + pSV0-15_041 + pSV0-

11_011 
pICH47772 Ptet as28 

pSV1-5L_0030 
pSV0-1_005 + pSV0-9_001 + pSV0-15_032 + pSV0-

11_011 
pICH47772 Ptet as31 

pSV1-5L_0031 
pSV0-1_005 + pSV0-9_001 + pSV0-15_042 + pSV0-

11_011 
pICH47772 Ptet as34 

pSV1-5L_0032 
pSV0-1_005 + pSV0-9_001 + pSV0-15_033 + pSV0-

11_011 
pICH47772 Ptet as37 

pSV1-5L_0033 
pSV0-1_005 + pSV0-9_001 + pSV0-15_034 + pSV0-

11_011 
pICH47772 Ptet as38 

pSV1-5L_0092 cfr. 1-4L_0004 pICH47772 Insulator term.+300bp+term. 

pSV1-6L_0006 
pSV0-6_001 + pJM0-9_005 + pSV0-15_022 + pSV0-

11_012 
pICH47781 Insulator 300bp + terminator 

pSV1-6L_0007 
pSV0-1_005 + pSV0-9_001 + pAD0-13_002 + 

pAD0-6_003 + pSV0-11_008 
pICH47781 Ptet as14 t2 no terminator 

pSV1-6L_0008 
pSV0-1_007 + pSV0-9_001 + pAD0-13_002 + 

pAD0-6_003 + pSV0-11_008 
pICH47781 P108 as14 t2 no terminator 

pSV1-6L_0009 
pSV0-1_008 + pSV0-9_001 + pAD0-13_002 + 

pAD0-6_003 + pSV0-11_008 
pICH47781 P117 as14 t2 no terminator 

pSV1-7L_0008 
pSV0-1_028 + pSV0-9_001 + pSV0-15_004 + pSV0-

11_001 
pICH47791 du15 0-1 mCherry  
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pSV1-7R_0002 
pSV0-1_016 + pSV0-9_001 + pSV0-15_010 + pSV0-

11_009 
pICH47791 Pecf32 ecf34 

pSV1-7R_0003 
pSV0-1_014 + pSV0-9_001 + pSV0-15_012 + pSV0-

11_009 
pICH47791 Pecf19 ecf34 

pSV1-7R_0004 
pSV0-1_016 + pSV0-9_001 + pSV0-15_022 + pSV0-

11_009 
pICH47791 Pecf32 Du15 

pSV1-7R_0005 
pSV0-1_014 + pSV0-9_001 + pSV0-15_022 + pSV0-

11_009 
pICH47791 Pecf19 Du15 

 

Table 9.4. Level 1 transcription units and insulator elements. The genetic constructs are listed in 

alphabetical order. Internal name abbreviations: (pSV) generated by Stefano Vecchione; (pAD) generated by 

Angelika Diehl, (pJM) generated by Julia Manning. The internal names of the level 0 parts used as well as 

the original names of the MoClo destination vectors, in which the parts are encoded, and a description of the 

constructs is indicated. 

 

Level M parts and synthetic circuits 

Internal name Donor 
Destination 

vector 
Description 

pADM-mc_160 

pSV1-1L_0012 + pSV1-2L_0007 + 

pSV1-3R_0012 + pSV1-4L_0004 + 

pAD1-5L_0036 

pSVM-mc ECF14/AS14 t1-switch 

pADM-mc_161 

pSV1-1L_0012 + pSV1-2L_0007 + 

pSV1-3R_0012 + pSV1-4L_0004 + 

pAD1-5L_0037 

pSVM-mc ECF14/AS14 t2-switch 

pADM-mc_162 

pSV1-1L_0030 + pSV1-2L_0007 + 

pSV1-3R_0015 + pSV1-4L_0004 + 

pAD1-5L_0038 

pSVM-mc ECF17/AS17 t-switch 

pADM-mc_163 

pSV1-1L_0014 + pSV1-2L_0007 + 

pSV1-3R_0016 + pSV1-4L_0004 + 

pAD1-5L_0040 

pSVM-mc ECF20/AS20 t1-switch 

pADM-mc_164 

pSV1-1L_0014 + pSV1-2L_0007 + 

pSV1-3R_0016 + pSV1-4L_0004 + 

pAD1-5L_0041 

pSVM-mc ECF20/AS20 t2-switch 

pADM-mc_165 

pSV1-1L_0031 + pSV1-2L_0007 + 

pSV1-3R_0017 + pSV1-4L_0004 + 

pAD1-5L_0042 

pSVM-mc ECF22/AS22 t-switch 

pADM-mc_166 

pSV1-1L_0015 + pSV1-2L_0007 + 

pSV1-3R_0018 + pSV1-4L_0004 + 

pAD1-5L_0043 

pSVM-mc ECF26/AS26 t1-switch 

pADM-mc_167 

pSV1-1L_0015 + pSV1-2L_0007 + 

pSV1-3R_0018 + pSV1-4L_0004 + 

pAD1-5L_0044 

pSVM-mc ECF26/AS26 t2-switch 

pADM-mc_169 

pSV1-1L_0032 + pSV1-2L_0007 + 

pSV1-3R_0019 + pSV1-4L_0004 + 

pAD1-5L_0045 

pSVM-mc ECF27/AS27 t1-switch 

pADM-mc_170 

pSV1-1L_0032 + pSV1-2L_0007 + 

pSV1-3R_0019 + pSV1-4L_0004 + 

pAD1-5L_0046 

pSVM-mc ECF27/AS27 t2-switch 

pADM-mc_171 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pAD1-

5L_0047 

pSVM-mc ECF28/AS28 t1-switch 

pADM-mc_172 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pAD1-

5L_0048 

pSVM-mc ECF28/AS28 t2-switch 
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pADM-mc_173 

pSV1-1L_0017 + pSV1-2L_0007 + 

pSV1-3R_020 + pSV1-4L_0004 + pAD1-

5L_0049 

pSVM-mc ECF31/AS31 t1-switch 

pADM-mc_174 

pSV1-1L_0019 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 + pAD1-

5L_0051 

pSVM-mc ECF34/AS34 t1-switch 

pADM-mc_175 

pSV1-1L_0019 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 + pAD1-

5L_0052 

pSVM-mc ECF34/AS34 t2-switch 

pADM-mc_176 

pSV1-1L_0033 + pSV1-2L_0007 + 

pSV1-3R_0021 + pSV1-4L_0004 + 

pAD1-5L_0053 

pSVM-mc ECF37/AS37 t1-switch 

pADM-mc_177 

pSV1-1L_0033 + pSV1-2L_0007 + 

pSV1-3R_0021 + pSV1-4L_0004 + 

pAD1-5L_0054 

pSVM-mc ECF37/AS37 t2-switch 

pADM-mc_178 

pSV1-1L_0034 + pSV1-2L_0007 + 

pSV1-3R_0022 + pSV1-4L_0004 + 

pAD1-5L_0055 

pSVM-mc ECF38/AS38 t1-switch 

pADM-mc_179 

pSV1-1L_0017 + pSV1-2L_0007 + 

pSV1-3R_020 + pSV1-4L_0004 + pAD1-

5L_0050 

pSVM-mc ECF31/AS31 t2-switch 

pJMM-mc_095 
pSV1-1L_0016 + pSV1-2L_0008 + 

pSV1-3L_0034 
pSVM-mc PBAD ecf28 du300 du15 lux 

pJMM-mc_097 
pSV1-1L_0016 + pSV1-2L_0007 + 

pSV1-3L_0034 
pSVM-mc PBAD ecf28 du300 term. du15 lux 

pSV012 pSV1-1L_0028 pSV004 PBAD lux att HK022 cmR 

pSV013 pSV1-1L_0028 pSV006 PBAD lux att P21 cmR 

pSV014 pSV1-1L_0028 pSV008 PBAD lux att φ80 cmR 

pSV020 cfr. pSVM-mc_184 pSV0004 
ECF11/AS11 t1-switch (for chromosomal 

int.) 

pSV021 cfr. pSVM-mc_185 pSV0004 
ECF11/AS11 t2-switch (for chromosomal 

int.) 

pSV022 cfr. pADM-mc_160 pSV0004 
ECF14/AS14 t1-switch (for chromosomal 

int.) 

pSV023 cfr. pADM-mc_161 pSV0004 
ECF14/AS14 t2-switch (for chromosomal 

int.) 

pSV024 cfr. pSVM-mc_134 pSV0004 ECF15/AS15-switch (for chromosomal int.) 

pSV025 cfr. pSVM-mc_135 pSV0004 ECF16/AS16-switch (for chromosomal int.) 

pSV026 cfr. pADM-mc_162 pSV0004 
ECF17/AS17 t-switch (for chromosomal 

int.) 

pSV028 cfr. pADM-mc_163 pSV0004 
ECF20/AS20 t1-switch (for chromosomal 

int.) 

pSV029 cfr. pADM-mc_164 pSV0004 
ECF20/AS20 t2-switch (for chromosomal 

int.) 

pSV030 cfr. pADM-mc_165 pSV0004 
ECF22/AS22 t-switch (for chromosomal 

int.) 

pSV031 cfr. pADM-mc_166 pSV0004 
ECF26/AS26 t1-switch (for chromosomal 

int.) 

pSV032 cfr. pADM-mc_167 pSV0004 
ECF26/AS26 t2-switch (for chromosomal 

int.) 

pSV033 cfr. pADM-mc_169 pSV0004 
ECF27/AS27 t1-switch (for chromosomal 

int.) 

pSV034 cfr. pADM-mc_170 pSV0004 
ECF27/AS27 t2-switch (for chromosomal 

int.) 
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pSV035 cfr. pADM-mc_171 pSV0004 
ECF28/AS28 t1-switch (for chromosomal 

int.) 

pSV036 cfr. pADM-mc_172 pSV0004 
ECF28/AS28 t2-switch (for chromosomal 

int.) 

pSV037 cfr. pADM-mc_173 pSV0004 
ECF31/AS31 t1-switch (for chromosomal 

int.) 

pSV038 cfr. pADM-mc_179 pSV0004 
ECF31/AS31 t2-switch (for chromosomal 

int.) 

pSV039 cfr. pADM-mc_174 pSV0004 
ECF34/AS34 t1-switch (for chromosomal 

int.) 

pSV040 cfr. pADM-mc_175 pSV0004 
ECF34/AS34 t2-switch (for chromosomal 

int.) 

pSV041 cfr. pADM-mc_176 pSV0004 
ECF37/AS37 t1-switch (for chromosomal 

int.) 

pSV042 cfr. pADM-mc_177 pSV0004 
ECF37/AS37 t2-switch (for chromosomal 

int.) 

pSV043 cfr. pADM-mc_178 pSV0004 
ECF38/AS38 t1-switch (for chromosomal 

int.) 

pSV073 

pSV1-1L_0018 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pSV1-

5L_0015 

pSV004 
2-step timer ecf32 Pecf28 (for chromosomal 

int.) 

pSV074 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_003 + pSV1-4L_0004 + pSV1-

5L_0014 

pSV004 
2-step timer ecf28 Pecf32 (for chromosomal 

int.) 

pSV080 pSV1-1L_0028 pSV077 PBAD att λ cmR 

pSV089 

pSV1-1L_0011 + pICH54033 + pSV1-

3R_0011 + pSV1-4L_0004 + pAD1-

5L_0035 

pSV0004 
ECF11/AS11 t2-switch, no rep. (for 

chromosomal int.) 

pSV090 

pSV1-1L_0012 + pICH54033 + pSV1-

3R_0012 + pSV1-4L_0004 + pAD1-

5L_0037 

pSV0004 
ECF14/AS14 t2-switch, no rep. (for 

chromosomal int.) 

pSV093 

pSV1-1L_0030 + pICH54033 + pSV1-

3R_0015 + pSV1-4L_0004 + pAD1-

5L_0038 

pSV0004 
ECF17/AS17 t-switch, no rep. (for 

chromosomal int.) 

pSV094 

pSV1-1L_0014 + pICH54033 + pSV1-

3R_0016 + pSV1-4L_0004 + pAD1-

5L_0041 

pSV0004 
ECF20/AS20 t2-switch, no rep. (for 

chromosomal int.) 

pSV095 

pSV1-1L_0031 + pICH54033 + pSV1-

3R_0017 + pSV1-4L_0004 + pAD1-

5L_0042 

pSV0004 
ECF22/AS22 t-switch, no rep. (for 

chromosomal int.) 

pSV096 

pSV1-1L_0015 + pICH54033 + pSV1-

3R_0018 + pSV1-4L_0004 + pAD1-

5L_0044 

pSV0004 
ECF26/AS26 t2-switch, no rep. (for 

chromosomal int.) 

pSV097 

pSV1-1L_0032 + pICH54033 + pSV1-

3R_0019 + pSV1-4L_0004 + pAD1-

5L_0045 

pSV0004 
ECF27/AS27 t1-switch, no rep. (for 

chromosomal int.) 

pSV098 

pSV1-1L_0016 + pICH54033 + pJM1-

3R_002 + pSV1-4L_0004 + pAD1-

5L_0048 

pSV0004 
ECF28/AS28 t2-switch, no rep. (for 

chromosomal int.) 

pSV099 

pSV1-1L_0017 + pICH54033 + pSV1-

3R_020 + pSV1-4L_0004 + pAD1-

5L_0049 

pSV0004 
ECF31/AS31 t1-switch, no rep. (for 

chromosomal int.) 

pSV100 

pSV1-1L_0019 + pICH54033 + pJM1-

3R_004 + pSV1-4L_0004 + pAD1-

5L_0051 

pSV0004 
ECF34/AS34 t1-switch, no rep. (for 

chromosomal int.) 
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pSV101 

pSV1-1L_0033 + pICH54033 + pSV1-

3R_0021 + pSV1-4L_0004 + pAD1-

5L_0053 

pSV0004 
ECF37/AS37 t1-switch, no rep. (for 

chromosomal int.) 

pSV102 

pSV1-1L_0034 + pICH54033 + pSV1-

3R_0022 + pSV1-4L_0004 + pAD1-

5L_0055 

pSV0004 
ECF38/AS38 t1-switch, no rep. (for 

chromosomal int.) 

pSV103 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_005 + pSV0-11_002 

pSV0004 
PBAD ecf11 (for chromosomal int.) 

pSV104 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_006 + pSV0-11_002 

pSV0004 PBAD ecf14 (for chromosomal int.) 

pSV105 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_016 + pSV0-11_002 

pSV0004 PBAD ecf15 (for chromosomal int.) 

pSV106 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_007 + pSV0-11_002 

pSV0004 PBAD ecf16 (for chromosomal int.) 

pSV107 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_020 + pSV0-11_002 

pSV0004 PBAD ecf17 (for chromosomal int.) 

pSV108 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_008 + pSV0-11_002 

pSV0004 PBAD ecf20 (for chromosomal int.) 

pSV109 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_017 + pSV0-11_002 

pSV0004 PBAD ecf22 (for chromosomal int.) 

pSV110 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_009 + pSV0-11_002 

pSV0004 PBAD ecf26 (for chromosomal int.) 

pSV111 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_018 + pSV0-11_002 

pSV0004 PBAD ecf27 (for chromosomal int.) 

pSV112 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_010 + pSV0-11_002 

pSV0004 PBAD ecf28 (for chromosomal int.) 

pSV113 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_011 + pSV0-11_002 

pSV0004 PBAD ecf31 (for chromosomal int.) 

pSV114 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_012 + pSV0-11_002 

pSV0004 PBAD ecf32 (for chromosomal int.) 

pSV115 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_013 + pSV0-11_002 

pSV0004 PBAD ecf34 (for chromosomal int.) 

pSV116 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_019 + pSV0-11_002 

pSV0004 PBAD ecf37 (for chromosomal int.) 

pSV117 
pSV0-1_002 + pSV0-9_001 + pSV0-

15_021 + pSV0-11_002 

pSV0004 PBAD ecf38 (for chromosomal int.) 

pSV118 pSV1-1L_0007 pSV004 PLlacO-1 lux att HK022 

pSV137 pSV1-1L_0028 pSV125 PBAD lux att HK022 kmR 

pSV138 pSV1-1L_0028 pSV126 PBAD lux att P21 kmR 

pSV139 pSV1-1L_0028 pSV127 PBAD lux att φ80 kmR 

pSV140 pSV1-1L_0028 pSV128 PBAD att λ kmR 

pSV172 pSV1-1L_0005 pSV126 PBAD gfp att P21 

pSV175 pSV1-1L_0028 pSV004 PBAD lux rev. orientation att HK022 

pSV176 pSV1-1L_0028 pSV006 PBAD lux rev. orientation att P21 

pSV177 pSV1-1L_0028 pSV008 PBAD lux rev. orientation att φ80 

pSV178 pSV1-1L_0028 pSV077 PBAD lux rev. orientation att λ 

pSV199 pSV1-1L_0028 pSV187 PBAD lux att HK022 gmR 

pSV200 pSV1-1L_0028 pSV188 PBAD lux att P21 gmR 

pSV201 pSV1-1L_0028 pSV189 PBAD lux att φ80 gmR 

pSV202 pSV1-1L_0028 pSV190 PBAD att λ gmR 

pSV203 pSV1-1L_0028 pSV183 PBAD lux att HK022 spcR 

pSV204 pSV1-1L_0028 pSV184 PBAD lux att P21 spcR 

pSV205 pSV1-1L_0028 pSV185 PBAD lux att φ80 spcR 

pSV206 pSV1-1L_0028 pSV186 PBAD att λ spcR 

pSV209 pSV1-1L_0003 pSV185 PBAD mCherry att φ80 

pSV218 pSV1-1L_0162 pSV190 PBAD mTurquoise att λ 
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pSVM-1_076 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 + pSV1-

5L_0014 

pAGM8031 part of 3-step timer 

pSVM-1_078 

pSV1-1L_0018 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 + pSV1-

5L_0015 

pAGM8031 part of 3-step timer 

pSVM-1_168 
pSV1-1L_0163 + pSV1-2L_0122 + 

pSV1-3L_0111 + pSV1-4R_0003 
pAGM8031 ECF14/AS14 t2-switch, part1 

pSVM-5_008 
pSV1-5L_0092 + pSV1-6L_0007 + 

pSV1-7L_0008 
pAGM8079 ECF14/AS14 t2-switch, part2 

pSVM-5_009 
pSV1-5L_0092 + pSV1-6L_0008 + 

pSV1-7L_0008 
pAGM8079 ECF14/AS14 t2-switch, part2 

pSVM-5_010 
pSV1-5L_0092 + pSV1-6L_0009 + 

pSV1-7L_0008 
pAGM8079 ECF14/AS14 t2-switch, part2 

pSVM6_018 
pSV1-6L_0006 + pSV1-7R_0002 + 

pSV1-1L_0088 
pAGM8081 part of 3-step timer 

pSVM6_019 
pSV1-6L_0006 + pSV1-7R_0003 + 

pSV1-1L_0088 
pAGM8081 part of 3-step timer 

pSVM6_020 
pSV1-6L_0006 + pSV1-7R_0004 + 

pSV1-1L_0088 
pAGM8081 part of 3-step timer neg. control 

pSVM6_021 
pSV1-6L_0006 + pSV1-7R_0005 + 

pSV1-1L_0088 
pAGM8081 part of 3-step timer neg. control 

pSVM-mc_038 pSV1-1L_0028 pSVM-mc PBAD lux 

pSVM-mc_074 
pSV1-1L_0016 + pJM1-2L_0014 + 

pSV1-3L_0034 
pSVM-mc PBAD ecf28 du300 double term. du15 lux 

pSVM-mc_111 
pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 
pSVM-mc ECF28-switch / 1-step timer 

pSVM-mc_112 
pSV1-1L_0018 + pSV1-2L_0007 + 

pJM1-3R_003 + pSV1-4L_0004 
pSVM-mc ECF32-switch / 1-step timer 

pSVM-mc_113 
pSV1-1L_0016 + pSV1-2L_0007 + 

pSV1-1R_0003 
pSVM-mc PBAD ecf28 du300 term. du15 lux (rev.) 

pSVM-mc_116 
du1 + pSV1-2L_0007 + pJM1-3R_003 + 

pSV1-4L_0004 
pSVM-mc Pecf32 luxCDABE reporter 

pSVM-mc_117 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_003 + pSV1-4L_0004 + pSV1-

5L_0014 

pSVM-mc 2-step timer ecf28 Pecf32 

pSVM-mc_118 

pSV1-1L_0018 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pSV1-

5L_0015 

pSVM-mc 2-step timer ecf32 Pecf28 

pSVM-mc_120 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_003 + pSV1-4L_0004 + pSV1-

5L_0016 

pSVM-mc 2-step timer ecf28 neg. control 

pSVM-mc_122 

pSV1-1L_0018 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pSV1-

5L_0017 

pSVM-mc 2-step timer ecf32 neg. control 

pSVM-mc_133 

pSV1-1L_0012 + pSV1-2L_0007 + 

pSV1-3R_0012 + pSV1-4L_0004 + 

pSV0-15_026 

pSVM-mc ECF14/AS14-switch 

pSVM-mc_134 

pSV1-1L_0029 + pSV1-2L_0007 + 

pSV1-3R_0013 + pSV1-4L_0004 + 

pSV0-15_027 

pSVM-mc ECF15/AS15-switch 

pSVM-mc_135 

pSV1-1L_0013 + pSV1-2L_0007 + 

pSV1-3R_0014 + pSV1-4L_0004 + 

pSV0-15_028 

pSVM-mc ECF16/AS16-switch 
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pSVM-mc_136 

pSV1-1L_0030 + pSV1-2L_0007 + 

pSV1-3R_0015 + pSV1-4L_0004 + 

pSV0-15_039 

pSVM-mc ECF17/AS17-switch 

pSVM-mc_137 

pSV1-1L_0014 + pSV1-2L_0007 + 

pSV1-3R_0016 + pSV1-4L_0004 + 

pSV0-15_029 

pSVM-mc ECF20/AS20-switch 

pSVM-mc_138 

pSV1-1L_0031 + pSV1-2L_0007 + 

pSV1-3R_0017 + pSV1-4L_0004 + 

pSV0-15_030 

pSVM-mc ECF22/AS22-switch 

pSVM-mc_139 

pSV1-1L_0015 + pSV1-2L_0007 + 

pSV1-3R_0018 + pSV1-4L_0004 + 

pSV0-15_040 

pSVM-mc ECF26/AS26-switch 

pSVM-mc_140 

pSV1-1L_0032 + pSV1-2L_0007 + 

pSV1-3R_0019 + pSV1-4L_0004 + 

pSV0-15_031 

pSVM-mc ECF27/AS27-switch 

pSVM-mc_141 

pSV1-1L_0016 + pSV1-2L_0007 + 

pJM1-3R_002 + pSV1-4L_0004 + pSV0-

15_041 

pSVM-mc ECF28/AS28-switch 

pSVM-mc_142 

pSV1-1L_0017 + pSV1-2L_0007 + 

pSV1-3R_020 + pSV1-4L_0004 + pSV0-

15_032 

pSVM-mc ECF31/AS31-switch 

pSVM-mc_143 

pSV1-1L_0019 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 + pSV0-

15_042 

pSVM-mc ECF34/AS34-switch 

pSVM-mc_144 

pSV1-1L_0033 + pSV1-2L_0007 + 

pSV1-3R_021 + pSV1-4L_0004 + pSV0-

15_033 

pSVM-mc ECF37/AS37-switch 

pSVM-mc_145 

pSV1-1L_0034 + pSV1-2L_0007 + 

pSV1-3R_0022 + pSV1-4L_0004 + 

pSV0-15_034 

pSVM-mc ECF38/AS38-switch 

pSVM-mc_146 
pSV1-1L_0012 + pSV1-2L_0007 + 

pSV1-3R_0012 + pSV1-4L_0004 
pSVM-mc ECF14-switch 

pSVM-mc_147 
pSV1-1L_0029 + pSV1-2L_0007 + 

pSV1-3R_0013 + pSV1-4L_0004 
pSVM-mc ECF15-switch 

pSVM-mc_148 
pSV1-1L_0013 + pSV1-2L_0007 + 

pSV1-3R_0014 + pSV1-4L_0004 
pSVM-mc ECF16-switch 

pSVM-mc_149 
pSV1-1L_0030 + pSV1-2L_0007 + 

pSV1-3R_0015 + pSV1-4L_0004 
pSVM-mc ECF17-switch 

pSVM-mc_150 
pSV1-1L_0014 + pSV1-2L_0007 + 

pSV1-3R_0016 + pSV1-4L_0004 
pSVM-mc ECF20-switch 

pSVM-mc_151 
pSV1-1L_0031 + pSV1-2L_0007 + 

pSV1-3R_0017 + pSV1-4L_0004 
pSVM-mc ECF22-switch 

pSVM-mc_152 
pSV1-1L_0015 + pSV1-2L_0007 + 

pSV1-3R_0018 + pSV1-4L_0004 
pSVM-mc ECF26-switch 

pSVM-mc_153 
pSV1-1L_0032 + pSV1-2L_0007 + 

pSV1-3R_0019 + pSV1-4L_0004 
pSVM-mc ECF27-switch 

pSVM-mc_154 
pSV1-1L_0017 + pSV1-2L_0007 + 

pSV1-3R_020 + pSV1-4L_0004 
pSVM-mc ECF31-switch 

pSVM-mc_155 
pSV1-1L_0019 + pSV1-2L_0007 + 

pJM1-3R_004 + pSV1-4L_0004 
pSVM-mc ECF34-switch 

pSVM-mc_156 
pSV1-1L_0033 + pSV1-2L_0007 + 

pSV1-3R_021 + pSV1-4L_0004 
pSVM-mc ECF37-switch 

pSVM-mc_157 
pSV1-1L_0034 + pSV1-2L_0007 + 

pSV1-3R_0022 + pSV1-4L_0004 
pSVM-mc ECF38-switch 

pSVM-mc_180 pSV1-1L_0006 pSVM-mc Ptet lux 
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pSVM-mc_182 
pSV1-1L_0011 + pSV1-2L_0007 + 

pSV1-3R_0011 + pSV1-4L_0004 
pSVM-mc ECF11-switch 

pSVM-mc_183 

pSV1-1L_0011 + pSV1-2L_0007 + 

pSV1-3R_0011 + pSV1-4L_0004 + 

pSV0-15_025 

pSVM-mc ECF11/AS11-switch 

pSVM-mc_184 

pSV1-1L_0011 + pSV1-2L_0007 + 

pSV1-3R_0011 + pSV1-4L_0004 + 

pAD1-5L_0034 

pSVM-mc ECF11/AS11 t1-switch 

pSVM-mc_185 

pSV1-1L_0011 + pSV1-2L_0007 + 

pSV1-3R_0011 + pSV1-4L_0004 + 

pAD1-5L_0035 

pSVM-mc ECF11/AS11 t2-switch 

pSVM-mc_205 
pSV1-1L_0016 + pICH54022 + pSV1-

3L_0034 
pSVM-mc PBAD ecf28 du2 du15 lux 

pSVM-mc_216 
du1 + pSV1-2L_0007 + pSV1-3R_0011 + 

pSV1-4L_0004 
pSVM-mc Pecf11-luxCDABE reporter 

pSVM-mc_217 
du1 + pSV1-2L_0007 + pSV1-3R_0012 + 

pSV1-4L_0004 
pSVM-mc Pecf12-luxCDABE reporter 

pSVM-mc_218 
du1 + pSV1-2L_0007 + pSV1-3R_0013 + 

pSV1-4L_0004 
pSVM-mc Pecf15-luxCDABE reporter 

pSVM-mc_219 
du1 + pSV1-2L_0007 + pSV1-3R_0014 + 

pSV1-4L_0004 
pSVM-mc Pecf16-luxCDABE reporter 

pSVM-mc_220 
du1 + pSV1-2L_0007 + pSV1-3R_0015 + 

pSV1-4L_0004 
pSVM-mc Pecf17-luxCDABE reporter 

pSVM-mc_221 
du1 + pSV1-2L_0007 + pSV1-3R_0016 + 

pSV1-4L_0004 
pSVM-mc Pecf20-luxCDABE reporter 

pSVM-mc_222 
du1 + pSV1-2L_0007 + pSV1-3R_0017 + 

pSV1-4L_0004 
pSVM-mc Pecf22-luxCDABE reporter 

pSVM-mc_223 
du1 + pSV1-2L_0007 + pSV1-3R_0018 + 

pSV1-4L_0004 
pSVM-mc Pecf26-luxCDABE reporter 

pSVM-mc_224 
du1 + pSV1-2L_0007 + pSV1-3R_0019 + 

pSV1-4L_0004 
pSVM-mc Pecf27-luxCDABE reporter 

pSVM-mc_225 
du1 + pSV1-2L_0007 + pJM1-3R_002 + 

pSV1-4L_0004 
pSVM-mc Pecf19-luxCDABE reporter 

pSVM-mc_226 
du1 + pSV1-2L_0007 + pSV1-3R_0020 + 

pSV1-4L_0004 
pSVM-mc Pecf31-luxCDABE reporter 

pSVM-mc_227 
du1 + pSV1-2L_0007 + pJM1-3R_004 + 

pSV1-4L_0004 
pSVM-mc Pecf18-luxCDABE reporter 

pSVM-mc_228 
du1 + pSV1-2L_0007 + pSV1-3R_0021 + 

pSV1-4L_0004 
pSVM-mc Pecf39-luxCDABE reporter 

pSVM-mc_229 
du1 + pSV1-2L_0007 + pSV1-3R_0022 + 

pSV1-4L_0004 
pSVM-mc Pecf38-luxCDABE reporter 

pSVM-mc_263 pSV1-1L_0140 pSVM-mc PBAD-lux (RBS st3) 

pSVM-mc_264 pSV1-1L_0141 pSVM-mc PBAD-lux (RBS st4) 

pSVM-mc_265 pSV1-1L_0142 pSVM-mc PBAD-lux (RBS st5) 

pSVM-mc_266 pSV1-1L_0143 pSVM-mc PBAD-lux (RBS st7) 

pSVM-mc_267 pSV1-1L_0144 pSVM-mc PBAD-lux (RBS st11) 

pSVM-mc_268 pSV1-1L_0145 pSVM-mc PBAD-lux (RBS wk2) 

pSVM-mc_269 pSV1-1L_0146 pSVM-mc PBAD-lux (RBS wk4) 

pSVM-mc_270 pSV1-1L_0147 pSVM-mc PBAD-lux (RBS wk5) 

pSVM-mc_271 pSV1-1L_0148 pSVM-mc PBAD-lux (RBS wk6) 

pSVM-mc_272 pSV1-1L_0149 pSVM-mc PBAD-lux (RBS wk7) 

pSVM-mc_274 pSV1-1L_0151 pSVM-mc PBAD-lux (RBS wk11) 

pSVM-mc_294 
du1 + pSV1-2L_0007 + pSV1-3R_0045 + 

pSV1-4L_0004 
pSVM-mc Pecf12-ccdB 



Appendix   

165 
 

pSVM-mc_297 
du1 + pSV1-2L_0007 + pJM1-3R_0048 + 

pSV1-4L_0004 
pSVM-mc Pecf19-ccdB 

pSVM-mc_298 
du1 + pSV1-2L_0007 + pJM1-3R_0049 + 

pSV1-4L_0004 
pSVM-mc Pecf18-ccdB 

pSVM-mc_299 
du1 + pSV1-2L_0007 + pSV1-3R_0050 + 

pSV1-4L_0004 
pSVM-mc Pecf39-ccdB 

 

Table 9.5. Level M parts and synthetic circuits. CRIMoClo and MoClo-encoded Level M parts and 

synthetic circuits. The genetic constructs are listed in alphabetical order. Internal name abbreviations: (pSV) 

generated by Stefano Vecchione; (pAD) generated by Angelika Diehl, (pJM) generated by Julia Manning. 

The internal names of the level 1 parts used as well as the original names of the CRIMoClo and MoClo 

destination vectors, in which the parts are encoded, and a description of the constructs is indicated. 

 

Level P synthetic circuits 

Internal name Donor 
Destination 

vector 
Description 

pSV056 pSVM-mc_182 pSV016 ECF11-switch for chromosomal int. 

pSV057 pSVM-mc_146 pSV016 ECF14-switch for chromosomal int. 

pSV058 pSVM-mc_147 pSV016 ECF15-switch for chromosomal int. 

pSV059 pSVM-mc_148 pSV016 ECF16-switch for chromosomal int. 

pSV060 pSVM-mc_149 pSV016 ECF17-switch for chromosomal int. 

pSV061 pSVM-mc_150 pSV016 ECF20-switch for chromosomal int. 

pSV062 pSVM-mc_151 pSV016 ECF22-switch for chromosomal int. 

pSV063 pSVM-mc_152 pSV016 ECF26-switch for chromosomal int. 

pSV064 pSVM-mc_153 pSV016 ECF27-switch for chromosomal int. 

pSV065 pSVM-mc_111 pSV016 ECF28-switch for chromosomal int. 

pSV066 pSVM-mc_154 pSV016 ECF31-switch for chromosomal int. 

pSV067 pSVM-mc_112 pSV016 ECF32-switch for chromosomal int. 

pSV068 pSVM-mc_155 pSV016 ECF34-switch for chromosomal int. 

pSV069 pSVM-mc_156 pSV016 ECF37-switch for chromosomal int. 

pSV070 pSVM-mc_157 pSV016 ECF38-switch for chromosomal int. 

pSV071 pSVM-mc_180 pSV004 Ptet lux (for chromosomal int.) 

pSVPmc_009 
pSVM-1_076 + 

pSVM6_018 
pICH82094 3-step timer ecf28 ecf32 Pecf34 

pSVPmc_010 
pSVM-1_076 + 

pSVM6_020 
pICH82094 3-step timer ecf28 ecf32 neg. control 

pSVPmc_011 
pSVM-1_078 + 

pSVM6_019 
pICH82094 3-step timer ecf32 ecf28 Pecf34 
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pSVPmc_012 
pSVM-1_078 + 

pSVM6_021 
pICH82094 3-step timer ecf32 ecf28 neg. control 

pSVP-mc_025 
pSVM-1_168 + pSVM-

5_008 
pICH82094 ECF14/AS14 t2-switch with fluorophores 

pSVP-mc_026 
pSVM-1_168 + pSVM-

5_009 
pICH82094 ECF14/AS14 t2-switch with fluorophores 

pSVP-mc_027 
pSVM-1_168 + pSVM-

5_010 
pICH82094 ECF14/AS14 t2-switch with fluorophores 

pSVP-mc_028 pSV118 pICH82094 PLO-1 lux 

 

Table 9.6. Level P synthetic circuits. CRIMoClo and MoClo-encoded Level P synthetic circuits. The 

genetic constructs are listed in alphabetical order. Internal name abbreviations: (pSV) generated by Stefano 

Vecchione. The internal names of the level M parts used as well as the original names of the CRIMoClo and 

MoClo destination vectors, in which the parts are encoded, and a description of the constructs is indicated. 

 

Oligonucleotides 

Name Nucleotide sequence (5' → 3') Description 

GF0006 AAATgaagacatGAGGACGGTACGCGACTG LacI rev mismach 2 

GF0007 AAATgaagacatCCTCATGGGAGAAAATAATAC LacI fw mismach 3 

GF0008 AAATgaagacatagtaTTATCCGCTCACAATTCC LacI rev  

GF0010 AAATGAAGACATAGTAGCCCAAAAAACGGGTATG PBAD rev  

GF0011 AAATgaagacataATGCGTAAAGGAGAAGAAC Gfp mut3 fw  

GF0012 AAATgaagacatGATCTCTCTTTTCGTTGG 
Gfp mut3 rev 

mismach  

GF0013 AAATgaagacatGATCACATGGTCCTTCTT 
Gfp mut3 fw 

mismach  

GF0014 AAATgaagacataagcAACAGGAGTCCAAGCTCA Gfp mut3 rev  

GF0019 
AAATGAAGACGAGCTTCTCGGTACCAAATTCCAGAAAAGAGGCCTCCCGAA

AGGGGGGCCTTTTTTCGTTTTGGTCCCGCTATGTCTTCTAAA 
L3S2P21 fw 

GF0020 
TTTAGAAGACATAGCGGGACCAAAACGAAAAAAGGCCCCCCTTTCGGGAGG

CCTCTTTTCTGGAATTTGGTACCGAGAAGCTCGTCTTCATTT 
L3S2P21 rev 

GF0021 
AAATGAAGACGAGCTTCTCGGTACCAAATTCCAGAAAAGAGACGCTTTCGA

GCGTCTTTTTTCGTTTTGGTCCCGCTATGTCTTCTAAA 
L3S2P11 fw 

GF0022 
TTTAGAAGACATAGCGGGACCAAAACGAAAAAAGACGCTCGAAAGCGTCTC

TTTTCTGGAATTTGGTACCGAGAAGCTCGTCTTCATTT 
L3S2P11 rev 

GF0025 GTTTAAACCACTTCGTGCAGAA Level 1 seq fw 

GF0026 CGTTTTTAATGTACTGGGGTGG Level 1 seq rev 

GF0027 GAGTCAGTGAGCGAGGAA Level 0 seq fw 

GF0028 GTGCCACCTGACGTCTAA Level 0 seq rev 

GF0032 AAATgaagacatAGGACAGCTCATGTTATATCC LacI  rev mismach 1 
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GF0033 AAATgaagacatTCCTCGGTATCGTCGTATC LacI  fw mismach 2 

GF0034 AAATgaagacatGCGCTTATGACAACTTGA PBAD FW fusion 

GF0035 AAATgaagacatggagGTCTAGGGCGGCGGATTT pLacI-term t1 fw 

GF0037 AAATgaagacatCGAATTGTCGAGGGAAAG pLacI_rev_fusion 

GF0038 AAATgaagacatCCATCACGGAAAAAGGTT PTet-TetR fw  

GF0039 AAATgaagacatagtaTTCACTTTTCTCTATCACTG PTet-TetR rev 

GF0040 AAATgaagacataATGGTTTCCAAGGGCGAG mCherry fw 

GF0041 AAATgaagacataagcCCGACGTTATTTGTACAGC mCherry rev 

GF0042 AAATgaagacataATGAGCAAAGGTGAAGAAC mVenus fw 

GF0043 AAATgaagacataagcGTTTATTTATACAGTTCGTCCA mVenus rev 

GF0046 
ggagGGGATACCAGAAACAAAAAAAGGGGAGCGGTTTCCCGCTCCCCTTCAAT

AATTGG 

L3S3P00_araC_fw_

ggag 

GF0047 
gcgcCCAATTATTGAAGGGGAGCGGGAAACCGCTCCCCTTTTTTTGTTTCTGGT

ATCCC 
L3S3P00 araC rev 

GF0048 
ggagTTTTGTTATCAATAAAAAAGGCCCCCCGTTAGGGAGGCCTTATTGTTCGT

C 
L3S1P13 tetR fw 

GF0049 
atggGACGAACAATAAGGCCTCCCTAACGGGGGGCCTTTTTTATTGATAACAA

AA 
L3S1P13 tetR rev 

GF0050 
ttcgATAAATGTGAGCGGATAACATTGACATTGTGAGCGGATAACAAGATACT

GAGCACATCAGCAGGACGCACTGACC 
PL-lacO1 fw 

GF0051 
agtaGGTCAGTGCGTCCTGCTGATGTGCTCAGTATCTTGTTATCCGCTCACAAT

GTCAATGTTATCCGCTCACATTTAT 
PL-lacO1 rev 

GF0058 TACTAAAAATAAGGAGGAAAAAAA RBS st8 fw 

GF0059 CATTTTTTTTTCCTCCTTATTTTT RBS st8 rev 

GF0060 
GCTTCCAATTATTGAAGGCCTCCCTAACGGGGGGCCTTTTTTTGTTTCTGGAC

TCCC 
L3S3P21 fw 

GF0061 
AGCGGGGAGTCCAGAAACAAAAAAAGGCCCCCCGTTAGGGAGGCCTTCAAT

AATTGG 
L3S3P21 rev 

GF0062 GCTTCCAATTATTGAAGGCCGCTAACGCGGCCTTTTTTTGTTTCTGGACTCCC L3S3P22 fw 

GF0063 
AGCGGGGAGTCCAGAAACAAAAAAAGGCCGCGTTAGCGGCCTTCAATAATT

GG 
L3S3P22 rev 

GF0064 
GCTTCTCGGTACCAAAGACGAACAATAAGACGCTGAAAAGCGTCTTTTTTCG

TTTTGGTCC 
L3S2P55 fw 
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GF0065 
AGCGGGACCAAAACGAAAAAAGACGCTTTTCAGCGTCTTATTGTTCGTCTTT

GGTACCGAG 
L3S2P55 rev 

GF0066 AAATgaagacatGCTATCTTCGGTATCGTCG 
LacI fw2 mm 

GCTA 

GF0067 AAATgaagacatTAGCTCATGTTATATCCCGCC 
LacI rev2 mm 

TAGC 

GF0068 AAATgaagacatATCTTCATGGGAGAAAATAA lac I fw3 mm ATCT 

GF0069 AAATgaagacatAGATGGTACGCGACTGGG 
lac I rev3 mm 

AGAT 

GF0070 GCTGGTGGCAGGATATATTG 
cPCR lev M-P-L2lc 

fw  

GF0071 GATAAACCTTTTCACGCCCT 
cPCR lev M-P-L2lc 

rev 

GF0078 GGTCTCATGCCTTGTCTTCTGTCAGACCAAGTTTACTC 
Level P backbone  

fw 

GF0079 TTCGTGTCCCTTGTCTTCGTCACAGCTTGTCTGTAAG 
Level P backbone  

rev 

GF0080 GAAGACAAGGGACACGAAGTGATCCGTTTAAAC Level M fw Gibson 

GF0081 CAGAAGACAAGGCATGAGACCACAGAGTGTTCAACCCC Level M rev Gibson 

GF0086 AAATGAAGACATGGAGAATAGGCGTATCACGAGG PECF fw universal 

GF0087 AAATGAAGACATAGTACGGAAATTGACAGGATCC PECF rev universal 

GF0088 AAATGAAGACATAATGATGAGCGATAGTCCG ECF11_987 fw 

GF0090 AAATgaagacataATGAATGATACCGCAGCAG ECF14_1324 fw 

GF0091 AAATgaagacataagcCTTATGCGCTTGTACCACC ECF14_1324 rev 

GF0092 AAATGAAGACATAATGACCCAGACCCCGAAAG ECF15_436 fw 

GF0093 AAATGAAGACATAAGCTCCTTATGCTGCGGTCATAC ECF15_436 rev 

GF0094 AAATGAAGACATAATGCAGCGTACCAATAGC ECF16_3622 fw 

GF0095 AAATGAAGACATAAGCAAGCTTGGATCCTTAACGATC ECF16_3622 rev 

GF0096 AAATgaagacataATGGCACGTGTTAGCGGTG ECF17_1691 fw 

GF0097 AAATgaagacataagcAAGCTTGGATCCTTAACGGG ECF17_1691 rev 

GF0098 AAATGAAGACATAATGAATGAAACCGATCCTGATC ECF20_992 fw 

GF0099 AAATGAAGACATAAGCTCCTTACGGTTTGCGACG ECF20_992 rev 

GF0100 AAATgaagacataATGCCGCAGCAGACCGAT ECF22_4450 fw 

GF0101 AAATgaagacataagcCCGCAAGCTTGGATCCTT ECF22_4450 rev 

GF0102 AAATGAAGACATAATGAATGATCTGGACCCG ECF26_4464 fw 

GF0103 AAATGAAGACATAAGCCCTTAGCTTTTTTCTTCCAGC ECF26_4464 rev 
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GF0104 AAATGAAGACATAATGGCAGGCGGTGCAAG ECF27_4265 fw 

GF0105 AAATGAAGACATAAGCGATCCTTATGCGCGACCA ECF27_4265 rev 

GF0106 AAATGAAGACATAATGTTTGATAGCCTGCGC ECF28_1088 fw 

GF0107 AAATGAAGACATAAGCGATCTCAGTGGTGGTGGTG ECF28_1088 rev 

GF0108 AAATgaagacataATGGATACCCAAGAAGAACAG ECF31_34 fw 

GF0109 AAATgaagacataagcGCTTGGATCCTTATTCATCATC ECF31_34 rev 

GF0110 AAATGAAGACATAATGACCGAAATTCATCTGCA ECF32_1122 fw 

GF0111 AAATGAAGACATAAGCCCTTAGCTAAAAACGCTCTG ECF32_1122 rev 

GF0112 AAATgaagacataATGAATACCCGTACCCGT ECF34_1384 fw 

GF0113 AAATgaagacataagcGCTTGGATCCTTAAACACAGG ECF34_1384 rev 

GF0114 AAATgaagacataATGGCAAGCGATAAAGAACTGG ECF37_2513 fw 

GF0115 AAATgaagacataagcCAAGCTTGGATCCTTACAGGG ECF37_2513 rev 

GF0116 AAATgaagacataATGCCGGTTATTGCACCG ECF38_1322 fw 

GF0117 AAATgaagacataagcTCCTTATGCCGGTGCTTC ECF38_1322 rev 

GF0132 AAATGAAGACATAAGCCTTGGATCCTTACAGCTGTTC ECF11_987 rev 

GF0133 AAATGAAGACATGGAGTTCACCTCGAGGCCTC PECF 11 

GF0134 AAATGAAGACATAATGACTAAAAAAATTTCATTCA Lux fw 

GF0135 AAATGAAGACATCCTCATTCCGTCATGA Lux rev 

GF0136 AAATGAAGACATGAGGCCGTTGCAACGATT Lux fw 2 

GF0137 AAATGAAGACATATGACATCAGACTGGAAGAG Lux rev 2 

GF0138 AAATGAAGACATTCATGCCATTTCTTAAAG Lux fw 3 

GF0139 AAATGAAGACATAAGCTCAACTATCAAACGCTTCGG Lux rev 3 

GF0158 GCTTCTCTACCAAAGGTCA Dummy 0-11 fw 

GF0159 AGCGTGACCTTTGGTAGAG Dummy 0-11 rev 

GF0174 AAATgaagacatggagAGTCACGTGGCCTCCAGT Du300 0-1 fw 

GF0175 AAATgaagacatagtaCCACCACTCCGAGCGTTA Du300 0-1 rev 

GF0176 AAATgaagacaatactTAGTGGAGTTGGTGGCCC Du300 0-2 fw 

GF0177 AAATgaagacatatggGCAAAGCGGCCTTCACTC Du300 0-2 rev 

GF0178 AAATgaagacatccatAAGGAGATGCTGCTGCAGG Du300 0-3 fw 
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GF0179 AAATgaagacatcattACTAAGCGTCCATCCGCA Du300 0-3 rev 

GF0180 AAATGAAGACATAATGTCTGGGAGTGAAGTGGCC Du300 0-4 fw 

GF0181 AAATGAAGACATACCTTACAGCGACCATCCGCTC Du300 0-4 rev 

GF0182 AAATGAAGACATAGGTACAGGAGTTATGGGGCCC Du300 0-5 fw 

GF0183 AAATGAAGACATCGAACAGAAGCGACCGTCCCCT Du300 0-5 rev 

GF0184 AAATGAAGACAATTCGGAGTGGGGTGGCCAACAA Du300 0-6 fw 

GF0185 AAATGAAGACATAAGCAATGTGAGCGACCCGCCA Du300 0-6 rev 

GF0186 AAATgaagacatgcttAGGAGTATGGTGGCCTGC Du300 0-7 fw 

GF0187 AAATgaagacaataccGAGCAGCGTCCTCCCACC Du300 0-7 rev 

GF0196 tactCGCACAGTGAGGGTC Du15bp 0-2 fw 

GF0197 atggGACCCTCACTGTGCG Du15bp 0-2 rev 

GF0198 ccatACTTGGTCGTTCGGC Du15bp 0-3 fw 

GF0199 cattGCCGAACGACCAAGT Du15bp 0-3 rev 

GF0200 AATGTCTACCGACACGAAC Du15bp 0-4 fw 

GF0201 ACCTGTTCGTGTCGGTAGA Du15bp 0-4 rev 

GF0202 AGGTTCCTACCAGAGGTCT Du15bp 0-5 fw 

GF0203 CGAAAGACCTCTGGTAGGA Du15bp 0-5 rev 

GF0204 TTCGAGTACTTTCAGAATC Du15bp 0-6 fw 

GF0205 AAGCGATTCTGAAAGTACT Du15bp 0-6 rev 

GF0206 gcttAAGTGACGCTTATTA Du15bp 0-7 fw 

GF0207 taccTAATAAGCGTCACTT Du15bp 0-7 rev 

GF0208 ggtaTGGACTTCGACATGG Du15bp 0-8 fw 

GF0209 agcgCCATGTCGAAGTCCA Du15bp 0-8 rev 

GF0210 GGAGACAACGTCACGACGA Du15bp 0-14 fw 

GF0211 CATTTCGTCGTGACGTTGT Du15bp 0-14 rev 

GF0212 AATGATCACCGACGCCGTT Du15bp 0-15 fw 

GF0213 AAGCAACGGCGTCGGTGAT Du15bp 0-15 rev 

GF0244 AAATgaagacataATGAACAAACACCCGGAT As11_987 fw 

GF0245 AAATgaagacataagcTCCTTACGGATACAGACC As11_987 rev 

GF0246 AAATgaagacataATGAGCGGTAGCCGTCC As14_1324 fw 

GF0247 AAATgaagacataagcAGGGATCCTTAACGCAGC As14_1324 rev 

GF0248 AAATgaagacataATGGCACAGAGCACCGAAC As15_436 fw 

GF0249 AAATgaagacataagcGATCCTTATTTACCGGTGCC As15_436 rev 

GF0250 AAATgaagacataATGATGAAAACCGATGAACT As16_3622 fw 

GF0251 AAATgaagacataagcCCTTACCAACGCAGCAG As16_3622 rev 

GF0252 AAATgaagacataATGACACCGGAACGTTTTG As20_992 fw 
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GF0253 AAATgaagacataagcTCCTTACTGTTCTGCTTC As20_992 rev 

GF0254 AAATgaagacataATGGAACTGGACGATATG As22_4450 fw 

GF0255 AAATgaagacataagcGGATCCTTAATCACGCTG As22_4450 rev 

GF0256 AAATgaagacataATGACAGGTCATCCGGATG As27_4265 fw 

GF0257 AAATgaagacataagcGGATCCTTAGCTACGTGC As27_4265 rev 

GF0258 AAATgaagacataATGAACAAAGAAAAACTGAG As31_34 fw 

GF0259 AAATgaagacataagcTCCTTAACCACGTTTCAC As31_34 rev 

GF0260 AAATgaagacataATGAGCAGCGCACCGG As37_2513 fw 

GF0261 AAATgaagacataagcTCCGCCAAAACAGGGATC As37_2513 rev 

GF0262 AAATgaagacataATGTCCGATGGTAATGATG As38_1322 fw 

GF0263 AAATgaagacataagcTCCTTATGCACCGCTACC As38_1322 rev 

GF0264 GCTTCCAATTATTGAACACCCTTCGGGGTGTTTTTTTGTTTCTGGTCACCC L3S3P11 fw 

GF0265 AGCGGGGTGACCAGAAACAAAAAAACACCCCGAAGGGTGTTCAATAATTGG L3S3P11 rev 

GF0266 GCTTCCAATTATTCAAGACGCTTAACAGCGTCTTTTTTTGTTTCTGGTCACCC L3S3P23 fw 

GF0267 
AGCGGGGTGACCAGAAACAAAAAAAGACGCTGTTAAGCGTCTTGAATAATT

GG 
L3S3P23 rev 

GF0268 
GCTTCTCGGTACCAAATTCCAGAAAAGACACCCGAAAGGGTGTTTTTTCGTT

TTGGTCC 
L3S2P24 fw 

GF0269 
AGCGGGACCAAAACGAAAAAACACCCTTTCGGGTGTCTTTTCTGGAATTTGG

TACCGAG 
L3S2P24 rev 

GF0270 GCTTGACGAACAATAAGGCCGCAAATCGCGGCCTTTTTTATTGATAACAAAA L3S1P22 fw 

GF0271 AGCGTTTTGTTATCAATAAAAAAGGCCGCGATTTGCGGCCTTATTGTTCGTC L3S1P22 rev 

GF0272 
GCTTTTTTCGAAAAAAGGCCTCCCAAATCGGGGGGCCTTTTTTTATAGCAAC

AAAA 
L3S1P47 fw 

GF0273 
AGCGTTTTGTTGCTATAAAAAAAGGCCCCCCGATTTGGGAGGCCTTTTTTCGA

AAA 
L3S1P47 rev 

GF0274 GCTTTTCCAGAAAAGACACCCTAACGGGTGTTTTTTCGTTTTTGGTCACCC L3S3P45 fw 
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GF0275 AGCGGGGTGACCAAAAACGAAAAAACACCCGTTAGGGTGTCTTTTCTGGAA L3S3P45 rev 

GF0276 
GCTTCTCGGTACCAAACCAATTATTGATGACGCTGAAAAGCGTCATTTTTTGT

TTCGGTCC 
L3S2P44 fw 

GF0277 
AGCGGGACCGAAACAAAAAATGACGCTTTTCAGCGTCATCAATAATTGGTTT

GGTACCGAG 
L3S2P44 rev 

GF0278 GGAGCCCCTGGCGCCCCTT du15 0-1 fw 

GF0279 AGTAAAGGGGCGCCAGGGG du15 0-1 rev 

GF0349 
GGAGGGGAGTCCAGAAACAAAAAAAGGCCGCGTTAGCGGCCTTCAATAATT

GG 
L3S3P22 RC 0-1 fw 

GF0350 AGTACCAATTATTGAAGGCCGCTAACGCGGCCTTTTTTTGTTTCTGGACTCCC 
L3S3P22 RC 0-1 

rev 

GF0353 TACTGGGCTCCTGGCCTGC L3S3P31 RC 0-1 fw 

GF0354 CATTGCAGGCCAGGAGCCC 
L3S3P31 RC 0-1 

rev 

GF0363 AAATgaagacataATGACCATGCCGCTGCG AS17_1691 fw 

GF0364 AAATgaagacatAAGCGGATCCTTACAGGCTACGC AS17_1691 rev 

GF0365 AAATgaagacATAATGAAAGATATCGATGAAAGC AS26_4464 fw 

GF0366 AAATgaagacATAAGCGGATCCTTAACGCCAAT AS26_4464 rev 

GF0367 AAATgaagacATAATGGATGATCTGCAGTTT AS28_1088 fw 

GF0368 AAATgaagacATAAGCGGGATCCTTAGATAAAGGT AS28_1088 rev 

GF0369 AAATgaagacATAATGGGTCATGTTCATCCG AS34_1384 fw 

GF0370 AAATgaagacATAAGCGGGATCCTTAATTACCGC AS34_1384 rev 

GF0406 AAATgaagacATcgaaGCTACCAACCAGATCGC 
As11_987 trunc1 

rev 

GF0407 AAATgaagacATcgaaAACCACATTATCATTCACCG 
As11_987 trunc2 

rev 

GF0408 AAATgaagacATcgaaACCAACTTCATGAATACGAAAACC 
AS14_1324 trunc2 

rev 

GF0409 AAATgaagacATcgaaATCACTATCACCACCACCAG 
AS14_1324 trunc2 

rev 

GF0410 AAATgaagacATcgaaATGAACGGCTGCCAGCAG 
AS17_1691 trunc1 

rev 

GF0411 AAATgaagacATcgaaCGGACTCAGACCGCTTGC 
AS17_1691 trunc2 

rev 

GF0412 AAATgaagacATcgaaACCTGCATAACGGCTCC 
AS20_992 trunc1 

rev 

GF0413 AAATgaagacATcgaaCTGCTGGGCTGCTG 
AS20_992 trunc2 

rev 

GF0414 AAATgaagacATcgaaGCTGCTACGAACGG 
AS22_4450 trunc 

rev 

GF0415 AAATgaagacATcgaaGGTTGCCGGTGC 
AS26_4464 trunc 1 

rev 
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GF0416 AAATgaagacATcgaaGCTGGTCTGCGGAC 
AS26_4464 trunc 2 

rev 

GF0417 AAATgaagacATcgaaACGACCCGGACCTGTG 
AS27_4265 trunc1 

rev 

GF0418 AAATgaagacATcgaaCAGAGGCGGTTCTGCTG 
AS27_4265 trunc2 

rev 

GF0419 AAATgaagacATcgaaCTGATGCTGGCTCAG 
AS28_1088 trunc1 

rev 

GF0420 AAATgaagacATcgaaCAGCTGCTGACGC 
AS28_1088 trunc2 

rev 

GF0421 AAATgaagacATcgaaTTTTTTACGATATTCTGCTTTC AS31_34 trunc1 rev 

GF0422 AAATgaagacATcgaaATTTGCGGTCTGATCG AS31_34 trunc2 rev 

GF0423 AAATgaagacATcgaaCTGGCTACCACGAACAC 
AS34_1384 trunc1 

rev 

GF0424 AAATgaagacATcgaaGCTGCTTTCACGCAGAC 
AS34_1384 trunc2 

rev 

GF0425 AAATgaagacATcgaaCGGTTCACCAGGCGGACG 
AS37_2513 trunc1 

rev 

GF0426 AAATgaagacATcgaaTTTTTTACGTGCCAGTGCTGC 
AS37_2513 trunc2 

rev 

GF0427 AAATgaagacATcgaaTTTACGTGCACGACGTG 
AS38_1322 trunc 

rev 

GF0431 
ttcggtGATTACAAGGATGACGACGATAAGGACTATAAGGACGATGATGACAAG

GACTACAAAGATGATGACGATAAATAG 
Oligo-FLAG-tag fw 

GF0432 
aagcCTATTTATCGTCATCATCTTTGTAGTCCTTGTCATCATCGTCCTTATAGTC

CTTATCGTCGTCATCCTTGTAATC 

Oligo-FLAG-tag 

rev 

GF0448 tactAAAAAAAAATAAGGAGGAA RBS st3 fwd 

GF0449 cattTTCCTCCTTATTTTTTTTT RBS st3 rev 

GF0450 tactAAAAAAAATAAGGAGGAAA RBS st4 fwd 

GF0451 cattTTTCCTCCTTATTTTTTTT RBS st4 rev 

GF0452 tactAAAAAAATAAGGAGGAAAA RBS st5 fwd 

GF0453 cattTTTTCCTCCTTATTTTTTT RBS st5 rev 

GF0454 tactAAAAATAAGGAGGAAAAAA RBS st7 fwd 

GF0455 cattTTTTTTCCTCCTTATTTTT RBS st7 rev 

GF0456 tactATAAGGAGGAAAAAAAAAA RBS st11 fwd 

GF0457 cattTTTTTTTTTTCCTCCTTAT RBS st11 rev 

GF0458 tactAAAAAAAAAGGAA RBS wk2 fwd 

GF0459 cattTTCCTTTTTTTTT RBS wk2 rev 

GF0460 tactAAAAAAAGGAAAA RBS wk4 fwd 

GF0461 cattTTTTCCTTTTTTT RBS wk4 rev 

GF0462 tactAAAAAAGGAAAAA RBS wk5 fwd 

GF0463 cattTTTTTCCTTTTTT RBS wk5 rev 

GF0464 tactAAAAAGGAAAAAA RBS wk6 fwd 

GF0465 cattTTTTTTCCTTTTT RBS wk6 rev 

GF0466 tactAAAAGGAAAAAAA RBS wk7 fwd 

GF0467 cattTTTTTTTCCTTTT RBS wk7 rev 

GF0470 tactAAAGGAAAAAAAAAAA RBS wk11 fwd 

GF0471 cattTTTTTTTTTTTCCTTT RBS wk11 rev 

GF0512 GGCATCACGGCAATATAC 
P1 λ colony PCR 

primer 
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GF0513 TCTGGTCTGGTAGCAATG 
P4 λ colony PCR 

primer 

GF0514 ATCGCCTGTATGAACCTG 
P1 P21 colony PCR 

primer 

GF0515 TAGAACTACCACCTGACC 
P4 P21 colony PCR 

primer 

GF0516 GGAATCAATGCCTGAGTG 
P1 HK022 colony 

PCR primer 

GF0517 GGCATCAACAGCACATTC 
P4 HK022 colony 

PCR primer 

GF0518 CTGCTTGTGGTGGTGAAT 
P1 ɸ80 colony PCR 

primer 

GF0519 TAAGGCAAGACGATCAGG 
P4 ɸ80 colony PCR 

primer 

GF0521 ACGAGTATCGAGATGGCA 
P3 colony PCR 

primer 

GF0524 TCATGTTTGACAGCTTATCAC Lt3 terminator fw 

GF0525 
GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTGCCATG

GGACAAAATTGAAATC 
pAH68 rev + FRT 

GF0526 
GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTACCGAC

CGATACAATGATG 
pAH81 rev + FRT 

GF0527 GATTTTTCTCTTCTTGCGCT 

pAH120-1 rev point 

mutation (delete 

bpiI site) 

GF0528 ACCTTGCGCTAATGCTCTG pAH120-2 fw 

GF0529 
GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTGCCATG

GCATCACAGTATC 

pAH120-2 rev + 

FRT 

GF0530 
GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTCCCGTG

CGAATCAGAAAT 
pAH153 rev + FRT 

GF0531 TAATTCCCATGTCAGCCG R6K ori fw  

GF0532 CAAGATCCGGCCACGATG R6K ori rev 

GF0533 ATTTAAATGGCGCGCCTTAC chloramphenicol fw 

GF0534 CTACCTGTGACGGAAGATC 
chloramphenicol  

rev 

GF0535 
GAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGTCTC

CCCATGCGAGAGT 
rgnB fw + FRT 

GF0536 ACTGGCCACGCAAAAAGG rgnB rev 

GF0537 CACATTGCGGACGTTTTTAATG 
MoClo M-P 

mcs+ori fw 

GF0538 CTCTTAGGTTTACCCGCC 
MoClo M-P 

mcs+ori rev 

GF0539 
CACTGATCAGTGATAAGCTGTCAAACATGACTCTTAGGTTTACCCGCCAATA

TATCCTGT 
bridging MCS+att 

GF0540 
AGGAACACTTAACGGCTGACATGGGAATTAGAAGTTCCTATACTTTCTAGAG

AATAGGAACTTCG 
bridging att+r6k 

GF0541 GGCGTAAGGCGCGCCATTTAAATCAAGATCCGGCCACGATGCGTC bridging R6K+cm 

GF0542 
CTAGAGAATAGGAACTTCGGAATAGGAACTTCCTACCTGTGACGGAAGATCA

CTTCGC 
Bridging CM+rgnb 

GF0543 
CCCAGTACATTAAAAACGTCCGCAATGTGACTGGCCACGCAAAAAGGCCATC

C 

bridging 

rgnB+MCS 
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GF0671 GGAGCGCGAGGCGGCGCCC du15 0-12 fw 

GF0671 GGAGCGCGAGGCGGCGCCC du15 0-12 fw 

GF0672 ATGGGGGCGCCGCCTCGCG du15 0-12 rev 

GF0672 ATGGGGGCGCCGCCTCGCG du15 0-12 rev 

GF0673 AATGCCGGGGGCGTTCCGC du15 0-13 fw 

GF0673 AATGCCGGGGGCGTTCCGC du15 0-13 fw 

GF0674 CGAAGCGGAACGCCCCCGG du15 0-13 rev 

GF0674 CGAAGCGGAACGCCCCCGG du15 0-13 rev 

GF0675 GGAGCCCGAACGCCCCGTA du15 0-16 fw 

GF0676 AGCGTACGGGGCGTTCGGG du15 0-16 rev 

GF0677 GGAGaagagtttgtagaaacgcaaaaaggccatccgtcaggatggccttctgcttaatttgatg 
rrnB T2 RC in 0-1 

fw 

GF0677 
GGAGAAGAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCT

GCTTAATTTGATG 
du15 0-16 fw 

GF0678 AGTAcatcaaattaagcagaaggccatcctgacggatggcctttttgcgtttctacaaactctt 
rrnB T2 RC in 0-1 

rev 

GF0678 
AGTACATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTT

CTACAAACTCTT 
du15 0-16 rev 

GF0679 

GCTTCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT

ATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCTGCACATCA

AATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAAC 

rrnB T2 RC in 0-1 

fw 

GF0680 

AAGAAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTT

AATTTGATGTGCAGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAAC

AGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATG 

rrnB T2 RC in 0-1 

rev 

GF0805 CGCATCGTGGCCGGATCTTGACAGCTAAAACAATTCATCCAG 
kanamycin fw + 

backbone overlap  

GF0807 GTGATCTTCCGTCACAGGTAGGAAG 
CRIMoClo 

backbone fw 

GF0808 CTTCCTACCTGTGACGGAAGATCACCCTCACCCCAAAAATGGC 
kanamycin rev + 

backbone overlap  

GF0856 CGCATCGTGGCCGGATCTTGTCCGACGAATAGAGTAAC 
gentamicin fw + 

backbone overlap  

GF0858 CGCATCGTGGCCGGATCTTGACCTGATAGTTTGGCTGTGAGC 
spectionomycin fw 

+ backbone overlap  

GF0945 ACTCTTCCTTTTTCAATATTATTGAAGC   

CRIMoClo 

backbone fw KM 

promoter 

GF0947 AATATTGAAAAAGGAAGAGTATGGGGGAAGCGGTGATC 
spectionomycin rev 

+ backbone overlap  

GF0949 AATATTGAAAAAGGAAGAGTATGTTACGCAGCAGCAAC 
gentamicin rev + 

backbone overlap  

GF0971 AGCAACTTAAATAGCCTCTAAGG 
P2 colony PCR 

primer 

GF0998 AAATgaagacataATGCAGTTTAAGGTTTACAC ccdb fw  

GF0999 AAATgaagacataagcCTTAATTATATTCCCCAGAAC ccdb rev  

 

Table 9.7. Oligonucleotides used in this study. 
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9.2 Supplementary Figures 

 

Figure 9.1. Antibiotic orthogonality CRIMoClo vectors (P21 att site). Orthogonality of reporter gene 

expression between resistance cassettes used for integration in the phage P21 att site. Correlation graphs 

between luciferase activities obtained from PBAD-lux integrated into attP21, using CRIMoClo plasmids with 

four indicated resistance cassettes (chloramphenicol, kanamycin, spectinomycin, gentamicin). All data 

indicate averages from at least two independent biological assays and error bars denote standard deviations. 
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Figure 9.2. Antibiotic orthogonality CRIMoClo vectors (ϕ80 att site). Orthogonality of reporter gene 

expression between resistance cassettes used for integration in the phage ϕ80 att site. Correlation graphs 

between luciferase activities obtained from PBAD-lux integrated into attϕ80, using CRIMoClo plasmids with 

four indicated resistance cassettes (chloramphenicol, kanamycin, spectinomycin, gentamicin). All data 

indicate averages from at least two independent biological assays and error bars denote standard deviations. 
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Figure 9.3. Antibiotic orthogonality CRIMoClo vectors (λ att site). Orthogonality of reporter gene 

expression between resistance cassettes used for integration in the phage λ att site. Correlation graphs 

between luciferase activities obtained from PBAD-lux integrated into attλ, using CRIMoClo plasmids with four 

indicated resistance cassettes (chloramphenicol, kanamycin, spectinomycin, gentamicin). All data indicate 

averages from at least two independent biological assays and error bars denote standard deviations. 
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