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Zusammenfassung 
 

Schnelle Anpassungen an ständig wechselnde Umweltbedingungen sind von zentraler 
Bedeutung für das Wachstum und Überleben von Bakterien. Ausgereifte Stressantwort-
Systeme erlauben es Bakterien, Schwankungen in Umweltfaktoren wie pH, Temperatur, 
Osmolarität, oder Nährstoff- und Schadstoffkonzentrationen sensitiv wahrzunehmen und 
adäquat darauf zu antworten. Häufig tragen mehrere miteinander gekoppelte Mechanismen, 
die von einem komplexen Netzwerk aus Signal-Transduktions-Kaskaden, Stoffwechselwegen 
und Genexpressions-Regulation kontrolliert werden, zur bakteriellen Stressantwort gegenüber 
einem spezifischen Stressor bei. In dieser Dissertation werden bakterielle Stressantworten 
gegenüber zwei verschiedenen Stressoren analysiert, wobei ein besonderer Fokus auf den 
Regulationsmechanismen liegt, die die Gesamtantwort bestimmen. 

Der erste Teil dieser Dissertation befasst sich mit der Häm-Stressantwort in Corynebacterium 
glutamicum. Häm ist ein essentieller Cofaktor und alternative Eisenquelle für nahezu alle 
Bakterien. In hohen Konzentrationen ist Häm jedoch stark giftig, sodass die Häm-Homöostase 
sehr genau kontrolliert werden muss. Es ist daher eine zentrale Frage, wie Bakterien Häm-
Stressantworten regulieren, um Häm nutzen zu können aber sich gleichzeitig vor Vergiftungen 
zu schützen. Es wird gezeigt, dass C. glutamicum einen Mechanismus zur Häm-Entgiftung 
(gesteuert über den Häm-Exporter HrtBA) und einen Mechanismus zur Häm-Nutzung 
(gesteuert über die Häm-Oxygenase HmuO) in zeitlicher Hierarchie einleitet, wobei die 
Entgiftung der Nutzung vorgeschaltet ist. Ein kombinierter Ansatz aus experimentellen 
Reporter-Messungen und mathematischer Modellierung zeigt auf, wie die unterschiedlichen 
biochemischen Eigenschaften der beiden Zwei-Komponenten-Systeme, die Häm in C. 
glutamicum detektieren - ChrSA und HrrSA - sowie ein zusätzlicher Regulator (der globale 
Eisen-Repressor DtxR) diese hierarchische Aktivierung der beiden Stressantwort-Systeme 
kontrollieren. Diese Analyse beleuchtet die mehrschichtige Häm-Stressantwort, die zur Häm-
Homöostase in C. glutamicum beiträgt, und verbessert dadurch das Verständnis von 
bakteriellen Strategien, eine so ambivalente Substanz wie Häm zu beherrschen.  

Der zweite Teil dieser Dissertation konzentriert sich auf bakterielle Antwortstrategien 
gegenüber Zellwand-Antibiotika, die maßgeblich zur Antibiotikaresistenz von Bakterien 
beigetragen. Um der Resistenzentwicklung entgegenzuwirken, ist es von entscheidender 
Bedeutung zu verstehen, wie Zellwand-Antibiotika die bakterielle Zellwandbiosynthese stören 
und welche Strategien Bakterien anwenden, um sich vor Zellwand-Zerstörung zu schützen. 
Der ersten Frage wird mit Hilfe eines mathematischen Modells nachgegangen, welches den 
bakteriellen Zellwand-Syntheseweg - den Lipid II Zyklus - sowie dessen Verhalten unter 
Einfluss von Antibiotika beschreibt. Es zeigt sich, dass die einzelnen Zwischenprodukte 
innerhalb des Lipid II Zyklus stark ungleichmäßig verteilt sind und dass die Wirksamkeit eines 
Antibiotikums in vivo mit der Verfügbarkeit des Zwischenprodukts, das durch das Antibiotikum 
gebunden wird, skaliert: Je weniger das Zwischenprodukt vorhanden ist, desto geringer ist die 
Wirksamkeit eines Antibiotikums, das an dieses Zwischenprodukt bindet, um die Zellwand-
Biosynthese zu hemmen. Dies führt dazu, ein neues Prinzip der ‚minimalen Exposition 
zellulärer Zielstrukturen‘ als intrinsischen Resistenzmechanismus zu formulieren und es wird 
gezeigt, dass die dadurch hervorgerufene Resistenz vermindert werden kann, wenn 
Antibiotika kooperativ an ihre Ziele binden. Von diesen Erkenntnissen kann die Entwicklung 
neuer Medikamente im Kampf gegen Antibiotika-Resistenz deutlich profitieren. Eine 
experiment-basierte Erweiterung des Modells ermöglicht es schließlich, das Zusammenspiel 
verschiedener Stressantwort-Mechanismen, die vor einem Antibiotikum schützen, zu 
analysieren. Hier liegt der Fokus auf der gut untersuchten Antwort von Bacillus subtilis 
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gegenüber dem Zellwand-Antibiotikum Bacitracin. Die Studie zeigt auf, dass das 
Zusammenspiel zwischen BceAB, der Determinante, die die Stressantwort primär bestimmt 
und Bacitracin-Entgiftung bewirkt, und BcrC, der Determinante, die sekundär zur 
Stressantwort beiträgt indem sie die Zellwand-Homöostase schützt, durch die Eigenschaften 
des Lipid II Zyklus selber kontrolliert wird. Indem diese Analyse Regulationsmechanismen der 
mehrschichtigen Bacitracin-Stressantwort entschlüsselt, trägt sie zu einem verbesserten 
Verständnis bakterieller Antibiotikaresistenz bei. 

Diese kumulative Dissertation ist wie folgt strukturiert: In Kapitel 1 werden die zentralen 
Komponenten der Stressantwort-Netzwerke, die in dieser Dissertation untersucht werden, 
vorgestellt und die Nutzung mathematischer Modelle motiviert, um zugrundeliegende 
Regulationsmechanismen, die die Gesamtantwort bestimmen, zu verstehen. Daran schließt 
sich ein kurzer Überblick über die mathematischen Ansätze an, die genutzt wurden, um die 
Stressantworten in dieser Dissertation zu modellieren. In Kapitel 2 wird die kombinierte Studie 
aus Theorie und Experiment zur Häm-Stressantwort in C. glutamicum vorgestellt. Kapitel 3 
präsentiert die quantitative Analyse der Wirkung von Zellwandantibiotika und der Bacitracin-
Stressantwort in B. subtilis. Die vier Publikationen, die die Grundlage dieser Dissertation 
bilden, sind im Anhang A zu finden.  
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Summary  
 

Bacterial growth and survival critically hinges on the ability to rapidly adapt to ever-changing 
environmental conditions. Elaborated stress response systems allow bacteria to sensitively 
detect and adequately respond to fluctuations in environmental conditions, such as pH, 
temperature, osmolarity, or the concentrations of nutrients and harmful substances. Often, 
bacterial stress responses towards a specific stressor involve multiple interconnected 
mechanisms - controlled by a sophisticated network involving signal-transduction cascades, 
metabolic pathways and gene expression regulation. In this thesis, bacterial stress responses 
towards two different environmental stressors are analysed; mainly focussing on the regulatory 
mechanisms that give rise to the overall cellular response. 

The first part of this thesis addresses the heme stress response in Corynebacterium 
glutamucim.  Heme is an essential cofactor and alternative iron source for almost all bacterial 
species but can cause severe toxicity when present in elevated concentrations. Consequently, 
heme homeostasis needs to be tightly controlled. Therefore, one important challenge is to 
understand how bacteria regulate heme stress responses to both benefit from heme while 
simultaneously eliminating the associated toxicity. It is shown that C. glutamicum induces a 
heme detoxification mechanism (mediated via the heme exporter HrtBA) and a heme utilization 
mechanism (mediated via the heme ogygenase HmuO) in a temporal hierarchy, with 
prioritisation of detoxification over utilization. A combined approach of experimental reporter 
profiling and computational modelling reveals how differential biochemical properties of the 
two two-component systems that sense heme in C. glutamicum - ChrSA and HrrSA - and an 
additional regulator (the global iron-regulator DtxR) control this hierarchical expression of the 
two stress response modules. This analysis sheds light on the multi-layered heme stress 
response that contributes to overall heme homeostasis in C. glutamicum and adds on to the 
understanding of bacterial strategies to deal with the Janus-faced nature of heme.  

The second part of this thesis focusses on bacterial response strategies towards cell wall 
antibiotics, which play a key role in bacterial antibiotic resistance. To combat resistance 
evolution, it is important to understand how cell wall antibiotics affect bacterial cell wall 
biosynthesis and how bacteria orchestrate stress response mechanisms to protect themselves 
from cell wall damage. The first question is addressed through a comprehensive mathematical 
model describing the bacterial cell wall synthetic pathway - the lipid II cycle - and its systems-
level behaviour under antibiotic treatment. It is found that the lipid II cycle features a highly 
asymmetric distribution of pathway intermediates and that the efficacy of antibiotics in vivo 
scales directly with the abundance of targeted pathway intermediates: The lower the relative 
abundance of a lipid II intermediate within the lipid II cycle, the lower the in vivo efficacy of an 
antibiotic targeting this intermediate. This leads to the formulation of a novel principle of 
‘minimal target exposure’ as an intrinsic bacterial resistance mechanism and it is demonstrated 
that cooperativity in drug-target binding can mitigate the associated resistance. The 
development of new drugs to counteract antibiotic resistance clearly benefit from these 
insights. The second question is then addresses by an experimental-based expansion of the 
model, which allows the analysis of the interplay between multiple stress response 
mechanisms that protect against a single antibiotic - focussing here on the well-studied 
response of Bacillus subtilis towards the cell wall antibiotic bacitracin. This study reveals that 
the properties of the lipid II cycle itself control the interaction between the primary bacitracin 
stress response determinant BceAB mediating bacitracin detoxification, and the secondary 
determinant BcrC, which contributes to cell wall homeostasis under bacitracin treatment. By 



Summary       X 
 

 

elucidating regulatory mechanisms of the multi-layered response towards bacitracin, this 
analysis contributes to an advanced understanding of bacterial antibiotic resistance.  

This cumulative thesis is structured as follows: In Chapter 1, the basic components of bacterial 
stress response networks investigated in this thesis are introduced and a motivation why it is 
beneficial to use computational modelling to understand underlying regulatory mechanisms 
that give rise to the overall response is given. This is followed by a brief overview of the 
mathematical approaches used to model the bacterial stress responses in this thesis. In 
Chapter 2, the combined study of theory and experiment of the heme stress response in C. 
glutamicum is presented. Chapter 3 introduces the quantitative analyses of cell wall antibiotic 
action and the bacitracin stress response in B. subtilis. The full texts of the four publications 
described within this thesis are attached in Appendix A.  
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1. Introduction 
 

Bacteria thrive in a variety of habitats where growth and survival critically depend on the 
present environmental conditions. Both the shortage of useful and the presence of harmful 
substances in the cell’s environment as well as deviations in abiotic environmental factors such 
as temperature, osmolarity, and pH from their optimum can significantly impair bacterial growth 
and thus, represent distinct stress for the bacterial cell. Consequently, bacteria have evolved 
a variety of elaborated strategies to sensitively monitor these critical environmental parameters 
and to respond to variations with appropriate adaptations in cell physiology and metabolism to 
survive (partly extensive) periods of stress and starvation. These so-called bacterial stress 
responses are generally controlled by complex networks that involve the interplay of signal-
transduction cascades, metabolic pathways and gene expression interactions (Ropers et al. 
2009). For instance, it is a common strategy to increase the expression of uptake systems of 
nutrients or osmotic solutes in response to starvation or osmotic stress, respectively, while the 
expression of specific export or detoxification systems is frequently induced when harmful 
substances are present. Furthermore, more drastic stress responses, such as the physical 
movement of motile bacterial cells away from harmful substances (chemotaxis) as well as the 
formation of dormant, non-reproducing cells (sporulation) that can persist unfavourable 
environmental conditions for long periods of time, appear in different bacterial species (Moat 
et al., 2002; Storz and Hengge, 2011). These diverse stress response strategies allow bacteria 
to survive ever-changing environmental conditions. Thus, in order to understand bacterial 
physiology, it is an important challenge to uncover how bacteria respond to environmental 
stressors and also why they behave this way. It is the aim of this thesis to better understand 
selected bacterial stress responses that are critical for growth and survival of bacterial 
organisms - mainly focussing on the underlying networks controlling the cellular stress 
responses. 

In general, even though the various bacterial stress response networks feature high diversity, 
the fundamental components comprising them are conserved: (i) Signal transduction modules 
that initially detect a stress signal, process the input signal and subsequently relay it and (ii) 
the cellular response modules that elicit changes in physiology or metabolism in response to 
the stress signal (Storz and Hengge, 2011). The network architecture however, can become 
highly complex. For instance, the integration of several stress signals and the coordination of 
cellular response mechanisms on multiple levels, which are key to ensure rapid and precise 
adaptation to the ever-changing environmental conditions, often require intricate regulatory 
mechanisms. Although many of the individual components of bacterial stress response 
networks have been identified by experimental approaches, the principles that regulate the 
interplay between these well-studied components remained mostly elusive. When dealing with 
networks of the described size and complexity, underlying regulatory mechanisms that give 
rise to the overall response can not be easily elucidated through experiments. Here, theoretical 
models - when calibrated by experiments - have been proven as promising tools to overcome 
the challenge of this complexity and to link the behaviour of a stress system to the interactions 
between its components. For instance, computational studies revealed important regulatory 
features of the fine-tuned interplay between diverse modules that impact the decision of 
sporulation (Bischofs et al., 2009; Gauvry et al., 2019; Iber et al., 2006; Igoshin et al., 2006; 
Ihekwaba et al., 2014; Jabbari et al., 2011; Narula et al., 2012; Schultz et al., 2009) and spore-
revival (Mutlu et al., 2018) in response to nutrient availability in Bacillus subtilis. Furthermore, 
they showed the importance of negative feedback mechanisms in the pH stress response and 
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osmoregulation of Escherichia coli (Fritz et al., 2009; Heermann et al., 2014), and deciphered 
the design principles of the E. coli heat shock response network (El-Samad et al., 2005; Kurata 
et al., 2006). Beyond that, within more global, coarse-grained theoretical frameworks, the 
dependence of the bacterial growth rate from environmental conditions such as essential 
nutrients or harmful antibiotics was quantified (Klumpp and Hwa, 2014; Scott and Hwa, 2011; 
Scott et al., 2010). These studies eventually culminated in the formulation of mathematical 
relations, referred to as ‘growth laws’, relating the bacterial growth rate to the cellular ribosome 
content and protein expression, which in turn vary in response to changing environmental 
conditions (Scott et al., 2010). Jointly, these examples demonstrate the pivotal role of 
mathematical modelling in understanding complex cellular responses to stressful 
environmental conditions. 

Accordingly, this thesis likewise employs theoretical approaches to study the selected complex 
bacterial stress response networks and to uncover regulatory mechanisms that determine the 
cellular stress responses. More precisely, Chapter 2 of this thesis presents a combined study 
of experiment and theory of a heme stress response system applied by several corynebacterial 
species, such as Corynebacterium glutamicum and Corynebacterium diphtheriae. Notably, 
heme takes here the dual role of a useful and a harmful substance simultaneously: Despite its 
essentiality for many cellular processes, elevated intracellular heme levels are extremely toxic 
to the cell, such that uptake, synthesis and utilization have to be carefully balanced (Anzaldi 
and Skaar, 2010; Choby and Skaar, 2016). A mathematical model elucidates how cells cope 
with this Janus-faced nature of heme by tightly regulating the expression of a heme 
detoxification module and a heme utilization module in response to extracellular heme 
concentrations. Furthermore, in Chapter 3, the cellular response of Gram-positive bacteria to 
antimicrobial compounds that impair the production of the bacterial cell wall are studied within 
a theoretical framework. While, on the one hand, bacterial stress responses towards 
antimicrobial agents ensure growth of competing species in a mixed bacterial population in 
nature, on the other hand, they also protect pathogenic organisms from getting killed by 
antibiotics in a medical context and are therefore highly important to understand (Andersson 
et al., 2016; Bauer and Shafer, 2015; Blair et al., 2015; Nawrocki et al., 2014). A 
comprehensive model of the bacterial cell wall synthetic pathway deciphers how cell wall 
antibiotics impair cell wall production and affect cell wall integrity. As will be shown, the cellular 
pathway itself features important non-trivial emergent properties that influence the degree of 
stress induced by different cell wall antibiotics. Then, an experiment-based model expansion 
answered the question how various stress response modules interact to protect the cell wall 
synthesis and counteract the antibiotic-induced perturbation - focussing here on the stress 
response towards the cell wall antibiotic bacitracin in the model organism B. subtilis. While the 
respective chapters introduce the precise architecture and characteristics of the investigated 
stress response networks in detail, the common basic components of these (and many other) 
bacterial stress response networks as well as the model approaches to describe these 
quantitatively are reviewed briefly in the following.  

 

1.1 General components of stress response networks 

Perception and transduction of external stress signals 

To allow for adequate adaptations to environmental stress, one of the major components of 
bacterial stress response networks are signal transduction modules (Fig. 1, depicted in blue)  
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that sensitively monitor the critical environmental parameters and activate diverse cellular 
response modules upon stress perception (Moat et al., 2002; Storz and Hengge, 2011). 
Frequently, the stress signal is present in the cell’s environment and thus physically separated 
from the cytoplasmic response modules by the cell envelope, in particular the cell membrane. 
The signal transduction modules must therefore relay information about the environmental 
conditions across this barrier to elicit cellular responses. In general, bacteria employ three 
different systems that allow transmembrane signal transduction: One-component systems, 
two-component systems (TCS) and extracytoplasmic function (ECF) σ-factor/transmembrane 
anti-σ-factor units (Butcher et al., 2008; Capra and Laub, 2012; Helmann, 2002; Staroń et al., 
2009; Stock et al., 2000; Ulrich et al., 2005). TCS and ECF σ-factor/transmembrane anti-σ-
factor units are commonly found amongst the signal transduction modules mediating the 
bacterial response to environmental stressors (Helmann, 2002; Laub, 2011). Central to these 
two signal transduction modules are membrane-anchored proteins that extend both into the 
cytoplasmic and the extracytoplasmic space and, therefore, are able to interact with external 
stress signals and the cytoplasmic regulators of the cellular response modules. The 
cytoplasmic regulator is usually kept inactive in the absence of an inducing stress signal and 
becomes activated upon stress perception by the membrane-anchored sensory protein. 

In the TCSs relevant for the stress response networks investigated in this thesis, the stimulus 
perception is performed by a membrane-bound histidine kinase (HK), which interacts with a 
cytoplasmic response regulator (RR) (Fig. 1) (Capra and Laub, 2012; Mascher et al., 2006; 
Stock et al., 2000; Zschiedrich et al., 2016). After autophosphorylation at a conserved histidine 
residue in response to an external stress stimulus, the HK catalyses the transfer of the 
phosphate group to a conserved aspartate residue of the RR. The RR becomes active by 
phosphorylation and subsequently acts as a transcriptional regulator, that is it regulates the 
transcription of target genes by binding to the promoter regions. 

The second group of transcriptional regulators that initiate appropriate cellular responses to 
environmental stresses are the ECF σ-factors (Fig. 1). They can associate with the bacterial 
RNA polymerase to subsequently guide it to their target promoters (Davis et al., 2017; Helmann 
and Chamberlin, 1988), thereby regulating the transcription of their target gene. Without the 
respective stimulus, the ECF σ-factor interacts physically with a (mostly) membrane-anchored 

Figure 1: Components of bacterial stress response networks. Signal transduction modules (blue) perceive the 
extracellular stress signal and relay information across the cell membrane into the cytoplasm. Upon stress 
perception, the cytoplasmic regulators of the signal transduction modules stimulate the cellular response (green) 
modules, that is they control the gene expression of target genes, whose gene products participate in the stress 
response. Cellular response mechanism are highly diverse. While the stressors considered in this thesis elicit 
specific detoxification mechanisms to deal with the harmful substances and control mechanisms to maintain overall 
homeostasis, other stressors induce more general adaptations in the cell’s physiology and lifestyle, as they cause 
for instance sporulation or chemotaxis. For a more detailed mechanistic description of the individual components 
of the stress response networks please refer to the main text. The figure is adapted from (Piepenbreier et al., 2017). 

 

Figure 1: Mathematical rate laws for complex reaction schemes. The quantification of complex reaction 
schemes, involving multiple reactants and regulation, are explained through example systems. All parameters are 
chosen arbitrary and the scales of the plots are expressed relative to these parameters (A) Ping-Pong or double 
displacement enzyme reactions involve multiple substrates, where one (or more) products are released before all 
substrates are bound. In these reactions, the enzyme change into an intermediate form after a first substrate-to-
product reaction and is then able to bind a second substrate and catalyse conversion. In the illustrated example, 
the first substrate (S1) binds to the standard form of the enzyme (E) with Michaelis constant 𝐾𝑀1. The enzyme 
catalyses the conversion to the first product (P1) and remains in a modified state (E*), which can be bound by the 
second substrate (S2) with Michaelis constant 𝐾𝑀2. The modified form of the enzyme eventually catalyses the 
formation of the second product (P2) and is thereby restored to its initial form. The production rate of P2 is given by 
a modified Michaelis-Menten term (Voet, D. and Voet, J., 2011), which reveals that the rate is determined by the 
concentrations of both substrates and the respective Michaelis constants. As the log-plot for varying concentrations 
of S1 and several fixed concentrations of S2 illustrates, the maximal rate 𝑉𝑚𝑎𝑥 can only be achieved when both 
substrates are present at saturating concentrations, that is [𝑆𝑖] ≫ 𝐾𝑀𝑖. Enzymes featuring such Ping-Pong 
mechanisms are frequently found in bacteria and, for instance, fulfil diverse roles in E. coli (Axley and Grahame, 
1991; Goodenough-Lashua and Garcia, 2003; Gyamerah and Willetts, 1997; Pejchal et al., 2005) - to list only some 
examples. (B) Gene expression regulation by a transcriptional activator (A, blue) and a dimeric repressor (R, red). 
Both regulators can bind either individually or simultaneously to their respective operator sites (OA and OR, 
respectively) on the promoter P of the gene (depicted in green) with dissociation constants 𝐾𝐴 and 𝐾𝑅. If the 
repressor R is bound, only basal transcription at rate 𝛼0 occurs. The activated state of the promoter results from 
exclusive binding of the activator A to the promoter, such that the maximal transcription rate (𝛼0 + 𝛼1) is reached 
when the promoter is saturated with activator A and no repressor R is bound, as illustrated in the three-dimensional 
log-log-plot. The colour codes for the fold-change in the transcription rate, which is given by 𝛼0+ 𝛼1

𝛼0
. An increase in 

repressor concentration leads to a more pronounced decrease in the transcription rate than a decrease in the 
activator concentration due to the dimeric nature of the repressor.Figure 2: Components of bacterial stress 
response networks. Signal transduction modules (blue) perceive the extracellular stress signal and relay 
information across the cell membrane into the cytoplasm. Upon stress perception, the cytoplasmic regulators of the 
signal transduction modules stimulate the cellular response (green) modules, that is they control the gene 
expression of target genes, whose gene products participate in the stress response. Cellular response mechanism 
are highly diverse. While the stressors considered in this thesis elicit specific detoxification mechanisms to deal with 
the harmful substances and control mechanisms to maintain overall homeostasis, other stressors induce more 
general adaptations in the cell’s physiology and lifestyle, as they cause for instance sporulation or chemotaxis. For 
a more detailed mechanistic description of the individual components of the stress response networks please refer 
to the main text. The figure is adapted from (Piepenbreier et al., 2017). 

 

Figure 3: Mathematical rate laws for complex reaction schemes. The quantification of complex reaction 
schemes, involving multiple reactants and regulation, are explained through example systems. All parameters are 
chosen arbitrary and the scales of the plots are expressed relative to these parameters (A) Ping-Pong or double 
displacement enzyme reactions involve multiple substrates, where one (or more) products are released before all 
substrates are bound. In these reactions, the enzyme change into an intermediate form after a first substrate-to-
product reaction and is then able to bind a second substrate and catalyse conversion. In the illustrated example, 
the first substrate (S1) binds to the standard form of the enzyme (E) with Michaelis constant 𝐾𝑀1. The enzyme 
catalyses the conversion to the first product (P1) and remains in a modified state (E*), which can be bound by the 
second substrate (S2) with Michaelis constant 𝐾𝑀2. The modified form of the enzyme eventually catalyses the 
formation of the second product (P2) and is thereby restored to its initial form. The production rate of P2 is given by 
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anti-σ-factor and is kept inactive (Brown and Hughes, 1995; Helmann, 1999; Kazmierczak et 
al., 2005). The recognition of the external stress signal by the respective anti-σ-factor induces 
the release and thereby activation of the ECF σ-factor, caused either by conformational change 
or by regulated proteolysis of the anti-σ-factor (Brooks and Buchanan, 2008; Hastie et al., 
2013; Paget, 2015; Schöbel et al., 2004). 

 

Adaptations in gene expression in response to stress 

The genes, whose expression is controlled by the diverse signal transduction modules, and 
their respective gene products that protect the bacterial cell from environmental stressors 
represent the second major component of bacterial stress response networks, namely the 
cellular response modules (Fig. 1, depicted in green). The overall cellular response to a specific 
environmental stressor, however, involves often not only the regulation of one target gene and 
is far more complex. In many cases, multiple cellular response modules with varying functions 
are induced to protect the cell from environmental stress. For instance, both E. coli (Arsène et 
al., 2000; Nonaka et al., 2006) and B. subtilis (Helmann et al., 2001; Schumann, 2003) 
upregulate the expression of a variety of genes in response to high temperatures. These genes 
encode so-called heat-shock proteins with several different functions, many of which play a 
key role in preventing protein misfolding under elevated temperatures (Arsène et al., 2000). 
Furthermore, the pH stress response in E. coli comprises multiple mechanisms including 
adaptations in metabolism and increased production of ion transporters (Maurer et al., 2005; 
Tucker et al., 2002), which enable the cell to cope with changes in pH. Additionally, it has been 
shown that bacterial responses towards cell envelope stress often involve mechanisms that 
actively remove the stressor from the envelope as well as mechanisms that control the cell 
envelope homeostasis (Jordan et al., 2008; Radeck et al., 2016). As another widespread 
feature of bacterial stress responses networks, signal transduction modules also regulate their 
own expression via a positive feedback loop, such that the number of signal transduction 
modules is increased in response to the stress stimulus (Goulian, 2010; Groisman, 2016; 
Mitrophanov and Groisman, 2008). In addition, it appears that multiple stress-dependent 
regulators control the expression of the same target gene, such that several stress input 
signals need to be integrated at the target gene promoter (Ishihama, 2010). As will be shown, 
the heme stress response in C. glutamicum critically depends on the integration of different 
stress input signals (Frunzke et al., 2011). Ultimately, cellular response modules themselves 
can reduce the levels of the stress input signal and thereby influence their own expression 
pattern via negative feedback, as known for example for transporters that remove harmful 
substances from the cell (Fritz et al., 2015). 

Indeed, these non-linear interactions between signal transduction and cellular response 
modules, and especially the illustrated feedback loops, significantly influence the overall 
cellular response to environmental stressor (Brandman and Meyer, 2008; Groisman, 2016; 
Mitrophanov and Groisman, 2008). For example, negative feedback mechanisms can lead to 
transient gene expression kinetics and an enduring homeostatic control of the target gene 
expression in the long term (Fritz et al., 2009). Moreover, positive feedback loops can for 
instance influence the response time and the response levels of the auto-regulated signalling 
systems (Mitrophanov et al., 2010; Shin et al., 2006).  

Taken together, stress response networks often feature a distinct degree of complexity and 
involve a variety of non-trivial regulatory mechanisms, which can not be readily understood 
without theoretical frameworks.  
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1.2 Mathematical modelling of bacterial stress response networks 

The complex architecture of the bacterial stress response networks investigated here 
motivates the use of mathematical modelling to study how the interplay between the individual 
components of the respective systems give rise to the overall cellular stress response. Of note, 
every mathematical model is not a faithful copy of the reality but a simplified representation 
adapted to the biological question being answered with the model. Thus, instead of using a 
single modelling approach, often multiple modelling techniques are combined to capture the 
different aspects of the modelled system. In the following, the most important model techniques 
used to describe the individual components of the stress response networks are reviewed, 
following closely the book by Ingalls (Ingalls, 2013). 

In general, mathematical modelling is usually employed to study time-dependent changes in 
the abundance of individual molecular species within the system of interest – the system’s 
dynamic behaviour – as this provides insight into existing dependencies of individual molecular 
species from others within the system. The individual molecular species can represent for 
instance reactants participating in a chemical reaction, enzymes catalysing biochemical 
reactions, metabolites of a metabolic network or individual cells interacting within a population. 
Likewise, the computational studies in this thesis aim to monitor the dynamic changes in the 
concentrations of the individual molecules involved in the stress response networks to be 
investigated, such as the transcription factors controlling gene expression or the gene products 
contributing to the overall stress response. Models that address these kind of questions by 
describing the time-dependent behaviour of the modelled system are referred to as dynamic 
mathematical models. Here, the various factors that affect these dynamics, for example 
environmental conditions or biochemical properties of the molecular species of the system, 
enter the model as parameters, as will be explained in detail in the course of this section. 
Within this class of mathematical models, two fundamentally different model approaches exist: 
(i) Deterministic and (ii) stochastic models. Stochastic models are suitable for describing 
systems with random interactions between their individual molecular species, that is the 
system’s dynamic behaviour is influenced both by defined conditions and by unpredictable 
forces (Zheng and Sriram, 2010). Thus, stochastic model approaches are used to investigate 
processes that depend on small numbers of molecules and can be strongly affected by 
stochastic fluctuations in the molecule abundances, such as gene expression regulation on 
single-cell level (Booth et al., 2007; Choudhary et al., 2014; Hasty et al., 2001; Mettetal et al., 
2006, Schultz et al., 2007). Furthermore, they are applied to study cell-to-cell variations in 
growth (Alonso et al., 2014; Thomas et al., 2018) and metabolism (Tonn et al., 2019). 
Stochastic modelling therefore usually requires elaborated and time-consuming experiments 
quantifying the abundances of the molecular species involved in the modelled system on a 
single-cell level, such as microfluidics or microscopy (Kutalik et al., 2005; Potvin-Trottier et al., 
2018). However, in many biological processes a large number of molecules are involved, such 
that stochastic fluctuations in molecule abundances are insignificant and the system’s dynamic 
behaviour is instead dependent on the average numbers of the individual molecules (Zheng 
and Sriram, 2010). Here, deterministic models provide an adequate approximation of the 
biological system. They are based on the assumption that the behaviour of the modelled 
system is exclusively dependent on a defined set of conditions and certain interactions 
between the involved molecular species and therefore exactly reproducible when conditions 
are identical. Deterministic models are often applied to study complex biological reaction 
systems comprising multiple individual molecular species, such as bacterial stress response 
networks (Bischofs et al., 2009; El-Samad et al., 2005; Hahl and Kremling, 2016; Igoshin et 
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al., 2006; Ihekwaba et al., 2014; Ropers et al., 2009). These systems are frequently 
investigated within bacterial populations to quantify the population-averaged number of 
involved molecules without accounting for single-cell variations. These data can be acquired 
through high-throughput cell-culture experiments and allow for a comprehensive analysis of 
the complex systems. Accordingly, in this thesis, a deterministic model approach is applied to 
understand the general principles that shape the population-averaged cellular responses to 
several environmental stressors.  

One of the most frequently used deterministic model approaches consists of ordinary 
differential equations (ODEs), which describe - in a general sense - the production and decay 
rates of the individual molecular species of the system. Let 𝑥(𝑡)  = (𝑥1(𝑡), … , 𝑥𝑛(𝑡)) the vector 
of the concentrations of the individual molecular species of the modelled system at time point 
t, and 𝑝 =  (𝑝1, … , 𝑝𝑚) the vector of all model parameters that determine the system’s 
behaviour. Then, the dynamic changes in the concentrations of the individual molecular 
species can be quantitatively described by a set of ordinary differential equations having the 
following general form: 

𝑑
𝑑𝑡

𝑥𝑖(𝑡)  =  𝑓𝑖(𝑥(𝑡), 𝑡, 𝑝),              𝑖 ∈ {1, … , 𝑛} 

where 𝑑
𝑑𝑡

𝑥𝑖(𝑡) represents the rate of changes in 𝑥𝑖(𝑡) and 𝑓𝑖(∙) is a (usually highly) nonlinear 
function that relates the rate of changes in 𝑥𝑖(𝑡) to the time-dependent concentrations of all 
individual molecular species and the model parameters (Ropers et al., 2009, Zheng and 
Sriram, 2010). This so-called ‘rate-equation’ approach1 and has been applied to a wide range 
of biological systems, for example the description of metabolism (Kremling et al., 2007), 
signalling (Groban et al., 2009, Kremling et al., 2004; Rowland and Deeds, 2014; Shinar et al., 
2007) or gene regulation (reviewed e.g. in Mackey et al., 2004; Vilar et al., 2003). Central to 
this modelling approach, however, is to define the functions 𝑓𝑖(∙), that is to find a mathematical 
expression for the rate of each reaction of the modelled system, which critically depends on 
the type and complexity of the reaction itself. Here, some general principles allowed the 
mathematical description of the reaction rates of many standard biological reactions, as 
reviewed in the following. They eventually guide the quantification of more complex reaction 
schemes, as illustrated in Figure 2, and also represent the basis for the computational models 
of the stress response networks developed in this thesis.  

 

Derivation of mathematical rate equations 

The simplest and most fundamental quantification of reaction rates is formulated in the law of 
mass action, which was first postulated by Gulberg (1836-1903) and Waage (1833-1900) (Voit 
et al., 2015). It is based on the assumption that the probability of a reaction occurring is 
proportional to the probability of the reactants colliding in the reaction volume with one another. 
Accordingly, the law of mass action states that the rate of a reaction is proportional to the 

                                                           
1 The ‘rate-equation’ approach is based on two fundamental assumptions: (i) All molecules are equally distributed 
in the space where the reactions occurs (e.g. the cell, a specific cell compartment etc.) (referred to as spatial 
homogeneity), so that the rate of a reaction is independent of position and space where the reaction occurs (ii) Each 
individual molecule species is abundant in a high number. This assumption allows the approximation of discrete 
changes in numbers of the species by continuous changes in concentrations of the species (based on the continuum 
hypothesis). 



Introduction       7 

 

product of the concentrations of the reactants. Thus, for a simple chemical reaction involving 
n different reactants S1,…,Sn that form a product P 

𝑆1 + ⋯ + 𝑆𝑛
𝑘
→ 𝑃 

the rate equation describing the changes in the concentration of P is given by  

𝑑
𝑑𝑡

𝑝(𝑡) =  𝑘 ∏ 𝑠𝑖(𝑡)
𝑠

𝑖=1

, 

where 𝑠𝑖(𝑡) and 𝑝(𝑡) represent the concentration of the reactant Si and the product P at time 
t, respectively, and 𝑘 is the constant of proportionally, referred to as rate constant in the mass 
action formalism (Murray, 2002). In the first instance, this law provides a mathematical 
description for simple reactions that are independent from regulation or from assistance by 
enzymes, which are also part of bacterial stress response networks (e.g. the spontaneous 
decay of molecules). Beyond that, the law of mass action also represents the basis for the 
description of the much more complex reaction schemes (Voit et al., 2015). For instance, the 
quantitative framework of an enzyme-catalysed reaction can be derived by applying the law of 
mass action. The individual events involved in the conversion of a substrate S to a product P 
catalysed by an enzyme E can be written as 

 

For simplification, henceforward the time-dependent concentrations of the individual reactants 
are denoted by [∙]. Applying the law of mass action, the rate equations take the form 

𝑑
𝑑𝑡

[𝑆] =  −𝑘1[𝑆][𝐸] + 𝑘−1[𝐸𝑆] 
𝑑
𝑑𝑡

[𝐸] =  −𝑘1[𝑆][𝐸] + 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆] 
𝑑
𝑑𝑡

[𝐸𝑆] =  𝑘1[𝑆][𝐸] − 𝑘−1[𝐸𝑆] − 𝑘2[𝐸𝑆] 
𝑑
𝑑𝑡

[𝑃] =  𝑘2[𝐸𝑆] 

Under the assumptions that (i) the first reaction is fast and rapidly in equilibrium ( 𝑑
𝑑𝑡

[𝐸𝑆] ≈ 0) 
and (ii) the enzyme is not consumed in this reaction, that is the total enzyme concentration 
[𝐸𝑇𝑂𝑇] is constant ([𝐸𝑇𝑂𝑇] = [𝐸] + [𝐸𝑆]) (Murray, 2002), the system of differential equations 
can be condensed to a single rate equation describing the production rate of product P  

𝑑
𝑑𝑡

[𝑃] = [𝐸𝑇𝑂𝑇] ∗  𝑘𝑐𝑎𝑡 ∗
[𝑆]

𝐾𝑀 + [𝑆]. 

The arising rate equation is the well-known Michaelis-Menten equation with the Michaelis 
constant 𝐾𝑀 = 𝑘−1+𝑘2

𝑘1
 and 𝑘𝑐𝑎𝑡 = 𝑘2, referred to as enzyme’s catalytic constant (Michaelis and 

Menten, 1913). Of note, the rate of enzyme-catalysed reactions approaches a limit defined as 
the maximal velocity 𝑉𝑚𝑎𝑥 = [𝐸𝑇𝑂𝑇] ∗  𝑘𝑐𝑎𝑡, which is caused by enzyme saturation. This basic 
Michaelis-Menten rate equation can be modified and expanded to describe much more 
complex enzyme-catalysed reactions involving multiple substrates, such as the Ping-Pong 
mechanism (Stein, 2011; Voet, D. and Voet, J., 2011), which is analysed in Figure 2A.  
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Figure 2: Mathematical rate laws for complex reaction schemes. The quantification of complex reaction 
schemes, involving multiple reactants and regulation, are explained through example systems. All parameters are 
chosen arbitrary and the scales of the plots are expressed relative to these parameters (A) Ping-Pong or double 
displacement enzyme reactions involve multiple substrates, where one (or more) products are released before all 
substrates are bound. In these reactions, the enzyme change into an intermediate form after a first substrate-to-
product reaction and is then able to bind a second substrate and catalyse conversion. In the illustrated example, 
the first substrate (S1) binds to the standard form of the enzyme (E) with Michaelis constant 𝐾𝑀1. The enzyme 
catalyses the conversion to the first product (P1) and remains in a modified state (E*), which can be bound by the 
second substrate (S2) with Michaelis constant 𝐾𝑀2. The modified form of the enzyme eventually catalyses the 
formation of the second product (P2) and is thereby restored to its initial form. The production rate of P2 is given by 
a modified Michaelis-Menten term (Voet, D. and Voet, J., 2011), which reveals that the rate is determined by the 
concentrations of both substrates and the respective Michaelis constants. As the log-plot for varying concentrations 
of S1 and several fixed concentrations of S2 illustrates, the maximal rate 𝑉𝑚𝑎𝑥 can only be achieved when both 
substrates are present at saturating concentrations, that is [𝑆𝑖] ≫ 𝐾𝑀𝑖. Enzymes featuring such Ping-Pong 
mechanisms are frequently found in bacteria and, for instance, fulfil diverse roles in E. coli (Axley and Grahame, 
1991; Goodenough-Lashua and Garcia, 2003; Gyamerah and Willetts, 1997; Pejchal et al., 2005) - to list only some 
examples. (B) Gene expression regulation by a transcriptional activator (A, blue) and a dimeric repressor (R, red). 
Both regulators can bind either individually or simultaneously to their respective operator sites (OA and OR, 
respectively) on the promoter P of the gene (depicted in green) with dissociation constants 𝐾𝐴 and 𝐾𝑅. If the 
repressor R is bound, only basal transcription at rate 𝛼0 occurs. The activated state of the promoter results from 
exclusive binding of the activator A to the promoter, such that the maximal transcription rate (𝛼0 + 𝛼1) is reached 
when the promoter is saturated with activator A and no repressor R is bound, as illustrated in the three-dimensional 
log-log-plot. The colour codes for the fold-change in the transcription rate, which is given by 𝛼0+ 𝛼1

𝛼0
. An increase in 

repressor concentration leads to a more pronounced decrease in the transcription rate than a decrease in the 
activator concentration due to the dimeric nature of the repressor. A gene regulation scenario as illustrated here is 
found in the heme stress response in C. glutamicum (Frunzke et al., 2011; Wennerhold and Bott, 2006). 

 

Figure 7: Heme stress response network in C. glutamicum. For a detailed description please refer to the main 
text.Figure 8: Mathematical rate laws for complex reaction schemes. The quantification of complex reaction 
schemes, involving multiple reactants and regulation, are explained through example systems. All parameters are 
chosen arbitrary and the scales of the plots are expressed relative to these parameters (A) Ping-Pong or double 
displacement enzyme reactions involve multiple substrates, where one (or more) products are released before all 
substrates are bound. In these reactions, the enzyme change into an intermediate form after a first substrate-to-
product reaction and is then able to bind a second substrate and catalyse conversion. In the illustrated example, 
the first substrate (S1) binds to the standard form of the enzyme (E) with Michaelis constant 𝐾𝑀1. The enzyme 
catalyses the conversion to the first product (P1) and remains in a modified state (E*), which can be bound by the 
second substrate (S2) with Michaelis constant 𝐾𝑀2. The modified form of the enzyme eventually catalyses the 
formation of the second product (P2) and is thereby restored to its initial form. The production rate of P2 is given by 
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All enzyme-catalysed reactions involved in the stress responses that will be analysed in this 
work are quantified by applying Michaelis-Menten-like kinetics.  

In contrast to the reactions considered so far, which are independent from any regulation, the 
majority of biological reactions are regulated. Their reaction rates depend not only on the 
concentrations of the reactants but also on the presence/absence of the regulators. As 
demonstrated in the previous section, regulatory mechanisms are key to bacterial stress 
responses, both on a genetic level as well as on protein level, such as the regulation of enzyme 
activity. Thus, in the remainder of this section, the mathematical framework for describing 
regulated reactions, which again is based on the application of a mass-action formalism, is 
introduced. As a common mechanism, regulation in the selected stress response networks is 
mediated by regulator molecules that bind to specific sites on the regulated structure. In case 
of the regulation of enzyme activity, regulator molecules bind either to the active site 
(competitive inhibition) or to the allosteric site (allosteric regulation) of the enzyme and thereby 
control the rate of substrate conversion (Voet, D. and Voet, J., 2011). Likewise, the regulation 
at the genetic level is mediated through transcription factors, which bind to so-called operator 
sites on the promoter of the regulated gene and thereby modulate the binding efficiency of the 
RNA polymerase to the promoter and thus the rate of gene transcription (Balleza et al., 2008; 
Ishihama, 2010). Consequently, the rate of a regulated reaction critically depends on whether 
a regulator is bound to the respective binding site or not and is thus determined by the fractional 
occupancy of the binding sites of the regulated structures, that is the fraction of binding sites 
that are occupied by regulators compared to the total number of binding sites (Bintu et al., 
2005b; Voet, D. and Voet, J., 2011). More precisely, dependent on the function of the regulator 
(activator or repressor), the rate of a regulated reaction is either proportional to the fraction of 
bound regulators (in case of activation) or proportional to the fraction of unbound regulators (in 
case of repression) (Bintu et al., 2005b). Applied to enzyme regulation, this means that the 
reaction rate of a regulated enzyme-catalysed reaction is given by a Michaelis-Menten term, 
which is scaled by a factor that quantifies the fractional occupancy of the regulation sites of the 
enzyme (Voet, D. and Voet, J., 2011). For example, when considering the regulation of an 
enzyme by an allosteric inhibitor, which binds independently from the substrate, the reaction 
occurs on maximal rate when the inhibitor is unbound and accordingly, the production rate of 
product P of the enzyme-catalysed reaction is given by   

𝑑
𝑑𝑡

[𝑃] =  𝑉𝑚𝑎𝑥 ∗
[𝑆]

𝐾𝑀 + [𝑆] ∗
1

1 + [𝐼]
𝐾𝐼

 

Here, the fractional occupancy of the allosteric site is determined by both, the inhibitor 
concentration [𝐼] and the affinity of the inhibitor to the allosteric site of the enzyme 𝐾𝐼. Of note, 
the Michaelis-Menten term itself also contains a description of fractional occupancy, namely 
the fractional occupancy of the enzyme’s active site by the substrate, which actually 
determines the reaction rate of an unregulated reaction. In the context of gene expression 
regulation, the rate of gene transcription scales with the fractional occupancy of the promoter 
by transcription factors, as this determines the probability that the RNA polymerase is bound 
to the promoter of the gene (Bintu et al., 2005a; Bintu et al., 2005b)2. Accordingly, the 

                                                           
2 The quantitative description of gene expression dependent on the occupancy of the different promoter regulation 
sites is generally termed ‘thermodynamic modelling’ (Bintu et al., 2005a; Bintu et al., 2005b). The approach 
introduced here combines thermodynamic modelling to describe promoter-transcription factor-interaction with 
differential equation modelling to describe dynamic changes in levels of molecules involved in gene expression and 
gene products.  
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transcription rate of a gene controlled by a transcription activator A, that is the rate of 
production of the respective mRNA, is given by 

𝑑
𝑑𝑡

[𝑚𝑅𝑁𝐴] =  𝛼0 +  𝛼1

[𝐴]
𝐾𝐴

1 + [𝐴]
𝐾𝐴

, 

while a repressor R affects the transcription rate as follows 

𝑑
𝑑𝑡

[𝑚𝑅𝑁𝐴] = 𝛼0 +  𝛼1
1

1 + [𝑅]
𝐾𝑅

. 

Here [𝐴] and [𝑅] display the concentration of the activator and repressor, respectively, and 𝐾𝐴 
and 𝐾𝑅 are the corresponding dissociation constants of promoter binding. [𝑚𝑅𝑁𝐴] denotes the 
concentration of the mRNA of the transcribed gene. Furthermore, the basal transcription rate3 
without regulation is given by 𝛼0, while 𝛼0 +  𝛼1 represents the maximal rate of transcription. 
However, since the rate of activated transcription 𝛼1 is usually unknown and it is rather possible 
to determine the fold-change between basal and maximal transcription rate, a modified 
expression is commonly used to quantify transcriptional activation: 

𝑑
𝑑𝑡

[𝑚𝑅𝑁𝐴] =  𝛼0 (
1 + 𝜔 [𝐴]

𝐾𝐴

1 + [𝐴]
𝐾𝐴

), 

at which the fold-change is defined by 𝜔 = 𝛼0+ 𝛼1
𝛼0

 (Bintu et al., 2005b).4  Finally, to account for 

multiple regulators with different functions (activator or repressor) acting on the same target 
structure (promoter or enzyme), all possible binding states are considered and the reaction 
rate is proportional to the fraction of binding sites that are in an activated state compared to 
the total number of binding sites (Bintu et al., 2005b). For instance, two independent 
transcription activators A1 and A2, which bind to non-overlapping binding sites on a promoter 
with dissociation constants 𝐾𝐴1and 𝐾𝐴2, affect the of transcription rate as follows:  

𝑑
𝑑𝑡

[𝑚𝑅𝑁𝐴] =  𝛼0 + 𝛼1 ∗

[𝐴1]
𝐾𝐴1 + [𝐴2]

𝐾𝐴2
+ [𝐴1]

𝐾𝐴1 
[𝐴2]
𝐾𝐴2

1 + [𝐴1]
𝐾𝐴1 + [𝐴2]

𝐾𝐴2
+ [𝐴1]

𝐾𝐴1 
[𝐴2]
𝐾𝐴2

. 

Here, both, the individual binding of A1 and A2 and the combination can activate the 
transcription. This theoretical framework represents the basis for the mathematical description 
of arbitrarily complex regulation scenarios, one of which is part of the heme stress response 
network of C. glutamicum and is discussed as an example in Fig. 2B. To mention further 
impressive examples, the complex regulation of the E. coli lac-operon as well as the control of 
several promoters of phage λ were also studied analogously (Bintu et al., 2005a). All these 
examples demonstrate the power of this model approach to study complex bacterial regulatory 

                                                           
3 In case of transcriptional repression, 𝛼0 represents the ‘leak’ of the promoter, as absolute repression can never 
be achieved.  
4 The modified expression arise from the previous one as follows: 

 𝛼0 +  𝛼1

[𝐴]
𝐾𝐴

1 + [𝐴]
𝐾𝐴

=  
 𝛼0 (1 + [𝐴]

𝐾𝐴
) + 𝛼1  [𝐴]

𝐾𝐴

1 + [𝐴]
𝐾𝐴

=
 𝛼0 + (𝛼1 +  𝛼0) [𝐴]

𝐾𝐴

1 + [𝐴]
𝐾𝐴

=   𝛼0

1 +  𝛼1 +  𝛼0
 𝛼0

 [𝐴]
𝐾𝐴

1 + [𝐴]
𝐾𝐴

 =   𝛼0

1 + 𝜔 [𝐴]
𝐾𝐴

1 + [𝐴]
𝐾𝐴
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networks, featuring not only multiple, but also interacting regulators. Hence, all regulatory 
mechanisms involved in the stress response networks, including gene and protein regulation, 
are quantified based on the demonstrated approach.  

In summary, the model techniques introduced here represent the set of tools that guide the 
development of the ODE-based mathematical models of the stress response networks in this 
thesis. Of note, complex, non-trivial interaction networks such as stress response networks 
are usually described by a large systems of ODEs, which cannot be solved analytically. 
Instead, numerical simulations are used to approximate the exact solution. 

 

Calibration of mathematical models 

The value of any mathematical model depends critically on how precise the real biological 
scenario is represented by the theoretical description - in other words, on the accuracy of the 
parameters. As briefly mentioned above, model parameters represent the physiological 
conditions of the systems being analysed, such as environmental parameters or biochemical 
properties of molecule species that are part of the system. Therefore, it is one of the major 
tasks of mathematical modelling to find appropriate parameter values for the model, referred 
to as model calibration. Sometimes, model parameters can be measured directly by 
experiments. For instance, degradation rates of the proteins can be determined from 
observations of half-lifes and enzyme assays reveal the kinetic parameters of an enzyme. 
However, various model parameters are not directly accessible by experiments and need to 
be assigned by so-called parameter fitting approaches instead. Parameter fitting generally 
aims to find the values for the model parameters for which the model simulations best match 
available experimental data of the system of interest - in other words, values for which the 
model most likely describes the system’s behaviour (Press et al., 1999). For instance, 
measured time-course data as well as steady-state concentrations of the individual molecule 
species of a system can be mimicked by a model and an optimal set of model parameters 
should minimize the deviation between the model predictions and experimental data (Geier et 
al., 2012). One of the most commonly used methods for parameter calibration is least-squares 
fitting. The method of least squares is based on maximum likelihood estimation (Press et al., 
1999). In maximum likelihood estimation, the likelihood of a parameter set is given by the 
probability of observing the available experimental data in the model (Jaqaman and Danuser, 
2006). Thus, the most likely and therefore optimal parameter set is obtained by maximizing 
this likelihood. Consider a system involving n individual molecule species, whose behaviour 
depends on m parameters, 𝑝 =  (𝑝1, … , 𝑝𝑚). 𝑦 = (𝑦1, … , 𝑦𝑛) represents a vector of population-
averaged experimental data (see above for details) and 𝑥(𝑝)  = (𝑥1(𝑝), … , 𝑥𝑛(𝑝)) is the vector 
of the corresponding model data. As every experiment is generally subject to inevitable 
uncertainties, for example regarding the preparation procedure or laboratory conditions, each 
data point 𝑦𝑖 has a certain measurement error 𝜖𝑖 (Geier et al., 2012). Supposing these 
measurement errors are uncorrelated and normally distributed5, the likelihood 𝐿 of the 
parameter set 𝑝 is given by the probability to observe the data set 𝑦 in the model: 

𝐿(𝑝|𝑦) =  ∏
1

√2𝜋𝜎𝑖
2

exp (−
(𝑦𝑖 − 𝑥𝑖(𝑝))2

2𝜎𝑖
2 )

𝑛

𝑖=1

, 

                                                           
5 These assumptions apply in many practical settings (Geier et al., 2012). 
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where 𝜎𝑖
2 indicates the variance in the measurement errors of 𝑦𝑖 (Jaqaman and Danuser, 

2006). Maximizing 𝐿 is equivalent to maximizing its logarithm, or minimizing the negative of its 
logarithm6  

− log(𝐿(𝑝|𝑦)) =  ∑ log (√2𝜋𝜎𝑖
2) + 

(𝑦𝑖 − 𝑥𝑖(𝑝))2

2𝜎𝑖
2

𝑛

𝑖=1

. 

Since the term log (√2𝜋𝜎𝑖
2) is independent of 𝑝, minimizing the negative log likelihood is 

equivalent to minimizing the weighted sum of squared residuals χ2 (Geier et al., 2012, Press 
et al., 1999)  

χ2(𝑝) = ∑
(𝑦𝑖 − 𝑥𝑖(𝑝))2

𝜎𝑖
2

𝑛

𝑖=1

 

and least-square fitting essentially aims to find the values of p that minimize this function: 

 min
𝑝

( χ2(𝑝)). 

The optimal set of parameters p* can be found by numerical function-minimizing techniques 
(Geier et al., 2012; Press et al., 1999)7. In this thesis, a trust-region reflective Newton algorithm 
imbedded in MATLAB (MATLAB, The MathWorks. Inc) is applied for the parameter fitting 
problems.  

All mathematical models presented in this thesis involve data from multiple experiments, which 
either determine model parameters directly or allow for indirect determination by parameter 
fitting following the least-squares approach presented here.  

 

  

                                                           

6 log(𝐿(𝑝|𝑦)) = log (∏ 1

√2𝜋𝜎𝑖
2

𝑒𝑥𝑝 (− (𝑦𝑖−𝑥𝑖(𝑝))
2

2𝜎𝑖
2 )𝑛

𝑖=1 ) = ∑ log ( 1

√2𝜋𝜎𝑖
2

𝑒𝑥𝑝 (− (𝑦𝑖−𝑥𝑖(𝑝))
2

2𝜎𝑖
2 )) =𝑛

𝑖=1

 ∑ −log(√2𝜋𝜎𝑖
2) −  (𝑦𝑖−𝑥𝑖(𝑝))

2

2𝜎𝑖
2   𝑛

𝑖=1    

 
7 For further reading please refer to (Moles et al., 2003; Press et al., 1999) 
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2. Heme stress response in Corynebacterium glutamicum 
 

‘All things are poison, and nothing is without poison, the dosage 
alone makes it so a thing is not a poison’ (Paracelsus, 1 493-1541) 

 

Part of the work described in this chapter was published (Keppel et al., 2019). The full article 
is attached in the Appendix A.1 (Paper I). 

Bacterial life in ever-changing environmental conditions demands both the protection against 
harmful substances and the optimal utilization of useful substances that support growth, such 
as nutrients. The distinction between harmful and useful substances, however, is not always a 
clear-cut matter. As already emphasized by the Swiss physician and founder of modern 
toxicology, Paracelsus (1493-1541), ‘all things are poison, nothing is without poison, the 
dosage alone makes it so a thing is not a poison’ (Paracelsus). According to this central maxim, 
nutrients that naturally support cell growth and survival, can cause severe toxicity when present 
in elevated concentrations in the cell. Bacterial response mechanisms towards nutrient excess 
are therefore key to a cell’s survival and a robust regulation of the interplay between 
detoxification mechanisms and mechanisms for nutrient consumption is essential for optimal 
cell growth, as has been shown for example for calcium, copper, iron and manganese (Argüello 
et al., 2013; Chandrangsu et al., 2017; Cornelis et al., 2011; Juttukonda and Skaar, 2015; 
Rosch et al., 2008). One further paradigm that features this Janus-faced nature is the organic 
molecule heme, which is essential to most bacterial organisms but toxic at high concentrations 
at the same time. In particular, virtually all bacterial pathogens require heme to cause infections 
and, accordingly, have evolved elaborated strategies to acquire host-synthesized heme and 
simultaneously eliminate heme toxicity (Anzaldi and Skaar, 2010; Choby and Skaar, 2016). 
Thus, as heme stress responses are of such high relevance for bacteria, it is an important 
challenge to understand how they balance heme uptake, utilization and detoxification to control 
heme homeostasis, which is essential for growth. 

The work presented in this chapter focusses on the heme stress response in the soil bacterium 
Corynebacterium glutamicum and arose in fruitful collaboration with the group of Prof.  Dr. Julia 
Frunzke (Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich). 
The heme stress response in C. glutamicum comprises the expression of a heme exporter 
(HrtBA) for detoxification as well as a heme oxygenase (HmuO) for utilization of heme and is 
regulated by two paralogous heme-responsive TCSs (ChrSA and HrrSA). Interestingly, the 
dedication of two paralogous TCSs for regulating the response towards heme appears as a 
unique theme among the Corynebacteriaceae family (Bibb et al., 2007; Bott and Brocker, 2012; 
Burgos and Schmitt, 2016; Frunzke et al., 2011; Heyer et al., 2012). In addition, it has been 
shown that the TCSs of C. glutamicum feature significant cross-talk (Hentschel et al., 2014), 
that is each of the two HKs is able to phosphorylate both RRs. These observations motivate 
extensive experimental efforts to decipher the precise role of the two TCSs in the response 
towards heme in Corynebacteriaceae.  

Here, we addressed this question through a combined experimental and modelling approach, 
aiming at a comprehensive quantitative description of the individual components of the heme 
stress response network in C. glutamicum (Paper I). The developed theory was used to 
analyse the dynamics of the detoxification and utilization module under varying heme levels, 
both in a wildtype background and when considering several mutations in the TCSs. In 



Heme stress response in Corynebacterium glutamicum    14 
 

 

combination with comprehensive reporter assays of the TCSs target promoters, this allowed 
for the identification of some crucial regulatory mechanisms that shape the heme stress 
response in C. glutamicum, such as negative feedback of the target structures on the stress 
stimulus and the integration of different input signals on a genetic level. During the course of 
this thesis, further research has focussed on the precise characterization of the stimulus 
perception and signal transduction mechanisms of the two TCSs and the impact of every 
individual TCS on the overall heme stress response (Hentschel et al., 2014; Keppel et al., 
2018). The results presented here add to this by shedding light on the mechanisms that 
regulate the interplay between heme detoxification and heme utilization and the importance of 
different properties of the TCSs in this context and thereby advance our understanding of heme 
stress responses in bacteria.  

This chapter will start with a brief presentation of the role of heme in bacterial physiology and 
an overview of the different mechanism bacteria employ to cope with heme toxicity (Section 
2.1). Subsequently, the individual components of the heme stress response network in C. 
glutamicum are introduced in detail, with a special focus on the regulatory role of the TCSs, 
serving as the basis for the formulation of the mathematical model (Section 2.2). Then, the 
central results of Paper I on the regulation of the interplay between the stress response 
modules are presented (Section 2.3). Finally, an outlook on possible further applications of the 
developed model in studying heme stress responses in bacterial organisms is given (Section 
2.4). 

 

2.1 Bacterial responses to heme stress 

The role of heme in bacterial physiology 

Heme, a porphyrin ring complexed with iron, is a versatile molecule that is important for various 
cellular processes of most bacterial species. For instance, it functions as an electron shuttle in 
enzymes of the electron transport chain, is required for cellular respiration and plays a crucial 
role in oxygen metabolism (Choby and Skaar, 2016). In addition, cells critically rely on heme 
for the function of many important enzymes including cytochromes, hydroxylases, catalases, 
peroxidases, and hemoglobins (Layer et al., 2010; Poulos, 2007). Moreover, heme represents 
an important alternative source of iron, which itself is - with only few exceptions - essential to 
nearly all living organisms (Andrews et al., 2003). In particular, the greatest reservoir of iron 
for pathogens within human hosts is in the form of host-synthesized heme as a cofactor of 
hemoproteins, such as the well-known haemoglobin (Contreras et al., 2014; Maresso et al., 
2008; Marvig et al., 2014; Pishchany et al., 2010). In the absence of iron, however, also non-
pathogenic bacteria rely on the salvage of heme-bound iron, highlighting the physiological 
relevance of heme for virtually all bacteria. 

According to the illustrated importance of heme for bacterial physiology, many bacteria are 
capable of synthesizing heme endogenously (Choby and Skaar, 2016; Panek and O'Brian, 
2002). Beyond that, most pathogenic organisms have evolved elaborated strategies to acquire 
heme from host sources, ranging from surface receptors to secreted proteins that bind either 
heme or hemoproteins and induce heme uptake (reviewed e.g. in Anzaldi and Skaar, 2010; 
Choby and Skaar, 2016; Tong and Guo, 2009). Once inside the cell, heme is either degraded 
to release free iron or used intact for the functions mentioned above. In most bacteria, the 
degradation of heme depends on heme oxygenases that catalyse the conversion of heme to 
biliverdin, thereby liberating iron (Unno et al., 2004; Wilks, 2002). Various members of this 
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class of enzymes have been characterized for many bacterial species, such as the heme 
oxygenase HmuO identified in diverse corynebacterial species (Frunzke et al., 2011; Kunkle 
and Schmitt, 2007; Schmitt, 1997; Wilks and Schmitt, 1998), the Pseudomonas aeruginosa 
PigA heme oxygenase (Ratliff et al., 2001) and the HemO heme oxygenase of various 
Neisseria spp. (Zhu et al., 2000a; Zhu et al., 2000b) - to list only some examples. 

Paradoxically, despite its importance for a variety of cellular processes, heme also has the 
potential to cause toxicity at high intracellular concentrations. Although the toxicity of heme 
towards bacteria has been observed for a long time (Anzaldi and Skaar, 2010; Everse and 
Hsia, 1997; Nitzan et al., 1987; van Heyningen, 1948), the mechanism of how this molecule 
interferes with bacterial physiology is not conclusively unravelled. However, several studies 
showed that the heme toxicity is likely the result of a combination of membrane disruption, 
membrane protein and lipid oxidation, and DNA damage (Anzaldi and Skaar, 2010; Choby and 
Skaar, 2016; Imlay et al., 1988; Nir et al., 1991; Wakeman et al., 2012). Thus, bacteria employ 
various strategies to tightly regulate the intracellular concentration of heme and overcome 
heme toxicity, as will be introduced in the following paragraph. 

 

Bacterial strategies to cope with heme toxicity 

As common for bacterial stress responses, the responses towards toxic concentrations of 
heme comprise of both the sensing of heme concentrations and appropriate cellular response 
mechanisms. While the cellular response mechanisms towards toxic concentrations of heme 
will be introduced in a first instance, bacterial heme sensing mechanisms are discussed in the 
subsequent paragraph.  

Bacteria employ several diverse strategies to avoid heme toxicity, ranging from preventive 
mechanisms, such as the control of heme biosynthesis and uptake, to detoxification 
mechanisms, such as heme export, sequestration, and degradation (Anzaldi and Skaar, 2010). 
In the following, the detoxification mechanisms will be discussed in greater detail.  

As a first well-conserved heme detoxification strategy, heme export systems have been 
identified in both Gram-positive and Gram-negative bacteria and three systems have been 
described: HrtBA, PefAB/CD and MtrCDE. The heme-regulated transporter HrtBA is assumed 
to export heme from the bacterial cytoplasm and is required for resistance to heme toxicity in 
diverse bacterial species including Staphylococcus aureus (Stauff et al., 2008; Torres et al., 
2007), Bacillus anthracis (Stauff and Skaar, 2009a), Lactobacillus lactis (Joubert et al., 2014; 
Lechardeur et al., 2012), Streptococcus agalactiae (Fernandez et al., 2010) and C. diphtheriae. 
(Bibb and Schmitt, 2010). Furthermore, putative Hrt systems can also be found in other Gram-
positive pathogens, suggesting that these systems may have evolved to protect pathogens 
from heme toxicity in their host (Anzaldi and Skaar, 2010). In addition to HrtBA, a second 
system that mediates heme export has been identified in S. agalactiae, comprising of the two 
putative heme efflux pumps PefAB and PefCD (Fernandez et al., 2010). Finally, it has been 
shown that the multiple-transferable-resistance efflux system MrtCDE, which provides 
resistance to hydrophobic agents in Neisseria gonorrhoeae, also contributes to resistance to 
heme stress (Bozja et al., 2004; Hagman et al., 1995). 

Sequestration of excess heme is a second strategy to overcome heme toxicity. The best 
example of heme sequestration is in the eukaryotic parasite Plasmodium spp., which has the 
capability to sequester heme into a nontoxic, highly insoluble substance called hemozoin 
(Fitch, 1998; Jani et al., 2008). Furthermore, several proteins have been found to bind and 
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sequester heme and thereby contribute to resistance to heme toxicity in diverse bacterial 
species (Anzaldi and Skaar, 2010; Choby and Skaar, 2016).  

Finally, as a third strategy, the heme oxygenase-mediated degradation of heme outlined as 
part of heme utilization can also contribute to the reduction of heme toxicity. Although in 
bacteria most heme oxygenases are implicated primarily in iron acquisition, some have been 
identified to alleviate heme toxicity (Skaar et al., 2006; Zhu et al., 2000b). 

As will be illustrated in the next section, C. glutamicum combines a heme export mechanism 
with a heme degradation mechanism to protect itself from toxic heme concentrations and the 
interplay of both mechanisms is studied in Paper I.  

 

Heme sensing in bacteria 

Many of the mechanisms involved in the bacterial heme stress responses are not constitutively 
active but rather induced in response to heme toxicity signals. In Gram-positive species, TCSs 
appear to be the predominant form of heme sensory systems (Stauff and Skaar, 2009b), which 
initiate the cellular responses to protect from heme intoxication. S. aureus and B. anthracis, 
for instance, both utilize the heme sensory system HssRS to detect toxic heme concentrations 
and subsequently activate the expression of the hrtBA operon (Stauff and Skaar, 2009a; Stauff 
and Skaar, 2009b; Stauff et al., 2007). Furthermore, as a common theme, Corynebacteriaceae 
dedicate two paralogous TCSs for heme sensing and the appropriate regulation of heme 
homeostasis, referred to as ChrSA and HrrSA (Bibb et al., 2007; Bott and Brocker, 2012; 
Burgos and Schmitt, 2016; Frunzke et al., 2011; Heyer et al., 2012). These TCSs coordinate 
the expression of genes involved in heme biosynthesis, heme detoxification (hrtBA) and heme 
utilization (hmuO) amongst others. In contrast to the central role of TCSs in Gram-positive 
species, an ECF σ-factor controls the heme utilization in the Gram-negative bacterium 
Bordetella avium (Kirby et al., 2004). Here, the membrane-anchored heme sensor protein 
RhuR interacts with extracellular heme and activates the σ-factor RhuI, which in turn controls 
the expression of a system involved in heme utilization (bhuRSTUV). 

In addition to these membrane-anchored heme sensing systems, also intracellular regulators 
were described to be involved in the control of heme homeostasis and heme stress responses. 
For instance, the introduced heme detoxification system PefAB/CD in S. agalactiae is 
regulated by the MarR superfamily repressor PefR (Fernandez et al., 2010). While PefR 
inhibits the expression of the two respective operons pefAB and pefRCD under low heme 
conditions, elevated concentrations of intracellular heme induce binding of heme to PefR, 
which alleviates the inhibition. Moreover, heme homeostasis was also shown to be under 
control of iron-dependent regulators. Such a mechanism was observed in corynebacterial 
species, where the master regulator of iron homeostasis, DtxR, integrates information on iron 
availability into the network controlling heme homeostasis. More precisely, DtxR was shown 
to repress the expression of hmuO heme oxygenase among others under high iron conditions 
(Schmitt, 1997; Wennerhold and Bott, 2006). In Paper I, the role of DtxR in the heme stress 
response of C. glutamicum is investigated in detail.  
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2.2 The heme stress response in Corynebacterium glutamicum  

The central components of the heme stress response network in Corynebacterium glutamicum 
are the heme transporter HrtBA and the heme oxygenase HmuO as well as the two TCSs 
ChrSA and HrrSA and the iron-repressor DtxR (see Fig. 3). Figure 3 also depicts the HmuTUV 
heme uptake system, which is not part of the heme stress response system but assists 
transport of heme into the cell (Drazek et al., 2000; Frunzke et al., 2011). In addition, heme 
can diffuse over the cell membrane into the cell and both processes affect the intracellular 
heme concentration. The ABC transporter HrtBA is assumed to export excessive heme from 
the cytoplasm to the extracytoplasmic space, thereby inducing detoxification (Anzaldi and 
Skaar, 2010). The heme oxygenase HmuO degrades intracellular heme to liberate iron 
(Anzaldi and Skaar, 2010; Choby and Skaar, 2016) and is therefore relevant for both, heme 
detoxification as well as the usage of heme as an alternative iron source, as described above. 
Together, HrtBA and HmuO reduce the intracellular heme concentration and thereby 
contribute to heme homeostasis and resistance to heme toxicity at the same time. 

The expression of the introduced heme stress response modules is regulated by the two 
paralogous TCSs ChrSA and HrrSA (Bott and Brocker, 2012; Frunzke et al., 2011; Heyer et 
al., 2012). As the group of Prof. Dr. Julia Frunzke could show, the stimulus perception of both 
TCSs is mediated by a direct interaction with the input molecule heme (Keppel et al., 2018). 
Interestingly, this particular setup is the first example of two paralogous TCSs sensing the 
same stimulus and is not only found in C. glutamicum but also in the human pathogen C. 
diphtheriae (Bibb et al., 2007; Burgos and Schmitt, 2016; Schmitt, 1997). Upon recognition of 

Figure 3: Heme stress response network in C. glutamicum. For a detailed description please refer to the main 
text. 

 

Figure 13: Bacterial stress responses towards antimicrobial compounds. Bacteria protect themselves from 
antimicrobial compounds by preventing interactions with the respective cellular target. The most common strategies 
to achieve this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the 
active removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - 
here depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the 
alteration of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. 
The expression of the various stress response determinants is activated by diverse sensory complexes upon 
sensing of antimicrobial compounds in the cell’s environment. The figure is adapted froFigure 14: Heme stress 
response network in C. glutamicum. For a detailed description please refer to the main text. 

 

Figure 15: Bacterial stress responses towards antimicrobial compounds. Bacteria protect themselves from 
antimicrobial compounds by preventing interactions with the respective cellular target. The most common strategies 
to achieve this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the 
active removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - 
here depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the 
alteration of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. 
The expression of the various stress response determinants is activated by diverse sensory complexes upon 
sensing of antimicrobial compounds in the cell’s environment. The figure is adapted from (Piepenbreier et al., 
2017).Figure 16: Heme stress response network in C. glutamicum. For a detailed description please refer to 
the main text. 

 

Figure 17: Bacterial stress responses towards antimicrobial compounds. Bacteria protect themselves from 
antimicrobial compounds by preventing interactions with the respective cellular target. The most common strategies 
to achieve this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the 
active removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - 
here depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the 
alteration of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. 
The expression of the various stress response determinants is activated by diverse sensory complexes upon 
sensing of antimicrobial compounds in the cell’s environment. The figure is adapted froFigure 18: Heme stress 
response network in C. glutamicum. For a detailed description please refer to the main text. 
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heme, the HKs ChrS and HrrS of both TCSs undergo autophosphorylation and subsequently 
catalyse phosphotransfer to their cognate RRs ChrA and HrrA, which are thereby activated. In 
addition, significant cross-phosphorylation was observed between these two systems 
(Hentschel et al., 2014), that is both HKs can phosphorylate the non-cognate RR of the other 
TCS. In the absence of the heme stimulus, ChrS and HrrS feature phosphatase activity and 
catalyse the dephosphorylation of ChrA and HrrA, respectively. Dephosphorylation of RRs is 
in general crucial for the termination of the cellular stress response and the reset to the initial, 
inactivated state after stimulus decline (Mascher et al., 2006; Stock et al., 2000; Zschiedrich 
et al., 2016). In contrast to the kinase activity, the phosphatase activity of ChrS and HrrS has 
been shown to be highly specific, such that both HKs can only dephosphorylate their cognate 
RR (Hentschel et al., 2014). It was previously suggested that this specific dephosphorylation 
of HrrA and ChrA may counteract the cross-phosphorylation and prevent the inadvertent 
activation of these regulators, thereby maintaining the specificity of each HK-RR pair in the 
heme stress response (Hentschel et al., 2014). The question of how the phosphatase activity 
of the two TCSs affects the dynamics of the two cellular stress response modules in C. 
glutamicum is addressed in Paper I. 

Once activated by phosphorylation, the activated RRs bind to the promoters of their target 
genes and activate the expression of the respective heme stress modules. While HrrA is 
responsible for the activation of hmuO expression, ChrA positively regulates the expression of 
hrtBA (Frunzke et al., 2011; Heyer et al., 2012). Interestingly, despite the identical genetic 
setup of the TCSs, different regulation was observed in C. diphtheria compared to C. 
glutamicum: While hrtBA is exclusively regulated by ChrSA in both species alike, hmuO was 
proposed to be controlled by both HrrSA and ChrSA in C. diphtheriae, with ChrA being the 
predominant regulator of hmuO expression (Bibb and Schmitt, 2010; Bibb et al., 2005; Bibb et 
al., 2007). Beyond the regulation of the stress response target genes, it was postulated that 
the regulons of both RRs comprise several additional genes in C. glutamicum. For ChrSA, 
significant autoregulation was observed (Heyer et al., 2012), that is activated ChrA upregulates 
the expression of the chrSA operon in a positive feedback loop and thereby increases the 
abundance of ChrSA heme sensory systems under heme stress. In contrast to the small and 
very specific regulon of ChrSA, HrrSA seems to coordinate a global, homeostatic response to 
heme and features a much bigger regulon. Genes encoding proteins involved in heme 
biosynthesis (hemE, hemH and hemA), the respiratory chain (ctaD and ctaE) and further 
cellular functions are controlled by activated HrrA (Frunzke et al., 2011). During the course of 
this thesis, the group of Prof. Dr. Julia Frunzke continued studying the HrrSA regulon and 
revealed HrrA binds to more than 250 different genomic targets encoding proteins involved in 
heme homeostasis and a variety of other cellular processes (J. Frunzke, personal 
communication). In addition, activated HrrA was also suggested to auto-regulate its own 
expression (Hentschel et al., 2014; Heyer et al., 2012). However, as HrrS and HrrA are not 
encoded in one operon, they do not feature a co-regulated expression and HrrS is rather 
assumed to be expressed in a constitutive, heme-independent manner (Heyer et al., 2012). 

Ultimately, information on iron availability are also integrated into the heme stress response in 
C. glutamicum. Since the degradation of heme leads to the liberation of iron and iron itself is 
also toxic to the cell in elevated intracellular concentrations (Andrews et al., 2003; Cornelis et 
al., 2011), heme degradation needs to be tightly regulated to prevent a toxic iron concentration. 
Therefore, in C. glutamicum, the expression of both hrrA and its target gene hmuO is repressed 
by the key regulator of iron homeostasis, DtxR, as indicated above (Wennerhold and Bott, 
2006). Upon binding of iron (Fe2+ ion), DtxR dimerizes and binds to the respective promoters, 
where it counteracts the heme-dependent target gene activation via HrrA. Several further 
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corynebacterial species, including C. diphtheriae, feature this integration of information on iron 
concentrations into the network controlling heme homeostasis via DtxR (Schmitt, 1997). Paper 
I analyses how the integration of these opposing signals on the PhrrA and PhmuO promoter 
dictates the dynamic expression of the heme oxygenase. 

In the end, all components presented here are taken into account for the formulation of a 
quantitative mathematical model of the heme stress response in C. glutamicum, which is used 
to study the regulatory dynamics within the system (Section 2.3). 

 

2.3 Paper I: Toxic but tasty – temporal dynamics and network architecture of 
heme responsive two-component signalling in Corynebacterium 
glutamicum 

In the paper ‘Toxic but tasty – temporal dynamics and network architecture of heme-responsive 
two-component signalling in Corynebacterium glutamicum’ by Marc Keppel*, Hannah 
Piepenbreier*, Cornelia Gätgens, Georg Fritz and Julia Frunzke (*equal contributions) (Keppel 
et al., 2019), we set out to decipher the factors that shape the dynamic response to heme in 
C. glutamicum by combining experimental reporter profiling with computational modelling. 
When experimentally monitoring the response of C. glutamicum to heme in iron-limiting 
conditions, we found a temporal hierarchy between the two heme stress response modules: 
While the detoxification response via HrtBA is nearly instantaneously initiated after stimulus 
addition and features a transient dynamics, activation of HmuO-mediated heme degradation 
and utilization is significantly delayed. In fact, the time point of both, deactivation of hrtBA 
expression and activation of hmuO expression correlate with the levels of heme in the cell’s 
environment. To analyse the origin of this temporal hierarchy, we introduced a comprehensive 
mathematical model for both heme stress modules, including a description of (i) heme-
dependent cell growth based on the uptake of extracellular heme and intracellular consumption 
(ii) the dynamics within the TCSs ChrSA and HrrSA in response to heme, (iii) the regulation of 
the target gene expression by the activated RRs and DtxR, respectively, and (iv) the effect of 
HrtBA and HmuO on the extracellular and intracellular heme concentrations. When calibrated 
with experimental data, we found that this model accurately captures the response 
characteristics of both heme response modules. By analysing the dynamics of all individual 
components of the heme stress network, we uncovered that the timing of the shut-off of the 
detoxification response is causally related to the depletion of external heme concentrations. 
Supported by growth experiments under varying heme concentrations, we showed that the 
cellular consumption of external heme, which enables growth under the given iron-limitation, 
reduces the stress stimulus and thus dictates deactivation of hrtBA expression via a negative 
feedback loop. Thereby, higher initial heme concentrations lead to heme exhaustion at a later 
time-point compared to lower ones and, consequently, elicit a prolonged induction of the heme 
detoxification response.  

Furthermore, our quantitative analyses and experimental screening of single and double 
mutants of ChrSA and HrrSA and mutants lacking the phosphatase activity of the HKs further 
demonstrated that the characteristics of the TCSs critically co-determine the dynamics of both 
heme stress modules. The transient dynamics and especially the rapid shut-off of the HrtBA 
response are mainly determined by a strong phosphatase activity of ChrS, which implies 
immediate dephosphorylation and thereby inactivation of ChrA upon stimulus decline. In 
contrast, a comparable minor phosphatase activity of HrrS on HrrA can explain the delayed 
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activation of hmuO expression by phosphorylated HrrA RRs despite incipient reduction of the 
heme stimulus. 

Moreover, our results indicate that DtxR decisively contributes to the observed biphasic 
induction of hmuO by initially inhibiting hmuO expression within the first hours when 
intracellular concentrations of heme and iron are high. A decline of internal heme and iron 
concentrations over time (by heme export via HrtBA and heme and iron consumption) 
eventually reduces the levels of activated DtxR repressor, so that HrrA-dependent activation 
of hmuO expression takes over as soon as the DtxR concentration drops below a critical 
threshold.  

Taken together, the combination of theory and experiment allowed us to decipher the general 
principle of the heme stress response in C. glutamicum, namely the prioritisation of a 
detoxification response over heme degradation and utilization, as well as the factors that 
control this hierarchical activation. The predicted hierarchy between the response strategies is 
in agreement with reported variations in heme sensitivity of the two heme sensing systems, 
more precisely a higher sensitivity of ChrSA towards small changes in extracellular heme 
concentrations than of HrrSA (Keppel et al., 2018). Our study thus illustrates how C. 
glutamicum carefully balances heme detoxification and utilization to account for the Janus-
faced nature of heme as a useful and toxic substance at the same time. 

 

2.4 Conclusion and Outlook 

Most nutrients, which are essential for bacteria, can cause severe toxicity when present in 
elevated concentrations, as already emphasized by Paracelsus in the 16th century. Thus, it is 
of vital importance for bacterial growth and survival to tightly control the intracellular 
concentrations of such substances and to initiate proper stress responses when 
concentrations become critically high. Within this chapter, a comprehensive systems-level 
characterization of the stress response towards toxic concentrations of one of such Janus-
faced nutrients, namely heme, was presented. The results of this study shed light on the 
regulating factors that shape a temporal hierarchy between the different modules contributing 
to the heme stress response in C. glutamicum. Interestingly, we deciphered how two TCSs, 
which actually respond to the same stimulus but feature different biochemical properties, and 
the integration of an additional regulatory system can elicit such a multi-layered, hierarchical 
physiological response. Variations in phosphorylation and dephosphorylation activities of the 
histidine kinases as well as the tight control of one of the TCSs and its target gene by an iron-
dependent repressor determine the cellular response to a multifaceted stimulus such as heme. 
These regulatory insights were essentially provided by the theoretical model, as this was able 
to predict the dynamic changes in the concentrations of active response regulators ChrA and 
HrrA, which were not accessible by experiments yet – neither in C. glutamicum in the lab of 
Prof. Dr. Julia Frunzke nor in its relative C. diphtheriae (Burgos and Schmitt, 2016). 

The physiological relevance of the strict prioritisation of heme detoxification over heme 
utilization can be understood when looking more closely at the process of heme degradation 
via HmuO. Since degradation of heme liberates iron, which is just as harmful as heme in 
elevated concentrations, it seems highly plausible that C. glutamicum initially employs the 
detoxification transporter HrtBA to reduce elevated heme concentrations and permits heme 
degradation by HmuO only after intracellular heme concentrations drop below a critical 
threshold. Thus, the iron-dependent inhibition of hmuO expression may protect the cell from 
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intoxication by iron when aiming to reduce high heme concentrations by degradation. 
Ultimately, the complex regulation of heme degradation – in particular the integration of an 
activating and a repressing signal – illustrates how bacteria manage to benefit from nutrients 
while simultaneously eliminating the associated toxicity. 

Finally, as detailed before (Section 2.2), several other experimental studies in C. glutamicum 
could show that the heme stress response systems presented here are part of a much broader 
heme homeostasis network, comprising for instance systems for heme uptake and heme 
biosynthesis. Since several of these systems are regulated simultaneously by hrrA, it is likely 
that they mutually affect each other. Thus, on the one hand, it will be interesting to further 
investigate the individual components of the heme homeostasis network experimentally to 
address remaining questions, as for instance, whether the uptake of heme is also regulated in 
a heme- or iron-dependent manner to control heme homeostasis. On the other hand, it will be 
worthwhile to expand the mathematical model based on these new experimental results to get 
further insights into the mechanisms that regulate the interplay between all individual 
components of the heme homeostasis network. 

In the end, analogous quantitative studies in pathogens could reveal important insights in how 
these organisms orchestrate different heme stress modules to deal with high concentrations 
of heme in the human host. As introduced above (Section 2.1), both heme degradation 
systems and heme export systems are widespread in bacteria to control heme homeostasis 
and it would be of interest to investigate if a similar hierarchy between these modules as 
observed in C. glutamicum can be found in other organisms. In particular, as HrtBA-like 
transporters were found in many Gram-positive pathogens (Anzaldi and Skaar, 2010; Choby 
and Skaar, 2016) and several of them are likewise controlled by TCSs, it is important to study 
if these organisms employ similar regulatory mechanisms as C. glutamicum to control the 
interplay between heme export and further detoxification strategies. As a first step into this, it 
would be interesting to adapt the existing mathematical model to the known regulatory 
properties of the heme stress response in C. diphtheriae (as described in Section 2.2). Actually, 
it is likely that the here presented results for C. glutamicum will be - at least partially - 
transferable to C. diphtheriae due to the similar architecture of the stress response systems. 
A model adaptation to the specific features of the stress response network of C. diphtheriae 
could help to identify the appropriate adaptations of the two relatives to the particular 
environmental conditions of their natural habitats (soil in the case of C. glutamicum and the 
upper respiratory system of a host in case of C. diphtheriae).  
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3. Bacillus subtilis response towards cell wall antibiotics 
 

Part of the work described in this chapter was (Piepenbreier et al., 2017; Piepenbreier et al. 
2019a) or will be published (Piepenbreier et al. 2019b). The full articles are attached in 
Appendices A.2 (Paper II), A.3 (Paper III) and A.4 (Paper IV), respectively. 

Environmental habitats are usually populated by a multitude of different microorganism. Since 
all environmental resources within such a habitat are finite, resident microorganisms frequently 
compete for limited resources, such as essential nutrients, in order to survive. Different 
strategies that provide a competitive advantage in this race have thus evolved in 
microorganisms. The production of antimicrobial compounds is one of the most prominent 
strategies, as discovered for the first time by Alexander Fleming in 1928, who found that the 
growth of staphylococci was significantly impaired in a culture accidently contaminated with a 
mould fungus (Fleming, 1929). In mixed microbial habitats, antimicrobial compounds can kill 
or significantly impair the growth of competitors and are therefore beneficial for the compound-
producing microbial species but represent severe stress for all other species within the same 
habitat. Bacteria, which are frequently faced with such antimicrobial compounds, have 
consequently entered the arms race by employing various stress response mechanisms 
against antimicrobial compounds.  

In fact, these stress response mechanisms to antimicrobial compounds pose one of the major 
threats to human health today. In medicine, a multitude of antimicrobial compounds have been 
established as antibiotics to treat pathogen-caused diseases. However, elaborated strategies 
to protect against antibiotics have quickly evolved in pathogenic organisms, such that currently 
the majority (>70%) of bacterial pathogens that cause fatal infections are likely to be resistant 
to at least one of the clinically relevant antibiotics (Hassan et al., 2012)8 and more and more 
multi-resistant pathogens are emerging9. To combat this alarming development, a detailed 
understanding of the mechanisms that bacteria employ to become resistant to antibiotics is of 
critical importance, as this can guide the development of urgently needed novel classes of 
antibiotic agents and new treatment strategies for pathogenic infections. 

This chapter focusses on bacterial stress responses towards cell wall antibiotics, which 
represent one of the most important classes of clinically used antibiotic compounds but which 
are becoming increasingly less effective due to a variety of stress response mechanisms that 
are protecting bacteria. Cell wall antibiotics interfere with the integrity or biosynthesis of the 
bacterial cell envelope - the vital cellular protection barrier - and thereby provoke growth arrest 
or cell lysis (Bugg et al., 2011; Kohanski et al., 2010; Silver, 2003; Silver, 2006; Tomasz, 1979). 
A common target of most cell wall antibiotics is the lipid II cycle, which represents the essential 
cellular pathway of cell wall biosynthesis conserved amongst bacteria (as will be introduced in 
detail in Section 3.2 and illustrated in Fig. 6). Many lipid II cycle-active antibiotics are capable 
of binding molecules involved in the lipid II cycle, thereby perturbing the progression of the 
cycle and consequently, the synthesis of the bacterial cell wall (Breukink and Kruijff, 2006; 
Oppedijk et al., 2016; Schneider and Sahl, 2010). Strikingly, for several of these antibiotics, 
there are vast differences between their in vivo efficacy (Hiron et al., 2011; Mota-Meira et al., 
2000; Shaaly et al., 2013; Staroń et al., 2011; Tiyanont et al., 2006; Yoshida et al., 2011) 

                                                           
8 Reported in 2004 by the Infection Disease Society of America (IDSA) (Hassan et al., 2012). 
9 In 2017, the World Health Organisation (WHO) published a list of antibiotic-resistant pathogens that pose the 
greatest threat to human health and for which new antibiotics are urgently needed (‘WHO priority pathogens list for 
research and development of new antibiotics’) (WEB: https://www.who.int/news-room/detail/27-02-2017-who-
publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed) 
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compared to their in vitro binding affinity to their molecular targets (Beauregard et al., 1997; 
Hu et al., 2003; Wiedemann et al., 2001) - even in bacterial strains that feature none of the 
known stress response mechanisms that can protect from antibiotic attack and thereby reduce 
antibiotic potency in vivo. Furthermore, for a specific class of cell wall antibiotics, the so-called 
glycopeptides, it has been found but not yet conclusively understood that compounds binding 
in a cooperative manner to their targets have much higher in vivo efficacy than variants that 
are unable to multimerize (Jia et al., 2013; Loll et al., 1998; Wang et al., 2018). Hence, before 
focussing on stress response mechanisms related to cell wall antibiotics, it is first important to 
understand (i) how binding of an antibiotic to its target within the lipid II cycle affects the overall 
progression of cell wall biosynthesis and, accordingly, (ii) what determines - beyond the in vitro 
binding affinity to the cellular target - the in vivo efficacy of cell wall antibiotics. In a second 
step, it is then interesting to address the question (iii) how stress response mechanisms 
counteract the antibiotic-induced perturbation of the lipid II cycle to protect cell wall 
biosynthesis. A well-studied example of a sophisticated response towards cell wall antibiotics 
is the bacitracin stress response in the model organism B. subtilis. Three major response 
modules involved in both detoxification and control of overall homeostasis of cell wall synthesis 
mediate the response to bacitracin stress in B. subtilis (reviewed in Radeck et al., 2017): The 
bacitracin transporter BceAB, the UPP phosphatase BcrC, and the phage-shock proteins LiaI 
and LiaH. Interestingly, it has been demonstrated that these modules vary in both, sensitivity 
towards bacitracin and response intensity (Rietkötter et al., 2008) and a hierarchy among these 
modules was found, with BceAB representing the primary layer and BcrC and LiaIH are the 
secondary layer of the bacitracin stress response (Radeck et al., 2016). However, the 
mechanisms that regulate this hierarchical induction of the different stress modules and 
thereby give rise to the overall response towards bacitracin have not yet been conclusively 
unravelled.   

The work presented in this chapter of the thesis approaches all these questions from a 
quantitative perspective by applying a theoretical model for the cell wall biosynthesis and cell 
wall stress response in B. subtilis (Paper II and III). In Paper II, we first examined the system-
level behaviour of the lipid II cycle under antibiotic treatment without stress response systems. 
Based on a multitude of published biochemical data, we developed a comprehensive 
mathematical model that quantitatively describes the individual cycle reactions and their 
interactions, which determine the overall production of the bacterial cell wall. When studying 
the effect of antibiotic binding on the progression of the lipid II cycle, we found that the in vivo 
efficacy of cell wall antibiotics critically depends on which intermediate molecule of the lipid II 
cycle is bound by the antibiotic and how binding occurs (in terms of cooperativity). We were 
able to attribute this phenomenon to the cyclic nature of the lipid II cycle and a highly 
asymmetric distribution of intermediates within the cycle, and thereby provided the first 
mechanistic explanation for the reduced in vivo efficacy of many cell wall antibiotics. Thus, this 
theoretical study contributes significantly to a systems-level understanding of cell wall antibiotic 
action and uncovers a novel principle of ‘minimal target exposure’ as an intrinsic resistance 
strategy towards this class of antibiotics. In Paper III, we eventually sought to examine how B. 
subtilis orchestrates the multiple stress response modules to protect the lipid II cycle from 
bacitracin-induced perturbations and therefore expanded our model through a detailed 
quantitative description of the bacitracin stress response network. In combination with 
quantitative gene expression measurements, we identified mechanisms that control the multi-
layered bacitracin stress response and uncovered an important homeostasis mechanism by 
which cells compensate for a loss of one of the stress modules. Thus, this study adds on an 
advanced understanding of bacterial antibiotic resistance by shedding light on the regulatory 
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interplay between the individual stress response modules that mediate bacitracin resistance in 
B. subtilis.  

In the course of this chapter, first of all, the role of antimicrobial compounds in nature and 
medicine is briefly discussed and general strategies of bacteria to respond to antimicrobial 
compound stress are reviewed (Section 3.1). The subsequent section (Section 3.2) describes 
the architecture of the bacterial cell envelope and the cell wall biosynthesis and introduces 
diverse cell wall active antibiotics. Then, an overview about the B. subtilis cell envelope stress 
response network is given, with a special focus on the modules that contribute to the bacitracin 
stress response (Section 3.3). Ultimately, the central results of Paper II on the quantitative 
impact of cell wall antibiotics on the lipid II cycle are discussed (Section 3.4), followed by a 
presentation of our findings of Paper III on the regulatory mechanisms of the bacitracin stress 
response (Section 3.5). At the end of the chapter, further applications of the theory developed 
here to study bacterial stress responses towards antibiotics are depicted (Section 3.6).  

 

3.1 Bacterial response strategies towards antimicrobial compounds 

Antimicrobial compounds in nature and medicine  

Antimicrobial compounds are capable of both suppressing the growth of microbial organisms 
and killing them, and therefore fulfil an essential role in resource competition in mixed bacterial 
populations. Bacterial rivals fighting for limited essential resources, such as nutrients, can 
produce a variety of antimicrobial compounds to harm competitors. A well-studied and 
widespread class of such substances, which give a competitive advantage to the producer, 
are antimicrobial peptides (AMP). AMPs are oligopeptides with a varying number of amino 
acids, which kill cells by disrupting cell envelope integrity, by inhibiting proteins, DNA and RNA 
synthesis, or by interacting with other various intracellular targets (Bahar and Ren, 2013; 
Pfalzgraff et al., 2018; Zhang and Gallo, 2016). Most AMPs produced by bacteria feature a 
cationic and amphipathic nature (Peschel and Sahl, 2006), providing them the capability to 
bind to lipid components (hydrophobic region) and phospholipid groups (hydrophilic region), 
which both represent the major components of the bacterial cell membrane and cell wall. 
Usually, bacterial AMPs are active against other bacteria of the same species or across genera 
(Cotter et al., 2005), dependent on the species composition in the producer’s local 
environment. Notably, to protect themselves from self-killing, AMP producer species 
simultaneously express genes that confer immunity to the produced AMPs. For instance, the 
production of dedicated immunity proteins that interact with the cognate AMP and the synthesis 
of specialized transporters that export the AMP out of the producer are known immunity 
strategies (Draper et al., 2008; Dubois et al., 2009; Ellermeier et al., 2006; Gebhard, 2012; 
González-Pastor et al., 2003; Stein et al., 2003). The production of AMPs, however, is not 
limited to bacteria but is rather a widespread phenomenon amongst all kingdoms of life, 
including fungi, plants and animals (Bahar and Ren, 2013; Bauer and Shafer, 2015; Zhang and 
Gallo, 2016). In higher organisms, such as humans, AMPs are also referred to as 'host defence 
peptides’, as they are part of the front-line of defence against harmful microorganisms and 
contribute to innate immunity (Bahar and Ren, 2013). 

Beyond their natural role, antimicrobial compounds have become of vital importance in 
medicine, as they are used as antibiotics to kill harmful bacteria. The described observation of 
Fleming, which actually led to the discovery of the world’s first antibiotic, penicillin, set the 
starting point for the development and establishment of a variety of antibiotic substances used 
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to treat pathogenic infections. In fact, most of the medically used antibiotics are either derived 
from natural products or are produced by the synthetic modification of natural products 
(Overbye and Barrett, 2005) and AMPs especially have come into the focus as source for the 
development of new antibiotics in the recent years (Pfalzgraff et al., 2018; Hassan et al., 2012). 
The mechanisms by which antibiotics kill bacteria are actually as diverse as the mechanisms 
of naturally occurring antimicrobial compounds, whereas a large group of clinically used 
antibiotics interfere with the bacterial cell wall. These so-called cell wall antibiotics are the focus 
of this chapter. 

As they impair growth and survival, antimicrobial compounds represent a distinct stressor for 
bacteria and, consequently, a variety of stress response mechanisms that protect them from 
antimicrobial compounds have evolved. While these stress response mechanisms are 
beneficial for the bacterial organisms, they massively threaten human health when present in 
pathogens. Indeed, they at first enable infection of the host, when pathogenic organisms can 
cope with the host-produced antimicrobial compounds, and they furthermore impede the 
treatment of those infections by antibiotics, when pathogens feature stress response 
mechanisms against the medically used substances. Especially, the stress responses to 
medically used antibiotics represent a major problem, since they make pathogens resistant to 
antibiotic treatment. The general strategies bacteria use to protect themselves from 
antimicrobial compounds are briefly introduced in the following paragraph. 

 

Bacterial stress responses towards antimicrobial compounds 

As a general principle, to protect themselves from the harmful effect of antimicrobial 
compounds, bacteria aim to avoid interaction between the antibiotic compound and the 
respective cellular target. They achieve this by different defence strategies (Fig. 4) reviewed 
below, following (Andersson et al., 2016; Bauer and Shafer, 2015; Blair et al., 2015; Joo et al., 
2016; Nawrocki et al., 2014). 

As a first line of defence, bacteria have evolved extracellular mechanisms that inactivate the 
antimicrobial compound before interacting with the cell. For instance, it was found that many 
bacteria produce proteins that degrade antimicrobial compounds. These proteins can be 
attached to the bacterial cell surface or secreted into the local environment (Fig. 4, point 1). A 
paradigm of such proteins are β-lactamases, which protect against so-called β-lactam 
antibiotics (see Section 3.2) and mediate β-lactam-resistance in various bacterial organisms 
(Bush, 2010; Bush and Bradford, 2019; Lakshmi et al., 2014). Another mechanism is the 
production of extracellular or surface-linked proteins that directly bind to the antimicrobial 
compound and sequester them, which thereby blocks their access to the cell (Fig. 4, point 2). 

Once antimicrobial compounds have reached the cell surface, the second defence strategy is 
to modify the properties of the cell envelope to shield the cellular targets from the antimicrobial 
compounds. Usually, the bacterial cell envelope of both Gram-positive and Gram-negative 
organisms, has a negative surface charge. As many antimicrobial compounds are positively 
charged and therefore attracted by the negatively charged cell envelope, it is a common 
strategy to alter the components of the cell envelope to reduce the negative charge and thereby 
induce electrostatic repulsion between the antimicrobial compounds and the bacterial cell 
envelope (Fig. 4, point 4). In many Gram-positive bacterial genera, such as Staphylococcus, 
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Listeria, Enterococcus, Bacillus, Clostridium, Streptococcus and Lactobacillus, this reduction 
of the negative charge of the cell envelope is mediated by the DltABCD proteins (Neuhaus and 
Baddiley, 2003; Reichmann et al., 2013; Revilla-Guarinos et al., 2014). These proteins add a 
positive charge to the so-called teichoic acids, which cause the negative charge of the Gram-
positive cell wall, as will be introduced in detail in Section 3.2. In addition to charge alteration, 
the modification of the teichoic acids by the Dlt proteins also leads to an increased surface 
rigidity, which decreases the permeability of the cell wall and thereby additionally protects the 
cell from antimicrobial compounds (Revilla-Guarinos et al., 2014). Moreover, many Gram-
positive organisms exploit strategies to modify the negative charge of their cell membrane 
(Ernst and Peschel, 2011). In contrast, in Gram-negative bacteria, electrostatic repulsion of 
antimicrobial compounds from the cell envelope can be elicited by adding positive charges to 
the outer membrane, in particular to the anionic lipopolysaccharides (LPS), which represent 
the outermost leaflet of the cell envelope in Gram-negatives (see Section 3.2). 

As a third strategy to protect against antimicrobial compounds, bacteria employ a variety of 
efflux pumps to actively remove the harmful substances from the cell (Fig. 4, point 3). Such 
efflux systems play a crucial role in the defence against antimicrobial compounds in both Gram-
positive and Gram-negative bacteria, and have been shown to be essential to antibiotic 
resistance in many pathogens (Delmar et al., 2014; Gebhard, 2012). In Gram-positive bacteria, 
the majority of such efflux pumps constitute two-component ABC transporters. Many of these 
two-component ABC-transporter systems belong to the so-called BceAB group, which has 
been shown to protect bacterial species against a wide range of antimicrobial compounds 
produced by other bacteria, fungi or mammalians (Nawrocki et al., 2014). Prominent examples 
from the long list of this transporter type are BceAB and PsdAB from B. subtilis, BraAB, VraDE 
and VraFE from S. aureus, AnrAB from Listeria monocytogenes and MbrAB from 
Streptococcus mutans (Gebhard, 2012). As will be discussed in detail in Section 3.3, BceAB-
like transporters also play a crucial role in the stress response to cell envelope active 
antimicrobial compounds in B. subtilis.  

Ultimately, the last strategy bacteria use to protect themselves from antimicrobial compounds 
is the modification of the cellular target to reduce the affinity of the antimicrobial compound and 

Figure 4: Bacterial stress responses towards antimicrobial compounds. Bacteria protect themselves from 
antimicrobial compounds by preventing interactions with the respective cellular target. The most common strategies 
to achieve this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the 
active removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - 
here depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the 
alteration of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. 
The expression of the various stress response determinants is activated by diverse sensory complexes upon 
sensing of antimicrobial compounds in the cell’s environment. The figure is adapted from (Piepenbreier et al., 2017). 

 

 

Figure 19: The Gram-positive and Gram-negative cell envelopes. CAP = covalently attached protein; IMP = 
integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic acids; OMP = outer 
membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).Figure 20: Bacterial 
stress responses towards antimicrobial compounds. Bacteria protect themselves from antimicrobial 
compounds by preventing interactions with the respective cellular target. The most common strategies to achieve 
this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the active 
removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - here 
depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the alteration 
of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. The 
expression of the various stress response determinants is activated by diverse sensory complexes upon sensing 
of antimicrobial compounds in the cell’s environment. The figure is adapted from (Piepenbreier et al., 2017). 

 

 

Figure 21: The Gram-positive and Gram-negative cell envelopes. CAP = covalently attached protein; IMP = 
integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic acids; OMP = outer 
membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).Figure 22: Bacterial 
stress responses towards antimicrobial compounds. Bacteria protect themselves from antimicrobial 
compounds by preventing interactions with the respective cellular target. The most common strategies to achieve 
this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the active 
removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - here 
depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the alteration 
of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. The 
expression of the various stress response determinants is activated by diverse sensory complexes upon sensing 
of antimicrobial compounds in the cell’s environment. The figure is adapted from (Piepenbreier et al., 2017). 

 

 

Figure 23: The Gram-positive and Gram-negative cell envelopes. CAP = covalently attached protein; IMP = 
integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic acids; OMP = outer 
membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).Figure 24: Bacterial 
stress responses towards antimicrobial compounds. Bacteria protect themselves from antimicrobial 
compounds by preventing interactions with the respective cellular target. The most common strategies to achieve 
this include the inactivation of the antimicrobial compound by degradation (1) or sequestration (2), the active 
removal of antimicrobial compounds from the cell (3), the addition of positive charges to the cell envelope - here 
depicted for the cell wall - to provoke electrostatic repulsion from the antimicrobial compounds (4) and the alteration 
of the cellular target structure of the antimicrobial compound (5), here depicted for cell wall-located targets. The 
expression of the various stress response determinants is activated by diverse sensory complexes upon sensing 
of antimicrobial compounds in the cell’s environment. The figure is adapted from (Piepenbreier et al., 2017). 
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prevent binding (Fig. 4, point 5). A prime example is the modification of lipid II - the central 
molecule involved in bacterial cell wall synthesis (as introduced in detail in the subsequent 
section) - in the pathogen Enterococcus spp., which leads to an insensitivity against the 
antibiotic agent vancomycin (Cetinkaya et al., 2000).  

The different response mechanisms to antimicrobial compounds presented here are 
genetically encoded and bacteria acquire these stress response genes in two different ways: 
(i) Spontaneous beneficial mutations in their own genome, which are typically the origin of 
permanent target modifications and (ii) horizontal gene transfer, which allows for the exchange 
of stress response genes between different bacterial organisms (Björkman and Andersson, 
2000; Hassan et al., 2012; Lerminiaux and Cameron, 2019; Overbye and Barrett, 2005; 
Wintersdorff et al., 2016). In fact, it is assumed that genes responsible for the self-protection 
against AMPs are transferred from the AMP producer strain to non-producing strains, such 
that self-immunity mechanism become widespread stress response mechanisms used by 
many bacteria (Gebhard, 2012; Peterson and Kaur, 2018; Schneider and Sahl, 2010). For 
instance, it was suggested that enterococci acquire the described vancomycin-insensitivity 
through the transfer of the genes responsible for the lipid II modification from vancomycin-
producing strains and it has additionally been shown that they can transmit these genes to 
further Gram-positive pathogens (Bourgeois-Nicolaos et al., 2006; Niederhäusern et al., 2011; 
Palmer et al., 2010; Schneider and Sahl, 2010). The dissemination of resistance genes by 
horizontal gene transfer, even across different genera, is the primary reason for the rapid 
evolution of antibiotic resistance in bacteria. 

 

3.2 The bacterial cell wall as prime target for antibiotic compounds 

The cell envelope is an indispensable structure for the bacterial cell, as it not only protects the 
cell from harmful substances in the environment, but also determines the cell shape, 
counteracts the high internal turgor pressure and mediates the controlled exchange of material 
between the cell’s cytoplasm and the environment (Delcour et al., 1999; Höltje, 1998). 
However, due to this essentiality and its easy accessibility, the cell envelope represents a 
prime target for numerous antimicrobial compounds, in particular antibiotics. The architecture 
of the cell envelope, its synthesis as well as cell wall active antibiotics are introduced in the 
following. 

 

The bacterial cell envelope 

To fulfil all its essential tasks, the bacterial cell envelope features a sophisticated and complex 
structure, which is however fundamentally different between Gram-positive and Gram-negative 
bacteria (Fig. 5). As the work presented in this chapter focusses on Gram-positive bacteria, a 
detailed introduction into the components of the Gram-positive cell envelope will be given 
below, while the architecture of the Gram-negative cell envelope is only briefly outlined10. 

                                                           
10 See (Silhavy et al., 2010) for more detailed information about the Gram-negative cell envelope.  
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The cell envelope of Gram-negative bacteria consists of three principal layers, starting from 
the inside and proceeding outward: (i) The cytoplasmic or cell membrane (CM), (ii) a thin 
peptidoglycan cell wall (CW) above and (iii) the outer membrane (OM) containing 
lipopolysaccharides (LPS) as the outermost layer (Silhavy et al., 2010). The LPSs cover 
around 75% of the whole cell surface and cause the negative surface charge (Joo et al., 2016). 
The two concentric membranes delimit the periplasm (Silhavy et al., 2010). Please refer to 
Figure 5 for a detailed depiction of the components of the Gram-negative cell envelope. 

The Gram-positive cell envelope features key differences from its Gram-negative counterpart. 
First and foremost, Gram-positive bacteria lack the OM but have a substantially thicker 
peptidoglycan cell wall as its outermost layer (Breukink and Kruijff, 2006; Silhavy et al., 2010). 
In addition, long anionic polymers, called teichoic acids, are attached to the peptidoglycan in 
most Gram-positive organisms, which results in the negative net charge of the cell wall (Brown 
et al., 2013; Swoboda et al., 2010). The three-dimensional net-like layer of peptidoglycan (PG) 
is made up of repeating units of a disaccharide of N-acetylglucosamine (GlcNAc) and N-
acetylmuramic acid (MurNAc) (Harz et al., 1990; Schleifer and Kandler, 1972; Vollmer et al., 
2008). The MurNAc subunits are cross-linked by short peptide bridges, which contribute to the 
rigid but nevertheless elastic structure of the PG network (Vollmer et al., 2008). Teichoic acids 
(TA), which intersperse the PG layer, are linear polymers composed largely of glycerol 
phosphate, glucosyl phosphate, or ribitol phosphate repeats (Brown et al., 2013; Swoboda et 
al., 2010). One class of TAs, referred to as wall teichoic acids (WTA), are coupled to the 
peptidoglycan, while another class, the lipoteichoic acids (LTA), are anchored to the cell 
membrane and are threaded through the layers of peptidoglycan (Neuhaus and Baddiley, 
2003).  Although some bacterial species show modification in the composition or cross-linking 
of the glycan strands (Münch and Sahl, 2015), the overall structure of the cell wall, as 
presented here, is similar in most Gram-positive bacteria. Due to its rigid structure, the cell wall 
fulfils the role of protection from environmental stressors and cell shape determination. 

The inner layer of the Gram-positive cell envelope, the bacterial cell membrane, is a 
phospholipid bilayer, which surrounds the cytosol of the cell. Multiple different proteins that 
function for instance in energy production, lipid biosynthesis, protein secretion and transport 
of various kind of molecules, are located in the cell membrane (Silhavy et al., 2010). The cell 
membrane controls the permeability of the cell, allows the formation of a membrane potential 

Figure 5: The Gram-positive and Gram-negative cell envelopes. CAP = covalently attached protein; IMP = 
integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic acids; OMP = outer 
membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).  

 

Figure 25: The lipid II cycle is a prime target for antibiotics in Gram-positive bacteria. For a detailed 
description of the lipid II cycle and lipid II cycle-inhibiting antibiotics please refer to the main text. Antibiotic inhibition 
is indicated by the T-shaped red lines. M = UDP-MurNAc-pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl 
phosphate; UPP = undecaprenyl pyrophosphate; PG = peptidoglycan; PBPs = penicillin-binding proteins; UppPs = 
UPP phosphatases.Figure 26: The Gram-positive and Gram-negative cell envelopes. CAP = covalently 
attached protein; IMP = integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic 
acids; OMP = outer membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).  

 

Figure 27: The lipid II cycle is a prime target for antibiotics in Gram-positive bacteria. For a detailed 
description of the lipid II cycle and lipid II cycle-inhibiting antibiotics please refer to the main text. Antibiotic inhibition 
is indicated by the T-shaped red lines. M = UDP-MurNAc-pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl 
phosphate; UPP = undecaprenyl pyrophosphate; PG = peptidoglycan; PBPs = penicillin-binding proteins; UppPs = 
UPP phosphatases.Figure 28: The Gram-positive and Gram-negative cell envelopes. CAP = covalently 
attached protein; IMP = integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic 
acids; OMP = outer membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).  

 

Figure 29: The lipid II cycle is a prime target for antibiotics in Gram-positive bacteria. For a detailed 
description of the lipid II cycle and lipid II cycle-inhibiting antibiotics please refer to the main text. Antibiotic inhibition 
is indicated by the T-shaped red lines. M = UDP-MurNAc-pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl 
phosphate; UPP = undecaprenyl pyrophosphate; PG = peptidoglycan; PBPs = penicillin-binding proteins; UppPs = 
UPP phosphatases.Figure 30: The Gram-positive and Gram-negative cell envelopes. CAP = covalently 
attached protein; IMP = integral membrane protein; LP = lipoprotein; LPS = lipopolysaccharide; LTA = lipoteichoic 
acids; OMP = outer membrane protein; WTA = wall teichoic acids. The figure is adapted from (Silhavy et al., 2010).  
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and is platform for interactions between the intra- and extracellular space of the cell (Hurdle et 
al., 2011), to list just a few functions. Indeed, also the machinery responsible for the production 
of the bacterial cell wall is partially located at the cell membrane, as will be introduced in detail 
in the next paragraph.  

Both membrane and cell wall composition can actively be changed by bacteria in response to 
environmental conditions, as illustrated for instance in some of the response strategies to 
antimicrobial compounds introduced in Section 3.1. Due to the lack of the outer membrane, 
which displays an essential protection barrier in Gram-negative organisms, Gram-positives are 
particularly sensitive to cell wall active antimicrobial compounds. Most of them interfere with 
the synthesis of the Gram-positive cell wall, in particular the production of peptidoglycan, as 
will be detailed in the following.  

 

Cell wall biosynthesis 

The synthesis of the bacterial PG cell wall comprises of different steps (Fig. 6), including (i) the 
cytoplasmic synthesis of the PG building blocks GlcNAc and MurNAc, (ii) the subsequent 
attachment of these PG precursors to lipid carrier molecules anchored in the cell membrane, 
and (iii) their transport across the membrane and subsequent incorporation into the existing 
cell wall.  

The cytoplasmic production of the PG precursors (reviewed e.g. in Barreteau et al., 2008; 
Mengin-Lecreulx et al., 1982; van Heijenoort, 2007) initiates with the conversion of fructose-6-
phosphate to GlcNAc. GlcNAc is subsequently activated by the addition of a uridine 
diphosphate (UDP), giving rise to the first PG precursor UDP-GlcNAc. The second PG 
precursor, UDP-MurNAc-pentapeptide, is eventually produced by the conversion of UDP-
GlcNAc to UDP-MurNAc and the subsequent attachment of the pentapeptide chain, catalysed 
by the MurA-F ligases.  

The major pathway shuttling the PG precursors across the membrane is the lipid II cycle 
(reviewed e.g. in Breukink and Kruijff, 2006; Kruijff et al., 2008; Schneider and Sahl, 2010; van 
Heijenoort, 1996), which will be introduced in detail below. After cytoplasmic production, as a 
first step of the lipid II cycle, UDP-MurNAc-pentapeptide is attached to the membrane-bound 
lipid carrier undecaprenyl phosphate (UP) via the translocase MraY, giving rise to the lipid I 
intermediate. Subsequently, the MurG transferase loads UDP-GlcNAc onto lipid I, which leads 
to the production of lipid II. Lipid II is then translocated to the outer leaflet of the cell membrane 
via various flippases, where penicillin-binding proteins (PBPs) incorporate the supplied PG 
subunits into the nascent PG layer. The phosphorylated state of the lipid carrier, undecaprenyl 
pyrophosphate (UPP), remains and is recycled by dephosphorylation via UPP phosphatases 
(UppPs), yielding the initial lipid carrier UP for another round of PG subunit transport. Since 
the step of UPP dephosphorylation likely occurs at the outer leaflet of the membrane (Chang 
et al., 2014; Tatar et al., 2007), carrier recycling requires UP translocation to the internal leaflet 
of the membrane by a yet unknown mechanism (Manat et al., 2015; Touzé et al., 2008). Finally, 
cytoplasmic de novo synthesis of UPP balances the growth-dependent dilution of lipid carrier 
and supplies new carrier to the cycle. However, the translocation mechanism required to 
present UPP to the externally acting phosphatases is yet unknown as well.  
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The central lipid II cycle, as presented here, is highly conserved throughout the bacterial world 
and thus represents a prime target for antibiotic attack. Some prominent classes of cell wall 
antibiotics targeting the lipid II cycle are presented in the next paragraph. 

 

Cell wall antibiotics 

Although few antibiotics have been reported that target the production of WTA (Campbell et 
al., 2012) or even reach the cell’s cytoplasm and impair production of PG precursor (Kahan et 
al., 1974; Lambert and Neuhaus, 1972), most cell wall antibiotics interfere with the lipid II cycle. 
Diverse classes will be introduced above, following (Breukink and Kruijff, 2006; Oppedijk et al., 
2016; Schneider and Sahl, 2010). Nearly all steps of the lipid II cycle are prone to antibiotic 
attack (as depicted in Fig. 6) and two general mechanisms can be distinguished. One common 
mechanism of lipid II cycle active antibiotics is the direct inhibition of the enzymes catalysing 
the individual reactions of the lipid II cycle. The most important class of enzyme-inhibiting 
antibiotics are β-lactams, which include the prominent examples penicillin and cephalosporin. 
By mimicking their actual substrate, β-lactams are recognised and bound by PBPs (Fernandes 
et al., 2013). Upon β-lactam binding, PBPs are inactivated and thus no longer able to catalyse 
the appropriate incorporation of PG precursors into the cell wall. Another group of enzyme-
inhibiting antibiotics represent the sugar substrate analogues resembling the UDP-activated 
sugars, such as tunicamycin that impairs the attachment of PG precursor UDP-MurNAc to lipid 
carrier UP by binding to MraY (Brandish et al., 1996). Since enzyme-inhibiting antibiotics are 
not the focus of this thesis, it will be left at this brief overview11 and the antibiotics following the 
second inhibition mechanism will be introduced in more detail. 

                                                           
11 For a more detailed introduction into diverse classes of enzyme-inhibiting antibiotics please refer to (Schneider 
and Sahl, 2010). 

Figure 6: The lipid II cycle is a prime target for antibiotics in Gram-positive bacteria. For a detailed description 
of the lipid II cycle and lipid II cycle-inhibiting antibiotics please refer to the main text. Antibiotic inhibition is indicated 
by the T-shaped red lines. M = UDP-MurNAc-pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl phosphate; UPP 
= undecaprenyl pyrophosphate; PG = peptidoglycan; PBPs = penicillin-binding proteins; UppPs = UPP 
phosphatases. 

 

Figure 31: Bacitracin stress response in B. subtilis. The primary bacitracin stress response module, BceRS-
BceAB, is depicted in blue. The ABC transporter BceAB removes bacitracin from its cellular target UPP employing 
a so far unknown mechanism. Transport activity serves as a stimulus for the BceRS TCS, which upregulates bceAB 
expression in response to high transport activity (flux-sensing mechanism) (Fritz et al., 2015). The secondary 
bacitacin stress response modules, the σM-dependent regulation of BcrC and the Lia-system, are depicted in orange 
and green, respectively. A yet unknown stimulus triggers the release of σM from its cognate anti-σ-factor YdhLK into 
the cytoplasm, where it activates the expression of bcrC and regulates the expression of a variety of other genes. 
The RR LiaR of the LiaFSR sensory complex activates the expression of the liaIH operon in response to cell 
envelope damage. The precise physiological stimulus sensed by the LiaFS complex as well as the protective role 
of LiaIH are yet unknown. The figure is adapted fromFigure 32: The lipid II cycle is a prime target for antibiotics 
in Gram-positive bacteria. For a detailed description of the lipid II cycle and lipid II cycle-inhibiting antibiotics 
please refer to the main text. Antibiotic inhibition is indicated by the T-shaped red lines. M = UDP-MurNAc-
pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl phosphate; UPP = undecaprenyl pyrophosphate; PG = 
peptidoglycan; PBPs = penicillin-binding proteins; UppPs = UPP phosphatases. 

 

Figure 33: Bacitracin stress response in B. subtilis. The primary bacitracin stress response module, BceRS-
BceAB, is depicted in blue. The ABC transporter BceAB removes bacitracin from its cellular target UPP employing 
a so far unknown mechanism. Transport activity serves as a stimulus for the BceRS TCS, which upregulates bceAB 
expression in response to high transport activity (flux-sensing mechanism) (Fritz et al., 2015). The secondary 
bacitacin stress response modules, the σM-dependent regulation of BcrC and the Lia-system, are depicted in orange 
and green, respectively. A yet unknown stimulus triggers the release of σM from its cognate anti-σ-factor YdhLK into 
the cytoplasm, where it activates the expression of bcrC and regulates the expression of a variety of other genes. 
The RR LiaR of the LiaFSR sensory complex activates the expression of the liaIH operon in response to cell 
envelope damage. The precise physiological stimulus sensed by the LiaFS complex as well as the protective role 
of LiaIH are yet unknown. The figure is adapted from (Radeck et al., 2017)Figure 34: The lipid II cycle is a prime 
target for antibiotics in Gram-positive bacteria. For a detailed description of the lipid II cycle and lipid II cycle-
inhibiting antibiotics please refer to the main text. Antibiotic inhibition is indicated by the T-shaped red lines. M = 
UDP-MurNAc-pentapeptide; G =UDP-GlcNAc; UP = undecaprenyl phosphate; UPP = undecaprenyl 
pyrophosphate; PG = peptidoglycan; PBPs = penicillin-binding proteins; UppPs = UPP phosphatases. 

 

Figure 35: Bacitracin stress response in B. subtilis. The primary bacitracin stress response module, BceRS-
BceAB, is depicted in blue. The ABC transporter BceAB removes bacitracin from its cellular target UPP employing 
a so far unknown mechanism. Transport activity serves as a stimulus for the BceRS TCS, which upregulates bceAB 
expression in response to high transport activity (flux-sensing mechanism) (Fritz et al., 2015). The secondary 
bacitacin stress response modules, the σM-dependent regulation of BcrC and the Lia-system, are depicted in orange 
and green, respectively. A yet unknown stimulus triggers the release of σM from its cognate anti-σ-factor YdhLK into 
the cytoplasm, where it activates the expression of bcrC and regulates the expression of a variety of other genes. 
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The second way by which antibiotics successfully perturb the lipid II cycle is the interaction 
with the lipid intermediates of the cycle (UPP, UP, lipid I and lipid II). Antibiotic binding to an 
individual lipid II cycle intermediate prevents enzyme-catalysed conversion and thereby blocks 
the appropriate reaction in the lipid II cycle. Different classes of these substrate-inhibiting 
antibiotics are found to bind all lipid intermediates that are accessible at the outer face of the 
cell membrane (UPP, UP and lipid II), making crossing of the cell membrane therefore not 
necessary. Amongst these, antibiotics that target lipid II represent by far the largest group.  

Antibiotic binding to lipid II can occur at various molecular moieties but it generally inhibits the 
PBP-catalysed incorporation of PG precursors into the existing cell wall layer. One important 
and well-studied class of lipid II-binding antibiotics are glycopeptides, such as vancomycin or 
teicoplanin. The antibiotic activity of these compounds relies on their binding to the 
pentapeptide side chain of lipid II, in particular to the 4th and 5th position of the peptide (D-Ala-
D-Ala terminus) (Reynolds, 1989), which is involved in peptidoglycan cross-linking. 
Glycopeptide antibiotics are frequently used as last-resort antibiotics for the treatment of Gram-
positive pathogens, which already feature resistance against other antibiotics, such as MRSA 
(Methicillin-resistant Staphylococcus aureus) (Choo and Chambers, 2016). The usage of 
alternative versions of the pentapeptide side chain of lipid II, however, significantly reduces the 
affinity for some glycopeptides and leads to insensitivity against these antibiotics, as 
demonstrated in Section 3.1 for vancomycin (Cetinkaya et al., 2000). Lantibiotics represent a 
second major class of lipid II-targeting antibiotics, whose members are structurally highly 
diverse. One subgroup of these, referred to as nisin-like lantibiotics, combine inhibition of cell 
wall biosynthesis with membrane disruption. By using lipid II as a docking molecule, they are 
able to form pores in the cell membrane and thereby permeabilise it (Breukink et al., 1999). A 
well-studied member of this subgroup is nisin, which is commonly used as a food preservative 
(Hansen, 1994). The other subgroup of lantibiotics, so-called mersacidin-like lantibiotics, do 
not feature the pore-formation ability and exclusively act by binding to lipid II, such as 
mersacidin or actagardine (Bierbaum and Sahl, 2009). As a common theme, all lantibiotics 
appear to bind to the sugar-pyrophosphate moiety of lipid II (Breukink and Kruijff, 2006). A 
further well-known example of a lipid II-binding antibiotic interacting mainly with the 
pyrophosphate moiety of lipid II is the cyclic lipodepsipeptide ramoplanin, which is also used 
as last-resort antibiotic against resistant pathogens (Fang et al., 2006). 

Beyond these lipid II-targeting compounds, there are also cell wall antibiotics binding 
extracellularly accessible UPP and UP. A well-studied antibiotic, which blocks the recycling of 
the lipid carrier by forming a complex with UPP, is the cyclic dodecylpeptide bacitracin (Storn 
and Strominger, 1973). Bacitracin is mainly used for treatment of skin infections caused by 
Gram-positive bacteria (Schneider and Sahl, 2010). Ultimately, further cyclic lipopeptide 
antibiotics, such as friulimicin or laspartomycin (Borders et al., 2007; Kleijn et al., 2016; Kleijn 
et al., 2017), have been reported to bind to UP and thereby inhibit MraY-dependent production 
of lipid I. Of note, virtually all of the substrate-inhibiting lipid II cycle antibiotics presented here 
are derived from naturally occurring antimicrobial compounds, produced by diverse bacterial 
species (Schneider and Sahl, 2010).  

Extensive experimental studies have helped to characterise most of these cell wall antibiotics 
concerning their cellular targets, their in vitro antibiotic-target binding affinities and their 
minimal inhibitory concentrations (MICs), that is the antibiotic concentrations necessary to fully 
inhibit bacterial population growth in vivo (e.g. Beauregard et al., 1997; Gebhard et al., 2014; 
Hiron et al., 2011; Hu et al., 2003; Mota-Meira et al., 2000; Radeck et al., 2016; Shaaly et al., 
2013; Staroń et al., 2011; Storm and Strominger, 1973; Tiyanont et al., 2006; Wecke et al., 
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2009; Wiedemann et al., 2001; Yoshida et al., 2011). However, it is not yet understood 
comprehensively why many cell wall active antibiotics are less potent in vivo than suggested 
by the antibiotic-target binding affinity in vitro. This question is addressed in Paper II of this 
thesis by studying the quantitative effect of cell wall antibiotic binding on the progression of the 
lipid II cycle within a theoretical framework (Section 3.4). 

In the end, most of the stress response strategies to antimicrobial compounds presented in 
Section 3.1 confer bacterial resistance to diverse cell wall-active antibiotics. The soil bacterium 
B. subtilis, which is an important Gram-positive model organism, orchestrates in fact multiple 
stress response modules to cope with antibiotic-induced cell envelope stress, as introduced in 
the next section.  

 

3.3 Cell envelope stress response in Bacillus subtilis 

The integrity of the bacterial cell envelope can not only be affected by antibiotic attack, as 
introduced before, but also by other environmental stressors such as heat or osmotic shock. 
In the broadest sense, thus, cell envelope stress responses (CESR) encompass all 
mechanisms that protect cells from the various envelope perturbing conditions (Jordan et al., 
2008). Here, the CESR network in B. subtilis will be introduced, which in fact mainly comprises 
response mechanisms against cell wall active antimicrobial compounds. The CESR in B. 
subtilis is mediated by a signalling network of four TCS and (at least) three ECF σ-factors, 
which orchestrate cellular responses on various levels, including the production of specific 
stress determinants and the control of the overall cell envelope homeostasis.  

Three out of the four CES-inducible TCSs, namely BceRS, PsdRS and YxdJK, are part of 
paralogous systems, referred to as Bce-like systems. Each of these systems consists of the 
respective TCS and an ABC transporter regulated by it, both of which are encoded by two 
neighbouring operons (Staroń et al., 2011). Together, they form specific detoxification modules 
that efficiently remove diverse antimicrobial compounds from their site of action and thereby 
mediate high levels of resistance against these compounds (Dintner et al., 2011; Mascher et 
al., 2003). The best-understood example of the Bce-like systems is BceRS-BceAB, which 
responds primarily to bacitracin and will be therefore introduced in detail below. Furthermore, 
the PdsRS-PsdAB system is preferentially triggered by a number of lantibiotics, including nisin 
and actagardine, while the YxdJK-YxdLM system responds to the human AMP LL-37 (Joseph 
et al., 2004; Pietiäinen et al., 2005; Staroń et al., 2011). BceRS-like TCSs are highly conserved 
and widely distributed in Firmicutes bacteria and as an example contribute to resistance 
against cell wall antibiotics in S. aureus and E. faecalis (Hiron et al., 2011; Gebhard et al., 
2014).  

The fourth TCS, which is part of the CESR in B. subtilis, is LiaRS. In contrast to the narrow 
inducer spectrum of the other TCSs, LiaRS strongly responds to various cell wall active 
antibiotics, such as bacitracin, vancomycin, ramoplanin and diverse lantibiotics (Jordan et al., 
2006; Mascher et al., 2004; Pietiäinen et al., 2005; Wecke et al., 2009). Additionally, it is 
induced by a number of more unspecific stimuli, such as alkaline shock, detergents and 
ethanol, although to a weaker extent (Mascher et al., 2004; Pietiäinen et al., 2005; Petersohn 
et al., 2001; Tam et al., 2006; Wiegert et al., 2001). Moreover, it has been shown that LiaRS is 
intrinsically induced by the YydF peptide produced by B. subtilis itself (Butcher et al., 2007). 
The LiaRS TCS interacts with a membrane-anchored inhibitor protein LiaF, which keeps the 
HK LiaS inactive under non-inducing conditions (Jordan et al., 2006). LiaRSF-like systems are 
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also widespread in Firmicutes bacteria and homologous systems are for example involved in 
general CESRs in streptococci and staphylococci (Schrecke et al., 2012). In B. subtilis, LiaFSR 
regulates the expression of the liaIH operon, encoding the phage-shock-proteins LiaI and LiaH. 
Although the precise stress response mechanism mediated by LiaIH remains elusive, it was 
shown that the LiaFRS-LiaIH system contributes to bacitracin resistance in B. subtilis (Radeck 
et al., 2016), as will be discussed in more detail below.  

Ultimately, in contrast to the specific TCS-dependent responses, the three major ECF σ-factors 
involved in the CESR of B. subtilis - σM, σW and σX - orchestrate more complex and highly 
diverse mechanisms by regulating a variety of different genes (reviewed in Helmann, 2016). 
The first ECF σ-factors, σM, regulates the expression of ~60 genes, which are involved in cell 
wall synthesis, cell shape determination and cell division, amongst others (Eiamphungporn 
and Helmann, 2008; Zhao et al., 2019). It has been shown that σM contributes to B. subtilis 
resistance against bacitracin (Cao and Helmann, 2002). σM activity is controlled by the anti-σ-
factor complex YhdLK (Horsburgh and Moir, 1999; Yoshimura et al., 2004), which releases the 
σ-factors in response to more general stimuli such as acidic pH, heat, salt as well as to specific 
cell wall antibiotics such as bacitracin, friulimicin or vancomycin (Cao et al., 2002b; Mascher 
et al., 2003; Thackray and Moir, 2003). σW, the second CES-inducible ECF σ-factor, also 
controls approximately 60 genes, summarized as the ‘antibiosis regulon’, with many of them 
encoding proteins involved in stress response against antimicrobial compounds, especially 
membrane-targeting ones (Cao et al., 2002a; Helmann, 2006; Huang et al., 1999; Kingston et 
al., 2013). The activation of σW is based on the proteolytic degradation of its cognate 
membrane-anchored anti-σ-factor RsiW (Schöbel et al., 2004), which is induced by a number 
of cell wall active compounds such as vancomycin or cephalosporin C (Cao et al., 2002a), but 
also by alkaline shock (Wiegert et al., 2001). σX features the smallest regulon with ~30 genes 
(most of which are also regulated by another ECF σ-factor, σV), whose gene products are 
mainly involved in cell envelope composition and cell surface modification (Cao and Helmann, 
2004). For instance, one of the targets of σX is the dltABCDE operon, which is responsible for 
reducing the overall negative charge of the Gram-positive cell envelope in response to 
positively charged antimicrobial compounds (Neuhaus and Baddiley, 2003), as introduced in 
Section 3.1. The corresponding anti-σ-factor of σX is RsiX, which responds for instance to 
bacitracin (Cao and Helmann, 2002). Overall, the three ECF σ-factors involved in CESR of B. 
subtilis significantly overlap in their regulons, with many genes regulated by two or even all 
three of the ECF σ-factors (Mascher et al., 2007). Moreover, individual cell wall antibiotics 
activate all three ECF σ-factors simultaneously, as has been shown for bacitracin (Mascher et 
al., 2003). Thus, it is expected that the ECFs of B. subtilis orchestrate more general protective 
measures and homeostatic adaptations to envelope stress, whereas the TCSs regulate more 
inducer-specific mechanisms (Radeck et al., 2017). The B. subtilis stress response to 
bacitracin, in fact, combines both of these strategies and is introduced in detail the following.  

 

Bacitracin stress response network in B. subtilis 

By forming a tight complex with the lipid II cycle intermediate UPP, bacitracin blocks UPP 
dephosphorylation and thereby impairs the overall progression of the lipid II cycle (Economou 
et al., 2013; Storm and Strominger, 1973). To cope with this stress, B. subtilis has evolved a 
multi-layered response towards bacitracin, including (i) the BceRS-BceAB system, (ii) the Lia-
system and (iii) σM-dependent control of cell wall synthesis genes (depicted in detail in Fig. 7). 
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The BceRS-BceAB system (Fig. 7, blue) is strongly induced by bacitracin and also contributes 
significantly to resistance towards this compound in B. subtilis (Mascher et al., 2003; Ohki et 
al., 2003; Rietkötter et al., 2008). It is assumed that the protective effect of the ABC transporter 
BceAB relies on clearing UPP from its inhibitory antibiotic compound (Fritz et al., 2015). The 
expression of the BceAB transporter is controlled by the RR BceR of the cognate TCS (Ohki 
et al., 2003). However, experimental evidence suggested that the transporter itself is involved 
in the signalling process (Bernard et al., 2007; Rietkötter et al., 2008) and it has been shown 
that the permease BceB of the transporter forms a complex with the histidine kinase BceS of 
the TCS (Dintner et al., 2011; Dintner et al., 2014). A computational model has finally brought 
these observations together and postulated a flux-sensing mechanism for the BceRS-BceAB 
system (Fritz et al., 2015). Here, the activity of the histidine kinase BceS depends on the 
transport activity of BceAB, that is the physical interaction between BceS and BceB serves to 
measure the bacitracin flux per transporter. The expression of new transporters is thus adapted 
to the current capability of the cell to deal with the bacitracin challenge, and a high transport 
activity of individual transporters induces the production of more BceAB transporters. The 
elevated number of transporters then alleviates the transport activity of each individual 
transporter, such that BceAB regulates its own expression in a negative feedback loop. This 
flux-sensing mechanism allows the precise adaptation of the stress response to the current 
stress level of the cell. As discussed in detail in the review ‘Transporters as information 
processors in bacterial signalling pathways’ by Hannah Piepenbreier, Georg Fritz and Susanne 
Gebhard (Piepenbreier et al., 2017) (Paper IV), which is part of this thesis, tandems of 
transporters and signalling systems, referred to as ‘flux-sensors’, are often found to be involved 
in bacterial signalling processes. Actually, according to the high conservation of Bce like-
systems in Firmicutes, flux-sensing is expected to represent a widespread regulatory principle 
to control cell envelope stress within this group (Piepenbreier et al., 2017; Radeck et al., 2017).  

The second bacitracin stress response module, the Lia-system (Fig. 7, green), has been 
originally discovered and described in the course of bacitracin resistance (Mascher et al., 
2003). Although it has been recognized that the Lia-system is induced in response to a variety 
of cell wall active antimicrobial compounds (Jordan et al., 2006; Mascher et al., 2004; 
Pietiäinen et al., 2005; Wecke et al., 2009), the precise stimulus perceived by LiaFSR has not 

Figure 7: Bacitracin stress response in B. subtilis. The primary bacitracin stress response module, BceRS-
BceAB, is depicted in blue. The ABC transporter BceAB removes bacitracin from its cellular target UPP employing 
a so far unknown mechanism. Transport activity serves as a stimulus for the BceRS TCS, which upregulates bceAB 
expression in response to high transport activity (flux-sensing mechanism) (Fritz et al., 2015). The secondary 
bacitacin stress response modules, the σM-dependent regulation of BcrC and the Lia-system, are depicted in orange 
and green, respectively. A yet unknown stimulus triggers the release of σM from its cognate anti-σ-factor YdhLK into 
the cytoplasm, where it activates the expression of bcrC and regulates the expression of a variety of other genes. 
The RR LiaR of the LiaFSR sensory complex activates the expression of the liaIH operon in response to cell 
envelope damage. The precise physiological stimulus sensed by the LiaFS complex as well as the protective role 
of LiaIH are yet unknown. The figure is adapted from (Radeck et al., 2017) 

 

Figure 37: The asymmetric distribution of lipid II cycle intermediates generates a massive in vivo efficacy 
gap for lipid II-targeting antibiotics. The intermediates within the lipid II cycle feature a highly asymmetric 
distribution with high concentrations of externally accessible UPP (UPPOUT) and comparable tiny concentrations of 
externally accessible lipid II (Lipid IIOUT). The size of the circles in A-D correlate with the concentrations of the 
different intermediates. The thickness of the black arrows is proportional to the reaction rates of the individual lipid 
II cycle reactions. The cell membrane is depicted in grey. (A) Efficient binding of external UPP by bacitracin (BAC) 
commences at its in vitro 𝐾𝐷 value (𝐾𝐷

𝐵𝐴𝐶 = 1µM; Storm and Strominger, 1973) and reduces the pool of free UPP to 
its half-maximum. As UPP is the most abundant intermediate in the lipid II cycle, this implies the sequestration of 
high levels of lipid intermediates from the cycle, thereby decreasing the concentrations of all free cycle 
intermediates, especially lipid II. Since the lipid II concentration determines the PG synthesis rate, this already 
reduces the rate to a level of 64% of its maximum. (B) Only slightly higher bacitracin concentrations are required to 
reduce the free lipid II pool and thereby the rate of PG synthesis to 50% (𝐼𝐶50

𝐵𝐴𝐶 = 1.8 µM) (C) In contrast, although 
nisin (NIS) - at concentrations around the 𝐾𝐷 (𝐾𝐷

𝑁𝐼𝑆 = 0.015µM; Wiedemann et al., 2001) - binds 50% of the free 
lipid II pool, this only sequesters ~1% of all lipid intermediates from the cycle. As the remaining lipid intermediates 
function as a reservoir and quickly replenish the free form of lipid II molecules by on-going cycling, the rate of PG 
synthesis is not reduced significantly (99% of maximum). (D) Only when increasing the nisin-concentration markedly 
(𝐼𝐶50

𝑁𝐼𝑆 = 10.1 µM), ~50% of the total lipid II cycle intermediates are sequestered into the nisin-lipid II complexes 
(LIIOUT-NIS) and the pool of free lipid II and thus the rate of PG synthesis are reduced to 50% of its maximal value. 
(E) A reduced model for the lipid II cycle rationalizes the in vivo efficacy gap by quantifying the ratio between 𝐼𝐶50 

and 𝐾𝐷, which is defined as ‘buffering factor’, by a mathematical equation 𝐼𝐶50

𝐾𝐷
≈  √(1 + ([𝑅]

[𝑇])
𝑛 . [𝑇] denotes the 

concentration of the antibiotic target and [𝑅] summarizes the concentrations of all non-target lipid II cycle 
intermediates, referred to as bactoprenol pool. 𝑛 represents the Hill coefficient describing cooperativity in antibiotic-
target interaction. The colour in the log-log plot codes for 𝑙𝑜𝑔 (𝐼𝐶50

𝐾𝐷
), where a high buffering factor indicates a large 

in vivo efficacy gap. The buffering factor and thus the in vivo efficacy gap increases for increasing bactoprenol 
reservoir size relative to the target pool (horizontal axis). The two arrows indicate the scenarios for UPP ([𝑇] >>
[𝑅]) and lipid II ([𝑇] << [𝑅]) binding. The buffering factor scales additionally with 𝑛, whereas higher 𝑛 reduce the 
ratios between 𝐼𝐶50 and 𝐾𝐷 (vertical axis). This reduction of the in vivo efficacy gap by increases cooperativity is 
most pronounced for large ratios between [𝑅] and [𝑇], as for lipid II binding antibioticsFigure 38: Bacitracin stress 
response in B. subtilis. The primary bacitracin stress response module, BceRS-BceAB, is depicted in blue. The 
ABC transporter BceAB removes bacitracin from its cellular target UPP employing a so far unknown mechanism. 
Transport activity serves as a stimulus for the BceRS TCS, which upregulates bceAB expression in response to 
high transport activity (flux-sensing mechanism) (Fritz et al., 2015). The secondary bacitacin stress response 
modules, the σM-dependent regulation of BcrC and the Lia-system, are depicted in orange and green, respectively. 
A yet unknown stimulus triggers the release of σM from its cognate anti-σ-factor YdhLK into the cytoplasm, where it 
activates the expression of bcrC and regulates the expression of a variety of other genes. The RR LiaR of the 
LiaFSR sensory complex activates the expression of the liaIH operon in response to cell envelope damage. The 
precise physiological stimulus sensed by the LiaFS complex as well as the protective role of LiaIH are yet unknown. 
The figure is adapted from (Radeck et al., 2017) 

 

Figure 39: The asymmetric distribution of lipid II cycle intermediates generates a massive in vivo efficacy 
gap for lipid II-targeting antibiotics. The intermediates within the lipid II cycle feature a highly asymmetric 
distribution with high concentrations of externally accessible UPP (UPPOUT) and comparable tiny concentrations of 
externally accessible lipid II (Lipid IIOUT). The size of the circles in A-D correlate with the concentrations of the 
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been deciphered so far. Instead of detecting the antimicrobial compound directly, it is 
suggested that the LiaFSR sensory complex senses downstream effects and might thus act 
as an indirect, damage-sensing system (Radeck et al., 2017), in line with the broad inducer 
spectrum including also other cell envelope stressors different from antimicrobial compounds. 
The role of its target genes, liaIH, in protecting B. subtilis from bacitracin-induced stress has 
also not yet been conclusively unravelled. It has been demonstrated that LiaI is a small 
membrane protein, which serves as an anchor for the phage-shock protein A homolog, LiaH, 
upon cell envelope stress (Domínguez-Escobar et al., 2014). Together, all experimental 
evidences support a model in which the LiaFSR sensory complex scans for envelope 
perturbations and activates liaIH expression upon detection. LiaI inserts into the membrane 
and recruits LiaH to presumably counteract the cell envelope damage (Domínguez-Escobar et 
al., 2014).  

The σM-dependent upregulation of a specific cell wall synthesis gene, bcrC, is the third layer 
of bacitracin stress response in B. subtilis (Fig. 7, orange). BcrC fulfils the crucial role of an 
UPP-phosphatase in the lipid II cycle of B. subtilis and catalyses, together with a second 
enzyme, UppP, the recycling of lipid carrier UPP. The corresponding gene, bcrC, is under 
control of σM-regulation (Cao and Helmann, 2002; Eiamphungporn and Helmann, 2008) and 
its expression is upregulated in response to bacitracin (Bernard et al., 2005; Cao and Helmann, 
2002; Ohki et al., 2003). An elevated number of BcrC results in a more efficient 
dephosphorylation of UPP to UP, which diminishes the UPP concentration and thus the 
number of bacitracin target molecules. Hence, the σM-dependent upregulation of bcrC 
expression can be understood as a more general response that promotes the progression of 
the lipid II cycle and ensures cell wall homeostasis. The precise stimulus that triggers the 
release of σM from its anti-σ-factor YhdLK and elicits the upregulation of bcrC expression, 
however, has yet not been identified (Asai, 2018; Zhao et al., 2019).    

Indeed, the three stress response modules differ significantly in both their sensitivity and 
response characteristics towards bacitracin (Rietkötter et al., 2008) as well as their contribution 
to the overall protection against bacitracin. A recent study demonstrated a clear-cut hierarchy 
between them, with BceAB representing the primary stress response module against 
bacitracin, and LiaIH and BcrC contributing secondarily to protection against this compound 
(Radeck et al., 2016). BceAB confers high-level resistance towards bacitracin and a loss of 
this primary resistance module increases the susceptibility towards bacitracin ~85-fold, as MIC 
measurements in a B. subtilis wild type and a bceAB mutant showed. In contrast, LiaIH does 
not play a role in bacitracin resistance in the wildtype and BcrC also contributes only 
moderately to bacitracin resistance here. However, their actual impact becomes visible in a B. 
subtilis bceAB deletion strain, where the presence of LiaIH reduces the susceptibility towards 
bacitracin ~6-fold and the presence of BcrC even ~24-fold. Together, these results suggest 
that the BceRS-BceAB stress module contributes most to bacitracin resistance in B. subtilis 
and is already induced by low amounts of bacitracin. As BceAB removes bacitracin from its 
target, it functions as a detoxification module and protects the lipid II cycle from perturbation 
up to a certain degree. The other two modules probably contribute to cell wall homeostasis 
under higher bacitracin concentrations and can - at least partially - compensate for a loss in 
the primary resistance module. 

Based on the discovery of this clear-cut hierarchy, further important questions arise: What 
regulates the multi-layered response towards bacitracin and how do the different response 
modules interact to shape the overall response to bacitracin? These questions are addressed 
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in Paper III by a systems approach, combining mathematical modelling with quantitative gene 
expression measurements.  

 

3.4 Paper II: Minimal exposure of lipid II cycle intermediates triggers cell wall 
antibiotic resistance 

In the Paper ‘Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic 
resistance’ by Hannah Piepenbreier, Angelika Diehl and Georg Fritz (Piepenbreier et al., 
2019a), we studied the perturbation of cell wall biosynthesis by cell wall antibiotics from a 
quantitative perspective. To the best of our knowledge, we here developed the first 
comprehensive computational model of the lipid II cycle in B. subtilis by incorporating published 
biochemical data quantifying enzyme activities and concentrations of lipid II cycle 
intermediates (Barreteau et al. 2009; Brandish et al. 1996; Crouvoisier et al. 2007; Geis and 
Plapp 1978; Mengin-Lecreulx et al. 1982; Mengin-Lecreulx et al. 1983; Mengin-Lecreulx and 
van Heijenoort 1985; Schwartz et al., 2002; Touzé et al., 2008; van Heijenoort et al. 1992). 
When doing so, we interestingly found that the individual lipid II cycle intermediates are 
distributed highly asymmetrically within the cycle with high concentrations of UPP, medium UP 
concentrations and low concentrations of lipid I and II (Figure 8A-D). As we aimed to use this 
model to study the systems-level behaviour of the core lipid II cycle under antibiotic treatment, 
stress response modules that confer antibiotic resistance were not included yet. Rather, the 
model described the individual reaction of the lipid II cycle in detail and used the rate of 
peptidoglycan synthesis, defined as 𝑗𝑃𝐺, as a quantitative measure for the overall progression 
of the cycle.  

𝑗𝑃𝐺 =  [𝑃𝐵𝑃𝑠] ∗  𝑘𝑐𝑎𝑡
𝑃𝐵𝑃𝑠 ∗

[𝐿𝑖𝑝𝑖𝑑 𝐼𝐼𝑂𝑈𝑇]
𝐾𝑀

𝑃𝐵𝑃𝑆 + [𝐿𝑖𝑝𝑖𝑑 𝐼𝐼𝑂𝑈𝑇]
 

Here, [𝑃𝐵𝑃𝑠] represents the concentration of penicillin-binding proteins catalysing the 
incorporation of PG into the growing cell wall layer, while 𝑘𝑐𝑎𝑡

𝑃𝐵𝑃𝑠 and 𝐾𝑀
𝑃𝐵𝑃𝑠 define the catalytic 

constant and the Michaelis-Menten constant for the PBP reaction, respectively. [𝐿𝑖𝑝𝑖𝑑 𝐼𝐼𝑂𝑈𝑇] 
describes the concentration of lipid II present at the outer leaflet of the cell membrane after 
flipping, which represents the substrate for the PG incorporation reaction. The reduction of the 
rate of PG synthesis by antibiotic binding was monitored and the antibiotic concentration that 
provokes a reduction by 50% was defined as 𝐼𝐶50 and served as a quantitative measurement 
for the antibiotic’s efficacy in our theory. When simulating the binding of five different cell wall 
antibiotics (bacitracin, friulimicin, ramoplanin, vancomycin and nisin) to their targets within the 
lipid II cycle, we found that this 𝐼𝐶50 partially equals the in vitro antibiotic-target dissociation 
constant, 𝐾𝐷, and partially massively exceeds this value - in line with the previous experimental 
observations (Fig. 9). Indeed, the model-predicted 𝐼𝐶50 values closely resemble experimentally 
determined MICs for all five antibiotics in B. subtilis strains lacking major antibiotic resistance 
determinants (Mota-Meira et al., 2000; Radeck et al., 2016; Staroń et al., 2011; Tiyanont et al., 
2006; Wecke et al., 2009), indicating that our theory precisely describes the in vivo efficacy of 
these cell wall antibiotics (Fig. 9). Strikingly, it turned out that the discrepancy between in vitro 
dissociation constant and in vivo efficacy clearly depends on the antibiotic target. While both 
values are similar for bacitracin (targeting UPP) and only slightly different for friulimicin 
(targeting UP), especially the lipid II-binding antibiotics nisin, ramoplanin and vancomycin, 
feature a distinctly higher 𝐼𝐶50 compared to their in vitro 𝐾𝐷, suggesting that they are 
significantly less active in vivo than in vitro. 
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In fact, our developed theory allowed us for the first time to decipher that this apparent ‘in vivo 
efficacy gap’ of lipid II-binding antibiotics is an emergent property of the lipid II cycle and can 
be explained by the cyclic nature of this pathway and the observed highly asymmetric 
distribution of lipid intermediates within this cyclic reaction network. When analysing the effect 
of antibiotic binding not only on the target lipid intermediate but also on all other intermediates 
in the cycle, we found that a reduction of the overall rate of peptidoglycan synthesis by 50% 
correlates with a reduction of the concentration of externally present lipid II to ~50%. We further 
demonstrated that this reduction of the lipid II pool was achieved only if the total amount of 
lipid intermediates is significantly reduced (Fig. 8A-D). Accordingly, the efficacy of an antibiotic 
depends on its ability to reduce the total amount of lipid II cycle intermediates by binding. 
Binding of the by far most-abundant lipid intermediate UPP by bacitracin actually leads to an 
efficient sequestration of lipid intermediates already at the in vitro 𝐾𝐷, where 50% of the target 

Figure 8: The asymmetric distribution of lipid II cycle intermediates generates a massive in vivo efficacy 
gap for lipid II-targeting antibiotics. The intermediates within the lipid II cycle feature a highly asymmetric 
distribution with high concentrations of externally accessible UPP (UPPOUT) and comparable tiny concentrations of 
externally accessible lipid II (Lipid IIOUT). The size of the circles in A-D correlates with the concentrations of the 
different intermediates. The thickness of the black arrows is proportional to the reaction rates of the individual lipid 
II cycle reactions. The cell membrane is depicted in grey. (A) Efficient binding of external UPP by bacitracin (BAC) 
commences at its in vitro 𝐾𝐷 value (𝐾𝐷

𝐵𝐴𝐶 = 1µM; Storm and Strominger, 1973) and reduces the pool of free UPP to 
its half-maximum. As UPP is the most abundant intermediate in the lipid II cycle, this implies the sequestration of 
high levels of lipid intermediates from the cycle, thereby decreasing the concentrations of all free cycle 
intermediates, especially lipid II. Since the lipid II concentration determines the PG synthesis rate, this already 
reduces the rate to a level of 64% of its maximum. (B) Only slightly higher bacitracin concentrations are required to 
reduce the free lipid II pool and thereby the rate of PG synthesis to 50% (𝐼𝐶50

𝐵𝐴𝐶 = 1.8 µM) (C) In contrast, although 
nisin (NIS) - at concentrations around the 𝐾𝐷 (𝐾𝐷

𝑁𝐼𝑆 = 0.015µM; Wiedemann et al., 2001) - binds 50% of the free 
lipid II pool, this only sequesters ~1% of all lipid intermediates from the cycle. As the remaining lipid intermediates 
function as a reservoir and quickly replenish the free form of lipid II molecules by on-going cycling, the rate of PG 
synthesis is not reduced significantly (99% of maximum). (D) Only when increasing the nisin-concentration markedly 
(𝐼𝐶50

𝑁𝐼𝑆 = 10.1 µM), ~50% of the total lipid II cycle intermediates are sequestered into the nisin-lipid II complexes 
(LIIOUT-NIS) and the pool of free lipid II and thus the rate of PG synthesis are reduced to 50% of its maximal value. 
(E) A reduced model for the lipid II cycle rationalizes the in vivo efficacy gap by quantifying the ratio between 𝐼𝐶50 

and 𝐾𝐷, which is defined as ‘buffering factor’, by a mathematical equation 𝐼𝐶50

𝐾𝐷
≈  √(1 + ([𝑅]

[𝑇])
𝑛 . [𝑇] denotes the 

concentration of the antibiotic target and [𝑅] summarizes the concentrations of all non-target lipid II cycle 
intermediates, referred to as bactoprenol pool. 𝑛 represents the Hill coefficient describing cooperativity in antibiotic-
target interaction. The colour in the log-log plot codes for 𝑙𝑜𝑔 (𝐼𝐶50

𝐾𝐷
), where a high buffering factor indicates a large 

in vivo efficacy gap. The buffering factor and thus the in vivo efficacy gap increases for increasing bactoprenol 
reservoir size relative to the target pool (horizontal axis). The two arrows indicate the scenarios for UPP ([𝑇] >>
[𝑅]) and lipid II ([𝑇] << [𝑅]) binding. The buffering factor scales additionally with 𝑛, whereas higher 𝑛 reduce the 
ratios between 𝐼𝐶50 and 𝐾𝐷 (vertical axis). This reduction of the in vivo efficacy gap by increases cooperativity is 
most pronounced for large ratios between [𝑅] and [𝑇], as for lipid II binding antibiotics. 

 

Figure 43: The asymmetric distribution of lipid II cycle intermediates generates a massive in vivo efficacy 
gap for lipid II-targeting antibiotics. The intermediates within the lipid II cycle feature a highly asymmetric 
distribution with high concentrations of externally accessible UPP (UPPOUT) and comparable tiny concentrations of 
externally accessible lipid II (Lipid IIOUT). The size of the circles in A-D correlate with the concentrations of the 
different intermediates. The thickness of the black arrows is proportional to the reaction rates of the individual lipid 
II cycle reactions. The cell membrane is depicted in grey. (A) Efficient binding of external UPP by bacitracin (BAC) 
commences at its in vitro 𝐾𝐷 value (𝐾𝐷

𝐵𝐴𝐶 = 1µM; Storm and Strominger, 1973) and reduces the pool of free UPP to 
its half-maximum. As UPP is the most abundant intermediate in the lipid II cycle, this implies the sequestration of 
high levels of lipid intermediates from the cycle, thereby decreasing the concentrations of all free cycle 
intermediates, especially lipid II. Since the lipid II concentration determines the PG synthesis rate, this already 
reduces the rate to a level of 64% of its maximum. (B) Only slightly higher bacitracin concentrations are required to 
reduce the free lipid II pool and thereby the rate of PG synthesis to 50% (𝐼𝐶50

𝐵𝐴𝐶 = 1.8 µM) (C) In contrast, although 
nisin (NIS) - at concentrations around the 𝐾𝐷 (𝐾𝐷

𝑁𝐼𝑆 = 0.015µM; Wiedemann et al., 2001) - binds 50% of the free 
lipid II pool, this only sequesters ~1% of all lipid intermediates from the cycle. As the remaining lipid intermediates 
function as a reservoir and quickly replenish the free form of lipid II molecules by on-going cycling, the rate of PG 
synthesis is not reduced significantly (99% of maximum). (D) Only when increasing the nisin-concentration markedly 
(𝐼𝐶50

𝑁𝐼𝑆 = 10.1 µM), ~50% of the total lipid II cycle intermediates are sequestered into the nisin-lipid II complexes 
(LIIOUT-NIS) and the pool of free lipid II and thus the rate of PG synthesis are reduced to 50% of its maximal value. 
(E) A reduced model for the lipid II cycle rationalizes the in vivo efficacy gap by quantifying the ratio between 𝐼𝐶50 

and 𝐾𝐷, which is defined as ‘buffering factor’, by a mathematical equation 𝐼𝐶50

𝐾𝐷
≈  √(1 + ([𝑅]

[𝑇])
𝑛 . [𝑇] denotes the 
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and thereby a significant portion of the total amount of lipid intermediates is bound (Fig. 8A), 
resulting in similar values for the 𝐼𝐶50 of bacitracin and the in vitro 𝐾𝐷 (Fig. 8B). In contrast, the 
concentration of extracellularly presented lipid II is ~two orders of magnitude lower and the 
reduction of this concentration to 50% by antibiotic binding, e.g. by nisin, at the in vitro 𝐾𝐷 leads 
to a negligible reduction of the total amount of lipid intermediates (Fig. 8C). Here, the high-
abundant lipid intermediates serve as a reservoir and the ongoing circular flux of lipid 
intermediates quickly replenish the lipid II pool when it is diminished by antibiotic binding. The 
antibiotic concentration that causes a distinct reduction of total amount of lipid intermediates 
and thereby provokes a half-maximal rate of peptidoglycan synthesis, consequently, has to 
exceed the 𝐾𝐷 significantly (Fig. 8D). Thus, the reduced in vivo efficacy of lipid II-targeting 
antibiotics result from the fact that the concentration of extracellularly accessible lipid II is much 
lower than the concentration of other intermediates of the lipid II cycle. 

Eventually, beyond this mechanistic explanation for the in vivo efficacy gap, we also aimed to 
rationalize this phenomenon and find a mathematical equation describing how the antibiotic 
efficacy depends on the abundance of its cellular target. Here, an in-depth analysis of a 
reduced model version enabled us to find an analytical expression for the 𝐼𝐶50, which clearly 
revealed the factors that affect the in vivo efficacy of cell wall antibiotics: 

𝐼𝐶50 ≈ 𝐾𝐷 (1 +
[𝑅]
[𝑇]) 

[𝑇] represents the concentration of the antibiotic target and [𝑅] describes the sum over all 
concentrations of the other (non-target) lipid intermediates, referred to as bactoprenol 
reservoir. We defined (1 + [𝑅]

[𝑇]) as ‘buffering factor’, which quantifies the discrepancy between 

𝐼𝐶50 and 𝐾𝐷. According to this equation, the 𝐼𝐶50 and thereby the in vivo efficacy of a lipid II 
cycle-active antibiotic not only depends on its in vitro activity but also on the relative abundance 
of its target intermediate compared to the sum of all other intermediates (Fig. 8E, horizontal 
axis). For antibiotics that target the most-abundant intermediate UPP, such as bacitracin, the 
bactoprenol reservoir is small and [𝑅]

[𝑇] ≪ 1, such that 𝐼𝐶50 ≈ 𝐾𝐷. In contrast, for lipid II-binding 

antibiotics, the massive bactoprenol reservoir leads to a significant shift of the 𝐼𝐶50 compared 
to the 𝐾𝐷 ([𝑅]

[𝑇] ≫ 1) and the observed large in vivo efficacy gap. Hence, our results clearly 

showed that the reduction in the in vivo efficacy is most pronounced for lipid II-binding 
antibiotics. As they represent a large group within the cell wall antibiotics, it is plausible that 
bacteria have evolved to minimize the concentration of extracellularly accessible lipid II and 
we suggested this novel principle of ‘minimal target exposure’ as an intrinsic resistance 
mechanisms towards cell wall antibiotics.  

However, as a second major result, our theory predicted that this intrinsic resistance can be 
circumvented - at least partially - by antibiotics that cooperatively bind their targets and thereby 
provides the first quantitative explanation for the pivotal role of cooperative binding for the 
efficiency of vancomycin and other glycopeptide antibiotics (Jia et al., 2013; Loll et al., 1998; 
Wang et al., 2018). When expanding our model analysis to cooperative binding antibiotics, we 
were able to find a generalized mathematical expression describing how antibiotic efficacy 
additionally depends on the cooperativity in antibiotic-target interactions, quantified by the Hill 
coefficient 𝑛: 
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𝐼𝐶50 ≈ 𝐾𝐷 √(1 +
[𝑅]
[𝑇])

𝑛
 

This equation demonstrates that the Hill coefficient 𝑛 attenuates the buffering factor that shifts 
the 𝐼𝐶50 according to the relative abundance of the antibiotic target via the nth-root. Thus, the 
higher the cooperativity 𝑛 in antibiotic-target interaction, the lower the buffering factor and the 
smaller the discrepancy between 𝐼𝐶50 and 𝐾𝐷 (Fig. 8E, vertical axis). Obviously, this effect is 
particularly pronounced if the buffering factor is large, as for lipid II-binding antibiotics. Hence, 
our results demonstrated that cooperative binding can significantly boost the in vivo efficacy of 
lipid II-binding antibiotics. 

To summarize, the theory presented here correctly predicted the in vivo efficacy of five different 
cell wall antibiotics against the Gram-positive model organism B. subtilis and deciphered the 
factors that determine this efficacy. Thereby, it resolved the longstanding conundrum of a 
significantly reduced in vivo efficacy of lipid II-binding antibiotics, which is explained by the low 
abundance of intermediate lipid II in the lipid II cycle. Since the model was based on cumulative 
information about the lipid II cycle in diverse bacterial species, we hypothesized that it might 
serve as a universal description of the essential pathway of cell wall biosynthesis and expected 
the discovered principles to apply to other Gram-positive bacteria as well, including pathogens. 
In fact, experimental studies of Gram-positive pathogens revealed similar in vivo efficacy gaps 
for lipid II-binding antibiotics as observed and analysed for B. subtilis (Fig. 9) (Gebhard et al., 

Figure 9: Prediction of the in vivo efficacy for various cell wall antibiotics in diverse Gram-positive 
organisms. The developed theory predicts the in vivo efficacy (𝐼𝐶50, red solid bars) exclusively from the antibiotics 
in vitro dissociation constant (𝐾𝐷, green bars) and available information about the cooperativity in antibiotic-target-
interaction. The model predictions are in good agreement with experimental data for B. subtilis (Mota-Meira et al., 
2000; Radeck et al., 2016; Staroń et al., 2011; Tiyanont et al., 2006; Wecke et al., 2009), S. aureus (Hiron et al., 
2011; Yoshida et al., 2011) and E. faecalis (Gebhard et al., 2014, Shaaly et al., 2013) strains deleted for the known 
resistance determinants against the different antibiotics (MIC, red dashed bars), highlighting the universality of the 
theoretical model for various Gram-positive organisms. Error bars of literature MIC values represent standard 
deviations from multiple measurements, when available. Error bars for the model predictions of 𝐼𝐶50 values 
represent confidence intervals propagated from uncertainties in the model parameters.  



Bacillus subtilis response towards cell wall antibiotics      40 
 

 

2014; Hiron et al., 2011; Yoshida et al., 2011), letting us suggest that the asymmetric 
distribution of lipid II cycle intermediates is conserved amongst Gram-positive organisms and 
the principle of minimal target exposure might be a common intrinsic resistance strategy.  

 

3.5 Paper III: From modules to networks: A systems-level analysis of the 
bacitracin stress response in Bacillus subtilis 

In the manuscript ‘From modules to networks: A systems-level analysis of the bacitracin stress 
response in Bacillus subtilis’ by Hannah Piepenbreier, Andre Sim, Carolin M. Kobras, Jara 
Radeck, Thorsten Mascher, Susanne Gebhard and Georg Fritz (Piepenbreier et al., 2019b), 
we followed up on the systems-level analysis of cell wall antibiotic action, this time focussing 
on the role of cell envelope stress response systems in protecting cell wall biosynthesis from 
antibiotic-induced perturbations. Combining quantitative gene expression experiments with 
computational modelling, we sought to decipher regulatory mechanisms of the multi-layered 
bacitracin stress response in B. subtilis. More precisely, we studied how the primary bacitracin 
resistance determinant, BceAB, and the secondary resistance layer, BcrC, interact to combat 
bacitracin-induced perturbations of the lipid II cycle. To address this question, we first 
experimentally monitored cell growth and gene expression of both stress response modules in 
B. subtilis wildtype and mutant strains deficient for one or even both modules under varying 
bacitracin concentrations. The experimental results revealed quantitative differences in 
bacitracin sensitivity and response intensity of the two modules and demonstrated how the 
loss of one or both modules affects B. subtilis bacitracin resistance, confirming the previously 
postulated hierarchy (Radeck et al., 2016). To understand how the individual modules confer 
resistance in mutants in which the other module is missing and how they interact to shape the 
wildtype response towards bacitracin, we aimed for a quantitative description of the whole 
bacitracin stress response network. To this end, we expanded the previously developed model 
of the lipid II cycle (Piepenbreier et al., 2019a) by a theoretical description of the σM-control of 
BcrC expression and incorporated additionally a pre-existing theory of the Bce-system (Fritz 
et al., 2015). When calibrating this model with the quantitative experimental data describing 
the response characteristics of the individual modules towards bacitracin, we correctly 
predicted the susceptibility of the B. subtilis wildtype towards bacitracin. As our theory did not 
include any additional layers of regulation, we concluded from these results that the properties 
of the lipid II cycle itself contribute to control the interplay between both bacitracin stress 
response determinants in the wildtype.  

In addition, by studying the diverse mutant scenarios within our theory in detail, we were also 
able to formulate the hypothesis that B. subtilis compensates for a loss of BcrC by an increased 
total number of intermediates in the lipid II cycle. In a ΔbcrC mutant strain, not only the 
secondary bacitracin stress response determinant but also an important lipid II cycle enzyme 
is lacking, leading to a reduced dephosphorylation of UPP and accordingly, UPP accumulation 
and depletion of all other lipid intermediate pools. An increased total amount of lipid 
intermediates would counterbalance this depletion of all other lipid intermediate pools, thereby 
contributing to a homeostasis in cell wall synthesis. Testing this hypothesis by relative 
quantitative RT-PCR (qPCR), we indeed found higher transcript levels for some σM-controlled 
genes involved in the de novo production of lipid carrier UPP in a ΔbcrC mutant compared to 
the wildtype, letting us conclude that B. subtilis upregulates the UPP synthesis to raise the total 
amount of lipid intermediates in response to a loss of BcrC. In the end, we demonstrated that 
the significantly higher UPP levels caused by the increased production and accumulation in a 
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ΔbcrC mutant strain can also explain the increased activation of the primary resistance 
determinant BceAB when BcrC is lacking. 

Taken together, the theory presented in this paper precisely captured the response 
characteristics of the two bacitracin stress response modules and correctly predicted the 
susceptibility of B. subtilis wildtype and single or double mutants towards bacitracin. Thus, it 
not only provides a comprehensive quantitative description of the bacitracin stress response 
in B. subtilis but also enabled us to uncover principles that control the interplay between 
bacitracin detoxification via BceAB and maintenance of lipid II cycle homeostasis via BcrC. 
Interestingly, we were able to explain the stronger induction of σM in ΔbcrC mutant strains 
(Zhao et al., 2016) by a secondary role of this regulator in the homeostatic control of lipid 
intermediate concentrations when BcrC is lacking.  

 

3.6 Conclusion and Outlook 

A detailed understanding of both the effect of antibiotic action on bacterial growth and the 
strategies bacteria employ to protect against antibiotics is crucial to combat the alarming 
evolution of antibiotic-resistant bacteria, as this can guide the development of novel antibiotics 
and alternative treatment strategies. Within this chapter, an in-depth analysis of the 
perturbation of cell wall synthesis by cell wall antibiotics and the protective role of cell envelope 
stress responses in this context was presented.  

The first study presented here shed light on the systems-level behaviour of the lipid II cycle 
under antibiotic perturbations. While benefiting greatly from experimental insights into the 
cellular concentrations of the intermediates and kinetic constants of involved enzymes, the first 
quantitative computational model of the lipid II cycle in B. subtilis was developed and the 
antibiotic binding to lipid II cycle intermediates was studied. The theory revealed a highly 
asymmetric distribution of lipid intermediates and uncovered that the cell wall antibiotic’s in 
vivo efficacy scales with the relative abundance of the targeted lipid II cycle intermediate. Thus, 
a novel principle of ‘minimal target exposure’ was postulated as an intrinsic resistance 
mechanism to counteract cell wall antibiotic attack, not only relevant for in B. subtilis but also 
other Gram-positive pathogenic bacteria. In contrast to the traditional stress response 
strategies towards antimicrobial compounds, this principle of minimal target exposure is not an 
inducible stress response but can rather be understood as an ‘evolutionary stress response’. 
Bacteria may have evolved this highly asymmetric distribution of lipid II cycle intermediates 
and especially the reduced abundance of lipid II in response to frequent cell envelope stress 
caused by lipid II-binding antibiotics in nature and medicine. Although the permanent 
modification of the pentapeptide chain is a known strategy to combat vancomycin attack 
(Cetinkaya et al., 2000), it is plausible that a complex and essential molecule such as lipid II 
can hardly be modified completely - especially not in the core components as the 
pyrophosphate and the carbohydrate moieties, which represent the binding sites for most other 
lipid II-binding antibiotics. Thus, the reduction of the target exposure can be seen as an 
effective alternative resistance strategy towards lipid II-binding antibiotics that is compatible 
with the pivotal role of the target molecule in the biosynthetic pathway. As the success of this 
strategy critically depends on the cyclic nature of the lipid II cycle, it is plausible that the 
principle of minimal target exposure also applies to other cyclic biosynthetic pathways that are 
attacked by antibiotics, such as the cyclic biosynthesis of the second cell wall component, WTA 
(Brown et al., 2013; Swoboda et al., 2010). Obviously, the development of new antibiotics 
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clearly benefit from these findings, as they suggest the most effective perturbation of cyclic 
biosynthetic pathways is by antibiotics that bind to highly abundant intermediates. If only low-
abundant intermediates are accessible, cooperative binding should be considered to boost 
antibiotic potency, as our study also showed.  

A model expansion with the experimentally well-characterized B. subtilis bacitracin stress 
response network then revealed that the properties of the lipid II cycle not only determine the 
efficacy of cell wall antibiotics but also contribute to the regulation of the overall stress response 
to the cell wall antibiotic bacitracin in B. subtilis. Here, it would be worthwhile to investigate - 
both from an experimental and theoretical perspective - if a perturbation of the lipid II cycle 
additionally to the bacitracin-induced one, such as by further cell wall antibiotics, would impair 
the regulatory role of the cycle and unbalance the interplay between the two resistance 
modules. Controlling the interplay between stress response modules that protect the same 
biosynthetic pathway by properties of the pathway itself appears as a cost-efficient regulation 
strategy and thus, it would furthermore be interesting to study if this strategy also applies to 
additional stress response networks. 

Besides, the study of the bacitracin stress response network in B. subtilis uncovered σM-
dependent upregulation of lipid carrier production in response to a bcrC deletion, as the lack 
of BcrC induces UPP accumulation and depletion of all other intermediates of the lipid II cycle. 
Interestingly, activation of σM has also been previously noted in strains carrying further 
mutations that affect the abundance or distribution of lipid II cycle intermediates. For instance, 
a mutation that reduces the expression of UppS, the undecaprenol pyrophosphate synthetase 
catalysing the final step of UPP synthesis, leads to a modest induction of the σM regulon (Lee 
and Helmann, 2013). Furthermore, upregulation of the σM regulon was also observed in strains 
affected in WTA biogenesis (D'Elia et al., 2009). Like PG synthesis, WTA synthesis requires 
UP as a carrier to ferry precursors across the cell membrane and depends on UPP production 
and dephosphorylation (Brown et al., 2013; Swoboda et al., 2010). A perturbation of WTA 
synthesis consequently affects the availability of UPP and UP as lipid carriers for PG synthesis 
and thereby can cause re-distribution and shortage of intermediates in the lipid II cycle. In fact, 
it was shown that mutations in the later steps of WTA synthesis are lethal, presumably due to 
the sequestration of the limiting lipid carrier on dead-end products (D'Elia et al., 2006). 
Together, the previous results and the new insights suggest that one important role of σM as 
cell wall homeostasis regulator is to control the abundance and (correct) distribution of lipid II 
cycle intermediates to ensure progression of PG synthesis under cell wall-perturbing 
conditions - elicited both by cell wall antibiotics and the lack of important cell wall synthesis 
enzymes. The regulation of lipid II cycle intermediate balance can occur at different tuning 
knobs, dependent on which pathway is perturbed, as enzymes involved in UPP synthesis and 
WTA synthesis and also enzymes that provide a backup for key-steps in PG synthesis are part 
of the σM regulon (Eiamphungporn and Helmann, 2008; Helmann, 2016). According to this 
function of σM, one could speculate that the cognate anti-σ-factor YhdLK might release σM in 
response to changes in the distribution of lipid II cycle intermediates and that the physiological 
stimulus might be the accumulation or depletion of a specific lipid II cycle intermediate. To 
further investigate this, it would be worthwhile to continue experiments testing the connection 
between perturbations of PG, WTA and UPP synthesis caused by mutations in important steps 
and σM activation.  

Both studies clearly confirm theoretical modelling approaches as powerful tools to study 
bacterial stress responses towards antibiotics. The mathematical models reconciled in vitro 
and in vivo experiments and thereby deciphered complex features of the modelled systems, 
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which were not accessible by experimentation alone, such as the non-trivial emergent 
properties of the lipid II cycle as well as the regulatory interplay in the bacitracin stress 
response network in B. subtilis. Of note, the study on the systems-level response of the lipid II 
cycle towards cell wall antibiotics has benefitted two-fold from theoretical modelling: While 
model simulations demonstrated how the lipid II cycle behaves under antibiotic treatment, the 
in-depth model analyses of the reduced model deciphered why it behaves as it does. 
Analogous theoretical studies provided important insights into the bacterial responses towards 
other important classes of antibiotics, such as ribosome-targeting antibiotics (Deris et al., 2013; 
Greulich et al., 2015; Greulich et al., 2017) or DNA-replication inhibitors (Bollenbach et al., 
2009), and also β-lactams (Murphy et al., 2008). From all these results, it is clearly visible that 
theoretical modelling has the potential to unravel complex, non-trivial principles of bacterial 
stress responses towards antibiotics. However, key to the success of modelling are certainly 
the incorporation of experimental data as well as the validation of the model predictions by 
experiments, such that it is worthwhile to follow up on combined approaches in the fight against 
antibiotic-resistant bacteria.  

As a next step on this way, the theory of cell wall biosynthesis developed here can serve as a 
basis for further applications that can augment our understanding of cell wall antibiotic action 
in Gram-positive bacteria. For instance, an analogous study of the second class of cell wall 
antibiotics, the substrate-inhibiting compounds, can be performed within the existing 
theoretical framework. In addition, the developed model also allows the study of the effect of 
antibiotic combinations on the progression of the lipid II cycle, particularly combinations of 
antibiotics that feature different inhibition mechanisms (substrate-binding vs. enzyme-binding), 
which might shed light on promising drug-drug combinations for treatment of pathogen 
infections. Moreover, by expanding the model with a detailed quantitative description of the 
PG precursor synthesis pathway, the effect of additional cell wall antibiotics targeting this 
pathway, such as fosfomycin (Kahan et al., 1974), can be investigated. This, however, clearly 
requires a seamless biochemical characterization of the enzymes involved in PG precursor 
production by further experimental studies.  

To advance our knowledge of the regulation of bacterial stress responses towards cell wall 
antibiotics in wildtype cells, the theory of cell wall biosynthesis should be expanded with 
‘mathematical building blocks’ describing CESR modules for further cell wall antibiotics (as 
illustrated in Section 3.3) - analogous to the procedure demonstrated here for the bacitracin 
resistance network in B. subtilis. Moreover, the addition of a detailed description of WTA 
biosynthesis and UPP production pathway could also allow the investigation of the role of σM 
in controlling the interplay between PG, WT and UPP synthesis in response to cell wall 
antibiotics (as detailed above) from a theoretical perspective. As several of these CESR 
modules are highly conserved in Firmicutes bacteria (Gebhard, 2012; Revilla-Guarinos et al., 
2014), it is conceivable that these broader studies uncover general regulatory mechanisms of 
bacterial resistance against cell wall antibiotics.  

It would also be worthwhile to couple the existing theories with the bacterial growth laws 
describing the basic physiology of bacterial growth (Klumpp and Hwa, 2014; Scott and Hwa, 
2011; Scott et al., 2010) to study physiological adaptations to cell wall antibiotics. Since it was 
previously described that cells adapt their cell physiology and reduce their growth rate in 
response to antibiotic treatment (Balaban et al., 2004; Brauner et al., 2016; Lewis, 2007), it is 
of great importance to study from a quantitative perspective how the bacterial growth rate 
affects antibiotic efficacy. For instance, for the group of ribosome-targeting antibiotics, non-
trivial efficacy-growth rate relations have been observed and were attributed to growth-rate 
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dependent variations in cellular ribosome content and the ribosome binding kinetics of the 
antibiotic by mathematical modelling (Greulich et al., 2015). Likewise, it would be important to 
investigate how growth rate-dependent adaptations in the lipid II cycle affect the cycle 
properties and thereby the efficacy of cell wall antibiotics. Here, experimental determinations 
of both, concentration of lipid II cycle enzymes and lipid intermediates as well as antibiotic 
MICs under different growth rates could guide a model expansion to decipher efficacy-growth 
rate relations for cell wall antibiotics. Moreover, it will be important to analyse growth-rate 
dependent variations in the expression of specific resistance determinants experimentally, as 
they can certainly affect the efficacy-growth rate relation. From a theoretical perspective, it 
would be then interesting to study the interplay between the specific resistance mechanisms 
and the adaptations in cell physiology that ultimately shapes the overall cellular response 
towards cell wall antibiotics and determines bacterial antibiotic resistance. 
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A.1 Toxic but tasty – temporal dynamics and network architecture of heme 
responsive two-component signalling in Corynebacterium glutamicum. 
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Toxic but tasty – temporal dynamics and network architecture of 
heme-responsive two-component signaling in Corynebacterium 
glutamicum

Marc Keppel,1† Hannah Piepenbreier,2†  
Cornelia Gätgens,1 Georg Fritz 2* and  
Julia Frunzke1*
1 Institute of Bio- und Geosciences, IBG-1: 
Biotechnology, Forschungszentrum Jülich, Jülich, 
52425, Germany. 
2 LOEWE-Zentrum für Synthetische 
Mikrobiologie, Philipps-Universität Marburg, Marburg, 
35032, Germany. 

Summary

Heme is an essential cofactor and alternative iron 
source for almost all bacterial species but may cause 
severe toxicity upon elevated levels and consequently, 
regulatory mechanisms coordinating heme homeosta-
sis represent an important fitness trait. A remarkable 
scenario is found in several corynebacterial species, 
e.g. Corynebacterium glutamicum  and 
Corynebacterium diphtheriae , which dedicate two par-
alogous, heme-responsive two-component systems, 
HrrSA and ChrSA, to cope with the Janus nature  of 
heme. Here, we combined experimental reporter pro-
filing with a quantitative mathematical model to under-
stand how this particular regulatory network 
architecture shapes the dynamic response to heme. 
Our data revealed an instantaneous activation of the 
detoxification response (hrtBA ) upon stimulus per-
ception and we found that kinase activity of both 
kinases contribute to this fast onset. Furthermore, 
instant deactivation of the PhrtBA promoter is achieved 
by a strong ChrS phosphatase activity upon stimulus 
decline. While the activation of detoxification response 
is uncoupled from further factors, heme utilization is 
additionally governed by the global iron regulator 
DtxR integrating information on iron availability into 

the regulatory network. Altogether, our data provide 
comprehensive insights how TCS cross-regulation 
and network hierarchy shape the temporal dynamics 
of detoxification (hrtBA ) and utilization (hmuO ) as part 
of a global homeostatic response to heme.

Introduction

‘All things are poison, and nothing is without 
poison, the dosage alone makes it so a thing 
is not a poison’ – Paracelsus (1493–1541)

Heme represents an important iron source for almost 
all bacterial species (Andrews et al. , 2003) and is a ubiq-
uitous cofactor of a variety of enzymes (Poulos, 2007). 
Elevated cellular concentrations of heme can, however, 
cause severe toxicity. But this is basically true for all nutri-
ents as already emphasized by the Swiss physician and 
founder of modern toxicology, Paracelsus (Paracelsus, 
1965; Borzelleca, 2000). Consequently, a robust regula-
tion of homeostasis is key to the cell’s survival and typi-
cally, sophisticated regulatory mechanisms are engaged 
in maintaining optimal intracellular conditions and toler-
ance to environmental fluctuations.

Once inside the cell, most bacteria rely on heme oxy-
genases to catalyze the conversion of heme to biliverdin, 
thereby salvaging the central iron atom with the con-
comitant release of carbon monoxide (Wilks, 2002). One 
early-characterized example for this class of enzymes is 
HmuO, a heme oxygenase of Corynebacterium diphthe-
riae  that was found to be essential for the utilization of free 
and hemoglobin-bound heme (Schmitt, 1997; Wilks and 
Schmitt, 1998). An ortholog of HmuO was also identified 
in Corynebacterium glutamicum , were the deletion of the 
corresponding gene led to reduced growth on hemin as 
sole iron source (Frunzke et al. , 2011). In Gram-negative 
pathogens, including Neisseria  spp. and Pseudomonas 
aeruginosa , proteins of the HemO/PigA family were found 
to catalyze the cleavage of the porphyrin ring structure, but 
do not share significant sequence similarity with HmuO of 
Gram-positive species (Zhu et al. , 2000b; Ratliff et al. , 
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2001). The cost and benefit of using heme as an alterna-
tive iron source, however, needs to be carefully considered 
by the cell. Corynebacterial species, for example, employ 
the master regulator of iron homeostasis, DtxR, to feed 
information on iron availability into the network controlling 
heme homeostasis. DtxR was shown to repress hmuO  
under iron-replete conditions and thereby adds an addi-
tional layer of regulation to the physiological response to 
heme (Schmitt, 1997; Wennerhold and Bott, 2006).

Due to the reactive nature of the heme molecule, high 
levels are readily toxic to microbial cells (Imlay et al. , 1988; 
Nir et al. , 1991; Anzaldi and Skaar, 2010; Wakeman et al. , 
2012). Consequently, organisms have evolved a variety 
of mechanisms to minimize toxic effects. Whereas some 
bacteria rely mostly on their oxygenase to degrade excess 
heme, such as Neisseria gonorrhoeae  (Zhu et al. , 2000a) 
or Clostridium perfringens  (Hassan et al. , 2010), an alter-
native strategy can be found in the eukaryotic parasite 
Plasmodium s pp. which is capable to sequester excess 
heme in an insoluble substance called hemozoin (Fitch, 
1998; Jani et al. , 2008; Anzaldi and Skaar, 2010). While 
several bacterial species harbor bacterioferritins, which 
can store iron in the form of heme molecules, other forms 
of sequestration are not well described so far (Andrews 
et al. , 2003; Anzaldi and Skaar, 2010). A third class of 
detoxification systems are heme exporters, such as HrtBA 
which have been described for several Gram-positive spe-
cies including Staphylococcus aureus  (Torres et al. , 2007; 
Stauff and Skaar, 2009a), Bacillus anthracis  (Stauff and 
Skaar, 2009a), Streptococcus agalactiae  (Fernandez et 
al. , 2010) and can also be found in corynebacterial spe-
cies (Bibb and Schmitt, 2010; Heyer et al. , 2012).

Bacterial two-component systems (TCS), consisting 
of a membrane bound histidine kinase (HK) and a cyto-
plasmatic response regulator (RR) (Mascher et al. , 2006; 
Zschiedrich et al. , 2016), play a central role as transient 
heme sensor systems in Gram-positive species (Stauff 
and Skaar, 2009b). This is known from bacteria such as 
Staphylococcus aureus  and Bacillus anthracis , both uti-
lizing the heme sensor system HssRS to react to heme as 
extracellular stimulus (Stauff and Skaar, 2009a; 2009b). 
A common theme among Corynebacteriaceae  appears 
to be the dedication of two paralogous TCS for the reg-
ulation of heme homeostasis (Bibb et al. , 2007; Frunzke 
et al. , 2011; Bott and Brocker, 2012; Heyer et al. , 2012; 
Burgos and Schmitt, 2016). Here, the HrrSA and ChrSA 
systems coordinate the expression of genes involved in 
heme biosynthesis, heme detoxification (hrtBA ), respi-
ratory chain and the heme oxygenase (hmuO ). While 
in C. glutamicum  it was suggested that both TCS have 
partially overlapping regulons, HrrSA was shown to play 
an important role in in the utilization of heme as an alter-
native iron source by activating expression of hmuO , 
whereas ChrSA is crucial for the activation of the hrtBA  

operon encoding a heme exporter (Frunzke et al. , 2011; 
Heyer et al. , 2012). Furthermore, previous studies of our 
group revealed significant cross-phosphorylation between 
these TCS but a highly specific phosphatase activity of 
the HKs toward their cognate RR (Hentschel et al. , 2014). 
Previous studies focused mostly on the identification of 
target genes, which were confirmed by different in vivo  
and in vitro  assays. However, the systemic understand-
ing of this homeostatic network, maintaining balance 
between heme detoxification and utilization, demands the 
analysis of temporal dynamics and requires comprehen-
sive insights in the particular network architecture.

In this study, we have conducted an analysis of reporter 
assays of HrrSA and ChrSA target promoters in the 
background of the wild-type strain, as well as in mutant 
strains lacking single components of the two TCSs. 
These data were integrated in a quantitative mathemat-
ical model, which was used to test functional hypotheses 
and to simulate distinct differences in autoregulation and 
ON/OFF kinetics of target promoters. Finally, by study-
ing the impact of the iron regulator DtxR on hrrA  and 
hmuO  expression at temporal resolution our data as well 
as the model revealed that DtxR adds an important addi-
tional regulatory level ensuring the appropriate timing of 
heme utilization.

Results

Temporal hierarchy in the heme utilization and 
detoxification response

Under iron-limiting conditions, the growth of C. glutam-
icum  is significantly impaired, but can be restored by the 
presence of heme in the medium. Provided that excess 
heme is toxic to the cells, we wondered which strategy 
C. glutamicum  uses to regulate the balance between its 
heme utilization and detoxification modules. To this end, 
we studied the expression dynamics of the two major 
components responsible for heme utilization (hmuO ) and 
detoxification (hrtBA ) in response to an extracellular heme 
stimulus, by monitoring promoter-reporter fusions for the 
two systems (Hentschel et al. , 2014). Interestingly, a wild-
type strain of C. glutamicum  transformed with plasmids 
carrying the reporter constructs (pJC1_PhmuO-eyfp  or 
pJC1_PhrtBA-eyfp ) revealed highly distinct response pro-
files and a temporal hierarchy in reporter output of the 
PhmuO and PhrtBA promoters (Fig. 1): While we observed a 
nearly instant but transient response for the heme detox-
ification module hrtBA  to 4 µM extracellular heme (Fig. 
1, red line ), the heme utilization module hmuO  displayed 
higher initial expression levels compared to hrtBA  and 
experienced an expression boost after a delay of about 
5 h (Fig. 1, green line ). This increase in hmuO  expression 
temporally coincides with a declining hrtBA  expression. 
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From a physiological perspective, these antagonistic 
expression profiles seem plausible and impressively 
demonstrate the urgency of detoxification over utilization 
after first contact with the stimulus.

How does C. glutamicum  implement appropriate tim-
ing of detoxification and utilization using two paralogous 
TCS responsive to the same stimulus? In this study, we 
formulated three distinct questions and addressed those 
by experiments described in the following:

1. How does cross-regulation between ChrSA and HrrSA 
affect hrtBA  and hmuO  expression respectively?

2. Does the differential interpretation of their common 
stimulus, i.e. the external heme concentration, impact 
the response?

3. How does regulatory hierarchy and network architec-
ture affect the response profile?

To test the first hypothesis, we tested two mutant 
strains deleted for either one of the HKs (ΔchrS  and 

ΔhrrS ) and transformed them with a reporter plasmid 
carrying the non-cognate target promoter (ΔchrS/ pJC1_
PhmuO -eyfp  and ΔhrrS/ pJC1_PhrtBA-eyfp ). Strikingly, 
despite some quantitative differences (as discussed 
below), neither of the deletions changed the qualitative 
response of the non-cognate target promoter toward 
heme (Fig. 1B), that is the PhrtBA-eyfp  response was 
still transient in a ΔhrrS  mutant and the PhmuO -eyfp  re-
sponse was still delayed in a ΔchrS  mutant, indicating 
that cross-regulation between the TCS cannot explain 
the antagonistic regulation strategy in C. glutamicum .

Modeling of heme uptake and consumption

Therefore, we wanted to test whether the depletion of 
external heme could serve as a joint trigger to cause 
opposing regulation of heme utilization and detoxification 
systems. However, before turning to this question, we 
first asked how long it would take to deplete heme in our 
experiments? To this end, we considered a simple math-
ematical model describing the uptake and consumption 
of heme, assuming that the reproduction of C. glutam-
icum  requires ~5 × 106 Fe2+ molecules per single cell (see 
Supplementary Text for details). Since this number sets 
a constraint on the growth kinetics of C. glutamicum  in 
the heme-supplied medium, we studied the availability of 
heme per cell during bacterial growth. At the given final 
biomass and at the experimentally determined growth rate 
in our medium (Fig. 2A and B), the model predicts a deple-
tion of the total heme levels per cell (levels of cytoplasmic 
heme and portion of extracytoplasmic heme in the medium 
per cell) approx. 3–5 h after the start of the experiment 
(Fig. 2E), depending on the initial heme concentrations in 
the medium. Experimental measurements of the levels of 
cell-associated heme (see Experimental procedures for 
experimental details) (Fig. 2D), which correspond to the 
model predictions of the heme levels per cell, confirm 
these dynamics and point out that the availability of heme 
in the medium dictates the growth dynamics of C. glutam-
icum . Hence, when comparing the experimental growth 
curves (Fig. 2A) with the theoretical predictions, the time 
points when cytoplasmic heme pools are depleted (Fig. 
2C), in fact correlate with the cease of growth of the cul-
tures in experiment and theory (Fig. 2A and B). Also the 
time point of growth cessation can be tuned by adding dif-
ferent initial heme concentrations (1–4 µM) to the medium 
(Fig. 2A), as predicted by our model (Fig. 2B).

Transient expression of the C. glutamicum hrtBA  
detoxification module

Next, we asked whether the depletion of heme could 
also explain the transient activity of the hrtBA  promoter. 
To this end, we extended our mathematical model to 

Fig. 1. Activation of PhmuO and PhrtBA in response to extracellular 
heme addition. 
A. The C. glutamicum  wild-type strain was transformed with one 
of the target gene reporters pJC1_PhmuO-eyfp  or pJC1_PhrtBA-
eyfp . Iron-deprived cells were subsequently cultivated in a 
microbioreactor system (Biolector) in CGXII minimal medium with 
2% (w/v) glucose containing 4 µM hemin. The eYFP fluorescence 
was measured as the output of target promoter activation, and 
backscatter values were recorded to monitor biomass formation. 
The specific fluorescence (fluorescence/backscatter) was 
normalized according to material and methods and the reporter 
activity (%) was calculated with the maximum reporter output. 
B. C. glutamicum  ΔchrS /pJC1_PhmuO-eyfp  and ΔhrrS /pJC1_PhrtBA-
eyfp  grown as described in (A). Non-cognate sensor kinases do 
not significantly affect the response profile. [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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describe stimulus perception and regulation within 
the two TCSs, as well as the dynamical response of 
the chrSA  and hrtBA  operons (for details, the reader 
is referred to the Supplementary text). Briefly, the 

model considers sensing of externally added heme 
and subsequent autophosphorylation of ChrS and HrrS 
(Keppel et al. , 2018), (cross-)phosphorylation of ChrA 
by phosphorylated HKs (ChrS~P and HrrS~P) and 

Fig. 2. The mathematical model reproduces the experimental growth curves quantitatively. 
A. Growth curves of the C. glutamicum  wild-type strain under increasing hemin concentrations (1 µM, 2 µM and 4 µM). 
B. The mathematical model can reproduce the average growth behavior (left). 
C. The mathematical model predicts the consumption of cytoplasmic heme required for growth. 
D. The depletion of cell-associated heme (sum of internal heme and external heme adhering to the cell) dictates the bacterial growth. The 
experimental data align with (E) the model predictions of total heme levels per cell (cytoplasmic heme and the portion of external heme per 
cell). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Fig. 3. Regulatory scheme and dynamic response of the C. glutamicum  heme detoxification module. 
A. Scheme of the regulatory interactions considered in the mathematical model for the heme detoxification module. Uptake of external heme 
molecules via HmuTUV and subsequent consumption/incorporation via diverse enzymes is crucial for bacterial growth under iron starvation. 
The fine-tuned response to heme in order to avoid intoxication is mainly based on the two TCSs ChrSA and HrrSA. The two kinases 
ChrS and HrrS are autophosphorylated in response to external hemin. After activation, they (cross-)phosphorylate the response regulator 
ChrA. In addition, the non-phosphorylated form of ChrS functions as a phosphatase on the phosphorylated response regulator ChrA. The 
phosphorylated response regulator activates expression of its target genes hrtBA  and chrSA . The gene product of hrtBA  is a heme exporter 
that transports internal heme to the extracellular space. 
B. Dynamical response of our computational model for the detoxification module (Supplementary Text; Model equations M1) toward different 
external heme levels, as given by the simulation of specific fluorescence of a PhrtBA-eyfp  reporter, normalized to the maximal specific 
fluorescence at 4 µM heme. 
C. Experimental dynamical response of a PhrtBA-eyfp  reporter in wild-type C. glutamicum  cells toward different heme concentrations supplied 
in the medium at t  = 0 h. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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promoter activation of PchrSA and PhtrBA by phosphory-
lated response regulator ChrA~P (Fig. 3A). Simulations 
of the model predict that the depletion of external heme 
dictates the time point of deactivation of PhrtBA, lead-
ing to a prolonged promoter activity and higher overall 
HrtBA production at higher initial heme concentrations 
(Fig. 3B). In fact, when experimentally supplying dif-
ferent heme concentrations (1–9 µM) to the medium, 
we found that both the strength as well as the dura-
tion of PhrtBA-eyfp  expression increased with increas-
ing amounts of supplied heme (Fig. 3C). In the light of 
a bifunctional ChrS kinase/phosphatase, exhaustion 
of external heme is sufficient to explain the transient 
response dynamics of PhrtBA-eyfp  expression.

Interestingly, our experimental data also showed that 
for all heme concentrations, the initial response (within 
the first hour) of the reporter PhrtBA-eyfp  was almost iden-
tical (Fig. 3C) and that the overall peak height is only mod-
ulated by the time point of stimulus decline. This suggests 
that either (i) despite varying levels of ChrA~P, the PhrtBA 
promoter is nearly fully saturated or (ii) the applied heme 
concentrations lead to saturation of the sensor kinase, i.e. 
maximal phosphorylation ([ChrS~P]/[ChrSTOT] ≈1), and 
thus to similar phosphorylation levels of ChrA. In order 
to discriminate between these scenarios, we sought to 

increase ChrA~P levels in the cell and test whether the 
PhrtBA will be more active than in the wild type. To this 
end, we analyzed a chrS  phosphatase-OFF mutant (chr-
SQ191A ) still harboring its kinase activity (Hentschel et 
al. , 2014), supposedly leading to higher ChrA~P levels. 
Interestingly, the chrSQ191A  phosphatase mutant strain 
displayed a sevenfold increased PhrtBA-eyfp  output (Fig. 
4A), as incurred by a higher and more sustained promoter 
activity within the first 4 h of incubation when compared to 
the wild type (Fig. 4A inset ). A similar behavior can also 
be observed in our computational models, in which the 
maximal phosphorylation level of ChrA is 25% in the wild 
type as compared to 100% in the phosphatase mutant 
(Fig. S5B), leading in our model to a stronger initial pro-
moter activity in the latter case (Figs. 4B and S5C). The 
predicted increase of initial promoter activity is, however, 
more prominent in the model than in our experimental 
data, in which the kinase mutant showed a wild-type-like 
behavior for around 1 h before reaching a stronger pro-
moter activity (Fig. 4A inset ). Within the model, the time 
point of differentiation between the reporter output of the 
wild type and the phosphatase-OFF mutant – induced by 
stimulus decline and accordingly divergent ChrA~P levels 
(Fig. S5B) – is reached after ≈ 15 min (Fig. S5C). This 
discrepancy emphasized that saturation of kinase activity 

Fig. 4. Kinase and phosphatase activity of ChrS shape the hrtBA  response. 
A. Reporter output of C. glutamicum  wild type and mutant strains carrying the vector pJC1_PhrtBA-eyfp . Cells were inoculated in CGXII 
minimal medium with 2% (w/v) glucose containing 4 µM hemin as iron source. 
B. Simulated specific fluorescence of the C. glutamicum  wild-type strain and in the mutant strains chrSQ191A  (phosphatise = off), chrSH186A  
(kinase = off) and ΔchrS . [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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is not sufficient to explain the experimental data and that 
instantaneous promoter occupancy by phosphorylated 
response regulator may contribute to the fast onset of the 
detoxification response (see ‘Memoryless activation of 
the hrtBA  detoxification module’).

Finally, another interesting feature of the model is that 
the depletion of external heme leads to a quick dephos-
phorylation of ChrA~P and promoter shut-off in the wild 
type. In contrast, in the phosphatase mutant, ChrA~P is 
only slowly diluted and/or degraded by growth or sponta-
neous dephosphorylation (Fig. S5B), leading to a signifi-
cantly delayed promoter shut-off about 1 h after external 
heme depletion. Thus, the strong phosphatase activity of 
ChrS is important in wild type cells in order to quickly turn 
off hrtBA  expression once external heme is depleted.

Both kinases, ChrS and HrrS, contribute to a fast onset 
of the PhrtBA promoter

Next, we wanted to study the response of the heme 
detoxification module in a strain featuring reduced 
ChrA~P levels. However, a chrS  mutant deficient in its 
kinase activity (chrSH186A ) was unable to activate the 
PhrtBA promoter altogether (Fig. 4A; grey line ), suggesting 
that ChrSH186A retains its strong phosphatase activity 
and likely reduces ChrA~P below a level required to acti-
vate PhrtBA. Instead, our model predicted that in a ΔchrS  
mutant, which lacks both kinase and phosphatase activity 
from ChrS, the non-cognate HrrS sensor kinase should 
be able to slowly, but gradually phosphorylate ChrA~P 
(Hentschel et al. , 2014) and thus activate PhrtBA (Fig. 4B; 
light red ). Indeed, the experimental kinetics of the PhrtBA 
-eyfp  reporter showed a weaker activation during the first 
2 h, but also displayed a more sustained and eventually 
a stronger expression peak compared to the wild type 
(Fig. 4A). Within our computational model, this sustained 
response is again caused by the slow rate of dilution 
and/or dephosphorylation of ChrA~P after heme deple-
tion, given the lack of phosphatase activity in the ΔchrS  
mutant (Fig. 4B). Taken together, these data show that 
in the absence of ChrS, the non-cognate kinase HrrS is 
sufficient to activate the promoter of the detoxification 
module, PhrtBA.

This provoked the question as to whether the non-cog-
nate kinase HrrS also has an effect on the induction 
kinetics of PhrtBA in wild-type cells. Interestingly, when 
measuring the PhrtBA-eyfp  reporter activity in a ΔhrrS  
mutant, the mutant indeed showed a delayed promoter 
activation and was about 20–30 min slower than the 
wild type (Fig. 5). This suggests that HrrS acts as a ‘kick-
starter’ in order to speed up the induction of the detoxi-
fication system. The additional kinase activity conferred 
by HrrS might in fact be needed as a support for ChrS 
to achieve higher ChrA phosphorylation levels, given that 

our analysis above suggested that ChrS is already fully in 
its kinase state for all heme concentrations applied here.

Memoryless activation of the hrtBA  detoxification 
module

Above-described results suggested that a high promoter 
occupancy by ChrA~P may contribute to the fast onset 
of the detoxification response. Considering this scenario, 
we would not expect memory in the PhrtBA response if 
two heme pulses were applied at subsequent times. 
Theoretically, our model predicted nearly identical levels 
of promoter saturation for different heme levels, suggest-
ing that the application of a second heme pulse should 
not lead to a faster response and no priming effect on the 
output should be observable.

While lag phase cells (growth depicted in Fig. S1) 
needed up to 35 min to reach maximum promoter activ-
ity following a heme pulse, promoter activity was nearly 
instantaneously observable after an additional heme 
pulse in the early exponential phase (Fig. 6A). Here, cells 
did respond equally fast irrespective of whether the cells 
were primed first, but a slightly higher maximal activity 

Fig. 5. HrrS-mediated cross-phosphorylation of ChrA might act 
as a kick-start impulse contributing to a fast ON-set of the PhrtBA 
response. Reporter output of C. glutamicum  wild-type cells and 
the mutant strains ∆hrrS  and ∆chrS , carrying the vector pJC1_
PhrtBA-eyfp  and cultivated in CGXII minimal medium with 2% (w/v) 
glucose containing 4 µM hemin as iron source. [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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was observed after cells were primed with a heme pulse 
(Fig. 6A, red line ) in comparison to an iron pulse (Fig. 
6A, black line ). Furthermore, the time point of the sec-
ond heme pulses did not affect the onset of the PhrtBA 
response (Fig. S2). Please note that the higher ampli-
tude of the second pulse (Fig. 6A) is a result of cells 
already containing eYFP molecules and a ‘reactivation’ of 
ChrSA (and thus PhrtBA) leads to formation of additional 
eYFP molecules. The total increase is comparable to the 
increase in the first 4 µM hemin pulse. Overall, this data 
supports the hypothesis that promoter saturation by phos-
phorylated response regulator contributes as a significant 
determinant of response kinetics.

Heme utilization is co-regulated by DtxR integrating 
information on iron availability

While a detoxification response must be fast and rather 
uncoupled from other regulatory interference, utilization 
of a particular nutrient has to be carefully considered in 
the light of the current physiological status of the cell: As 
shown above, the activation of the detoxification module 
hrtBA  is solely influenced by the amount of heme in the 
medium. In contrast, for a decision on heme utilization 
as an alternative iron source, information on general iron 
availability needs to be incorporated into the network con-
trolling hmuO  expression. In this context, it was already 
revealed by the previous studies that both hrrA  and hmuO  
are repressed by the iron regulator DtxR in response to 
iron availability (Wennerhold and Bott, 2006).

Given that DtxR repression and HrrA activation seem to 
have opposing effects on the timing of hmuO  expression, 

we asked how these signals are prioritized at the PhmuO pro-
moter. To investigate the impact of both regulators on the 
activation of the heme utilization system, we developed a 
second mathematical model that focuses on HrrSA and 
DtxR as main regulators of the PhmuO und PhrrA activity 
(Fig. 7A). Like before, in this model the description of the 
non-cognate two-component system (ChrSA) was limited to 
the cross-phosphorylation of ChrS on HrrA. In addition, we 
made the simplifying assumption that the activation of DtxR 
is proportional to the internal heme levels, based on the fact 
that the iron availability is proportional to the conversion of 
the internal heme pool under our experimental (iron-limit-
ing) conditions. Activated DtxR and phosphorylated HrrA 
bind to both PhmuO and PhrrA promoters, where they repress 
and activate gene expression respectively. Ultimately, 
increased production of the heme oxygenase HmuO con-
tributes to heme consumption (Frunzke et al. , 2011) (see 
Supplementary Text; Model equations M2 for all details).

Simulations of this computational model revealed a 
biphasic induction pattern of the PhmuO promoter with a 
quick activation within the first hour after heme addition, 
followed by a significantly delayed expression boost at 
approx. 4–5 h (for 4 µM heme) (Fig. 7B), very similar to 
the experimental dynamics observed before (Fig. 1). The 
initial activation of PhmuO within the model is induced by 
an instantaneous increase in HrrA~P levels (Fig. 7D) in 
response to external heme. Since the dynamics of the 
active form DtxR~Fe2+ indirectly depends on the increase 
in cytoplasmic heme (which is converted to intracel-
lular iron) (Fig. 2C), the DtxR-mediated repression of 
PhmuO, which counteracts the promoter activation by 
HrrA~P, initiates not before DtxR~Fe2+ exceeds a certain 

Fig. 6. Additional heme pulses do not ‘prime’ the PhrtBA output. 
A. C. glutamicum  wild type cells were transformed with the target gene reporter pJC1_PhrtBA-eyfp  and starved from iron overnight as 
described in material and methods. Subsequently, the cells were inoculated in CGXII minimal medium without iron source and eYFP 
fluorescence (=reporter output) and backscatter (biomass) was measured every 5 min. After 45 min, hemin (A, grey line) or FeSO4 (A, 
black line) was added to a final concentration of 4 µM. A second pulse of 4 µM hemin was applied to both conditions after 225 min. B. 
Promoter activities (calculated as derivative of the fluorescence intensity (I) over time (t), divided by the cell’s biomass (backscatter), that is 
dI(t)
dt

∕backscatter(t)) of (A) in relation to the first or second pulse. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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threshold – approximately after 1 h – in the model (Fig. 
7D). However, low basal levels of endogenously synthe-
sized heme, which are not reflected in the mathematical 

model, as well as trace amounts of iron (resulting from the 
pre-cultivation of the cells, see Experimental Procedures) 
probably lead to a basal level of activated DtxR in the 
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experimental scenario. These basal levels of DtxR might 
reduce the initial activation of HrrA~P on PhmuO in vivo , 
leading to a less-pronounced initial increase and a more 
prominent plateau in the experimental data (Fig. 7C) of the 
PhmuO-eyfp  reporter output compared to the model predic-
tion (Fig. 7B). Interestingly, when lowering the initial heme 
concentration, the model predicts an earlier onset of PhmuO 
activation. Strikingly, when experimentally tuning the initial 
heme levels, we found this exact hierarchy in the activation 
of the heme utilization module (Fig 7C): A short delay of 
3 h at 1 µM heme and a longer delay of 5 h at 4 µM heme.

As such, this biphasic induction of hmuO  strikingly dif-
fers from hrtBA  activation by ChrSA and is governed by 
the influence of the iron repressor DtxR on hmuO  expres-
sion (Fig. 8). Upon depletion of internal heme (and thus 
iron-levels) below a critical threshold, DtxR dissociates 
from its target promoters and allows their activation (Fig. 
7B and D). Accordingly, lower initial heme concentrations 
within the medium do also shift the time point of heme 
exhaustion to earlier times, thereby rationalizing the ear-
lier induction of gene expression in the heme utilization 
module. From a physiological perspective, this again 
seems very plausible, suggesting that high levels of the 
heme utilization system are only required under iron lim-
itation when external heme sources are available.

Regarding the regulatory hierarchy of HrrA and DtxR 
on PhmuO activity, one can think of two potential sce-
narios: either (i) HrrA is a bona fide  activator of hmuO  
expression or (ii) HrrA-binding competes with the binding 
of the repressor DtxR thereby acting as an activator by 
derepressing hmuO , as might be suggested by the close 
proximity of their binding sites within the PhmuO promoter 
(Fig. 8A). Altogether, our experimental data are clearly 
in favor for HrrA acting as a bona fide  activator. While 
PhmuO activity is completely abolished in a hrrA  mutant 
(twofold lower reporter output that the WT), it is strongly 
increased in mutant lacking the dtxR  gene (Fig. 8B). 
Furthermore, we tested different triplet mutations in the 
HrrA binding site in their ability to disrupt HrrA binding. 
In EMSA-studies, an AAC::TTG mutation in the middle of 
the HrrA operator completely abolished in vitro  binding of 
HrrA to PhmuO (Fig. S3). Subsequently, this mutation was 

inserted to the pJC1_PhmuO-eyfp  reporter, resulting in the 
pJC1_PhmuO-eyfp AAC::TTG plasmid (Fig. 8A). Irrespective 
of whether it was introduced to the wild-type strain or the 
∆dtxR  strain, disruption of HrrA binding decreased the 
activity of the PhmuO reporter to background levels (Figs. 
8B and S4). To further validate our findings, we tested 
the wild type strain carrying the PhmuO reporter under 
different heme and iron conditions (high-iron/low-heme; 
low-iron/high-heme, etc). As also revealed by our model 
(Fig. 7B and C), the results shown in Figure S8 indicate 
the intimate link between the iron and the heme pool. 
Due to the basal expression of the heme oxygenase (see 
Fig. 1 or Fig. 8, WT versus ΔhrrA ) addition of heme will 
also impact the bioavailable iron pool, thereby affecting 
DtxR-mediated repression of hmuO . Thus, according to 
our current model, HrrA represents an essential activa-
tor of hmuO,  which is required for a basal level of hmuO  
expression (and likely also required for the turnover of 
the endogenously synthesized heme). DtxR repression 
places an additional threshold on hmuO  activation, which 
is only released when the intracellular iron pool is deplet-
ing. Then DtxR dissociates from the hmuO  promoter 
allowing full activation by HrrA.

Discussion

Orchestration of heme homeostasis and detoxification 
of excess heme appears to be of utmost importance for 
Corynebacteriaceae , as remarkably, several species 
dedicate two paralogous TCS to this regulatory task (Bott 
and Brocker, 2012). Here, we provide comprehensive 
insights into the temporal dynamics of hmuO  and hrtBA  
expression modulated by HrrSA and ChrSA in C. glutam-
icum . Similar regulatory setups, with two paralogous, 
exclusively heme-dedicated systems are, for example, 
found in C. diphtheria, Corynebacterium pseudotubercu-
losis  and Corynebacterium lipophiloflavum  (Trost et al. , 
2010; Bott and Brocker, 2012), where the corresponding 
sequence identities and a conserved genomic synteny 
suggest a similar role of these systems in the coordi-
nated control of heme detoxification and utilization (Bibb 

Fig. 7. Information on iron availability is integrated into the HrrSA-regulated utilization module hmuO  via DtxR. 
A. The mathematical model of the heme utilization module in C. glutamicum  shares many basic assumptions with the model of heme 
detoxification (for description see Fig. 3). Here, heme consumption is assumed to be supported by the heme oxygenase HmuO, whose 
production is regulated by the phosphorylated response regulator HrrA~P and the iron repressor DtxR. The activation of DtxR is expected 
to be influenced by internal heme levels. DtxR repression and HrrA activation shape the delayed response of the heme utilization module 
hmuO . 
B. The PhmuO promoter is activated by the phosphorylated response regulator HrrA~P after a significant time delay of 3–5 h. Higher heme 
concentrations lead to a prolonged delay and a lower hmuO  expression in general. 
C. The mathematical model of the heme utilization network in C. glutamicum  could reproduce this behavior and gave an explanation 
regarding. 
D. The temporal dynamics of both regulators on PhmuO. Levels of the activated iron repressor DtxR increase immediately after addition of 
heme and repress the promotor activation of PhmuO, proportional to stimulus strength. However, HrrA~P levels increase with a short time 
delay in response to the stimulus and activate the promotor to a certain extend at the beginning and with increasing intensity upon DtxR 
dissociation [Colour figure can be viewed at wileyonlinelibrary.com]
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et al. , 2007; Bibb and Schmitt, 2010). To our knowledge, 
these systems represent the first example studied in 
detail, where two paralogous systems coordinate a com-
plex physiological response by perceiving the same stim-
ulus: heme.

As a general principle, the integrative signaling pathway 
design appears to be especially beneficial if a multifac-
eted stimulus requires different regulatory and appropri-
ately timed outputs. The response of C. glutamicum  to 
extracellular heme sets an interesting example for this, 
as the physiological adaption is shaped by a fast-reacting 
ChrSA system-regulating expression of the detoxification 
module and the HrrSA system contributing to a layered 
dynamic regulation of heme utilization. In a recent study, 
we could show that the HKs of both TCS, HrrS and ChrS, 
slightly differ regarding their responsiveness and their 
general mode of heme-protein interaction (Keppel et al. , 
2018). One obvious difference is, for example, a higher 
basal activity of the HrrSA system as reflected by the sig-
nificantly higher output of a hmuO  reporter compared to 
hrtBA  in cells grown on FeSO4. This basal activation is 
likely triggered by the endogenously synthesized heme 
pool. In contrast to ChrSA, which is required to counteract 

toxic heme levels, HrrSA has an important role in main-
taining heme homeostasis by balancing the synthesis of 
heme proteins, heme degradation and heme biosynthe-
sis (Frunzke et al. , 2011; Hentschel et al. , 2014). In this 
context, it becomes apparent that this system is sensitive 
toward endogenous heme levels of the cells.

However, kinase activity is not the only factor influenc-
ing differential target gene activation. While the PchrSA 
promoter and the divergently located PhrtBA promoter are 
positively autoregulated from one-centered ChrA binding 
site (Fig. 3A), hrrS  and hrrA  are controlled from two dis-
tinct promoters. For hrrA  as well as hmuO,  the global iron 
regulator DtxR adds an additional regulatory layer, thereby 
integrating information on general iron availability in the 
cell (Wennerhold and Bott, 2006; Frunzke et al. , 2011). 
Experiments under different iron and heme conditions, 
furthermore, illustrated the intimate link between these 
cellular pools (Fig. S8), which is based on the activity of 
the heme oxygenase – degrading heme to release iron. 
Here, we could show that HrrA does not simply displace 
DtxR on the promoter of hmuO  but is in fact an essential 
activator, also in the absence of DtxR repression (Fig. 8B). 
By this means, information on heme (stimulus of HrrS) 

Fig. 8. HrrA and DtxR cooperate to control hmuO  expression in response to iron and heme availability. 
A. Promoter architecture of hmuO . The DtxR binding site was published previously (Wennerhold and Bott, 2006). The AAC::TTG mutation 
(grey letters) was shown to disrupt HrrA binding to PhmuO in vitro (Fig. S3). 
B. Mutational analysis of PhmuO. HrrA binding was abolished by introducing the AAC:TTG mutation into the PhmuO-eyfp  reporter. All strains 
were grown in BHI complex medium supplemented with 4 µM hemin as the ΔdtxR  strain grows poorly in CGXII medium. After iron starvation 
overnight, the three strains (wild type, ΔhrrA  and ΔdtxR ) were inoculated in BHI and the specific fluorescence (eYFP-fluorescence/
backscatter) was recorded in 15 min intervals. The graph shows the specific fluorescence after 20 h. Full reporter outputs are shown in the 
supplementary Fig. S4. [Colour figure can be viewed at wileyonlinelibrary.com]
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and Fe2+ (co-repressor of DtxR) is directly integrated at 
the level of hmuO  expression and RR (HrrA) synthesis.

In contrast, ChrSA-mediated activation of hrtBA  expres-
sion is solely influenced by heme availability, as expected 
for a detoxification system. Here, our data suggested an 
instantaneous saturation of the ChrS kinase and strong 
activation of PhrtBA in response to exogenous heme – 
independent of the applied heme concentrations tested 
in our setup (Fig. 3). Our model and experiments revealed 
that the overall strength of hrtBA  expression was deter-
mined solely by the duration of the response, as governed 
by the timescale of heme exhaustion in the medium. Thus, 
it seems that the comparable levels of PhrtBA promoter 
occupancy independent from stimulus strength ensure an 
effective detoxification response even for low-toxic heme 
concentrations, as claimed for a detoxification module.

Another important factor in the maintenance of intra-
cellular heme homeostasis is the previously reported 
cross-phosphorylation between HrrSA and ChrSA 
(Hentschel et al. , 2014). While deletion of chrS  did not 
significantly influence the PhmuO activation pattern in our 
reporter studies (Fig. 1B), deletion of hrrS  resulted in a 
delayed PhrtBA activation in response to heme (Fig. 5). 
These findings suggest a role of HrrSA as a ‘kick-start’ 
system of chrSA , thereby giving C. glutamicum  a com-
petitive edge by shortening the reaction time to mount 
the detoxification response. Furthermore, the bifunction-
ality of ChrS ensures efficient proof-reading of ChrA~P 
counteracting cross-phosphorylation by HrrS under 
non-inducing conditions where ChrS is dominantly in its 
phosphatase state.

Physiologically relevant cross phosphorylation between 
TCSs was, for example, shown in Bacillus anthracis  (Mike 
et al. , 2014). In this case, the heme responsive HssRS 
system was shown to cross interact with HitRS, which 
is activated by cell envelope stress. Cross-regulation 
between HssRS and HitRS thereby enables an integrated 
response of B. anthracis  to heme and to heme-induced 
cell envelope damage (Mike et al. , 2014). Interestingly, 
HrrSA and ChrSA as well as HssRS and HitRS are among 
the closest-related TCS in the particular species reflecting 
that duplication and subsequent specialization represents 
an evolutionary driver of TCS signaling toward the inte-
gration of multiple signals and the creation of a multifac-
eted response to complex stimuli. A similar scenario is 
found with the NarPQ and NarXL systems regulating the 
response to nitrate and nitrite in Escherichia coli  (Rabin 
and Stewart, 1993). For these closely related systems, 
significant cross phosphorylation appears to play a role in 
the modulation of target gene activation and maintenance 
of nitrogen homeostasis (Noriega et al. , 2010).

The regulatory setup shaping the response to heme 
may also have considerable impact on heme tolerance 
of the particular species. Already decades ago, van 

Heyningen reported on the differential sensitivity of 
Bacillus  species to heme (Van Heyningen, 1948). Mike 
and co-workers correlated an increased tolerance, as 
observed for B. anthracis , with the employment of two 
cross-regulating TCS coordinating heme export (HssRS) 
and cell envelope stress (HitRS) (Mike et al. , 2014). 
Therefore, it might be conceivable that the employment 
of two heme-responsive TCSs by some corynebacterial 
species enables a more robust control of heme homeo-
stasis compared to the regulation by a single system. 
Remarkably, while the HrtBA exporter is conserved 
among many Gram-positive species, the TCS systems 
‘in charge’ do not share significant sequence similarity 
– especially not in their membrane-embedded sensor 
domains (Stauff and Skaar, 2009b; Keppel et al. , 2018). 
This overall scenario of two cross-regulating TCSs mod-
ulating heme homeostasis and detoxification underlines 
a favorable concept nature employs to respond to the 
multifaceted stimulus heme.

In summary, we have approached the regulatory inter-
play between the heme-responsive HrrSA and ChrSA 
TCSs of C. glutamicum  by a comprehensive screening of 
various mutant strains carrying different target promoters. 
Generation of a mathematical model based on this data 
set revealed the underlying mechanisms triggering the 
antagonistic temporal dynamics in TCS signaling, which 
shape the cellular response toward the ‘toxic, but tasty’ 
heme molecule. We believe that the approach of com-
bining time-resolved monitoring of gene expression and 
systems-level modeling of the underlying regulatory net-
works is key to understanding the logic behind complex 
homeostatic responses in bacteria.

Experimental procedures

Bacterial strains and growth conditions

Bacterial strains used in this study are listed in Table S1. 
C. glutamicum  strain ATCC 13032 was used as wild type 
(Kalinowski et al. , 2003) and either cultivated in BHI (brain 
heart infusion, Difco BHI, BD, Heidelberg, Germany) as 
complex medium or CGXII (Keilhauer et al. , 1993) containing 
2% (w/v) glucose as minimal medium. All cultivations were 
performed at 30°C and, if necessary, 25 µg/ml kanamycin 
was added to the medium for selection. For standard clon-
ing applications, E. coli  DH5α was cultivated in Lysogeny 
Broth (Difco LB, BD, Heidelberg, Germany) medium at 37°C 
in a rotary shaker and for selection, 50 µg/ml kanamycin 
was added to the medium.

Recombinant DNA work and cloning techniques

Standard cloning and other molecular methods were per-
formed according to the standard protocols (Sambrook 
and Russell, 2001). For most applications, chromosomal 
DNA of C. glutamicum  ATCC 13032 was used as a 
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template for PCR amplification of DNA fragments and was 
prepared as described previously (Eikmanns et al. , 1994). 
All sequencing and synthesis of oligonucleotides was per-
formed by Eurofins Genomics (Ebersberg, Germany). For 
the construction of plasmids, the DNA regions of interest 
were amplified from chromosomal C. glutamicum  DNA 
with oligonucleotides listed in Table S2 and ligated into 
the plasmid backbone (see Table S3) via restriction sites 
indicated in the same table. Genomic integrations and/
or deletions were performed using the pK19mobsacB  
plasmid and the two-step homologues recombination 
method described earlier (Niebisch and Bott, 2001). Point 
mutations for the integration of kinase mutants or con-
struction of a mutated reporter plasmid were introduced 
via ‘QuickChange Lightning’ site-directed mutagenesis 
according to the supplier’s manual (Agilent Technologies, 
Inc., Santa Clara, USA).

Reporter assays

For reporter studies, C. glutamicum  wild type or one of 
the mutant strains were transformed with a reporter plas-
mid (Table S3). A preculture in BHI medium (25 µg/ml 
kanamycin) was inoculated from a fresh BHI agar plate 
and incubated for 8–10 h at 30°C in a rotary shaker. After 
that, cells were transferred into a second preculture in 
CGXII medium (Keilhauer et al. , 1993) containing 2% (w/v) 
glucose and 0 µM FeSO4 to starve the cells from iron. 
However, protocatechuic acid (PCA) was present in the 
preculture, allowing the uptake of trace amounts of iron. 
After growth overnight, the main culture was inoculated to 
an OD600 of 1 in CGXII medium and cultivated in 48-well 
Flowerplates (m2p-labs GmbH, Aachen, Germany) at 
30°C, 95% humidity, 1200 rpm. For the hemin stock solu-
tion, hemin (Sigma Aldrich, Munich, Germany) was dis-
solved in 20 mM NaOH to a concentration of 2.5 mM and, 
as an iron source, added to the medium in the desired 
concentrations. Growth of the cells (biomass production) 
was recorded as the backscattered light intensity of sent 
light with a wavelength of 620 nm (signal gain factor of 
12). For the measurement of eYFP fluorescence, the cul-
ture was excited at 510 nm and emission was measured 
at 532 nm (signal gain factor of 50). Measurements were 
performed in 15 min intervals.

Electrophoretic mobility shift assays

To characterize the operator sequence of HrrA, the protein 
was produced in E. coli  BL21 and purified as His6-tagged 
variant from cells as described previously (Frunzke et al. , 
2011). As ligand, 30 bp DNA fragments with triplet mutations 
were amplified and subsequently, 100 ng of the fragments 
were incubated with 0×, 10× and 30× excess of HrrA in 
in EMSA buffer (250 mM Tris–HCl pH 7.5, 25 mM MgCl2, 
200 mM KCl, 25% (v/v) glycerol). After 30 min at room tem-
perature, the samples were loaded to a native 12% poly-
acrylamide gel (TBE-based, TBE (89 mM Tris base, 89 mM 
boric acid, 2 mM Na2EDTA, loading dye: 0.01% (w/v) xylene 
cyanol dye, 0.01% (w/v) bromophenol blue dye, 20% (v/v) 
glycerol, 1 × TBE). Electrophoresis was carried out for 

60 min at 160 V. DNA was subsequently stained with SYBR 
Green I (Sigma Aldrich, Munich, Germany).

Measurement of cell-associated heme levels

The protocol for the fluorescent measurement of (total) 
cell-associated heme was derived from an assay 
described by Sassa (1976). A preculture containing C. 
glutamicum  wild-type cells was inoculated in BHI medium 
from a fresh BHI agar plate and incubated for 8–10 h at 
30°C in a rotary shaker. After that, cells were transferred 
into a second preculture in CGXII medium containing 2% 
(w/v) glucose and 0 µM FeSO4 to starve the cells from iron. 
After growth for 12–16 h, the main culture was inoculated 
to an optical density (OD600) of 1 in CGXII medium. Before 
addition of 4 µM hemin, as well as 5 min, 30 min, 1, 3, 6, 
7 and 23 h after hemin addition, samples were taken for 
the determination of cell-associated heme. For that, cells 
corresponding to an OD600 of 2 in 250 µl were harvested 
and washed once in 250 µl PBS. Subsequently, the pellet 
was resuspended in 250 µl 20 mM oxalic acid and stored 
at 4°C for max 5–6 h. Then, 250 µl of 2 M oxalic acid were 
added and each sample was heated to 98°C for 30 min. 
For the measurement, 200 µL of each sample were trans-
ferred to a 96-well microtiter plate and the fluorescence 
was recorded on a Tecan (Tecan Trading AG, Switzerland) 
Microplate Reader (excitation at 400 nm and emission at 
608 nm). The values for each sample were normalized to 
the emission of an unheated control sample (cells before 
hemin addition in 1 M oxalic acid).

Mathematical models and mutant simulation

Two mathematical models were developed to assess the 
determining factors of the dynamics of the heme detoxifica-
tion and utilization modules (see Supplementary Text; Model 
equations M1 and M2). A set of ordinary differential equations 
(ODEs) describes the time-dependent changes in the differ-
ent components of the two networks under varying heme 
concentrations as stimulus of both systems. The interactions 
between the kinases and the response regulators of the two 
TCSs were described based on the modeling approach by 
Groban and co-workers (2009), while thermodynamic model-
ing (Bintu et al. , 2005) was used to describe the target gene 
regulation in both systems. The dynamics of the individual 
components were simulated for wild-type conditions as well 
as different mutant strains. The numerical solution of the 
ODEs as well as the individual simulations were performed 
with MATLABTM software (The MathWorks, Inc.).
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Figure S1: Growth curves after application of additional heme pulses 

C. glutamicum cells were transformed with the target gene reporter pJC1_PhrtBA-eyfp and 

starved from iron overnight as described in material and methods. Subsequently, the cells 

were inoculated in CGXII minimal medium with 2% (w/v) glucose containing no iron source 

and transferred to the microbioreactor system (Biolector) where eYfp fluorescence 

(=reporter output) and backscatter (biomass) was measured in 5 minutes intervals. After 45 

min, hemin (red line) or FeSO4 (black line) was added to a final concentration of 4 µM. A 

second pulse of 4 µM hemin was applied to both cultures after 225 min. 

 



 

Figure S2: Additional heme pulses do not prime PhrtBA. 

C. glutamicum cells were transformed with the target gene reporter pJC1_PhrtBA-eyfp and 



starved from iron overnight as described in material and methods. Subsequently, the cells 

were inoculated in CGXII minimal medium with 2% (w/v) glucose containing no iron source 

and transferred to the microbioreactor system (Biolector) where eYfp fluorescence 

(=reporter output) and backscatter (biomass) was measured in 5 minutes intervals. After 30 

min, hemin was added to a final concentration of 4 µM. A second pulse of 4 µM hemin 

(resulting in a final hemin concentration of 8 µM) was applied after 1h, 3h, 4h 5h, 6h, 7h or 

24h, respectively.  

 
  



 

 

Figure S3: Electrophoretic Mobility Shift Assays (EMSAs) reveal crucial nucleotides for HrrA 

binding to the operator. 

For all EMSAs, 36 Bp of mutated DNA fragments (100 ng) were used and purified HrrA-His 

protein was applied in 0, 10 and 30-fold molecular excess for each sample. Mutation 6 

(ACT::TTG) and mutation 8 (GGG::CCC) led to strongly reduced binding of HrrA to PhmuO and 

similar PhmuO-eyfp output like observed in a ∆hrrA deletion mutant (Fig. S5B). 

 
  



 

Figure S4: Control of PhmuO by HrrA and DtxR. 

HrrA binding was abolished by introducing the AAC::TTG mutation into the PhmuO-eyfp 

reporter. After iron starvation overnight, the three strains (A: wildtype, B: ΔhrrA and 

C: ΔdtxR) were inoculated in BHI complex medium supplemented with 4 µM hemin and the 

specific fluorescence (eYFP-fluorescence/backscatter) was recorded in 15 minutes intervals. 

The strains were grown in BHI complex medium as the ΔdtxR strain grows poorly in CGXII 

medium. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5: Dephosphorylation of the response regulator ChrA determines the dynamics of 

the target gene activation in the wildtype and a chrSQ191A phosphatase mutant. 

The activation of the PhrtBA-eyfp reporter critically hinges on the levels of phosphorylated 

response regulator ChrA~P in the wild type (black line) and a chrSQ191A phosphatase 

mutant (dark red line). (A) Initial high levels of external heme autophosphorylate and 

thereby activate the histidine kinase ChrS strongly in the wild type as well as the chrSQ191A 

phosphatase mutant, leading to a significant portion of the phosphorylated form of ChrS 

(ChrS~P/ChrSTOT ≈ 0.8, solid line). But immediately after incipient stimulus decline, the 

balance between ChrS~P and ChrS shifts towards the non-phosphorylated form ChrS 

(ChrS/ChrSTOT, dashed line) in the wild type. However, the levels of ChrS~P stay high in the 

chrSQ191A phosphatase mutant. (B) The activation of the response regulator ChrA depends 



on the state of the histidine kinase ChrS. Phosphorylated and thereby activated ChrS 

(ChrS~P) is able to phosphorylate and activate ChrA (ChrA~P), while the non-phosphorylated 

form of ChrS (ChrS) naturally functions as a phosphatase for ChrA. Since the levels of non-

phosphorylated ChrS are very low at the very beginning in both strains, phosphatase activity 

of ChrS has insignificant impact and the levels of ChrA~P are similar (ChrA~P /ChrATOT, solid 

line). However, the increasing levels of ChrS after heme depletion lead to an immediate 

dephosphorylation of ChrA~P and in the wild type, while the ChrA~P levels stay high in the 

chrSQ191A phosphatase mutant, leading to a maximal phosphorylation level of ChrA of 25% 

in the wild type, compared to 100% in the phosphatase mutant. (C) As ChrA~P activates the 

target promoter PhrtBA, the significant differences between the ChrA~P levels in the wild type 

and the chrSQ191A phosphatase mutant lead to varying reporter outputs of PhrtBA-eyfp. 

While both strains show similar reporter outputs within the first minutes where ChrS~P and 

thereby ChrA~P levels are identical and phosphatase activity of ChrS plays no significant role, 

they diverge from the time point of differentiation in ChrA~P levels onwards. 

 

 

 

 

 

 

 

 

 



 

Figure S6: The in vitro data suggest a cross-phosphatase activity of HrrS which did not 

result in a model that quantitatively fits to the behavior of the ΔchrS mutant in vivo data.  

Setting 𝑘3𝐻𝑟𝑟𝑆 to 5.7 x 10-5 1/molecules/min as expected from the in vitro data in (Hentschel 

et al., 2014) led to an excessive response of PhrtBA in the ΔchrS mutant (dashed red line). A 

reduced cross-phosphatase avtivity of HrrS by a factor of 10 reproduces the mutant 

behaviour quantitatively (solid red line).  

 

 

 

 

 

 

 

 

 



 

Figure S7: An increased phosphatase activity of HrrS prevents a delayed PhmuO activation by 

HrrA~P. 

Setting 𝑘2𝐻𝑟𝑟𝑆 to 3.40 x 10-3 1/molecules/min as expected from the in vitro data in (Hentschel 

et al., 2014) did not result in a model that quantitatively fits to the behaviour of the in vivo 

data in wild-type. The strong phosphatase activity decreases HrrA~P levels immediately after 

stimulus reduction and no delayed PhmuO activation is possible. Decreasing 𝑘2𝐻𝑟𝑟𝑆 about a 

factor of 10 improved the ability to reproduce the in vivo behaviour.  

 

  



 

 

Figure S8: PhmuO-eyfp screening under different environmental conditions. 

C. glutamicum cells carrying the pJC1_PhmuO-eyfp reporter plasmid were iron starved 

overnight and inoculated in CGXII medium containing FeSO4, hemin or both as iron source in 

the indicated concentrations. Biomass (backscatter) and fluorescence were measured every 

15 minutes and the specific fluorescence was calculated as (eYFP-fluorescence/backscatter) 

and normalized to an empty well.  

These data demonstrate the link between the heme and iron pools in the cells. Due to the 

basal expression of the heme oxygenase (see Figure 1 or Figure 8, WT versus 'hrrA) addition 

of heme will also impact the bioavailable iron pool, thereby affecting DtxR activity. According 

to our current model HrrA represents an essential activator of hmuO, which is required for a 

basal level of hmuO expression (and likely also required for the turnover of the 

endogenously synthesized heme). DtxR repression places an additional treshhold on hmuO 

activation, which is only released when the intracellular iron pool is depleting. Then DtxR 

dissociates from the hmuO promoter allowing full activation by HrrA.  

  



Description of mathematical models 

The heme detoxification and utilization network contains different layers of regulation that 

have to be considered within the mathematical model.  

 

Bacterial growth kinetics 

Heme is used as alternative iron source for growth under iron-starvation conditions. In order 

to study heme depletion within the growth medium in our experiments, we described the 

uptake of external heme via the heme importer HmuTUV and the subsequent incorporation 

of the cytoplasmic heme into biomass via utilization enzymes based on Michaelis-Menten 

expressions. As a simplifying assumption, we expected a constant maximal velocity for the 

import (vmaxIMP) as well as the heme consumption (vmaxCON) and described the concentrations 

of the two extra- and intracellular heme pools ([HEX] and [HIN], respectively) as follows:  

𝑑[𝐻𝐸𝑋]
𝑑𝑡 =  −𝑣𝑚𝑎𝑥

𝐼𝑀𝑃 [𝐻𝐸𝑋]
𝐾𝑀

𝐼𝑀𝑃 + [𝐻𝐸𝑋]
[𝑐𝑒𝑙𝑙𝑠] 

𝑑[𝐻𝐼𝑁]
𝑑𝑡 =  𝑣𝑚𝑎𝑥

𝐼𝑀𝑃 [𝐻𝐸𝑋]
𝐾𝑀

𝐼𝑀𝑃 + [𝐻𝐸𝑋] − 𝑣𝑚𝑎𝑥
𝐶𝑂𝑁 [𝐻𝐼𝑁]

𝐾𝑀
𝐶𝑂𝑁 + [𝐻𝐼𝑁] − 𝛾[𝐻𝐼𝑁], 

while KMIMP and KMCON represent the Michaelis constants. Thus, the bacterial growth was 

formulated in terms of 

𝑑[𝑐𝑒𝑙𝑙𝑠]
𝑑𝑡 = 𝛽 ∗

[𝐻𝐼𝑁]
𝐾𝑀

𝐶𝑂𝑁 + [𝐻𝐼𝑁] ∗ [𝑐𝑒𝑙𝑙𝑠] 

with the maximal growth rate β that serves as an effective description of heme consumption 

via diverse enzymatic reactions.  

Given the fact that the total content of iron in C. glutamicum cells is in a range of 0.3-0.5 

mgFE/gCDW and 1 gCDW corresponds to approx. 6.5 𝑥 1011 cells (Unthan et al., 2014), we 

calculate an iron demand of a single cell of  ~5 𝑥 106 Fe2+ molecules per cell (1𝑔𝐹𝐸~ 1022 

molecules). Considering a generation time of ~120 minutes in our experiments (see Fig. 2A 



in the main text), ~4 𝑥 104 molecules of internal heme – as alternative iron source - have to 

be incorporated into biomass per minute. Taking this estimation into account, our 

mathematical description of the bacterial growth kinetics predicted a depletion of external 

heme between 2.5 and 3.5 hours, dependent on the initial concentrations. The cytoplasmic 

pool of heme is depleted with a time delay of ~2 hours, which then leads to cessation in cell 

growth (see Fig. 2B,C in the main text). Finally, the total heme pool per cell ([HcellTOT], Fig. 2E), 

was defined as the sum of cytoplasmic heme per cell and the portion of external heme per 

cell 

[𝐻𝑇𝑂𝑇
𝑐𝑒𝑙𝑙 ] = [𝐻𝐼𝑁] +

[𝐻𝐸𝑋]
[𝑐𝑒𝑙𝑙𝑠]. 

 

Stimulus perception and signalling in the two-component systems 

The described overall flux of the stimulus heme through the network as the base for cell 

growth represents the first layer that was quantified within the model. In addition, the 

dynamics within the TCSs that sense heme as their stimulus represent a second layer of 

regulation within the system. According to the reporter assays, we assumed a constitutive 

expression and thereby production of HrrS, while the phosphorylated response regulator 

HrrA activates the production of HrrA and HmuO. Besides, ChrS, ChrA and HrtBA production 

is dependent from ChrA. We expected a production of the non-phosphorylated form 

exclusively, both in case of the histidine kinases as well as the response regulators. Given 

that no information is available about the copy number of the heme importer HmuTUV, we 

assumed a constant number of transporter molecules independent from time and hemin 

levels. Both kinases, HrrS and ChrS, phosphorylate their cognate and non-cognate response 

regulator (Hentschel et al., 2014) in response to external heme as their stimulus (Keppel, 

Davoudi, Gätgens, & Frunzke, 2018). In the following, we will give the quantification of 



different reactions for ChrSA as an example but the description is identical for HrrSA. 

Following this approach of Groban and co-workers (Groban, Clarke, Salis, Miller, & Voigt, 

2009), we described the transition from the non-phosphorylated form into the 

phosphorylated one of the histidine kinases and the response regulators but did not quantify 

the phosphotransfer in detail. Thus, we expected the autophosphorylation of the kinases 

(ChrS) in response to stimulus perception  

𝐶ℎ𝑟𝑆
𝐻𝐸𝑋→  𝐶ℎ𝑟𝑆~𝑃  

and described the reaction by  

𝑑[𝐶ℎ𝑟𝑆~𝑃]
𝑑𝑡 = 𝐼𝐶ℎ𝑟𝑆(𝐻𝐸𝑋) [𝐶ℎ𝑟𝑆], 

 

while 𝐼𝐶ℎ𝑟𝑆(𝐻𝐸𝑋) = 𝑘+𝐶ℎ𝑟𝑆 ∗
[𝐻𝐸𝑋]

𝐾𝐻𝐸𝑋+[𝐻𝐸𝑋]
 describes the autophosphorylation rate, dependent 

on the external heme concentration. The autophosphorylation threshold is given by KHEX, 

while k+ChrS determine the speed of the autophosphorylation reaction. [ChrS] and [ChrS~P] 

describe the concentration of the phosphorylated or non-phosphorylated form of the kinase. 

A phosphorylated kinase (ChrS~P) can donate its phosphate to the response regulator 

𝐶ℎ𝑟𝑆~𝑃 + 𝐶ℎ𝑟𝐴 →  𝐶ℎ𝑟𝑆 + 𝐶ℎ𝑟𝐴~𝑃.  

During the reverse process of dephosphorylation of the response regulator, the phosphate is 

not passed back to the kinase 

𝐶ℎ𝑟𝑆 + 𝐶ℎ𝑟𝐴~𝑃 →  𝐶ℎ𝑟𝑆 + 𝐶ℎ𝑟𝐴.   

The phosphorylation and dephosphorylation of ChrA was expected to follow second order 

kinetics, which were quantified by the rate constants ki:   

𝑑[𝐶ℎ𝑟𝐴~𝑃]
𝑑𝑡 = 𝑘1𝐶ℎ𝑟𝑆 ∗ [𝐶ℎ𝑟𝑆~𝑃] ∗ [𝐶ℎ𝑟𝐴] − 𝑘2𝐶ℎ𝑟𝑆 ∗ [𝐶ℎ𝑟𝑆] ∗ [𝐶ℎ𝑟𝐴~𝑃] 

 

 

The phosphotransfer from ChrS~P to ChrA is determined by the rate constant k1ChrS, while 

the reverse reaction (ChrS dephosphorylates ChrA~P) occurs with a rate dependent on the 



rate constant k2ChrS. Cross-phosphorylation of both kinases to their non-cognate response 

regulators was expected, cross-dephosphorylation could not be observed previously and was 

therefore not included into the model.  

 

Regulatory dynamics of target genes 

The target gene activation of the phosphorylated response regulators represents the third 

layer of regulation and a mathematical description based on thermodynamic modelling 

quantified the observed transcriptional regulation. Following the approach of Bintu and co-

workers (Bintu et al., 2005), the activation of gene expression from the PhrtBA and the PchrSA 

promoter by phosphorylated ChrA could then be formulated in terms of ChrA~P 

concentrations, such that the dynamic equation for the HrtBA protein levels, [HrtBA], read: 

𝑑[𝐻𝑟𝑡𝐵𝐴]
𝑑𝑡 = 𝛼 ∗ (

1 + 𝜔 ([𝐶ℎ𝑟𝐴~𝑃]
𝜅 )

 𝑛
 

1 + ([𝐶ℎ𝑟𝐴~𝑃]
𝜅 )

 𝑛 ) − 𝛾 ∗ [𝐻𝑟𝑡𝐵𝐴] 

 

We assumed a basal protein production with an effective rate α and dilution with a rate 

proportional to γ for all components within the systems according to growth. The basal 

production of the proteins is a combined representation of the processes of transcription 

and translation, justified by the fact that e.g. mRNA maturation and degradation proceed on 

much faster time-scales than the signalling and target gene regulation within the system and 

were therefore not relevant for the investigated dynamics. The ratio of maximal to basal 

promoter activity is defined as the fold-change ω (Bintu et al., 2005). Κ in turn represents a 

measurement of the concentration of phosphorylated response regulator ChrA at which 

PhrtBA is activated and the hill coefficient n reflects all forms of cooperativity in ChrA binding 

to the promoter. According to the fact that we based our mathematic model on the 

experimental data of the performed reporter assays, we discriminated within our model 



between the proteins of the systems itself and the reporter output that reflects the 

production of detectable fluorescence proteins based on the original promoter activity. To 

this end, we formulated one equation for the regulated protein production and one 

equation for the corresponding YFP production each and integrated an effective parameter 

for YFP bleaching and degradation processes in the latter equation. The dynamic equations 

for all components can be found in M1 and M2.   

 

Model parameters 

In order to calibrate the model, various parameters concerning the cell growth as well as the 

dynamics within the TCSs could be fixed to their physiological values based on experimental 

data. The remaining ones were adjusted within physiological intervals to reproduce the 

experimental data of promoter activity within the mathematical model (for further 

descriptions see Tables S4 and S5 and Fig. S5/S6). 

 

Mutant simulations 

For the purpose of predicting the behaviour of several mutants within the model of the 

heme detoxification module, we adapted the individual parameters of the mathematic 

equations to the experimentally given scenarios. For the wild type, we simulated the time-

dependent dynamics based on the complete set of parameters we fixed within our model. 

To knock out a protein in the model, we set the participating rate constants of the protein-

based reactions as well as the initial concentrations to zero. In case of the ΔchrS mutant, we 

set the basal concentration ChrSINI as well as the rate constants for phosphorylation (k1ChrS) 

and dephosphorylation (k2ChrS) to zero. Within the phosphatase mutant chrSQ191A, the 

dephosphorylation step of ChrA is not possible. Thus, we exclusively chose k2ChrS to zero. In 



contrast, inhibition of ChrS kinase activity (chrSH186A) leads to a lack in the ability of 

autophosphorylation of ChrS and thereby the option of phosphotransfer to the response 

regulator ChrA. Disrupting the autophosphorylation of ChrS could be simulated by setting 

k+ChrS to zero. In addition, the lack of phosphotransfer could be quantified by k1ChrS = 0.  

  



Model equations M1: ODEs of the mathematical model of the C. glutamicum heme 
detoxification module 
 
Variables within the model: 

Name Description 
HEX External heme  
HIN Internal heme 

cells Cells of C. glutamicum 
ChrS Unphosphorylated histidine kinase ChrS 

ChrS~P Autophosphorylated histidine kinase ChrS 
HrrS Unphosphorylated histidine kinase HrrS 

HrrS~P Autophosphorylated histidine kinase HrrS 
ChrA Unphosphorylated response regulator ChrA 

ChrA~P Phosphorylated response regulator ChrA 
HrtBA Heme exporter HrtBA 

ChrSTOT-YFP YFP proteins corresponding to the total amount of the kinase ChrS (The 
production is under the control of PchrSA promoter) 

ChrATOT-YFP YFP proteins corresponding to the total amount of the response regulator 
ChrA (The production is under the control of PchrSA promoter) 

HrtBA-YFP YFP proteins corresponding to the total amount of the heme exporter 
HrtBA (The production is under the control of PhrtBA promoter) 

 
 
ODEs: 
 
𝑑[𝐻𝐸𝑋]
𝑑𝑡 = − 𝑣𝑚𝑎𝑥𝐼𝑀𝑃 [𝐻𝐸𝑋]

𝐾𝑀𝐼𝑀𝑃 + [𝐻𝐸𝑋]
[𝑐𝑒𝑙𝑙𝑠] + 𝑘𝑐𝑎𝑡𝐻𝑟𝑡𝐵𝐴[𝐻𝑟𝑡𝐵𝐴]

[𝐻𝐼𝑁]
𝐾𝑀𝐻𝑟𝑡𝐵𝐴 + [𝐻𝐼𝑁]

[𝑐𝑒𝑙𝑙𝑠] 

 

(1) 

𝑑[𝐻𝐼𝑁]
𝑑𝑡 = 𝑣𝑚𝑎𝑥𝐼𝑀𝑃 [𝐻𝐸𝑋]

𝐾𝑀𝐼𝑀𝑃 + [𝐻𝐸𝑋]
− 𝑣𝑚𝑎𝑥𝐶𝑂𝑁 [𝐻𝐼𝑁]

𝐾𝑀𝐶𝑂𝑁 + [𝐻𝐼𝑁]
− 𝑘𝑐𝑎𝑡𝐻𝑟𝑡𝐵𝐴[𝐻𝑟𝑡𝐵𝐴]

[𝐻𝐼𝑁]
𝐾𝑀𝐻𝑟𝑡𝐵𝐴 + [𝐻𝐼𝑁]

−  𝛾[𝐻𝐼𝑁] 

 

(2) 

𝑑[𝑐𝑒𝑙𝑙𝑠]
𝑑𝑡 = 𝛽

[𝐻𝐼𝑁]
𝐾𝑀𝐶𝑂𝑁 + [𝐻𝐼𝑁]

[𝑐𝑒𝑙𝑙𝑠] 

 

(3) 

𝑑[𝐶ℎ𝑟𝑆]
𝑑𝑡 = 𝛾[𝐶ℎ𝑟𝑆𝐼𝑁𝐼]

(

  
 1 + 𝜔𝑃𝑐ℎ𝑟𝑆𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

)

  
 
– 𝑘+𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆]

[𝐻𝐸𝑋]
𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋]

 

                    +𝑘1𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝑆] 

 

(4) 

𝑑[𝐶ℎ𝑟𝑆~𝑃]
𝑑𝑡 = 𝑘+𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆]

[𝐻𝐸𝑋]
𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋]

− 𝑘1𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝑆~𝑃] 

 

(5) 

𝑑[𝐻𝑟𝑟𝑆]
𝑑𝑡 = 𝛾[𝐻𝑟𝑟𝑆𝑇𝑂𝑇] −  𝑘+𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆]

[𝐻𝐸𝑋]
𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋]

+ 𝑘3𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝑆] 

 

(6) 

𝑑[𝐻𝑟𝑟𝑆~𝑃]
𝑑𝑡 =  𝑘+𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆]

[𝐻𝐸𝑋]
𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋]

− 𝑘3𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝑆~𝑃] 

 

(7) 



𝑑[𝐶ℎ𝑟𝐴]
𝑑𝑡 = 𝛾[𝐶ℎ𝑟𝐴𝐼𝑁𝐼]

(

  
 1 + 𝜔𝑃𝑐ℎ𝑟𝑆𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

)

  
 
–𝑘1𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] + 𝑘2𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆][𝐶ℎ𝑟𝐴~𝑃] 

                    −𝑘3𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝐴] 

 

(8) 

𝑑[𝐶ℎ𝑟𝐴~𝑃]
𝑑𝑡 = 𝑘1𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝑘2𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆][𝐶ℎ𝑟𝐴~𝑃] + 𝑘3𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐶ℎ𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝐴~𝑃] 

 

(9) 

𝑑[𝐻𝑟𝑡𝐵𝐴]
𝑑𝑡 = 𝛾[𝐻𝑟𝑡𝐵𝐴𝐼𝑁𝐼]

(

  
 1 +𝜔𝑃ℎ𝑟𝑡𝐵𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  

)

  
 
–𝛾[𝐻𝑟𝑡𝐵𝐴] 

 

(10) 

𝑑[𝐶ℎ𝑟𝑆𝑇𝑂𝑇 − 𝑌𝐹𝑃]
𝑑𝑡 = 𝛾[𝐶ℎ𝑟𝑆𝐼𝑁𝐼]

(

  
 1 + 𝜔𝑃𝑐ℎ𝑟𝑆𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

)

  
 
– (𝛾 + 𝑘𝑏𝑙)[𝐶ℎ𝑟𝑆𝑇𝑂𝑇 − 𝑌𝐹𝑃] 

 

(11) 

𝑑[𝐶ℎ𝑟𝐴𝑇𝑂𝑇 − 𝑌𝐹𝑃]
𝑑𝑡 = 𝛾[𝐶ℎ𝑟𝐴𝐼𝑁𝐼]

(

  
 1 + 𝜔𝑃𝑐ℎ𝑟𝑆𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃𝑐ℎ𝑟𝑠𝐴
𝐶ℎ𝑟𝐴  

)

  
 
– (𝛾 + 𝑘𝑏𝑙)[𝐶ℎ𝑟𝐴𝑇𝑂𝑇 − 𝑌𝐹𝑃] 

 

(12) 

𝑑[𝐻𝑟𝑡𝐵𝐴 − 𝑌𝐹𝑃]
𝑑𝑡 = 𝛾[𝐻𝑟𝑡𝐵𝐴𝐼𝑁𝐼]  

(

  
 1 +𝜔𝑃ℎ𝑟𝑡𝐵𝐴

𝐶ℎ𝑟𝐴 ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  

 

1 + ([𝐶ℎ𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  

)

  
 
– (𝛾 + 𝑘𝑏𝑙)[𝐻𝑟𝑡𝐵𝐴 − 𝑌𝐹𝑃] 

(13) 

 
 
 
 



Model equations M2: ODEs of the mathematical model of the C. glutamicum heme 

utilization module 

 

Variables within the model: 

Name Description 
HEX External heme  

HIN Internal heme 

cells Cells of C. glutamicum 

ChrS Unphosphorylated histidine kinase ChrS 

ChrS~P Autophosphorylated histidine kinase ChrS 

HrrS Unphosphorylated histidine kinase HrrS 

HrrS~P Autophosphorylated histidine kinase HrrS 

HrrA Unphosphorylated response regulator HrrA 

HrrA~P Phosphorylated response regulator HrrA 

HmuO Heme oxygenase HmuO 

DtxR* Activated form of the iron repressor DtxR 

DtxR Non-activated form of the iron repressor DtxR 

HrrATOT-YFP YFP proteins corresponding to the total amount of the response regulator 

HrrA (The production is under the control of PhrrA promoter) 

HmuO-YFP YFP proteins corresponding to the total amount of heme oxygenase 

HmuO (The production is under the control of PhmuO promoter) 

 

 

ODEs: 

 
𝑑[𝐻𝐸𝑋]

𝑑𝑡 = − 𝑣𝑚𝑎𝑥
𝐼𝑀𝑃 [𝐻𝐸𝑋]

𝐾𝑀
𝐼𝑀𝑃 + [𝐻𝐸𝑋]

[𝑐𝑒𝑙𝑙𝑠] 

 

(14) 

𝑑[𝐻𝐼𝑁]
𝑑𝑡 = 𝑣𝑚𝑎𝑥

𝐼𝑀𝑃 [𝐻𝐸𝑋]
𝐾𝑀

𝐼𝑀𝑃 + [𝐻𝐸𝑋] − 𝑘𝑐𝑎𝑡
𝐶𝑂𝑁([𝐸𝐶𝑂𝑁] + [𝐻𝑚𝑢𝑂])

[𝐻𝐼𝑁]
𝐾𝑀

𝐶𝑂𝑁 + [𝐻𝐼𝑁] −  𝛾[𝐻𝐼𝑁] 

 

(15) 

𝑑[𝑐𝑒𝑙𝑙𝑠]
𝑑𝑡 = 𝛽′𝑘𝑐𝑎𝑡

𝐶𝑂𝑁([𝐸𝐶𝑂𝑁] + [𝐻𝑚𝑢𝑂])
[𝐻𝐼𝑁]

𝐾𝑀
𝐶𝑂𝑁 + [𝐻𝐼𝑁] [𝑐𝑒𝑙𝑙𝑠] 

 

(16) 

𝑑[𝐶ℎ𝑟𝑆]
𝑑𝑡 = 𝛾[𝐶ℎ𝑟𝑆𝑇𝑂𝑇]– 𝑘+

𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆]
[𝐻𝐸𝑋]

𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋] + 𝑘3
𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝑆] 

 

(17) 

𝑑[𝐶ℎ𝑟𝑆~𝑃]
𝑑𝑡 = 𝑘+

𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆]
[𝐻𝐸𝑋]

𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋] − 𝑘3
𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐶ℎ𝑟𝑆~𝑃] 

 

(18) 

𝑑[𝐻𝑟𝑟𝑆]
𝑑𝑡 = 𝛾[𝐻𝑟𝑟𝑆𝑇𝑂𝑇] −  𝑘+

𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆]
[𝐻𝐸𝑋]

𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋] + 𝑘1
𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝑆] 

 

(19) 

𝑑[𝐻𝑟𝑟𝑆~𝑃]
𝑑𝑡 =  𝑘+

𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆]
[𝐻𝐸𝑋]

𝐾𝐻𝐸𝑋 + [𝐻𝐸𝑋] − 𝑘1
𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝑆~𝑃] 

 

(20) 



𝑑[𝐻𝑟𝑟𝐴]
𝑑𝑡 = 𝛾[𝐻𝑟𝑟𝐴𝐼𝑁𝐼]

(

 
 
 
 
 
 

1 + 𝜔𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴 ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑟𝐴

𝐻𝑟𝑟𝐴  )
𝑛𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  

 

1 + ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  

 + (
𝐷𝑡𝑥𝑅𝑇𝑂𝑇

[𝐻𝐼𝑁]
𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
𝜅𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅 )

𝑛𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅  

 
)

 
 
 
 
 
 

 

                     – 𝑘1𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] + 𝑘2𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆][𝐻𝑟𝑟𝐴~𝑃] − 𝑘3𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝐴] 

 

(21) 

𝑑[𝐻𝑟𝑟𝐴~𝑃]
𝑑𝑡 = 𝑘1𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝑘2𝐻𝑟𝑟𝑆[𝐻𝑟𝑟𝑆][𝐻𝑟𝑟𝐴~𝑃] + 𝑘3𝐶ℎ𝑟𝑆[𝐶ℎ𝑟𝑆~𝑃][𝐻𝑟𝑟𝐴] − 𝛾[𝐻𝑟𝑟𝐴~𝑃] 

 

(22) 

𝑑[𝐻𝑚𝑢𝑂]
𝑑𝑡 = 𝛾[𝐻𝑚𝑢𝑂𝐼𝑁𝐼]

(

 
 
 
 
 
 

1 +𝜔𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴 ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑚𝑢𝑂

𝐻𝑟𝑟𝐴  )
𝑛𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  

 

1 + ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  )

𝑛𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  

 + (
𝐷𝑡𝑥𝑅𝑇𝑂𝑇

[𝐻𝐼𝑁]
𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
𝜅𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅 )

𝑛𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅  

 
)

 
 
 
 
 
 

−  𝛾[𝐻𝑚𝑢𝑂] 

 

(23) 

𝑑[𝐻𝑟𝑟𝐴𝑇𝑂𝑇 − 𝑌𝐹𝑃]
𝑑𝑡 = 𝛾[𝐻𝑟𝑟𝐴𝐼𝑁𝐼]

(

 
 
 
 
 
 

1 +𝜔𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴 ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑟𝐴

𝐻𝑟𝑟𝐴  )
𝑛𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  

 

1 + ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  )

𝑛𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  

 + (
𝐷𝑡𝑥𝑅𝑇𝑂𝑇

[𝐻𝐼𝑁]
𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
𝜅𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅 )

𝑛𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅  

 
)

 
 
 
 
 
 

 

                                          −(𝛾 + 𝑘𝑏𝑙)[𝐻𝑟𝑟𝐴𝑇𝑂𝑇 − 𝑌𝐹𝑃] 

 

(24) 

𝑑[𝐻𝑚𝑢𝑂 − 𝑌𝐹𝑃]
𝑑𝑡 = 𝛾[𝐻𝑚𝑢𝑂𝐼𝑁𝐼]

(

 
 
 
 
 
 

1 + 𝜔𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴 ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑚𝑢𝑂

𝐻𝑟𝑟𝐴  )
𝑛𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  

 

1 + ([𝐻𝑟𝑟𝐴 − 𝑃]𝜅𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  )

𝑛𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  

 + (
𝐷𝑡𝑥𝑅𝑇𝑂𝑇

[𝐻𝐼𝑁]
𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
𝜅𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅 )

𝑛𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅  

 
)

 
 
 
 
 
 

 

                                    −(𝛾 + 𝑘𝑏𝑙)[𝐻𝑚𝑢𝑂 − 𝑌𝐹𝑃] 

(25) 

 
DtxR activation: 
 
𝐷𝑡𝑥𝑅𝑇𝑂𝑇 = 𝐷𝑡𝑥𝑅 + 𝐷𝑡𝑥𝑅∗ 
 

(26) 

𝐷𝑡𝑥𝑅∗ =  𝐷𝑡𝑥𝑅𝑇𝑂𝑇
[𝐻𝐼𝑁]

𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
 

 

(27) 

𝐷𝑡𝑥𝑅 =  𝐷𝑡𝑥𝑅𝑇𝑂𝑇 (1 −
[𝐻𝐼𝑁]

𝐾𝐻𝐼𝑁 + [𝐻𝐼𝑁]
) 

 

(28) 

 
 



Supplementary Table S1. Bacterial strains used in this study. 

Strain or plasmid Relevant characteristics Source or 
reference 

Escherichia coli 

DH5α fhuA2 lac(del)U169 phoA glnV44 Φ80' 
lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 
hsdR17; for general cloning purposes 

Invitrogen 

BL21(DE3) B F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI 
lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS); 
overexpression of proteins. 

(Studier & 
Moffatt, 1986) 

Corynebacterium glutamicum 

ATCC 13032 C. glutamicum wild type strain (Kinoshita, 
Udaka, & 
Shimono, 2004) 

ATCC 13032 ∆hrrS Deletion mutant of the open reading frame (orf) 
encoding the HK HrrS 

(Hentschel et al., 
2014) 

ATCC 13032 
hrrSQ222A 

Phosphatase=OFF mutant of hrrS (Hentschel et al., 
2014) 

ATCC 13032 ∆chrS Deletion mutant of the orf encoding the HK ChrS (Hentschel et al., 
2014) 

ATCC 13032 
chrSQ191A 

Phosphatase=OFF mutant of hrrS (Hentschel et al., 
2014) 

ATCC 13032 
chrSH186A 

Kinase=OFF mutant of chrS This study 

ATCC 13032 ∆dtxR Deletion mutant of the orf encoding DtxR (Wennerhold & 
Bott, 2006) 

ATCC 13032 ∆hrrA Deletion mutant of the orf encoding the RR HrrA (Frunzke, 
Gatgens, Brocker, 
& Bott, 2011) 

 
Supplementary Table S2. Oligonucleotides used in this study. Restriction sites mutations are 
underlined. 

# Name Sequence Special feature 
1 chrS-fw GCGCAAGCTTGTGAAAACTAGCCAAGCGAC HindIII RS 
2 chrS-rv TATACCCGGGTCACTTATCTTGGTCCTTTTG SmaI RS 
3 chrSH186A CCACAGTGTCAGCTATTTCGCCCGCTATGCGGGC Mutation H186A 
4 chrSH186A GCCCGCATAGCGGGCGAAATAGCTGACACTGTGG Mutation H186A 
5 PhmuO

AAC::TTG CACACCTACATATAGTCCCTTACAAGGAACAATTTTCCGCAACTTTGG Mutation PhmuO 
6 PhmuO

AAC::TTG CCAAAGTTGCGGAAAATTGTTCCTTGTAAGGGACTATATGTAGGTGTG Mutation PhmuO 



Supplementary Table S3. Plasmids used in this study. If plasmids were constructed in this 
study, primers used are indicated in Table S2. 

Reporter plasmids 
# Name Resistance Source Primer used 
1 pJC1_PhrtBA-eyfp Kanamycin (Heyer et al., 2012)  
2 pJC1_PhmuO-eyfp Kanamycin (Heyer et al., 2012)  
3 pJC1_PhmuO-eyfpAAC::TTG Kanamycin This study #5, #6 

Plasmids for genomic intergrations 

4 pK19_∆chrSwt::chrSH184A 
 
Kanamycin This study 

Cloning: #1, #2 
Mut.: #3, #4  

 
 
Supplementary Table S4. Parameters used in the mathematical model of the C. glutamicum 
heme detoxification module. 

Parameter Notation Value Source 
Maximal velocity of heme import 

via heme transporter HmuTUV 
𝑣𝑚𝑎𝑥

𝐼𝑀𝑃  9.83 x 103 molecules/min/cell Adjusted to match the average 

growth curve (Fig. 2) 

Michaelis-Menten constant for 

heme import via heme 

transporter HmuTUV 

𝐾𝑀
𝐼𝑀𝑃  1.19 x 1013 molecules 

Maximal velocity of heme 

consumption via diverse 

enzymes 

𝑣𝑚𝑎𝑥
𝐶𝑂𝑁 7.86 x 103 molecules/min/cell 

Michaelis-Menten constant for 

heme consumption via diverse 

enzymes 

𝐾𝑀
𝐶𝑂𝑁 1.84 x 106 molecules/cell 

Growth parameter  𝛽 0.04 1/min 

Initial OD 𝑂𝐷𝐼𝑁𝐼 2.2 ~ 6.6 x 107 cells 

Autophosphorylation threshold 

of ChrS/HrrS 

𝐾𝐻𝐸𝑋 

 

1.2 x 1013 molecules Adjusted to guarantee 

approximately maximal 

autophosphorylation rate even for 

the lowest hemin concentration  

Autophosphorylation rate of 

ChrS 
𝑘+

𝐶ℎ𝑟𝑆 1 1/min Adjusted to match a rate of 

autophosphorylation as expected in 

(Groban et al., 2009), taking the 

ChrS/HrrS levels into account. 

Autophosphorylation rate of 

HrrS 
𝑘+

𝐻𝑟𝑟𝑆 1 1/min 

Effective rate constants of 

phosphorylation reaction of the 

cognate kinase ChrS on ChrA 

𝑘1
𝐶ℎ𝑟𝑆   

 

3.98 x 10-3 1/molecules/min Correspond to the in vitro data in 

(Hentschel et al., 2014), multiplied 

by a factor of 10 due to the 

observation of (Gao & Stock, 2017; 

Kremling, Kremling, & Bettenbrock, 

2009), that in vitro rates are often 

about 101-102-fold lower than the 

actual in vivo ones. 

Effective rate constants of 

dephosphorylation reaction of 

the cognate kinase ChrS on ChrA 

𝑘2
𝐶ℎ𝑟𝑆 

 

3.76 x 10-2 1/molecules/min 

Effective rate constants of 

phosphorylation reaction of the 

non-cognate kinase HrrS on ChrA 

𝑘3
𝐻𝑟𝑟𝑆 

 

5.72 x 10-6 1/molecules/min Correspond to the in vitro data in 

(Hentschel et al., 2014), decreased 

by a factor of 10, suggested by 

Fig.S5. 

Initial ChrS concentration 𝐶ℎ𝑟𝑆𝐼𝑁𝐼 
 

100 molecules/cell Correspond to reference values for 

total numbers in E. coli for several 

two-component systems (Cai & 

Inouye, 2002; Gao & Stock, 2013; Li, 

Burkhardt, Gross, & Weissman, 

Initial ChrA concentration 𝐶ℎ𝑟𝐴𝐼𝑁𝐼 
 

100 molecules/cell 

Total HrrS concentration 𝐻𝑟𝑟𝑆𝑇𝑂𝑇 100 molecules/cell 



 2014): Numbers of histidine kinases 

are within a physiological range of 

101-103 and response regulators 

range between 102 and 104. A 1:1 

stoichiometry is assumed for ChrS 

and ChrA due to the fact that they 

are within one operon. 

Initial HrtBA concentration 𝐻𝑟𝑡𝐵𝐴𝐼𝑁𝐼 10 molecules/cell Arbitrary choice 

Turnover rate of heme exporter 

HrtBA 
𝑘𝑐𝑎𝑡

𝐻𝑟𝑡𝐵𝐴 20 molecules/min/transporter Adjusted to counteract the import 

rate under maximal hrtBA expression 

Michaelis-Menten constant for 

heme export via HrtBA 
𝐾𝑀

𝐻𝑟𝑡𝐵𝐴 8 x 105 molecules/cell 

Fold-change of PchrSA promoter 𝜔𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  70 Suggested by wildtype data in Fig. 

S1a; within physiological range of 1-

104 (see e.g. (Lutz & Bujard, 1997)) 

for promoters with high dynamic 

range) 

Fold-change of PhrtBA promoter 𝜔𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  150 

PchrSA activation threshold 𝜅𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  75 molecules/cell Correspond to the total levels of 

ChrA~P PhrtBA activation threshold 𝜅𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  75 molecules/cell 

Hill coefficient PchrSA 𝑛𝑃𝑐ℎ𝑟𝑆𝐴
𝐶ℎ𝑟𝐴  1 Assuming no cooperativity in 

promoter binding Hill coefficient PhrtBA 𝑛𝑃ℎ𝑟𝑡𝐵𝐴
𝐶ℎ𝑟𝐴  1 

Effective rate constant of YFP 

bleaching and protein 

degradation 

𝑘𝑏𝑙  0.001 1/min Arbitrary choice 

 

Supplementary Table S5. Additional parameters used in the mathematical model of the C. 
glutamicum heme utilization module (all other parameters are taken from the model of C. 
glutamicum heme detoxification module, cf. Supplementary Table S4). 
Parameter Notation Value  Source 
Growth parameter  𝛽′ 5 x 10-6 1/molecules Adjusted to match the growth 

rate we observed in the model of 

C. glutamicum heme 

detoxification module 

Effective rate constants of 

phosphorylation reaction of the 

cognate kinase HrrS on HrrA 

𝑘1
𝐻𝑟𝑟𝑆   

 

3.76 x 10-3 1/molecules/min Correspond to the in vitro data in 

(Hentschel et al., 2014), 

multiplied by a factor of 10 due to 

the observation of (Gao & Stock, 

2017; Kremling et al., 2009), that 

in vitro rates are often about 101-

102-fold lower than the actual in 
vivo ones. 

Effective rate constants of 

dephosphorylation reaction of the 

cognate kinase HrrS on HrrA 

𝑘2
𝐻𝑟𝑟𝑆 

 

3.40 x 10-4 1/molecules/min Correspond to the in vitro data in 

(Hentschel et al., 2014), 

decreased by a factor of 10, 

suggested by Fig. S5. 

Effective rate constants of 

phosphorylation reaction of the 

non-cognate kinase ChrS on HrrA 

𝑘3
𝐶ℎ𝑟𝑆 

 

1.40 x 10-3 1/molecules/min Correspond to the in vitro data in 

(Hentschel et al., 2014), 

multiplied by a factor of 10 due to 

the observation of 

(Gao & Stock, 2017; Kremling et 

al., 2009), that in vitro rates are 

often about 101-102-fold lower 

than the actual in vivo ones. 



Total HrrS concentration 𝐻𝑟𝑟𝑆𝑇𝑂𝑇 100 molecules/cell Reference values for total 

numbers in E. coli for several TCS: 

Numbers of histidine kinases are 

within a physiological range of 

101-103 and response regulators 

range between 102 and 104 (Cai & 

Inouye, 2002; Gao & Stock, 2013; 

Li et al., 2014). 

Initial HrrA concentration 𝐻𝑟𝑟𝐴𝐼𝑁𝐼 100 molecules/cell 
Total ChrS concentration 𝐶ℎ𝑟𝑆𝑇𝑂𝑇 100 molecules/cell 

Initial HmuO concentration 𝐻𝑚𝑢𝑂𝐼𝑁𝐼 100 molecules/cell Arbitrary choice 

Turnover rate of heme 

consumption via HmuO and 

diverse other enzymes 

𝑘𝑐𝑎𝑡𝐶𝑂𝑁  6.04 molecules/min/transporter Adjusted to match the maximal 

velocity (𝑣𝑚𝑎𝑥𝐶𝑂𝑁) and total reaction 

rate of consumption we observed 

in the model of C. glutamicum 

heme detoxification module 

Concentration of other enzymes 

responsible for heme consumption 

next to HmuO 

𝐸𝐶𝑂𝑁 1000 molecules//cell 

Michaelis-Menten constant for 

heme consumption via HmuO and 

diverse other enzymes 

𝐾𝑀𝐶𝑂𝑁 1.84 x 106 molecules/cell 

Total DtxR concentration 𝐷𝑡𝑥𝑅𝑇𝑂𝑇 1000 molecules/cell Arbitrary choice 

Activation threshold of DtxR 𝐾𝐻𝐼𝑁  
 

8 x 105 molecules/cell Adjusted to guarantee a sufficient 

activation of iron repressor DtxR 

for the highest hemin 

concentration. 

Fold-change of PhrrA promoter 𝜔𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  5 Suggested by wildtype data in Fig. 

S1a; within physiological range of 

1-104 (see e.g. (Lutz & Bujard, 

1997) for promoters with high 

dynamic range) 

Fold-change of PhmuO promoter 𝜔𝑃ℎ𝑚𝑢𝑂
𝐶ℎ𝑟𝐴  50 

PhrrA activation threshold 𝜅𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  100 molecules/cell Correspond to the total levels of 

ChrA~P and activated DtxR. 

Experimental Data suggest a 

significant higher activation via 

HrrA than the repression via DtxR 

on PhrrA 

PhmuO activation threshold 𝜅𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  300 molecules/cell 

PhmuO threshold of DtxR repression  𝜅𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅  300 molecules/cell 

PhrrA threshold of DtxR repression 𝜅𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅  500 molecules/cell 

Hill coefficient of HrrA binding to 

PhrrA 

𝑛𝑃ℎ𝑟𝑟𝐴
𝐻𝑟𝑟𝐴  1 Assuming no cooperativity in 

promoter binding on PhrrA 

Hill coefficient of HrrA binding to 

PhmuO 

𝑛𝑃ℎ𝑚𝑢𝑂
𝐻𝑟𝑟𝐴  1 

Hill coefficient of DtxR binding to 

PhmuO 

𝑛𝑃ℎ𝑚𝑢𝑂
𝐷𝑡𝑥𝑅  7 Adjusted to have a strong 

repressive effect on PhmuO/PhrtBA 

Hill coefficient of DtxR 

 binding to PhmrrA 

𝑛𝑃ℎ𝑟𝑟𝐴
𝐷𝑡𝑥𝑅  7 

 

Supplementary Table S6. Transformation of the units within the mathematical models 

Experimental unit Unit within the mathematical 
models 

Source 

OD = 1 ~ 3 x 108 cells/mL (Unthan et al., 2015) 

Heme [μM] in the growth 

medium 

~ 6 x 1013 molecules heme in the growth medium Assuming a reaction volume of ~100 μL 

Free heme [μM] in the cell ~1000 heme molecules/cell Corresponds to a cell size of ~ 1μm3 
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Minimal exposure of lipid II cycle intermediates
triggers cell wall antibiotic resistance
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Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet,

our understanding of antibiotic action is limited, as many strains devoid of all resistance

determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-

target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive

theory for the bacterial cell wall biosynthetic pathway and study its perturbation by anti-

biotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis

features a highly asymmetric distribution of pathway intermediates, and show that antibiotic

tolerance scales inversely with the abundance of the targeted pathway intermediate. We

formalize this principle of minimal target exposure as intrinsic resistance mechanism and

predict how cooperative drug-target interactions can mitigate resistance. The theory accu-

rately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive

bacteria and contributes to a systems-level understanding of antibiotic action.
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Theoretical modelling of key biological processes has
advanced our understanding of how cells respond towards
environmental perturbations, such as antibiotic treatment.

For instance, in Escherichia coli mathematical modelling accu-
rately predicted non-trivial susceptibility patterns against
ribosome-targeting antibiotics at different growth rates1, showed
that a positive feedback on resistance gene regulation can lead to
growth bistability of an E. coli population under chloramphenicol
treatment2, and revealed how non-optimal responses to DNA
stress under ciprofloxacin treatment can lead to suppressive drug
interactions when combined with ribosome-targeting antibiotics3.
Jointly, these studies demonstrate that intricate interactions
between well-characterised biological parts elicit emergent and
sometimes counterintuitive physiological responses, which can
hardly be understood without theoretical frameworks. However,
to date most of the predictive models for drug-target interactions
focussed on translation-inhibiting antibiotics, which is facilitated
by a well-established theoretical framework describing ribosome
partitioning within bacterial cells4–6. Thus, to gain a better
understanding of antibiotics targeting other essential processes,
such DNA synthesis, transcription, and cell envelope biogenesis,
theoretical models for these essential processes are urgently
needed.

Antibiotics targeting the cell wall biosynthetic pathway are
amongst the most important, clinically relevant last-resort anti-
biotics, such as ramoplanin, vancomycin and other
glycopeptides7,8. Despite decades of experimental studies of the
cell wall biosynthetic pathway in various organisms, to date there
remain significant gaps in our understanding of cell wall anti-
biotic action. Most strikingly, for many cell wall antibiotics there
are vast differences between their in vivo efficacy compared to the
in vitro binding affinity for their molecular target—even in strains
deleted for resistance determinants that could reduce antibiotic
potency in vivo. For instance, in mutants of Bacillus subtilis,
Staphylococcus aureus and Enterococcus faecalis lacking all known
resistance determinants against nisin, ramoplanin or vancomycin,
the minimal inhibitory concentrations (MICs) against these
antibiotics are 20–200-fold higher9–14 than the dissociation
constants (KD) for the respective drug-target interaction15–17,
highlighting that these antibiotics are significantly less active
in vivo than in vitro. This apparent in vivo efficacy gap led to the
notion that either all of these organisms might carry additional,
yet undiscovered resistance determinants, or that the antibiotics
might be inactivated in vivo, e.g., via sequestration to auxiliary
cellular structures, effectively reducing the concentration of active
antibiotics10,16,18. The variety of compounds, as well as the
diversity of species displaying an in vivo efficacy gap, raises
doubts about these hypotheses and suggests that there might be
another, more universal origin of this phenomenon.

A more parsimonious explanation for this gap could emerge
from the complex dynamics of the cell wall biosynthetic pathway
itself, which is highly conserved across the bacterial world
(reviewed e.g. in 8,19,20). At the core of this pathway is the lipid II
cycle, which encompasses all membrane-associated reactions of
cell wall biosynthesis and is responsible for shuttling pepti-
doglycan (PG) subunits across the cytoplasmic membrane
(Fig. 1a). Briefly, MraY and MurG sequentially attach the PG
precursors UDP-MurNAc-pentapeptide and UDP-GlcNAc to
the lipid carrier undecaprenyl phosphate (UP), giving rise to the
lipid I and lipid II intermediates, respectively. Various flippases
translocate lipid II to the outer leaflet of the cytoplasmic mem-
brane, where penicillin-binding proteins (PBPs) incorporate the
subunits into the growing PG layer. The resulting pyropho-
sphorylated state of the lipid carrier (UPP) is dephosphorylated
by UPP phosphatases (UppPs) to yield the initial substrate UP
for another round of PG subunit transport. Given that these

cyclic reactions represent the rate-limiting step of cell wall bio-
synthesis, it is not surprising that a wide range of antibiotics act
by blocking progression of the lipid II cycle. This is achieved by
either targeting the activity of the involved enzymes, e.g. PBPs
(inhibited by beta-lactams) and MraY (inhibited by tunicamy-
cin), or by directly sequestering the intermediate substrates of the
lipid II cycle, e.g. UP (sequestered by friulimicin), UPP
(sequestered by bacitracin) or lipid II (sequestered by ramopla-
nin, vancomycin and nisin), see Fig. 1a for an illustration and8,20
for reviews.

To gain a quantitative understanding on how cell wall anti-
biotics interfere with this essential pathway, we here set out to
derive a detailed, computational model of the lipid II cycle. By
incorporating experimentally determined parameters from the
literature, our theory accounts for key biochemical knowledge of
this pathway and reconciles it with the in vivo inhibition patterns
under antibiotic treatment. In particular, by focussing on the
Gram-positive model organism Bacillus subtilis, we provide clues
on the inner working mechanisms of cell wall biosynthesis and
predict the in vivo efficacy of different cell wall antibiotics from
first principles. In particular, we focus on antibiotics targeting
different intermediates of the lipid II cycle (substrate-sequestering
antibiotics), i.e. bacitracin, friulimicin, ramoplanin, vancomycin
and nisin (Fig. 1a), which are active against a broad range of
Gram-positive bacteria. Our results reveal that the in vivo efficacy
gap is an emergent property of the lipid II cycle, leading us to
suggest a novel principle of minimal target exposure as an
intrinsic resistance mechanism towards substrate-sequestering
cell wall antibiotics. Strikingly, our theory predicts that this
intrinsic resistance can be circumvented—at least partially—by
drugs that cooperatively bind their targets, providing a quanti-
tative explanation for the pivotal role of cooperative binding
for the potency of vancomycin and other glycopeptide
antibiotics21–23. Thus, the theory presented here not only pro-
vides insights into the response of a universally conserved
metabolic pathway towards perturbations, but also guides the
design of novel antimicrobial compounds to efficiently block this
core process of cell wall biosynthesis.

Results
Rationale of this study. The bacterial cell wall consists of
an alternating polymer of N-acetylglucosamine (GlcNAc) and
N-acetylmuramic acid (MurNAc), cross-linked by a MurNAc-
attached pentapeptide (Fig. 1a)24,25. Even though Gram-negative
and -positive bacteria greatly vary in cell wall thickness and some
organisms show specific modifications in peptidoglycan compo-
sition (e.g. variations in the GlcNAc-MurNAc-pentapeptide
known for Staphylococci) or cross-linking properties (e.g. in
Corynebacteria)26, the central lipid II cycle of cell wall bio-
synthesis is highly conserved throughout the bacterial world
(Fig. 1a). Accordingly, it seems plausible that the basic working
principles of the lipid II cycle are similar between Gram-negative
and Gram-positive bacteria. Most biochemical work on the
enzymes and intermediates of the lipid II cycle, however, was
focussed on the Gram-negative model organism E. coli. There-
fore, in the following we will first perform some general con-
siderations on the kinetics of cell wall synthesis in E. coli, which
will lead us to a first quantitative model for this essential process
in Gram-negatives. Given that most antibiotics targeting the
intermediates of the lipid II cycle are ineffective against Gram-
negatives (due to the permeability barrier posed by the outer
membrane), we will adapt the model to Gram-positive-specific
cell wall synthesis in a second stage. This will allow us to make
testable predictions for cell wall antibiotic action in B. subtilis and
other Gram-positive bacteria.
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Physiological constraints on PG synthesis. In a first step we
wondered about the total demand of PG synthesis of a bacterial
cell, and accordingly, how fast the lipid II cycle has to shuttle PG
monomers across the cytoplasmic membrane. During bacterial
growth the synthesis of the wall has to precisely match the volume
expansion of the cell, and any misbalance induced by antibiotic
inhibition can lead to destabilization and lysis of the cell27,28.
Accordingly, given that the sacculus of E. coli contains N= 3.5 ×
106 PG monomers (at a doubling time TD= 36 min)29 and that
~δ= 50% of the produced PG is degraded by hydrolases30,31,
balanced growth requires that the total rate of PG monomer
translocation across the membrane, jPG, has to equal jPG ¼
1þ δð ÞN ln 2ð Þ

TD
% 105 PG monomers per minute. This high rate of

transmembrane transport is supported by attaching PG mono-
mers to a limited number of 1.5 × 105 lipid carrier molecules32,33.
At the required synthesis rate, this implies that each lipid carrier
transitions within 90 seconds through all states of the cycle (UPP
> UP > lipid I > lipid I> UPP >…) (see Supplementary Note 1 for
detailed estimation). Thus, each carrier undergoes an average of
~24 transport cycles before it gets diluted due to cell growth. This
suggests that instead of synthesizing lipid carriers for one-time
“use-it and lose-it” transport, lipid carrier recycling is the pace-
maker of PG monomer transport across the membrane. Under
these conditions the lipid II cycle can be approximated as a
closed-loop system, in which the pool levels of lipid II cycle
intermediates quickly equilibrate, leading to cyclic flux-balance
between all of the states, i.e. j1 = j2 =… = j6 (Fig. 1b, blue arrows;
Supplementary Note 1 and Supplementary Fig. 1a, b). For
instance, if one reaction is limited by either the catalytic rate or
the abundance of the respective enzyme, the substrate of this

reaction will accumulate and all other intermediates will deplete
until all fluxes in the cycle are equal. Experiments in E. coli indeed
revealed a highly asymmetric distribution of lipid II cycle inter-
mediates, with a ~100-fold excess of UPP and UP (1.2 × 105 and
0.3 × 105 molecules per cell, respectively)33 over lipid I and lipid
II (700 and 1000, respectively)32 (Supplementary Table 1a). Also,
it is noteworthy that under normal growth conditions cells
homeostatically control cytoplasmic UDP-MurNAc-pentapeptide
and UDP-GlcNAc at levels that saturate MraY and MurG,
respectively34,35 such that the rate of wall synthesis is not limited
by soluble PG precursor abundance. Instead, under these condi-
tions the total flux of PG subunits across the cytoplasmic mem-
brane (Fig. 1b; red arrows) is only limited by the membrane-
associated steps of wall synthesis and is identical to the individual,
cyclic fluxes in the lipid II cycle, i.e. jPG = j1 = j2 = … = j6.

Kinetic model of the lipid II cycle. Are the molecular properties
of the cycle compatible with the overall demand for cell wall
synthesis outlined above? To test this, we developed a detailed
kinetic model of the lipid II cycle, which integrates key bio-
chemical knowledge from literature and simulates the overall rate
of PG synthesis, jPG. Briefly, the model takes into account the
reactions depicted in Fig. 1a, by considering Michaelis-Menten
kinetics for all characterised enzymes, and first order kinetics in
case of the flipping reactions for UP, UPP and lipid II, since less is
known about the latter. By further assuming production of UPP
in the cytoplasm and dilution of all cycle intermediates due to cell
growth, the model describes the dynamic changes in the con-
centrations of cycle intermediates in the inner and outer leaflet of
the membrane (see Supplementary Fig. 1c and Methods). To

a

Cytosol

Extra-
cytoplasmic

space

UP UPP

Lipid I Lipid II

M M M

M
G

G G

?

?
Nisin,

Ramoplanin

VancomycinBacitracinFriulimicin

MurGMraY

UppS

PG

PBPs

Cell wall

Cell
membrane

MurA

MurC

MurF

G M

UPOUT

UPIN

UPPOUT

LI LIIIN

LIIOUT

j1 j2

j3

j4j5
j6

b

UDP-MurNAc-
pentapeptide

UDP-GlcNAc

jPG

G G
G

G
G

GG
G

G

G

G

G
MurB

Lipid II
flippases

UppPs

MurD
MurE

Fig. 1 The lipid II cycle of Gram-positive bacteria is a prime target for antibiotics. a The lipid II cycle, as the core pathway of cell wall biosynthesis, drives the
transport of PG subunits across the cytoplasmic membrane via attachment to lipid carrier molecules. The cytoplasmic production of UDP-MurNAc-
pentapeptide (M) from UDP-GlcNAc (G) is catalysed by the MurA-F ligases34,75,76. Subsequently, at the internal leaflet of the cytoplasmic membrane the
translocase MraY and the transferase MurG sequentially attach UDP-MurNAc-pentapeptide and UDP-GlcNAc to the lipid carrier undecaprenyl phosphate
(UP), giving rise to the lipid I and lipid II intermediates, respectively. Various flippases translocate lipid II to the outer leaflet of the cytoplasmic membrane,
where penicillin-binding proteins (PBPs) incorporate the subunits into the growing PG layer. This leaves the lipid carrier in its pyrophosphate form (UPP),
which has to be recycled to UP by dephosphorylation to allow a new round of PG monomer transport. Given that all known UPP phosphatases (UppPs) act
at the external leaflet of the cytoplasmic membrane77,78, carrier recycling requires flipping of UP to the internal leaflet by a yet unknown mechanism68,69.
Finally, dilution of lipid carriers is counterbalanced by cytoplasmic synthesis of UPP by UppS, but likewise to UP flipping, the required mechanism to present
UPP to the externally acting phosphatases is unknown. Several antibiotics inhibit key steps of cell wall biosynthesis by forming complexes with UP, UPP or
lipid II, as indicated by the T-shaped red lines. b The lipid II cycle can be considered as a closed-loop system, in which all fluxes ji from one state of the cycle
into the next balance each other. Since UDP-MurNAc-pentapeptide and UDP-GlcNAc use lipid II cycle intermediates as carriers for the transport across the
cytoplasmic membrane, the flux of PG precursors, jPG (red arrows), is equal to the flux of the cycling reactions (blue arrows)
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calibrate the parameters in the model, we fixed all catalytic rates
(kcat) and Michaelis–Menten constants (KM) to the values
obtained from literature (Supplementary Table 1) and applied a
constrained optimisation approach to estimate the remaining
parameters (see Supplementary Note 1). In particular, by
imposing that the overall flux within the lipid II cycle has to
match the overall PG demand of the cell and by fixing the total
abundances of cycle intermediates to the asymmetric distribu-
tions reported in literature (Supplementary Table 1a), we
obtained precise estimates for the levels of the lipid II cycle-
associated enzymes, as well as for the rates for lipid carrier flip-
ping (Supplementary Fig. 1d). Interestingly, the theoretically
predicted enzyme levels are in excellent agreement with a pre-
vious proteomics study36 (Supplementary Table 2), showing that
our model describes the quantitative dynamics of the lipid II cycle
in a self-consistent manner—compatible with biochemical and
physiological constraints.

When the flux across all reactions of the lipid II cycle is
balanced, the model predicts an asymmetric distribution of cycle
intermediates across the two leaflets of the cytoplasmic
membrane. Especially, UPP and lipid II are predominantly found
in the external leaflet, while UP displays an even distribution
(Fig. 2a). Within the model, this is caused by highly efficient rates
of UPP and lipid II flipping across the membrane, whereas the
flipping of UP is predicted to be ~2 orders of magnitude slower.
This is consistent with the fact that lipid II is actively transported
from the internal to the external leaflet via MurJ and other
flippases37–39 and suggests that UPP could similarly follow an
active transport route. In contrast, UP may follow a passive
translocation process from the outer to the inner leaflet of the
membrane (see Discussion). Taken together, this initial mathe-
matical model for the lipid II cycle provides a first holistic view on
this essential metabolic pathway in the Gram-negative model
organism E. coli, integrating key biochemical properties, enzyme
concentrations and pool levels of cycle intermediates.

Even though for Gram-positive bacteria a comprehensive
biochemical understanding of the PG synthetic machinery, and in
particular of the PBPs, has not been laid out, we next integrated
all existing quantitative knowledge from diverse species to
consolidate them in a modified mathematical model for the
Gram-positive cell wall synthesis. First of all, while E. coli features

a PG thickness of 1.5 glycan layers on average40, B. subtilis and
many other Gram-positive bacteria have a much thicker wall of
about 20 layers8. Thus, when comparing Gram-negative and
Gram-positive cells of equal sizes and at similar doubling times,
the lipid II cycle has to transport PG precursors at a ~13-fold
higher rate in the latter (see Supplementary Note 1 and
Supplementary Table 3a for a comparison between E. coli and
B. subtilis). Theoretically, increases of the PG synthesis rate can
be achieved by tuning three factors: (i) increasing the abundance
of enzymes in the lipid II cycle, (ii) increasing the concentrations
of lipid carriers, or (iii) increasing the catalytic rates of all
associated enzymes. Interestingly, although proteomic studies in
B. subtilis and E. coli revealed differences in the absolute enzyme
abundances36,41, their surface concentration is almost invariant
between organisms—with typically between 50 and 100 molecules
per μm2 for each enzyme species (Fig. 2b and Supplementary
Table 3b)—showing that Gram-positive bacteria do not simply
increase the abundance of the PG synthetic machinery. Instead, in
a range of Gram-positive bacteria the surface concentrations of
the lipid carriers UP, UPP and lipid II are 10- to 20-fold higher
compared to E. coli (Supplementary Table 3c), suggesting that
these increased substrate levels are required to fully saturate the
enzymes of the lipid II cycle in Gram-positives. Consistent with
this, literature suggests that the KM value of MraY is eight-fold
higher in B. subtilis (KM= 160 μM42) compared to E. coli (KM=
20 μM43). However, if the goal is to speed up PG synthesis—why
does the Gram-positive PG synthetic machinery feature lower
substrate affinity while increasing substrate abundance, ultimately
leading to comparable levels of enzyme saturation as in Gram-
negatives? A potential origin could lie in the speed/affinity trade-
off known in enzyme kinetics44,45, according to which speeding
up the kcat value of an enzyme can lead to a sacrifice in substrate
affinity and a concomitant increase of the KM value (Fig. 2c). For
highly efficient enzymes, in particular, the kcat value is larger than
the substrate dissociation rate k−1, leading to an inverse
relationship between affinity (KM

−1) and speed, i.e.,
KM ! kcat=k1.

Taken together, the most parsimonious model for the Gram-
positive lipid II cycle is that the ~13-fold higher demand for PG
synthesis (compared to Gram-negative bacteria) is met by faster
enzymes with 10–20-fold higher catalytic rates. The speed-affinity

a

UPOUT UPPOUT

UPIN Lipid I Lipid IIIN

Lipid IIOUT

1 × 105

molecules/min

PG
synthesis

db

c Speed/affinity trade-off
k1 k2

k–1

kcat = k2
k–1 + k2

k1
KM =

E + S      ES → E + P

UPOUT

UPPOUT

UPIN Lipid I Lipid IIIN

Lipid IIOUT

1.9 × 106

molecules/min

PG
synthesis

1.2 × 1052.7 × 104

5.5 × 103 0.7 × 103 0.2 × 103

0.8 × 103
2.1 × 106

4.9 × 105

1 × 105 1.3 × 104 3 × 103

1.5 × 104

Speed Affinity

300

200

100

0
MraY MurG PBPs UppPs UppS

E. coli

M
ol

ec
ul

es
 p

er
 µ

m
2 E. coli (TD ≈ 22 min)

E. coli (TD ≈ 56 min)
B. subtilis (TD ≈ 40 min)

B. subtilis

OM

CW CW

Fig. 2 Abundance of enzymes and lipid carrier intermediates in the lipid II cycle. a Pool level distribution of lipid II cycle intermediates and rate of PG
synthesis predicted by the theoretical model for E. coli. b The surface concentration (number of enzymes per unit surface area) of the PG synthesis
machinery is similar in Gram-positive and -negative organisms. c Increased catalytic rates of the lipid II cycle enzymes are expected to significantly speed-
up the PG synthesis in Gram-positive organisms. As the catalytic rate kcat= k2 also affects the Michaelis constant KM, an increase in the speed of an
enzymatic reaction can decrease the affinity of the enzyme for its substrate. d Pool level distribution of lipid II cycle intermediates and rate of PG synthesis
predicted by the theoretical model for B. subtilis. The significantly thicker PG layer in B. subtilis, which compensates the lack of an outer membrane, demands
an increase in the rate of PG synthesis, implying higher levels of lipid II intermediates shuttling faster through the cycle

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10673-4

4 NATURE COMMUNICATIONS | ����� ���(2019)�10:2733� | https://doi.org/10.1038/s41467-019-10673-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


trade-off then dictates that all substrate affinities will be 10–20-
fold lower in Gram-positive enzymes, as observed for the KM
value of MraY. This model is also consistent with the
experimentally observed 10–20-fold higher lipid carrier substrate
pools, which would then be required to achieve similar levels of
enzyme saturation as in Gram-negatives, such that enzymes can
operate close to their maximal speeds. Accordingly, to establish a
self-consistent generic model for the Gram-positive cell wall
biosynthesis, we scaled all parameters for the lipid II cycle in E.
coli, i.e., the kcat and KM values, as well as the rate of UPP de novo
biosynthesis, by a factor of 13 (see Supplementary Note 1).
Accordingly, within this rescaled model both the overall PG
synthesis rate, as well as all lipid carrier concentrations increase
by this factor, while the relative stoichiometries between the lipid
carrier intermediates remain identical to the model for E. coli
(Fig. 2d). Although we are well aware that this coarse-grained
scaling is an approximation for the lipid II cycle in B. subtilis, it is
the most parsimonious choice of model parameters and leads to
testable predictions for the cellular response towards cell wall
antibiotics, as studied in the following.

Predicting cell wall antibiotic action from first principles. As
introduced above, many cell wall antibiotics bind to externally
exposed lipid II cycle intermediates, thereby sequestering lipid
carriers from the cycle. For the five antibiotics under considera-
tion (friulimicin, bacitracin, vancomycin, nisin and ramoplanin,
see Fig. 1a) both the molecular targets as well as the equilibrium
dissociation constants (KD) for the antibiotic/target interaction
have been characterised in vitro (Supplementary Table 4a). This
allowed us to integrate these binding reactions into our quanti-
tative model for the lipid II cycle (see Methods)—thereby creating
a tool to generate predictions of cell wall antibiotic action without
invoking further fit parameters. In the following we will first focus
on the two antibiotics that bind their target non-cooperatively
and later consider the effect of cooperative binding for the
remaining three antibiotics.

First we studied the action of the cationic antimicrobial peptide
bacitracin, which is widely used as a medicine and feed additive.
Bacitracin binds to UPP by forming an amphipathic shell around
its pyrophosphate group, thereby sequestering the target46. When
incorporating the binding of bacitracin to UPP into our model
(KD

BAC= 1 μM47) we predict a hyperbolic decrease of the total
PG synthesis rate with increasing antibiotic concentration,
reaching 50% of the maximal PG synthesis rate at 1.8 μM
bacitracin (IC50

BAC) (Fig. 3a). To understand why the predicted
IC50 almost coincides with the KD value in the model, we
analysed the relative abundances of lipid II cycle intermediates at
different bacitracin concentrations (Fig. 3b). Here it turned out
that the IC50 coincides with a decrease of the free external lipid II
pool to approximately 50% of its untreated level, consistent with
the role of lipid II as substrate for the final step of PG precursor
incorporation. The reduction of free lipid II pools is correlated
with an increase of the bacitracin-bound form of external UPP
(commencing at the KD value), which effectively sequesters lipid
carriers from the cycle and thereby triggers a concerted decrease
of all free cycle intermediates (Fig. 3b). Thus, for the binding of
bacitracin to UPP, which constitutes the largest pool of lipid II
cycle intermediates, our model predicts only a marginal in vivo
efficacy gap, i.e., an IC50 very similar to the in vitro KD value.

Next, we focussed on the commonly used food preservative
nisin—a polycyclic antibacterial peptide that binds with high
affinity to lipid II, the latter of which constitutes the smallest pool
of externally accessible cycle intermediates. To our surprise, for
nisin our model predicted an IC50 value (IC50

NIS= 10 μM) about
700-fold higher than the in vitro dissociation constant entering

the model simulation (KD
NIS= 0.015 μM48) (Fig. 3c)—qualita-

tively similar to the in vivo efficacy gap reported in literature (see
Introduction). What is the origin of this discrepancy in the
model? When again considering the relative abundances of cycle
intermediates at varying antibiotic concentrations, it turns out
that nisin—at low levels around the KD value—also effectively
binds to its target, leading to a pool level of nisin-lipid II
complexes comparable to the free form of lipid II (Fig. 3d).
However, this sequestration of lipid II only corresponds to ~1%
(104 molecules) of the total number of lipid carriers in the cycle
(Fig. 3d, g), thereby not reducing the overall abundance of free
carriers significantly. Accordingly, the circular flux of carriers
within the lipid II cycle quickly replenishes the free form of lipid
II molecules and leads to a similar PG synthesis rate as in the
absence of nisin (99% of max). Only when increasing the nisin
concentration 700-fold over its KD value, the amount of
sequestered carriers (nisin-lipid II) rises to ~50% of the total
abundance of cycle intermediates (Fig. 3d, h), thereby reducing
also the free lipid II pool and hence the overall PG synthesis rate
to 50% of its maximal value (Fig. 3c, d, h). Thus, within our
model the small pool size of externally accessible lipid II (~1/100
of total lipid carriers) leads to inefficient sequestration of lipid
carriers, thereby reducing the susceptibility of cell wall biosynth-
esis towards lipid II-binding antibiotics. In contrast, the binding
of bacitracin to external UPP, constituting the largest pool of
cycle intermediates (~2/3 of total lipid carriers), leads to efficient
sequestration of lipid carriers already at concentrations around
the KD value (Fig. 3e, f). In summary, these results indicate that
the in vivo efficacy gap results from asymmetric distributions of
externally accessible targets, and that the discrepancy between KD
and IC50 increases for decreasing target pool sizes.

To assess the predictive power of our model, we next compared
the theoretical IC50 values with experimentally determined MICs
for the given antibiotics (Fig. 3a and Supplementary Table 4b).
On first sight, the in vivo MIC of wildtype B. subtilis strain W168
(MICBAC= 180 μM bacitracin49) was ~100-fold higher than the
predicted IC50 value (IC50

BAC= 1.8 μM). However, the model did
not factor in the action of the BceAB resistance pump, which
confers high levels of bacitracin resistance to wildtype B. subtilis
cells49. The MIC of a strain deleted for bceAB (W168 ΔbceAB;
MICBAC= 1.7 μM bacitracin49); instead closely matches the
model-predicted IC50, confirming that the in vivo efficacy gap
is only ~two-fold for the UPP-binding antibiotic bacitracin
(Fig. 3a). Similarly, the model prediction for nisin (IC50

NIS=
10 μM) is only a factor of two higher than the experimental MIC
of a strain deleted for the primary nisin resistance determinant
(W168 ΔpsdAB; MICNIS= 4.8 μM11), revealing a 330-fold higher
in vivo MIC compared to the in vitro KD (Fig. 3c). Here, the
slightly lower experimental MICNIS compared to the predicted
IC50

NIS might be caused by membrane pore formation triggered
by high nisin levels16,50,51, which will increase the potency of
nisin but is not reflected in the model. These results indicate that
our model provides an accurate description of the lipid II cycle
under antibiotic treatment, and allows for precise predictions of
the in vivo antibiotic susceptibility from first principles.

Analytical expression of the in vivo efficacy gap. Next, we
wanted to derive an intuitive mathematical formula describing
how antibiotic susceptibility depends on the pool size of the
targeted lipid carrier, thereby rationalizing the origin of the
in vivo efficacy gap. To obtain a closed analytical expression for
the PG synthesis rate as a function of the antibiotic concentration,
we considered a simplified model of the lipid II cycle (see
Methods and Fig. 4a): This model takes into account first order
reactions between the antibiotic, A, and its unbound lipid carrier
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target, Sunbound, with association- and dissociation rates kass and
kdiss, respectively. Moreover, all other (non-target) lipid carrier
intermediates of the cycle are summarised as a bactoprenol
reservoir, Sreservoir, which can be interconverted into the unbound
lipid carrier with first order rate constants k1 and k−1, leading to
PG synthesis at a rate jPG ¼ k"1 Sunbound½ $ (and in equilibrium also
jPG ¼ k1 Sreservoir½ $). Under the assumption that the lipid II cycle
runs much faster than the doubling rate k1; k"1 % γð Þ the PG

synthesis rate decreases with the antibiotic concentration [A]
according to

jPG (
~KDð1þ ~KGÞ

A½ $ þ ~KD 1þ ~KG

! " ; ð1Þ

highly reminiscent of the hyperbolic decrease observed in the full
model above (cf. Fig. 3a, c). Interestingly, the half-maximal rate of
PG synthesis is reached at an antibiotic concentration of
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IC50 ! ~KD 1þ ~KG

! "
, which is strikingly different from the naïve

in vitro expectation for the antibiotic-target interaction
IC50 ¼ KDð Þ. Indeed, the IC50 in vivo is not only governed by the
biochemical properties of antibiotic binding, but strongly influ-
enced by two factors governing the lipid II cycling reactions: First,
the dissociation constant for the antibiotic-target interaction is
substituted by the in vivo dissociation constant, ~KD ¼ kdissþγ

kass
,

which can deviate up to approximately three-fold from the

in vitro value KD ¼ kdiss
kass

# $
, depending on the growth rate γ, as

well as the kinetics of antibiotic binding and unbinding from its
target (see Supplementary Note 1, Supplementary Table 4c and
Supplementary Fig. 4c, e). Second, the in vivo dissociation con-
stant is scaled by a buffering factor, which we define as 1þ ~KG

! "
.

Here ~KG ¼ ½R'
½T' (

k)1
k1

describes the ratio between the size of the
bactoprenol reservoir (serving as a buffer) and the size of the
carrier target in the absence of antibiotic (Fig. 4b). For example, if
the buffering reservoir is small compared to the target pool
~KG * 1

! "
, the model predicts only a marginal shift in the
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Fig. 4 A reduced model for the lipid II cycle rationalises the in vivo efficacy gap and elucidates the boost of antibiotic potency by cooperative drug-target
interactions. a The reduced model for the lipid II cycle considers antibiotic (A) binding to its lipid carrier target (Sunbound) via first order reactions with
association- and dissociation rates kass and kdiss, respectively, leading to the antibiotic-bound form of the target (Sbound). The model summarises all non-
target lipid II cycle intermediates as a bactoprenol reservoir (Sreservoir), which can be converted into the unbound lipid target intermediate and vice versa via
first order kinetics at rate constants k1 and k-1, respectively. b The buffering factor IC50

~KD
¼ 1þ ~KG

# $
, which is the major determinant of the in vivo efficacy

gap, increases for increasing bactoprenol reservoir size relative to the unbound target pool in the absence of the antibiotic (Starget) according to ~KG ¼ Sreservoir
Starget

.
Buffering factors are indicated for antibiotics binding to external lipid II ~KLII

G

! "
, external UP ~KUP

G

! "
,or UPP ~KUPP

G

! "
. c Influence of cooperative drug-target

interaction on the IC50 value predicted for lipid II-binding antibiotics. Assuming identical in vitro KD values (corresponding to the in vitro value of
vancomycin; blue line) the model predicts that for an antibiotic variant binding in a cooperative manner (Hill coefficient n= 2; black and red dashed lines),
the IC50 is approximately 22 times lower than for a non-cooperative antibiotic binding (n= 1; grey and pale red lines). The experimentally measured MIC
for vancomycin (red solid line 9), is close to the predicted IC50 for the cooperative variant. d Scaling of the in vivo efficacy gap with the Hill coefficient n
within the reduced model (see Supplementary Fig. 2 for further details). e For the simulated vancomycin variants (binding to lipid II), the reduction of the
PG synthesis rate to 50% requires that the equilibrium is strongly shifted towards the bound form of lipid II (99.6% bound vs. total lipid II). As increasing
Hill coefficients n generally lead to steeper binding curves, the required level of target binding is achieved at a 22-fold lower antibiotic concentration by
cooperative antibiotic binding (black) compared to the non-cooperative variant (grey)
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IC50 IC50 ! ~KD

! "
, indicating that in this case 50% of the total

bactoprenol carriers are easily sequestered by an antibiotic con-
centration equal to the in vivo ~KD value. In contrast, if the buf-
fering reservoir is large compared to the target pool ~KG " 1

! "
, an

antibiotic concentration equal to the in vivo ~KD value only
sequesters a small amount of the overall bactoprenol carrier level,
leading to substantial shifts in the IC50 IC50 " ~KD

! "
. Specifically,

when considering that the external lipid II pool in B. subtilis
(15 μM) is expected to be much smaller than the sum of all other
carrier intermediates (2700 μM), the model predicts a buffering
factor for the lipid II binding nisin of 1þ ~KG

! "
!180-fold

(Fig. 4b). In contrast, for the UPP pool (2100 μM) the other lipid
carriers constitute a much smaller reservoir (600 μM), which
leads only to a marginal buffering factor for bacitracin of
1þ ~KG

! "
! 1.3-fold (Fig. 4b). These results demonstrate that the

asymmetric distributions of lipid carrier intermediates lead to a
buffering effect against antibiotic attacks, which is particularly
pronounced for lipid II binding antibiotics, displaying a several
100-fold in vivo efficacy gap. Thus, although other factors, such as
the difference between the in vitro and in vivo dissociation
constant and enzyme saturation (see Supplementary Note 1 and
Supplementary Fig. 3g) have additional impact on antibiotic
susceptibility in the full model, the buffering effect is the major
cause for the in vivo efficacy gap for antibiotics targeting small
lipid carrier pools.

Cooperative drug-target interaction boosts antibiotic efficacy.
Next, we focussed on another long-standing debate in the field of
antibiotic resistance research, which is related to the effect of
cooperative drug-target interaction on antibiotic susceptibility.
Here, it is well documented that antibiotics binding in a coop-
erative manner to lipid II cycle intermediates, e.g., via multimeric
complex formation with the target, have a higher potency than
antibiotic variants unable to multimerise23,52–54. For instance,
dimer formation plays a key role in the efficient action of the
clinically important antimicrobial peptide vancomycin, as well as
in many other glycopeptides52–54, and has been recognised to
enhance the potency of engineered antimicrobial peptides23.
However, until now the mechanism behind the cooperativity-
induced activity boost remained elusive.

We therefore studied the quantitative impact of cooperative
drug-target interactions on antibiotic efficacy within our
mathematical model. To this end we considered the case of
vancomycin, which has a dissociation constant of KD

VAN=
0.03 μM15 and interacts with lipid II molecules55 via vancomycin
dimerization56. In vitro, cooperative antibiotic-target interactions
typically lead to sigmoidal binding curves of the form
½A%n= Kn

D þ ½A%n
! "

, with a Hill coefficient n ranging between 1–2
for dimeric binding. For instance, if drug dimerization occurs at a
concentration around the dissociation constant to the target, the
Hill coefficient will be close to 2, while both strong and weak
dimerization relative to target binding will generally lead to n < 2
(see Methods and Supplementary Fig. 2c). When analysing the
effect of two hypothetical vancomycin variants with identical KD,
but different Hill coefficients within our model (Fig. 4c), we find
that for a non-cooperatively binding variant (n= 1) the model
predicts an in vivo efficacy gap similar to nisin KD

MIC ¼ 470
! "

, while
this is significantly reduced for a cooperatively binding
vancomycin variant (n= 2), for which the model predicts a 20-
fold lower efficacy gap KD

MIC ¼ 22
! "

. Interestingly, the experimen-
tally measured MIC for vancomycin in B. subtilis (MICVAN=
0.35 μM9) is remarkably similar to the value predicted for the
cooperatively binding variant (IC50

VAN= 0.65 μM) (Fig. 5),

consistent with the observation that dimerization of vancomycin
is key for blocking the lipid II pool. Strikingly, also for the dimeric
glycolipodepsipeptide ramoplanin, our model predicts almost the
same in vivo efficacy gap as for vancomycin (IC50

RAM=
0.41 μM), which we find in excellent quantitative agreement with
experimental data (MICRAM= 0.49 μM10) (Fig. 5).

Why does dimerisation have such a drastic influence on the
IC50 in our model? To rationalise this behaviour, we extended the
simplified model (Fig. 4a) by accommodating cooperative drug-
target interactions (see Methods). Under similar assumptions as
in the previous section k1; k'1 " γð Þ the PG synthesis rate now
takes the form

jPG *
~Kn
D 1þ ~KG

! "

A½ %n þ ~Kn
D 1þ ~KG

! " : ð2Þ

Following a similar rationale as before, the half-maximal rate of
PG synthesis is now reached at an antibiotic concentration of

IC50 ¼ ~KD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~KG

n
q

, where the generalised buffering factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~KG

n
q

gets attenuated by the Hill coefficient via the n-th
root. Thus, the higher the cooperativity n, the lower the buffering
factor and the smaller the gap between MIC and KD value. This
attenuation of the buffering effect is particularly pronounced if
the buffering factor is large, e.g. for antibiotics targeting the lipid
II pool ~KG ! 180

! "
(Fig. 4d). Intuitively, the mitigating role of

cooperativity can be understood as follows: Since the buffering
factor is large, the cycle is slowed down only if the antibiotic-
target complexes vastly exceed the free target, such that the IC50
for lipid II-binding antibiotics is only achieved if the ratio
between bound and unbound lipid II molecules is 99.6% (Fig. 4e).
Clearly, if the drug-target interaction follows a sigmoidal binding
kinetics (as incurred by a Hill coefficient n= 2), a similar level of
target binding is achieved at a 22-fold lower antibiotic
concentration compared to hyperbolic binding kinetics (n= 1)
(Fig. 4e). This explains why in vivo vancomycin (n= 2) is
drastically more active than nisin (n= 1), although both
antibiotics have almost identical in vitro dissociation constants
to lipid II. Thus, cooperativity in drug-target interactions can
greatly boost the vivo efficacy of the drug by more efficiently
sequestering the target as soon as the KD value is exceeded.

However, we also noted that cooperative drug-target interac-
tions do not always confer such drastic effects. For antibiotics
targeting the largest pools of cycle intermediates, UPP and UP,
the respective buffering factors are already low (1þ ~KG ! 1:3 and
1þ ~KG ! 5:6, respectively) such that increasing cooperativity
only leads to a mild reduction of the buffering effects in our
model, with virtually no change for UPP-binding antibiotics
(Fig. 4d). Only for UP-binding antibiotics the model predicts that
changing cooperativity from monomeric (n= 1) to dimeric target
binding (n=2) will increase antibiotic potency by a factorffiffiffiffiffiffi
5:6
p

! 2:4. Interestingly, while it has been controversial whether
the UP-targeting lipopeptide antibiotic friulimicin binds its target
as monomer or dimer57, our model predictions for monomeric
binding (IC50

FRI= 1.46 μM) are in excellent agreement with the
experimental susceptibility in B. subtilis (MICFRI= 1.15 μM58)
(Fig. 5), suggesting that friulimicin inhibits its target in a non-
cooperative manner.

Discussion
Over the last decade quantitative experimentation and theoretical
modelling has fostered significant progress in our understanding
of antibiotic action against bacteria3,59–61. While previous theory
uncovered a range of non-trivial effects in the action of ribosome-
targeting antibiotics1, our work rationalises similarly

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10673-4

8 NATURE COMMUNICATIONS | ����� ���(2019)�10:2733� | https://doi.org/10.1038/s41467-019-10673-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


counterintuitive effects for cell wall antibiotics. In particular, our
theory predicts an inverse correlation between the tolerance
towards substrate-sequestering cell wall antibiotics and the
abundance of their cellular target, suggesting the principle of
minimal target exposure as an intrinsic resistance mechanism
against cell wall antibiotics. We show that resistance emerges
from the cyclic nature of the cell wall biosynthetic pathway, in
which high-abundance intermediates provide a buffer against
sequestration of low-abundance intermediates. In this light it
seems plausible that bacteria may have evolved to minimise the
abundance of externally exposed lipid II molecules, e.g. by
speeding up the rate of PG monomer insertion into the cell wall,
in order to evade blocking by lipid II-binding antibiotics, which
are ubiquitously produced by competing species, such as Lacto-
bacillus lactis (nisin), Amycolatopsis orientalis (vancomycin) or
Actinomycetes species (ramoplanin)62–65.

Our theory further resolves a longstanding conundrum dating
back to the 1990s, where it was first observed that cooperative
drug-target interactions play a crucial role in the in vivo efficacy
of glycopeptide antibiotics18,22. Although molecular studies have
revealed how cooperativity can emerge from glycopeptide–lipid II
interactions66, it remained enigmatic why it has such a drastic
effect on antibiotic efficacy in vivo. Our work reveals that coop-
erativity alleviates the buffering effect within the lipid II cycle,
such that much less antibiotic is required to achieve a similar level
of target-inhibition compared to a non-cooperatively binding
drug (Fig. 4e). Interestingly, our results indicate that the most
pronounced advantage of cooperative drug-target binding arises
when the buffering effect is large (Fig. 4d), and to our knowledge,

all cooperatively acting antibiotics bind to lipid II, for which this
is the case.

Taken together, our theory correctly predicts the in vivo action
of five different antibiotics against the Gram-positive model
organism B. subtilis (Fig. 5). Since our theory is based on
cumulative information about lipid II cycle properties in diverse
bacterial species, we wondered whether the derived principles also
apply to other organisms, including clinically relevant bacteria.
Indeed, S. aureus strains deprived of all known resistance deter-
minants also display pronounced in vivo efficacy gaps for
nisin (MICNIS/KD

NIS= 82 13) and for vancomycin (MICVAN/
KD

VAN= 24 12), and also the MIC of E. faecalis against vanco-
mycin exceeds the in vitro dissociation constant 47-fold14—all
very similar to the values in B. subtilis (Fig. 5 and Supplementary
Table 4b). Thus, both the in vivo efficacy gap as well as its
molecular origin—namely the asymmetric distribution of lipid II
cycle intermediates—seem to be conserved between diverse
Gram-positive organisms, highlighting the universality of
our model.

Besides the prediction of antibiotic susceptibility in vivo, our
theory provides clues about physiological features of the lipid II
cycle, which have not been experimentally accessible to date. For
instance, our quantitative considerations of lipid II cycling put
constrains on the enzyme copy numbers, their reaction kinetics
and, most notably, on the so far unknown processes of UP and
UPP flipping. Here, our analysis indicates that the flipping of
UPP from the inner to the outer leaflet of the cytoplasmic
membrane is about as fast as lipid II flipping, both of which are
>100-fold faster than the flipping of UP from the outer to the
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Fig. 5 Prediction of in vivo efficacy for various cell wall antibiotics in diverse Gram-positive organisms. The mathematical model predicts the in vivo efficacy
(IC50, red solid bars) exclusively from the antibiotics in vitro dissociation constants (KD, blue bars) and available information about the cooperativity in
antibiotic-target-interaction. The model predictions are in good agreement with experimental data published for B. subtilis9–11,49,58, S. aureus 12,13 and
E. faecalis 14,79 strains deleted for the known resistance determinants against the different antibiotics (MIC, red hashed bars), highlighting the universality
of the theoretical model for various Gram-positive organisms. Error bars of literature MIC values either represent standard deviations from multiple
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Error bars for the model predictions of IC50 values represent confidence intervals propagated from uncertainties in model parameters (see Supplementary
Fig. 4 and80)
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inner leaflet (Supplementary Table 2). Given that the dual
negative charge of the UPP headgroup energetically strongly
disfavours spontaneous flip-flop between bilayers67, such rapid
flipping can only be achieved by active UPP transport across the
membrane, but a specific UPP flippase has yet to be
discovered68,69. The 500-fold slower UP flipping suggests that it
might follow a passive flip-flop mechanism driven by con-
centration- and/or charge-gradients, but further experiments are
needed to shed light on this.

Another intriguing insight from literature mining was that
Gram-negative and -positive bacteria feature similar levels of lipid
II cycle-associated enzymes per surface area (Fig. 2b), despite
their vastly different demand for peptidoglycan synthesis (Sup-
plementary Table 3a, b). As a consequence, our analysis suggests
that the Gram-positive lipid II cycle is driven by faster enzymes,
which sacrificed some of their substrate recognition in a speed-
affinity trade-off (Fig. 2c). This is consistent with the idea that the
increased levels of lipid carrier intermediates found in Gram-
positive bacteria are required to saturate these faster enzymes. But
why do Gram-positive bacteria not simply produce higher levels
of lipid II cycle-associated enzymes to meet this demand? One
reason could be that these enzymes are either integral membrane
or membrane-associated proteins, such that raising the abun-
dance of the PG synthetic machinery could exceed the carrying
capacity of the membrane. Indeed, in E. coli the cytoplasmic
membrane bears a total of ~33.000 proteins per μm2 70,71, and the
sum of all enzymes in the lipid II cycle constitutes ~1–3% of the
membrane proteome. Thus, raising the PG synthetic machinery
by a factor of 13 to meet the PG demand of Gram-positive
bacteria could clearly lead to fitness trade-offs with other essential
transport- and biosynthetic processes. Comparative experimental
studies of the PG synthetic machinery in Gram-positive and
-negative organisms will help to further elucidate the quantitative
differences in this rate-limiting step of bacterial cell wall
synthesis.

The insights gained here can help guiding the design of new
drugs—by suggesting that novel cell wall antibiotics will perturb
the lipid II cycle most effectively by (i) binding low-abundant
cycle intermediates in a highly cooperative manner or by (ii)
targeting the high-abundant intermediate pools. In addition, our
model of the lipid II cycle provides the basis for broader analyses
of various further classes of cell wall antibiotics, such as drugs
inhibiting the enzymes in the lipid II cycle (e.g. beta-lactams
inhibiting PBPs) or drugs targeting the substrates of PG precursor
production (e.g. fosfomycin). To this end, the model will need to
be expanded, e.g., to explicitly incorporate the biochemical
characteristics and copy numbers of all redundant PBPs (as
opposed to treating them as one effective reaction, as in the
present model), highlighting the importance of further bio-
chemical studies of PBPs and other lipid II cycle-associated
enzymes for developing a complete systems-level description of
this essential cellular pathway. Likewise, the seamless biochemical
characterization of enzymes involved in PG precursor synthesis
and cell wall recycling will enable quantitative modelling of drugs
interfering with these important aspects of cell wall synthesis.
Hence, the presented model serves as an excellent starting point
to develop a whole-cell model of antibiotic action. One important
aspect will be the development of theoretical models describing
the regulation and action of known resistance mechanisms
(which are deleted in the strains considered in this work), to
provide a systems-level description of antibiotic action in wild-
type cells. First steps in developing such models have been made,
e.g., for the bacitracin resistance determinant BceAB in B. sub-
tilis72 and for beta-lactamases in S. aureus73. Coupling our theory
of wall synthesis with the bacterial growth laws1,4–6 will lead to
new insights into the growth-rate dependency of antibiotic action

and may advance our understanding of antibiotic tolerance of
slow- and non-growing cells74. Beyond this, a comprehensive
model will contribute to a quantitative understanding of whole-
cell physiology, which is the starting point to predict drug–drug
interactions between antibiotics targeting different physiological
pathways. Finally, we believe that such rational approaches to
understand the physiological targets of antibiotics are urgently
needed to develop novel strategies in our fight against anti-
microbial resistance.

Methods
Mathematical model of the lipid II cycle. Our computational model of cell wall
synthesis focuses on the core reactions of the lipid II cycle and describes pepti-
doglycan synthesis for each individual cell (Supplementary Fig. 1c). Time-
dependent changes of the pool levels of lipid II cycle intermediates are described by
deterministic differential equations to monitor the dynamics of cell wall synthesis.
Diverse model assumptions, based on the current state of knowledge about the
lipid II cycle, determine the frame of the kinetic model:

(i) The individual states of lipid carrier are included as time-dependent variables
in the model, distinguishing between lipid carriers localised in the inner (IN)
and outer (OUT) leaflet of the cytoplasmic membrane:

● UPPIN = internal pool of undecaprenyl pyrophosphate (UPP)
● UPPOUT = external pool of undecaprenyl pyrophosphate
● UPIN = internal pool of undecaprenyl phosphate (UP)
● UPOUT = external pool of undecaprenyl phosphate
● LI = pool of lipid I
● LIIIN = internal pool of lipid II
● LIIOUT = external pool of lipid II

(ii) The cytoplasmic production of soluble PG precursors (UDP-MurNAc-
pentapeptide and UDP-GlcNAc) is not described in detail in the model.
Since the precursor pool levels are homeostatically controlled34,35 at
sufficiently high levels to saturate the enzymes of the corresponding
reactions (Supplementary Table 1), the rate of cell wall synthesis is normally
not limited by PG precursor abundance. Although we are well aware that
this assumption does not accurately reflect the situation when PG precursor
synthesis itself is targeted, e.g. by fosfomycin, it is plausible to assume
constant pools of PG precursors when considering antibiotics targeting the
membrane-anchored steps of PG synthesis only.

(iii) The de novo synthesis of UPP in the cytoplasm has to balance the overall
growth-driven dilution of all lipid II cycle intermediates. To this end, we
assume a constant UPP production rate α ¼ ln 2ð Þ

TD

P
Si½ % in the cytoplasm,

balancing dilution within one generation time TD. Likewise, the growth-
dependent dilution of all individual lipid intermediate pools occurs at a rate
γ ¼ ln 2ð Þ

TD
.

(iv) The individual enzymatic reactions are modelled by Michaelis-Menten
kinetics, for which substrate levels (Si), enzyme levels (E), catalytic constants
of the enzymes (kcat) as well as the Michaelis–Menten constants (KM)
parameterise the reaction dynamics.

(v) Since the biochemical properties of the enzymes catalysing the flipping
reaction of lipid II (LIIIN to LIIOUT) are largely unknown, and the flipping of
UPP (UPPIN to UPPOUT) and UP (UPOUT to UPIN) was only hypothesised,
for parsimony reasons we assumed first order kinetics for these reactions, as
quantified by an effective rate constant ki (i=UP, UPP, LII).

Under these assumptions the following set of ordinary differential equations
describes the time-dependent changes of the lipid II cycle intermediate pools and
the concomitant effect on the rate of PG synthesis, jPG

d UPPIN½ %
dt

¼ α& kUPP UPPIN½ % & γ UPPIN½ % ð3Þ

d UPPOUT½ %
dt

¼ kUPP UPPIN½ % & vUppPsmax
UPPOUT½ %

KUppPs
M þ UPPOUT½ %

þ vPBPsmax
LIIOUT½ %

KPBPs
M þ LIIOUT½ %

& γ UPPOUT½ %
ð4Þ

d UPOUT½ %
dt

¼ vUppPsmax
UPPOUT½ %

KUppPs
M þ UPPOUT½ %

& kUP UPOUT½ % & γ UPOUT½ % ð5Þ

d UPIN½ %
dt

¼ kUP UPOUT½ % & vMraY
max

UPIN½ %
KMraY
M þ UPIN½ %

& γ UPIN½ % ð6Þ

d LI½ %
dt

¼ vMraY
max

UPIN½ %
KMraY
M þ UPIN½ %

& vMurG
max

LI½ %
KMurG
M þ LI½ %

& γ½LI% ð7Þ
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d LIIIN½ "
dt

¼ vMurG
max

LI½ "
KMurG
M þ LI½ "

% kLII½LIIIN" % γ½LIIIN" ð8Þ

d LIIOUT½ "
dt

¼ kLII LIIIN½ " % vPBPsmax
LIIOUT½ "

KPBPs
M þ LIIOUT½ "

% γ LIIOUT½ " ð9Þ

jPG ¼ vPBPsmax
LIIOUT½ "

KPBPs
M þ LIIOUT½ " ð10Þ

Simulations of antibiotic treatment. In order to accommodate cell wall antibiotic
treatment in the theoretical model of the lipid II cycle, we considered ligand-
binding between the antibiotic (A) and its target (T) (where T can be any of the
dynamic variables in Eqs. (3–9))

A½ " þ T½ "  !
KD AT½ ";

with the in vitro equilibrium dissociation constant KD ¼ kdiss
kass

, defined as the ratio
between dissociation and association rate, respectively. Consequently, the model
for the lipid II cycle defined in Eqs. (3–10) was extended by one differential
equation describing the dynamics of the antibiotic-bound lipid intermediate pool
(AT),

d AT½ "
dt

¼ kass A½ " T½ " % kdiss AT½ " % γ AT½ ": ð11Þ

Since the individual dissociation and association rates were rarely studied in vitro,
we set the association rate to the fixed value of kass= 0.75 μM−1 ×min−1 (as
measured for the binding of bacitracin to its target UPP 72) and calculated the
dissociation rates from experimentally determined in vitro dissociation constants
KD ¼ kdiss

kass
(Supplementary Table 4a). As we are well aware that association rates can

be different for different antibiotics, we subsequently investigated the robustness of
our model predictions against variations in the association rates (see Supplemen-
tary Note 1; Influence of binding dynamics on the IC50).

Given that the five antibiotics analysed here vary in both the binding dynamics
(quantified by the KD values) as well as the cooperativity of antibiotic-target-
interactions (defined by the Hill coefficient n) (Supplementary Table 4a), we
integrated an effective quantitative description of the multimer formation as well as
the antibiotic binding reaction into our model:

n A½ "  !
Kcoop ½An" þ T½ " !

KD AnT½ "

Keff ¼ Kcoop ´KD:

Since it was not always clear (e.g. in case of vancomycin) whether the antibiotic
multimerisation occurs before or after target-binding, and also the stoichiometry
within the antibiotic-target-complex was not always known precisely, we asked if
all differential binding scenarios generate cooperativity, i.e. a Hill coefficient n > 1.
To this end, we deduced the Hill expression describing the probability of bound
and thereby inactivated target Pbound from analysing all possible states of antibiotic-
target-interaction (Supplementary Fig. 2a, b) and estimated the Hill coefficient n
arising from this (Supplementary Fig. 2c). Here, the Hill coefficient n and thereby
the cooperativity reaches its maximum if the dissociation constants of multimer
formation and antibiotic binding are comparable, i.e. Kcoop ( KD. Obviously, if one
of the two reactions dominates the other, that is dimerization is significantly
weaker than target binding or vice versa, the effect of cooperativity disappears.
Hence, in order to study cooperativity in our model, we took a coarse-grained
approach assuming an effective Hill coefficient and binding threshold Kn

eff ¼
kdiss
kass

,
leading to the following kinetic equation

d AnT½ "
dt

¼ kass A½ "n T½ " % kdiss AnT½ " % γ AnT½ " ð12Þ

Within this expanded model including the quantitative description of antibiotic-
target-interaction, we studied the effect of antibiotic action on the lipid II cycle for
the five different cell wall antibiotics. In particular, we determined the antibiotic
concentration necessary to decrease the PG synthesis rate to its half-maximal level
to quantify the antibiotic efficacy and defined this concentration as the IC50
(Fig. 3a, c and Supplementary Fig. 3a, c, e). Additionally, we analysed the changes
in the pool sizes of the different lipid II cycle intermediates Si under varying
antibiotic concentrations (Fig. 3b, d and Supplementary Fig. 3b, d, f).

Reduced model of the lipid II cycle. To arrive at an analytical expression for the
PG synthesis rate in dependence on the antibiotic concentration, we developed a
reduced model of the lipid II cycle (Fig. 4a). Similar to the full model in Eqs.
(3–12), the antibiotic (A) can bind to its free target (Sunbound) within the lipid II
cycle with in vitro dissociation constant KD ¼ kdiss

kass
, leading to a pool of bound target

(Sbound), but now the sum of all other, non-target lipid II cycle intermediates are
represented as ‘bactoprenol reservoir’ (Sreservoir). For simplifying reasons, the inter-
conversion of one species into the other follows first order kinetics, determined by

the equilibrium constant KG ¼ k%1
k1
. As in the full model, production of new lipid

carriers at rate α balances the overall growth-driven dilution of all reaction species
with rate γ:

d Sreservoir½ "
dt

¼ α% k1 Sreservoir½ " þ k%1 Sunbound½ " % γ Sreservoir½ " ð13Þ

d Sunbound½ "
dt

¼ k1 Sreservoir½ " % k%1 Sunbound½ " % kass Sunbound½ " A½ " þ kdiss Sbound½ " % γ Sunbound½ "

ð14Þ

d Sbound½ "
dt

¼ kass Sunbound½ " A½ " % kdiss Sbound½ " % γ Sbound½ " ð15Þ

Here, we assume that the production of new lipid carriers enriches the bactoprenol
reservoir (Sreservoir), and later consider the scenario in which new lipid carriers feed
the free target pool (Sunbound), the latter of which is the case for UPP-binding
antibiotics. In flux-balance d

dt ¼ 0
! "

the fraction of antibiotic-bound target relative
to the total abundance of cycle intermediates (STOT = Sreservoir + Sunbound + Sbound)
is given by

½Sbound"
STOT

¼ A½ "
A½ " þ γ

k1
þ ~KD 1þ ~KG

! " ;

where ~KD ¼ kdissþγ
kass

and ~KG ¼ k%1þγ
k1

are the respective in vivo equilibrium constants.
Moreover, when new lipid carriers feed the free target pool, arrive at an analytical
solution of a similar form

½Sbound"
STOT

¼ A½ "
A½ " þ ~KD 1þ ~KG

! " ;

where ~KG ¼ k%1
k1þγ. However, as the cycling reactions dominate the de novo synth-

esis, i.e. k−1, k1 ≫ γ (see Supplementary Note 1; Quantitative considerations of the
peptidoglycan synthesis in E. coli), both solutions can be approximated by

½Sbound"
STOT

( A½ "
A½ " þ ~KD 1þ ~KG

! " ;

with ~KD ¼ kdissþγ
kass

and ~KG ( k%1
k1
: Likewise, the unbound form of the target takes the

form

½Sunbound"
STOT

(
~KD

A½ " þ ~KD 1þ ~KG

! " ;

such that the relative reduction of the PG synthesis rate in presence of the anti-
biotic (concentration [A]) compared to the unperturbed synthesis rate is

jPG A½ "ð Þ
jPG A½ " ¼ 0ð Þ ¼

k%1 Sunbound½ " A½ "

k%1 Sunbound½ " A½ "¼0
¼

~KD 1þ ~KG

! "

A½ " þ ~KD 1þ ~KG

! " :

When incorporating cooperative drug-target binding as in Eq. (12), we
analogously obtain

jPG A½ "ð Þ
jPG A½ " ¼ 0ð Þ ¼

~Kn
D 1þ ~KG

! "

A½ "nþ~Kn
D 1þ ~KG

! " ;

representing the key result for in vivo antibiotic action in the main text. Thus, the
half-maximal rate jPG is reached at an antibiotic concentration

A½ " ¼ IC50 ¼ ~KD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~KG

n
q

. Given that in the absence of the antibiotic

~KG ( k%1
k1

( Sreservoir½ "
Starget½ " , the IC50 clearly scales with the n-th root of the ratio between

bactoprenol reservoir and target pool in the absence of antibiotic (Starget).
Finally, taking cycling rates and pool level distributions equal to the full model

into account, we show that the reduced model reproduces the model predictions of
the full model (Supplementary Fig. 3g). The only subtle differences arise from the
fact that the reduced model considers first order kinetics, leading to a linear
dependency between the lipid pool sizes and the individual fluxes from one
intermediate to the next. Consequently, a reduction of the pool sizes to 50% of their
maxima by antibiotic binding directly leads to a half-maximal rate of PG synthesis.
In contrast, the Michaelis-Menten kinetics implemented in the full model features
saturation effects. Since the pool levels of lipid carrier are on the same order as the
KM values of the respective enzymes (Supplementary Table 1), most enzymes are
on the brink of saturation, indicating that there is not necessarily linear
dependency between the flux from substrate to product pool and substrate levels.
Indeed, the substrate pools have to be reduced by slightly more than 50% to
concomitantly reach a halved PG synthesis rate, requiring slightly higher antibiotic
concentrations as predicted from the simplified scenario (Supplementary Fig. 3g).

Model simulations and parameter fitting. The numerical solution of the dif-
ferential equations and all simulations were performed with custom scripts
developed in MATLABTM R2017b software (The MathWorks, Inc.). To constrain
the model to a physiological parameter regime we followed the rationale detailed in
the Supplementary Note 1. These constraints lead to eleven objective functions
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with seven unknown parameters. To solve this over-determined non-linear data-
fitting problem, we used the function lsqnonlin imbedded in the MATLABTM
software, solving nonlinear least-squares curve fitting problems of the form

mink f xð Þk22 ¼ min f1 xð Þ2þf2 xð Þ2þ¼ þ fn xð Þ2
! "

:

by using a trust-region-reflective Newton algorithm. As outputs, it returns the
optimum !x of the problem as well as the squared 2-norm χ2 of the residual at
!x χ2 ¼

P
f !xð Þ2

! "
. To account for the presence of local optima, 100 independent fits

were performed with randomly chosen initial parameter sets. Eventually, the best-
fit result (minimal χ2) was defined as the final parameter set (Supplementary
Table 2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files.

Code availability
Matlab code used in this project for data analysis is available from the corresponding
author upon reasonable request.
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Supplementary Note 1

Quantitative considerations on peptidoglycan synthesis in E. coli 

The rate of peptidoglycan (PG) production in the studied organisms was estimated based on 
experimentally determined total number of peptidoglycan monomers per cell. The cell wall of E. coli 
comprises of ~1.5 layers of PG (1), containing 3.5 x 106 PG monomers (GlcNAc-MurNAc-pentapeptides) 
in total (2). However, a significant portion δ of PG is degraded by hydrolases during cell growth. 
Accordingly, since a cell wall turnover of ~50% was observed (3, 4), within one doubling time a total 
number of 5.25 x 106 monomers of PG has to be translocated across the cytoplasmic membrane in 
order to satisfy the demand of PG of one E. coli cell. Hence, for a doubling time TD of 36 min 
(corresponding to the measured amount of PG monomers (2)), the rate of PG synthesis is given by:  

!"# = (1 + ()	× 	(PG	monomers	per	cell) ×
ln(2)
89

	= 3.5	 ×	10>	PG	monomers	cell?@ × 	1.5	 ×
ln(2)
36	min = 	1.01	 ×	10C	PG	monomers	cell?@min?@ 

Given that the lipid II cycle (Fig. 1a) is the major pathway of PG synthesis, the transition time of individual 
carriers through all states of the cycle determines the rate of PG monomer transport across the 
cytoplasmic membrane. We derived this transition time from assuming a closed-loop system of cyclic 
reactions – showing subsequently the validity of this assumption by assessing the relevance of de novo 
synthesis of individual carriers (Supplementary Fig. 1a). In such a closed-loop system, all substrate 
pools of the individual reactions equilibrate such that the individual fluxes - defined as the actual number 
of reactions occurring per time interval - are identical and, in particular, equal to the PG synthesis rate. 
Accordingly, by transitioning through the different states of the cycle, the dwell time of individual 
intermediates in every state differs, based on the speed of the subsequent enzymatic reaction 
(Supplementary Fig. 1b). More precisely, in highly efficient enzymatic reactions, catalyzed by enzymes 
with elevated catalytic rates or with high enzyme abundances, a substrate is converted into the product 
state much faster and, consequently, dwells much shorter in the substrate state, than in less efficient 
reactions. This governs the distribution of the pool levels within the cycle and leads to small substrate 
pools for fast enzymatic reactions and an accumulation of substrates for reactions catalyzed by slower 
or less enzymes (compare Supplementary Table 1a). Hence, the time one carrier molecule needs to 
complete a full round in the lipid II cycle was calculated from the dwell times within every intermediate 
state (Supplementary Fig. 1b). Considering the simplest scenario, the flux from one state into the next 
one, ji, depends on the substrate levels (Si) and the speed of the reactions (ki) and is equal to the PG 
synthesis rate jPG, as mentioned before 

!D = 	!"#~	FD[HD]	

This assumption of a proportional dependency of the flux from the substrate pools is valid in the case of 
first order kinetics or sub-saturated enzyme reactions. For highly saturated enzyme reactions, the flux 
is unaffected from the substrate pools but directly dependent on maximal velocity of the enzyme. As 
shown in Supplementary Table 1 and discussed later in detail (see section Simplified model of the lipid 
II cycle in Methods), the enzymes in the lipid II cycle operate on the brink of saturation, where the actual 
substrate pools still have a significant impact on the fluxes. Hence, the rate (ki) at which a single 
molecule reacts from substrate state to product state is 

FD =
!"#
[HD]

, 

and the dwell time (ti) within the substrate state is given by 

KD =
1
FD
.	



Finally, the total time (ttot) one carrier molecule needs to complete a full round of the cycle is the sum of 
all dwell times in the individual states 

KLML =NKD = 	N
1
FD
	
	
= 	N

[HD]
!"#

	=	
	

∑[HD]
!"#

. 

Considering the PG synthesis rate of 1.01 x 105 molecules per minute and the sum of all lipid II carrier 
molecules in the individual states (∑[HD]	~1.5 x 105 molecules; Supplementary Table 1a), a full transport 
cycle requires ~90 seconds (Supplementary Fig. 1b).  

In the full in vivo scenario, the de novo production of UPP in the cytoplasm and the dilution of all lipid II 
cycle intermediates create a non-trivial system of PG synthesis different from the considered closed-
loop assumption (Supplementary Fig. 1a). In order to assess the validity of the principles derived from 
the closed-loop system for the in vivo scenario, we evaluated the impact of carrier (re-)cycling and de 
novo synthesis on PG synthesis. As detailed in the section below, the de novo synthesis of UPP 
balances the increasing demand of lipid carrier during bacterial growth. In particular, total amount of 
lipid II cycle intermediates has to be reproduced during one doubling time to satisfy the PG demand of 
both daughter cells. Accordingly, each individual lipid carrier molecule has to be produced once during 
one doubling time, that is within 36 min in E. coli. However, since a complete round takes approximately 
1.5 minutes, each individual lipid carrier molecule can undergo 24 transport cycles within this time frame. 
Consequently, each lipid carrier is replenished by de novo synthesis due to cell growth not until 24 
rounds of cycling, highlighting carrier recycling as the dominant process driving PG monomer transport 
across the cytoplasmic membrane. Thus, the assumption of a closed-loop system is a good 
approximation of the in vivo scenario, and can therefore help to rationalize the quantitative behavior of 
our full theoretical model of peptidoglycan biosynthesis. 

Calibration of the mathematical model for E. coli 

To identify physiologically relevant parameter values for the model in Eqs. (1-8) given in the Methods, 
we mined the literature for biochemical characterizations of the involved enzymes (Supplementary Table 
1b). Since part of the reactions in the lipid II cycle are catalyzed by a single enzyme (e.g. MraY or MurG), 
the corresponding KM values were directly used in the mathematical model. For all reactions catalyzed 
by several enzymes we found KM values for at least one of the redundant enzymes, and, for parsimony 
reasons, fixed the parameters of our model to these values. In doing so, we assume that all PBPs and 
UppPs operate at similar, effective substrate levels determined by these KM values. However, given that 
the enzyme catalytic rates, kcat, as well as the precise enzyme abundances, [E], were only partially 
characterized (Supplementary Table 2), and that the effective flipping rates ki were unknown altogether, 
we determined these missing parameters via a constrained optimization approach. To this end we 
optimized the maximal velocities (PQRS = FTRL × 	 [U]) and ki’s for each reaction in Eqs. (1-8) given in the 
Methods, while matching 3 physiological constraints, as detailed in below, and later performing 
plausibility tests for the resulting parameter values. The physiological constraints are: 

(i) While the precise distribution lipid II cycle intermediates in the outer and inner leaflet of the
cytoplasmic membrane was unknown, the total pool levels (sum of outer and inner sub-pool) of
all individual lipid carriers were determined experimentally during balanced growth
(Supplementary Table 1a). This imposes constraints on the equilibrium values of the total lipid
carrier pool levels in Model-Eqs. (1-8):

UPPWX + UPPYZ[ = UPP[Y[ = 			1.2 × 10C	molecules	per	cell 
UPWX + UPYZ[ = UP[Y[ = 	3.2 × 10]	molecules	per	cell	
LIIWX + LIIYZ[ = LII[Y[ = 	1000	molecules	per	cell	
																								LI = LI[Y[ = 700	molecules	per	cell 



(ii) During balanced growth, all fluxes ji from one state of the cycle to the next have to be identical 
and need to equal the PG synthesis rate, jPG. Consequently, flux balance requires that individual 
fluxes match the physiological estimate for the overall PG demand, i.e.  
 

!D = 	PQRS
[HD]

ab + [HD]
= !"# = 1.01	 ×	10C	molecules	per	minute 

 
for the enzymatic reactions and 

!D = 	FD[HD] = !"# = 1.01	 × 	10C	molecules	per	minute 
 

for the flipping reactions for UP and lipid II. 
(iii) Given that UPP is synthesized in the cytoplasm and then fed into the cycle by flipping from the 

inner to the outer leaflet of the membrane, this flipping rate is not constrained by the rate of PG 
synthesis itself. However, if flipping of UPP to the external leaflet would be too slow, UPP 
carriers would be diluted by cell growth before entering the cycle. Therefore, it seemed plausible 
that cells flip UPP to the external leaflet at a rate comparable to de novo UPP synthesis in the 
cytoplasm. Under this constraint of ‘efficient carrier usage’, we demanded the rate of UPP 
flipping is equal to the rate of de novo synthesis required to keep the total lipid carrier pool ∑[HD] 
at a constant level, i.e. 
 

FZ""[UPPWX] = d =
ln(2)

89
N[HD]. 

 
Ultimately, the parameters of the resulting set of equations and constraints were determined with a non-
linear optimization approach (for further details of the algorithm see section Parameter fitting algorithm), 
providing an optimal set of parameters (Supplementary Table 2, Supplementary Fig. 1d), as well as an 
estimate for the variances and co-variances of individual parameters (Supplementary Fig. 1d). 
Furthermore, as the fitted parameters set the speed of the cycle reactions, they determine the 
distribution of the different lipid II cycle intermediates in the external and internal leaflet of the 
cytoplasmic membrane shown in the main text (Fig. 2a). The uncertainties in optimal parameters have 
only a moderate influence on the predicted distribution of individual lipid II cycle intermediate pool levels 
(Supplementary Fig. 4b), which in turn does not significantly affect our key results concerning the model 
predictions of the IC50 for different antibiotics (Supplementary Fig. 4a).  

 

Quantitative considerations on peptidoglycan synthesis in B. subtilis 

The PG demand of a single cell is determined by the size of the cell, in particular the cell surface area, 
and the number of PG layers that make up the cell wall. While the cell wall of E. coli comprises ~1.5 PG 
layers on average (1), B. subtilis features a PG thickness of about 20 layers (7), clearly leading to a 
raised demand of PG per unit of cell surface area in the latter. When further considering that at similar 
doubling times (89e.fghijkjf = 40	min vs. 89m.nokj = 36	min) the cell size and thereby cell surface area of B. 
subtilis is slightly higher compared to E. coli (Supplementary Table 3a), the theoretical demand of PG 
in B. subtilis is 

PG[Y[
e.fghijkjf = 	PG[Y[

m.nokj × p[ × pq, 

with p[ =
Trss	tRss	LuDTvwrxxy.z{|}~�~z

Trss	tRss	LuDTvwrxxÄ.ÅÇ�É
	 defining the ratio between the thickness of the cell wall in Gram-positive 

and Gram-negative organisms and pq =
xÑÖÜRTr	RÖrRy.z{|}~�~z

xÑÖÜRTr	RÖrRÄ.ÅÇ�~
		taking the ratios of cell surface areas between 

both organisms into account. To further factor in the slight differences in generation times 
(Supplementary Table 3a), the PG synthesis rate in B. subtilis is 



!"#
e.fghijkjf = 	PG[Y[

e.fghijkjf ×
ln(2)

89
e.fghijkjf	

= 	PG[Y[
m.nokj × p[ × pq ×

ln(2)

89
e.fghijkjf 	

= 	 !"#
m.nokj × p[ × pq ×

1
p#

 

with p# =
áà
y.z{|}~�~z

áà
Ä.ÅÇ�~	

.  Ultimately, for B. subtilis this leads to a PG production rate of ~1.85 ×  106 

molecules	min?@  (Supplementary Table 3a). To meet this higher PG demand we thus adapted all 
individual fluxes within the cycle, !De.fghijkjf, by the same factor, i.e. 

!D
e.fghijkjf = 	 !"#

e.fghijkjf . 

As explained in the section Kinetic model of the lipid II cycle of the main text, the most parsimonious 
model consistent with all experimental observations assumes enzymes with higher catalytic rates and 
lower affinities to their substrates, as well as higher lipid II cycle intermediate pools to sufficiently saturate 
the enzymes. Hence, for the model in B. subtilis we increased the maximal velocities (vmax) of the 
individual enzymatic reactions proportional to the overall PG synthesis rate, to meet the increase of 
individual fluxes 

Ue.fghijkjf ×	FTRLe.fghijkjf = 	PQRSe.fghijkjf = 	PQRSm.nokj × p[ × pq ×
1
p#
. 

Since at similar surface concentrations of enzymes, the slightly larger surface area of B. subtilis 
compared to E. coli (compare Fig. 2b, Supplementary Table 3b) suggests that the enzyme abundance 
scales according to  

Ue.fghijkjf	~	Um.nokj × pq, 

we demanded that the catalytic constants (kcat) to increase in proportion to the remaining factors 

FTRLe.fghijkjf = 	FTRLm.nokj × pá ×
1
p#
. 

Following the assumption of the speed/affinity tradeoff (see section Kinetic model of the lipid II cycle), 
the Michaelis constants KM were raised by the same factor 

ab
e.fghijkjf = 	ab

m.nokj × p[ ×
1
p#
. 

Finally, the need of higher lipid carrier concentrations in order to saturate the lower-affinity enzymes in 
B. subtilis demanded an increase in the UPP production rate d by a factor (p[ × pq ×

@

âä
). The resulting 

elevated lipid carrier concentrations proportionally raise the fluxes of the first order flipping reactions of 
UP, UPP and lipid II, such that the rate constants ki had to remain unchanged.  

 

Influence of antibiotic binding kinetics on the IC50 

While we extensively discussed the effect of the buffering factor ã1 + aå#ç as the major contribution to 
the in vivo efficacy gap, there is a second factor arising from the difference between in vivo dissociation 
constant (aå9 =

éèÉêêëí

éìêê
) for the antibiotic-target interaction (Supplementary Table 4c). Compared to the 

in vitro dissociation constant (a9 =
éèÉêê
éìêê

) this altered expression reflects a competition between the 

antibiotic binding reaction and the dilution of bound and unbound form target. If the antibiotic-bound 



target is diluted before spontaneous dissociation (i.e. kdiss << î), antibiotic action is less effective and 
the in vivo dissociation constant increases compared to the in vitro value. In contrast, if antibiotic-target 
interactions occur on much faster time scales than cell growth (i.e. kdiss, kass >> î), the dilution of the 
pools of bound and unbound lipid intermediates has negligible impact on the efficacy of antibiotic action. 
This is indeed the case for the on-/off-kinetics (kdiss and kass) measured for the bacitracin/UPP interaction 
(Supplementary Table 4c, Supplementary Fig. 4c). Although there are no experimental data available 
for the binding kinetics of the other antibiotic-target interactions, simultaneously scaling kdiss and kass up 

and down by a factor ï in our full model (while keeping their ratio a9 = éèÉêê
éìêê

 constant) reveals that the 

impact on the IC50 predictions is moderate (Supplementary Fig. 4d) and that the kinetic parameters 
chosen in our simulations (for ï = 1) represent a conservative estimate for the in vivo shift of the IC50 
(Supplementary Fig. 4d).   

 

  



Supplementary Figures 

 
 
Supplementary Figure 1. Calibration of the theoretical model of the lipid II cycle in E. coli (a) The 
de novo synthesis of UPP balances the overall dilution of all lipid II cycle intermediates due to cell 
growth. However, as each individual lipid carrier molecule undergoes 24 rounds within the lipid II cycle 
before it is replenished by de novo synthesis, the (re-) cycling of lipid carrier is the dominant process 
that drives the synthesis of PG, as indicated by the thickness of the arrows. (b) Accordingly, the lipid II 
cycle can be considered as a closed-loop system with equilibrated fluxes j1,…,j6 between the individual 
states of the system. In fact, all these fluxes equal the rate of PG synthesis, jPG. Consequently, the dwell 
time of the individual molecules within one of the cycle states, which is dependent on the speed of the 



reaction converting this molecule into the next state, can be calculated from the known overall rate of 
PG synthesis (see Supplementary Text for a detailed description). (c) The theoretical model quantifies 
the individual reactions of the lipid II cycle. The well-studied enzymatic reactions are parameterized by 
Michaelis-Menten kinetics, determined by the enzyme abundances ([E]), the catalytic rates of the 
enzymes (kcat) as well as the substrate affinities to the enzymes (KM). However, the less-studied flipping 
reactions are assumed to follow first order kinetics, defined by rate constants kUPP, kUP and kLII, 
respectively. The production of UPP at rate d counterbalances the dilution of all lipid intermediates with 
rate î, while ñí = ∑[HD] with Si representing the intermediate substrate i in the cycle. (d) Since the rate 

constants of the flipping reactions, as well as the vmax values of the enzymatic reaction (PQRS = FTRL ∗
	[U] ), are largely unknown, we apply a constrained optimization approach based on the previous 
quantitative considerations to estimate the remaining parameters (see Supplementary Text for further 
details). The parameter sets of 100 independent parameter fits show variations in some of the parameter 
values. In fact, the most significant variations appear in the rate constants of the flipping reactions. In 
particular, a relation between the parameters of the flipping reactions and the upstream or downstream 
reactions exists – the product of both reaction rates is constant, that is a slower flipping reaction is 
predicted if the up- or downstream reaction is faster and vice versa. For instance, if the flipping of lipid 
II is fast, the lipid II pool accumulates at the outer leaflet of the membrane and the maximal velocity of 
the subsequent PBP-catalysed reaction is assumed to be slightly lower compared to a slower flipping 
because the higher substrate levels of lipid II also contribute partially to a higher flux (red box). This 
relation reflects the fact that the pool levels equilibrate in a way that all fluxes are identical. Consequently 
faster reactions immediately convert the substrate, leading to an accumulation of the product pool, which 
again displays the substrate pool for the subsequent reaction and thereby demands a reduced maximal 
velocity of this reaction for a balanced flux. 
  



 
 
Supplementary Figure 2. Different multimeric binding scenarios lead to cooperative antibiotic-
target-interaction. (a) In case of a two identical antibiotic molecules (A) interacting with one target 
molecule (T), the following binding events are conceivable: (i) The monomeric antibiotic binds to the 
target, determined by the dissociation constant KT-A; (ii) the second antibiotic binds to the formed 
antibiotic-target-complex, determined by the dissociation constant KTA-A and (iii) the dimeric form of the 
antibiotic (dimer formation is determined by the dissociation constant KA-A) directly interacts with target, 
determined by the dissociation constant KT-AA. By evaluating all binding probabilities, we end up with a 
closed expression that describes the cumulative probability of a bound target Pbound, summarizing all 
possible forms of antibiotic-target-complexes (red box, top) (see Supplementary Text for calculation 
details). When assuming similar dissociation constants Ki for the individual interactions, the equation 
can be simplified and appears as the second one in the red box. Obviously, As Hill coefficients n>1 
appear in the equation, the different binding scenarios can generate cooperativity in antibiotic-binding-
interactions. (b) In the more complex scenario of two antibiotics interacting with two targets (T1 and T2), 
one further possible binding reaction arises, namely the binding of the second target to the complex 
formed by two antibiotic molecules and the other target molecule, which is determined by the 
dissociation constant KTAA-T. Again, a closed expression describes the cumulative probability of a bound 
target Pbound (red box, top) and a simplified equation can be found, assuming similar Ki values for all 
binding reactions (red box, bottom). (c) Ultimately, evaluating the expression for the probability of a 
bound target, we also show that the Hill coefficient n takes the highest value if the dissociation constants 
of all binding reactions (Ki1, Ki2) are identical.   
  



 
Supplementary Figure 3. Theory predicts a moderate in vivo efficacy gap for friulimicin and a 
more pronounced difference between IC50 and KD for vancomycin and ramoplanin. (a, c, e) The 
mathematical model predicts the IC50 values (red dashed lines) for the non-cooperative (grey) and 
cooperative (black) binding of friulimicin to UP and the cooperative binding of ramoplanin and 
vancomycin to lipid II. The model predictions match the experimentally determined MICs (red solid lines) 
for all three antibiotics highly precise. In case of friulimicin, the comparison between the model 
predictions and the experimentally determined MIC supports the hypothesis of a non-cooperative 
binding to UP. (b, d, f) Lipid II cycle intermediate pools under different antibiotic concentrations as 
predicted by the theoretical model. While an efficient binding of the antibiotics to their target is always 
observable for antibiotic concentrations around the KD values (blue lines), the reduction of the external 
levels of lipid II to 50% of its maximum - to achieve a halved PG synthesis rate - demands higher 
antibiotic concentrations (IC50). However, as illustrated in the results section, this in vivo efficacy gap 
increases with smaller pool levels (LII<UP) and decreases with higher cooperativity (n = 2 for 
vancomycin and ramoplanin). (g) Taking similar pool levels distributions as well as comparable reactions 
rates as in the full model into account, the reduced model reproduces the predictions of the full model. 
The remaining differences arise from the different reaction kinetics in the two models, as elucidated in 
detail in the Supplementary Text.   



 	
Supplementary Figure 4. Model predictions of the in vivo efficacy gap are robust against 
variations in the model parameters. (a, b) The repeatedly performed fitting procedure generates 

several close-to-optimal sets of model parameters, as characterized by the residuals òô. However, all 

parameter sets with òô ≤ 1.1 ×õúù	(òô) displayed here only lead to minor variations in the model 

predictions of the IC50 as well as the distribution of the individual pool levels. The most pronounced 

variation of the IC50 is observable for friulimicin, correlating with the shift between external and internal 

levels of UP. (c, d, e) Since the specific association- and dissociation rates of the different antibiotic-

binding reactions (kdiss and kass, respectively) are unknown, we study the impact of faster and slower 

binding dynamics on the predictions of the IC50 by scaling kdiss and kass up and down by a factor ï. The 

vertical grey lines identify the default model value ï  = 1. As the IC50 is a function of the in vivo 

dissociation constant (ICCü = 	a9†(1 + a#†)), variations in the in vivo dissociation constant (a9† ) caused by 

an acceleration of the antibiotic binding reaction directly lead to variations in the IC50. However, the in 
vivo dissociation constant (a9† ) and thereby the model-predicted IC50 is robust against faster binding 

dynamics for most of the antibiotics, with nisin as an exception that features a slightly decreased in vivo 

dissociation constant (a9† ) and consequently a reduced IC50 for an accelerated antibiotic binding and 

unbinding. Ultimately, the predicted buffering factor (
W°¢£
§à†

= 	1 + a#† ) is unaffected by fold-changes in the 

binding dynamics.  

  



 
 
Supplementary Figure 5. Sensitivity of predicted IC50 values on changes of experimentally 
determined model parameters. The model includes experimentally measured KM values as well as 
measurements of intermediate pools levels. Since the actual in vivo values of these parameters can 
differ from their in vitro measured quantities and can vary between different experimental setups, a 
sensitivity analysis of the model predictions against errors in the experimentally determined model 
parameters was performed. Here, the IC50 predictions for all 5 studied antibiotics were investigated upon 



perturbation of each experimental parameter by a factor of two, i.e., for parameters taking 200% and 

50% of the original parameter values given in Supplementary Table 1, respectively. For each parameter 

value, the relative deviation of the IC50 under parameter variation (IC50
var

) compared to the original model 

prediction (IC50
original

) is displayed on the respective axis of the spider’s web. Blue lines indicate the 

deviations of the IC50 when the respective parameter value is reduced by a factor of two from the original 

value and yellow lines represent the results for two-fold increased parameter values compared to the 

original quantities. Red lines serve as references, as they illustrate the results based on the original 

parameter values. In general, the predictions of the IC50 for the 5 different antibiotics vary only sub-

linearly under parameter variations. More precisely, two patterns are observable: (I) Changes in KM 

values only affect the IC50 prediction for antibiotics that target the substrate of the corresponding 

reaction. For example, variations in KM
UppPs

 lead to changes in bacitracin sensitivity and variations in 

KM
PBPs

 cause variation in the IC50 of the lipid II-binding antibiotics (nisin, vancomycin and ramoplanin), 

respectively. These variations of the IC50 result from differences in the enzyme saturation according to 

the different KM values, which has been shown to affect the IC50 as explained in the section Reduced 
model of the lipid II cycle in the Methods. (II) Variations in the pool size of UPP and the size of the target 

pool of each antibiotic affect the IC50 prediction of the respective antibiotic. In particular, a raised UPP 

pool (UPPTOT) leads to higher IC50 predictions for friulimicin and the lipid II binding antibiotics and vice 
versa. Furthermore, an increase in the target pool levels of these antibiotics reduces the IC50 and lower 

target pools raise the IC50 respectively. These results once again highlight the influence of the buffering 

effect on the efficacy of the antibiotics that target the less-abundant intermediates in the cycle, such as 

friulimicin and especially the lipid II-binding antibiotics. While an increase of the UPP pool, which 

functions as the biggest reservoir in the lipid II cycle, supports the buffering effect and raises the IC50 

consequently, an increase in the target pool size shifts the ratio between the reservoir and the target 

pool towards the target pool and reduces the buffering effect accordingly. Overall, all IC50’s vary at 

maximum 2-fold under the analysed parameter variations and only deviations of orders of magnitudes 

from the experimentally determined quantities would lead to significant changes in the model 

predictions. Thus, the general conclusions of this study stay unaffected from moderate uncertainties in 

the experimentally determined model parameters.    



Supplementary Tables 

Supplementary Table 1: Model calibration 
 

a) Pool levels of lipid II cycle intermediates in E. coli 
 

Lipid intermediate Pool level [molecules cell-1] Literature 

undecaprenyl phosphate (UP) 3.21 x 104 (8) 

undecaprenyl pyrophosphate (UPP) 1.16 x 105 (8) 

Lipid I 700 (9) 

Lipid II 1000 (9) 

UDP-MurNAc-pentapeptide 1.75 x 105 (5) 

UDP-GlcNAc 1.25 x 105 (6) 

total amount of PG in the sacculus 3.5 x 106 (2) 

 

b) Michaelis constants of lipid II cycle enzymes in E. coli 
 

Enzyme Substrate KM [μM] Literature 

MraY UP 20 (10) 

UDP-MurNAc-pentapeptide 87 (11) 

MurG Lipid I 2.8 (12) 

UDP-GlcNAc 45 

PBPs Lipid II 2 (13) 

UppPs UPP 530 (14) 

 
  



Supplementary Table 2: Parameter fitting and validation 
 

Reaction Optimized parameter value kcat [min-1] 
(literature) 

Enzyme levels 
[molecules cell-1] 

(calculated) 

Enzyme levels 
[molecules cell-1] (d) 

(literature) 
MraY PQRS = 3.01 x 105 molecules 

min-1 
  210-885 

MurG PQRS = 3.21 x 105 molecules 
min-1 

560* (a) 573 168-518 

PBPs (PBP1A+ 
PBP1B+ RodA) 

PQRS = 2.32 x 105 molecules 
min-1 

188 (b) 1234 358-1510 (e) 

UppPs PQRS = 3.55 x 105 molecules 
min-1 

540 (c) 657 519-3215 (f) 

flipping UPP FZ"" = 1.84 x 103 min-1    

flipping UP FZ" = 3.81 min-1    

flipping lipid II F•WW = 642.23 min-1    

(a) Ref: (15), *based on the importance of an intact membrane for the activity of MurG (16), we assumed a value 10-fold  

     higher than measured in vitro for purified protein without membrane 

(b) kcat for the bifunctional transglycosylase PBP1b (17) 

(c) kcat measured for the undecaprenyl pyrophosphate phosphatase PgpB (14)  

(d) Range of enzyme levels measured in (18) for E. coli doubling times of TD = 56.3 min (lower enzyme levels)  

     and TD = 21.5 min (higher enzyme levels) 

(e) Sum of PBP1A, PBP1B and RodA as the major penicillin-binding proteins with transglycosylase activity (19)  

(f) Sum of all known undecaprenyl pyrophosphate phosphatases BacA, PgpB, YbjG and YeiU 

  



Supplementary Table 3: Comparison between E. coli and B. subtilis  
 
a) Cell size 
 

Parameter E. coli Literature B. subtilis Literature 
average cell 

length 
3.27 μm (20) 3.6 µm (21) 

average cell 
width 

0.61 μm (20) 0.86 µm (21) 

average cell 
area 

6.26 μm2 (a)  9.57 μm2 (b)  

average cell 
volume 

0.91 μm3 (a)  1.89 μm3 (b)  

PG thickness 1.5- fold layer (1) 20-fold layer (7) 
PG 3.5 x 106  

monomers cell-1 
(2) 7.13 x 107  

monomers cell-1 (d) 
 

generation time 36 min (LB) (2) 40 min (CH medium) (21) 
PG turnover 

rate 
0.5 (50%) (3, 4)  0.5 (50%) (22, 23)  

PG synthesis 
rate 

1.01 x 105 monomers 
cell-1	(c) 

 1.85 x 106 monomers cell-1 (c)  

(a) Calculated according to volume and area formula 

ßÖM® = ßT©s + ß™Rss = 	π ∗ ¨
≠

2
Æ
ô
∗ (Ø − ≠) +

4

3
∗ 	π ∗ ¨

≠

2
Æ
±

 

≤ÖM® = ≥T©s + ≤™Rss = 	2 ∗ π ∗ (
≠

2
) ∗ (Ø − ≠) + 4 ∗ 	π ∗ ¨

≠

2
Æ
ô

 

(b) Fit of cell size data from (21)  

(c)	"#	QMwMQrÖx
Trss

∗ (1 + PG	turnover	rate) ∗
sw(ô)

∂rwrÖRLDMw	LDQr
 

(d) Calculated according to scaling assumptions  			 

	PG	monomers	per	celle.fghijkjf 	= PG	monomers	per	cellm.nokj ∗
Kℎú∏Fùπ∫∫	ªºe.fghijkjf	

Kℎú∏Fùπ∫∫	ªºm.nokj
∗
∫Ωæø¿∏π	¿æπ¿e.fghijkjf	

∫Ωæø¿∏π	¿æπ¿m.nokj
 

 
b) Enzyme levels 
 

Enzyme Level in E. coli 
[molecules cell-1]  

(20) (a) 

Surface 
concentration 

[molecules	μm-2] 
(d) 

Level in B. subtilis  
[molecules cell-1]  

(26) (e) 

Surface 
concentration 

[molecules	μm-2] (g) 

MraY 210-885 44-74   
MurG 168-518 36-44 627 66 
PBPs 358-1510 (b) 75-128 1227 (f) 128 

UppPs 519-3215 (c) 109-270   
UppS/IspU 318-830 67-70 661 69 

(a) Enzyme levels measured for two different growth rates (TD1 = 56.3 min and TD2 = 21.5 min) 

(b) Sum of PBP1A, PBP1B and RodA as the major penicillin-binding proteins (19)  

(c) Sum of all known undecaprenyl pyrophosphate phosphatases BacA, PgpB, YbjG and YeiU 

(d) Considering a surface area of E. coli corresponding to the doubling times of enzyme measurements: 

      A = 4.37 μm2 for a doubling time of TD1 = 56.3 min; A = 11.88 μm2 for a doubling time of TD2 = 21.5 min (20) 

(e) Enzyme levels measured in CH medium (TD = 40 min) 

(f) Sum of PBP1 and PBP 4 (only available data) 

(g) Considering a surface area of B. subtilis of A = 9.57 μm2 for a doubling time of TD = 40 min (21)  

 
 



 
c) Pool levels of lipid II cycle intermediates 
 

Intermediates Surface concentration  
Gram-positives 

[molecules	μm-2] 

Surface concentration  
Gram-negatives 
[molecules	μm-2] 

Ratio Literature 

UP 9.2 (± 3.1) x 104 (M. flavus) 
11.5 (± 3.8) x 104  

(L. monocytogenes) 

5.1 x 103 (E. coli) 18-22 (8, 25)  

UPP + UP 3.3 x 105 (S. aureus) 2.4 x 104 (E. coli) 14 (8) 
Lipid II 2.0 x 103 (B. megaterium) 160 (E. coli) 12 (9, 26)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Table 4: Antibiotic activity in B. subtilis  
 
a) KD values and cooperativity of antibiotic-target-interaction 
 

Antibiotic Target KD [μM] Cooperativity (n) Literature 

bacitracin UPP 1 1 (27)  
friulimicin UP 0.21  (28) 

ramoplanin Lipid II 0.016 2 (29)  
vancomycin Lipid II 0.03 2 (30, 31) 

nisin Lipid II 0.015 1 (32, 33)  

 
b) MIC values of antibiotic-target-interaction 
 

Antibiotic Strain MIC [μM] Method Medium Literature 
bacitracin B. subtilis 

(W168ΔbceAB) 
1.67  E-test  Müller-Hinton 

(MH) 
(34)  

S. aureus 
(NCTC 8325 rsbU+ 
ΔvraDEΔbceAB) 

4.2  killing curve 
assay 

Trypticase 
Soy Broth 

(TSB) 

(35)  

E. faecalis 
(JH2-2 ΔEF2050-

EF2049 
ΔEF2752-EF2751) 

5.6  broth dilution 
assay 

MH (36)  

friulimicin B. subtilis 
(W168) 

1.15  killing curve 
assay 

Luria-Bertani 
(LB)  

(37)  

ramoplanin B. subtilis 
(PY79) 

0.49  broth dilution 
assay 

LB (38)  

vancomyci
n 

B. subtilis 
(ATCC 6633) 

0.35  broth dilution 
assay 

TSB (39) 

S. aureus 
(RN4220 ΔvraFG) 

0.7  broth dilution 
assay 

TSB (40) 

E. faecalis 
(VSE) 

1.4  broth dilution 
assay and E-test 

MH (41) 

nisin B. subtilis 
(W168ΔpsdAB) 

4.77  killing curve 
assay 

MH (42) 

S. aureus 
(NCTC 8325 rsbU+ 
ΔvraDEΔbceAB) 

1.2  killing curve 
assay 

 TSB (35) 

 
c) In vivo KD values of antibiotic-target-interaction 
 

Antibiotic Target ¬√†  [μM] 
bacitracin UPP 1.02 
friulimicin UP 0.23 

ramoplanin Lipid II 0.025 
vancomycin Lipid II 0.04 

nisin Lipid II 0.038 
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Abstract 

Bacterial resistance against antibiotics often involves multiple mechanisms that are 

interconnected to ensure robust protection. So far, the knowledge about underlying regulatory 

features of those resistance networks is sparse, since they can hardly be determined by 

experimentation alone. Here, we present the first computational approach to elucidate the 

interplay between multiple resistance modules against a single antibiotic, and how regulatory 

network structure allows the cell to respond to and compensate for perturbations of resistance. 

Based on the response of B. subtilis towards the cell wall synthesis-inhibiting antibiotic 

bacitracin, we developed a mathematical model that comprehensively describes the protective 

effect of two well-studied resistance modules (BceAB and BcrC) on the progression of the lipid 

II cycle. By integrating experimental measurements of expression levels, the model accurately 

predicts the efficacy of bacitracin against the B. subtilis wild-type as well as mutant strains 

lacking one or both of the resistance modules. Our study reveals that bacitracin-induced 

changes in the properties of the lipid II cycle itself control the interplay between the two 

resistance modules. In particular, variations in the concentrations of UPP, the lipid II cycle 

intermediate that is targeted by bacitracin, connect the effect of the BceAB transporter and the 

homeostatic response via BcrC to an overall resistance response. We propose that monitoring 

changes in pathway properties caused by a stressor allows the cell to fine-tune deployment of 

multiple resistance systems and may serve as a cost-beneficial strategy to control the overall 

response towards this stressor. 

 

Keywords:    
cell wall antibiotic, antimicrobial peptide, bacitracin, peptidoglycan, resistance network, 

regulatory network, computational model 
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Introduction 
Computational approaches significantly improved our understanding of bacterial responses to 

environmental conditions, which often comprise multiple interconnected modules orchestrated 

in complex regulatory networks. For instance, mathematical modelling elucidated differences 

in signalling and signal processing in bacterial chemotaxis in Bacillus subtilis and Escherichia 

coli (Rao et al., 2004; Rao et al., 2005); contributed to our understanding of how environmental 

and cellular conditions shape the complex phosphorelay-system controlling sporulation and 

competence in B. subtilis (Bischofs et al., 2009; Schultz et al., 2009; Jabbari et al., 2011), and 

helped to uncover the regulatory mechanisms of σF-dependent sporulation control in Bacillus 

subtilis (Iber et al., 2006; Igoshin et al., 2006). In all of these studies, the overall cellular 

response towards environmental changes involves an intricate interplay between different 

regulatory modules, which can hardly be understood without theoretical frameworks. 

The cell envelope stress response (CESR) is another example for a particularly 

important, multi-layered regulatory network in bacteria, as it provides effective protection 

against crucial cell wall-targeting antibiotics, including the antimicrobial peptides (AMPs) 

bacitracin, ramoplanin and vancomycin. In many bacteria, the CESR involves orchestrated 

expression of various resistance determinants that protect against these AMPs via an array of 

mechanisms (Jordan et al., 2008). These include, for instance, changes in cell envelope 

composition to shield cellular targets from AMPs (Revilla-Guarinos et al., 2014), production of 

resistance pumps to remove AMPs from their site of action (Gebhard, 2012), enzymatic or 

genetic modifications of target structures to prevent AMP binding (Cetinkaya et al., 2000), or 

the synthesis of immunity proteins to degrade AMPs altogether (Sun et al., 2009). Although 

many of the resistance mechanisms are well-described and we have a good understanding of 

the gene regulatory control of individual resistance modules, the complex interplay and cross-

regulation between individual resistance modules remains poorly understood. Given that eight 

out of the twelve bacterial pathogens on the WHO’s priority list have acquired resistance 

towards cell wall-targeting antibiotics (https://www.who.int/news-room/detail/27-02-2017-who-

publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed), theoretical models 

rationalizing the cellular response towards such drugs are urgently needed. 

 To address this knowledge gap, we here focussed on the resistance network of B. 

subtilis towards bacitracin (BAC), an AMP that interferes with the lipid II cycle of cell wall 

biosynthesis (Fig. 1) (Schneider and Sahl, 2010). Briefly, within this essential pathway the 

peptidoglycan (PG) precursors N-Acetylglucosamine (GlcNAc) and N-Acetylmuramic acid 

(MurNAc)-pentapeptide are sequentially attached to the lipid carrier molecule undecaprenyl 

phosphate (UP), thereby forming lipid II (Fig. 1). Subsequently, lipid II is flipped across the 

cytoplasmic membrane, where the PG monomer (GlcNAc-MurNAc-pentapeptide) is 
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incorporated into the growing cell wall. This leaves the lipid carrier in its pyrophosphate form  

(UPP), which has to be recycled to UP by dephosphorylation to allow a new round of PG 

monomer transport. Bacitracin blocks the cycle by forming a tight complex with UPP (UPP-

BAC), which efficiently prevents recycling of the lipid carrier and ultimately leads to lysis of 

cells (Storm and Strominger, 1973; Economou et al., 2013). Like in many Gram-positive 

bacteria, bacitracin resistance in B. subtilis is mediated by multiple resistance determinants, 

which are transcriptionally up-regulated in response to bacitracin treatment (reviewed in 

(Radeck et al., 2017a). The most effective (primary) resistance determinant is the ABC 

transporter BceAB (Rietkötter et al., 2008), which protects UPP from the inhibitory grip of 

bacitracin (Fig. 2A) – presumably by breaking UPP-BAC complexes and thereby shifting the 

Figure 1. Scheme of the cell wall biosynthetic pathway and its inhibition by bacitracin. The lipid II cycle of 
cell wall biosynthesis is responsible for the translocation of PG precursors across the cytoplasmic membrane and 
represents the rate-limiting step in this process. The cytoplasmic production of UDP-MurNAc-pentapeptide (M) from 
UDP-GlcNAc (G) is catalysed by the MurA-F ligases. Subsequently, at the internal leaflet of the cytoplasmic 
membrane the translocase MraY and the transferase MurG sequentially attach UDP-MurNAc-pentapeptide and 
UDP-GlcNAc to the lipid carrier undecaprenyl phosphate (UP), giving rise to the lipid I and lipid II intermediates, 
respectively. Various flippases translocate lipid II to the outer leaflet of the cytoplasmic membrane, where penicillin-
binding proteins (PBPs) incorporate the subunits into the growing PG layer. In order to recycle the resulting 
pyrophosphorylated state of the lipid carrier (UPP), dephosphorylation by UPP phosphatases (UppPs), including 
BcrC, yield the initial substrate UP for another round of PG subunit transport. Lipid carrier recycling requires flipping 
of UP to the internal leaflet by a yet unknown mechanism.  Finally, dilution of lipid carriers is counterbalanced by 
cytoplasmic synthesis of UPP, which involves the isoprenoid biosynthesis pathway with the undecaprenyl 
pyrophosphate synthetase UppS catalyzing the last committed step. Likewise to UP flipping, the required 
mechanism to present UPP to the externally acting phosphatases is unknown. Bacitracin inhibits the lipid II cycle 
by binding to UPP, thereby preventing UPP dephosphorylation and progression of the cycle. 
 



From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 4 - 

binding equilibrium towards the free form of UPP (Fritz et al., 2015). The second line of defence 

is mediated by the UPP phosphatase BcrC, which increases the rate of UPP 

dephosphorylation and thereby promotes progression of the lipid II cycle (Cao and Helmann, 

2002; Ohki et al., 2003; Mascher et al., 2003; Bernard et al., 2005) (Fig. 2A). Simultaneously, 

B. subtilis induces production of the phage shock-like proteins LiaI and LiaH (Mascher et al., 

2003; Jordan et al., 2006), which only play a minor role in bacitracin resistance and seem to 

be involved in stabilization of membrane integrity by a mechanism that is yet to be determined 

(Domínguez-Escobar et al., 2014, Radeck et al., 2016).  

 Expression of bceAB is activated by a two-component system comprising the histidine 

kinase BceS and the response regulator BceR (Mascher et al., 2003, Ohki et al., 2003; Bernard 

et al., 2007; Rietkötter et al., 2008). BceS forms a sensory complex with BceAB in the 

membrane (Dintner et al., 2011; Dintner et al., 2014), which acts as a “flux-sensor” reporting 

on the antibiotic load experienced by each individual transporter – thereby activating further 

transporter expression only if their detoxification capacity approaches saturation (Fritz et al., 

2015). Expression of BcrC is primarily controlled by the extracytoplasmic function sigma factor 

σM (Cao and Helmann, 2002; Eiamphungporn and Helmann, 2008). While the physiological 

input triggering activation of σM still remains elusive (Asai, 2018; Zhao et al., 2019), the broad 

range of inducing conditions, including cell wall antibiotics, salt, ethanol and others, suggests 

that it is not a specific chemical compound but rather a cellular cue upon cell envelope damage 

that activates the σM response (Helmann, 2016). Interestingly, despite the seemingly unrelated 

input stimuli for the BceAB and the BcrC resistance modules – with BceAB being activated by 

a “drug-sensing” mechanism (=antibiotic flux) and BcrC by a “damage-sensing” mechanism –  

previous work revealed that there is a high level of inter-dependency between the modules 

(Radeck et al., 2016). In particular, in mutants lacking the ABC transporter BceAB, the 

secondary layers of resistance are induced more strongly and vice versa, suggesting that this 

compensatory regulation is the origin of robust cell wall homeostasis in B. subtilis.  

 In this study, we set out to decipher the regulatory interplay between these two 

resistance determinants by considering the dynamics of the lipid II cycle as a pivotal connection 

between drug- and damage-sensing resistance modules. To this end, we took advantage of a 

recently established computational model for the lipid II cycle, which describes the dynamics 

of PG synthesis based on biochemical parameters of the involved enzymes and cycle 

intermediates (Piepenbreier et al., 2019). By integrating the existing mathematical description 

of the lipid II cycle with a previously established model for BceAB resistance module (Fritz et 

al., 2015) and a novel theoretical description of the BcrC module (Fig. 2A), we developed a 

systems-level description of the bacitracin stress response that captures the MIC of a wild-type 

B. subtilis strain, as well as several mutants deleted for resistance systems individually or in 

combination. Additionally, our theoretical and experimental analyses reveal that an increased 
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total number of lipid carriers as well as an accumulation of the lipid carrier UPP in a ΔbcrC 

mutant are the origin of the significantly higher impact of the BceAB resistance module on 

bacitracin resistance when BcrC is lacking. As our model does not include any additional layers 

of regulation, our results show that the properties of the lipid II cycle itself contribute to the 

homeostatic control of the overall resistance response towards bacitracin. Thus, the theory 

presented here not only provides a comprehensive quantitative description of the bacitracin 

resistance network in B. subtilis, but also uncovers regulatory mechanisms of the multi-layered 

response towards this antibiotic. 

 

Material and Methods 

Bacterial strains and growth conditions  

Bacillus subtilis and Escherichia coli were routinely grown in lysogeny broth (LB medium) at 

37°C with agitation (200 rpm). Transformations of B. subtilis were carried out as described 

previously (Harwood and Cutting, 1990). All strains used in this study are derivatives of the 

wild-type strain W168 and are listed in Supplementary Table 1. Kanamycin (10 mg ml-1), 

chloramphenicol (5 mg ml-1), tetracycline (10 mg ml-1) and erythromycin (1 mg ml-1) plus 

lincomycin (25 mg ml-1) for macrolide-lincosamide-streptogramin B (“MLS”) resistance were 

used for the selection of the B. subtilis mutants used in this study. Solid media contained 1.5% 

(w/v) agar.  

 

Luciferase assays  

Luciferase activities of B. subtilis strains harboring pAH328-derivates were assayed using a 

Synergy2 multi-mode microplate reader from BioTek® (Winooski, VT, USA), essentially as 

described in (Radeck et al., 2016). Briefly, the reader was controlled using the software Gen5TM 

(version 2.06). Cells were inoculated 1:1000 from fresh overnight cultures and grown to OD600 

= 0.1–0.5. Subsequently, cultures were diluted to OD600 = 0.01 and split into 100 ml per well in 

96-well plates (black walls, clear bottom; Greiner Bio-One, Frickenhausen, Germany). Cultures 

were incubated at 37°C with linear agitation (medium intensity) and the OD600 as well as 

luminescence were monitored every 5 min. After one hour, freshly diluted Zn2+-bacitracin was 

added to the indicated final concentrations and incubation and monitoring every 5 min was 

resumed for 8h. Specific luminescence activity is given by the raw luminescence output 

(relative luminescence units, RLU) normalized by cell density (RLU/OD600).  

 

Minimal inhibitory concentration assays 

For concentration-dependent growth experiments, cells were grown as described for the 

luciferase assays and OD600 was measured analogously. The growth rate within the first hour 

after bacitracin addition was determined to monitor the concentration-dependent effects of 
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bacitracin on cell growth (Fig. 2B(i)). The MIC was defined as the concentration of antibiotic 

that fully inhibited growth, i.e. for which the growth rate equals zero. 

 

Relative quantitative RT-PCR 

Bacillus subtilis W168 and ΔbcrC cells were collected at OD600 between 0.3-0.5 and 

suspended in Trizol (Ambion). The cells were lysed through bead beating with 0.1mm zirconia 

beads. RNA was extracted from exponentially growing cells with Trizol Reagent. DNA was 

removed with DNase (Thermo Scientific) and the DNase was then heat-deactivated in the 

presence of EDTA. RT-qPCR was performed with the Luna Universal One-Step RT-qPCR Kit 

(New England Biolabs). 1 µl of 10-fold diluted RNA was added to 4 μl of rtPCR mix and 

subjected to a reverse transcription step at 55qC and 45 cycles of PCR (10 seconds at 95qC 

and 30 seconds at 60qC). The average CT value of three technical replicates of three biological 

replicates for each sample was used in ΔΔCt relative expression analysis (Livak and 

Schmittgen, 2001). The reference genes were the constitutively expressed genes recA 

(BSU16940) and gyrB (BSU00060).  

 

Computational model and simulations  

A detailed description of the model assumptions and equations for the bacitracin resistance 

network, as well as additional analyses of the model are given in the Supplementary 

Information. The numerical calculations of the differential equations of the model as well as the 

individual simulations were performed with custom scripts developed in MATLABTM software 

(The MathWorks, Inc.).  

 

Results 

The common purpose of the UPP phosphatase BcrC and the ABC transporter BceAB is to 

ensure progression of the lipid II cycle under bacitracin treatment, since bacitracin inhibits an 

important step of this cycle. Consequently, to study the impact of the two resistance modules 

on lipid II cycle homeostasis, we successively integrated the resistance modules into a detailed 

computational description of the lipid II cycle (Piepenbreier et al., 2019), which served as the 

basis of our mathematical model of the overall bacitracin resistance network. In a first step, we 

included the BcrC module and studied its protective effect on the lipid II cycle. In a second 

step, we investigated the interaction of the two resistance modules by integrating the pre-

existing theory of the BceAB module (Fritz et al., 2015) into the model. 

 

Impact of the UPP phosphatase BcrC on bacitracin resistance 

In our previous computational description of the lipid II cycle (Piepenbreier et al., 2019) we 

made the simplifying assumption that the enzymes involved in lipid II cycle progression feature  
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Figure 2. Modular composition of the bacitracin stress response network and its experimental analysis in 
B. subtilis. (A) Our theoretical model of the bacitracin stress response network is based on three interconnected 
modules. At the core of the model is a previously established theoretical description of the lipid II cycle module 
(center panel), which predicts the PG synthesis rate (jPG) of a B. subtilis strain devoid of any inducible resistance 
determinants under antibiotic perturbation (Piepenbreier et al., 2019). The dynamic variables within the model are 
the concentrations of the lipid II cycle intermediates (blue bubbles) in the inner and outer leaflet of the cytoplasmic 
membrane, as indicated by the subscripts IN and OUT. To arrive at a model for wildtype cells, we first incorporated 
the action of the σM module (left panel), in which an unknown cue activates the anti-σ factors YdhL and YhdK in 
response to cell envelope stress, triggering the release of σM and the concomitant up-regulation of BcrC and an 
array of further σM-dependent genes. As a second module we incorporated the action of the ABC transporter BceAB 
(right panel), in which a complex of the histidine kinase BceS and the BceAB transporter jointly act as a sensor for 
bacitracin flux, triggering phosphorylation of the response regulator BceR and concomitant up-regulation of bceAB 
expression. Both resistance modules are qualitatively expected to increase resistance (lower panel) by shifting the 
bacitracin concentration at which the PG synthesis rate reaches its half-maximal level (IC50) to higher values. (B) 
Experimental analysis of resistance module gene expression and their impact on the growth rate. Target promoter 
activities of PbcrC-luxABCDE (panel i) and PbceAB-luxABCDE (panel iii) in B. subtilis strains carrying indicated 
deletions of resistance modules, as given by specific luciferase activity (RLU/OD600) one hour after addition of 
indicated amounts of bacitracin. Panel (ii) shows the corresponding normalized growth rates of the same strains. 
Measurements were performed during exponential growth phase in LB medium at 37ºC in a microtiter plate reader. 
Data are shown for strains TMB1619, TMB1620 (wild-type strain W168); TMB1623, TMB1624 (ΔbceAB); TMB1627, 
TMB1628 (ΔbcrC) and TMB1632 (ΔbceABΔbcrC) containing PbceA-luxABCDE or PbcrC-luxABCDE, respectively, see 
Table S1. Note that we did not test PbceA-luxABCDE activity in strains carrying a ΔbceAB deletion, because the flux-
sensing mechanism activating PbceA strictly relies the presence of BceAB (Fritz et al., 2015). Data points and error 
bars indicate means and standard deviations derived from at least three biological replicates.  
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constant expression levels under antibiotic treatment, but it is known that the UPP phosphatase 

BcrC is upregulated in response to bacitracin treatment. Also, the model did not include the 

activity of the BceAB transporter and, as such, was only able to predict the approximate MIC 

for bacitracin in a ΔbceAB mutant strain of B. subtilis (Piepenbreier et al., 2019). Thus, the first 

step in arriving at a more realistic description of lipid II cycle homeostasis was to include the 

bacitracin-dependent up-regulation of bcrC expression into our computational model for the 

ΔbceAB mutant strain. To experimentally assess bcrC expression in response to bacitracin 

treatment under our experimental conditions, we integrated a PbcrC-luxABCDE reporter 

construct into the chromosome of a ΔbceAB mutant and measured luciferase activity 1 hour 

after addition of various bacitracin levels (Fig. 2B(i), green). The PbcrC promoter activity clearly 

correlated with increasing levels of bacitracin, leading to a maximal ~6-fold induction at 3 μg/ml 

bacitracin treatment compared to the untreated condition. In contrast, wild-type cells only 

displayed a ~3-fold PbcrC induction reached at 10-fold higher bacitracin levels (30 μg/ml) (Fig. 

2B(i), black), suggesting that the additional expression of bceAB in the wild-type mitigates the 

demand for bcrC expression, as discussed further below. Furthermore, we investigated the 

impact of the BcrC resistance module on bacitracin resistance, by comparing the growth of a 

ΔbceAB mutant and a ΔbceABΔbcrC double mutant. In doing so, we were able to study the 

resistance contribution of BcrC alone, and avoided any compensatory upregulation of bceAB 

expression that may complicate the interpretation of a comparison between wild-type and a 

ΔbcrC mutant strain. By defining the minimal inhibitory concentration (MIC) as the lowest 

antibiotic concentration leading to zero growth rate after bacitracin addition, we observed a 

2.3-fold lower MIC value for the ΔbceABΔbcrC mutant (Fig. 2B(ii); light blue star, MICΔbceABΔbcrC 

~ 6.3 μg/ml) compared to the ΔbceAB mutant (Fig. 2B(ii); green star, MICΔbceAB ~ 14.5 μg/ml), 

consistent with earlier results (Radeck et al., 2016). This clearly confirmed that the BcrC 

resistance module by itself contributes significantly to the growth of B. subtilis under bacitracin 

treatment.  

Next, we incorporated the observed up-regulation of bcrC into our existing model of the 

lipid II cycle, with the goal of accurately predicting the antibiotic susceptibility towards bacitracin 

in the ΔbceAB mutant strain. Briefly, the previous model of the lipid II cycle (Piepenbreier et 

al., 2019) considered Michaelis-Menten kinetics for all characterized enzymes, while the 

mostly unknown flipping reactions of the intermediates UPP, UP and lipid II were described by 

first order kinetics (see Supplementary Text for a detailed description of the model). To 

integrate the different levels of bcrC expression in response to bacitracin into our model, we 

modified the mathematical description of the dephosphorylation reaction of UPP. Since the 

speed of every single enzymatic reaction within the lipid II cycle is proportional to the 

concentration of the enzymes that catalyses the reaction - according to the Michaelis-Menten 

theory - the bacitracin-induced increase in BcrC levels implies an increase in the speed of UPP 
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dephosphorylation (Fig. 3A,C). However, the dephosphorylation of UPP is additionally 

catalysed by a second phosphatase UppP in B. subtilis, the expression of which is independent 

of bacitracin (Cao and Helmann, 2002; Zhao et al., 2016; Radeck et al., 2017b) (Fig. 3B). Thus, 

the total speed of the UPP desphophorylation reaction is given by the weighted sum of the 

bacitracin-dependent contribution from BcrC and the bacitracin-independent contribution from 

UppP (Fig. 3C), with xBcrC quantifying the relative contribution of BcrC, and 1- xBcrC the relative 

contribution of UppP. The stronger the contribution of BcrC towards the overall phosphatase 

activity (higher xBcrC), the more pronounced the acceleration of the UPP dephosphorylation 

reaction in response to bacitracin (Fig. 3C). To determine the unknown parameter xBcrC, we 

first assumed that the BcrC protein level is proportional to the detected luminescence output 

from the PbcrC-luxABCDE reporter in the bceAB mutant (Fig. 2B(i)). We then simulated the 

Figure 3. Different contributions of BcrC and UppP to the overall UPP phosphatase activity lead to variable 
levels of protection against bacitracin. To capture the influence of the BcrC module to lipid II cycle homeostasis, 
the bacitracin-dependent induction profiles of the two phosphatases bcrC (A) and uppP (B) are used as proxies for 
their contributions to the total UPP phosphatase activity. Given that no biochemical characterization regarding the 
relative phosphatase activities of the two proteins exists, we introduce the parameter xBcrC describing the relative 
contribution of BcrC (and (1 - xBcrC) the contribution of UppP) to the overall phosphatase activity in panel (C). 
Integrating the bacitracin-dependent UPP phosphatase activity in (C) in the model for the lipid II cycle (Piepenbreier 
et al., 2019) leads to predictions for the PG synthesis rate in (D). This shows that the stronger the contribution by 
xBcrC, the higher the bacitracin concentration at which the PG synthesis rate reaches its half-maximal value, which 
we define as the IC50. Previous work showed that this IC50 serves as a good proxy for the experimental MIC for 
various cell wall antibiotics (Piepenbreier et al., 2019). 
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model of the lipid II cycle for different values of xBcrC and monitored how the up-regulation of 

BcrC in response to bacitracin affects the overall rate of PG synthesis (Fig. 3D). Here, it turned 

out that in the absence of BcrC upregulation (xBcrC = 0) the PG synthesis rate decreased 

hyperbolically with increasing bacitracin concentration, as seen before (Piepenbreier et al., 

2019). In contrast, for high values of xBcrC, the up-regulation of BcrC led to a peak of the PG 

synthesis rate at intermediate bacitracin levels, and to a shift of the IC50 value – the antibiotic 

concentration reducing the PG synthesis rate to 50% of its unperturbed rate – to higher values. 

Studying the dependence of the predicted IC50 values on different values of xBcrC showed that 

the IC50 matched the experimentally measured MIC of the ΔbceAB mutant when UppP and 

BcrC have approximately equal contributions to the overall phosphatase activity (Fig. 4A). 

 

The total amount of lipid carrier is increased under bcrC deletion to ensure close-to-

optimal PG synthesis rate 

If the two phosphatases make approximately equal contributions to the overall phosphatase 

activity, one would predict that the deletion of one of the phosphatases should have significant 

impact on cellular physiology even in the absence of cell wall antibiotics. In fact, within our 

model the deletion of bcrC significantly reduces the speed of the dephosphorylation reaction 

of the lipid II cycle – leading to an accumulation of UPP (Supplementary Fig. S2B). Given that 

the lipid II cycle can be approximated as a closed-loop system in which the total amount of 

lipid intermediates running through the cycle stays constant (Piepenbreier et al., 2019), the 

accumulation of UPP simultaneously reduces the concentrations of all other lipid II cycle 

carriers (Supplementary Fig. S2B). In addition, especially the shortage of lipid II directly leads 

to a distinct reduction of the overall rate of PG synthesis of the lipid II cycle, since lipid II 

ultimately releases the PG monomers for incorporation into the cell wall (see theoretical 

description of the PG synthesis rate in the Supplementary files). Hence, within the simulated 

range of BcrC and UppP contributions to the overall phosphatase activity, the lack of BcrC was 

predicted to reduce the rate of PG synthesis below its half-maximum for some of the 

parameters tested (Supplementary Fig. S2B). Furthermore, the model predicted relatively low 

IC50 values since the overall PG synthesis rate was already reduced and very small amounts 

of bacitracin should be sufficient to further decrease it to the assumed critical rate of 50% of 

its optimal level.  

However, such a reduction in the overall rate of PG synthesis even without bacitracin 

treatment would cause clear defects in cell growth, which was neither observable in the 

absence of bacitracin nor under low bacitracin concentrations when monitoring the growth of 

ΔbceABΔbcrC mutant strain. Instead, the growth rate of the double mutant was only slightly 

affected without bacitracin (Supplementary Fig. S1) and the experimentally determined MIC 

(Fig. 2B(ii), light blue) was significantly higher than the IC50 values predicted by the model. 
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These results led us speculate that B. subtilis uses additional routes to respond to the deletion 

of bcrC – thereby ensuring a close-to-optimal rate of PG synthesis – probably by increasing 

the concentrations of lipid II. How does the cell implement this homeostatic control? As 

previous studies revealed, σM not only regulates the expression of bcrC in response to 

bacitracin, but also induces individual steps of the methylerythritol phosphate (MEP) pathway 

(e.g. ispD-F), which is responsible for early steps of lipid carrier (UPP) synthesis (Julsing et al., 

2007; Eiamphungporn and Helmann, 2008). Indeed, it was shown that the expression of σM 

itself is significantly increased in a mutant strain lacking BcrC (Zhao et al., 2016). Hence, we 

hypothesized that the lipid II concentrations might be homeostatically regulated by σM-

dependent control of the production of new lipid carrier. To test this hypothesis, we used RT-

qPCR to quantify transcript levels of σM-regulated genes involved in the production of UPP 

synthesis. As illustrated in Fig. 4B, we found that during exponential growth in LB medium 

(without bacitracin) expression of both ispD and ispF was 2-fold higher in the bcrC deletion 

strain compared to the wild-type strain. Furthermore, the UPP synthetase encoded by uppS, 

Figure 4. Calibration of a model integrating the lipid II cycle with the BcrC resistance module. (A) Combining 
the lipid II cycle module with the BcrC module (cf. Fig. 2A) leads to a model describing a ΔbceAB mutant strain. 
Predictions of this model for the IC50 value (the bacitracin concentration at which the PG synthesis rate declines to 
50% of the unperturbed value) are shown under various contributions of BcrC (xBcrC) to the overall UPP phosphatase 
activity (red line). The linear increase of the IC50 value with xBcrC is the result of the stronger overall phosphatase 
activity incurred by BcrC up-regulation (cf. Fig. 3C, D). The dashed line shows the experimental MIC of bacitracin 
in a ΔbceAB mutant and the red star indicates the optimal parameter obtained by in our constrained optimization 
approach (see Supplementary Text). (B) In the absence of bacitracin, expression of ispD and ispF is up-regulated 
in a ΔbcrC mutant relative to the B. subtilis wild-type, as quantified by RT-qPCR described in Materials and Methods. 
Given that ispD and ispF are involved in early steps of UPP de novo synthesis, this suggests that the deletion of 
bcrC triggers elevated levels of lipid II cycle intermediates, which may in turn compensate for the reduced UPP 
dephosphorylation rate in this mutant. (C) Predictions of the bacitracin IC50 in a model for the ΔbceABΔbcrC double 
mutant (color code) as a function of various contributions of BcrC to the overall UPP phosphatase activity (x-axis) 
and the fold-change of total lipid II cycle intermediates as induced by the bcrC deletion (y-axis). Within this model, 
the higher xBcrC in the model in the ΔbceAB mutant, the stronger the bcrC deletion in the double mutant reduces the 
IC50 value. Accordingly, in order to achieve a similar IC50 value (=same color in the background), higher xBcrC 
fractions require higher up-regulation of the total abundance of lipid II cycle intermediates in this model. The dashed 
line indicates the experimental MIC of bacitracin in a ΔbceABΔbcrC double mutant. The parameters below the solid 
black line represent physiologically plausible combinations, in which the PG synthesis rate in the mutant 
(jPGΔbceABΔbcrC) does not exceed the rate in the wild-type (jPGWT). The red star indicates the optimal parameter set 
obtained by in our constrained optimization approach (see Supplementary Text). 
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which is not part of the σM-regulon, did not show differential expression between both strains 

(Fig. 4B). These results suggest that the upregulation of early steps of UPP synthesis in a bcrC 

deletion mutant may increase the overall abundance of lipid carriers in the lipid II cycle, thereby 

counteracting the bottleneck induced by UPP phosphatase deletion.  
Hence, we asked how a higher total concentration of the lipid II cycle intermediates (in 

the following referred to as “LII intermediates”) would affect the model prediction for a bcrC 

deletion mutant (see Supplementary Text for a detailed description). As we did not know the 

precise change in LII intermediates in the bcrC deletion strain, we simulated the model for 

different fold-changes in LII intermediates and predicted the IC50 under bacitracin treatment. 

Here it turned out that an increase in LII intermediates raises both the lipid II concentrations 

and the overall PG synthesis rate (Supplementary Fig. S2C) and thus, ensures progression of 

the lipid II cycle without bacitracin treatment – as suggested by the experimental growth data 

(Supplementary Fig. S1). Accordingly, the model predicts that higher levels of LII intermediates 

in the ΔbceABΔbcrC mutant lead to higher IC50 values under bacitracin treatment (Fig. 4C; 

dependence along vertical axis). The model also predicts that the higher the contribution of 

BcrC to the overall phosphatase activity, the higher the required fold-change in LII 

intermediates to reach the same IC50 values in the ΔbceABΔbcrC mutant (Fig. 4C; dependence 

along horizontal axis). This underlines the idea that upregulation of LII intermediates can 

compensate for the lack of UPP phosphatase activity. However, we also noted that some of 

the tested parameter combinations led to predictions in which the PG synthesis rate in the 

mutant (jPG
ΔbceABΔbcrC) was higher than the rate in the WT (jPG

WT), which is physiologically 

implausible (Fig. 4C; shaded area). Thus, to arrive at a physiologically plausible parameter set 

we performed parameter optimization to simultaneously fit the experimental MIC values of the 

ΔbceAB and ΔbceABΔbcrC mutant strains while meeting the constraint jPG
ΔbceABΔbcrC ≤ jPG

WT. 

This resulted in a set of parameters in which BcrC was the dominant phosphatase (xBcrC = 

63(±9.5)%) and in which the LII intermediate level was upregulated 6.2(±0.7)-fold, resulting in 

a close-to-optimal PG synthesis rate and IC50 predictions ranging closely around the measured 

MICs for both mutant strains (Fig. 4A,C; red stars). These results are in line with previous 

experimental studies in B. subtilis (Radeck et al., 2017b), showing that a bcrC deletion lead to 

a stronger reduction in resistance against bacitracin than a deletion of uppP. Hence, by 

integrating the homeostatic control of the overall LII intermediate level in response to a lack of 

BcrC, we arrived at a theoretical model that quantifies the impact of BcrC as secondary 

resistance module on the progression of the lipid II cycle – both in the absence and in the 

presence of bacitracin.  
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Interaction between the BcrC and BceAB resistance modules 

Next, we focussed on the interplay between the primary and secondary resistance modules 

BceAB and BcrC, respectively. As noted above, it turned out that the presence of BceAB in 

the wild-type mitigates the demand for bcrC expression, as reflected in a ~2-fold lower fold-

induction in PbcrC activity upon bacitracin treatment in the wild-type compared to the ΔbceAB 

mutant (Fig. 2B(i); black vs. green line). Vice versa, we found that the PbceAB promoter displays 

a ~10-fold lower activity in wild-type compared to a ΔbcrC mutant, suggesting that also the 

presence of BcrC reduces the demand for bceAB expression in wild-type cells. These results 

clearly indicate a high level of cross-regulation between the resistance modules, which we 

wanted to rationalize via our computational model.  

In order to complete the computational model of the bacitracin resistance network in B. 

subtilis wild-type, we next integrated the BceAB transporter into our theory of the lipid II cycle. 

To this end, we took advantage of a previously developed theoretical description of the BceAB 

resistance module in B. subtilis (Fritz et al., 2015). Briefly, this model is based on differential 

equations describing the binding of bacitracin (BAC) to UPP (yielding UPP-BAC complexes), 

the up-regulation of bceAB expression in response to increasing UPP-BAC complexes and 

ultimately the release of bacitracin from UPP catalysed by increasing BceAB transporters 

levels. Here, the relative bacitracin flux (𝐽𝐵𝐴𝐶) experienced by each BceAB transporter is 

described by Michaelis-Menten kinetics, 

𝐽𝐵𝐴𝐶 =
[𝑈𝑃𝑃 − 𝐵𝐴𝐶]

𝐾𝑀  +  [𝑈𝑃𝑃 − 𝐵𝐴𝐶] ,       (1) 

where 𝐾𝑀 is the UPP-BAC concentration at which the catalytic rate of BceAB reaches its half-

maximal value. Importantly, within this model 𝐽𝐵𝐴𝐶 not only sets the rate at which UPP is 

released from the inhibitory grip of bacitracin, but also regulates expression of bceAB 

expression via the flux-sensing mechanism depicted in Fig. 2A and as detailed in the 

Supplementary Text. Combining this model for the BceAB module with the equations for the 

lipid II cycle – including the bacitracin-dependent up-regulation of the BcrC module – ultimately 

led us to a comprehensive computational model for both resistance modules in the B. subtilis 

wild-type strain (see Supplementary Text for a detailed model description). 

We then asked whether this full model is in quantitative agreement with the data 

describing the bacitracin response of the BceAB module in wild-type cells. To this end, we 

fixed all parameters for the lipid II cycle to the optimal values derived above and imposed that 

the regulation of BcrC protein levels is proportional to the PbcrC promoter activity measured in 

the wild-type strain (Fig. 2B(i); black data). Then we estimated the additional parameters 

describing the induction of the BceAB resistance module by a fit to the experimental PbceAB 

promoter activity (Fig. 2B(iii), black data); see Materials and Methods for details of the fitting 

procedure and Supplementary Table 3 for parameter values. This led us to a parameter 

combination for which the model output closely resembles the observed response of PbceAB 
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towards bacitracin (Fig. 5A), suggesting that the model accurately captures the cross-

regulation between the two resistance modules. Importantly, when studying the PG synthesis 

rate within this model (Fig. 5C; black line), it turned out that with increasing bacitracin 

concentration the increasing production of BcrC and BceAB stabilized the PG synthesis rate 

even in the presence of bacitracin, and increased the IC50 to a value close to the MIC 

experimentally measured in the wild-type strain (Fig. 5C; black star MICWT ~ 125 μg/ml). These 

results show that the computational model of the bacitracin resistance network now precisely 

rebuilds the interplay of the two resistance modules and suggests that the simultaneous 

induction of the two resistance modules jointly mediate lipid II cycle homeostasis under 

bacitracin treatment.  

To further test the validity of our model, we demanded that it should be able to correctly 

predict the behaviour of a ΔbcrC strain, in which BceAB is the sole genuine resistance 

determinant under bacitracin treatment (Fig. 5A; red data points). Due to the lack of BcrC in 

this strain, our model predicts that these cells produce higher levels of LII intermediates (similar 

to the ΔbcrCΔbceAB double mutant), which also leads to a higher abundance of UPP in the 

cell. This increased exposure of UPP then leads to higher levels of the bacitracin-bound form 

UPP-BAC in the presence of the antibiotic, which in turn serves as the stimulus for the 

activation of the PbceA promoter via the previously described flux-sensing mechanism. 

Accordingly, our model predicts that the accumulation of UPP-BAC in the ΔbcrC strain triggers 

a ~10-fold higher PbceA promoter activity compared to the wild-type strain (Fig. 5A; red dashed 

line), in qualitative agreement with the increased PbceA activity in the ΔbcrC strain determined 

experimentally (Fig. 5A; red data points). Also, without invoking any further parameter fitting, 

for a strain lacking BcrC the model-predicted IC50
ΔbcrC = 22 μg/ml closely matches the 

experimentally determined MIC of a ΔbcrC mutant (Fig. 5C; MICΔbcrC ~ 25 μg/ml). This 

suggests that the simulated response of the BceAB resistance module – in conjunction with 

the elevated pool of LII intermediates – accurately capture the physiology of the system under 

bacitracin treatment.  

One striking discrepancy between our model and the experimental data, however, was 

visible in the absence of bacitracin, where our experiments showed that the promoter activity 

of PbceAB was also ~10-fold higher than in the wild-type (Fig. 5A). This result is not compatible 

with the idea that UPP-BAC is the sole substrate for the flux-sensing mechanism via the BceAB 

transporter (triggering the activation of PbceA), because UPP-BAC cannot be formed in the 

absence of bacitracin and thus the signalling mechanism should be inactive. However, it was 

previously hypothesized that UPP itself somehow triggers (futile?) ATP hydrolysis by BceAB 

and that high levels of UPP may contribute to the activation of PbceAB (Kingston et al., 2014; 

Radeck et al., 2016). Such an interaction seems plausible, given that the recognition of the 

UPP-BAC complex by BceAB likely involves interactions with both the UPP as well as the BAC  
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Figure 5. Model calibration of the BceAB resistance module and MIC predictions in B. subtilis wild-type and 
mutant strains. (A) Fit of the full model for the bacitracin resistance network (including the BceAB module) to the 
experimental dose-response characteristic of the PbceAB-luxABCDE reporter in B. subtilis wild-type (WT) cells (black 
line). The red dashed line shows the model prediction for the ΔbcrC mutant without invoking further fit parameters, 
revealing that although the model captures the overall increase in PbceAB activity under bacitracin treatment, it does 
not describe the elevated basal promoter activity in the absence of bacitracin (see Supplementary Text for details). 
The red solid line shows the prediction of the model when the BceAB/BceS flux-sensing complex recognizes 
unbound UPP as a secondary substrate, which leads to a futile flux and triggers signaling in the BceRS two-
component system. (B) Schematic model behavior in wild-type and ΔbcrC mutant at identical bacitracin 
concentrations, illustrating that the higher UPP pool in the ΔbcrC mutant leads to higher UPP-BAC levels and thus 
to stronger activation of the BceRS signaling cascade when compared to the wild-type. (C) The model behavior of 
the PG synthesis rate under bacitracin treatment for B. subtilis wild-type and mutant cells, generates predictions for 
the respective IC50 values (arrows), which are close to the experimental MIC values of the corresponding strains.  
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moieties, raising the possibility that BceAB has some residual affinity for UPP. Interestingly, as 

noted above, the model predicts a significantly higher concentration of UPP in the ΔbcrC 

mutant compared to the wild-type (Supplementary Figure 3B) – mainly caused by the expected 

increase of the overall concentration lipid II cycle intermediates as well as the reduced overall 

phosphatase activity in the absence of BcrC. To test if futile activation of PbceAB by these 

elevated UPP levels can explain the higher basal promoter activity observed in the ΔbcrC 

mutant, we modified the theoretical description of the total load per BceAB transporter, 𝐽𝑙𝑜𝑎𝑑, 

which is proportional to the rate of ATP hydrolysis and in turn regulates the promoter activity 

of PbceAB, as follows: 

 

𝐽𝑙𝑜𝑎𝑑 = 𝐽𝐵𝐴𝐶
′ + 𝐽𝑓𝑢𝑡𝑖𝑙𝑒 ,          (2) 

where 

𝐽𝐵𝐴𝐶
′   =  [𝑈𝑃𝑃−𝐵𝐴𝐶]

𝐾𝑀
(1 + [𝑈𝑃𝑃−𝐵𝐴𝐶] 

𝐾𝑀
 +  [𝑈𝑃𝑃]

�̃�𝑀
)⁄    (3) 

describes the flux of bacitracin released from UPP-BAC complexes and  

𝐽𝑓𝑢𝑡𝑖𝑙𝑒   = [𝑈𝑃𝑃]
�̃�𝑀

(1 +  [𝑈𝑃𝑃−𝐵𝐴𝐶] 
𝐾𝑀

 + [𝑈𝑃𝑃]
�̃�𝑀

)⁄    (4) 

describes the rate of futile ATP hydrolysis triggered by UPP alone – with Michaelis constants 

�̃�𝑀 and 𝐾𝑀 describing the binding constants of the transporter for UPP and UPP-BAC, 

respectively. Within these equations an increasing level of UPP increases the overall load per 

transporter, 𝐽𝑙𝑜𝑎𝑑, which then triggers signalling and activation of PbceAB, while the same 

increase in UPP leads to a reduction of the flux of bacitracin release, 𝐽𝐵𝐴𝐶
′ , induced by 

competitive binding to the transporter. Strikingly, by modifying the model as depicted, the 

predictions of PbceAB promoter activation differed significantly between the simulated scenarios 

(Fig. 5A; red solid line). While the model output for the wild-type equalled the prediction of the 

former model, the modified model predicted a significant elevation of PbceAB promoter activities 

in a strain lacking BcrC, which closely resembles the experimental data for the ΔbcrC strain 

(Fig. 5A). Thus, our results of the modified model support the hypothesis of futile activation of 

PbceAB by UPP under BcrC deletion (Fig. 5B). However, since the model modifications did not 

affect the IC50 predictions of the various mutants (see Supplementary Text), the effect of UPP 

on PbceAB activation is likely negligible under bacitracin treatment and solely affects the level of 

basal promoter activity.  
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Discussion 

Building on the experimental characterization of the bacitracin resistance network in B. subtilis 

(Radeck et al., 2016), we here present the first theoretical description of this regulatory 

network. The mathematical model developed here not only accurately predicts the efficacy of 

bacitracin in the wild-type and various mutant strains lacking one or both of the resistance 

modules (Fig. 5C), but also uncovers important regulatory features of the resistance network. 

By successively incorporating mathematical descriptions of the individual resistance modules 

into a pre-existing theory of the lipid II cycle, we showed that the interplay between the two 

major resistance determinants (BceAB and BcrC) is strictly linked to the properties of the lipid 

II cycle, which change in response to bacitracin.  

One important insight of our analysis is that BcrC is the more dominant UPP 

phosphatase compared to UppP - dictating the bulk of the overall UPP recycling rate in the 

lipid II cycle of B. subtilis. This is also reflected by the fact that bcrC expression is significantly 

elevated under bacitracin stress (Fig. 2B(i)), while uppP is constitutively expressed (Cao and 

Helmann, 2002; Zhao et al., 2016; Radeck et al., 2017b) , implying even more pronounced 

changes in the total phosphatase activity in response to bacitracin than previously appreciated. 

These results are in accordance with experiments showing that a bcrC deletion significantly 

reduced the resistance towards bacitracin in B. subtilis, while a deletion of uppP only had 

moderate effects (Cao and Helmann, 2002; Radeck et al., 2017b). In fact, to ensure a strong 

protective effect in response to cell envelope stress, it seems physiologically plausible for the 

cell to activate expression of the phosphatase contributing strongest to the progression of the 

lipid II cycle.  

Another finding arising from the combination of theory and experiment was the 

homeostatic control of lipid II cycle intermediate levels in a ΔbcrC mutant – ensuring the close-

to-optimal progression of the cycle despite the lack of the important phosphatase BcrC. To 

counteract the depletion of the lipid II pool caused by a shortage of UPP phosphatase activity, 

we found two σM-controlled genes, ispD and ispF, involved in the de novo synthesis of UPP to 

be significantly up-regulated. While we did not directly prove that this leads to an increase in 

the overall abundance of lipid II cycle intermediates, our experimental and theoretical results 

indirectly support this hypothesis in three ways: (1) The ΔbcrCΔbceAB double mutant is 

significantly more resistant to bacitracin than naively predicted by a model with constant total 

lipid II cycle intermediate pools, suggesting that a compensatory up-regulation of these pools 

contributes to bacitracin resistance in this mutant. (2) Under bacitracin treatment the PbceA 

promoter is ~10-fold more active in a ΔbcrC mutant compared to the wild-type, suggesting that 

the major substrate, UPP-BAC, of the BceAB transporter is more abundant in the mutant, 

which in turn triggers stronger activation of PbceA via the flux-sensing mechanism. (3) Even in 

the absence of bacitracin the ΔbcrC mutant displays a ~10-fold higher PbceA activity than the 
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wild-type, suggesting that the elevated UPP pool in this mutant is sufficient to trigger some 

futile ATP hydrolysis by the BceAB transporter, which then activates PbceA via the flux-sensing 

mechanism. 

From a systems-level perspective, the up-regulation of lipid carrier production seems 

to be a particularly elegant way to maintain cycle homeostasis under antibiotic treatment, 

because it naturally preserves the relative balance between the different lipid II cycle 

intermediates. In fact, in a closed-loop system like the lipid II cycle, the stoichiometry between 

the intermediate pools is only determined by the catalytic rates and abundances of the 

enzymes catalysing cycle progression and not the overall abundance of all intermediates 

(Piepenbreier et al., 2019). Thus, the sequestration of one cycle intermediate by an antibiotic 

(such as bacitracin, vancomycin or nisin) will lead to the stoichiometric reduction of all other 

intermediates. One possible way to accelerate lipid II cycle progression would be the 

simultaneous up-regulation of all lipid II cycle-associated enzymes. In contrast to such a fine-

tuned, orchestrated regulation, our results suggest that the cell compensates this shortage by 

de novo synthesis of cycle intermediates, which rapidly equilibrates among the different stages 

of the lipid II cycle intermediates and naturally replenishes intermediate levels in the correct 

stoichiometry. We suggest that this strategy implements a robust way of ensuring lipid II cycle 

homeostasis. 

Although we did not decipher the exact stimulus for activation of the BcrC resistance 

module, our theory revealed that the regulation of bcrC and bceAB expression are tightly 

interconnected via the properties of the lipid II cycle itself. Since the activation of the resistance 

determinants in response to bacitracin go along with significant changes in the concentrations 

of the different lipid II cycle intermediates, it is plausible that not only BceAB but also the BcrC 

resistance module somehow responds to these changes. Indeed, it seems advantageous to 

regulate the overall resistance against bacitracin by responding to changes in the properties 

of the lipid II cycle, since this does not demand additional regulatory structures for each 

resistance module, which might be costly to produce and would further complicate the 

resistance network. More generally, monitoring the physiological state of the pathway itself 

may serve as a cost-effective strategy to regulate the interplay between the different resistance 

determinants protecting the cell against cell envelope stress.  

Ultimately, this study clearly highlights how mathematical modelling provides a better 

understanding of sophisticated cellular responses towards environmental conditions, in 

particular antibiotic treatment. By combining existing theoretical descriptions of the various 

modules of the cellular response, a comprehensive model of the complex network structure 

evolved. Successive integration of additional modules of the cellular response into the growing 

model enabled us to study both the basal regulatory features of every individual layer as well 

as the factors determining the interplay between them within the whole network. We showed 
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that a simple existing model can be expanded to develop a more and more complex picture, 

and eventually the model itself could even become a building block when describing a network 

on a broader scale. This approach can act as a blueprint for acquiring true systems-level 

understanding of complex regulatory structures, not only describing the organisation of 

resistance system against other antibiotics, but also more generally multi-tiered response 

networks that can be expected across many bacterial species and a range of environmental 

stressors. 

 

 

Acknowledgements 
This work was supported by the LOEWE Program of the State of Hesse (SYNMIKRO support 

to G.F.), the Deutsche Forschungsgemeinschaft (DFG grants FR3673/1‐2 to G.F. and 

MA2837/2-2 to T.M. in the framework of the DFG priority program SPP1617) and the 

Biotechnology and Biological Sciences Research Council (BBSRC grant BB/M029255/1 to 

S.G.). HP was supported by the Cusanuswerk scholarship programme (Germany) and CMK 

was supported by a University of Bath Research Studentship Award. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 20 - 

References 

Asai, K. (2018) Anti-sigma factor-mediated cell surface stress responses in Bacillus subtilis. 
Genes Genet Syst 92: 223–234. 

Bernard, R., Ghachi, El, M., Mengin-Lecreulx, D., Chippaux, M., and Denizot, F. (2005) BcrC 
from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin 
resistance. Journal of Biological Chemistry 280: 28852–28857. 

Bernard, R., Guiseppi, A., Chippaux, M., Foglino, M., and Denizot, F. (2007) Resistance to 
bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the 
control of expression of its own structural genes. Journal of Bacteriology 189: 8636–8642. 

Bischofs, I.B., Hug, J.A., Liu, A.W., Wolf, D.M., and Arkin, A.P. (2009) Complexity in bacterial 
cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus 
subtilis phosphorelay. Proc Natl Acad Sci USA 106: 6459–6464. 

Cao, M., and Helmann, J.D. (2002) Regulation of the Bacillus subtilis bcrC bacitracin 
resistance gene by two extracytoplasmic function sigma factors. Journal of Bacteriology 184: 
6123–6129. 

Cetinkaya, Y., Falk, P., and Mayhall, C.G. (2000) Vancomycin-resistant enterococci. Clin 
Microbiol Rev 13: 686–. 

Dintner, S., Heermann, R., Fang, C., Jung, K., and Gebhard, S. (2014) A sensory complex 
consisting of an ATP-binding cassette transporter and a two-component regulatory system 
controls bacitracin resistance in Bacillus subtilis. Journal of Biological Chemistry 289: 27899–
27910. 

Dintner, S., Staroń, A., Berchtold, E., Petri, T., Mascher, T., and Gebhard, S. (2011) 
Coevolution of ABC transporters and two-component regulatory systems as resistance 
modules against antimicrobial peptides in Firmicutes Bacteria. Journal of Bacteriology 193: 
3851–3862. 

Domínguez-Escobar, J., Wolf, D., Fritz, G., Höfler, C., Wedlich-Söldner, R., and Mascher, T. 
(2014) Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia 
response in Bacillus subtilis. Molecular Microbiology 92: 716–732. 

Economou, N.J., Cocklin, S., and Loll, P.J. (2013) High-resolution crystal structure reveals 
molecular details of target recognition by bacitracin. Proc Natl Acad Sci USA 110: 14207–
14212. 

Eiamphungporn, W., and Helmann, J.D. (2008) The Bacillus subtilis σM regulon and its 
contribution to cell envelope stress responses. Molecular Microbiology 67: 830–848. 

Fritz, G., Dintner, S., Treichel, N.S., Radeck, J., Gerland, U., Mascher, T., and Gebhard, S. 
(2015) A new way of sensing: Need-based activation of antibiotic resistance by a flux-sensing 
mechanism. mBio 6: e00975. 

Gebhard, S. (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria - 
phylogeny, function and regulation. Molecular Microbiology 86: 1295–1317. 



From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 21 - 

Helmann, J.D. (2016) Bacillus subtilis extracytoplasmic function (ECF) sigma factors and 
defense of the cell envelope. Current Opinion in Microbiology 30: 122–132. 

Iber, D., Clarkson, J., Yudkin, M.D., and Campbell, I.D. (2006) The mechanism of cell 
differentiation in Bacillus subtilis. Nature 441: 371–374. 

Igoshin, O.A., Price, C.W., and Savageau, M.A. (2006) Signalling network with a bistable 
hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus 
subtilis. Molecular Microbiology 61: 165–184. 

Jabbari, S., Heap, J.T., and King, J.R. (2011) Mathematical modelling of the sporulation-
initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing 
signal molecule PhrA. Bull Math Biol 73: 181–211. 

Jordan, S., Hutchings, M.I., and Mascher, T. (2008) Cell envelope stress response in Gram-
positive bacteria. FEMS Microbiol Rev 32: 107–146. 

Jordan, S., Junker, A., Helmann, J.D., and Mascher, T. (2006) Regulation of LiaRS-dependent 
gene expression in Bacillus subtilis: Identification of inhibitor proteins, regulator binding sites, 
and target genes of a conserved cell envelope stress-sensing two-component system. Journal 
of Bacteriology 188: 5153–5166. 

Julsing, M.K., Rijpkema, M., Woerdenbag, H.J., Quax, W.J., and Kayser, O. (2007) Functional 
analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Applied 
Microbiology and Biotechnology 75: 1377–1384. 

Kingston, A.W., Zhao, H., Cook, G.M., and Helmann, J.D. (2014) Accumulation of heptaprenyl 
diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of 
resistance mediated by the BceAB transporter. Molecular Microbiology 93: 37–49. 

Livak, K.J., and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-
time quantitative PCR and the 2-ΔΔCTMethod. Methods 25: 402–408. 

Mascher, T., Margulis, N.G., Wang, T., Ye, R.W., and Helmann, J.D. (2003) Cell wall stress 
responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Molecular 
Microbiology 50: 1591–1604. 

Ohki, R., Giyanto, Tateno, K., Masuyama, W., Moriya, S., Kobayashi, K., and Ogasawara, N. 
(2003) The BceRS two-component regulatory system induces expression of the bacitracin 
transporter, BceAB, in Bacillus subtilis. Molecular Microbiology 49: 1135–1144. 

Piepenbreier, H., Diehl, A., and Fritz, G. (2019) Blocking of peptidoglycan synthesis by cell 
wall antibiotics. Submitted. 

Radeck, J., Fritz, G., and Mascher, T. (2017a) The cell envelope stress response of Bacillus 
subtilis: from static signaling devices to dynamic regulatory network. Current Genetics 63: 79–
90. 

Radeck, J., Gebhard, S., Orchard, P.S., Kirchner, M., Bauer, S., Mascher, T., and Fritz, G. 
(2016) Anatomy of the bacitracin resistance network in Bacillus subtilis. Molecular Microbiology 
100: 607–620. 



From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 22 - 

Radeck, J., Lautenschläger, N., and Mascher, T. (2017b) The essential UPP phosphatase pair 
BcrC and UppP connects cell wall homeostasis during growth and sporulation with cell 
envelope stress response in Bacillus subtilis. Front Microbiol 8: 2403. 

Rao, C.V., Kirby, J.R., and Arkin, A.P. (2004) Design and diversity in bacterial chemotaxis: a 
comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2: E49. 

Rao, C.V., Kirby, J.R., and Arkin, A.P. (2005) Phosphatase localization in bacterial chemotaxis: 
divergent mechanisms, convergent principles. Phys Biol 2: 148–158. 

Revilla-Guarinos, A., Gebhard, S., Mascher, T., and Zúñiga, M. (2014) Defence against 
antimicrobial peptides: different strategies in Firmicutes. Environmental Microbiology 16: 
1225–1237. 

Rietkötter, E., Hoyer, D., and Mascher, T. (2008) Bacitracin sensing in Bacillus subtilis. 
Molecular Microbiology 68: 768–785. 

Schneider, T., and Sahl, H.-G. (2010) An oldie but a goodie - cell wall biosynthesis as antibiotic 
target pathway. Int J Med Microbiol 300: 161–169. 

Schultz, D., Wolynes, P.G., Ben Jacob, E., and Onuchic, J.N. (2009) Deciding fate in adverse 
times: sporulation and competence in Bacillus subtilis. P Natl Acad Sci Usa 106: 21027–21034. 

Storm, D.R., and Strominger, J.L. (1973) Complex formation between bacitracin peptides and 
isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. Journal of Biological 
Chemistry 248: 3940–3945. 

Sun, Z., Zhong, J., Liang, X., Liu, J., Chen, X., and Huan, L. (2009) Novel mechanism for nisin 
resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. 
Antimicrobial Agents and Chemotherapy 53: 1964–1973. 

Zhao, H., Roistacher, D.M., and Helmann, J.D. (2019) Deciphering the essentiality and 
function of the anti-σM factors in Bacillus subtilis. Molecular Microbiology. 

Zhao, H., Sun, Y., Peters, J.M., Gross, C.A., Garner, E.C., and Helmann, J.D. (2016) Depletion 
of undecaprenyl pyrophosphate phosphatases disrupts cell envelope biogenesis in Bacillus 
subtilis. Journal of Bacteriology 198: 2925–2935. 

 



Supplementary Information: 
From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 1 - 

Supplementary Information 

 

From modules to networks: A systems-level analysis of the bacitracin stress 
response in Bacillus subtilis 

 
Hannah Piepenbreier1, Andre Sim1, Carolin M. Kobras2, Jara Radeck3, Thorsten Mascher3, 

Susanne Gebhard2 and Georg Fritz1,*  

  

1LOEWE Center for Synthetic Microbiology and Department of Physics,  Philipps-

Universität Marburg, Germany; 2Department of Biology & Biochemistry, Milner Centre for 

Evolution, University of Bath, United Kingdom; 3Institute of Microbiology, Technische 

Universität (TU) Dresden, 01062 Dresden, Germany 

*For correspondence: georg.fritz@synmikro.uni-marburg.de  
 
 
 
 
Content 
 
Supplementary Text 

Supplementary Figure 1: Growth curves of B. subtilis W168 wild-type and ΔbcrC, ΔbceAB 
and ΔbceABΔbcrC mutant strains. 

Supplementary Figure 2: Model-predicted distribution of lipid II cycle intermediates in the 
ΔbceAB and ΔbceABΔbcrC mutant strains. 

Supplementary Figure 3: Best-fit results of the model parameters xBcrC and sUPP and their 
corresponding confidence intervals 

Supplementary Table 1: Bacterial strains used in this study 

Supplementary Table 2: Plasmids used in this study 

Supplementary Table 3: Model parameters 

Supplementary References  



Supplementary Information: 
From modules to networks: A systems-level analysis of the bacitracin stress response in Bacillus subtilis 

 

- 2 - 

Supplementary Text 

Computational model of the bacitracin stress response network 

To build the computational model of the bacitracin stress response network, we combined the 
pre-existing mathematical description of the lipid II cycle (Piepenbreier et al., 2019) and the 
previously developed theory of the BceAB transporter production in response to bacitracin 
(Fritz et al., 2015) and included a description of the BcrC module in addition. 

The kinetic model of the lipid II cycle (Piepenbreier et al., 2019) describes the time-dependent 
changes of the concentrations of the different lipid II cycle intermediates (as illustrated in Fig. 
1 in the main text) by deterministic differential equations to monitor the dynamics of cell wall 
biosynthesis per individual cell. The well-studied enzymatic reactions of MraY, MurG, the 
diverse penicillin-binding protein (PBPs) and the two undecaprenyl pyrophosphate 
phosphatases (UppPs) were modelled by Michaelis-Menten kinetics, for which substrate levels 
(Si), enzyme levels (E), catalytic constants of the enzymes (kcat) as well as the Michaelis-
Menten constants (KM) parameterize the reaction dynamics. Since the biochemical properties 
of the enzymes catalysing the flipping reaction of lipid II were largely unknown and the flipping 
of UPP and UP were only hypothesized, the model describes these reactions by first order 
kinetics, as quantified by an effective rate constant ki (i = UP, UPP, LII). Furthermore, growth-
driven dilution of all lipid II cycle intermediates occurring at a constant rate γ was integrated in 
the model of the lipid II cycle. This dilution was assumed to be counterbalanced by the constant 
de novo synthesis of UPP in the cytoplasm by rate α. Additionally, the previous model 
comprised a theoretical description of cell wall antibiotic treatment. In particular, the interaction 
between an antibiotic and its target within the lipid II cycle was described as a ligand-binding 
reaction determined by the in vitro dissociation constant (KD), which is defined as the ratio 
between the dissociation (kdiss) and association rate (kass), respectively. Thus, the following 
time-dependent model variables result from this described scope of the pre-existing model of 
the lipid II cycle: 

x UPPIN = internal pool of undecaprenyl pyrophosphate (UPP) 
x UPPOUT = external pool of undecaprenyl pyrophosphate 
x UPIN = internal pool of undecaprenyl phosphate (UP) 
x UPOUT = external pool of undecaprenyl phosphate 
x LI = pool of lipid I 
x LIIIN = internal pool of lipid II 
x LIIOUT = external pool of lipid II 
x UPP-BAC = pool of bacitracin-bound UPP 

The existing theory of the BceAB resistance module (Fritz et al., 2015) describes the regulatory 
dynamics of the Bce system in response to bacitracin in detail. Here, the BceAB transporter 
was assumed to catalyse the release of bacitracin from UPP with Michaelis-Menten enzyme 
kinetics. Furthermore, the model comprised a detailed description of the production of new 
BceAB transporter in response to bacitracin, which is governed by a special flux-sensing 
mechanism. In particular, it was proposed that the production of new BceAB transporter is 
adapted to the capacity of the cell to deal with the present amount of bacitracin – monitored 
via the load of UPP-BAC per existing BceAB transporter. Accordingly, the load of UPP-BAC 
per transporter - called JBAC – was assumed to dictate the BceAB synthesis. While the sensing 
and signalling process via the TCS BceRS was not modelled in detail, the activation of 
transporter production was assumed to be directly proportional to JBAC. To describe the 
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synthesis process of BceAB based on the flux sensing mechanism in detail, both the processes 
of transcription and translation were taken into account. Hence, the transcriptional synthesis 
of bceAB mRNA was described as a function of JBAC by following a thermodynamic model for 
translational regulation. Here, the concentration of bceAB mRNA is dependent on a basal 
transcription rate (α), the ratio of maximal to basal promoter activity (ω), the relative load per 
transporter at which PbceA is activated (κ) and the mRNA degradation rate (λ). Finally, the 
concentration of the BceAB transporter depends on the translation rate per mRNA (β) and the 
protein dilution due to cell growth. However, the model aimed to quantitatively describe the 
results of measurements of the PbceA-luxABCDE reporter, which illustrates the activation of 
BceAB production in response to bacitracin. Thus, the dynamic equations quantifying the Lux 
protein production were formulated analogously to the described assumptions above and a 
multiplicative scaling factor was introduced to relate the Lux protein levels to the experimentally 
measured luminescence output (δ). Hence, from this comprehensive description of the BceAB 
resistance module additional model variables arise: 

x mBceAB = bceAB mRNA 
x BceAB = pool of BceAB transporter 
x mLUX = luxABCDE mRNA 
x Lux = pool of Lux proteins 
x lumi = levels of luminescence (Lux activity) 

Finally, to describe the BcrC resistance module, we introduced a scaling factor (sBcrC) for the 
reaction rate of UPP dephosphorylation, which reflects the increase in BcrC levels in response 
to bacitracin (as described in detail in the main text). Considering the contribution of BcrC and 
UppP to the overall phosphatase activity, the scaling factor was calculated as follows: 

𝑠𝐵𝑐𝑟𝐶 = 𝑥𝐵𝑐𝑟𝐶 ∗ 𝑓𝐵𝑐𝑟𝐶 + (1 − 𝑥𝐵𝑐𝑟𝐶) ∗ 1 

Here, xBcrC ϵ [0;1] describes the contribution of BcrC to the overall phosphatase activity and (1- 
xBcrC) the contribution of UppP, respectively. Furthermore, fBcrC displays the fold-change in BcrC 
levels between no bacitracin treatment and a certain bacitracin concentration (derived from the 
PbcrC activity, as explained in the main text). In addition, we aimed to integrate the observation 
that the total concentration of lipid intermediates increases when BcrC is lacking. To this end, 
we introduced another scaling factor (sUPP) for the de novo synthesis of lipid intermediates in 
the form of UPP, which was set to 1 in the wild-type scenario.   

In the end, when taking all the individual parts of the bacitracin stress response network into 
account, the model equations that quantify the time-dependent changes of the concentrations 
of lipid II cycle intermediates and BceAB were formulated as follows: 

𝑑[𝑈𝑃𝑃𝐼𝑁]
𝑑𝑡 =  𝑠𝑈𝑃𝑃 ∗  𝛼𝑈𝑃𝑃 − 𝑘𝑈𝑃𝑃[𝑈𝑃𝑃𝐼𝑁] −  𝛾[𝑈𝑃𝑃𝐼𝑁] 

 

(I) 

𝑑[𝑈𝑃𝑃𝑂𝑈𝑇]
𝑑𝑡 =  𝑘𝑈𝑃𝑃[𝑈𝑃𝑃𝐼𝑁] − 𝑠𝐵𝑐𝑟𝐶 ∗  𝑣𝑚𝑎𝑥

𝑈𝑝𝑝𝑃𝑠 [𝑈𝑃𝑃𝑂𝑈𝑇]
𝐾𝑀

𝑈𝑝𝑝𝑃𝑠 + [𝑈𝑃𝑃𝑂𝑈𝑇]
+ 𝑣𝑚𝑎𝑥

𝑃𝐵𝑃𝑠 [𝐿𝐼𝐼𝑂𝑈𝑇]
𝐾𝑀

𝑃𝐵𝑃𝑠 + [𝐿𝐼𝐼𝑂𝑈𝑇]
− 𝑘𝑎𝑠𝑠

𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃𝑂𝑈𝑇][𝐵𝐴𝐶] + 𝑘𝑑𝑖𝑠𝑠
𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃 − 𝐵𝐴𝐶] + 𝑘𝑐𝑎𝑡

𝐵𝑐𝑒𝐴𝐵 [𝐵𝑐𝑒𝐴𝐵]  𝐽𝐵𝐴𝐶
−  𝛾[𝑈𝑃𝑃𝑂𝑈𝑇] 

 

(II) 

𝑑[𝑈𝑃𝑂𝑈𝑇]
𝑑𝑡 =  𝑠𝐵𝑐𝑟𝐶 ∗  𝑣𝑚𝑎𝑥

𝑈𝑝𝑝𝑃𝑠 [𝑈𝑃𝑃𝑂𝑈𝑇]
𝐾𝑀

𝑈𝑝𝑝𝑃𝑠 + [𝑈𝑃𝑃𝑂𝑈𝑇]
− 𝑘𝑈𝑃[𝑈𝑃𝑂𝑈𝑇] −  𝛾[𝑈𝑃𝑂𝑈𝑇] 

 

(III) 
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𝑑[𝑈𝑃𝐼𝑁]
𝑑𝑡 =  𝑘𝑈𝑃[𝑈𝑃𝑂𝑈𝑇] − 𝑣𝑚𝑎𝑥

𝑀𝑟𝑎𝑌 [𝑈𝑃𝐼𝑁]
𝐾𝑀

𝑀𝑟𝑎𝑌 + [𝑈𝑃𝐼𝑁] −  𝛾[𝑈𝑃𝐼𝑁] 

 

(IV) 

𝑑[𝐿𝐼]
𝑑𝑡 = 𝑣𝑚𝑎𝑥

𝑀𝑟𝑎𝑌 [𝑈𝑃𝐼𝑁]
𝐾𝑀

𝑀𝑟𝑎𝑌 + [𝑈𝑃𝐼𝑁] − 𝑣𝑚𝑎𝑥
𝑀𝑢𝑟𝐺 [𝐿𝐼]

𝐾𝑀
𝑀𝑢𝑟𝐺 + [𝐿𝐼] −  𝛾[𝐿𝐼] 

 

(V) 

𝑑[𝐿𝐼𝐼𝐼𝑁]
𝑑𝑡 = 𝑣𝑚𝑎𝑥

𝑀𝑢𝑟𝐺 [𝐿𝐼]
𝐾𝑀

𝑀𝑢𝑟𝐺 + [𝐿𝐼] − 𝑘𝐿𝐼𝐼[𝐿𝐼𝐼𝐼𝑁] −  𝛾[𝐿𝐼𝐼𝐼𝑁] 

 

(VI) 

𝑑[𝐿𝐼𝐼𝑂𝑈𝑇]
𝑑𝑡 = 𝑘𝐿𝐼𝐼[𝐿𝐼𝐼𝐼𝑁] − 𝑣𝑚𝑎𝑥

𝑃𝐵𝑃𝑠 [𝐿𝐼𝐼𝑂𝑈𝑇]
𝐾𝑀

𝑃𝐵𝑃𝑠 + [𝐿𝐼𝐼𝑂𝑈𝑇] −  𝛾[𝐿𝐼𝐼𝑂𝑈𝑇] 

 

(VII) 

𝑑[𝑈𝑃𝑃 − 𝐵𝐴𝐶]
𝑑𝑡 = 𝑘𝑎𝑠𝑠

𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃𝑂𝑈𝑇][𝐵𝐴𝐶] − 𝑘𝑑𝑖𝑠𝑠
𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃 − 𝐵𝐴𝐶] − 𝑘𝑐𝑎𝑡

𝐵𝑐𝑒𝐴𝐵 [𝐵𝑐𝑒𝐴𝐵]  𝐽𝐵𝐴𝐶            

−  𝛾[𝑈𝑃𝑃 − 𝐵𝐴𝐶] 
 

(VIII) 

𝑑[𝑚𝐵𝑐𝑒𝐴𝐵]
𝑑𝑡 = 𝛼𝐵𝑐𝑒𝐴𝐵  (

1 + 𝜔 (𝐽𝐵𝐴𝐶
𝜅 )

𝑛

1 + (𝐽𝐵𝐴𝐶
𝜅 )

𝑛 ) − 𝜆𝐵𝑐𝑒𝐴𝐵 [𝑚𝐵𝑐𝑒𝐴𝐵] 

 

(IX) 

𝑑[𝐵𝑐𝑒𝐴𝐵]
𝑑𝑡 = 𝛽 [𝑚𝐵𝑐𝑒𝐴𝐵] − 𝛾[𝐵𝑐𝑒𝐴𝐵] 

 

(X) 

𝑑[𝑚𝐿𝑢𝑥]
𝑑𝑡 = 𝛼𝐵𝑐𝑒𝐴𝐵  (

1 + 𝜔 (𝐽𝐵𝐴𝐶
𝜅 )

𝑛

1 + (𝐽𝐵𝐴𝐶
𝜅 )

𝑛 ) − 𝜆𝐿𝑢𝑥 [𝑚𝐿𝑢𝑥] 

 

(XI) 

𝑑[𝐿𝑢𝑥]
𝑑𝑡 = 𝛽 [𝑚𝐿𝑢𝑥] − 𝛾𝐿𝑢𝑥[𝐿𝑢𝑥] 

 

(XII) 

𝑙𝑢𝑚𝑖 = 𝛿[𝐿𝑢𝑥] 
 

(XIII) 

with 𝐽𝐵𝐴𝐶 =
[𝑈𝑃𝑃−𝐵𝐴𝐶]

𝐾𝑀
𝐵𝑐𝑒𝐴𝐵  

1 + [𝑈𝑃𝑃−𝐵𝐴𝐶] 
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵 
 
. 

To study the effect of bacitracin on the progression of the lipid II cycle, we monitored the effect 
of bacitracin on the rate of PG synthesis, jPG, which was formulated as follows 

𝑗𝑃𝐺 =  𝑣𝑚𝑎𝑥
𝑃𝐵𝑃𝑠 [𝐿𝐼𝐼𝑂𝑈𝑇]

𝐾𝑀
𝑃𝐵𝑃𝑠 + [𝐿𝐼𝐼𝑂𝑈𝑇] 

(XIV) 

 

Model adaptations to describe the mutant strains 

The full model described above reproduces the scenario of a wild-type strain where both 
resistance determinants (BceAB and BcrC) are fully intact. However, adaptations were 
necessary to simulate a lack of one or both of the two resistance modules. In order to describe 
the scenario of a ΔbceAB mutant, we set the basal production rate of BceAB to zero (αBceAB = 
0) to avoid BceAB and Lux production. Furthermore, we adapted the fold-change fBcrC to the 
reporter output of PbcrC-luxABCDE in a ΔbceAB mutant. Secondly, we simulated a lack of BcrC, 
as in a ΔbcrC mutant, by setting the contribution of BcrC to the overall phosphatase activity to 
zero (xBcrC = 0). In addition, the scaling factor for the production rate of UPP was adapted 
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(sUPP >1), since lipid carrier production was assumed to be up-regulated in response to bcrC 
deletion (see qPCR data in the main text). The deviation of the precise value for this parameter 
is explained in the section below. Finally, to study a lack of both resistance modules 
(ΔbceABΔbcrC mutant), we combined the two adaptations for the single mutants (αBceAB = 0, 
xBcrC = 0 and sUPP >1). 

 

Calibration of the mathematical model 

In order to calibrate the model, we aimed to identify physiologically relevant values for the 
parameters in Eqs. (I-XIV). At first, we set all known parameters from the model of the lipid II 
cycle to its previously defined values (see Supplementary Table 3).  

Subsequently, we determined the new parameters arising from the mathematical description 
of the BcrC resistance module, namely xBcrC, which defined sBcrC, and sUPP, respectively. For 
this purpose, we compared the scenarios of a strain lacking both resistance modules 
(ΔbceABΔbcrC mutant) or featuring the BcrC resistance module solely (ΔbceAB mutant). Each 
of the two parameters affects both, the progression of the lipid II cycle without bacitracin and 
the effect of bacitracin treatment on the lipid II cycle. While a higher impact of BcrC on the 
overall phosphatase activity supports the progression of the cycle more efficiently when BcrC 
is present, the rate of PG synthesis is reduced more strongly in this case when BcrC is lacking. 
This demands a more pronounced upregulation of the production of lipid II cycle intermediates 
in response to bcrC deletion to recover a close-to-optimal PG synthesis rate. However, the 
model also predicted a PG synthesis rate above the optimal one when assuming an excessive 
upregulation of lipid carrier production, which is not valid in a physiological sense. Furthermore, 
variations in the PG synthesis rate without bacitracin treatment clearly imply significant 
differences in the amount of bacitracin cells can stand. Obviously, in the scenario where BcrC 
is present as a resistance module (ΔbceAB mutant), a stronger contribution of BcrC to the 
overall phosphatase activity confers higher resistance and coincides with a raised IC50. 
However, when lacking BcrC (ΔbceABΔbcrC mutant), the PG synthesis rate without bacitracin 
treatment dictates the susceptibility towards bacitracin. If the PG synthesis rate is still distinctly 
affected in the untreated scenario, little amounts of bacitracin are sufficient to reduce the PG 
synthesis rate to half of its optimum. In contrast, much higher bacitracin concentrations are 
required to reach 50% of the optimal PG synthesis rate when the rate is nearly unaffected 
without antibiotic. Thus, as the PG synthesis rate without bacitracin treatment is governed by 
the contribution of BcrC on the overall phosphatase activity (xBcrC) and lipid carrier upregulation 
in response to BcrC shortage (sUPP) – as explained above – the IC50 prediction of the model 
for the ΔbceABΔbcrC mutant strongly depends on these two parameters. We ultimately aimed 
to find a theoretical model that simultaneously describe the progression of the lipid II cycle with 
(ΔbceAB) and without BcrC (ΔbcrCΔbceAB) precisely and matches physiological conditions 
as well. Therefore, we simulated the IC50 model predictions for 50x50 combinations of the two 
parameters xBcrC and sUPP and determined the weighted squared 2-norm χ2 for all possible 
combinations as follows: 

𝜒2(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) =
(𝐼𝐶50

𝛥𝑏𝑐𝑒𝐴𝐵(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) − 𝑀𝐼𝐶𝛥𝑏𝑐𝑒𝐴𝐵)2

(𝜎𝑀𝐼𝐶Δ𝑏𝑐𝑒𝐴𝐵)2  +
(𝐼𝐶50

𝛥𝑏𝑐𝑒𝐴𝐵𝛥𝑏𝑐𝑟𝐶(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) − 𝑀𝐼𝐶𝛥𝑏𝑐𝑒𝐴𝐵𝛥𝑏𝑐𝑟𝐶)2

(𝜎𝑀𝐼𝐶Δ𝑏𝑐𝑒𝐴𝐵Δ𝑏𝑐𝑟𝐶)2   

Here, 𝑀𝐼𝐶𝛥𝑏𝑐𝑒𝐴𝐵 and 𝑀𝐼𝐶𝛥𝑏𝑐𝑒𝐴𝐵𝛥𝑏𝑐𝑟𝐶 represent the experimentally determined MICs in the 
different strains and 𝜎𝑀𝐼𝐶Δ𝑏𝑐𝑒𝐴𝐵and 𝜎𝑀𝐼𝐶Δ𝑏𝑐𝑒𝐴𝐵Δ𝑏𝑐𝑟𝐶 the respective errors in the experimental 
MICs, calculated by the error propagation formula (errors are given in the main text). 
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Furthermore, IC50
ΔbceAB and IC50

ΔbceABΔbcrC describe the model-predicted IC50
’s, dependent on 

the parameters xBcrC and sUPP. 

To find the optimal parameter combination, we demanded the following two constraints: 

i. 𝜒2(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) → 𝑚𝑖𝑛 

and  

ii. 𝑗𝑃𝐺
𝛥𝑏𝑐𝑒𝐴𝐵𝛥𝑏𝑐𝑟𝐶(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) ≤ 𝑗𝑃𝐺

𝑊𝑇 

jPG
WT and jPG

ΔbceABΔbcrC display the rates of PG synthesis without bacitracin treatment in the wild-
type scenario and a scenario where both resistance modules are lacking, respectively. The 
second constraint accounts for the physiological plausible limitation of the PG synthesis rate 
by its wild-type level. In Supplementary Figure S3, the χ2 values are plotted against the 
parameter combinations. Standard deviations on the two parameters were determined from 
the 68.3 % confidence intervals as described (Press et al., 1992) and also illustrated in 
Supplementary Figure S3. The final parameter values of xBcrC and sUPP as well as their standard 
deviation σ are given in Supplementary Table 3).  

Finally, we determined the parameters originating from the previous model of the BceAB 
resistance module. Since the setup of the experiments, which we now aimed to quantitatively 
describe by the new model, was quite different from the previous experimental study that 
determined the pre-existing model, we were not able to transfer the existing parameters to our 
new model. Rather, significant variations in the growth conditions between both experimental 
approaches demanded adaptations in the model parameters that describe the dynamics of the 
Bce system. Therefore, we fixed the parameters that are independent from the growth 
conditions (e.g. mRNA degradation rates, translation rate) to their physiological values and 
determined the remaining ones by a constrained optimization approach. The experimental data 
of the PbceAB-luxABCDE reporter output provide nine objectives to the seven unknown 
parameters. To solve this over-determined non-linear data-fitting problem, we used the solving 
function lsqnonlin, embedded in the MATLABTM software. This function solves nonlinear least-
square curve fitting problems of the form  

𝑚𝑖𝑛‖𝑓(𝑥)‖2
2 = 𝑚𝑖𝑛(𝑓1(𝑥)2 + 𝑓2(𝑥)2 + ⋯ + 𝑓𝑛(𝑥)2)   

by using a trust-region reflective Newton algorithm. As outputs, it returns the optimal parameter 
set �̅� of the problem as well as the squared-2 norm χ2 of the residual at �̅� (𝜒2 =  ∑ 𝑓(�̅�)2). To 
account for the presence of local optima, 50 independent fits were performed with randomly 
chosen initial parameter sets and the best-fit result was given at minimal χ2. The optimal 
parameters are shown in Supplementary Table S3. We followed (Wall et al., 2009) to compute 
the asymmetric errors σ+ and σ- with respect to the optimal parameter values �̅�, listed in 
Supplementary Table S3. The squared errors for the parameter 𝑥𝑘 were calculated using the 
following equations: 

𝜎𝑘,+
2 =  

∑  (𝑥𝑘,𝑖 − 𝑥𝑘̅̅ ̅)2𝑒−𝜒𝑖
2/2

𝑖:𝑥𝑘,𝑖>�̅�𝑘

∑  𝑒−𝜒𝑖
2/2

𝑖:𝑥𝑘,𝑖>�̅�𝑘

 

and 

𝜎𝑘,−
2 =  

∑  (𝑥𝑘,𝑖 − 𝑥𝑘̅̅ ̅)2𝑒−𝜒𝑖
2/2

𝑖:𝑥𝑘,𝑖<�̅�𝑘

∑  𝑒−𝜒𝑖
2/2

𝑖:𝑥𝑘,𝑖<�̅�𝑘
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Where 𝑥𝑘,𝑖 is the value of the parameter 𝑥𝑘 in the ith fit, �̅�𝑘 is the value of 𝑥𝑘 in the fit with the 

lowest value of 𝜒2, and 𝜒𝑖
2 is the value of 𝜒2 for the ith fit. In using the likelihood function 𝑒−𝜒𝑖

2/2, 
we assumed that the errors in the measurements are independent and normally distributed 
with widths equal to the standard error of the mean.  

 

Model modification 

In order to study the futile activation of BceAB production by UPP (as explained in detail in the 
main text), we slightly modified the model description of the BceAB resistance module. 
According to the assumption that UPP affects the transporter state by futile binding, we 
expected the load per transporter dependent from both UPP and UPP-BAC, which were 
assumed to bind in a competitive manner. Thus, we adapted the description of the load per 
transporter, which affects the activation of BceAB production, and introduced a modified 
description of transporter load Jload: 

𝐽𝑙𝑜𝑎𝑑 = 𝐽𝐵𝐴𝐶
′ + 𝐽𝑓𝑢𝑡𝑖𝑙𝑒 

with  

𝐽𝐵𝐴𝐶
′   =  

[𝑈𝑃𝑃 − 𝐵𝐴𝐶]
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵

1 +  [𝑈𝑃𝑃 − 𝐵𝐴𝐶] 
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵  +  [𝑈𝑃𝑃]
�̃�𝑀

𝐵𝑐𝑒𝐴𝐵

 

and  

𝐽𝑓𝑢𝑡𝑖𝑙𝑒   =

[𝑈𝑃𝑃]
�̃�𝑀

𝐵𝑐𝑒𝐴𝐵

1 +  [𝑈𝑃𝑃 − 𝐵𝐴𝐶] 
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵  +  [𝑈𝑃𝑃]
�̃�𝑀

𝐵𝑐𝑒𝐴𝐵

, 

leading to 

𝐽𝑙𝑜𝑎𝑑   =

[𝑈𝑃𝑃 − 𝐵𝐴𝐶]
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵 + [𝑈𝑃𝑃]
�̃�𝑀

𝐵𝑐𝑒𝐴𝐵

1 +  [𝑈𝑃𝑃 − 𝐵𝐴𝐶] 
𝐾𝑀

𝐵𝑐𝑒𝐴𝐵  +  [𝑈𝑃𝑃]
�̃�𝑀

𝐵𝑐𝑒𝐴𝐵

, 

Here, the Michaelis constants �̃�𝑀
𝐵𝑐𝑒𝐴𝐵and 𝐾𝑀

𝐵𝑐𝑒𝐴𝐵 describe the binding affinities of UPP and 
UPP-Bac to the transporter, respectively. Since the load per transporter affects the activation 
of BceAB and Lux protein production, the respective two model Eqs. (IX) and (XI) were 
changed as follows: 

𝑑[𝑚𝐵𝑐𝑒𝐴𝐵]
𝑑𝑡 = 𝛼𝐵𝑐𝑒𝐴𝐵  (

1 + 𝜔 (𝐽𝑙𝑜𝑎𝑑
𝜅 )

𝑛

1 + (𝐽𝑙𝑜𝑎𝑑
𝜅 )

𝑛 ) − 𝜆𝐵𝑐𝑒𝐴𝐵 [𝑚𝐵𝑐𝑒𝐴𝐵] 

 

(XV) 

𝑑[𝑚𝐿𝑢𝑥]
𝑑𝑡 = 𝛼𝐵𝑐𝑒𝐴𝐵  (

1 + 𝜔 (𝐽𝑙𝑜𝑎𝑑
𝜅 )

𝑛

1 + (𝐽𝑙𝑜𝑎𝑑
𝜅 )

𝑛 ) − 𝜆𝐿𝑢𝑥 [𝑚𝐿𝑢𝑥] 

 

(XVI) 
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However, we expected that futile binding of UPP inactivates the transporter but does not 
provoke any reaction. Therefore, the rate of release of bacitracin from UPP is solely dependent 
on 𝐽𝐵𝐴𝐶

′ :  

𝑑[𝑈𝑃𝑃𝑂𝑈𝑇]
𝑑𝑡 =  𝑘𝑈𝑃𝑃[𝑈𝑃𝑃𝐼𝑁] − 𝑠𝐵𝑐𝑟𝐶 ∗  𝑣𝑚𝑎𝑥

𝑈𝑝𝑝𝑃𝑠 [𝑈𝑃𝑃𝑂𝑈𝑇]
𝐾𝑀

𝑈𝑝𝑝𝑃𝑠 + [𝑈𝑃𝑃𝑂𝑈𝑇]
+ 𝑣𝑚𝑎𝑥

𝑃𝐵𝑃𝑠 [𝐿𝐼𝐼𝑂𝑈𝑇]
𝐾𝑀

𝑃𝐵𝑃𝑠 + [𝐿𝐼𝐼𝑂𝑈𝑇]
− 𝑘𝑎𝑠𝑠

𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃𝑂𝑈𝑇][𝐵𝐴𝐶] + 𝑘𝑑𝑖𝑠𝑠
𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃 − 𝐵𝐴𝐶] + 𝑘𝑐𝑎𝑡

𝐵𝑐𝑒𝐴𝐵 [𝐵𝑐𝑒𝐴𝐵]  𝐽′𝐵𝐴𝐶

−  𝛾[𝑈𝑃𝑃𝑂𝑈𝑇] 
 

(XVII) 

𝑑[𝑈𝑃𝑃 − 𝐵𝐴𝐶]
𝑑𝑡 = 𝑘𝑎𝑠𝑠

𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃𝑂𝑈𝑇][𝐵𝐴𝐶] − 𝑘𝑑𝑖𝑠𝑠
𝐵𝐴𝐶;𝑈𝑃𝑃[𝑈𝑃𝑃 − 𝐵𝐴𝐶]

− 𝑘𝑐𝑎𝑡
𝐵𝑐𝑒𝐴𝐵 [𝐵𝑐𝑒𝐴𝐵]  𝐽′𝐵𝐴𝐶            −  𝛾[𝑈𝑃𝑃 − 𝐵𝐴𝐶] 

 

(XVIII) 

After model modification, we proved that the predictions the IC50s remain unaffected from the 
modifications. 
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Supplementary Figures 

Supplementary Figure 1 

 

Growth curves of B. subtilis W168 wild-type and ΔbcrC, ΔbceAB and ΔbceABΔbcrC 
mutant strains. Growth dynamics in strains carrying indicated deletions of bacitracin 
resistance modules and the reporter constructs PbceAB-luxABCDE and PbcrC-luxABCDE. 
Indicated amounts of bacitracin were added at t = 60min. The respective growth rates, as 
displayed in the dose-response curve in Figure 2B, were determined within the first hour after 
bacitracin induction (60-120min). Measurements were performed during exponential growth 
phase in LB medium at 37°C in a microtiter plate reader. Data points and error bars indicate 
mean and standard deviation from at least three biological replicates. Strains used here are 
listed in Supplementary Table 1.  
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Supplementary Figure 2 

 

Model-predicted distribution of lipid II cycle intermediates in the ΔbceAB and 
ΔbceABΔbcrC mutant strains. The distribution of the different lipid II cycle intermediates 
without bacitracin treatment is highly asymmetric. The lipid II cycle is located around the cell 
membrane, which is indicated in grey. Lipid II cycle intermediates are illustrated with blue 
circles, while the size of the circles correlates with the concentration of the respective 
intermediate. UPPOUT, UPOUT and LIIOUT represent the fraction the intermediates UPP, UP and 
Lipid II, respectively, which is located at the outer leaflet of the cell membrane. Accordingly, 
the fraction of intermediates located at the inner leaflet of the cell membrane is described by 
UPIN and LIIIN. UPPIN is not displayed, as this lipid intermediate is not directly involved in the 
lipid II cycle. Lipid I (LI) is solely present on the inner leaflet of the cell membrane. The de novo 
synthesis of new lipid carrier in the form of UPP is indicated. The thickness of the arrows 
correlates with the fluxes from one intermediate state into the next one within the lipid II cycle. 
In addition, the rate of PG synthesis is displayed (A) When BceAB is lacking (ΔbceAB), the 
concentrations of the various lipid II cycle intermediates equal the concentrations predicted in 
the basic model without bacitracin stress response determinants (Piepenbreier et al., 2019). 
While UPPOUT is most abundant, the concentrations of LI and LIIIN and LIIOUT are two orders of 
magnitude lower. UPIN and UPOUT are present in intermediate concentrations. (B) When 
additionally deleting bcrC (ΔbceABΔbcrC), the rate of UPP dephosphorylation is significantly 
reduced and lipid intermediates accumulate in the form of UPPOUT, as this is the substrate of 
the respective reaction. Since the lipid II cycle is a close-loop-system (Piepenbreier et al., 
2019), all other concentrations are depleted concomitantly. However, as UPPOUT is still the 
most abundant intermediate in the lipid II cycle, its concentration is not raised significantly. The 
distinct reduction (>50%) of the concentrations of UPOUT, UPIN, LI, LIIIN and LIIOUT leads to 
significantly reduced fluxes within the lipid II cycle. In particular, the reduction of the 
concentration of LIIOUT of ~75% leads to a decreased rate of PG synthesis, far below the half-
maximal level. (C) However, the model predicts a nearly unaffected rate of PG synthesis when 
a 6.6-fold increase in total lipid intermediates (caused by a higher rate of UPP de novo 
synthesis) in response to bcrC deletion is expected. While the concentration of UPPOUT is 
massively increased, all other lipid II cycle intermediates are as abundant as in the ΔbceAB 
scenario. Consequently, the similar concentrations of LIIOUT imply similar rates of PG synthesis 
in both the mutant lacking BceAB exclusively (ΔbceAB) and the mutant lacking both resistance 
modules (ΔbceABΔbcrC).  
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Supplementary Figure 3 

 

 

 

 

 

 

 

 

 

Best-fit results of the model parameters xBcrC and sUPP and their corresponding 
confidence intervals. The colour codes for the 𝜒2(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) values of the different 
parameter combinations, where a low 𝜒2 indicates high quality of the fit for a given combination. 
The shaded area represents the physiologically non-plausible regime for 
𝑗𝑃𝐺

𝛥𝑏𝑐𝑒𝐴𝐵𝛥𝑏𝑐𝑟𝐶(𝑥𝐵𝑐𝑟𝐶, 𝑠𝑈𝑃𝑃) > 𝑗𝑃𝐺
𝑊𝑇. The standard deviations 𝜎𝑥𝐵𝑐𝑟𝐶 and 𝜎𝑠𝑈𝑃𝑃 were determined 

from the 68.3% confidence interval corresponding to 𝛥𝜒2 =  (𝜒2 − 𝜒𝑜𝑝𝑡
2 ) =  1, which is 

represented by the inner ellipse (see Supplementary Table S3). The outer ellipse marks the 
95.4% confidence interval (𝛥𝜒2 =  2). The red star marks the optimal parameter set compatible 
with the physiological constraints. 
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Supplementary Tables 

Supplementary Table 1: Bacterial strains used in this study 

Name  Description a Source  
TMB1619 W168 sacA::pCHlux103 (PbceA -lux) Höfler et al., 2016 
TMB1620 W168 sacA::pCHlux104 (PbcrC-lux) Höfler et al., 2016 
TMB1623 W168 bceAB::kan sacA::pCHlux103 (PbceA-lux) Radeck et al., 2016 
TMB1624 W168 bceAB::kan sacA::pCHlux104 (PbcrC-lux) Radeck et al., 2016 
TMB1627 W168 bcrC::tet sacA::pCHlux103 (PbceA-lux) Radeck et al., 2016 
TMB1628 W168 bcrC::tet sacA::pCHlux104 (PbcrC-lux) Radeck et al., 2016 
TMB1632 W168 bceAB::kan bcrC::tet sacA::pCHlux104 (PbcrC-lux) This study 

a kan, kanamycin resistance; tet, tetracycline resistance. 

 

 

Supplementary Table 2: Plasmids used in this study 

Name Description Resistance  
in E. coli /   
B. subtilis a 

Source 

pCHlux103 pAH328-derivative, sacA::PbceA-lux, cat, bla Ampr / cmr 
 

Höfler et al., 2016 

pCHlux104 pAH328-derivative, sacA::PbcrC-lux, cat, bla Ampr / cmr 
 

Höfler et al., 2016 

a Ampr, ampicillin resistance; cmr, chloramphenicol resistance. 
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Supplementary Table 3: Model parameters 

Parameter Notation Value Source 
LII module 

Michaelis-Menten constant for 
Lipid I synthesis via MraY 

𝐾𝑀
𝑀𝑟𝑎𝑌 177 μM Piepenbreier et al., 2019 

Michaelis-Menten constant for 
Lipid II synthesis via MurG 

𝐾𝑀
𝑀𝑢𝑟𝐺 25 μM Piepenbreier et al., 2019 

Michaelis-Menten constant for PG 
synthesis via PBPs 

𝐾𝑀
𝑃𝐵𝑃𝑠 18 μM Piepenbreier et al., 2019 

Michaelis-Menten constant for 
UPP dephosphorylation via 

UppPs 

𝐾𝑀
𝑈𝑝𝑝𝑃𝑠 4.69 x 103 μM Piepenbreier et al., 2019 

Maximal Lipid I synthesis rate via 
MraY 

𝑣𝑚𝑎𝑥
𝑀𝑟𝑎𝑌 

3.01 x 105 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬
𝐦𝐢𝐧

 
Piepenbreier et al., 2019 

Maximal Lipid II synthesis rate via 
MurG 

𝑣𝑚𝑎𝑥
𝑀𝑢𝑟𝐺 

3.21 x 105 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬
𝐦𝐢𝐧

 
Piepenbreier et al., 2019 

Maximal PG synthesis rate via 
PBPs 

𝑣𝑚𝑎𝑥
𝑃𝐵𝑃𝑠 

2.32 x 105 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬
𝐦𝐢𝐧

 
Piepenbreier et al., 2019 

Maximal UPP dephosphorylation 
rate via UppPs 

𝑣𝑚𝑎𝑥
𝑈𝑝𝑝𝑃𝑠 3.55 x 105 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬

𝐦𝐢𝐧
 

Piepenbreier et al., 2019 

Reaction rate of UPP flipping 𝑘𝑈𝑃𝑃 1.84 x 103 𝟏
𝐦𝐢𝐧

 Piepenbreier et al., 2019 

Reaction rate of UP flipping 𝑘𝑈𝑃 3.81 𝟏
𝐦𝐢𝐧

 Piepenbreier et al., 2019 

Reaction rate of LII flipping 𝑘𝐿𝐼𝐼 642.23 𝟏
𝐦𝐢𝐧

 Piepenbreier et al., 2019 

Production rate of UPP 𝛼𝑈𝑃𝑃 4.76 x 104 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬
𝐦𝐢𝐧

 Piepenbreier et al., 2019 
Dilution rate of all proteins  𝛾 0.017 𝟏

𝐦𝐢𝐧
 Adapted to cell’s doubling 

time, 𝛾 = 𝑙𝑛2
𝑇𝐷

  
Antibiotic action 

Binding constant for bacitracin – 
UPP interaction  

𝐾𝐷
𝐵𝐴𝐶;𝑈𝑃𝑃 1 µM Storm and Strominger, 1973 

Dissociation rate for bacitracin – 
UPP interaction 

𝑘𝑑𝑖𝑠𝑠
𝐵𝐴𝐶;𝑈𝑃𝑃  0.75 𝟏

𝐦𝐢𝐧
 Estimated from Fig. 2B in 

(Economou et al., 2013) 
Association rate for bacitracin – 

UPP interaction 
𝑘𝑎𝑠𝑠

𝐵𝐴𝐶;𝑈𝑃𝑃  0.75 𝟏
μM 𝐦𝐢𝐧

 Adjusted to match  
𝐾𝐷

𝐵𝐴𝐶;𝑈𝑃𝑃 
BceAB module 

Michaelis-Menten constant for 
bacitracin transport via BceAB 

𝐾𝑀
𝐵𝑐𝑒𝐴𝐵 129 (+137/-59)a μM Estimated parameter 

Catalytic efficiency of every 
BceAB transporter 

𝑘𝑐𝑎𝑡
𝐵𝑐𝑒𝐴𝐵  1.51 (+1.4/-0.2)a x 103 

𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬
𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐭𝐞𝐫 ∗ 𝐦𝐢𝐧

 
Estimated parameter 

Basal transcription rate of PbceAB 

promoter 
𝛼𝐵𝑐𝑒𝐴𝐵 2.62 (+1.0/-0.8)a x 10-2 

𝐦𝐑𝐍𝐀
𝐦𝐢𝐧

 
Estimated parameter 

Fold-change of PbceAB promoter 𝜔 2.776 (+0.7/-0.7)a x 103 Estimated parameter 
(Suggested by data in Fig. 

2C in the main text) 
PbceAB activation threshold 𝜅 1.3 (+3.0/-0.2)a Estimated parameter 

Hill coefficient (reflects all forms 
of cooperativity in stimulus 

perception and signal 
transduction) 

𝑛 4.7 (+4.0/-1.1)a Estimated parameter 

bceAB mRNA degradation rate 𝜆𝐵𝑐𝑒𝐴𝐵 0.462 𝟏
𝐦𝐢𝐧

 Corresponds to a bceAB 
mRNA half-life of 1.5 min 

(Fritz et al., 2015) 
luxABCDE mRNA degradation 

rate 
𝜆𝐿𝑢𝑥 0.138 𝟏

𝐦𝐢𝐧
 Corresponds to a lux mRNA 

half-life of 5 min; upper limit 
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for mRNA half-life inferred in 
(Radeck et al., 2013) 

LuxABCDE protein decay rate 𝛾𝐿𝑢𝑥 0.023 𝟏
𝐦𝐢𝐧

 Corresponds to a protein 
half-life of 30 min  
(Fritz et al., 2015) 

Translation rate 𝛽 10 𝐩𝐫𝐨𝐭𝐞𝐢𝐧𝐬
𝐦𝐑𝐍𝐀 ∗ 𝐦𝐢𝐧

 (Fritz et al., 2015) 

Scaling factor between protein 
level and luminescence 

𝛿 4.56 (+3.1/-1.6)a Estimated parameter 

BcrC module 
Relative contribution of BcrC to 

overall phosphatase activity 
𝑥𝐵𝑐𝑟𝐶 0.63 (+/- 0.095)b Estimated parameter 

Scaling factor for lipid carrier 
concentrations in ΔbcrC 

𝑠𝑈𝑃𝑃 6.2 (+/- 0.7)b Estimated parameter 

Modified model 
Michaelis-Menten constant for 
futile binding of UPP to BceAB 

𝐾𝑀
𝑈𝑃𝑃 3.38 x 104 μM Arbitrary choice, expecting 

an affinity of UPP to BceAB 
two orders of magnitude 

lower than the for the native 
substrate (UPP-BAC) 

a Asymmetric errors σ+ and σ- of the parameter values are given in brackets (+σ+/-σ-). 

b Standard deviations σ of the parameter values, determined from the 68.3 % confidence 
intervals, are given in brackets (+/- σ). 
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Summary
Transporters are essential players in bacterial growth

and survival, since they are key for uptake of

nutrients on the one hand, and for defence against

endogenous and environmental stresses on the other

hand. Remarkably, in addition to their primary role in

substrate translocation, it has become clear that

some transporters have acquired a secondary func-

tion as sensors and information processors in signal-

ling pathways. In this review, we describe recent

advances in our understanding of the role of trans-

porters in such signalling cascades, and discuss

some of the emergent dynamic behaviour found in

hallmark examples. A particular focus is placed on

new insights into mechanistic details of information

transfer between transporters and regulatory pro-

teins. Quantitative considerations reveal that these

signalling complexes can implement a remarkable

diversity of regulatory logic functions, where the

transporter can act as activity switch, as positive or

negative reporter of transport flux, or as a signalling

hub for the integration of multiple inputs. Such a dual

use of transport proteins not only enables efficient

substrate translocation but is also an elegant strat-

egy to integrate important information about the

cell’s external conditions with its current physiologi-

cal state.

Introduction
Active transporters are essential players in bacterial

growth and survival, since they are key for uptake of

essential nutrient on the one hand, and for defence

against endogenous and environmental stresses, for

example, by export of toxic compounds, on the other

hand (Fig. 1). This is reflected by the vast functional and

mechanistic diversity in bacterial transport systems,

which can be energised by ATP hydrolysis or the proton

motif force, can act as importers or exporters, and can

have broad substrate ranges or be highly specific

(Padan, 2009; Wang et al., 2009).

In addition to their primary role in substrate translo-

cation, transporters can also possess a secondary

function and serve as accessory components of sen-

sory and signalling systems. In this role, they contrib-

ute to decision-making processes that enable the

bacterial cell to adapt to changes in the prevailing envi-

ronmental or intracellular conditions. For instance,

transporters play a pivotal role in nutrient sensing,

because many substrates first need to be actively

translocated to the cytoplasm before a cytoplasmic

sensor protein may detect the cue (Fig. 1). This is fre-

quently the case in inducible carbohydrate utilization

systems, such as the arabinose and lactose systems of

Escherichia coli (M€uller-Hill, 1996; Schleif, 2000). The

importers for these carbon sources are constitutively

produced at a low level to allow a basal rate of uptake.

Only when this results in accumulation of elevated

intracellular substrate concentrations can these be

detected by cytoplasmic regulators, which in turn acti-

vate expression of genes required for increased rates

of import and metabolism of the available carbon

source (Megerle et al., 2008; Fritz et al., 2014). In cells

lacking the transporter, the substrate cannot enter the

cytoplasm, preventing detection and the resulting cellu-

lar response (Daruwalla et al., 1981).

While this example may be viewed as an indirect role

of transporters in substrate perception, it is becoming

increasingly recognized that some transporters have

acquired bona fide signalling functions. These so-called
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‘trigger transporters’ can directly bind to and communi-

cate with bacterial signalling pathways, such as one-

component (1CS) and two-component (2CS) regulatory

systems (Tetsch and Jung, 2009; Unden et al., 2016).

In this way, the cell elegantly combines the exquisitely

sensitive ability of transporters to bind and report on

substrate availability with the regulatory power of 1CS

and 2CS to translate this information into an appropri-

ate cellular response. The information relayed from

transporter to regulatory system may be the external or

internal concentration of a ligand, or it may be the

transport activity itself (Fig. 1). Interestingly, in some

cases the transporters have even lost their primary

substrate-translocating function and only retained their

role as ligand binding ‘scaffolds’ reporting on extracel-

lular substrate concentrations. In the Uhp system of E.

coli, for instance, the UhpC transporter displays only

marginal transport activity for its substrate, glucose 6-

phosphate (G6P), but faithfully detects and signals the

presence of G6P to the UhpB/UhpA 2CS, which in turn

activates the production of the hexose phosphate

transporter UhpT (Island and Kadner, 1993; Schw€oppe

et al., 2003).

In this MicroReview, we will discuss the role of active

transporters as accessory or sensory components of

signalling pathways. We will address systems in which

the transporter functions as activity switch, as positive

or negative reporter of transport flux as well as systems

in which transporters mediate the integration of multiple

signals. Based on recent advances in our molecular and

quantitative understanding of such signalling pathways,

we provide a descriptive theoretical framework for their

classification according to system behaviour, which will

aid researchers in the characterisation of newly identi-

fied sensory transporters.

Transporters as activity switches
Uptake and metabolism of C4-dicarboxylates, such as

fumarate or malate, in many bacteria is regulated by a

2CS that is under negative control of secondary C4-

dicarboxylate transporters (Unden et al., 2016). In E.

coli, this 2CS is comprised of the histidine kinase DcuS

and the response regulator DcuR. Under aerobic condi-

tions, fumarate and other C4-dicarboxylates are taken

up by the secondary transporter DctA, and expression

of the dctA gene and fumarate metabolic genes is con-

trolled by DcuS-DcuR. Under anaerobic conditions,

fumarate can be used as electron acceptor for fumarate

respiration, leading to production of succinate. Here,

uptake occurs via the fumarate/succinate antiporter

DcuB, and expression of dctB and genes required for

fumarate respiration is again controlled by DcuS-DcuR.

These processes have been recently reviewed in detail

(Unden et al., 2016). Interestingly, DcuS itself is fully

capable of binding suitable substrates (Kneuper et al.,

2005; Monzel and Unden, 2015), but is only able to

respond to such binding events in the presence of either

DctA or DcuB. In the absence of transporters, the kinase

adopts a constitutive ‘ON’ state and fails to respond to

stimuli (Kleefeld et al., 2009; Witan et al., 2012; Unden

et al., 2016). The role of the transporters in C4-dicarboxy-

late sensing appears to be that of an activity switch,

transferring the kinase from the constitutively active state

to a substrate-responsive state (Fig. 2A).

DcuS possesses an extracellular PAS domain flanked

by two transmembrane helices, which serves as the

ligand binding site for C4-dicarboxylates or citrate

(Kneuper et al., 2005; Unden et al., 2016). The cyto-

plasmic part of DcuS is composed of a second PAS

domain, followed by the kinase domains. Activation of

DcuS occurs by a piston-like movement of transmem-

brane helix 2 by four amino acids towards the periplas-

mic side, most likely caused by conformational changes

in the periplasmic PAS domain upon ligand binding

(Monzel and Unden, 2015). Under aerobic conditions,

the transporter DctA forms a complex with DcuS, medi-

ated by direct protein–protein interactions between an

amphipathic cytoplasmic helix near the C-terminus of

DctA and the cytoplasmic PAS domain of DcuS (Witan

et al., 2012). Several lines of evidence suggest that for-

mation of this complex is sufficient to bring DcuS into its

substrate-responsive state, and that neither transport

nor substrate binding by DctA (or DcuB) play any direct

role in the signalling process. First, mutations in the C4-

dicarboxylate binding site of DctA abolish transport, but

do not affect signalling by DcuS (Steinmetz et al.,

2014). Similarly, transport-defective DcuB variants have

been constructed that maintain their ability to switch

DcuS to the responsive state (Kleefeld et al., 2009).

Fig. 1. Transporters as information processors in bacterial cells.
The optimization of bacterial growth and survival critically relies on
active transporters (green) responsible for uptake of essential
nutrients (purple) and export of endogenous and environmental
stressors (red). In order to adapt their transport capacity to
changes in prevailing conditions, transporters frequently play pivotal
roles in signalling (red wave arrows) to regulatory systems (orange)
that control the expression of transporter genes (straight red
arrows). These roles range from transporters as sensors of
external substrate level, to transporters as indirect mediators for
internal substrate detection, to transporters serving as bona fide
flux sensors that report on their transport activity per se.
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Second, DcuS can be activated by citrate, which is not

a substrate for DctA (Steinmetz et al., 2014). And third,

the substrate concentrations required for transport and

signalling differ by several orders of magnitude. Uptake

of fumarate by E. coli, presumably catalysed by DctA,

occurs with an apparent Km of 30 mM (Kay and Korn-

berg, 1971), compared to an apparent Km of 2–3 mM

for activation of DcuS-dependent promoters (Kneuper

et al., 2005). Thus, maximal rates of transport are

already supported by substrate concentrations that are

insufficient to fully induce DcuS (Unden et al., 2016).

DctA therefore clearly acts as an activity switch for

DcuS and does not contribute any additional sensory

functions to the signalling process. It was recently

shown that a functionally equivalent complex is formed

between DcuS and DcuB under anaerobic conditions

(W€orner et al., 2016).

At a first glance, it does not appear clear what advan-

tages such a regulatory strategy imparts to the cell.

Why employ a transporter in a signalling pathway when

neither substrate binding nor transport are factored into

the regulatory decision taken by the cell? The citrate-

responsive kinase CitA of E. coli, which is closely

related to DcuS, does not require a transporter to

respond to its substrate, showing that these kinases can

function on their own (Scheu et al., 2012). Intriguingly,

the dual use of DctA as both a signalling modulator of

DcuS and high-affinity uptake system for C4-dicarboxy-

lates causes the DcuS-DcuR system to respond in a

two-mode fashion (Unden et al., 2016) (Fig. 2A). When

no or only micromolar concentrations of C4-dicarboxy-

lates are present, DcuS will be present in the ligand-free

state. Its activity under these conditions will only depend

on the presence of DctA. If insufficient amounts of DctA

are present to occupy all DcuS proteins, any free kinase

molecules will be constitutively active, leading to

increased production of DctA. This response is switched

off as soon as DcuS is saturated with DctA (Steinmetz

et al., 2014). In this mode, termed Mode II (Unden

et al., 2016), the input information is ‘concentration of

DctA’, thereby leading to a negative autoregulation of

transporter levels (Fig. 2B). The physiological role of

keeping DctA at such an equilibrium may be to ensure

homeostatic control of the transport capacity for C4-

dicarboxylates. The high affinity of the transporter allows

uptake even at low substrate concentrations, enabling

the cell to utilise these in anabolic or catabolic metabo-

lism (Unden et al., 2016). In Mode I, DcuS is saturated

with DctA and therefore fully switched to its substrate-

responsive state (Unden et al., 2016) (Fig. 2A). The

sole input information here is ‘concentration of substrate’

(Steinmetz et al., 2014), but high (millimolar) concentra-

tions of the substrate are required to elicit a strong

response (Kneuper et al., 2005) (Fig. 2B). The low sub-

strate affinity of DcuS may ensure that the cell does not

commit to a costly induction of C4-dicarboxylate utiliza-

tion systems unless sufficiently high concentrations are

available to support growth on these substrates as pri-

mary carbon sources. Hence, the qualitative model of

signal integration by the DcuS-DcuR system (Fig. 2A)

seems to implement the regulatory logic of an OR gate,

which either becomes activated by high external C4-

dicarboxylate levels or by a shortage of transporters

within the cell. This OR-gate logic can be nicely illus-

trated with the aid of a mathematical model for the

DcuS/DctA/C4-dicarboxylate interaction scheme

depicted in Fig. 2A: If one assumes binding of DctA to

DcuS (Mode II binding with binding constant K2) and

Fig. 2. The transporter DctA acts as activity switch on the
histidine kinase DcuS during regulation of C4-dicarboxylate
utilization in E. coli.
A. The C4-dicarboxylate transporter DctA (green) is not only
responsible for high-affinity uptake of C4-dicarboxylates (purple),
but also involved in regulating its own production. In the absence of
DctA, the kinase DcuS is constitutively active (left) and up-
regulates transporter production (dashed arrow). Binding of DctA to
DcuS sequesters DcuS to an ‘OFF’-state (centre), leading to a
negative feedback of DctA on its own production. This is referred to
as Mode II and serves as sensor of DctA levels. In complex with
DctA, DcuS is switched to a substrate-sensitive state, in which the
histidine kinase is activated by binding of C4-dicarboxylates (right;
referred to as Mode I). B. A simple mathematical model derived
from the reaction scheme in panel A illustrates the dual modes of
sensing and is compatible with quantitative experimental data
published previously (Steinmetz et al., 2014). Within the model,
DcuS activity is proportional to the probability of finding DcuS in an
‘ON’ conformation, that is, either unbound or in a DcuS-DctA-C4-
dicarboxylate complex, as given by Eq. (1) in the main text. The
graph was generated using the following parameters: K1 5 0.5 mM,
K2 5 10 nM and n 5 2.
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cooperative binding of C4-dicarboxylates to the DctA-

DcuS complex (Mode I binding with binding constant K1

and Hill coefficient n), then the active fraction of the his-

tidine kinase, fON, (i.e., the sum of the unbound DcuS

fraction and DcuS-DctA-C4-dicarboxylate complex)

reads

fON5
11 A½ " C½ "n

K2K n
1

11 A½ "
K2

1 A½ " C½ "n
K2K n

1

; ð1Þ

where [A] and [C] are the concentrations of DctA and C4-

dicarboxylates, respectively. Note that this mathematical

model not only resembles the regulatory logic of an OR

gate (Fig. 2B), as expected qualitatively, but is also in

good quantitative agreement with the experimental data

by (Steinmetz et al., 2014). This underlines that the sim-

ple reaction scheme depicted in Fig. 2A is indeed suffi-

cient to describe this elegant way of signal integration.

Sensors of transport flux
Although in the previous example the DctA transporter

is a fully functional importer for C4-dicarboxylates, trans-

port activity per se is dispensable for signalling. There

Fig. 3. In B. subtilis, a sensory complex of the histidine kinase BceS and the ABC transporter BceAB serves as a positive flux sensor.
A. The ATP-binding cassette transporter BceAB (green) confers resistance against the antimicrobial peptide bacitracin (Bac, red) by removing
the latter from its cellular target undecaprenyl pyrophosphate (UPP, yellow). A complex between the 2CS BceRS (orange) and BceAB serves
as a sensor of transport activity (‘flux-sensing’), which stimulates expression of the bceAB operon in response to bacitracin stress. For
simplicity, BceS is represented as a monomer instead of the biologically active dimer.
B. Mathematical simulations of a previously published model for the Bce system (Fritz et al., 2015) show the long-term activity of the PbceAB

promoter in response to different levels of bacitracin and BceAB transporter.
C. Illustration of the B. subtilis response to sudden bacitracin exposure. In the absence of bacitracin (left panel), BceAB is inactive and BceRS
remains in its default OFF state. Upon bacitracin exposure (middle panel) high amounts of UPP-Bac complexes are formed and transport
activity of BceAB is high, triggering signalling via BceRS to induce bceAB expression (see also red arrow in panel B). As a response, BceAB
transporters accumulate in the cytoplasmic membrane and remove bacitracin from UPP. This in turn reduces the flux experienced by
individual transporters, which ultimately reduces bceAB expression to an adapted steady-state level (right panel and green arrow in panel B).
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are, however, an increasing number of systems in which

substrate translocation by the transporter is essential for

stimulus perception via the signalling system. Based on

this strict dependence on transport flux, we will in the

following refer to such tandems of transporters and sig-

nalling systems as ‘flux sensors’. Moreover, we will dis-

tinguish between two classes of flux sensors: On the

one hand, we define positive flux sensors as those in

which a high transport activity acts as cue for the activa-

tion of signalling, while on the other hand, in negative

flux sensors signalling is activated at a low transport

activity. Accordingly, mutants deleted for the respective

transporters also show opposing behaviour of the signal-

ling systems: In positive flux sensors the signalling sys-

tem turns to its default ‘OFF’ state in the absence of the

transporter, while in negative flux sensors the signalling

system remains locked in the default ‘ON’ state.

Positive flux sensors

The paradigm example for a positive flux sensor is the

Bce system of Bacillus subtilis, which provides resist-

ance against the peptide antibiotic bacitracin and a few

other antimicrobial peptides (Fig. 3A). The system con-

sists of the ABC-transporter BceAB that mediates the

actual resistance, and the 2CS BceRS that controls

expression of the transporter operon (bceAB) (Ohki

et al., 2003). The most striking characteristic of this sys-

tem is that the BceS kinase lacks any obvious sensory

domains. Instead BceS completely depends on the

transporter for detection of substrate peptides, and dele-

tion of the transporter abolishes any induction of the tar-

get promoter, PbceA (Rietk€otter et al., 2008), highlighting

that the default state of the 2CS is ‘OFF’. BceAB there-

fore not only acts as resistance determinant but also as

primary sensor of the antibiotic. Interestingly, resistance

and signalling can be genetically separated by single

amino acid substitutions in the transport permease

BceB, showing that BceAB truly is a dual-function trans-

porter (Kallenberg et al., 2013). Biochemical analysis of

the proteins involved showed that the kinase and trans-

porter form a sensory complex in the cytoplasmic mem-

brane of the cell, and that the transporter can directly

influence kinase activity (Dintner et al., 2014). The

mechanistic basis of signal transmission between BceB

and BceS, however, remains unknown. Mutagenesis of

the ATPase component, BceA, further demonstrated

that ATP hydrolysis is required for activation of BceS,

suggesting that transport activity is essential for the sig-

nalling process, rather than mere ligand binding

(Rietk€otter et al., 2008). Mathematical modelling of the

quantitative response dynamics of the Bce system pro-

vided evidence that it directly responds to transport

activity of BceAB, with each BceS kinase measuring the

antibiotic flux experienced by the transporter with which

it forms a sensory complex (Fritz et al., 2015) (Fig. 3B).

Our current understanding of the Bce system has led

to the following model of its biological function (Fig. 3B

and C). In un-challenged cells, basal promoter activity of

the bceAB operon produces a small number of trans-

porters that can form sensory complexes with BceS,

which itself is produced from a constitutive promoter.

Bacitracin and other antimicrobial peptides bind to inter-

mediates of the lipid II cycle of cell wall biosynthesis

(Breukink and de Kruijff, 2006; Economou et al., 2013).

How transport can mediate resistance against an antibi-

otic targeting a surface structure of the cell is currently

unknown, but presumably involves removal of the antibi-

otic from the target, freeing the latter for access by cell

wall biosynthetic enzymes. Such a mechanism would be

similar to that observed for self-resistance in some pro-

ducer organisms of antimicrobial peptides (Stein et al.,

2003; Okuda et al., 2008). In this case, the complexes

between the antibiotic and its target molecule form the

substrate for the BceAB transporter. The higher the con-

centration of the antibiotic, the more antibiotic-target

complexes are formed, and the higher is the transport

Fig. 4. The periplasmic binding protein of the BctCAB transporter
mediates transport as well as signalling in Bordetella pertussis. The
citrate uptake system (green) of B. pertussis consists of the
permease domains BctA and BctB, as well as the periplasmic
binding protein BctC, which binds citrate (purple) and thus
mediates citrate import via BctAB. In addition, BctC-citrate binds to
and activates the histidine kinase BctE (orange), which in response
stimulates expression of the bctCAB operon via the response
regulator BctD. Hence, citrate binding to BctC increases the rate of
transport and the magnitude of signal transduction in proportional
ways, suggesting that the system might function akin to a positive
flux sensor.
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activity of BceAB. This increased activity is directly

detected by the BceS kinase, presumably through physi-

cal contact to the transporter, and leads to activation of

signalling and increased production of the transporter (cf.

Fig. 3B; red arrow). The resulting additional capacity for

transport will keep the cellular target free of antibiotic,

thereby reducing the concentration of substrates for indi-

vidual transporters. The decreased transport activity

experienced by individual BceAB molecules then in turn

swiftly turns off signalling via BceS (cf. Fig. 3B; green

arrow). This flux-sensing mechanism thus implements a

negative feedback on regulation, allowing the cell to

quickly establish a new steady-state level of transporter

numbers. Experimentally observed response times were

indeed very fast with equilibrium reached after approxi-

mately one third to one half of the generation time (Fritz

et al., 2015). Importantly, using the transporter as both

activator of signalling and remover of its own substrate,

the cell precisely adapts the new steady-state level of

transporters depending directly on the cell’s capacity for

detoxification, not merely the present concentration of the

antibiotic. The adaptive power of this regulatory strategy

is highlighted by a very large input-dynamic range, allow-

ing a gradual response over nearly three orders of mag-

nitude of antibiotic concentrations, which is considered to

be more cost-effective than a simple dose-dependent

response to antibiotic concentrations (Fritz et al., 2015).

Phylogenetic analyses of Bce-like systems revealed that

they are found throughout the low G 1 C content Gram-

positive bacteria, but not outside of this group (Joseph

et al., 2002; Dintner et al., 2011). BceAB-like transporters

are almost always found together with BceRS-like 2CS,

and their transport permeases and histidine kinases have

coevolved, suggesting a general functional interdepend-

ence between them (Dintner et al., 2011). All systems that

have been studied experimentally to date are involved in

resistance against antimicrobial peptides, so not only the

regulatory principle but also their physiological role seems

to be conserved (Dintner et al., 2011; Gebhard and

Mascher, 2011; Gebhard, 2012; Revilla-Guarinos et al.,

2014). In some bacteria, variations on the theme

described above for the Bce-system in B. subtilis exist.

Whereas in the Bce-system the same transporter fulfils

the roles of resistance determinant and antibiotic sensor,

these functions are divided between two separate trans-

porters in Staphylococcus aureus (Hiron et al., 2011) and

Enterococcus faecalis (Gebhard et al., 2014). Whether

this is an evolutionary intermediate, for example, following

loss of the 2CS for one of the transporters, or gain of an

additional orphan transporter, or whether such a regula-

tory strategy gives the cell a particular advantage remains

unclear. Interestingly, two systems have been described

where the 2CS is activated by a sensory BceAB-like trans-

porter, but the actual resistance is then mediated by

induction of entirely unrelated genes, such as the dltABCD

operon (coding for D-alanylation of teichoic acids) and

mprF (for L-lysinylation of phospholipids). One example for

this is the nisin resistance system ‘module 12’ of Lactoba-

cillus casei (Revilla-Guarinos et al., 2013). The second

example is comprised of the 2CS GraSR and transporter

VraFG of S. aureus, where communication between trans-

porter and kinase appears to involve a fifth protein, GraX

(Falord et al., 2012). The VraFG transporter does not

have the ability to confer resistance against antimicrobial

peptides on its own (Falord et al., 2012). In this case, the

negative feedback that governs the response dynamics of

the B. subtilis Bce-system appears to be missing. It would

be interesting to investigate the effects of this on gene

regulation, or if induction of dltABCD and mprF, which

together reduce access of the antibiotics to their targets

(Revilla-Guarinos et al., 2014), could have an effect equiv-

alent to active removal of the antibiotic.

While in the Bce system discussed above the trans-

porter interacts via its permease domain with the 2CS

to implement a flux sensor, also other components of

multipartite transporters were described to interact with

signalling systems. For instance, in E. coli the periplas-

mic maltose binding protein MalE interacts with the Tar

chemoreceptors in the presence of maltose and thereby

modulates chemotaxic behaviour (Hazelbauer, 1975;

Zhang et al., 1999). Similarly, in Agrobacterium tumefa-

ciens the chromosomal virulence gene E (chvE) enco-

des a periplasmic binding protein that binds several

neutral sugars and sugar acids, and subsequently inter-

acts with the VirAG 2CS to stimulate virulence gene

expression (Hu et al., 2013).

Another well-studied example is the citrate uptake

system of Bordetella pertussis, in which the tripartite

tricarboxylate transporter (TTT) BctCAB interacts via

its periplasmic binding protein BctC with the histidine

kinase BctE (Antoine et al., 2003) (Fig. 4). Here, citrate

binding to BctC not only enables citrate uptake through

BctAB, but also activates the 2CS BctDE, which in turn

triggers expression of the bctCAB transporter operon

(Antoine et al., 2005). Intriguingly, disruption of bctA

was shown to abolish citrate uptake by B. pertussis

(Antoine et al., 2003), while signalling through BctDE

was highly elevated in this mutant (Antoine et al.,

2005). This clearly shows that not active citrate trans-

port by BctCAB, but rather accumulating levels of

citrate-bound BctC molecules are the cue detected by

the 2CS BctDE. It is nevertheless conceivable that the

fully functional (wild-type) Bct system may function akin

to a positive flux sensor: qualitatively, one would expect

that the rate of citrate uptake is directly proportional to

the level of citrate-bound BctC molecules. Because

these citrate-BctC complexes at the same time serve

as the input to the signalling system, citrate influx
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should be proportional to signalling. To understand the

quantitative implications of this signalling strategy, it

will be important to consider the relative affinities of

substrate-bound BctC to the histidine kinase, BctE on

the one hand, and the transport permease components

BctAB on the other hand. Preferential binding of BctC

to one of its partners could have drastic effects on the

relationship between transport flux and signalling.

Therefore, more quantitative experiments and mathe-

matical modelling are needed to fully understand the

regulatory implications of linking transport to signalling

in this way.

The Bct system of B. pertussis is homologous to the

paradigm TTT transporter TctCAB of Salmonella typhi-

murium, which is likewise controlled by a 2CS, TctE-TctD

(Widenhorn et al., 1989). It is, however, not known

whether TctC plays a similar role in signalling as in the

B. pertussis system. Intriguingly, B. subtilis possesses an

orphan homologue to BctC, named YflP, which is geneti-

cally associated with a 2CS, YflR-YlfQ. Although it

remains to be proven experimentally, it has been pro-

posed, based on gene arrangement and the absence of

the transmembrane components of the transporter, that

YflP may have a sensory role in this system (Winnen

et al., 2003). This suggestion raises the question as to

the original function of BctC-like binding proteins, sub-

strate binding for transport or as an accessory compo-

nent of signalling systems. A phylogenetic analysis of

TTT systems revealed that the larger transmembrane

component, the TctA-like proteins, are often found alone

and are most widely distributed, even including Archaea

(Winnen et al., 2003). They are only occasionally found

together with TctB- and TctC-homologues, and the full

set of proteins only occurs in bacteria. This has been

interpreted as TctA being the actual transporter in its

ancestral form that later acquired the smaller accessory

membrane protein TctB and the periplasmic binding pro-

tein TctC, for example, to modify function or increase

substrate affinity (Winnen et al., 2003). It is therefore con-

ceivable that TctC-like proteins originated as signalling

proteins and were later co-opted into transport systems.

It would be highly interesting to test if the regulatory prin-

ciple so far only shown for the B. pertussis Bct system

holds true for its homologues and if orphan TctC-like pro-

teins truly possess signalling activities.

Negative flux sensors

One of the best-understood examples for a negative flux

sensor is the regulation of the phosphate starvation

response of E. coli. Here, the 2CS PhoR-PhoB forms a

sensory complex with the ATP-binding cassette (ABC)

transporter PstSCAB2, mediated by the chaperone-like

protein PhoU [reviewed in (Hsieh and Wanner, 2010)].

Phosphate-limitation activates signalling by PhoR-PhoB

and leads to the induction of the entire Pho-regulon,

which includes genes encoding the PhoR-PhoB 2CS,

the PstSCAB2 transporter, PhoU and several transport-

ers and enzymes involved in exploiting alternative phos-

phorus sources (Wanner, 1993; van Veen, 1997).

Through the resulting changes, the cell increases both

its capacity for phosphate uptake and the availability of

free phosphate. In the absence of PstSCAB2 or PhoU,

the kinase PhoR is in a constitutively activated state,

leading to full induction of the Pho-regulon, irrespective

of phosphate availability. Thus, the default state of the

2CS is ‘ON’, and the transporter acts as repressor of

signalling under phosphate-replete conditions. This func-

tional interdependence of 2CS, PstSCAB2 and PhoU

has not only been found in E. coli, but also in Sinorhi-

zobium meliloti (Yuan et al., 2006) and Mycobacterium

smegmatis (Gebhard and Cook, 2008). Interestingly, in

Bacillus subtilis the transporter does not appear to be

involved in phosphate-signalling (Qi et al., 1997), show-

ing that the regulatory principle is wide-spread but not

universal.

The PhoR histidine kinase is devoid of any apparent

extracellular sensory domains, but contains a cytoplas-

mic PAS (Per-ARNT-Sim) domain harbouring the interac-

tion interface with PhoU (Gardner et al., 2014; Gardner

et al., 2015). PhoU also interacts with the ATPase com-

ponent of the transporter, PstB, and therefore appears

to be the hub of the seven-protein signalling complex

(Gardner et al., 2014) (Fig. 5). Signalling is thought to

occur by the following mechanism. Under high phos-

phate conditions, the PstSCAB2 transporter is fully occu-

pied and all transporters are switched to the ‘transport

active’ state. In this state, the transporter is also ‘signal-

ling active’ and represses the kinase activity of PhoR-

PhoB while the phosphatase activity dominates (Hsieh

and Wanner, 2010) (Fig. 5A). When phosphate

becomes limiting, not all transporters are active at all

times, and those that temporarily become inactive lose

their repressive function, leading to the activation of sig-

nalling (Fig. 5B). According to this model, a cell experi-

encing phosphate-limitation possesses a mixture of

transport-active and inactive copies of PstSCAB2. At

any given time, the currently inactive copies promote

signalling and cause activation of the Pho-regulon, while

the active copies import phosphate and allow the cell to

continue growing (Hsieh and Wanner, 2010). In this way,

the cell responds not simply to the external concentra-

tion of phosphate, but rather to its ability to scavenge

this essential nutrient, which ultimately is the more rele-

vant parameter for survival.

In addition to increasing the number of transporters

as a response to phosphate-limitation, the cell also
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produces enzymes such as alkaline phosphatases to lib-

erate phosphate from other sources (Wanner, 1993; van

Veen, 1997). This will increase the external concentra-

tion of free phosphate, raise the intake flux per

PstSCAB2 transporter and ultimately shut down the

response (Fig. 5C).

Notably, on phosphate starvation the cell not only

responds by increasing the copy number of PstSCAB2

transporters, but also up-regulates the production of the

PhoR-PhoB 2CS in an autoactivating positive feedback

loop (Hoffer et al., 2001) (Fig. 5C)1. In principle, positive

feedback can lead to switch-like or even hysteretic

Fig. 5..
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behaviour, where the response to a current stimulus

depends on the previous history of stimuli (Fritz et al.,

2007; Lambert et al., 2014). Indeed autoamplification of

the PhoR-PhoB 2CS has been attributed with ‘learning’

behaviour, because phosphate-starved cells displayed a

significantly faster induction of the Pho response than

nonstarved cells – even after 2 h of growth in

phosphate-containing medium (Hoffer et al., 2001).

While the physiological role of such priming behaviour is

still elusive, clear selective advantages may arise if fluc-

tuations in environmental phosphate availability are cor-

related. For instance, if one period of phosphate

starvation is indicative of subsequent starvation periods,

it might be beneficial to keep memory on previous star-

vation responses.

Not much is known about the molecular mechanism

by which the transporter and PhoU repress PhoR acti-

vation. One hypothesis is that PhoU somehow transmits

conformational changes as part of the transport cycle of

PstSCAB2 to the kinase (Gardner et al., 2014). Impor-

tantly, transport and signalling are genetically separable

functions of PstSCAB2, as amino acid substitutions have

been identified in the permease component PstC that

abolish transport but still allow repression of PhoR (Cox

et al., 1989). In contrast, mutations that prevent ATP-

hydrolysis by the ATPase PstB caused defects in both

transport and signalling (Cox et al., 1989). Considering

that PhoU interacts with the PstB subunit of the trans-

porter (Gardner et al., 2014; Gardner et al., 2015), it

therefore appears likely that the information transmitted

to the kinase is derived from the ATPase activity of the

transporter, that is, as long as the ATPase hydrolyses

ATP, PhoU represses PhoR. Two possibilities of how

this may be accomplished have been discussed (Gard-

ner et al., 2014): If the complex between the 2CS, PhoU

and PstSCAB2 is stable regardless of the phosphate

concentration, then PhoU may have the ability to cause

PhoR to switch between active and inactive states

depending on PstSCAB2 activity. Alternatively, the

complex may dissociate when the transporter is inactive

to allow the kinase to adopt its default active state.

Interestingly, it appears that PhoU plays a second

important role in controlling not only the start of the Pho

response, but also its termination (Fig. 5C). When a

low-phosphate adapted cell returns to phosphate-replete

conditions, repression of PhoR-PhoB has to be restored

to terminate the response, as discussed above. The

high levels of PstSCAB2 and PhoU that were produced

during the phosphate-limited period ensure that the 2CS

is quickly returned to its repressed state. However, the

presence of high transporter levels also poses a risk to

the cell, as it could lead to the accumulation of toxic

intracellular phosphate concentrations (Rice et al.,

2009). This appears to be prevented by PhoU, which

has the ability to inhibit phosphate uptake by PstSCAB2

when intracellular phosphate concentrations are high

(Rice et al., 2009). Similar negative effects of PhoU on

phosphate uptake have also been observed in

Pseudomonas aeruginosa (de Almeida et al., 2015) and

Caulobacter crescentus (Lubin et al., 2016). This sec-

ond regulatory function of PhoU thus constitutes an ele-

gant mechanism to immediately curb uptake by the

transporter and thereby prevent accumulation of toxic

intracellular phosphate when the external availability of

phosphate suddenly increases. Detailed investigations

of the multiple activities of this enigmatic hub-protein will

be essential to fully understand how phosphate trans-

port connects to signalling and how these processes are

embedded in the physiology of the cell.

Transporters involved in signal integration
In the systems discussed above, a unique stimulus is

responsible for sensing and signalling. Either the trans-

porter level, the transporter activity (flux) or the ‘result’

of transport, namely the internal substrate, is detected.

Yet many microbial adaptation processes not only rely

Fig. 5. In the phosphate starvation response of E. coli, the 2CS PhoR-PhoB in conjunction with the PstSCAB2 transporter functions as a
negative flux sensor. Regulation of phosphate (purple) uptake in E. coli is controlled by a seven-protein signalling complex consisting of the
phosphate transporter PstSCAB2 (green), the 2CS PhoR-PhoB (orange) and the accessory membrane protein PhoU (yellow).
A. Under phosphate-replete conditions the PstSCAB2 transporter is fully active and imports phosphate at high rate. In this state the
transporter is believed to bring PhoU into a conformation that turns the bifunctional histidine kinase PhoR into a ‘phosphatase ON’ state. This
leads to inactivation of the response regulator PhoB and thereby keeps transcription of the Pho regulon at a basal level. The functional
domains of PhoR are shown as CA, catalytic domain; PAS, Per-Arnt-Sim domain; HIS, histidine-transfer and dimerization domain (please refer
to text for details of information transfer and transport-repressing functions of PhoU).
B. Under phosphate-limiting conditions, PstSCAB2 transporter activity decreases, leading to a weakening or loss in PstSCAB2-PhoU–PhoR
interaction. As a result, the kinase is derepressed, causing activation of signalling (‘kinase on’) and induction of pstSCAB, phoU and phoBR
expression.
C. Schematic illustration of the phosphate starvation response in E. coli. During phosphate starvation, the drop in external and internal
inorganic phosphate (Pi) leads to reduced Pi influx via PstSCAB2, which in turn triggers the production of further transporters (phase II). The
increasing number of transporters recovers the internal Pi to its initial level and guarantees an adequate supply (phase III). Once external Pi

levels return to high levels, internal phosphate might transiently accumulate to high intracellular levels, because of the high number of
transporters still present (phase IV). Excessive phosphate uptake is prevented by PhoU. Additionally, PstSCAB2 restore repression of
signalling and transporter levels drop to pre-starvation levels by dilution during cell growth (phases I and V).
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on a single source of environmental information, but

instead require the combinatorial integration of multiple

external and internal cues. However, the sensors

involved in stimulus perception are subject to biochemi-

cal constraints, which limit the number of cues that can

be detected by a single protein. Signal integration is

therefore often achieved by interactions between multi-

ple sensory systems, which can also incorporate trans-

porters as sensors of substrate availability and/or

reporters of transport flux.

One of the best-studied systems that integrates two

sources of input information is the Mal-system required

for maltose-uptake in E. coli (Fig. 6). Here, the import of

maltose and maltodextrins depends on the ABC-

transporter MalEFGK2, which is genetically organized in

two operons, malEFG and malK-lamB-malM [reviewed,

for example, in (Boos and Shuman, 1998)]. Both oper-

ons are regulated by the transcriptional activator MalT

(Hofnung, 1974; Hofnung et al., 1974). Interestingly,

activation of MalT itself depends on two distinct inputs.

First, in the absence of external maltodextrins the ATP

binding subunits of the transporter, MalK2, sequester

MalT into an inactive (ADP-bound) form (Schreiber

et al., 2000; Joly et al., 2004) and thereby prevent its

activation (Panagiotidis et al., 1998). Only if MalEFGK2

actively imports maltodextrins into the cell, ATP hydroly-

sis by MalK2 triggers release of MalT and allows the lat-

ter to assume its active, ATP-bound form (Panagiotidis

et al., 1998; Schreiber et al., 2000). Second, ATP-bound

MalT is then further stabilized by internal maltotriose –

an intermediate product of maltodextrin metabolism

(Raibaud and Richet, 1987) – which triggers full activa-

tion of MalT (Schreiber et al., 2000; Joly et al., 2004).

Of note, this second mode of sensing is very similar to

internal substrate sensing in the Lac-system of E. coli,

in which allolactose – an intermediate product of lactose

metabolism – is detected by the lac repressor LacI

(M€uller-Hill, 1996).

By using such a dual-input sensory strategy, the cell

up-regulates the production of maltose transporters only

if (i) there is a sufficient flux of maltodextrins into the

cell and if (ii) internal substrate has accumulated to sig-

nificant levels. Using such an AND gate, the cell asserts

that physiological levels of endogenously produced mal-

totriose, for example during metabolism of glycogen

(Ehrmann and Boos, 1987), do not cause the futile pro-

duction of transporters in the absence of external sub-

strate. This raises the question as to why MalT should

act as an internal sensor of maltotriose at all, consider-

ing that the sequestration of MalT by inactive transport-

ers already appears to act as a functional flux sensor

reporting on external maltose availability. One potential

benefit of this dual mode of sensing might be that inter-

nal substrate sensing can easily implement a positive

feedback loop on regulation: increased production of

transporters raises the rate of substrate accumulation,

which in turn further up-regulates transporter production.

In the classical lactose and arabinose utilization sys-

tems, this positive feedback was shown to trigger

switch-like ‘all-or-none’ behaviour at intermediate

inducer concentrations, with one subpopulation of cells

fully committing to sugar utilization and a second subpo-

pulation not investing into costly synthesis of the associ-

ated metabolic program at all (Ozbudak et al., 2004;

Megerle et al., 2008; Fritz et al., 2014). Such a diversifi-

cation of a phenotypic trait within a genetically identical

population may serve as a ‘bet-hedging’ strategy in fluc-

tuating environments, in which sugars may come and go

at unpredictable times (Veening et al., 2008). Neverthe-

less, in theory, a similar positive feedback could be

implemented with a flux-sensor alone, if for instance the

regulator MalT were to be up-regulated in response to

influx of maltose, leading to an increase in free, that is,

active pool of MalT. However, malT is not subject to pos-

itive autoregulation (Debarbouille and Schwartz, 1979;

Fig. 6. The maltose transporter MalEFGK2 of E. coli sequesters
the transcriptional regulator MalT at low transport flux. In the
maltose uptake system of E. coli, maltodextrins (purple) are
imported via the ABC transporter MalEFGK2 (green). In the
absence of external maltodextrins, the inactive MalEFGK2

transporter sequesters the transcriptional activator MalT to the
membrane (left). Upon maltodextrin import by MalEFGK2, MalT is
released to the cytoplasm, where it is activated by binding of
maltotriose (light blue) – a by-product of maltodextrin metabolism
produced by MalZ (yellow). Hence, after complete activation by two
signals – maltodextrin influx and internal maltotriose – MalT up-
regulates the expression of the transporter genes and others
involved in maltodextrin metabolism.
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Chapon, 1982; Decker et al., 1998), suggesting that this

hypothetical scenario is not implemented in the Mal-

system. Thus, it seems likely that the need for positive

feedback-induced heterogeneity cannot be the only fac-

tor that shaped the evolution of this dual mode of sens-

ing. Further quantitative experimental and theoretical

work is needed to shed light on the precise response-

dynamics of this system.

A remarkable example for a system integrating three

physiological stimuli is the Cad system, which is

involved in the acid tolerance response of E. coli (Fos-

ter, 2004) (Fig. 7A). Upon exposure to acidic pH and in

the presence of lysine, E. coli strongly up-regulates the

expression of the cadBA operon, encoding the lysine

decarboxylase CadA and the lysine/cadaverine antiporter

CadB (Meng and Bennett, 1992) (Fig. 7B). Together, they

increase both the intra- and extracellular pH via con-

sumption of a cytoplasmic proton during the decarboxyl-

ation of lysine to cadaverine, followed by the excretion

of the more basic cadaverine in exchange for a lysine

Fig. 7. In the acid stress response of E. coli, the lysine importer LysP interacts with the one-component system CadC to integrate three
external signals.
A. The acid stress response system Cad of E. coli consists of the lysine decarboxylase CadA, the lysine/cadaverine antiporter CadB (both
yellow) and the membrane-associated 1CS CadC (orange), which activates the expression of the cadBA operon at low pH, if simultaneously
the lysine concentration is high and the cadaverine concentration is low. While CadC is able to sense the external pH and cadaverine directly
via its periplasmic domain, the perception of external lysine relies on the interaction with the secondary lysine/H1 symporter LysP (green).
B. Schematic illustration of the Cad-response to acid stress. In the absence of lysine (left panel), LysP inhibits the activation of CadC via
intramembrane and membrane-peripheral contacts. Under increased lysine levels and at low external pH (middle panel), high lysine influx via
LysP releases this inhibition of CadC and allows the latter to be activated by low pH, resulting in the induction of cadBA expression. After the
production of sufficiently high CadA and CadB levels (right panel), cadaverine is produced and excreted to the medium, where it increases the
external pH and inhibits CadC, thereby terminating the Cad response.

Transporters in signalling pathways 11

VC 2017 John Wiley & Sons Ltd, Molecular Microbiology, 104, 1–15



molecule. Ultimately, the accumulation of external

cadaverine turns off the expression of cadBA, leading to

a transient Cad response (Neely and Olson, 1996; Fritz

et al., 2009) (Fig. 7B).

Interestingly, signal integration is achieved by the

membrane-integrated ToxR-like 1CS CadC, which is

able to sense low pH (Tetsch et al., 2011; Buchner

et al., 2015) and high cadaverine levels (Eichinger et al.,

2011; Haneburger et al., 2012) via its periplasmic

domain, while its cytoplasmic domain directly binds to

and activates the cadBA promoter (Kuper and Jung,

2005). However, CadC cannot directly sense the pres-

ence of lysine (Tetsch et al., 2008), and instead relies

on the secondary lysine/H1 symporter LysP, which is

required for lysine uptake from the growth medium.

Early experiments showed that lysP mutants lead to

lysine-independent cadBA expression (Popkin and

Maas, 1980), while LysP overproduction caused

repressed cadBA activity (Neely et al., 1994), suggest-

ing that LysP is a negative regulator of CadC activity in

the absence of lysine. Recently, it was shown that at

low external lysine concentrations LysP indeed forms a

complex with CadC via intramembrane and periplasmic

contacts (Rauschmeier et al., 2014), which keep CadC

in an inactive state – regardless of external pH. Only if

LysP imports lysine at sufficiently high rates, lysine-

dependent conformational changes in LysP transduce

the lysine signal via a direct conformational coupling to

CadC without resolving the interaction completely

(Rauschmeier et al., 2014). Hence, by integrating the

transport activity of LysP into the decision for activating

the Cad response, the cell asserts that the acid defence

via lysine decarboxylation is only activated if the sub-

strate for the reaction – lysine – is actually present in

the environment.

Concluding remarks
During the course of evolution bacterial transporters

developed into sophisticated molecular machines with

exquisite abilities to bind their cognate substrates. As

highlighted in this review, this not only enables efficient

substrate translocation, but can also be used to provide

the cell with important information about its extracellular

and/or intracellular state. This is achieved via direct or

indirect contacts between the transporter and a

membrane-associated signalling protein. Depending on

the regulatory logic of these interactions, a vast range of

physiological responses can be implemented, ranging

from activity switches, positive and negative flux sensors

to multi-input signalling hubs. While the mechanistic

details of signal transfer at the interface between trans-

porter and signalling protein are just beginning to be

revealed, in many systems the transporter regions or

even specific amino acids involved in transport are dis-

tinct from those used for information transfer. Given

such a modular structure, it seems likely that these two

traits either evolved independently of each other, or at

least functionally diverged over the course of evolution-

ary time. This, together with the large diversity of imple-

mented signalling behaviours, provokes the question as

to why transporters are not observed more commonly

as (co-)sensors in nature. One potential reason for this

might be that the key experiments revealing transporters

as essential for stimulus perception are in fact not nec-

essarily intuitive. They require the activity of a target

promoter under investigation to be monitored in a

transport-deficient mutant – a scenario that is not rou-

tinely assayed when characterising a transporter or sig-

nalling system. Therefore, one might speculate that

regulatory roles of transporters are far more common

than currently known. As the existence and physiological

relevance of information-processing transporters is

becoming increasingly recognised, systematic screens

should help identify other examples. Subsequent quanti-

tative characterisation in conjunction with mathematical

modelling can then reveal the actual logic implemented

in each respective system and may even lead to the dis-

covery of further regulatory complexity and novel signal-

ling strategies in bacteria.
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