Dissertation

Pedestrian Detection Algorithms
using Shearlets

Lienhard Pfeifer

2018






Pedestrian Detection Algorithms

using Shearlets

Dissertation

zur
Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt
dem Fachbereich Mathematik und Informatik
der

Philipps—Universitat Marburg
(Hochschulkennziffer: 1180)

von

Lienhard Pfeifer

geboren am 20. August 1985

in Gladenbach



Erstgutachter: Prof. Dr. Stephan Dahlke, Philipps-Universitdt Marburg
Zweitgutachter: Prof. Dr. Bernd Freisleben, Philipps-Universitdt Marburg

Tag der Einreichung: 11.9.2018
Tag der miindlichen Priifung: 9.11.2018



For Zoe, Sam and FEuva.






Acknowledgment

First of all, I would like to thank my supervisor Prof. Dr. Stephan Dahlke for his constant
support and a lot of valuable advice. Moreover, I thank him for accepting me as an external
PhD student. But mostly, I thank him for his guidance and encouragements never showing any
doubt that my work will be successful. I also thank Prof. Dr. Bernd Freisleben for agreeing to
be a referee of this thesis.

I would like to thank Matthias Gemmar for his enormous and never ending support for me and
my project at ITK Engineering GmbH. I thank him for giving me always constructive feedback,
helpful advice and good ideas. Especially, I thank him for promoting my project at ITK and for
always believing in the benefit of it.

I want to thank the management of ITK Engineering, namely Michael Englert and posthumously
Dr. Helmut Stahl for their decision to fund my thesis. In addition, I thank my supervisors at
ITK, especially Christian Hotterges and Jens Weber, for backing this decision and for supporting
me and my project.

I also thank my colleagues at I'TK for fruitful discussions as well as providing distraction by
enjoyable talks apart from work. A special thank goes to Max Rasumak and our former student
Sven Heuer for their input into this project. I thank Dr. Séren Hauser for providing me with a lot
of insights concerning the design of shearlets and digitalization, respectively the implementation
of them. Furthermore, I thank Dr. Philipp Petersen from the TU Berlin for his help on theoretical
aspects of compactly supported shearlets. For proofreading I thank Elisabeth Fiedler, Alexandra
and Joseph Marmion, Dr. Séren Hauser and Max Rasumak.

I want to thank my family and friends for their interest in my work, their support and for
delivering pleasant times. In particular, I thank my father Roland for awakening my interest
in natural sciences and my deceased mother Sabine for her loving education. A special thank
goes to my son Sam for clearing up my mind by playing around and to my daughter Zoe for
being such a sunshine. Finally, I thank my wife Eva for her patience, her love, her support, for
bringing our two beautiful children into the world, for being a wonderful mother for them and
above all for sharing the best moments with me.



ii

Acknowledgement




iii

Abstract

In this thesis, we investigate the applicability of the shearlet transform for the task of pedestrian
detection. Due to the usage of in several emerging technologies, such as automated or autonomous
vehicles, pedestrian detection has evolved into a key topic of research in the last decade. In this
time period, a wealth of different algorithms has been developed. According to the current results
on the Caltech Pedestrian Detection Benchmark [31], the algorithms can be divided into two
categories. First, application of hand-crafted image features and of a classifier trained on these
features [28], [99, [130]. Second, methods using Convolutional Neural Networks in which features
are learned during the training phase [9, 32 127]. Our aim is to study how both of these types
of procedures can be further improved by the incorporation of a framework for image analysis
which has a comprehensive theoretical basis.

We choose the multi-scale framework of shearlets since it guarantees a unified treatment of the
continuum and the digital world [74]. In theory, shearlets provide optimally sparse approxima-
tions of certain image models [52], [76] and the ability to characterize edges in images [53), [7§].
Moreover, they have been successfully applied practically in several image processing tasks, for
example denoising [35], [86] and edge detection [125].

We adapt the shearlet framework according to the requirements of the practical application of
a pedestrian detection algorithm. The particular shearlet design consists of two parts. First,
the usage of a specific mother shearlet that can precisely locate structures in images. Second,
the setup of a shearlet system allowing a uniformly distributed directional analysis and flexible
adjustment of the shearlets used per scale. The last point is useful to gain control over the space
size of the image features used for pedestrian detection. We show that our shearlet system forms
a frame for L?(R?) and provide the conditions required for it.

Next, we examine the capability of our shearlet design for edge detection from a theoretical
point of view. We show that the designed shearlets can characterize edge points in R? and their
type by the decay rates and the limits of the shearlet transform for decreasing scales. In contrast
to the existing literature, we derive decay rates depending on the degree of anisotropy «a. For
the special case of a = 1/2, we find explicit limits of the shearlet transform which has not been
achieved with recently used shearlets. Furthermore, we show that a shearlet mother function
with just one vanishing moment is required for our theoretical results. Finally, we illustrate that
this requirement is in harmony with the observations made in the practical application of an
edge detection algorithm with shearlets.

Given our specialized shearlet design, we define meaningful, hand-crafted image features based
on the shearlet transform. Meaningful in a sense that the features provide rich information about
an object’s structure. The consideration of shearlets has several advantages compared to other
image features. At first, they provide a sparse representation of the image, i.e. the result of
the shearlet transform only has magnitude with considerably high absolute value at pixels that
correspond to edge points. Second, due to the multi-scale framework of shearlets, the structure
of objects can directly be investigated at different scales. We show that our shearlet features
provide the best results of hand-crafted image features in the Caltech benchmark.
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Currently, all best performing algorithms in the Caltech benchmark are using CNN models.
Therefore, we analyze the capability of shearlets to further improve CNNs. We integrate shearlet
filters in the first layer of a CNN, since several learned filters of this layer show a similarity
to orientation-selective edge detection filters [72]. We show that we can improve classification
and detection results with the integration of shearlets compared to the original networks when
trained on the same data. Furthermore, we find that a training on comprehensive data sets such
as ImageNet [24] is required in order to achieve the detection results of the leading algorithms.
We consider this finding as indication for the immense power of data for deep learning algorithms.

One main application area of pedestrian detection is located in the automotive domain. The
usage in current collision warning and intervention systems [40] as well as in future systems of
autonomous driving requires algorithms to be runable on embedded devices. Therefore, we port
our base pedestrian detection algorithm to a marketably priced embedded target. By a careful
software design and runtime optimization we are able to run our algorithm with a useful frame
rate of 10 fps.



Zusammenfassung

Die vorliegende Arbeit untersucht die Eignung von Shearlets fiir die Aufgabe der
FuBgéngererkennung. Durch die mogliche Anwendung der Fulgidngererkennung in diversen neu-
en Technologien, wie beispielsweise dem automatisierten oder autonomen Fahren, hat sich das
Thema im letzten Jahrzehnt zu einem Schliisselthema der Forschung entwickelt. In dieser Zeitpe-
riode wurde eine Vielzahl verschiedener Algorithmen entwickelt. Nach den aktuellen Resultaten
des Caltech Pedestrian Detection Benchmarks [31] konnen die Algorithmen in zwei Kategori-
en unterteilt werden. Zum einen, die Anwendung von handgefertigten Bildmerkmalen und eines
Klassifikators, welcher auf diese Bildmerkmale trainiert ist [28],[99, [130]. Zum anderen, Methoden
mit Anwendung von Convolutional Neural Networks (CNNs), in denen Bildmerkmale wéhrend
der Trainingsphase gelernt werden [9] [32], [127]. Unser Ziel ist es zu untersuchen, in welcher Wei-
se beide Typen von Algorithmen durch die Einarbeitung eines Frameworks mit umfassender
theoretischer Grundlage verbessert werden kénnen.

Wir wahlen hierzu das Multiskalen-Framework der Shearlets, da es eine einheitliche Behandlung
der kontinuierlichen als auch der digitalen Welt garantiert [74]. In der Theorie haben Shearlets
optimal sparse Approximationen bestimmter Bildmodelle [52, [76] ermoglicht und haben die
Féhigkeit Kanten in Bildern zu charakterisieren [53] [78]. Des Weiteren wurden Shearlets erfolg-
reich fir diverse Bildverarbeitungsaufgaben, wie z.B. Denoising [35], [86] oder Kantendetektion
[125], eingesetzt.

Wir passen das Shearlet Framework entsprechend der Anforderungen der praktischen Anwen-
dung einer Fuflgingererkennung an. Das entsprechende Shearlet Design besteht aus zwei Teilen.
Zum einen, die Verwendung spezieller Shearlet Mutterfunktionen, welche Bildstrukturen prézise
lokalisieren kénnen. Zum anderen, das Setup eines Shearlet Systems welches eine gleichméfig
verteilte, gerichtete Analyse und eine flexible Anpassung der Shearlets pro Skala zuldsst. Der
letzte Punkt ist niitzlich um eine bessere Kontrolle {iber die Raumgréfle der Bildmerkmale zu
erhalten. Wir zeigen, dass unser Shearlet System einen Frame fiir L?(IR?) bildet und liefern die
dafiir benétigten Bedingungen.

Im Folgenden untersuchen wir die Féahigkeit unseres Shearlet Designs zur Kantendetektion aus
theoretischer Sicht. Wir zeigen, dass mit unseren Shearlets Kantenpunkte in R? und deren Typ
durch Abfallraten und Grenzwerte der Shearlet Transformation fiir abnehmende Skalen charak-
terisiert werden kénnen. Im Gegensatz zur aktuellen Literatur erhalten wir Abfallraten abhéingig
von dem Grad der Anisotropie a. Fiir den Spezialfall a = 1/2 ermitteln wir explizite Grenzwerte
der Shearlet Transformation welches mit bisher verwendeten Shearlets nicht erreicht wurde. Zu-
dem zeigen wir auf, dass wir eine Shearlet Mutterfunktion mit lediglich einem verschwindenden
Moment benétigen um unsere theoretischen Resultate zu erhalten. Schlieflich stellen wir dar,
dass diese Anforderung in Einklang mit den Beobachtungen bei der praktischen Anwendung
eines Kantendetektionsalgorithmus mit Shearlets steht.

Basierend auf unserem speziellen Shearlet Design definieren wir aussagekréftige, handgefertigte
Bildmerkmale. Aussagekréftig in dem Sinne, dass die Bildmerkmale reichhaltige Informationen
iiber Objektstrukturen liefern. Die Betrachtung von Shearlets hat mehrere Vorteile im Vergleich
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zu anderen Bildmerkmalen. Zum einen liefern sie eine sparse Repréasentation von Bildern, d.h.
das Resultat der Shearlet Transformation hat nur an Pixeln, die einem Kantenpunkt entsprechen,
einen deutlichen Betrag. Zum anderen kénnen durch das Multiskalen-Framework der Shearlets
Objektstrukturen direkt auf verschiedenen Skalen untersucht werden. Wir zeigen, dass unsere
Shearlet Bildmerkmale die besten Ergebnisse mit handgefertigten Bildmerkmalen im Caltech
Benchmark liefern.

Aktuell verwenden die besten Verfahren im Caltech Benchmark CNN Modelle. Daher analysieren
wir die Fahigkeit von Shearlets, CNNs weiter zu verbessern. Wir integrieren Shearlet Filter
in dem ersten Layer eines CNN, da einige gelernte Filter dieses Layers eine Ahnlichkeit zu
gerichteten Filtern zur Kantendetektion aufweisen [72]. Wir zeigen, dass wir mit der Shearlet
Integration die Klassifikations- und Detektionsergebnisse verbessern kénnen im Vergleich zu
den originalen Netzen, wenn wir diese auf denselben Daten trainieren. Wir stellen zudem fest,
dass ein Training auf umfangreichen Datensétzen, wie z.B. ImageNet [24], benttigt wird um die
Detektionsergebnisse von fithrenden Algorithmen zu erreichen. Wir erachten diese Feststellung
als Indiz fiir die enorme Macht von Daten fiir Deep Learning Algorithmen.

Eine der Hauptanwendungen der Fugéngererkennung liegt im Automotive Bereich. Die Verwen-
dung in aktuellen Kollisionswarn- und Eingriffsystemen [40] als auch in zukiinftigen Systemen
autonomen Fahrens benotigt Algorithmen, welche auf eingebetteten Systemen lauffahig sind.
Aus diesem Grund portieren wir unseren grundlegenden Algorithmus auf ein eingebettetes Sys-
tem mit marktfdhigem Preis. Durch ein sorgsames Software Design und Laufzeitoptimierung
sind wir in der Lage unseren Algorithmus mit einer praktisch sinnvollen Frame Rate von 10 fps
zu betreiben.
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“The secret of getting ahead is getting started.”
Mark Twain

Introduction

The detection of pedestrians is currently a key problem in the area of computer vision. One main
reason for it is the diversity of practical applications using pedestrian detection. For example,
it is used in Advanced Driver Assistance Systems (ADAS) to prevent an imminent collision of
the car with a pedestrian by initiating emergency braking. In 2016 the committee of the Euro
NCAP introduced an evaluation of AEB Pedestrian systems (AEB = Autonomous Emergency
Braking) for the safety assessment of passenger cars. According to the Euro NCAP 2020 road
map [37], the importance of AEB systems preventing accidents with vulnerable road users such
as pedestrians will be further increased in the overall assessment. According to the German
Federal Statistical Office [I14], pedestrians are the weakest road users. As shown in Figure
they make up 7.9% of injured in total and 15.5% of fatally injured persons for road accidents in
Germany, 2015.

In addition to AEB systems, which are already included in modern road legal cars, the develop-
ment of autonomous driving vehicles strengthens the need of efficient and powerful algorithms
for pedestrian detection. Figure shows the analysis of emerging technologies according to
Gartner [39] in 2017. The expectation concerning autonomous driving is currently located at a
peak point. Since autonomous vehicles are enabled by Machine Learning and Deep Learning,
these concepts are rated similarly.

The popularity of autonomous driving, Machine Learning and Deep Learning enabled the de-
velopment of a huge amount of pedestrian detection algorithms in the recent years. In classical
pedestrian detection algorithms, a machine learning method, also called classifier, decides if an
image contains a pedestrian or not based on the measured feature values. According to Benenson
et al. [8], different types of classifiers are commonly used, e.g. Support Vector Machines (SVM)
and AdaBoost, whereas no classifier type has shown to be better suited for pedestrian detection
than another. Therefore, a main focus is on the informative content of the image features. The
more meaningful the features, the higher is the quality of the detection algorithm.

In the past, many different kinds of features have been proposed for pedestrian detection. For
an overview, see [8, B1, 129]. As a major breakthrough, Dalal and Triggs [22] established the
so-called Histogram of Oriented Gradients (HOG) features. Here, the image is first divided into
spatial cells and a histogram of gradient directions is built over the pixels of the corresponding
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Figure 1.1: Proportion of pedestrians for road accidents in Germany, 2015 [114].

cell. Finally, the local histograms are accumulated and normalized over a block scheme. The
Aggregated Channel Features (ACF) detector by Dollar et al. [27, 28] also uses gradient his-
tograms with a different computation method and in addition gradient magnitude as features,
yielding better evaluation results than the original HOG. The source code of the ACF detector
is available as part of the PMT toolbox [26]. As shown by Benenson et al. [8] in 2014, all best
performing pedestrian detection algorithms to that time used hand-crafted features based on
HOG or “HOG-like” features, which may encode richer information from the original feature
data [7, 06, (99, (105, 128, [130].

Since then, several approaches utilizing Convolutional Neural Network (CNN) models arose
[9, 11, 12, B2, ’4, 10T, 117, 127]. In CNN models, features are not hand-crafted any longer
but learned during the training process. Current results on the Caltech Pedestrian Detection
Benchmark [30] show advantages of approaches using CNN modelsE] Several CNN algorithms
still use gradient features of the ACF detector [27, 2§]. Either in combination with learned
features [12] or during object proposal generation for the final classification using a CNN model
[84]. Ohn-Bar and Trivedi [99] also used gradient features of the ACF [27, 28] and LDCF
[96] detectors during their study of the modeling limitations of boosted decision tree classifiers.
They analyzed the impact of the modeling capacity of weak learners, data set size and data
set properties. With the employment of their findings, Ohn-Bar and Trivedi achieved the best
known results in the Caltech benchmark among non-CNN algorithms. However, the authors did
not analyze the impact of alternative image features.

The aim of this thesis is to investigate the applicability of shearlets to improve both currently
prevalent algorithm types for pedestrian detection, classical detection algorithms using hand-
crafted feature detectors as well as approaches using CNNs. We have chosen the shearlet frame-
work since it guarantees a unified treatment of the continuous as well as the discrete setting
[74]. According to the theory on shearlets, they provide optimally sparse approximations of
certain image models [52, [76]. Furthermore, they allow the characterization of edges in images
[53, [78]. On the practical side, shearlets have been applied in different image processing tasks,
e.g. denoising [35, [86] and edge detection [I125]. Hereby, we consider our intention to merge
theory and practical application as promising.

!Benchmark results are available and updated frequently at http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians|
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Figure 1.2: Analysis of technology trends according to Gartner [39].

Furthermore, the multiscale framework of shearlets is an extension of wawvelets, which have been
already used by Papageorgiou and Poggio [106] at the early stages of the research on object
detection. Viola and Jones [II8] built up on this approach and used filters reminiscent to
Haar wavelet basic functions for the development of their pioneer object detection algorithm.
Wavelets were introduced by Goupillaud, Grossmann and Morlet [44] [49] in order to analyze
one-dimensional signals. Wavelet systems consist of analyzing functions which are dilated and
translated versions of a mother function ¥ € L?(R), i.e.

Yap (z) = \}51/1 (xab> , fora>0, beR.
As Kutyniok and Labate [75] describe, wavelets have disadvantages in processing multivariate
data such as images. The two dimensional extension of wavelets using a tensor product is able to
optimally capture pointwise singularities. Yet this wavelet extension is not able to accurately deal
with well distributed singularities such as curved edges. The main reason is that each component
of the tensor is a one dimensional function, isotropically dilated from a mother function. To
overcome this disadvantage, several approaches of incorporating a directional sensitivity have
been established [3], 6, 67, 68, [112]. However, these approaches do not actually constitute an
extension of the wavelet framework to the multidimensional case. As a matter of fact, they do not
yield to an optimal approximation of multivariate data containing well distributed singularities.

Candes and Donoho [I3], 14} [15] first provided with curvelets a system which is able to optimally
approximate bivariate functions with anisotropic features. Just as wavelets, curvelets also set
up a sequence of functions which are given on different scales and locations. In addition, these
functions are rotated to several orientations in order to incorporate directionality. The utilization
of rotations is one main drawback of curvelets since they do not comply with the Cartesian grid.
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Correspondingly, a direct numerical implementation of this approach is not possible. As a result,
Do and Vetterli [25] introduced contourlets as a pure discrete version of curvelets. However, this
approach does not provide a proper theoretical consideration of the continuous setting.

Guo, Kutyniok, Labate, Lim and Weiss [51, BI] first introduced shearlets, which build up on
wavelets with composite dilations [59), H6l 57]. The name of this framework refers to the utiliza-
tion of shearing to steer the analyzing function to the desired direction. This fact overcomes the
disadvantage of curvelets since the shearing operation conforms to the Cartesian grid. There-
fore, shearlets provide a direct transition from the continuous to the discrete setting and direct
implementations. These are very desirable properties for a theoretical as well as a practical
treatment and application.

Due to the incorporation of a directional sensitivity, the shearlet transform of an image allows
to capture the directional information of edges. Similar information is provided by gradient
histograms. The consideration of shearlets has several advantages. At first, they provide a
sparse representation of the image which means that the shearlet transform only has magnitude
with considerably high absolute value at pixels that correspond to edge points. Second, due to
the multi-scale framework of shearlets the structure of objects can directly be investigated at
different scales. Schwartz et al. [I11] introduced a simple hand-crafted image feature based on
the shearlet transform and applied it to texture classification and face identification. In our work
concerning hand-crafted features, we define more complex feature types based on the shearlet
transform. Furthermore, we design shearlets dedicated to precisely locate edge structures in
images, since this is crucial for the detection quality using our features. Finally, we integrate
these shearlets in CNNs in order to improve the detection performance of state-of-the-art CNN
algorithms for pedestrian detection.

Contributions

In the following, we present our contribution to the development of pedestrian detection algo-
rithms and the deployment of the shearlet transform to image analysis tasks.

Compactly Supported Shearlets for Image Analysis

In our work, we analyze different types of shearlets and their digital realizations concerning
their ability for tasks of image analysis such as edge detection. A precise location of structures
in images is of main importance if one is interested in the definition of image features giving
structural information. Not surprisingly, shearlets with compact support in time domain provide
a better edge localization than band-limited shearlets. We define a new type of compactly
supported shearlets, called local precision shearlets, which shows an improved edge detection
quality in comparison to other implementations. Furthermore, we prove that the corresponding
local precision shearlet transform forms a frame.

Using Shearlet Features for Pedestrian Detection

Based on the local precision shearlet transform we define different types of image features.
Since the shearlet transform can be used to extract directional information about structures
in images the resulting shearlet features can be seen as appearance features. In other words



shearlet features can provide information about the appearance of objects in images. Currently,
the dominant appearance features used in nearly all pedestrian detection algorithms are based
on image gradients. Here, the directional information of image structures is represented by
the gradient direction. Since shearlet features are providing similar information, they can be
seen as an alternative to gradient features. We analyze the impact of replacing gradient by
shearlet features. In fact, we show that our shearlet features outperform gradient features in
the application of pedestrian detection. Furthermore, we set up a filterbank for an intermediate
filtering layer between image feature computation and classification with our shearlets. The
application of this filterbank yields the currently best performing hand-crafted feature detector
in the Caltech Pedestrian Detection Benchmark [30].

Integration of Shearlets in Deep Learning Methods

With hand-crafted shearlet features as foundation we exploit the possibilities to integrate our
shearlets in Deep Learning methods such as CNNs. We aim to use shearlet filters at early
convolutional layers of a CNN instead of learned ones in order to improve its detection results.
The idea is that early CNN layers intuitively perform an edge detection, whereas shearlets
provide optimal filters for this task. Moreover, they can provide a good base for learning filters
of deeper layers. We find that the integration of shearlets in CNNs improves the results on
pedestrian classification and detection compared to corresponding reference networks trained on
the same data.

Embedded Realization

Besides the considerations for improving the detection quality, we focus on an embedded realiza-
tion of the shearlet transform. The computation of the shearlet coefficients is the core component
concerning runtime consumption in our hand-crafted feature detection algorithms. Therefore,
runtime optimization is crucial if one is interested in an embedded application using shearlets.
To our knowledge, our implementation of the shearlet transform is the first one considering an
application on an embedded target. Actually, our optimized realization is able to run our base
pedestrian detection algorithm on an embedded target with an adequate frame rate.

Outline

The thesis is organized as follows. Chapter [2reviews the work on shearlets with a special focus on
image analysis. In particular, we analyze current realizations of the shearlet transform and their
applicability to be used as a basis for image feature computation. In Chapter [3] we define our
own type of shearlets specially designed for image analysis and show their practical advantages.
Moreover, we analyze their theoretical properties especially in the context of frame theory. The
theoretical analysis concerning the applicability for edge detection using our shearlets is done
in Chapter [ We then use our shearlets in Chapter [5] to define hand-crafted image features
for the task of pedestrian detection. Furthermore, we set up two detection algorithms. One of
them is using basic shearlet features and the other one is applying an intermediate filtering layer
with a shearlet filterbank. Chapter [6] analyzes how our shearlets can be used to improve the
quality of pedestrian detection algorithms utilizing CNNs. Besides all considerations concerning
improvement of detection quality, Chapter [7] deals with embedded realization of the shearlet
transform and our base detection algorithm.



Introduction




“Pure mathematics is, in its way, the poetry of logical
ideas.”

Albert Einstein

Review on Shearlets for Image Analysis

The shearlet framework is a variation of the wavelet scheme for multidimensional data which
incorporates a directional sensitivity to capture anisotropic information. For an introduction
and details on wavelets see [90]. Like wavelets, shearlets are set up given a single or finite
set of generating functions, also called mother shearlets, which are translated along the signal
and dilated. To control the directional selectivity, the mother shearlet is sheared. The final
translated, dilated and sheared function is defined by

Paep = det (40) 72 (47151 (= 1), (2.1)

with scaling matrix A, and shearing matrix S5 given by

Aa::<g \/O6>,a>0

1 s
Ss—<0 1>,S€R.

As described in [75], the more general matrices

a O
e (z )

can be used instead of A, where the parameter a € (0,1) controls the degree of anisotropy. An
extensive study of transforms based on scalings with A, , can be found in [48].

and

One major goal in the analysis of signals is to define a representation system of functions using
sets of 1,5¢. To guarantee stability of the representation while allowing nonunique decompo-
sitions, the concept of a frame has been established [23], B3]. A sequence (gpz)Z ¢; in a Hilbert
space H is called a frame for H, if there exist constants 0 < A < B < oo such that

Allz)* <3 [z, 0> < Bllz|* forall z € H.
el
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The frame is called tight if the frame constants A and B fulfill A = B. If A = B =1 is fulfilled,
the frame is called a Parseval frame. As described by Christensen [I7], in case that (¢;),_, is a
frame, a signal x € H can be reconstructed from its frame coefficients by the formula

x = Z (z,0:) S™ s, (2.2)

il

where S: ‘H — H is called the frame operator and given by

S(z) = Z (x, i) pi.

i€l

If (4,02)1 crisa Parseval frame we have S = Iy, with the identity operator I3y on H. Consequently,
this fact leads to the reconstruction formula

2= (.00 g (23

el

In the following sections we will provide theoretical key results about shearlets on the continuous
as well as the discrete setting. Furthermore, we will provide an overview over current imple-
mentations of the discrete shearlet transform and their properties concerning image analysis.

2.1 Continuous Shearlet Systems

We first give the definition of shearlet systems and the corresponding transform in the continuous
setting, i.e. for (a, s,t) € RT x R x R?. This introduction is based on the description of Kutyniok
and Labate [75]. For implementation purposes, the parameters have to be defined on a discrete
subset of Rt x R x R?, which will be described in the subsequent section.

Definition 2.1. For v € L? (]R2), the continuous shearlet system SH (v) is defined by

SH (¢) == {wavsvt = det (A,) 2 ¢ (A;lsgl (-— t)) ta>0,seRtE ]128} .

Just like the continuous wavelet transform [90], the continuous shearlet transform of a function
felr? (RQ) is defined as the mapping from f to the coefficients of f associated to the shearlet

wa,s,t-

Definition 2.2. The continuous shearlet transform of a signal f € L?(R?) for (a,s,t) € RT x
R x R? is defined by

SHTZ’ (f) (av S, t) = (f, 1/}a,s,t>
= .S (%) Va5t (x)da.

The resulting values SHy, (f) (@, s,t) = (f,Va,s,) are also called shearlet coefficients. As shown
in [54],[125], the shearlet transform of an image f characterizes the location and the orientation of
edges. The characterization is given via the asymptotic behavior of the shearlet transform at fine
scales. More precisely for an image point ¢ not being an edge, |SHy (f) (a, s,t)| decays rapidly
for a — 0 for each s € R. |[SHy (f) (a, s,t)| is said to decay rapidly if for any N € N, there is a
cn > 0 such that [SHy (f) (a,8,t)| < enal, as a — 0. For an edge point ¢, |SHy (f) (a, s, t)|
decays rapidly for a — 0 unless s equals the normal orientation to the edge at point ¢. Then
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one has [SHy (f) (a, s,t)| ~ ai. More details on the theoretical analysis of edge detection using
shearlets are given in Section 2.4 For a more intuitive understanding one can say that high
absolute values of shearlet coefficients only appear at edge points and if the orientation of the
shearlet and the edge correspond to each other. Moreover, the finer the scale of the shearlet, the
finer edges can be detected. This ability will be used in Section to define meaningful image
features for the task of pedestrian detection.

As described by Kutyniok and Labate [75], the mother function ¢ is usually defined by its
Fourier transform v to give a factorization of the frequency domain by defining

b (wi,w2) == 1 (wi) o (Zi) .

The components ﬁl and 1&2 are commonly chosen to be compactly supported functions fulfilling
the following admissibility condition. This condition on % is of high importance since it leads
to the result that the associated shearlet transform is an isometry and to the existence of a
reconstruction formula.

Definition 2.3. If ¢ € L? (R?) fulfills the condition
. 2

(&1, 6)]
[

57— —d&ed&r < oo, (2.4)
S

then it is called an admissible shearlet.

Further desirable properties of the shearlet mother function v in the frequency domain are given
as follows.

Definition 2.4 ([46, 47]). For p € N, a function ¢ € L?(R?) possesses p (directional) vanishing

moments in x; direction if
A 2
[ [ (61,6)|
B &

A function f € L?(R?) has Fourier decay of order /; in the i-th variable if | f | <&

d€ed&; < oo. (2.5)

l;

Remark 2.5 ([46]). The rationale for the denotation of vanishing moments in the previous defi-
nition is that condition is (almost) equivalent to

/Rw(xl,acg)xﬁdxl =0, forallazseR? I <np,

provided that v has sufficient spatial decay.

For the sake of completeness, we state the definition of vanishing moments in the one-dimensional
case.

Definition 2.6 ([90]). For p € N, a function ¢: R — R has p vanishing moments if

/Rw (z) 2'dz =0,

forall l € Nand I < p.
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Theorem 2.7 ([21]). Given an admissible ) € L*(R?), define

¢ _// &’52 L dede and cf _// dezdgl.

If Cp = c:; = ¢y, then the shearlet transform is a cy-multiple of an isometry.

For a signal f € L?(R?), we have the following reconstruction formula. Here, we use the notion
of an approzimate identity, which is defined in Appendix [A]

Theorem 2.8 ([21]). Let ¢ € L*(R?) be an admissible shearlet with C;L_ = ¢, = 1. Furthermore,
let (pn)oe, be an approzimate identity such that p, € L*(R?) and p, (z) = pn (—z) for all
z € R%. For all f € L?(R?), we have limy, o0 || f — fully = 0 with

z) = /]1%2 /]R R+ SHy (f) (a,5,t) (pn * Va,szt) (2) a 3dadsdt.

As described by Kutyniok and Labate [75] an important example for the mother function 1) is
given by the classical shearlet |51, 55) 81].

Definition 2.9. Let 1 € L?(R?) be given by

~

“ A (W
Y (wr,w2) = Y1 (w1) P2 (ﬁ) : (2.6)
where 1, € L? (R) is a discrete wavelet in the sense that it satisfies the discrete Calderén
condition, given by
a2
i () =1
JEZL

for a.e. w € R, with ¢, € C™® (R) and supp U1 C [—%, —%} U [%, %} Furthermore, ¥y € L? (R)
is a function that fulfills

1 N 2
> |[hw+k)| =1

k=—1

for a.e. w € [—1,1], satisfying Py € C (R) and supp Uy C [—1,1]. Then v is called a classical
shearlet.

2.2 Discrete Shearlet Systems

In order to be able to digitally implement the shearlet transform, the shearlet parameters have
to be sampled such that a discrete set is made up. Discrete shearlet systems are defined by
taking only those shearlets that are associated with a discrete subset of Rt x R x R?. In the
following, we will mainly use the notation of [73].

Definition 2.10. Let ¢ € L?(R?) and I'; C S given by

I'y:= {(aj,sj,kjssj’kAajcm) 24, k€Z, me Z2}, (2.7)
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with a; € R, sj, € R and sampling constant ¢ > 0. An irreqular discrete shearlet system
associated with 1) and I'7, denoted by SH (¢,I's), is defined by

SH (¢,T) := {wj,k,m = det (Aa].) : " (Ssj,kAa]. : _cm) i k€EZ, me Zz} :

The shearlet system SH (i, I'g) given by
SH (¢,I'g) = {¢j7k7m = cf%j@b (Sbkaj/QAaj . —cm) g keZ,me Z2}
with a > 1, b, ¢ > 0 and the special parameter set 'r C S defined by
I'r:= {(aj, bk:a%, Sbkaj/gAaij) 4, ke, me ZQ} (2.8)
is called a regqular discrete shearlet system.

The discrete shearlet transform is defined in analogy to the continuous case.

Definition 2.11. For ¢y € L? (]R2), the discrete shearlet transform of a signal f € L2 (Rz) is
defined by

SHI# (f) (]7 k? m) = <f7 wj,k,m>
with 9, .m € {T1,TR}.

The following theorem provides sufficient conditions under which an irregular shearlet system is
a frame for L?(R?).

Theorem 2.12 ([73]). Let ¢ > 0 be fized and, for j, k € Z, let a; € RY and sj;, € R. Define
I';CS asin . Further, let ¢ € L*(R?) and set

w(n,SH (¢,I')) := esssup Z ‘@2 (Aangk&)‘ ‘1& (Aajsg;ykg + n)‘ for a.e. n € R*  (2.9)

EeR? jkez

as well as )

B(SH (.T1) = 3 | (A0, ST,8)[ - (2.10)

J,kEZ

If there exist 0 < C' < D < oo such that

C <@ (SH (1, T1)) < D for a.e. &€ R? (2.11)
and

1 1
Z © (cn, SH (¢,F1)> % <—Cn, SH (¢,F1)> = E<C, (2.12)

n€Z2 n#0

then SH(v,T) is a frame for L*(R?) with frame bounds A, B satisfying

C%(C—E)SASBS (D +E).

1
)

From this result, Lim [86] derived sufficient conditions for separable shearlets to provide a frame
for L?(R?).
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Theorem 2.13 ([86]). Let T'r be given by (2.8) with a > 1 and b =1 and scaling matriz Aq.q,
a € [1/2,1). We set B> 0 and v > 2(8+2) and assume that 3/ > 4+~ and vy > ' — B+ 7.
We define ¢ (x1, x2) = 1 (21)2(x2) such that

] &l
\1#1 (51)\ < Ko (2.13)
(1 + \51’2)
and
N —/2
‘¢2 (52)‘ < Ky (1 + |§2|2> (2.14)
with K1, Ky > 0. If
. 2
inf >K3>0 2.15
cssinf (o> (52)] > K3 (2.15)
and ,
essinf ‘1/;1 (51)‘ >Kys>0 for0< (¢ <min (1, a> (2.16)
Ca=1<]&1 < 2

then there exists co > 0 such that the reqular shearlet system SH (¢, T'r) is a frame for L? (]RQ)
for all ¢ < ¢y.

According to Lim [86], the assumptions of Theorem imply that ¢ has sufficient vanishing
moments and fast decay in the frequency domain. If they are fulfilled the regular shearlet
system based on separable shearlets provides a frame for L2 (RQ). As we will see later, this
result transfers to cone-adapted shearlet systems, which are described in the next section.

2.3 Cone-adapted Shearlet Systems

The shearlet systems described above do have a directional bias [75]. For example, for detect-
ing an edge along the x;-axis of an image, s — oo would be necessary. Obviously, this is a
drawback for practical applications. According to Kutyniok and Labate [75], a way to resolve
it is to define cone-adapted shearlets, tiling the frequency domain in a horizontal and a ver-
tical cone and defining shearlets separately for each cone. We set up a low-frequency region
R = {(&,&): |&],|&| < 12}, horizontal cones C; U Cs = {(&1,&): |&/a] < 1,|&] > 12}
and vertical cones Co U Cy := {(&1,&2): |&2/a]| > 1,]&| > 1/2}. In this section, we restrict the
description to the case of discrete shearlet systems.

Definition 2.14. Let ¢, ¢, ¢ € L?(R?) and T, [ C S given by
= {(aj, Sis SsjykAa].cm) cjed keK, me ZQ}, (2.17)

and

I:.= {(dj,§j7k,Sg;kﬁdjcm) cjed, keK, me ZQ} , (2.18)

withajeR+,sj,ke]RforjngZ,kngZ,ajeR+,§j,keRforjeng,kefgz,

Aa; = diag(4/@;,a;) and sampling constants ¢ > 0. An irregular cone-adapted discrete shearlet
system SH(¢,1,%,T,T), is defined by

SH (¢,4,9,1,T) i= ®(¢,0) U (4, T) UV (¢,T)
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13

&1

Figure 2.1: Illustration of tiling the frequency plane into cones C;, i = 1,...,4.

where

®($,0) = {dm=0(—cm):mez?},

3

U (y,T) = {v,bj,k,m =a; "¢ (SSMA%. : —cm) cjeJ keK,me ZZ},
~ ~ ~ ~ _3 . ~ ~ ~
\If(w,r) = { jikam = @ 41/;<SSTkA -—cm) cjed ke K, m 622}.

Usually the functions are chosen such that ¢ is associated with the low-frequency region R,
¥ with C; U C3 and ¢ with Co U C4. Similar to the previous section, the regular variant of a
cone-adapted shearlet system reads as follows.

Definition 2.15. Let ¢, ¢, ¢ € L? (]R2), a > 1 and b, ¢ > 0. The regular cone-adapted discrete
shearlet system SH (4,1, ¢), is defined by

SH (6,1, ¢) = @ (6,¢) UL (1,¢) U (1), )
where
(g,¢) i={dm =6 (- —cem) : m € 22},
U (1,0) = {$shm = VY (Syppdas - —em) :j 2 0,k < [@*] ,m € 22},
Ef(;/?,e). {;/;]km_a—zw(bkﬂj .—cm):j20,|k|§{af/ﬂ,meﬁ}.

The discrete cone-adapted shearlet transform in the regular case is then given by the combination
of the discrete shearlet transforms of the shearlet system components.

Definition 2.16. For 1, 1;, ¢ € LQ(RQ) and @ > 1 and b, ¢ > 0, the discrete cone-adapted
shearlet transform of an image f € L? (Rz) is given by

SHey 5 (1) Gokiym) = ((F,6m) s k) > (o Dim ) (2.19)

with j > 0, |k| < [a”/?] and m € Z2.
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In certain cases, the results for shearlet systems can be transferred to their cone-adapted variants.
In particular, Lim [86] derived the following statement.

Corollary 2.17. Let 1/}(561,$2) = 1,[)1(1’1)1[)2(1‘2), ¢(:L‘1,£C2) = 1/)1(1‘2)1/12(561) (md gf) .’El,xg) =
Yo (x1)2(x2), where the functions 1y and vy satisfy the assumptions of Theorem |2.15. Then
there exists co > 0 such that SH (¢,,1,c) forms a frame of L*(R?) for all ¢ < co.

2.4 Edge Detection using Shearlets

In this section, we will recall major results on the characterization of edge points of a function
f = xg with R C R? based on the properties of its continuous shearlet transform. In other
words, the boundary curve of a general region R C R? will be characterized by the shearlet
transform. In the following, we mainly use the notation of [53].

Let R C R? whose boundary dR is a curve of finite length L. Furthermore, let @: (0, L) — OR
be a parametrization of OR. For any to € (0,L) and any [ > 0, we assume that there exist
left and right limits @) (t5) and @® (). With 7(t~) and 7i(t*) we denote the left and right
hand side outer normal directions of OR at @ (t). If 7(¢t~) = fi(¢tT), we use 7 (t). Furthermore,
we set B(t7), R(t1), or R(t), respectively for the curvature of OR at a (t), i.e. & (t) = ||@" (¥)].
Finally, we say that a shearing parameter s corresponds to direction it = £(cos (6p) ,sin (6p)) for
6y € [0, 27] if s = tan ().

Definition 2.18. Let R C R? be as described above. A point p = d(to) is a corner point of OR
if one of the following conditions holds:

id (1) #ad ()
i @ (ty) = +a’ (1), but & (15 ) # 7 (7).

In case of i., we call p a corner point of first type and in case of ii., a corner point of second type.
If & is infinitely many times differentiable at ¢y, we call p = @(to) a regular point of OR.

Guo and Labate [53] showed the following result for the characterization of edge points using
classical shearlets.

Theorem 2.19. Let ¢ € L? (]RQ) be a classical shearlet and R C R? with boundary OR of length
L to be smooth except for finitely many corner points.

i. If p ¢ OR, then for any s € R we have

. -N .
al_1>161+a SHyxr (a,s,p) =0, for all N > 0.

7. Let p be a reqular point of OR.

(a) If s = sy does not correspond to the normal direction of OR at p, then

lim a_NS%¢XR (a,s0,p) =0, forall N > 0.

a—0+
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(b) If s = s corresponds to the normal direction of OR at p, then
. _3
0< a1_1>IOH+CL 4 |SH1/1XR ((I, 507p)‘ < 0.
7ii. Let p € OR be a corner point.

(a) If p is a corner point of the first type and s = sy does not correspond to any of the
normal directions of OR at p, then

9
lim o 1 :
Jim o™ 5 [SHyxr (a, s0.p)| < 00

(b) If p is a corner point of the second type and s = sg does not correspond to any of the
normal directions of OR at p, then

. _9
0< lim a™1[SHyxr (a5, p)] < 0.
(c) If s = sop corresponds to one of the normal directions of OR at p then

3
li T4 :
0< Jim @ |SHyXR (a,s0,p)| < o0

This result shows that for regular points p € OR the shearlet transform using a classical shearlet
decays rapidly and asymptotically for a — 0 if s does not correspond to the normal direction at
p. If s corresponds to the normal direction, we have

|SHyxR (a,s,p)] = O (a%) , for a — 0.

The same decay rate is present at a corner point p € OR if s corresponds to a normal direction
of R at p. In case s does not correspond to a normal direction of R at a corner point p of the
second type, then we have

|SHyxR (a,s,p)] = O (a%) , for a — 0.

In case p € OR is a corner point of the first type, the decay rate of |SHyxr (@, s,p)| is not slower

than (’)(a%) for a — 0 although it might be faster. Figure [53] illustrates the decay rates of
the shearlet transform for the different categories of points p € R2.

Kutyniok and Petersen [78] examined the characterization of edge points using compactly sup-
ported shearlets in order to resolve certain issues when using band-limited shearlets. According
to the authors, one major issue is that the decay rates of the shearlet transform are not uniform.
According to a point p € R? is an edge point if

al_i)I(I)l_i_ CL_% |SH¢XR ((1, Sap)| >0
for some s € R. This limit can be arbitrarily close to 0 and the asymptotic behavior might
only be present for very small a € R. In contrast, Kutyniok and Petersen [78] achieve uniform
estimates on the decay rates in a sense that there exist constants 0 < ¢; < ¢o < 0o such that for
all a € (0,1)

clag < |SHyxr (a,s,p)] < cza%

for all edge points p € OR and orientations that correspond to the normal direction. Furthermore,
another issue of using band-limited shearlets is that both types of corner types show the same
decay rates. According to Kutyniok and Petersen[78], corner points of first and second type can
be distinguished by different decay rates if one uses compactly supported shearlets. For their
findings, a definition of a restricted set of compact sets in R? is necessary.
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Figure 2.2: Illustration of the decay rates of the shearlet transform using classical shearlets [53].

Definition 2.20. For p > 0 the set of all sets R C R? with piecewise smooth boundary with
corner points {p;: i € I} and arc-length parametrization @ such that

i Ha@) (t)” <pforallte (0,L),t¢a "t ({pi:iel}),

i H@(?») (ti)H <pforalltea? ({pi}iel)7

will be denoted by R,,.

Before the statement of the result of [78], we introduce the denotation of the Sobolev space
consisting of all L times weakly differentiable functions f € L? (R?) with all weak derivatives in
L? (Rz) by HE (RQ). For the basic definition of Sobolev spaces, see Appendix |Al Furthermore,
we define the ball around § with radius a by B, (§) = {s € R: |s — 3| < a} for a, § € R. With
these preparations, the result of [78] is then given by the following theorem. The obtained decay
rates of the different types of edge points using compactly supported shearlets are illustrated in

Figure 2.3

Theorem 2.21 ([78] ). Let R € R, for p > 0 and v € L* (R?) be L times weakly differentiable
with all derivatives in L? (RQ). Let furthermore v be a bounded compactly supported shearlet
with M vanishing moments such that there exists an a € (1/2,1) with (1—a)M > I and

1 7
i. Let d(ty) =p € OR be a regular point.

(a) If s does not correspond to the normal direction of OR at p, then SHyxr (@, 50,p)
decays as

SHyxr (a,s,p) = 0O (a(l—a)M + a(a—%)L) , forallae (;, 1) .
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(b) If 6 > 0, ||p—pi|| > 9 for all corner points p;, and § corresponds to the normal
direction of OR at p, then there exists a constant Cs such that for all a € (0,1]

5

hma%/w )dz — Csat < SHyxr (a,s,p) < hm a%/w d:n—{—C’(;a%

for s € B, (§), where

S = {(azl,xg) € suppt: 1 < (@] (to) — sd (to)) 3} :

1
2
2p (s)
7. Let p be a corner point.

(a) If p € OR is a corner point of the first type and § corresponds to a normal direction
of OR at p, then if s € B, (5)

) _3
alg&a +SHyxRr (a,s,p) € { gupw(a:) d:c,/gdownw(x) dx},

where

S =SN{z: x>0}, S =5n{x: 23 <0}.

(b) If p € OR is a corner point of the first type and s does not correspond to a normal
direction of OR at p, then

SHyxr (a,s,p) = 0O (a%) for a — 0.

If furthermore v (z1,12) = 1 (x1) Y2 (z2) for a wavelet 11 € L? (R), v € C% (R?) N
L* (R?) and 2 (0) = 0, ¢4 (0) # 0 and

/ V1 (1) £0,
(_0070)

then
lim a1 |SHyxrR (a,s,p)| > 0.

a—0+

(c) Let ¢ (z1,x2) = Y1 (1) 2 (z2) with a bounded compactly supported wavelet 11 and a
compactly supported function 1o € C? (R) N L? (R) satisfying 1% (0) # 0. If p € OR
18 a corner point of the second type and s does not correspond to a normal direction
of OR at p, then

SHyxr (a,s,p) = 0O (ag) fora — 0.

If furthermore 11 has three vanishing moments and

/ Yy (1) iday,
(_0070)

then
lim q |SHy xR (a,s,p)| > 0.

a—0+



18 Review on Shearlets for Image Analysis

Regular Point: Aligned: First Order Corner Point: Second Order Corner Point:
~ ~ . »
P
P ¥ L
P
SHy, f(a, s, p) 3 3 . -5 _T
ciad < SHy f(a,s,p) < cgad 0< lima 428H,f(a,s,p) < oo 0< li 4 8Hy, )8,
— 0(a(1=a)M | j(a=1/2)L) t for n(% o = al0 v ) <afde pflar s p) <o

Figure 2.3: Illustration of the decay rates using compactly supported shearlets [7§].

2.5 Digital Shearlets

Currently, there are several digital realizations of shearlets and their transform [35] 58], [61), [7'7, [79),
80, [86]. For all these approaches, except [58], the algorithms are publicly available for download.
The implementations can be categorized into two groups. The underlying shearlet system is
either based on band-limited functions or it is set up using functions with compact support in
time domain. These two general categories will be further reviewed in the following subsections.

2.5.1 Band-limited Shearlets

As can be seen in the previous sections, the theoretical analysis of the shearlet transform is
concentrated on the Fourier domain. Especially the cone-adapted discrete shearlet system is
defined by a tiling of the frequency plane. Therefore, it seems natural to implement shearlets
directly according to this definition. Consequently, the shearlets are computed in Fourier domain.

As described in [75], Easley et al. [35] provided the first numerical implementation of the discrete
shearlet transform. On a given scale, the image is decomposed into a low pass and a high pass
image by the Laplacian pyramid scheme. Next, a directional filtering is performed on the pseudo-
polar grid. Finally, the Cartesian sampled values are reassembled and the inverse 2D FFT is
applied. To reduce the Gibbs type ringing, i.e. overshoots near jump points of a signal, also a
local variant of the shearlet transform has been implemented. For more details on the Gibbs
phenomenon, see [119, Section 4.7]. The shearlet transform is then carried out by a convolution
using directional filters governed by an approximation of the inverse shearlet transform of band-
limited window functions. These filters were able to be implemented with a matrix representation
that is of smaller size than the given image. Still they are not compactly supported in the
traditional sense. The implementation is available at www.math.uh.edu/~dlabate.

Another approach is described in [79, 80]. Here, an isometric pseudo-polar Fourier transform
is obtained by careful weighting of the pseudo-polar grid, for which its adjoint can be applied
for the inverse transform. Band-limited shearlets are used to obtain tight frames such that the
adjoint frame operator allows for reconstruction. The corresponding implementation is called
ShearLab and available online in the form of a MATLAB toolbox at [www.ShearLab.org,.

In contrast to other approaches, the implementation of Hauser [60, 61], called Fast Finite Shearlet
Transform (FFST), utilizes a fully discrete setting. Not only the shearlet parameters a, s and
t are discretized but also only a finite number of discrete translations is considered. The use of
band-limited shearlets based on Meyer wavelets [93] enables the formation of a discrete Parseval
frame. Therefore, a direct reconstruction of an image using formula is possible. The FFST
is also implemented as a MATLAB toolbox and online available at www.mathematik.uni-kl.de/
imagepro/software /ffst.


www.math.uh.edu/~dlabate
www.ShearLab.org
www.mathematik.uni-kl.de/imagepro/software/ffst
www.mathematik.uni-kl.de/imagepro/software/ffst
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On the one hand, a key advantage of a digitalization of the discrete shearlet transform in the
Fourier domain is the possibility to easily construct tight or even Parseval frames by using band-
limited shearlets. On the other hand, it entails the drawback that the band-limited shearlets
have infinite support in time domain. This introduces the above mentioned Gibbs type ringing.
Considering the shearlet transform as a convolution in time domain, one can intuitively imagine
that the support size has a major effect on the quality of localizing structures such as edges in
images. In case of an infinite shearlet support, image points outside of a near neighborhood are
taken into account during the computation of the shearlet transform of a given image point.
Figure shows a shearlet in time domain for a 128 x 64 image on a fine scale generated
with the FFST toolbox. It illustrates that, even under a fine scale, still image points in a
wider neighborhood have a significant impact on the value of the shearlet coefficients using this
shearlet.

2.5.2 Compactly Supported Shearlets

In contrast to the approaches above, some implementations use compactly supported instead
of band-limited shearlets. The main reason is to provide better localization of the shearlet
transform which is useful for several applications.

The first implementation doing so was provided by Lim [86]. The presented shearlets are gen-
erated by separable functions, while each function component is compactly supported. These
separable functions are constructed using a Multi Resolution Analysis, which then leads to the
discrete shearlet transform to compute the shearlet coefficients of an image. As a main draw-
back, the corresponding shearlet system does not provide a tight frame as band-limited shearlets
are able to.

In [87], Lim was able to improve this approach in regards to frame properties by using non-
separable compactly supported shearlet mother functions. It was found that non-separable
compactly supported functions can better approximate band-limited mother functions, which
are able to lead to Parseval frames. The implementation of this approach is available online
as part of the ShearLab 3D MATLAB toolbox [77]. As its name implies this toolbox extends
[87] to the 3D situation. Furthermore, it utilizes universal shearlets which allow more flexibility
in terms of scaling. That means that at each scaling level the utilization of a different type of
scaling is possible by the introduction of a scale dependent scaling matrix

; a 0
Aéj,:—(o aaj>'

The toolbox is downloadable at www.ShearLab.orgl

In Figure 2.4D] a shearlet at a fine scale generated by the ShearLab3D toolbox for a 128 x 64
image is shown. It has to be mentioned that it was not possible to generate a shearlet system
with the default parameters for such a small sized image. Instead the parameters had to be
adapted to get shearlets with support as small as possible with the side effect of losing accuracy.
One may argue that the image size of 128 x 64 is unreasonable small. However, algorithms for
pedestrian detection, which are our main concern in this thesis, are trained on sample images
of size 128 x 64 or 64 x 32. Certainly, it is possible to pad the images in the training process
such that other parameters may be used. Anyway, this would lead to a bigger shearlet support
which is not beneficial for detecting such small object instances as required. For example in the
Caltech benchmark, the median height of pedestrians is just 48 pixels.

As can be seen in Figure 2.4] the amount of shearlet pixels with significant absolute value
involved in the computation of the shearlet coefficients at a given image point is clearly smaller


www.ShearLab.org
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(a) FFST (b) ShearLab3D

Figure 2.4: Fine scale shearlet in time domain generated for a 128 x 64 image.

for ShearLab 3D shearlets as for the FFST. Intuitively, this leads to advantages for the task of
feature extraction used for pedestrian detection. Still, the shearlet filter sizes generated by the
ShearLab 3D toolbox seem to have room for improvement in regards to accuracy of localizing
edges in images. In the next chapter, we will set up our own shearlets with the aim to generate
shearlets with smallest possible support while retaining accuracy in directional adjustment.

2.6 Conclusion

In this chapter, we examined the current contributions on the shearlet framework. First, we
provided theoretical key results which will serve as a base for our own work. Second, we analyzed
current available realizations with a focus on their capabilities for image feature extraction.

We observed that most implementations concentrate them on fulfilling tight or even Parseval
frame properties instead of giving the ability to compute high quality image features. In order to
yield tight or Parseval frames, band-limited mother functions are commonly chosen. As a matter
of fact, the resulting shearlets have infinite support in time domain. Therefore, the localization
of edges in images using these shearlets is improvable.

However, we found that state-of-the-art realizations applying compactly supported shearlets,
such as ShearLab 3D [77], still generate shearlet filters with considerably large pixel size, which
has a negative effect on the localization of edges. In order to compute high quality image features
by precisely capturing edges in images, we set up our own shearlet design which we will describe
in the subsequent chapter.
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“Inspiration is hard to come by. You have to take it
where you find it.”

Bob Dylan

Local Precision Shearlets

In this chapter, we set up a new shearlet design tailored to the need that we have to detect
pedestrian instances with very small pixel size. In the previous chapter, we found that currently
available shearlet implementations are not fitted to that need since their shearlet filters have a
relatively big pixel size. Therefore, our shearlet design focuses on the ability to provide accurate
shearlet filters with small pixel size.

First, we define a new type of compactly supported shearlets. We design the mother shearlet
function specifically in order to be able to precisely localize structures in images. Second, we
define a new shearlet system. Our shearlet system is significantly different to common shearlet
systems in regards to directional distribution of the shearlets and the flexibility in defining the
used shearlets per scale. Subsequently, we show that our shearlet system forms a frame for
L?(R?). Finally, we discuss the possible algorithms for a signal reconstruction and the practical
application of our shearlets. Parts of this chapter have been published in [107].

3.1 Mother Shearlet

The choice of frequency bounded functions makes it possible to design shearlets that form a
Parseval frame for L? (R?) such that a reconstruction of the signal given the shearlet coefficients
is possible. Besides its advantages, this approach leaves the drawback that the resulting functions
s+ have infinite support in time domain resulting in improvable edge detections. To avoid this
disadvantage for the localization of structures in images, which is crucial for feature extraction,
we design the mother shearlet ¢ such that it has compact support [—by, b1] X [=ba, bo] C R? in
time domain with support boundaries by, by € RT and by > b;. The last condition guarantees
that we have elongated functions already at the coarsest scale of the shearlet system. In addition,
we follow the approach of [69] 80, [86] and set up our mother shearlet as a separable function.
As preparation, we will define the basic function components of our mother shearlet.

Definition 3.1 ([90]). We call a function 11 : R — C mother wavelet if it is of zero average, i.e.

/_O:owl(w)dx—o.
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Definition 3.2 ([83]). Let U C R be a closed subset and B C R be a set with U C B. A
continuous function ¥: R — R is called a bump function for U supported in B if 0 < 99 () < 1
for x € R, ¢ (z) =1 for € U and supp ¢2 C B.

More precisely, we set up our mother shearlet ¢ € L? (RQ) according to the following definition.

Definition 3.3. Let By = [—b1,b1] and By = [—by, by] with by,by € RT, by > by and U C Bs.
For = € R? the mother shearlet given by

Y (w1, 22) = Y1 (21) P2 (22) (3.1)

is called a local precision shearlet if it fulfills the following conditions

i. ¥ € L' (R)N L? (R) is a mother wavelet compactly supported in By and point-symmetric
to (0,0).

ii. Mo € L (R)N L?(R), A > 0, is a bump function for U supported in By axis-symmetric
to xg9 = 0.

The separability (3.1) allows easy evaluations of theoretical properties as well as it enables
simple algorithmic realization. Concerning the Fourier transform 1) := F (¢) of a local precision
shearlet ¢ we have

A

" (517 52) _ /R2 i (xl) ef2m‘x1£1w2 (xg) 672m':z:2§2dx1dx2

= / U (xl) e—27rix1§1d$1/ o (.%2) e—?m':rzgfgdxz
AR N R
= 1 (&) (&) . (3.2)

The definition of our ¢;-component is motivated by the work of Mallat and Zhong [91], where a
wavelet is chosen to be the first derivative of a smoothing function 6. Here, a smoothing function
is defined as any function 6: R — R that has an integral equal to 1 and that converges to 0 at
infinity. As an example, one can use a Gaussian as smoothing function. In that way this type
of wavelet is sharing the property of ¥, being a point-symmetric function. The corresponding
wavelet transform of a signal f € L? (R) is then the first derivative of the signal smoothed at
the corresponding scale of the wavelet. As Mallat and Zhong [91] point out, the detection of
local extrema of the corresponding wavelet coefficients conforms to the one-dimensional Canny
edge detection [16] if one chooses 6 to be a Gaussian. For a fast algorithmic implementation,
they introduce a wavelet which is set up as first derivative of a cubic B-spline. Duval-Poo et
al. [34] were able to improve edge detection with the FFST shearlet implementation [60, 61]
by using this wavelet as a replacement for the originally used Meyer wavelet [93] in the ;-
component. Our definition of the 1)s-component guarantees the symmetry in R2. Li and Shen
[85] used symmetric shearlets based on B-splines which provide optimally sparse approximations
of cartoon-like images.

We use these ideas as the basis to define a shearlet based on B-splines, which is fulfilling the
conditions of a local precision shearlet. In contrast to [34], our approach results in a separable
function which uses B-splines not just in ¢ but also in 5. Since Duval-Poo et al. [34] use the
1b9-component of the FFST [60, 61] along with non-separable mother functions, the resulting
shearlets are not compactly supported in time domain. Furthermore, we extend the approach
to allow higher orders of derivatives. The resulting shearlet is called spline shearlet and is set
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up as a centralized B-spline in the bump component ¥y and its ¢-th derivative in the wavelet
component 1. The cardinal B-spline Np(z): R — R of order p > 2 is defined by

Ny (z) := (Np—1 % N1) (2) (3.3)
with
1 0<z <1,
Ni(z) = T
0 otherwise.

Before stating the definition of a spline shearlet, we first present some useful properties of
cardinal B-splines.

Theorem 3.4 ([I8]). The cardinal B-spline N,, of order p € N satisfies the following properties:

i. supp N, = [0,p] .
it. Np(x) >0 forall0 < x < p.
W00, Y e oo Np (x — k) =1 for all z € R.
. N)(z) = Np_1(x) = Np—1(x — 1) for all z € R.
v. The cardinal B-splines Ny, and N,_1 are related by the identity

x p—
N, = N,_ —N,_ —-1).
(@) = TNy @)+ Ny e )

vi. N, is symmetric with respect to the center of its support, i.e.

Np<g+x):Np(g—x), z R

Definition 3.5. Let N, € L? (R) be a cardinal B-spline of order p € N. For ¢ € Q,,, with
Qn:={13,...,p— (1 +mod (p,2))}
and 7 > 1, we call ¥(x1,x2) = ¥1(x1)2(x2) a spline shearlet of order p and q-th derivative if
1 (x) = N (rz) (3.4)
and

P2 (z) = Np () (3.5)
with z € R and N, (z) := N, (z + p/2).

It is easy to observe that the spline shearlet fulfills the conditions of a local precision shearlet.
The constant r > 1 causes that we have by > by, i.e. that the support of 15 is larger than the one
of 1. Since Np (z) and ngq) (z) have the same support, r equals the ratio b2/b;. In other words,
for the support boundaries of the resulting shearlet we get by = p/2r and by = p/2. Figure
shows a spline shearlet with p =5, ¢ =1 and r = 3/2.

Next, we examine the number of vanishing moments of the first component of a spline shearlet.
As we will see in Chapter [d] the characterization of edge points using a local precision shearlet
is depending on the number of vanishing moments of ;.
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(a) Centralized B-spline 12 with p = 5 as well as its derivative 11
compressed with r = 3/2.

(b) Spline shearlet 9 (z) = ¥ (z1) 2 (z2).

Figure 3.1: Example of the spline mother shearlet and its components for p = 5.

Lemma 3.6. Let ¥(x1,z2) = 11 (x1)2(x2) be a spline shearlet of order p and q-th derivative.
Then 1)1 has q vanishing moments, i.e.

/ 1/}1 (.Tl) .T%leEl =0
R
foralll < q.

Proof. For a spline shearlet of order p and ¢-th derivative we have
Y1 (1) = N§9 (ran)

with ¢ € 2N -1, r > 1 and ~qu) (x1) = ng) (1 +p/2), where N, is a cardinal B-spline of order
p € N. Furthermore we have by = p/2r. Integration by parts provides

7 S @ z L/ @ L NlaD) l
NV (ray) videy = (Npq (2/2) - (p/2r)" — Ny~ (=p/2) - (—p/2r)
—p/2r 7' \N——— —
=0 =0
P/Z'r —
—/ Nia=1) (m:l)l:nl ldx1>
71’/2'r
l p/2r
= —— Nl (rep) 2~ tday
r 71’/27“

Repeating this procedure [ times with [ < ¢, we have
p/2r _ l U ppfor
N;gq) (rz1) xl1d501 = (—) / NIS‘I*’) (ra1)dzy

—p/ar r —p/2r
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R

Figure 3.2: Shearlet component 11 of a spline shearlet of order p = 9 and ¢ = 1, ¢ = 3 and
q=>5.

For | = ¢, we have

( l)Q/P/Qr 5 (ra1) ag ( l)q/p/zr 5 (1) d

— rT1) T T = — rxy1)dz

r ofor p 1 1 r p 1 1
# 0,

due to the properties of a B-spline described in Theorem ]

A big advantage of spline shearlets is that one can choose the grade of smoothness by the order
of the B-spline as well as the number of vanishing moments by the choice which derivative to
take. Figure|3.2|shows 1)1 of a spline shearlet of order p = 9 with different numbers of vanishing
moments. An increase in vanishing moments automatically increases oscillations. As we will

present in Section in an edge detection algorithm these oscillations create artifacts reducing
the detection precision.

Another advantage is that a spline shearlet has explicit closed form expressions in time as well
as in frequency domain. For the Fourier transform of its centralized version N1 one gets

F (Kh) ) = /1/2 e 2y

_1/2
e—27rix§ 1/2
N 2mi& Y
11 . :
- - = i€ —mi€
€ 2 (e =)
1.
= ﬂ_—gsm(wf)
= sinc (§).

For a description on basic techniques concerning Fourier analysis applied here, see Appendix

For 4y (£) 1 = F(12) (€) = F(N,) (€) we obtain using

~

J2 (€) = sine?™ (). (3.6)
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Figure 3.3: The spline shearlet in frequency domain

Since 11 is a derivative of centralized B-spline, we get

r

Py (€) = %(mg)qsincp*l <§> . (3.7)

Corollary 3.7. The Fourier transform of a spline shearlet v of order p = n + 1, and q-th
derivative, defined by and has a closed-form expression given by

) (6,&) = <z27r€1> sinc” (?) sinc” (&) .

Proof. According to 1) we have 9 (&1,&) = 1 (&1) Vo (&2). Usmg and . shows the
result. O

In time domain, one can express a cardinal B-spline as a composition of piecewise polynomials.
That means, a cardinal B-spline of order p is at each interval [k,k+1], 0 < k < p—1, a
polynomial of degree p — 1. The coefficients of the involved polynomials can be calculated by a
simple algorithm [95]. For example, for p = 3 we have the Quadratic B-spline

%xz for0<z<1,

Ny (2) = —m2—|—3m—% forl <z <2,
%x2—3x+% for2 <z <3,
0 otherwise.

Given the cardinal B-spline by piecewise polynomials, the calculation of its ¢-th derivative is
very simple.

There are several other ways to define shearlets based on splines. One possibility is to define
by a compactly supported B-spline wavelet [19] 20], which is given by the following definition.
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Definition 3.8 ([20]). Let N, € L?(R) be a cardinal B-spline of order p € N. Then the
compactly supported B-spline wavelet 1)c,, of order p is defined by

p
Z 1) Nap (j + 1) NP (22 — j). (3.8)

For p = 1 we have the well-known Haar function

1 for0§x<%,
Yo =149 —1 for%§x<1,

0 otherwise.

According to Chui and Wang [20], ¥c, is axis-symmetric for even p and point-symmetric for
odd p. Furthermore they state that supp¢cy = [0,2p — 1] and thus for a centralized version
Yep (x) = Yo, (x+ @r-1)/2) we have supp e, = [—(2p-1/2, (2p-1)/2]. Figure shows B-
spline wavelets of orders p = 1, p = 3 and p = 5. As can be seen, an increase in the order of the
B-spline directly increases the oscillations of the wavelet.

Another way to set up shearlets based on splines is presented by Lim [86]. Here, a pair of
shearlets is defined in frequency domain by

do = (1) (sin (1)) O (€1) 0y (E2)

= @ (s () 6, ($) o)

where 9}, is the Fourier transform a box spline of order p given by

" i p+1 1 ifni
0 (51) = <Sm(7r§1)> e—ze7r§17 with € — 1f p 1S even,
&1 0 if pis odd.

The z1 component of this shearlet pair shows a very similar shape as the one of a spline shearlet
as illustrated in Figure [3:4Db] Also here, we can adjust smoothness and oscillations separately.
But in contrast to spline shearlets, we do not have a closed form expression in time domain.
Concerning practical application, one either needs to compute the shearlet transform in Fourier
domain and the result has to be transferred to time domain by the inverse Fourier transform.
This leads to higher computational complexity in case of small filters, see Or the shearlets
have to be transferred to the time domain such that the shearlet transform can be performed by
a convolution. Both ways entail a potential loss of calculation accuracy due to the involvement
of the inverse Fourier transform.

Turning to the properties of a general local precision shearlet, since v is an odd function and
19 is an even one, [119] provides the following properties of the Fourier transform of ).

Lemma 3.9. Let v € L? (R2) be a local precision shearlet. Then 1&1 is an odd function, i.e.

b1 (€) = = (=€) (3.9)

and zﬁg is even for all £ € R. Furthermore, 1[11 is purely imaginary and zﬁg 1s real.

With these properties, we get the following result for the continuous shearlet transform SH,,
described in Chapter
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Figure 3.4: Shearlet components in x; direction for different spline approaches.

Theorem 3.10. Let ¢ € L? (RQ) be a local precision shearlet that fulfills the admissibility
condition . Then for

%—// 51 52 PO fae, and qu_// ‘1# 51,52 PE) e

we have cy = cg = cy and SHy is a cy-multiple of an isometry.

Proof. According to (3.2]) and (3.9) we get

N 2
% = /R / OOO Mi’%&)’dgld@

A~ N 2
_ /R/_OOO Y1 (51)5?2(52)’ d61dty

B 0 —1/31(—51)1;2(?52)‘2(i 1
- /R/— 5% fl 52

_ // ‘% §1) 1/12(52)’ .

Therefore we have Cy = c:; = ¢y. The isometry statement immediately follows from Theo-

rem 2.71 O

Besides the closed-form expression of a spline shearlet in frequency domain, Corollary [3.7] pro-
vides the following result.
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Theorem 3.11. A spline shearlet v of order p = n + 1 with g-th derivative is admissible and
we have C;Z =Cy =Cy with

4972 2n —1 " i 2n _
+_ 1y . _ §)2n—2¢+1
“ T 15920 (2n — 2¢ + 1)! (2n — 1) < n—1 >§( I W A ar)

and the Eulerian number

<’;>:§(—1)j<kjl>(z—j+1)k for k1 €N,

=0

‘ 2

Proof. According to Corollary [3.7] we obtain
< 12”51 sinc™ (571) sinc™ (£2)
2 d§1d§2

¢ = / &
L 2”51 sinc? ( )smc (&2)
- [ 2 dé1dés
= 49 / / h qu;g?q *sinc™" (f}) sine® (&) dé1d&
- o () () e

sin?™ (2&;) sin 7r§ )
= 4qA 22(n—q) €2n q+1) § ( 2 ) d§2

2(n q—1)51

and therefore

_ 4ag? oo sin®" (¢ sin 7r§2)
cy = A /0 (26020 qH 5/( ) dés. (3.10)

From [120} page 2703] we know

/°° sin®" (&) _ & SO (-1) 2n (2n — 25)2—a+D -1
0 @)D P 2m—gt1) - 1) j

7=0
7T22n—2q+1 zn: (n B j)Qn 2qt1
22 (2n — 29+ 1)! = j
T " 2n
j \2n—2g+1
51 > (-1 < : )(nj)
221 (2n — 29+ 1)! j

nd % /sin (&1) Qnd B v 2n — 1
/0 ( &1 ) 51_2(271—1)! n—1 /-

Integration by substitution yields

- i (560 L
/0 Wdél T 921 (2n — 2q + 1)! Z (n—j)

J=0

% /sin (7€) \ 2" B 1 2n — 1
/0 < w1 ) dél_?(?n—l)!< n—1 >

and
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It follows that

+ on\2n—2q+1} -
p r5224=1 (2n — 2q + 1)! (]2:; ( >(n 7 )2(2n—1)!< n—1

- 4772 2n -1 zn: (n—g)™ =2+
S22 =2+ D121\ n-1 /= o |

In particular, we get c:; < 00. According to Theorem we have cZ =Cy =Cy showing the
result. O

In case of a spline shearlet with ¢ = 1, the formula for ¢, simplifies to the following result.

Corollary 3.12. A spline shearlet v of order p = n + 1 with 1-st derivative is admissible and

we have
2
e o 72 T 2n —1
v T T 2 2n )\ n—-1 '

Proof. For ¢ =1 we get for (3.10))

¢ - ()

oo A 1 2n — 1 1 2n — 1
v i r(2n—1)!\ n—1 /@2n—-1)\ n—1

2 m 2n —1 ?
T \r2@n-1\ n-1 '

For the continuous shearlet transform, we derive the following finding.

and therefore

Corollary 3.13. Let ¢ € L?(R?) be a spline shearlet of order p and q-th derivative. Then SHy
is a cy-multiple of an isometry with

497 m—1\¢ ([ on -
= N — j)Fnatl
Cyp r522q(2n2q+1)!(2n1)!< n—1 >Z( ) j (n—j)

Jj=0

Proof. The result directly follows from Theorems [3.10] and [3.11} O

Theorem 3.14. Let I'p be given by (@) witha > 1 and b=1, set § >0 and v > 2(8 + 2)
and assume that 8/ > B+~ and v > ' — B +~. If p € L* (R?) is a spline shearlet of order
p=n+1 and g-th derivative with n >~ — 3’ +p and q > /3, then there exists co > 0 such that
the reqular shearlet system SH (1,T'r) is a frame for L? (Rz) for all ¢ < ¢y.

Proof. We want to show that the conditions of Theorem hold true for a spline shearlet
with n >+ — 3+ p and ¢ > . Considering the condition (2.13)), we set

(1+ 1) "

d- = ;
Y1 (51) ’gl‘ﬁ

Wy (51)’
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Using this notation we have

. 2 7'/2
dg, (&) = % (Ziw&)qsincn (E})‘ OTS[L')
oyt [, (sin(ze)\"| (1+16P) "
- ra+l §1< %61 > |£1|B/

' v /2
29 7a—" |Slnn (%fl)‘ (1 + |§1‘2)
rq+1l-n ‘51‘/3/4-71—‘1 )

To estimate an upper bound for d b1 (&1), we examine its behavior in three areas of &1, i.e. |&1]
tending to 0, to co and the area in between. We show that we have upper bounds for all of these
areas. Obviously, for any value range [a,b] € R with a > 0 and b < co we have an upper bound
for d; (£1) since it is continuous.

For [{;| — oo, we have

!
207 2ga—n |Sin" (%&)‘ ’gl‘vl

1—-n
d"[’l (&) < = B'+n—q < K7°
IS1

with K9° > 0 if v/ < 8’ +n — ¢ since sin™ (w&;) is bounded.
For |£1| — 0, we have that

2q+7//27rq—n - n

e [sin” (76y)|

dy, (&) < —* < K}

€7 -

if p> /3 since p = n + 1, while K? > 0. Therefore we have found K; = max (K, KV) in order
to fulfill [@.13).
Concerning (2.14]), we set
N 9 +'/2
dy, (&2) = ‘@02 (52)‘ (1 + [&2] )
which yields
i — ling® 2\"/2 _ |sin" (78| 2\ 7'/2
g, (&) = sine" (@) (1+ |&f") © = =2 (1+16f)
As before, we examine the behavior of d b (&2) in the abovementioned three areas of its domain
of definition. Also for d e (&2), its continuity shows an upper bound for the area between 0 and
oo. For |&a| — 0, this term is obviously bounded without any conditions. For |£2| — oo, we have

|§2\7,
< K.
& =7

for Ko > 0 if n > +/. This condition is already ensured by the conditions on ).

dy, (§2) < 277" [sin” (n&y))|

Finally, the properties of the sinc function yield that the we have

~ 2
{aer: b =0} = o 22r.)

and ,
{52 € R: [, (52)] = 0} = {£1,+2,...}.
Since r > 1, conditions (2.15) and (2.16]) are also fulfilled. O
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3.2 Shearlet System and Transform

Given the definition of local precision shearlets, we now define the associated shearlet system
and transform. As described earlier, basic shearlet systems, i.e. not cone-adapted ones, do have
a directional bias such that detection of an edge along the x; axis of an image would be only
possible with s — oco. We follow the idea of cone-adapted shearlets to use vertical and horizontal
shearlets and adjust it to our time domain setting. Therefore we define a shearlet i) with

b (21, w9) 1= 9 (w2, 1) - (3.11)

In that way we are able to cover the whole frequency plane with shear parameters |s| <
tan (7/4) = 1. However, we do not aim to tile the frequency domain into disjoint cones as
in the cone-adapted approach [75]. Moreover, we do not restrict ourselves to parabolic scaling.
Instead we choose a scaling matrix A, , given by

a O
(3 2)

with @ € (0,1] and « € [1/2,1). According to Kutyniok and Labate [75], the value a = 1/2 is
needed to get optimally sparse approximations of certain image models. However, in this thesis
we are not concerned with optimally sparse approximations but with an optimal setup for the
task of pedestrian detection. The lower the value of o the more elongated are the shearlets at
fine scales. Thus, the directional response is intensively concentrated to the corresponding shear
parameter s € R. For the practical application for pedestrian detection we choose « significantly
larger than 1/2 to ensure that we cover all directions when considering only few shearlets at fine
scales. As we will see in Section the choice of & > 1/2 has a significant positive effect on
the quality of our pedestrian detection algorithm.

For considerations in the frequency domain, we furthermore define a scaling function ¢ € L? (RQ)
that is associated with low frequencies. We set

¢ (w1, 22) == 2 (x1) P2 (72) - (3.12)
Accordingly, we define the following shearlet system for the continuous case.

Definition 3.15. For ¢, ¢, ¢ € L? (Rz) the continuous local precision shearlet system is given

LPSH (9,9,3) = & () U¥ () U¥ (¥))

o(g) = {d=0(-1): teR},

{¢ =Sy (Azks (- )):ae(o,1],|s|g1+aa,teR2}
B () = { — o (A LT (- )):ae(O,l],s\<1+aa,t€R2}
and A, ., = diag (a®, a).

For the transform associated with the local precision shearlet system, we formulate its definition
analogously to [75].
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Definition 3.16. For
Sy = {(a,s,t) ca€(0,1], s <1+ a% tERQ}

and v, ¥, ¢ € L2 (Rz), the continuous local precision shearlet transform of f € L? (]RQ) is given
by
LPST, 5 () (a5,8) = ((f, 60, (f st} > f: P ) (3.13)

with (¢, (a,s,t), (@,35,1)) € R? x S2.

For the discrete setting used for implementation we define the shearlet system as follows.

Definition 3.17. For v, 1, ¢ € L? (R?) the local precision shearlet system is given by

LPSH(0,0,7) := @ (¢) UV () U (1))

where
O(9) = {bm=0(—cm): mez’},
() = {%,k,m = 2"y (A;}jﬂss—j}k - —cm) 1§ >0,k <ijj,m e 22} :
U (1[;) = { Dikm = 2]-(0(;1)1; (ﬁ;}JaS;Tk : —cm) 13 >0,]k] <nj,me Zz} :
with s; 5 := tan (k7/n;), n; € 2N, 7; := [(u/2=1)/2] and ¢ > 0.

The parameter 7; denotes the number of shearlets at scale j. The shear parameter £ is defined
such that the directions are uniformly distributed along the circle. The partitioning in horizontal
and vertical shearlets as well as the discretization of the shearing parameter k is illustrated for
a fixed scale j and n; = 6 in Figure For the special case of n; divisible by 4, each diagonal
of R? is covered by two shearlets, e.g. Yj —1,m and ;1. In this case we omit the horizontal
shearlets ).

Definition 3.18. For ¢,
transform of an image f €

L*(R?) and j > 0, k < 7}, m € Z?, the discrete shearlet

b, b €
L? (R?) is then given by

LPST 4y 5 (F) Gikeom) = ((F bm) s (s yan) s (f Dieom ) (3.14)

which we call the local precision shearlet transform (LPST).

3.3 Frame Property

In this section, we examine the properties of local precision shearlets and the corresponding
shearlet transform concerning the ability to provide a frame for L?(R?). Let 1 € L? (R?) be a
local precision shearlet. Similar to [61], we obtain for the Fourier transform of ¢, s+

)))e

lw

1
a

[esX-N[

7Z}a,s,t (f) = a_we_%”'(ﬁ@]_‘ <¢) ((
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Z2
k = tan (0°)
k = tan (—30°) k = tan (30°)
Y k = tan (30°)
¥ k = tan (0°)
x
k = tan (—30°)
(a) Discretization of the shearing parameter k.
(G
k = tan (—30°) k = tan (0°) k = tan (30°)

k = tan (30°)

(b) Resulting vertical and horizontal spline shearlets (fine grid sampled)

for m = 5.

Figure 3.5: Visualization of vertical and horizontal shearlets for a fixed scale j and 7; = 6.
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— a—%e—%i@,w( o) ¢<< >§>
- a“‘é”ezm‘@tm(( ) )
+

(a+1)

= a2 e TN (a0 (s
With the separability condition (3.1]) we have

Dass (€) = a2 e 2mEN D, (agy) Dy (a (561 + &)

If ¢ is a spline shearlet of order p = n + 1, n € N, and ¢-th derivative then according to
Corollary [3.7] we get

N (041 o . )

Yast() =a 2 e 2mil&t) (j27€1) sine™ (agp) sine” (a® (s&; + &2)) .
Now, we analyze under which circumstances the local precision shearlet system forms a frame
given a mother shearlet 1 that fulfills the conditions of Theorem [2.13] A main topic during this
consideration is the required number of shearlets per scale such that the shearlet system covers
the whole frequency domain. We set

o={(6&):;<lal<Llal <5},

According to conditions 1) - 1 , we have © C esssupp 1/1. Therefore, ¥ is covering the
frequency cones C; U Cs if the scaled and sheared sets ©;;, with j > 0 and |k| < 7; defined by

Ok = AgjaSi, 0
- {(51’52) P 1/20; <G| < Yaj, 55660 + E2f < Y200}
= {€&) 2 <l <2, [sipr + & <2071

are covering them. A set ©, is a trapezoid with |&;| € [2j —1 2 | and a lower boundary line b?,k
which can be expressed by

& = —sjpét —27°7"
and an upper boundary line b}’ i given by

o= —sjb1 + 27070
For ¥ covering the frequency cones C; U C3 we need

U @jvk = {(51152) : 2j_1 < |§1‘ < 2j? ‘52/§1| < 1}>
k| <7;

for each j > 0. Similar considerations can be set up for T to cover the cones Cy UCy while ®
clearly takes care of the low-frequency region R.

Theorem 3.19. Let ) € L? (RQ) be a local precision shearlet that fulfills the conditions

- with6>0,’y>2(ﬁ+2), B'>pB+vand~ > p —p+~. If forn; € 2N, j >0, and
a € [Y/2,1) we have

for mod (nja 4) # 0,
for mod (n;,4) =0,

T
2(atan(21(ﬂ—1)—1+1),%)

0 = (3.15)

T
(W/4+atan(2j(°‘—1) 71)>

then there exists a co > 0 such that the local precision shearlet system LPSH (@,\I’,\Il) s a
frame for L? (R?) for all ¢ < cy.
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&2
1
L bj,k
7/
7
7/
7/
0
bk
ol
- bk
ja—1 |~
2 0
-7 Yk
&1
_2ja71 L

Figure 3.6: One side of the essential support of separable shearlets fulfilling conditions (2.13]) -

(2.16) for a fixed scale j and nea

rby shears.

Proof. We want to show that the conditions (2.11)) and (2.12)) adapted to our shearlet system
are fulfilled. Similar to the proof of Corollary see [86], we have in our case

o (n, LPSH (9, 9,0)) = ¢(n,®(6)U¥ (@)U (V))

[e%e] ﬁj

— oS 35 15 (T |8 (AT 5 0)

2 N ~
geR?  i—p k=—1j;

[e%¢} k:ﬁj

2,2

J=0 k=—1j;

+|0©)| 6 €+ n)

A

0 (Aay 0S5, 46) | [0 (Aay 05,46+ 1)

< e W)+¢ (T (3)) +¢ 0,2 (9)
for ([2:9) and
@(LPS’H((I),\IJ,\TJ)) - @(@(@uqf(qp)u@@))
el +y kif b (Aay ST )|+

for (2.10).

The upper bound conditions, i.e

§=0 k=—1;

§ (Aaya8006)|
B (0, (6) + ¢ (0,0 (1)) + 3 (n, ¥ ()

. the existence of D < oo and the fulfillment of (2.12)), follow

from Theorem Since there are upper bounds for a regular discrete shearlet system, we
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have upper bounds for each part of the local precision shearlet system. That means
epsn (o)) < fpof' v X [3(anshio)f

< D1 +2Dy

= D<o

where Di < oo since d; is obviously bounded. Concerning 1 , we have
o(n, U (¥)),o(n, ¥ () < ¢(n,SH(¥,T'r)) with ¢ (n,SH (¢),I'1)) as in 1) for the setup of
Theorem [2.13] Thus, for ¢ > 0 we get

¢ <Z,£P8’H (o9, @)) < 2 <’Z SH (w,rg) +o <Z,<1> (¢)> .
Next, we estimate ¢ (2, ®(¢)). With n = (n1,nz) we have
o(Zo) = [p@ls(e+2)
= |2 (&1) Vo (Ez)) i (51 + n;) o (52 + nj)
o <§1+ncl>’ Uy (52%—?)‘
< Ki(1+ y§1|2)_7,/2 Ky (1+ |§2\2)‘”//2 .

2 —7//2
K (1 + ) K5 <1 +

with Ki, Ky < oo since vy fulfills condition (2.14). We set p := argmax;_; 5 |n;| and i :=
arg min,_; o |n;| such that we have ||n|| = max (Jni],|n2|) = |n,|. We estimate the component

in &;-direction with Kjz(1 + |§#| )72 < Kj. Then we have

= |¥o (51)‘ ‘%/32 (52)‘

ny

&1+ — 2
C

’
—7 /2

’I’l2 /

c )

o+ —

i

2 —7//2
c ) ’
77/
M }

For any &,n € R? we choose ¢ > 0 such that |m/2¢| > &,. As described in [124], we then have
& + mufe| > |mufe| — [€u] > |mw/2¢| and thus max {[€,|, £, + mu/e|} > |mu/2¢|. Tt follows that

Sut

o(200) < B (1+16P) " <1+

with Fy < oo . Therefore, we have

1, (&, +

C

o 0(@) < B {1, }uin

/

o2, 0(0)) < Ba| S|

C

= E3(20)7 |Inll" -

According to [86], we have
DOSH(4,T1)) < Esc>8 |n|P=2
¥ ¢’ wa 1 = L3c HnHoo
with E3 < co. It follows that

o (2 LPSH (0,0,8) ) < 2807 [l + Ba (20)7 I ' < B
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with F4 < oo and

{7/2—,3 fore>1 {5—7/2 for ||n||,, >1
L= —

< forc <1’ - for ||In||, <1’

since > 0, f —7/2 < =2 and ' > v > . Correspondingly, we get

) w(Z,SHw,m)w(—Z,SHw,rI))sw( ) ||m\|g;)

nez2\{0}

and according to [86], 3=,,cz2\ 0} Hmeo_V * < oo when ¢/ < —2. This condition is fulfilled since
we assume > 0, v > 2(8+2), 8/ > B8+~ and v > 8 — B+ ~. Analogously as in [86], we
conclude that for any E > 0, there exists a ¢g > 0 such that

Sy (n,EPSH (2,9, @)) ” (—n,EPS’H (2.0, @)) <E
nez2\{0} ¢ ¢

for all ¢ < ¢g.

For the lower bound, we show that the scaled and sheared sets ©; cover the frequency cones
C1UCs. For mod (n;,4) # 0, we first need to show that the upper boundary line of the trapezoid
©, 1 is reaching the diagonal for |k| = (7/2=1)/2. This condition can be expressed by

‘—Sj,kfl + 2ja_1‘ > [&]-

Because of the symmetry in possible values for k and due to the fact that |k| < 1, it is sufficient
to examine this condition for k = —(7/2-1)/2 and & = 2. We have

_Sj’k2j+2ja*1 > 23‘7

e (-(4-3)5)

w((t3)5) 12
J

We furthermore need to secure that no gaps between the trapezoids occur. That means the
upper boundary line of ©; ;41 has to reach the lower line of ©; ;. Therefore we have

1 — 9ila—1)-1

v

Y

and therefore

. fo—1 . i1
—Sj7k2j — 2]a S —Sj7k+12j + 2]a

and correspondingly ‘
Skl — Sk < 2](a71). (3.17)

We set Ag. | 1= 8j k11— 8k = tan ((k +1) %) —tan (k%), k = —nj,—1n;+...n; — 1. Since tan
is a strictly monotonically increasing function we have A, , < Asmj- With lb we get

5 1 T n 1) K

Asj’k tan<<4 2) T]j) t&11((4 2) nj
5 1 T _ 9j(a=1)-1

tan (( 4 2) 17]-) (1 2 )

A

IN
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= tan (T]]_i_l)ﬂ- +2j(a—1)—1_
4 2/

Using this condition in (3.17)) yields

tan <77j+1>7r 4 oila=D-1_1 < oila=1)
4 2/ m;

nj 1\ 7
t - — -
o ((4 * 2) m)

Solving this inequation for 7; provides

IN

= el 4,

U jla=1)-1
(4+2>m < atan(2 +1),

1.

9ila=1) _ gjla=1)=1 4 1

™ : T
< atan (27714 1) - =
277j < a an( + ) 1’
T
nj =

2 (atan (2d(a—1)—1 4 1) — %) '

Under this condition, the cones Co U C4 are covered by the sets (:)j’k = Aaj,aSsM(:) with © :=

{(51,52) DGl <i 3 <l < 1} analogously.

For the case of mod (n;,4) = 0, it is obvious that the diagonal is reached. In this case we need
to ensure that the cones C3 U Cy4 are still covered completely although v, 1., and v;1,, are

omitted. Since we have

;= {(51752) D&+ sjpe] <2007 207 <] < 2j}

we also have a right-hand side boundary line l;g) i With

§o = L (—§1 + 2]'0‘71)

Sj,k
and a left-hand side boundary line I;jlk with

& = L (*51 - 2ja_1) :

8j7k

Similar as before, we can examine under which condition 13?7k lies beneath b}’_l for s =
tan (—(/4=n/y;) = tan (—=7/a47/y;) and & = 27 — 27271 The latter is the point of the

diagonal at the boundary of ©; in & direction. We get

L (_2j 4 gia=1 4 2ja—1) < 9 _gja=l 4 gja-l
Sj.k B
— 97 4 9ja
Sjk < i

and therefore
tan (—7/4 4 7/n;) < 277D 1,

(3.18)
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Also in this case, we need to ensure that 1| is fulfilled. We use the fact that A, < A
for all k = —7;,—7; +...7; — 1, i.e.

84, —1

Ag, ), < tan (7/4) — tan (7/4 — 7/n;) = 1 — tan (7/4 — 7/n;) .
For (3.17) we get ‘
1 — tan (/4 — 7/p;) < 27~
which is the same condition as (3.18)). Solving for 7; yields
—nfatfy; < atan (207D 1),

™
;> - .
= (/s + atan (200D — 1))

Obviously R is covered by ® which finally yields

[ ] (UU@]kU@]k):

JEL |k|<;
and thus
o oo k=1 T 2 5
SO + 3 3 16 (oya8h, [ + 1 (Auy8,6)|
J=0 k=—1;
oo k= =7
ZK/ [ 1/2, 1/2] ( (Z Z XG)]k +Xéj’k (5))
J Ok——ng
>0
for almost every ¢ € R2. O

Corollary 3.20. Let ¢ € L? (R?) be a spline shearlet of order p = n + 1 and q-th derivative
with n and q as in Theorem |3.14. If n;, 7 > 0, fulfills , then there exists a cg > 0 such

that LPSH (tID, v, \T/) is a frame for L? (R?) for all ¢ < co.

Given the result that our shearlet system forms a frame for L2(R?), it is possible to reconstruct a
signal f € L?(IR?) by its shearlet coefficients. Although this topic is not in the focus of this thesis,
we will evaluate in the next section which algorithms are applicable for a signal reconstruction
with our shearlet system.

3.4 Signal Reconstruction

To reconstruct a signal f € L*(R?), one can make use of the frame operator

S L2(R2) — L2(R2)7 f = Z <f7 Q01> i

el

of a frame @ = (y;),_, for L% (R?). According to Christensen [17], a signal f € L? (R?) can be
reconstructed by the formula (2.2))

F=Y {f00) 5 i
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Therefore, we need to find the inverse frame operator S~—! associated to our shearlet frame
LPSH(®, ¥, T) to provide an explicit reconstruction formula. As described in [I7], the inversion
of the frame operator can be very complicated in practice. As an alternative, the following
algorithm, also known as the frame algorithm, is provided.

Lemma 3.21 ([I7]). Let ® = (p;)icr be a frame for L?>(R?) with frame bounds A and B. For
f € L*(R?), we define functions (g:)32, in L*(R?) by

90 =0, gi = gi—1+ S(f—gi-1), i>1. (3.19)

2
A+ B
Then

17 -all < (222 us1.

The sequence elements g; in converge to f for ¢ — oo, while their computation depends
on the frame bounds A and B. First, we need to know the frame bounds in order to apply the
frame algorithm. Second, the ratio of the frame bounds determines the speed of convergence to
f- It follows that g; might only converge slowly to f in case B is much larger than A. This could
refer to the cause that either the estimate of the frame bounds is not optimal or the frame is far
from being tight. In order to get to a faster convergence, Grochenig [45] applies the Chebyshev
method and the conjugate gradients method.

Theorem 3.22 (Chebyshev algorithm [43]). Let & = (¢;),; be a frame for L? (R?) with frame
bounds A, B and let
_B-A  VB-VA

= = .
P*=B14 VB + VA
For f € L? (R?), we define functions (gi)zo in L? (R?) and corresponding numbers (A)zl by

go =0, gl—AiBSf, A =2,
and for i > 2
Ai = +, g9i =\ (gi—l — gi—2 + LS (f - gi—l)) + gi—2-
1— 2N A+ B
Then ;
15 = gl < o 151

Although, the elements g; converge faster to f in the Chebyshev algorithm than in the frame
algorithm, still the frame bounds are needed. This is not the case for the conjugate gradients
algorithm.

Theorem 3.23 (Conjugate gradient algorithm [45]). Let @ = (¢;),_; be a frame for L* (R?) and
let f € L?(R?)\ fo, where fo is the zero function. We define functions (gi)?io, (Ti);ﬁo’ (pi):i()
and numbers ()\i)zo by

go=0,10=po=Sf, p-1=0

and, fori> 2,

(73, pi)

No= P
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git1 = gi+ Aipi,
Tigl = T — AiSpi

gy (Spi, Spi) ~ (Spi, Spi—1)
bt P e S U e, Spi) U

Then g; — f fori — oo.

According to Theorem the frame bounds A and B for our shearlet frame LPSH (P, ¥, \fl)
can be estimated by 1/2(C —F) < A < B < 1/2(D+ E). Unfortunately, the constants
¢,C,D,E < oo are not known explicitly. Therefore, the only possibility to approximate a
function f € L? (]RQ) by one of the presented algorithms is the conjugate gradients algorithm.
However, since signal reconstruction is not the main concern in this thesis, we do not realize an
application of this algorithm and an analysis of the corresponding results.

3.5 Practical Application

The application of our shearlet design is crucial for the quality of pedestrian detection. It
gives us the ability to define shearlets compactly supported in time domain of any size such
that only the nearest neighborhood of m is considered for computing the shearlet transform
at location m and fine scales. This fact leads to very precise edge detections in comparison to
other known shearlets. See Section for more details. We compute our shearlet filters by
sampling shearlets directly in time domain with a sampling constant ¢ > 0. Additionally, in the
style of the Fast Finite Shearlet Transform (FFST) [61], we consider digital images in RM*¥ ag
functions f € L? (R?) sampled on a grid G. In our case we define this grid by

G = {(emi,ema): my=—[M/2|,...,[M/2] -1,

mg = —[N/f2] ..., [N/2] —1}.
Finally, the LPST is computed directly in time domain using the 2D convolution f * ;.

Now, we briefly address the topic of computational complexity. In contrast to our approach,
shearlet transforms are usually calculated by applying the 2D Fast Fourier transform (FFT) and
its inverse (IFFT). As described by Duval-Poo et al. [34] the computational complexity of the
shearlet transform of a N x N sized image using FFT and IFFT is O (jonN? + jonN?log (N)),
n= 50:_01 n;. The parameter jo € N describes the number of scales considered during compu-
tation. This computational complexity can be reduced to O (N 2log (N )) since the number of
all shearlets jon can be assumed as a small constant compared to N. According to the authors,
using a 2D convolution with W x W sized shearlets results in O (jonN?W?) that reduces to
O (N?) if W < N. Using local precision shearlets, the condition W < N can be easily fulfilled
which leads to a significantly reduced computational complexity. When using small sized shear-
lets, e.g. 16 x 16, we observe a decrease by an order of magnitude in the runtime for computing
the shearlet transform of a 640 x 480 image.

3.6 Conclusion

In this chapter, we designed our own mother shearlets and shearlet system in order to have
the capability to compute highly qualitative image features. Concerning the design of mother
shearlets, we used compactly supported, separable functions with a point-symmetric wavelet
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in the first and an axis-symmetric bump function in the second component. As an important
example of our shearlets, we introduced spline shearlets. Such a shearlet 1) consists of a derivative
of a B-spline in the t; and the corresponding B-spline itself in the 12 component. We showed
that spline shearlets are admissible and that the continuous shearlet transform is a multiple of
an isometry with their usage. In addition, we showed that they are suitable components for a
regular discrete shearlet system to form a frame for L?(R?).

Furthermore, we defined our discrete shearlet system with evenly distributed orientations of
the involved shearlets and a high degree of flexibility concerning the number of shearlets per
scale. We showed that this shearlet system forms a frame for L?(IR?) provided that the mother
functions fulfill sufficient conditions and that we use enough shearlets per scale. We derived a
required number of shearlets per scale depending on the degree of anisotropy «.

Although the topic of signal reconstruction is not in the focus of this thesis, we examined which
algorithms could be used to reconstruct a signal f € L?(IR?) given its frame coefficients. We
concluded that the conjugate gradients algorithm is the only possibility to reconstruct a signal
with our shearlet system.

Finally, we discussed the practical application of our shearlets. We described that our digital
shearlet filters are obtained by a sampling directly in time domain. With a suitable sampling
of the input image, our shearlet transform is computed by a convolution in time domain, which
yields benefits concerning the computational costs of it.
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“There are things known and there are things unknown,
and in between are the doors of perception.”

Aldous Huxley

Edge Detection using Local Precision Shearlets

In this chapter, we study the characterization of edges based on the properties of the continuous
shearlet transform SH, using a local precision shearlet ). The precise detection of edges is
the key factor for the extraction of highly qualitative image feature using shearlets. It is the
basis for a beneficial application of shearlets either in hand-crafted feature detectors or in CNN
algorithms. We study the ability of local precision shearlets to characterize edge points in the
manner of Guo and Labate [53]. The image function f is modeled as the characteristic function
xr of a bounded domain R C R? with piecewise smooth boundary OR. We will use the notation
of [53] already presented in Section This model scenario has been analyzed in several
papers for the case of band-limited shearlets [50, 53], [54]. In this case, the boundary OR, the
orientation and the type of the edge point can be deduced by the decay rate of the continuous
shearlet transform, see As indicated before, band-limited shearlets have infinite support
in the space domain. The spatial localization of compactly supported shearlets can lead to
improved edge classification in comparison to band-limited shearlets. Kutyniok and Petersen
[78] analyzed the scenario if one replaces band-limited by compactly supported shearlets. The
results are presented in [2.21]

Although the results in [78] resolve the issues using band-limited shearlets described in Sec-
tion [2.4] certain additional assumptions on the compactly supported shearlets lead to drawbacks
in a practical application. First of all, the separable shearlet v) = 1119 shall fulfill in its sec-
ond function component 15 the condition 9% (0) # 0 while 11 shall be a compactly supported
wavelet. This condition induces an asymmetry of the shearlet with respect to xo that leads to a
stronger response of the shearlet transform on one side of an edge. Second, some results require
that the shearlet possesses a minimum number of vanishing moments. As indicated before, in-
creasing the vanishing moments increases the oscillations of a shearlet which create artifacts in
the edge detection result reducing the detection precision. As we will see in[£.2] a local precision
shearlet with just one vanishing moment creates visibly the best edge detection results. More
importantly, we will show in [5.5.2] that the best pedestrian detection results are achieved with
just one vanishing moment. Fittingly, the theoretical results we derive in this chapter for the
characterization of edge points using local precision shearlets also require a condition that limits
the number of vanishing moments to one.
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In contrast to the results from the publications stated above, we use the more flexible scaling
matrix A, o with degree of anisotropy « € [1/2,1). We derive decay rates depending on «, which
make it possible to detect edge points and the orientation of the corresponding edge. In case of
the special case o = 1/2; regular points and corner points of the first and second type can be
distinguished from one another by the limit value of the shearlet transform for a — 0 in case s
corresponds to the normal direction at the analyzed point p € OR. Remarkably, in this case the
symmetry of local precision shearlets improve the results of originally described in [78],
concerning this limit value.

4.1 Characterization of Edge Points

First of all, for a local precision shearlet 1, points p outside of the boundary do not have to be
characterized by the asymptotic decay of SHyxr (a,s,p) for a — 0+. For such points p ¢ OR,
we derive the following statement.

Proposition 4.1. Let ¢ € L? (R?) be a local precision shearlet and R C R? with boundary OR
of length L to be smooth except for finitely many corner points. For p ¢ OR and each s € R,
there is a scale ag(s) € R small enough such that we have SHyxr (ao(s),s,p) = 0.

Proof. We analyze

SHyxr(a,5,p) = (XR Va,sp)
= / XR was,p()

= /R Va5 p (z)da

RNsupp d)a,s,p

Without loss of generality, we can assume p = (0,0) and R being such that p ¢ OR. For all
other cases p’ # (0,0), we just need to shift ¢ and R by p’ which results in the same integration
result. Therefore, we examine

SHyxn(a,s.p) = [ Va0 (2) da
RNsupp Ya,s,p
Since

wa,s,() (J}) = G_TaIb (A;}XSs_lx)

as well as supp 1 C [—b1,b1] and supp vy C [—bg, bo] with by, by € RT, we have
supp ¥a.s0 C {(z1,22) = |x1| < aby + sa®be, |x2| < a®ba}.

For p ¢ R, there is an ag(s) € RT small enough such that R N supp .0 = 0 and therefore

SHyxr (a,5,0) = / Va0 (z) de
RNsupp ¥a,s,0
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= /@@ﬁa,s’o (z)dx
0.

For the remaining possibility p € R, there exists an ag(s) € RT small enough such that RN
SUpPpP Ya,s,0 = SUPP Ya,5,0- In this case we get

SHoxr(@5.0) = [ tuwo(@)de

_lta

_ 1 g-1
= /]R? a "z (Aa’aSS a:) dz.
With 04, .5, (x) := A, 3,S5  x, we rewrite this equation by

SHﬂJXR (a7 87 0) = aHTa /2 det (VUAa,ois) w (O-Aa,ouss ('1:)) dx

R
By applying the transformation theorem and by the separability of ¥ we get

1+«

SHyxr(a,s,0) = a2 R2w(a:)dx
= aHTa/Ri/Jl (l’l)dwl/R'LﬂQ (1‘2)(11’2.

The component 1t is defined as wavelet, i.e. [p 1 (2x1)dz; = 0. This fact yields

1+

S’HwXR (a,s,O) = a ? /Rwl (xl)dxl/ng (afg)dxg

=0

O]

Regarding practical application, especially for detecting points of a pedestrian’s silhouette, reg-
ular points of R are of major interest. In case that the shear parameter s does not correspond
to the normal direction of OR at p, we make use of the special properties of a local precision
shearlet to state a specific decay rate of the shearlet transform. Theorem only provides
an estimation depending on the number of vanishing moments and the differentiability of the
shearlet in this case. In the opposite case that s corresponds the normal direction, we derive a
decay rate that matches the one of Theorem for o = 1/2. For this special cas