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Abstract 

Controlled attachment of bacterial cells to biotic and abiotic surfaces without affecting 

their fitness is of great interest in biotechnological applications, such as patterning 

surfaces with cell-based biosensors, cell-cell attachment in syntrophic communities and 

fabrication of bacteria-driven biohybrid microswimmers. For years genetically modified 

outer membrane proteins and autotransporters were used to functionalize the bacterial 

cell surface with peptides and small proteins used for peptide library screening, 

bioremediation and biocatalysis. In this study we modified Escherichia coli (E. coli) to 

autonomously display biotin on its cell surface via the engineered autotransporter 

antigen 43 (Ag43) and thus to bind to streptavidin modified surfaces. We could show 

that a biotin acceptor peptide (BAP) at the N-terminus of Ag43 is biotinylated in the 

cytoplasm, translocated to the cell surface and accessible to free or surface bound 

streptavidin. Flow cytometry measurements and fluorescence microscopy imaging of 

cells stained with fluorescently labelled streptavidin indicate that the biotinylation is 

strongly dependent on the intracellular levels of biotin and the biotin protein ligase 

BirA. Moreover, the staining pattern of Ag43 suggests that the majority of Ag43 is 

located at the cell poles. In addition, we modified Ag43 with the LOV2 domain of 

Arabidopsis thaliana, to control the accessibility of the displayed biotin through light 

controlled photocaging. To examine the effect of attachment on the fitness of E. coli, we 

used laser-assisted adsorption by photobleaching (LAPAP) to micro-pattern an abiotic 

surface with biotin. Such immobilized cells were able to grow for several generations 

and released their daughter cells into the medium. Aside from Ag43 alternative display 

mechanisms including OmpA (outer membrane protein A), INP (ice nucleating protein), 

AIDA-I (autotransporter) and FliC (flagellin), were investigated for biotin display, 

although only modified flagellin showed pronounced attachment to streptavidin. 

In a second part we used the Ag43 based biotin display system to fabricate bacteria-

driven biohybrid microswimmers (bacteriabots). Bacteriabots combine synthetic cargo 
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with motile bacteria that enable propulsion and steering. Although fabrication and 

potential use of such bacteriabots have attracted much attention, existing methods of 

fabrication require an extensive sample preparation that can drastically decrease the 

viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a 

liquid medium with chemical gradients has remained largely unclear. To overcome 

these shortcomings, we used our Ag43 based biotin display system to bind cells to 

streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly 

enhanced by motility and occurs predominantly at the cell poles, which is greatly 

beneficial for the fabrication of motile bacteriabots. We further performed a systematic 

study to understand and optimize the ability of these bacteriabots to follow chemical 

gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by 

the cargo-dependent reduction of swimming speed and show that the fabrication of 

bacteriabots using elongated E. coli cells can be used to overcome this limitation. 



 

Page | 15 

Zusammenfassung 

Die kontrollierte Anheftung von Bakterienzellen an biotische und abiotische 

Oberflächen, ohne Beeinträchtigung ihrer Fitness, ist von großem Interesse für 

biotechnologische Anwendungen, wie zum Beispiel bei der Strukturierung von 

Oberflächen mit zellbasierten Biosensoren, der Zell-Zell-Bindung in syntrophen 

Gemeinschaften und der Herstellung von biohybriden Mikroschwimmern angetriebenen 

von Bakterien. Seit Jahren werden genetisch modifizierte äußere Membranproteine und 

Autotransporter benutzt, um die bakterielle Zelloberfläche mit Peptiden und kleinen 

Proteinen zu funktionalisieren die für das Screening von Peptidbibliotheken, 

Bioremediation und Biokatalyse verwendet werden können. In dieser Arbeit haben wir 

Escherichia coli (E. coli) modifiziert, um mit Hilfe von Autotransporter Antigen 43 

(Ag43) autonom Biotin auf der Zelloberfläche zu präsentieren und somit an 

Streptavidin-modifizierten Oberflächen anzuheften zu können. Wir konnten zeigen, dass 

ein Biotin-Akzeptor-Peptid (BAP) am N-Terminus von Ag43 im Zytoplasma 

biotinyliert, an die Zelloberfläche transloziert und für freies oder 

oberflächengebundenes Streptavidin zugänglich war. Durchflusszytometrie-Messungen 

und fluoreszenzmikroskopische Aufnahmen von Zellen, die mit fluoreszenzmarkiertem 

Streptavidin angefärbt wurden, zeigten, dass die Biotinylierung stark von der 

intrazellulären Konzentration von Biotin und der Biotin-Protein-Ligase BirA abhängig 

ist. Darüber hinaus deutet das Färbemuster von Ag43 darauf hin, dass Ag43 größtenteils 

an den Zellpolen lokalisiert ist. Zusätzlich modifizierten wir Ag43 mit der LOV2-

Domäne von Arabidopsis thaliana, um die Zugänglichkeit des präsentierenden Biotins 

durch lichtgesteuerte Photoaktivierung zu kontrollieren. Um die Fitness von 

angehefteten E. coli Zellen zu untersuchen, verwendeten wir die lasergestützte 

Adsorption durch Photobleichung (LAPAP) und konnten dadurch abiotische Oberfläche 

im Mikrometerbereich mit Biotin strukturieren. Solche immobilisierten Zellen waren in 

der Lage für mehrere Generationen zu wachsen und ihre Tochterzellen in das 

umgebende Medium freizusetzen. Neben Ag43 wurden alternative Membranproteine 
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wie OmpA (outer membrane protein A), INP (ice nucleating protein), AIDA-I 

(Autotransporter) und FliC (Flagellin) auf die Möglichkeit untersucht Biotin zu 

präsentieren, wobei nur modifiziertes Flagellin eine ausreichende Bindung zu 

Streptavidin aufwies. 

Im zweiten Teil dieser Arbeit verwendeten wir das auf Ag43 basierte Biotin-

Präsentationssystem um biohybride Mikroschwimmer herzustellen die von Bakterien 

angetriebenen werden (Bacteriabots). Bacteriabots bestehen aus einer synthetischen 

Ladung die mittels Bakterien angetrieben und gesteuert wird. Obwohl die Herstellung 

und potentielle Verwendung solcher Bacteriabots viel Aufmerksamkeit auf sich 

gezogen hat, erfordern bestehende Herstellungsverfahren immer noch eine 

umfangreiche Probenvorbereitung, die die Fitness und Motilität von Bakterien drastisch 

verringern kann. Darüber hinaus ist das chemotaktische Verhalten von Bacteriabots in 

einer Flüssigkeit mit chemischen Gradienten weitgehend unerforscht. Um diese Defizite 

anzugehen verwendeten wir das auf Ag43 basierte Biotin-Präsentationssystem, um 

Zellen und eine mit Streptavidin beschichtete Ladung miteinander zu verbinden. Wir 

konnten zeigen, dass die Beladung von Batterien strak von deren Motilität abhängt und 

vorwiegend an den Zellpolen auftritt, was für die Herstellung von motilen Bacteriabots 

sehr vorteilhaft ist. Des Weiteren untersuchten wir in wie weit die verwendeten 

Bakterien einem chemischen Gradienten folgen können und versuchten diese Fähigkeit 

zu optimieren. In diesem Zusammenhang konnten wir demonstrieren, dass die 

Chemotaxis von Bacteriabots primär durch die Beladung verursachte Verringerung der 

Geschwindigkeit limitiert ist und dass die Verwendung von langgestreckten E. coli 

Zellen für die Herstellung von Bacteriabots diese Limitierung überwinden können. 
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1 Introduction 

1.1 Bacterial cell surface display systems 

The cell surface of bacteria harbors a variety of membrane proteins including receptors, 

enzymes, transporters and cell adhesion proteins. Moreover, cell surface appendages 

like flagella, pili, curli and fimbriae are assembled from many subunits and protrude far 

into the extracellular space. Since these proteins can be genetically modified
1
, they can 

be used to target recombinant proteins (passenger proteins) to the surface of living cells 

and therefore expose them to the extracellular environment. This has the advantage that 

molecules, proteins or bigger structures that cannot cross the cell envelope can be used 

to interact with the passenger protein. Together with a high abundance of up to 10
5
–10

6
 

membrane proteins per cell
2
 makes it useful for various biotechnological applications

3
, 

including the display of antigens for vaccine-delivery systems
4
, enzymes for whole-cell 

biocatalytic systems
5
 and protein libraries for screening purposes 

6
. In the past such 

surface display systems were established for eukaryotic cell lines
7
, yeast

8, 9
, gram 

positive
10, 11

 and gram negative bacteria
12, 13

. However, the most frequently used 

organism is Escherichia coli (E. coli), which is the most accessible bacterium for 

genetic engineering and broadly used for producing recombinant proteins. Here 

Appendix-Table 1 gives a comparative overview over the used cell surface display 

proteins and the corresponding passenger proteins. 

The most commonly used proteins for surface display are outer membrane proteins and 

autotransporter proteins (Figure 1). Both are integral outer membrane proteins and span 

the outer membrane with antiparallel -sheets. Surface display precursor proteins are 

produced in the cytoplasm and due to their N-terminal signal peptide are translocated 

via the SecYEG complex across the cytoplasmic membrane
14

. During translocation a 

signal peptidase cleaves off the signal peptide and releases the mature protein into the 

periplasm. In the case of outer membrane proteins periplasmic chaperones associate 

with the protein and keep it in an unfolded state, until it is embedded into the outer 
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membrane, via the BAM complex
15

. The peptide or protein of interest that will be 

displayed (passenger protein) is typically located at the C-terminus or a loop protruding 

from the outer membrane protein, which is exposed to the extracellular space. On the 

other hand the type V secretion system of autotransporters involves the Sec system for 

crossing the inner membrane. The C-terminal domain of these proteins create a porin–

like structure in the outer membrane facilitated by their inherent auto chaperone domain 

and periplasmic chaperones
16

. The N-terminal passenger domain is translocated to the 

cell surface with an additional ~50 amino acid linker region spanning the β-barrel 

pore
17

. In case of autotransporters the protein of interest is typically located within or at 

the N-terminus of the passenger domain. 

One of the most used outer membrane proteins is a chimera of the first 29 amino acids 

of Lpp, the major E. coli lipoprotein, which includes its natural signal sequence, and the 

transmembrane domain (amino acids 46 to 159) of the outer membrane protein A 

(OmpA)
18, 19

. The N-terminus of OmpA was used to display heterologous proteins like 

scFv antibody, -lactamase
20

 or cellulases
21, 22

. Autotransporter proteins are widely used 

to display entire protein domains, which retains their functionality and ability to 

dimerize
23, 24

. Prominent representatives for autotransporter proteins are AIDA-I from 

pathogenic E. coli (DAEC) strains
25, 26

 and antigen 43 (Ag43)
24, 27

 from E. coli K12 

which are involved in cell auto-aggregation and translocate naturally a 797 amino acid 

and 498 amino acid passenger domain across the outer membrane. Lipoproteins, like 

truncated derivatives of the ice nucleation protein (INP) of Pseudomonas syringae
28

, 

have been reported to display the largest passenger proteins among the surface display 

systems for E. coli
1, 13

. In contrast to the above described insertion of β-sheets into the 

outer membrane, lipoproteins form a covalent linkage between its relatively 

hydrophobic N-terminus and a lipid moiety
29, 30

. Besides integral membrane proteins, 

cell surface appendages like fimbriae and flagella are used to display recombinant 

peptides far beyond the cell surface, which prevents an interference with membrane 

proteins, lipopolysaccharides (LPS), extracellular polymeric substances (EPS) and other 

outer membrane associated molecules. An additional advantage is that fimbria and 

flagella are composed of numerous identical subunits, facilitating dense accumulation of 

displayed peptides
31

. However, since the construction of these filaments depends on a 
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defined conformation of their subunits, a conformational change through an 

incorporated peptide can be detrimental for its integrity. Additionally, the flagellin 

subunits FliC and flagellar cap protein FliD are translocated through the central channel 

of the flagellum
32

, with a diameter of about 2 nm, which limits the introduction of 

peptides to under 60 amino acids
33, 34

. Structural analysis of the flagellin subunit FliC 

identified variable regions, which allow the deletion of up to 187 amino acids without 

loss of function or polymerisation of the flagellum
35

. Westerlund-Wikstrom, et al. 

(1997)
36

 could demonstrate that larger proteins like the 302 amino acid YadA adhesin 

can be displayed by replacing such variable regions. 

 

Figure 1 Schematic representations of typical E. coli surface display systems. Obtained and modified 

from van Bloois, et al. (2011)
13

 (A) OmpA with a passenger peptide (orange) inserted into a surface 

exposed region. The transmembrane antiparallel -sheets are shown as arrows. (B) An autotransporter-

based display scaffold used for the surface presentation of an N-terminally fused passenger enzyme 

(orange). (C) N and C domains of the ice nucleation protein with truncation of the entire internal 

repeating domain. PP: periplasm, OM: outer membrane. 

1.1.1 Antigen 43 

Antigen 43 (Ag43) is with 50,000 copies per cell one of the most abundant outer 

membrane proteins of E. coli and belongs to the autotransporter family
27, 37, 38

. The gene 

agn43 encodes for the 1,039 amino acid protein, which has the typical domain 

architecture of autotransporter and comprises of an N-terminal signal sequence, a 

secreted passenger domain (α domain) and a β-domain comprising an autochaperone 

domain and a C-terminal integral outer membrane β-barrel domain(Figure 2A). The 

signal sequence targets Ag43 to the inner membrane and directs its translocation across 

the membrane via the Sec system into the periplasmic space
14, 16

. The passenger domain 

of Ag43 is secreted to the outer cell surface and forms a twisted L-shaped β-helical 

structure with a length of about 100 Å
39, 40

. The L-shaped structure facilitates self-

association of Ag43 by hydrogen bonds forming between two parallel strands and 



Introduction 

 

 

Page | 20 

consequential leads to auto-aggregation between cells which express it (Figure 2B)
41

. 

The autochaperone domain together with periplasmic chaperones (DegP, FkpA, Skp 

and SurA) and accessory factors (Bam complex) presumably translocate and incorporate 

the C-terminal β-barrel domain into the outer membrane by forming a β-barrel pore, 

through which the passenger domain is secreted
42-44

. According to immunofluorescence 

studies Ag43 is homogeneously distributed over the cell surface
41

. However, Jain, et al. 

(2006)
45

 could demonstrate that the localization of various autotransporters, including 

AIDA-I, a close homologue to Ag43, are highly dependent on the composition of the 

outer membrane, the lipopolysaccharide length and the autotransporter abundance 

(Figure 2C,D), suggesting that also the localization of Ag43 can vary. 

The expression of agn43 features phase variation and is dependent on the competitive 

binding between the repressor OxyR and the deoxyadenosine methyltransferase 

(Dam)
46

. The expression state of a cell can be inherited by the next generation yet the 

switch between the phases is reversible. The deletion of oxyR or dam leads to locking 

the cells in the On or Off phase, respectively
47, 48

. This phase variation creates 

phenotypic heterogeneity within a clonal population and leads to a selective 

autoaggregation of cells in the On phase. Several studies could demonstrate that this 

Ag43 mediated cell-to-cell interaction enhances the formation of E. coli biofilms
49, 50

, 

which is supported by the increased expression of Ag43 during biofilm growth 

compared to exponential and stationary planktonic cultures
51

.  
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Figure 2 Domain organization of Ag43 and differential localization of AIDA-I. Obtained and 

modified from van der Woude, et al. (2008)
27

, Heras, et al. (2014)
39

 and Jain, et al. (2006)
45

. (A) 

Schematic representation of the protein domains of Ag43. Shown are the signal peptide (red), the α-

domain (green), the β-domain (blue), and the autochaperone domain (light blue). Numbers designate the 

numbers of amino acids at the domain boundary. (B) Model of Ag43 self-assembly in a head-to-tail 

conformation. The interacting surfaces of the α-domain (shown in yellow and orange) are easily 

accessible to neighboring molecules. (C, D) The localization of autotransporter AIDA-I, expressed from a 

plasmid, on the surface of E. coli 2443 cells (strain 2443 ompT pIB264), which express a complete LPS 

(C) and on the surface of E. coli K-12 (strain MBG263/pIB264), which express an incomplete LPS (D). 

Scale bar: 5 µm. 

1.2 The use of biotin in biotechnological applications 

Biotin, also known as vitamin H, can be found in organisms as free D-(+)-biotin, 

covalently bound to proteins or as biocytin an occurring intermediate from biotin 

metabolism. It is typically bound to multiple enzymes as prosthetic group and is 

involved as cofactor in carbon dioxide transfer like in fatty acid synthesis or 

gluconeogenesis
52

. In eukaryotic organisms biotin is involved in chromatin remodeling, 

since specific lysine residues in histones can be biotinylated by biotinidase and 

holocarboxylase synthetase
53

. In research and biotechnology the genetically 

modification of proteins allows for their specifically biotinylation, which is widely used 

to detect their localization in the cell or to isolate them from a complex environment. 

This is possible through the strong interaction between biotin and the protein 

streptavidin, which can be coupled to various dyes or surfaces. 
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1.2.1 The natural biotinylation system of E. coli 

In E. coli the genes required for the syntheses of biotin (vitamin H) are encoded in the 

biotin biosynthetic operon (bio). The operon is controlled by the demand and 

availability of biotin in the cell
54, 55

. Extracellular biotin is imported into the cell through 

YigM, a secondary active transporter and a less efficient nonspecific transport
56

. Free 

biotin in the cell is inactive and has only a biological function when it is covalently 

bound to biotin acceptor proteins. This biotinylation is mediated through the 35.5 kDa 

biotin protein ligase BirA
57, 58

, which activates biotin with ATP to a biotinoyl-5’-AMP 

intermediate and subsequently forms an amide linkage between the carboxyl group of 

biotin and the ε-amino group of a specific lysine within the acceptor protein (Figure 

3A)
59

. The only naturally biotinylate protein in E. coli is the biotin carboxyl carrier 

protein (BCCP), a subunit of the acetyl coenzyme A carboxylase (ACC). ACC uses the 

biotin as cofactor to catalyze the first step of the fatty acid synthesis, the carboxylation 

of acetyl-CoA to malonyl-CoA
60

. BirA is a bifunctional protein which, besides 

biotinylating BCCP, is a transcriptional repressor of the bio operon (Figure 3B,C)
61

. In 

the absence of BCCP, the BirA-biotinoyl-5’-AMP complex is thermodynamically very 

stable, which promotes the complex to dimerize
62

 and bind to the operator site of the bio 

operon
63

. This allows BirA to balance the intracellular concentration of biotin and 

BCCP for efficient biotinylation
64

. The recognition and biotinylation by BirA is 

probably mediated through a structural feature within BCCP
59

, positioning the biotin 

accepting lysine within the active site of BirA. Screening of synthetic peptides revealed 

that a consensus sequence of 13 amino acids is sufficient to specifically biotinylated the 

peptide
65

, although the primary structure of this peptide showed low resemblance with 

the natural recognition side. 



Introduction 

 

 

Page | 23 

 

Figure 3 General model of bio operon regulation. Obtained and modified from Solbiati, et al. (2010)
66

. 

(A) The biotin protein ligase reaction. (B, C) General model of repression and derepression of E. coli bio 

operon transcription by BCCP supply. Green ovals denote BirA, tailed blue ovals are BCCP, black dots 

are biotin, and black dots with red pentagons are bio-AMP. 

1.2.2 Streptavidin, its analogues and their interaction with biotin 

Streptavidin, a homotetramer from Streptomyces avidinii, can form with biotin a stable 

bond over a wide range of temperatures and pH values, therefore it has been extensively 

studied for biotechnological applications. Since biotin can be used as a prostatic group 

and has a side chain that is easily conjugated to different moieties, it is used to 

immobilize molecules like DNA, RNA, proteins, nanoparticles or quantum dots, to a 

variety of substrates
67-69

. Moreover, biotinylation of proteins is a well-known process 

and is used to functionalize specific proteins in a mixed pool like the cytoplasm of the 

cell
70, 71

. Biotin is, with a size of 0.244 kD, a small molecule which has a minor effect 

on the properties of the attached protein. The posttranslational biotinylation of proteins 

is typically achieved by fusing a 15 amino acid biotin acceptor peptide
65, 72

 at the N-

terminus, C-terminus or within the protein of interest. In the presence of the E. coli 

enzyme biotin protein ligase (BirA) the lysine in the BAP sequence is specifically 

biotinylated. Here BirA can either be expressed within the cell simultaneously to the 

protein of interest or can be added externally to, for example, a cell lysate. The 

specificity of the BirA based biotinylation allows its use in various prokaryotic and 

eukaryotic systems without modifying endogenous proteins
73-75

. 

The interaction between streptavidin and biotin is highly specific and one of the 

strongest non-covalent bonds in nature, with a dissociation constant of 10
-13

 M to 

10
-15

 M
76-78

 and a binding strength of 5 pN to 170 pN
79

. To bind biotin efficiently, four 
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streptavidin monomers form a 52.8 kDa homotetramer, where each monomer has a 

binding site for one biotin molecule. Biotin is confined in the hydrophobic binding 

pocket of streptavidin by van der Waals interaction
80

, eight hydrogen bonds
81

 and an 

electronic polarization mediated through a cooperative effect of hydrogen bonds 

surrounding the binding side
82-84

.  

Streptavidin, avidin and NeutrAvidin are functional and structural analogues with a high 

affinity to biotin
85, 86

. Avidin is a glycosylated protein present in the egg white of 

oviparous vertebrates. NeutrAvidin is a commercial available deglycosylated derivate of 

avidin
87

. Besides the glycosylation of avidin the main difference between these three 

proteins is that avidin
77

 is a basic protein with a high isoelectric point (pI) of 10.5, 

whereas streptavidin
77

 with a pI of 5-6 and NeutrAvidin
87

 with a pI of 6.3 are mildly 

acidic proteins. Owing to their lower charge, streptavidin and NeutrAvidin have a lower 

nonspecific protein–protein interaction at pH 7.4 than avidin. 

1.2.3 Modifying the cell surface with biotin 

In recent years efforts have been made to modify the surface of eukaryotic cell lines
88, 

89
, yeast

75, 90
, gram positive

91
 and gram negative

92-94
 bacteria with biotin, since the 

interaction with streptavidin conjugated with molecules or immobilized on surfaces can 

be used for the identification and quantification of membrane proteins
88, 89, 91, 92

, the 

isolating of rare cell populations from a complex cell mixture
95

, electron microscopic 

and magnetic resonance tomographic imaging
90, 96

, cell adhesion
94

 and the display of 

non-natural molecules
75

. Depending on the organism, various methods were used, 

falling into the following three categories: chemical biotinylation of membrane proteins, 

enzymatic biotinylation of recombinant membrane proteins and biotinylated antibodies 

targeting membrane associated epitopes. The most widely used methods to chemically 

bind biotin to surface proteins are the use of sulfosuccinimidyl biotin which cross-links 

with exposed primary amine groups of proteins
92, 97-99

 and N-biotinyl-L-lysine which 

reacts with oxidized glycosides of lipopolysaccharides
100

. This modification of the cell 

surface is mainly used to adhere cells stably on streptavidin coated surfaces like for 

example a rapid immobilization of eukaryotic cells to a substrate
101

 or the attachment of 
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bacteria to nanoparticles used in the fabrication of bacteria-driven microswimmers
102, 

103
.  

For the surface display of biotin, an outer membrane protein or motif targeting the outer 

membrane is used to translocate a typically 15 amino acid biotin acceptor peptide, 

which is enzymatically biotinylated either intracellularly or extracellularly by the biotin 

protein ligase BirA
65, 72

 from E. coli. In eukaryotic cell lines modified membrane 

proteins like the growth factor receptor (EGFR)
104

 and the platelet-derived growth 

factor receptor (PDGFR)
90

 or the raft-targeting motif of the Lck kinase are used for the 

translocation
96

, whereas in yeast the anchor domain of the flocculation protein Flo1p 

(Flo428) of Saccharomyces cerevisiae is used
75, 105

. The use of biotinylated antibodies is 

mainly used for E. coli, targeting the lipid A of the lipopolysaccharide
94

 or OmpA
93

. 

The last two methods associate biotin to a specific protein or molecule on the cell 

surface, which allows their detection and cell sorting based on the used streptavidin 

conjugated ranging from fluorescent dyes
95

 to small particles like quantum dots
106

 and 

magnetic nanoparticles
96

.  

1.3 Bacteria propelled microswimmers 

Cell-driven biohybrids  have been studied widely over the last decade due to their 

potential biomedical applications, including the targeted active delivery of cargo, such 

as drugs, genes, or imaging contrast agents
94, 107-114

. Here, unicellular organisms, such as 

bacteria or algae, or cells of higher eukaryotes (e.g., cardiomyocytes or spermatozoa), 

are used to propel the biohybrid swimmers in stagnant or low-velocity physiological 

fluids. Especially bacteria-driven microswimmers (bacteriabots) are a versatile tool due 

to the diversity of their sensory and tactic behaviors, high and robust motility in liquid 

media at diverse environmental conditions (e.g., variable temperature, pH, oxygen 

concentration etc.) and therapeutic
115

 and targeting
116

 capabilities for specific 

diseases
117

, as well as the potential for tailored genetic modifications bringing desired 

attributes. Recent studies have shown that bacteriabots based on Escherichia coli, 

Serratia marcescens or Salmonella enterica serovar Typhimurium can in principle 

follow chemoattractant gradients
118-122

, including gradients toward cancerous cells
103, 

109
. However, reliable application of such bacteriabots, in biomedicine and beyond, 
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requires better fundamental understanding of their chemotactic behavior, considering 

that the attachment of single or multiple bacteria to synthetic bodies (Figure 4), such as 

microparticles
112, 117, 119-121, 123

, microsheets
124

, microemulsions
94

, and microtubes
125

, is 

likely to affect their taxis performance compared to the free swimming bacteria. 

Bacteriabots generally consist of motile bacteria which are attached to synthetic cargo 

(e.g., microparticle). Although electrostatic or hydrophobic interactions provide the 

simplest ways to attach bacterial cells to the cargo
112, 123, 126

, such attachment may not be 

specific and reliable enough to maintain their integrity, especially in biological fluids 

with high concentrations of proteins, ions and possible fluidic shear forces
115

. In 

contrast, protein-protein or protein-ligand interactions like between biotin/streptavidin
79

, 

spytag/spycatcher
127

, Jun/Fos
128

 etc. are highly specific and very strong. Most 

commonly the attachment of cells decorated with biotin to streptavidin coated 

nanoparticles has been utilized in the fabrication of bacteriabots
94, 118, 129

. Although the 

bacterial cell surface could be functionalized with biotin through several methods as 

described before (section 1.2.3), the yield and efficiency of motile bacteriabots 

fabricated using these methods remained low, because several functionalization and 

washing steps negatively affect bacterial motility and viability. Moreover, the 

specificity of these methods is rather limited
130

. 

 

Figure 4 Attachment of single or multiple bacteria to synthetic cargo. Obtained and modified from 

Hosseinidoust, et al. (2016)
115

. Single-cell (A) and multi-cell (B) biohybrid systems with spherical or 

cone cargo. 
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1.4 Chemotaxis of E. coli 

Like most organisms, bacteria are dependent on finding niches with optimal conditions 

for survival and growth. The ability of bacteria to sense and follow gradients of 

environmental stimuli, including nutrients, signal molecules, beneficial or harmful 

chemicals, pH, redox potential and temperature
131

, is mediated through receptor proteins 

and a signaling cascade translating such stimuli into a change in motility
132

. Bacteria 

evolved a variety of surface depended motility systems, including swimming, 

swarming, gliding and twitching, whereas surface independent motility is restricted to 

swimming
133

. The rotation of flagella protruding from the cell surface, helical structures 

made of many flagellin subunits and powered by a membrane bound motor complex
134

.  

In case of the peritrichous E. coli, the model organism for bacterial chemotaxis
135

, the 

propulsion of the cell is controlled by the direction of their flagellar motor rotation, with 

counterclockwise rotation resulting in the bundling of the multiple flagella, which 

powers more-or-less straight runs, and clockwise rotation leading to a partial 

disintegration of the bundle and cell tumbling
136

. In a homogeneous environment 

bacteria explores the environment in a random walk like manner (Figure 5A), achieved 

through runs lasting between one and two second followed by a tumble lasting about 

0.1 s
137

. Similar to other chemotactic bacteria, swimming E. coli cells make temporal 

comparisons of their environment and modulate the run length dependent on whether 

the environment becomes more or less favorable, thus biasing the random walk towards 

the favorable direction (Figure 5B)
137-139

. The underlying chemotaxis signaling network 

(Figure 5C) of E. coli consists of five receptors (Tar, Tsr, Tap, Trg, and Aer), which are 

arranged in chemoreceptor clusters together with two cytoplasmic proteins, the adaptor 

CheW and the kinase CheA
140, 141

. Further cytoplasmic signaling proteins are the 

response regulator CheY, its phosphatase CheZ, and the receptor 

methylation/demethylation enzymes CheR and CheB. The main function of the sensory 

clusters is to process environmental stimuli and to provide a coordinated output – the 

level of CheY phosphorylation – controlling the direction of flagellar motor rotation. 

The wide dynamic range of stimuli discriminations in E. coli chemotaxis is maintained 

by the activity-dependent methylation of chemotaxis receptors. Receptor methylation 

compensates stimulus-induced changes in activity of the receptor-associated kinase 
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CheA, so that bacteria can adapt to constant background stimulation. Additionally, due 

to its delayed occurrence, receptor methylation also serves as a short-term memory, 

enabling the aforementioned temporal comparisons of environmental conditions. 

 

Figure 5 Chemotaxis strategy of E. coli and the underlying signaling network. Obtained and 

modified from Sourjik, et al. (2012)
142

 Porter, et al. (2011)
143

. See text for more details. 
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1.5 Scope of this dissertation 

In different fields of biotechnology a strong and specific attachment between bacterium 

and biotic or abiotic surfaces are needed. Up to this day different methods have been 

used, to a certain extent successfully to mediate such surface attachment, including 

unspecific interactions, the chemical modification of bacteria and the genetically 

modification of outer membrane proteins with functional peptides and small proteins. 

However most methods used so far either lack reliable attachment, specificity or require 

elaborate sample preparation which is accompanied by decreased fitness of the bacteria. 

In this study we address this problem by constructing systems displaying biotin 

autonomously on the cell surface of E. coli and evaluating the attachment to surface 

bound streptavidin, including its potential for bacteriabot fabrication. Moreover, we 

investigate how chemotaxis of bacteria is affected when attached to synthetic cargo and 

apply our findings to overcome eventual limitations in bacteriabot fabrication.  
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2 RESULTS 

2.1 Characterization of biotinylated peptides displayed on the 

bacterial cell surface 

The aim of this study was the construction of a genetically engineered E. coli strain 

capable of directed and specific attachment to biotic and abiotic surfaces. We showed 

that the engineered autotransporter antigen 43 can be used to display biotin on the 

bacterial cell surface and characterize the biotin-streptavidin mediated attachment. 

2.1.1 Modified autotransporter Ag43 displaying biotinylated peptides 

For displaying biotin on the cell surface of E. coli we genetically modified the N-

terminus of the endogenous Ag43 with an 15 amino acid biotin acceptor peptide 

(BAP)
65

, which can be biotinylated intracellularly by the native biotin ligase BirA
72

. 

After successful translocation through the inner cell membrane and insertion into the 

outer membrane, the biotinylated N-terminus of Ag43 should be displayed on the cell 

surface
24

 and thus accessible to extracellular molecules (Figure 6). To assess which 

position in Ag43 is best suitable for introducing BAP we made three constructs. Ag43-

90aa-BAP had the BAP placed at the N-terminus of Ag43, Ag43-BAP-90aa had the 

BAP placed 90 amino acids downstream of the N-terminus, whereas for Ag43-BAP, the 

first 90 amino acids were missing. At the same site as BAP, we added a FLAG epitope 

for detecting the presence of the construct on the cell surface and a TEV protease 

restriction site to release and verify the extracellular localization of the biotin modified 

peptide. For visualization we stained biotin with NeutrAvidin (analogue of streptavidin) 

conjugated to a green fluorophore (NeutrAvidin-biotin staining), whereas the FLAG 

epitope was immunostained with a secondary antibody conjugated to a red fluorophore 

(see Material and Methods for details). 
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Figure 6 Design of the Ag43 based biotin display system. Schematic model of the Ag43-mediated 

peptide display. The N-terminus of Ag43 was modified with a FLAG epitope tag and a biotin acceptor 

peptide (BAP). ES: extracellular space, OM: outer membrane, PPS: periplasmic space. 

The modified passenger domain of the recombinant Ag43 could be detected on the 

surface of most cells via FLAG-tag antibody staining of the outer membrane (Figure 

7A). In case of Ag43-BAP-90aa and Ag43-BAP the same cells also showed pronounced 

NeutrAvidin-biotin staining. The incubation of stained cells with TEV protease released 

the bound fluorescently labeled NeutrAvidin from the cell surface within 15 minutes 

(Figure 7C). This indicated that BAP was biotinylated in the cytoplasm, translocated to 

the cell surface and accessible to exogenous fluorescently labeled NeutrAvidin. 

However placing BAP at the full-length N-terminus of Ag43 (Ag43-90aa-BAP) showed 

weak staining, indicating that not all positions in Ag43 are accessible to BirA or 

NeutrAvidin. To promote the accessibility of surface bound NeutrAvidin we decided to 

use in all further described experiments the construct with the shortened Ag43 N-

terminus, Ag43-BAP. Furthermore, quantification of the fluorescence microscopy 

images of Ag43-BAP stained with fluorescently labeled NeutrAvidin showed that in up 

to 35 % of the cells the protein was located at the cell poles, whereas the majority of 

cells had a rather uniform distribution (Figure 7B).  

The quantification of biotinylated Ag43-BAP using flow cytometry allowed us to assess 

the limitations of the system and to optimize the biotin display (Figure 7C). Since the 

biotinylation is mainly dependent on biotin and BirA, we externally increased their 

availability and used the NeutrAvidin-biotin staining to assess the amount of biotin 

present on the cell surface. The addition of biotin to the growth medium increased the 

staining up to 4.4 fold. The further overexpression of BirA increased the biotinylation to 

about 9 fold compared to cells grown without biotin. This indicates that the BAP 
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biotinylation was partly limited by the availability of biotin and that the overexpression 

of BirA can drastically increase biotinylation. In order to determine if all translocated 

BAP was biotinylated, we incubated cells with exogenously added BirA and biotin after 

cell harvest. The further increase in the biotinylation suggested that even in presence of 

biotin in the growth medium and an increased intracellular level of BirA, E. coli 

biotinylated only a fraction of Ag43-BAP.  
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Figure 7 Quantification and localization of biotinylated Ag43-BAP displayed on the cell surface of 

E. coli. E. coli cells carrying a recombinant Ag43 on IPTG inducible plasmid were grown with 1 µM 

biotin and 100 µM IPTG in the growth medium, if not indicated differently. (A) E. coli cells carrying 

Ag43-FLAG with and without BAP variants (see text for more details) were analyzed using anti-FLAG 

immunostaining (red) and NeutrAvidin-biotin staining (yellow) for detecting recombinant Ag43-FLAG 

and surface-displayed biotin, respectively, and subsequent fluorescence microscopy. Scale bar: 4 µm. (B) 

Fluorescence images of E. coli cells carrying Ag43-BAP that were incubated with fluorescently labeled 

NeutrAvidin (yellow). Scale bar: 2 µm. (C) E. coli cells carrying Ag43-BAP, and BirA on a plasmid 

induced with arabinose (iBirA), were cultivated, washed and subsequently incubated with or without 

exogenous BirA / biotin (eBirA). TEV protease was added after NeutrAvidin-biotin staining for 15 min 

when indicated (TEV). Biotinylation was quantified via anti-biotin immunostaining measured by flow 

cytometry, as described in Material and Methods. Statistical analysis was performed using a two-sample 

t-test with unequal sample size and unequal variance, yielding highly significant differences between all 

datasets above 2 RFU (with asterisk indicating P < 0.001). Data are from six independent experiments. 
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2.1.2 Specific cell-cell attachment mediated through NeutrAvidin 

Since the biotinylated peptide could be displayed on the cell surface, we investigated 

under which conditions the strong biotin-NeutrAvidin interaction causes cell-cell 

attachment. Different concentrations of NeutrAvidin were added to cell suspensions 

displaying biotin and determined the formation of cell aggregates after 30 min via 

bright-field microscopy. The addition of 1 µg/ml NeutrAvidin to cell suspensions with 

an OD600nm of 0.0375 lead to cell-cell aggregation, which was absent at 10 µg/ml and 

0.1 µg/ml of NeutrAvidin (Figure 8). Likewise aggregation was also seen by mixing 

untreated and NeutrAvidin saturated cells in a ratio of 5 to 1. In the presence of excess 

free biotin, the aggregation could be blocked, supporting that the cell-cell attachment is 

mediated by NeutrAvidin binding to displayed biotin of two neighboring cells. No 

aggregation was observed when cells were grown in TB medium (Figure 8), whereas it 

was clearly visible when biotin was added to this medium or cells were grown in a rich 

medium like LB medium. This supports the assumption that the availability of biotin in 

the growth medium influences the amount of displayed biotin per cell and thereby the 

specific aggregation via NeutrAvidin. 
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Figure 8 Dependence of cell-cell attachment on NeutrAvidin and biotin. (I-IX) E. coli cells carrying 

Ag43-BAP on IPTG inducible plasmid were grown with 1 µM biotin and 100 µM IPTG in TB medium, if 

not indicated differently. Cell suspensions were incubated with 1 µg/ml NeutrAvidin (II-IV, VI-IX), if not 

indicated differently. (VI) Cells were incubated with 1 µg/ml NeutrAvidin, 1 µM biotin and incubated for 

30 min. (V) Untreated cells and cells coated with NeutrAvidin were mixed in a ratio of 5 to 1. The 

formation of cell aggregates was determined after 30 min of incubation via bright-field microscopy. Scale 

bar: 20 µm. 

2.1.3 Attachment of cells on microparticles  

To validate that NeutrAvidin can mediate the attachment between cells but also to 

defined surfaces, E. coli expressing Ag43-BAP was incubated for 30 min with 

streptavidin coated microparticles. Similar to the attachment behavior seen before, 

Ag43-BAP enabled cells to attach to microparticles, whereas in the absence of BAP or 

the addition of excess biotin, no attachment was visible (Figure 9A). By mixing two 

different colored strains we could demonstrate that a microparticle can hold multiple 

cell types in close proximity (Figure 9B). 

At high concentration of cells and microparticles the attachment leads over time to the 

formation of aggregates Figure 9C). The size of the aggregates can be controlled by the 

addition of biotin since it blocks the formation of new biotin-streptavidin bonds. 
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Furthermore, non-motile cells (flagellin deletion mutant, Δflic) formed smaller and 

more equally distributed aggregates, indicating that cell motility has an effect on cell-

particle attachment and aggregation. 
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Figure 9 Cell attachment on streptavidin coated particles. E. coli cells carrying a recombinant Ag43 

on IPTG inducible plasmid were grown with 1 µM biotin and 100 µM IPTG in TB medium. (A) Cells 

carrying Ag43-FLAG with and without BAP were incubated for 20 min with streptavidin-coated 10-µm 

polystyrene particles. If indicated 1 µM biotin was added before incubation. Attachment was visualized 

via bright-field microscopy. Scale bar: 20 µm. (B) Cells carrying Ag43-BAP and an inducible GFP 

(green) or mCherry (red) construct were mixed and incubated for 20 min with streptavidin-coated 10-µm 

polystyrene (PS) particles. Attachment was visualized via fluorescence microscopy. Scale bar: 4 µm. (C) 

Motile wild-type E. coli cells (WT) and non-motile ΔfliC carrying Ag43-BAP and an inducible GFP 

construct (green) were incubated for 6 h with streptavidin-coated red fluorescent 2-µm silica particles 

(red). If indicated 1 µM biotin was added before incubation. Aggregation was visualized via fluorescence 

microscopy. Scale bar: 150 µm. 



Results 

 

 

Page | 39 

2.1.4 Role of motility in cell-particle attachment 

Based on the previous results we had a closer look at how cells are attached to particles 

and which effect the cell motility has on the cell-particle attachment. The complexes 

between cell and microparticle could be visualized in great detail using either confocal 

fluorescence microscopy or scanning electron microscopy (Figure 10A). The images 

indicate that cells preferentially attach via their pole to the microparticles. To confirm 

this observation and whether motility has an effect on it, we performed statistical 

analysis. We analyzed the attachment pattern of motile cells (wild-type) and non-motile 

cells (Δflic) via fluorescence microscopy and defined a polar attachment when the 

particle was located within the first fifth of the cell. Wild-type cells had a more 

pronounced polar attachment compared to the non-flagellated strain that was used as a 

control (Figure 10B), suggesting that this is at least partially due to head-on collisions of 

swimming cells with the microparticles during the attachment process. However, 

preferential localization of the recombinant Ag43 to the E. coli cell pole might also 

contribute to polar attachment (Figure 7B), since significant polar preference was 

observed even for the non-flagellated cells. 

To better understand the importance of motility for attachment, we compared the 

attachment kinetics of motile and non-motile bacteria. Cells and microparticles were 

mixed and analyzed every 2 min via flow cytometry to distinguish microparticle-

attached cells, from free cells and microparticles. The attachment of wild-type cells 

reached after ~6 min of incubation its half-maximal value and approaching saturation 

after 20 min, when free particles became depleted (Figure 10C). Excess of free biotin in 

this process completely blocked attachment, confirming specificity of bacteria-particle 

interactions. In contrast, the attachment of non-motile cells lacking flagella reached its 

half-maximal value after ~39 min of incubation. To clarify if this difference was 

partially due to the lack of motility, and not due to unspecific adhesion of cells via 

flagella
144

, the swimming speed of wild-type E. coli was decreased by dissipating the 

proton motor force of the cell with the help of carbonylcyanide-m-

chlorophenylhydrazone (CCCP). Wild-type cells treated with CCCP had an even more 

pronounced decrease in the attachment rate compared to non-motile cells, whereas the 

effect of CCCP on the attachment rate of non-motile cells was minor. The overall worse 
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attachment of the CCCP-treated wild type compared to non-flagellated cells suggests 

that in absence of motility, flagella might partly hinder the biotin-streptavidin mediated 

cell-particle attachment
145

. Altogether, these data clearly show that motility promotes 

(polar) attachment, primarily through heads-on collisions of bacteria with 

microparticles. 

 

Figure 10 Effect of cell motility on particle attachment. Motile wild-type E. coli cells (WT) and non-

motile ΔfliC cells carrying the recombinant Ag43-BAP on IPTG inducible plasmid and an arabinose 

inducible GFP construct (green) were incubated for 20 min with streptavidin-coated 2.2-µm PMMA 

particles (red), at a mixing ratio of 1:30. (A) Images of particle-attached cells acquired via confocal laser 

scanning microscopy (top) or scanning electron microscopy (bottom), with scale bars being 2 µm and 

1 µm, respectively. For better visualization, cells were elongated by inhibiting cell division using 

cephalexin to the TB medium for one hour before harvesting. (B) Corresponding quantification of the 

polar and non-polar cell-particle attachment of WT (for 786 attached cells) and ΔfliC (for 1115 attached 

cells) cells were analyzed via fluorescence microscopy. Statistical analysis was performed using a two-

sample t-test with unequal sample size and unequal variance, with asterisk indicating P < 0.005. Error 

bars show SEM of three independent experiments. (C) Kinetics of particle attachment quantified using 

flow cytometry. Where indicated, CCCP was added during incubation to reduce cell motility. As a 

negative control, biotin was added in excess to inhibit the cell-particle attachment. Statistical analysis, 

performed using a two-sample t-test with unequal sample size and unequal variance, showed that 

difference between all datasets was highly significant (P < 0.00001). 

2.1.5 Spatial arrangement of cells on micro-patterned biotin surfaces 

Since it could be shown that cells can bind to streptavidin coated microparticles, we 

further investigated to which extent cells can be arranged spatially on a given surface. In 

order to fabricate a surface with a well-defined biotin pattern, we used laser assisted 

protein adsorption by photobleaching (LAPAP) allowing surface pattering in 

micrometer scale
146, 147

. Here fluorescein labelled biotin was bound to a BSA coated 

glass surface by means of free radicals generated after laser assisted fluorescein 
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photobleaching
148

. The position and distribution of the biotin modification was 

controlled by the residence time of the bleaching laser. The bound biotin could be 

visualized by incubating the surface with fluorescently labeled NeutrAvidin (Figure 

11A) and showed, as expected, a Gaussian distribution (Figure 11B), reflecting the 

transverse electromagnetic profile of the laser beam
149

. Cells which displayed biotin and 

were subsequently coated with NeutrAvidin could bind to the biotin modified BSA 

(BSA-biotin), as well as Streptavidin coated microparticles (Figure 11C). As shown in 

Figure 11D the position and strength of attachment can be controlled by positioning (the 

six bright spots) or moving (the lines between the spots) the laser over the surface. From 

top to bottom the photobleaching was performed one, two and three times for each lane 

respectively, which led to a noticeable difference in NeutrAvidin and particle density. 

Together with the absence of attachment in control samples lacking either biotinylated 

BSA, NeutrAvidin or microparticle, shows that the attachment is highly specific. 
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Figure 11 Micro-pattering surfaces with biotin via LAPAP. Glass surfaces were coated with BSA and 

subsequently fluorescein labelled biotin was immobilized by laser assisted fluorescein photobleaching 

(see Material and Methods for details). (A) Glass surfaces coated with and without BSA were biotinylated 

(+/-BSA-biotin). After LAPAP treatment the surface was treated with fluorescently labeled NeutrAvidin 

(green) and analyzed via fluorescence microscopy. Scale bar: 40 µm. (B) Intensity profile of the 

fluorescent NeutrAvidin spot in image A called + BSA-biotin NeutrAvidin. (C) After LAPAP treatment 

the surface was incubated for 30 min with streptavidin-coated 2.2-µm PMMA particles (red), 

NeutrAvidin coated E. coli cells carrying an arabinose inducible GFP (green) and Ag43-FLAG with or 

without BAP on IPTG inducible plasmid, as indicated. Attachment was visualized via fluorescence 

microscopy. Scale bar: 40 µm. (D) After LAPAP treatment the surface was incubated for 30 min with 

fluorescently labeled NeutrAvidin (green) and streptavidin-coated 1.4-µm PMMA particles (red). 

Attachment was visualized via fluorescence microscopy. Scale bar: 400 µm. 
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Based on the previous experiments, we asked whether cells attached to a modified glass 

surface are metabolic active, hence can grow and divide. We observed that, after cell 

division both daughter cells stayed attached when the mother cell was directly attached 

to the biotinylated glass surface (Appendix-Figure 1). In order to keep the number of 

attached cells constant, we decided to mediate the attachment between surface and cell 

via microparticles, to facilitate the release of the non-attached daughter cell after cell 

division. We first attached streptavidin coated microparticles to the biotin modified 

glass surface and subsequently incubated them for 30 min with cells displaying biotin. 

After the removal of free swimming cells, up to 6 cells were attached to one 1.4 µm 

microparticle (Figure 12). Time-lapse experiments were performed at 30 °C in TB 

medium and showed that attached cells were able to grow and only one daughter cell 

remained attached after cell division. The generation time of attached cells was 2.86 h ± 

0.54 h (± SEM, n = 101), comparable to cells grown in shaking flasks (Appendix-Figure 

2), further demonstrating that cells stayed metabolically active after attachment, which 

is important for the second part of this study. 
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Figure 12 Growth of cell attached to the surface of a particle. The Glass surface was biotinylated via 

LAPAP as described before and incubated for 30 min with streptavidin-coated 1.4-µm PMMA particles 

(red). Subsequently, E. coli cells carrying Ag43-BAP on IPTG inducible plasmid and an arabinose 

inducible GFP construct (green) were incubated with the immobilized particles and after 30 min 

unattached cells were removed, whereas attached cells were grown and imaged under the microscope for 

6 in TB medium at 30 °C. New attaching cells are marked as * and dividing cells as **. Scale bar: 40 µm 

and 4 µm for full image and image segment, respectively. 

2.1.6 Alternative biotin display systems 

Besides modifying Ag43 for displaying biotin on the cell surface, we investigated the 

potential of other well studied display systems including three membrane proteins: the 

outer membrane protein A (Lpp-OmpA)
19

 of E. coli, the ice nucleation protein 

(INPNC)
28

 of Pseudomonas syringae and the autotransporter AIDA-I (AIDA) of E. 

coli
150, 151

, as well as the flagellar filament structural protein FliC
152

 of E. coli. For Lpp-

OmpA and INPNC the BAP was introduced at the C-terminus of the protein, whereas 

for AIDA it was placed at the N-terminus (see Material and Methods for a detailed 

description). The FliC-BAP construct was based on the design of Lu, et al. (1995)
153

, 

which introduces into a variable region of FliC
35

 the active side of thioredoxin 

consisting of a short disulfide-bonded loop that protrudes from the protein. Within this 

loop we inserted the BAP. For all three membrane proteins we were unable to detect the 

recombinant protein via FLAG-tag antibody staining but only AIDA-BAP showed, 
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compared to Ag43-BAP, a weak biotin display (Figure 13A). However, further 

experiments with FliC-BAP showed that the attachment behavior was similar to Ag43-

BAP, including NeutrAvidin mediated cell-cell attachment and binding to streptavidin 

coated microparticles (Figure 13B). Moreover, we did not notice a decrease in cell 

motility, indicating that biotinylated FliC proteins got incorporated into the flagellum 

without affecting its functionality. Since no NeutrAvidin-biotin staining of the flagellum 

was visible, it seems that the number of biotinylated FliC per flagellum was too low to 

be detected and further experiments like a western blot analysis of isolated flagella have 

to be performed to validate our findings. 
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Figure 13 Investigating alternative biotin display systems. (A) E. coli cells carrying Lpp-OmpA-BAP, 

INPNC-BAP and AIDA-BAP on IPTG inducible plasmid were grown with 1 µM biotin and 100 µM 

IPTG in TB medium and analyzed using anti-FLAG immunostaining (red) and NeutrAvidin-biotin 

staining (yellow) for detecting the FLAG-tag and surface-displayed biotin, respectively. Staining was 

visualized via fluorescence microscopy. Scale bar: 2 µm. (B) E. coli cells carrying FliC-BAP on IPTG 

inducible plasmid were grown with 1 µM biotin and 100 µM IPTG in TB medium and were incubated for 

20 min with 1 µg/ml NeutrAvidin, 1 µM biotin and streptavidin-coated 10-µm polystyrene (PS) particles, 

as indicated. Attachment was visualized via bright-field microscopy. Scale bar: 20 µm. 
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2.1.7 Photocaging displayed biotin via LOV2 domain 

To control the accessibility of biotin displayed on a post translational level, we used the 

LOV2 domain of Avena sativa
154

 to photocage BAP on the cell surface. In the field of 

optogenetics the light-oxygen-voltage-sensing domain (LOV domain) is widely used to 

control the accessibility of active sites via a light induced conformational change within 

the protein
155

. The LOV2 domain consists of 143 amino acids, including a C-terminal 

24 amino acid α-helix (Jα) and harbors a blue-light sensitive flavin mononucleotide 

(FMN) cofactor. Upon blue-light absorption (absorption maximum at 450 nm) the FMN 

chromophore binds covalently to the protein and leads to the unfolding of the Jα-helix, 

which reveals the C-terminus of the domain
156

. The chromophore binding and therefore 

the unfolding of the Jα-helix is thermally reversible in the dark, with a photocycle 

lifetimes of ~80 sec
157

. This effect of light induced conformational change of the Jα-

helix is widely used to externally control the accessibility of effector domains 

introduced into the C-terminus of the protein
158

. To achieve this level of control we 

integrated the LOV2 domain into Ag43-BAP right in front of BAP (Ag43-BAP-LOV2), 

neighboring the Jα-helix (Figure 14A). In order to assess the photocaging of biotin we 

stained the cells with fluorescently labeled NeutrAvidin in the dark (dark state) or under 

blue light (light state) for 20 min and analyzed the fluorescence intensity via fluorescent 

microscopy. The comparison of cells kept in the dark and cells illuminated with blue 

light showed a stronger NeutrAvidin-biotin staining when cells were exposed to blue 

light (Figure 14B). However, also in the dark state a clear staining of some cells was 

visible, indicating that the ability of the LOV2 domain to photocage biotin is limited. 

This might contribute to the natural unfolding of the Jα-helix even in the dark, leading 

to the exposure if biotin. Further optimization needs to be performed to obtain a reliable 

and tight control of attachment through light exposure, including shortening the Jα-helix 

to improve the encapsulation of the biotinylated BAP in the dark state. 
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Figure 14 The LOV2 domain can photocage biotin on the cell surface of E .coli. (A) Gene map of the 

Ag43-BAP-LOV2 construct. Signal peptide (SP), light-oxygen-voltage-sensing domain (LOV2) and 

biotin acceptor peptide (BAP). (B) E. coli cells carrying Ag43-BAP-LOV2 on IPTG inducible plasmid 

were grown with 1 µM biotin and 100 µM IPTG in TB medium. Cells were incubated with fluorescently 

labeled NeutrAvidin (yellow) in the dark (dark state) and under blue light (light state) for 20 min. The 

NeutrAvidin-biotin staining was visualized via fluorescence microscopy. Scale bar: 4 µm.   
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2.2 Motility and chemotaxis of bacteriabots fabricated using antigen 

43-mediated biotin display 

In the second part of this study, we characterized the motility and chemotaxis of 

bacteria-driven microswimmers (bacteriabots) fabricated using the previously described 

antigen 43-mediated biotin display system and demonstrated that the chemotaxis of 

bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed.  

2.2.1 Swimming behavior of cells attached to microparticles 

As we could show in the previous chapter Ag43-BAP can mediate a rapid and stable 

attachment between bacteria and streptavidin coated microparticles, which made it ideal 

for the fabrication of bacteriabots. We first characterized the dependence of bacteriabot 

movement on the number of attached bacteria (Figure 15A). We observed that in cases, 

when only one cell was attached to a microparticle, bacteria almost exclusively pulled 

the microparticle (Figure 15A panel I) and only in rare cases and for a short period of 

time cell pushed the particle. For cases when two bacteria were attached to the same 

particle and their long cell axes aligned, the swimming behavior was similar to the 

particle pulled by a single cell, but the overall movement was markedly slower (Figure 

15A panel II). This was also observed in very rare cases where two particles were 

aligned alternating between tree cells (Figure 15A panel III). However, when the axes 

of the two cells were not aligned (Figure 15A panel IV) or when more than two cells 

were attached to a microparticle (Figure 15A panel V), the swimming behavior was 

largely compromised, with very little processive motion, likely due to the misalignment 

of the forces exerted by individual bacteria on the same particle. Thus, the simplest 

constellation consisting of one bacterial cell per microparticle provides the most 

efficient and fastest particle propulsion. In order to determine an optimal proportion 

between microparticles and cells, we analyzed the swimming behavior of bacteriabots at 

particle to cell mixing ratios of 1:240, 1:30 and 1:3.75 (Figure 15B). At a mixing ratio 

of 1:30 the majority of observed bacteriabots consisted of one bacterial cell per particle, 

with the highest number and swimming speed of motile bacteriabots. In subsequent 

experiments we used this ratio for bacteriabot fabrication. 
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Figure 15 Motility of the fabricated bacteriabots. Motile wild-type E. coli cells (WT) carrying the 

recombinant Ag43-BAP on IPTG inducible plasmid and an arabinose inducible GFP construct (green) 

were incubated for 20 min with streptavidin-coated 2.2-µm PMMA particles (red). (A) Exemplary 

trajectories of bacteriabots with one, two and three attached WT E. coli cells, analyzed using time-lapse 

fluorescence microscopy. Acquisition time of depicted trajectories was 6.5 s (panel I), 7.4 s (panel II), 

9.1 s (panel III), 13 s (panel IV), and 5.4 s (panel V). Scale bar: 8 µm. (B) Bacteriabots were fabricated 

with a particle-to-cell mixing ratio of 1:240, 1:30 and 1:3.75, as indicated. Number of trajectories and 

mean swimming speed were calculated from individual 2D trajectories of the particles. Error bars show 

STD of seven independent experiments. 

2.2.2 Dependence of bacteriabot motility on particle size and cell length 

To analyze the effects of particle attachment on bacterial motility, we tracked two-

dimensional (2D) swimming trajectories of E. coli cells that were either free swimming 

(Figure 16A) or attached to 1.4-µm or 2.2-µm diameter particles (Figure 16B,C). As 

shown above bacteriabots with more than one bacterium have a reduced motility and 

since bacteriabots are not buoyant, they sediment if not propelled efficiently. Thus these 

bacteriabots stayed at the bottom of the observation chamber and were not recorded in 

all following experiments. Therefore we consider that the majority of measured 

bacteriabots have only one bacterial cell attached. For consistency reasons, the 

measurements were performed within 30 min to 90 min after placing the sample into the 

observation chamber. Free-swimming E. coli had a mean swimming speed of 15.71 ± 

0.02 µm/s (± SEM), which was reduced to 12.83 ± 0.02 µm/s upon attachment of 1.4-

µm particles and to 9.76 ± 0.02 µm/s upon attachment of 2.2-µm particles (Figure 

16B,C). Even more pronounced reduction was visible in the fraction of bacteria with the 
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highest swimming speed (>20 µm/s) (Figure 16A-C). Such reduction of the cell 

swimming speed is consistent with the increase in the rotational and translational 

friction coefficients caused by the addition of a spherical particle, which could be 

computed by modeling flagellar propulsion using resistive force theory
159-161

 

(Appendix-Figure 3, Appendix-Table 2, section 4.9.1). To clarify whether the motility 

of free swimming and attached cells decreases over time, we analyzed the swimming 

speed and chemotactic drift (more information about the chemotactic drift in section 

2.2.3) in time intervals from 30 to 60 min, 60 to 90 min and 90 to 120 min after placing 

the sample into the observation chamber. Although cell motility in our assay decreased 

gradually over time, this decrease was slow and similar for free swimming cells (Figure 

16F) and bacteriabots (Figure 16G), indicating that particle attachment has no negative 

effect on the energy state of the cell. 

We then wondered how swimming properties of the E. coli-based bacteriabots could be 

enhanced. We hypothesized that the swimming properties of elongated E. coli cells 

would be less affected by the particle attachment and therefore suitable for bacteriabot 

fabrication. E. coli cells can be easily artificially elongated by growing them in presence 

of cephalexin, a β-lactam antibiotic that reversibly blocks the cell division by binding to 

the transpeptidase FtsI which is involved in septum division
162,163

. Therefore, the cell 

length can be altered by the duration of cephalexin treatment. Such elongated E. coli 

cells are able to perform chemotaxis
164

 and are known to have more, and possibly also 

longer, flagella, although the increase in the number of flagella might not be linearly 

proportional to the increase in the cell length
160

. We thus expected that – at a given 

particle size – the cephalexin-treated cells have a more favorable balance between the 

size of the cell body (and the number of flagella) and the particle size. Our calculations 

indeed predicted smaller reduction of the swimming speed for elongated cells upon 

attachment of the same-sized particle (Appendix-Figure 3, section 4.9.1). 

Cells treated with cephalexin for 60 min, with an average length of approximately 9 µm, 

had a mean swimming speed of 14.66 ± 0.06 µm/s, similar to the speed of normal cells 

with an average size of approximately 3 µm (Figure 16D). However, consistent with our 

prediction, particle attachment had much less effect on the swimming speed of 
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elongated cells, which only decreased to 12.08 ± 0.04 µm/s for 2.2-µm particles (Figure 

16E). Similarly, the fraction of fast-swimming cells was also little affected. 

Furthermore, the mode of microparticle propulsion was apparently different between 

normal and elongated cells. As mentioned above (Figure 15A panel I), normal-sized 

cells predominantly pulled the microparticles, while pushing propulsion was apparently 

unstable and almost immediately reversed by a tumble. In contrast, elongated cells 

could mediate both pulling and pushing propulsion (Figure 16H). The efficiency of the 

two modes of propulsion by the elongated cells was nearly equal, with pulling 

population being observed in 46% of cases, and the mean swimming speed during 

pulling and pushing runs being 14.9 ± 3.0 µm/s and 18.1 ± 5.2 µm/s, respectively. In 

further contrast to particle propulsion by normal-sized cells, particle-loaded elongated 

cells changed their swimming direction by stopping and reversing their swimming 

orientation rather than by tumbling (Figure 16H), which is in agreement with previous 

studies
160, 164

. 
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Figure 16 Motility of bacteriabots based on normal and elongated cells. (A-E) Distribution of 

swimming speed within populations of normal or elongated E. coli cells, with or without PMMA 

microparticles, as indicated. Average swimming speed of individual cells was determined based on 2D 

trajectories recorded using fluorescence microscopy, as described in Material and Methods. Numbers of 

analyzed trajectories were 109192, 30724, 44698, 10601, and 10744 for cells, cells with 2.2-µm particles, 

cells with 1.4-µm particles cells, elongated cells, and elongated cells with 1.4-µm particles, respectively. 

(F, G) Mean swimming speed and chemotactic drift were calculated from individual 2D trajectories (see 

Material and Methods for more details) of normal cells without (F) or with 2.2-µm particles (G). 

Measurements were performed at different time intervals (as indicated) after placing the sample into the 

observation chamber. Error bars show STD of four independent experiments. Numbers of analyzed 

trajectories for the three indicated time intervals were 53901, 25954, 17058 for free-swimming cells and 

20165, 13343, 8674 for cells with 2.2-µm particles. (H) Examples of 2D trajectories of bacteriabots based 

on elongated E. coli cells. Scale bar: 8 µm. 
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To further investigate how the swimming dynamics of normal and elongated bacteria 

was altered by an attached microparticle, we determined the time autocorrelation of 

direction of motion as well as the mean square displacement (MSD) of bacteria with 

and without attached microparticles. The autocorrelation of directional motion for 

elongated cells was decaying much more slowly with the distance than for normal cells 

(Figure 17A), and their MSD curves (Figure 17B) indicated more efficient, 

superdiffusive spreading. Both of these observations could be explained by the lower 

reorientation per change of direction for elongated cells and by the higher persistence in 

their direction of motion during runs (i.e., lower rotational diffusion) (Figure 16H and 

Figure 17C). The attachment of particles led to decreased autocorrelation of direction 

and persistence for both normal and elongated cells, suggesting that an attached particle 

increases the reorientation of the cell, either by causing larger reorientations during 

tumbles or reduced directional persistence during runs.  
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Figure 17 Mean-square displacement (MSD) and persistence length of free cells and bacteriabots. 

The trajectory data of normal or elongated E. coli cells, with or without PMMA microparticles, are 

identical to the data from Figure 16A-E. (A) Autocorrelation of direction of motion, calculated from the 

trajectory data as described in Material and Methods. (B) MSD normalized by the square of the 

swimming speed was calculated from the trajectory data as described in Material and Methods. (C) The 

persistence length was obtained by fitting the curves of panel A as described in Material and Methods. 

2.2.3 Chemotaxis of bacteriabots: increased swimming speed is beneficial for 

cargo delivery 

To investigate the capability of bacteriabots based on normal or elongated cells to 

perform chemotaxis, we monitored their behavior in the presence of a chemical gradient 

formed in a microfluidic channel (see Material and Methods for more details). For 

normal free-swimming bacteria, the mean chemotactic drift in a linear gradient of 0 to 

200 µM MeAsp over 2 mm channel length was 1.55 ± 0.03 µm/s (Figure 18A), within 

the range of previously reported values
165

. The chemotactic drift decreased to 

1.28±0.03 µm/sec and 0.63±0.03 µm/sec for normal bacteria attached to 1.4 µm and 
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2.2 µm particles, respectively. This strong decrease was apparently due to the lower 

swimming speed of bacteriabots, since plotting the chemotactic drift as a function of the 

swimming speed for individual cells showed comparable – and even better – drift of 

bacteriabots at a given speed compared to free cells (Figure 18B). Overall, the 

dependence of the chemotactic drift on the swimming speed was very steep, scaling as 

𝑣0
𝛼 with α ranging from 2.5 to 3.4 (Appendix-Figure 4A), which is markedly steeper 

than α = 2 expected from the general theory of bacterial chemotactic motion
135

 

(Appendix-Figure 4B). This is likely explained by other factors that contribute to the 

chemotactic drift being a function of swimming speed, such as the tumbling angle
166

, or 

signal amplification by the chemotaxis pathway
135

, which depends on the expression of 

chemotaxis and flagellar genes, and therefore correlates with the swimming speed. 

Regarding elongated cells, their mean chemotactic drift was with 2.4±0.1 µm/sec and 

1.62±0.07 µm/sec, for free and attached cells respectively, significantly higher than 

those of normal cells (Figure 18A). Interestingly, elongated cells showed nearly the 

same dependence of the chemotactic drift on swimming speed with and without 

attached particles, which was higher than for free-swimming normal cells but 

comparable to that of the normal cells carrying particles (Figure 18B). Consistently, the 

mean chemotactic bias (the chemotactic drift normalized by the squared swimming 

speed) was similar for bacteriabots and elongated cells and lower for free-swimming 

normal cells (Figure 18C).  
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Figure 18 The chemotactic drift of free-swimming cells and bacteriabots. (A-C) Mean chemotactic 

drift (A), chemotactic drift as a function of the swimming speed (B) and chemotactic bias as a function of 

the swimming speed were calculated from individual 2D trajectories of cells with or without particles, as 

indicated (see Material and Methods for more details). Statistical analysis in (A) was performed using a 

two-sample t-test with unequal sample size and unequal variance, yielding highly significant differences 

between all datasets (with asterisk indicating P < 0.00001). Error bars show SEM. Numbers of analyzed 

trajectories were 109192, 44698, 30724, 10601, and 10744 for cells, cells with 1.4-µm particles, cells 

with 2.2-µm particles cells, elongated cells, and elongated cells with 1.4-µm particles, respectively. (C) 

Chemotactic bias, defined as chemotactic drift normalized by the swimming speed, 𝑣𝑐ℎ/𝑣0
2, was 

calculated as described in Material and Methods. Error bars show SEM. 

As stated earlier, bacteriabots need to maintain their function in biological fluids to be 

of use for biomedical applications. One distinct property of biological fluids is their 

higher viscosity, up to 5 mPa·s in case of blood
167

 compared to < 1 mPa·s for water. 

Therefore, we tested motility of bacteriabots when the viscosity of the medium was 

raised above 4 mPa·s by addition of methyl cellulose. The speed of both free swimming 

cells and bacteriabots was unchanged or even slightly increased at this higher viscosity 
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(Figure 19A, B), which could be explained by the resistive force theory (section 4.9.1). 

Notably, the observed dependence of chemotactic drift on swimming speed was 

unaffected by an increased medium viscosity (Figure 19C, D). 

These results suggest that the swimming speed is by far the major determinant of the 

bacteriabot’s capability to perform chemotaxis, irrespective of the cell length, cargo 

attachment or medium viscosity, and they show that cell elongation can enhance 

chemotaxis of bacteriabots 

 

Figure 19 Motility of free swimming cells and bacteriabots at two different viscosities. (A-D) 
Distributions of swimming speed (A, B) and of chemotactic drift as a function of the swimming speed (C, 

D) were calculated from individual 2D trajectories for free swimming E. coli cells and cells attached to 

2.2 µm particles (see Material and Methods for more details). Cells were measured in motility buffer with 

and without the addition of 0.25 % w/v 4000 cP methyl cellulose (~4.3 mPa·s at 32°C)
168

. In the more 

viscous fluid, average chemotactic drift was 3.44 ± 0.22 µm/s (± SEM) for free swimming cells, and 0.42 

± 0.09 µm/s for bacteriabots. Numbers of analyzed trajectories in buffer without and with methyl 

cellulose were 109192, 3068 for free-swimming cells and 30724, 2924 for bacteriabots. Error bars show 

SEM. 
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3 DISCUSSION 

Specific adhesion to biotic and abiotic surfaces is essential for the survival of 

microorganisms, since processes like reproduction, acquisition of nutrients or formation 

of multicellular structures are dependent on it, and is mostly mediated through adhesins 

on the cell surface. In biotechnological applications the same adhesins and their cognate 

surfaces, as well as receptor-ligand interactions are used to immobilize manly 

eukaryotic cells. However, the controlled attachment of bacteria to biological and well 

defined artificial surfaces is less explored. In this study we constructed and evaluated 

the antigen 43-mediated biotin display on the cell surface of E. coli, in order to bind 

streptavidin modified surfaces for cell-cell attachment, immobilization of cells in 

confined patterns and bacteriabot fabrication. Moreover, we performed systematic 

measurements of such bacteriabots, to analyze the effect cargo has on the motility and 

chemotaxis of attached bacteria. 

3.1 Characteristics and use of antigen 43-based biotin display 

Rapid and stable cell-cell or cell-surface attachment is of great interest for various 

applications, however common methods used today rely on external modifications of 

the cell surface, which is accompanied by extensive sample preparation and can affect 

the fitness of the cell. Instead, we decided to genetically engineer E. coli to 

autonomously display biotin on its cell surface using a modified version of 

autotransporter Ag43 carrying the biotinylation peptide BAP. Besides, the engineered 

Ag43-BAP allowed the introduction of additional features to the display system, such as 

a TEV protease restriction site for a targeted release from the attached surface and the 

LOV2 domain to alter the accessibility of biotin by light controlled photocaging. 

Although E. coli can synthesize biotin
55

, the amount needed to biotinylate all produced 

Ag43-BAP proteins seems to exceed its biotin synthesis capacity. We could partially 

overcome this limitation by adding biotin to the growth medium and an overexpression 
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of BirA, which has been shown in previous studies to greatly promote the biotinylation 

of heterologously expressed proteins in eukaryotic and bacterial cells
75, 169, 170

. The need 

for addition of biotin to the growth medium could be bypassed by increasing biotin 

production of the cell through overexpression of the biotin synthase BioB
170

. 

In contrast to previous studies
24, 41, 171

, which found that Ag43 was distributed evenly 

over the bacterial surface, we observed that in up to one third of the cells Ag43-BAP 

was localized at the poles. This could be attributed to its overexpression or an artefact of 

the biotin straining with streptavidin, since it can bind up to four biotin molecules and 

therefore might promote the clustering and change the localization of Ag43. However, 

studies on the closely related autotransporters AIDA-I and IcsA, demonstrated that a 

polar localization or an evenly distribution over the bacterial surface is dependent on the 

strain, structure of the lipopolysaccharide (LPS) and expression level of the 

autotransporter
45

. Similar experiments on Ag43-BAP could give insights on the 

conditions controlling its degree of a polar localization. 

One of the difficulties of making especially small molecules accessible at the bacterial 

cell surface is to overcome the LPS layer. In K-12 strains of E. coli, which synthesize an 

incomplete LPS, this monolayer is about ~20 Å thick and can limit the accessibility of 

displayed peptides
172, 173

. This might explain why the display of biotin by means of 

OmpA, INP and AIDA-I showed no biotin straining, despite reports showing successful 

display of various proteins at the cell surface
13

. If the lack of staining is caused by 

NeutrAdinin not reaching the surface exposed biotin, using strains producing shorter 

LPS or a different staining method could give better results. On the other hand, the 

successful biotin display based on Ag43 with a passenger domain of about 100 Å and 

FliC forming flagella demonstrates that cell surface protrusions can overcome the 

bacterial LPS layer. This becomes even more important in organisms with a thicker LPS 

layer, including E. coli strains harboring a complete LPS, increasing this layer up to 

370 Å
174, 175

. Besides LPS, it also has been shown that fimbriae and capsules can 

physically shield the cell surface and therefore sterically prevent the accessibility of 

Ag43
171, 176, 177

.  
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As Ag43 can be expressed and exposed on the surface in a broad range of gram negative 

bacteria, including Salmonella enterica, Burkholderia cepacia, Pseudomonas 

aeruginosa, Pseudomonas fluorescens, Klebsiella pneumoniae, Enterobacter cloacae 

and Serratia liquefaciens
24, 176

, this display system is principally compatible with 

various biomedical applications, like bacteriabots based on these species
178, 179

. Indeed, 

harnessing the ability of different bacterial species to sense and respond to a wide range 

of chemical compounds, pH, temperature, oxygen level
180

 and other physiological 

signals present in for example the human body
181

, together with the ability of some 

bacteria to change their morphology or to invade cell tissue, becomes relevant in 

biomedical applications where autonomous bacteriabots are of great interest
178, 179

.  

The modification of the bacterial cell surface has been used widely in biotechnological 

applications, including the construction of different whole-cell biocatalysis and 

bioremediation systems
182

. However, such systems relay on that the display of the 

catalytic enzymes through outer membrane proteins, the ability of the protein to fold 

correctly in the extracellular space and the incorporation of required cofactors
13

. This 

difficulty might be addressed by producing biotinylated variants of the proteins of 

interest under native conditions, their purification and subsequent attachment on biotin 

displaying cells coated with streptavidin. Such system would only add a 15 amino acid 

peptide to the protein and on the same cell surface a combination of different proteins 

could be displayed effortlessly. 

Lastly, we could show that the Ag43-BAP mediated cell-cell and cell-surface 

attachment was dependent on the amount of displayed biotin and surface bound 

streptavidin. In addition, the attachment could be blocked by excess free biotin, which 

demonstrates the specificity and robustness of this system. This enables, together with 

surface modifying techniques like LAPAP, a fast and easy way to functionalize abiotic 

surfaces with defined patterns and density of living cells at micrometer resolution. 

Moreover, we could show that attached cells are metabolic active, which makes this 

method suitable for applications where immobilized cells have to be viable over long 

periods of time in a confined space, like in cell based biosensors or for screening 

purposes. In this regard, extended experiments examining the survival and adaptation of 
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such surface bound cells to changes of environmental conditions, would be of great 

interest for long time cultivation. 

An emerging field in metabolic engineering and synthetic biology are engineered 

microbial consortia, because metabolic incompatible or complex biosynthetic pathways 

could be divided between different organisms, which would reduce the metabolic 

burden of each cell and frees up energy for the cells central metabolism
183

. Attempts 

have been made to co-cultivate and characterize microbial communities ranging from 

simple co-cultivation experiments of two distinct species
184

 to microdroplet co-

cultivation of environmental samples
185

 and tailored microbial ecosystems dependent on 

bi-directional communication or cross feeding
186

. Nevertheless, the majority of these 

systems rely on a stable ratio between strains over a long period of time. This remains 

challenging, since typically one strain overgrows the other. However, a defined strain 

ratio could be maintained for surface bound cells, since their offspring would be 

released from the surface and blocked from reattachment, as we could show previously 

for our system. Such stable cell layers might also been used to grow either single strains 

or co-cultures continuously in a microfluidic system under flow and to collect accruing 

pathway products. 

3.2 Fabrication of bacteriabots with Ag43-BAP 

There is an increasing interest in various applications of bacteria to deliver microscopic 

cargos and several studies have shown that such bacteria-powered microswimmers can 

be principally used to move cargo in environmental gradients
112, 118-122

. However, the 

applicability of bacteriabots remained limited, partly due to the lack of protocols for 

specific and fast loading of cargo. In this study, we developed and characterized a 

system for efficient generation of bacteriabots via biotin-streptavidin interaction. 

Although this interaction was already used to construct bacteriabots
94, 120, 123

, previous 

biotin functionalization of the bacterial cell surface required time consuming 

preparations with either biotin-conjugated antibodies targeting outer membrane proteins 

or the lipopolysaccharide
118

, or a chemical modification of the surface via biotin-NHS 

ester
102

. Because bacterial flagella are fragile, multistep preparation procedures can 

largely decrease the motility of the cell due to the exposure to chemicals and shear 
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forces and thus decrease the applicability of the resulting bacteriabots. An increase in 

sample preparation complexity requires an extensive quality control, to ensure sufficient 

biotinylation of the surface or stable attachment of biotinylated molecules like 

antibodies. Especially in applications where detached bacteria interfere with 

downstream processes, a reliable cell attachment is important. To address these 

shortcomings in the fabrication and application of bacteriabots, we first developed a 

fast, specific, and efficient approach for microparticle attachment. It relies on Ag43 to 

display biotin on E. coli surface and utilizes bacterial motility to greatly accelerate the 

attachment of streptavidin-coated cargo particles. The attachment of particles using this 

Ag43-BAP approach showed high efficiency and yield, achieving fifty percent of 

particles loaded on cells within 6 min. Not all particles observed were loaded with 

bacteria which can be attributed to the particles used which vary in streptavidin 

functionalization. This became apparent when even under high excess of modified cells 

a subpopulation of particles remained cell free and therefore were considered as 

nonfunctional. This suggests that at about 94 % particle coverage all viable particles are 

occupied by a bacterial cell.  

Furthermore, we could demonstrate that cell surface appendages interfere with the cell-

particle attachment and that attachment was strongly enhanced by cell motility. The 

attachment of wild-type cells impaired in motility via CCCP was significantly reduced 

compared to the case of non-motile ∆fliC cells, indicating that flagella physically hinder 

the approach of cell and particle. This suggests that the removal of cell surface 

appendages like pili, fimbriae or curli fibers could increase attachment not only for E. 

coli but also for other bacteria used in bacteriabot fabrication. In addition, we observed 

that the attachment was strongly enhanced by cell motility, suggesting that the rather 

straight motion of motile cells promotes heads-on collision and attachment to the 

particle. The heads-on collisions between motile cells and particles could also partly 

explain strong bias towards polar attachment observed in the wild-type cells, although 

the enrichment of Ag43 at the cell pole may further contribute to this bias. Such polar 

attachment of cargo is beneficial for the movement of bacteriabots, because it ensures 

alignment of the center of mass with the propulsion direction and stabilizes the ballistic 

motion of the bacteriabot. Furthermore, as proposed by Behkam, et al. (2008)
187

 and 
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Hosseinidoust, et al. (2016)
115

, the polar attachment of cell and a defined patterning of a 

microparticle (janus particle) might allow multiple aligned cells attached on one side of 

the particle to cooperatively propel such a bacteriabot (Figure 20). We observed an 

example of such a cooperative motion for cases when a particle was placed between two 

polar attached cells and their long cell axes were aligned. In contrast, bacteriabots with 

multiple nonaligned cells tumbled more often and had shorter periods of straight 

motion, demonstrating that attachment of multiple bacteria to the same particle hinders 

particle motion rather than facilitating it. This effect may be partly due to the 

misalignment between the axes of individual cells, and thus of generated propulsion 

forces as well as uncoordinated tumbling events between the different cells. However, 

even in cases when the axes of multiple cells were aligned, their motility was lower than 

upon attachment of a single cell, likely because of the steric hindrance of the flagella 

bundle but also due to uncoordinated switching of flagella in individual cells. Thus, 

random attachment of multiple bacteria to the same microparticle may be generally 

undesirable for cargo loading.  

Interestingly the cell shape seems to greatly influence the mode of bacteriabot 

propulsion, since regular cells mainly pulled the particle, whereas elongated cells pulled 

and pushed the particle. This might especially important for bacteriabot fabrication with 

larger cargo, since the flagella bundle, in case of pulling cells, has to cope with the 

cargo and might be disturbed when the cargo size increases, as a single filament 

escaping the flagella bundle is sufficient for its disintegration
188

. 

 

Figure 20 Patterning and orientation of bacteria on microparticles. Obtained and modified from 

Hosseinidoust, et al. (2016)
115

. 
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3.3 Motility and chemotaxis of the fabricated bacteriabots 

The bacteria used in bacteriabot fabrication do not only propel the cargo but are also 

used to detect and respond to environmental signals. Up until now mainly chemotaxis 

and the response to pH of bacteriabots fabricated from Serratia marcescens
119, 121, 189

, 

Salmonella typhymurium
121

 and E. coli
190

 have been investigated. However, the 

mobility and tactic movement of bacteriabots is still not well understood. In order to 

evaluate the usefulness of our attachment system for bacteriabot fabrication and to 

elucidate how the motility and chemotaxis of cells attached to cargo are affected, we 

tracked and analyzed in detail the movement of bacteriabots. We observed that the 

chemotactic efficiency of bacteriabots was exclusively limited by their swimming 

speed. In general, the dependence of the chemotactic drift on the swimming speed was 

very steep, even steeper than expected from the theory of bacterial chemotactic 

motion
135

. The capability of both cells and bacteriabots to perform chemotaxis is thus 

extremely sensitive to their swimming speed, meaning that even minor speed reduction 

due to cargo loading would have substantial effect on the chemotactic efficiency. 

Consistent with that, although at equal swimming speeds the chemotactic efficiency of 

the bacteriabots was even higher than for regular-sized free-swimming E. coli cells, 

their average chemotactic drift was largely reduced, because bacteriabots are on average 

slower than free swimming cells. This was particularly pronounced upon attachment of 

the larger, 2.2-µm, particles, but was also visible for smaller 1.4-µm particles. 

Bacteriabots maintained their swimming speed in media with increased viscosity and 

thus the dependence of chemotactic drift and swimming speed stayed unchanged, which 

is promising for applications in biological fluids. 

Together, the steep dependences of the chemotactic drift on the swimming speed and of 

the swimming speed on the load imply that the effective size of cargo that can be carried 

by the chemotactic bacteriabots based on normal E. coli cells is limited to 

approximately 2 µm. However, we could circumvent this limitation by using E. coli 

cells that were elongated by treatment with cephalexin, an antibiotic blocking cell 

division. Such elongated cells have a mean swimming speed similar to that of normal 

cells, which could indicate that they possess longer flagella, although their increased 

number of flagella
190

 could also play some role. Nevertheless, the chemotactic drift in 
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linear gradients apparently increased upon cell elongation, likely due to the higher 

persistence length of these elongated cells, in consensus with the previous work of 

Guadayol, et al. (2017)
160

. Most importantly, the swimming speed of elongated cells – 

and therefore their chemotaxis – was much less affected by the particle attachment. Our 

study thus suggests that elongated cells are superior compared to normal E. coli cells for 

bacteriabot fabrication. This seems to be partly due to the more favorable relation 

between the size
126

 and number of flagella in these cells
160

 relative to the size of the 

cargo particle. Besides, high motion persistence, lower rotational diffusion and the 

shifted center of mass of the bacteriabot towards the propelling elongated cell probably 

allows for the observed stable pulling and pushing of the particle.  

In the work of Alapan, et al. (2018)
191

 we could show that E. coli cells displaying biotin 

through Ag43-BAP can be used to attach them via a biotin-avidin-biotin binding 

complex to red blood cells (RBCs; erythrocytes), demonstrating that the cargo of 

bacterial microswimmers is not only restricted to synthetic particles. Furthermore such 

biocompatible RBCs were loaded with superparamagnetic nanoparticles and anticancer 

doxorubicin drug molecules, whereby the swimming direction of these microswimmers 

could be guided via an external electromagnetic field. Remarkably the attachment 

between bacterium and RMC was strong enough for a single bacterium to push and 

deform a 4 to 5 µm erythrocyte through a 2 µm gap without breaking. Based on our 

experience with smaller synthetic nanoparticles this system might also benefit from 

using elongated cells for propelling the RBCs. In addition to the magnetic steering of 

the microswimmers, the chemotaxis of the bacteria could be used to direct them in 

gradients of environmental stimuli. The combination of both guidance systems could be 

used to first bring the cargo into a defined region of interest using magnetic steering 

followed by an autonomous detection and following of a distinct environmental gradient 

via the bacterial chemotaxis. 
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3.4 Concluding remarks 

An emerging field in biotechnology is the use of bacterial cell surfaces as a scaffold to 

display various tailored peptides or proteins produced by the cells themselves. Besides 

applications concerning sensing of environmental molecules, whole-cell biocatalysis or 

binding of specific molecules, the modification of the cells surface is used to attach 

bacteria to biotic an abiotic surfaces. However the efficiency and usefulness of such an 

immobilization relies strongly on the binding strength as well as the binding speed and 

the effect an attachment method has on the fitness of the cell. In this respect we 

developed the Ag43 mediated biotinylation of the bacterial cell surface, which is in 

principal compatible with applications using the strong interaction between biotin and 

streptavidin to modify or attach cells. Since this interaction is widely used in different 

research areas, this biotinylation method may be easily integrated into already existing 

systems, as demonstrated for the fabrication of bacteriabots and the immobilization of 

cells on microfabricated surfaces. 

In regard of bacteriabot fabrication we showed that the displayed biotin mediates fast 

and stable attachment to particles and that the chemotaxis of cells is primarily limited 

by the decrease in the swimming speed upon microparticle attachment. This limitation 

could be largely circumvented by controlled elongation of E. coli cell body, which 

enables both faster particle propulsion and much more efficient chemotaxis, thus 

holding high potential for future biomedical applications. Aside from the attachment of 

cells to a synthetic microparticles
192

, this system was used to fabricate erythrocyte 

(RBC)-based bacterial microswimmers
191

, where the cell-RBC attachment was strong 

enough to actively deform the erythrocyte via the propulsion force generated by the 

bacterium.  
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4 Material and Methods 

4.1 Materials 

4.1.1 Chemicals, enzymes, antibodies and consumables 

Chemicals, enzymes, antibodies and consumables used in this study and the 

corresponding suppliers are listed in Table 1, Table 2, Table 3 and Table 4. 

Table 1 Chemicals used in this study. 

Chemicals Supplier 

Agar bacteriology  Applichem, Germany  

Agarose ultra‐pure  Biozym, Germany 

Albumin Fraktion V (BSA) Carl Roth, Germany 

Ampicillin  Applichem, Germany  

L-(+)-Arabinose  Roth, Germany 

BactoTM Tryptone BD Biosciences, Germany 

D-(+)-Biotin Carl Roth, Germany 

BactoTM Yeast extract BD Biosciences, Germany 

CaCl2 x 2 H2O Carl Roth, Germany 

Carbonylcyanide-m-chlorophenylhydrazone (CCCP) Sigma-Aldrich, Germany 

Chloramphenicol  Applichem, Germany  

Dimethyl sulfoxide (DMSO)  Sigma-Aldrich, Germany 

EDTA  Merck, Germany 

D‐Glucose  Applichem, Germany  

Glycerol GERBU Biotechnik, Germany 

HEPES Sigma-Aldrich, Germany 

Isopropyl‐β‐D‐thiogalactoside (IPTG)  Carl Roth, Germany 

Kanamycin sulphate  Sigma-Aldrich, Germany 

Lithium acetate Sigma-Aldrich, Germany 

Magnesium sulfate (MgSO4)  Sigma-Aldrich, Germany 

Manganese(II) chloride (MnCl2) Sigma-Aldrich, Germany 

Methyl cellulose (4000 cP) Sigma-Aldrich, Germany 

α‐Methyl‐DL‐aspartate (MeAsp)  Sigma-Aldrich, Germany 

Potassium phosphate dibasic (K2HPO4)  Sigma-Aldrich, Germany 

Potassium chloride (KCl) Sigma-Aldrich, Germany 

Potassium phosphate monobasic (KH2PO4)  Sigma-Aldrich, Germany 

2-Propanol Carl Roth, Germany 

Sodium chloride (NaCl)  Carl Roth, Germany 
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Yeast Extract  Applichem, Germany  

 

Table 2: Enzymes used in this study 

Enzymes Supplier 

Restriction enzymes and buffer Thermo Fisher Scientific, Germany and  

New England Biolabs, Germany 

T4 DNA-Ligase and buffer Thermo Fisher Scientific, Germany 

Phusion
®
 DNA Polymerase New England Biolabs, Germany 

ProTEV Plus (TEV protease) Promega, USA 

BirA biotin-protein ligase reaction kit Avidity, USA 

 

Table 3: Antibodies used in this study 

Antibody Supplier 

monoclonal mouse anti-FLAG
®
 M2 antibody Sigma Aldrich, Germany 

monoclonal mouse anti-biotin BTN.4 antibody Thermo Fisher, Germany 

anti-mouse goat IgG conjugated to Cy3 Thermo Fisher, Germany 

 

Table 4: Consumables used in this study 

Consumables Supplier 

Coverslip Carl Roth, Germany 

GeneJET DNA Purification Kit Thermo Fisher Scientific, Germany 

GeneJET Gel Extraction Kit Thermo Fisher Scientific, Germany 

GeneJET Plasmid Miniprep Kit Thermo Fisher Scientific, Germany 

Microscope slide  Marienfeld, Germany 

1.4-µm Poly(methyl methacrylate) particles PolyAn, Germany 

2.2-µm Poly(methyl methacrylate) particles PolyAn, Germany 

10-µm Polystyrene particles Sigma-Aldrich, Germany 

2-µm Silica particles Chemicell, Germany 

Silicone elastomer Kit (SYLGARD
®
 184) Dow Corning, USA 

8-Well microplates Ibidi, Germany 

96-Well microplates Ibidi, Germany 
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4.1.2 Media 

Media were autoclaved for 20 min at 121 °C and 2 bar. To solidify medium, 1.5 % 

(w/v) agar was added prior to autoclaving. 

LB (Luria-Bertani Broth)-medium: 

Chemicals Final concentration 

tryptone  10 g/l 

yeast extract 5 g/l 

NaCl  5 g/l 

Chemicals were resolved in deionised water.  

TB (Tryptone Broth)-medium: 

Chemicals Final concentration 

tryptone  10 g/l 

NaCl  5 g/l 

Chemicals were resolved in deionised water and pH was adjusted to 7.0. 

4.1.3 Media additives 

Protein expression was induced by adding 100 µM isopropyl-β-D-thiogalactopyranoside 

(IPTG) or 0.005% L-(+)-arabinose to the growth medium. Antibiotics used in this study 

are listed in Table 5. 

Table 5 Antibiotics used in this study. 

Antibiotics broth agar 

Ampicillin 100 μg/ml 200 μg/ml 

Chloramphenicol 34 μg/ml 34 μg/ml 

Kanamycin 50 μg/ml 50 μg/ml 

4.1.4 Buffer solutions 

Phosphate buffer: 

Chemicals Final concentration 

K2HPO4 0.2 g/l 

Na2HPO4 1,15 g/l 

NaCl  8 g/l 

KCL 0.2 g/l 

Chemicals were resolved in deionised water and pH was adjusted to 7.4. 
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Motility buffer: 

Chemicals Final concentration 

K2HPO4 10 mM 

KH2PO4 10 mM 

NaCl  67 mM 

EDTA 0.1 mM 

Glucose 1 % 

BSA 0.5 % 

Chemicals were resolved in deionised water and pH was adjusted to 7. 

TAE-buffer: 

Chemicals Final concentration 

Tris base 40 mM 

Na-acetate 40 mM 

 EDTA 1 mM  

Chemicals were resolved in deionised water. 

TB buffer: 

Chemicals Final concentration 

HEPES 10 mM 

MnCl2 55 mM 

CaCl2 15 mM 

KCl 250 mM 

Chemicals were resolved in deionised water. 

4.1.5 Oligonucleotides 

Oligonucleotides were synthesized by Eurofins. Oligonucleotides used in this study are 

listed in (Table 6). 
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Table 6 Oligonucleotides used in this study 

Oligonucleotides Nucleotide Sequence (5’‐3’) 

-125_fwd TGCCACCTGACGTCTAAGAA 

160_rev ATTACCGCCTTTGAGTGAGC 

Ag43_EcoRI_rev CTTTCGCTAAGGATGATTTCTGGAATTCTTAGAAGGTCACATTCAGTGT 

Ag43_NdeI_fwd CAACATATGAAACGACATCTGAATACCTG 

Ag43ss_SaIl_SacI_rev CTAGAGCTCGTCGACAACGATGTCAGCAGCCAGCA 

Ag43ss_SaIl_SpeI_SacI_rev CTAGAGCTCACTAGTGTCGACAACGATGTCAGCAGCCAGCA 

AIDA_linker_HindIII_fwd CAAAAGCTTGGCGGAGGTTCTGGAGGAGGGTCTGGAGGAGCAGGTAATACTCTTACCGT 

araC_NheI-fwd GTTGCTAGCTTATGACAACTTGACGGCTA 

BAP_EcoRI_rev CTAGAATTCTTATTCATGCCACTCGATCTTCTGGGCTTCGAAGATGTCGT 

BAP_SalI_rev CTTGTCGACTTCATGCCACTCGATCTTCT 

BAP_XhoI_fwd CTACTCGAGGGCCTGAACGACATCTTCGAAGCCCAGAAGATCGAGTGGCA 

BirA_E/NsiI/MfeI-rev GTCCAATTGATGCATGAATTCTTATTTTTCTGCACTACGCA 

BirA_RBS_HindIII_fwd GTAAAGCTTAGGAGAAATTAACTATGAAGGATAACACCGTG 

Cerulean_HindIII_rev GTTAAGCTTTTACTTGTACAGCTCGTCCA 

Cerulean_RBS_SphI_fwd GAAGCATGCAAGGAGAAATTAACTATGGTGAGCAAGGGCGAG 

FliC_711_NotI_XmaI_fwd AATCCCGGGGCGGCCGCCAGTTCTCCAACCG 

FliC_711_XmaI_rev CTACCCGGGATCGTTATCACCACCGGTGA 

FliC_EcoRI_rev GTTGAATTCTTAACCCTGCAGCAGAGAC 

FliC_NdeI_fwd GAACATATGATGGCACAAGTCATTAATAC 

INPNC_BamHI_rev GATGGATCCTTTAACTTCGATCCAGTCGT 

INPNC_XbaI_fwd GTATCTAGAATGACCCTGGACAAAGCTCT 

Link_FLAG_fwd GATCCGGCGGAGGTTCTGGAGGAGGGTCTGGAGGAGACTACAAAGACGATGACGACAAGC 

Link_FLAG_rev TCGAGCTTGTCGTCATCGTCTTTGTAGTCTCCTCCAGACCCTCCTCCAGAACCTCCGCCG 

Linker_SacI_rev CTAGAGCTCTCCTCCAGACCCTCCTCCAG 

MCS_fwd GGCTAGCCATATGTCTAGAGGATCCCTCGAGG 

MCS_rev AATTCCTCGAGGGATCCTCTAGACATATGGCTAGCCTGCA 

OmpA_BamHI_rev GTAGGATCCGTTGTCCGGACGAGTGCCGA 

OmpA_BamHI_rev GTAGGATCCGTTGTCCGGACGAGTGCCGA 

pBAD_XhoI_EcoRI_NheI_re

v 
GTTGCTAGCTTAGAATTCCTCGAGCCAAAAAAACGGGTATGGAG 

SacI_XhoI_TEV_NsiI_fwd CCTCGAGAATCTGTATTTCCAGGGCAACACCACGCTGAATGGTGGCGAACAGTGGATGCA 

SacI_XhoI_TEV_NsiI_rev TCCACTGTTCGCCACCATTCAGCGTGGTGTTGCCCTGGAAATACAGATTCTCGAGGAGCT 

T5_op_NheI_fwd CATGCTAGCAAATCATAAAAAATTTATCT 

T5_op_RBS_NdeI_rev CCTCATATGTAATTCCTCCTTGTGTGAAATTGTTAT 

T5_RBS_Aflll_fwd CTACTTAAGAAAAAATTTATCTGCTTTCAGGAAAATTTTTCTGTATAATA 

T5_RBS_NcoI_rev CATCCATGGTTAATTTCTCCTTTGAATCTATTATACAGAAAAATTTTCCT 

T7-TTTT_EcoRI_rev GTAGAATTCCCGCAATTCCCAATTCCAGG 

T7-TTTT_MfeI_fwd CTTCAATTGCTTCCGATCCCCAATTCCTG 

TarAss_NdeI_fwd CAACATATGAAAGCTACTAAACTGGTACT 

TEV_XhoI_HindIII_fwd TCGAGGAGAATCTGTATTTCCAGGGCA 

TEV_XhoI_HindIII_rev AGCTTGCCCTGGAAATACAGATTCTCC 

Trx_NotI_rev AATGCGGCCGCCAGGTTAGCGTCGAGGAA 

Trx_XmaI_fwd CTACCCGGGATGAGCGATAAAATTATTCA 
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4.1.6 Bacterial strains 

Bacterial strains used in this study are listed in Table 7. 

Table 7 E. coli strains used in this study. 

Strain Genotype Source 

DH5α F– endA1 supE44 thi-1λ-recA1 gyrA96 relA1 deoRΔ(lacZYA-argF)U169 Invitrogen, USA 

MG1655 F‐ (λ‐) rph‐1 
193

 

ΔfliC MG1655 ΔfliC, Kms This study 

4.2 Molecular biological methods 

4.2.1 Polymerase chain reaction (PCR) 

The amplification of specific DNA fragments from DNA templates was performed by 

PCR using oligonucleotides (primer) flanking the region of interest. A standard PCR 

reaction mixture and program are listed in Table 8 and Table 9. 

Table 8 Standard PCR reaction mixture 

Final concentration  Component  

0.2 mM dNTPs 

2 mM MgSO4 

1 µM forward primer 

1 µM reverse primer 

0.015 U/µl Phusion DNA polymerase 

0.1-0.5 ng/µl  template DNA 

1x 5x Phusion HF buffer 

 

Table 9 Standard PCR program 

Time Temperature Step 

2 min 95 °C initial DNA denaturation 

30 s 95 °C DNA denaturation 

30 s 65 °C primer annealing                  30 cycles 

30 s/kb 72 °C elongation 

5 min 72 °C final elongation 

 

For further cloning steps the PCR product was purified with the GeneJET DNA 

Purification Kit, according to the manufacturers’ protocol. 
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4.2.2 Restriction digestion and ligation of DNA fragments 

The restriction of DNA-molecules was performed by restriction enzymes. The amount 

of restriction enzyme and the used restriction buffer were chosen according to the 

manufacturers’ recommendation. The restriction mixture consisted of 25-250 ng DNA, 

the corresponding buffer and the chosen restriction enzymes. The mixture was 

incubated for 1 h at 37 °C and purified with the GeneJET DNA Purification Kit or 

GeneJET Gel Extraction Kit, according to the manufacturers’ protocol. 

The ligation of linearized plasmid and DNA-fragment was performed by mixing them 

in a molar ratio of 1:6. The ligation mixture contained 50 ng linearized vector, the 

corresponding amount of the DNA-fragment, T4 DNA ligase buffer, 0.04 U/µl T4 DNA 

ligase and was incubated for 30 min at room temperature. The required amount of DNA 

was determined using the following formula: 

ng vector × kb insert

kb vector
× molar ratio (

insert

vector
) = ng insert 

4.2.3 Agarose gel electrophoresis 

The agarose gel electrophoresis was used to separate DNA-fragments according to their 

size. DNA-probes were mixed with DNA-loading dye (New England Biolabs, 

Germany) and loaded on a 1 % agarose gel (1 % agarose in TAE-buffer; 0.005 % 

Midori Green, Biozym, Germany). The DNA-fragments were separated by 90 V in a gel 

chamber filled with TAE-buffer and analysed via UV-light. 

4.2.4 Determination of DNA concentration by spectrophotometric estimation 

The purity and concentration of DNA were determined via NanoDrop2000 

Spectrophotometer. Here the absorption spectrum of the solution between 220 to 

350 nm was detected. The quotient 260 nm/280 nm was a measure of DNA purity. A 

quotient of 1.5 corresponded to a 50 % DNA/protein-solution, whereas a quotient of 2 

corresponded to pure DNA. For an estimation of the DNA concentration the following 

formula was used: OD260 ∗ 50 µg ml⁄ =DNA concentration in µg ml⁄   
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4.2.5 Plasmid construction 

Plasmids named pOSK (Figure 21) were derived from pREP4 (Qiagen, Germany), and 

include the gene for the transcriptional regulator AraC and the arabinose-inducible 

promotor pBAD
194

 driving the expression of birA, mCherry or gfp. Plasmids named 

pOSA were derived from pSB1A3 (Registry of Standard Biological Parts, USA) and 

include an IPTG-inducible T5 promotor
195

 controlling the expression of recombinant 

Ag43, FliC, AIDA-I, OmpA and INP. The proteins were modified with the following 

peptide sequences: a TEV protease restriction site (ENLYFQS) included a flexible 

linker region placed in front (GGGSGGGSGG), a FLAG-tag epitope (DYKDDDDK) 

and a biotin acceptor peptide (GLNDIFEAQKIEWHE). A detailed description of the 

plasmids can be found in Table 10. 

 

Figure 21 Representation of the expression system used in this study. 



Material and Methods 

 

 

Page | 77 

Table 10 Plasmids used in this study. 

Plasmid Resistance Induction Description Source 

pOSA73  

(FliC-BAP) 

AmpR IPTG BAP and the active side of thioredoxin replace 

741-1067 nt of the coding region of FliC 

153
 

pOSA117  

(Lpp-OmpA-BAP) 

AmpR IPTG 29 nt of the lipoprotein Lpp signal peptide, 138-

474 nt of OmpA followed by FLAG epitope and 

BAP 

19
 

pOSA147  

(INPNC-BAP) 

AmpR IPTG BAP, FLAG epitope and TEV protease 

restriction site were placed at the end of the 

truncated derivative of the ice nucleation protein 

(INPNC) derived from BBa_K523008 

Reg. of 

Stand. Biol. 

Parts, USA) 

pOSA176  

(AIDA-BAP) 

AmpR IPTG BAP, FLAG epitope and TEV protease 

restriction site were placed between the PelB 

signal sequence and 2541-3858 nt of the AIDA-I 

translocator domain 

150
 

pOSA200  

(Ag43-FLAG) 

AmpR IPTG FLAG epitope and TEV protease restriction site 

replaced 171-312 nt of the coding region of 

Ag43 

This study 

pOSA217  

(Ag43-90aa-BAP) 

AmpR IPTG BAP, FLAG epitope and TEV protease 

restriction site were placed at 170 nt of the 

coding region of Ag43 

This study 

pOSA224  

(Ag43-BAP-90aa) 

AmpR IPTG BAP, FLAG epitope and TEV protease 

restriction site were placed at 313 nt of the 

coding region of Ag43 

This study 

pOSA233  

(Ag43-BAP) 

AmpR IPTG BAP, FLAG epitope and TEV protease 

restriction site replaced 171-312 nt of the coding 

region of Ag43 

This study 

pOSA247  

(Ag43-BAP-LOV2) 

AmpR IPTG LOV2 domain, BAP, FLAG epitope and TEV 

protease restriction site replaced 171-312 nt of 

the coding region of Ag43 

This study 

pOSK226 KanR Arabinose lacI, araC, pBAD promotor, cfp, birA This study 

pOSK237 KanR Arabinose lacI, araC, pBAD promotor, mCherry This study 

pOSK239 KanR Arabinose lacI, araC, pBAD promotor, gfp This study 

pREP4  KanR  Expression plasmid, lacI Qiagen, 

Germany 

pSB1A3 AmpR  Expression plasmid Registry of 

Standard 

Biological 

Parts, USA 

pCP20 CmR, 

AmpR 

 Flp recombinase 196
 

4.2.6 Isolation of plasmid DNA 

For isolation of plasmid DNA the bacteria were grown on agar plates, harvested and 

transferred into a reaction tube. The cell lyses and plasmid extraction were carried out 

by using the GeneJET Plasmid Miniprep Kit, according to the manufacturers’ protocol. 



Material and Methods 

 

 

Page | 78 

Plasmid DNA was stored at 20 °C. DNA sequencing was performed by Eurofins MWG 

Operon (Germany), to verify the correctness of newly constructed plasmids. 

4.2.7 Preparation and transformation of chemical competent E. coli 

The preparation of CaCl2 competent E. coli cells was done according to the protocol of 

Inoue, et al. (1990)
197

: 

E. coli was grown in 125 ml SOB-medium at room temperature and vigorous shaking 

(180 rpm), to an OD600nm of 0.6. Then the culture was placed on ice for 10 min and 

harvested at 12000 rpm for 10 min in a chilled centrifuge. The cell pellet was gently 

resuspended in 40 ml ice-cold TB buffer, incubated on ice for 10 min and spun down as 

above. The cells were resuspended in 10 ml ice-cold TB buffer, supplemented with 

7 % (v/v) DMSO and incubated on ice for 10 min. Then aliquots of 100 µl cell 

suspension were dispensed in reaction tubes and immediately chilled by immersion in 

liquid nitrogen. The competent E. coli cells were stored at -80 °C. 

For transformation of E. coli with plasmid DNA, either 10 ng purified plasmid or 

15-30 µl of a ligation mixture was mixed with 100 μl CaCl2 competent E. coli cells and 

incubated for 30 min on ice. Afterwards the mixture was heat shocked for 45 s at 42 °C 

and subsequently set on ice for 2 min. Then the cells were incubated in 1 ml LB-

medium for 1 h at 37 °C. Afterwards the cells were spread on a LB agar plate, 

containing the antibiotic selective for the transformed plasmid. The plate was incubated 

till single colonies were visible. Single colonies of transformants were transferred to a 

new selective agar plate. The presence of the plasmid was analysed by polymerase chain 

reaction (PCR). 

4.3 Microbiological and cell biological methods 

4.3.1 Cultivation of E. coli 

Cells were grown at 34 °C and 275 rpm in TB medium, supplemented with the 

appropriate antibiotics and with or without the addition of 1 µM D-(+)-biotin. The cell 

growth was monitored with a Tecan Infinite M1000 Pro Microplate Reader (Tecan, 
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Switzerland). Cell cultures were inoculated with a 1:100 diluted overnight culture. After 

2 hours of cultivation, the expression of recombinant proteins was induced by the 

addition of 100 µM isopropyl-β-D-thiogalactopyranoside (IPTG) and 0.005% L-(+)-

arabinose. Cells were cultivated for additional 2 to 2.5 hours until an OD600 of 0.6 was 

reached. Where indicated, 10 μg/ml cephalexin was added to the culture for 60 min 

before harvesting cells. Cells were washed and resuspended in motility buffer. 

4.3.2 Immuno- and NeutrAvidin-biotin staining 

The detection of recombinant Ag43 and of the surface-displayed biotin was performed 

via immunostaining and biotin staining. For immunostaining, the cell suspension (OD600 

of 2.0) was incubated with 1 µg/ml monoclonal mouse anti-FLAG
®
 M2 antibody or 

1 µg/ml monoclonal mouse anti-biotin BTN.4 antibody for 1 hour at room temperature. 

After washing three times, cells were resuspended in motility buffer and incubated with 

1 µg/ml anti-mouse goat IgG conjugated to Cy3 for 1 hour at room temperature. For 

NeutrAvidin-biotin staining, the cell suspension (OD600 of 2.0) was incubated with 

1 µg/ml NeutrAvidin conjugated to DyLight™ 488 (Thermo Fisher, Germany) for 

45 min at room temperature. The fluorescence images were acquired at 488 and 587 nm 

for DyLight™ 488 and Cy3 stained cells, respectively, using a Nikon Eclipse Ti-U 

fluorescence microscope (Nikon Instrument, Japan) with 100x objective and Zyla 4.2 

Plus sCMOS camera (Andor Technology Ltd, UK). Quantification of biotinylation was 

performed using a BD LSRFortessa SORP cell analyzer (BD Biosciences, Germany). 

Extracellular biotinylation of Ag43-BAP was performed by incubating the cell 

suspension (OD600 of 2.0) with 0.1 mg/ml BirA in motility buffer supplemented with 

10 mM ATP, 10 mM MgOAc and 50 µM d-biotin for 1 hour at 30 °C. Samples were 

subsequently washed tree times with motility buffer and stained via NeutrAvidin, 

DyLight™ 488 conjugate. The cleavage of surface displayed BAP from Ag43 was 

performed by incubating the cell suspension (OD600 of 0.1) with 0.01 units/µl TEV 

protease, 1 mM DTT and ProTEV buffer for 15 min at 30 °C. 
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4.4 Bacteriabot fabrication 

Cells were prepared as described above and resuspended to a final OD600 of 0.0375 in 

motility buffer. The cell suspension was mixed in a ratio of 1:30 (in numbers) with 1.4-

µm or 2.2-µm Red4 streptavidin PMMA particles (1.5 × 10
3 

particles/µl) and incubated 

for 20 min at room temperature. The kinetics of cell-particle attachment was analyzed 

using a BD LSRFortessa SORP cell analyzer. Where indicated, carbonylcyanide-m-

chlorophenylhydrazone (CCCP) was added during incubation.  

4.5 Microscopy 

4.5.1 Widefield fluorescence microscopy 

The fluorescence imaging of cells and particles was performed at 488 nm using a Nikon 

Eclipse Ti-U fluorescence microscope (Nikon Instrument, Japan) using a 40x objective 

and a dual emission image beam splitter with 525/50 nm and 647/57 nm mounted 

emission filters (Optosplit II; Cairn Research, UK) connected to an iXon3 897 EMCCD 

camera (Andor Technology Ltd, UK) at 10 frames per second. This setup enabled dual-

color time-lapse microscopy of green fluorescent cells and red fluorescent particles. 

From these data, the propulsion orientation (push or pull) of the cell and the respective 

swimming speed was determined. The same data set was used to analyze the particle 

attachment along the cell body, with a particle attached within the first fifth of the cell 

body being considered as polar attachment. 

4.5.2 Confocal laser scanning microscopy and scanning electron microscopy 

The cell-particle attachment was visualized using a Zeiss Axio Observer Laser Scanning 

Microscope (LSM) 880 (Zeiss, Germany) using a 40x objective. Samples were 

illuminated using a 488 nm Argon and 561 nm DPSS laser. Z-stack projections were 

analyzed using the Zeiss ZEN System imaging software (Zeiss, Germany). Samples 

were also imaged using a Supra 55VP scanning electron microscope (Zeiss, Germany) 

using an accelerating voltage of 3 kV and an in-lens detector. 
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4.6 Laser assisted protein adsorption by photobleaching 

The fabrication of well-defined biotin patterns on a glass surfaces was performed via 

laser assisted protein adsorption by photobleaching (LAPAP)
146, 147

. Glass surfaces were 

incubated with a 1 % BSA solution for 20 min, washed three times and covered with 

100 μg/ml Biotin-(5-fluorescein)-conjugate (Sigma-Aldrich, Germany). The fluorescein 

labelled biotin was photobleached for 100 msec using a 515 nm DPSS laser (Acal BFi, 

Germany), leading to the generation of free fluorescein radicals binding to the BSA 

surface
148

. Subsequently the biotinylated surface was washed tree times and incubated 

for 20 min with 1 µg/ml NeutrAvidin, 1.4-µm Red4 streptavidin PMMA particles (1.5 × 

10
3 

particles/µl) or a cell suspension. 

4.7 Microfluidics assay 

The swimming behavior of cells and bacteriabots fabricated as described above was 

analyzed using a poly-di-methylsiloxane (PDMS) microfluidic device consisting of two 

large reservoirs (0.5 ± 0.1 cm
2
 × 50 ± 2 μm) connected by an observation chamber 

(2 mm in length and 1 mm in width), constructed by standard photolithography 

techniques as described previously
165, 198

. The SU‐8 master was prepared on a silicon 

wafer, casted with freshly mixed PDMS (silicone elastomer kit SYLGARD
®
 184, 1:10 

cross-linker to base ratio, Dow Corning, USA) and let to be polymerized overnight at 

65 °C. Microfluidic devices were bonded on a glass slide after oxygen plasma 

treatment. The microfluidic chamber was filled with a solution containing 1 M lithium 

acetate and 1% denatured BSA, preventing particles from adhering to its walls. After 

15 min both reservoirs were filled with motility buffer containing cells or bacteriabots, 

where one reservoir contained additionally 200 µM α-methyl-DL-aspartate (MeAsp). A 

linear gradient of MeAsp formed across the observation chamber within an hour
198

. 

Fluorescence imaging of cell and bacteriabots (particles) was performed at 488 nm and 

587 nm, respectively, using a Nikon Eclipse Ti-U fluorescence microscope (Nikon 

Instrument, Japan) with a 40x objective and a Zyla 4.2 Plus sCMOS camera (Andor 

Technology Ltd, UK) at 33 frames per second.  
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4.8 Particle-tracking 

Cells and bacteriabots were tracked using Fiji
199

, with a custom-written particle-tracking 

plugin using centroid localization algorithm to detect particles and identification of the 

closest particle in next frame for trajectory linking
200

. The instantaneous velocity 𝒗𝑖(𝑡) 

(in 2D) of the object i was also determined by linear fit of the trajectory position 𝒓𝑖(𝑡) 

on a 10-frames long sliding window around time point t. Further processing via 

MATLAB (MathWorks, USA) yielded the population-averaged swimming speed 𝒗0, 

chemotactic drift 𝒗𝑐ℎ, chemotactic bias 
𝒗𝑐ℎ  

𝑣0
2 , the mean square displacement 〈Δ𝑟2(𝑡)〉 and 

the auto-correlation of direction of motion 𝐶𝑣(𝑡), as: 

𝑣0 =  ∑  ∑| 𝒗𝑖(𝑡)|

𝑇𝑖

𝑡

  

𝑖

∑ 𝑇𝑖

𝑖

⁄                                                             [1] 

𝒗𝑐ℎ  = ∑ ∑ 𝒗_𝑖(𝑡)

𝑇𝑖

𝑡𝑖

  ∑  𝑇𝑖

𝑖

⁄                                                              [2] 

 〈Δ𝑟2(𝑡)〉  = ∑ ∑(𝒓𝑖(𝑡 + 𝑡’) −  𝒓𝑖(𝑡’))
2

𝑇𝑖−𝑡

𝑡’𝑖

∑  (𝑇𝑖 − 𝑡)

𝑖

⁄                                    [3] 

 𝐶𝑣(𝑡) = ∑ ∑  
𝒗𝑖(𝑡 + 𝑡’) ⋅ 𝒗𝑖(𝑡’)

𝑣𝑖
2̅̅ ̅

 

𝑇𝑖−𝑡

𝑡’𝑖

∑(𝑇𝑖 − 𝑡)

𝑖

⁄                                           [4] 

Here, 𝑇𝑖 is the duration of trajectory i. Only trajectories longer than 20 frames and for 

which the average swimming speed 𝑣𝑖̅ =
∑ | 𝒗𝑖(𝑡)|

𝑇𝑖
𝑡

𝑇𝑖
 was higher than 5 µm/s were 

considered, to avoid artifacts arising from spurious detections and from non-swimming 

objects, respectively. Furthermore, trajectories were sorted according to their average 

swimming speed to plot data in Figure 18B,C using equation [1, 2] for each subset of 

trajectories. In Figure 17B, the mean-square displacement of each trajectory was 

calculated using equation [3] and normalized by the respective 𝑣0
2. Auto-correlation of 

direction of motion in Figure 17A was calculated for all trajectories using the equation 
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[4], lag times were multiplied by the respective swimming speed 𝒗0. Persistence length 

𝜉 was computed by fitting the autocorrelation according to 𝐶𝑣(𝑡) = 𝐶0𝑒−𝑣0𝑡 𝜉⁄ +  𝐴0. 

4.9 Bioinformatic methods 

In the context of the publication Schauer, et al. (2018)
192

 the modeling part of this study 

was done by Dr. Remy Colin. 

4.9.1 Calculation of swimming speed dependence on cargo using the resistive 

force theory for flagellar bundle 

By rotating its corkscrew-shaped flagellar bundle, E. coli propels itself in water, which 

appears as an extremely viscous liquid at the cell’s length scale – i.e. the Reynolds 

number is low. In this situation, resistive force theory
161

 can be applied to compute the 

propulsion speed of the cell as a function of the geometries of the flagellum and the cell 

body as well as the characteristics of the flagellar motor. 

Following the works of Purcell
159

, the symmetries of flows at low Reynolds number 

yield a linear set of relations between, on the one hand, the velocity (𝑣) and rotation 

frequency (𝜔) of the flagellar bundle and, on the other hand, the force (𝐹𝑡ℎ𝑟𝑢𝑠𝑡) and 

torque (𝑁𝑓𝑙) it generates:  

− 𝐹𝑡ℎ𝑟𝑢𝑠𝑡  =  𝐴 𝑣 –  𝐵 𝜔                                                                         [5𝑎] 

𝑁𝑓𝑙  =  −𝐵 𝑣 +  𝐷 𝜔                                                                           [5𝑏] 

Since no net force is exerted on the cell (or bacteriabot), these force and torque equate 

the viscous force and torque experienced by the cell body (with its attached bead when 

relevant), which also moves at speed 𝑣 and rotate at angular velocity Ω. 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡  = 𝐴0 𝑣                                                                                 [6𝑎] 

𝑁𝑓𝑙  =  − 𝐷0 Ω                                                                                  [6𝑏] 

Here, 𝐴, 𝐵, 𝐷 and 𝐴0, 𝐷0 are the elements of the so-called propulsion matrices of 

respectively the flagellar bundle and the cell body. Notably, 𝐵 measures the conversion 
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of rotation into translation (and vice-versa) thanks to the corkscrew shape of the bundle, 

and 𝐴 (resp. 𝐴0) and 𝐷 (resp. 𝐷0) are the translational and rotational friction coefficients 

of the bundle (resp. body). For the bundle modeled as a rigid helix, they can be 

calculated using resistive force theory
161

 and depend only on the geometry of the 

organelle and the viscosity of the fluid, as: 

𝐴 =  𝐾𝑛 𝑙 sin 𝜓 (tan 𝜓  +
𝛾𝑘

tan 𝜓
)                                                             [7𝑎] 

𝐵 =  𝐾𝑛 𝑙 𝑅 sin 𝜓  (1 − 𝛾𝑘)                                                                    [7𝑏] 

𝐷 =  𝐾𝑛 𝑙 𝑅2 sin 𝜓  (
1

tan 𝜓
 + 𝛾𝑘 tan 𝜓)                                                        [7𝑐] 

with 

tan 𝜓  =  2𝜋
𝑅

𝜆
                                                                                     [8] 

𝐾𝑛 =
4𝜋𝜂

ln (1.8
𝜆
𝑟) + 1/2

                                                                             [9] 

where 𝑙, 𝑅 and 𝜆 are the helix length, radius and pitch respectively, 𝜓 is the pitch angle 

relative to the swimming axis, 𝑟 is the radius of the bundled filaments (composed of 

three or more 13 nm
201

 thick flagella) and 𝛾𝑘 is the ratio of the tangential (𝐾𝑡) to 

perpendicular (𝐾𝑛) friction coefficients of the bundled filament (Appendix-Figure 4B). 

All values for E. coli bundle used here are listed in Appendix-Table 2. 

The cell body and its bead cargo are modeled by an equivalent cylindrical rod of length 

𝐿𝑒𝑓𝑓 and diameter 𝑑𝑒𝑓𝑓 as follows: 

𝐿𝑒𝑓𝑓  =  𝐿𝑐  +  𝑑𝑏                                                                                   [10𝑎] 

𝑑𝑒𝑓𝑓  =
𝐿𝑐

𝐿𝑒𝑓𝑓
 𝑑𝑐  +

𝑑𝑏

𝐿𝑒𝑓𝑓
𝑑𝑏                                                                          [10𝑏] 
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with 𝐿𝑐 and 𝑑𝑐 indicating cell body length and diameter, and 𝑑𝑏 the bead diameter 

(Appendix-Figure 4A). Defining the aspect ratio 𝑝 =  𝐿𝑒𝑓𝑓/𝑑𝑒𝑓𝑓, the friction 

coefficient of this equivalent rod is
202

: 

𝐴0 =  2𝜋 𝜂
𝐿𝑒𝑓𝑓

ln 𝑝 − 0.207 + 0.98/𝑝
.                                                                     [11] 

Equations [5] and [6] can be solved to yield the swimming speed as a function of the 

motor rotation speed 𝜔𝑚  = |Ω| + |𝜔|, considering that for E. coli, 𝐷 ≪ 𝐷0 and 

𝐵2 ≪ (𝐴 + 𝐴0)𝐷0,
160

: 

𝑣 =  𝐵
𝜔𝑚

(𝐴 + 𝐴0)
  .                                                                                  [12] 

When cells are elongated or attached to beads, the friction coefficients 𝐴0 and 𝐷0 

increase. From equation [12] we gather a first obvious effect of an increase of 𝐴0 on 

swimming speed. The rotation speed 𝜔𝑚 could also change due to an increase of the 

total torque experienced by the motors. Indeed, the torque-rotation speed characteristic 

curve was measured for the E. coli motor
203

. In first approximation, the motor rotation 

speed is more-or-less constant, as long as the torque necessary to rotate the flagellum 

and its load (𝑁𝑚 = |𝐷𝜔| + |𝐷0Ω|) stays below a saturation value, above which the 

motor can only generate a constant torque and thus rotates more slowly. We first 

assume that in all our experiments the load is below saturation and the rotation speed 

stays constant.  

The predicted swimming speed was computed from equations [7], [10], [11] and [12]. 

Using the parameters displayed in Appendix-Table 2, a relatively good agreement was 

found with the experimental values (Appendix-Figure 3B). Notably, the values of 

predicted swimming speed for different conditions ranked as the experimental ones. For 

the cephalexin-treated cells, it was necessary to assume that flagellar length increased to 

account for the relatively high swimming speed that was experimentally observed. 

Normal cells loaded with the 2.2-µm beads had a swimming speed lower than expected 

from the prediction, which could indicate that 𝜔𝑚 started to decrease because of a high 

load. Since 𝐷0 scales as 𝐿𝑒𝑓𝑓
3  

202
, the total load on the motors of cephalexin treated cells 
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is expected to be even higher, but the increased flagella number should keep the torque 

per motor below saturation, explaining why a constant 𝜔𝑚 accounts for the swimming 

speeds in this case.  

Note that the predicted swimming speed does not depend on the viscosity of the fluid. 

We indeed observed that the swimming speed was largely unaffected by raising the 

viscosity of the medium to ~4.3 mPa·s using methyl cellulose (Figure 19). It might have 

even increased slightly for the wild type cells, a phenomenon often reported
168

 and 

assumed to come from the viscoelastic properties of the fluid
204

, which is however 

beyond the scope of our model. 
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APPENDIX 

Appendix-Figures 

 

Appendix-Figure 1 Cells directly immobilized on a coated glass surface. Glass surfaces were coated 

with BSA and subsequently fluorescein labelled biotin was immobilized by laser assisted fluorescein 

photobleaching (see Material and Methods for details). After LAPAP treatment the surface was incubated 

for 30 min with streptavidin-coated E. coli cells carrying Ag43-BAP and imaged under the microscope 

for 6 in TB medium at 30 °C. Scale bar: 4 µm. 

 

Appendix-Figure 2 Growth curves of E. coli cells carring Ag43-BAP. E. coli cells carrying a 

recombinant Ag43-BAP on IPTG inducible plasmid were grown with or without 1 µM biotin and/or 

100 µM IPTG in TB medium, as indicated. Cells were subsequently incubated with or without BirA / 

biotin. Growth curves were obtained from three independent experiments. Cell density was measured via 

absorbance at 600 nm. Error bars show SEM. 
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Appendix-Figure 3 Analysis of cargo effects on swimming speed using resistive force theory. (A) 
Schematic representation of a swimming bacteriabot used for theoretical analysis. The cell body of length 

Lc and diameter dc and attached bead of diameter db was modeled by an equivalent cylinder with the 

effective length Leff and diameter deff (see Supporting Text for calculations). The flagellar bundle was 

modeled by a single helix, the thickness of which represents several single flagella. (B) Swimming speeds 

predicted by the resistive force theory (see Supporting Text for calculations) as a function of the 

measured swimming speed, compared to the experimental data for the five conditions studied (blue: 

normal cells, red: cephalexin-treated cells). In the context of the publication Schauer, et al. (2018)
192

 this 

analysis was done by Dr. Remy Colin. 

 

Appendix-Figure 4 Fits of the chemotactic drift as a function of swimming speed. (A) Fit by a power 

law 𝑣𝑐ℎ  =  𝐾𝛼 𝑣0
𝛼  yielded exponents close to 3: 𝛼 = 3.0 ± 0.1 (normal cells), 2.5 ± 0.2 (normal cells and 

1.4 µm particles), 2.7 ± 0.1 (normal cells and 2.2-µm particles), 2.5 ± 0.3 (elongated cells), 3.4 ± 0.2 

(elongated cells and 2.2-µm particles), with 𝐾𝛼  = 0.4 (normal cells), 3 (normal cells and 1.4-µm 

particles), 2 (normal cells and 2.2-µm particles), 3 (elongated cells), 0.2 (elongated cells and 2.2-µm 

particles), in 10−3 (μm s⁄ )1−𝛼. (B) Fits by a square (𝑣𝑐ℎ  =  𝐾2 𝑣0
2, dotted line) and cubic (𝑣𝑐ℎ  =  𝐾3 𝑣0

3, 

solid line) dependence of the chemotactic drift on swimming speed, for normal cells (𝐾2 = 0.015 ±
0.001 s/µm, 𝑅2 = 0.970, 𝐾3 = (3.95 ± 0.07)10−4 s

2
/µm

2
, 𝑅3 = 0.997) and elongated cells (𝐾2 =

0.017 ± 0.001 s/µm, 𝑅2 = 0.977, 𝐾3 = (6.0 ± 0.3)10−4 s
2
/µm

2
, 𝑅3 = 0.981). In the context of the 

publication Schauer, et al. (2018)
192

 the fitting was done by Dr. Remy Colin. 
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Appendix-Tables 

Appendix-Table 1 Typical surface display systems for E. coli. Obtained and modified form van 

Bloois, et al. (2011)
13

. 
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Appendix-Table 2 Parameters used for calculations of swimming speed in the model. 

Parameter Value Reference 

𝝀 2.3 µm 
136 

𝑹 0.2 µm 
136 

𝒓 40 nm 
201 

𝜸𝒌 0.7 
161 

𝐬𝐢𝐧 𝝍 0.88 𝐭𝐚𝐧 𝝍 = 𝝀 𝟐𝝅𝑹⁄  

𝝎𝒎 𝟐𝝅 ×  𝟏𝟒𝟎 rad/s 
160 

𝒍, cpx- 10 µm 
201 

𝒍, cpx+ 17 µm This study 
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