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Zusammenfassung
Die Modellierung von vielen bekannten Problemen der Naturwissenschaften und auch
anderer Wissenschaftszweige führt auf partielle Differentialgleichungen. Diese lassen
sich auch als Operatorgleichungen

Lu = f

formulieren und unter funktionalanalytischen Gesichtspunkten betrachten. Da eine
exakte Lösung von Operatorgleichungen oft nicht zu realisieren ist, besteht der Be-
darf nach praktikablen numerischen Verfahren zur näherungsweisen Lösung selbiger.
In den letzten Jahren und Jahrzehnten gab es ein ganzes Füllhorn von Neuentwicklun-
gen immer ausgefeilterer Algorithmen, welche, begünstigt durch die Rechenkraft und
Speicherkapazität von modernen Computern, in die Praxis umgesetzt werden konn-
ten. Unter mathematischen Gesichtspunkten spielt die theoretische Untersuchung, das
heißt der Nachweis von Konvergenz und Konvergenzraten der Algorithmen, eine eben-
so große Rolle wie die praktische Realisierung. In dieser Arbeit beschäftigen wir uns
mit der Konstruktion von Quarklet-Frames und deren Anwendung zur numerischen
Lösung von Operatorgleichungen. Hierbei beschränken wir uns auf die Klasse ellip-
tischer Operatorgleichungen, das heißt wir gehen davon aus, dass für den Operator
L : H → H ′ von einem Hilbertraum H in seinen Dualraum H ′ die Elliptizitätsbe-
dingung C1||v||H ≤ ||Lv||H′ ≤ C2||v||H , v ∈ H, mit Konstanten C1, C2 > 0, erfüllt
ist. Dies garantiert eine eindeutige Lösung der Operatorgleichung. In der Regel ist H
hierbei ein Sobolevraum auf einem Gebiet Ω ⊂ Rd oder einer Mannigfaltigkeit.
Um den Nutzen und die Vorteile von Quarklets gegenüber anderen Verfahren im

praktischen Einsatz sowie in der theoretischen Betrachtung zu verstehen, gehen wir an
dieser Stelle zunächst auf gängige numerische Lösungsverfahren ein. Finite-Elemente-
Verfahren beruhen auf einer Diskretisierung des kontinuierlichen Problems durch ein
endliches Gitter, welches das Gebiet überspannt. Auf den verschiedenen Abschnitten
des Gitters wird nun versucht, die Lösung der Operatorgleichung durch lokale Funk-
tionen zu approximieren. Je feiner das Gitter gewählt wird, desto besser werden die
Approximationen. Bei der Wahl der Gitter gibt es natürlich eine Vielzahl von Optio-
nen und Verfeinerungsstrategien. Beginnt man mit einem Gitter gleichmäßiger Weite
und verfeinert dies in den sukzessiven Approximationsschritten gleichmäßig, spricht
man von einem uniformen Verfahren. Der Vorteil besteht in einem Algorithmus, der
einfach zu implementieren und nachzuvollziehen ist. Verfahren dieser Art berücksich-
tigen allerdings nicht die Struktur der Lösung. So spielt es keine Rolle, ob die lokale
Approximation im aktuellen Iterationsschritt der tatsächlichen Lösung auf diesem
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Gebiet schon recht nahe kommt oder nicht. Weist die exakte Lösung lokale Singula-
ritäten auf, ist der Approximationsfehler von uniformen Verfahren in den Bereichen
der Singularitäten aber zumeist viel größer als im restlichen Gebiet. Dieses Phänomen
taucht in der Praxis insbesondere bei polygonalen Gebieten oder nichtglatten rechten
Seiten f auf. In diesen Fällen erscheint es sinnvoll, die exakte Lösung, dort wo sie
glatt ist, mit relativ wenig Aufwand zu approximieren und nur dort, wo sie lokale
Singularitäten aufweist, zusätzliche Freiheitsgrade zur genaueren Approximation zu
verwenden. Verfahren, die dies realisieren, nennt man adaptiv. Da im allgemeinen
die Struktur der Lösung unbekannt ist, verlangt man, dass adaptive Verfahren ohne
a-priori Informationen über die exakte Lösung die Verfeinerungsstrategie ausführen.
Lediglich Informationen, die das Verfahren im Verlauf der Iterationen, also a poste-
riori, gewinnt, dürfen dazu verwendet werden. Adaptive Finite-Elemente-Verfahren
finden in der Praxis regen Einsatz. Der theoretische Nachweis der Konvergenz und
von Konvergenzraten ließ aber lange auf sich warten. In einigen Fällen gibt es mittler-
weile theoretische Resultate, siehe [13,86,87,99]. Nichtsdestotrotz führte diese Lücke
zwischen Theorie und Praxis zu alternativen adaptiven Ansätzen, welche aufgrund
stärkerer analytischer Eigenschaften erfolgversprechender im Bezug auf die theoreti-
sche Untersuchung erscheinen.
Eine Möglichkeit ist die Verwendung von Wavelets in adaptiven Verfahren. Wave-

lets entstehen durch Dilatieren, Translatieren und Skalieren weniger oder sogar nur
einer einzigen Funktion. Die Gesamtheit der Wavelets bildet eine Basis eines Funk-
tionenraums. Anwendung fanden Wavelets zunächst in den Bereichen Signal- und
Bildverarbeitung sowie Zeit-Frequenz-Analyse. Die Konstruktion von speziellen Wa-
veletbasen erlaubte aber auch den Einsatz von Wavelets zum numerischen Lösen von
Operatorgleichungen. Die Wavelets, die hier zum Einsatz kamen und kommen, verei-
nen einige wünschenswerte Eigenschaften, die sie zum Einsatz in adaptiven Verfahren
prädestinieren. Zum einen ermöglichen sie die Charakterisierung spezieller Glattheits-
räume wie Sobolev- und Besovräume. Zum anderen sind sie stückweise glatt, kompakt
getragen und besitzen verschwindende Momente. Konstruktionen dieser Art sind bei-
spielsweise zu finden in [17,54,56,90,91]. Dadurch können diese Wavelets zur Diskreti-
sierung von Operatorgleichungen verwendet werden und es ist möglich, Singularitäten
mit wenigen Wavelets darzustellen. In den bahnbrechenden Arbeiten [31,32] konnten
aufbauend auf Wavelets adaptive numerische Verfahren mit beweisbarer Konvergenz
entwickelt werden, welche darüber hinaus asymptotisch optimal sind, das heißt sie
realisieren die selbe Approximationsrate wie die bestmögliche Approximation der ex-
akten Lösung durch eine gewichtete Summe aus maximal N Wavelets. Speziell für
Funktionen, welche Singularitäten aufweisen, konnte in zahlreichen Arbeiten nachge-
wiesen werden, dass diese Rate höher ist als die Rate von uniformen Verfahren, siehe
hierzu etwa [29,36,40,51,67].
Die Konstruktion von geeigneten Waveletbasen, insbesondere auf komplizierteren

Gebieten, stellt eine der größten Schwierigkeiten da. Die Entwicklung von sogenann-
ten Frames gestaltet sich oft einfacher. Dies sind Repräsentantensysteme, welche im
Gegensatz zu Basen Redundanzen erlauben. In [97] wurde die Konvergenz und asym-

viii



Zusammenfassung

ptotische Optimalität eines adaptiven Verfahrens nachgewiesen, welches auf Wavelet-
frames basiert.
Alle bisher vorgestellten Verfahren haben eines gemeinsam: Um eine bessere Ap-

proximation zu erhalten, wird mit einer Verfeinerung im Raum gearbeitet. Wäh-
rend Finite-Elemente-Verfahren dies durch feinere Gitter realisieren, greift man bei
Wavelet-Verfahren auf Wavelets mit höherem Dilatationslevel zurück. Methoden die-
ser Art bezeichnet man in der Literatur häufig als h-Methoden. Im Bereich der Finite-
Elemente-Methoden gibt es ein weiteres Paradigma. Ausgehend von einem festen
Gitter erreicht man bessere Approximationen durch eine Anreicherung der lokalen
Ansatzfunktionen mit Polynomen. Verfahren, welche hierauf basieren, nennt man
p-Methoden. Für glatte exakte Lösungen kann man hierbei mit exponentiellen Kon-
vergenzraten rechnen, siehe etwa [5,7, 95].
Kombinationen von Raumverfeinerung und Anreicherung mit Polynomen sind eben-

falls möglich und kommen in sogenannten hp-Methoden zum Einsatz. Das Kalkül
dahinter ist folgendes: Anreicherung mit Polynomen führt zu einer effizienten Dar-
stellung des glatten Anteils einer Funktion durch wenige Funktionen, während eine
Verfeinerung im Raum dazu genutzt wird, Singularitäten darzustellen. In der Pra-
xis ist eine hohe Effizienz von adaptiven hp-Finite-Elemente-Methoden festzustellen.
Selbst für nicht glatte Funktionen erreicht man bisweilen exponentielle Konvergenz-
raten, siehe etwa [4, 63, 95]. Der theoretische Nachweis von Konvergenz und Kon-
vergenzraten gestaltet sich dagegen äußerst schwierig. Erst kürzlich konnten hierzu
erste Resultate für elliptische Gleichungen zweiter Ordnung bewiesen werden. Wir
verweisen hierbei auf die Arbeiten [11,12,14–16].
Eine natürliche Frage, die sich stellt, ist: Ist es möglich, hp-Methoden auf Wavelets

zu übertragen? Und falls ja, lassen sich die starken analytischen Eigenschaften von
Wavelets nutzen um auf lange Sicht die hohen Konvergenzraten von hp-Methoden,
welche in der Praxis beobachtet werden, theoretisch nachzuweisen?
Ein Ansatz, der nicht direkt auf Wavelets basiert, sondern auf Funktionen, welche

eine Partition der Eins bilden, wurde in [104] vorgeschlagen und in [50] weiter unter-
sucht. Dilatation, Translation und eine Anreicherung mit Polynomen einer Partition
der Eins führten hierbei zu einem hoch redundanten Frame, welcher Sobolev- und Be-
sovräume charakterisiert. Übliche Zerlegungen durch Basen werden häufig als atomar
bezeichnet. Dementsprechend kann man in diesem Zusammenhang von dem redun-
danten System als subatomarer, beziehungsweise quarkonialer Zerlegung sprechen.
Nachteilhaft wirken sich beim quarkonialen Ansatz die fehlenden verschwindenden
Momente einer Partition der Eins aus. Diese sind essentiell für ein effizientes adap-
tives Verfahren und damit auch den Nachweis von Konvergenz und asymptotischer
Optimalität.
Das Ziel dieser Arbeit ist einerseits die Konstruktion einer neuen Klasse von Funk-

tionen, den Quarklets, welche den quarkonialen Ansatz mit Ideen und Konzepten
der Wavelet-Konstruktion vereint. Andererseits wollen wir aufbauend auf Quarklets
ein adaptives Frame-Verfahren entwickeln, welches theoretisch nachweisbar konver-
gent und asymptotisch optimal ist. Diese theoretischen Resultate wollen wir durch
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numerische Experimente in der Praxis überprüfen.
Zur Vorbereitung der Entwicklung von Quarklets wiederholen wir zunächst ausführ-

lich die wichtigsten Konstruktionsprinzipien von eindimensionalen Wavelets auf der
reellen Achse sowie auf dem Einheitsintervall. Daraufhin betrachten wir die Wavelets
aus [34] und [90] als jeweilige Realisierung. Diese dienen als Grundlage zur Konstruk-
tion von eindimensionalen Quarklets. Verschwindende Momente der Wavelets bleiben
dabei erhalten. Insbesondere die Konstruktion von geeigneten, dem Rand angepass-
ten Quarklets erfordert eine sorgfältige Analyse. Mit den auf dies Weise konstruierten
Quarklets lassen sich daraufhin sowohl Frames für Lebesgue- als auch Sobolevräume
bilden.
Nachdem die univariate Theorie abgeschlossen ist, verwenden wir einen Tensoran-

satz um Quarklets auf dem Einheitskubus zu erhalten. Hier ist es nötig die Theorie
von Tensorbasen auf Tensorframes zu erweitern. Um vom Einheitskubus zu allge-
meinen Gebieten zu gelangen, greifen wir auf nichtüberlappende Gebietszerlegungen
zurück. Wir setzen sozusagen das gesamte Gebiet aus einzelnen Kuben beziehungs-
weise parametrisierten Bildern von Kuben zusammen. Besonderes Augenmerk liegt
hierbei auf der Konstruktion von geeigneten Fortsetzungsoperatoren an den Rändern
der jeweiligen Kuben. Die Redundanz der Frames muss dabei in die Überlegungen
einbezogen werden und erfordert einige Anpassungen im Vergleich zum Basisfall.
Um Quarklets in der Praxis zu verwenden, betrachten wir das in [97] propagierte

adaptive Richardson-Verfahren für Frames und zeigen, dass es sich auch auf Quar-
klets anwenden lässt. Hierzu ist es unerlässlich, dass die Steifigkeitsmatrix bezüglich
der Quarklets und der jeweiligen Operatorgleichung eine gewisse Kompressibilität auf-
weist. Grob gesagt verstehen wir darunter, dass sich die Steifigkeitsmatrix effizient
durch dünnbesetzte Matrizen approximieren lässt. Dies weisen wir exemplarisch für
die Poisson-Gleichung nach. Verglichen mit dem Waveletfall gestaltet sich der Beweis
der Kompressibilität für Quarklets, bedingt durch deren polynomiale Anreicherung,
deutlich aufwendiger.
Das in der Arbeit entwickelte adaptive Quarklet-Verfahren wird an verschiedenen

Beispielen getestet. Die Beispiele sind so gewählt, dass durch die Gebietsstruktur
beziehungsweise durch die Struktur der rechten Seite der Operatorgleichung Singula-
ritäten in der exakten Lösung entstehen.
Abschließend geben wir einen Ausblick auf mögliche zukünftige Weiterentwicklun-

gen des Quarkletansatzes.
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Introduction
In several fields of natural and social sciences such as chemistry, biology, physics or
economics, one main task is to describe and approximate observations made in reality
with a mathematical model. In this context, partial differential equations (PDEs)
are very well suited for a wide variety of phenomena, for example, electrostatics,
cell biology or mathematical finance, just to name a few. Using a weak formulation
argument, PDEs can be formulated in a functional analytic setting as an operator
equation

Lu = f. (0.1)

In this thesis, we solely deal with linear operators L : H → H ′ from a Hilbert
space H into its normed dual H ′, where we assume L to be elliptic, i.e., there exist
constants C1, C2 > 0 such that C1||v||H ≤ ||Lv||H′ ≤ C2||v||H for all v ∈ H. The
standard example which fits into this framework is the Poisson equation with Dirichlet
boundary conditions on a bounded domain Ω ⊂ Rd

−∆u = g in Ω, u = 0 on ∂Ω.

Albeit not part of this thesis, let us mention that also integral equations can be treated
in the fashion of (0.1).
If L is a linear elliptic operator, it is followed by an application of the Lax-Milgram

theorem that (0.1) has a unique solution. However, in many cases, it is not possible
to find this solution in an analytical way. Therefore, in numerical analysis, one is
concerned with the development and analysis of algorithms that provide approximate
solutions of operator equations.
A very popular approach is, for example, a uniform finite element method (FEM).

The basic idea is a discretization with respect to some equidistant finite grid for the
domain Ω. Then, on every subdomain several ansatz functions are used to deliver
approximations to the exact solutions. To improve the approximations, one refines
the grid uniformly. The refinement is repeated until a desired accuracy is reached.
The theory behind the latter approach is well-understood and the implementation

is rather simple. However, a uniform refinement strategy is not always the best choice
to obtain a good approximation in a short amount of time. Think of a scenario where
at one stage of the approximation process the solution is very well approximated in
some regions of the domain whereas in other parts of the region the approximation
is far apart from the exact solution. This actually happens if singularities occur in
the exact solution. They are usually induced by singularities of the right-hand side
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f of (0.1) or the shape of the domain Ω. For example, singularities appear in regions
around a non-smooth boundary of the domain, e.g., a reentrant corner. See [60,71,72]
for details.
In this case, a more flexible non-uniform scheme, which focuses on refinements in

regions where it really pays off, is more efficient. In many applications, the exact
solution is not known beforehand. Hence, it is necessary that the scheme detects the
eligible regions on its own without any a priori information about the exact solution.
Therefore, a non-uniform scheme heavily relies on good local a posteriori error estima-
tors. Schemes that combine a posteriori error estimators with non-uniform refinement
are called adaptive methods. They allow for a higher resolution in singular regions
of the solution and a coarser resolution on smooth parts. Compared to a uniform
scheme, an adaptive method is more involved. However, due to the advantages we
have just explained, it can lead to higher convergence rates, which can be described
as the trade-off between the approximation error and the spent amount of degrees of
freedom. In the finite element setting, results about convergence rates can be found,
e.g., in [13,86,87,99]. For a comprehensive introduction and overview about adaptive
finite element methods, see [88, 108]. Since it took a long while from the practical
realization of adaptive finite element methods to theoretical convergence rate results,
other approaches to adaptivity have been made.

Adaptive wavelet algorithms
Due to their strong analytical properties, wavelets, which had their early applications
in signal/image processing (cf. [82]) and time-frequency analysis (cf. [25, Chapter 3]),
came into focus. There are plenty of examples where wavelets have been applied in
adaptive methods until today [9, 21,31–33,38,39,42,45,46,49,52,68,69,98,109].
The general idea behind wavelets is to use one single function ψ, called mother

wavelet, and obtain all other wavelets via dilation, translation and scaling of ψ, i.e.,
the wavelets are the functions

ψj,k = 2j/2ψ(2j · −k), j, k ∈ Z.

The family of wavelets ΨL2(R) = {ψj,k : j, k ∈ Z} builds an orthonormal basis for
L2(R) or at least a Riesz basis in a less restrictive version. Even if a construction
of wavelets is possible without it (cf. [74, 102]), the multiresolution analysis (MRA)
introduced by S. Mallat and Y. Meyer in [81, 84] has become the predominant tool
in this context. The MRA is generated by a single function ϕ, called the scaling
function or generator. With this special function at hand the mother wavelet arises
via a two-scale equation

ψ =
∑
k∈Z

bkϕ(2 · −k),

2



Adaptive wavelet algorithms

with a mask b = {bk}k∈Z. For a detailed introduction to wavelets and their construc-
tion principles, we refer, e.g., to [30,58,82,110].
In this thesis, the generator ϕ is always compactly supported and the mask b is

finite, i.e., it has only finitely many entries which are not zero. Hence, also the mother
wavelet is compactly supported. Therefore, if one wants to analyse a signal, small
perturbations will only influence coefficients related to wavelets in the neighbourhood
of the perturbations. With increasing level j, the support of the wavelets becomes
smaller and smaller such that detail information can be resolved. In other words,
the motion from a low to a high scale can be seen as some kind of zoom. Further
important properties of wavelets, which make them especially suitable for the adaptive
numerical treatment of operator equations, are:

- Weighted sequence norms of wavelet coefficients characterize certain smoothness
spaces like Sobolev, Hölder or Besov spaces.

- Wavelets have vanishing moments, which lead to a cancellation of smooth parts
of a function.

- Wavelets can be chosen arbitrarily smooth.

The cancellation property together with the zoom to higher scales make it possible
to represent functions that exhibit singularities with very few wavelet coefficients.
Moreover, the characterization of function spaces allows the construction of a stable
wavelet basis for a Sobolev space by a simple rescaling of the original basis for L2(R).
For the treatment of operator equations on bounded domains some adjustments

have to be made. First of all, an adaptation for the wavelets at the boundary is
necessary. This can be done in a way that basic properties of wavelets as described
above are preserved. Univariate wavelet Riesz basis constructions that are in a certain
sense tailor-made for the treatment of operator equations can be found in [17,54,56,
90, 91]. These bases, however, can be used to derive bases on cubes or parametric
images of cubes. If one needs stable systems for bounded domains that can not be
characterized as a parametric image of a cube, two principles are predominant. On
the one hand, there are overlapping domain decompositions (cf. [41–43,49,97]). As the
name suggests, the target domain is decomposed into overlapping subdomains that
are parametric images of the cube. In this way, you end up with a stable system which,
however, is not a wavelet basis any more but a wavelet frame. Roughly speaking, a
frame is a generating system which allows for redundancies. For more information on
this topic, we refer to [23,24].
On the other hand, one can try to decompose the domain into parametric images of

the cube that do not overlap. This procedure is denoted as a non-overlapping domain
decomposition. Here, the main difficulty lies in the process of piecing together the
bases on the respective subdomains along the interfaces. If this is done correctly, you
will end up with a wavelet basis on the whole domain. Constructions and applications
of non-overlapping domain decompositions can be found, e.g., in [17,18,20,57].
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For both decomposition approaches, the characterization of smoothness spaces is
still feasible. In particular, for Sobolev spaces on bounded domains. Since in the
weak formulation (0.1) the operator L maps from a Sobolev space into its dual space,
weighted wavelet systems on a bounded domain which characterize certain Sobolev
spaces can be utilized for the discretization of the operator. In so doing, the operator
equation can be transferred into an infinite linear equation system

Au = f . (0.2)

In order to treat (0.2) numerically, e.g., with an iterative scheme, matrix-vector mul-
tiplications with the stiffness matrix A have to be performed. Since A is biinfinite
and in general not sparse, i.e., there exist columns or vectors in A with (infinitely)
many non-zero entries, an exact multiplication in a reasonable amount of time is not
achievable. Therefore, the matrix-vector multiplication has to be substituted with
an inexact version. For this to be done efficiently with a manageable approximation
error, it is necessary that the matrix A exhibits at least a quasi-sparse or compress-
ible structure, i.e., it can be well approximated by sparse biinfinite matrices. The
latter are usually constructed through a coarsening of the matrix A, which means
that small entries of the matrix are replaced by zeros. In order to do this efficiently,
the design of a proper coarsening strategy is mandatory.
Thanks to the locality and the cancellation properties of the wavelets, quasi-sparsity

could be verified for a large class of differential and integral operators in wavelet
coordinates, cf. [53]. This property was used, e.g., in [8,31,32,97] to design a method

APPLY[A,v, ε]→ wε

which executes the inexact matrix-vector multiplication of A with a finitely supported
vector v under a maximal error ε > 0 measured in the `2-norm. The calculation steps
within the method are adapted to the modulus of the entries of v and the error
tolerance ε. Hence, we call a wavelet method adaptive whenever an APPLY routine
is used in it. The progress in this field culminated when in [31] a first adaptive
wavelet Galerkin method for elliptic operator equations and shortly after in [32] an
adaptive Richardson method were introduced. For both algorithms the convergence
and the asymptotical optimality could be proven. The latter means that for a stable
wavelet system Ψ = {ψλ : λ ∈ Λ} for H the solution u of (0.1) is approximated by
the algorithm with functions ui = ∑

λ∈Λi uλψλ, #Λi < ∞ with an optimal relation
between the degrees of freedom #Λi and the accuracy ||u − ui||H . We speak of an
optimal relation whenever ||u − ui||H ≤ C(#Λi)−s, with the largest possible s > 0
and a constant C > 0 depending on u. The optimal convergence rate s is predestined
by the decay rate of the best N-term approximation error

σN(u) = inf{||u− v||H : v =
∑
λ∈I

vλψλ,#I ≤ N, I ⊂ Λ}

with respect to the wavelet system Ψ. However, the optimal convergence rate s with
respect to wavelets depends on the smoothness of u in scales of Besov spaces, cf. [64].
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It has turned out that for many operator equations the Besov smoothness is much
higher than the regularity measured in Sobolev scales, which in turn is related to
the convergence rate of uniform methods. Particularly, this is the case for solutions
with local singularities, which turn up on domains with corners or due to singularities
of the right-hand side. Verifications of the latter fact for several types of operator
equation can be found, e.g., in [29,36,40,51,67].
At first, the just described algorithms were solely applied to discretizations via

wavelet bases. Since the overlapping domain decomposition led to wavelet frames,
the natural question was if the algorithms could be assigned to this setting. For
the Galerkin methods, the answer is negative. The reason for this is the redun-
dancy of the frame, which leads to submatrices of the stiffness matrix A that are
ill-conditioned or even singular. Therefore, the uniform well-posedness of the finite-
dimensional Galerkin subproblems would not be guaranteed without spending addi-
tional effort. However, in [97], a generalization of the adaptive Richardson iteration
of [32] to wavelet frames was constructed. Moreover, the asymptotic optimality of
this algorithm could be verified assuming that the redundancy of the frame could
be controlled in a certain way. Further adaptive algorithms based on wavelet frames
were constructed and analysed, e.g., in [41,42,80,92,101,109]. For a general overview
about wavelet methods for operator equations, we refer to [53,100,107].

hp-methods
Uniform FEM, adaptive FEM, adaptive wavelet methods: so far, all of the presented
algorithms have one thing in common – to improve the accuracy of the approximation,
they work with a refinement of the space. In literature, those kind of schemes are
sometimes called h-methods. In the realm of FEMs, there exists another well-known
approach. Instead of refining the space, one fixes the finite element mesh and aims
for a polynomial enrichment of the ansatz functions. In that case, one speaks of a p-
method. In fact, adaptive p finite element methods can be very powerful. Particularly
for smooth solutions, exponential convergence rates are possible, cf. [5, 7, 95]. For a
theoretical foundation of p-FEMs, we refer to [6].
Also a combination of both space-refinement and polynomial enrichment is possible,

leading to hp-methods. The reasoning behind this approach is that, on the one hand,
a polynomial enrichment of the ansatz functions allows for a sparse approximation
of the smooth part of the solution and, on the other hand, the space-refinement
serves to render the singularities. An hp-FEM was first mentioned in [2, 3]. In
practice it is observed that adaptive hp-FEMs are very efficient; sometimes they
even have exponential convergence rates for solutions with singularities, cf. [4,63,95].
However, rigorous convergence and complexity proofs of hp-FEMs could be derived
only recently. In the last years, some results have been obtained for hp-FEMs of
second-order elliptic equations. Let us mention the timely reviews [14–16] and the
algorithm proposed in [11,12].
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A natural question that arises is: is it possible to construct wavelet versions of
adaptive hp-methods? And if so, can this, due to the strong analytical properties of
wavelets, pave the way to new convergence proofs for hp-methods in the long run? A
predecessor approach not directly based on wavelets but on a partition of unity, i.e.,
a function f with the property∑

k∈Z
f(· − k) ≡ 1,

was proposed in [104] and further investigated in [50]. Via a polynomial enrichment,
dilation and translation of the partition of unity function, highly redundant frames
for Sobolev and Besov spaces were derived. These frames can be interpreted as
subatomic, i.e., quarkonial decompositions, and this concept is of course very close to
the idea of an hp-finite element system.
However, to design an adaptive numerical scheme directly based on these quarkonial

decompositions is highly non-trivial since the frame elements do not possess vanishing
moments. As mentioned above, the vanishing moment property is essential for the
design of an APPLY routine and, therefore, for the convergence and optimality of
adaptive wavelet schemes. This thesis is hence focused on another approach, where
a wavelet-type modulation of the quarkonial system leads to a family of functions,
called quarklets, which enables an effective numerical treatment of operator equations.

Main objectives
The first task of this thesis can be summarized as follows:

(T1) The construction of quarklet frames first on the real line and then on quite
general bounded domains Ω ⊂ Rd. Since the quarklets should be used for the
solution of linear elliptic operator equations, they need to fulfil the following
characteristics:
(i) The characterization of the function spaces required for the discretization

of the operator equations.
(ii) Some amount of vanishing moments such that the stiffness matrix of the

corresponding operator equation exhibits a quasi-sparse structure.

The construction on the real line is executed by a a polynomial enrichment of the
generators of a biorthogonal wavelet basis. The quarklets then arise through a two-
scale equation similar to the wavelet case. In this way, the quarklets inherit the
polynomial degree of the enriched generators. It turns out that the resulting highly
redundant system has the frame property in scales of Sobolev spaces. For this purpose,
the verification of certain Jackson and Bernstein estimates is crucial. Moreover, the
whole construction is designed in such a way that the vanishing moments of the
underlying wavelet basis are preserved.
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Main objectives

The construction of stable systems for quite general domains contained in Rd is
a non-trivial task even in the classical wavelet setting. As mentioned above, this
is usually accomplished by some kind of domain decomposition. For instance, one
could use an overlapping domain decomposition approach as outlined in [43]. Indeed,
it is possible to construct wavelet frames in this way. Moreover, it has been shown
that the latter can be applied in adaptive wavelet frame schemes that converge with
optimal order. However, in practice, one is often faced with non-trivial quadrature
problems that hamper the overall performance of the scheme. Therefore, we proceed
in a different way and use a non-overlapping domain decomposition similarly to the
earlier work [57]. It was shown in [20] that this approach gives rise to generalised ten-
sor product wavelet bases on quadranglelizable domains. In general, tensor product
wavelets can be interpreted as a wavelet version of sparse grids. Therefore, related
approximation schemes can attain dimension-independent convergence rates. In [20],
it was shown that these properties carry over to the case of more general domains.
In this thesis, we show that a combination of these ideas with quarkonial decompo-
sitions indeed works and gives rise to a generalized tensor product quarklet frame on
domains which can be quadrangulated.
To carry out this program, several steps have to be performed. First of all, the

quarklet frame construction on the real line has to be adapted to problems on bounded
intervals. In particular, Dirichlet boundary conditions have to be incorporated. Once
this is done, a quarklet frame on unit cubes can be designed by taking tensor products.
Then, one has to make sure that the new systems are again stable in scales of Sobolev
spaces. This is by no means obvious because the underlying Sobolev spaces are
usually not of tensor product type. Finally, this construction has to be generalized
to arbitrary domains by using non-overlapping domain decomposition strategies and
suitable extension operators. In this thesis, we show that all these steps can indeed
be carried out. Moreover, we prove that several very important properties such as
vanishing moments are preserved, which again implies that the basic building blocks
of adaptive algorithms can still be derived.
Once the quarklet frames are constructed, the next task is their application in

numerical schemes:

(T2) Based on the constructed quarklet frames we want to design a convergent adap-
tive scheme for certain linear elliptic operator equations. Furthermore, we want
to prove the optimal complexity of the algorithm under certain assumptions.
In order to do this, several building blocks have to be established. In particu-
lar, the construction of an efficient APPLY method is a challenging task. To
derive such a method, the careful analysis of a convenient coarsening strategy
is mandatory.

As described above, the application of a Galerkin scheme to a frame system runs
into stability problems. Therefore, in this thesis the design of an adaptive method is
based on a direct iterative scheme. In [97], it was already described how a Richardson
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iteration could be applied to wavelet frames. We adapt this method in a way that it
also works for quarklet frames. Special emphasis lies on a coarsening strategy, which
takes both the level and the polynomial degree of the quarklets into account.
The final task is the practical realization of the derived schemes:

(T3) The implementation and numerical experiments in one and two spatial dimen-
sions with representative test problems to verify the convergence and to study
the convergence rate for certain linear elliptic problems.

Since hp-methods are tailor-made for problems with singularities at some points and a
smooth structure elsewhere, we investigate in operator equations where the solutions
are of this kind. These characteristics of the solution can be achieved, on the one
hand, by the given right-hand side of the operator equation and, on the other hand,
by the shape of the domain. For example, we study a test problem on the L-shaped
domain, which induces a singularity in the solution due to its reentrant corner.
With slight theoretical adjustments, this thesis summarizes the results of the pa-

pers [44, 47] in a uniform display complemented by a detailed foundation, further
theoretical insights and extended numerical tests. In particular, the structure of it is
organized as follows.

Layout
In Chapter 1, we introduce linear elliptic operator equations as the problems that we
want to approximately solve with a numerical scheme. We show how linear elliptic
boundary value problems on certain kinds of domains, which are also specified in
this chapter, fit into this framework. For this purpose, we recall the concept of the
weak formulation of boundary value problems. In this context, Sobolev spaces play
a central role and are therefore introduced at this point. Finally, we discuss some
typical examples that can be treated in the just presented fashion.
Chapter 2 is dedicated to the presentation of frames and Riesz bases for Hilbert

spaces. At first, we review the frames and the slightly weaker concept of Bessel
systems and collect some of their basic properties. Then, we introduce Riesz bases and
shed some light on the connection between them and frames. Afterwards, we show a
couple of statements about the interaction of certain operators with the various types
of function systems. With Gelfand frames, we introduce a specific class of frames in
Section 2.4. On the one hand, they serve as stable systems for Lebesgue spaces and,
on the other hand, they give rise to frames for a scale of Sobolev spaces via a proper
rescaling. Thereupon, we explain in Section 2.5 how these Gelfand frames can be
utilized for the discretization of operator equations, which is a crucial step into the
direction of a numerical treatment of the latter.
The rather abstract concept of Riesz bases is filled with life in Chapter 3, where

we are concerned with biorthogonal wavelet Riesz bases. In Section 3.1, we outline
how an MRA is used as a construction tool for wavelet Riesz bases on the real line. As
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a specific example, we take a look at the Cohen-Daubechies-Feaveau (CDF) wavelets
of [34]. In Section 3.2 we observe which adaptations have to be made to construct
wavelet Riesz bases on the interval in a way that certain boundary conditions are
fulfilled. In this context, the concept of stable completion is introduced. Moreover,
we see in an abstract manner how characterizations of Sobolev spaces can be derived
via Jackson and Bernstein estimates. To conclude, we present the Primbs wavelets
as a realization of boundary adapted wavelets.
Chapter 4 is the first of three consecutive chapters that is devoted to Task (T1),

the construction of quarklets. Here, the realization of quarklet frames on the real
line is at the centre of our attention. In order to do this, we initially define quarks
as polynomially enriched cardinal B-splines and derive necessary estimates for the
former, in particular the above mentioned estimates of Jackson and Bernstein-type.
Subsequently, we design quarklets in Section 4.2 as linear combinations of translated
and dilated quarks. As it turns out, the quarklets inherit the vanishing moments of
the underlying wavelet basis, which in fact is the CDF wavelet basis of Section 3.1.
Furthermore, we are able to prove the frame property of the quarklet system for the
Lebesgue space L2(R) and for scales of Sobolev spaces Hs(R).
In Chapter 5, we show that the construction of quarklets can be adapted to

bounded intervals in such a way that, e.g., Dirichlet boundary conditions can be in-
corporated. For that purpose, we use the generators of the Primbs wavelets of Section
3.2 as a starting point to attain boundary adapted quarks again through a polynomial
enrichment. It turns out that only the quarks at the boundaries of the interval differ
from the real line quarks. Therefore, for our intentions, it is sufficient to proceed with
the verification of certain desirable properties of these boundary quarks. Afterwards,
we define quarklets on the unit interval once more via a refinement equation. To
secure that the vanishing moment property of the underlying Primbs wavelet basis
is not destroyed, we have to pay particular attention to the selection of appropriate
coefficients for the refinement mask. Once this is done, we derive frame properties in
a similar fashion as in the real line case. Finally, as a prearrangement for Section 7.3,
where the verification of the quasi-sparsity of stiffness matrices for specific operators
is addressed, we analyse certain cancellation properties of the quarklets and their
derivatives.
In Chapter 6, we generalize the frame construction to bounded domains contained

in Rd. In Section 6.1, we start with the design of quarklet frames on unit cubes.
We show that by tensorizing quarkonial frames on intervals, one obtains frames for
the Sobolev spaces Hs((0, 1)d). In contrast to the basis case, this does not follow
by general arguments; it seems that additional conditions on the interval frames
are necessary. Fortunately, these conditions are satisfied in our case. Then, the
construction on quadranglelizable domains is studied. We show that, with given
reference frames on the unit cube, these frames can be extended to the whole domain
in such a way that their union once again provides a frame for scales of Sobolev
spaces. Finally, we display that with small adaptations, Gelfand frames for very
general domains are obtained. This the main result for the construction of quarklet
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frames.
Having shown this, inChapter 7, we approach Task (T2), the design of an adaptive

quarklet scheme. In principle, one can run the machinery of adaptive frame algorithms
as outlined in [43]. In Section 7.1, we present an adaptive Richardson iteration
in a very general fashion and show its optimality under certain conditions. The
construction of the indispensable subroutines APPLY, RHS and COARSE are
outlined in Section 7.2. Moreover, we go into detail how quarklet frames can be
applied in an adaptive scheme. For the APPLY routine to work efficiently, it is
necessary that the infinite stiffness matrix in quarklet coordinates is quasi-sparse.
Therefore, we provide a compression result for the latter in Section 7.3.
Finally, in Chapter 8, we turn to Task (T3) and conduct some numerical ex-

periments of the developed adaptive quarklet algorithm in one and two spatial di-
mensions. In essence, the Poisson equation on various domains is studied. It turns
out that for natural test examples, adaptive quarklet schemes outperform the well-
established wavelet (frame) methods. Therefore, the higher redundancy induced by
the polynomial enrichment really pays off in practice.
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Chapter 1

Elliptic Operator Equations
In this thesis, we construct a new class of functions called quarklets and use them to
solve operator equations of the form

Lu = f. (1.0.1)

Usually, L is a linear mapping from a Hilbert space H into its dual H ′. In addition,
we assume the operator L to be elliptic, i.e.,

||Lv||H′ ∼ ||v||H , for all v ∈ H. (1.0.2)

This condition is sufficient to guarantee the existence and uniqueness of u, which
continuously depends on f , see [75, Theorem 6.5.9]. In this chapter, we describe
how linear partial differential equations (PDEs) with boundary values fit into the
framework of operator equations. In order to do this, we introduce Sobolev spaces on
domains and use them to achieve a weak formulation of the boundary value problems.

1.1 Domains
A bounded domain Ω ⊂ Rd is a bounded, connected and open subset of Rd. Recall
the Hölder spaces Ck,γ(Ω), k ∈ N0, 0 < γ ≤ 1 as the set of k-times continuously
differentiable functions such that the k-th partial derivative is Hölder continuous
with exponent γ, i.e.,

sup
x6=y∈Ω

|Dαx−Dαy|
|x− y|γ

<∞, for all |α| ≤ k. (1.1.1)

Definition 1.1. Let Ω be a bounded domain. We say the boundary ∂Ω of Ω is
k-times Hölder continuous, k ∈ N0, if for every x ∈ ∂Ω there exists a neighbourhood
M ⊂ Rd and an invertible function φ : M → B1(0) := {y ∈ Rd : |y| < 1} such that

φ ∈ Ck,1(M), φ−1 ∈ Ck,1(B1(0)), (1.1.2)
φ(M ∩ Ω) = {y ∈ B1(0), yd > 0}, (1.1.3)
φ(M ∩ ∂Ω) = {y ∈ B1(0), yd = 0}, (1.1.4)

φ(M\Ω) = {y ∈ B1(0), yd < 0}. (1.1.5)

If k = 0, the domain Ω is called Lipschitz domain.

11



Chapter 1. Elliptic Operator Equations

The prototypical boundary value problem in this thesis is an elliptic PDE on a
Lipschitz domain.

1.2 Elliptic boundary value problems
For k ∈ N, we denote the space of all k-times continuously differentiable functions
over a set ∅ 6= M ⊂ Rd by Ck(M). In addition, let C∞(M) := ∩k∈NCk(M). The space
C(M) contains all continuous functions over M . Note that if M is compact, then,
the just defined spaces consist of bounded functions with bounded derivatives up to
some order. Let Ω ∈ Rd be a bounded domain. A general linear partial differential
operator L : C2t(Ω) 7→ C(Ω) of order 2t ∈ N on Ω in its divergence form is written as

L :=
∑
α≤t

∑
β≤t

(−1)|β|Dβ (aα,β(x)Dα) , (1.2.1)

with sufficiently smooth aα,β : Ω 7→ R. With

Dα := ∂|α|

∂xα1
1 · · · ∂xαdd

(1.2.2)

we denote the partial differential operator of order |α| := α1 + ...+ αd for any multi-
index α := (α1, ..., αd) ∈ Nd

0. We assume the coefficients aα,β to be symmetric,
aα,β = aβ,α, and the operator L to be uniformly elliptic in Ω, i.e., there exists a
function c : Ω 7→ R with infx∈Ω c(x) > 0 so that∑

|α|=|β|=t
aα,β(x)ξα+β ≥ c(x)|ξ|2t, for all x ∈ Ω, ξ ∈ Rd, (1.2.3)

where ξα := ξα1
1 · · · ξαdd . We are interested in solving elliptic boundary value problems

of the form

Lu = g in Ω, (1.2.4)
∂ku

∂nk
= ϕk on ∂Ω, k = 0, . . . , t− 1, (1.2.5)

with Dirichlet boundary conditions and a continuous functions ϕk on the boundary
∂Ω. The first order normal derivative on ∂Ω is defined as

∂u

∂n
(x) := 〈n(x),∇u(x)〉 =

d∑
i=1

ni(x) ∂u
∂xi

(x), x ∈ ∂Ω, (1.2.6)

with the outer normal vector field n(x) = (n1(x), . . . , nd(x))T , x ∈ ∂Ω and gradient
∇u :=

(
∂u
∂x1
, . . . , ∂u

∂xd

)T
. Of course, the boundary ∂Ω needs to be sufficiently smooth
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in order that (1.2.5) is well-defined. In this thesis, we always assume homogeneous
Dirichlet boundary conditions, i.e,

∂ku

∂nk
= 0 on ∂Ω, k = 0, . . . , t− 1. (1.2.7)

A function u ∈ C2t(Ω)∩Ct−1(Ω) solving the problem (1.2.4), (1.2.7) is called a classical
solution. If the right-hand side g or the domain Ω is not sufficiently smooth, it can
happen that no classical solution to (1.2.4), (1.2.7) exists. To circumvent this problem,
it is necessary to mitigate the regularity assumptions on the solution u. By doing so,
we see that we can transfer (1.2.4), (1.2.7) into an elliptic operator equation (1.0.1).
For this purpose, we need to collect some functional analytic concepts in the next
section.

1.3 Sobolev spaces
Our aim is to reformulate (1.2.4), (1.2.7) in a weak sense, which guarantees existence
and uniqueness of the solution. In this section, we introduce Sobolev spaces, which
play a crucial role in this process. A more detailed presentation of Sobolev spaces
can be found in [1, 76,103].
Let Ω = Rd or a bounded domain in Rd. For 0 < p ≤ ∞ the Lebesgue spaces Lp(Ω)

are defined as the spaces of all equivalence classes of measurable functions f : Ω→ C
for which

||f ||Lp(Ω) :=


(∫

Ω

|f(x)|p dx
)1/p

, 0 < p <∞,

ess supx∈Ω |f(x)| , p =∞
(1.3.1)

is finite. For 1 ≤ p ≤ ∞ the spaces (Lp(Ω), || · ||Lp(Ω)) are Banach spaces. The space
L2(Ω) is even a Hilbert space with the inner product

〈f, g〉L2(Ω) :=
∫
Ω

f(x)g(x) dx. (1.3.2)

For 0 < p < 1, the Lp(Ω)-spaces are only quasi-Banach spaces, i.e., the triangle
inequality is only true up to a constant

||f + g||Lp(Ω) . ||f ||Lp(Ω) + ||g||Lp(Ω).

We say that U ⊂⊂ Ω, if U is bounded in Rd and U ⊂ Ω. We define Lp,loc(Ω) as
the space of functions contained in Lp(U) for all U ⊂⊂ Ω. We call

supp f := {x ∈ Ω : f(x) 6= 0} (1.3.3)
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the support of f ∈ C(Ω). With Ck0 (Ω) we denote the space of all functions f ∈ Ck(Ω)
with supp f ⊂⊂ Ω and analogously

C∞0 (Ω) := {f ∈ C∞(Ω) : supp f ⊂⊂ Ω}, (1.3.4)

which is called the space of test functions. We say a function f ∈ L1,loc(Ω) has a weak
derivative of order α ∈ Nd

0 if there exists another function fα ∈ L1,loc(Ω) for which it
holds that∫

Ω

f(x)Dαϕ(x) dx = (−1)|α|
∫
Ω

fα(x)ϕ(x) dx, for all ϕ ∈ C∞0 (Ω), (1.3.5)

with |α| := ∑d
i=1 αi. The weak derivative is unique up to sets of measure zero. If

f ∈ Ck(Ω), k ∈ N the classical derivative of f is contained in the equivalence class
of weak derivatives. Thus, weak derivatives can be seen as a consistent extension of
the classical derivatives. Consequently, we shall not distinguish between the two and
write Dαf := fα.
For k ∈ N0 and 1 ≤ p ≤ ∞ we define the Sobolev spaces of integer order

W k
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ k}, (1.3.6)

as the spaces of all functions in Lp(Ω) with weak derivatives up to order k in Lp(Ω).
Equipped with the norms

||f ||Wk
p (Ω) :=


( ∑
|α|≤k
||Dαf ||pLp(Ω)

)1/p
, 1 ≤ p <∞,

max
|α|≤k
||Dαf ||L∞(Ω) , p =∞

, (1.3.7)

the Sobolev spaces become Banach spaces, see [1, Theorem 3.3]. They are separable
if 1 ≤ p < ∞ and reflexive if 1 < p < ∞, see [1, Theorem 3.6]. For the special case
p = 2 we even obtain a separable Hilbert space

Hk(Ω) := W k
2 (Ω), (1.3.8)

with inner product

〈f, g〉Hk(Ω) =
∑
|α|≤k
〈Dαf,Dαg〉L2(Ω). (1.3.9)

Up to this point we have defined Sobolev spaces only for k ∈ N0. To define Sobolev
spaces of fractional order s ∈ R+\N, we split s = k + σ with k ∈ N0 and 0 < σ < 1.
Then, for 1 ≤ p < ∞, the spaces W s

p (Ω) are the set of all functions in Lp(Ω), for
which the norm

||f ||W s
p (Ω) :=

||f ||pWk
p (Ω) +

∑
|α|=k

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|p
|x− y|d+pσ dx dy

1/p

(1.3.10)
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is finite. In the literature they are also sometimes referred to as Sobolev-Slobodeckij
spaces. Again, these spaces are Banach spaces (cf. [1, Chapter 7]) and Hs(Ω) :=
W s

2 (Ω) is a Hilbert space with inner product

〈f, g〉Hs(Ω) := 〈f, g〉Hk(Ω)

+
∑
|α|=k

∫
Ω

∫
Ω

(Dαf(x)−Dαf(y))(Dαg(x)−Dαg(y))
|x− y|d+2σ dx dy. (1.3.11)

Since we would like to use Sobolev spaces as an approach to solve boundary value
problems we have to state what we mean by a restriction f|∂Ω of a function f ∈ W s

p (Ω)
to the boundary ∂Ω for a bounded domain Ω. This is not directly clear, because
functions in Sobolev spaces are only unique up to sets of Lebesgue measure zero.
One way to deal with it, is to define W s

0,p(Ω), for s ≥ 0 and 1 ≤ p ≤ ∞, as the
closure of all test functions in W s

p (Ω) and set Hs
0(Ω) := W s

0,p(Ω). We write the dual
of Hs

0(Ω) as H−s(Ω) := (Hs
0(Ω))′. Note that these spaces consist of distributions. If

the boundary ∂Ω is k-times Hölder continuous, k ∈ N0, 1 < p < ∞, 1
p
< s ≤ k + 1

and s− 1
p
is not an integer, then we can make use of the continuous trace operator

Tr : W s
p (Ω)→ W s−1/p

p (∂Ω), (1.3.12)

which is defined as the unique extension from C∞(Ω) to W s
p (Ω) of the restriction

operator f 7→ f|∂Ω (see [72, Theorem 1.5.1.2] for existence and uniqueness). For more
details about Sobolev spaces on surfaces, we refer to [72, Subsection 1.3.3] and [75,
Subsection 6.2.5]. The trace operator leads to the alternative characterization

W s
0,p(Ω) = {f ∈ W s

p (Ω) : Tr(Dαf) = 0, |α| ≤ bs− 1/pc}, (1.3.13)

see [72, Corollary 1.5.1.6].
There are cases, where we want to consider zero boundary conditions only on

subsets of the boundary ∂Ω. Therefore, we define for Γ ⊂ ∂Ω and s > 0 the spaces

W s
Γ,p(Ω) := closW s

p (Ω){f ∈ W s
p (Ω) ∩ C∞(Ω) : supp f ∩ Γ = ∅}. (1.3.14)

If the boundary ∂Ω consists solely of discrete points b1, . . . , br, r ∈ N, e.g. in the case
of an interval domain, and Γ ⊂ {b1, . . . , br}, we slightly adapt the notation in (1.3.14).
For s ∈ [0,∞) \ (N0 + {1

2}), ~σ = (σ1, . . . , σr) ∈ {0, bs+ 1− 1
p
c}r and σi = bs+ 1− 1

p
c

if and only if bi ∈ Γ, we define

W s
~σ,p(Ω) := W s

Γ,p(Ω). (1.3.15)

For the case p = 2 we use the notations Hs
Γ(Ω) := W s

Γ,2(Ω) and Hs
~σ(Ω) := W s

~σ,2(Ω).
Since C∞0 (Ω) is continuously and densely embedded in Lp(Ω), 1 ≤ p < ∞, it is

obvious that Hs
0(Ω) is continuously and densely embedded in L2(Ω). Identifying

L2(Ω) with (L2(Ω))′ via the Riesz isomorphism leads to the triple

Hs
0(Ω) ⊂ L2(Ω) ⊂ H−s(Ω) (1.3.16)
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Chapter 1. Elliptic Operator Equations

of continuously and densely embedded subsets. Such a structure consisting of Banach
spacesH, H ′ at the left and right and a Hilbert space V in the middle is called Gelfand
triple, written as (H,V , H ′). It is crucial for the discretization of boundary value
problems. Note that in this thesis H is always a Hilbert space. The distributional
space H−s(Ω) is equipped with the norm

||g||H−s(Ω) := sup
{
|〈g, f〉H−s(Ω)×Hs

0(Ω)|
||f ||Hs(Ω)

: 0 6= f ∈ Hs
0(Ω)

}
, (1.3.17)

where the dual form 〈·, ·〉H−s(Ω)×Hs
0(Ω) is the unique continuous extension of the inner

product 〈·, ·〉L2(Ω).

1.4 Weak formulation
In this section, we reconsider the boundary value problem (1.2.4), (1.2.7) and show
how to derive at a weak formulation. We roughly follow [75, Section 7.2].
By (1.3.13) for p = 2 and s = t we see that every classical solution u of (1.2.4),

(1.2.7) lies in C2t(Ω)∩H t
0(Ω). To obtain a weak formulation, we integrate Lu against

a test function v ∈ C∞0 (Ω) and use partial integration to arrive at

〈Lu, v〉L2(Ω) =
∑
|α|≤t

∑
|β|≤t

(−1)|β|
∫
Ω

Dβ (aα,β(x)Dαu(x)) v(x) dx

=
∑
|α|≤t

∑
|β|≤t

∫
Ω

aα,β(x)Dαu(x)Dβv(x) dx =: a(u, v).
(1.4.1)

The afore defined a(·, ·) is a bilinear form on H t
0(Ω)× C∞0 (Ω). For coefficients aα,β ∈

L∞(Ω), the bilinear form a(·, ·) is bounded and since C∞0 (Ω) is dense in H t
0(Ω) it has

a unique and continuous extension in H t
0(Ω)×H t

0(Ω), cf. [75, Theorem 7.2.2]. From
now on, we mean this extension if we talk about a(·, ·). This leads to the estimate

a(u, v) ≤ Ca||u||Ht(Ω)||v||Ht(Ω), for all u, v ∈ H t
0(Ω), (1.4.2)

with a constant Ca > 0. If we assume g ∈ L2(Ω), the expression

f(v) :=
∫
Ω

g(x)v(x) dx (1.4.3)

is well-defined for v ∈ H t
0(Ω). The weak or variational formulation of (1.2.4), (1.2.7)

can now be expressed as:

Find a u ∈ H t
0(Ω) such that a(u, v) = f(v) for all v ∈ H t

0(Ω). (1.4.4)

There exists a unique Operator L : H t
0(Ω)→ H−t(Ω) defined by Lu := a(u, ·) for all

u ∈ H t
0(Ω). This makes it possible to rewrite (1.4.4) as an operator equation

Lu = f, (1.4.5)
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1.4 Weak formulation

where f ∈ H−t(Ω). Note that in (1.4.5) it is not necessary any more that the
distribution f is induced by an element of L2(Ω). If we assume the bounded bilinear
form a(·, ·) to be H t

0(Ω)-elliptic, i.e., there exists a constant ca > 0 such that

a(v, v) ≥ ca||v||2Ht(Ω), for all v ∈ H t
0(Ω), (1.4.6)

we derive together with (1.4.2) at

ca||v||Ht(Ω) ≤ ||Lv||H−t(Ω) ≤ Ca||v||Ht(Ω), for all v ∈ H t
0(Ω).

Hence L is an elliptic operator, cf. (1.0.2). Consequently, the elliptic operator equa-
tion (1.4.5) has a unique solution u ∈ H t

0(Ω) with ||u||Ht
0(Ω) ≤ C−1

E ||f ||H−t(Ω). The
following theorem gives a sufficient condition for the bilinear form a(·, ·) to be H t

0(Ω)-
elliptic.

Theorem 1.2. [75, Theorem 7.2.7] Let aα,β be constant for |α| = |β| = t. Further-
more, let aα,β ≡ 0 for 0 < |α| + |β| ≤ 2t − 1 and a0,0(x) ≥ 0 for all x ∈ Ω. Assume
that the operator L is uniformly elliptic in the sense of (1.2.3). Then, the bilinear
form a(·, ·) is H t

0(Ω)-elliptic.

For the existence of a weak solution it is sufficient to demand a(·, ·) to be H t
0(Ω)-

coercive, i.e., there exist constants C1 > 0 and C2 ∈ R such that

a(v, v) ≥ C1||v||2Ht(Ω) − C2||v||2L2(Ω), for all v ∈ H t
0(Ω). (1.4.7)

For details we refer to [75, Sections 6.5, 7.2]. Nevertheless, in this thesis we assume
a(·, ·) to be H t

0(Ω)-elliptic. To close the first chapter, let us give examples of some
common linear elliptic partial differential equations and examine how they fit in the
setting presented in this section.

Example 1.3 (Poisson equation). The Poisson equation with homogeneous boundary
conditions is perhaps the most basic and often-quoted example of a linear elliptic
boundary value problem. It is given by

−∆u = f in Ω,
u = 0 on ∂Ω. (1.4.8)

The Laplace operator, which reads as ∆ := ∑d
i=1

∂2

∂x2
i
, is a general linear partial dif-

ferential operator of order 2 and −∆ can be written in divergence form (1.2.1) with
non-trivial coefficients aα,β ≡ 1 when α = β and |α| = 1. Obviously the negative
Laplace Operator is uniformly elliptic in the sense of (1.2.3). Hence the associated
bilinear form

a(u, v) =
∫
Ω

〈∇u(x),∇v(x)〉 dx (1.4.9)

is H1
0 (Ω)-elliptic, see Theorem 1.2.
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Chapter 1. Elliptic Operator Equations

Example 1.4. Another linear elliptic boundary value problem of order 2 is given by
the Helmholtz equation with homogeneous boundary conditions:

−∆u+ u = f in Ω,
u = 0 on ∂Ω. (1.4.10)

The non-trivial coefficients of −∆u+ u in divergence form are aα,β ≡ 1 when α = β
and |α| = 1 as well as a0,0 ≡ 1. The uniform ellipticity and the assumptions in
Theorem 1.2 are fulfilled, which assures the H1

0 (Ω)-ellipticity of the corresponding
bilinear form

a(u, v) =
∫
Ω

〈∇u(x),∇v(x)〉+ u(x)v(x) dx. (1.4.11)

Example 1.5. The biharmonic equation with homogeneous boundary condition reads
as

∆2u = f in Ω,
u = ∂u

∂n
= 0 on ∂Ω. (1.4.12)

The operator ∆2 of order 4 can be written in divergence form with non-trivial coef-
ficients aα,β ≡ 1 when α = β and |α| = 2. Analogue to Example 1.3, we obtain a
H2

0 (Ω)-elliptic bilinear form

a(u, v) =
∫
Ω

∆u(x)∆v(x) dx. (1.4.13)
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Chapter 2

Frames and Riesz Bases
In this chapter, we introduce frames and Riesz bases and their basic properties in
an abstract fashion. Furthermore, with Gelfand frames, we present a special class of
frames and show how they are used to obtain a discretization of operator equations.
For further information on frames and Riesz bases we refer to [23,24].
In the following sections, we assume I to be a countable index set andH a separable

Hilbert space with inner product 〈·, ·〉H and induced norm ‖ · ‖H := 〈·, ·〉1/2H . Let us
recall that the sequence spaces `p(I), 0 < p ≤ ∞ are defined as the spaces of all real-
or complex-valued sequences c := {cλ}λ∈I such that

‖c‖`p(I) :=


(∑
λ∈I
|cλ|p

)1/p
, 0 < p <∞,

sup
λ∈I
|cλ| , p =∞

(2.0.1)

is finite. Throughout this thesis, we assume the sequences to be real-valued. For
p ≥ 1, the spaces are Banach spaces whereas they are quasi-Banach spaces for 0 <
p < 1. In the special case p = 2, we even get a Hilbert space with inner product
〈c,d〉`2(I) := ∑

λ∈I cλdλ.

2.1 Frames for Hilbert spaces
Before we introduce the concept of a frame, we roll out the weaker concept of a Bessel
system for H, i.e., a system F = {fλ}λ∈I ⊂ H satisfying the condition

‖ {〈g, fλ〉H′×H}λ∈I ‖
2
`2(I) ≤ B‖g‖2

H′ (2.1.1)

for a constant B > 0 and all g ∈ H ′. One can show that F is a Bessel system if and
only if its synthesis operator

FF : `2(I)→ H, c 7→
∑
λ∈I

cλfλ (2.1.2)

is well-defined and bounded. In the course of this thesis, we drop the subscript F in
(2.1.2) whenever it is clear from the context to which Bessel system the synthesis
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Chapter 2. Frames and Riesz Bases

operator belongs. Actually, it is enough to require the synthesis operator to be
well-defined, as the boundedness follows by an application of the Banach-Steinhaus
theorem, see Section 3.2 in [24] for details. The synthesis operator F of a Bessel
system does not need to be surjective. Hence, it is possible that there exist f ∈ H
without any series representation in terms of F . Due to that, we introduce the
fundamental concept of frames for Hilbert spaces.

Definition 2.1. A system F = {fλ}λ∈I ⊂ H is a (Hilbert) frame for H if there exist
constants A,B > 0 such that

A‖g‖2
H′ ≤ ‖{〈g, fλ〉H′×H}λ∈I ‖

2
`2(I) ≤ B‖g‖2

H′ (2.1.3)

holds for all g ∈ H ′.

The constants A and B are called frame bounds. Obviously, they are not unique.
The optimal lower frame bound is the supremum over all lower frame bounds whereas
the optimal upper frame bound is the infimum over all upper frame bounds. If they
coincide, we call the frame tight. Let us mention that the optimal bounds are actually
frame bounds. The aforementioned characterization via the operator F can be shown.

Theorem 2.2. [24, Theorem 5.5.1] A system F = {fλ}λ∈I ⊂ H is a frame for H if
and only if the synthesis operator F is well-defined and surjective.

If F is a frame for H, Theorem 2.2 states that every f ∈ H has a series representa-
tion∑λ∈I cλfλ. However, the synthesis operator of a frame is not necessarily injective,
hence, the representation of an element in H as a linear combination of frame ele-
ments is not unique in general. If we consider the expansion coefficients with the
smallest possible `2-norm, we end up with another characterization of frames.

Proposition 2.3. [109, Proposition 2.2] A system F = {fλ}λ∈I ⊂ H is a frame for
H if and only if

(i) closH(span(F)) = H and

(ii) B−1‖f‖2
H ≤ inf

{c∈`2(I), Fc=f}
‖c‖2

`2(I) ≤ A−1‖f‖2
H , for all f ∈ H.

Our next aim is to establish a frame decomposition for elements in H. For that
purpose, we introduce the adjoint operator of F , which is called analysis operator
and is given by

F ∗F : H ′ → `2(I), g 7→ {〈g, fλ〉H′×H}λ∈I . (2.1.4)

For a frame F the analysis operator is bounded and injective. We obtain the frame
operator S by composing F and F ∗:

SF : H ′ → H, g 7→ SFg := FFF
∗
Fg =

∑
λ∈I
〈g, fλ〉H′×Hfλ. (2.1.5)

Again, the subscript F in (2.1.4) and (2.1.5) is dropped if it is appropriate.
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2.1 Frames for Hilbert spaces

Remark 2.4. In some cases, it is appropriate to identify a Hilbert space H with its
dual Hilbert space H ′ via the Riesz mapping. Then, (2.1.3) becomes

A‖f‖2
H ≤ ‖{〈f, fλ〉H}λ∈I ‖

2
`2(I) ≤ B‖f‖2

H (2.1.6)

for all f ∈ H. Moreover, the analysis and frame operator become

F ∗ : H → `2(I), f 7→ {〈f, fλ〉H}λ∈I , S : H → H, f 7→
∑
λ∈I
〈f, fλ〉Hfλ, (2.1.7)

respectively.
The importance of the frame operator becomes clear in the following lemma and

theorem:
Lemma 2.5. [24, Lemma 5.1.5] Let F = {fλ}λ∈I be a frame for H with frame
operator S and frame bounds A,B. Then, the following hold:
(i) The frame operator S is boundedly invertible, self-adjoint and positive definite.

(ii) The system S−1F = {S−1fλ}λ∈I is a frame for H ′ with frame bounds B−1, A−1

and frame operator S−1. It is called the canonical dual frame of F .
Since the operator S−1 is self-adjoint we obtain the very important frame decom-

position:
Theorem 2.6. [24, Theorem 5.1.6] Let F = {fλ}λ∈I be a frame for H with frame
operator S. Then

f =
∑
λ∈I
〈S−1fλ, f〉H′×H fλ, for all f ∈ H, (2.1.8)

and
g =

∑
λ∈I
〈g, fλ〉H′×HS−1fλ, for all g ∈ H ′. (2.1.9)

As mentioned before, the coefficients in (2.1.8) are not unique in general. If there
exist other decompositions than (2.1.8), we denote the frame F as redundant or
overcomplete. Frames F̃ = {f̃λ}λ∈I 6= S−1F in H ′, for which

f =
∑
λ∈I
〈f̃λ, f〉H′×H fλ, for all f ∈ H, (2.1.10)

are called non-canonical dual frames or just dual frames of F . Obviously, for dual
frames of F , the relation

g =
∑
λ∈I
〈g, fλ〉H′×H f̃λ, for all g ∈ H ′, (2.1.11)

holds as well. Let F̃ and F̃ ∗ be the synthesis and the analysis operator of F̃ , respec-
tively. Then, (2.1.10) and (2.1.11) can be expressed in operator form as

FF̃ ∗ = idH , F ∗F̃ = idH′ , (2.1.12)

respectively. A characterization of all dual frames is possible.
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Chapter 2. Frames and Riesz Bases

Proposition 2.7. [24, Theorem 6.3.7] Let F = {fλ}λ∈I be a frame for H. The dual
frames of F are precisely the families

{f̃λ}λ∈I =
S−1fλ + hλ −

∑
µ∈I
〈S−1fλ, fµ〉H′×H hµ


λ∈I

, (2.1.13)

where {hλ}λ∈I are Bessel systems in H ′.

If it is hard to get access to the canonical dual frame , one way out is to look for
other dual frames which are easier to find or have better properties for our purposes.
One characteristic feature of the canonical dual frame is, that the correspondent
frame coefficients {〈S−1fλ, f〉H′×H}λ∈I have minimal `2(I)-norm among all sequences
satisfying (2.1.10). This becomes obviously clear since for all {cλ}λ∈I ∈ `2(I) with
f = ∑

λ∈I cλfλ it holds∑
λ∈I
|cλ|2 =

∑
λ∈I
|〈S−1fλ, f〉H′×H |2 +

∑
λ∈I
|cλ − 〈S−1fλ, f〉H′×H |2. (2.1.14)

For a proof of (2.1.14) see [24, Lemma 5.4.2]. While in this sense the canonical dual
frame can be seen as the most economical among all distinct dual frames, maybe one
is interested in other features, e.g., wavelet structure of the dual frame or maximal
sparsity of the frame coefficients. For these purposes, it is possible that better weapons
of choice than the canonical dual frame are available. In practical applications, it is
often difficult to determine the operator S−1 and, in addition, there is no warranty
that the canonical dual frame S−1F inherits any properties of the frame F . For
example, there exist frames consisting of functions in Ck(R) where the canonical dual
frame elements are not even continuous, cf. [58, Sections 3.3]. Examples where non-
canonical dual frames are comparably easy to find are given in [24, Sections 12.5,
18.8]. In the following proposition, we see that a projection can be built out of the
synthesis, inverse frame and analysis operator. Among other things, we need this
projector in Section 2.5 to describe the solution set of discretized versions of operator
equations.

Proposition 2.8. Let F = {fλ}λ∈I be a frame for a Hilbert space H. Then, the
operator

Q := F ∗S−1F : `2(I) 7→ `2(I) (2.1.15)

is the orthogonal projection onto ran(F ∗), i.e., ker(Q) = ker(F ) and ran(Q) =
ran(F ∗).

Proof. As a composition of bounded operators F : `2(I) 7→ H, S−1 : H → H ′ and
F ∗ : H ′ 7→ `2(I), the operator Q is bounded from `2(I) to `2(I). From (2.1.5) we
infer that

(F ∗S−1F )(F ∗S−1F ) = (F ∗S−1)(FF ∗S−1)F = F ∗S−1F.
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Hence, Q is a projector. Since F ∗ and S−1 are injective we have ker(Q) = ker(F ). The
surjectivity of F and S−1 gives ran(Q) = ran(F ∗). Since `2(I) = ker(F )⊕⊥ ran(F ∗)
is an orthogonal decomposition of `2(I), the claim follows.

Frames are still a topic of research and have a lot of applications in different fields of
mathematics. Some prominent examples are wavelet frames on Rd (see [58, Section
3.3], [24, Chapter 18]) or bounded domains (see [109]), or Gabor frames (see [24,
Chapter 12], [73, Chapter 5]).

2.2 Riesz bases
We now introduce a subclass of frames which is also numerically stable but allows for
unique representations in terms of series expansions for every function f ∈ H.

Definition 2.9. A system F = {fλ}λ∈I ⊂ H is a Riesz basis for H if

closH(span(F)) = H

and there exist constants A,B > 0 such that

A||c||2`2(I) ≤ ||
∑
λ∈I

cλfλ||2H ≤ B||c||2`2(I) (2.2.1)

holds for all c = {cλ}λ∈I ∈ `2(I).

The constants A,B are called Riesz bounds. Similar to the frame bounds, they are
not unique. Optimal Riesz bounds are defined analogously to the frame case. Specifics
about the relations between Riesz bases and frames can be found in [24, Section 5.4,
Chapter 7]. The first important result, which is not totally obvious by looking at the
definitions, is that indeed every Riesz basis is a frame.

Proposition 2.10. A Riesz basis F = {fλ}λ∈I for H is also a frame for H, and the
optimal Riesz bounds coincide with the optimal frame bounds.

For a proof of the latter see [24, Theorem 5.4.1]. The other way round, not every
frame is a Riesz basis. However, one can give some equivalent conditions for a frame
to be a Riesz basis, cf. [24, Theorem 7.1.1].

Theorem 2.11. Let F = {fλ}λ∈I be a frame for H. Then, F is also a Riesz basis
for H if one of the following conditions hold:
(i) kerF = {0}.
(ii) There exists a biorthogonal sequence F̃ = {f̃λ}λ∈I ∈ H ′, i.e., 〈f̃λ, fµ〉H′×H = δλ,µ

for all λ, µ ∈ I.
(iii) For each f ∈ H there exists a unique sequence c(f) = {cλ(f)}λ∈I ∈ `2(I), such

that f = ∑
λ∈I cλ(f)fλ.
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A system satisfying Theorem 2.11 (iii) is called a Schauder basis. Via the following
well-known statement about Schauder bases, we see how part (ii) and (iii) of Theorem
2.11 are connected.

Theorem 2.12. [24, Theorem 3.3.2] Let F = {fλ}λ∈I be a Schauder basis for H.
Then, there exists a unique system F̃ = {f̃λ}λ∈I ∈ H ′ for which

f =
∑
λ∈I
〈f̃λ, f〉H′×Hfλ, for all f ∈ H. (2.2.2)

The system F̃ is a Schauder basis for H ′, and F and F̃ are biorthogonal sequences.

Since every Riesz basis is a frame, we gather from (2.1.8) and (2.2.2) that the
system F̃ in Theorem 2.11 (ii) is given through {S−1fλ}λ∈I . It is a Riesz basis for
H ′ and is called the dual Riesz basis. Accordingly, the biorthogonal sequence c(f)
in Theorem 2.11 (iii) is {〈S−1fλ, f〉}H′×H . Summarizing, we can state that Riesz
bases are exactly the frames which are non-redundant and therefore allow for unique
representations. In Chapter 3, we present wavelet Riesz bases as a special kind of
Riesz bases.

2.3 Function systems and operators
In this section, we are going to collect some basic facts about Bessel systems, frames
and Riesz bases and their interaction with operators on Hilbert spaces. The results of
this section will be of particular interest in Chapter 6, where we are going to construct
quarklet frames on general bounded domains.
The following proposition deals with unions of Bessel systems, frames and Riesz

bases.

Proposition 2.13. Let H be a Hilbert space. Then, it holds:
(i) The disjoint union of finitely many Bessel systems for H is a Bessel system for

H.
(ii) A frame for H disjointedly united with a Bessel system for H is a frame for H.
(iii) A Bessel system for H which includes a Riesz basis for H is a frame for H.

Proof. Let g ∈ H ′. To prove (i), we assume Bi = {bλ}λ∈Ii ⊂ H, i = 1, . . . , n, to be
disjoint Bessel systems forH with Bessel bounds Bi > 0, i = 1, . . . , n. Let B =

.⋃n
i=1Bi

and I =
.⋃n
i=1Ii. Then, we have

‖ {〈g, bλ〉H′×H}λ∈I ‖
2
`2(I) =

n∑
i=1
‖ {〈g, bλ〉H′×H}λ∈Ii ‖

2
`2(Ii) ≤

n∑
i=1

Bi‖g‖2
H′ . (2.3.1)

For (ii), we assume F = {fλ}λ∈I1 and B = {fλ}λ∈I2 to be disjoint and a frame
respectively a Bessel system for H. As every frame is a Bessel system, the right-hand
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inequality of (2.1.3) follows immediately from (i). For the left-hand inequality we
write

‖ {〈g, fλ〉H′×H}λ∈I1 .∪I2 ‖
2
`2(I1

.
∪I2) ≥ ‖{〈g, fλ〉H′×H}λ∈I1 ‖

2
`2(I1) ≥ A‖g‖2

H′ ,

with A > 0 a lower frame bound of F . For the proof of part (iii), we consider a
countable index set IR ⊂ I and a Bessel system B = {bλ}λ∈I for H which contains
a Riesz basis R = {bλ}λ∈IR for H. We only have to show the left-hand inequality in
(2.1.3). We write

‖ {〈g, bλ〉H′×H}λ∈I ‖
2
`2(I) ≥ ‖{〈g, bλ〉H′×H}λ∈IR ‖

2
`2(IR) ≥ A‖g‖2

H′×H ,

with A > 0 a lower Riesz bound of R. To perform the last estimate, we have used
the fact that every Riesz basis is also a frame.

To conclude this section, we state a proposition which considers the image of frames,
Bessel systems and Riesz bases under certain operators.

Proposition 2.14. Let H1 and H2 be Hilbert spaces and U : H1 7→ H2 a linear
operator. Then, it holds:
(i) If B is a Bessel system for H1 and U is bounded, then UB is a Bessel system

for H2.
(ii) If F is a frame for H1 and U is bounded and surjective, then UF is a frame for

H2.
(iii) If R is a Riesz bases for H1 and U is bounded and invertible, then UR is a Riesz

basis for H2.

Proof. At first, we assume that U is bounded and B = {bλ}λ∈I is a Bessel system for
H1. For g ∈ H2, it is

‖ {〈g, Ubλ〉H2}λ∈I ‖
2
`2(I) = ‖ {〈U∗g, bλ〉H1}λ∈I ‖

2
`2(I)

≤ B‖U∗g‖2
H1

≤ B‖U‖2
H1 7→H2‖g‖

2
H2 .

For the last inequality we used ‖U‖H1 7→H2 = ‖U∗‖H2 7→H1 . For a proof of part (ii) we
refer to [24, Corollary 5.3.2]. To show (iii), we use the fact that a system R = {rλ}λ∈I
is a Riesz basis for a Hilbert space H if and only if there exists a Hilbert space G with
an orthonormal basis {eλ}λ∈I and a bounded and invertible operator V : G 7→ H,
such that R = {V eλ}λ∈I , cf. [24, Definition 3.6.1]. So let R = {rλ}λ∈I be a Riesz
basis for H1 and U bounded and invertible. As mentioned above, R can be written as
{V eλ}λ∈I , with V : G 7→ H1 bounded and invertible. The composition UV : G 7→ H2
is bounded and invertible as well. Thus, the system UR = {UV eλ}λ∈I is a Riesz
basis for H2.
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Chapter 2. Frames and Riesz Bases

2.4 Gelfand frames
As described in Chapter 3, wavelet Riesz bases are often constructed in L2(Ω) first. In
a second step, smoothness and approximation results allow us to characterize certain
smoothness spaces with properly scaled versions of the wavelet Riesz bases. This
strategy can be generalized to the case of frames. For this purpose, we introduce
a special class of frames for a Hilbert space V which properly scaled are frames for
another Hilbert space H. Moreover, we require that a properly scaled version of a
certain dual frame is a frame for the dual Hilbert space H ′.
The quarklet frames we construct in Chapter 6 possess this kind of structure, where

the spaces V and H can be replaced by L2(Ω) and Hs(Ω), respectively.

Definition 2.15. Let (H,V,H ′) be a Gelfand triple of Hilbert spaces. A frame
F = {fλ}λ∈I ⊂ V for V with a dual frame F̃ = {f̃λ}λ∈I ⊂ V ′ is called a Gelfand
frame for the Gelfand triple (H, V,H ′), if F ⊂ H and F̃ ⊂ H ′ and there exists another
Gelfand triple (h, `2(I), h′) of sequence spaces over I such that

T := FF |h : h→ H, c 7→
∑
λ∈I

cλfλ,

T̃ ∗ : H → h, f 7→ {〈f̃λ, f〉H′×H}λ∈I
(2.4.1)

are bounded operators. Furthermore, we require the existence of an isomorphism
D : h→ `2(I) such that its adjoint D∗ : `2(I)→ h′ is also an isomorphism.

One can show that the adjoint operators corresponding to (2.4.1) are

T ∗ : H ′ → h′, g 7→ {〈g, fλ〉H′×H}λ∈I ,
T̃ : h′ → H ′, c 7→

∑
λ∈I

cλf̃λ,
(2.4.2)

respectively. Note the slight difference of the operators in (2.4.1) and (2.4.2) in
contrast to the synthesis and analysis operator of F and F̃ , as defined in (2.1.2) and
(2.1.4), respectively.
In our applications, the isomorphisms in Definition 2.15 are weight matrices D :=

diag(dλ)λ∈I . Hence, it is D = D∗. Moreover, the spaces h are weighted sequence
spaces `2,D(I). By that, we mean the sets of all sequences c = {cλ}λ∈I for which

||c||`2,D(I) := ||Dc||`2(I) (2.4.3)

is finite. The next important result shows that properly scaled versions of a Gelfand
frame for (H,V,H ′) constitute frames for H and H ′. For a proof we refer to [109,
Proposition 2.9].

Proposition 2.16. Let F = {fλ}λ∈I ⊂ V be a Gelfand frame for (H, V,H ′). If the
corresponding sequence spaces are given by (`2,D(I), `2(I), `2,D−1(I)) with the weight
matrix D = diag(dλ)λ∈I, then the sets G := D−1F = {d−1

λ fλ}λ∈I and G̃ := DF̃ =
{dλf̃λ}λ∈I constitute frames for H and H ′, respectively.
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2.5 Discretization of operator equations

Remark 2.17. It is easy to show that the synthesis and analysis operator of G are
given by

FG = TD−1 : `2(I)→ H, c 7→
∑
λ∈I

cλd
−1
λ fλ (2.4.4)

and

F ∗G = (D∗)−1T ∗ : H ′ → `2(I), g 7→ {〈g, d−1
λ fλ〉H′×H}λ∈I , (2.4.5)

respectively.

In Figure 2.1, the relations of the involved operators in a Gelfand frame become
clearer.

Figure 2.1: Diagram of the interaction of the operators for a Gelfand frame F .

2.5 Discretization of operator equations
For a separable Hilbert space H we want to discretize the operator equation

Lu = f, (2.5.1)

with L : H → H ′, u ∈ H, f ∈ H ′. We assume to have available a Gelfand triple
(H,V,H ′) and a Gelfand frame F = {fλ}λ∈I for (H,V,H ′). The corresponding
Gelfand triple of sequence spaces over I shall be given by (`2,D(I), `2(I), `2,D−1(I)),
with a weight matrix D = {dλ}λ∈I . It follows by Proposition 2.16 that G = D−1F is
a frame for H. From Section 2.1 we recall that its analysis operator F ∗G = (D∗)−1T ∗

is injective from H ′ to `2(I). Therefore, we can multiply Equation (2.5.1) from the
left with (D∗)−1T ∗. This leads to

(D∗)−1T ∗Lu = (D∗)−1T ∗f. (2.5.2)

Moreover, we deduce from Theorem 2.2 that the synthesis operator FG = TD−1 of
G is onto from `2(I) to H. Hence, for every u ∈ H there is a u ∈ `2(I) such that
TD−1u = u. Applying this in (2.5.2), we get an equation in `2(I), namely

(D∗)−1T ∗LTD−1u = (D∗)−1T ∗f. (2.5.3)
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Chapter 2. Frames and Riesz Bases

The latter can also be written as

Au = f , (2.5.4)

with

A := (D∗)−1T ∗LTD−1 : `2(I)→ `2(I) (2.5.5)

the discrete version of the operator L and

f := (D∗)−1T ∗f ∈ `2(I) (2.5.6)

the discrete right-hand side. If L is a symmetric, positive definite operator, i.e.,
L = L∗ and 〈Lv, v〉H′×H > 0 for all v 6= 0, we deduce the relation

〈(D∗)−1T ∗LTD−1v,v〉`2(I) = 〈v, (D∗)−1T ∗LTD−1v〉`2(I), v ∈ `2(I).

Hence, A is symmetric as well. Moreover, we have

〈(D∗)−1T ∗LTD−1v,v〉`2(I) = 〈LTD−1v, TD−1v〉H′×H , v ∈ `2(I). (2.5.7)

Since TD−1 is not necessarily injective, the positive definiteness of L does not carry
over to A in general. Anyway, A is at least positive semidefinite. There is one more
thing we can deduce from (2.5.7). For λ ∈ I, let eλ := {δλ,ν}ν∈I ∈ `2(I). Then, it is

eTλAeµ = 〈L(d−1
µ fµ), d−1

λ fλ〉H′×H = (L(d−1
µ fµ))(d−1

λ fλ) = a(d−1
µ fµ, d

−1
λ fλ).

Therefore, the operator A can also be seen as a biinfinite matrix with entries Aλ,µ :=
a(d−1

µ fµ, d
−1
λ fλ), λ, µ ∈ I. It is called stiffness matrix. In the following lemma, some

properties of A are summarized.

Lemma 2.18. The operator A is bounded from `2(I) to `2(I). Moreover,

A|ran(A) : ran(A)→ ran(A) (2.5.8)

is boundedly invertible and ker(A) = ker(TD−1), whereas ran(A) = ran((D∗)−1T ∗).

Proof. As a composition of bounded operators D−1 : `2(I)→ `2,D(I), T : `2,D(I)→
H, L : H → H ′, T : H ′ → `2,D−1(I), (D∗)−1 : `2,D−1(I) → `2(I), the operator A is
bounded from `2(I) to `2(I). From the injectivity of (D∗)−1T ∗ and L we conclude
ker(A) = ker(TD−1). Since TD−1 and L are onto it is ran(A) = ran ((D∗)−1T ∗).
With SG = TD−1(D∗)−1T ∗ the frame operator of G, we define B := F ∗GS

−1
G L−1S−1

G FG.
The operator B is a composition of bounded operators, thus bounded. The compo-
sition of A and B leads to

AB = BA = F ∗GS
−1
G FG.

We recall from Proposition 2.8 that F ∗GS−1
G FG is the orthogonal projection Q onto

ran(F ∗G) = ran((D∗)−1T ∗). Hence, together with the previous part of this proof we
infer that AB = BA is the projection onto ran(A). Therefore, B is the inverse of A
on its range, what proves the claim.
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We have already seen that the solutions of the operator equation (2.5.1) and the
discrete equation (2.5.4) are related via TD−1u = u. From Lemma 2.18, we know
that the solution of (2.5.4) is unique on its range. It remains to state how the set of
all solutions of (2.5.4) can be characterized. For a proof of the following lemma we
refer to [109, Proposition 2.12].

Lemma 2.19. Let u be an arbitrary solution of (2.5.1) and Q := F ∗GS
−1
G FG the

orthogonal projection onto ran(A). Then, Qu is the unique solution of (2.5.1) in
ran(A). The set of all solutions of (2.5.1) can be written as Qu + ker(TD−1).

Remark 2.20. It is possible to perform the discretization of the operator equation
(2.5.1) directly with a frame for H as it is done in [97]. This direct and more general
approach can be applied to a broader class of frames, e.g., Gabor frames, which do
not allow for the construction of Gelfand frames. However, in the wavelet as well as
in the quarklet setting it seems natural to utilize the Gelfand frame approach. The
big advantage of Gelfand frames is that in combination with certain smoothness and
approximation results they lead to powerful and easy to handle norm-equivalences.
With the latter, one can describe certain smoothness spaces by `2-norms of weighted
expansion coefficients with respect to the particular Gelfand frame F .

In this section, we have seen that linear elliptic operator equations can be trans-
ferred via a Gelfand frame into a matrix-vector equation. The natural way to proceed
is to solve this matrix-vector equation with some iterative method. However, before
we do this, we have to make sure that the multiplication of the biinfinite matrix A
with a vector v can be efficiently approximated in a numerically stable way. For
that, a certain quasi-sparse structure of the matrix A is necessary. Throughout the
following of this thesis, we see that our frames of choice, the quarklet frames on gen-
eral domains, which are constructed in Chapter 6, do allow for quasi-sparse stiffness
matrices. However, the verification of this statement is given in Chapter 7.
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Chapter 3

Wavelet Riesz Bases
In this chapter, we introduce wavelets. It is outlined how to construct wavelets on
the real line and on the unit interval. In both cases, we give a concrete example.
These examples serve as the building blocks for the construction of quarklets, which
is the topic of the Chapters 4-6.
Let us stress that Jackson and Bernstein estimates play a key role in this context.

These approximation and regularity results pave the way for wavelet Riesz bases
not only in L2 but also in scales of Sobolev spaces Hs. For further information on
wavelets, we refer to [25,58,84,110].
Throughout this chapter, we identify L2(R) with its dual space, such that dual

Riesz bases are also contained in L2(R).

3.1 Wavelets on the real line
In this section, it is outlined how to construct wavelets on the real line via a pair
of biorthogonal multiresolution analyses. Moreover, we give a concrete realization
of a wavelet Riesz basis resting upon spline functions which was initially introduced
in [34].

3.1.1 Construction principles on the real line
As the definition of wavelets differ in various sources, let us at first fix what we
understand by a wavelet.
Definition 3.1. Let ψ ∈ L2(R) and ψj,k := 2j/2ψ(2j · −k), j, k ∈ Z. The function ψ
is called a (mother) wavelet if
(i) the family {ψj,k : j, k ∈ Z} is a Riesz basis for L2(R) and
(ii) the dual Riesz basis is also generated by a single function ψ̃ ∈ L2(R).
The duality relation reads as

〈ψj,k, ψ̃j′,k′〉L2(R) = δj,j′δk,k′ .

The functions ψ, ψ̃ are called biorthogonal. If ψ = ψ̃, the family {ψj,k : j, k ∈ Z} is
an orthonormal basis for L2(R) and ψ is called an orthogonal wavelet.
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Chapter 3. Wavelet Riesz Bases

The most simple example for a wavelet is the so-called Haar wavelet

ψ(x) =


1, x ∈ [0, 1

2),
−1, x ∈ [1

2 , 1),
0, else,

(3.1.1)

first mentioned in [74]. It is even an orthogonal wavelet. However, the Haar wavelet
is not even continuous. To construct symmetric wavelets with higher smoothness and
compact support, it is necessary to give up the orthonormality, see, e.g., [58, Section
8.3].
The principle tool to construct wavelet bases is the concept of multiresolution

analysis (MRA). It was brought up first by S. Mallat in [81].

Definition 3.2. Let ϕ ∈ L2(R) and ϕj,k := 2j/2ϕ(2j · −k), j, k ∈ Z. The sequence of
function spaces V = {Vj}j∈Z with

Vj = closL2(R) span{ϕj,k : k ∈ Z}

is called a multiresolution analysis (MRA) for L2(R) if
(i) Vj ⊂ Vj+1 for all j ∈ Z,
(ii) closL2(R)

⋃
j∈Z Vj = L2(R),

(iii) ⋂j∈Z Vj = {0}, and
(iv) the family {ϕ0,k : k ∈ Z} is a Riesz basis for V0.
The function ϕ is called generator of the MRA V .

From Definition 3.2 (iv) and ||ϕj,k||L2(R) = ||ϕ||L2(R), we conclude that the set
{ϕj,k : j, k ∈ Z} is a Riesz basis for Vj for all j ∈ Z, with Riesz constants that do not
depend on the level j. Furthermore, with a refinement mask a := {ak}k∈Z ∈ `2(Z), it
holds a two-scale relation of the form

ϕ =
∑
k∈Z

akϕ(2 · −k). (3.1.2)

For the construction of biorthogonal wavelets we need two MRAs which are biorthog-
onal to each other.

Definition 3.3. Two MRAs V = {Vj}j∈Z and Ṽ = {Ṽj}j∈Z with respective generators
ϕ, ϕ̃ ∈ L2(R) are called a pair of biorthogonal MRAs for L2(R) if it holds

〈ϕ, ϕ̃(· − k)〉L2(R) = δ0,k, k ∈ Z. (3.1.3)

The generators are called a pair of biorthogonal generators for L2(R).
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3.1 Wavelets on the real line

In the following, we denote V and Ṽ as the primal and the dual MRA, respectively.
The same applies for the generators ϕ and ϕ̃, which are called primal and dual
generator, respectively. We assume that ϕ is a partition of unity, i.e.,∑

k∈Z
ϕ0,k ≡ 1, almost everywhere.

If the partition of unity property of ϕ and (3.1.3) hold, it is possible to normalize ϕ
and ϕ̃, such that∫

R

ϕ(x) dx =
∫
R

ϕ̃(x) dx = 1.

To construct biorthogonal wavelets with the help of biorthogonal MRAs, we use the
relations Vj ⊂ Vj+1 and Ṽj ⊂ Ṽj+1 to define the complement spaces Wj of Vj and W̃j

of Ṽj via

Vj+1 = Vj ⊕Wj, Ṽj+1 = Ṽj ⊕ W̃j, (3.1.4)

and the biorthogonality conditions

Vj ⊥ W̃j, Ṽj ⊥ Wj, (3.1.5)

for all j ∈ Z. In other words Wj and W̃j are the spaces that describe the infor-
mations that lead from coarser scales Vj, Ṽj to finer scales Vj+1, Ṽj+1, respectively.
Furthermore, from (3.1.4), (3.1.5) and Definition 3.7 (ii), (iii) one can deduce the
decomposition formulas

L2(R) =
∞⊕

j=−∞
Wj = Vj0 ⊕

 ∞⊕
j=j0

Wj

 (3.1.6)

for all j0 ∈ Z. The next step is to construct functions ψ, ψ̃ ∈ L2(R) such that

〈ψ, ψ̃(· − k)〉L2(R) = δ0,k, k ∈ Z,

and

Wj = closL2(R) span{ψj,k : k ∈ Z}, W̃j = closL2(R) span{ψ̃j,k : k ∈ Z},

for all j ∈ Z, where ψj,k := 2j/2ψ(2j · −k), ψ̃j,k := 2j/2ψ̃(2j · −k), j, k ∈ Z. Assuming
the two scale relations

ϕ =
∑
k∈Z

akϕ(2 · −k), ϕ̃ =
∑
k∈Z

ãkϕ̃(2 · −k)
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with the refinement masks a = {ak}k∈Z, ã := {ãk}k∈Z ∈ `2(Z), it was shown in [34]
that

ψ =
∑
k∈Z

bkϕ(2 · −k), ψ̃ =
∑
k∈Z

b̃kϕ̃(2 · −k), (3.1.7)

with

bk := (−1)k+1ã1−k−2`, b̃k := (−1)k+1a1−k−2`, k ∈ Z, (3.1.8)

where the parameter ` ∈ Z can be chosen arbitrarily, fulfil the requirements. In
the orthonormal case ψ = ψ̃, it follows immediately that {ψj,k : j, k ∈ Z} is an
orthonormal basis for L2(R). In the general case, it requires further properties of
the spaces Vj and Ṽj, e.g., the availability of Jackson and Bernstein estimates, to
conclude that {ψj,k : j, k ∈ Z} is a Riesz basis for L2(R). For details, see [30, 34]. If
{ψj,k : j, k ∈ Z} is a Riesz basis for L2(R), then it follows by (3.1.6) with j0 = 0 that
the family

ΨB
L2(R) := {ϕ0,k, ψj,k : (j, k) ∈ ΛB}, ΛB := {(j, k) : j ∈ N0, k ∈ Z} (3.1.9)

is also a Riesz basis for L2(R). Moreover,

Ψ̃B
L2(R) := {ϕ̃0,k, ψ̃j,k : (j, k) ∈ ΛB} (3.1.10)

is the dual Riesz basis of Ψ̃B
L2(R).

Throughout this thesis, we solely deal with generators ϕ and ϕ̃ that have compact
support. In this case, the corresponding refinement masks only have finitely many
non-trivial entries. It immediately follows by (3.1.7) and (3.1.8) that also the primal
and dual wavelets have compact support.
For further reading on wavelet constructions via biorthogonal MRAs we refer to

[19,52].

3.1.2 The Cohen-Daubechies-Feveau wavelets
In this subsection, we present the class of spline wavelets constructed in [34]. In
the following, they are denoted as CDF wavelets. They are a realization of the
biorthogonal wavelets presented in the last subsection and serve as the starting point
for two further constructions presented in this thesis. On the one hand, boundary
adaptations of CDF wavelets lead to wavelet Riesz bases on the interval [0, 1]. This is
outlined in Subsection 3.2.2. On the other hand, polynomial enrichment of the CDF
wavelets enables the construction of quarklets on the real axis, which is the topic of
Chapter 4.
For fixed m ∈ N, let Nm be the cardinal B-spline of order m. One way to construct

cardinal B-splines is to use recursive convolution, i.e.,

N1 := χ[0,1), Nm := Nm−1 ∗N1 :=
∫
R

Nm−1(· − y)N1(y) dy, m > 1. (3.1.11)
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In the next proposition, we collect several well-known facts about cardinal B-splines.
For a proof we refer to [25, Theorem 4.3].

Proposition 3.4. The cardinal B-spline Nm satisfies the following properties:
(i) Nm has compact support. Particularly, it is suppNm = [0,m].
(ii) The cardinal B-spline is a partition of unity, i.e.,

∑
k∈Z

Nm(· − k) ≡ 1.

(iii)
∫
R

Nm(x) dx = 1.

(iv) For m > 1 it holds

N ′m = Nm−1 −Nm−1(· − 1). (3.1.12)

(v) For m > 1 the cardinal B-splines Nm and Nm−1 are related by the recursion
formula

Nm = ·
m− 1Nm−1 + m− ·

m− 1Nm−1(· − 1). (3.1.13)

(vi) Nm is refinable with the two-scale relation

Nm =
m∑
k=0

2−m+1
(
m

k

)
Nm(2 · −k). (3.1.14)

(vii) The spaces closL2(R) span{2j/2Nm(2j · −k) : k ∈ Z} with j ∈ Z are an MRA for
L2(R).

(viii) Nm ∈ Hs(R), for 0 ≤ s < m− 1
2 .

(ix) Nm is symmetric around the axis at x = m
2 .

(x) The explicit formula

Nm = 1
(m− 1)!(m− ·)

m−1 (3.1.15)

holds on the interval [m− 1,m].

For further information on cardinal B-splines, see [25,62,94].
Since all requirements of Subsection 3.1.1 are fulfilled by Nm, it is reasonable to

define the primal generator ϕ := Nm. From now on, let us fix m̃ ∈ N, with the
properties that m̃

m
is sufficiently big and m + m̃ is even. In [34], it was shown that

there exist a dual generator to ϕ with properties that are collected in the following
proposition.

Proposition 3.5. There exists a dual generator ϕ̃ ∈ L2(R) to ϕ = Nm with the
following properties:
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(i) ϕ̃ has compact support. Particularly, it is

supp ϕ̃ = [−m̃+ 1, m̃+m− 1] ⊃ suppϕ.

(ii) ϕ̃ is refinable with a refinement mask ã = {ãk}k∈Z, ãk = 0 for k < −m̃+ 1∨k >
m̃+m− 1. Therefore, the two-scale relation is given by

ϕ̃ =
m̃+m−1∑
k=−m̃+1

ãkϕ̃(2 · −k).

(iii)
∫
R

ϕ̃(x) dx = 1.

(iv) ϕ̃ is symmetric around m
2 .

We choose ` := 0 as the parameter in (3.1.8). Then, by the relations (3.1.7),
(3.1.8) the primal and dual wavelets arise immediately and the whole basis is given
by {ϕ0,k, ψj,k : (j, k) ∈ ΛB}, cf (3.1.9). We have suppψ = [1 − m+m̃

2 , m+m̃
2 ], and ψ is

symmetric around 1
2 if m is even and antisymmetric around 1

2 if m is odd. See [58]
for details. As a linear combination of dilations and translations of ϕ, we conclude
by Proposition 3.4 (viii) that ψ is contained in Hs(R), 0 ≤ s < m− 1

2 . Furthermore,
ψ has m̃ vanishing moments, i.e,∫

R

xrψ(x) dx = 0, r = 0, . . . , m̃− 1.

An illustration of the generators form = 2, 3, 4 is given in Figure 3.1. Mother wavelets
for certain combinations of m and m̃ can be viewed in Figure 3.2.

Figure 3.1: Primal CDF generators ϕ = Nm for m = 2, 3, 4.

Remark 3.6. Actually, the construction in [34] starts with translated versions of
cardinal B-splines as generators. They are centred around 0 for m even and around
1
2 for m odd, what corresponds to an integer shift of bm2 c to the left compared to our
approach. The dual generators are shifted analogously. Moreover, there are cases,
e.g., m = m̃ = 2, where the wavelets in [34] are a reflection along the X-axis of the
wavelets described in here. The reason for this is a slight difference in the formulas
for the refinement masks b = {bk}k∈Z, cf. (3.1.8). Nevertheless, up to this reflection,
both constructions lead to the same Riesz bases.
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Figure 3.2: Primal CDF mother wavelets ψ for (m = 2, m̃ = 2), (m = 3, m̃ = 3),
(m = 3, m̃ = 5) and (m = 4, m̃ = 6).

3.2 Wavelets on the interval
To construct wavelets on the interval, an adaptation of the concepts on the real axis
is necessary. In particular, one has to form boundary near functions that, on the one
hand, preserve the stability of the system and, on the other hand, are appropriate to
describe spaces with certain boundary conditions. Moreover, for the numerical appli-
cation, it is crucial to preserve the vanishing moments of the wavelets. In Subsection
3.2.1, we introduce a general concept for the construction of wavelet bases on the
interval by roughly following the lines of [54, 90, 91]. In Subsection 3.2.2, we recall a
realization of a wavelet basis on the interval constructed in [90, 91]. Other possible
wavelet constructions on the interval are mentioned in [54,56].

3.2.1 Construction principles on the interval
At first, we adapt the concept of MRAs to the interval case.

Definition 3.7. Let j0 ∈ N0 and ∆j ⊂ Z be finite index sets for N 3 j ≥ j0. Let

ΦB
j := {ϕj,k : ϕj,k ∈ L2(0, 1), k ∈ ∆j}
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Chapter 3. Wavelet Riesz Bases

be a set of linear independent functions. The sequence of function spaces V = {Vj}j≥j0
with

Vj = closL2(0,1) span ΦB
j

is called a multiresolution analysis (MRA) for L2(0, 1) if
(i) Vj ⊂ Vj+1 for all j ≥ j0,
(ii) closL2(0,1)

⋃
j≥j0 Vj = L2(0, 1), and

(iii) the sequence of sets ΦB := {ΦB
j }j≥j0 is uniformly stable, i.e., there exist constants

0 < C1 ≤ C2 <∞, that can be chosen independently from j, such that

C1||c||`2(∆j) ≤ ||
∑
k∈∆j

ckϕj,k||L2(0,1) ≤ C2||c||`2(∆j) (3.2.1)

for all c = {ck}k∈∆j
∈ `2(∆j).

The functions ϕj,k j ≥ j0, k ∈ ∆j are called (primal) generator functions.
Remark 3.8. It is possible to incorporate boundary conditions into the construction
of MRAs. Independently of these boundary conditions, every MRA we use leads to
L2(0, 1) Riesz bases. The importance of it lies in the aspect that, depending on the
boundary conditions of the MRA, scaled versions of the Riesz bases lead to Sobolev
spaces Hs

~σ(0, 1) with different boundary conditions ~σ = (σ0, σ1) ∈ {0, bs + 1
2c}

2. For
reasons of clarity and comprehensibility, we spare the indication with ~σ up to a point
where it seems reasonable.
The main difference to the real axis case is that we no longer assume that the

functions ϕj,k are dilated and translated versions of a single function ϕ. While this
property in fact can be sustained for functions away from the boundary, for functions
at the boundary modifications are necessary. Moreover, we fix a coarsest level j0 ∈ N0.
By doing this, we make sure that the supports of all involved functions fit into the
interval.
Similar to the real axis case, we work with a pair of dual MRAs. The dual MRA

is also built by a finite set of functions

Φ̃B
j := {ϕ̃j,k : ϕ̃j,k ∈ L2(0, 1), k ∈ ∆j}.

Note that we have the same index sets ∆j as in the primal case. Likewise, the same
coarsest level j0 ∈ N0 is fixed. The biorthogonality condition can be expressed as

〈ΦB
j , Φ̃B

j 〉 := {〈ϕj,k, ϕ̃j,k′〉L2(0,1)}k,k′∈∆j
= I∆j

, (3.2.2)

for all j ≥ j0.
Since every basis of a finite dimensional space is also a Riesz basis, it is no surprise

that an equation of the kind (3.2.1) holds for all c ∈ `2(∆j), j ≥ j0. The crucial point
is the independence of j of the Riesz constants C1, C2 in (3.2.1), which is key for the
construction of stable bases in L2(0, 1). In the following lemma, we give a criterion
for uniform stability.
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3.2 Wavelets on the interval

Lemma 3.9. [54, Lemma 2.1(i)] Let V, Ṽ be a pair of biorthogonal MRAs for
L2(0, 1). If the primal and dual generator functions are uniformly bounded,

||ϕj,k||, ||ϕ̃j,k|| . 1, for all j ≥ j0, k ∈ ∆j,

and locally finite, i.e.,

#{k′ ∈ ∆j : suppϕj,k′ ∩ suppϕj,k 6= ∅},#{k′ ∈ ∆j : supp ϕ̃j,k′ ∩ supp ϕ̃j,k 6= ∅} . 1

for all j ≥ j0, k ∈ ∆j, then ΦB and Φ̃B are uniformly stable.

Because the spaces Vj and Ṽj are nested, there exist two-scale relations for all j ≥ j0
which can be expressed as

ΦB
j = MT

j,0ΦB
j+1, Φ̃B

j = M̃T
j,0Φ̃B

j+1, (3.2.3)

with refinement matrices Mj,0, M̃j,0 ∈ R∆B
j+1×∆B

j , j ≥ j0. In this context ΦB
j , Φ̃B

j are
interpreted as column vectors. In contrast to the two-scale relation (3.1.7) on the real
line, now, the two-scale relation depends explicitly on the level j. Since ΦB

j are Riesz
bases for their span with uniformly bounded constants, the matrices Mj,0, M̃j,0 are
uniformly bounded in j as well, i.e.,

||Mj,0||`2(∆j)→`2(∆j+1) = O(1), ||M̃j,0||`2(∆j)→`2(∆j+1) = O(1),

for all j ≥ j0. The aim now is to find sequences of complementary spaces {Wj}j≥j0 ,
{W̃j}j≥j0 such that

Vj+1 = Vj ⊕Wj, Ṽj+1 = Ṽj ⊕ W̃j (3.2.4)

and

Vj ⊥ W̃j, Ṽj ⊥ Wj (3.2.5)

for all j ≥ j0. Additionally, for finite index sets ∇j ⊂ Z, we want to construct bases
ΨB
j := {ψj,k : ψj,k ∈ L2(0, 1), k ∈ ∇j}, Ψ̃B

j := {ψ̃j,k : ψ̃j,k ∈ L2(0, 1), k ∈ ∇j} for Wj,
W̃j, respectively, such that

ΨB
L2(0,1) := ΦB

j0 ∪
⋃
j≥j0

ΨB
j , Ψ̃B

L2(0,1) := Φ̃B
j0 ∪

⋃
j≥j0

Ψ̃B
j

are a pair of dual Riesz bases for L2(0, 1). We denote ΨB
L2(0,1) and Ψ̃B

L2(0,1) as (biorthog-
onal) wavelet bases for L2(0, 1) or alternatively as bases of wavelet-type.
Let us fix the notations ∇j0−1 := ∆j and ΨB

j0−1 := ΦB
j0 , Ψ̃B

j0−1 := Φ̃B
j0 as well as

ψj0−1,k := ϕj0,k, ψ̃j0−1,k := ϕ̃j0,k for all k ∈ ∇j0−1. The whole index set shall be
defined as

∇B := {(j, k) : j ≥ j0 − 1, k ∈ ∇j}. (3.2.6)
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This leads to the neatly arranged notations

ΨB
L2(0,1) =

⋃
j≥j0−1

ΨB
j = {ψj,k : (j, k) ∈ ∇B},

Ψ̃B
L2(0,1) =

⋃
j≥j0−1

Ψ̃B
j = {ψ̃j,k : (j, k) ∈ ∇B},

for the wavelet bases.
A general idea to construct wavelet bases is the method of stable completion, see,

e.g., [19, 54,55], which is outlined in the following.

Definition 3.10. Matrices Mj,1 ∈ R∆j+1×∇j , j ≥ j0 are called a stable completion of
Mj,0 if

Mj := (Mj,0,Mj,1) ∈ R∆j+1×∆j+1 (3.2.7)

are invertible for all j ≥ j0 and Mj as well as M−1
j are uniformly bounded in j, i.e.,

||Mj||L (`2(∆j+1)) = O(1), ||M−1
j ||L (`2(∆j+1)) = O(1), (3.2.8)

for all j ≥ j0.

The following proposition clarifies how stable completions Mj,1 can be linked with
the construction of wavelet bases for L2(0, 1).

Proposition 3.11. [19, Corollary 2.1] Let ΦB be uniformly stable with refinement
matrices Mj,0. Then, the sequence of sets {ΦB

j ∪ ΨB
j }j≥j0 is uniformly stable if and

only if ΨB
j = MT

j,1ΦB
j+1 for all j ≥ j0 with Mj,1 a stable completion of Mj,0.

Stable completions are not unique. Actually, in [19, Subsection 3.1] it has been
shown that every stable completion can be written as a linear transformation of some
initial stable completion. In the following proposition, we see how to extract a stable
completion that fits to our purpose of constructing biorthogonal wavelet bases.

Proposition 3.12. [19, Corollary 3.1] Let ΦB, Φ̃B be uniformly stable with refine-
ment matrices Mj,0, M̃j,0. Assume that M̆j,1 is some stable completion of Mj,0 and

that ĞT
j =

(
ĞT
j,0

ĞT
j,1

)
is the inverse of Mj. Then, there exists a stable completion Mj,1

of Mj,0 given by

Mj,1 := (I∆j+1 −Mj,0M̃T
j,0)M̆j,1 (3.2.9)

such that the inverse of Mj is given by GT
j =

(
M̃T

j,0
ĞT
j,1

)
. The collections

ΨB
j = MT

j,1ΦB
j+1, Ψ̃B

j = ĞT
j,1Φ̃B

j+1 (3.2.10)
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3.2 Wavelets on the interval

form biorthogonal systems

〈ΨB
j , Ψ̃B

j 〉 = I∇j 〈ΨB
j , Φ̃B

j 〉 = 〈ΦB
j , Ψ̃B

j 〉 = 0,

so that

〈ΨB
L2(0,1), Ψ̃B

L2(0,1)〉 = I∇B .

Proposition 3.11 guarantees the uniform stability of {ΦB
j ∪ΨB

j }j≥j0 , whereas Propo-
sition 3.12 shows how to ensure the biorthogonality of the systems ΨB

L2(0,1) and Ψ̃B
L2(0,1).

But it is still to discuss if ΨB
L2(0,1) and Ψ̃B

L2(0,1) provide biorthogonal Riesz bases for
L2(0, 1). In other words, we need to check if the whole collections are L2-stable over
all levels. For this purpose, we introduce some notation. For all j ≥ j0, we denote
with

Qj : L2(0, 1)→ Vj, Qjf :=
∑
k∈∆B

j

〈f, ϕ̃j,k〉ϕj,k, (3.2.11)

Q∗j : L2(0, 1)→ Ṽj, Q
∗
jf :=

∑
k∈∆B

j

〈f, ϕj,k〉ϕ̃j,k (3.2.12)

the projectors onto Vj and Ṽj. By setting Qj0−1 := 0, any f ∈ L2(0, 1) can be written
as

f =
∑

j≥j0−1
(Qj+1 −Qj)f,

with convergence of the sum in L2(0, 1). In particular, the difference (Qj+1−Qj)f is
the projection of f onto the complement spaces Wj. In the following theorem, we see
that certain direct and inverse estimates give rise to norm equivalences not only in
L2(0, 1) but also in a range of Sobolev spaces. To the direct estimates we often refer
to as Jackson estimates, whereas inverse estimates are called Bernstein estimates.

Theorem 3.13. [53, Theorem 5.8] Let ΦB and Φ̃B be uniformly stable and the
projections Qj be defined as in (3.2.11). Assume that for S ∈ {V , Ṽ} a Jackson
estimate

inf
vj∈Sj

||f − vj||L2(0,1) . 2−sj||f ||Hs(0,1), f ∈ Hs(0, 1), s ≤ σS , (3.2.13)

and a Bernstein estimate

||vj||Hs(0,1) . 2sj||vj||L2(0,1), vj ∈ Sj, s ≤ µS , (3.2.14)

hold. Let γ := min{σV , µV} and γ̃ := min{σṼ , µṼ}. Then, we have the norm equiva-
lence

||f ||Hs(0,1) h

 ∑
j≥j0−1

22sj||(Qj+1 −Qj)f ||2L2(0,1)

1/2

, s ∈ (−γ̃, γ). (3.2.15)
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Chapter 3. Wavelet Riesz Bases

Exceptionally, in (3.2.15), Hs(0, 1) for s < 0 is to be read as the dual space of
H−s(0, 1). An abstract basis free version of Theorem 3.13 can be found in [52, Theo-
rem 3.2].
Since for all j ≥ j0, ΨB

j is a Riesz basis for Wj with the biorthogonal set Ψ̃B
j and

Riesz constants independent of j, (3.2.15) leads to the norm equivalence

||f ||Hs(0,1) h

 ∑
j≥j0−1

∑
k∈∇Bj

22sj|〈f, ψ̃j,k〉|2


1/2

, s ∈ (−γ̃, γ). (3.2.16)

For s = 0, (3.2.16) states that Ψ̃B
L2(0,1) is a frame for L2(0, 1). Since it has a biorthogo-

nal sequence ΨB
L2(0,1) in L2(0, 1), both Ψ̃B

L2(0,1) and ΨB
L2(0,1) are Riesz basis for L2(0, 1).

As (3.2.16) holds for a whole range of Sobolev spaces, the Riesz basis property carries
over to these spaces through a simple scaling of ΨB

L2(0,1). For this purpose, let us
introduce the scaling matrix

DB := diag(2js)λ∈∇B , λ = (j, k) ∈ ∇B, (3.2.17)

for a fixed s ∈ [0, γ). The scaled versions of ΨB
L2(0,1) are then defined through

ΨB
Hs
~σ

(0,1) := (DB)−1ΨB
L2(0,1) = {2−jsψλ,~σ : λ = (j, k) ∈ ∇B

~σ }, (3.2.18)

where ~σ ∈ {0, bs + 1
2c}

2 depends on the incorporated boundary conditions of the
MRA, cf. Remark 3.8. In the following proposition, it is stated that these scaled
collections of wavelets are indeed Riesz bases for Hs

~σ(0, 1), cf. (1.3.15).

Proposition 3.14. [109, Proposition 2.6] Under the same conditions as in Theorem
3.13 and for s ∈ [0, γ), ~σ ∈ {0, bs + 1

2c}
2, the family ΨB

Hs
~σ

(0,1) as defined in (3.2.18),
is a Riesz basis for Hs

~σ(0, 1).

Through a biorthogonality argument, it is easy to see that the dual Riesz bases of
ΨB
Hs

0(0,1) for H−s(0, 1), s ∈ [0, γ), are

Ψ̃B
H−s(0,1) := DBΨ̃B

L2(0,1) = {2jsψ̃λ : λ = (j, k) ∈ ∇B}.

In the next subsection, we see how the wavelets constructed in [90, 91] perfectly fit
into the just introduced framework.

3.2.2 The Primbs wavelets
In this subsection, we reproduce the construction of the Primbs wavelets as outlined
in [90,91]. It is a realization of wavelets that is based on splines as generator functions.
Therefore, it belongs to the class of spline wavelet bases. For a comprehensive theory
of spline wavelet bases, we refer to [25–28]. Another construction of biorthogonal
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3.2 Wavelets on the interval

wavelets on the interval can be found in [54]. For the orthogonal case, we refer to [35]
for a detailed overview.
For a fixed degree m ≥ 2 and j ∈ N, we consider the knot sequence Tm,j :=
{tj,k}2j+m−1

k=−m+1 of equidistant dyadic knots with multiplicity m on the boundary,

tj,k :=


0 , k = −m+ 1, . . . , 0,
2−jk , k = 1, . . . , 2j − 1,
1 , k = 2j . . . , 2j +m− 1

,

and the Schoenberg B-splines

Bm,j,k := (tj,k+m − tj,k)[tj,k, . . . , tj,k+m; max{0, t− ·}m−1], (3.2.19)

for k = −m+ 1, . . . , 2j − 1. The divided difference

[t0, . . . , tn; f(t)]

of a knot sequence {tk}nk=0 and an arbitrary function f is defined as the unique leading
coefficient of the interpolation polynomial to the points (tk, f(tk)), k = 0, . . . , n. The
generators on level j ∈ N are then defined as

ΦB
j = {ϕj,k : k ∈ ∆j} := {2j/2Bm,j,k : k ∈ ∆j},

∆j := {−m+ 1, . . . , 2j − 1}.
(3.2.20)

Let us fix a coarsest level j0 ∈ N0 and assume that N0 3 j ≥ j0. The generators have
compact support in [tj,k, tj,k+m],

suppϕj,k =


[0, 2−j(m+ k)], k = −m+ 1, . . . ,−1,
[2−jk, 2−j(m+ k)], k = 0, . . . , 2j −m,
[2−jk, 1], k = 2j −m, . . . , 2j − 1.

(3.2.21)

The inner generators

ΦB,(I)
j := {ϕj,k : k ∈ ∆(I)

j }, ∆(I)
j := {0, . . . , 2j −m}, (3.2.22)

are dilated and translated versions of a cardinal B-spline. To be more precise, we
have ϕj,k = Nm(2j · −k), for k ∈ ∆(I)

j . The right boundary generators

ΦB,(R)
j := {ϕj,k : k ∈ ∆(R)

j }, ∆(R)
j := {2j −m+ 1, . . . , 2j − 1}, (3.2.23)

are reflected versions of the left boundary generators

ΦB,(L)
j := {ϕj,k : k ∈ ∆(L)

j }, ∆(L)
j := {−m+ 1, . . . ,−1}, (3.2.24)

i.e., ϕj,k = ϕj,2j−m−k(1− ·), for k ∈ ∆(L)
j . Moreover, the generators suffice the simple

relation ϕj+1,k =
√

2 ϕj,k(2·), k ∈ ∆(L)
j ∪∆(I)

j . We refer to [94] for a proof of the latter
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Chapter 3. Wavelet Riesz Bases

facts. We further mention that only the outermost generators on the left-hand and
the right-hand side do not vanish at the boundaries. This can be recognized well in
Figure 3.3 for the case m = 3:

Figure 3.3: Generators ϕj,k for the Primbs wavelets with free boundary conditions of
order m = 3 with m̃ = 3 vanishing moments on the coarsest level j0 = 3.
The dotted lines indicate the boundary generators whereas functions with
solid lines are inner generators.

The sequence of function spaces V = {Vj}j≥j0 = closL2(0,1) span ΦB
j is an MRA for

L2(0, 1) with order m of polynomial exactness, i.e., the space Πm−1 of polynomials
with degree at most m− 1 is contained in Vj for all j ≥ j0. It is possible to construct
a biorthogonal MRA Ṽ with polynomial exactness m̃ ∈ N if m̃

m
is large enough and

m+ m̃ is even. We skip the details here since the construction is very technical and
the dual side is not explicitly used in our applications. However, it can be shown that
the pair of biorthogonal MRAs fulfil Jackson and Bernstein estimates in the fashion
of (3.2.13), (3.2.14).
We obtain the wavelets through stable completion as described in the last subsec-

tion. The bases of the complement spaces Wj, j ≥ j0 then look like

ΨB
j = {ψj,k : k ∈ ∇j}, ∇j := {0, . . . , 2j − 1}. (3.2.25)

As in the generator case, we differ between boundary and inner wavelets. Therefore,
we introduce the notations

ΨB,(loc)
j := {ψj,k : k ∈ ∇(loc)

j }, loc ∈ {L, I, R},
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3.2 Wavelets on the interval

with

∇(L)
j :=

{
0, . . . , m+ m̃− 4

2

}
,

∇(I)
j :=

{
m+ m̃− 2

2 , . . . , 2j − m+ m̃

2

}
,

∇(R)
j :=

{
2j − m+ m̃

2 + 1, . . . , 2j − 1
}
.

(3.2.26)

Similar to the generators, the wavelets fulfil the relation ψj+1,k =
√

2 ψj,k(2·), k ∈
∇(L)
j ∪∇

(I)
j . Moreover, they are compactly supported with

suppψj,k =


[0, 2−j(m+ m̃− 2)], k ∈ ∇(L)

j ,

[2−j(−m+m̃−2
2 + k), 2−j(m+m̃

2 + k)], k ∈ ∇(I)
j ,

[1− 2−j(m+ m̃− 2), 1], k ∈ ∇(R)
j .

Up to a scaling factor and a translation, the inner wavelets ΨB,(I)
j match the spline

wavelets on the interval constructed in Subsection 3.1.2. In total analogy to the
generators, for every level j ≥ j0, only the outermost boundary functions on the
left-hand and the right-hand side do not vanish at the boundary. These properties
can be observed in Figure 3.4. The whole wavelet collection

ΨB
L2(0,1) = {ψλ : λ ∈ ∇B}, ∇B = {(j, k) : N0 3 j ≥ j0 − 1, k ∈ ∇j}, (3.2.27)

is a Riesz basis for L2(0, 1) and since all the requirements of Proposition 3.14 are
fulfilled, ΨB

Hs(0,1) = D−1ΨB
L2(0,1) is a Riesz basis for Hs(0, 1) for s ∈ [0,m − 1

2). Fur-
thermore, all wavelets have vanishing moments up to order m̃,

1∫
0

xrψj,k(x) dx = 0, r = 0, . . . , m̃− 1, (j, k) ∈ ∇B.

The latter follows directly by the polynomial exactness of order m̃ of the dual MRA
and 〈Φ̃B

j ,ΨB
j 〉 = 0. This property is crucial for compression results, which in turn

are necessary to show the optimal convergence of adaptive numerical schemes, cf.
Chapter 7. Therefore, one main task for the construction of quarklets is to inherit
the vanishing moments of the wavelets.
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k = 0, 1

k = 2, 3

k = 4, 5

k = 6, 7

Figure 3.4: Primbs wavelets ψj,k with free boundary conditions of order m = 3 with
m̃ = 3 vanishing moments on the coarsest level j0 = 3.
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Remark 3.15. To incorporate Dirichlet boundary conditions on both sides, we cancel
the outermost functions of the primal MRA, which are the only ones that do not
vanish at the boundary. As a result, we receive the adapted index set ∆j,~σ = {−m+
2, . . . , 2j − 2}, with ~σ = (bs + 1

2c, bs + 1
2c). Obviously, V does not reproduce the

constant polynomials any more. To keep the dimensions on the primal and dual side
equal, we have to adapt the dual MRA as well. In contrast to the primal MRA,
this can be done without cancelling out all the functions that with positive absolute
value at the boundary. Thus, we conserve the polynomial exactness of order m̃
on the dual side. If the boundary adaptation is made in this fashion, we speak of
complementary boundary conditions. Induced by the adaptation of the dual MRA,
the primal wavelets at the boundary change (cf. Figure 3.5), although the index sets
for the primal wavelets stay the same.
It is also possible to impose Dirichlet boundary conditions only on one side of the

boundary. Then, with the respective ~σ the index sets ∆j,~σ become {−m+ 2, . . . , 2j −
1} or {−m + 1, . . . , 2j − 2} for Dirichlet boundary conditions at the left-hand and
the right-hand side, respectively. A detailed description of adaptations to certain
boundary conditions can be found in [91, Subsection 5.3].

Figure 3.5: Left boundary Primbs wavelets for complementary boundary conditions
of order m = 3 and m̃ = 3 vanishing moments on the coarsest level j0 = 3.

The refinement matrices, cf. Definition 3.10, are of the form

Mj,0 =

ML
0

MI
j,0

MR
0

, Mj,1 =

ML
1

MI
j,1

MR
1

, (3.2.28)
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with MI
j,0 ∈ R#∆(I)

j+1×#∆(I)
j , MI

j,1 ∈ R#∆(I)
j+1×#∇(I)

j , Mloc
0 ∈ R(2m−2)×#∆(loc)

j and Mloc
1 ∈

R(2m+2m̃−4)×#∇(loc)
j , for loc ∈ {L,R}. As an example, for the case m = 3, m̃ = 3 we

have the primal refinement submatrices

ML
0 = 1√

2


1 0

1/2 1/2
0 3/4
0 1/4

 , MI
3,0 = 1√

2



1/4 0 0 0 0 0
3/4 0 0 0 0 0
3/4 1/4 0 0 0 0
1/4 3/4 0 0 0 0
0 3/4 1/4 0 0 0
0 1/4 3/4 0 0 0
0 0 3/4 1/4 0 0
0 0 1/4 3/4 0 0
0 0 0 3/4 1/4 0
0 0 0 1/4 3/4 0
0 0 0 0 3/4 1/4
0 0 0 0 1/4 3/4
0 0 0 0 0 3/4
0 0 0 0 0 1/4



,

and

ML
1 = 1√

2



9/8 0
−327/256 15/32
577/1024 −15/128
51/1024 195/128
−75/512 −75/64
−13/512 −13/64
27/1024 27/128
9/1024 9/128


,

MI
3,1 = 1√

2



−3/32 0 0 0
−9/32 0 0 0

7/32 −3/32 0 0
45/32 −9/32 0 0
−45/32 7/32 3/32 0
−7/32 45/32 9/32 0

9/32 −45/32 −7/32 3/32
3/32 −7/32 −45/32 9/32

0 9/32 45/32 −7/32
0 3/32 7/32 −45/32
0 0 −9/32 45/32
0 0 −3/32 7/32
0 0 0 −9/32
0 0 0 −3/32



.
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Chapter 4

Quarklet Frames on the Real Line
This chapter is dedicated to the development of quarklets on the real line. The
purpose of the construction is twofold. On the one hand, real line quarklets serve
for theoretical inspections. With them, it is possible to characterize the Lebesgue
space L2(R) as well as a range of Sobolev spaces Hs(R). Furthermore, it should be
theoretically feasible to characterize other smoothness spaces like Besov and Triebel-
Lizorkin spaces on the real line, just to name a few. On the other hand, they serve
as the groundwork for quarklet frame constructions on bounded domains as outlined
in the Chapters 5 and 6.
In Section 4.1, we introduce quarks, which serve as the generator functions for

quarklets, and establish some important estimates. Thereupon, we define shift-
invariant quarklets in Section 4.2. Moreover, with vanishing moments, the frame
property and compressibility, we prove several crucial properties of the quarklets.
The ideas for the construction of real line quarklets were developed in [47]. In

this chapter, we slightly adapt the concept to derive quarklets which are symmetric
independently of their order.

4.1 Construction and properties of quarks
In this section, we see how quarks emerge out of a multiplication of polynomials with
generators. Moreover, some crucial estimates, which pave the way to show stability
properties of the quarklet systems in Section 4.2, are established.

4.1.1 From generators to quarks
Let m ∈ N. Given the generator ϕ = Nm, cf. (3.1.11), we define (B-spline) quarks by

ϕp :=
(
· −m/2
m/2

)p
ϕ, for all p ∈ N0. (4.1.1)

Note the slightly different definition of the quarks in comparison to [47, Section 2].
For the support of the quarks ϕp, it holds suppϕp = [0,m], p ∈ N0 since they

obviously have the same support as the cardinal B-splines Nm, cf. Proposition 3.4
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Chapter 4. Quarklet Frames on the Real Line

(i). By the symmetry properties of Nm, cf. Proposition 3.4 (ix), we have

ϕ
(
x+ m

2

)
= ϕ

(
−x+ m

2

)
, x ∈ R.

For the polynomials it holds(
(x+m/2)−m/2

m/2

)p
= (−1)p

(
(−x+m/2)−m/2

m/2

)p
, x ∈ R.

Combining both equations leads to

ϕp

(
x+ m

2

)
= (−1)pϕp

(
−x+ m

2

)
, x ∈ R.

Hence, ϕp is symmetric around the axis at x = m
2 for p even and antisymmetric

around the axis at x = m
2 for p odd. In Figure 4.1, this symmetry can be observed

well.
Similar to the generator case, we define dilated and translated versions

ϕp,j,k := 2j/2ϕp(2j ·−k) =
(

2j · −k −m/2
m/2

)p
ϕj,k, for all p, j ∈ N0, k ∈ Z. (4.1.2)

For given p, j ∈ N0, we shall consider the closed subspaces

Vp,j = closL2(R) span{ϕi,j,k : i = 0, . . . , p, k ∈ Z}. (4.1.3)

The spaces Vp,j = {f(2j·) : f ∈ V0,p} are closely related to certain polynomial spline
spaces. In fact, it obviously holds that V0,p ⊂ closL2(R) S

m−2
m+p , where Srn is the poly-

nomial spline space of order n and regularity r with respect to integer nodes of
multiplicity n− r − 1,

Srn :=
{
f ∈ L2(R) : f |[k,k+1) ∈ Πn−1, k ∈ Z

}
∩ Cr(R).

However, for m ≥ 2, Sm−2
m+p is strictly larger than span{ϕi(·−k) : i = 0, . . . , p, k ∈ Z}.

A simple counterexample for m = 2 is the quadratic B-spline with respect to double
integer knots, r(x) = max{0, 1 − |1 − x|}2. Although r is contained ∈ S0

3 , it does
not have a finite linear expansion with respect to the integer translates of N2(x) and
(x− 1)N2(x).
In the following subsections, it is our aim to verify certain estimates. First, we

prove a Jackson estimate of the form

‖f‖2
L2(R) +

∞∑
j=0

22jsEp,j(f)2 ≤ C‖f‖2
Hs(R), (4.1.4)

for all f ∈ Hs(R), 0 < s < m − 1
2 , p ∈ N0, where Ep,j(f) := infv∈Vp,j ‖f − v‖L2(R) is

the error of the best L2(R) approximation from Vp,j and C > 0. Second, we establish
a norm estimate of the quarks

‖ϕp‖Lq(R) ' (p+ 1)−(m−1+1/q), for all p ≥ (m− 1)2, p ∈ N0, 1 ≤ q ≤ ∞. (4.1.5)
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4.1 Construction and properties of quarks

m = 2, 3, p = 0

m = 2, 3, p = 1

m = 2, 3, p = 2

m = 2, 3, p = 3

Figure 4.1: B-spline quarks ϕp of ordersm = 2, 3 and polynomial degrees p = 0, 1, 2, 3.
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Chapter 4. Quarklet Frames on the Real Line

Third, we show a Bernstein estimate,

‖g‖Hs(R) ≤ Bs,p2js‖g‖L2(R), for all g ∈ Vp,j, 0 < s < m− 1
2 , p ∈ N0, (4.1.6)

with Bs,p > 0. The conditions (4.1.4), (4.1.5) and (4.1.6), are the main ingredients
to show the stability of a properly weighted system of dilates and translates of the
quarklets ψp, p ∈ N0, which we introduce in Section 4.2.

4.1.2 Direct estimates
We shall first derive direct estimates for the approximation spaces Vp,j from (4.1.3).
They are closely related to known results from spline theory.
Proposition 4.1. There exists C = C(m) > 0, such that

(p+ 1)2s
∞∑
j=0

22jsEp,j(f)2 ≤ C‖f‖2
Hs(R), (4.1.7)

for all f ∈ Hs(R), 0 ≤ s ≤ m, p ∈ N0. In particular, it holds that
Ep,j(f) ≤ C1/2(p+ 1)−s2−js‖f‖Hs(R), (4.1.8)

for all f ∈ Hs(R), 0 ≤ s ≤ m, p, j ∈ N0.
Proof. Let p, j ∈ N0 and f ∈ L2(R) be fixed. In view of (4.1.1), (4.1.2) and (4.1.3),
Vp,j contains at least all v ∈ L2(R) of the form

v =
∑
k∈Z

pkϕ(2j · −k), (4.1.9)

where pk ∈ Πp are polynomials of degree at most p, for all k ∈ Z, and the sum
converges in L2(R). From the partition of unity property ∑k∈Z ϕ(· − k) ≡ 1, and
from (4.1.9), we can deduce that

f − v =
∑
k∈Z

(
f − pk

)
ϕ(2j · −k).

Define Ij,l := 2−j[l, l+ 1] and Sj,k := suppϕ(2j · −k), for all l, k ∈ Z. By the compact
support of ϕ, #{k ∈ Z : Sj,k ∩ Ij,l 6= ∅} is uniformly bounded in l ∈ Z and j ∈ N0.
For any f ∈ L2(R), we can therefore estimate

‖f − v‖2
L2(R) =

∑
l∈Z

∫
Ij,l

(∑
k∈Z

(
f(x)− pk(x)

)
ϕ(2jx− k)

)2
dx

≤ C1
∑
k∈Z

∑
l∈Z

∫
Ij,l

(
f(x)− pk(x)

)2
ϕ(2jx− k)2 dx

= C1
∑
k∈Z

∫
Sj,k

(
f(x)− pk(x)

)2
ϕ(2jx− k)2 dx

≤ C1‖ϕ‖2
L∞(R)

∑
k∈Z

∥∥∥f − pk∥∥∥2

L2(Sj,k)
,
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4.1 Construction and properties of quarks

with C1 = C1(m) > 0.
Now let f ∈ Hm(R) and let pk ∈ Πp+1 be the orthogonal projection of f |Sj,k onto

Πp+1 in L2(Sj,k). It follows that ‖pk‖L2(Sj,k) ≤ ‖f‖L2(Sj,k) and due to ϕ ∈ L∞(R), the
sum (4.1.9) really converges in L2(R), so that this particular v is contained in Vp,j.
Moreover, standard results from polynomial approximation tell us that

‖f − pk‖L2(Sj,k) ≤ C2(p+ 1)−m2−jm|f |Hm(Sj,k),

where C2 = C2(m) > 0 is independent of j, k and p, see [95, Corollary 3.12]. We
deduce that with C3 = C3(m) > 0,

Ep,j(f) ≤ ‖f − v‖L2(R) ≤ C3(p+ 1)−m2−jm|f |Hm(R), (4.1.10)

where we used that the sets Sj,k have uniformly bounded overlap in j ∈ N0.
For arbitrary f ∈ L2(R), using the triangle inequality and (4.1.10), we see that for

each g ∈ Hm(R), we have

Ep,j(f) ≤ ‖f − g‖L2(R) + Ep,j(g) ≤ ‖f − g‖L2(R) + C3(p+ 1)−m2−jm|g|Hm(R).

By consequence, taking the infimum over g ∈ Hm(R), Ep,j(f) can be estimated by
values of the K functional K(f, t) := infg∈Hm(R) ‖f − g‖L2(R) + t|g|Hm(R),

Ep,j(f) ≤ C3K
(
f, (p+ 1)−m2−jm

)
. (4.1.11)

Now, we use the fact that for 0 < s ≤ m, an equivalent norm on Hs(R) is given by

‖f‖[L2(R),Hm(R)]s/m,2 = ‖f‖L2(R) +
( ∞∫

0

(
t−s/mK(f, t)

)2 dt
t

)1/2
,

with constants in the norm equivalence only depending on m, see [10] for details.
Similar to [10, Lemma 3.1.3], we can replace the latter integral by a discrete sum,
losing constants that only depend on m. In fact, for (p + 1)−m2−jm ≤ t ≤ (p +
1)−m2−(j−1)m, it follows from the monotonicity property K(f, as) ≤ max{1, a}K(f, s)
of the K functional that

2−s(p+ 1)s2jsK
(
f, (p+ 1)−m2−jm

)
≤ t−s/mK(f, t)

≤ 2m(p+ 1)s2jsK
(
f, (p+ 1)−m2−jm

)
.

We can therefore estimate
∞∫
0

(
t−s/mK(f, t)

)2 dt
t

=
∑
j∈Z

(p+1)−m2−(j−1)m∫
(p+1)−m2−jm

(
t−s/mK(f, t)

)2 dt
t ≤ 22m(log 2m)(p+ 1)2s∑

j∈Z 22jsK
(
f, (p+ 1)−m2−jm

)2

≥ 2−2s(log 2m)(p+ 1)2s∑
j∈Z 22jsK

(
f, (p+ 1)−m2−jm

)2 ,

so that the claim follows from (4.1.11) and summation over j ∈ N0.
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Chapter 4. Quarklet Frames on the Real Line

Remark 4.2. The properties of Nm that we used in the proof of Proposition 4.1
were the compact support, the partition of unity property and Nm ∈ L∞(R). Hence,
a Jackson estimate in the fashion of (4.1.7) holds for all spaces Vp,j for which ϕ fulfils
the above-mentioned requirements, cf. Subsection 4.1.1.

4.1.3 Norm estimates
Now, we establish sharp bounds for the Lq norms of single B-spline quarks, as p→∞.
In view of ϕ ∈ L∞(R), (4.1.1) and the identity

∥∥∥( ·−m/2
m/2 )p

∥∥∥
Lq(0,m)

=
(

2
pq + 1

)1/q

, for all p ∈ N0, 0 < q <∞,

we obtain the simple estimate

‖ϕp‖Lq(R) ≤ ( 2
pq+1)1/q‖ϕ‖L∞(R), for all p ∈ N0, 0 < q <∞. (4.1.12)

These asymptotics in p are already sharp, e.g., if ϕ is the step function χ[0,1), with

‖ϕp‖Lq(R) = (pq + 1)−1/q, for all p ∈ N0, 0 < q <∞. (4.1.13)

In case that ϕ has higher regularity in L∞(R), the Lq norms of ϕp decay even faster
with p. The aim is to establish sharp bounds for the Lq norms of the B-spline quarks
ϕp, as p→∞. We start with an auxiliary result on the location of the extrema of ϕp
for sufficiently large values of p.

Lemma 4.3. Let 2 ≤ m ∈ N, ϕ = Nm and ϕp be given by (4.1.1). Then,

‖ϕp‖L∞(R) =
∣∣∣ϕp(x̂)

∣∣∣, x̂ := 2pm+m2 −m
2(p+m− 1) , for all p ≥ (m2 −1)(m−1). (4.1.14)

Proof. Let 2 ≤ m ∈ N be fixed. Let p ∈ N0 with p ≥ (m2 − 1)(m − 1) be fixed. The
case p = 0 can only occur if m = 2. Then, the extremum of ϕ0 is obviously at x = 1,
which coincides with x̂ for p = 0, m = 2. Hence, from now on, we can assume that
p > 0.
It is sufficient to determine the extrema of ϕp in [m2 ,m), because ϕp

(
x+ m

2

)
=

(−1)pϕp
(
−x+ m

2

)
for all x ∈ R. We prove that ϕp is non-decreasing on [m2 ,m− 1].

For m = 2, there is nothing to prove. For m ≥ 3, ϕp is continuously differentiable.
Let x ∈ [m2 ,m− 1]. A simple estimate leads to

(m2 )pϕ′p(x) = (x− m
2 )p−1

(
pNm(x) + (x− m

2 )N ′m(x)
)

≥ (x− m
2 )p−1

(
pNm(x)− (m2 − 1)

∣∣∣N ′m(x)
∣∣∣).
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4.1 Construction and properties of quarks

By applying (3.1.12) we further derive

(m2 )pϕ′p(x) ≥ (x− m
2 )p−1

(
pNm(x)− (m2 − 1)

∣∣∣Nm−1(x)−Nm−1(x− 1)
∣∣∣)

≥ (x− m
2 )p−1

(
pNm(x)− (m2 − 1)

(
Nm−1(x) +Nm−1(x− 1)

))
.

For all x ∈ [m2 ,m− 1], we have min{x,m− x} ≥ 1 and thus

(m2 )pϕ′p(x) ≥ (x− m
2 )p−1

·
(
pNm(x)− (m2 − 1)

(
xNm−1(x) + (m− x)Nm−1(x− 1)

))
.

An application of (3.1.13) gives

(m2 )pϕ′p(x) ≥ (x− m
2 )p−1

(
p− (m2 − 1)(m− 1)

)
Nm(x),

which is non-negative because p ≥ (m2 − 1)(m − 1). Therefore, all local maxima of
ϕp are located in [m− 1,m], whenever p ≥ (m2 − 1)(m− 1). On [m− 1,m], we have
Nm(x) = 1

(m−1)!(m− x)m−1, cf. (3.1.15), so that from

(m2 )p(m− 1)!ϕ′p(x) = p(x− m
2 )p−1(m− x)m−1 − (m− 1)(x− m

2 )p(m− x)m−2

= (x− m
2 )p−1(m− x)m−2

(
pm+ m2

2 −
m
2 − (p+m− 1)x

)
,

we obtain the critical points m and x̂ := 2pm+m2−m
2(p+m−1) . Using that p ≥ (m2 − 1)(m− 1),

we observe that indeed x̂ ∈ [m− 1,m], since

m− 1 = m− m(m−1)/2
(m/2−1)(m−1)+m−1 ≤ m− m(m−1)/2

p+m−1 = x̂ ≤ m.

Due to ϕp(m) = 0, the symmetry of ϕp and the fact that ϕp is positive for x ∈ [m2 ,m],
the global maximum of ϕp is attained in [m−1,m], so that the unique local maximum
x̂ is also global.

From Figure 4.2, it can be observed that the location of the extrema of ϕp is very
near to the boundary of the support for a high polynomial degree p. This underpins
Lemma 4.3, wherein we just have shown that an extrema occurs at x̂ = 2pm+m2−m

2(p+m−1) →
p→∞

m.
Now that we know the location of the quarks’ global extrema, we are ready to prove

a norm estimate.

Proposition 4.4. Let 2 ≤ m ∈ N, ϕ = Nm and ϕp be given by (4.1.1). For each
1 ≤ q ≤ ∞, there exist c = c(m, q), C = C(m, q) > 0 such that

c(p+ 1)−(m−1+1/q) ≤ ‖ϕp‖Lq(R) ≤ C(p+ 1)−(m−1+1/q), (4.1.15)

for all p ≥ (m− 1)2, p ∈ N0.
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Chapter 4. Quarklet Frames on the Real Line

m = 2, 3, p = 25

m = 2, 3, p = 50

Figure 4.2: B-spline quarks ϕp of orders m = 2, 3 and polynomial degrees p = 25, 50.

Proof. The special case m = 1 is already covered by (4.1.13), so we can assume that
m ≥ 2, without loss of generality, and hence p ≥ (m− 1)2 ≥ 1.

In order to show the upper bound in (4.1.15), we study the extremal values q ∈
{1,∞} and conclude by an application of Hölder’s inequality. For q = 1, we exploit
that for any g ∈ Cm[0,m],

m∫
0

g(m)(x)Nm(x) dx =
m∑
k=0

(−1)m−k
(
m

k

)
g(k).

In the case that p is even, we can use g := 1
(p+m)···(p+1)(·−

m
2 )p+m and the non-negativity
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4.1 Construction and properties of quarks

of ϕp to infer that with C1 = C1(m) := ∑m
k=0

(
m
k

)
|k − m

2 |
m,

‖ϕp‖L1(R) =
( 2
m

)p m∫
0

(x− m
2 )pNm(x) dx

=
( 2
m

)p m∑
k=0

(−1)m−k
(
m
k

)
(k − m

2 )p+m

(p+m) · · · (p+ 1)
≤ C1(p+ 1)−m. (4.1.16)

If p ≥ 1 is odd, the estimate
∣∣∣x−m/2
m/2

∣∣∣ ≤ 1 for all x ∈ suppϕp yields

‖ϕp‖L1(R) ≤ ‖ϕp−1‖L1(R) ≤ C1p
−m ≤ C12m(p+ 1)−m. (4.1.17)

For q =∞, Lemma 4.3 tells us that for all p ≥ (m2 − 1)(m− 1) and x̂ := 2pm+m2−m
2(p+m−1) ,

‖ϕp‖L∞(R) =
(

2x̂−m
m

)p
Nm(x̂).

Since x̂ ∈ [m− 1,m], we can use the representation formula (3.1.15) to derive

‖ϕp‖L∞(R) = 1
(m− 1)!

(
2x̂−m
m

)p
(m− x̂)m−1

= 1
(m− 1)!

(
p

p+m− 1

)p (
m(m− 1)

2(p+m− 1)

)m−1

.

(4.1.18)

The latter, we estimate from above by

‖ϕp‖L∞(R) ≤
1

(m− 1)!

(
m(m− 1)

2

)m−1

(p+ 1)−(m−1), (4.1.19)

Thus, we already proved the lower estimate in (4.1.15) for q =∞.
Finally, let 1 < q <∞ and p ≥ (m− 1)2. By an application of Hölder’s inequality

for ϕp ∈ L1(R) ∩ L∞(R), we obtain from (4.1.16), (4.1.17) and (4.1.19) the upper
estimate in (4.1.15),

‖ϕp‖Lq(R) ≤ ‖ϕp‖1/q
L1(R)‖ϕp‖

1−1/q
L∞(R) ≤ C2(p+ 1)−(m−1+1/q),

where C2 = C2(m, q) > 0.
It remains to show the lower estimate in (4.1.15) for 1 ≤ q ≤ ∞. If q =∞, we use

the representation (4.1.18) to estimate from below by

‖ϕp‖L∞(R) ≥
1

(m− 1)!e
1−m

(
m

2

)m−1
(p+ 1)−(m−1). (4.1.20)
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Now, let us consider the case q ∈ N. We use again (3.1.15) to estimate

‖ϕp‖qLq(R) ≥
m∫

m−1

ϕp(x)q dx = 1(
(m− 1)!

)q m∫
m−1

(2x−m
m

)pq(m− x)(m−1)q dx

= 1(
(m− 1)!

)q 1∫
0

(1− 2y
m

)pqy(m−1)q dy

≥ 1(
(m− 1)!

)q 1∫
0

(1− y)pqy(m−1)q dy.

Due to q ∈ N, the latter integral can be computed explicitly, by means of (m − 1)q
times partial integration, and with C3(m, q) > 0 we obtain

1∫
0

(1− y)pqy(m−1)q dy =

(
(m− 1)q

)
!

(pq + 1) · · ·
(
pq + (m− 1)q

) 1∫
0

(1− y)(p+m−1)q dy

=

(
(m− 1)q

)
!

(pq + 1) · · ·
(
pq + (m− 1)q + 1

)
≥ C3(p+ 1)−(m−1)q−1,

from which the lower estimate in (4.1.15) immediately follows. Finally, let 1 ≤ q <∞
be arbitrary. If 1 ≤ q ≤ 2, Hölder’s inequality tells us that

‖ϕp‖L2(R) ≤ ‖ϕp‖q/2Lq(R)‖ϕp‖
1−q/2
L∞(R).

With C3 = C3(m, q) > 0, isolating ‖ϕp‖Lq(R) and an application of (4.1.15) for the L2
and L∞ case yields

‖ϕp‖Lq(R) ≥ ‖ϕp‖2/q
L2(R)‖ϕp‖

1−2/q
L∞(R)

≥ C3(p+ 1)−2(m−1/2)/q(p+ 1)−(m−1)(1−2/q)

= C3(p+ 1)−(m−1+1/q).

Analogously, if 2 ≤ q <∞, Hölder’s inequality tells us that

‖ϕp‖L2(R) ≤ ‖ϕp‖1−1/(2(1−1/q))
L1(R) ‖ϕp‖1/(2(1−1/q))

Lq(R) ,

so that isolation of ‖ϕp‖Lq(R) and an application of (4.1.15) for L1 and L2 prove the
claim,

‖ϕp‖Lq(R) ≥ ‖ϕp‖2−2/q
L2(R)‖ϕp‖

2/q−1
L1(R)

≥ C4(p+ 1)−(m−1/2)(2−2/q)(p+ 1)−m(2/q−1)

= C4(p+ 1)−(m−1+1/q),

with C4 = C4(m, q) > 0.
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4.1 Construction and properties of quarks

4.1.4 Inverse estimates
This subsection is concerned with the derivation of certain Bernstein-type estimates.
All three statements (4.1.21)-(4.1.23) look alike in regard that a norm of some kind
of derivative on the left-hand side is estimated by a norm of the actual function
multiplied with a weight on the right-hand side. However, every single statement in
its special form is needed in the course of this chapter.

Proposition 4.5. Let m ∈ N, ϕ = Nm and let Vp,j be given by (4.1.3). Then for
1 ≤ q ≤ ∞, there exists C = C(m) > 0, such that for all f ∈ Vp,j,

ωm(f, t)Lq(R) ≤ C min
{

1, (p+ 1)22jt
}m−1+1/q

‖f‖Lq(R). (4.1.21)

Proof. Let f = ∑
0≤i≤p

∑
k∈Z ci,kϕi,j,k ∈ Vp,j. If t ≥ (p+ 1)−22−j, we simply use

ωm(f, t)Lq(R) ≤ 2m‖f‖Lq(R) = 2m min{1, (p+ 1)22jt}m−1+1/q‖f‖Lq(R).

Now let t < (p + 1)−22−j. By using Vp,j ⊂ Wm−1
q (R) and standard arithmetics

for the moduli of smoothness, see [65, Section 2.7], we see that ωm(f, t)Lq(R) ≤
tm−1ω1(f (m−1), t)Lq(R). But f (m−1) is piecewise polynomial of degree p without conti-
nuity assumptions at the nodes xl := 2−jl, l ∈ Z. We compute for 0 < h ≤ t ≤ 2−j
and q <∞ that∥∥∥f (m−1)(·+ h)− f (m−1)

∥∥∥q
Lq(R)

=
∑
l∈Z

∥∥∥f (m−1)(·+ h)− f (m−1)
∥∥∥q
Lq(xl,xl+1)

=
∑
l∈Z

(∥∥∥f (m−1)(·+ h)− f (m−1)
∥∥∥q
Lq(xl,xl+1−h)

+
∥∥∥f (m−1)(·+ h)− f (m−1)

∥∥∥q
Lq(xl+1−h,xl+1)

)
≤ 21−1/q∑

l∈Z

(
hq‖f (m)‖qLq(xl,xl+1) + ‖f (m−1)‖qLq(xl+1−h,xl+1) + ‖f (m−1)‖qLq(xl,xl+h)

)
.

An application of standard estimates for polynomials yields

‖f (m−1)‖qLq(xl+1−h,xl+1) + ‖f (m−1)‖qLq(xl,xl+h) ≤ C1h2jp2‖f (m−1)‖qLq(xl,xl+1),

with C1 > 0 independent of m, p and q. Using the Lq Markov inequality for algebraic
polynomials P of degree i on an interval I,

‖P ′‖Lq(I) ≤ C2
i2

|I|
‖P‖Lq(I),
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Chapter 4. Quarklet Frames on the Real Line

with C2 = C2(q) > 0 independent of i, we end up with

ωm(f, t)qLq(R) ≤ t(m−1)q sup
|h|≤t

∥∥∥f (m−1)(·+ h)− f (m−1)
∥∥∥q
Lq(R)

≤ C3t
(m−1)q

(
hq(p+ 1)2mq2jmq + h2j(1+(m−1)q)p2+2(m−1)q

)∑
l∈Z
‖f‖qLq(xl,xl+1)

≤ C4t
(m−1)q+1(p+ 1)2(m−1)q+22j(1+(m−1)q)‖f‖qLq(R),

where C3 = C3(m, q) > 0, C4 = C4(m, q) > 0. The case q = ∞ is completely
analogous.

As we have seen in the proof of Proposition 4.5, a Bernstein-type estimate is a
statement about the properties of the induced spaces Vp,j but not of the quarks ϕp.
Hence, a different quarkonial approach that leads to the same refinement spaces Vp,j
allows for a similar Bernstein-type estimate. This also holds true for the two upcoming
estimates.
Corollary 4.6. Let m ∈ N, ϕ = Nm and let Vp,j be given by (4.1.3). Then, for
1 ≤ q ≤ ∞, there exists C = C(m, q) > 0, such that for all f ∈ Vp,j

‖f (k)‖Lq(R) ≤ C(p+ 1)2k2jk‖f‖Lq(R), for all k = 0, . . . ,m− 1. (4.1.22)

Proof. Without loss of generality, let N 3 m ≥ 2 and k = 1, . . . ,m − 1. Note that
Vp,j ⊂ Wm−1

q (R), so that f (k) is well-defined for each f ∈ Vp,j. Let us first consider
the case k = 1. We can use that for all f ∈ W 1

q (R), 1 ≤ q ≤ ∞,

‖f ′‖Lq(R) = lim
t→0

ω1(f, t)Lq(R)

t
,

see [78, Proposition 2.4] for the case q < ∞. For q = ∞, the latter equation can be
inferred at least for continuous functions. Using a Marchaud-type inequality

ω1(f, t)Lq(R) ≤ C1t

∞∫
t

ωm(f, s)Lq(R)

s2 ds,

with C1 = C1(m) > 0, confer [65, Section 2.8] for details, we derive from (4.1.21) that

‖f ′‖Lq(R) ≤ C1 lim sup
t→0

∞∫
t

ωm(f, s)Lq(R)

s2 ds

= C1

(
lim sup
t→0

(p+1)−22−j∫
t

ωm(f, s)Lq(R)

s2 ds+
∞∫

(p+1)−22−j

ωm(f, s)Lq(R)

s2 ds
)

≤ C2

((
(p+ 1)22j

)m−1+1/q
(p+1)−22−j∫

0

sm−3+1/q ds+
∞∫

(p+1)−22−j
s−2 ds

)
‖f‖Lq(R)

= C2

(
1

m− 2 + 1/q + 1
)

(p+ 1)22j‖f‖Lq(R),
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4.1 Construction and properties of quarks

with C2 = C2(m, q) > 0. The case of general k = 2, . . . ,m − 1 can be treated by
induction over k, repeating the previous Marchaud-type estimate k times.

Corollary 4.7. Let m ∈ N, ϕ = Nm and let Vp,j be given by (4.1.3). For each
0 ≤ s < m− 1

2 , there exists C = C(m, s) > 0, such that

|f |Hs(R) ≤ C(p+ 1)2s2js‖f‖L2(R), for all p, j ∈ N0, f ∈ Vp,j. (4.1.23)

Proof. Let s > 0, without loss of generality. In view of the norm estimate

|f |Hs(R) ≤ C1

( ∞∫
0

(
t−sωm(f, t)L2(R)

)2 dt
t

)1/2
, for all 0 < s < m,

where C1 = C1(s) > 0, we can compute that by (4.1.21),

|f |2Hs(R) ≤
(
C2(p+ 1)2(2m−1)2j(2m−1)

(p+1)−22−j∫
0

t−2s+2m−2 dt

+ C2

∞∫
(p+1)−22−j

t−(2s+1) dt
)
‖f‖2

L2(R)

≤
(

C2

2m− 1− 2s + C2

2s

)
(p+ 1)4s22js‖f‖2

L2(R), for all 0 < s < m− 1
2 ,

with C2 = C2(m, s) > 0. Due to the fact that (4.1.23) trivially holds for s = 0 with
C = 1, an interpolation argument shows that C does in fact only depend on s as
s→ m− 1

2 .

We note, however, that (4.1.23) is not sharp for single quarks. If ϕ = N2 is the hat
function and s = 1, one can explicitly compute that

‖ϕ′p‖2
L2(R) = 2

2∫
1

(x− 1)2p−2
(
p− (p+ 1)(x− 1)

)2
dx

= 2
1∫

0

y2p−2
(
p− (p+ 1)y

)2
dy

= 2
(
p2

1∫
0

y2p−2 dy − 2p(p+ 1)
1∫

0

y2p−1 dy + (p+ 1)2
1∫

0

y2p dy
)

= 2p
2(2p+ 1)− (p+ 1)(2p− 1)(2p+ 1) + (2p− 1)(p+ 1)2

(2p− 1)(2p+ 1)

= 2p
4p2 − 1 ,

i.e., ‖ϕ′p‖L2(R) h (p+ 1)−1/2 h (p+ 1)‖ϕp‖L2(R), as p→∞, while (4.1.23) only yields
|ϕp|H1(R) ≤ C(p+ 1)2‖ϕp‖L2(R), as p→∞.
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Chapter 4. Quarklet Frames on the Real Line

4.2 Construction and properties of quarklets
In this section, we define quarklets on the real line. They are introduced as lin-
ear combinations of quarks. Actually, it is possible to construct stable systems in
Lebesgue and Sobolev spaces directly out of quarks as it was shown in [50]. However,
due to their lack of vanishing moments, they do not lead to compressible stiffness
matrices. Therefore, an application in adaptive schemes for operator equations is not
feasible with this quarkonial systems.
In Subsection 4.2.1, we show how a wavelet-type modification of the quark system

leads to quarklets with vanishing moments. Moreover, we derive crucial cancellation
and compression results, which are a cornerstone for the adaptive schemes of Chapter
7. In Subsection 4.2.2, we expose how to construct quarklet frames in L2(R) and
Hs(R).

4.2.1 Shift-invariant quarklets
Let m, m̃ ∈ N with m̃

m
large enough and m+m̃ even be fixed. Throughout this section

let ϕ = Nm, cf. (3.1.11), be the generator and

ψ =
∑
k∈Z

bkϕ(2 · −k), (4.2.1)

cf. (3.1.7), the wavelet with m̃ vanishing moments of the Cohen/Daubechies/Feveau
construction outlined in Subsection 3.1.2.
Mimicking the definition (4.2.1) of the wavelet ψ, let us consider the following

quarklets ψp,

ψp :=
∑
k∈Z

bkϕp(2 · −k), for all p ∈ N0. (4.2.2)

Let us stress that the two-scale coefficients b = {bk}k∈Z in (4.2.2) are exactly the
same as in (4.2.1). We refer to Figure 4.3 for an illustrative example.
By assumption, ψ0 = ψ has m̃ vanishing moments. The following lemma shows

that the other ψp inherit the same property.
Lemma 4.8. For each p ∈ N0, the quarklet ψp has m̃ vanishing moments.

Proof. Let us first prove the auxiliary result that the coefficient sequence b = {bk}k∈Z
has m̃ discrete moments,∑

k∈Z
kqbk = 0, for all q ∈ N0, 0 ≤ q < m̃. (4.2.3)

We proceed by induction over q. For q = 0, z :=
∫
R ϕ(x) dx 6= 0, the compact support

of ϕ and (4.2.1) imply that∑
k∈Z

bk = 1
z

∑
k∈Z

bk

∫
R

ϕ(x− k) dx = 2
z

∫
R

ψ(x) dx = 0.

62



4.2 Construction and properties of quarklets

m = 2, m̃ = 2, p = 1, 2

m = 3, m̃ = 3, p = 1, 2

m = 3, m̃ = 5, p = 1, 2

Figure 4.3: B-spline quarklets ψp with order and vanishing moments (m, m̃) =
(2, 2), (3, 3), (3, 5) and polynomial degree p = 1, 2.
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Chapter 4. Quarklet Frames on the Real Line

Now assume that (4.2.3) holds for all 0 ≤ r ≤ q − 1, where 0 ≤ q < m̃. By the
vanishing moment property of ψ, we compute that

0 =
∫
R

xqψ(x) dx =
∑
k∈Z

bk

∫
R

xqϕ(2x− k) dx = 1
2q+1

∑
k∈Z

bk

∫
R

(y + k)qϕ(y) dy,

so that the induction hypothesis yields (4.2.3),

0 =
∑
k∈Z

bk

∫
R

q∑
r=0

(
q

r

)
kryq−rϕ(y) dy

=
q∑
r=0

(
q

r

)∫
R

yq−rϕ(y) dy
∑
k∈Z

krbk

= z
∑
k∈Z

kqbk.

In view of (4.2.3), the vanishing moment property of ψp easily follows from∫
R

xqψp(x) dx =
∑
k∈Z

bk

∫
R

xqϕp(2x− k) dx

= 1
2q+1

∑
k∈Z

bk

∫
R

(y + k)qϕp(y) dy

= 1
2q+1

q∑
l=0

(
q

l

)∫
R

yq−lϕp(y) dy
∑
k∈Z

klbk = 0, for all 0 ≤ q < m̃.

Based on the vanishing moment properties of the quarklets ψp, we immediately
get the following cancellation estimates for inner products of the ψp,j,k with smooth
functions, using standard techniques from wavelet analysis.

Proposition 4.9. There exists C = C(m, m̃) > 0, such that for all f ∈ W r
∞(R),

0 ≤ r ≤ m̃− 1,∣∣∣〈f, ψp,j,k〉L2(R)

∣∣∣ ≤ C(p+ 1)−m2−j(r+1/2)|f |W r
∞(suppψp,j,k), (4.2.4)

for all p, j ∈ N0, k ∈ Z.

Proof. By Lemma 4.8, each quarklet ψp and hence ψp,j,k has m̃ vanishing moments.
Therefore, given some f ∈ L2(R), an application of Hölder’s inequality implies that∣∣∣〈f, ψp,j,k〉L2(R)

∣∣∣ = inf
P∈Pr

∣∣∣〈f − P, ψp,j,k〉L2(R)

∣∣∣
≤ inf

P∈Pr
‖f − P‖L∞(suppψp,j,k)‖ψp,j,k‖L1(R).

64



4.2 Construction and properties of quarklets

AWhitney-type estimate on suppψp,j,k, (4.2.2) and (4.1.15) immediately yield (4.2.4),∣∣∣〈f, ψp,j,k〉L2(R)

∣∣∣ ≤ C12−j(r+1/2)|f |W r
∞(suppψp,j,k)‖ϕp‖L1(R)

≤ C2(p+ 1)−m2−j(r+1/2)|f |W r
∞(suppψp,j,k),

where C1 = C1(m, m̃) > 0, C2 = C2(m, m̃) > 0.

In the sequel, we consider the usual dyadic dilates and translates of the quarklets,

ψp,j,k := 2j/2ψp(2j · −k), for all p, j ∈ N0, k ∈ Z. (4.2.5)

On this occasion, let us fix the notation

ψp,−1,k := ϕp(· − k), for all p ∈ N0, k ∈ Z, (4.2.6)

for the quarks and the index set

Λ := {(p, j, k) : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z}, (4.2.7)

which is an extension of the Riesz basis index set

ΛB = {(j, k) : j ∈ N0 ∪ {−1}, k ∈ Z},

cf. (3.1.9).

4.2.2 The frame property in L2(R) and Hs(R)
We shall now study the stability properties of the full quarklet system. In particular,
we investigate under which conditions on the weights wp ≥ 0, the weighted system

ΨL2(R) :=
{
wpψp,j,k : (p, j, k) ∈ Λ

}
(4.2.8)

is a frame for L2(R). Setting w0 := 1, ΨL2(R) contains the Riesz basis for L2(R),

ΨB
L2(R) =

{
ϕ(· − k), 2j/2ψ(2j · −k) : j ∈ N0, k ∈ Z

}
,

so that we are left with proving the Bessel property of ΨL2(R). We have to show that
the synthesis operator

F : `2 (Λ)→ L2(R), c 7→
∑
p≥0

∑
j≥−1

∑
k∈Z

cp,j,kwpψp,j,k, (4.2.9)

of ΨL2(R) is well-defined and bounded, cf. (2.1.2). We exploit the following proposi-
tion.
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Proposition 4.10. Let m ≥ 2. There exists C = C(m, m̃) > 0, such that the
Gramian matrix

Gp :=
(〈
ψp,j,k, ψp,j′,k′〉L2(R)

)
(j,k),(j′,k′)∈ΛB

, (4.2.10)

is a bounded operator on `2(ΛB) with

‖Gp‖L (`2(ΛB)) ≤ C(p+ 1)−1, (4.2.11)

for all p ∈ N0.

Proof. By the Schur lemma, it is sufficient to prove that Gp is bounded on `1(ΛB)
and `∞(ΛN).. Due to the symmetry of Gp, a norm bound in `∞(ΛB) is sufficient. Let
(j′, k′) ∈ ΛB, and c = {cj,k}(j,k)∈ΛB ∈ `∞(ΛB). We start estimating with∣∣∣(Gpc)(j′,k′)

∣∣∣ =
∣∣∣∣ ∑
j≥−1

∑
k∈Z

cj,k〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣∣
≤ ‖c‖`∞(ΛB)

( j′−1∑
j=−1

∑
k∈Z

∣∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣+ ∑
j≥j′

∑
k∈Z

∣∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣).
Now we want to estimate the inner products. We confine ourselves to the case where
both functions are quarklets, and exploit the cancellation property (4.2.4). If quarks
are involved an even better estimate is possible. Since these estimates are executed
in detail later in Section 7.3, where we achieve compression estimates, we spare this
part here.
In the first sum over k, where j < j′, we can estimate the non-zero inner products

between quarklets by an application of (4.2.4), (4.2.2), (4.1.22) and (4.1.15)∣∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣ ≤ C1(p+ 1)−m2−j′(m−1/2)|ψp,j,k|Wm−1(L∞(R))

≤ C2(p+ 1)−m2−(j′−j)(m−1/2)‖ψ(m−1)
p ‖L∞(R)

≤ C3(p+ 1)−m2−(j′−j)(m−1/2)‖ϕ(m−1)
p ‖L∞(R)

≤ C4(p+ 1)m−22−(j′−j)(m−1/2)‖ϕp‖L∞(R)

≤ C5(p+ 1)−12−(j′−j)(m−1/2),

where Ci = Ci(m, m̃) > 0, i = 1, . . . , 5. The number of non-zero inner products per
j in the first sum is bounded by a constant independent of j and j′,

j′−1∑
j=0

∑
k∈Z

∣∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣ ≤ C5(p+ 1)−1
j′−1∑
j=0

2−(j′−j)(m−1/2).

In a completely analogous way, using that the number of non-zero inner products per
j in the second sum is bounded by a constant multiple of 2j−j′ , the second sum can
be estimated by∑

j≥j′

∑
k∈Z

∣∣∣〈ψp,j′,k′ , ψp,j,k〉L2(R)

∣∣∣ ≤ C6(p+ 1)−1 ∑
j≥j′

2−(j−j′)(m−3/2),
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with C6 = C6(m, m̃) > 0. Therefore, due to m ≥ 2, we obtain (4.2.11),∣∣∣(Gpc)(j′,k′)

∣∣∣ ≤ C7(m,ψ)‖c‖`∞(ΛB)(p+ 1)−1,

with C7 = C7(m, m̃) > 0.

In case that the weights wp decay sufficiently fast, we finally obtain the boundedness
of F and hence the L2 frame property.

Theorem 4.11. Let wp ≥ 0 be chosen such that w0 = 1 and w2
p(p+1)−1 is summable.

Then ΨL2(R) as defined in (4.2.12) is a frame for L2(R).

Proof. For c ∈ `2(Λ) and cp = (cp,j,k)(j,k)∈ΛB ∈ `2(ΛB) the part of c with fixed
p ∈ N0, we compute by using the triangle inequality for L2(R) and the definition of
the Gramian matrix Gp that∥∥∥Fc

∥∥∥
L2(R)

=
∥∥∥∑
p≥0

∑
j≥−1

∑
k∈Z

cp,j,kwpψp,j,k
∥∥∥
L2(R)

≤
∑
p≥0

wp
∥∥∥ ∑
j≥−1

∑
k∈Z

cp,j,kψp,j,k
∥∥∥
L2(R)

≤
∑
p≥0

wp
(
〈cp,Gpcp〉`2(ΛB)

)1/2
.

By Proposition 4.10 and a two times application of the Cauchy-Schwarz inequality,
we conclude that∥∥∥Fc

∥∥∥
L2(R)

≤
∑
p≥0

wp
(
||Gp||L (`2(ΛB))||cp||2`2(ΛB)

)1/2

≤ C
∑
p≥0

wp(p+ 1)−1/2||cp||`2(ΛB)

≤ C

∑
p≥0

w2
p(p+ 1)−1

1/2

||c||`2(Λ)

with C = C(m, m̃) > 0.

Remark 4.12. Obviously, the weights in Theorem 4.11 have to be taken sufficiently
small to obtain a frame in L2(R) with reasonable frame bounds. The key is not to
take them too small as it leads to very big coefficients in the solution of operator
equations. This could destroy the behaviour of a numerical solution scheme involving
quarklets. A reasonable choice for wp is (p + 1)−δ1/2, with δ1 > 0, guaranteeing the
convergence of the series∑p≥0w

2
p(p+1)−1. The division by 2 in the exponent becomes

clear in Chapter 6, where we transfer quarklets to multiple spatial dimensions.
On account of this, the conditions on the weights in Theorem 4.11 and the upcom-

ing Theorem 4.15 are a huge development compared to previous constructions with
exponentially decaying weights [104–106].
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During the course of this chapter, we have derived all the necessary building blocks
that are needed to construct stable quarklet frames not only for L2(R) but also for
scales of Sobolev spaces Hs(R). In the remainder of this subsection, we show that
the weighted system

ΨHs(R) := {wp,j,sψp,j,k : (p, j, k) ∈ Λ} , (4.2.12)

with wp,j,s := 2−js(p + 1)−2s−δ1/2−δ2/2 for j ∈ N0 and wp,−1,s := wp,0,s with δ1 > 0,
δ2 > 1, has the frame property in Hs(R), 0 < s < m − 1

2 . Let us mention first that
ΨHs(R) contains the weighted wavelet system

ΨB
Hs(R) := {w0,j,sψ0,j,k : j ∈ N0 ∪ {−1}, k ∈ Z} , (4.2.13)

with w0,j,s = 2−js for j ∈ N0 and w0,−1,s = w0,0,s = 1, which is known to be a Riesz
basis inHs(R), 0 < s < m− 1

2 (see [85, Section 6.10] for a proof). So, as in the L2 case,
we are left with proving the Bessel property of ΨHs(R). For that purpose, we use some
techniques of an abstract axiomatic approach to build multi-scale hp-frames (frames
build by dyadic dilation, translation and p-enrichment) from families of multi-scale
h-frames (built by dyadic dilation and translation). They can be applied since the
quarklets fit into the concept of hierarchical frame families. Roughly speaking, this
means that a polynomial enrichment of the h-frame up to an arbitrary fixed degree
already yields a frame for the whole space and not only a frame system for a subspace.
We refer to [89, Section 3] for further details.
For p, j ∈ N0, we define

Ψp,j := {ψi,`,k : (i, `, k) ∈ Λp,j},
Λp,j := {(i, `, k) : i = 0, . . . , p, ` = −1, . . . , j − 1, k ∈ Z},

(4.2.14)

as the family of quarklets capped at a polynomial degree p and a level j − 1. The
corresponding spaces are denoted as

Up,j := closL2(R) span Ψp,j. (4.2.15)

Then, the sequence of spaces U := {Up,j}p,j∈N0 , satisfies the monotonicity property

Up,j−1 ⊂ Up,j ⊂ Up+1,j ⊂ Hs(R), j ∈ N, p ∈ N0, (4.2.16)

with 0 ≤ s < m− 1
2 . In the following proposition, we prove further properties of Up,

which are important to show the Bessel property of ΨHs(R).

Proposition 4.13. Let p, j ∈ N0 be fixed and Ψp,j, Up,j defined as in (4.2.14),
(4.2.15), respectively. Then, for 0 ≤ s < m− 1

2 , a Bernstein estimate of the form

‖f‖Hs(R) ≤ C1(p+ 1)2s2js‖f‖L2(R), (4.2.17)
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4.2 Construction and properties of quarklets

with C1 = C1(m, s) > 0, holds for all f ∈ Up,j. Furthermore, Ψp,j forms a Bessel
sequence for Up,j, i.e.

B−1‖f‖2
L2(R) ≤ inf

{c∈`2(Λp,j):FΨp,j c=f}

p∑
i=0

j−1∑
`=−1

∑
k∈Z
|ci,`,k|2, for all f ∈ Up,j, (4.2.18)

cf. Proposition 2.3, with Bessel bound of the form B = C2(p + 1)δ1, where C2 =
C2(m, m̃, δ1) > 0 and δ1 > 0.

To prove (4.2.17), we need a technical refinement result of the sequence {Vp,j}j∈N0 ,
p ∈ N0.

Lemma 4.14. For any p ∈ N0, the vector (ϕ0, . . . , ϕp) is refinable, i.e., there exist
(p+ 1)× (p+ 1)-matrices Ck such that

ϕ0
...
ϕp

 =
∑
k∈Z

Ck


ϕ0(2 · −k)

...
ϕp(2 · −k)

 .
Consequently, the sequence {Vp,j}j∈N0 as defined in (4.1.3) is nested, Vp,j ⊂ Vp,j+1 for
j ∈ N0.

Proof. By using the definition of ϕp and the refinability of ϕ = ϕ0 we obtain for
x ∈ R:

ϕi(x) = xiϕ(x)

= 1
2q (2x)i

∑
k∈Z

akϕ(2x− k)

= 1
2i
∑
k∈Z

ak(2x− k + k)iϕ(2x− k)

= 1
2i
∑
k∈Z

ak
i∑
l=0

(2x− k)l
(
i

l

)
ki−lϕ(2x− k)

=
∑
k∈Z

1
2iak

i∑
l=0

(
i

l

)
ki−lϕl(2x− k).

Setting

(Ck)i,l := 1
2ia

i
k

(
i

l

)
ki−l

yields the result.

Now we are ready to prove Proposition 4.13.
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Proof. Because of the two-scale-equation (4.2.2), the function ψi,`,k, (i, `, k) ∈ Λp,j

is contained in the space Vp,`+1 as defined in (4.1.3). As we have seen in Lemma
4.14, the sequence {Vp,j}j∈N0 is nested. Since ` + 1 ∈ {0, . . . , j}, we conclude that
Vp,`+1 ⊂ Vp,j. Consequently, it follows that

Up,j ⊂ Vp,j.

Therefore, Corollary 4.7 implies (4.2.17). To show (4.2.18) let f ∈ Up,j, p, j ∈ N0.
For δ > 0 we use the fact that with the weight wp := (p+ 1)−δ1/2 the family

ΨL2(R) = {wpψp,j,k : (p, j, k) ∈ Λ}

is a frame for L2(R), cf. Theorem 4.11, to estimate

inf
{c∈`2(Λp,j):FΨp,j c=f}

∑
(i,`,k)∈Λp,j

|ci,`,k|2 = w2
p inf
{c∈`2(Λp,j):FΨp,j c=f}

∑
(i,`,k)∈Λp,j

|w−1
p ci,`,k|2

≥ w2
p inf
{c∈`2(Λp,j):FΨp,j c=f}

∑
(i,`,k)∈Λp,j

|w−1
i ci,`,k|2

≥ w2
p inf
{c̃∈`2(Λ):FΨL2(R) c̃=f}

∑
(i,`,k)∈Λ

|c̃i,`,k|2

≥ Cw2
p‖f‖2

L2(R),

with C = C(m, m̃, δ1) > 0 the reciprocal upper frame bound of ΨL2(R).

Since we have all the prerequisites available, we can prove now the first main result
of this thesis, namely the frame property of a quarklet system inHs(R), 0 < s < m− 1

2 .

Theorem 4.15. The system ΨHs(R) as defined in (4.2.12) is a frame for Hs(R),
0 < s < m− 1

2 .

Proof. We split the proof into two parts, where we prove in the first part, that for
fixed p ∈ N0, 0 < s < m− 1

2 the system

Ψp :=
⋃
j∈N0

wj,sΨp,j = {wj,sψi,j,k : (i, j, k) ∈ Λp} ,

Λp := {(i, j, k) : i = 0, . . . , p, j ∈ N0 ∪ {−1}, k ∈ Z},
(4.2.19)

with wj,s := 2−js for j ∈ N0 and w−1,s := w0,s = 1, constitutes a Bessel sequence for
Hs(R), cf. (2.1.1), with Bessel bound dependent on p. In the second part of the proof,
we use this statement to prove the Bessel property for the whole system ΨHs(R).
Let f ∈ Hs(R), 0 < s < m− 1

2 , p ∈ N0 and fix a δ1 > 0. Since Ψp has an underlying
Hs(R) Riesz basis ΨB

Hs(R), cf. (4.2.13), there exists a decomposition

f =
∑
j≥−1

fp,j :=
∑

(i,j,k)∈Λp
ci,j,k (wj,sψi,j,k) , (4.2.20)
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4.2 Construction and properties of quarklets

where the functions fp,j are contained in Up,j+1 for j ∈ N0 ∪ {−1}. Using (4.2.18),
this leads us to the estimate

∑
j≥−1

w−2
j,s ||fp,j||2L2(R) ≤ C1(p+ 1)δ1

∑
(i,j,k)∈Λp

|cq,j,k|2, (4.2.21)

with C1 = C1(m, m̃, δ1) > 0. By exploiting a Cauchy-Schwarz type inequality of the
form

|〈g, h〉Hs(R)| ≤ ||g||Hs+ε(R)||h||Hs−ε(R), g, h ∈ Hs+ε(R),

for 0 < s− ε < s+ ε < γ, and (4.2.17) we estimate

||f ||2Hs(R) = |〈
∑
j≥−1

fp,j,
∑
`≥0

fp,`〉Hs(R)|

≤ 2
∑
j≥−1

∑
`≥j
|〈fp,j, fp,`〉Hs(R)|

≤ 2
∑
j≥−1

∑
`≥j
||fp,j||Hs+ε(R)||fp,`||Hs−ε(R)

≤ C2(p+ 1)4s ∑
j≥−1

∑
`≥−1

2−ε|j−`|(w−1
j,s ||fp,j||L2(R))(w−1

`,s ||fp,`||L2(R))

≤ C2Mε(p+ 1)4s ∑
j≥−1

w−2
j,s ||fp,j||2L2(R), (4.2.22)

with C2 = C2(m, s) > 0 and Mε the norm of the matrix operator with entries 2−ε|j−`|
mapping `2 to `2. Combining (4.2.22) with (4.2.21) we have

||f ||2Hs(R) ≤ C3Mε(p+ 1)4s+δ1
∑

(i,j,k)∈Λp
|cq,j,k|2,

with C3 = C3(m, m̃, s, δ1) > 0. Taking the infimum shows the first part of the proof.
To show the Bessel property for the whole system ΨHs(R), we assume

∑
p≥0

fp :=
∑

(p,j,k)∈Λ
cp,j,k wp,j,s ψp,j,k =

∑
(p,j,k)∈Λ

(
cp,j,k wp,j,sw

−1
j,s

)
(wj,sψp,j,k)

to be a fixed decomposition of f with the weights wp,j,s = 2−js(p + 1)−2s−δ1/2−δ2/2,
δ2 > 1, for j ≥ 0 and wp,−1,s = wp,0,s, as defined in (4.2.12). By using the triangle
inequality, the Cauchy-Schwarz inequality and the first part of the proof with the fact
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Chapter 4. Quarklet Frames on the Real Line

that fp ∈ Ψp, p ∈ N0, we compute

‖f‖2
Hs(R) =

∥∥∥∥∥∥
∑
p≥0

fp

∥∥∥∥∥∥
2

Hs(R)

≤

∑
p≥0
‖fp‖Hs(R)

2

=
∑
p≥0

(p+ 1)−δ2/2(p+ 1)δ2/2 ‖fp‖Hs(R)

2

≤
∑
p′≥0

(p′ + 1)−δ2
∑
p≥0

(p+ 1)δ2 ‖fp‖2
Hs(R)

≤ C4Mε

∑
p≥0

(p+ 1)4s+δ2+δ1
∑
j≥−1

∑
k∈Z

(
wp,j,sw

−1
j,s

)2
|cp,j,k|2,

with C4 = C4(m, m̃, s, δ1, δ2) > 0 Since (p+ 1)4s+δ1+δ2
(
wp,j,sw

−1
j,s

)2
= 1, we obtain

‖f‖2
Hs(R) ≤ C4Mε

∑
p≥0

∑
j≥−1

∑
k∈Z
|cp,j,k|2.

Taking the infimum finally shows the Bessel property for the system ΨHs(R) and so
the claim is proved.

4.2.3 Compression estimates in one dimension
In this subsection, we prove a compression estimate for the one-dimensional quarklets
on the real line as introduced in this chapter and their derivatives, respectively. These
results are the foundation for the considerations in Section 7.3, where we show the
compressibility of elliptic operators in d spatial dimensions.

Proposition 4.16. Let m, m̃ ≥ 3, and (p, j, k), (p′, j′, k′) ∈ Λ. Then, the following
relations hold:

(i) There exists C = C(m, m̃) > 0, such that the unweighted quarks and quarklets
satisfy

∣∣∣〈ψp,j,k, ψp′,j′,k′〉L2(R)

∣∣∣ ≤ C
(
(p+ 1)(p′ + 1)

)m−1
2−|j−j′|(m−1/2). (4.2.23)

(ii) There exists C ′ = C ′(m, m̃) > 0, such that the derivatives of the unweighted
quarks and quarklets satisfy

2−(j+j′)
∣∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣∣ ≤ C ′
(
(p+ 1)(p′+ 1)

)m−1
2−|j−j′|(m−3/2). (4.2.24)
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4.2 Construction and properties of quarklets

Proof. At first, we proof (ii). Note that by m ≥ 3, ϕ and hence ψ and ψp have m− 1
weak derivatives in Lq(R), 1 ≤ q ≤ ∞. Let us consider the case j, j′ ∈ N0, where
both functions are quarklets. For j′ ≥ j, we use the compact support of ψ and the
fact that ψ′ has m̃+ 1 vanishing moments to compute that for each r = 0, . . . , m̃,∣∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣∣ = inf
P∈Πr

∣∣∣〈ψ′p,j,k − P, ψ′p′,j′,k′〉L2(R)

∣∣∣
≤ inf

P∈Πr
‖ψ′p,j,k − P‖L∞(suppψp′,j′,k′ )‖ψ

′
p′,j′,k′‖L1(R).

On the one hand, from (4.2.5), (4.2.2), (4.1.22) and (4.1.15), we obtain that with
C1 = C1(m) > 0 and C2 = C2(m) > 0

‖ψ′p′,j′,k′‖L1(R) = 2j′/2‖ψ′p′‖L1(R)

≤ C12j′/2‖ϕ′p′‖L1(R)

≤ C2(p′ + 1)−(m−2)2j′/2.
(4.2.25)

On the other hand, by Whitney’s theorem, for each choice of p, j, k, p′, j′, k′, there
exists Q ∈ Πr such that with C3 = C3(r) > 0 and C4 = C4(r) > 0,

‖ψ′p,j,k −Q‖L∞(suppψp′,j′,k′ ) ≤ C3ωr+1(ψ′p,j,k, 2−j
′)L∞(R)

≤ C42−j′(r+1)|ψ′p,j,k|W r+1
∞ (R).

Due to ψ′ ∈ Wm−2
∞ (R), the latter norm is finite for all 0 ≤ r ≤ m − 3. Picking

r = m − 3 ≥ 0, an application of (4.2.5), (4.2.2), (4.1.22) and (4.1.15) shows that
with C5 = C5(m) > 0, C6 = C6(m) > 0 and C7 = C7(m) > 0

inf
P∈Πm−3

‖ψ′p,j,k − P‖L∞(suppψp′,j′,k′ ) ≤ C52−j′(m−2)|ψ′p,j,k|Wm−2
∞ (R)

= C52−j′(m−2)2j(m−1/2)‖ψ(m−1)
p ‖L∞(R)

≤ C62−j′(m−2)2j(m−1/2)‖ϕ(m−1)
p ‖L∞(R)

≤ C7(p+ 1)m−12−j′(m−2)2j(m−1/2).

(4.2.26)

Combining the previous estimates, we obtain that with C8 = C8(m) > 0∣∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣∣ ≤ C8(p+ 1)m−1(p′ + 1)−(m−2)2j+j′2−(j′−j)(m−3/2).

If j′ ≤ j, we obtain in a completely analogous way that∣∣∣〈ψ′p,j,k, ψ′p′,j′,k′〉L2(R)

∣∣∣ ≤ C8(p′ + 1)m−1(p+ 1)−(m−2)2j+j′2−(j−j′)(m−3/2).

In the case that both functions are quarks ϕ on a fixed level j0 ∈ N0, we estimate∣∣∣〈ϕ′p,j0,k, ϕ′p′,j0,k′〉L2(R)

∣∣∣ ≤ 23j0/2
∥∥∥ϕ′p∥∥∥L∞(R)

2j0/2
∥∥∥ϕ′p′∥∥∥L1(R)

.
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Chapter 4. Quarklet Frames on the Real Line

Previously in the proof, we have already seen that ||ϕ′p′ ||L1(R) ≤ C9(p′+ 1)−(m−2) with
C9 = C9(m) > 0, and from (4.1.15) and (4.1.22) we derive ||ϕ′p||L∞(R) ≤ C10(p +
1)−(m−3) with C10 = C10(m) > 0. With C11 = C11(m) > 0, this leads to∣∣∣〈ϕ′p,j0,k, ϕ′p′,j0,k′〉L2(R)

∣∣∣ ≤ C11(p+ 1)−(m−3)(p′ + 1)−(m−2)22j0 .

If both ϕ and ψ are involved with C12 = C12(m) > 0, we obtain similar to the first
case ∣∣∣〈ϕ′p,j0,k, ψ′p′,j′,k′〉L2(R)

∣∣∣ = inf
P∈Πr

∣∣∣〈ϕ′p,j0,k − P, ψ′p′,j′,k′〉L2(R)

∣∣∣
≤ inf

P∈Πr
‖ϕ′p,j0,k − P‖L∞(suppψp′,j′,k′ )‖ψ

′
p′,j′,k′‖L1(R)

≤ C12(p+ 1)m−1(p′ + 1)−(m−2)2−(j′−j0)(m−3/2)2j0+j′ ,

and therefore (5.3.5).
The proof of (i) is quite similar. We just give a sketch of the adaptations to be

made. Instead of (4.2.25), we obtain the estimate

||ψp′,j′,k′ ||L1(R) . (p′ + 1)−m2−j′/2. (4.2.27)

Furthermore, we replace the estimate (4.2.26) by

inf
P∈Πm−2

‖ψp,j,k − P‖L∞(suppψp′,j′,k′ ) . (p+ 1)m−12−j′(m−1)2j(m−1/2). (4.2.28)

Combining (4.2.27) and (4.2.28) yields∣∣∣〈ψp,j,k, ψp′,j′,k′〉L2(R)

∣∣∣ . (p+ 1)m−1(p′ + 1)−m2(j−j′)(m−1/2).

The analogous result holds with interchanged roles of (p, j, k) and (p′, j′, k′). The
minimum over both estimates and similar adaptations for the case that quarks are
involved yield (5.3.4).
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Chapter 5

Quarklet Frames on the Unit Interval

In this chapter, we want to construct quarklets on the interval that again give rise
to stable systems for a class of function spaces. Since the inner quarks and quarklets
stay the same as in the shift-invariant case on the real line in Chapter 4, for the most
part we deal with the adaptation of quarks and quarklets at the boundaries. For
the latter, the generators and wavelets of the Primbs wavelet basis, cf. Subsection
3.2.2, are the groundwork of the construction. It turns out, that with the boundary
adapted quarklets it is indeed possible to construct frames on the unit interval.
Initially, in Section 5.1, we define quarks on the interval and derive similar estimates

as in Chapter 4. Section 5.2 is dedicated to the construction of boundary adapted
quarklets. We introduce quarklets as linear combinations of quarks. To preserve the
vanishing moments of the Primbs wavelets, we adapt the refinement mask for the
boundary quarklets. The new mask coefficients are deduced via a linear equation
system. Moreover, cancellation properties of the quarklets and their derivatives are
displayed. These results serve as a foundation to derive compression results in the
proceeding. Afterwards, in Section 5.3, we show crucial frame properties for the
boundary adapted quarklet system, which are the main results of this chapter.
Let us mention that the findings of this chapter were already published in [44,

Section 2]. In distinction to [44], we derive symmetric inner quarks for all orders m.

5.1 Boundary adapted quarks

In this section, we construct quarks on the interval and derive crucial Bernstein and
norm estimates. Let m, j ∈ N, j ≥ j0 ∈ N and ϕj,k = 2j/2Bm,j,k be the generators of
the Primbs basis, cf. (3.2.20). Since the inner Schoenberg splines Bm,j,k are dilated
and translated copies of the cardinal B-spline Nm, cf. (3.1.11), we may construct
the inner quarks similar to the ones constructed in Chapter 4. Hence, all important
estimates for the inner quarks are already available and it is sufficient to focus on the
boundary quarks as they differ from the construction in Chapter 4.
We define a quark as the product of a generator with a certain monomial. As
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Chapter 5. Quarklet Frames on the Unit Interval

before, let p ∈ N0. Then the (Schoenberg B-spline) quarks ϕp,j,k are defined by

ϕp,j,k :=


(

2j ·
k+m

)p
ϕj,k, k = −m+ 1, . . . ,−1,(

2j ·−k−m/2
m/2

)p
ϕj,k, k = 0, . . . , 2j −m,

ϕp,j,2j−m−k(1− ·), k = 2j −m+ 1, . . . , 2j − 1.
(5.1.1)

Indeed, the inner quarks, i.e., ϕp,j,k, k = 0, . . . , 2j − m, correspond to the real line
quarks, cf. (4.1.2). Obviously, for p = 0, the functions ϕ0,j,k are the generators of
the Primbs wavelets. The shape of the inner quarks for certain m, p could already
be observed in Figure 4.1. A couple of left boundary quarks are displayed in Figure
5.1. The boundary quarks on the right hand side are actually reflections of the left
boundary quarks.
The quarks form subspaces Vp,j of L2(0, 1):

Vp,j = closL2(0,1) span{ϕq,j,k : q = 0, . . . , p, k ∈ ∆j},
∆j = {−m+ 1, . . . , 2j − 1},

(5.1.2)

cf. (3.2.20). We shall now investigate some of the interval quarks’ basic proper-
ties. First, we show a two-scale relation for the boundary quarks similar to Lemma
4.14. This is necessary in Section 5.3 to derive frame properties of boundary adapted
quarklet systems. Because of the symmetry, we restrict our discussion to left bound-
ary quarks.

Lemma 5.1. For every p ∈ N0 there exist coefficients ajq,k,` ∈ R, so that the left
boundary quarks fulfil a two-scale relation of the form

ϕp,j,k =
m−2∑

`=−m+1

p∑
q=0

ajq,k,`ϕp,j+1,`, k = −m+ 1, . . . ,−1. (5.1.3)

Proof. Let k ∈ {−m + 1, . . . ,−1} be fixed. We use the corresponding two-scale
relation for the Primbs wavelet generators, cf. [91, Lemma 3.3]:

ϕj,k =
m−2∑

`=−m+1
ajk,`ϕj+1,`.

Inserting this relation into the definition of the left boundary quarks, we obtain:

ϕp,j,k =
(

2j·
k +m

)p
ϕj,k =

(
2j·

k +m

)p m−2∑
`=−m+1

ajk,`ϕj+1,`

=
(

2j·
k +m

)p −1∑
`=−m+1

ajk,`ϕj+1,` +
m−2∑
`=0

ajk,`ϕj+1,`

 . (5.1.4)
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5.1 Boundary adapted quarks

p = 0, k = −2,−1

p = 1, k = −2,−1

p = 2, k = −2,−1

p = 3, k = −2,−1

Figure 5.1: Left boundary quarks ϕp,j0,k of order m = 3 and polynomial degrees p =
0, 1, 2, 3.
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The first sum can be converted into a sum of left boundary quarks of degree p:(
2j·

k +m

)p −1∑
`=−m+1

ajk,`ϕj+1,` =
−1∑

`=−m+1
ajk,`

(
`+m

2(k +m)

)p
(`+m)p (2j+1·)p

(`+m)pϕj+1,`

=
−1∑

`=−m+1
ajk,`

(
`+m

2(k +m)

)p
ϕp,j+1,`. (5.1.5)

For the second sum we obtain by an application of the binomial theorem:

(2j·)p
m−2∑
`=0

ajk,`ϕj+1,` =2−p
m−2∑
`=0

ajk,`

(
2j+1 · −`− m

2 + `+ m

2

)p
ϕj+1,`

=2−p
m−2∑
`=0

ajk,`

p∑
q=0

(
p
q

)(
2j+1 · −`− m

2

)q (
`+ m

2

)p−q
ϕj+1,`.

Putting the monomials and wavelet generators together, we get:

(2j·)p
m−2∑
`=0

ajk,`ϕj+1,` =
m−2∑
`=0

p∑
q=0

ajk,`2−p
(
p
q

)(
`+ m

2

)p−q (m
2

)q

·

(
2j+1 · −`− m

2

)q(
m
2

)q ϕj+1,`

=
m−2∑
`=0

p∑
q=0

ajk,`2−p
(
p
q

)(
`+ m

2

)p−q (m
2

)q
ϕq,j+1,`. (5.1.6)

Combining (5.1.4)-(5.1.6) leads to the coefficients of the two-scale relation

ajq,k,` =


ajk,`

(
`+m

2(k+m)

)p
δp,q, ` = −m+ 1, . . . ,−1,

ajk,`
(

1
2(k+m)

)pp
q

(`+ m
2

)p−q
(m2 )q, ` = 0, . . . ,m− 2,

what proves the claim.

In the sequel, it is helpful to study the properties of the quarks independently of
the level. For this purpose, we introduce quarks on level zero on the interval [0,∞):

ϕp,0,k :=

(
·

k+m

)p
ϕ0,k, k = −m+ 1, . . . ,−1,(

·−k−m/2
m/2

)p
Nm(· − k), k = 0, 1, . . . .

The left boundary and inner quarks, cf. (5.1.1), are scaled and dilated versions of the
quarks on level zero. To be more precise, we have the relation

ϕp,j,k = 2j/2ϕp,0,k(2j·), k = −m+ 1, . . . , 2j −m. (5.1.7)
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5.2 Boundary quarklets with vanishing moments

To be able to show the stability of the quarklet systems, bounds for the Lq-norm of
the boundary quarks are necessary. In Proposition 5.2, we formulate such a statement.
Analogous properties for the inner quarks have been stated in Proposition 4.4. The
quite technical proof of Proposition 5.2 can be found in the appendix.

Proposition 5.2. Let k = 1, . . . ,m − 1. For every left boundary quark ϕp,0,−m+k,
and 1 ≤ q ≤ ∞, there exist constants c = c(m, k, q) > 0, C = C(m, k, q) > 0, such
that for all p ≥ (m− 1)(k − 1):

c(p+ 1)−(m−1+1/q) ≤ ||ϕp,0,−m+k||Lq(R) ≤ C(p+ 1)−(m−1+1/q). (5.1.8)

As already mentioned in the previous chapters, Jackson and Bernstein inequalities
play a key role to obtain stable systems not only in L2(0, 1), but also in scales of
Sobolev spaces Hs(0, 1). Similar to the real line case, it suffices to rely on the Jackson
inequalities for p = 0, since an inclusion of a Riesz basis in our frame construction
assures the lower frame inequality, cf. (2.1.3). Indeed, a result of the type

inf
v∈V0,j

||f − v||L2(0,1) ≤ 2−js||f ||Hs(0,1), for all f ∈ Hs(0, 1), 0 ≤ s < m, (5.1.9)

can be found in [91, Lem. 5.2 (ii)]. The Bernstein inequalities of the shift-invariant
quarks directly carry over to boundary adapted quarks. We write down:

Corollary 5.3. Let p ∈ N0, j ≥ j0 and the spaces Vp,j be given by (5.1.2). Then the
following Bernstein inequalities hold true: For 1 ≤ q ≤ ∞ and r ∈ N0, r ≤ m − 1
there exists a constant C1 = C1(m, q) > 0, such that for all f ∈ Vp,j:

||f (r)||Lq(0,1) ≤ C1(p+ 1)2r2jr||f ||Lq(0,1). (5.1.10)

Moreover, for 0 ≤ s < m− 1
2 there exists a constant C2 = C2(m, s) > 0, such that for

all f ∈ Vp,j:

|f |Hs(0,1) ≤ C2(p+ 1)2s2js||f ||L2(0,1). (5.1.11)

5.2 Boundary quarklets with vanishing moments
Now, we discuss the construction of quarklets on the interval. Henceforth we consider
boundary conditions and assume ~σ = (σ0, σ1) ∈ {0, bs+ 1

2e}
2, s > 0 to be fixed. The

natural approach would be to proceed similar to the real line case and assign a given
wavelet mask also for the definition of quarklets. The interval quarks have been
build on the foundation of Primbs generators. Hence, assigning the mask of the
Primbs wavelets seems to be the obvious choice. Quite surprisingly, this procedure
solely works for inner quarklets. It does not work for the boundary quarklets since
this would destroy the vanishing moment properties. It turns out that in order to
preserve the vanishing moment properties of the underlying Primbs wavelet basis for
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Chapter 5. Quarklet Frames on the Unit Interval

the full quarklet system, it is necessary to adapt the two-scale relation of the boundary
quarklets.
In any event, analogously to the shift-invariant case, cf. Section 4.2, quarklets are

defined as linear combinations of quark generators on the next higher level. Let us
recall the index sets

∆j,~σ = {−m+ 1 + sgn σ0, . . . , 2j − 1− sgn σ1}, ∇j = {0, . . . , 2j − 1},

cf. (3.2.20), (3.2.25), and their separations as in (3.2.22)-(3.2.26). Then, the two-scale
relation (4.2.2) for one quarklet becomes

ψ~σp,j,` :=
∑

k∈∆j+1,~σ

bp,j,~σk,` ϕp,j+1,k, ` ∈ ∇j. (5.2.1)

We already notice that in contrast to (4.2.2) the coefficients bp,j,~σk,` in (5.2.1) do not
only depend on k. Before we proceed with the construction, let us fix some notation.
We define the sets

Φ~σ
p,j := {ϕp,j,k : k ∈ ∆j,~σ}, Ψ~σ

p,j := {ψ~σp,j,k : k ∈ ∇j}, p, j ∈ N0, j ≥ j0, (5.2.2)

and the refinement matrix

Mp,j,~σ := {(bp,j,~σk,` )}(k,`)∈∆j+1,~σ×∇j,~σ . (5.2.3)

Then, (5.2.1) can be reformulated as

Ψp,j,~σ = MT
p,j,~σΦp,j+1,~σ. (5.2.4)

Now, let us continue with the construction process. At first, we discuss the con-
struction of the inner quarklets. For p, j ∈ N0, j ≥ j0, k ∈ ∇(I)

j,~σ, the inner wavelets
of the Primbs basis are given by ψ~σj,` = ∑

k∈∆j+1,~σ b
j,~σ
k,`ϕj+1,k, where the coefficients

bj,~σk,` are the entries of the stable completion Mj,1 of the Primbs basis, cf. (3.2.10).
We construct an inner quarklet by keeping these coefficients and inserting them into
(5.2.1):

bp,j,~σk,` := bj,~σk,`, k ∈ ∆j+1,~σ, ` ∈ ∇I
j . (5.2.5)

Since the inner Primbs wavelets are cardinal B-splines, the inner quarklets defined
above have the same number of vanishing moments, cf. Lemma 4.8.
The next step is to construct boundary quarklets. As already mentioned, the

coefficients of the boundary wavelets are not suitable for the boundary quarklets,
since in general the vanishing moment properties can not be preserved. A simple
counter-example for m = 2 is given by

∫
R

2∑
k=−1

b
2,(0,0)
k,0 ϕ1,3,k = 1

8 ,
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5.2 Boundary quarklets with vanishing moments

where the non-trivial coefficients are (b2,(0,0)
k,0 )2

k=−1 =
√

2(3
2 ,−

9
8 ,

1
4 ,

1
8).

Therefore, instead of keeping the coefficients, our approach is to modify them in a
way that the m̃ equations∫

R

xqψ~σp,j,`(x) dx =
∫
R

xq
∑

k∈∆j+1,~σ

bp,j,~σk,` ϕp,j+1,k dx =0, q = 0, ..., m̃− 1 (5.2.6)

are fulfilled not only for p = 0 but for all p ∈ N0. We restrict our discussion to left
boundary quarklets, i.e., ` ∈ ∇(L)

j , and assume that they are only composed of left
boundary and inner quarks. To get at least one non-trivial solution of (5.2.6), we
further assume that every boundary quarklet consists of m̃+ 1 quarks. Furthermore,
the `-th quarklets representation should begin at the leftmost but ` quark with respect
to boundary conditions. For p > 0 and a fixed ` ∈ ∇(L)

j , this leads to the m̃× (m̃+ 1)
linear system of equations

−m+1+sgnσ0+`+m̃∑
k=−m+1+sgnσ0+`

bp,j,~σk,`

∫
R

xqϕp,j+1,k(x) dx = 0, q = 0, ..., m̃− 1, (5.2.7)

to determine the quarklet coefficients for one boundary quarklet ψ~σp,j,`. In matrix-
vector form, (5.2.7) can be written as

Xb = 0, X =

∫
R

xqϕp,j+1,k(x) dx

q∈{0,...,m̃−1},

k∈∆∗`

, b = {bp,j,~σk,` }k∈∆∗
`
, (5.2.8)

where

∆∗` := {−m+ 1 + sgn σ0 + `, . . . ,−m+ 1 + sgn σ0 + `+ m̃}.

To solve (5.2.7) or (5.2.8), respectively, we need to calculate the first m̃ moments of
the quarks. The following relations hold.
Lemma 5.4. Let p, j ∈ N0, j ≥ j0. For the left boundary quarks ϕp,j+1,k, k ∈ ∆(L)

j,~σ ,
we have∫

R

xqϕp,j+1,k(x) dx = (m− 1)! 2−(j+1)(q+1/2)

(q + p+m)...(q + p+ 1)
1

(k +m)p(k +m− 1)!

·
(
k+m∑
i=0

(
k +m
i

)
(−1)k+m−iiq+p+m+k

)
. (5.2.9)

For the inner quarks ϕp,j+1,k, k ∈ ∆(I)
j,~σ, it holds

∫
R

xqϕp,j+1,k(x) dx = 2−(j+1)(q+1/2)
(
m

2

)−p p∑
i=0

(
p
i

)(
−k − m

2

)p−i
(i+ q +m)...(i+ q + 1)

·
(

m∑
r=0

(
m
r

)
(−1)m−r(k + r)i+q+m

)
. (5.2.10)
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Chapter 5. Quarklet Frames on the Unit Interval

Proof. For a proof of these rather technical results we refer to [96, Section 3.4].

From Lemma 5.4 we directly conclude that∫
R

xqϕp,j+1,k(x) dx = 2−(q+1/2)
∫
R

xqϕp,j,k(x) dx, k ∈ ∆∗` , ` ∈ ∇
(L)
j .

Therefore, the solution b in (5.2.8) is independent of j. Hence, we can drop the index
j for the two-scale coefficients in the case of boundary quarklets. Furthermore, nu-
merical tests indicate that the matrix X in (5.2.8) has full rank m̃ so that a non-trivial
solution b is unique except for scaling. Hence, we are able to construct quarklets at
the boundary with vanishing moments. We scale with respect to the quadratic norm
such that ||b||2 = 1. If 0 6= b solves (5.2.7), the `-th left boundary quarklet is

ψ~σp,j,` =
−m+1+sgnσ0+`+m̃∑
k=−m+1+sgnσ0+`

bp,~σk,`ϕp,j+1,k, ` ∈ ∇(L). (5.2.11)

The construction for right boundary quarklets is completely analogue.
To summarize the construction of quarklets on the interval, it is convenient to take

a look at the structure of the refinement matrix Mp,j,~σ, cf. (5.2.3). It can be written
as a block matrix

Mp,j,~σ =

ML
p,~σ

MI
j,1

MR
p,~σ

,

with MI
j,1 ∈ R#∆(I)

j+1×#∇(I)
j , and Mloc

p,~σ ∈ R(#∆∗0+#∇(loc)−1)×#∇(loc) , for p > 0, loc ∈
{L,R}. Compared to the case p > 0, for p = 0, the matrix Mloc

p,~σ, loc ∈ {L,R}, has a
bigger amount of rows due to the fact that more quarks are involved in the two-scale
equation.
For p = 0, Mp,j,~σ corresponds to the two-scale matrix of the Primbs wavelets Mj,1,

cf. (3.2.28). As a consequence, the Primbs wavelet basis is included in the quarklet
system. As mentioned earlier in this chapter, this assures the lower frame bound
inequality. The inner matrix MI

j,1 represents the two-scale coefficients of the inner
quarklets. It is also the inner two-scale matrix of the Primbs wavelets and therefore
independent of p but dependent on j. Of course, it is also independent of the imposed
boundary condition ~σ. The left boundary matrix ML

p,~σ contains the coefficients for the
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5.2 Boundary quarklets with vanishing moments

left boundary quarklets. It is dependent on p. Hence, we have to calculate boundary
coefficients for every polynomial degree p. Fortunately, it is independent of j, such
that a calculation on every level is dispensable. The right boundary matrix MR

p,~σ has
similar properties to ML

p,~σ. As an example, if we indicate all non-zero elements with
a ∗, for p > 0, m = 3, m̃ = 5, the matrix ML

p,~σ has the structure

ML
p,~σ =



∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗


.

In the Tables 5.1-5.2 boundary coefficients bp,~σk,` for certain parameters are displayed.
Finally, we observe some boundary quarklets in Figure 5.2.
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Chapter 5. Quarklet Frames on the Unit Interval

p bp,
~0
−1,0 bp,

~0
0,0 bp,

~0
1,0

1 0 -0.707 0.707
3 0 -0.707 0.707
5 0 -0.707 0.707
7 0 -0.707 0.707
9 0 -0.707 0.707
11 0 -0.707 0.707
13 0 -0.707 0.707
15 0 -0.707 0.707
17 0 -0.707 0.707
19 0 -0.707 0.707

p b−1 b0 b1
2 -0.808 0.566 -0.162
4 -0.835 0.537 -0.119
6 -0.849 0.519 -0.094
8 -0.858 0.507 -0.078
10 -0.864 0.499 -0.066
12 -0.869 0.492 -0.058
14 -0.872 0.487 -0.051
16 -0.874 0.483 -0.046
18 -0.876 0.48 -0.042
20 -0.879 0.476 -0.037

Table 5.1: Two-scale coefficients for the only left boundary quarklet ψ~0p,j,0 for free
boundary conditions and m = m̃ = 2.

p bp,
~0
−2,0 bp,

~0
−1,0 bp,

~0
0,0 bp,

~0
1,0

1 0.855 -0.285 0.399 -0.171
2 -0.114 0.568 -0.784 0.222
3 0.915 -0.244 0.302 -0.109
4 -0.661 -0.221 0.68 -0.23
5 0.93 -0.236 0.271 -0.084
6 -0.823 -0.067 0.526 -0.203
7 0.935 -0.235 0.255 -0.07
8 -0.869 -0.005 0.456 -0.193
9 0.939 -0.235 0.245 -0.06
10 -0.887 0.028 0.42 -0.19
11 0.941 -0.235 0.238 -0.052
12 -0.896 0.048 0.399 -0.19
13 0.942 -0.236 0.233 -0.047
14 -0.901 0.061 0.384 -0.19
15 0.944 -0.236 0.228 -0.042
16 -0.904 0.071 0.374 -0.191
17 0.945 -0.236 0.225 -0.038
18 0.906 -0.079 -0.368 0.192
19 0.945 -0.236 0.222 -0.035
20 0.909 -0.078 -0.364 0.189

p bp,
~0
−2,1 bp,

~0
−1,1 bp,

~0
0,1 bp,

~0
1,1

1 0 0.408 -0.816 0.408
2 -0.522 0.806 -0.279 0.022
3 0 0.408 -0.816 0.408
4 -0.64 0.698 0.245 -0.207
5 0 0.408 -0.816 0.408
6 -0.587 0.421 0.604 -0.335
7 -0 0.408 -0.816 0.408
8 -0.506 0.226 0.745 -0.372
9 -0 0.408 -0.816 0.408
10 0.448 -0.112 -0.801 0.381
11 0 0.408 -0.816 0.408
12 0.409 -0.041 -0.827 0.383
13 -0 0.408 -0.816 0.408
14 0.382 0.005 -0.841 0.383
15 0 0.409 -0.816 0.407
16 0.361 0.04 -0.85 0.382
17 -0.01 0.446 -0.803 0.394
18 0.33 0.052 -0.85 0.407
19 0.046 0.098 -0.803 0.587
20 -0.553 0.831 -0.04 -0.041

Table 5.2: Two-scale coefficients for the left boundary quarklets ψ~0p,j,0, ψ
~0
p,j,1 for free

boundary conditions and m = m̃ = 3.
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5.2 Boundary quarklets with vanishing moments

p = 0, k = −2,−1

p = 1, k = −2,−1

p = 2, k = −2,−1

p = 3, k = −2,−1

Figure 5.2: Left boundary quarklets ψp,j0,k of order m = 3 with m̃ = 3 vanishing
moments, polynomial degrees p = 0, 1, 2, 3 and free boundary conditions.
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5.3 Quarklet frames for L2(0, 1) and Hs(0, 1)
Now that the construction of boundary adapted quarklets has been performed in a
satisfying way, we proceed similar to Chapter 4 to show frame properties for smooth-
ness spaces on the unit interval. For the sake of completeness, we write down the
necessary results. The proofs are similar or equivalent to the proofs of the corre-
sponding statements for the shift-invariant case in Chapter 4.
As an augmentation of the Primbs basis index set ∇B

~σ , cf. (3.2.27), we define the
index set for the whole quarklet system by

∇~σ := {(p, j, k) : p, j ∈ N0, j ≥ j0 − 1, k ∈ ∇j,~σ}, (5.3.1)

with the conventions ∇j,~σ := ∇j for j ≥ j0, ∇j0−1,~σ := ∆j0,~σ, cf. (3.2.25) and Remark
3.15, respectively. In this regard we also fix ψ~σp,j0−1,k := ϕp,j0,k for (p, j0 − 1, k) ∈ ∇~σ.
The vanishing moment property of the quarklets immediately leads to the following

cancellation property of the quarklets.

Proposition 5.5. Let (p, j, k) ∈ ∇~σ, j ≥ j0 and ψ~σp,j,k a quarklet with m̃ vanishing
moments. There exists a constant C = C(m, m̃) > 0, such that for every r ∈ N0, r ≤
m̃− 1 and f ∈ W r

∞(R):

|〈f, ψ~σp,j,k〉L2(R)| ≤ C(p+ 1)−m2−j(r+1/2)|f |W r
∞(suppψ~σ

p,j,k
). (5.3.2)

Proof. The proof can be performed by following the lines of Proposition 4.9. From the
vanishing moments of the quarklets, Hölder’s inequality and a Whitney type estimate
it follows:

|〈f, ψ~σp,j,k〉L2(R)| ≤ C1|supp ψp,j,k|r|f |W r
∞(supp ψ~σ

p,j,k
)||ψ~σp,j,k||L1(supp ψ~σ

p,j,k
), (5.3.3)

where C1 > 0 only depends on r. W.l.o.g, we assume that only left boundary and
inner quarklets occur in (5.3.3). Due to the symmetry of the boundary quarks, the
estimates are also valid for right boundary quarklets. To further estimate the L1-norm
expression in (5.3.3), we use (5.2.1) and the relation

ϕp,j,k = 2j/2ϕp,0,k(2j·), k = −m+ 1, . . . , 2j −m.

Combining this relation and the norm estimate (5.1.8), we obtain

||ψ~σp,j,k||L1(supp ψ~σ
p,j,k

) ≤ C22−
j+1

2 (p+ 1)−m
∑

`∈∆j+1,~σ

|bp,j,~σk,` |,

where C2 > 0 only depends on m. The claim finally follows by estimating the asymp-
totic behaviour of |supp ψ~σp,j,k| by 2−j.

Moreover, the boundary quarklets have all the necessary properties such that com-
pression estimates similar to the ones stated in Proposition 4.16 hold.
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Proposition 5.6. Let m, m̃ ≥ 3, and (p, j, k), (p′, j′, k′) ∈ ∇~σ. Then, the following
relations hold:
(i) There exists C = C(m, m̃), such that the unweighted quarks and quarklets satisfy

∣∣∣〈ψ~σp,j,k, ψ~σp′,j′,k′〉L2(0,1)

∣∣∣ ≤ C
(
(p+ 1)(p′ + 1)

)m−1
2−|j−j′|(m−1/2). (5.3.4)

(ii) There exists C ′ = C ′(m, m̃) > 0, such that the derivatives of the unweighted
quarks and quarklets satisfy

2−(j+j′)
∣∣∣〈(ψ~σp,j,k)′, (ψ~σp′,j′,k′)′〉L2(0,1)

∣∣∣ ≤ C ′
(
(p+1)(p′+1)

)m−1
2−|j−j′|(m−3/2). (5.3.5)

Proof. Since the inner quarklets are equivalent to the ones in the shift-invariant case,
we only have to consider boundary quarklets. Without loss of generality, due to
symmetry arguments, it is sufficient to show the property for left boundary quarklets.
The latter are refinable as a linear combination of left boundary and inner quarks
with a finite coefficient mask bounded independently of p and j, cf. (5.2.1). The left
boundary and inner quarks are scaled and dilated version of quarks on level zero, cf.
(5.1.7). Since the latter satisfy the norm estimate (5.2) and the Bernstein estimate
(5.1.10), we are able to perform similar steps as in the proof of Proposition 4.16 and
therefore the claim holds also for boundary quarklets.

With the cancellation property (5.3.2) at hand, also the estimates for the Gramian
matrices from Section 4.2 can be immediately transferred to the boundary adapted
case. This is the last missing ingredient to show the frame property of the quarklet
systems in L2(0, 1) and Hs(0, 1).

Proposition 5.7. For fixed p ∈ N0, the Gramian matrix

GL2(0,1)
p :=

(
〈ψ~σp,j,k, ψ~σp,j′,k′〉L2(0,1)

)
(j,k),(j′,k′)∈∇B

~σ

(5.3.6)

is a bounded operator on `2(∇B
~σ ), i.e., there exists a constant C = C(m, m̃) > 0, such

that

||GL2(0,1)
p ||L (`2(∇B

~σ
)) ≤ C(p+ 1)−1. (5.3.7)

Now, we have finally collected all the necessary building blocks to transfer the frame
properties of the shift-invariant quarklets to the case of boundary adapted quarklets.
The following two theorems are the main result of this chapter. They state that
the construction ideas of frames for Lebesgue spaces and scales of Sobolev spaces in
the shift-invariant case, cf. Theorems 4.11, 4.15, respectively, can be carried over
to the boundary adapted quarklets. These frames serve as a starting point for the
construction of multivariate tensor frames on cubes and more general domains, as it
is outlined in Chapter 6. At first, we formulate the frame property in L2(0, 1).
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Theorem 5.8. The weighted quarklet system

ΨL2(0,1),~σ := {(p+ 1)−δ1/2ψ~σλ : λ = (p, j, k) ∈ ∇~σ}, δ1 > 0, (5.3.8)

is a frame for L2(0, 1).

Choosing suitable weights, we derive frames for Sobolev spaces Hs
~σ(0, 1), 0 < s <

m− 1
2 .

Theorem 5.9. For 0 ≤ s < m− 1
2 , the weighted quarklet system

ΨHs
~σ

(0,1) := {(p+1)−2s−δ1/2−δ2/22−sjψ~σλ : λ = (p, j, k) ∈ ∇~σ}, δ1 > 0, δ2 > 1, (5.3.9)

is a frame for Hs
~σ(0, 1).
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Chapter 6

Quarklet Frames on Bounded
Domains

This chapter settles the case of the construction of quarklets. We show how to use the
unit interval frames of Chapter 5 to construct quarklet frames on multidimensional
domains. In two consecutive steps, we construct quarklet frames on unit cubes and
then extent these frames to general domains. The main challenges are to transfer the
ideas of tensorization and extension operators, which were used for the construction
of wavelet bases, cf. [20], to the case of frames. It turns out that with some additional
effort, these ideas can be indeed successfully applied also in this setting.
The course of this chapter is as follows: in Section 6.1, we show how to construct

quarklet frames on the unit cube out of tensor products of quarklet frames on the
unit interval. For this purpose, we introduce a principle to construct frames for tensor
products and intersections of Hilbert spaces in a general manner. Subsequently, we
apply this approach to quarklets. In Section 6.2, we extend the unit cube frames to
general bounded domains. In order to do this, we introduce the domains of interest
as the union of parametric images of the unit cube and recall some ideas of [20]
concerning extension operators and isomorphisms between Sobolev spaces on different
domains. Thereupon, we describe in a general setting how a combination of frames
on cubes, Bessel systems which include the image of an extension operator and simple
extensions lead to frames for Sobolev spaces on our target domain Ω ⊂ Rd. Finally,
we show that the general machinery can be applied to our setting and present explicit
constructions. The frame properties of the generalized quarklet frames stated in the
consecutive Theorems 6.19 and 6.20 are at the heart of this thesis. On the one hand,
they build the conclusion of the construction of quarklets which has started in Chapter
4. On the other hand, they are the foundation for quarklets to be applied in adaptive
numerical schemes as it will be outlined in the following chapters.
The construction of quarklet frames on general domains was already outlined in [44,

Section 4]. In this chapter, we summarize the findings complemented with visualiza-
tions of the frame elements and further insights. In particular, the embedding of the
approach into the Gelfand frame setting constitutes an enhancement of the theory.
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6.1 Frame constructions on cubes
Before we start with the actual construction of frames on cubes, let us briefly recall
the definitions of tensor products and intersections of Hilbert spaces. For additional
details on this topic, we refer to [22,70].

6.1.1 Tensor products and intersections of Hilbert spaces
For two Hilbert spaces G and H we define

F (G,H) :=
{

n∑
i=1

αi(gi, hi) : αj ∈ R, (gi, hi) ∈ G×H,n ∈ N
}
. (6.1.1)

Every f = ∑n
i=1 αi(gi, hi) ∈ F (G,H) induces an operator Af : G′ → H, given by

Afφ :=
n∑
i=1

αiφ(gi)hi, φ ∈ G′.

For f, f̃ ∈ F (G,H), we define the equivalence relation

f ' f̃ ⇐⇒ Afφ = Af̃φ, for all φ ∈ G′.

With T (G,H) we denote the quotient space F (G,H)/ '. For g ∈ G, h ∈ H the
notation g ⊗ h is reserved for the equivalence class in T (G,H) containing (g, h).
Then, the inner product

〈g1 ⊗ h1, g2 ⊗ h2〉G⊗H := 〈g1, g2〉G〈h1, h2〉H , g1, g2 ∈ G, h1, h2 ∈ H, (6.1.2)

extended by linearity turns T (G,H) into a pre-Hilbert space. The closure of T (G,H)
with respect to the induced norm

|| · ||G⊗H := 〈·, ·〉1/2G⊗H (6.1.3)

is a Hilbert space and is denoted with G ⊗ H. Moreover, if G and H are function
spaces over domains Ω1 and Ω2, respectively, the formal tensor expressions have a
more immediate meaning. In this case, the tensor product space G ⊗ H can be
identified as a function space over the Cartesian product domain Ω1 × Ω2, i.e., for
functions g : Ω1 → R, h : Ω2 → R, the tensor product turns into

g ⊗ h(x, y) := g(x)h(y), x ∈ Ω1, y ∈ Ω2. (6.1.4)

The Lebesgue spaces L2 are of tensor product type and it holds the relation

L2(Ω1 × Ω2) = L2(Ω1)⊗ L2(Ω2) (6.1.5)
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6.1 Frame constructions on cubes

in terms of equivalent norms, cf. [22, Theorem 1.39] for a proof. For Sobolev spaces
over Cartesian products the situation is slightly different and it is necessary to intro-
duce intersections of Hilbert spaces to formulate a relation similar to (6.1.5). For two
Hilbert spaces G and H the space of functions f ∈ G ∩H equipped with the norm

‖·‖G∩H :=
(
‖·‖2

G + ‖·‖2
H

)1/2
(6.1.6)

is a Hilbert space itself if it is non-trivial. For s ∈ [0,∞) \ (N0 + {1
2}) and domains

Ω1 and Ω2 it holds the relation

Hs
0(Ω1 × Ω2) = Hs

0(Ω1)⊗ L2(Ω2) ∩ L2(Ω1)⊗Hs
0(Ω2), (6.1.7)

cf. [70]. [61] In this section, the case where Ω1 and Ω2 are intervals and as a result Ω1×
Ω2 is a rectangle is of interest. Tensor product constructions carry over to dimensions
d > 2. Moreover, formula (6.1.7) holds with more general boundary conditions. Due
to the just mentioned facts, it seems reasonable to fix the notation of the generic
case of this section. Let � := (0, 1)d be the d-times unit cube. Furthermore, let
s ∈ [0,∞) \ (N0 + {1

2}) and σ = ( ~σ1, . . . , ~σd), ~σi = ((σi)0, (σi)1) ∈ {0, bs + 1
2c}

2. We
define Γσ ⊂ ∂� as the union of hyperplanes

[0, 1]i−1 × {0} × [0, 1]d−i, i ∈ {1, . . . , d},

for which (σi)0 = bs+ 1
2c and

[0, 1]i−1 × {1} × [0, 1]d−i, i ∈ {1, . . . , d},

for which (σi)1 = bs+ 1
2c. Then, the relation

Hs
Γσ

(�) =
d⋂
i=1

Hs
i (�) (6.1.8)

holds, where

Hs
i (�) := L2(0, 1)⊗ · · · ⊗ L2(0, 1)⊗Hs

~σi
(0, 1)⊗ L2(0, 1)⊗ · · · ⊗ L2(0, 1),

(6.1.9)

with Hs
~σi

(0, 1) at the i-th spot. Cf. (1.3.14) and (1.3.15) for the definitions of Sobolev
spaces with certain boundary conditions.
In the following subsection we shed some light on the construction of frames for

Hs
i (�) and Hs

Γσ
(�).

6.1.2 Tensor and intersection frames
The following two lemmas give rise to the construction of frames on tensor prod-
uct spaces and on intersections of Hilbert spaces, respectively. They generalize the
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Chapter 6. Quarklet Frames on Bounded Domains

respective Lemmas 3.1.5 and 3.1.8 of [66] from the case of Riesz bases to the case
of frames. They are not only valid for the case of quarklet frames but for a much
broader class of frames.
We assume that for a countable index set J , the system FL2(0,1) = {fλ}λ∈J is a

frame for L2(0, 1) with frame bounds A,B > 0, such that, for certain scalar weights
wλ > 0 and an s ∈ [0,∞) \ (N0 + {1

2}), the set {w−1
λ fλ}λ∈J is a frame for Hs

~σ(0, 1),
~σ ∈ {0, bs + 1

2c}
2, with frame bounds As, Bs > 0. In the following lemma, for the

sake of a neat notation, we identify Hs
~σ(0, 1) with its dual. But let us mention that

the statement also holds true without an identification of the spaces.

Lemma 6.1. The system

FHs
i (�) :=

{
w−1
λi
fλ1 ⊗ · · · ⊗ fλd

}
λ∈J d

, λ = {λ1, . . . , λd},

is a frame for the tensor product Sobolev space Hs
i (�) with frame bounds AsAd−1 and

BsB
d−1, i.e.,

AsA
d−1‖f‖2

Hs
i (�) ≤

∑
λ∈J d

∣∣∣〈f, w−1
λi
fλ1⊗· · ·⊗fλd〉Hs

i (�)

∣∣∣2 ≤ BsB
d−1‖f‖2

Hs
i (�), (6.1.10)

for all f ∈ Hs
i (�), cf. (2.1.6).

Proof. Without loss of generality, we may assume that i = 1. Moreover, it is sufficient
to show (6.1.10) on a dense subset of Hs

1(�), cf. [24, Lemma 5.1.9] , e.g., for all finite
sums of tensor product functions like

f =
K∑
k=1

g
(1)
k ⊗ · · · ⊗ g

(d)
k , g

(j)
k ∈

Hs
~σ1(0, 1) , j = 1,

L2(0, 1) , 2 ≤ j ≤ d.
(6.1.11)

Assume that f has this form, and let U = {uj}j∈N and V = {vj}j∈N be orthonormal
bases for Hs(0, 1) and L2(0, 1), respectively. Then obviously, the system

{uj1 ⊗ vj2 ⊗ · · · ⊗ vjd}jl∈N,1≤l≤d

is an orthonormal basis for Hs
1(�). By consequence, an application of the Parseval

identity in Hs
1(�) and in Hs

~σ1(0, 1) yields

‖f‖2
Hs

1(�) =
∑
jl∈N

1≤l≤d

∣∣∣〈f, uj1 ⊗ vj2 ⊗ · · · ⊗ vjd〉Hs
1(�)

∣∣∣2

=
∑
jl∈N

1≤l≤d

∣∣∣∣ K∑
k=1
〈g(1)
k ⊗ · · · ⊗ g

(d)
k , uj1 ⊗ vj2 ⊗ · · · · · · ⊗ vjd〉Hs

1(�)

∣∣∣∣2

=
∑
jl∈N

1≤l≤d

∣∣∣∣ K∑
k=1
〈g(1)
k , uj1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2
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=
∑
jl∈N

2≤l≤d

∑
j1∈N

∣∣∣∣〈 K∑
k=1

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)g

(1)
k , uj1

〉
Hs
~σ1

(0,1)

∣∣∣∣2

=
∑
jl∈N

2≤l≤d

∥∥∥∥ K∑
k=1

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)g

(1)
k

∥∥∥∥2

Hs
~σ1

(0,1)
.

The Hs
~σ1(0, 1)-norms can be estimated from above and from below by using the frame

property of {w−1
λ1 fλ1}λ1∈J in Hs

~σ1(0, 1), resulting in the auxiliary estimate

As‖f‖2
Hs

1(�) ≤
∑
λ1∈J

w−2
λ1

∑
jl∈N

2≤l≤d

∣∣∣∣ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2 ≤ Bs‖f‖2
Hs

1(�).

(6.1.12)

It remains to bound the middle sum in (6.1.12) from above and from below. For fixed
λ1, . . . , λd ∈ J , we can transform

K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

=
〈 K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=3
〈g(ν)
k , vjν 〉L2(0,1)g

(2)
k , vj2

〉
L2(0,1)

.

By using the Parseval identity in L2(0, 1), we deduce

∑
j2∈J

∣∣∣∣ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2

=
∥∥∥∥ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=3
〈g(ν)
k , vjν 〉L2(0,1)g

(2)
k

∥∥∥∥2

L2(0,1)
,

so that the frame property of F in L2(0, 1) yields

A
∑
j2∈J

∣∣∣∣ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2

≤
∑
λ2∈J

∣∣∣∣〈 K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=3
〈g(ν)
k , vjν 〉L2(0,1)g

(2)
k , fλ2

〉
L2(0,1)

∣∣∣∣2

≤ B
∑
j2∈J

∣∣∣∣ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)

d∏
ν=2
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2.
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In view of (6.1.12), this implies

AsA‖f‖2
Hs

1(�) ≤
∑

λ1,λ2∈J
w−2
λ1

·
∑
jl∈N

3≤l≤d

∣∣∣∣ K∑
k=1
〈g(1)
k , fλ1〉Hs

~σ1
(0,1)〈g(2)

k , fλ2〉L2(0,1)

d∏
ν=3
〈g(ν)
k , vjν 〉L2(0,1)

∣∣∣∣2

≤ BsB‖f‖2
Hs

1(�).

The claim (6.1.10) follows by repeating the aforementioned calculations and estimates
in each of the remaining modes 3 ≤ ν ≤ d.

Remark 6.2. By following the lines of the proof of Lemma 6.1, one can also show
that the system FL2(�) =

{
fλ1⊗· · ·⊗fλd

}
λ∈J d

is a frame for L2(�) with frame bounds
Ad, Bd.

Lemma 6.1 provides us with tensor frames for all the spacesHs
i (�) defined in (6.1.9)

as long as the required frames for L2(0, 1) are available. It remains to check under
which conditions the tensor frames also give rise to suitable systems in the intersection
space Hs

Γσ
(�), cf. (6.1.8). Quite surprisingly, to perform our proof, it is not sufficient

that the individual system possesses the frame property. In addition, each of the
frames must contain a Riesz basis. Although this assumption is in a certain sense
restrictive, let us already mention that it is satisfied in the case of quarklets since our
quarklet frames by construction contain a wavelet Riesz basis.

Lemma 6.3. Let FL2(�) = {fλ}λ∈J d be a frame for L2(�) as in Remark 6.2 and
for i ∈ {1, . . . , d} and some non-zero scalars wλi, λ = (λ1, . . . , λd) ∈ J d, the sets
FHs

i (�) = {(wλi)−1fλ}λ∈J d form frames for Hs
i (�) ⊂ L2(�) as in Lemma 6.1. Fur-

thermore, we assume that there exists a Riesz basis RL2(�) := {fλ}λ∈J dR ⊂ FL2(�) for
L2(�) such that the sets RHs

i (�) := {w−1
λi
fλ}λ∈J dR form Riesz bases for Hs

i (�). Then,
the collection

(
d∑
i=1

w2
λi

)−1/2

fλ


λ∈J d

is a frame for Hs
Γσ

(�).

Proof. It is sufficient to prove the lemma for the case d = 2. Then, the general result
follows by induction. Let f ∈ Hs

1(�)∩Hs
2(�). Since RL2(�) is a Riesz basis for L2(�)

we have a unique representation f = ∑
λ∈J 2

R
ĉλfλ. Let Bi, i ∈ {1, 2} be the optimal

upper frame bounds and Bmax := max{B1, B2}. Then, the frame property of FHs
i (�)

in Hs
i (�) implies

B−1
max ‖f‖

2
Hs
i (�) ≤ B−1

i ‖f‖
2
Hi
≤ inf

c(i)∈`2(J 2):(c(i))TFH=f

∑
λ∈J 2

w2
λi

(c(i)
λ )2. (6.1.13)
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The definition of ‖·‖Hs
1(�)∩Hs

2(�), cf. (6.1.6), and (6.1.13) lead to

B−1
max ‖f‖

2
Hs

1(�)∩Hs
2(�) ≤ inf

(c(1),c(2))∈(`2(J 2))2:(c(i))TFL2(�)=f

∑
λ∈J 2

w2
λ1(c(1)

λ )2 + w2
λ2(c(2)

λ )2

≤ inf
c∈`2(J 2):cTFL2(�)=f

∑
λ∈J 2

(
w2
λ1 + w2

λ2

)
c2
λ, (6.1.14)

showing the lower frame inequality, cf. Proposition 2.3. Let ARi , i ∈ {1, 2} be the
optimal lower Riesz bounds and ARmin = min{AR1 , AR2 }. For the upper frame inequality
we use the unique representation and the Riesz basis properties of RHs

i (�) in Hs
i (�),

i ∈ {1, 2} to estimate

inf
c∈`2(J 2):cTFL2(�)=f

∑
λ∈J 2

(
w2
λ1 + w2

λ2

)
c2
λ ≤

∑
λ∈J 2

R

(
w2
λ1 + w2

λ2

)
ĉ2
λ

=
∑
λ∈J 2

R

w2
λ1 ĉ

2
λ +

∑
λ∈J 2

R

w2
λ2 ĉ

2
λ

≤ (AR1 )−1 ‖f‖2
Hs

1(�) + (AR2 )−1 ‖f‖2
Hs

2(�)

≤ (ARmin)−1 ‖f‖2
Hs

1(�)∩Hs
2(�) . (6.1.15)

Combining (6.1.14) and (6.1.15) proves the claim.

Remark 6.4. From the proof of Lemma 6.3 frame bounds can be easily deduced. An
upper frame bound is given by the maximum of all upper frame bounds of the frames
FHs

i (�). A lower frame bound is given by the minimum of all lower Riesz bounds of
the Riesz bases RHs

i (�).

6.1.3 Quarklet frames on the unit cube
An application of Remark 6.2 and Theorem 5.8 yields the following theorem, which
is one of the main results of this thesis.
Theorem 6.5. Let {Ψ~σi

λi
}, i = 1, . . . , d, be a family of univariate boundary adapted

quarklet frames of order m ≥ 2, with m̃ vanishing moments, m̃ ≥ m, according to
Theorem 5.8. Then the family

ΨL2(�),σ :=
d⊗
i=1

ΨL2(0,1), ~σi =
{

(wL2
λ )−1ψσλ : λ ∈∇σ :=

d∏
i=1
∇ ~σi

}
, (6.1.16)

ψσλ :=
d⊗
i=1

ψ ~σi
λi
, (6.1.17)

with the weights

wL2
λ :=

d∏
i=1

(pi + 1)δ1/2 , δ1 > 0, (6.1.18)

is a quarkonial tensor frame for L2(�).
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By means of Lemma 6.1, Lemma 6.3 and Theorem 5.9 we also obtain quarkonial
frames for the Sobolev space Hs

Γσ
(�), which is another main result.

Theorem 6.6. Let {Ψ~σi
λi
}, i = 1, . . . , d, be a family of univariate boundary adapted

quarklet frames according to Theorem 5.8, with order m ≥ 2, m̃ ≥ 2 vanishing
moments, m̃

m
sufficiently large and m̃+m even. Then, the family

ΨHs
Γσ

(�) :=
{

(wHs

λ )−1ψσλ : λ ∈∇σ

}
, (6.1.19)

with the weights

wH
s

λ :=
(

d∑
i=1

(pi + 1)4s+δ2 4sji
)1/2 d∏

i=1
(pi + 1)δ1/2 , λ = (p, j,k), δ1 > 0, δ2 > 1,

(6.1.20)

is a frame for Hs
Γσ

(�), 0 ≤ s < m− 1
2 , s /∈ (N0 + {1

2}).

Examples of quarks and quarklets on the unit cube are visualized in Figures 6.1,
6.2, respectively.

Remark 6.7. Let us also introduce the notation

ΨB
L2(�),σ :=

d⊗
i=1

ΨB
L2(0,1), ~σi =

{
ψσλ : λ ∈∇B

σ :=
d∏
i=1
∇B

~σi

}
(6.1.21)

for the L2(�) Riesz basis. Accordingly,

ΨB
Hs

Γσ
(�) :=


(

d∑
i=1

4sji
)−1/2

ψσλ : λ ∈∇B
σ

 (6.1.22)

denotes a Riesz basis for Hs
Γσ

(�).
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p = (1, 1), j = (2, 2), k = (1, 2)

p = (2, 1), j = (2, 2), k = (1, 2)

Figure 6.1: Unweighted quarks ψσλ on the two-dimensional unit cube.
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p = (1, 1), j = (3, 3), k = (4, 3)

p = (1, 2), j = (3, 2), k = (5, 1)

Figure 6.2: Unweighted quarklets ψσλ on the two-dimensional unit cube.
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6.2 From cubes to general bounded domains
In this section, we explain how to use a non-overlapping domain decomposition ap-
proach to extend frames from cubes to general bounded domains. Thereupon, we
apply the extension to the quarklet frames on cubes from the previous section. In
comparison to the non-overlapping extension of Riesz bases, see, e.g., [20], several
adaptations have to be made.

6.2.1 The abstract extension process
In this subsection, we collect the basic tools which are needed to extend function
systems on cubes to general domains. Further information can be found in [20].
This approach can be used as a starting point of the frame construction on general
domains. The final quarklet construction can be found in Subsection 6.2.3.
Let us first describe the types of domains we are concerned with in the sequel.

Let {�0, . . . ,�N} with �j := τj + �, τj ∈ Zd, j = 0, . . . , N be a fixed finite set of
hypercubes. We assume ∪Nj=0�j ⊂ Ω ⊂ (∪Nj=0�j)int and such that ∂Ω is a union of
(closed) facets of the �j’s. The situation Ω ( (∪Nj=0�j)int occurs if Ω has one or more
cracks, cf. Figure 6.3.

Figure 6.3: The slitdomain is a typical example where Ω = (−1, 1)2 \ {0}× (0, 1) is a
strict subdomain of (∪3

j=0�j)int = (−1, 1)2.

Later on, we present a construction procedure of frames for Sobolev spaces on Ω
that starts with frames for corresponding Sobolev spaces on the subdomains �j and
makes use of extension operators. These extension operators form a crucial ingredient
in the final construction, see again Subsection 6.2.3. The following conditions (D1)-
(D5) are taken from [20] and ensure the existence of suitable extension operators.
We set Ω(0)

i := �i, i = 0, . . . , N and create a sequence {Ω(q)
i : q ≤ i ≤ N}0≤q≤N

of sets of polytopes, where each next entry in this sequence is created by joining two
polytopes from the previous entry whose joint interface is part of a hyperplane. More
precisely, we assume that for any 1 ≤ q ≤ N , there exists a q ≤ ī = ī(q) ≤ N and
q − 1 ≤ i1 = i

(q)
1 6= i2 = i

(q)
2 ≤ N such that

(D1) Ω(q)
ī

=
(

Ω(q−1)
i1 ∪ Ω(q−1)

i2 \ ∂Ω
)int

is connected, and the interface J := Ω(q)
ī
\

(Ω(q−1)
i1 ∪ Ω(q−1)

i2 ) is part of a hyperplane,

(D2) {Ω(q)
i : q ≤ i ≤ N, i 6= ī} =

{
Ω(q−1)
i : q − 1 ≤ i ≤ N, i 6= {i1, i2}

}
,
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(D3) Ω(N)
N = Ω.

By construction, the boundary of each Ω(q)
i is a union of facets of hypercubes �j. We

define
◦
Hs(Ω(q)

i ) to be the closure in Hs(Ω(q)
i ) of the smooth functions on Ω(q)

i that
vanish on the union of the facets of the �j on which homogeneous Dirichlet boundary
conditions are imposed, and that are part of ∂Ω(q)

i . Note that
◦
Hs(Ω(N)

N ) = Hs
0(Ω) and

for some σ(j) ∈ ({0, bs+ 1/2c}2)d,
◦
Hs(Ω(0)

j ) =
◦
Hs(�j) = Hs

Γσ(j)
(�j).

The boundary conditions on the hypercubes that determine the spaces
◦
Hs(Ω(q)

i ), and
the order in which polytopes are joined should be chosen such that
(D4) on the Ω(q−1)

i1 and Ω(q−1)
i2 sides of J , the boundary conditions are of order 0 and

bs+ 1
2c, respectively,

and, w.l.o.g. assuming that J = {0} × J̆ and (0, 1)× J̆ ⊂ Ω(q−1)
i1 ,

(D5) for any function in
◦
Hs(Ω(q−1)

i1 ) that vanishes near {0, 1} × J̆ , its reflection in
{0}×Rd−1 (extended with zero, and then restricted to Ω(q−1)

i2 ) is in
◦
Hs(Ω(q−1)

i2 ).
The condition (D5) can be formulated by saying that the order of the boundary
condition at any subfacet of Ω(q−1)

i1 adjacent to J should not be less than this order
at its reflection in J , where in case this reflection is not part of ∂Ω(q−1)

i2 , the latter
order should be read as the highest possible one bs + 1

2c; and furthermore, that the
order of the boundary condition at any subfacet of Ω(q−1)

i2 adjacent to J should not be
larger than this order at its reflection in J , where in case this reflection is not part of
∂Ω(q−1)

i1 , the latter order should be read as the lowest possible one 0. In the Figures
6.4 and 6.5 we see illustrations, where the conditions (D1)-(D5) are fulfilled.

Figure 6.4: First example of a domain decomposition such that (D1)-(D5) are fulfilled.
The arrows indicate the direction of the non-trivial extension. Dotted lines
and solid lines indicate free and zero boundary conditions, respectively.

Given 1 ≤ q ≤ N , for l ∈ {1, 2}, let R(q)
l be the restriction of functions on Ω(q)

ī
to

Ω(q−1)
il

, let η(q)
2 be the extension of functions on Ω(q−1)

i2 to Ω(q)
ī

by zero, and let E(q)
1 be

some non-trivial extension of functions on Ω(q−1)
i1 to Ω(q)

ī
.
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6.2 From cubes to general bounded domains

Figure 6.5: Second example of a domain decomposition such that (D1)-(D5) are ful-
filled. The arrows indicate the direction of the non-trivial extension. Dot-
ted lines and solid lines indicate free and zero boundary conditions, re-
spectively.

Roughly speaking, in every step of our construction we glue together two adjacent
domains. One ingredient in such a step is a bijective operator between Sobolev spaces
on those domains. In the following proposition, which is taken from [20, Proposition
2.1], we consider a more general framework and give conditions under which a class
of mappings between a Banach space and the Cartesian product of two other Banach
spaces consists of isomorphisms. In Proposition 6.9, cf. [20, Proposition 4.2], we apply
these statements to our special case.
Proposition 6.8. For normed linear spaces V and Vi (i = 1, 2), let E1 ∈ B(V1, V ),
η2 ∈ B(V2, V ), R1 ∈ B(V, V1), and R2 ∈ B(ran(η2), V2) be such that

R1E1 = Id, R2η2 = Id, R1η2 = 0, ran(Id− E1R1) ⊂ ran(η2).
Then, the operator

E = [E1 η2] ∈ B(V1 × V2, V )
is boundedly invertible, with inverse

E−1 =
[

R1
R2(Id− E1R1)

]
.

Proposition 6.9. For s > 0, assume that E(q)
1 ∈ B

( ◦
Hs(Ω(q−1)

i1 ),
◦
Hs(Ω(q)

ī
)
)
. Then,

E(q) := [E(q)
1 η

(q)
2 ] ∈ B

( 2∏
l=1

◦
Hs(Ω(q−1)

il
),
◦
Hs(Ω(q)

ī
)
)

is boundedly invertible.
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Chapter 6. Quarklet Frames on Bounded Domains

Proof. This is a direct application of Proposition 6.8 with V1 =
◦
Hs(Ω(q−1)

i1 ), V2 =
◦
Hs(Ω(q−1)

i2 ), V =
◦
Hs(Ω(q)

ī
), E1 = E

(q)
1 , η2 = η

(q)
2 and Rl = R

(q)
l , for l ∈ {1, 2}.

Sequential execution of extensions as in Proposition 6.9 induces an isomorphism
from the Cartesian product of Sobolev spaces on the cubes �j onto the Sobolev spaces
on the target domain Ω.

Corollary 6.10. For U being the composition of the mappings E(q), q = 1, . . . , N ,
from Proposition 6.9, trivially extended with identity operators in coordinates i ∈
{q − 1, . . . , N} \ {i(q)1 , i

(q)
2 }, it holds that

U ∈ B
( N∏
j=0

◦
Hs(�j), Hs

0(Ω)
)
. (6.2.1)

is boundedly invertible.

Remark 6.11. If we apply U to Riesz bases on cubes �j, we end up with a Riesz
basis on Ω. While this is also true for the case of frames, the way for the construction
of frames in this thesis is slightly different, mainly to preserve the vanishing moments
of the frames on cubes. Nevertheless, the operators E(q) as defined in Proposition 6.9
play an important role in the construction process.

The next proposition provides the link between the extension approach and tensor
products. It states that under the conditions (D1)-(D5), the extensions E(q)

1 can be
constructed (essentially) as tensor products of univariate extensions with identity
operators in the other Cartesian directions.

Proposition 6.12. In the setting of (D1), w.l.o.g. let J = {0} × J̆ and (0, 1)× J̆ ⊂
Ω(q−1)
i1 . Let G1 be an extension operator of functions on (0, 1) to functions on (−1, 1)

such that

G1 ∈ B (L2(0, 1), L2(−1, 1)) , G1 ∈ B
(
Hs(0, 1), Hs

(bs+ 1
2 c,0)(−1, 1)

)
.

Let T (q) ∈ B
( ◦
Hs(Ω(q−1)

i1 ),
◦
Hs(Ω(q−1)

i2 )
)
be defined as the composition of the restriction

to (0, 1)× J̆ , followed by an application of

G1 ⊗ Id⊗ · · · ⊗ Id,

an extension by 0 to Ω(q−1)
i2 \ (−1, 0) × J̆ and a restriction to Ω(q−1)

i2 . Then, we
define E(q)

1 ∈ B
( ◦
Hs(Ω(q−1)

i1 ),
◦
Hs(Ω(q)

ī
)
)
as the operator which is the identity operator

if restricted to
◦
Hs(Ω(q−1)

i1 ) and T (q) if restricted to
◦
Hs(Ω(q−1)

i2 ). By proceeding this way,
E

(q)
1 is well-defined and boundedly invertible as required in Proposition 6.9.
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6.2.2 Construction of frames by extension
Based on the setting outlined in the previous subsection, we now describe a general
procedure to construct frames for the Sobolev space Hs

0(Ω), provided that suitable
frames and Riesz bases, respectively, on the cubes �j are given. That such frames
and Riesz bases on cubes are available in the quarklet setting has already been shown
in Section 6.1. A combination of the results of Subsections 6.2.1, 6.2.2 and Section
6.1 provides us with the desired quarklet frames on general domains Ω, cf. Subsection
6.2.3.
For j = 0, . . . , N , let F j be a frame for L2(�j), that renormalized in Hs(�j), is

a frame for
◦
Hs(�j). Furthermore, assume that there exists a Riesz basis Rj ⊂ F j

for L2(�j), that renormalized in Hs(�j), is a Riesz basis for
◦
Hs(�j). Renormalized

versions of all sets are indicated with an upper s ≥ 0 with the conventions Rs
j := Rj,

F s
j := F j for s = 0. For q = 0, . . . , N , i = q, . . . , N and s ≥ 0 we define recursively

Rs,(q)
i :=


Rs

i , q = 0,
Rs,(q−1)

î
, 1 ≤ q ≤ N, i 6= i, Ω(q)

i = Ω(q−1)
î

,

E
(q)
1 (Rs,(q−1)

i1 ) ∪ η(q)
2 (Rs,(q−1)

i2 ), 1 ≤ q ≤ N, i = i,

(6.2.2)

with E(q)
1 defined as in Proposition 6.12. We observe that the set of functions Rs,(N)

N

is exactly U(Rs
0, . . . ,Rs

N), with U defined as in Corollary 6.10. Thus, it is a Riesz
basis for Hs

0(Ω), cf. Proposition 2.14 (iii). For the frame construction, we have to
assume the existence of an additional family Ξs,(q) which forms a Bessel system for◦
Hs(Ω(q)

i ), cf. (2.1.1), and satisfies E(q)
i (Rs,(q−1)

i ) ⊂ Ξs,(q). Then, for q = 0, . . . , N ,
i = q, . . . , N and s ≥ 0 we set

F s,(q)
i :=


F s
i , q = 0,

F s,(q−1)
i , 1 ≤ q ≤ N, i 6= i, Ω(q)

i = Ω(q−1)
î

,

Ξs,(q) ∪ η(q)
2 (F s,(q−1)

i2 ), 1 ≤ q ≤ N, i = i.

(6.2.3)

The next proposition implies that, by proceeding this way, we indeed obtain suitable
frames for Hs

0(Ω). For the proof, we make use of some statements about function
systems and operators from Section 2.3. Further information concerning the addi-
tional Bessel system as well as construction details can be found in Subsection 6.2.3,
Remark 6.16.

Proposition 6.13. For q = 0, . . . , N , i = q, . . . , N and s > 0, let F s,(q)
i be defined

as in (6.2.3). Then, F s := F s,(N)
N , is a frame for Hs

0(Ω).

Proof. Let 1 ≤ q ≤ N . Since F s,(q−1)
i2 is a Bessel system for

◦
Hs(Ω(q−1)

i2 ) and
η

(q)
2 ∈ B

( ◦
Hs(Ω(q−1)

i2 ),
◦
Hs(Ω(q)

ī
)
)
, we can conclude that η(q)

2 (F s,(q−1)
i2 ) is a Bessel system

for
◦
Hs(Ω(q)

ī
), cf. Proposition 2.14 (i). Hence, F s,(q)

ī
= Ξs,(q) ∪ η(q)

2 (F s,(q−1)
i2 ) is a union

of two Bessel systems and therefore a Bessel system for
◦
Hs(Ω(q)

ī
), cf. Proposition 2.13

(i).
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Since E(q)
1 (Rs,(q−1)

i1 ) ⊂ Ξs,(q) and Rs,(q−1)
i2 ⊂ F s,(q−1)

i2 , we conclude that Rs,(q)
ī
⊂

F s,(q)
ī

. For 0 ≤ i ≤ N , Rs,(0)
i is a Riesz basis for

◦
Hs(Ω(0)

i ). Furthermore E(q) =
[E(q)

1 η
(q)
2 ] ∈ B

(∏2
l=1

◦
Hs(Ω(q−1)

il
),
◦
Hs(Ω(q)

ī
)
)
as defined in Proposition 6.9 is boundedly

invertible. Thus, we conclude by induction that Rs,(q)
ī

= E(q)(Rs,(q−1)
i1 ,Rs,(q−1)

i2 ) is
a Riesz basis for

◦
Hs(Ω(q)

ī
), cf. Proposition 2.14 (iii) . Hence, F s,(q)

ī
as a Bessel

system which contains a Riesz basis is a frame for
◦
Hs(Ω(q)

ī
), cf. Proposition 2.13 (iii).

Especially F s = F s,(N)
N is a frame for Hs

0(Ω) =
◦
Hs(Ω(N)

N ).

6.2.3 Application to the quarklet case
Now, we want to apply the general machinery as outlined in the previous subsections
to the quarklet frames on cubes as constructed in Section 6.1. In order to do this, two
basic ingredients have to be provided: suitable one dimensional extension operators
G1, cf. Proposition 6.12 that induce the multidimensional extension operators E(q)

1 ,
and the additional Bessel systems Ξs,(q), cf. (6.2.3). In particular, this has to be
done in a way that characteristic properties of quarklets like vanishing moments and
locality are preserved.

Construction of scale-dependent extension operators

In this part, we repeat the construction of a scale-dependent extension operator as
outlined in [20, Subsection 5.1]. Although it does not play a role in the practical
application in PDEs, we do cover the dual side since it is of theoretical interest for
the study of convergence rates, whose verification is one of the mid to long term goals
of the quarklet approach.
For ~σ = (σ0, σ1) ∈ {0, bs + 1/2c}2, s ∈ [0,m − 1

2) \ (N0 + {1
2}), let us recall from

Section 3.2 the pair of dual one-dimensional Primbs wavelet Riesz bases for L2(0, 1)

ΨB
L2(0,1),~σ = {ψ~σλ : λ ∈ ∇B

~σ }, Ψ̃B
L2(0,1),~σ = {ψ̃~σλ : λ ∈ ∇B

~σ },

where Ψ̃B
L2(0,1),~σ is the dual Riesz basis with complementary boundary conditions, cf.

Remark 3.15. There exists an s̃ ∈ [0,∞)\(N0 +{1
2}) such that the following necessary

technical properties are satisfied, cf. [20, Section 3,5]:

(W1) {2−js̃ψ̃~σλ : λ ∈ ∇B
~σ } is a Riesz basis for H s̃(0, 1), and for some N 3 k > s,

(W2) |〈ψ̃~σλ , u〉L2(0,1)| . 2−jk‖u‖Hk(supp ψ̃~σ
λ

) (u ∈ Hk(0, 1) ∩Hs
~σ(0, 1), λ ∈ ∇B

~σ ),

(W3) 1 > ρ := supλ∈∇B
~σ

2j max(diam supp ψ̃~σλ , diam suppψ~σλ)
h infλ∈∇B

~σ
2j max(diam supp ψ̃~σλ , diam suppψ~σλ),

(W4) sup
i,k∈N0

#{λ ∈ ∇B
~σ : j = i ∧ [k2−i, (k + 1)2−i] ∩ (supp ψ̃~σλ ∪ suppψ~σλ) 6= ∅} <∞.

(W5) V ~σ
i := span{ψ~σλ : λ ∈ ∇B

~σ , j ≤ i} = V
~0
i ∩Hs

~σ(0, 1),
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(W6) ∇B
~σ can be disjointedly decomposed into three sets ∇B,(L)

σ0 , ∇B,(I), ∇B,(R)
σ1, such

that
(i) sup

λ∈∇B,(L)
σ0 , x∈suppψ~σ

λ

2j|x| . ρ, sup
λ∈∇B,(R)

σ1 , x∈suppψ~σ
λ

2j|1− x| . ρ,

(ii) for λ ∈ ∇B,(I), ψ~σλ = ψ
~0
λ, ψ̃~σλ = ψ̃

~0
λ, and the extensions of ψ~0λ and ψ̃~0λ by

zero are in Hs(R) and L2(R), respectively.

(W7)
{

span{ψ~0λ(1− ·) : λ ∈ ∇B,(I), j = i} = span{ψ~0λ : λ ∈ ∇B,(I), j = i},
span{ψ(σ0,σ1)

λ (1− ·) : λ ∈ ∇B,(L)
σ0 , j = i} = span{ψ(σ1,σ0)

λ : λ ∈ ∇B,(R)
σ1 , j = i},

(W8)
{
ψ~σλ(2l·) ∈ span{ψ~σµ : µ ∈ ∇B,(L)

σ0 } (l ∈ N0, λ ∈ ∇B,(L)
σ0 ),

ψ
~0
λ(2l·) ∈ span{ψ~0µ : µ ∈ ∇B,(I)} (l ∈ N0, λ ∈ ∇B,(I)).

Let us first consider the simple reflection

(Ğ1v)(x) := v(x) x ∈ (0, 1),
(Ğ1v)(−x) := v(x) x ∈ (0, 1), (6.2.4)

for any v ∈ L2(0, 1). Obviously, we have

Ğ1 ∈ B (L2(0, 1), L2(−1, 1))
Ğ1 ∈ B (Hs(0, 1), Hs(−1, 1)) , (6.2.5)

for s < 3/2.

Remark 6.14. The use of the reflection operator has certain advantages and draw-
backs. On the one hand, the reflection preserves the vanishing moment properties
of the underlying frame elements, which is a central ingredient for compression esti-
mates, see Section 7.3. Moreover, the reflection possesses a moderate operator norm.
On the other hand, it is clear that the reflection idea only works for Sobolev spaces

Hs, s < 3/2, i.e., the resulting numerical schemes are restricted to second order
elliptic equations. This bottleneck could be clearly avoided by using, e.g., higher
order Hestenes extension operators. However, in recent studies, it has turned out
that the norm of a Hestenes extension operator grows fast with respect to its order
parameter. Moreover, it is not a priori clear if the vanishing moments are preserved.
For this reason, we stick with the simple reflection operator.

Let η1 and η2 denote the extensions by zero of functions on (0, 1) or on (−1, 0)
to functions on (−1, 1), with R1 and R2 denoting their adjoints. With a univariate
extension Ğ1 as in (6.2.4) at hand, the obvious approach is to define E(q)

1 according to
Proposition 6.12 with G1 = Ğ1. A problem with the choice G1 = Ğ1 is that generally
it does not imply the desirable property diam(suppG1u) . diam(suppu). Indeed,
think of the application of the reflection to a function u with a small support that is
not located near the interface.
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To solve this and the corresponding problem for the adjoint extension, follow-
ing [20], we apply our construction using the modified, scale-dependent univariate
extension operator

G1 : u 7→
∑

λ∈∇B,(L)
0

〈u, ψ̃~0λ〉L2(0,1)Ğ1ψ
~0
λ +

∑
λ∈∇B,(I)∪∇B,(R)

0

〈u, ψ̃~0λ〉L2(0,1)η1ψ
~0
λ. (6.2.6)

So this operator reflects only wavelets that are supported near the interface. A proof
of the following proposition can be found in [20, Proposition 5.2].

Proposition 6.15. For ~σ ∈ {0, bs + 1
2c}

2, the scale-dependent extension G1 from
(6.2.6) satisfies

G1ψ
~σ
µ =

{
η1ψ

~σ
µ, µ ∈ ∇B,(I) ∪∇B,(R)

σ1 ,

Ğ1ψ
~σ
µ, µ ∈ ∇B,(L)

σ0 .
(6.2.7)

The resulting adjoint extension G2 := (Id− η1G
∗
1)η2 satisfies

G2(ψ̃~σµ(1 + ·)) =
{
η2(ψ̃~σµ(1 + ·)), µ ∈ ∇B,(I) ∪∇B,(L)

σ0 ,

Ğ2(ψ̃~σµ(1 + ·)), µ ∈ ∇B,(R)
σ1 .

(6.2.8)

We have G1 ∈ B (L2(0, 1), L2(−1, 1)), and G1 ∈ B
(
Hs(0, 1), Hs

(bs+ 1
2 c,0)(−1, 1)

)
, for

s < 3/2.
Finally, for µ ∈ ∇~σ, it holds that

diam(suppG1ψ
~σ
µ) . diam(suppψ~σµ),

diam(suppG2ψ̃
~σ
µ) . diam(supp ψ̃~σµ).

Remark 6.16. In general, it is not possible to divide the univariate quarklet sets in
such parts that statements similar to (6.2.7) and (6.2.8) hold. This can be explained
as follows: since the univariate wavelets build a Riesz basis for a Sobolev space on the
unit interval, every quarklet can be decomposed into wavelet elements. For quarklets
near the boundary, it is not guaranteed that the participating wavelets of these de-
composition lie exclusively in ∇B,(I) ∪ ∇B,(R)

σ1 or in ∇B,(L)
σ0 . Thus, it could happen

that one part of the decomposition would be reflected and another part would be ex-
tended by zero. This would destroy the vanishing moments of the extended quarklets.
Moreover, the wavelet decompositions of the quarklets have to be computed for every
single quarklet, which is possible in theory but in practice very time-consuming. This
is the reason why we use another approach with Bessel systems, which was already
introduced in Subsection 6.2.2 and is carried out further in the following.

The Bessel systems Ξs,(q)

For the univariate quarklet frame ΨL2(0,1),~σ for L2(0, 1) we can specify a non-canonical
dual frame, cf. (2.1.10), if we augment the dual Riesz basis of the univariate wavelet

106



6.2 From cubes to general bounded domains

basis ΨB
L2(0,1),~σ, with zero functions:

Ψ̃L2(0,1),~σ := {ψ̃~σλ : λ ∈ ∇~σ}, ψ̃~σλ :≡ 0, for λ ∈ ∇~σ \ ∇B
~σ . (6.2.9)

It is obvious that Ψ̃L2(0,1),~σ is a dual frame of ΨL2(0,1),~σ, since∑
λ∈∇~σ

〈f, ψ̃~σλ〉L2(0,1)ψ
~σ
λ =

∑
λ∈∇B

~σ

〈f, ψ̃~σλ〉L2(0,1)ψ
~σ
λ = f, for all f ∈ L2(0, 1).

With this dual frame at hand, (W1)-(W4) also hold true if we replace ∇B
~σ with ∇~σ.

Moreover, it is possible to construct ∇(L)
σ0 ⊃ ∇

B,(L)
σ0 , ∇(I) ⊃ ∇B,(I), ∇(R)

σ1, ⊃ ∇
B,(R)
σ1, ,

such that ∇~σ = ∇(L)
σ0

.
∪∇(I) .

∪∇(R)
σ1 , and

(i) sup
λ∈∇(L)

σ0 , x∈suppψ~σ
λ

2j|x| . ρ, sup
λ∈∇(R)

σ1 , x∈suppψ~σ
λ

2j|1− x| . ρ,

(ii) for λ ∈ ∇(I), ψ~σλ = ψ
~0
λ, ψ̃~σλ = ψ̃

~0
λ, and the extensions of ψ~0λ and ψ̃~0λ by zero are in

Hs(R) and L2(R), respectively,
cf. (W6).
Now, let us consider the quarkonial tensor frame ΨL2(�),σ for L2(�). Given cubes
{�0, . . . ,�N} with �j := τj + �, τj ∈ Zd, j = 0, . . . , N , cf. Subsection 6.2.1, we
immediately get quarklet frames for L2(�j) by

Ψj := ΨL2(�),σ(· − τj),

which have all the properties we required from the abstract frames F j in Subsection
6.2.2. The inherent Riesz bases are

ΨB
j := ΨB

L2(�),σ(· − τj).

Let s ∈ [0,∞) \ {N0 + 1
2}. For q = 0, . . . , N , i = q, . . . , N , we define the sets Ψs,(q)

i

and ΨB,s,(q)
i similar to (6.2.3) and (6.2.2), respectively. With these definition at hand,

for q = 1, . . . , N , we further define Ψs,(q−1)
i1,L as the subset of functions f ∈ Ψs,(q−1)

i1

with the following properties:
(i) the support of f intersected with (0, 1)× J̆ is not empty,
(ii) the cube of origin �i of f lies in the neighborhood of {0}× J̆ , i.e., for all ε > 0:

diam(�i, {0} × J̆) < ε,
(iii) the first Cartesian index of f restricted to its cube of origin is contained in ∇(L)

0 .
With Ψs,(q−1)

i1,R := Ψs,(q−1)
i1 \Ψs,(q−1)

i1,L we denote the complementary subset. Now, we
are ready to define the sets Ξs,(q), cf. (6.2.3), as

Ξs,(q) := Ĕ
(q)
1 (Ψs,(q−1)

i1,L ) ∪ η(q)
1 (Ψs,(q−1)

i1,R ), (6.2.10)

where Ĕ(q)
1 , q = 1, . . . , N , are the operators corresponding to the simple reflection

Ğ1. The proof of the following proposition, which states the Bessel property of Ξs,(q),
again relies on some of the statements about frames and operators of Section 2.3.
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Proposition 6.17. For q = 1, . . . , N , the set Ξ0,(q) defined in (6.2.10) is a Bessel
system for L2(Ω(q)

ī
) and Ξs,(q) a Bessel system for

◦
Hs(Ω(q)

ī
), 0 < s < 3/2, s 6= 1

2 .
Also, we have E(q)

1 (ΨB,s,(q−1)
i1 ) ⊂ Ξs,(q).

Proof. Both Ψ0,(q−1)
i1,L and Ψ0,(q−1)

i1,R are subsets of the frame Ψ0,(q−1)
i1 for L2(Ω(q−1)

i1 ).
Hence, they are Bessel systems for L2(Ω(q−1)

i1 ). Since both Ĕ(q)
1 and η(q)

1 are bounded
operators from L2(Ω(q−1)

i1 ) to L2(Ω(q)
ī

), the images Ĕ(q)
1 (Ψ0,(q−1)

i1,L ) and η(q)
1 (Ψ0,(q−1)

i1,R ) are
Bessel systems for L2(Ω(q)

ī
), cf. Proposition 2.14 (i). For the renormalized versions

we have to take care of the boundary conditions and the smoothness of the functions.
For s < 3/2, it is Ğ1 ∈ B

(
Hs

(0,bs+ 1
2 c)

(0, 1), Hs
0(−1, 1)

)
. Since the first Cartesian

component of Ψs,(q−1)
i1,L is in Hs

(0,bs+ 1
2 c)

(0, 1) the image of Ψs,(q−1)
i1,L under Ĕ(q)

1 is bounded
in

◦
Hs(Ω(q)

ī
) and therefore a Bessel system for

◦
Hs(Ω(q)

ī
), cf. Proposition 2.14 (i). For

the zero extension part we have η1 ∈ B
(
Hs

(bs+ 1
2 c,0)(0, 1), Hs

(bs+ 1
2 c,0)(−1, 1)

)
. The

first Cartesian component of Ψs,(q−1)
i1,R is in Hs

(bs+ 1
2 c,0)(0, 1) and therefore the image of

Ψs,(q−1)
i1,R under η(q)

1 is also a Bessel system for
◦
Hs(Ω(q)

ī
). The relation E(q)

1 (ΨB,s,(q−1)
i1 ) ⊂

Ξs,(q) follows directly from (6.2.7) and (6.2.10) and the way how the sets Ψs,(q−1)
i1,L and

Ψs,(q−1)
i1,R are defined.

The main results

It remains to choose the index sets ∇B,(L)
σ0 ,∇B,(I),∇B,(R)

σ1 and ∇(L)
σ0 ,∇

(I),∇(R)
σ1 appro-

priately. It is sufficient to specify the boundary index sets. Let us assume thatm ≥ 3.
From [90, Sections 3.3, 4.7] we deduce that the index sets for which either the primal
or dual wavelets depend on the incorporated boundary conditions are

∇B,(L)
σ0 := {(0, j, k) ∈ ∇~σ : k ∈ ∇(L)

j,σ0}, ∇B,(R)
σ1 := {(0, j, k) ∈ ∇~σ : k ∈ ∇(R)

j,σ1},

with

∇(L)
j,σ0 =

{
{0, . . . , m+m̃−4

2 }, j ≥ j0,
{−m+ 1 + sgn σ0, · · · , m̃− 2}, j = j0 − 1,

and

∇(R)
j,σ1 =

{
{2j − m+m̃−2

2 , . . . , 2j − 1}, j ≥ j0,
{2j −m− m̃+ 2, . . . , 2j − 1− sgn σ1}, j = j0 − 1,

cf. (3.2.26). For the selection of the quarklet index sets we have more freedom. We
decide to reflect as few as possible quarklets. This leads to the index sets

∇(L)
σ0 := {(p, j, k) ∈ ∇~σ : k ∈ ∇(L)

p,j,σ0}, ∇(R)
σ1 := {(p, j, k) ∈ ∇~σ : k ∈ ∇(R)

p,j,σ1}
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with

∇(L)
p,j,σ0 :=


∇(L)
j,σ0 , p = 0,
{0 + sgn σ0, . . . , 0}, p > 0, j ≥ j0,
{−m+ 1 + sgn σ0, · · · ,−m+ 1}, p > 0, j = j0 − 1,

and

∇(R)
p,j,σ1 :=

{
∇(R)
j,σ1 , p = 0,
{2j − 1, . . . , 2j − 1− sgn σ1}, p > 0, j ≥ j0.

Remark 6.18. For m = 2, slight adaptations of the index sets are necessary due to
the different construction of the dual wavelets, cf. [90, Section 4.7] for details.

In order to identify individual quarklets from the collections constructed by the
applications of the extension operators, we have to introduce some more notations.
For q = 0, . . . , N , we set the index sets

∇(0)
i := ∇σ(i) × {i} and, for q > 0,

∇(q)
i :=

 ∇(q−1)
i1 ∪∇(q−1)

i2 , i = ī,

∇(q−1)
î

, i ∈ {q, . . . , N} \ {̄i} ∧ Ω(q)
i = Ω(q−1)

î
.

(6.2.11)

We define the quarklets on the domains Ω(q)
i as

ψ
(0,i)
λ,i := ψ

σ(i)
λ (· − τi), (6.2.12)

and, for q > 0,

ψ
(q,i)
λ,n :=




Ĕ

(q)
1 ψ

(q−1,i1)
λ,n , (λ, n) ∈∇(q−1)

i1,L ,

η
(q)
1 ψ

(q−1,i1)
λ,n , (λ, n) ∈∇(q−1)

i1,R ,

η
(q)
2 ψ

(q−1,i2)
λ,n , (λ, n) ∈∇(q−1)

i2 ,

 i = ī,

ψ
(q−1,̂i)
λ,n , i ∈ {q, . . . , N} \ {̄i} and Ω(q)

i = Ω(q−1)
î

.

(6.2.13)

The index n = 0, . . . , N indicates the cube �n where the quarklet stems from. The
subsets ∇(q−1)

i1,L and ∇(q−1)
i1,R are defined according to Ψs,(q−1)

i1,L and Ψs,(q−1)
i1,R , cf. the

previous part about Bessel systems. With this notations at hand we can establish
the following theorem, which is the first main result of this section.

Theorem 6.19. Let ΨL2(0,1),~σ denote a quarklet system of order m ≥ 2, m̃ vanishing
moments, m̃

m
sufficiently big and m + m̃ even, as constructed in Theorem 5.8. Fur-

thermore, let Ω ∈ Rd be a bounded domain that can be decomposed into cubes �i,
i = 0, . . . , N . If we choose weights wHs

λ as in (6.1.20), the system

ΨHs
0(Ω) :=

{
(wHs

λ )−1ψα : α = (λ, n) ∈∇
}
, δ1 > 0, δ2 > 1, ∇ := ∇(N)

N , (6.2.14)

cf. (6.2.11), with ψα := ψ
(N,N)
λ,n , cf. (6.2.13), is a frame for Hs

0(Ω), 0 ≤ s < 3
2 , s 6=

1
2 .
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Chapter 6. Quarklet Frames on Bounded Domains

p = (1, 1), j = (3, 3), k = (0, 5)

p = (3, 0), j = (3, 2), k = (3,−2)

Figure 6.6: Unweighted extended quarklets ψα on the L-shaped domain with support
at the interfaces {0} × (−1, 0) and (−1, 0)× {0}, respectively.
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6.2 From cubes to general bounded domains

In Figure 6.6, we give a visualization of two unweighted quarklets on the L-shaped
domain. They are chosen in a way such that their support is located near an interface.
Hence, the effect of the extension operator becomes visible.
Our construction procedure even gives rise to a Gelfand frame for the Gelfand triple

(Hs
0(Ω), L2(Ω), H−s(Ω)), cf. Section 2.4. Let us observe that in more detail. Similar

to the construction that leads to a frame for Hs
0(Ω), we obtain a frame for L2(Ω),

ΨL2(Ω) :=
{

(wL2
λ )−1ψα : α = (λ, n) ∈∇

}
, δ1 > 0, (6.2.15)

cf. (6.1.18) for the weights wL2
λ . This frame contains a Riesz basis for L2(Ω),

ΨB
L2(Ω) :=

{
ψα : α ∈∇B

}
,

where ∇B denotes the subset of ∇ that corresponds to wavelets, i.e., all the polyno-
mial coefficients are zero. The weights wL2

λ have been dropped since they only depend
on the polynomial coefficients. We identify L2(Ω) with its dual space and denote with

Ψ̃B
L2(Ω) :=

{
ψ̃α : α ∈∇B

}
the dual Riesz basis of ΨB

L2(Ω). We refer to [20, Proposition 4.9] for more details on
how to construct the dual basis. Defining ψ̃α :≡ 0 for α ∈ ∇ \∇B we obtain a
non-canonical dual frame for ΨL2(Ω),

Ψ̃L2(Ω) :=
{
ψ̃α : α = (λ, n) ∈∇

}
. (6.2.16)

The rescaled version

Ψ̃H−s(Ω) :=

(

d∑
i=1

4sji
)1/2

ψ̃α : α = (λ, n) ∈∇

 (6.2.17)

is a non-canonical dual frame for ΨHs
0(Ω). Hence, ΨL2(Ω) is a Gelfand frame for

(Hs
0(Ω), L2(Ω), H−s(Ω)) with the weight matrix

D = diag(wHs

λ /wL2
λ )α=(λ,n)∈∇

= diag
( d∑

i=1
(pi + 1)4s+δ2 4sji

)1/2
α=((p,j,k),n)∈∇

,
(6.2.18)

cf. Definition 2.15.
Moreover, the construction of quarklet frames can be extended to more general

domains. To be more precise, assume we have a domain Ω̂ that can be decomposed
into cubes �i, i = 0, . . . , N , and another domain Ω which is the image of Ω̂ under a
homeomorphism κ. We define the pull-back

κ∗ : Hs
0(Ω)→ Hs

0(Ω̂), w 7→ κ∗w = w ◦ κ
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and its inverse κ−∗, the push-forward

κ−∗ : Hs
0(Ω̂)→ Hs

0(Ω), v 7→ κ−∗v = v ◦ κ−1.

Then, ΨHs
0(Ω) := κ−∗ΨHs

0(Ω̂) is a frame for Hs
0(Ω), 0 ≤ s < 3

2 . If κ∗ is additionally
a boundedly invertible mapping from L2(Ω) → L2(Ω̂) we obtain in a completely
analogous way a frame

ΨL2(Ω) := κ−∗ΨL2(Ω̂) (6.2.19)

for L2(Ω). A dual frame for L2(Ω) is acquired by

Ψ̃L2(Ω) := | detDκ−1|κ−∗Ψ̃L2(Ω̂), (6.2.20)

which renormalized is a frame for H−s(Ω). Hence, ΨL2(Ω) is a Gelfand frame for
the Gelfand triple (Hs

0(Ω), L2(Ω), H−s(Ω)). We repeat the latter observations in
the following main theorem, which encapsulates the whole construction process of
quarklet frames on general bounded domains.

Theorem 6.20. Let ΨL2(0,1),~σ denote a quarklet system of order m ≥ 2, m̃ vanish-
ing moments, m̃

m
sufficiently big and m + m̃ even, as constructed in Theorem 5.8.

Furthermore, let Ω ∈ Rd be a bounded domain that is the image under a homeomor-
phism κ of another bounded domain Ω̂ ∈ Rd that can be decomposed into cubes �i,
i = 0, . . . , N . Let κ∗ be boundedly invertible as a mapping both from L2(Ω) to L2(Ω̂)
and from Hs

0(Ω) to Hs
0(Ω̂), 0 < s < 3/2, s 6= 1

2 . Then, ΨL2(Ω) as defined in (6.2.19) is
a Gelfand frame for the Gelfand triple (Hs

0(Ω), L2(Ω), H−s(Ω)), cf. Definition 2.15,
with the dual frame Ψ̃L2(Ω) as defined in (6.2.20) and the weight matrix D as defined
in (6.2.18).
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Chapter 7

Adaptive Iterative Solution of
Discretized Problems
In this chapter, we introduce an implementable adaptive frame scheme based on
quarklets. For a better understanding of its mechanics, we now give a short recapit-
ulation of the evolution of adaptive wavelet schemes.
The scientific breakthrough for adaptive wavelet methods for solving linear op-

erator equations was achieved in the two papers [31] and [32] by Cohen, Dahmen
and DeVore. For the first time ever, they were able to construct adaptive meth-
ods based on wavelet Riesz bases with provable optimal convergences rates, i.e., the
schemes realized asymptotically the convergence rate of the best N -term wavelet ap-
proximation. However, this means that these methods outperform their non-adaptive
counterparts if the solution of the operator equation has a lacking Sobolev regularity,
e.g., due to singularities. These singularities of the solution are typically induced by
a non-smooth right-hand side or by corners and edges if you consider the operator
equation to be a boundary value problem on a non-smooth domain. In these cases,
non-adaptive methods can only compete if a priori knowledge of the solution and
its singularities is used to select the linear approximation spaces. While this is pos-
sible for some simple model examples, such an a priori selection is not feasible for
more general problems. Adaptive methods, on the other hand, find the approximate
solutions solely by utilizing information acquired in the course of the solution process.
Both methods in [31] and [32] use a wavelet discretization to transfer the operator

equation to an infinite-dimensional matrix-vector equation, cf. Section 2.5. In [31],
this equation is solved by a Galerkin method. The idea behind this method is to select
a finite submatrix in every iteration step and solve the resulting finite equation. The
adaptivity enters into how the submatrices are selected at each iteration.
In [32], an adaptive Richardson iteration is used to solve the matrix-vector equation.

In contrast to the Galerkin method, no proper submatrices enter the routine. Instead,
in each iteration step the entire matrix is applied to vectors with only finitely many
non-trivial entries. Since the matrix is biinfinite, the matrix-vector multiplication can
only be performed up to some accuracy. This accuracy is dynamically updated in
each iteration step, whereby the whole adaptivity of the scheme lies in this process.
The numerical efficiency of both algorithms relies on fast matrix-vector multiplica-
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Chapter 7. Adaptive Iterative Solution of Discretized Problems

tions, which can be realized if the stiffness matrix of the operator with respect to the
wavelet basis is close to a sparse matrix. If a matrix satisfies this property, we call it
quasi-sparse or compressible. It has been shown that for a large class of operators and
suitable wavelet bases, the corresponding stiffness matrices are indeed quasi-sparse.
A natural idea is to extend the two methods just described to the case of wavelet

frames. However, for a redundant frame, the occurring stiffness matrix has a non-
trivial kernel. Consequently, the condition numbers of submatrices in a Galerkin
method can be arbitrarily large, which makes this approach infeasible.
In [97], Stevenson introduced a generalization to wavelet frames of the adaptive

Richardson iteration. Under certain extra conditions, he was able to prove optimal
convergence rates also in this setting. Again, a quasi-sparse structure of the stiffness
matrix is necessary. For wavelets that have sufficiently many vanishing moments and
smoothness this could be verified. Although the construction in [97] was initially
designed for wavelet frames stemming from overlapping domain decompositions, an
application to quarklet frames is possible as long as the corresponding stiffness ma-
trices are quasi-sparse. Let us mention that also other adaptive frame methods, e.g.,
an adaptive steepest descent method (see [43]), which in general converges faster
than a Richardson iteration, can principally be applied to quarklet frames. However,
our predominating goal is to construct an adaptive quarklet algorithm with optimal
convergence order. For simplicity, we confine the analysis to the easiest algorithm.
The structure of this chapter is the following: In Section 7.1, we reconstruct the

adaptive Richardson iteration from [97], introduce the concept of asymptotical opti-
mality and show that under certain assumptions, an adaptive Richardson iteration
based on quarklets fits into this concept. Thereupon, in Section 7.2, we establish the
necessary building blocks for an adaptive quarklet scheme. Finally, Theorem 7.12 in
Section 7.3 states another main result of this thesis, namely, the compressibility of
the stiffness matrix for the Poisson equation in quarklet coordinates, which is crucial
for a well-performing adaptive scheme.

7.1 The inexact Richardson iteration
The aim of this chapter is to present an adaptive scheme to solve elliptic operator
equations

Lu = f, (7.1.1)

with L : H t
0(Ω)→ H−t(Ω), u ∈ H t

0(Ω), f ∈ H−t(Ω), t ∈ N0. This is done in a general
fashion without explicitly assuming that we work with quarklet frames. Instead, we
assume to have available a Gelfand frame. Hence, also other classes of frames, e.g.,
aggregated wavelet frames, cf. [42], fit into this framework.
In Section 2.5, we have seen how a discretization of (7.1.1) with respect to a Gelfand

frame leads to a matrix-vector equation Au = f , cf. (2.5.4), with a symmetric,
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positive semidefinite matrix A. To solve the latter, we consider the exact damped
Richardson iteration

u(0) := 0, u(i+1) := u(i) − ω(Au(i) − f), i = 0, 1, . . . . (7.1.2)

with a relaxation parameter ω > 0. Let λmax be the maximal eigenvalue of A and
0 < ω < 2/λmax. With Q the orthogonal projector onto ran(A), cf. Lemma 2.19, a
countable index set I and an arbitrary solution u to (2.5.4), it can be shown that

||Q(u− u(i+1))||`2(I) ≤ ρ||Q(u− u(i))||`2(I),

where ρ := ||(id− ωA)|ran A||L (`2(I)) < 1. Hence, the algorithm converges in `2(I) to
a solution of (2.5.4). We can even say more; since u(0), f ∈ ran(A), it is u(i) ∈ ran(A)
and therefore the algorithm converges to the solution Qu ∈ ran(A) of (2.5.4), which
is unique in ran(A), cf. Lemma 2.19. The best performance is obtained if we choose
ω = 2/(λmax + λ+

min), where λ+
min := 1/||A|−1

ran A||L (`2(I)).
In an actual implementation of the Richardson iteration it is impossible to handle

either the generally infinite vector f or the matrix-vector-multiplication with a biin-
finite matrix A. This makes an approximation of these ingredients inevitable. We
assume the existence of the following routines:

• APPLY[A,v, ε] → wε. Determines, for a finitely supported vector v ∈ `2(I)
and an ε > 0, a finitely supported wε ∈ `2(I) with

||Av−wε||`2(I) ≤ ε.

• RHS[f , ε]→ fε. Determines a finitely supported vector fε with

||f − fε||`2(I) ≤ ε.

• COARSE[v, ε]→ vε. Determines, for a finitely supported vector v ∈ `2(I) and
an ε > 0, a finitely supported vε ∈ `2(I) by replacing all but N coefficients of v
by zeros such that

||v− vε||`2(I) ≤ ε, (7.1.3)

whereas N is a at most a constant multiple of the minimal value of N for which
(7.1.3) is valid.

While APPLY and RHS realize the aforementioned approximations of the matrix-
vector-multiplication and the right-hand-side, respectively, the purpose of the routine
COARSE is to balance the work and the accuracy of the whole algorithm.
With these three routines at hand, we formulate the inexact damped Richardson

iteration.
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Algorithm 1. SOLVE[A, f , ε]→ uε:

% Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.
% i := 0, u(0) := 0, ε0 := ‖(A|ran(A))−1‖L (`2(I))‖f‖`2(I)

while εi > ε do
i := i+ 1
εi := 3ρKεi−1/θ

f (i) := RHS[f , θεi
6ωK ]

v(i,0) := u(i−1)

for j = 1, . . . K do
v(i,j) := v(i,j−1) − ω(APPLY[A,v(i,j−1), θεi

6ωK ]− f (i))
endfor
u(i) := COARSE[v(i,K), (1− θ)εi]

enddo
uε := u(i)

The following proposition, cf. [97, Proposition 2.1], states the convergence of Algo-
rithm 1.
Proposition 7.1. Let u ∈ `2(I) be some solution to Au = f . Then, the vectors u(i)

produced in SOLVE[A, f , ε]→ uε satisfy

||Q(u− ui)||`2(I) ≤ εi, i = 0, 1, . . . ,

and so, in particular, ||Q(u− uε)||`2(I) ≤ ε.

Optimality
To get a benchmark for the convergence rate of an algorithm, we introduce the concept
of N -term approximation in `2(I). For N ∈ N0, we denote by

ΣN := {c ∈ `2(I) : #{λ ∈ I : cλ 6= 0} ≤ N}

the non-linear subspace of all the vectors in `2(I) with at most N non-trivial entries.
For v ∈ `2(I), a best N-term approximation is given by a vector

vN := arg min
w∈ΣN

||v−w||`2(I),

which minimizes the approximation error ||v−w||`2(I) over all vectors w ∈ ΣN . The
error of the best N -term approximation is denoted by

σN(v) := ||v− vN ||`2(I), v ∈ `2(I).
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It is easy to see that a best N -term approximation of a vector v ∈ `2(I) is obtained
by replacing all but the N biggest entries in modulus of v by zero. In general, vN is
not unique.
Given an s > 0, the approximation spaces

As(I) := {v ∈ `2(I) : ||v||As(I) := sup
N∈N0

(N + 1)sσN(v) <∞} (7.1.4)

consist of all the vectors in `2(I) that can be approximated with a rate s by vectors
in ΣN . The approximation spaces can be characterized by so-called weak `τ spaces.
Given some 0 < τ < 2, these are defined by

`wτ (I) := {v ∈ `2(I) : |v|`wτ (I) := sup
k∈N

k1/τγk(v) <∞}, (7.1.5)

where γk(v) denotes the k-th largest entry in modulus of v. The name weak `2 is
justified by the embeddings

`τ ↪→ `wτ ↪→ `τ+δ, δ ∈ (0, 2− τ ].

We define a quasi-norm on `wτ (I) by

||v||`wτ (I) := ||v||`2(I) + |v|`wτ (I).

It satisfies the triangle equality only up to a constant:

||v + w||`wτ (I) ≤ C(||v||`wτ (I) + ||w||`wτ (I)),

with C = C(τ) > 0 depending on τ only when τ tends to zero. The following
result states an equivalence relation between As(I) and `wτ (I). For a proof, we refer
to [64, Section 5].

Proposition 7.2. For a given s > 0, let τ = (s+ 1
2)−1. Then, it holds

||v||As(I) ' ||v||`wτ (I),

with constants depending on τ only when τ tends to zero.

Since we have introduced the approximation and weak `τ spaces, we are able to
define what we understand by an optimal algorithm.

Definition 7.3. Let F = {fλ}λ∈I be a Gelfand frame for (H t
0(Ω), L2(Ω), H−t(Ω)),

t ∈ N0, and G = D−1F . Moreover, we assume that for an s > 0 the solution
u ∈ H t

0(Ω) of the operator equation (7.1.1) has a representation u = FGu, cf. (2.1.2),
(2.4.4), with u ∈ `wτ (I), τ = (s+ 1

2)−1. We call a numerical algorithm (asymptotically)
optimal if for any ε > 0 it produces a uε ∈ `2(I) such that

||u− FGuε||Ht(Ω) ≤ C1ε, and # supp uε ≤ C2ε
−1/s|u|1/s`wτ (I), (7.1.6)

with constants C1, C2 > 0, where the number of operations and storage locations to
compute uε is also bounded by a multiple of ε−1/s|u|1/s`wτ (I).
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In other words, a numerical algorithm is called optimal if it asymptotically repro-
duces the convergence rate of the best N -term approximation.
To ensure that Algorithm 1 is optimal, we have to assume certain additional con-

ditions on the routines APPLY, RHS, COARSE and the orthogonal projector Q.
To this end, we have to introduce some concepts. We point them out in the following.
We call the routine APPLY s∗-admissible, if for each s ∈ (0, s∗), τ = (s + 1

2)−1,
for all ε > 0 and finitely supported vectors v ∈ `2(I), with wε = APPLY[A,v, ε]
the following properties are valid:

(A1) # supp wε ≤ Cε−1/s|v|1/s`wτ (I), C > 0;
(A2) the number of arithmetic operations used to compute wε is bounded by a

fixed multiple of ε−1/s|v|1/s`wτ (I) + # supp v.
In Section 7.2, we point out how to construct a suitable APPLY routine. Clearly,
whether the APPLY routine can be arranged in this way depends on the properties
of the system matrix A. We see that s∗-admissibility of the APPLY routine can be
guaranteed if A is s∗-computable, cf. Definition 7.8.
The RHS routine is called s∗-optimal if for each s ∈ (0, s∗), τ = (s + 1

2)−1, for all
ε > 0 and f ∈ `2(I), fε = RHS[f , ε] satisfies the following:

(R1) # supp fε ≤ Cε−1/s|f |1/s`wτ (I), C > 0;
(R2) the number of arithmetic operations used to compute fε is bounded by a fixed

multiple of ε−1/s|f |1/s`wτ (I).
The practical realization of an appropriate RHS routine heavily depends on the
structure of the particular right-hand side f in (7.1.1). If f is sufficiently smooth,
a standard approach is to approximate the most relevant entries of f by numerical
integration. To predict the location of the large coefficients efficiently, a priori infor-
mation on the smooth and singular parts of f is used. In the following, we just make
the assumption, that there exists a routine RHS which fulfils the requirements.
Furthermore, we assume that for all ε > 0 and v ∈ `2(I), vε = COARSE[v, ε]

satisfies the following:
(C1) # supp vε ≤ C inf{N ∈ N0 : σN(v) ≤ ε}, C > 0;
(C2) the number of arithmetic operations used to compute vε is bounded by a fixed

multiple of # supp v + log(ε−1||v||`2(I)).
In the exact damped Richardson iteration, the iterates u(i) are always part of

ran(A). Therefore, the scheme converges to the unique solution Qu ∈ ran(A). How-
ever, in an inexact iteration step it is possible that the iterate has components in
ker(A). The inexact scheme still converges – but in general, the approximate solu-
tion is of type Qu + v, 0 6= v ∈ ker(A). Parts of the iterates in ker(A) do not get
reduced in subsequent iteration steps. While this does not affect the convergence
of the scheme, it can really hamper the performance of the APPLY routine. In
fact, components in ker(A) could lead to an unbounded growth of the `wτ -norms of
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the iterates, making the requirements on an s∗-admissible APPLY obsolete. Hence,
to have an efficient inexact Richardson scheme, it is necessary to control the kernel
contributions to the iterates. In fact, the latter is manageable if

Q : `wτ (I)→ `wτ (I)

is a bounded operator for τ = (s+ 1
2)−1, s ∈ (0, s∗). We give some comments later on,

under which conditions one can guarantee the boundedness of Q. Let us assume for
a moment that it holds true as well as the previously formulated conditions on the
various routines. Then, we can state the optimality of Algorithm 1 in the following
theorem, cf. [97, Theorem 3.12].

Theorem 7.4. For some s∗ > 0, assume that the APPLY routine is s∗-admissible,
the RHS routine is s∗-optimal, and the COARSE routine fulfils (C1), (C2). More-
over, for some s ∈ (0, s∗), with τ = (s+ 1

2)−1/2, let Au = f have a solution u ∈ `wτ (I).
In addition, for some š ∈ (s, s∗), with τ̌ = (š + 1

2)−1/2, let Q : `wτ̌ (I) → `wτ̌ (I) be a
bounded operator. Under these conditions, and if the parameter K in Algorithm 1 is
sufficiently large – sufficient is

3ρK < θmin{1, [C |II −Q|`wτ̌ (I)→`wτ̌ (I)]s/(š−s)},

where C = C(τ̌) > 0 – then, Algorithm 1 is asymptotically optimal.

Let us briefly discuss the boundedness of the operator Q in a weak `τ space. In-
terpreted as a matrix, the latter can be written as

Q = {〈S−1
G gλ, gµ〉H−t(Ω)×Ht

0(Ω)}λ,µ∈I
= {d−1

µ 〈S−1
G gλ, fµ〉H−t(Ω)×Ht

0(Ω)}λ,µ∈I .
(7.1.7)

As already mentioned in Section 2.1, it is often difficult to determine the inverse frame
operator S−1

G , and therewith, the canonical dual frame S−1
G G. Therefore, the question

if Q is a bounded operator on certain weak `τ spaces can not be answered in general.
For wavelets, only for the very special case t = 0, cf. (7.1.1), and additional conditions
on the wavelets, the boundedness of Q could be verified. See [97, Subsection 4.3] for
details. In particular for the quarklet case, the canonical dual frames are not explicitly
known. Hence, another approach is necessary to guarantee optimality.
The following algorithm is a modification of Algorithm 1. In there, it is assumed

to have available a bounded operator P : `2(I)→ `2(I) with ker(P) = ker(A). After
a fixed amount of iterations, we apply the operator P to the current iteration. In
this way, we prevent the part of the iterates in ker(A) from piling up too much. As
a consequence, the `wτ -norm of the iterates stays low, which guarantees an efficient
APPLY routine.
The matrix-vector multiplication with P is also executed via the APPLY routine.

Therefore, for an optimal performance of the scheme, we have to assume that P allows
for an s∗-admissible APPLY routine for some s∗ > 0.
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Algorithm 2. MOD_SOLVE[A,u, ε]→ uε:

% Let θ < 1/3 and K ∈ N be fixed such that 3ρK‖P‖L (`2(I)) < θ.
% i := 0, u(0) := 0, ε0 := ‖P‖L (`2(I))‖(A|ran(A))−1‖L (`2(I))‖f‖`2(I)

while εi > ε do
i := i+ 1
εi := 3ρK‖P‖L (`2(I)) εi−1/θ

v(i,0) := u(i−1)

for j = 1, . . . K do
v(i,j) := v(i,j−1) − ω(APPLY[A,v(i,j−1), ρ

jεi−1
2ωK ]−RHS[f , ρ

jεi−1
2ωK ])

endfor
z(i) := APPLY[P,v(i,K), θεi3 ]
u(i) := COARSE[z(i), (1− θ)εi]

enddo
uε := u(i)

The next theorem, cf. [97, Theorem 3.11], states the optimality of Algorithm 2.

Theorem 7.5. For some s∗ > 0, assume that the APPLY routine is s∗-admissible
for both A and P, the RHS routine is s∗-optimal, and the COARSE routine fulfils
(C1), (C2). Moreover, for some s ∈ (0, s∗), with τ = (s + 1

2)−1/2, let Au = f have a
solution u ∈ `wτ . Then, Algorithm 2 is asymptotically optimal.

An appropriate operator P in matrix representation is given by

P = {d−1
µ 〈g̃λ, fµ〉H−t(Ω)×Ht

0(Ω)}λ,µ∈I , (7.1.8)

where G̃ = {g̃λ}λ∈I is an arbitrary dual frame of G.

Proposition 7.6. The biinfinite matrix P as defined in (7.1.8) represents a bounded
operator P : `2(I)→ `2(I) with ker(P) = ker(A). We have P = Q if and even if the
dual frame G̃ coincides with the canonical dual frame S−1

G G.

Proof. Obviously, it holds the relation P = F̃ ∗GFG, where F̃ ∗G is the analysis operator
of the dual frame G̃. Hence, P as a composition of bounded operators FG : `2(I) →
H t

0(Ω) and F̃ ∗G : H t
0(Ω) → `2(I) is bounded from `2(I) to `2(I). Since any dual

frame of G is a frame itself for H−t(Ω), the dual analysis operator F̃ ∗G is injective
and consequently it is ker(P) = ker(FG). From ker(FG) = TD−1, cf. (2.4.4), and
ker(TD−1) = ker(A), cf. Lemma 2.18, we finally deduce ker(P) = ker(A).
The remaining part of the proposition immediately follows by the matrix represen-

tations (7.1.7), (7.1.8) of the operators P and Q, respectively.
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Remark 7.7. Proposition 7.6 generalizes Proposition 4.5 of [109]. There, P was con-
structed with respect to an aggregated wavelet frame and a particular non-canonical
dual frame.

7.2 Building blocks
In this section, we give concrete realizations of the various routines that we introduced
in Section 7.1. Moreover, we introduce the concept of computability and compress-
ibility of biinfinite matrices. Finally, we point out how to construct the operator P
in the case of quarklet frames.
We already mentioned in Section 7.1 that in order to have an s∗-admissible APPLY

routine, the involved matrices need to have certain properties. In the following, we see
that if the matrices are s∗-computable, then, the construction of a suitable APPLY
routine is feasible. Roughly speaking, s∗-computability means that a matrix can be
approximated up to a certain order by sparse matrices in a linear amount of time.
Let us specify this in the following definition.

Definition 7.8. For an s∗ > 0, a biinfinite bounded matrix A : `2(I) → `2(I) is
called s∗-compressible, if for each J ∈ N0 there exists a biinfinite matrix AJ : `2(I)→
`2(I), created by dropping entries in A, with a number of non-zero entries in each
row and column of order 2J , and

||A−AJ ||L (`2(I)) ≤ C2−Js =: CJ , (7.2.1)

with a constant C > 0 and s ∈ (0, s∗). If, moreover, every entry in AJ can be
computed at unit costs, we call A s∗-computable.

Assuming that A is s∗-computable, we display the following realization of the
inexact matrix-vector multiplication, cf. [97, Subsection 3.2].

APPLY[A,v, ε]→ wε:
• q := dlog((# supp v)1/2‖v‖`2(I)‖A‖L (`2(I))2/ε)e.
• Divide the elements of v into sets V0, . . . , Vq, where for 0 ≤ i ≤ q−1, Vi contains

the elements with modulus in (2−i−1‖v‖`2(I), 2−i‖v‖`2(I)], and possible remaining
elements are put into Vq.

• For k = 0, 1, . . . , generate vectors v[k] by subsequently extracting 2k − b2k−1c
elements from ⋃

i Vi, starting from V0 and when it is empty continuing with V1
and so forth, until for some k = ` either ⋃i Vi becomes empty or

‖A‖L (`2(I))

∥∥∥∥v− ∑̀
k=0

v[k]

∥∥∥∥
`2(I)
≤ ε/2. (7.2.2)

In both cases v[`] may contain less than 2` − b2`−1c elements.
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• Compute the smallest J ≥ ` such that

∑̀
k=0

CJ−k‖v[k]‖`2(I) ≤ ε/2, (7.2.3)

cf. (7.2.1) for the constants CJ−k.
• For k = 0, . . . , `, compute the non-zero entries in the matrices AJ−k which have

a column index in common with one of the entries of v[k], and compute

wε :=
∑̀
k=0

AJ−kv[k]. (7.2.4)

The just presented APPLY routine makes heavy use of a so called bucket sort,
i.e., the elements of v do not get completely sorted by their modulus but elements in
some range of modulus are put into a particular bucket Vi. The reasoning behind this
is that a sorting by modulus cannot be implemented in linear time. It would require
the order of (# supp v)× log(# supp v) operations. With the application of a bucket
sort, which was developed in [8, 83], the log-factor can be avoided.
It can be deduced from (7.2.4) that the accuracy with which a column of A is

approximated depends on the size in modulus of the corresponding entry of v. This
is what makes the APPLY routine and as a result the whole algorithm adaptive. In
the following Proposition we state the s∗-admissibility of the APPLY routine. For
a proof we refer to [97, Proposition 3.8].

Proposition 7.9. For an s∗ > 0, let A be s∗-computable. Then, APPLY[A, ·, ·] is
s∗-admissible.

The easiest way to think of an implementation of the COARSE routine would be
to sort the entries of the incoming vector in modulus and to replace all the entries
below a certain threshold to zero. But again, the sorting of the entries would cause
the multiplication of the amount of operations with a log-factor. Therefore, we again
utilize a bucket sort and obtain the following coarsening strategy, cf. [97, Subsection
3.1].

COARSE[v, ε]→ vε :
• q := dlog((# supp v)1/2‖v‖`2(I)/ε)e.
• Divide the elements of v into sets V0, . . . , Vq, where for 0 ≤ i ≤ q−1, Vi contains

the elements with modulus in (2−i−1‖v‖`2(I), 2−i‖v‖`2(I)], and possible remaining
elements are put into Vq.

• Create vε by extracting elements first from V0 and when it is empty from V1 and
so forth, until ‖v− vε‖`2(I) ≤ ε.

The following proposition can also be found in [97, Proposition 3.1].

122



7.2 Building blocks

Proposition 7.10. For a finitely supported vector v ∈ `2(I) and an ε > 0 the routine
COARSE produces a vector vε such that

||v− vε||`2(I) ≤ ε.

Moreover, vε fulfils the conditions (C1), (C2).

Quarklet frames in Algorithm 1 and 2
Up to now in this chapter, we introduced the adaptive Richardson iteration and the
concept of optimality for an abstract Gelfand frame. In the sequel, we want to take a
closer look at the case that our Gelfand frame of choice is the quarklet frame ΨL2(Ω),
cf. (6.2.19), as constructed in Chapter 6.
Upon closer examination, we note that there are only a few spots in the construction

process of the adaptive method, where the particular choice of the Gelfand frame
needs to be considered. The by far most important point that needs to be assured
is the s∗-computability of the stiffness matrix corresponding to the frame and the
operator equation at hand. We recall, that a matrix is s∗-computable if it is s∗-
compressible and its entries can be calculated at unit costs, cf. Definition 7.8. Section
7.3 is devoted to the verification of s∗-compressibility for quarklet frames.
In practice, to calculate the entries in the stiffness matrix, one uses certain quadra-

ture rules. Since the quarklets are piecewise polynomials, an exact quadrature is
possible. But it should be taken into account that for quarklets with a high polyno-
mial degree more quadrature points and hence more operations are necessary to get
an exact result. One way to circumvent this issue is to only approximate integrals if
functions with high polynomial degrees are involved. Another possibility is to cap the
quarklets at a particular polynomial degree pmax. This approach does not destroy the
frame property and allows to estimate the costs to calculate the entries from above by
a constant depending only on pmax. Actually, the practical implementations which are
tested in Chapter 8 have easier to handle data structures if we only consider quarklets
up to a fixed level jmax and polynomial degree pmax and are therefore realized in this
manner.
Another concern is the boundedness of Q on `wτ . Since the canonical dual quarklet

frames are not explicitly known, we are not able to answer this question. Fortunately,
we have available the non-canonical dual frame Ψ̃H−s(Ω), cf. (6.2.17). If we apply the
latter in the operator P, cf. (7.1.8), we obtain the matrix representation

P = {d−1
β 〈dαψ̃α,ψβ〉H−t(Ω)×Ht

0(Ω)}α,β∈∇,

where dα is the diagonal entry of the matrix

D = diag
( d∑

i=1
(pi + 1)4s+δ2 4sji

)1/2
α=((p,j,k),n)∈∇

,
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cf. (6.2.18). Since Ψ̃H−s(Ω) only contains dual wavelets and apart from that zero
functions, we have

Pα,β = 0, for all α ∈∇ \∇B, β ∈∇. (7.2.5)

For Algorithm 2 to be optimal, we have to verify that the biinfinite matrix P is s∗-
computable for a sufficiently large s∗ > 0. The dual wavelets can be constructed
explicitly and the locality, smoothness and vanishing moments both on the primal
and dual side lead to a justified hope that s∗-computability of P is indeed provable.
Nevertheless, we do not further investigate in this direction for two reasons.
On the one hand, in [79] the actual application of P in the Richardson iteration is

tested in practice with the result that it does not pay off to apply P to the iterates after
a fixed amount of iterations either in respect to computing time or to the spent amount
of degrees of freedom. Furthermore, for all test problems in [79] the Richardson
iteration converged with optimal order without an application of P. Therefore, the
author comes to the conclusion that for the adaptive Richardson method the usage
of P is not necessary.
On the other hand, because of (7.2.5), an approximate multiplication with P would

remove the amount of the iterate that corresponds to those quarklets which are no
wavelets, that is to say, the quarklets that are enriched with polynomials. Obviously,
this totally contradicts the idea behind an hp-method as it nullifies the effects of the
polynomial enrichment. Therefore, the numerical experiments in Chapter 8 are all
based on Algorithm 1.

7.3 Compression
The aim of this section is to show that the stiffness matrix of the Poisson equation in
multiple spatial dimensions is compressible. Similar results for wavelets and diverse
operator equations can be found, e.g., in [53,98].
For the readers’ convenience, we consider the multivariate compression estimates

only on the unit cube, i.e. Ω = �. But let us mention that the results carry over
to the case of general domains. On the one hand, in the latter case the amount
of cubes where a single quarklet has a non-trivial support is uniformly bounded
by a finite number which only depends on the space dimension d. On the other
hand, the extension to general domains is done in a way that the vanishing moments
of the quarklets are preserved. Hence, the following compression estimates can be
immediately transferred to extended quarklets.
The stiffness matrix A of the Poisson equation corresponds to the bilinear form

a(u, v) =
∫
�

〈∇u(x),∇v(x)〉 dx =
d∑

k=1

∫
�

∂u

∂xk
(x) ∂v

∂xk
(x) dx, u, v ∈ H1

0 (Ω), (7.3.1)

cf. (1.4.9). Given the quarklet frame ΨH1
0 (�), cf. (6.1.19), the individual entries of the

stiffness matrix A are sums of products of univariate integrals. To be more precise,
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it holds

wH
1

µ wH
1

λ a
(
(wH1

µ )−1ψ0
µ, (wH

1

λ )−1ψ0
λ

)
=

d∑
k=1

∫
�

∂ψ0
µ

xk
(x)∂ψ

0
λ

xk
(x) dx

=
d∑

k=1

 1∫
0

∂ψ
~0
µ(k)

∂xk
(xk)

∂ψ
~0
λ(k)

∂xk
(xk) dxk

·
d∏
i=1
i 6=k

1∫
0

ψ
~0
µ(i)(xi)ψ

~0
λ(i)(xi) dxi

 .
(7.3.2)

With the one dimensional Gramian and stiffness matrices

G :=


1∫
0

ψ
~0
λ(x)ψ~0µ(x) dx


λ,µ∈∇~0

, S :=


1∫
0

∂ψ
~0
λ(∂x)
x

∂ψ
~0
µ(x)
∂x

dx

λ,µ∈∇~0

,

respectively, and the weight matrix D := diag
(
wH

1
λ

)
λ∈∇0

, cf. (6.1.20), the relation
(7.3.2) leads to a representation of the stiffness matrix as a sum of Kronecker products,

A = D−1(S⊗G⊗ . . .⊗G + . . .+ G⊗ . . .⊗G⊗ S)D−1. (7.3.3)

Hence, to estimate the compressibility properties of the resulting stiffness matrix of
the Poisson equation (7.3.1), we can make use of the inner product estimates of the
univariate quarks and quarklets, which we derived in the Propositions 4.16 and 5.6.
To ensure that the results carry over to general domains, we assume general bound-

ary conditions σ ∈ {0, 1}d.

Proposition 7.11. Let m ≥ 3, d ≥ 2. Let the weighted quarklets (wH1
λ )−1ψσλ ,

(wH1
λ′ )−1ψσλ′ , λ := (p, j,k), λ′ := (p′, j ′,k′) be defined as in (6.1.19), and the bilinear

form a as in (7.3.1). Then, it holds

|a((wH1

λ )−1ψσλ , (wH
1

λ′ )−1ψσλ′)| .
d∏
i=1

(
1 + |pi − p′i|

)m−2−δ1/22−|j−j′|(m−3/2), (7.3.4)

with δ1 > 2m− 4.

Proof. There is nothing to prove if suppψσλ ∩ suppψσλ′ = ∅. Otherwise, with the
Kronecker deltas δir indicating whether the quarklet itself or its first derivative is
concerned, we use the tensor product structure (7.3.2) of the quarklets to obtain

a(ψσλ ,ψσλ′) =
d∑
i=1

d∏
r=1

〈(
ψσrpr,jr,kr

)(δir)
,
(
ψσrp′r,j′r,k′r

)(δir)
〉
L2(0,1)

.

125



Chapter 7. Adaptive Iterative Solution of Discretized Problems

Applying the estimates (5.3.4) and (5.3.5) leads to

|a(ψσλ ,ψσλ′)| ≤
d∑
i=1

d∏
r=1

(
(pr + 1)(p′r + 1)

)m−2+δir2δir(jr+j′r)2−|jr−j′r|(m−1/2−δir)

≤
d∑
i=1

(
(pi + 1)(p′i + 1)

)
2ji+j′i

·
d∏
r=1

(
(pr + 1)(p′r + 1)

)m−2
2−|jr−j′r|(m−3/2).

Estimating the weights wλ, wλ′ defined in (6.1.20) by the Cauchy-Schwarz inequality,
we obtain

w−1
λ w−1

λ′ ≤
(

d∑
i=1

((pi + 1)(p′i + 1))2+δ2/2 2ji+j′i
)−1 d∏

r=1
((pr + 1)(p′r + 1))−δ1/2 .

Combining the previous estimates, we derive

|a(w−1
λ ψ

σ
λ , w

−1
λ′ ψ

σ
λ′)| ≤

d∏
r=1

((pr + 1)(p′r + 1))m−2−δ1/22−|jr−j′r|(m−3/2).

Choosing δ1 > 2m− 4 and using the relation

(p+ 1)(p′ + 1) ≥ 1 + |p− p′|, p, p′ ∈ N0,

we finally get the claim.

Now, we are ready to state the s∗-compressibiltiy of the stiffness matrix for the
Poisson equation in quarklet coordinates for spatial dimensions d > 1. For a one-
dimensional compression result, we refer to [47, Theorem 5]. The following theorem
and Theorem 6.20 can be regarded as the central theoretical results of this thesis
as the combination of both justifies the application of multidimensional quarklets in
adaptive frame schemes for the numerical solution of linear elliptic operator equations.

Theorem 7.12. Let m ≥ 3, d ≥ 2. Let A be the stiffness matrix of the Poisson
equation discretized by ΨH1

Γσ
(�) defined in (6.1.19). Furthermore, for J ∈ N0, with

λ = (p, j,k),λ′ = (p′, j ′,k′) ∈ ∇σ, define AJ by setting all entries from A to zero
that satisfy

a log2(
d∏
i=1

1 + |pi − p′i|) + b|j − j ′| > J, (7.3.5)

where a, b > 0. Then, for δ1 > 2m − 2, the maximal number of non-zero entries in
each row and column of AJ is of the order

(
J2d−22J

a + Jd−12J
b

)J, a = b,

1, otherwise.
(7.3.6)
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Moreover, with τ := m− 2− δ1
2 it holds that

‖A−AJ‖L(`2(∇σ)) .
(
Jd−12−(m−2)J

b + J2d−22(1+τ)J
a

)J,
a
b

= − 1+τ
m−2 ,

1, otherwise.
(7.3.7)

In particular, A is s∗-compressible with

s∗ := min{a, b}min{−1− τ
a

,
m− 2
b
}. (7.3.8)

Remark 7.13. In the compression estimate (7.3.8), the exponential factors do not
depend on the spatial dimension d. In this sense, quarklet frames provide dimension
independent compression rates. For fixed m, τ , in (7.3.8), the optimal choices of a, b
yield rates

s∗ =
−(1 + τ), a

b
∈ [− 1+τ

m−2 , 1),
m− 2, a

b
∈ [1,− 1+τ

m−2 ].

The proof of Theorem 7.12 is quite technical. In the course of the proof, we use
the following facts:
(i) Let K ∈ N, t ∈ R+. Then,

K∑
n=1

n−t ≤ 1 +
K∫

1

x−tdx .


K1−t, t < 1,
1 + ln(K), t = 1,
1, t > 1.

(7.3.9)

(ii) Let K ∈ N, t > 1. Then,

∞∑
n=K

n−t ≤ K−t +
∞∫
K

x−tdx . K1−t. (7.3.10)

(iii) Let r ∈ N, t ∈ R+, L0 ∈ N0 and L1 := max{L0, r/t− 1}. Then,

∞∑
n=L0

(1 + n)re−tn . (1 + L1)re−tL1 +
∞∫
L1

(1 + x)re−txdx

. (1 + L1)re−tL1 .

(7.3.11)

Proof of Theorem 7.12. First, we estimate the number of non-trivial entries, i.e.,
(7.3.6). To simplify the notation we assume j0 = 0 for the minimal level in each
coordinate of the quarklet frame ΨH1

Γσ
(�).
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Let λ ∈ ∇σ be fixed. The number of λ′ ∈ ∇σ with fixed p′ that fulfil suppψσλ ∩
suppψσλ′ 6= ∅ is of the order ∏d

i=1 max{1, 2j′i−ji} ≤ 2|j−j′|. Furthermore,

|{j ∈ Nd
0 : |j| = l}| =

(
l + d− 1

l

)
. (1 + l)d−1

with a constant depending on d holds. Together, this implies that the number of
entries in the λ-th row of AJ is bounded by

∑
p′∈Nd0∏d

i=1 1+|pi−p′i|≤2
J
a

bJ
b
−a
b

log2(
∏d

i=1 1+|pi−p′i|)c∑
l=0

∑
j′∈Nd0
|j−j′|=l

2|j−j′|

≤
∑
p′′∈Nd∏d

i=1 p
′′
i ≤2

J
a

bJ
b
−a
b

log2(
∏d

i=1 p
′′
i )c∑

l=0

(
l + d− 1

l

)
2l.

In the latter term,
(
l+d−1
l

)
can be estimated from above by

(
1 + J

b

)d−1
. Hence,

∑
p′∈Nd0∏d

i=1 1+|pi−p′i|≤2
J
a

bJ
b
−a
b

log2(
∏d

i=1 1+|pi−p′i|)c∑
l=0

∑
j′∈Nd0
|j−j′|=l

2|j−j′|

.
(J
b

)d−1
2J
b

∑
p′′∈Nd∏d

i=1 p
′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b .

(7.3.12)

We separate the last component of p′′ to obtain

∑
p′′∈Nd∏d

i=1 p
′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b =
∑

p′′∈Nd−1∏d−1
i=1 p

′′
i ≤2

J
a

2
J
a

(∏d−1
i=1 p

′′
i

)−1∑
p′′
d

=1

( d∏
i=1

p′′i
)−a

b .
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Applying (7.3.9) d times with K = 2J/a, t = a
b
leads to

∑
p′′∈Nd∏d

i=1 p
′′
i ≤2

J
a

( d∏
i=1

p′′i
)−a

b

.
∑

p′′∈Nd−1∏d−1
i=1 p

′′
i ≤2

J
a


2J
a

(1−a
b

)
(∏d−1

i=1 p
′′
i

)−1
, a < b,(

1 + J
a
− ln(∏d−1

i=1 p
′′
i )
)(∏d−1

i=1 p
′′
i

)−1
, a = b,(∏d−1

i=1 p
′′
i

)−1
, a > b,

.


2J
a

(1−a
b

)
(
1 + J

a

)d−1
, a < b,(

1 + J
a

)d
, a = b,

1, a > b.

(7.3.13)

Finally, by the last estimate, (7.3.12) can be further estimated by

∑
p′′∈Nd∏d

i=1 p
′′
i ≤2

J
a

(J
b

)d−1
2J
b

( d∏
i=1

p′′i
)−a

b .



(
J
b

)d−1
2J
a

(
1 + J

a

)d−1
, a < b,(

J
b

)d−1
2J
b

(
1 + J

a

)d
, a = b,(

J
b

)d−1
2J
b , a > b,

which implies (7.3.6).
Next, we derive the compression result (7.3.7). As a standard tool for such estimates

we employ the Schur lemma. It states that

sup
λ∈∇σ

w−1
λ

∑
λ′∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′ |wλ′ ≤ C,

sup
λ′∈∇σ

w−1
λ′

∑
λ∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′|wλ ≤ C,

with weights wλ > 0, λ ∈ ∇σ and C > 0, implies ‖A − AJ‖L(`2(∇σ)) ≤ C. The
symmetry of A−AJ implies that it is sufficient to estimate supλ∈∇σ

αλ, where

αλ := w−1
λ

∑
λ′∈∇σ

|(A)λ,λ′ − (AJ)λ,λ′ |wλ′ .

We choose weights of the form wλ = 2−|j|/2. In particular, it holds that

d∏
i=1

max{1, 2j′i−ji}(2−|j|/2)−12−|j′|/2 = 2|j−j′|/2.

Therefore, our choice for wλ, the cut-off rule (7.3.5), together with the decay of the
bilinear form (7.3.4), the definition of x0(p′) := db−1(J − a log2(∏d

i=1 1 + |pi − p′i|))e
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and τ = m− 2− δ1
2 yield

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ) ∞∑
l=max{0,x0(p′)}

∑
j′∈Nd0
|j−j′|=l

2−|j−j′|(m−2).

Estimating the sum involving j ′ leads to

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ) ∞∑
l=max{0,x0(p′)}

2−l(m−2)(1 + l)d−1. (7.3.14)

Applying (7.3.11) with L0 = max{0, x0(p′)}, r = d − 1, t = ln(2)(m − 2) and
L1 = x1(p′) := max{0, x0(p′), d−1

ln(2)(m−2) − 1}, yields

αλ .
∑
p′∈Nd0

( d∏
i=1

(
1 + |pi − p′i|

)τ)
(1 + x1(p′))d−12−(m−2)x1(p′)

.
∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ

+
∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′).

(7.3.15)

First, we have a closer look at the first sum of (7.3.15). By splitting the sum and
setting x := (J − bmax{0, d−1

ln(2)(m−2) − 1})/a, we get

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ

=
∑
p′∈Nd0

log2(
∏d

i=1 1+|pi−p′i|)≥x

d∏
i=1

(1 + |pi − p′i|)τ

=
∑

p′∈Nd−1
0

d−1∏
i=1

(1 + |pi − p′i|)τ
∑
p′d∈N0

log2(1+|pd−p′d|)≥x−log2(
∏d−1
i=1 1+|pi−p′i|)

(1 + |pd − p′d|)τ .
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Consequently, by applying (7.3.10) with t = −τ , K = 2x−log2(
∏d

i=1 1+|pi−p′i|) we get

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(1 + |pi − p′i|)τ

.
∑

p′∈Nd−1
0

d−1∏
i=1

(1 + |pi − p′i|)τ min{1, 2(1+τ)(x−log2(
∏d−1
i=1 1+|pi−p′i|))}

.
∑

p′∈Nd−1
0

log2(
∏d−1
i=1 1+|pi−p′i|)≥x

d−1∏
i=1

(1 + |pi − p′i|)τ

+
∑

p′∈Nd−1
0

log2(
∏d−1
i=1 1+|pi−p′i|)<x

d−1∏
i=1

(1 + |pi − p′i|)−12(1+τ)x.

It follows by induction and with an estimate similar as in (7.3.13), that

∑
p′∈Nd0

x0(p′)≤max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(1 + |pi − p′i|)τ . 2(1+τ)x(1 + x)d−1. (7.3.16)

For the second sum, with the definition of x0(p′), we obtain

∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

≤
∑
p′∈Nd0

x0(p′)≥J
a
−x

d∏
i=1

(
1 + |pi − p′i|

)τ(
1 + J

b
− a

b
log2

( d∏
i=1

1 + |pi − p′i|
))d−1

· 2−(m−2)
(
J
b
−a
b

log2(
∏d

i=1 1+|pi−p′i|)
)
.

We further estimate

∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

≤
(

1 + J

b

)d−1
2−(m−2)J

b

∑
p′∈Nd0

log2
∏d−1
i=1 1+|pi−p′i|≤x

d∏
i=1

(
1 + |pi − p′i|

)τ+(m−2)a
b .
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Similar estimates as in (7.3.13) imply

∑
p′∈Nd0

x0(p′)>max{0,−1+ d−1
ln(2)(m−2)}

d∏
i=1

(
1 + |pi − p′i|

)τ
(1 + x0(p′))d−12−(m−2)x0(p′)

.
(

1 + J

b

)d−1
2−(m−2)J

b


2(1+τ+(m−2)a

b
)x(1 + x)d−1, τ + (m− 2)a

b
> −1,

(1 + x)d, τ + (m− 2)a
b

= −1,
1, τ + (m− 2)a

b
< −1,

.
((

1 + J

b

)d−1
2−(m−2)J

b +
(
1 + J

b

)d−1(
1 + J

a

)d−1
2(1+τ)J

a

)

·

(1 + J
a
), τ + (m− 2)a

b
= −1,

1, otherwise.

(7.3.17)

Finally, combining (7.3.15) - (7.3.17) yields (7.3.7).
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Chapter 8

Numerical Experiments
In this chapter, we test the adaptive quarklet frame algorithm as presented in Chapter
7 for the Poisson equation on several domains in one and two spatial dimensions. The
aim is to verify the convergence of the scheme, as it has been stated in Proposition
7.1, in practice. Furthermore, we want to study the convergence rates of the various
problems. Also, the qualitative behaviour of the quarklet coefficients is of particular
interest to us as we want to figure out how much the quarklets on different levels and
polynomial degrees contribute to the approximated solutions. The test examples are
chosen in a way that, on the one hand, they fit into the quarklet approach and, on
the other hand, we have a certain comparability to other typical test problems for
adaptive algorithms, see, e.g., [41,43,77,80,92,109]. Let us mention that the example
on the L-shaped domain was already tested in [44].

8.1 The Poisson equation on the unit interval
As a model problem on the unit interval, we consider the variational formulation of
the Poisson equation with homogeneous Dirichlet boundary conditions

1∫
0

〈∇u(x),∇v(x)〉 dx = f(v), u, v ∈ H1
0 (0, 1), f ∈ H−1(0, 1), (8.1.1)

cf. (1.4.4) and Example 1.3. We choose the right-hand side as the functional f(v) :=
4v(1

2) +
∫ 1

0 g(x)v(x) dx with

g(x) := −9π2 sin(3πx)− 4.

Straight calculation leads to the solution

u(x) = − sin(3πx) +
{

2x2 , x ∈ [0, 1
2),

2(1− x)2, x ∈ [1
2 , 1], (8.1.2)

which is depicted in Figure 8.1.
This is a classical test problem for adaptive wavelet schemes, which was also ex-

amined, e.g., in [43,80,92,109] . The reason for this is that the solution has a slightly
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Figure 8.1: Exact solution of the one-dimensional test problem (8.1.1).

higher Besov than Sobolev regularity due to the singularity at x = 1
2 . Since the

Besov regularity determines the order of convergence for optimal adaptive wavelet
schemes, they outperform uniform schemes, whose convergence order is governed by
the Sobolev regularity. Particularly for the test problem at hand, the rate of conver-
gence for the adaptive wavelet schemes is only limited by the order of the wavelets.
For the adaptive quarklet scheme, we do know that it should perform at least as

good as an adaptive wavelet scheme based on the underlying Primbs wavelet Riesz
basis. Hence, the convergence order of the underlying wavelet basis serves as a lower
bound for the convergence order of the quarklet scheme. By now, we do not know
how to describe an upper bound for the convergence order. To get an upper bound,
one has to answer the following question: how do the function spaces look like, which
contain the functions that can be approximated by an N-term quarklet approximation
at a certain order. If the solution of an operator equation is part of this function
space, then, the convergence order of the best-N-term quarklet approximation is the
benchmark for an optimal adaptive quarklet scheme. Regarding this, the quarklet
scheme has an advantage over a wavelet scheme if the convergence rate of the best-N-
term quarklet approximation to the solution is higher than the rate of the best-N-term
wavelet approximation.
Although we do not have an answer yet to the theoretical question, we do have

some hope that our scheme is well-suited to the problem (8.1.1). This is due to the
shape of the solution (8.1.2). The smooth sinusoidal part should be depicted well by
the smooth quarklets of high polynomial order on low levels, whereas quarklets on a
high level should reproduce the singularity.
We test Algorithm 1 with the quarklet frame ΨH1

0 (0,1) with order m = 3, m̃ = 3
vanishing moments and the weight parameters δ1 = 6, δ2 = 2, cf. Theorem 5.9. The
minimal quarklet level appears to be j0 = 3. As usual, we assign the level j0−1 = 2 to
the quarks. With the designated parameters, a certain compressibility of the stiffness
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8.1 The Poisson equation on the unit interval

matrix is guaranteed by Theorem 7.12.
For performance reasons, we made slight adaptations to Algorithm 1 for both the

one and two-dimensional tests. The main change is the call of the COARSE rou-
tine after any call of the routine APPLY. By doing this, we prevent a rapidly
growing number of degrees of freedom. However, with this additional coarsening,
the thresholding after the inner loop can be omitted. Furthermore, we assume
||A||L (`2(I)) = ||A|−1

ran A||L (`2(I)) = 1, although this is maybe too optimistic. Similar
adaptations have been made, e.g., in [80,109] where they turned out to be uncritical.
On the left-hand side of Figure 8.2, we plotted the residual error ||Au(i) − f ||`2(∇)

versus the degrees of freedom of the iterates u(i) in double logarithmic scale. The
residual error serves as an upper bound for the H1(0, 1)-norm of the continuous
residual due to the norm equivalence ||Au(i) − f ||`2(∇) ∼ ||FΨ

H1
0(0,1)

u(i) − u||H1(0,1),
where FΨ

H1
0(0,1)

is the synthesis operator of the frame ΨH1
0 (0,1), cf. (2.1.2). On the

right-hand side, the degrees of freedom of u(i) are substituted by the spent CPU
time. A convergence rate of approximately s = 2 can be deduced with respect to
both the degrees of freedom and the CPU time. However, for the CPU time this rate
appears after an initial phase.
If we take a look at the quarklet coefficients in Figure 8.3, we assess the predicted

behaviour. For polynomial order p > 0 we have large entries in modulus on the quark
level and on the low quarklet levels representing the sinusoidal part. The singular
part is represented by the high level quarklets in the region. This phenomenon is
visible for all polynomial orders, but the quarklets for p = 0 seem to have the biggest
impact.

2

1

2

1

Figure 8.2: Adaptive error asymptotics for the test problem on the unit interval with
respect to the amount of degrees of freedom (left) and the CPU time
(right).
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p = 0, 1

p = 2, 3

p = 4, 5

Figure 8.3: Distribution of the quarklet coefficients for the approximate solution of
the one dimensional test problem for different polynomial orders. Line-
by-line: p = 0, . . . , 5.
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8.2 The Poisson equation in two-dimensional bounded
domains

For the numerical experiments in two spatial dimensions we consider the Poisson
equation with homogeneous Dirichlet boundary conditions on diverse bounded do-
mains Ω ⊂ R2. In this case, the variational formulation of the problem, cf. (1.4.4), is
given by

a(u, v) = f(v), u, v ∈ H1
0 (Ω), f ∈ H−1(Ω), (8.2.1)

where the bilinear form a : H1
0 (Ω)×H1

0 (Ω) 7→ R can be written as

a(u, v) =
2∑

k=1

∫
Ω

∂u

∂xk
(x) ∂v

∂xk
(x) dx.

cf. Example 1.3. We pick the examples in a way that the occurring domains can
be decomposed into non-overlapping cubes. Hence, they fit into the construction
process as outlined in Section 4.2. Throughout this section, we fix the parameters
m = 3, m̃ = 3, δ1 = 6, δ2 = 2, for the quarklet frame ΨHs

Γσ
(�) on the unit cube

with σ ∈ ({0, 1}2)2, cf. Theorem 6.6. Again, the compressibility of the stiffness
matrix with respect to the Poisson equation and the quarklet frame is a consequence
of Theorem 7.12. Furthermore, we choose ω = 0.5 as the relaxation parameter in all
three examples.
As a result of the chosen order m and vanishing moments m̃ the minimal quarklet

level is j0 = (3, 3). We allocate multivariate quarks to the level (2, 2). The levels
(j1, 2), (2, j2) with j1, j2 ≥ 3 belong to multivariate quarklets which are a tensor
product of a univariate quark and a univariate quarklet.

L-shaped domain

The first two-dimensional test example is the Poisson equation on the L-shaped
domain Ω = (−1, 1)2 \ [0, 1)2. The latter is a prominent test domain for adap-
tive algorithms, since the reentrant corner induces certain singular solutions, see,
e.g., [72], that have to be resolved by the numerical method under investigation.
To obtain a quarklet frame for Ω we split the domain as explained in Section 6.2,
into the subdomains Ω(0)

0 = {(−1, 0)} + (0, 1)2, Ω(0)
1 = {(−1,−1)} + (0, 1)2 and

Ω(0)
2 = {(0,−1)}+ (0, 1)2. These subdomains with their incorporated boundary con-

ditions are depicted in Figure 8.4. The arrows indicate the direction of the non-trivial
extension. The order in which the extension are executed is irrelevant. By proceeding
this way, conditions (D1)-(D5), cf. Subsection 6.2.1, are fulfilled.
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Figure 8.4: Extension process for the L-shaped domain. Dotted lines indicate free
boundary conditions, straight lines indicate zero boundary conditions.

We equip the subdomains Ω(0)
0 , Ω(0)

1 and Ω(0)
2 with the frames

Ψ0 = ΨHs
Γσ0

(�)

(
·+

(
1
0

))
, σ0 = (1, 1)× (0, 1),

Ψ1 = ΨHs
Γσ1

(�)

(
·+

(
1
1

))
, σ1 = (1, 1)× (1, 1),

Ψ2 = ΨHs
Γσ2

(�)

(
·+

(
0
1

))
, σ2 = (0, 1)× (1, 1),

respectively. To obtain a quarklet frame for H1
0 (Ω) we extend Ψ0 and Ψ2 as described

in Section 6.2. Essentially, this corresponds to reflecting those quarklets that do not
vanish at the boundaries at the dotted lines in Figure 8.4. After that, we take the
union of the two resulting sets of functions with Ψ1. We choose the right-hand side
in (8.2.1) in such a way that the exact the solution is the sum of sin(2πx) sin(2πy),
(x, y) ∈ Ω and the singularity function

S(r, θ) := 5ζ(r)r2/3 sin
(2

3θ
)
, (8.2.2)

with (r, θ) denoting polar coordinates with respect to the reentrant corner at the
origin, and where ζ is a smooth truncation function on [0, 1], which is identically 1 on
[0, r0] and 0 on [r1, 1], for some 0 < r0 < r1 < 1, see again [72] for details. In Figure
8.5, the exact solution and the right-hand side of the test problem are depicted.
Singularity functions of the form (8.2.2) are typical examples of functions that have

a very high Besov regularity but a very limited L2-Sobolev smoothness due to the
strong gradient at the reentrant corner. Therefore, for this kind of solution it can
be expected that adaptive (h-)algorithms outperform classical uniform schemes. We
refer, e.g., to [37,41] for a detailed discussion of these relationships.
We also expect that the very smooth sinusoidal part of the solution can be very well

approximated by piecewise polynomials of high order. Therefore, our test example
is contained in the class of problems for which we expect a strong performance of
adaptive quarklet schemes.
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Figure 8.5: Exact solution and right-hand-side of the test problem on the L-shaped
domain.

To solve the problem numerically we use again Algorithm 1. In Figure 8.6 one
observes the `2-norm of the residual Au(j)−F plotted against the degrees of freedom
of the approximates u(j) and against the spent CPU time. We see that the algorithm
is convergent with convergence order O(N−2). In [41] an adaptive wavelet frame
approach based on overlapping domain decompositions was used to solve a similar
problem. Since the singularity function (8.2.2) has arbitrary high Besov regularity,
the convergence order of adaptive wavelet schemes only depends on the order of the
underlying spline system. For m = 3, one gets, after an initial phase, the approx-
imation rate O(N−1), see again [41, Subsection 6.2] for details. If we compare this
to our approach, we see that the adaptive quarklet schemes outperform the adaptive
wavelet schemes in terms of degrees of freedom.

2

1

1

1

Figure 8.6: Adaptive error asymptotics for the test problem on the L-shaped domain
with respect to the amount of degrees of freedom (left) and the CPU time
(right).

Figure 8.6 also shows that the CPU time that is currently needed might be im-
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proved. This observation indicates that maybe the compression estimates outlined in
Section 7.3 are still suboptimal. Refined compression estimates based, e.g., on second
compression ideas (see [93]) will be the topic of further research.
Figure 8.7 illustrates two approximations to the solution of the test example after 10

and 100 iterations, respectively. The characteristics of the exact solution are clearly
visible after only 10 iterations, while the absolute pointwise values in particular at the
singularity are considerably smaller in comparison to the exact solution, cf. Figure 8.5.
After 100 iterations, however, also the quantitative behaviour of the approximation
comes very close to the exact solution.

Figure 8.7: Approximate adaptive solution of the test problem on the L-shaped do-
main after 10 (left) and 100 (right) iterations.

In Figures 8.8 - 8.10 the distribution of selected coefficients u = {uα}α∈∇ of the
approximate solution ∑α∈∇ uα(wH1

α )−1ψα are plotted with respect to their modulus
in logarithmic scale. In every single figure, the coefficients for one fixed level j are
plotted, with |p| increasing in vertical direction. We can see that qualitatively the
distribution of the coefficients behaves as expected in the sense that for low levels j
frame elements with higher polynomial degree are requested to reproduce the smooth
part of the solution. On the higher level j = (4, 4) the demand for high polynomial
quarklets ceases. In particular, for |p| > 3 no non-zero coefficient emerges in the
expansion of the approximate solution.
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j = (2, 2)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.8: Coefficients of the approximate solution to the test problem on the L-
shaped domain for the quark level j = (2, 2).
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j = (3, 3)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.9: Coefficients of the approximate solution to the test problem on the L-
shaped domain for the lowest quarklet level j = (3, 3).
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j = (4, 4)

|p| = 0

|p| = 1

|p| = 2

Figure 8.10: Coefficients of the approximate solution to the test problem on the L-
shaped domain for the quarklet level j = (4, 4).
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Ring-shaped domain
We now consider a second two-dimensional test example. Our aim is to show that we
are not restricted to the standard test case of the L-shaped domain but are able to
reproduce the results also on more general domains. Therefore, we decided to take
the ring-shaped Ω = (−1, 2)2\ [0, 1]2 as our domain of choice. Similar to the L-shaped
domain, it has reentrant corners which lead to singularities of the solution of operator
equations, which are usually resolved well by adaptive methods.
We choose the quarklet frames on the respective subcubes Ω(0)

i , cf. Figure 8.11, as

Ψ0 = ΨHs
Γσ0

(�)

(
·+

(
1
1

))
, Ψ1 = ΨHs

Γσ1
(�)

(
·+

(
0
1

))
,

Ψ2 = ΨHs
Γσ2

(�)

(
·+

(
−1
1

))
, Ψ3 = ΨHs

Γσ3
(�)

(
·+

(
−1
0

))
,

Ψ4 = ΨHs
Γσ4

(�)

(
·+

(
−1
−1

))
, Ψ5 = ΨHs

Γσ5
(�)

(
·+

(
0
−1

))
,

Ψ6 = ΨHs
Γσ6

(�)

(
·+

(
1
−1

))
, Ψ7 = ΨHs

Γσ7
(�)

(
·+

(
1
0

))
,

with the boundary conditions

σi =


(1, 1)× (1, 1), i ∈ {0, 2, 4, 6},
(0, 0)× (1, 1), i ∈ {1, 5},
(1, 1)× (0, 0), i ∈ {3, 7},

By extending the frames Ψ1, Ψ3, Ψ5, Ψ7 as depicted in Figure 8.11, the conditions
(D1)-(D5), cf. Subsection 6.2.1, are fulfilled and we end up with a quarklet frame
for H1

0 (Ω). As for the case of the L-shaped domain, the order in which the different
extensions are made is irrelevant. See Section 6.2 for details on the extension process.

Figure 8.11: Extension process for the ring-shaped domain. Dotted lines indicate free
boundary conditions, straight lines indicate zero boundary conditions.
The arrows point at the direction of the nontrivial extension.
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8.2 The Poisson equation in two-dimensional bounded domains

Figure 8.12: Exact solution (left) and right-hand-side (right) of the test problem on
the ring-shaped domain.

We choose the right-hand side in (8.2.1) such that the exact solution is given
by the sum of sin(2πx) sin(2πy), (x, y) ∈ Ω, and four singularity functions (8.2.2)
situated around each of the reentrant corners. In Figure 8.12, the exact solution and
the corresponding right-hand side are depicted. A similar test example without the
sinusoidal part was investigated, e.g., in [109, Subsection 7.2.3]. There, for aggregated
wavelet frames of the same order and vanishing moments as in here, an adaptive
Schwarz method produced a convergence rate of order s = 1.
From Figure 8.13 we take again a convergence rate of s = 2 with respect to the

amount of active indices in the quarklet expansion of the approximations. Hence, we
outperform a classical wavelet frame algorithm also in this case. Furthermore, with
the slower convergence with respect to the CPU time, we note the same effect as for
the test example on the L-shaped domain.

2

1

1

1

Figure 8.13: Adaptive error asymptotics for the test problem on the ring-shaped do-
main with respect to the amount of degrees of freedom (left) and the
CPU time (right).
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The illustrations in Figure 8.14 of two iterates of the adaptive algorithm and in
Figures 8.15 - 8.17 of selected quarklet coefficients once again punctuate the consis-
tency of the adaptive quarklet method as analogous phenomena in comparison to the
L-shaped domain example can be deduced, cf. the explanations at the end of the first
part of this section.

Figure 8.14: Approximate adaptive solution of the test problem on the ring-shaped
domain after 10 (left) and 100 (right) iterations.
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j = (2, 2)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.15: Coefficients of the approximate solution to the test problem on the ring-
shaped domain for the quark level j = (2, 2).
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j = (3, 3)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.16: Coefficients of the approximate solution to the test problem on the ring-
shaped domain for the lowest quarklet level j = (3, 3).
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j = (4, 4)

|p| = 0

|p| = 1

|p| = 2

Figure 8.17: Coefficients of the approximate solution to the test problem on the ring-
shaped domain for the quarklet level j = (4, 4).

Slit domain

As the third and last two-dimensional test example we consider the Poisson equation
on the slit domain Ω = (−1, 1)2\{0}×(0, 1). In distinction to the first two multivariate
test domains, the slit domain is not Lipschitz. Although we expected throughout this
thesis Ω to be a Lipschitz domain it is possible to define Sobolev spaces also for
more general domains, see [1] for details. However, the whole theory for the solution
of PDEs is based on the Lipschitz property of the domain. For example, the weak
formulation of a PDE, partial integration or the trace operator, cf. (1.3.12) rely on
the Lipschitz property. Nevertheless, the practical results we display confirm that
Algorithm 1 converges also in this particular case.
We decompose Ω into four non-overlapping subcubes Ω(0)

0 = (−1, 0)× (0, 1), Ω(0)
1 =

(−1, 0) × (−1, 0), Ω(0)
2 = (0, 1) × (−1, 0) and Ω(0)

3 = (0, 1) × (0, 1), cf. Figure 8.18,
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and choose the quarklet frames on the respective subcubes as

Ψ0 = ΨHs
Γσ0

(�)

(
·+

(
1
0

))
, σ0 = (1, 1)× (0, 1),

Ψ1 = ΨHs
Γσ1

(�)

(
·+

(
1
1

))
, σ1 = (1, 1)× (1, 1),

Ψ2 = ΨHs
Γσ2

(�)

(
·+

(
0
1

))
, σ2 = (0, 1)× (1, 1),

Ψ3 = ΨHs
Γσ3

(�), σ3 = (1, 1)× (0, 1).

Figure 8.18: The initial decomposition of the slit domain into subcubes.

Thereupon, we extend the frames Ψ0, Ψ2 and Ψ3 as depicted in Figure 8.19. In
this case, the order of extensions is relevant to ensure that the conditions (D1)-(D5),
cf. Subsection 6.2.1, are not violated.

Figure 8.19: Successive extension process for the slit domain. Dotted lines indicate
free boundary conditions, straight lines indicate zero boundary condi-
tions.

Again, the test example is constructed in a way that the exact solution of the
Poisson equation is given by a sum of sin(2πx) sin(2πy), (x, y) ∈ Ω and a singularity
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function. In this particular case, the latter differs in comparison the other two-
dimensional test examples due to the reason that it does not surround a reentrant
corner but a slit. Hence, we have the representation

S∗(r, θ) := 5ζ(r)r1/2 sin
(1

2θ
)
. (8.2.3)

For more details about the parameters in (8.2.3), take a look at the explanations after
(8.2.2).
The exact solution and right-hand side of the example are displayed in Figure 8.20.

Once again, the algorithm exhibits the same convergence rates as in the previous test
cases, see Figure 8.21.

Figure 8.20: Exact solution (left) and right-hand side (right) of the test problem on
the slit domain.

2

1

1

1

Figure 8.21: Adaptive error asymptotics for the test problem on the slit domain with
respect to the amount of degrees of freedom (left) and the CPU time
(right).
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The qualitative properties of the exact solution is already notable for the 10th
iterate, whereas after 100 iterations also the absolute accordance is evident, cf. Figure
8.22. The distribution of the quarklet coefficients is depicted in the Figures 8.23 -
8.25. In contrast to the previous examples in this section, there are active coefficients
for j = (4, 4), |p| = 4, cf. Figure 8.25. However, their amount and size in modulus
are negligible. Apart from that, the same characteristics as in the earlier tests occur.

Figure 8.22: Approximate adaptive solution of the test problem on the slit domain
after 10 (left) and 100 (right) iterations.

Let us shortly summarize the numerical results. In every single example, the con-
vergence of the adaptive quarklet scheme has been confirmed. Although we do not
have any theoretical results about the convergence rates to expect so far, we have ob-
served a very consistent behaviour in all test cases. Especially in the two-dimensional
experiments, we have been able to outperform classical adaptive wavelet algorithms,
which justifies the application of quarklets in adaptive schemes and gives hope that in
the future, also theoretically, higher convergence rates for specific test problems can be
confirmed. The multivariate experiments have also exhibited that there is still some
work to do to close the gap between the convergence rates with respect to the CPU
time and the degrees of freedom. In general, this should be possible. Qualitatively,
the share of high polynomial quarklets in the expansions of the iterative solutions
has been clearly recognizable, which indicates that they also have contributed to the
good quantitative performance of the adaptive quarklet scheme.
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j = (2, 2)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.23: Coefficients of the approximate solution to the test problem on the slit
domain for the quark level j = (2, 2).
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j = (3, 3)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.24: Coefficients of the approximate solution to the test problem on the slit
domain for the lowest quarklet level j = (3, 3).
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j = (4, 4)

|p| = 0

|p| = 1

|p| = 2

|p| = 3

|p| = 3

Figure 8.25: Coefficients of the approximate solution to the test problem on the slit
domain for the quarklet level j = (4, 4).
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Conclusion and Outlook
In this thesis, we have developed quarklets, a new class of smooth, localized functions
with vanishing moments. We have shown how to derive quarklet frames for Lebesgue
and Sobolev spaces in multiple spatial dimensions and applied them to solve elliptic
operator equations. For that purpose, we have collected all the building blocks for
a well-known adaptive frame scheme and combined the latter with quarklet frames.
Several tests have been made to study the convergence of the scheme.
Let us now discuss the results in more detail. In particular, we want to take a

look at the tasks (T1) to (T3) as outlined in the introduction and see how they have
been addressed. The chapters 4 to 6 have been devoted to task (T1), the construc-
tion of quarklet frames in one and in multiple spatial dimensions. The main results
in one dimensions are the theorems 4.15 and 5.9, which state the frame property
for Sobolev spaces on the real line and the unit interval, respectively. In Chap-
ter 6, Theorem 6.20 has given a very satisfying result regarding multidimensional
quarklet frames. It states that quarklets lead to Gelfand frames for the Gelfand
triple (Hs

0(Ω), L2(Ω), H−s(Ω)) for a certain range s ∈ R+, on very general bounded
domains Ω ∈ Rd. In addition, the construction could be executed in a way that all
quarklets have a certain amount of vanishing moments. Hence, task (T1) can be
considered accomplished.
In Chapter 7, we have turned our attention to task (T2), the design of a convergent

adaptive quarklet frame scheme for linear elliptic operator equations. Proceeding
from an inexact adaptive Richardson iteration, we have shown that all the building
blocks could be adjusted to work with quarklets. The main challenge has been the
verification of the compressibility of the stiffness matrix in quarklet coordinates. In
Theorem 7.12, we have provided a compression result for the stiffness matrix of the
Poisson equation in multiple dimensions. As this is a prototypical example, the
proof concepts for the compression for other linear elliptic equations can be expected
to be very similar. Due to the tensor approach, the proven compression rates are
independent of the spatial dimension. Under certain assumptions, for instance, that
the optimal convergence rate is not higher than the compression rate, we have even
been able to prove the asymptotical optimality of the scheme. Up to now, we have
not used second compression ideas (cf. [98]), i.e., the exploitation of the piecewise
polynomial structure of the quarklets to achieve higher compression rates. However,
all in all, we have largely solved task (T2).
The last remaining task, (T3), the practical implementation and numerical exper-

iments in one and two spatial dimensions of the adaptive quarklet frame scheme,
has been addressed in Chapter 8. The adaptive solution of the Poisson equation has
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been tested on several domains. Special attention has been paid to domains with
reentrant corners, as they lead to solutions with singularities. The convergence of the
scheme could be verified for every single test problem. Moreover, the convergence
rates with respect to the degrees of freedom have appeared to be very promising as
they outperformed convergence rates of other well-known adaptive wavelet schemes.
The slower convergence with respect to the runtime possibly is a consequence of the
not yet optimal compression rate. There seems to be room for improvement in this
field. For future works, numerical tests with linear elliptic operator equations other
than the Poisson equation could be of interest. Furthermore, it would be interesting
to see how the scheme reacts on various kinds of right-hand-sides. Nevertheless, task
(T3) has been solved as well.
As the quarklet approach is still in its infancy, there are plenty of goals to be

achieved in future work. An almost completely uninvestigated field is the approxi-
mation theory with respect to quarklets. By this we mean how well certain functions
can be approximated with linear combinations of quarklets. The only thing in this
context we know by now is the obvious fact that the best N -term quarklet approxi-
mation to any function is at least as good as the best N -term wavelet approximation
of the underlying wavelet basis. A very interesting question is if there are functions
for which quarklets outperform wavelets in the sense of a better N -term approxima-
tion. And if so, can these functions be characterized in terms of belonging to a certain
function space? Is it possible to show an equivalence between an approximation space
and a function space as it is the case for wavelets and Besov spaces?
Since adaptive quarklet schemes are a kind of hp-method, there is some hope that it

is possible to show exponential convergences rates for the best N -term approximation
for certain functions. This would definitely mean a breakthrough of the quarklet
method. If exponential convergence can be shown, the next challenging task will
be the design of an adaptive scheme that realizes this particular rate. As we have
seen that the convergence rate of an adaptive scheme is governed by the compression
rate of the respective stiffness matrix, the verification of exponential compression
rates is at the heart of a successive algorithm. To this end, it might be necessary
to modify the construction of the quarklets. The vanishing moment property of
the quarklets play a crucial role in this context. For the current construction, we
were able to prove that the quarklets maintain the vanishing moment property of the
underlying wavelets. In comparison to the quarkonial approach, cf. [50], [104], this can
be considered as a huge development. However, in order to really achieve exponential
convergence results, we do not get around the fact that we need an increasing amount
of vanishing moments for increasing polynomial degrees of the quarklets. One way
out of this, which deserves closer attention, could be to use more involved polynomials
for the enrichment of the wavelets. A promising approach seems to be the application
of orthogonal polynomials in this context. In fact, it is relatively easy to show that
we get functions with an increasing amount of vanishing moments with this attempt.
However, there is still a lot of analysis to be done to examine if it is able to construct
frames for Sobolev spaces with these kind of functions.
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Another idea to get rapidly converging algorithms is to use some kind of regulariza-
tion in the iteration process. This approach, which is widely used in the compressed
sensing area, penalizes approximations with a large `1-norm. It is well-known that
in this way the algorithm is forced to produce a sparse approximation of the solu-
tion. Examples where this approach was used to find sparse atomic decompositions in
terms of localized functions as wavelets and shearlets can be found, e.g., in [48], [59].
Since quarklet frames are highly redundant, regularization could really make sense in
this context. The fewer amount of entries in the stiffness matrix, which need to be
calculated during the successive iteration steps, could save a lot of computing time.
However, the verification of certain convergence rates for adaptive algorithms with
regularization has not been considered by now such that there is some analysis to be
done first.
In [20], it was shown that the tensor approach with non-overlapping domain decom-

positions leads to convergence rates which are independent of the spatial dimension.
Based on the latter fact, the application of quarklets in operator equations in multiple
spatial dimensions seems to be potentially fruitful and should be considered in the
future. Moreover, quarklets can be applied to other types of operator equations, e.g.,
of parabolic type. Considering the latter, one has to ensure that quarklets lead to
frames for Sobolev spaces of negative order. Such results are available for wavelets
and in principle a transfer to quarklets should be feasible.
Let us finish by saying that quarklets seem to have a lot of future potential and it

is going to be exciting to see where the journey will take them.
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Appendix
In the appendix, we provide the proof of Proposition 5.2. In order to do this, we start
with an auxiliary result about the extremal points of boundary quarks.

Lemma A.1. Let 1 ≤ k ≤ m − 1 and ϕp,0,−m+k a left boundary quark. For every
p ≥ (m− 1)(k − 1), the unique extremal point of ϕp,0,−m+k is located at

x̂ = kp

p+m− 1 . (A.1)

Proof. Let x ∈ R. At first, we have a look at the leftmost quark, i.e., k = 1:

ϕp,0,−m+1(x) =
(

x

−m+ 1 +m

)p
Bm

0,−m+1(x) = xpBm
0,−m+1(x).

Using the differentiation rules and the recursive form of the B-splines, cf. [94, Thm.
4.15, 4.16], we derive

ϕ′p,0,−m+1(x) = pxp−1Bm
0,−m+1(x) + xpBm′

0,−m+1(x)
= pxp−1Bm

0,−m+1(x)− xp(m− 1)Bm−1
0,−m+2(x)

= pxp−1 t1 − x
t1 − t−m+2

Bm−1
0,−m+2(x)− xp(m− 1)Bm−1

0,−m+2(x)

= xp−1 (p(1− x)− x(m− 1))Bm−1
0,−m+2(x).

We obtain the critical points x = 0, where the B-spline and also the quark is zero,
and x̂ = p

p+m−1 , where |ϕp,0,−m+1| attends its maximum. Now, assume m ≥ 3, k ≥ 2
and ϕp,0,−m+k to be the k-th left boundary quark.:

ϕp,0,−m+k(x) =
(

x

−m+ k +m

)p
Bm

0,−m+k(x) = k−pxpBm
0,−m+k(x).

The support of ϕp,0,−m+k is the interval [0, k]. In the first step, we show that ϕp,0,−m+k
is monotonically increasing on [0, k − 1]. For the first derivative, we estimate

ϕ′p,0,−m+k(x) = k−ppxp−1Bm
0,−m+k(x) + k−pxpBm′

0,−m+k(x)
= k−pxp−1

(
pBm

0,−m+k(x) + xBm′
0,−m+k(x)

)
≥ k−pxp−1

(
pBm

0,−m+k(x)−
∣∣∣xBm′

0,−m+k(x)
∣∣∣) .
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Again, we use the differentiation rules and recursion to derive

ϕ′p,0,−m+k(x) ≥ k−pxp−1
(
pBm

0,−m+k(x)−
∣∣∣∣∣x(m− 1)

(
Bm−1

0,−m+k(x)
k − 1 −

Bm−1
0,−m+k+1(x)

k

)∣∣∣∣∣
)

≥ k−pxp−1
(
pBm

0,−m+k(x)− x(m− 1)
(
Bm−1

0,−m+k(x)
k − 1 +

Bm−1
0,−m+k+1(x)

k

))
.

For x ∈ [0, 1], it holds k − x ≥ x, which yields

ϕ′p,0,−m+k(x) ≥ k−pxp−1

·
(
pBm

0,−m+k(x)− (m− 1)
(

x

k − 1B
m−1
0,−m+k(x) + k − x

k
Bm−1

0,−m+k+1(x)
))

= k−pxp−1
(
pBm

0,−m+k(x)− (m− 1)Bm
0,−m+k(x)

)
= k−pxp−1 (p− (m− 1))Bm

0,−m+k(x).

Hence, the derivative is non-negative on [0, 1] if p ≥ m − 1. For x ∈ [1, k − 1], it
trivially holds x ≥ 1 and k − x ≥ 1. It follows

ϕ′p,0,−m+k(x) ≥ k−pxp−1
(
pBm

0,−m+k(x)− x
∣∣∣Bm′

0,−m+k(x)
∣∣∣)

≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)
∣∣∣Bm′

0,−m+k(x)
∣∣∣)

= k−pxp−1

·
(
pBm

0,−m+k(x)− (k − 1)
∣∣∣∣∣(m− 1)

(
Bm−1

0,−m+k(x)
k − 1 −

Bm−1
0,−m+k+1(x)

k

)∣∣∣∣∣
)
.

By the above considerations, we can further estimate

ϕ′p,0,−m+k(x)

≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)(m− 1)
∣∣∣∣ 1
k − 1B

m−1
0,−m+k(x)− 1

k
Bm−1

0,−m+k+1(x)
∣∣∣∣)

≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)(m− 1)
( 1
k − 1B

m−1
0,−m+k(x) + 1

k
Bm−1

0,−m+k+1(x)
))

≥ k−pxp−1

·
(
pBm

0,−m+k(x)− (k − 1)(m− 1)
(

x

k − 1B
m−1
0,−m+k(x) + k − x

k
Bm−1

0,−m+k+1(x)
))

.

By the recursive relation of B-splines, we get

ϕ′p,0,−m+k(x) ≥ k−pxp−1
(
pBm

0,−m+k(x)− (k − 1)(m− 1)Bm
0,−m+k(x)

)
= k−pxp−1 (p− (k − 1)(m− 1))Bm

0,−m+k(x).

Finally, we can conclude that for p ≥ (m−1)(k−1) the derivative is non-negative on
[1, k − 1]. So all extremal points are located in [k − 1, k], where we can compute an
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explicit form of ϕp,0,−m+k. To do this, we first compute the explicit form of Bd
0,−m+k.

By definition and the recursion for divided differences, we get:

Bm
0,−m+k(x) = (t0k − t0−m+k) (· − x)m−1

+ [t0−m+k, . . . , t
0
k]

= k

k

(
(· − x)m−1

+ [t0−m+k+1, . . . , t
0
k]− (· − x)m−1

+ [t0−m+k, . . . , t
0
k−1]

)
= (· − x)m−1

+ [t0−m+k+1, . . . , t
0
k].

The latter divided difference vanishes because of x ≥ k−1. On the interval [0, k−1],
the truncated polynomial (· − x)m−1

+ is zero. Hence, all of the coefficients of the
interpolating polynomial are zero. By repeating this argument (m− k− 1) times, we
obtain

Bm
0,−m+k(x) = k−1−(m−k−1)(· − x)m−1

+ [1, . . . , k].

Further (k − 1)-times iteration gives

Bm
0,−m+k(x) = k−m+k 1

(k − 1)!(· − x)m−1
+ [k].

We end up with

Bd
0,−m+k|[k−1,k](x) = k−m+k 1

(k − 1)!(k − x)m−1.

With this representation, we compute the derivative ϕ′p,0,−m+k on [k − 1, k]:

ϕ′p,0,−m+k(x) = k−ppxp−1Bm
0,−m+k(x) + k−pxpBm′

0,−m+k(x)
= k−pxp−1

·
(
pk−m+k 1

(k − 1)!(k − x)m−1 − xk−m+k 1
(k − 1)!(m− 1)(k − x)m−2

)

= k−p−m+kxp−1 1
(k − 1)!

(
k − x)m−2(p(k − x)− x(m− 1)

)
.

We obtain the critical points x = 0, x = k, where Bm
0,−m+k is zero, and x̂ = kp

p+m−1 ,
where |ϕp,0,−m+k| attains its maximum. Indeed, x̂ lies in [k − 1, k] because, on the
one hand, we have

x̂ = kp

p+ d− 1 ≤
kp+ k(d− 1)
p+ d− 1 = k(p+ d− 1)

p+ d− 1 = k.

On the other hand, it holds true that

k−1 = k− k(d− 1)
k(d− 1) = k− k(d− 1)

(d− 1)(k − 1) + d− 1 ≤ k− k(d− 1)
p+ d− 1 = kp

p+ d− 1 = x̂,

and so the claim is proved.
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With Lemma A.1 at hand, we are able to prove Proposition 5.2.

Proposition A.2. Let k = 1, . . . ,m − 1. For every left boundary quark ϕp,0,−m+k,
and 1 ≤ q ≤ ∞, there exist constants c = c(m, k, q) > 0, C = C(m, k, q) > 0, such
that for all p ≥ (m− 1)(k − 1):

c(p+ 1)−(m−1+1/q) ≤ ||ϕp,0,−m+k||Lq(R) ≤ C(p+ 1)−(m−1+1/q). (A.2)

Proof. We show (A.2) for the extremal cases q ∈ {1,∞} and conclude by Hölder’s
inequality. To derive the upper bound for q = 1, we use an integration formula for
general B-splines and functions f ∈ Cm([t0−m+k, t

0
k]), cf. [94, Thm. 4.23]:

t0k∫
t0−m+k

Bm
0,−m+k(x)f (m)(x) dx = (t0k − t0−m+k)(m− 1)!f [t0−m+k, . . . , t

0
k].

Choosing f(x) := xp+m 1
(p+m)···(p+1) , we obtain

||ϕp,0,−m+k||L1(R) =
(1
k

)p t0k∫
t0−m+k

Bm
0,−m+k(x)xp dx

=
(1
k

)p
(k − 0)(m− 1)! (·)p+m[t0−m+k, . . . , t

0
k]

1
(p+m) · · · (p+ 1)

≤
(1
k

)p−1
(m− 1)! (·)p+m[t0−m+k, . . . , t

0
k](p+ 1)−m.

To estimate the divided difference, we use a Leibniz rule with xp+m = xxp+m−1,
cf. [94, Thm. 2.52]:

(·)p+m[t0−m+k, . . . , t
0
k] =

k∑
i=−k+m

(·)1[t0−m+k, . . . , t
0
i ] (·)p+m−1[t0i , . . . , t0k].

For the first order polynomial, there remains just one non-trivial summand:

(·)p+m[t0−m+k, . . . , t
0
k] = (·)1[t0−m+k] (·)p+m−1[t0−m+k, . . . , t

0
k]

+ (·)1[t0−m+k, t
0
−m+k+1] (·)p+m−1[t0−m+k+1, . . . , t

0
k]

= (·)p+m−1[t0−m+k+1, . . . , t
0
k].

Repeating this argument (d− k) times, we get

(·)p+m[t−m+k, . . . , tk] = (·)p+k[t00, . . . , t0k].
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By eliminating the leading zeros, we get equidistant knots and can replace the divided
difference by a forward difference, cf. [94, Theorem. 2.57]:

(·)p+m[t0−m+k, ..., t
0
k] = 1

k! (∆
k(·)p+k)(0)

= 1
k!

k∑
j=0

(
k
j

)
(−1)k−jjp+k

≤ 1
k!k

p
k∑
j=0

(
k
j

)
jk.

Finally, we get the upper estimate with C(m, k) = (m−1)!
(k−1)!

∑k
j=0

(
k
j

)
jk:

||ϕp,0,−m+k||L1(R) ≤ C(p+ 1)−m. (A.3)

Now let q =∞. We directly compute

||ϕp,0,−m+k||L∞(R) = |ϕp,0,−m+k(x̂)| = k−px̂pk−m+k 1
(k − 1)!(k − x̂)m−1

= k−m+k

(k − 1)!

(
p

p+m− 1

)p (
k(m− 1)
p+m− 1

)m−1

.

We get the upper estimate with some constant C(m, k) = k−m+k

(k−1)! (k(m− 1))m−1:

||ϕp,0,−m+k||L∞(R) ≤ C(p+ 1)−(m−1). (A.4)

For 1 < q <∞, an application of Hölder’s inequality and (A.3), (A.4) yield

||ϕp,0,−m+k||qLq(R) ≤ ||ϕp,0,−m+k||1/qL1(R)||ϕp,0,−m+k||1−1/q
L∞(R)

≤ C(p+ 1)−(m−1−1/q),

which proves the upper estimate. Now, we turn over to the lower estimate. Let
q = ∞. From our previous calculations we directly get the lower estimate with
c(m, k) = c̃e1−mk−m+k

(k−1)! (k(m− 1))m−1, where c̃ > 0 just depends on m:

c(p+ 1)−(m−1) ≤ ||ϕp,0,−m+k||L∞(R). (A.5)

It remains to show the lower estimate for q ∈ N. By an elementary estimate, we get

||ϕp,0,−m+k||qLq(R) =
k∫

0

|ϕp,0,−m+k(x)|q dx ≥
k∫

k−1

|ϕp,0,−m+k(x)|q dx

=
k∫

k−1

(
x

k

)pq (
Bm

0,−m+k(x)
)q

dx

=
k∫

k−1

(
x

k

)pq (
k−m+k 1

(k − 1)!(k − x)m−1
)q

dx.
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Substitution leads to

||ϕp,0,−m+k||qLq(R) ≥
1

((k − 1)!)q k
(−m+k)q

k∫
k−1

(
x

k

)pq
(k − x)(m−1)q dx

= 1
((k − 1)!)q k

(−m+k)q
1∫

0

(
k − y
k

)pq
y(m−1)q dy

≥ 1
((k − 1)!)q k

(−m+k)q
1∫

0

(1− y)pq y(m−1)q dy.

By m(q − 1)-times partial integration, we obtain

1∫
0

(1− y)pqy(m−1)q dy = (m− 1)q
pq + 1

1∫
0

(1− y)pq+1y(m−1)q−1 dy

= ((m− 1)q)!
(pq + 1)(pq + 2) · · · (pq +mq − q)

1
pq +mq − q + 1 .

We go on estimating by

1∫
0

(1− y)pqy(m−1)q dy ≥ ((m− 1)q)!
(c̃(p+ 1))mq−q+1 ,

where c̃ > 0 just depends on m and q. Finally, we get the lower estimate with
c(m, k, q) = k−m+k

(k−1)!

(
((m−1)q)!

c̃

)1/q
:

||ϕp,0,−m+k||Lq(R) ≥ c(p+ 1)−(m−1+1/q). (A.6)

For 1 < q < ∞, we again use Hölder’s inequality. First, let 1 < q ≤ 2. Then, by
(A.5),(A.6) it follows

||ϕp,0,−m+k||qLq(R) ≥ ||ϕp,0,−m+k||2/qL2(R)||ϕp,0,−m+k||1−2/q
L∞(R)

≥ c(p+ 1)−(m−1−1/q).

For 2 ≤ q <∞, using (A.6) we have

||ϕp,0,−m+k||qLq(R) ≥ ||ϕp,0,−m+k||2−2/q
L2(R) ||ϕp,0,−m+k||2/q−1

L1(R)

≥ c(p+ 1)−(m−1−1/q),

which completes the proof.
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