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ABSTRACT 

 

Purpose of this work: Toll-like receptors (TLRs) are sensors of the innate immune 

system that perceive evolutionary conserved microbial structures and act as first line 

defense mechanisms against bacteria, viruses, fungi, and parasites. As a subset of the TLR 

family, intracellular TLRs reside in endosomal compartments to encounter their ligands 

comprising different types of nucleic acids. Important members are TLR3, 7, 8, and 9 

recognizing double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), again 

ssRNA, and unmethylated CpG-motif containing DNA, respectively. Innate immune cells 

including dendritic cells (DCs) and macrophages (MΦs) show different expression 

profiles and varying functions of intracellular TLRs. In mice, conventional dendritic cells 

(cDCs) and MΦs express TLR3, 7, and 9, which predominantly induce secretion of 

proinflammatory cytokines such as IL-6 after activation, whereas type I interferons 

(IFNs) are only upregulated upon ligation of TLR3 in these cell types. A rare subset of 

DCs referred to as plasmacytoid dendritic cells (pDCs) uniquely possesses the ability to 

massively induce Interferon-α and -β (IFN-α/-β; type I IFNs) upon stimulation of TLR7 

and 9. Furthermore, murine pDCs have been shown to sense DNA via TLR9 in a CpG-

motif independent way. However, the molecular mechanisms of cell type-dependent 

functional variations of intracellular TLRs are not fully understood and mostly remain 

elusive. Besides involvement in embryonic tissue patterning, the homeodomain-

containing transcription factor HoxA9 is known to play essential roles in normal and 

malignant hematopoietic processes such as maintaining the stem cell status, 

leukemogenesis, and the generation of B cell progenitors. The latter circumstance has 

been partly linked to transcriptional regulation of the cytokine receptor fms-like tyrosine 

kinase 3 (Flt3) in hematopoietic progenitors. However, Flt3 and its ligand Flt3L are also 

crucial signals for the development and homeostasis of DCs. Moreover, prominent 

mRNA expression levels of hoxa9 upon stimulation of TLR9 in murine pDCs 

(unpublished data) suggest participation of this transcription factor in TLR9 biology 

particularly in pDCs. The impact of HoxA9 on the function of intracellular TLRs as well 

as development of DCs and MΦs was therefore investigated in this study using HoxA9 

knockout (KO) mice. 

 

Hypothesis: Upregulation of HoxA9 upon activation of TLR9 in pDCs and involvement  

in B cell differentiation via Flt3 suggests a prominent role of this gene in TLR-mediated  
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immune responses as well as development of DCs and MΦs. 

 

Results: HoxA9-/- mice displayed an insignificant hypocellularity of total nucleated bone 

marrow (BM) cells, which was reported before by several other groups. FACS analyses 

of total BM cells ex vivo revealed significantly reduced B cell counts but normal 

quantities of mature DC subsets in HoxA9-deficient mice, again confirming previous 

studies. TLR stimulation experiments of HoxA9-/- total BM cells as well as FACS-sorted 

pDC fractions ex vivo exhibited statistically significant impaired IFN-α responses upon 

TLR7 and 9 activation, whereas FACS-sorted cDCs did not show significant alterations 

in TLR function. Moreover, in vitro generated HoxA9-deficient Flt3L-induced DC 

cultures, which contain pDCs and cDCs, displayed almost completely abolished IFN-α 

levels and clearly reduced IL-6 levels upon TLR7/9 stimulation compared to wild type 

(WT). Importantly, Flt3L-induced DC cultures generated from BM cells of HoxA9-

deficient animals presented notably reduced amounts of differentiated cells after the 

maturation period, a higher rate of dead cells, and a shifted pDC/cDC ratio in comparison 

to WT littermates. Conversely, in vitro generated GM-CSF-induced cDCs and M-CSF-

induced MΦs demonstrated no significant differences in surface marker expression and 

TLR-mediated cytokine responses in the KO cultures. Primary splenocytes of HoxA9-

deficient and WT animals showed equal quantities of both DC subsets regarding surface 

markers measured by FACS. Nonetheless, TLR7/9-mediated IFN-α levels of HoxA9-/- 

splenic pDCs displayed reductions similarly to those found in the BM. Finally, genome-

wide microarray expression profiling of FACS-sorted BM-derived pDCs revealed 

differential expression of several genes between KO and WT including the HoxA9 co-

factor Meis1. 

 

Conclusions: Collectively, these results implicate a pivotal role for HoxA9 in TLR7/9-

mediated pDC-specific immunity especially impacting on IFN-α responses. TLR biology 

of cDCs and MΦs is apparently not affected by the HoxA9 knockout. DC development 

among HoxA9-/- BM cells is partly impaired in vitro. However, this effect is compensated 

in vivo. The emerging evidence that pDCs play central roles in the pathogenesis of 

numerous human disorders such as viral infections, autoimmune diseases, and the 

tumorigenesis of various types of cancer underlines the importance of these cells and 

emphasizes the fact that HoxA9 could serve as a potential therapeutic target. 
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ZUSAMMENFASSUNG 

 
Ziel dieser Arbeit: Toll-like Rezeptoren (TLRs) sind Sensoren des angeborenen 

Immunsystems, welche durch die Evolution konservierte mikrobielle Strukturen 

erkennen und als Mechanismen der ersten Verteidigungslinie gegen Bakterien, Viren, 

Pilze und Parasiten zu betrachten sind. Eine Subfamilie stellen die intrazellulären TLRs 

dar, welche sich in unterschiedlichen endosomalen Kompartimenten befinden, um dort 

ihre Liganden, bestehend aus verschiedenen Typen von Nukleinsäuren, zu erkennen. Zu 

den intrazellulären TLRs gehören TLR3, 7, 8 und 9. TLR3 erkennt doppelsträngige RNA 

(dsRNA), TLR7 und 8 erkennen einzelsträngige RNA (ssRNA) und TLR9 wird durch 

DNA aktiviert, welche unmethylierte CpG-Sequenzen enthält. Zellen des angeborenen 

Immunsystems, wie dendritische Zellen (DCs) und Makrophagen, zeigen 

unterschiedliche Expressionsprofile intrazellulärer TLRs. Zudem kann die Funktion der 

einzelnen TLRs je nach Zelltyp variieren. Konventionelle dendritische Zellen (cDCs) und 

Makrophagen in Mäusen exprimieren TLR3, 7 und 9. Nach Aktivierung der TLRs mit 

dem jeweiligen Ligand kommt es zur Bildung und Sekretion von proinflammatorischen 

Zytokinen wie IL-6. Zusätzlich wird bei der Aktivierung von TLR3 die Freisetzung von 

Typ I Interferonen, wie Interferon-α und -β (IFN-α/-β), induziert. Eine selten 

vorkommende Subpopulation von dendritischen Zellen, genannt plasmazytoide 

dendritische Zellen (pDCs), hat die außergewöhnliche Fähigkeit, eine enorme Menge an 

IFN-α und -β nach Aktivierung von TLR7 und 9 freizusetzen. Zudem konnte an murinen 

pDCs gezeigt werden, dass TLR9 in diesem Zelltyp auch DNA ohne unmethylierte CpG-

Sequenzen erkennen kann. Die molekularen Mechanismen zelltypabhängiger 

funktioneller Unterschiede von intrazellulären TLRs werden bisher noch nicht gut 

verstanden. Der Transkriptionsfaktor HoxA9, welcher eine Homöodomäne besitzt, spielt 

verschiedene wichtige Rollen in der Embryogenese und bei diversen Prozessen im 

Rahmen der Hämatopoese, wie beispielsweise die Erhaltung des Stammzellenstatus, 

Bildung von Progenitor-Zellen der B-Zell Reihe und bei der Entstehung von Leukämien. 

Der Einfluss auf die Entwicklung von B-Zellen wurde teilweise auf die transkriptionelle 

Regulierung des Zytokinrezeptors fms-like tyrosinkinase 3 (Flt3) in hämatopoetischen 

Progenitor-Zellen zurückgeführt. Flt3 und der passende Ligand Flt3L spielen jedoch auch 

eine entscheidende Rolle im Rahmen der Entwicklung und Homöostase von DCs. 

Unveröffentlichte Daten zeigten eine deutliche Überexpression der hoxa9 mRNA in 

murinen pDCs nach Aktivierung von TLR9. Basierend auf diesen Daten wird in dieser 
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Studie der Einfluss des Transkriptionsfaktors HoxA9 auf die Funktion intrazellulärer 

TLRs sowie die Entwicklung von DCs und Makrophagen untersucht. Hierfür wurden 

HoxA9 Knockout (KO) Mäuse verwendet. 

 

Hypothese: Die Hochregulierung von HoxA9 in pDCs unter Aktivierung von TLR9 lässt 

einen Einfluss dieses Gens auf die TLR-vermittelte Funktion von DCs und Makrophagen 

vermuten. Die bekannte transkriptionelle Regulierung des Zytokinrezeptors Flt3 in 

Progenitor-Zellen der B-Zell Reihe durch HoxA9 könnte ebenfalls im Rahmen der DC 

Differenzierung eine Rolle spielen. 

 

Ergebnisse: HoxA9-/- Mäuse zeigten eine geringe, statistisch nicht signifikante, 

Hypozellularität der gesamten kernhaltigen Knochenmarkszellen. Dies bestätigte die 

Ergebnisse von anderen Arbeitsgruppen. In FACS-Analysen der gesamten 

Knochenmarkszellen konnte ex vivo eine signifikante Reduktion der Anzahl von B-

Zellen, inklusive der B-Vorläuferzellen, bei HoxA9-defizienten Mäusen im Vergleich 

zum Wildtyp (WT) beobachtet werden. Vergleiche der unterschiedlichen DC 

Subpopulationen ergaben jedoch zwischen KO und WT keine Unterschiede, passend zu 

den Ergebnissen früherer Studien. TLR Stimulations-Experimente von gesamten 

Knochenmarkszellen und aus Knochenmark FACS-gesorteten pDCs zeigten in der KO-

Gruppe eine deutlich gestörte IFN-α Sekretion nach Aktivierung von TLR7 und 9 ex vivo, 

welche statistisch signifikant war. FACS-gesortete cDCs waren jedoch, bezogen auf die 

TLR-Funktion, nicht verändert. Zudem konnten in in vitro generierten Flt3L-induzierten 

DC Kulturen, welche sowohl pDCs als auch cDCs enthalten, eine fast vollständig 

fehlende Sekretion von IFN-α sowie eine reduzierte Sekretion von IL-6 nach Aktivierung 

von TLR7 und 9 beobachtet werden. Darüber hinaus zeigte sich in den HoxA9-

defizienten Flt3L-induzierten Kulturen im Vergleich zum WT eine leicht reduzierte Rate 

an differenzierten Zellen, eine erhöhte Rate an toten Zellen sowie eine veränderte 

pDC/cDC Ratio. Die in vitro generierten HoxA9-/- GM-CSF-induzierten cDCs sowie die 

M-CSF-induzierten Makrophagen waren weder in den FACS-Analysen noch in den TLR 

Stimulations-Experimenten verändert, verglichen zum WT. Die Anzahl von pDCs und 

cDCs in primären Milzzellen mit HoxA9-Knockout zeigte sich in den FACS-Analysen 

unverändert zum WT. Die Sekretion von IFN-α war hingegen, ähnlich wie im 

Knochenmark, nach Stimulation von TLR7 und 9 im Vergleich zum WT reduziert. Eine 

genomweite Microarray-Analyse von ex vivo FACS-gesorteten pDCs aus dem 
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Knochenmark, konnte eine veränderte Expression multipler Gene, z.B. des HoxA9 

Kofaktors Meis1, bei HoxA9-Defizienz nachweisen. 

 

Fazit: Die Ergebnisse dieser Studie lassen auf eine essenzielle Rolle von HoxA9 im 

Rahmen der TLR-vermittelten IFN-α Sekretion von pDCs schließen. Hingegen kann kein 

Einfluss von HoxA9 auf die TLR-induzierten Immunreaktionen von cDCs und 

Makrophagen gezeigt werden. Die Differenzierung von DCs unter HoxA9-defizienten 

Bedingungen ist in vitro teilweise verändert. Dieser Effekt scheint jedoch in vivo 

kompensiert zu sein. Zunehmende Hinweise zeigen, dass pDCs bei unterschiedlichen 

Erkrankungen wie Virusinfektionen, Autoimmunerkrankungen und im Rahmen der 

Tumorgenese von verschiedenen Krebserkrankungen eine wichtige Rolle einnehmen. 

Dies unterstreicht die Wichtigkeit dieser Immunzellen. Der Transkriptionsfaktor HoxA9 

rückt damit als ein potenzielles therapeutisches Ziel in den Fokus. 
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1. INTRODUCTION 

 

1.1 THE IMMUNE SYSTEM 

 

1.1.1 CLASSIFICATION AND FEATURES OF THE IMMUNE SYSTEM 

 

The presence of infectious pathogenic microorganisms like bacteria, viruses, fungi, and 

parasites in the environment of human beings leads to the necessity of specific defense 

mechanisms against attacking microbes (Murphy et al., 2012). These defense 

mechanisms are driven by cells and molecules of the human immune system, which 

comprises an innate and adaptive part. Both, innate and adaptive immunity, consist of 

cellular and humoral (non-cellular) components, which cooperate to eliminate foreign 

invaders. The adjusted and coordinated response of an organism against the invasion of 

infectious microbes is called the immune response (Abbas et al., 2007). The immune 

system is further capable to identify and kill malignantly transformed cells, thus, another 

main function is prevention from emerging cancer diseases. Under pathological 

conditions even noninfectious foreign substances are able to elicit immune responses 

resulting in allergic diseases. Furthermore, immune defense mechanisms directed against 

components of the host itself can cause massive inflammation, which leads to the origin 

of autoimmune diseases. Deficient self-tolerance mechanisms are believed to be 

responsible for the latter. Interestingly, it seems that there is an inverse relation between 

autoimmune disorders or allergic diseases on one hand (e.g. Crohn’s disease, Multiple 

sclerosis, Type I diabetes, or Asthma) and infectious diseases on the other hand (e.g. 

Measles, Mumps, Tuberculosis, or Hepatitis A) in industrialized countries (Bach, 2002). 

The decline of infectious diseases in Western countries is accompanied by a fast increase 

of allergy and autoimmune disorders.  

 The human immune system can be subdivided into innate and adaptive immunity, 

as mentioned before. Rapid immune responses are prompted by cells and molecules of 

the innate immune system, whereas adaptive immunity is responsible for later reactions 

that drive long-lasting highly specific defense mechanisms (Abbas et al., 2007). Important 

components of innate immunity are several cell types including MΦs, DCs, neutrophils, 

and natural killer (NK) cells and physical or chemical barriers such as epithelial cells of 

the skin and all mucosal membranes that produce antimicrobial peptides. Further, proteins 

of the complement system that circulate in the blood stream and all kinds of cytokines 
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and chemokines that regulate and coordinate immune cells are components of innate 

immunity (Abbas et al., 2007). T and B lymphocytes are the cellular part of the adaptive 

immune system, which are able to develop powerful defense mechanisms that “adapt” to 

the particular pathogen by targeting distinct antigens with highly specific antibodies 

(Abbas et al., 2007; Murphy et al., 2012). 

 To efficiently fight acute infections and induce long-lasting protection, the human 

immune system requires at least four main features, which are pathogen recognition, 

effector mechanisms, immune regulation, and immunological memory (Murphy et al., 

2012). The task of identifying infection is done by cells of the innate immune system 

using specific receptors that recognize conserved structures shared by groups of related 

microbes (Abbas et al., 2007) called pattern recognition receptors (PRRs) including the 

TLR family. And further by lymphocytes of the adaptive immune system which recognize 

specific antigens of particular pathogens using their B and T cell receptor (BCR, TCR) 

that are randomly generated by complex processes called gene rearrangement and somatic 

hypermutation (Flajnik and Du Pasquier, 2004; Murphy et al., 2012). Once detected, 

several humoral and cellular effector functions of innate and adaptive immunity such as 

phagocytosis by MΦs or DCs, cytotoxic activities of specific T lymphocytes (CD8+ T 

cells), antibodies produced by plasma cells, or the complement system collectively intend 

to keep infection under control and completely destroy all pathogens if possible. To 

prevent an exaggerated immune reaction and falsely induced immune responses to 

structures of the host itself, diverse regulatory self-tolerance mechanisms are needed 

(Abbas et al., 2007; Murphy et al., 2012). As already mentioned above, dysfunctions in 

immune regulation and self-tolerance result in allergic and autoimmune diseases. Long-

lasting protection to avoid recurring infections by the same microbe is mediated by the 

adaptive immune system, which is able to memorize highly defined structures of 

pathogens and induce immediate immune responses when re-infection occurs (Murphy et 

al., 2012).  

 All cells of the immune system originate from pluripotent hematopoietic stem 

cells (HSCs) in the bone marrow (Murphy et al., 2012). Most cell types of innate 

immunity arise from the common myeloid progenitors (CMPs) such as monocytes, MΦs, 

most DCs, all kinds of granulocytes, and mast cells. NK cells derive from the common 

lymphoid progenitors (CLPs) and belong to the family of lymphocytes. DCs can also arise 

from CLPs. B cells and T cells, the cellular part of the adaptive immune system, are also 

lymphocytes and emerge from CLPs (Murphy et al., 2012).  
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Understanding physiological as well as pathological mechanisms of the immune 

system is essential to improve existing and develop novel therapies or diagnostics of 

almost all kinds of diseases to further advance average life expectancy and assure the 

basic right of physical and mental health of all human beings. Thus, investigating the 

immune system and its properties is of utmost importance for all disciplines of medicine 

and plays an integral role in biomedical research.  

 

1.1.2 ORIGIN AND EVOLUTION OF THE IMMUNE SYSTEM 

 

Some sort of innate immune system can be found in all multicellular organisms 

(metazoans), whereas adaptive immunity is only present in vertebrates (Abbas et al., 

2007) that firstly appeared in jawed vertebrates (gnathostomes; e.g. sharks) (Abbas et al., 

2007; Flajnik and Du Pasquier, 2004). Different kinds of phagocytes are present in all 

metazoans. Their capability to engulf microbes and kill them makes these cells effective 

defenders of innate immunity (Abbas et al., 2007). Humoral components of the innate 

immune system in invertebrates comprise different antimicrobial molecules, whereas the 

complement system and antibodies as well as antibody-producing lymphocytes are not 

existing in these creatures (Abbas et al., 2007). Different PRRs and especially TLRs are 

found in all metazoans and seem to be a very old efficient solution to recognize infection, 

which was therefore highly conserved. Interestingly, species without adaptive immunity 

possess a larger diversity of TLRs (e.g. Echinodermata hold 222 TLRs) than vertebrates 

(e.g. mammals possess 10 – 13 TLRs) (Ward and Rosenthal, 2014), indicating that the 

presents of adaptive immune mechanisms might have led to negative selection of TLRs 

(Ward and Rosenthal, 2014). However, the fact that adaptive immune responses are 

actually triggered by innate immune cells using pathogen recognition by TLRs among 

others and the emerging evidence that TLRs are also expressed in B and T lymphocytes 

providing other important functions (Michallet et al., 2013) complicates former 

reflections and shows that innate and adaptive immunity cannot be sharply separated. 

Moreover, professional antigen-presenting cells (APCs) like DCs might have evolved 

from phagocytes together with the adaptive immune system that actually provided the 

need for antigen-presentation (Schmid et al., 2010).  

The most established theory of the origin of the adaptive immune system is that a 

transposon containing the gene for the RAG (recombination activating genes) 

recombinase was inserted into a immunoglobulin gene member in an ancestor of jawed 
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vertebrates (Abbas et al., 2007; Flajnik, 2014). Latest findings demonstrated additional 

adaptive immune mechanisms even in jawless vertebrates, for instance the so-called 

variable lymphocyte receptors (VLRs) (Flajnik, 2014; Ward and Rosenthal, 2014). Of 

note, VLRs contain leucine rich repeats (LRRs) which are also found in the ectodomains 

of TLRs, hence, it is possible that VLRs could have developed from TLRs (Litman et al., 

2005).  

For decades, most immunologists put their focus on analyzing the complex 

mechanisms of the adaptive immune system, which basically started with a dispute 

between the founding fathers of immunology at the end of the 19th century whether 

Metchnikoff’s phagocytes or Ehrlich’s antibodies were more important and ended up with 

a victory of the latter (Silverstein, 2003). The discovery of TLRs in the late 1990s led to 

a new perspective on innate immunity and substantially changed the field of immunology. 

The findings concerning innate immunity in recent years provided remarkable new 

insights showing a far more complex system that has ever been expected. Strict separation 

of adaptive and innate immunity seems to be not possible and both are definitely 

necessary for efficient immune responses in mammals.  

 

1.1.3 INNATE IMMUNITY  

 

Properties that are attributed to the innate immune system exist already before organisms 

are exposed to microbes and can act rapidly in order to combat infection and induce 

further immunity mediated by the adaptive immune system (Abbas et al., 2007). Immune 

responses basically occur in three steps (Murphy et al., 2012). Natural barriers like the 

epithelium of the skin and the mucosa of the respiratory and gastrointestinal tracts are 

components of innate immunity that prevent invasion of intruders physically and 

chemically by arranging a certain antimicrobial milieu (e.g. by  establishing a low pH 

hard to live for most microbes or producing antimicrobial molecules) (Abbas et al., 2007; 

Murphy et al., 2012). A broad range of molecules present in the blood stream, several 

extracellular fluids, and the surface of epithelia are able to digest or lyse bacterial cell 

walls (e.g. lysozyme or defensins) and/or mark bacteria for phagocytosis by phagocytes 

such as MΦs or DCs including proteins of the complements system (Murphy et al., 2012). 

Many infections can be stopped by these mechanisms. Microbes that overcome those 

preventive actions are recognized by pattern recognition receptors (PRRs) of innate 

immune cells that sense evolutionary conserved structures occurring only in pathogens 
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(often essential for survival) and not the host itself called pathogen-associate molecular 

patterns (PAMPs) (Abbas et al., 2007; Janeway and Medzhitov, 2002; Murphy et al., 

2012). By recognizing PAMPs through PRRs, innate immune cells are activated and a 

number of effector mechanisms are launched. Complex signaling cascades induce 

transcription factors that subsequently migrate to the nucleus to activate the transcription 

of multiple genes resulting in production and secretion of several cytokines and 

chemokines that initiate a state of inflammation (Kumar et al., 2011). Among other things, 

these molecules prompt an acute-phase reaction and promote attraction of further immune 

cells such as monocytes and neutrophils that circulate in the blood stream by dilatation 

and higher permeability of local vessels and increased expression of adhesion molecules 

by epithelial cells (Murphy et al., 2012). Additionally, soluble factors of innate immunity 

from the blood are able to enter sites of infection. Activated blood clotting in local vessels 

further prevents that microbes can quickly spread through the blood stream (Murphy et 

al., 2012). Moreover, the activation of MΦs and DCs by PRRs facilitates antigen 

presentation of molecules derived from phagocytosed pathogens to naïve T lymphocytes 

and thus initiates highly efficient adaptive immunity (Abbas et al., 2007; Kumar et al., 

2011; Murphy et al., 2012). The last aspect reflects the third step of immune responses, 

which is necessary when the first two lines of defense have been overwhelmed (Murphy 

et al., 2012).   

The basic purposes of innate immunity consist of prevention of a potential or rapid 

control and elimination of an ongoing infection by inducing inflammation. If these 

mechanisms are not effective enough to clear attacking microbes, another important 

function is to trigger adaptive immune responses and further facilitate the appropriate 

type of adaptive immunity, which is different depending on the particular pathogen 

(Abbas et al., 2007).  
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1.2 PATTERN RECOGNITION RECEPTORS (PRRS) 

 

1.2.1 THE ROLE OF PRRS IN THE INNATE IMMUNE SYSTEM 

 

As mentioned above, microbial invaders such as bacteria, viruses, fungi, and protozoan 

parasites cause infection and activate cells of the innate immune system including DCs, 

MΦs, and others (Kumar et al., 2011). Highly conserved PAMPs are sensed by 

transmembrane or cytoplasmic proteins referred to as PRRs (Kawai and Akira, 2010). In 

addition, endogenous molecules released from damaged cells, named damage- or danger-

associated molecular patterns (DAMPs), do as well contribute to PRR activation 

(Takeuchi and Akira, 2010). Four different families of PRRs have been identified so far. 

Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) are transmembrane 

proteins whereas RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs) encounter 

their ligands in the cytoplasm. Thus, intracellular as well as extracellular recognition of 

numerous pathogenic molecules including lipids, proteins, lipoproteins, carbohydrates, 

and nucleic acids provides a wide range of detecting infection (Kawai and Akira, 2010; 

Kumar et al., 2011). Different cellular compartments such as the plasma membrane, the 

cytosol, endosomes, lysosomes, endolysosomes, and phagosomes are sites of this action 

(Blasius and Beutler, 2010). Sensing of PAMPs and DAMPs by PRRs of innate immune 

cells rapidly triggers complex intracellular signaling pathways that initiate transcriptional 

expression of various proinflammatory cytokines, type I IFNs, chemokines, and 

antimicrobial peptides (Kawai and Akira, 2011; Kumar et al., 2011). Moreover, activation 

of PRRs primes DC maturation, which in turn is important for prompting T cell mediated 

adaptive immune responses (Kawai and Akira, 2011).  

Taken together, PRR signaling immediately starts an innate immune response and 

elicits antigen-specific adaptive immunity in order to eliminate invading infectious agents 

(Kawai and Akira, 2011; Kumar et al., 2011). On one hand, pathogens mostly activate 

several PRRs simultaneously due to multiple PAMP composition of each species. On the 

other hand, different PRRs can recognize the same PAMP (Kawai and Akira, 2011). The 

particular expression of various PRRs depends on the immunological cell type and very 

importantly, the crosstalk between diverse PRRs seems to be essential for mounting 

proper immune responses and is tailored to the certain infecting microbes (Kawai and 

Akira, 2010). In addition, PRRs can be found in several nonprofessional immune cells 

such as endothelial cells or fibroblasts (Takeuchi and Akira, 2010). 
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1.2.2 DIFFERENT TYPES OF PRRS 

 

1.2.2.1 RIG-I-LIKE RECEPTORS (RLRS) 

 

This work is focusing on members of the TLR family, which are discussed in detail in 

section 1.2.3. Besides TLRs, the most prominent members of PRRs, other PRR families 

were identified and extensively studied in the last couple of years. One of them is the 

family of RIG-I-like receptors (RLRs), which consists of the RNA helicases RIG-I, 

MDA5, and LGP2 that sense genomic dsRNA of dsRNA viruses and dsRNA replication 

intermediates of ssRNA viruses in the cytoplasm of infected cells (Takeuchi and Akira, 

2010). Activation of these receptors leads to production of proinflammatory cytokines 

that initiate inflammation and attract DCs and MΦs to sites of inflammation and type I 

IFNs inducing an antiviral state in infected and healthy cells via an autocrine and 

paracrine way (Kumar et al., 2011; Takeuchi and Akira, 2010). RIG-I detects short 

dsRNA which is considerably enhanced when including a 5’ triphosphate, whereas 

MDA5 senses long dsRNA including the synthetic dsRNA analog Poly I:C (Takeuchi 

and Akira, 2010). LGP2 was initially believed to serve as a negative regulator of RIG-I 

and MDA5, but instead turned out as a positive regulator (Gürtler and Bowie, 2013; 

Kumar et al., 2011).  

 

1.2.2.2 NOD-LIKE RECEPTORS (NLRS) 

 

Another PRR family that senses their ligands in the cytosol are NLRs, consisting of more 

than 20 members in humans and more than 30 in mice (Kumar et al., 2011). They 

recognize a broad range of PAMPs mainly derived from bacteria, but also viral and fungal 

structures. The two most prominent members are NOD1 and NOD2, which perceive 

peptidoglycans from various bacteria (Takeuchi and Akira, 2010). Interestingly, genetic 

variants of NOD1 and NOD2 have been linked to allergic diseases like asthma or atopic 

dermatitis and Crohn’s disease, an autoimmune disorder affecting the gastrointestinal 

tract, respectively (Kumar et al., 2011). Upon ligation, proinflammatory cytokines are 

upregulated via the transcription factor NFκB and the MAP kinase pathway (Kumar et 

al., 2011). Some NLRs such as NLRP3 and NLRC4 are part of protein complexes called 

inflammasomes that are found in DCs and MΦs activated by several PAMPs, together 
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with other receptors like AIM2 and ASC (see further passages), resulting in production 

of IL-1β through proteolytic activation of caspase-1 (Kumar et al., 2011).  

 

1.2.2.3 C-TYPE LECTIN RECEPTORS (CLRS) 

 

CLRs are localized to the plasma membrane and recognize different carbohydrates found 

in viruses, fungi, and bacteria (Takeuchi and Akira, 2010). All members contain at least 

one C-type lectin-like domain (CTLD) (Dambuza and Brown, 2015). Well known are 

dectin-1 and dectin-2 that sense β–glucans from fungi and have been shown to play an 

important role in anti-fungal immunity. Their activation leads to induction of 

proinflammatory cytokines through the transcription factors NFAT and NFκB (Takeuchi 

and Akira, 2010). However, latest findings showed that also proteins and lipids can serve 

as ligands and that type I IFNs are induced via activation of IRF5 (Dambuza and Brown, 

2015). Interestingly, CLRs have been implicated recently in the regulation of 

homeostasis, autoimmunity, allergy, and cancer (Dambuza and Brown, 2015). 

 

1.2.2.4 CYTOSOLIC DNA SENSORS  

 

Beside the four PRR families discussed above and in section 1.2.3, several other sensors 

have been identified in recent years, some of which can not be assigned to a particular 

PRR family. This section briefly introduces different PRRs that are able to detect DNA 

in the cytosol of cells. Apart from the well known DNA sensor TLR9, which is restricted 

to endosomal/endolysosomal compartments, several receptors localized to the cytosol 

were found to recognize DNA (Gürtler and Bowie, 2013). Double-stranded DNA 

(dsDNA) derived from pathogens as well as host cells possess immunostimulatory 

activity when present in the cytoplasm (Gürtler and Bowie, 2013). The PYHIN proteins 

IFI16 (p204 in mice) and AIM2 sense cytoplasmic dsDNA and use the adaptor proteins 

STING and ASC, which lead to induction of type I IFNs or IL-1β and IL-18 through 

caspase-1, respectively (Paludan and Bowie, 2013). These proteins are summarized as 

AIM2-like receptors (ALRs). Interestingly, the recognition of dsDNA by these receptors 

is independent of any motifs and is mediated by electrostatic interactions between the 

sugar phosphate backbone of the DNA and the HIN domain of the receptors (Gürtler and 

Bowie, 2013).  The adaptor molecule STING itself can bind cyclic dinucleotides (CDNs) 

that serve as second messengers in bacteria and another dsDNA sensor called cGAS 
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catalyzes the production of cGAMP (cyclic GMP-AMP, a type of endogenous CDNs) 

after ligation that further activates STING (Gürtler and Bowie, 2013; Sun et al., 2013a; 

Wu et al., 2013). Several DExD/H box proteins have also been shown to sense cytosolic 

DNA using different signaling pathways. For instance the members DHX9 and DHX36 

are expressed in pDCs and recognize cytosolic CpG DNA leading to production of 

proinflammatory cytokines and type I IFNs through activation of NFκB and IRF7 via the 

adaptor molecule MyD88 (Gürtler and Bowie, 2013). Other prominent DNA receptors 

include the dsDNA recognizing protein DAI and the AT-rich dsDNA (present in some 

pathogens) sensing RNA Polymerase III (Pol III). The latter transcribes AT-rich DNA to 

dsRNA containing a 5’ triphosphate that is subsequently recognized by RIG-I (Gürtler 

and Bowie, 2013). Many viruses enforce replication in the nucleus probably to avoid 

cytosolic DNA sensing, however, some receptors have been shown to recognize 

microbial DNA even in the nucleus such as IFI16 (Gürtler and Bowie, 2013; Paludan and 

Bowie, 2013). The fact that host-derived DNA serves as DAMP in the cytosol in contrast 

to different self RNA species suggests a central role for cytosolic DNA sensors not only 

in antimicrobial defense mechanism but also in the pathogenesis of autoimmunity and 

needs to be further elucidated (Gürtler and Bowie, 2013; Paludan and Bowie, 2013). 

AIM2 and IFI16 are additionally known to be involved in stimulating inflammasome 

protein complexes (Paludan and Bowie, 2013). 

 

1.2.3 TOLL-LIKE RECEPTORS (TLRS) 

 

1.2.3.1 DISCOVERY, PROPERTIES, AND LOCALIZATION OF TLRS 

 

After the discovery of the Toll protein in Drosophila melanogaster (Gay and Keith, 1991; 

Lemaitre et al., 1996) and its orthologous gene TLR4 (Medzhitov et al., 1997), TLRs 

were the first family of PRRs to be found in mammals (Kawai and Akira, 2011). They 

are the largest PRR subgroup and believed to be the most important innate immune 

sensors (Kumar et al., 2011). Currently, 10 and 12 functional TLRs have been identified 

in humans and mice, respectively, which are mainly well characterized. TLR1 to TLR9 

are expressed in both species whereas TLR10 is only functional in humans due to an 

endogenous retrovirus insertion that causes a stop codon in the murine TLR10 gene 

(Kawai and Akira, 2010; Kumar et al., 2011). Moreover, the gene of TLR11 in humans 
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is dysfunctional and TLR12 and TLR13 are considered to be completely lost from the 

human genome (Roach et al., 2005). 

TLRs are type I transmembrane glycoproteins consisting of an ectodomain that 

contains 16 to 28 leucin-rich repeats (LRRs) (Matsushima et al., 2007) required for 

PAMP/DAMP recognition, a transmembrane region,  and a cytoplasmic Toll/interleukin-

1 receptor (TIR) domain prerequisite for initiation of intracellular signal transduction 

(Kawai and Akira, 2011). The crystal structure of the ectodomain of several TLRs reveals 

a “horseshoe” or “m” shaped architecture. After ligand binding, the ectodomain forms a 

dimer either with the same TLR type (homodimers) or other TLRs (heterodimers) 

depending on the particular receptor (Jin and Lee, 2008).  

The family of TLRs can be largely divided into 2 subgroups according to their 

localization and PAMP recognition. Primarily cell surface localized TLR1, TLR2, TLR4, 

TLR5, and TLR6 sense bacterial, fungal, and parasitic membrane components whereas 

TLR3, TLR7, TLR8, and TLR9 are restricted to intracellular compartments (endoplasmic 

reticulum (ER), endosomes, lysosomes, and endolysosomes) and predominantly 

recognize nucleic acids derived from several bacteria and viruses or infected cells after 

internalization (Blasius and Beutler, 2010; Kumar et al., 2011). The latter are sequestered 

in the ER and transported to the endosome/endolysosome via the Golgi apparatus prior 

to ligand encounter (Blasius and Beutler, 2010). Distinction of foreign nucleic acids from 

host nucleotides might be the reason of the endolysosomal localization of this TLR 

subgroup, considering that host nucleic acids are usually not present in these 

compartments (Barton et al., 2006; Blasius and Beutler, 2010). The localizations of 

TLR10 to TLR13 are discussed in several studies presenting diverse results. Human 

TLR10 shares a common locus on chromosome 4p14 and has sequence similarity to 

TLR1 and TLR6 (Hasan et al., 2005) and is therefore believed to be mainly expressed on 

the cell surface (Blasius and Beutler, 2010). TLR11, which is a relative to TLR5 (Kawai 

and Akira, 2009), is exclusively expressed in mice and senses its ligands on the cell 

surface (Blasius and Beutler, 2010; Kumar et al., 2009; Takeuchi and Akira, 2010). 

Nevertheless, recent findings demonstrate that TLR11 is also expressed within 

intracellular compartments and TLR11/TLR12 heterodimers recognize the profilin-like 

protein of the protozoan Toxoplasma gondii in an UNC93B1-dependent manner (Andrade 

et al., 2013; Lee et al., 2013; Pifer et al., 2011). The chaperon UNC93B1, a 12 membrane-

spanning protein, physically interacts with intracellular TLRs in both humans and mice 

in the ER and is crucial for trafficking to the endosome/endolysosome (Casrouge et al., 
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2006; Kim et al., 2008; Tabeta et al., 2006). Most recently, TLR13 has been reported to 

respond to a bacterial ssRNA segment within 23S RNA in an UNC93B1-dependent way 

(Hidmark et al., 2012; Li and Chen, 2012; Oldenburg et al., 2012). Hence, TLR13 is 

another member of nucleotide-sensing endocytic TLRs. Further on, Lee et al. 

demonstrated that UNC93B1 is necessary for TLR3, 7, 9, 11, 12, and 13 to leave the ER 

and join endolysosomal compartments, implicating enlargement of the intracellular TLR 

subgroup in mice (Lee et al., 2013).  

Trafficking of TLRs from the ER to the cell membrane or via the Golgi apparatus 

to the endosome/lysosome and overall TLR regulation to ensure appropriate function 

seems to be a complex scenario, since several proteins are involved and cell type 

dependency was demonstrated (Blasius et al., 2010; Blasius and Beutler, 2010). Apart 

from UNC93B1, which is indispensable for intracellular TLRs, the proteins gp96 (also 

known as Hsp90b1) and PRAT4A are essential for proper TLR 1, 2, 4, 5, 7, and 9 

localization (Kawai and Akira, 2011). Evidence for gp96 in TLR9 trafficking suggest 

further roles in conformational stability and involvement in proteolytic processes (Brooks 

et al., 2012). TLR7 and TLR9 processing and signaling in plasmacytoid dendritic cells is 

different from those in other cell types and depends on specific lysosomal sorting proteins 

(for details see chapters 1.2.3.4 and 1.3.1.2). Interestingly, only intracellular TLRs that 

access acidified endolysosomes are activated, since bafilomycin A1, chloroquine, and 

ammonium chloride inhibit acidification and abrogate TLR responses (Bauer, 2013; 

Häcker et al., 1998). Several lysosomal enzymes such as asparagine endopeptidase (AEP) 

and cathepsins (cathepsin l, k, and s) are involved in processing the N-terminal region of 

the ectodomains of TLR7 and 9, which enhances ligand binding and is indispensable for 

efficient signal transduction (Bauer, 2013; Blasius and Beutler, 2010; Ewald et al., 2011). 

Interestingly, TLR3 seems to be nonparticipating in cleavage processing (Blasius and 

Beutler, 2010). 

 

1.2.3.2 PATTERN RECOGNITION BY TLRS 

 

As mentioned above, TLRs are activated by numerous molecular structures of many 

microorganisms. Bacterial PAMPs comprise different cell wall components (e.g. LPS, 

peptidoglycan), nucleic acids including genomic DNA rich in unmethylated CpG-motifs 

and bacterial RNA, and the flagellin protein expressed by flagellated bacteria (Kumar et 

al., 2011). Patterns of viruses detected by several TLRs are nucleic acids (ssRNA, 
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dsRNA, ssDNA, and dsDNA) and coat proteins (e.g. RSV, MMTV). The recognition of 

fungal PAMPs including β-glucans and mannans involves co-receptors such as dectins, 

CD14, mannose receptors, and DC-SIGN (Kumar et al., 2011). Infections by protozoans 

are recognized by TLRs sensing membrane associated patterns (e.g. alkylacylglycerol 

from   Trypanosoma or lipophosphoglycan (LPG) from Leishmania), genomic DNA, the 

actin associated profillin-like protein, and hematin crystals (Kumar et al., 2011). The 

TABLES 1.1 and 1.2 depict all currently known ligands and their origin of cell surface and 

intracellular localized TLRs, respectively. 

 Besides their important role of recognizing infectious microorganisms, 

inappropriate TLR responses without negative regulation and sensing of host-derived 

endogenous structures have been shown to be strongly involved in acute and chronic 

inflammation, several autoimmune processes, and cancer (Kawai and Akira, 2010). 

Section 1.2.4 will give some brief insights into this issue.  

TLR2 senses multiple PAMPs from bacteria, fungi, and viruses by forming 

homodimers or heterodimers either with TLR1 or TLR6 on the cell surface (Takeuchi and 

Akira, 2010). The cell wall of gram-positive bacteria contains peptidoglycan and 

lipoteichoic acid, which are detected by TLR2 homodimers (Schwandner et al., 1999). 

These TLR2 homodimers also detect lipoarabinomannan (LAM) from mycobacteria. 

Diacyl or triacyl lipoproteins are recognized by TLR6/TLR2 or TLR1/TLR2 

heterodimers, respectively, from bacteria, mycoplasma, and mycobacteria (Kumar et al., 

2009). Additionally, zymosan from fungi, tGPI-mucin from Trypanosoma cruzi, and the 

coat protein of the measles virus termed hemagglutinin is detected by TLR2 (Kawai and 

Akira, 2010). In vivo studies showed important roles for TLR2 and TLR6 in fighting RSV 

infections (Kawai and Akira, 2010). Stimulation with synthetic TLR2 ligands such as 

Pam3CSK4 (Pam3Cys), a synthetic triacetylated (tripalmitoylated) lipopeptide that 

stimulates TLR1/2 heterodimers, induces activation of the transcription factor NFκB 

(Ozinsky et al., 2000) and subsequent expression of proinflammatory cytokines (e.g. 

TNF-α, IL-1β, and IL-6) but not type I IFNs in DCs and MΦs (Takeuchi and Akira, 2010). 

Nevertheless, Barbalat and colleagues described type I IFN induction after viral TLR2 

stimulation of inflammatory monocytes, indicating cell type-dependent signaling and 

function (Barbalat et al., 2009).  

TLR3 is part of the intracellular TLR subgroup and identifies double-stranded 

RNA (dsRNA), which is present in some viruses (Blasius and Beutler, 2010). 

Polyinosinic-polycytidylic acid (Poly I:C) is structurally similar to dsRNA and represents 
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a synthetic ligand of TLR3 (Alexopoulou et al., 2001). Further, ssRNA and dsDNA 

viruses were found to trigger TLR3 activation (see TABLE 1.2 for details) (Blasius and 

Beutler, 2010). This observation might be due to dsRNA intermediates during positive 

sense ssRNA virus replication and bidirectional transcription of dsDNA virus genomes 

resulting in dsRNA sensed by TLR3 (Weber et al., 2006). Activation of TLR3 leads to 

the expression of type I IFNs and proinflammatory cytokines via IRF3 and NFκB, 

respectively (Trinchieri, 2010). Furthermore, in vivo studies revealed a critical role for 

TLR3 in IL-12 production (Kato et al., 2006). 

Lipopolysaccharide (LPS) is a cell wall component of the outer membrane of 

gram-negative bacteria and is known to provoke septic shock (Kawai and Akira, 2010; 

Takeuchi and Akira, 2010). It is recognized by TLR4 in cooperation with the co-receptor 

myeloid differentiation factor 2 (MD2) on the cell surface (Park et al., 2009). The LPS 

binding protein (LBP), a serum glycoprotein, extracts LPS from the bacterial outer 

membrane and transfers it to CD14, which is delivering LPS to the TLR4/MD2 complex 

(Miyake, 2006). Binding of LPS initiates homodimerization of two TLR4/MD2 

complexes and further downstream signaling leading to expression of AP-1, NFκB, and 

IRF3 associated genes (Park et al., 2009; Takeuchi and Akira, 2010). Moreover, TLR4 

recognizes envelope proteins of viruses (see TABLE 1.1 for details) and is participating in 

the pathogenesis of H5N1 avian influenza virus infection by detecting endogenous 

oxidized phospholipids (OxPL) (Imai et al., 2008).  

Flagellin from flagellated bacteria is the ligand of TLR5, which is highly 

expressed by DCs of the lamina propria (LPDCs) of the small intestine (Takeuchi and 

Akira, 2010; Yarovinsky et al., 2005). After recognition of flagellated bacteria by TLR5, 

LPDCs induce maturation of naïve T cells into Th1 and Th17 cells and the IgA production 

by activating naïve B cells that differentiate into plasma cells (Uematsu et al., 2008).  

Murine TLR7 and human TLR7/8 perceive ssRNA derived from viruses or 

synthetic ribonucleic acids (Diebold et al., 2004; Heil et al., 2004; Lund et al., 2004). The 

imidazoquinolines imiquimod (R837) and resiquimod (R848) are synthetic small purine 

analog compounds and as well able to trigger both human and murine TLR7 and human 

TLR8 activation (Hemmi et al., 2002; Jurk et al., 2002). Guanine analogs such as 

loxoribine are also agonists of TLR7 (Heil et al., 2003; Lee et al., 2003). In addition, 

several bacterial and fungal RNA species (Biondo et al., 2012; Eberle et al., 2009; Jöckel 

et al., 2012; Mancuso et al., 2009) and short interfering RNA (siRNA) (Hornung et al., 

2005) act as TLR7 ligand or in case of bacterial transfer RNA (tRNA) even as inhibitor 
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depending on the methylation status (Jöckel et al., 2012). Most recently it was shown that 

a single 2’-O-methylation can turn a TLR7/8 activating RNA sequence from 18s rRNA 

into a TLR8-specific agonist (Jung et al., 2015). The ligand of murine TLR8 is still 

unknown and remains elusive, however, imidazoquinolines are capable to trigger murine 

TLR8 together with polyT deoxynucleotides (poly-dT) (Gorden et al., 2006). 

Interestingly, TLR7 seems to be very important for the control of endogenous retroviruses 

(ERV), given the fact that TLR7-deficient mice develop retroviremia and lack sufficient 

anti-ERV-specific IgG antibodies (Yu et al., 2012). With TLR3 and TLR9 contributing 

in a currently unclear way, this property of TLR7 is crucial to prevent ERV-induced 

malignancies (Yu et al., 2012). 

Microbial DNA recognition in endosomal/lysosomal compartments is mediated 

by TLR9 (Bauer et al., 2001; Hemmi et al., 2000; Takeshita et al., 2001). A sequence 

motif within bacterial and viral DNA called CpG, which contains a hexamer with an 

unmethylated cytosine-phosphatidyl-guanine dinucleotide bordered by 5’ purines and 3’ 

pyrimidines (Bauer, 2013), is four times less abundant in eukaryotic DNA and believed 

to be the main activator of TLR9-driven immune responses (Blasius and Beutler, 2010). 

By contrast, recent findings demonstrated a CpG motif-independent stimulation of TLR9 

in murine pDCs by natural phosphodiester (PD) DNA (Bauer, 2013). Simply the 

phosphate-deoxyribose backbone without purine or pyrimidine nucleobases seems to 

prime TLR9 stimulation in mouse pDCs (Haas et al., 2008; Wagner, 2008). Thus, the idea 

that intracellular compartmentalization of TLR9 is due to avoid host derived DNA 

recognition in order to prevent autoimmunity becomes more prevalent (Bauer, 2013; 

Wagner, 2008). In line with this idea, self-DNA in the extracellular space is normally 

degraded by nucleases and does not enter intracellular vesicles (Kawai and Akira, 2011). 

Moreover, self-DNA that somehow accesses endosomal/lysosomal compartments is 

believed to be degraded by endosomal DNases previously to TLR ligation (Takeuchi and 

Akira, 2010). Nonetheless, TLR9-dependent DNA detection by leukocytes of humans 

seems to be more reliant on CpG-motifs than cells of the murine innate immune system 

(Bauer, 2013). Additionally identified ligands of TLR9 are dsDNA viruses and the DNA 

of protozoan parasites (see TABLE 1.2 for details). Furthermore, hemozoin, a crystalline 

metabolite formed of digested hemoglobin from parasites such as Plasmodium, acts as 

carrier for parasitic DNA into the endosome/lysosome and thus enhances TLR9-

dependent immune responses (Parroche et al., 2007). However, Coban et al. state that 

hemozoin directly binds to TLR9 and functions as a TLR9 ligand (Coban et al., 2010). A 
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fascinating study about circadian rhythmicity in TLR biology revealed a temporal 

oscillating expression for TLR9 but not for other TLRs, indicating specific circadian 

control of TLR9-dependent innate immune responses by molecular clock genes (Silver et 

al., 2012). Interestingly, this time-dependent TLR9 expression was only observed in MΦs 

and B cells, but was lacking in DCs (Obermann and Bauer, 2012). It is noteworthy, that 

two classes of synthetic unmethylated CpG-motif containing oligodeoxynucleotides 

(ODNs) are used for TLR9 stimulation experiments. CpG-A ODNs (also known as D-

type ODNs) trigger a much higher IFN-α/β response in pDCs than CpG-B ODNs (also 

known as K-type ODNs), which mainly induce proinflammatory cytokines via NFκB (see 

chapter 1.2.2.4. for details) (Hemmi et al., 2003). CpG-A DNA consists of a single CpG-

motif and a 3’ poly-G tail on both PD- or PS-backbone, whereas CpG-B DNA contains 

either a single or multiple CpG-motifs on a PD- or PS-backbone (Blasius and Beutler, 

2010). 

Murine TLR11 is located either on the cell surface or the endosome/lysosome, as 

noted above, and senses uropathogenic bacteria and the actin associated profiling-like 

protein of the parasite Toxoplasma gondii by forming heterodimers with TLR12 (Andrade 

et al., 2013; Pifer et al., 2011; Yarovinsky et al., 2005). Ligands of TLR12 homodimers 

have not been identified so far.  

A bacterial ssRNA sequence within 23S rRNA of gram-positive and gram-

negative bacteria was lately found to trigger TLR13 activation (Hidmark et al., 2012; Li 

and Chen, 2012; Oldenburg et al., 2012). Remarkably, methylation of a single adenosine 

by erythromycin resistance methylases (Erms), which are encoded on transposons or 

plasmids, or natural substitution of the adenosine by guanosine in 28S rRNA of 

eukaryotes, abolishes both TLR13 activation and binding of MLS antibiotics (macrolides, 

lincosamides, and streptogramin) (Hochrein and Kirschning, 2013; Oldenburg et al., 

2012). Accordingly, this sequence-specific detection of bacterial rRNA induces immune 

responses and prevents autoimmunity in eukaryotes that retained TLR13, but provides an 

escape mechanism for Erm-possessing bacteria from both MLS antibiotics and TLR13-

dependent immunostimulatory activity (Bordon, 2012; Hochrein and Kirschning, 2013). 

Shi et al. further report that TLR13 expressing cells specifically respond to vesicular 

stomatitis virus (VSV) infection and that TLR13 knockdown leads to increased 

vulnerability to VSV (Shi et al., 2011).  
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TABLE 1.1 LIGANDS AND THEIR ORIGIN OF TLRS LOCALIZED TO THE PLASMA MEMBRANE  

TLR (CO-RECEPTORS)            LIGAND             ORIGIN  

 

TLR1/2 

 

TLR2 (Dectin-1, C-type        

            lectin) 

 

 

 

 

 

 

TLR4 (MD2, CD14,             

            LBP) 

 

 

 

 

 

 

 

 

 

 

TLR5 

 

TLR6/2 (CD36) 

 

 

TLR10* 

 

 

Triacyl lipopeptides 

 

Peptidoglycan 

Lipoarabinomannan (LAM) 

Hemagglutinin  

Phospholipomannan 

Glycosylphosphophatidyl 

inositol mucin  

Zymosan 

 

Lipopolysaccharide (LPS) 

Mannan 

Glycoinositolphospholipids 

Envelope proteins 

Pneumolysin 

 

Endogenous oxidized 

phospholipids (OxPL) 

 

Paclitaxel# 

 

 

Flagellin 

 

Diacyl lipopeptides 

Lipoteichoic acid 

 

Unknown 

 

 

Bacteria 

 

Gram pos. bacteria 

Mycobacteria 

Measles virus 

Candida 

Trypanosoma 

 

Saccharomyces 

 

Gram neg. bacteria 

Candida 

Trypanosoma 

MMTV, RSV 

Streptococcus 

pneumonia 

After H5N1 avian 

influenza virus 

infection 

pacific yew (Taxus 

brevifolia) 

 

Flagellated bacteria 

 

Mycoplasma 

Streptococcus 

 

Unknown 

 
Shown are currently known ligands, the origin of the ligands, and co-receptors of TLRs localized to the 

plasma membrane (Kawai and Akira, 2010, 2011; Kumar et al., 2011; Takeuchi and Akira, 2010). RSV, 

Respiratory syncytial virus; MMTV, Mammary tumor virus; *, only functional in humans; #, only in mice. 

 

 

1.2.3.3 SIGNALING PATHWAYS OF TLRS 

 

Engagement of the TLR ectodomain and its LRRs with the appropriate ligand generates 

dimerization, either with the same TLR or other TLRs depending on the particular 

receptor, and leads in part to conformational change, which is believed to initialize 

linkage to the cytosolic TIR domains (Latz et al., 2007). By doing so, adaptor proteins 

interconnect with their TIR domain to the TLR pertaining TIR domain dimer and launch 

a signaling cascade resulting in transcriptional expression of distinctive genes (Blasius 

and Beutler, 2010). 
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TABLE 1.2 LIGANDS AND THEIR ORIGIN OF TLRS LOCALIZED TO THE ENDOSOME/LYSOSOME  

TLR  LIGAND ORIGIN  

 

TLR3 

 

 

 

TLR7 

 

 

 

 

 

 

 

TLR8* 

 

 

 

 

 

 

TLR9 

 

 

 

 

 

 

TLR11#§ 

 

TLR11/12# 

 

TLR12# 

 

TLR13# 

 

 

  

ssRNA  

dsRNA 

dsDNA 

 

ssRNA (poly-U or GU-rich) 

 

Bacterial RNA 

Bacterial tRNA 

Imidazoquinolines (R837, R848) 

 

siRNA 

 

ssRNA (poly-U or GU-rich) 

Imidazoquinolines (R837, R838) 

 

 

siRNA 

2’-O-ribose methylated rRNA 

 

dsDNA viruses 

CpG motifs 

Phosphodiester (PD) 2’ deoxyribose 

 

Hemozoin 

DNA 

 

Uropathogenic bacteria 

 

Profilin-like protein 

 

Unknown 

 

Bacterial ssRNA segment of 23S 

rRNA 

(“CGGAAAGACC”) 

VSV 

 

 

WNV, RSV, EMCV 

Reovirus, Poly I:C 

MCMV, HSV 

 

VSV, Influenza virus 

Synthetic 

Streptococcus 

Several bacteria 

Purine analog 

compounds 

Synthetic 

 

RNA viruses, 

Synthetic 

Purine analog 

compounds 

Synthetic  

rRNA 

 

HSV, MCMV 

Bacteria and viruses 

DNA including self-

DNA 

Plasmodium 

Trypanosoma cruzi 

 

Bacteria 

 

Toxoplasma gondii 

 

Unknown 

 

Gram pos. and  

neg. bacteria 

 

VSV 

 
Shown are currently known ligands and their origin of endosomal/lysosomal localized TLRs (Andrade et 

al., 2013; Blasius and Beutler, 2010; Jung et al., 2015; Jöckel et al., 2012; Kawai and Akira, 2011; Kumar 

et al., 2009, 2011; Oldenburg et al., 2012; Pifer et al., 2011; Shi et al., 2011; Takeuchi and Akira, 2010). 

WNV, West Nile virus; EMCV, Encephalomyocarditis virus; MCMV, Murine cytomegalovirus; VSV, 

Vesicular stomatitis virus; HSV, Herpes simplex virus; CpG - cytosine-phosphatidyl-guanine; *, only in 

humans (murine TLR8 ligands are unknown); #, only in mice; §, expressed on the cell surface or/and 

endosomes/lysosomes. 

 

A set of five adaptor proteins are containing a TIR domain namely myeloid differentiation 

primary response protein 88 (MyD88), TIR domain containing adaptor inducing IFN-β 
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(TRIF) also known as TICAM-1, TRIF-related adaptor molecule (TRAM), TIR domain 

containing adaptor protein (TIRAP), and sterile-alpha and Armadillo motif-containing 

protein (SARM) (Takeuchi and Akira, 2010). Two main signaling pathways of TLRs are 

distinguished in general, the MyD88- and TRIF/TICAM-1-pathway (Takeuchi and Akira, 

2010). Besides TLR3, all TLRs require MyD88 to induce at least a complete signaling 

process, some in fact fully depend on it including TLR7 and 9 (see TABLE 1.3) (Blasius 

and Beutler, 2010). TLR3 dependently and TLR4 after internalization utilize the TRIF 

pathway with TRAM needed as a linkage between TLR4 and TRIF (Hoebe et al., 2003; 

Weighardt et al., 2004; Yamamoto et al., 2003). One study shows a TRIF-associated 

pathway in intestinal epithelial cells for TLR5 in addition to MyD88 (Choi et al., 2010). 

Current knowledge suggests that TRIF only signals from intracellular sites whereas 

MyD88 can do both, cell surface and endocytic regulated signaling. For TLR2 and TLR4 

signaling, the adaptor protein TIRAP is necessary to connect TLR and MyD88 (Takeuchi 

and Akira, 2010). TLR4 is the only TLR that associates with four adaptor proteins and 

induces both the MyD88- and TRIF-related signaling pathway (Kawai and Akira, 2010). 

Interestingly, one study showed recruitment of mitochondria to the phagosomes 

of macrophages after TLR1/2 and 4 activation, resulting in augmented ROS (reactive 

oxygen species) production, which was important for adequate anti-bacterial immunity 

(West et al., 2011). This might implicate mitochondria as a platform for TLR-mediated 

immune responses against bacteria (Kawai and Akira, 2011).  

After MyD88 is recruited to the paired cytoplasmic TIR domains of the activated 

TLR, the N-terminal death domain (DD) acts together with the DD of IL-1R-associated 

kinase 4 (IRAK4), a serine/threonine kinase which subsequently phosphorylates its 

family members IRAK1 and IRAK2 (Kawagoe et al., 2008). Further, the E3 ubiquitin 

ligase TNF receptor-associated factor 6 (TRAF6) is activated by the IRAK1/IRAK2 

complex (that detaches from MyD88) and in turn catalyzes the development of two 

polyubiquitin chains in cooperation with Ubc13 and Uev1A, one binding directly to 

TRAF6 itself and one remaining freely in the cytosol (Takeuchi and Akira, 2010). The 

latter activates a complex consisting of TGF-β-activated kinase 1 (TAK1), TAK1-bindind 

protein 1 (TAB1), TAB2, and TAB3 which phosphorylates IκB kinase β (IKK-β), a part 

of the IKK complex consisting of IKK-α, IKK-β, and NFκB essential modulator 

(NEMO), and activates a cascade of mitogen-activated protein kinases (MAPKs) 

including MAPKK3, MAPKK6, Jun kinases (JNKs), p38, and CREB (Blasius and 

Beutler, 2010; Takeuchi and Akira, 2010). 
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TABLE 1.3 ADAPTOR PROTEINS AND SIGNALING CASCADES OF TLRS 

TLR ADAPTOR PROTEIN TRANSCRIPTION 

FACTOR 

GENE EXPRESSION 

 

TLR1/2 

 

TLR2 

 

 

TLR3 

 

 

TLR4 

 

 

TLR5 

 

TLR6/2 

 

TLR7 

 

 

 

TLR8 

 

 

TLR9 

 

 

TLR11 

 

TLR12 

 

 

TLR13 

 

 

MyD88, TIRAP 

 

MyD88, TIRAP 

 

 

TRIF 

 

 

MyD88, TIRAP 

TRIF, TRAM 

 

MyD88, TRIF 

 

MyD88, TIRAP 

 

MyD88 

 

 

 

MyD88 

 

 

MyD88 

 

 

MyD88 

 

MyD88? 

 

 

MyD88 

 

 

NFκB 

 

NFκB, IRF3, IRF7 

 

 

NFκB, IRF3, IRF7 

 

 

NFκB, IRF3, IRF7 

 

 

NFκB 

 

NFκB 

 

NFκB, IRF7 

 

 

 

NFκB, IRF7 

 

 

NFκB, IRF7 

 

 

NFκB 

 

NFκB? 

 

 

NFκB, IRF7 

 

 

Proinflammatory cytokines 

 

Proinflammatory cytokines 

Type I IFNs 

 

Proinflammatory cytokines 

Type I IFNs 

 

Proinflammatory cytokines 

Type I IFNs 

 

Proinflammatory cytokines 

 

Proinflammatory cytokines 

 

Proinflammatory cytokines 

Type I IFNs 

 

 

Proinflammatory cytokines 

Type I IFNs 

 

Proinflammatory cytokines 

Type I IFNs 

 

Proinflammatory cytokines 

 

Proinflammatory 

cytokines? 

 

Proinflammatory cytokines 

Type I IFNs 

 
Shown are adaptor proteins, activated transcription factors, and resulting gene transcription of TLRs. 

(Barbalat et al., 2009; Choi et al., 2010; Kawai and Akira, 2011; Kumar et al., 2009; Shi et al., 2011) 

 

The phosphorylated IKK complex promotes phosphorylation of the NFκB inhibiting 

protein IκB, which therefore degrades, leading to NFκB translocation to the nucleus and 

further induction of proinflammatory cytokines such as TNF-α, IL-6, IL-12, and IL-1β 

(Blasius and Beutler, 2010). The MAPKs cascade finally triggers activation of the 

transcription factor complex AP-1 (activator protein-1) and subsequent cytokine 

expression (Takeuchi and Akira, 2010). 
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The upregulation of type I IFNs upon TLR7 and 9 signaling is completely MyD88 

dependent (Takeuchi and Akira, 2010), which especially in pDCs forms other complexes 

as noted above (for details see section below). Moreover, IRF5 binds directly to MyD88 

and TRAF6 and seems to be involved in proinflammatory cytokine production such as 

TNF-α, IL-6, and IL-12 upon TLR9 and TLR4 activation with CpG-DNA and LPS, 

respectively (Takaoka et al., 2005). IRF1 is induced by IFN-γ and also directly engages 

with MyD88 in cDCs and MΦs, indicating an important role for MyD88-dependent TLR 

signaling, since IRF1-deficient cells show impaired IL-12p35, iNOS, and IFN-β 

expression after TLR9 stimulation (Negishi et al., 2006; Schmitz et al., 2007).  

In response to dsRNA and LPS, TLR3 and 4, respectively, recruit the adaptor 

protein TRIF, with only TLR4 additionally requires TRAM as a linkage in between 

(O'Neill et al., 2003; Yamamoto et al., 2003). In case of TLR4, ligand recognition takes 

place at the cell surface with MyD88-dependent signaling cascade activation. However, 

TLR4 is internalized after ligand binding and indeed triggers TRIF-dependent signaling 

FIGURE 1.1 LOCALIZATION, TRAFFICKING, AND SIGNALING OF TLRS 
Localization, trafficking, and general signaling pathways of all currently known TLRs (apart from mouse-

specific TLR11 – 13) are depicted (Taken from Kawai and Akira, 2011). MP, macrophages; cDC, 

classical dendritic cells; pDC, plasmacytoid dendritic cells; LPDC, lamina propria dendritic cells; iMO, 

inflammatory monocytes; LRO, lysosome-related organelles. 
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in the early endosome (Tanimura et al., 2008). When TLR4 finally travels to late 

endosomes, this TRIF-dependent pathway is negatively regulated by a splice variant of 

TRAM called TRAM adaptor with GOLD domain (TAG) in mice and in humans by the 

TIR-domain containing protein SARM (Blasius and Beutler, 2010; Kawai and Akira, 

2011; Takeuchi and Akira, 2010). After initiation of downstream signaling, TRIF 

interconnects with its C-terminal domain with receptor-interacting protein 1 (RIP1) and 

RIP3 as well as with its N-terminal region with TRAF3 and TRAF6 (Blasius and Beutler, 

2010). Recruitment of TRAF6 mediates NFκB and MAPKs activation like reported for 

the MyD88-dependent way (Kawai and Akira, 2011). Furthermore, the TNF receptor-

associated death domain protein (TRADD) is required for this signaling pathway, 

interacting with several other factors in a quite complex way, ultimately resulting in 

NFκB activation (Kumar et al., 2011; Takeuchi and Akira, 2010). TRAF3, similar to 

TRAF6, functions as an E3 ubiquitin ligase and activates TANK-binding kinase 1 

(TBK1) and IKK-ε (also known as IKK-i), which in turn phosphorylate IRF3 and the E3 

ubiquitin ligase Pellino1 (Blasius and Beutler, 2010; Enesa et al., 2012; Kumar et al., 

2011). IRF3 dimers subsequently translocate to the nucleus and facilitate transcriptional 

expression of type I interferons and IFN-inducible genes (Takeuchi and Akira, 2010). The 

E3 ubiquitin ligase Pellino1 interacts with another transcription factor named DEAF1, 

which binds to the IFN-β promoter and thus seems to be involved in TBK1-associated 

type I IFN induction (Enesa et al., 2012; Ordureau et al., 2013). IKK-ε additionally 

phosphorylates STAT1, which is able to trigger some IFN-inducible genes such as Adar1, 

Ifit3, and Irf7 (Tenoever et al., 2007). Finally, a number of proteins control TBK1 and 

IKK-ε activation including TRAF family member-associated NFκB activator (TANK), 

NAK-associated protein 1 (NAP1), and similar to NAP1 TBK1 adapter (SINTBAD) 

(Takeuchi and Akira, 2010). FIGURE 1.1 depicts general signaling pathways of TLRs. 

 

1.2.3.4 TLR7 AND 9 SIGNALING IN PDCS 

 

TLR7 and 9 signaling in pDCs differentiates from those of other immune cells. The 

MyD88-dependent signaling pathway described above for TLR7 and 9 takes place in 

MΦs, B cells, cDCs as well as pDCs and culminates in the production of NFκB and 

MAPKs/AP-1 regulated proinflammatory cytokines (Blasius and Beutler, 2010). 
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However, an additional pathway in pDCs is responsible for immediate production of vast 

quantities of type I IFNs in response to coupled TLR7 and 9 signaling (see FIGURE 1.2). 

Accordingly, MyD88 associates with IRAK4, IKK-α, TRAF3, TRAF6, IRAK1, and IRF7 

to form a complex, which phosphorylates IRF7 (mediated by IRAK1 and IKK-α within 

the complex) and leads to further nuclear translocation of IRF7, followed by gene 

expression of type I IFNs (Blasius and Beutler, 2010; Honda et al., 2005b; Kawai and 

Akira, 2011; Takeuchi and Akira, 2010). Thus, IRF7 has turned out to be the master 

regulator of IFN-α/β induction in pDCs (Honda et al., 2005b). A continuous basal 

induction of IRF7 is believed to be responsible for the immediate and enormous type I 

IFN responses of pDCs (Honda et al., 2005b). In addition, other proteins are involved 

including OPNi (intracellular osteopontin) and Dock2, which also associate with the 

complex (Cao and Liu, 2006; Gotoh et al., 2010; Shinohara et al., 2006). OPNi is 

FIGURE 1.2 SIGNALING PATHWAYS OF TLR3, 7, AND 9 IN PDCS, CDCS, AND MΦS  
Murine cDCs and macrophages possess all three receptors and use signaling pathways resulting in gene 

expression via IRF3, AP-1, IRF5, and NFκB, whereas pDCs only possess TLR7 and 9 and use an 

additional pathway for type I IFN expression via IRF7 (Taken from Blasius and Beutler, 2010). 
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upregulated upon CpG stimulation and directly binds to MyD88 with subsequent increase 

of type I IFN responses, but surprisingly, proinflammatory cytokine levels remain 

unaffected (Shinohara et al., 2006). Dock2 regulates the activation of IKK-α and hence 

influences IRF7 phosphorylation (Gotoh et al., 2010). IKK-β, the second subunit of the 

IKK complex, appears to be somehow involved in this issue, since inhibitors of this kinase 

provoke impaired IFN-β secretion of the human pDC cell line Gen2.2 (Pauls et al., 2012).  

The isomerase Pin1 has lately been found to regulate IRAK1 and its deletion slightly 

reduced proinflammatory cytokine levels in cDCs after TLR7 and 9 stimulation, but 

completely abrogated type I IFN responses in pDCs (Tun-Kyi et al., 2011). By probably 

stabilizing the linkage between TLR9 and MyD88 and influencing translational 

regulation as well as phosphorylation of IRF7, the mammalian target of rapamycin 

(mTOR) and further “downstream” targets, such as p70S6K, have been identified as 

crucial regulators of type I IFN induction in pDCs (Cao et al., 2008). The 

phosphatidylinositol-3 kinase (PI3K) in turn is involved in the mTOR pathway by 

indirectly activating mTOR and has similarly been shown to affect nuclear translocation 

of IRF7 (Guiducci et al., 2008). Hence, the PI3K-mTOR-p70S6K pathway seems to play 

a pivotal role in TLR7 and 9 mediated IFN-α/β induction in pDCs. In addition to that, a 

number of molecules are involved in negative IRF7 regulation, including protein 

modification and translational as well as transcriptional alteration. For instance, the 

mammalian Dcp2 mRNA-decapping protein supports IRF7 mRNA degradation, the 

tripartite motif-containing protein 28 causes transcriptional repression, and the K48-

linked polyubiquitination of IRF7 through the ubiquitin E3 ligase RAUL leads to 

proteasome-associated IRF7 degradation (Bao and Liu, 2012; Yu and Hayward, 2010). 

Further on, a complex comprised of the transcription factor FOXO3, the nuclear co-

repressor 2, and the histone deacetylase 3 is able to repress IRF7 transcription, but 

becomes degraded by the PI3K/Akt pathway after type I IFN induction (Litvak et al., 

2012). 

 

1.2.4 THE ROLE OF TLRS AND OTHER PRRS IN AUTOIMMUNITY AND CANCER  

 

In the past decade, TLRs and other PRRs have been implicated in numerous disorders 

apart from infectious diseases including autoimmune diseases and the tumorigenesis of 

various cancers (Kawai and Akira, 2009; Nagi et al., 2014; Takeuchi and Akira, 2010). 

This passage gives just a very brief insight into this issue due to the enormous complexity 
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and large progress that has been made in this field, indicating again the importance of 

PRRs and particularly TLRs in the pathogenesis of many diseases.  

 The innate immune system is capable to discriminate self from non-self under 

normal physiological conditions and contributes to maintain homeostasis. However, 

under pathological conditions, permanent activation of PRRs by DAMPs or PAMPs can 

promote chronic disease (Nagi et al., 2014; Takeuchi and Akira, 2010). For instance, 

TLR7 and 9 play a central role in the pathogenesis of systemic lupus erythematosus (SLE) 

and psoriasis by recognizing self-nucleic acids bound to different proteins such as 

HMGB1, RNPs, antimicrobial peptides (e.g. LL37), or autoantibodies that are 

internalized into endosomes/lysosomes of pDCs and B cells. In addition, due to inhibited 

degrading of self-nucleic acids by nucleases, TLR activation can occur (Takeuchi and 

Akira, 2010). The resulting inflammation mainly driven by type I IFNs but also 

proinflammatory cytokines causes disease. Defects by mutation or deficiency of the 

extracellular located self-DNA degrading DNase I also causes SLE-like pathologies 

(Takeuchi and Akira, 2010). Mutations of the RNA sensor MDA5 leads to resistance 

against type I diabetes, suggesting a fundamental role of this receptor in the pathogenesis 

of this autoimmune disease (Takeuchi and Akira, 2010). Further mechanisms involving 

aberrant pDC-mediated type I IFN production by TLR7 or 9 have been implicated in the 

generation of type I diabetes and experimental autoimmune myocarditis (EAM) (Ganguly 

et al., 2013).  

 Disrupted function of the exonuclease TREX1 leads to accumulation of 

cytoplasmic DNA and has been linked to the neurodevelopmental disease Aicardi-

Goutières-Syndrome (AGS) by overproduction of IFN-α (Paludan and Bowie, 2013; 

Takeuchi and Akira, 2010). To date, the DNA sensors involved in this pathology have 

not been found. However, further suggestion that the recognition of accumulated self-

DNA in the cytosol leads to autoimmunity comes from the fact that DNase II-knockout 

embryos die due to massively elevated type I IFN and TNF-α levels (Paludan and Bowie, 

2013; Takeuchi and Akira, 2010). DNase II degrades self-DNA in endosomes/lysosomes, 

which accumulates and is somehow transferred to the cytosol when DNase II is lacking. 

Interestingly, mice deficient for DNase II and the type I IFN receptor (IFNAR) are 

rescued, but develop polyarthritis due to increased proinflammatory cytokines such as 

TNF-α. The evidence that cytosolic DNA sensors must be involved is reinforced by the 

fact that DNase II and STING double knockout mice are rescued from both lethality and 

polyarthritis (Paludan and Bowie, 2013). Unravelling innate immune mechanisms will of 
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course also open new opportunities to fight diverse autoimmune disorders, which are 

currently increasing in industrialized countries (Bach, 2002).   

 Concerning the connection between innate immunity and cancer, multiple genes 

upregulated by certain transcription factors downstream of several PRR-induced 

signaling cascades play also essential roles for the tumorigenesis and progression of 

different types of cancer (Nagi et al., 2014). One of the key transcription factors in PRR 

signaling namely NFκB upregulates anti-apoptotic (e.g. Bcl2) and angiogenic (e.g. 

angiopoietin, VEGF) proteins besides proinflammatory cytokines. Moreover, induced 

nitride oxide (NO) synthase 2 (NOS-2)-dependent NO production together with ROS 

(reactive oxygen species) leads to the death of infected cells which in turn release 

different DAMPs like self-DNA that again activate PRRs, for example, cytosolic DNA 

sensors (Nagi et al., 2014). The latter can induce KRAS via TBK1, which again activates 

NFκB. Further signaling cascades involved in both innate immunity and cancer include 

STAT pathways, MAPK pathways with induction of AP-1, and different inflammasomes 

(e.g. AIM-2 inflammasome) (Nagi et al., 2014). Tumor-associated innate immune cells 

such as TAM (tumor-associated macrophages) have been shown to promote progression, 

angiogenesis, anti-apoptosis, and tissue-remodeling resulting in enhanced tumor growth 

and metastasis by PRR activation (Nagi et al., 2014). Deregulated immune cells in tumor 

tissues as well as tumor cells itself are operating with tools originally meant to fight 

infections and to repair damaged tissues. The link between inflammation and cancer has 

already been proposed more than a century ago by Rudolf Virchow (Nagi et al., 2014). 

Developing our understanding of the innate immune system and its properties including 

PRRs will also lead to improved understanding of cancer in the future and might result in 

promising novel therapies and diagnostics. 
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1.3 DENDRITIC CELLS (DCS) AND MACROPHAGES (MΦS) 

 

1.3.1 DENDRITIC CELLS (DCS) 

 

DCs play a central role in innate immunity. Since the identification of DCs by Steinman 

and Cohn (Steinman and Cohn, 1973) as the main antigen-presenting cells (APCs) 40 

years ago, a lot of research has been done and many different subsets with diverse 

functions have been discovered (Schraml and Reis e Sousa, 2015; Watowich and Liu, 

2010). The name is related to the morphology of these cells that distinguish them from 

MΦs and is characterized by dendrite-like protrusions or extensions of the plasma 

membrane that are believed to improve cell-cell contact between DCs and T cells (Schmid 

et al., 2010; Schraml and Reis e Sousa, 2015; Watowich and Liu, 2010). The latter feature 

describes the condition that seems to be needed for the main function that is the uptake 

of antigens in non-lymphoid tissues followed by migration to T cell areas of secondary 

lymphoid organs to prime naïve T cells through antigen-presentation, thus prompting 

adaptive immune responses. Apart from other cell types that also possess the ability of 

antigen-presentation including monocytes, MΦs, and B cells, DCs are believed to be the 

most professional APCs (Murphy et al., 2012).  

The classification of DCs includes several aspects and is still subject of 

controversial discussions (Schraml and Reis e Sousa, 2015; Steinman and Idoyaga, 2010). 

Based on morphology, expression of surface markers, and gene expression profiles, DCs 

are distinguished into conventional/classical dendritic cells (cDCs) on one hand and 

plasmacytoid dendritic cells (pDCs) on the other hand (Steinman and Idoyaga, 2010). 

CDCs are also called myeloid dendritic cells (mDCs) initially referring to their ontogeny 

from myeloid progenitors, which has been proven wrong by several groups showing that 

both pDCs and cDCs can differentiate from myeloid as well as lymphoid progenitors (for 

details see the following passages and FIGURE 1.3) (Schmid et al., 2010; Steinman and 

Idoyaga, 2010). Nevertheless, the term “mDCs” is still used mainly as a counterpart to 

pDCs, which is in fact wrong and thus the name “cDCs” is used throughout this work. 

The cDC subset resembles the initially discovered type of DC with typical morphology 

(see FIGURE 1.3 B) and the capability of professional antigen-presentation and can be 

further subdivided into various subtypes (see chapter 1.3.1.3 for details). In contrast, the 

morphology of pDCs is similar to plasma cells with a spherical shape and a large rough 

endoplasmic reticulum (see FIGURE 1.3 A) that are responsible for the name plasmacytoid 
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A 

C 

a b c 

B 

FIGURE 1.3 MORPHOLOGY AND DIFFERENTIATION OF DCS AND MΦS 
A) The spherical morphology (b) of inactivated pDCs containing a well developed rough endoplasmic 

reticulum (a) and CD40L-mediated “dendritic” morphology (c) of activated pDCs is depicted (Taken 

from Colonna et al., 2004). B) The typical morphology of cDCs with dendritic extensions in an immature 

(b) and mature state after antigen uptake (a,c) (Taken from Bashyam, 2007 and Bhardwaj and Walker, 

2003). C) Simplified model of cytokine-dependent DC and MΦ differentiation. Adapted and modified 

from Schmid et al., 2010. M-CSF, macrophage colony-stimulating factor; GM-CSF, 

granulocyte/macrophage colony stimulating factor; Flt3L, fms-like tyrosine kinase 3 ligand; MDP, 

macrophage/dendritic cell progenitor; CDP, common dendritic cell progenitor; cDC, classical dendritic 

cell; pDC, plasmacytoid dendritic cell; MΦ, macrophage. 



INTRODUCTION 

 

28 

 

and reflect the large amounts of type I IFNs produced by pDCs ready to be secreted when 

activation of TLR7 and 9, mainly by viruses, occurs (Colonna et al., 2004; Schmid et al., 

2010). Further classifications are based on location or ontogeny (Schraml and Reis e 

Sousa, 2015; Steinman and Idoyaga, 2010; Watowich and Liu, 2010). Resident dendritic 

cells are localized to lymphatic tissues and migratory DCs are present in non-lymphoid 

peripheral tissues for surveillance and migrate to secondary lymphoid organs upon 

activation (Watowich and Liu, 2010). Some authors restrict the term cDCs to resident 

DCs. The type of DCs found at sites of inflammation is different to steady state DCs and 

is regarded as a separate class, which derives from monocytes circulating in the blood 

stream and thus is called monocyte-derived DCs or inflammatory DCs. Conversely, DCs 

which are not derived from monocytes are termed monocyte-independent DCs (Steinman 

and Idoyaga, 2010). 

 

1.3.1.1 ORIGIN AND DEVELOPMENT OF DENDRITIC CELLS (DCS) 

 

Like all immune cells, DCs arise from HSCs and specific beyond precursors in the BM. 

The differentiation towards certain subsets of leukocytes is driven by complex signals 

from the microenvironment. Soluble cytokines that bind to their respective receptors in a 

paracrine, autocrine, or distant manner via the blood steam or lymph vessels and cell-cell 

contacts are the basis of interactions that promote differentiation and development 

(Schmid et al., 2010).  

The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) was the first 

cytokine shown to generate differentiation of DCs in vitro from BM or monocyte cultures 

(Inaba et al., 1992). These DCs resemble cDCs derived from monocytes at sites of 

inflammation and are therefore called inflammatory DCs or monocyte-derived DCs, as 

already noted above (Schmid et al., 2010; Watowich and Liu, 2010). BM cultures 

supplemented with the cytokine fms-like tyrosine kinase 3 ligand (Flt3L) comprise both 

pDCs and cDCs that are believed to resemble splenic steady state DCs and do not 

differentiate from monocytes but HSCs (Brasel et al., 2000; Schmid et al., 2010; 

Watowich and Liu, 2010). Interestingly, mice lacking GM-CSF or the GM-CSF receptor 

(GM-CSFR) exhibit only small reductions in splenic and lymph node cDCs, whereas Flt3-

/- and Flt3L-/- mice show a large loss of both pDCs and cDCs and inversely wild type mice 

treated with Flt3L generate massive quantities of DCs (Schmid et al., 2010; Watowich 

and Liu, 2010). However, double knockout mice deficient for GM-CSF and Flt3L are still 
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able to give rise to DCs, but Kingston et al. could show that GM-CSF is essential for a 

specialized subset of dermal DCs expressing the integrin CD11b (Kingston et al., 2009; 

Schmid et al., 2010). Of note, GM-CSF has been shown to inhibit Flt3L-dependent 

generation of pDCs in BM cultures in vitro (Gilliet et al., 2002). The third cytokine found 

to be involved in DC differentiation is macrophage colony-stimulating factor (M-CSF) 

due to the lack of Langerhans cells (LCs; subset of cDCs in the skin) in mice deficient for 

its receptor (M-CSFR) and M-CSF supplemented BM cultures that contain pDCs and 

cDCs (Fancke et al., 2008; Ginhoux et al., 2006; Schmid et al., 2010). Interestingly, mice 

with a homozygous mutation in the csf1 gene that encodes for M-CSF (Csf1op/op mice) 

showed normal LCs in the skin. Another cytokine binding to M-CSFR apart form M-CSF 

called IL-34 was recently found and seems to clarify this issue (Schmid et al., 2010). 

However, the major role of IL-34 in DC differentiation needs to be further investigated. 

The fact that numbers of pDCs and cDCs were increasing in Flt3L-/- mice treated with M-

CSF indicates an important role for this cytokine in DC development. However, further 

cytokines seem to be involved in this scenario since mice lacking several of the previously 

mentioned cytokines are still able to generate DCs (Watowich and Liu, 2010). Given that 

IFN-α has been linked to hematopoietic processes lately and the fact that IFN-α and -β 

have been shown to enhance pDC and restrict cDC differentiation implicates type I IFNs 

as contributors of DC development in the BM (Essers et al., 2009; Li et al., 2011; 

Watowich and Liu, 2010). This observation is believed to be utilized as an immune-

evading mechanism by viruses (e.g. measles virus (MV) and lymphocytic 

choriomeningitis virus (LCMV)) (Hahm et al., 2005; Watowich and Liu, 2010). FIGURE 

1.3 C shows the three currently known cytokines involved in DC development and their 

impact on specific DC lineages as well as MΦs (Schmid et al., 2010). 

 The differentiation of DCs from HSCs is interposed by several intermediate 

progenitor subsets. HSCs differentiate either to common lymphoid (CLPs) or myeloid 

progenitors (CMPs). The latter subset can further develop to granulocyte/macrophage 

progenitors (GMPs) and megakaryocyte/erythrocyte progenitors (MEPs) (Schmid et al., 

2010). In addition, an intermediate subset referred to as lymphoid-primed multipotent 

progenitors (LMPPs) can give rise to all other progenitors except MEPs. As mentioned 

above, several groups have demonstrated that DCs can develop from all progenitors apart 

from MEPs (Schmid et al., 2010). Interestingly, lymphoid and myeloid lineage derived 

DCs exhibit no differences in surface markers, gene transcription, and function, however,  
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the destination to lymphoid organs strongly differs between myeloid and lymphoid 

primed DCs (Schmid et al., 2010). Downstream of the CMP lineage, progenitors that can 

give rise to both MΦs and DCs were found called macrophage/dendritic cell progenitors 

(MDPs). However, direct precursors of DCs that possess the ability to differentiate into 

pDCs and cDCs were also discovered and termed common dendritic cell progenitors 

b c 

FIGURE 1.4 HEMATOPOIETIC TREE FOR DEVELOPMENT OF DCS AND MΦS 
Simplified developmental tree of DC and MΦ differentiation in the BM. Model adapted and modified 

from Schmid et al., 2010. The cytokine receptor Flt3 is illustrated as blue receptor on the cell surface of 

expressing subsets. Solid arrows depict known pathways and dotted arrows show suggested pathways. 

LT-HSCs, long-term hematopoietic stem cells; ST-HSCs, short-term HSCs; MPPs, multipotent 

progenitors; LMPPs, lymphoid-primed MPPs; CMPs, common myeloid progenitors; CLPs, common 

lymphoid progenitors; MEPs, megakaryocyte/erythrocyte progenitors; GMPs, granulocyte/macrophage 

progenitors; MDPs, macrophage/dendritic cell progenitor; CDPs, common dendritic cell progenitors;  

MΦs, macrophages; cDCs, classical dendritic cells; pDCs, plasmacytoid dendritic cells. 
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(CDPs). CDPs have been shown to directly arise from MDPs (Schmid et al., 2010). 

Whether CDPs can develop from CLPs as well is currently unclear, however, it is known 

that CLPs can differentiate to pDCs, cDCs, and Pre-DCs (Watowich and Liu, 2010). The 

latter subset was shown to be the direct precursor of cDCs that lost the potential to 

differentiate into pDCs (Schmid et al., 2010; Watowich and Liu, 2010). Deficiency of 

Flt3L alone and significantly enhanced in GM-CSF and Flt3L double knockout mice, 

caused a strong reduction of the DC precursors MDPs and CDPs, suggesting a synergistic 

impact of both cytokines on the generation of direct DC precursors. Furthermore, 

numbers of CLPs were also largely decreased in Flt3L-/- mice (Schmid et al., 2010), 

showing an important dependency of DC development on this cytokine and on lymphoid 

progenitors in general (Schmid et al., 2010). One study identified a pDC precursor that 

possesses the ability to differentiate into cDCs under certain conditions including the 

presents of GM-CSF or soluble factors secreted by intestinal epithelium (Schlitzer et al., 

2011). FIGURE 1.4 depicts all currently known developmental stages from HSCs to DCs. 

The hypothesis that different expression or loss of lineage-specific cytokine 

receptors of precursor cells and the presents of diverse cytokines in varying levels in 

certain niches of the BM drives differentiation seems to be the most plausible to date 

(Schmid et al., 2010). However, in contrast to development strongly dependent on 

cytokines and expression of respective receptors, some authors believe differentiation 

from HSCs to differentiated cells is a stochastic procedure. The receptor c-kit is 

continuously less expressed as the differentiation process proceeds. Flt3 and M-CSFR are 

still expressed in lymphoid progenitors (CLPs), probably maintaining differentiation 

towards DCs, whereas further differentiated B cell precursors mainly express IL7Rα and 

downregulate Flt3 and M-CSFR (Schmid et al., 2010). Conversely, myeloid progenitors 

retain Flt3 and M-CSFR and loos IL7Rα expression. However, further cytokines and 

receptors seem to be involved and need to be discovered.  

Interestingly, Pre-cDCs, also called Pre-DCs, exit the BM and fully mature to 

different cDC-subsets in peripheral tissues and organs after contacting any antigen, 

whereas pDCs are known to enter the blood stream from the BM and migrate to peripheral 

tissues as mature developed cells (Watowich and Liu, 2010). Notably, one recent study 

showed that CDPs, the direct precursor of pDCs and cDCs, already express TLR2, TLR4, 

and TLR9 and directly enter the blood stream and migrate to lymph nodes upon TLR 

activation (Schmid et al., 2011).  
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1.3.1.2 PLASMACYTOID DENDRITIC CELLS (PDCS) 

 

PDCs are specialized type I IFN-producing cells responding to nucleotides derived from 

viruses, bacteria, and dead cells via TLR 7 and 9. Their ability of massive IFN-α/β 

secretion on TLR7 and 9 activation is unique among the mammalian immune system and 

is especially important for innate immune responses against viral infections (Lande and 

Gilliet, 2010; Reizis et al., 2011). In humans, only 0.2 – 0.8 % of blood cells are pDCs 

that are capable to produce approximately 95 % of all type I IFNs upon viral infections 

(Lande and Gilliet, 2010). Compared to other immune cells, pDC-mediated IFN-α/β 

responses are up to 1000 times more potent (Reizis et al., 2011). This promotes a complex  

antiviral state of infected and non-infected cells that limits viral replication and further 

spread of these pathogens (Lande and Gilliet, 2010). The additional production of 

proinflammatory cytokines such as IL-6, TNF-α, and IL-12 (only in mice) induces 

inflammation and regulates several other immune cells in concert with type I IFNs. This 

includes the generation of cDCs from monocytes, polarization of CD4+ T cells into Th1 

cells, differentiation of B cells into plasma cells, promotion of clonal expansion as well 

as survival of CD8+ cytotoxic T cells, and activation of NK cells (Karrich et al., 2014; 

Lande and Gilliet, 2010). After TLR-mediated activation and cytokine release, pDCs 

develop a “classical” DC morphology (see FIGURE 1.3 A) and acquire properties for 

antigen-presentation to T cells, thus turn into a cDC-like cell (Reizis et al., 2011). This 

“maturation” seems to be dependent on the activation of NFκB, since mice deficient for 

NFκB1 and c-Rel secrete type I IFNs and undergo apoptosis after TLR9 stimulation by 

CpG-DNA (O'Keeffe et al., 2005). Activated pDCs are able to efficiently prime and cross-

prime CD4+ and CD8+ T cells, respectively, however with a capacity distinct from cDCs 

to induce a subset of IL-10 producing regulatory T cells through ICOS-L and thus seem 

to be also important for negative regulation of self-induced inflammation and immune 

tolerance in general (Lande and Gilliet, 2010; Reizis et al., 2011). Besides antiviral 

immunity, pDCs have been linked to various other physiological and pathological 

processes such as immune tolerance (see above) and cytotoxicity or autoimmunity and 

cancer, respectively (Ganguly et al., 2013; Karrich et al., 2014; Lande and Gilliet, 2010). 

 Typical surface expression markers of pDCs in mice are CD11c, B220 (CD45R), 

low levels of MHC-II, and co-stimulatory molecules (Reizis et al., 2011). However, B220 

and CD11c are also expressed on a precursor of NK cells called pre-mNK cells, which 

have initially been thought to reflect an intermediate cell subset between pDCs and NK 
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cells named interferon-producing killer dendritic cells (IKDCs) (Blasius et al., 2007; 

Caminschi et al., 2007; Guimont-Desrochers et al., 2012). Moreover, a CCR9- precursor 

of cDCs was also shown to express B220 and CD11c (Segura et al., 2009). The surface 

markers BST2 (mPDCA-1) and SiglecH have been demonstrated to be highly specific for 

murine pDCs and are therefore preferentially used. Further pDC-associated receptors in 

mice include Ly6C (the GR1 antibody binds to Ly6G in granulocytes and Ly6C on pDCs) 

and Ly49Q, which are less specific (Lande and Gilliet, 2010; Reizis et al., 2011). In 

humans, BDCA-2, BDCA-4, and ILT7 are typical surface markers. BDCA-2 negatively 

regulates pDC-function after engagement of respective antibodies (Lande and Gilliet, 

2010) and is therefore less appropriate for functional analysis.  

The basic helix-loop-helix transcription factor E2-2 (also known as TCF4) was 

identified as the master regulator of pDC maturation and differentiation (Cisse et al., 

2008; Ghosh et al., 2010; Nagasawa et al., 2008). Various pDC-specific genes responsible 

for differentiation and function are regulated by E2-2 including TLR7, TLR9, IRF8, 

IRF7, and SpiB (Cisse et al., 2008). Interestingly, deletion of E2-2 in mature peripheral 

pDCs causes differentiation into cDCs, indicating the integral role of E2-2 in maintaining 

the pDC fate (Reizis et al., 2011). The E protein inhibitor Id2 was demonstrated as the 

counterpart of E2-2 in cDCs that is downregulated in pDCs and vice versa, showing a 

distinct relationship and plasticity between these two cell types (Reizis et al., 2011). 

Further transcription factors such as IRF8, SpiB, or Runx2 and miRNAs have been shown 

to be part of the regulatory machine in pDCs (Karrich et al., 2014; Sawai et al., 2013).  

Exclusive signaling cascades and currently known contributing molecules of 

TLR7 and 9 biology in pDCs have already been described in chapter 1.2.3.4. However, 

various proteins have additionally been identified that are involved in pDC-specific 

regulation of TLR signaling. The adapter-related protein complex-3 (AP-3), biogenesis 

of lysosome-related organelle (LRO) complexes (BLOC)-1, BLOC-2, and the peptide-

proton symporter channel Slc15a4 are essential for TLR7 and 9 endosomal trafficking in 

pDCs (Blasius et al., 2010; Sasai et al., 2010). Lately, the IFN-inducible proteins 

phospholipid scramblase 1 (PLSCR1) and viperin were found to participate in these 

difficult processes as well (Saitoh et al., 2011; Talukder et al., 2012). PLSCR1 binds to 

the LRRs of the TLR9 ectodomain and regulates its trafficking to the endosomal 

compartment (Talukder et al., 2012). The protein viperin was found to promote TLR7 

and 9 signaling through forming an IFN-signaling complex consisting of MyD88 

associated with IRAK1 and TRAF6 within lipid bodies resulting in nuclear translocation 
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of IRF7 (Saitoh et al., 2011). Furthermore, autophagy-associated proteins are known to 

be involved in the regulation of immune responses for quite a while (Saitoh and Akira, 

2010). In pDCs, ssRNA virus infection detected by TLR7 was reported to be dependent 

on the autophagy protein 5 (Atg5), because pDCs lacking this gene showed diminished 

type I IFN and IL12p40 levels, whereas upon CpG stimulation only IFN but not IL12p40 

was reduced (Lee et al., 2007). Another pDC-specific protein called PACSIN1 might play 

a role for type I IFN induction, since PANSIN1-deficient pDCs show reduced IFN-α 

levels after TLR9 stimulation and this protein has been demonstrated to regulate vesicle 

trafficking by connecting membrane trafficking with the cytoskeleton (Esashi et al., 

2012). Granulin, the next contributing molecule, activates TLR9 through delivery of 

CpG-ODNs to TLR9-containing endosomes/lysosomes (Park et al., 2011). Interestingly, 

upon TLR9 stimulation with CpG-A DNA, the transport from the early endosome to the 

late endosome or lysosome in pDCs is much more prolongated compared to cDCs. 

Moreover, artificial ligand retention in cDC endosomes, induced by using the cationic 

lipid DOTAP, results in abnormal type I IFN responses, suggesting a unique  membrane 

trafficking pathway for TLR9 in pDCs (Honda et al., 2005a). Notably, multimeric CpG-

A DNA seems to be longer present in the early endosome according to its tendency of 

aggregation compared to monomeric CpG-B DNA, which could be an explanation for 

stronger IFN-α/β activation upon CpG-A DNA stimulation (Kerkmann et al., 2005). 

Furthermore, the observation that multimeric CpG-A enters transferrin receptor (TfR) 

positive endosomes rather than lysosome-associated membrane protein 1 (LAMP1) 

positive lysosomes (monomeric CpG-B occurs in the latter), and the fact that reverse 

molecular modification of both leading to monomeric CpG-A and multimeric CpG-B 

results in inverted gene expression, implicates that different TLR9 signaling pathways 

strongly depend on localization and molecular properties of the engaging ligands 

(Guiducci et al., 2006). Supporting this idea, Sasai et al. quite recently demonstrated that 

the two different TLR9 signaling pathways in pDCs depend on different endogenous 

localizations and occur sequentially instead of simultaneously (Sasai et al., 2010). Thus, 

early endosome engagement of CpG-A DNA and TLR9 promotes a MyD88-TRAF6-

associated activation of NFκB, whereas further travel of CpG-DNA/TLR9 to the so called 

lysosome-related organelles (LRO) triggers TRAF3-incorporation and promotes IRF7 

activation, all governed by AP-3 (Sasai et al., 2010). In murine pDCs, the ITIM-

containing cell surface receptor Ly49Q has been shown to be also important for 

intracellular tasks, supporting appropriate temporal CpG-DNA and TLR9 co-localization 
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and trafficking to endosomal/lysosomal compartments (Yoshizaki et al., 2009). In 

summary, proper spatiotemporal engagement of TLR9 ligands, and probably TLR7 

ligands, with their receptor and the molecular structure of them seem to be very important 

determinants of sufficient TLR7/9 activation and different signaling pathways. 

The regulation of TLR7 and 9 signaling in pDCs is further mediated by several 

pDC-specific surface receptors, which are proposed to play an important role in 

controlling the potentially hazardous massive type I IFN secretion in order to “fine-tune” 

antiviral host responses and prevent autoimmunity (Bao and Liu, 2012; Reizis et al., 

2011). Immunoreceptor tyrosine-based activation motifs (ITAMs) are found within 

various transmembrane adaptor proteins that primarily function as immune cell activators 

(Bao and Liu, 2012). ITAMs activate a pathway involving SCR and SYK family tyrosine 

kinases similar to the BCR signaling cascade (Bao and Liu, 2012; Gilliet et al., 2008). In 

human pDCs, BDCA-2 (a C-type lectin), immunoglobulin-like transcript 7 (ILT7), and 

the Fc receptor for IgE (FcεRIα) are associated with the ITAM-containing adaptor 

molecule FcεRIγ-chain and inhibit TLR7 and 9 signaling after ligand binding (Cao et al., 

2006; Dzionek et al., 2001; Schroeder et al., 2005). Respective ligands of these receptors 

are the HIV-1 encoded envelope glycoprotein gp120, BST2, and IgE (Cao and Bover, 

2010). Another ITAM-containing adaptor molecule is DNAX activation protein 12 

(DAP12), which also functions mainly as inhibitor of TLR7/9 signaling. The human pDC 

receptor Nkp44, the murine transmembrane proteins SiglecH (sialic acid-binding Ig-like 

lectin H), and pDC-TREM (pDC-triggering receptor expressed in myeloid cells 4)  in 

cooperation with Plexin-A1 signal through DAP12 (Cao and Bover, 2010). Nkp44 

engages with the hemagglutinin of the influenza virus and the proliferating cell nuclear 

antigen (PCNA), which is overexpressed in tumors, implicating a role in both negative 

regulation of viral responses and pDC-inactivation by tumor cells (Bao and Liu, 2012). 

The murine pDC receptor SiglecH decreases IFN-secretion upon TLR9 activation after 

binding of specific antibodies, while the natural ligand is currently unknown (Bao and 

Liu, 2012). Taken together, BDCA-2, ILT7, FcεRIα, Nkp44, and SiglecH use the ITAM-

signaling pathway with different adaptor molecules to inhibit pDC-driven IFN-α/β 

responses. Conversely, pDC-TREM upregulation is mediated by IFN-α, and complexed 

with Plexin-A1 it enhances type I IFN responses after semaphorin-6D (Sema6D), a ligand 

of Plexin-A1, engages with the complex (Watarai et al., 2008). Interestingly, several 

virus-encoded proteins embody ITAMs, suggesting strategies to evade pDC activation or 

at least to limit anti-viral immunity (Bao and Liu, 2012). Examples are the K1 protein of 
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the human herpesvirus 8 (HHV8) or the latent membrane protein 2A (LMP2A) of the 

Epstein-Barr virus (EBV). The latter has been demonstrated to target interferon receptors 

leading to their degradation, but so far without known ITAM involvement (Shah et al., 

2009).  

 Further on, immunoreceptor tyrosine-based inhibitory motifs (ITIMs) are located 

within the cytosolic domains of numerous inhibitory surface receptors, including C-type 

lectins and immunoglobulin superfamily members and use SHP1 and SHP2 or SHIP1 for 

signaling (Bao and Liu, 2012). PDCs also express ITIM-containing receptors, which 

positively influence TLR7/9 signaling. In human pDCs, the ITIM-possessing  receptor 

CD300a recognizes phospholipids of the outer membrane of dead cells 

(phosphatidylethanolamine and phosphatidylserine) after crosslinking with CD300c, and 

diminishes HLA-DR, TNF-α, and IL-6 expression, but impressively increases IRF7 

expression and subsequent IFN-α secretion (Bao and Liu, 2012). A relative in murine 

pDCs is Ly49Q, member of the C-type lectin natural killer receptor family, which binds 

type I major histocompatibility complex (MHC-I) and is very important for TLR7/9-

depentent IFN-α secretion, since Ly49Q-/- murine pDCs reveal critically reduced cytokine 

secretion (Tai et al., 2008). Recent work on this issue demonstrates further roles of Ly49Q 

in IL-12 secretion, MHC-II expression, appropriate T cell activation, and nuclear 

translocation of IRF7 in murine pDCs (Rahim et al., 2013). Yoshizaki et al. additionally 

propose an impact of Ly49Q on proper TLR9-CpG engagement and involvement in 

intracellular trafficking to endosomal/lysosomal compartments (Yoshizaki et al., 2009). 

 

1.3.1.3 CONVENTIONAL DENDRITIC CELLS (CDCS) 

 

The term “cDCs” is mostly used as a counterpart to pDCs, which comprise different 

subtypes of DC lineages that collectively reflect the main function of highly efficient 

antigen-presentation of exogenous and endogenous antigens to T cells and possess the 

typical DC morphology with long extensions of the plasma membrane. As noted before, 

some authors prefer to use the name cDCs only for resident DCs found in lymphoid 

organs such as the spleen and lymph nodes in steady state (Watowich and Liu, 2010). 

Besides resident DCs, further lineages are migratory DCs present in non-lymphoid 

peripheral tissues (e.g. lung, intestine, or skin), monocyte-derived DCs (also called 

inflammatory DCs), and Langerhans cells (LCs) (Idoyaga and Steinman, 2011). Resident 

DCs are further subdivided into CD8α+ and CD8α- DCs (or cDCs) showing particular 
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skills in exogenous antigen-presentation to CD4+ T cells and cross-presentation to 

cytotoxic CD8+ T cells, respectively (Idoyaga and Steinman, 2011; Reizis et al., 2011). 

Circulating monocytes in the blood are able to differentiate into monocyte-derived DCs 

(inflammatory DCs), apart from MΦs (see section 1.3.2 for details), and can prime CD4+ 

as well as CD8+ T cells. Some monocyte-derived DCs reside in draining lymph nodes of 

the skin and can rapidly proliferate after LPS-mediated TLR4 activation (Idoyaga and 

Steinman, 2011). Two major DC subsets are present in the skin, which are LCs and 

dermal DCs. The latter can be subdivided into CD103+CD11b- and CD103-CD11b+ and 

further subsets of dermal DCs (Idoyaga and Steinman, 2011). LCs derive from 

progenitors of the fetal liver or yolk sac, need M-CSF, and are resistant to irradiation, 

whereas dermal DCs derive from pre-DCs (pre-cDCs) from the blood, are dependent on 

Flt3L, and are sensitive to irradiation (Idoyaga and Steinman, 2011). Interestingly, 

similarities in function and transcription factor expression have been found for CD8α+ 

resident DCs and CD103+CD11b- migratory DCs as well as the CD8α- and the CD103-

CD11b+ subset (Steinman and Idoyaga, 2010). Similar to dermal DCs, either CD11b+ or 

CD103+ migratory DC subsets have been described in many other tissues. However, a 

subset expressing both CD103 and CD11b was found in the intestinal lamina propria 

(Idoyaga and Steinman, 2011).  

Apart from the surface receptors mentioned above that discriminate certain DC 

subsets, expression of the integrin CD11c, high levels of major histocompatibility 

complex class II (MHC-II), and co-stimulatory molecules including CD80, CD86, and 

CD40 on the cell surface are characteristic for cDCs in mice (Reizis et al., 2011; Schmid 

et al., 2010; Schraml and Reis e Sousa, 2015). The receptor B220 found on the cell 

membrane of pDCs is not expressed in cDCs. The integrin CD11b is expressed on some 

cDC subsets but not present on pDCs (Reizis et al., 2011). CDCs circulating in the human 

blood with high MHC-II expression comprise two different types, one with BDCA-

1/CD1c and the other with BDCA-3/CD141 expression (Idoyaga and Steinman, 2011). 

BDCA-3+ human DCs have been shown to resemble murine CD8+/CD103+ cDCs in 

function and gene expression (Reizis et al., 2011). Further surface markers of human DCs 

are CD1a, CD1b, DEC-205 (CD202), and Langerin (CD207) (Steinman and Idoyaga, 

2010).  

Each cDC subset expresses different surface receptors such as lectins that are 

involved in the uptake of antigens and presentation or PRRs including TLRs that sense 

PAMPs or DAMPs. As a result of PRR activation, cDCs are able to produce a wide range 
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of cytokines and chemokines that regulate either inflammation or self-tolerance (Idoyaga 

and Steinman, 2011).  

 Transcriptional regulation of cDCs is controlled by Id2, which inhibits E2-2 and 

thus prevents pDC fate (see section 1.3.1.2). Moreover, the basic leucine zipper 

transcription factor Batf3 has recently been demonstrated to be an important regulator of 

CD8α+ resident DCs and CD103+ migratory DCs but not CD8α- resident DCs (Watowich 

and Liu, 2010). Further transcription factors that play important roles in pre-DC and cDC 

lineages include PU.1, IRF8, RelB, IRF2, and IRF4 (Watowich and Liu, 2010). 

 

1.3.2 ORIGIN, DEVELOPMENT, AND FUNCTIONS OF MACROPHAGES (MΦS) 

 

Blood-circulating monocytes and tissue resident macrophages (MΦs) were the first 

members of the mononuclear phagocyte system that were described. Ilya Metchnikoff 

discovered MΦs in the late 19th century, whereas the subpopulation of DCs, which are 

also part of this family, were discovered about 40 year ago as noted above (Epelman et 

al., 2014). In the past, all MΦs were believed to arise from monocytes that circulate in the 

blood stream, which are derived from precursors in the BM (Dey et al., 2014; Epelman et 

al., 2014). Indeed, Ly6C+ and Ly6C- monocytes develop in the BM from the myeloid 

lineage with direct precursors GMPs and MDPs (see chapter 1.3.1.1 and FIGURE 1.4) and 

start circulating in the blood stream. Ly6C- monocytes (also called non-classical 

monocytes) were initially thought to infiltrate tissues and differentiate into resident MΦs. 

However, recent studies show that these cells directly derive from Ly6C+ monocytes (also 

termed classical monocytes) and do not enter tissues, instead patrol the intravascular 

endothelium to clear dying endothelial cells (Dey et al., 2014; Epelman et al., 2014). In 

contrast, classical monocytes that highly express Ly6C are able to infiltrate and patrol 

peripheral tissues in steady state and transport pathogens to nearby lymph nodes without 

differentiation (Epelman et al., 2014). In inflammatory conditions, classical monocytes 

enter sites of infection and differentiate into MΦs (Epelman et al., 2014). However, 

several studies showed that most tissue resident MΦs originate independently of blood-

monocytes already in embryonic tissues such as the yolk sac and the fetal liver and are 

able to self-renew their population in peripheral tissues throughout adulthood (Dey et al., 

2014; Epelman et al., 2014). For instance, Kupffer cells in the liver, Microglia in the 

brain, and cardiac tissue MΦs were shown to develop in the yolk sac (Dey et al., 2014). 

Thus, it appears that monocytes have a patrolling function in steady state and can 
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differentiate into MΦs and DCs when inflammation occurs, whereas most resident MΦs 

are derived from embryonic tissues and develop independently from monocytes and BM 

precursors (Epelman et al., 2014).   

 MΦs are localized to non-lymphoid and lymphoid tissues and comprise a 

heterogeneous population of phagocytes that have different functions in homeostasis (e.g. 

clearing dead cells or producing growth factors) and inflammation depending on the 

particular tissue (Dey et al., 2014; Geissmann et al., 2010). For instance, alveolar MΦs 

are involved in surfactant turnover, osteoclasts resorb bone tissue, and splenic red pulp 

MΦs clear old erythrocytes contributing to iron metabolism (Dey et al., 2014). Moreover, 

tissue-resident as well as monocyte-derived MΦs can be further polarized into M1 or M2 

phenotype. M1 MΦs are effector cells that fight infectious pathogens and clear infected 

or malignantly transformed cells (Italiani and Boraschi, 2014). The task of maintaining 

tissue homeostasis through eliminating damaged cells and promoting tissue repair und 

growth is carried out by M2-like polarized MΦs (Italiani and Boraschi, 2014). The 

molecular basis of M1/M2 polarization seems to be due to a different arginine 

metabolism. M2 MΦs produce ornithine and polyamines which are important for cell 

proliferation and repair via synthesis of collagens and drive fibrosis, whereas citrulline 

and NO are arginine metabolites in M1 MΦs that are important for killing pathogens and 

inhibiting cell proliferation (Italiani and Boraschi, 2014). The M1 phenotype can be 

induced in vitro by PAMPs e.g. LPS and cytokines such as TNF-α and IFN-γ (Italiani and 

Boraschi, 2014). These cells express high levels of IL-12, IL-23, IL-1β, IL-6, and TNF-α 

and low levels of IL-10, produce toxic molecules including NO and reactive oxygen 

species (ROS), and trigger adaptive Th1 responses (Italiani and Boraschi, 2014). The 

cytokines IL-13 and IL-4 are present in Th2 responses and have been shown to polarize 

MΦs into M2 phenotype together with IL-10, TGF-β, glucocorticoids, activation of Fcγ 

receptors, and stimulated TLRs (Italiani and Boraschi, 2014). Depending on the activating 

agents, the M2 phenotype has been subdivided into M2a, M2b, and M2c. Generally, M2-

MΦs are characterized by producing high levels of IL-10 and TGF-β and low levels of 

IL-23 and IL-12. Various scenarios for contribution of M2-MΦs have been demonstrated 

such as Th2 responses, parasitic infections, allergy, tissue remodeling, angiogenesis, 

immune tolerance, and promotion of several types of cancers (Italiani and Boraschi, 

2014). Numerous other functions and pathologies of both M1 and M2 MΦs and further 

phenotypes in between have been described. M1 as well as M2 polarized MΦs are well 

appointed with a broad range of PRRs including TLRs and other receptors such as 
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scavenger, mannose, and galactose receptors that support phagocytosis and induce 

various cytokines and chemokines to regulate innate immune responses (Geissmann et 

al., 2010). Furthermore, MΦs are capable to present antigens and induce and coordinate 

different adaptive immune responses (Italiani and Boraschi, 2014). 

 Cytokines that are involved in differentiation, proliferation, and self-renewal of 

monocytes and MΦs are M-CSF, GM-CSF, IL-34, and IL-4 (Italiani and Boraschi, 2014). 

Murine BM cultures supplemented with M-CSF lead to large amounts of differentiated 

adherent MΦs among other cells including pDCs and cDCs found in suspension (Fancke 

et al., 2008; Stanley et al., 1978). The best known surface receptor of MΦs in mice is 

F4/80. Further used membrane-bound markers in mice are CD11b, MHC-I, MHC-II, 

Ly6C, CCR2, Mac3, TRAP, and CD169 among others (Dey et al., 2014). Transcription 

factors that drive distinct transcriptional programs to mediate specific functional and 

phenotypic properties in different MΦs are not as well investigated as for DCs and are 

one interesting part of current research in this field. However, it was shown that yolk sac-

derived MΦs depend on PU.1 and do not need c-Myb in contrast to monocyte-derived 

MΦs that originate from the BM (Italiani and Boraschi, 2014). Further transcription 

factors implicated in MΦ biology are KLF4, EGR1, IRF8, GATA6, SpiB, SpiC, PPARγ, 

PPARδ, SREBPs, and LXR  (Dey et al., 2014; Epelman et al., 2014; Geissmann et al., 

2010; Italiani and Boraschi, 2014). 
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1.4 HOX GENES 

 

1.4.1 DISCOVERY, ORIGIN, AND PROPERTIES OF HOX GENES  

 

The family of Hox genes can be found in almost all eukaryotes and its members are 

transcription factors involved in regulating fundamental processes in embryonic tissue 

patterning by determining cellular identity along several body axes (Holland, 2013; 

Soshnikova, 2014). Especially the development of limbs and organs along their anterior-

posterior axis has been shown to be regulated by Hox genes (Shah and Sukumar, 2010). 

The identification of their orthologous genes in drosophila melanogaster called Hom 

genes comprising two gene complexes termed bithorax and antennapedia in 1978 and 

1980, respectively, led to the discovery of the homeotic or homeobox (Hox) genes and 

their homeobox DNA-binding domain in many animals including mammals just a few 

years later (Shah and Sukumar, 2010). The DNA sequences and functions of Hox genes 

are evolutionary highly conserved and single genes as well as whole genome duplications 

are believed to be the reason for the expansion of these genes throughout evolution that 

resulted in 39 Hox genes in mammals. The latter are organized in 4 clusters termed A, B, 

C, and D (Alharbi et al., 2013; Morgan, 2006; Rezsohazy et al., 2015). Each gene cluster 

is located on a different chromosome. FIGURE 1.5 A depicts the homology of the Hom 

genes in drosophila melanogaster and each of the mammalian Hox gene clusters and their 

chromosome location by colors (Alharbi et al., 2013). The configuration in gene clusters 

is needed for enhancer sharing that allows exact spatiotemporal expression during 

developmental processes (Morgan, 2006). The 3’ – 5’ position of a Hox gene in its cluster 

determines the spatial expression in development, for example, HoxB1 is earlier 

expressed than HoxB2 and so forth (Morgan, 2006; Shah and Sukumar, 2010). This 

means that 3’ located genes are expressed in anterior tissues and 5’ position leads to 

expression in posterior tissues, which is called spatial collinearity (Shah and Sukumar, 

2010). Further on, temporal collinearity describes that Hox gene expression within one 

cluster is temporally kept in line exactly from 3’ to 5’ (Morgan, 2006; Shah and Sukumar, 

2010). In addition, posterior (5’ positioned) located Hox genes are dominant over anterior 

(3’ positioned) genes, which is referred to as posterior prevalence (Morgan, 2006). All 

Hox proteins share the homeodomain that consists of a 60 amino acid-containing triple 

helicoidal motif (3 alpha helices), which facilitates binding to specific DNA-binding sites 

with the N-terminal arm contacting the minor and helix 3 (recognition helix) binding the  
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major groove of the DNA (Ladam and Sagerström, 2013; Rezsohazy et al., 2015; Svingen 

and Tonissen, 2006). The core DNA-binding site contains the sequence 5’-TTNAT-3’ 

with N depending on the specific Hox protein (LaRonde-LeBlanc and Wolberger, 2003). 

However, specificity and selectivity to DNA-binding sites of Hox proteins were shown 

to be quite poor and thus various co-factors that have been identified seem to enhance 

both specificity and selectivity and are cell-type dependent (Alharbi et al., 2013; Collins 

and Hess, 2016; Huang et al., 2012; Rezsohazy et al., 2015). The pre-B-cell leukemia 

(Pbx) and myeloid ectopic insertion (Meis) families are the most important co-factors 

b c 

FIGURE 1.5 HOX GENES 
A) Shown are HOM clusters of Drosophila melanogaster and the mammalian HOX clusters with their 

chromosome location. Homology is depicted by colors. HoxA9 is highlighted by a red frame. Taken from 

Alharbi et al., 2013. B) Co-binding of the homeodomain protein Ubx and its co-factor Exd of Drosophila 

melanogaster to their DNA sequence. The hexapeptide (HX) motif mediates protein-protein interaction. 

Taken from Rezsohazy et al., 2015. C) Crystal structure of the HoxA9 protein bound to DNA. Created 

with open source software PyMOL; adapted and modified from LaRonde-LeBlanc and Wolberger, 2003. 

A 
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(Alharbi et al., 2013), which also possess a homeodomain that differs from the Hox 

homeodomain by containing a three amino acid long loop between helix 1 and 2 (TALE) 

(Ladam and Sagerström, 2013). Prominent members are Pbx1 and Meis1 that are both 

crucial for developmental and hematopoietic functions of Hox proteins (Alharbi et al., 

2013). The hexapeptide (HX) motif of Hox proteins was shown to facilitate binding to 

Pbx proteins (Rezsohazy et al., 2015). FIGURE 1.5. B depicts the structure of Hox proteins 

in case of Ubx found in drosophila with the 3 alpha helices containing homeodomain and 

the HX motif that together with a co-factor (Exd) binds to a specific DNA sequence 

(Rezsohazy et al., 2015). Hox and Pbx proteins together bind the consensus sequence 5’-

TGATNNATNN-3’, which is longer than the sequence that Hox monomers bind to and 

increases specificity (Rezsohazy et al., 2015). Furthermore, additional proteins termed 

FIGURE 1.6 STRUCTURE OF HOX PROTEIN COMPLEXES AND KNOWN TALE-CO-FACTORS 
A) Schematic structure of Hox protein complexes bound to their DNA binding site including the Hox 

protein itself, co-factors, and additional non-DNA-binding general factors (adapted and modified from 

Ladam and Sagerström, 2013). B) Currently known TALE-containing co-factors of the Pbx and Meis 

family and their recruiting Hox proteins. The Hox9 paralogs are highlighted by a red frame. Taken from 

Rezsohazy et al., 2015. 

B 
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general factors or collaborators that do not directly bind DNA sequences but Hox proteins 

or co-factors are recruited, leading to multi-protein Hox transcription complexes (Collins 

and Hess, 2016; Ladam and Sagerström, 2013). Hox proteins and co-factors contain 

domains that can interact with general factors/collaborators, which are members of the 

transcription machinery itself and chromatin regulators such as the CBP/p300 histone 

acetyltransferase or HDAC1 und 3 (histone deacetylases), implicating also epigenetic 

influences (Huang et al., 2012; Ladam and Sagerström, 2013; Rezsohazy et al., 2015). 

FIGURE 1.6 A and B depict the assembly of Hox complexes and the currently known co-

factors that are recruited from different Hox proteins (Ladam and Sagerström, 2013; 

Rezsohazy et al., 2015). Several studies have shown that the composition of Hox 

complexes is depending on the cell type and context and cell type dependent further 

transcription factors are involved in this scenario (Huang et al., 2012; Ladam and 

Sagerström, 2013; Rezsohazy et al., 2015). 

 Besides controlling the cellular identity along axes of embryonic developmental 

processes including limps, the gastrointestinal tract, and the female reproductive tract, 

numerous other functions of Hox proteins have been described in the last couple of years 

(Morgan, 2006; Rezsohazy et al., 2015). First it became evident that Hox proteins are not 

only expressed during embryogenesis, the nested expression of Hox proteins (also called 

the “Hox code”) along body axes was shown to be still active in adult tissues (Morgan, 

2006). Moreover, Hox genes are expressed in HSCs and precursors in a similar manner 

as in embryonic developmental processes showing distinct expression patterns in 

different lineages (Alharbi et al., 2013) and have been implicated in leukemogenesis as 

well as tumorigenesis of solid tumors in recent years (see chapter 1.4.2 for details) (Shah 

and Sukumar, 2010). Involvement in cell shaping, migration, proliferation, apoptosis, and 

differentiation were shown for various Hox proteins lately (Rezsohazy et al., 2015). For 

instance, cell shape and migration are influenced by Hox genes through regulating and 

coordinating cell adhesion, cell-to-cell contacts, the cytoskeleton, and controlling 

expression of receptors and ligands that interact with the microenvironment that cells are 

travelling along (Rezsohazy et al., 2015). Another example shows that Hox proteins 

control cell cycle processes and proliferation by directly regulating cell cycle regulators 

in concert with other transcription factors (Collins et al., 2014). The question if Hox genes 

directly influence cellular actions or function as master regulators or both cannot be fully 

answered currently. However, growing evidence suggests that both situations take place, 

since Hox genes were shown to orchestrate gene regulatory networks from the very top 



INTRODUCTION 

 

45 

 

through initiation but also influence ongoing networks at several stages and can directly 

control particular actions (Rezsohazy et al., 2015). Apart from their role as transcription 

factors, “non-transcriptional” activities have been found for Hox proteins including DNA 

replication, DNA repair, mRNA translation, and protein degradation (Rezsohazy et al., 

2015). Depending on the cell type and context, Hox proteins can adopt multifaceted 

functions in concert with co-factors and cell type dependent transcription factors, which 

reflects a high versatility of these regulatory proteins (Huang et al., 2012; Rezsohazy et 

al., 2015). 

 

1.4.2 THE ROLE OF HOX GENES IN HEMATOPOIESIS AND CANCER 

 

As noted in chapter 1.4.1, many Hox genes (22 of 39) were demonstrated to play crucial 

roles in normal and malignant hematopoiesis and solid tumors, which is of utmost 

relevance and thus mentioned here (Alharbi et al., 2013). Similar to their contribution in 

embryogenesis, Hox genes are expressed in HSCs and certain progenitors with distinct 

patterns, for instance Hox1-6 paralogs (anterior 3’ position) are present in HSCs and early 

uncommitted progenitors (CD34+ cells) and the posterior Hox genes are stepwise 

upregulated throughout commitment (Alharbi et al., 2013). Additionally, Hox clusters are 

related to certain lineages such as HoxA genes are mainly expressed in myeloid cells, 

HoxB genes in erythoid cells, HoxC genes in lymphoid cells, and HoxD is not expressed 

in hematopoietic progenitors (Alharbi et al., 2013). Gain of function studies showed that 

overexpression of most Hox genes results in enlargement of HSCs and progenitors and a 

differentiation block, e.g. HoxB6 overexpression leads to expansion of HSCs and myeloid 

progenitors and inhibits erythroid and lymphoid lineages (Alharbi et al., 2013). Some 

Hox proteins are crucial for maintaining stem cell status and regulate their proliferation 

such as HoxA9, which was additionally shown to be the most expressed Hox gene in stem 

cells and early progenitors and is gradually downregulated throughout differentiation 

(Alharbi et al., 2013; Pineault et al., 2002). Deletion of the complete HoxA cluster results 

in reduced proliferation of hematopoietic stem and progenitor cells, but has almost no 

influence on differentiation of these cells (Lebert-Ghali et al., 2016). By inducing 

overexpression of HoxA9 in HoxA-/- cells, Lebert-Ghali and colleagues were able to 

rescue the missing proliferation in part, underlining the importance of HoxA9 among the 

HoxA gene cluster (Lebert-Ghali et al., 2016). Moreover, HoxA9 overexpression in mice 

drives expansion of HSCs and myeloid progenitors, blocks pre-B-cell differentiation, and 
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leads to leukemia (Alharbi et al., 2013). Some proteins were found that regulate Hox 

expression in hematopoiesis including MLL (mixed lineage leukemia) and caudal-type 

Hox transcription factors (CDX1, CDX2, and CDX4) (Alharbi et al., 2013). Interestingly, 

Hox proteins were shown to upregulate nearby Hox genes, their own co-factors, and some 

even positively influence their own expression, e.g. HoxA9 enhances HoxA7, HoxA10, 

Pbx3, and Meis1 expression (Alharbi et al., 2013).  

 The overexpression of many Hox proteins and in particular the presents of fusion-

proteins between distinct Hox and other genes such as NUP98 play fundamental roles in 

the pathogenesis of acute leukemia, especially acute myeloid leukemia (AML) but also 

acute lymphoid leukemia (ALL) (Alharbi et al., 2013). Several Hox downstream target 

genes are partakers in cell proliferation and survival including self-renewal or anti-

apoptosis, which can promote tumorigenesis. Upstream regulators of Hox genes such as 

MLL are involved in chromosome rearrangements that result in fusion proteins in 

leukemia and thus initiate aberrant Hox expression (Alharbi et al., 2013). As a result, 

differentiation is blocked and cell proliferation heightened. Members of CDX proteins, 

another family of Hox upstream regulators, namely CDX2 and CDX4 are also 

overexpressed in AML (Alharbi et al., 2013). A mutation of the NPM1 (nucleophosmin 

1) protein was also demonstrated to enhance expression of several Hox proteins and co-

factors in AML including HoxA4, HoxA6, HoxA7, HoxA9, HoxB9, and Meis1 

(Mullighan et al., 2007). Apart from AML, both T and B cell precursor acute lymphoid 

leukemia (ALL) possess MLL and other translocations that result in overexpression of 

several Hox proteins (Ferrando et al., 2003). Interestingly, fusion proteins between Hox 

members and the T cell receptor (TCR) in T-ALL were identified, leading to elevated 

Hox expression levels (Alharbi et al., 2013). The dysregulation of Hox proteins in AML 

is associated with a poor prognosis and therefore used as a prognostic marker (Alharbi et 

al., 2013). HoxA9 was shown to be the number one gene associated with the worst 

prognosis, shortest survival, and most frequent relapse rate (Golub et al., 1999). Inversely, 

low HoxA9 expression was linked to the best therapy response and overall outcome 

(Andreeff et al., 2008). Apart from HoxA9, low expression of HoxA4 and Meis1 was also 

shown to correlate with a good prognosis of AML (Alharbi et al., 2013). Interestingly, 

the highest Hox expression levels were reported for AML types with Flt3 mutations 

(Alharbi et al., 2013). HoxA9/Meis1-induced leukemia is a murine model of aggressive 

AML, which displays high Flt3 expression similar to human AML. Latest findings 
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demonstrated no significant impact of Flt3 overexpression in this model on leukemic 

progression and suggests a rather passive role of Flt3 in AML (Staffas et al., 2016). 

Apart from leukemia, aberrant Hox expression was reported for numerous solid 

tumors including breast, colon, prostate, thyroid, lung, brain (glioblastomas), bladder, 

ovarian, and kidney cancers as well as for melanomas (Bhatlekar et al., 2014; Shah and 

Sukumar, 2010). The most overexpressed Hox genes in solid tumors are HoxA9 and 

HoxB13 (Bhatlekar et al., 2014). Hox genes were shown to be partakers in both 

tumorigenesis and metastasis of many solid tumors, with mechanistic impact on 

spatiotemporal deregulation, gene dominance, and epigenetic deregulation (Shah and 

Sukumar, 2010). HoxA gene overexpression is often altered in breast and ovarian cancers, 

HoxB in colon cancer, HoxC in prostate and lung cancers, and HoxD in colon and breast 

cancers (Bhatlekar et al., 2014). Interestingly, different tumors that arise from the same 

embryogenic tissues exhibit similar aberrant Hox expression profiles (Bhatlekar et al., 

2014). The use of overexpressed Hox proteins in many solid tumors as biomarkers and 

possible therapeutic targets is currently subject of intense research and some promising 

results have already been published (Bhatlekar et al., 2014; Shah and Sukumar, 2010).  

 

1.4.3 FUNCTIONS OF HOXA9  

 

The Hox protein A9 has been extensively studied in the context of hematopoiesis and 

leukemia because of its important roles in these settings. As a key regulator of 

hematopoiesis, it is involved in self-renewal of HSCs including cell proliferation and cell 

survival and is therefore important to maintain the stem cell status (Alharbi et al., 2013). 

Its central role among the HoxA cluster for proliferation of HSCs and precursor cells was 

shown by Lebert-Ghali et al. by overexpressing HoxA9 in a HoxA cluster knockout 

model leading to rescue of lost functions to a great extent (Lebert-Ghali et al., 2016). 

Interestingly, the contribution of HoxA genes in differentiation of hematopoietic cells 

was only marginal (Lebert-Ghali et al., 2016). HoxA9 has been implicated in the function 

of myeloid and lymphoid progenitors (Alharbi et al., 2013), with an emphasis on 

lymphoid-dependent B cell progenitors in concert with its downstream target Flt3 

(Alharbi et al., 2013; Dolence et al., 2014; Gwin et al., 2010; Gwin et al., 2013b).  

The expression of HoxA9 is mediated by a large protein called MLL1 (mixed 

lineage leukemia 1) through its histone methyltransferase activity along the HoxA9 locus, 

leading to histone H3 lysine 4 trimethylation (H3K4me3) in concert with the co-factors 
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Menin and LEDGF (Collins and Hess, 2016; Gan et al., 2010). Further involvement of 

the histone acetyltransferase MOF (males absent on the first) in regulating HoxA9 

expression has been reported (Collins and Hess, 2016; Mishra et al., 2014). Several 

genetic alterations in approximately 50 % of AML and some subsets of ALL result in 

aberrant upstream regulation of HoxA9 including MLL1 translocations, NUP98-fusion 

proteins, CDX deregulation, or NPM1 mutations (Collins and Hess, 2016).  

Transcriptional downstream targets of HoxA9 were identified by several studies 

in different cell settings, both in human and murine hematopoietic tissues, which are 

collectively depicted in TABLE 1.4. HoxA9 controls expression of its target genes through 

binding at cis-regulatory elements together with co-factors and cell type-dependent 

general factors/collaborators (see also section 1.4.1) (Collins and Hess, 2016).  As 

mentioned in section 1.4.2, HoxA9 regulates nearby Hox genes such as HoxA7 and 

HoxA10 and its co-factors Pbx3 and Meis1 (Faber et al., 2009). Meis1 was recently shown 

to be additionally controlled by HoxA9 through regulating the Meis1 regulators creb1 

and pknox1 (Hu et al., 2009). As part of the fusion protein NUP98-HoxA9, HoxA9 was 

even shown to positively regulate its own activation (Takeda et al., 2006). The target gene 

Pim1 promotes proliferation via c-Myb, which in turn was also shown to be directly 

regulated by HoxA9 in concert with its co-factor Meis1 (Hess et al., 2006). A novel study 

confirms upregulation of c-Myb through HoxA9, Meis1, and PU.1 in murine myeloid 

progenitors via distal regulation (Zhang et al., 2016). Interestingly, c-Myb, which also 

functions as transcription factor, was demonstrated to be an important developmental 

regulator of monocyte-derived MΦs but not monocyte-independent MΦs recently 

(Italiani and Boraschi, 2014). Pim1 further supports anti-apoptotic effects by inhibiting 

the BAD protein (Hu et al., 2007). A whole bunch of genes involved in proliferation that 

are positively regulated by HoxA9 were found by Huang et al. in hematopoietic cells 

namely Flt3, Foxp1, Kit, Gfi1, Lvk, Myb, Lmo, Camk2d, Cdk6, Etv6, and Erg (Huang et 

al., 2012). As noted in section 1.3.1.1, the receptor tyrosine kinase Flt3 is also important 

for the development and maintenance of DCs and was shown to be regulated by HoxA9 

in lymphoid progenitors (Gwin et al., 2010; Gwin et al., 2013b; Schmid et al., 2010). 

Furthermore, high expression levels of Flt3 and a Flt3 mutation were linked to a poor 

prognosis in AML and studies have shown promising results combining Flt3 inhibitors 

and standard therapies for AML (Konig and Levis, 2015). HoxA9 further downregulates 

genes responsible for differentiation and inflammation in hematopoietic progenitors 

including Runx1, Ifngr1, Csf2rb, Ccl4, Ccl3, Ifit1, Tlr4, Cd28, and Cd33 (Huang et al., 
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2012). Important additional target genes are the oncogene Id2, which is enhanced by 

HoxA9 and is also involved in the fate of cDCs and inhibits pDC differentiation (see 

section 1.3.1.1 and 1.3.1.2 for details), and the apoptotic factor BIM, that is 

downregulated by HoxA9 (Nagel et al., 2010). Besides auto-regulatory activity and the 

upregulation of adjacent Hox proteins as well as co-factors, the fusion protein NUP98-

HoxA9 enhances the expression of transcription factors and receptor tyrosine kinases that 

have important functions in leukemogenesis such as Evi1, Mef2c, Kit, and again Flt3 

(Takeda et al., 2006). The HoxA9-mediated transcriptional regulation of cell cycle 

regulators in concert with the transcription factor CCAAT/enhancer-binding protein 

alpha (C/EBPα) and the methyltransferase G9a (Ehmt2) was demonstrated in 

leukemogenesis models (Collins et al., 2014; Lehnertz et al., 2014). The chromatin 

regulator CBP/p300 (Crebbp/Ep300) histone acetyltransferase (HAT) was shown to be a 

transcriptional target of HoxA9 (Huang et al., 2012). The numbers of genomic binding 

sites and regulated genes of HoxA9 in different primary cells and cell lines were ranging 

between 696 – 6535 and 72 – 7132, respectively, with predicted other transcription factors 

C/EBPα, CREB, MYB, CAUDAL ETS, MYC, and STAT as additional binding partners 

(general factors) (Collins et al., 2014; Dorsam et al., 2004; Ferrell et al., 2005; Huang et 

al., 2012; Rezsohazy et al., 2015; Sun et al., 2013b). 

In addition to its function as transcription factor, HoxA9 was shown to positively 

influence translation of distinct mRNAs through direct interaction with the translation 

initiation factor eIF4E by using specific binding sites (Topisirovic et al., 2005).  The 

eIF4E-dependent nuclear export of cyclin D1 and ornithine decarboxylase (ODC) 

mRNAs as well as increased ODC translation efficiency in the cytosol were facilitated by 

HoxA9 (Topisirovic et al., 2005). Moreover, HoxA9 forms complexes with the ubiquitin 

ligase core component Roc1-Ddb1-Cul4a and functions as an E3 ligase activator that 

mediates ubiquitination and thus degradation of the geminin protein (Ohno et al., 2013). 

Geminin inhibits DNA replication and is normally degraded during the mitotic phase of 

the cell cycle, therefore, by enhancing degradation of geminin, HoxA9 induces DNA 

replication important for cell proliferation (Ohno et al., 2013).   
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TABLE 1.4 TRANSCRIPTIONAL TARGET GENES OF HOXA9 

HOXA9 PROTEIN 

(SPECIES) 

ACTIVATION REPRESSION 

 

HoxA9 

(human/mouse) 

 

 

 

 

HoxA9-Meis1 

(mouse) 

 

NUP98-HoxA9 

(human) 

 

Pim1, ID2, CYBB, HoxA7, HoxA10, 

Pbx3, Meis1, Flt3, Creb1, Pknox1, 

Camk2d, Cdk6, Erg, Foxp1, Gfi1, Kit, 

Lck, Lmo2, Myb, Sox4, Crebbp, Igf1, 

mir-21, mir-196b 

 

c-Myb 

 

 

HoxA7, HoxA9, Meis1, Pbx3, EVI1, 

MEF2C, Flt3, Kit 

 

BIM, Itfi1, Tlr4, Ccl3, 

Ccl4, Csf2rb, Ifngr1, 

Runx1, Cd28, Cd33, 

Ink4a 

 

   

   
Shown are currently known downstream targets of transcriptional activation or repression of HoxA9, 

HoxA9 in concert with the co-factor Meis1, and the fusion protein NUP98-HoxA9 found in leukemia 

(Alharbi et al., 2013; Bei et al., 2005; Collins et al., 2014; Collins and Hess, 2016; Faber et al., 2009; 

Gwin et al., 2010; Hess et al., 2006; Hu et al., 2009; Hu et al., 2007; Huang et al., 2012; Morgan, 2006; 

Nagel et al., 2010; Steger et al., 2015; Takeda et al., 2006; Velu et al., 2014). 
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1.5 PURPOSE OF THIS WORK 

 

Several reasons encouraged me to investigate the role of the homeodomain-containing 

transcription factor HoxA9 in the context of TLR biology and development of DCs and 

MΦs.  

Firstly, unpublished data from the former group of Prof. Bauer in the Institute for 

Medical Microbiology and Hygiene in Munich revealed strikingly high expression levels 

of hoxa9 mRNA in gene expression profiles of sorted murine pDCs that were activated 

by TLR9 ligands. Furthermore, Philipp Kurbel from our group was able to show an 

upregulation of hoxa9 in qPCR experiments upon stimulation of Flt3L-induced DCs and 

splenocytes with the TLR9 agonist ODN 2216 up to 20-fold. The fact that TLR9-driven 

innate immune responses provided by murine pDCs can be triggered by ODNs without 

CpG-motifs in contrast to other immune cells (Bauer, 2013; Haas et al., 2008; Wagner, 

2008), raises the question whether pDCs possess a unique mechanism. One hypothesis is 

that TLR9 is supported by a co-factor or even several co-factors only present in pDCs, 

which co-bind or promote binding of DNA sequences free of CpG-motifs. Increased 

mRNA expression levels in TLR9-activated mouse pDCs and the DNA-binding 

properties of HoxA9, as it is a well-known transcription factor, together supported the 

hypothesis that HoxA9 could acts as co-factor for TLR9 or is at least linked to TLR9 

biology in pDCs. Furthermore, if true, other TLRs (intracellular TLRs in particular) or 

PRRs might be influenced by HoxA9 as well. 

Secondly, Hox genes, and above all HoxA9, are known to have essential functions 

in the maintenance of HSCs and differentiation of hematopoietic precursor cells in a 

complex way (see section 1.4.2 for details). However, they were shown to be stepwise 

downregulated in parallel to ongoing differentiation and are generally believed to be 

silenced in mature differentiated hematopoietic cells (Alharbi et al., 2013). The 

observation of high HoxA9 mRNA expression levels in TLR9-activated mature murine 

pDCs is therefore surprising und suggests a role for HoxA9 also in differentiated cells. 

Regarding the involvement of Hox genes in embryogenesis, the assumption that these 

genes are completely downregulated in adult cells was proven wrong a couple of years 

ago (Morgan, 2006). Hence, Hox genes might as well have functions in adult 

differentiated hematopoietic cells. Following this idea, upregulation of HoxA9 in certain 

scenarios such as activation of TLRs in matured pDCs or other immune cells might take 

place.  
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Besides, it seems natural that HoxA9 as an important player in hematopoietic 

processes including self-renewal of HSCs and different functions in myeloid und 

lymphoid progenitors (Alharbi et al., 2013), might be directly involved in differentiation 

and development of precursors of innate immune cells such as DCs or MΦs. To date, 

participation in B cell development was shown with a link to the cytokine receptor Flt3 

as a direct downstream target of HoxA9 (Gwin et al., 2010; Gwin et al., 2013b), as already 

mentioned in detail in the latter section as well as section 1.3.1.1. However, Flt3 and its 

ligand Flt3L play also important roles in DC development (Schmid et al., 2010), which 

points towards a potential involvement of HoxA9 in the maturation of DC subsets. Id2 

was demonstrated by Reizis and colleagues as the main transcription factor responsible 

for differentiation into cDCs (Reizis et al., 2011), which inhibits its counterpart for pDCs 

called E2-2 and vice versa (see section 1.3.1.2 for details). HoxA9 was shown to activate 

expression of Id2 (Huang et al., 2012), hence, this represents another link to DC 

development. It is believed that mature pDCs in peripheral tissues are long-living cells 

and can survive for many years (Reizis et al., 2011), though there is still poor knowledge 

in this field. It seems likely that HoxA9 could promote self-renewal of peripheral 

differentiated pDCs similarly to HSCs in the BM. Moreover, the transcription factor c-

Myb, which was recently shown to be a developmental regulator of monocyte-derived 

MΦs (Italiani and Boraschi, 2014), is another direct downstream target of HoxA9 together 

with its co-factor Meis1 or indirectly via Pim1 (Huang et al., 2012). These various 

connections to development/differentiation of DCs and MΦs encouraged me to 

investigate BM cells ex vivo as well as different cell settings in vitro. 

Using HoxA9 knockout mice, which were originally generated by Mario 

Capecchi, who was one of the pioneers of knockout animals and won the Nobel Prize for 

Physiology or Medicine for this achievement 2007, I tried to find out whether TLR-

mediated innate immune responses were different to wild type in various cell settings. 

These included total BM cells, splenocytes, in vitro generated DCs as well as MΦs, and 

ex vivo sorted BM-derived DCs. My focus was initially on BM cells as well as pDCs and 

TLR9-related immunity. However, after several experiments it was clear that more TLRs 

as well as cell types could be affected by the knockout, which led to further approaches.  

 The central purpose of this work was to investigate the influence of the 

transcription factor HoxA9 on innate immune reactions that are initiated by TLRs with 

an emphasis on nucleic-acid sensing TLRs, in particular TLR7/9-related cytokine 

responses in pDCs. The generated data resulted in extension of the used cell settings and 
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TLR stimuli, taking a broader range of potential impact of the used HoxA9 knockout 

model into account. Understanding the complex mechanistic coherences of innate 

immune cells in various physiologic as well as pathologic conditions provides a basis for 

possible novel strategies to fight diseases like infections, allergies, autoimmunity, and 

cancer in the future.  
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2. MATERIALS AND METHODS 

 

2.1 MATERIALS 

 

2.1.1 DEVICES AND EQUIPMENT 

TABLE 2.1 DEVICES AND EQUIPMENT 

DEVICE/EQUIPMENT  MANUFACTURER  

 

Agarose gel chamber 

 

Biofuge 15 

 

CASY®-1 Cell counter 

 

Diavert microscope 

 

Electrophoresis power supply 

 

 

 

Emax microplate spectrophotometer 

 

Flow cytometer FACSCalibur™ 

 

Flow cytometer/sorter FACSAria™ III 

 

Gel photo-imaging system 

 

Gel UV-imaging system 

 

Hera Cell 240 Incubator 

 

Hettich Rotanta Centrifuge 

 

Manual pipetting aid (Pipetus®) 

 

Micropipettes (10µl; 100µl; 1000µl) 

 

Multifuge 1 L-R 

 

Skanwasher 400 Microplate Washer 

 

Thermocycler Eppendorf 

 

Vortexer Reax 2000 

 

  

OWL, Weilheim 

 

Heraeus, Hanau 

 

Schärfe System, Reutlingen 

 

Leitz, Bielefeld 

 

EC 150 – E-C Apparatus Cooperation 

 

American Laboratory Trading, USA 

 

Molecular Devices, Ismaning 

 

Becton Dickinson, Heidelberg 

 

Becton Dickinson, Heidelberg 

 

Mitsubishi, Ratingen 

 

Fröbel, Lindau 

 

Heraeus, Hanau 

 

Hettich Lab Technology, Tuttlingen 

 

Hirschmann, Eberstadt 

 

Eppendorf, Hamburg 

 

Heraeus, Hanau 

 

Molecular Devices, Ismaning 

 

Eppendorf, Hamburg 

 

Heidolph, Schwabach 

 
Used devices and equipment are listed with name and location of manufacturer. 
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2.1.2 CHEMICALS 

TABLE 2.2 CHEMICALS 

CHEMICAL  MANUFACTURER  

 

Ethanol  

 

Ethidium bromide  

 

Ethylenediaminetetraacetate (EDTA) 

 

H2O2 

 

H2SO4 

 

KCL 

 

KH2PO4 

 

Isopropanol  

 

NaCl 

 

Na2HPO4 x 2H20 

 

PBS def  without Ca2+, Mg2+ 

 

Sodium azide (NaN3) 

 

Tween® 20 

 

Ultra pure water 

 

β-Mercaptoethanol 50 mM 

 

  

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Biochrom AG, Berlin 

 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

 

Biochrom AG, Berlin 

 

Gibco, Karlsruhe 

Used chemicals listed with name and location of manufacturer. 

 

 

2.1.3 MEDIA AND SUPPLEMENTED MEDIA 

TABLE 2.3 MEDIA 

MEDIUM  MANUFACTURER  

 

OptiMEM (with L-glutamine) 

 

RPMI 1640 (with Hepes) 

 

  

Gibco, Karlsruhe 

 

PAA, Cölbe 

 
Used media listed with name and location of manufacturer. 
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TABLE 2.4 SUPPLEMENTED MEDIA 

SUPPLEMENTED MEDIUM  SUPPLEMENTS 

 

OptiMEMSuppl. 

 

 

 

 

 

RPMISuppl. 

 

 

 

 

 

 

Spleen DC isolation medium 

 

  

500 ml OptiMEM (with L-Glutamine) 

1 % FCS 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

0.05 mM β-Mercaptoethanol 

 

500 ml RPMI 1640 (with Hepes) 

10 % FCS 

2 mM L-Glutamin 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

0.05 mM β-Mercaptoethanol 

 

500 ml RPMI 1640 (with Hepes) 

1 mg/ml Collagenase D 

50 µg/ml DNase 

 
Used supplemented media listed with supplements. 

 

 

2.1.4 MOLECULAR BIOLOGICAL REAGENTS 

TABLE 2.5 MOLECULAR BIOLOGICAL REAGENTS 

REAGENT  MANUFACTURER 

 

6x LoadingDye  

 

Agarose (Electrophoresis grade) 

 

Bovine serum albumin (BSA) 

 

Collagenase D 

 

DNase 

 

DOTAP Liposomal Transfection Reagent 

 

Dulbecco’s PBS 

 

Fetal bovine serum (FBS) 

 

Flt3L 

 

 

Generuler 1 kb DNA Ladder Plus 

 

  

Fermentas, St. Leon Rot  

 

Invitrogen, Karlsruhe  

 

Roth, Karlsruhe 

 

Roche, Mannheim 

 

Roche, Mannheim 

 

Roth, Karlsruhe 

 

PAA, Cölbe 

  

Gibco, Karlsruhe 

 

Cell culture supernatant, BMFZ 

Marburg 

 

Fermentas, St. Leon Rot 
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Generuler 100 bp DNA Ladder Plus 

 

GM-CSF 

 

GM-CSF 

 

 

Lipofectamine 2000 Reagent 

 

L-glutamine 200 mM 

 

LSM 1077 Separation Medium (Ficoll) 

 

M-CSF 

 

o-Phenyl-Diamin (OPD) 20 mg tablet 

 

Penicillin/Streptamycin 

 

Proteinase K 

 

Recombinant murine IFN-α (Standard) 

 

Recombinant murine IL-6 (Standard) 

 

Streptavidin-POD  

 

Taq PCR Master Mix Kit 

 

 

Fermentas, St. Leon Rot 

 

PeproTech, Rocky Hill, USA 

 

Cell culture supernatant, BMFZ 

Marburg 

 

Invitrogen, Karlsruhe 

 

PAA, Cölbe 

 

PAA, Cölbe 

 

PeproTech, Rocky Hill, USA 

 

Sigma-Aldrich, München 

 

PAA, Cölbe 

 

Fermentas, St. Leon Rot 

 

HyCult Biotech, Uden, NL 

 

R&D Systems, Wiesbaden 

 

Roche, Mannheim 

 

Qiagen, Hilden 

 
Used molecular biological reagents listed with name and location of manufacturer. 
 

 

2.1.5 BUFFERS AND SOLUTIONS 

TABLE 2.6 BUFFERS AND SOLUTIONS 

BUFFER/SOLUTION  COMPONENTS 

 

ELISA blocking buffer 1% 

 

 

 

ELISA substrate buffer 

 

 

 

ELISA washing buffer 

 

 

 

  

10 g BSA 

0.5 ml Tween® 20 

Ad 1 L PBS def. 

 

7.3 g C6H8O7 

11,87 g Na2HPO4 x 2H2O 

Ad 1 L ddH20 

 

500 ml 10x PBS 

2.5 ml Tween® 20 

Ad 5 L ddH2O 
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FACS buffer 

 

 

 

 

FACS sorting buffer 

 

 

 

PBS 10x 

 

 

 

 

 

TAE DNA-gel running buffer 50x 

 

 

 

Tail lysing buffer 

 

 

PBS def. 

2 % FCS 

0.01 % NaN3 

2 mM EDTA 

 

PBS def. 

2 % FCS 

2 mM EDTA 

 

10 g KCl 

10 g KH2PO4 

400 g NaCl 

57.5 g Na2HPO4 x 2H2O 

Ad 5 L ddH20 

 

242 g Tris-Base 

57.1 ml concentrated CH3COOH 

100 ml 0.5 M EDTA (pH 8) 

 

10 mM Tris HCL pH 8.0 

25 mM EDTA 

100 mM NaCl 

0.5 % SDS (10 %) 

 
Used buffers and solutions listed with required components. 

 

 

2.1.6 MOUSE STRAINS 

TABLE 2.7 MOUSE STRAINS 

MOUSE STRAIN  SOURCE 

 

C57/Bl6 (wild type mice) 

 

HoxA9 knockout mice  

on C57/Bl6 background 

 

  

Animal facility BMFZ Marburg 

 

Prof. Dr. Stefanie Dimmeler, Institute 

of Cardiovascular Regeneration, 

Goethe-University Frankfurt am Main 

 

Used mouse strains and their source. 
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2.1.7 ANTIBODIES 

TABLE 2.8 ELISA ANTIBODIES 

ELISA ANTIBODY  MANUFACTURER 

 

Goat IgG biotinylated anti-mouse IL-6 

PAb (Detection-Ab) 

 

Goat POD-conjugated anti-rabbit IgG 

Mab (3.Ab) 

 

Rabbit anti-mouse IFN-α PAb 

(Detection-Ab) 

 

Rat IgG1 anti-mouse IFN-α MAb 

(Capture-Ab) 

 

Rat IgG1 anti-mouse IL-6 MAb 

(Capture-Ab) 

 

  

R&D Systems, Wiesbaden 

 

 

Jackson ImmunoResearch, Suffolk, 

UK 

 

PBL, Piscataway, NJ, USA 

 

 

PBL, Piscataway, NJ, USA 

 

 

R&D Systems, Wiesbaden 

Used ELISA antibodies listed with name and location of manufacturer. 

 

 

TABLE 2.9 FACS ANTIBODIES 

FACS ANTIBODY  MANUFACTURER 

 

ChromePure Rat IgG (Fc blocking) 

 

 

Rat anti-mouse BST2-FITC 

 

Rat anti-mouse B220-APC 

 

Rat anti-mouse B220-FITC 

 

Rat anti-mouse CD11b-APC 

 

Rat anti-mouse CD11b-FITC 

 

Rat anti-mouse CD11c-APC 

 

Rat anti-mouse CD11c-PE 

 

Rat anti-mouse Flt3-PE 

 

Rat anti-mouse F4/80-FITC 

 

Rat anti-mouse Ly6C-PE 

 

  

Jackson ImmunoResearch, Suffolk, 

UK 

 

eBioscience, San Diego, USA 

 

BD Pharmingen, Heidelberg 

 

BD Pharmingen, Heidelberg 

 

eBioscience, San Diego, USA 

 

eBioscience, San Diego, USA 

 

eBioscience, San Diego, USA 

 

eBioscience, San Diego, USA 

 

BD Pharmingen, Heidelberg 

 

eBioscience, San Diego, USA 

 

Miltenyi Biotec, Bergisch Gladbach 
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Rat anti-mouse MHC-I-PE 

 

Rat anti-mouse MHC-II-PE 

 

Rat anti-mouse SiglecH-FITC 

 

TO-PRO®-3 iodide 

 

 

eBioscience, San Diego, USA 

 

eBioscience, San Diego, USA 

 

eBioscience, San Diego, USA 

 

Invitrogen, Karlsruhe 

Used FACS antibodies listed with name and location of manufacturer. 

 

 

2.1.8 STIMULI 

TABLE 2.10 STIMULI 

STIMULUS SEQUENCE 5’- 3’ / DESCRIPTION MANUFACTURER 

 

LPS 

 

 

ODN AP-1 PD 

 

 

ODN 1668 PD 

 

 

ODN 1720 PD 

 

 

ODN 2216 PS 

 

 

POLY I:C 

 

 

 

 

RNA 40 PD 

 

 

R848 

 

 

 

Pam-3-Cys 

 

 

 

Lipopolysaccharide from Escherichia coli 

 

 

GCTTGATGACTCAGCCGGAA 

 

 

TCCATGACGTTCCTGATGCT 

 

 

TCCATGAGCTTCCTGATGCT 

 

 

GsGsGGGACGATCGTCGsGsGsGsGsGsG 

 

 

Polyinosinic-polycytidylic acid 

 

 

 

 

GCCCGUCUGUUGUGUGACUC 

 

 

Imidazoquinoline compound Resiquimod -

selective synthetic ligand for murine TLR7 

and human TLR7/8 

 

Pam3CysSerLys4 – synthetic tripalmitoylated 

lipopeptide which activates TLR2 

 

DIFCO, Detroit, 

USA 

 

TIB MOLBIOL, 

Berlin 

 

TIB MOLBIOL, 

Berlin 

 

TIB MOLBIOL, 

Berlin 

 

TIB MOLBIOL, 

Berlin 

 

InvivoGen, San 

Diego USA 

 

GE Healthcare 

 

IBA Biologics, 

Göttingen 

 

InvivoGen, San 

Diego USA 

 

 

InvivoGen, San 

Diego USA 

Used stimuli listed with sequence or description and name as well as location of manufacturer. ‘G’ – 

guanine; ‘C’ – cytosine; ‘A’ – adenine; ‘T’ – thymine; ‘U’ –  uracil; ’s’ – phosphorothioate (PS) linkage. 
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2.1.9 PRIMER 

TABLE 2.11 PRIMER 

PRIMER SEQUENCE 5’- 3’ MANUFACTURER 

 

hoxa9-fp 

 

 

hoxa9-rp 

 

 

MC1neo-rp 

 

 

CGCTGGAACTGGAGAAGGAGTTTCTG 

 

 

ATCCTGCGGTTCTGGAACCAGATC 

 

 

TCTATCGCCTTCTTGACGAGTTC 

 

Metabion, 

Martinsried 

 

Metabion, 

Martinsried 

 

Metabion, 

Martinsried 

 
Used primer listed with sequence and name and location of manufacturer.  ‘G’ – guanine; ‘C’ –  cytosine; 

‘A’ – adenine; ‘T’ – thymine. 
 

 

2.1.10 CONSUMPTION ITEMS 

TABLE 2.12 CONSUMPTION ITEMS 

ITEMS  MANUFACTURER 

 

24 G cannula 

 

96-well ELISA MaxiSorp microplate 

 

96-well flat bottom plate 

  

96-well round bottom plate 

 

Cell culture dishes BD 10 cm 

 

Cell culture dishes BD Primaria 10 cm 

 

Cell culture dishes Nunclon surface 10 cm 

 

Cell strainer 70 µm Nylon 

 

 

 

FACS tubes sterile 5 ml snap cap (12 x 75 

mm) 

 

FACS tubes 1.3 ml (8.5 x 44 mm) 

 

Petri dishes 10cm 

 

Pipette barrier tips (10 µl; 100 µl; 1000 µl) 

 

 

 

  

BD Microlance, Heidelberg 

 

NUNC, Roskilde, Denmark 

 

Greiner, Frickenhausen 

 

Greiner, Frickenhausen 

 

BD Falcon, Heidelberg 

 

BD Falcon, Heidelberg 

 

NUNC, Roskilde, Denmark 

 

BD Falcon, Heidelberg 

 

Fisher Scientific, Pittsburgh, USA 

 

BD Falcon, Heidelberg 

 

 

Greiner, Frickenhausen 

 

Greiner, Frickenhausen 

 

Sorenson, Salt Lake City, USA 
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Pipette tips (10 µl; 100 µl; 1000µl) 

 

Pipette tips for multipette® (25 µl; 50 µl; 250 

µl) 

 

Plastic pipettes (5 ml; 10 ml; 25 ml) 

 

Reaction tubes (0.5 ml; 1.5 ml; 2 ml) 

  

Reaction tubes (15 ml; 50 ml) 

 

Syringe 10 ml 

 

Topseal A for 96-well microplates 

 

 

Greiner, Frickenhausen 

 

Eppendorf, Hamburg 

 

 

Greiner, Frickenhausen 

 

Sarstedt, Nümbrecht 

 

Greiner, Frickenhausen 

 

B. Braun, Melsungen 

 

PerkinElmer, Zaventem, Belgium 

Used consumption items listed with name and location of manufacturer. 

 

 

2.1.11 SOFTWARE 

TABLE 2.13 SOFTWARE 

SOFTWARE  MANUFACTURER 

 

BD FACSDivaTM 7.0  

(for Windows) 

 

CellQuest Pro, version 5.2.1 

(for Macintosh) 

 

EndNote Web 

 

FlowJo, version 10.0.7  

(for Windows) 

 

Microsoft Office 2007, 2010, and 2013 

 

GraphPad Prism 6.05 

  

SigmaPlot 10.0 

 

SoftMax Pro V5 

 

 

 

  

BD Bioscience, San Jose, USA 

 

 

BD Bioscience, San Jose, USA 

 

  

Thomson Reuters, Carlsbad, USA 

 

Treestar, San Carlos, USA 

 

 

Microsoft, Redmond, USA 

 

GraphPad Software, La Jolla, USA 

 

Scientific Solutions, Lausanne, Swiss 

 

Molecular Devices, Ismaning 

Used software listed with name and location of manufacturer. 
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2.2 METHODS 

 

2.2.1 HOXA9 KNOCKOUT MICE 

 

HoxA9 knockout mice were obtained from Prof. Dr. Stefanie Dimmeler, Institute of 

Cardiovascular Regeneration, Goethe-University Frankfurt am Main. A targeted 

disruption of the HoxA9 gene in murine embryonic stem cells was introduced by 

homologous recombination by Dr. Cynthia Peterson and Dr. Mario Capecchi (Chen and 

Capecchi, 1997). The MCI neo cassette replaced a 1.8 kb Bg1/II/EcoRI fragment of the 

HoxA9 gene, containing most of the homeobox and 3’ noncoding sequences (Lawrence 

et al., 1997). Cells of the resulting targeted cell line 3C-3 were injected into C57/Bl6 

blastocysts. Chimeric males were crossed with C57/Bl6 females to generate heterozygous 

offspring. HoxA9-/- and wild type littermates were generated by crossing heterozygotes. 

Both HoxA9+/- and HoxA9-/- mice appear healthy, are fertile, and weigh the same as their 

wild type littermates. Furthermore, mice bearing the mutant gene do not appear to be 

predisposed to infections or develop leukemia although they show statistically significant 

reductions in both peripheral blood lymphocytes and granulocytes (Lawrence et al., 

1997). In addition, HoxA9-/- mice display a slight pancytopenia and hypocellularity in the 

spleen and thymus (Lawrence et al., 1997).  

 

Procedure: 

 

To distinguish mice bearing the wild type, heterozygous, or the mutant HoxA9 alleles, 

genomic DNA was isolated from tail clips of weanlings. The tail clips were transferred 

into a 1.5 ml reaction tube. 495 µl tail lysing buffer and 5 µl Proteinase K (final 

concentration: 0.1 mg/ml) were added and incubated at 56°C under constant shaking with 

300 rpm overnight. After centrifugation at 13000 rpm for 15 min at room temperature 

(RT), the supernatant of the lysate was transferred into a new reaction tube containing 

450 µl of isopropanol for precipitation of genomic DNA. The tube was inverted until the 

precipitated genomic DNA was visible and caught by a toothpick for transfer into a new 

reaction tube, which was filled with 300 µl of ultra pure water. After incubation at RT 

under constant shaking with 300 rpm for 3 h, the genomic DNA was solved and ready for 

PCR or storage at -20°C until further use. 
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2.2.2 GENOTYPING OF HOXA9 MICE BY POLYMERASE CHAIN REACTION (PCR) 

 

The PCR allows amplification of small amounts of DNA in vitro. It was established in 

1983 by Kary Mullis. The number of PCR publications increased exponentially since the 

first PCR publication in 1985 by Saiki and colleagues (Saiki et al., 1985). The main 

principle of the PCR is based on denaturation of dsDNA at 92 – 95°C and annealing of 

specific oligonucleotides (primers), after decreasing the temperature to 50 – 60°C, at the 

5’- and 3’ end of each side of the DNA sequence to be amplified. These oligonucleotides 

are elongated by a thermostable DNA polymerase at 68 – 75°C in the presence of 

deoxynucleotide triphosphates (dNTPs). Elongation of the template takes place until the 

reaction is stopped or the DNA polymerase ‘drops down’. By increasing the temperature 

to 95°C, the DNA template denatures again and a new cycle begins. As a result, the real 

length of the DNA template is amplified for the first time. After 25 PCR cycles 

approximately 3.2 x 107 duplicates of the template are synthesized. Time and temperature 

conditions for each step of the PCR depend on the used DNA polymerase, the DNA 

template, and the primers. In addition, a buffer containing MG2+ as co-factor for the DNA 

polymerase is necessary. 

 

For genotypic analysis of HoxA9 mice, a PCR with a Taq polymerase and a three-primer 

system was applied. The primers hoxa9-fp and hoxa9-rp were used for amplification of 

the WT allele and resulted in a 123 bp band, whereas amplification of the targeted allele 

with primers hoxa9-fp and MC1neo-rp resulted in a 200 bp band (FIGURE 2.1). Mice 

showing both bands were heterozygous.  

 

Procedure: 

 

A total reaction volume of 30 µl was used, containing 15 µl Taq PCR MasterMix, 10 µl 

ultra pure water, 2 µl of genomic DNA, and 1 µl of each primer with a molarity of 100 

pmol (final concentration: 0.3 pmol). FIGURE 2.1 B shows a HoxA9 screening PCR.  
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The following PCR program was performed on an Eppendorf Thermocycler: 

 

95°C  5 min 

95°C  40 sec 

57°C  35 sec         35 cycles 

72°C  40 sec 

72 °C  5 min 

Hold 4°C 

 

The visualization of the amplified DNA fragments was carried out by gel electrophoresis. 

The negatively charged DNA fragments moved through an agarose matrix in an electric 

field to the positively charged anode. The separation of the fragments depended on the 

length. Thus, smaller fragments moved faster than longer ones. The concentration of the 

agarose gel was 1.6 %. Accordingly, 1.6 g of agarose was boiled up in 100 ml of 1 x TAE 

buffer and filled in a gel slide. After polymerization of the agarose gel, 15 µl of PCR 

product dissolved in DNA loading dye was pipetted into the small pockets of the gel. 

After separation by electrophoresis, the gel was stained with the DNA intercalating dye 

ethidiumbromide (EtBr) (final concentration: 1 µg/ml) and visualized by ultraviolet light.  

 

2.2.3 ISOLATION OF MURINE BONE MARROW (BM) CELLS AND SPLENOCYTES 

 

Mice were killed by cervical dislocation at the age of 6 to 27 weeks. After disinfection 

with 70 % ethanol and fixation on a preparation board, both femur and tibia were 

FIGURE 2.1 GENOTYPING OF HOXA9 KO AND WT MICE BY PCR 
Shown is the HoxA9 screening PCR. Amplification of the wild type allele with primers hoxa9-fp and 

hoxa9-rp results in the lower 123 bp band, whereas amplification of the targeted allele with primers 

hoxa9-fp and MC1neo-rp results in the upper 200 bp band. Mice showing both bands are heterozygous. 

M – 100 bp ladder; Lane 1 – positive control targeted allele; Lane2  – positive control wild type allele; 

Lanes 3, 9, 10, 13, and 14 - wild type animals; Lanes 4, 6, 7, 8, and 11 – knockout animals; Lanes 5 and 

12 - heterozygous animals.  
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dissected. The bones were stored in sterile petri dishes on ice. The spleen was isolated 

and stored in 3 ml of spleen DC isolation medium in a 15 ml tube on ice. A piece of ear 

of each mouse was cut off and transferred into a 1.5 ml reaction tube and stored at -20°C 

for DNA isolation and PCR genotyping. The following steps were carried out under a 

sterile bench of security class 2. The bones were cleaned precisely from all muscles. 

Shortly after cutting off the epiphysis on each side of the bone, the BM was flushed out 

of the diaphysis using a sterile syringe (filled with 10 ml OptiMEMSuppl. or RPMISuppl.) 

and a 24 G cannula. This step was repeated until the bones were completely empty. The 

obtained BM pieces were pipetted softly up and down (using a 10 ml pipette) in order to 

achieve a single-cell suspension. The suspended cells were transferred into a 50 ml tube 

through a 70 µm cell strainer (to separate them from bone pieces) and centrifuged at 1300 

rpm for 7 min at 4°C. The supernatant was discarded and the cell pellet was resuspended 

in 5 ml of red blood cell lysing buffer. After an incubation time of 7 min at RT, the lysis 

of the erythrocytes was stopped by adding 5 ml OptiMEMSuppl. or RPMISuppl.. Again, the 

cell suspension was centrifuged at 1300 rpm for 7 min at 4°C and subsequently the 

supernatant was discarded and the cell pellet was resuspended in 5 ml OptiMEMSuppl. or 

RPMISuppl.. Now the number of cells was determined by using the CASY®-1 cell counter. 

 

The spleen was cut into small pieces and incubated in spleen isolation medium at 37°C 

for 45 – 50 min. Sterile EDTA (final concentration: 10 mM) was added and the spleen 

was mashed through a 70 µm cell strainer using a plunger of a 5 ml syringe. After 

centrifugation at 1300 rpm for 7 min at 4°C, the supernatant was discarded and the cell 

pellet was resuspended in 5 ml red blood cell lysing buffer and incubated for 10 min. The 

lysis was stopped by adding 5 ml of RPMISuppl.. Again, the cell suspension was 

centrifuged at 1300 rpm for 7 min at 4°C, the supernatant discarded, and the cell pellet 

was resuspended in 5 ml RPMISuppl. followed by filtration through a 70 µm cell strainer. 

By stacking carefully 5 ml of the cell suspension on top of 15 ml ficoll and centrifugation 

at 2000 rpm for 30 min at RT (brake switched off), the lymphocytes, monocytes, and DCs 

in the white phase were separated from dead cells, remaining erythrocytes (passing 

through the ficoll phase), and thrombocytes (stay in the supernatant). The cells in the 

white interphase between the ficoll phase and the medium were withdrawn carefully and 

washed twice with 10 – 15 ml RPMISuppl. followed by centrifugation at 1300 rpm for 7 

min at 4°C. Finally, the cell pellet was resuspended in 5 ml RPMISuppl. and the cell number 

was determined by the CASY®-1 cell counter. 
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Isolated BM cells were used for FACS analysis, TLR stimulation experiments, the 

generation of pDCs and cDCs in Flt3L and GM-CSF supplemented cultures, respectively, 

and the generation of MΦs in M-CSF supplemented cultures. Isolated splenocytes were 

used for FACS analysis and TLR stimulation experiments. Moreover, pDCs and cDCs 

were sorted ex vivo from BM cells using a FACSAria™ III flow sorter (see section 2.2.9). 

 

2.2.4 GENERATION OF DCS FROM FLT3L SUPPLEMENTED BM CULTURES 

 

The growth factor fms-like tyrosine kinase 3 ligand (Flt3L) is used for the generation of 

pDCs as well as cDCs from HSCs in vitro (Brasel et al., 2000).  

 

Procedure: 

 

15 x 106 freshly isolated BM cells (see chapter 2.2.3) were seeded at a density of 1.5 x 

106 cells/ml in a 10 cm cell culture dish (BD Primaria). Stefanie Seibert from our working 

group showed that OptiMEMcompl. is the best supplemented medium to achieve high 

numbers of pDCs in her bachelor thesis. Flt3L (supernatant of a chinese hamster ovary 

(CHO) transgenic cell line culture) was added to each culture at a ratio of 1:250 

(depending on the batch). Flt3L supplemented BM cultures were incubated at 37°C, 5 % 

CO2, and 100 % air humidity and cultured for 8 days. The differentiated cells were 

harvested by aspirating the medium and gently 

washing the bottom of the 10 cm cell culture dish 

with a 10 ml pipette. The single-cell suspension was 

transferred into a 50 ml tube and centrifuged at 1300 

rpm for 7 min at 4°C. The cell pellet was 

resuspended in 5 ml OptiMEMSuppl. and the cells 

were counted by the CASY®-1 cell counter. The 

quality, viability, and differentiation into pDCs and 

cDCs was checked by FACS analysis (see FIGURE 

2.2). The viability of the cells after 8 days in culture 

was 35 – 50 %. Approximately 35 – 80 % of the 

viable cells differentiated into pDCs and 15 – 35 % 

into cDCs. PDCs show a B220+ CD11c+ cell surface 

FIGURE 2.2  
FACS OF FLT3L CULTURE  
FACS analysis of Flt3L supplemented 

wild type bone marrow culture after 8 

days. Viable (ToPro3 iodide negative 

gated) B220
+
 CD11c

+
 cells are pDCs, 

whereas B220
-
 CD11c

+
 cells represent 

cDCs. 
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phenotype, whereas cDCs do not express the membrane bound tyrosine phosphatase 

B220 (also known as CD45R). The harvested cells were used for further FACS analysis 

and TRL stimulation experiments. 

 

2.2.5 GENERATION OF DCS FROM GM-CSF SUPPLEMENTED BM CULTURES 

 

It was shown that murine BM cells cultured in GM-CSF for 6 – 8 days differentiate into 

large numbers of mature DCs (Caux et al., 1992; Inaba et al., 1992). These cells most 

likely represent DCs formed during inflammatory conditions (Randolph et al., 1998). 

Because GM-CSF inhibits Flt3L dependent pDC development from early BM 

progenitors, mainly cDCs  are found in these cultures (Esashi et al., 2008).  

 

Procedure: 

 

3 – 6 x 106 freshly isolated BM cells were cultured 

in cell culture dishes (Nunclon surface) each 

containing 10 ml RPMISuppl. + 10 % GM-CSF 

(supernatant of X6310 cell line culture). 10 ml of 

RPMISuppl. + 10 % GM-CSF were added carefully 

on day 3 and 6. The differentiated cells were 

harvested on day 7 by gently aspirating the whole 

medium. The quality, viability, and differentiation 

was checked by FACS analysis using antibodies 

against CD11c and MHC-II (see FIGURE 2.3). Cells 

were used for FACS analysis and TLR stimulation 

experiments.  

 

2.2.6 GENERATION OF MΦS FROM M-CSF SUPPLEMENTED BM CULTURES 

 

The differentiation of MΦs in vitro from murine BM cells using the growth factor M-CSF 

was shown by Stanley et al. for the first time (Stanley et al., 1978).  

 

 

 

FIGURE 2.3 
FACS OF GM-CSF CULTURE 
FACS analysis of GM-CSF 

supplemented wild type bone marrow 

culture after 7 days. CD11c
+
 MHC-II

int
 

cells represent nonactivated cDCs, 

whereas CD11c
+
 MHC-II

high cells are 

activated cDCs. 
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Procedure:   

 

After isolation of BM cells (see  chapter 2.2.3), 5 x 

106 cells were cultured in 10 cm cell culture dishes 

(BD) containing 10 ml of RPMISuppl.. M-CSF was 

added to the medium (final concentration: 20 ng/ml) 

directly after seeding the BM cells and again at day 

3. After 5 days of culture at 37°C, 5 % CO2, and 100 

% air humidity, the medium was aspirated and 

adherent cells were detached by incubation with 

PBSdef/3 % FCS/2mM EDTA for 15 min at 37°C. 

The cell suspension was transferred into a 50 ml 

tube and centrifuged at 1300 rpm for 7 min at 4°C. 

The cell pellet was resuspended in 5 ml RPMISuppl. and cells were counted by the CASY®-

1 cell counter. The quality was checked by FACS analysis using fluorescence labeled 

antibodies against F4/80 and MHC-I (FIGURE 2.4). Cells were used for FACS analysis 

and TLR stimulation experiments. The aspirated medium containing a single-cell 

suspension of non-detached cells was transferred into a 50 ml tube and centrifuged at 

1300 rpm for 7 min at 4°C. The cell pellet was resuspended in 5 ml RPMISuppl. and the 

cells were counted by the CASY®-1 cell counter. The small proportion of DC subsets in 

M-CSF supplemented cultures was determined by FACS using fluorescence labeled 

antibodies against B220, CD11c, SiglecH, BST2, and CD11b. TLR stimulation 

experiments were carried out to investigate TLR function. 

 

2.2.7 STIMULATION OF CELLS WITH TLR-LIGANDS IN VITRO 

 

To activate TLRs and subsequently investigate TLR-mediated cytokine responses, 

different synthetic stimuli were used, which are explained in the following passage. For 

basic details of pattern recognition of the various TLRs see chapter 1.2.3.2. 

Pam3CSK4 or Pam-3-Cys is a synthetic triacetylated (tripalmitoylated) 

lipopeptide and a TLR1/2 agonist. It mimics the acetylated amino terminus of bacterial 

lipoproteins. TLR2 recognizes Pam-3-Cys and induces the signaling cascade in 

cooperation with the cytoplasmic domain of TLR1, which leads to activation of the 

transcription factor NFκB (Ozinsky et al., 2000) and subsequent expression of 

FIGURE 2.4 
FACS OF M-CSF CULTURE 
FACS analysis of M-CSF 

supplemented wild type bone marrow 

culture after 5 days. F4/80 and MHC-

I double positive cells represent 

mature macrophages. 
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proinflammatory cytokines (e.g. TNF-α, IL-1, and IL-6). TLR3 senses double-stranded 

RNA (dsRNA), which is present in some viruses. Poly I:C (Polyinosinic-polycytidylic 

acid) is structurally similar to dsRNA and represents a synthetic ligand for TLR3. 

Activation of TLR3 leads to the expression of  type I interferons (IFN-α/β) via IRF3 and 

NFκB mediated proinflammatory cytokines (Trinchieri, 2010). LPS from Escherichia 

coli was used to stimulate TLR4 activation. It is part of the outer membrane of 

gramnegative bacteria and is recognized by a TLR4-homodimer in cooperation with the 

protein MD2 (myeloid differentiation factor 2) and CD14. TLR7 senses single-stranded 

RNA (ssRNA) and leads to expression of type I interferons and NFκB associated 

proinflammatory cytokines (Heil et al., 2004). The stimulation of this receptor was 

realized using the ssRNA-oligonucleotide (ODN) RNA40 as phosphodiester (PD) and a 

synthetic ligand called R848 (Resiquimod). RNA40 was mixed with the transfection 

reagent DOTAP to enter the endosomal compartment of the stimulated cells (see FIGURE 

2.5 for details).  R848 is a synthetic immune response modifier which binds to murine 

TLR7 and human TLR7/8 and acts as vaccine adjuvant, enhances antigen-specific 

antibody production, and skews immunity towards a Th1 response (Tomai et al., 2007). 

The endosomal receptor TLR9 is activated by unmethylated CpG-DNA of viruses, 

bacteria, parasites, and dead cells. The signaling cascade via IRF7 and NFκB is similar 

to TLR7 and leads to expression of IFN-α/β and NFκB induced proinflammatory 

cytokines. Different DNA-ODNs were used for TLR9 stimulation experiments. ODN AP-

1, ODN 1668, and ODN 1720 were used as phosphodiesters and needed to be mixed with 

the transfection reagent DOTAP to enter the endosomes of the stimulated cells (see 

FIGURE 2.5 and TABLE 2.15). ODN 2216 was used with phosphorothioate (PS) 

internucleotide linkage instead of phosphodiester. Phosphorothioates are DNA sequences 

in which one of the non-bridging oxygens of the phosphate backbone is replaced by 

sulfur. The sulfurization reduces the cleaving of ODNs by several enzymes (e.g. 

exonucleases) dramatically and increases the chance of crossing the cell membrane. Thus, 

ODN 2216 did not need to be mixed with a transfection reagent for TLR9 stimulation. 

The ODNs AP-1 and 1720 do not contain CpG-motifs, whereas 1668 and 2216 possess 

sequences including CpG-motifs.  
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Procedure: 

 

Cells were seeded into 96-well plates in a volume of 100 µl per well for in vitro TLR 

stimulation. The concentration of the cells depended on the used cell type (see TABLE 

2.14). Used stimuli were diluted in 100 µl medium (same medium the cells were solved 

in) and added carefully on top of the seeded cells. Stimuli that consisted of nucleic acids 

and did not have a phosphorothioate internucleotide linkage were mixed with the 

transfection reagent DOTAP. Therefore, the stimulus was diluted in 25 µl OptiMEM or 

RPMI. 25 µl of the transfection solution (1.5 µl DOTAP + 23.5 µl OptiMEM/RPMI) was 

added to the stimulus. After 10 min of incubation at RT, 50 µl medium (OptiMEM or 

RPMI) was added to a final volume of 100 µl (FIGURE 2.5). Medium and DOTAP without 

a stimulus were used for negative controls. The final volume of each well was 200 µl. 

The stimulated cells were incubated at 37°C and 5 % CO2 for 18 hours. 190 µl of the 

supernatant were transferred into a round bottom 96-well plate and stored at -20°C until 

ELISA was performed. 

 

TABLE 2.14 CELL TYPES AND FINAL CONCENTRATIONS 

CELL TYPE  CELLS/WELL 

 

BM ex vivo 

 

Flt3L-induced DCs in vitro 

 

Sorted BM pDCs/cDCs ex vivo 

 

M-CSF-induced MΦs in vitro 

 

M-CSF-induced pDCs in vitro 

 

GM-CSF-induced cDCs in vitro 

 

Splenocytes ex vivo 

 

  

1.5 x 105 

 

1.0 x 105 

 

0.5 x 105 

 

2.0 x 105 

 

1.5 x 105 

 

3.0 x 105 

 

2.0 x 105 

 

Used cell types for in vitro stimulation and their final concentration. 
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TABLE 2.15 FINAL CONCENTRATIONS AND TRANSFECTION OF STIMULI 

STIMULUS FINAL CONCENTRATION/WELL TRANSFECTION 

 

LPS 

 

ODN AP-1 PD 

 

ODN 1668 PD 

 

ODN 1720 PD 

 

ODN 2216 PS 

 

POLY I:C 

 

RNA40 PD 

 

R848 

 

Pam-3-Cys 

 

 

1000 ng/ml 

 

1 µM 

 

1 µM 

 

1 µM 

 

1 µM 

 

10 µg/ml 

 

10 µg/ml 

 

5 µg/ml 

 

5 µg/ml 

 

no 

 

yes 

 

yes 

 

yes 

 

no 

 

yes 

 

yes 

 

no 

 

no 

Used stimuli with their final concentration per well and transfection with DOTAP or not. 

 

 

 

 

FIGURE 2.5 STIMULUS PREPARATION 
Algorithm of stimulus preparation with and without the transfection reagent DOTAP. 
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2.2.8 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

 

The Enzyme-linked immunosorbent assay (ELISA) was first described in 1971 by two 

different groups in France (Avrameas and Guilbert, 1971) and Sweden (Engvall and 

Perlmann, 1971) at the same time. By searching for an alternative label to replace 

radioactive isotopes, it was a further development of the Radioimmunoassay (RIA) (Leng 

et al., 2008). The RIA was the first quantitative immunoassay invented incidentally by 

Berson and Yalow 1959 (BERSON and YALOW, 1959) by investigating the insulin 

metabolism. The main principle is a competitive assay. Radioactively labeled antigen is 

covalently bound to insolubilized antigen-specific antibodies. The binding of labeled 

antigen is competitively inhibited by unlabeled antigen. 

Thus, it can be used for quantitative determination of unlabeled antigen in 

standard solutions or unknown samples (Avrameas and Guilbert, 1971). The more 

unlabeled antigen you have in your sample the less radioactivity can be measured.  

The ELISA uses enzyme labeled antigen instead of radioactive labeled antigen. 

By adding the substrate of the used enzyme, a colored reaction product can be 

photometrically measured. This method is called competitive ELISA. Because of its high 

sensitivity to detect antigens, the more often used ELISA is the sandwich ELISA. In the 

typical sandwich ELISA, an antigen-specific antibody (capture-antibody) is attached to 

the bottom of a microplate (FIGURE 2.6 and 2.7). After incubation with the antigen, a 

second enzyme labeled antibody (detection-antibody) is used for detection. By adding the 

substrate of the enzyme, the colored reaction product can be measured with a photometer. 

The more antigen you have in your sample, the more colored reaction product can be 

photometrically measured. Hence, the measured color intensity is related directly to the 

quantity of the antigen. The color intensities of serial standard solutions with known 

concentrations of the antigen are used for comparison with the color intensities of the 

unknown samples.  

The sandwich ELISA usually enables a more sensitive detection (Sensitivity in 

theory 10-15 to 10-16 mol/l) of the antigen then the competitive ELISA (Sensitivity in  

theory 10-14 mol/l). However, in practice the sensitivity is always depending on the 

affinity of the used antibody to its antigen. A big disadvantage of the sandwich ELISA is 

the necessity of two different epitopes of the antigen to be detected. Therefore, the 

competitive ELISA is used for detection of small antigens (e.g. haptenes).  
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In this work, the typical double antibody sandwich ELISA was used for detection 

of murine IL-6 (FIGURE 2.6). To measure murine IFN-α, a slightly modified system was 

applied. The used enzyme (HRP) was conjugated to a third antibody. This antibody 

recognized specifically the Fc fragment of the IFN-α detection antibody (FIGURE 2.7). 

FIGURE 2.6 SANDWICH ELISA FOR IL-6 
Main principle of the sandwich ELISA for detection of murine IL-6. 
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FIGURE 2.7 SANDWICH ELISA FOR IFN-α 
Main principle of the sandwich ELISA for detection of murine IFN-α. 
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Procedure: 

 

After diluting the capture antibody with PBSdef., it was coated in a 96-well ELISA 

MaxiSorp microplate (50 µl/well) over night at 4°C. Unbound antibodies were washed 

out with ELISA washing buffer by using the Skanwasher 400 microplate washer. 

Remaining binding sites on the microplate were blocked with blocking buffer (250 

µl/well), consisting of bovine serum albumin fraction V (BSA) solved in PBSdef., for 1 h 

at RT. The microplate was washed again afterwards. The supernatants of the stimulated 

cells were added to the microplate as well as serial standard solutions with known 

concentrations of the antigen to be analyzed (50 µl/well). The supernatants had to be 

diluted depending on the cell type and cytokine to be detected to achieve concentrations 

which were covered by the range of the standard curve (TABLE 2.16). After 1.5 h at RT, 

the microplate was washed out. The detection antibody was diluted and added to the 

microplate (50 µl/well) for 1.5 h and subsequently unbound antibodies were washed out. 

The IL-6 detection antibody was biotinylated to bind streptavidin conjugated horseradish 

peroxidase (HRP) (30 min incubation time; this step is not depicted in FIGURE 2.6 for 

reasons of simplicity), whereas for INF-α detection a third HRP-labeled antibody 

recognized the detection antibody via an IgG-mediated Fab binding to the Fc fragment of 

the detection antibody (1 h incubation time). Unbound streptavidin conjugated HRP or 

HRP-labeled third antibodies were washed out. The substrate solution, consisting of 1 

tablet (20 mg) o-phenylenediamine (OPD) and 20 µl of 30 % H2O2 solved in 20 ml of 

ELISA substrate buffer, was added to the microplate. HRP reduced H2O2 and oxidized 

OPD leading to a colored reaction product. After stopping the reaction with 2 M H2SO4 

(25 µl/well) the color change was measured with a photometer at a wavelength of 490 

nm. For background determination an additional measurement at a wavelength of 650 nm 

was performed. The more antigen was bound, the more HRP was bound and the more 

OPD was oxidized leading to a stronger color change and intensity. Now the color 

intensities of the serial standard solutions with known concentrations of the antigen were 

compared with the color intensities of the supernatants in order to determine the unknown 

concentration of the antigen in the supernatants. All standards and samples were measured 

in duplicates. The microplate was read out using the Emax microplate spectrophotometer 

and the SoftMax Pro V5 software. The different used ELISA systems are shown in TABLE 

2.17. 
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TABLE 2.16 DILUTIONS OF SUPERNATANTS 

CELL TYPE IFN-ALPHA IL-6 

 

BM 

 

Flt3-L-induced DCs 

 

Sorted pDCs/cDCs from BM 

 

M-CSF-induced MΦs 

 

GM-CSF-induced cDCs 

 

Splenocytes 

 

undiluted 

 

1:3 

 

1:5 

 

undiluted 

 

undiluted 

 

undiluted 

 

 

undiluted 

 

undiluted 

 

undiluted 

 

undiluted 

 

1:2 

 

undiluted 

 

Used cell types and dilutions of supernatants. 

 

TABLE 2.17 ELISA SYSTEMS 

 IFN-ALPHA IL-6 

 

Standards 

Number: 

Concentration: 

Incubation time: 

 

Capture Ab 

Type: 

 

Concenration: 

Incubation time: 

 

Detection Ab 

Type: 

 

Concentration: 

Incubation time: 

 

Enzyme/3.Ab 

Type: 

 

Concentration: 

Incubation time: 

Substrate: 

 

 

 

11 Standards 

1.Std: 500 U/ml 

1.5 h at RT 

 

 

Rat IgG1 anti-mouse IFN-α 

MAb 

1 µg/ml  

over night at 4°C 

 

 

Rabbit anti-mouse  

IFN-α PAb 

0.994 µg/ml 

1.5 h at RT 

 

 

Goat POD-conjugated anti-

rabbit IgG MAb 

0.16 µg/ml 

1 h at RT 

OPD and H2O2 

 

 

11 Standards 

1.Std: 10 ng/ml 

1.5 h at RT 

 

 

Rat IgG1 anti-mouse IL-6 

MAb 

1 µg/ml 

over night at 4°C 

 

 

Goat IgG biotinylated anti-

mouse IL-6 PAb 

100 ng/ml 

1.5 h at RT 

 

 

Streptavidin conjugated HRP 

 

0.1 U/ml 

0.5 h at RT 

OPD and H2O2 

Used ELISA systems. 
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2.2.9 FLOW CYTOMETRY / FLUORESCENCE ACTIVATED CELL SORTING (FACS) 

 

The flow cytometry or fluorescence activated cell sorting (FACS) is one of the most 

important methods used in immunology. It allows distinguishing the many 

subpopulations of immune cells by their different expression of cell-surface proteins, 

which can be detected by specific fluorochrome labeled antibodies. Furthermore, it is a 

highly sophisticated technique for separation of viable cells from distinct populations, 

achieving very high purity (95 – 100 %) (Basu et al., 2010). 

The fluorescence activated cell sorter (FACS) or flow cytometer was invented by 

Bonner, Sweet, Hulett, Herzenberg, and others at the Herzenberg laboratories at Stanford 

University (Stanford, United States) in the late 1960s (Herzenberg et al., 2002). It can 

detect and count single cells in a stream passing through a laser beam. It consists of one 

or more lasers, a hydrostatic aspiration unit, lenses, multiple fluorescence and light scatter 

detectors, mirrors, and different filters. The complexity of a FACS device is shown in 

FIGURE 2.8. Hydrostatic aspiration allows the uptake, separation, and a constant flow rate 

of the cells to be analyzed. By using the principles of light emission, distraction, and 

scatter, the morphology of the cells can be detected by the forward (size) and sideward 

(granularity) scatter detector (FSC/SSC). Moreover, multiple fluorescence detectors 

enable modern FACS devices to distinguish up to seventeen or even more colors (Perfetto 

et al., 2004). Fluorescence labeled specific monoclonal antibodies bind to cell-surface or 

intracellular proteins or glycoproteins and facilitate the discrimination of many 

subpopulations of leucocytes. The most commonly used fluorochromes are 

allophycocyanine (APC), phycoerythrin (PE), and fluorescein isothiocyanate (FITC).  

For purification of specific subpopulations, a flow cytometer with sorting capacity 

and the appropriate software is necessary. Stained cells in suspension are passed as a 

stream through a laser beam in droplets, each containing one single cell. Droplets with 

cells of interest are charged and can be collected into appropriate collection tubes or 

microplates by an electrostatic deflection system (FIGURE 2.8). Different sorting 

parameters can be adapted depending on the requirement of purity and yield (Basu et al., 

2010). The success of cell-sorting depends on the identifying surface markers and the 

used fluorescence labeled antibodies. Different sizes of nozzles are used depending on 

the cell type to be sorted. 
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The flow cytometry was used in this work for differentiation and purity control of DCs 

and MΦs within mixed cell populations like BM, spleen, and several in vitro cell cultures 

(see chapters 2.2.3 – 2.2.6). All samples were analyzed using the BD FACSCaliburTM flow 

cytometer, CellQuest Pro software (Version 5.2.1 for Macintosh), and FlowJo software 

(Version 10.0.7 for Windows). ToPro3 iodide staining was used to indicate the viability 

of the cells. Only viable cells (ToPro3 iodide negative gated populations) were used for 

further FACS analysis. For purification of pDCs and cDCs from BM ex vivo a BD 

FACSAriaTM III cell sorter and BD FACSDivaTM software (Version 7.0 for Windows) were 

used. The different used fluorochrome labeled antibodies and their dilutions are shown in 

TABLE 2.18. 

 

FIGURE 2.8 STRUCTURE OF A FACS SORTER 
Main structure of a FACS Sorter. Adapted from Herzenberg et al., 2002 and Sabban, 

2011. 
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Procedure: 

 

For flow cytometry 0.3 – 0.5 x 106 cells were transferred into a small FACS tube (1.2 ml). 

1 ml of FACS buffer was added and the cells were centrifuged at 1300 rpm at 4°C for 6 

min. The supernatant was discarded and the cells were washed again by adding 1 ml of 

FACS buffer and centrifugation at 1300 rpm at 4°C for 6 min. The supernatant was 

discarded up to a final volume of 90 µl. The cells were incubated for 7 min at 4°C with 

30 µl of purified rat IgG (stock concentration: 11 mg/ml and final concentration: 27.5 

µg/ml) for blocking Fc-receptors to avoid non-specific immune fluorescence. 

Subsequently, the fluorochrome labeled antibody mix was added (0.2 – 1 µg/ml per Ab) 

in a final volume of 30 µl (see TABLE 2.18 for dilutions of Abs) and incubated for 30 min 

at 4°C. The samples were washed twice with 500 µl of FACS buffer and centrifuged at 

1300 rpm for 6 min at 4°C. In a final step, the supernatant was discarded and the cell 

pellet was resuspended in 150 – 250 µl of FACS buffer depending on the type of cells to 

be analyzed. Unstained cells were used for controls and single stained cells were used for 

the FACS setup. The probes were analyzed immediately after or stored at 4°C and 

analyzed the next morning. For analysis of Flt3L-induced DCs, additional isotype 

controls were used. 

 

TABLE 2.18 FACS ANTIBODIES WITH DILUTIONS 

DYE/ANTIBODY DILUTION FINAL DILUTION 

 

Rat IgG (Fc blocking) 

 

Rat anti-mouse BST2-FITC 

 

Rat anti-mouse B220-APC 

 

Rat anti-mouse B220-FITC 

 

Rat anti-mouse CD11b-APC 

 

Rat anti-mouse CD11b-FITC 

 

Rat anti-mouse CD11c-APC 

 

Rat anti-mouse CD11c-PE 

 

Rat anti-mouse Flt3-PE 

 

 

 

1:100 

 

1:250 

 

1:100 

 

1:200 

 

1:200 

 

1:100 

 

1:200 

 

1:200 

 

1:100 

 

 

 

1:400 

 

1:500 

  

1:200 

 

1:400 

 

1:400 

 

1:200 

 

1:400 

 

1:400 

 

1:200 
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Rat anti-mouse F4/80-FITC 

 

Rat anti-mouse Ly6C-PE 

 

Rat anti-mouse MHC-I-PE 

 

Rat anti-mouse MHC-II-PE 

 

Rat anti-mouse SiglecH-FITC 

 

ToPro3 iodide 

 

 

1:200 

 

1:20 

 

1:200 

 

1:200 

 

1:250 

 

1:100 

 

1:400 

 

1:40 

 

1:400 

 

1:400 

 

1:500 

 

1:200 

Used dyes and fluorochrome labeled antibodies and their dilutions for FACS analysis and cell sorting. 

 

For cell-sorting, the cells were washed twice using 1 ml of FACS sorting buffer (without 

sodium azide) by centrifugation at 1300 rpm at 4°C for 7 min. Unstained and single 

stained cells were used for the sorting setup. The following steps were carried out under 

a sterile bench of security class II. Fc-blocking and staining were realized according to 

the protocol described above. 30 – 150 x 106 cells were stained in a large sterile FACS 

tube (5 ml) using 0.2 – 1 µg/ml of Ab per 5 x 106 cells. After two washing steps by 

centrifugation at 1300 rpm at 4°C for 7 min, the cells were filtered through a 70 µm cell 

strainer and resuspended in 100 % FCS in a concentration of 20 x 106 cells/ml. 

Subsequently, the stained cells were stored on ice or 4°C (in the cell sorter) and sorted 

into small reaction tubes (15 ml) at 4°C, which were coated with 100 % FCS before over 

night at 37°C. 80 µm and 100 µm nozzles were used for cell separation. After purification, 

the cells were washed by centrifugation at 1300 rpm at 4°C for 7 min and resuspended in 

medium for stimulation experiments or RNA isolation (see chapter 2.2.7).  

 

2.2.10 RNA ISOLATION OF SORTED PDCS FOR MICROARRAY ANALYSIS 

 

First steps were carried out in a fume hood. Cell pellets of sorted pDCs (~1 x 106 cells) 

from pooled BM cells (see section 2.2.9 for details) of HoxA9-/- and WT mice (4 mice 

per genotype) were resuspended in 1 ml Trizol and incubated for 5 min at RT. 0.2 µl 

Chloroform/1 ml Trizol was added and the formulation was shaken for 15 seconds and 

incubated at RT for 2 – 3 min. After centrifugation at 4000 rpm for 30 min at 4°C, the 

upper aqueous phase was transferred into a new falcon tube and 0.5 ml Isopropyl/1 ml 

Trizol was added with subsequent incubation for 10 min at RT. Again, centrifugation was 



MATERIALS AND METHODS 

 

82 

 

done at 4000 rpm for 30 min at 4°C. Next steps were done under a sterile bench. The 

supernatant was discarded and the pellet was washed with 1 ml of 70 % Ethanol/1 ml 

Trizol. After one last step of centrifugation at 4000 rpm and 4°C for 15 min, the 

supernatant was discarded and the pellet was dried. 25 µl of RNase free H2O was used to 

solve the pellet, which was subsequently stored at -80°C.  

 RNA was thawed on ice and 1 µl of DNase (10 Units)/50 µg RNA was added. 

Same volume of 10 x incubation buffer was added and the formulation was incubated at 

37°C for 20 min.  

After DNase digestion RNA was further purified by precipitation. Chloroform and 

isoamyl alcohol of the same volume were added followed by shaking and centrifugation 

at 10.000 rpm at RT for 2 min inducing phase separation. The upper phase was transferred 

into a new falcon tube adding the same volume Chloroform followed by shaking and 

centrifugation at 10.000 rpm at RT for 2 min. Again the upper phase was transferred into 

a new falcon tube and mixed with 2.5-fold volume fraction of 100 % Ethanol and 1/10 

volume fraction 3 M sodium acetate (pH 5.0). The formulation was incubated at -80°C 

for 1 h. Centrifugation with 10.000 rpm at 4°C for 20 min was followed by discarding the 

supernatant and washing the pellet with 75 % Ethanol. After a last centrifugation step at 

10.000 rpm at 4°C for 5 min, the supernatant was discarded and the pellet was dried. 

Subsequently, the pellet was solved in 50 µl of RNase free H2O. RNA concentration was 

determined by photometric measurement at 260 nm using the “Nanodrop”. Best purity 

was considered for samples with a 260/280 ratio of 2.0.    

1 µl of RNA of each sample was sent to the “Expression Core Facility” of the 

Institute for Medical Microbiology, Immunology, and Hygiene of the Technical 

University of Munich under the direction of Prof. Dr. med. D. H. Busch. RNA was reverse 

transcribed, amplified, labeled, and hybridized to Affymetrix Mouse Genome 1.0 ST 

arrays (28.853 probe set) for genome-wide microarray gene expression profiling. To 

adjust systematic errors, robust multi-array average (RMA) normalization was performed 

by the software of the “Expression Core Facility”.  

 

2.2.11 STATISTICAL ANALYSIS 

           

GraphPad PRISM 6 Software Version 6.05 was used for all statistical analyses. All data 

are expressed as mean ± standard deviation. The two-tailed paired or unpaired Student’s 

t test were performed for comparison of populations considered to be normally distributed 
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(Gaussian distribution) such as normalized cytokine levels measured by ELISA of 

different cell types and cell counts as well as frequencies of cell types determined by 

FACS, respectively. Welsh’s correction was additionally carried out for comparison of 

populations with clearly different standard deviations such as cell counts of Flt3L-

induced DC cultures. For populations that were assumed to be not normally distributed 

the Mann-Whitney U test was performed (e.g. total BM cell counts). Statistically 

Significant differences were considered for P values < 0.5 (*, p < 0.5; **, p < 0.01; ***, 

p < 0.001; n.s., not significant). 
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3. RESULTS 

 

3.1 ANALYSIS OF BM CELLS EX VIVO 

 

3.1.1 TOTAL BM CELL NUMBERS OF HOXA9-/-
 MICE ARE SLIGHTLY REDUCED 

 

BM cells were isolated from 6 – 27 weeks old HoxA9-/- mice and their WT littermates by 

flushing the dissected femur and tibia of both legs (see section 2.2.3 for details). Total 

numbers of nucleated BM cells per mouse were determined using the CASY®-1 cell 

counter after lysis of the erythrocytes. HoxA9-/- mice showed a small, statistically 

insignificant, mean reduction of 21.89 % (HoxA9-/- [n = 24] versus WT littermates [n = 

20]; p = 0.2) including mice of all ages and a mean reduction of 9.27 % (HoxA9-/- [n = 9] 

versus WT littermates [n = 10]; p = 0.589) in young animals with 6 – 15 weeks of age. 

BM cells of the latter were further used for functional analysis as for immunological 

experiments young mice are demanded, whereas experiments with older mice were 

initially carried out mainly for testing purposes. FIGURE 3.1 illustrates total BM cell 

numbers shown as scatter plots including statistical analyses. Overall, a big variability 

was observed in BM cell numbers showing higher mean cell amounts in younger mice 

(FIGURE 3.1 B). Regarding both genotypes, HoxA9-/- mice display a small, statistically 

insignificant, reduction in total BM cell numbers compared to wild type littermates. 

FIGURE 3.1 TOTAL NUMBERS OF NUCLEATED BM CELLS 
Total numbers of nucleated BM cells per mouse of HoxA9-deficient mice compared to their WT littermates 

were determined using the CASY®-1 cell counter after lysis of the erythrocytes. A Shown are results from 

mice between 6 – 27 weeks of age (HoxA9-/-
 
[n = 24 ± SD] versus wild type [n = 20 ± SD]; p = 0.2). B 

Shown are results from mice between 6 – 15 weeks of age (HoxA9-/- [n = 9 ± SD] versus wild type [n = 

10 ± SD]; p = 0.589). The Mann-Whitney test was performed for statistical analyses (n.s., not significant). 

Lines and error bars represent means and standard deviations (SD), respectively.  
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3.1.2 HOXA9
-/-

 MICE DEVELOP NORMAL QUANTITIES OF MATURE BM DCS BUT SHOW 

         SIGNIFICANTLY REDUCED B CELL FREQUENCIES 

 

To prove the assumption that HoxA9 has no impact on DC development according to 

previous data (Gwin et al., 2013a), flow cytometric analyses of BM cells using the murine 

DC-specific cell surface markers B220, CD11c, BST2, and SiglecH were performed in 

order to determine frequencies of pDCs and cDCs in HoxA9-deficient mice compared to 

WT control. 

 The forward scatter (FSC) and side scatter (SSC), which display the size 

and granularity of the analyzed cells, respectively, were used to roughly discriminate dead 

cells and cell debris from living cells (FIGURE 3.2 A). The gated living cell fraction was 

further stained with TO-PRO-3 iodide to detect the remaining dead cells. TO-PRO-3 

iodide very sensitively detects nuclear double stranded DNA of dead cells. Therefore, 

only TO-PRO-3 iodide negative gated events were included for further analysis (FIGURE 

3.2 B). The percentages of living cells among all analyzed BM cells did not differ between 

both genotypes (FIGURE 3.2 A - B). By default, the surface markers B220 and CD11c 

were used to determine the frequencies of pDCs and cDCs. The protein tyrosine 

phosphatase B220 (CD45R) is the longest member of the CD45 family and is expressed 

on the cell surface of murine early B cell precursors and B cells throughout development 

in the BM and is still retained in mature B cells (Rodig et al., 2005). Therefore, it is used 

as a pan B cell marker in mice. Additionally, a human B cell subset is known to express 

B220 (Rodig et al., 2005). However, it can also be found on the plasma membrane of 

pDCs (Nakano et al., 2001; Nikolic et al., 2002). The name B220 is related to its 

molecular weight of 220 kDa and the occurrence on B cells. Another cell surface marker 

of DCs is the integrin alpha x chain CD11c, which is expressed on all subsets of murine 

DCs (Metlay et al., 1990). B220+CD11c+ cell populations represent pDCs, whereas cDCs 

express CD11c but not B220 on their plasma membrane. B220 single positive cells denote 

predominantly B cells and precursors throughout the B cell lineage, as already mentioned 

above. To perform a more precise investigation of the pDC subset in the BM of HoxA9-

deficient mice, fluorochrome-labeled antibodies directed against the pDC-specific 

surface markers BST2 and SiglecH were used to determine frequencies of pDCs. The BM 

stromal cell antigen 2 (BST2), also known as tetherin, HM1.24, CD317, or mPDCA1 is 

a very specific marker for pDCs in naïve mice, but is upregulated upon type I IFN 

stimulation on most cell types (Blasius et al., 2006).  
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FIGURE 3.2 FACS ANALYSES OF BM CELLS EX VIVO 
A) FSC-H (size) and SSC-H (granularity) dot plots were used to discriminate dead cells from living cells. 

B) TO-PRO-3 Iodide stained cells were excluded from further flow cytometry analysis. C) Antibodies 

directed against the DC-specific surface receptors B220, CD11c, BST2, and SiglecH were used to 

determine DC subset and B cell frequencies. PDCs are represented by the B220
+
CD11c

+
, BST2

+
CD11c

+
, 

or SiglecH
+
B220

+
 population, cDCs reflect single CD11c

+
 cells, and B cells are shown as single B220

+
 

gated cells. Figures A – B show one representative of five independently performed experiments. In Figure 

C one representative experiment of five (B220 CD11c gate) or three (BST2 CD11c and SiglecH B220 gate) 

independently performed experiments is shown. Bars and error bars represent means and standard 

deviations (n = 5 or 3 ± SD), respectively. The unpaired Student’s t test was performed for statistical 

analyses (*, p < 0.05). 
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BST2 inhibits the release of virus particles from infected cells (Le Tortorec et al., 

2011) and functions as a physiological ligand for the human pDC receptor ILT7, inducing 

negative regulation of TLR7 and 9 signaling (Cao et al., 2009). SiglecH is a member of 

the sialic acid binding Ig-like lectin (Siglec) family and is believed to play a role in 

capturing and delivering pathogens to intracellular TLRs (Blasius and Colonna, 2006). 

Its signaling through DAP12 is known to induce negative regulation of IRF7 activation 

in pDCs (Bao and Liu, 2012) (see section 1.3.1.2 for details). Both BST2 and SiglecH are 

known to be expressed on the plasma membrane of mature murine pDCs (Cisse et al., 

2008; Ghosh et al., 2010). 

FIGURE 3.2 C depicts one representative experiment of each staining and 

statistical results of all independently performed experiments. The B220 and CD11c 

staining displays a very small decrease of pDCs in the knockout genotype and equal 

percentages of cDCs. B220+CD11c
-
 cells, mainly reflecting B cells and B cell precursors, 

are slightly reduced among HoxA9-lacking BM cells. Using antibodies directed against 

BST2 and CD11c, almost equal pDC and slightly increased cDC amounts were 

determined. SiglecH and B220 double positive pDCs were marginally increased in 

HoxA9-/- animals on average. Of note, B220 single positive cells, representing B cells in 

the SiglecH and B220 staining, were significantly reduced when lacking HoxA9. All 

results of the BM FACS analyses and statistical data are listed in TABLE 3.1. 

Taken together, frequencies of both DC subsets display no significant alteration 

in the HoxA9 knockout genotype regarding surface markers of mature DCs. Frequencies 

of B220+ B cells and precursors are slightly reduced in one and significantly decreased in 

the other staining under HoxA9 knockout conditions.  

 

TABLE 3.1 STATISTICAL DATA OF FACS ANALYSES OF BM CELLS EX VIVO 

SUBSET WT HOXA9 -/- P VALUE 

 

Cells in the living gate (FSC-

H/SSC-H dot plot) 

 

 

   82.08 % ± 4.65  

     (n = 5 ± SD)                

 

   81.74 % ± 3.57  

     (n = 5 ± SD)                

 

0.90 (n.s.) 

 

TO-PRO-3- gated cells 

 

 

   75.08 % ± 7.18  

     (n = 5 ± SD)                

 

   75.54 % ± 3.82  

     (n = 5 ± SD)                

 

0.90 (n.s.) 

 

 

 

B220+CD11c+ pDCs 

 

 

 

     1.98 % ± 0.66  

      (n = 5 ± SD)                

 

 

1.70 % ± 0.36 

(n = 5 ± SD) 

 

 

0.42 (n.s.) 
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B220-CD11c+ cDCs 

 

 

B220+CD11c- B cells 

 

      

2.35 % ± 0.30 

(n = 5 ± SD) 

 

   20.04 % ± 3.82  

      (n = 5 ± SD)                 

 

2.39 % ± 0.31 

(n = 5 ± SD) 

 

17.80 % ± 5.41 

(n = 5 ± SD) 

 

 

0.81 (n.s.) 

 

 

0.47 (n.s.) 

 

BST2+CD11c+ pDCs 

 

 

BST2- CD11c+ cDCs 

 

     1.41 % ± 0.38 

      (n = 3 ± SD)                

 

     1.93 % ± 0.37 

      (n = 3 ± SD)                

 

 

     1.29 % ± 0.02 

      (n = 3 ± SD)                

 

     2.18 % ± 0.43 

      (n = 3 ± SD)                

 

 

0.59 (n.s.) 

 

 

0.49 (n.s.) 

 

 

SiglecH+B220+ pDCs 

 

 

SiglecH-B220+ B cells 

 

 

     1.29 % ± 0.18 

      (n = 3 ± SD)                

 

   25.40 % ± 0.62 

      (n = 3 ± SD)                

 

 

     1.37 % ± 0.14 

      (n = 3 ± SD)                

 

   16.97 % ± 3.13 

      (n = 3 ± SD)                

 

 

0.59 (n.s.) 

 

 

0.01 (*) 

 

After gating the living cell fraction in the FCS-H (size) and SSC-H (granularity) dot plot, staining with TO-

PRO-3 Iodide was used to exclude further TO-PRO-3+ dead cells or cell debris. DC and B cell frequencies 

of total BM cells were examined by using fluorochrome-labeled antibodies directed against B220, CD11c, 

BST2, and SiglecH. Statistical analyses were performed using the unpaired Student’s t test (*, p < 0.05; 

n.s., not significant). 
 

3.1.3 HOXA9
-/-

 BM DCS EXHIBIT NORMAL EXPRESSION OF MATURE DC-SPECIFIC 

           SURFACE MARKERS 

          

The expression of additional DC-specific surface marker proteins was examined by 

further FACS analyses. B220+CD11c+ pDCs and B220-CD11c+ cDCs were additionally 

stained with fluorochrome-labeled antibodies directed against BST2, SiglecH, Ly6C, or 

Flt3 and CD11b or Flt3, respectively. Ly6C (lymphocyte antigen 6 complex, locus C1) is 

another surface receptor present on murine pDCs, albeit less specific compared to BST2 

or SiglecH (Reizis et al., 2011). It is also expressed on multiple other lymphocytes such 

as monocytes, MΦs, granulocytes, plasma cells, NK cells, and T cell subsets. CD11b is 

another integrin also known as ITGAM or CR3A and is mainly expressed in myeloid cells 

including cDCs, whereas pDCs do not express CD11b (Reizis et al., 2011; Watowich and 

Liu, 2010).  

FIGURE 3.3 illustrates representative experiments of each staining. All surface 

markers were not significantly altered in HoxA9-/- pDCs and cDCs compared to wild type 

littermates. 
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FIGURE 3.3 FACS ANALYSES OF BM PDCS AND CDCS EX VIVO 
PDCs (B220

+
CD11c

+ cells) were additionally stained for the surface markers BST2, SiglecH, Ly6C, and 

Flt3. CDCs (B220
-
CD11c

+
 cells) were additionally stained for the surface markers Flt3 and CD11b. 

Shaded, black solid lined, black dotted lined, red solid lined, and red dotted lined histograms depict 

unstained control, WT pDCs, WT cDCs, HoxA9
-/- 

pDCs, and HoxA9
-/- cDCs, respectively. Each panel 

shows one representative experiment of at least two independently performed experiments.  
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3.1.4 TLR7/9-MEDIATED IFN-α RESPONSES OF HOXA9-/-
 TOTAL BM CELLS ARE 

           SIGNIFICANTLY IMPAIRED 

 

For functional analysis of HoxA9-deficient DCs, stimulation of primary BM cells ex vivo 

with different TLR-ligands was performed and subsequent cytokine production was 

measured by ELISA. Activation of TLR7 and 9 in pDCs and cDCs leads to production of 

proinflammatory cytokines such as IL-6, TNF-α, or IL-12 in both cell types, whereas 

large quantities of IFN-α/β are uniquely secreted by pDCs (Reizis et al., 2011). Other cell 

types in the BM are responding to TLR7 and 9 ligation with proinflammatory cytokine 

production including monocytes, B cells, and also precursors like CDPs. To activate 

TLR7, the single-stranded ribonucleic acid RNA40 and the imidazoquinoline R848 were 

used. Two oligonucleotides  (ODNs) without containing CpG-motifs called ODN AP-1 

and ODN 1720, class A CpG-containing ODN 2216, and class B CpG-containing ODN 

1668 were used for TLR9 activation (termed non-CpGAP-1, non-CpG1720, CpG1668, 

FIGURE 3.4 TLR STIMULATION OF BM CELLS EX VIVO  
TLR2, 3, 4, 7, and 9 were stimulated with  Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], 

RNA40[10µg/ml]/R848[5µg/ml], and non-CpGAP-1[1µM]/CpG1720[1µM]/CpG1668[1µM]/ 

CpG2216[1µM], respectively. RNA40, CpG1668, non-CpG1720, non-CpGAP-1, and Poly I:C were 

complexed to DOTAP. 150.000 cells were suspended in 100 µl medium per well with 100 µl diluted 

stimulus or medium/DOTAP control in 96-well plates and incubated for 18h overnight. Subsequently, 

murine IFN-α and IL-6 were detected by ELISA measured in dublicates (n.d., not detectable). Each panel 

shows one representative experiment of at least three independently performed experiments. Bars and 

error bars represent means and standard deviations (SD), respectively.  
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and CpG2216, respectively, in the following passages). In the BM, mainly immature 

cDCs and monocytes further express TLR2, 3, and 4 with release of proinflammatory 

cytokines upon ligation of TLR2, 3, and 4 and type I IFN secretion exclusively after TLR3 

has been activated. TLR2 stimulation was performed using the synthetic triacetylated 

lipopeptide Pam-3-Cys (also known as Pam3CSK4). Poly I:C is structurally similar to 

dsRNA and a synthetic agonist for TRL3, providing IFN-α/β and proinflammatory 

cytokine release. LPS is generally known to activate TLR4 and thus was used in this study 

as TLR4 agonist. RNA40, non-CpGAP-1, non-CpG1720, CpG1668, and Poly I:C were 

complexed to the transfection reagent DOTAP to locate to the endolysosomal 

compartment. CpG2216 was used with phosphorothioate (PS) backbone and did not need 

to be complexed to DOTAP. To measure induction of proinflammatory cytokines and 

type I IFNs, murine IL-6 and IFN-α ELISAs were performed, respectively. 150.000 total 

BM cells per well were seeded in 96-well plates and suspended in 100 µl medium and 

further incubated for 18 h overnight after adding 100 µl of diluted stimulus or 

medium/DOTAP control with subsequent detection of IL-6 and IFN-α (see section 2.2.7 

for details).  

FIGURE 3.5 STATISTICAL ANALYSIS OF TLR STIMULATION OF BM CELLS EX VIVO  
IFN-α and IL-6 production of HoxA9-/- BM cells were normalized to WT control taken as 1. Statistical 

analyses of three - five independent experiments of each stimulus were performed using the paired 

Student‘s t test (*, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant; n.d., not detectable). Bars 

and error bars represent means and standard deviations (SD), respectively.  
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FIGURE 3.4 shows one representative experiment and FIGURE 3.5 depicts 

calculated data of at least three independently performed experiments per stimulus with 

statistical analyses. Absolute cytokine levels of all experiments showed a large variety 

but stable and reproducible proportions between the KO and WT genotype. 

Therefore, IFN-α and IL-6 levels of HoxA9-deficient BM cells were normalized to the 

corresponding WT control taken as 1 (100 %) and statistical analyses were carried out 

using the paired Student’s t test. Upon stimulation with the TLR9 ligands non-CpGAP-1, 

non-CpG1720, CpG1668, and CpG2216, statistically significant decreased IFN-α levels 

of 29.41 %, 44.66 %, 46.86 %, and 49.35 % in comparison to WT control, respectively, 

were observed in HoxA9-deficient BM cells. Moreover, IFN-α induction in response to 

TLR7 activation with RNA40 revealed 46.94 % mean less IFN-α activity stimulating KO 

BM cells. In contrast, IL-6 liberation upon TLR7 and 9 stimulation was not significantly 

different between the WT and KO genotype. Interestingly, the CpG-motif free ODNs 

non-CpGAP-1 and non-CpG1720 showed reduced IL-6 levels for the KO cells similarly 

to the proportions seen for IFN-α in three experiments and slightly increased levels in one 

experiment resulting in a large variability. The TLR7 agonist R848 only prompted IL-6 

responses without detectable IFN-α release. Striking differences between both genotypes 

were not observed in IL-6 levels. As expected, stimulation with the TLR4 ligand LPS 

induced equivalent amounts of IL-6 in the KO and WT cells but did not lead to IFN-α 

secretion. Similarly, Pam-3-Cys activated TLR2 and obtained predictable IL-6 but not 

IFN-α detection. However, IL-6 amounts, after stimulating the KO BM cells with Pam-

3-Cys, were reproducibly decreased in small amounts compared to WT control, showing 

statistical significant differences. Usage of the TRL3 stimulus Poly I:C did astonishingly 

neither induce detectable levels of IL-6 nor IFN-α.  

Summarizing the facts, IFN-α production of primary HoxA9-/- BM cells was 

significantly diminished upon stimulation of TLR7 and 9, whereas IL-6 levels were 

detected without significant differences to WT BM cells. TLR4-mediated IL-6 levels 

were equal in both genotypes, together mainly produced by cDCs (Pre-cDCs), monocytes, 

and CDPs in the BM of HoxA9 knockout and WT mice. IL-6 levels upon activation of 

TLR2 display statistically significant reductions for HoxA9-deficient BM cells. Statistical 

data of all performed experiments is shown in TABLE 3.2. 
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TABLE 3.2 STATISTICAL DATA OF TLR STIMULATION OF BM CELLS EX VIVO 

STIMULUS 

 

TLR CYTOKINE HOXA9-/- NORMALIZED TO 

WT CONTROL 

P VALUE 

 

non-CpGAP-1 

[1µM] 

 

 

non-CpG1720 

[1µM] 

 

 

CpG1668 

[1µM] 

 

 

CpG2216 

[1µM] 

 

 

RNA40 

[10µg/ml] 

 

 

R848 

[5µg/ml] 

 

 

Poly I:C 

[10µg/ml] 

 

 

LPS 

[1µg/ml] 

 

 

Pam-3-Cys 

[5µg/ml] 

 

9 

 

 

 

9 

 

 

 

9 

 

 

 

9 

 

 

 

7 

 

 

 

7 

 

 

 

3 

 

 

 

4 

 

 

 

2 

 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

0.294 ± 0.116 [n = 4 ± SD] 

 

0.619 ± 0.590 [n = 4 ± SD] 

 

0.417 ± 0.037 [n = 4 ± SD] 

 

0.661 ± 0.594 [n = 4 ± SD] 

 

0.467 ± 0.158 [n = 4 ± SD] 

 

1.053 ± 0.217 [n = 4 ± SD] 

 

0.494 ± 0.218 [n = 5 ± SD] 

 

1.131 ± 0.318 [n = 5 ± SD] 

 

0.531 ± 0.149 [n = 5 ± SD] 

 

1.102 ± 0.296 [n = 5 ± SD] 

 

not detectable 

 

0.918 ± 0.448 [n = 3 ± SD] 

 

not detectable 

 

not detectable 

 

not detectable 

 

1.106 ± 0.419 [n = 5 ± SD] 

 

not detectable 

 

0.701 ± 0.132 [n = 4 ± SD] 

 

 

0.0012 (**) 

 

0.288 (n.s.) 

 

< 0.001 (***)     

    

0.337 (n.s.) 

 

0.0068 (**) 

 

0.658 (n.s.) 

 

0.0065 (**) 

 

0.411 (n.s.) 

 

0.0021 (**) 

 

0.483 (n.s.) 

 

- 

 

0.781 (n.s.) 

 

- 

 

- 

 

- 

 

0.602 (n.s.) 

 

- 

 

0.0215 (*) 

 
Cytokine responses of HoxA9-/-BM cells were normalized to WT control taken as 1 and statistical analyses 

of three to five independently performed experiments (mean ± SD) were realized using the paired Student’s 

t test (*, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant).  
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3.1.5 EX VIVO SORTED BM PDCS WITH HOXA9 DEFICIENCY DISPLAY SIGNIFICANTLY 

           DIMINISHED CYTOKINE LEVELS UPON TLR7/9 STIMULATION  

 

Based on the results of section 3.1.4, primary pDCs and cDCs were isolated ex vivo from 

total BM cells of HoxA9-deficient mice and their WT littermates to directly stimulate 

purified DC fractions. This was realized using a FACSAriaTM III cell sorter in cooperation 

with the “Flow Cytometry Core Facility” of the Institute for Microbiology and Hygiene 

of the Philipps-University Marburg under the direction of Prof. Dr. med. M. Lohoff. 

Fluorochrome-labeled antibodies directed against the DC-specific cell surface markers 

B220 and CD11c were used to sort pDC (B220+CD11c+) and cDC (B220-CD11c+) 

fractions from total BM cells. The more specific pDC markers BST2 and SiglecH are 

both involved in negative regulation of TLR responses and thus were not used for this 

purpose. To achieve sufficient cell numbers of both DC subsets, BM cells of three to four 

mice per genotype were pooled for each experiment. FIGURE 3.6 A illustrates the sorting 

process including used gates of one representative experiment. After marking the living 

cell fraction at the forward (FSC-A) and side scatter (SSC-A), FSC-W/FSC-A and SSC-

W/SSC-A gates were used to discriminate single cells from doublets (see section 2.2.9 

for details).  

The sorted cells were used for TLR stimulation experiments and additionally once 

for RNA isolation. Purity values of the sort are depicted in FIGURE 3.6 B for one 

representative experiment. Mean purity rates of all three experiments are shown in 

FIGURE 3.6 C. Final purity of both cell strains in all experiments was always > 90 % and 

overall slightly better for the KO cells (see FIGURE 3.6 B). 

 For pDCs and cDCs are very rare cell populations in the BM, huge 

amounts of BM cells had to be sorted to achieve adequate quantities for further analysis. 

Hence, only a limited number of stimuli could be used to perform TLR stimulation 

experiments. Sorted pDCs were faced with the TLR7 and 9 agonists RNA40 and 

CpG2216, respectively, and DOTAP as well as medium control. The cDC subset was 

additionally stimulated with the TLR2, 3, and 4 activating agents Poly I:C, Pam-3-Cys, 

and LPS, respectively. Poly I:C and LPS were used in three experiments, whereas Pam-

3-Cys was only used in two experiments due to reduced cell amounts. RNA40 and Poly 

I:C were complexed to DOTAP. One representative TLR stimulation experiment of ex 

vivo sorted pDCs is shown in FIGURE 3.7 A.  
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FIGURE 3.6 FACS-SORT OF BM PDCS AND CDCS  
FACS sort of primary BM-derived pDCs and cDCs was realized using fluorochrome-labeled antibodies 

directed against B220 and CD11c. PDCs are represented by the B220
+
CD11c

+
 population and cDCs 

are characterized by B220
-
CD11c

+
 cells. A) The used sorting process is illustrated exemplarily for one 

experiment and was carried out in the same way for all experiments. Living cells were gated using the 

FSC(size)/SSC(granularity) gate. Single cells were further separated from doublets using FSC-

A(area)/FSC-W(width) and SSC-A(area)/SSC-W(width) gates. B) Post-sort purities of the sorted DC 

fractions were measured subsequently. One representative specimen of each DC subset from both 

genotypes is depicted. C) Mean purities of all sorted samples from all experiments are shown (n = 3 ± 

SD). Bars and error bars represent means and standard deviations (SD), respectively. 
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IFN-α levels upon TLR7 and 9 stimulation of sorted KO pDCs were reproducibly reduced 

in all experiments, confirming results of total BM cells. One experiment initially 

displayed higher IFN-α secretion in the KO group. Repetition of this particular 

experiment with the left over supernatant displayed the result vice versa as observed in 

the other experiments, indicating a mixing up of the genotypes initially. Statistical data 

of all three experiments show significantly decreased mean IFN-α levels of 67.74 % and 

56.01 % upon TLR7 and 9 stimulation compared to WT control, respectively (FIGURE 

3.7 C).  

Surprisingly, IL-6 production was not detectable at all in two experiments and one 

experiment exhibited low IL-6 levels (shown in FIGURE 3.7 A). Thus, TLR7 and 9 ligation 

in sorted pDCs induced massive type I IFN release but only small or not measurable 

amounts of proinflammatory cytokines represented by IL-6. Sorted cDCs did not show 

significant differences of IL-6 levels upon TLR7 and 9 ligation (one representative 

experiment is shown in FIGURE 3.7 B and calculated data of all three experiments are 

depicted in FIGURE 3.7 C). Calculated statistics of all three experiments reveal a slight 

increase of IL-6 after TLR9 activation and nearly equal IL-6 levels after TLR7 

stimulation, however, with a huge standard deviation of the latter due to not detectable 

levels in one and clearly increased levels in another experiment for the KO genotype 

(184.6 %, 94.84 %, and 0 % compared to WT control).  

TLR4-induced IL-6 levels upon LPS stimulation were clearly increased in two 

experiments and slightly decreased in one experiment (mean differences 65.66 % and 

87.12 % higher versus 27.63 % lower). Pam-3-Cys elicited slightly decreased IL-6 

amounts in one (FIGURE 3.7 B) and marginally increased IL-6 levels in the other 

experiment (data not shown) for KO cDCs. The TLR3 agonist Poly I:C did surprisingly 

again not induce any cytokine response at all in both genotypes. All results with statistical 

analyses are listed in TABLE 3.3.  
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FIGURE 3.7 TLR STIMULATION OF EX VIVO SORTED BM PDCS AND CDCS 
PDCs (B220+CD11c+) and cDCs (B220-CD11c+) were sorted ex vivo from pooled BM cells of three – 

four mice per genotype and subsequently TLR2, 3, 4, 7, and 9 were stimulated with Pam-3-Cys [5 µg/ml], 

Poly I:C [10 µg/ml], LPS [1 g/ml], RNA40 [10 pg/ml], and CpG2216 [1 µM], respectively. RNA40 and 

Poly I:C were complexed to DOTAP. 50.000 cells were suspended in 100 µl medium per well with 100 µl 

diluted stimulus or medium/DOTAP control in 96-well plates for 18h overnight. Subsequently, murine 

IFN-α or IL-6 were detected by ELISA measured in dublicates (n.d., not detectable). A) One representative 

of three independently performed experiments of ex vivo sorted pDCs with IFN-α and IL-6 levels is 

depicted. B) One representative of three independently performed experiments of ex vivo sorted cDCs 

with IL-6 levels is depicted. C) IFN-α and IL-6 production of HoxA9-/-
 
pDCs and cDCs, respectively, were 

normalized to WT control taken as 1. Statistical analyses of three independent experiments of each 

stimulus were performed using the paired Student‘s t test (*, p < 0.05; n.s., not significant). Bars and error 

bars represent means and standard deviations (SD), respectively.  
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In summary, ex vivo sorted BM-derived HoxA9-deficient pDCs exhibit 

statistically significant reduced levels of IFN-α upon in vitro stimulation of TLR7 and 9, 

consistent to the results obtained for total nucleated BM cells. IL-6 induction could only 

be detected in one experiment with rather low amounts, but showed similarly decreased 

levels for pDCs lacking HoxA9. Results for the cDC subset revealed no significant 

differences with slightly increased responses for HoxA9-/- cells in IL-6 production, 

however, with a huge variability for most of the stimuli that complicates interpretation of 

the data. 

 

TABLE 3.3 STATISTICAL DATA OF TLR STIMULATION OF EX VIVO SORTED BM DCS 

SUBSET STIMULUS TLR CYTOKINE HOXA9-/- NORMALIZED 

TO WT CONTROL 

P VALUE 

 

pDCs 

 

 

 

 

 

 

CpG2216 

[1µM] 

 

RNA40 

[10µg/ml] 

 

9 

 

 

7 

 

 

IFN-α 

 

 

IFN-α 

 

 

0.560 ± 0.174 

[n = 3 ± SD] 

 

 0.677 ± 0.095  

[n = 3 ± SD] 

 

 

0.048 (*) 

 

 

0.028 (*) 

 

 

cDCs 

 

CpG2216 

[1µM] 

 

RNA40 

[10µg/ml] 

 

Poly I:C 

[10µg/ml] 

 

LPS 

[1µg/ml] 

 

 

9 

 

 

7 

 

 

3 

 

 

4 

 

 

IL-6 

 

 

IL-6 

 

 

IL-6 

 

 

IL-6 

 

1.228 ± 0.381  

[n = 3 ± SD] 

 

0.932 ± 0.924  

[n = 3 ± SD] 

 

not detectable 

 

 

1.417 ± 0.610  

[n = 3 ± SD] 

 

 

0.409 

(n.s.) 

 

0.910 

(n.s.) 

 

- 

 

 

0.358 

(n.s.) 

Cytokine responses of HoxA9-/-sorted BM pDCs and cDCs were normalized to WT control taken as 1 and 

statistical analyses of three independently performed experiments (mean ± SD) were realized using the 

paired Student’s t test (*, p < 0.05; n.s., not significant). 
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3.2 ANALYSIS OF IN VITRO GENERATED FLT3L-INDUCED DCS 

 

3.2.1 TOTAL CELL NUMBERS OF HOXA9-/-
 FLT3L-INDUCED DC CULTURES ARE               

           DECREASED 

 

As mentioned above, DC subsets are rare populations of innate immune cells among total 

BM cells, which of course complicates further experiments. To generate large amounts 

of DCs in vitro, freshly isolated BM cells were cultured in Flt3L-supplemented medium 

to induce differentiation of HSCs and beyond precursors into DCs. Brasel et al. first 

described the in vitro generation of DCs by using the cytokine Flt3L (Brasel et al., 2000; 

Gilliet et al., 2002). DCs developed from these cultures are believed to mainly reflect 

splenic DCs under homeostatic conditions in terms of expression of transcription factors, 

cell surface marker profiles, antigen presentation, and cytokine responses including 

robust type I IFNs by pDCs (Brawand et al., 2002; Gilliet et al., 2002; Naik et al., 2005; 

Watowich and Liu, 2010). For each culture, 15 x 106 BM cells were suspended in Flt3L-

supplemented medium and incubated at 37°C, 5 % CO2, and 100 % humidity (see section 

2.2.4 for details). The generated Flt3L-induced DC cultures of both genotypes were 

harvested after 8 days of incubation and the resulting total cell numbers were determined 

FIGURE 3.8 TOTAL NUMBERS OF IN VITRO GENERATED FLT3L-INDUCED DCS 
Depicted are total cell numbers of in vitro generated Flt3L-induced cultures of HoxA9-/-

 
animals compared 

to their WT littermates after 8 days in culture at 37°C, 5 % CO2, and 100 % humidity. Each culture was 

prepared using 15 x 106 freshly isolated BM cells seeded at a density of 1.5 x 106 cells/ml in Flt3L-

supplemented medium (see section 2.2.4 for details). The CASY®-1cell counter was used to determine total 

cell counts. A Shown are results from mice between 6 – 27 weeks of age (HoxA9-/-
 
[n = 13 ± SD] versus 

WT [n = 12 ± SD]; p = 0.0006). B Shown are results from mice between 6 – 15 weeks of age (HoxA9-/-
 
[n 

= 5 ± SD] versus WT [n = 6 ± SD]; p = 0.059). The unpaired Student’s t test with Welsh’s correction was 

performed for statistical analysis (n.s., not significant; ***, p < 0.001). Lines and error bars represent 

means and standard deviations (SD), respectively. 
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using the CASY®-1 cell counter. Of note, cell counts of HoxA9 knockout cultures from 

animals of all ages between 6 – 27 weeks were significantly reduced (FIGURE 3.8 A). 

Cultures of young mice from 6 – 15 weeks of age, which were used for further TLR 

function analysis, show a borderline insignificant (p = 0.059) decrease in cell numbers 

for the KO genotype (FIGURE 3.8 B). 

 

3.2.2 DCS FROM FLT3L- INDUCED CULTURES OF HOXA9-/-
 MICE EXHIBIT PARTLY  

         ALTERED EXPRESSION PATTERNS AND COMPRISE SIGNIFICANTLY INCREASED CDCS 

 

Samples of WT and HoxA9 knockout Flt3L-induced DC cultures were stained with 

fluorochrome-labeled antibodies directed against B220, CD11c, BST2, SiglecH, Ly6C, 

FIGURE 3.9 FACS ANALYSIS OF IN VITRO GENERATED FLT3L-INDUCED DCS 
A) FSC-H (size) and SSC-H (granularity) gate was used to discriminate dead cells from living cells. B) 

TO-PRO-3 Iodide positive stained cells were excluded from further flow cytometry analysis. C) 

Antibodies directed against DC-specific surface receptors B220 and CD11c were used to determine DC 

subset frequencies of Flt3L-induce cultures. PDCs are represented by the B220
+
CD11c

+
 population, 

whereas cDCs are B220
-
CD11c

+
 events. Figures A – C show one representative of five independently 

performed experiments. Bars and error bars represent means and standard deviations (n = 5 ± SD), 

respectively. The unpaired Student’s t test was performed for statistical analyses (*, p < 0.05; n.s., not 

significant). 
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Flt3, and CD11b. Living cells were roughly separated from dead cells and cell debris 

using the size (FSC-H) and granularity (SSC-H) of the cells (FIGURE 3.9 A). Interestingly, 

Flt3L-induced cultures from HoxA9-deficient BM cells reproducibly contained less 

events in the living cell fraction, albeit not statistically significant (mean, 25.83 % ± 9.69  

versus 34.31 % ± 6.64, HoxA9-/- [n = 3 ± SD] versus WT [n = 3 ± SD], respectively; p = 

0.145). To exclude the remaining dead cells, only TO-PRO-3 iodide negative gated cells 

were used for further analysis (FIGURE 3.9 B). TO-PRO-3 iodide negative cell 

populations were equally distributed in both genotypes. Again, B220 and CD11c staining 

was used to determine pDC and cDC frequencies. Notably, approximately 40 % of the 

differentiated cells in cultures of both genotypes represented B220+CD11c+ pDCs with a 

marginally mean increase in HoxA9-/- cultures, whereas the cDC fraction (B220-CD11c+) 

was significantly increased when HoxA9 was lacking (FIGURE 3.9 C).  

B220+CD11c+ pDCs and B220-CD11c+ cDCs were additionally stained for the 

DC-specific surface markers BST2, SiglecH, Ly6C, or Flt3 and CD11b or Flt3, 

respectively (FIGURE 3.10). Expression of BST2 in B220+CD11c+ pDCs was not 

significantly altered in the HoxA9-/- fraction, whereas SiglecH showed a small reduction. 

Ly6C and Flt3 were not expressed at all in both genotypes. Interestingly, CD11b 

expression was increased in HoxA9 knockout cDCs and was also upregulated in pDCs, 

which normally do not express CD11b (Reizis et al., 2011). 

In summary, flow cytometry of Flt3L-induced DC cultures from BM cells of 

HoxA9-deficient animals clearly show a lower percentage of events in the living cell gate 

(FIGURE 3.9 A). Among them, equal amounts of pDCs and a statistically significant 

increase of cDCs can be found. Further analyses show different expression of CD11b on 

pDCs and cDCs for HoxA9-deficient cultures. 
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FIGURE 3.10 ADDITIONAL FACS ANALYSIS OF IN VITRO GENERATED FLT3L-INDUCED DCS 
PDCs and cDCs were additionally stained for the surface markers BST2, SiglecH, Ly6C, Flt3, and 

CD11b. Shaded, black solid lined, black dotted lined, red solid lined, and red dotted lined histograms 

depict isotype control, WT pDCs, WT cDCs, HoxA9
-/- 

pDCs, and HoxA9
-/-

 cDCs, respectively. Each panel 

shows one representative experiment of at least 2 independently performed experiments. 
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3.2.3 TLR STIMULATION OF FLT3L-INDUCED HOXA9-DEFICIENT DCS REVEALS  

           SIGNIFICANTLY ALTERED CYTOKINE RESPONSES 

 
Stimulation of TLR7 and 9 in pDCs and TLR2, 3, 4, 7, and 9 in cDCs was performed for 

functional analysis of in vitro generated Flt3L-induced DC cultures. These experiments 

were carried out the same way as described for primary BM cells (see section 3.1.3), 

accept that 100.000 instead of 150.000 cells/well were seeded in 96-well plates.   

 FIGURE 3.11 A depicts one representative experiment and FIGURE 3.11 B shows 

statistical analyses of all three performed experiments. IFN-α responses upon TLR7 and 

9 stimulation were almost completely abolished in HoxA9-/- DCs. These proportions were 

constantly observed throughout all experiments and, therefore, are statistically 

significant. The corresponding IL-6 levels were clearly reduced as well, however, not in 

the same amounts as IFN-α and only statistically significant for TLR7-induced IL-6 levels 

upon RNA40 stimulation. Conversely, TLR4-mediated IL-6 induction was significantly 

increased in the knockout group. Pam-3-Cys-dependent TLR2 activation led to meanly 

increased IL-6 levels, but showed a big variability. Poly I:C again did not induce any 

cytokine responses. TABLE 3.4 includes all statistical data. 

Summarizing the facts, functional analyses of DCs in Flt3L-induced in vitro 

cultures reveal a profound block of IFN-α responses and notable reduction of IL-6 upon 

TLR7/9 ligation when HoxA9 is lacking. TLR4-mediated IL-6 levels are significantly 

increased in the KO cultures, whereas TLR2-driven IL-6 responses are slightly increased 

but not significantly altered upon stimulation with Pam-3-Cys. 
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FIGURE 3.11 TLR STIMULATION OF IN VITRO GENERATED FLT3L-INDUCED DCS 
A) TLR2, 3, 4, 7, and 9 were stimulated with Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], 

RNA40[10µg/ml], and CpG1668[1µM]/CpG2216[1µM], respectively. 100.000 cells were suspended in 

100 µl medium per well and incubated with 100 µl diluted stimulus or medium/DOTAP control in 96-well 

plates for 18h overnight. Subsequently, murine IFN-α and IL-6 were detected by ELISA measured in 

dublicates (n.d., not detectable). One representative experiment of three independently performed 

experiments is shown. B) IFN-α and IL-6 production of HoxA9-/-
 
Flt3L-induced DCs were normalized to 

WT control taken as 1. Statistical analyses of three independent experiments were performed using the 

paired Student‘s t test (*, p < 0.05; **, p < 0.01; n.s., not significant; n.d., not detectable). Bars and error 

bars represent means and standard deviations (SD), respectively. 
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TABLE 3.4 STATISTICAL DATA OF TLR STIMULATION OF FLT3L-INDUCED DCS  

STIMULUS TLR CYTOKINE HOXA9-/- NORMALIZED TO WT 

CONTROL 

P VALUE 

 

CpG1668 

[1µM] 

 

 

CpG2216 

[1µM] 

 

 

RNA40 

[10µg/ml] 

 

 

Poly I:C 

[10µg/ml] 

 

 

LPS 

[1µg/ml] 

 

 

Pam-3-

Cys 

[5µg/ml] 

 

9 

 

 

 

9 

 

 

 

7 

 

 

 

3 

 

 

 

4 

 

 

 

2 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

IFN-α 

 

IL-6 

 

0.108 ± 0.095 [n = 3 ± SD] 

 

0.568 ± 0.221 [n = 3 ± SD] 

 

0.187 ± 0.088 [n = 3 ± SD] 

 

0.412 ± 0.279 [n = 3 ± SD] 

 

0.089 ± 0.097 [n = 3 ± SD] 

 

0.366 ± 0.122 [n = 3 ± SD] 

 

not detectable 

 

not detectable 

 

not detectable 

 

0.164 ± 0.131 [n = 3 ± SD] 

 

not detectable 

 

0.129 ± 0.774 [n = 3 ± SD] 

 

 

0.0037 (**) 

 

0.0772 (n.s.) 

 

0.0039 (**) 

 

0.0676 (n.s.) 

 

0.0038 (**) 

 

0.0120 (*) 

 

- 

 

- 

 

- 

 

0.0137 (*) 

 

- 

 

0.5844 (n.s.) 

 
Cytokine responses of HoxA9-/- Flt3L-induced DCs were normalized to WT control taken as 1 and statistical 

analyses of three independently performed experiments (means ± SD) were realized using the paired 

Student’s t test (*, p < 0.05; **, p < 0.01; n.s., not significant).  
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3.3 ANALYSIS OF IN VITRO GENERATED GM-CSF-INDUCED DCS 

 
3.3.1 GM-CSF-INDUCED HOXA9-/-

 CDCS DO NOT DIFFER FROM WT CDCS IN 

           SURFACE EXPRESSION PATTERNS AND TLR FUNCTION  

 

GM-CSF-supplemented BM cultures are known to generate inflammatory DCs derived 

from monocytes (Randolph et al., 1998), reflecting a subtype of cDCs. Furthermore, GM-

CSF has the striking ability to inhibit Flt3L-dependent pDC generation (Gilliet et al., 

2002; Watowich and Liu, 2010). Therefore, the next step was to use this setting to 

investigate the impact of HoxA9 on development and TLR function of the cDC subset in 

vitro. GM-CSF has been shown to selectively inhibit Flt3L-induced differentiation of 

DCs into pDCs via STAT5 (Esashi et al., 2008).  

 

FIGURE 3.12 FACS ANALYSIS OF IN VITRO GENERATED GM-CSF-INDUCED DCS  
A) The FSC-H (size)/SSC-H (granularity) gate was used to exclude dead cells and cell debris. B) Antibodies 

directed against CD11c and MHC-II were used to determine frequencies of developed cDCs among GM-

CSF-induced HoxA9-/- and WT cultures. Non-activated cDCs are represented by the CD11c+MHC-IIlow 

population. Already activated cDCs are depicted as CD11c+MHC-IIhigh cells. The CD11c+ population was 

additionally stained for the integrin alpha chain CD11b. CD11c+CD11b- cells reflect pDCs. For all panels 

one representative experiment of two independently performed experiments is shown. 
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6 x 106 freshly isolated BM cells were cultured in GM-CSF supplemented 

(supernatant of X6310 cell line culture) medium for 6 days at 37°C, 5 % CO2, and 100 % 

humidity (see section 2.2.5 for details). Flow cytometric analysis with fluorochrome-

labeled antibodies directed against CD11c, MHC-II, and CD11b were used to check the 

differentiation of the developed cells. Dead cells and cell debris were excluded by using 

the size (FSC-H) and granularity (SSC-H) of the cells (FIGURE 3.12 A). Cultures of both 

genotypes showed approximately 50 - 60 % CD11c+ and MHC-IIlow cells, reflecting 

differentiated non-activated cDCs. A small fraction of 4 - 6 % showed a CD11c+MHC-

IIhigh expression, indicating already activated cDCs. Almost all of the CD11c+ cells also 

expressed CD11b, which is found on the cell surface of cDCs but not pDCs (FIGURE 3.12 

B). A very small population of CD11c+CD11b- cells probably reflect already 

differentiated BM pDCs before incubation with GM-CSF. FIGURE 3.12 shows one 

representative out of two performed flow cytometry experiments. According to the results 

of the FACS analysis shown in FIGURE 3.12, all surface markers are not differentially 

expressed on the KO cells. 

FIGURE 3.13 TLR STIMULATION OF IN VITRO GENERATED GM-CSF-INDUCED DCS  
TLR2, 3, 4, 7, and 9 were stimulated with Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], 

RNA40[10µg/ml]/R848[5µg/ml], and non-CpG1720[1µM]/CpG1668[1µM]/CpG2216[1µM], 

respectively. 300.000 cells were suspended in 100 µl medium per well and incubated with 100 µl diluted 

stimulus or medium/DOTAP control in 96-well plates for 18h overnight. Subsequently, murine IFN-α and 

IL-6 were detected by ELISA measured in dublicates (n.d., not detectable). Each panel shows one 

representative of two independently performed experiments. Bars and error bars represent means and 

standard deviations (SD), respectively.  
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Functional analysis of TLRs in GM-CSF-derived cDCs were carried out using the 

same protocol as described above for BM cells and Flt3L-induced DCs. The number of 

cells seeded per well was 300.000. Stimulation of TLR2, 3, 4, 7, and 9 was performed 

using Pam-3-Cys, Poly I:C, LPS, RNA40/R848, and non-CpG1720/CpG1668/CpG2216, 

respectively. IL-6 and IFN-α responses were again measured by ELISA. Poly I:C from 

Invivogen™, which was used in former experiments, was replaced by Poly I:C from GE 

healthcare™. For the first time, Poly I:C-mediated IFN-α and IL-6 induction upon TLR3 

activation was achieved. The levels of both cytokines were not significantly altered in the 

KO group compared to the WT ones. All TLR7 and 9 stimuli did not prompt any IFN-α 

responses. Surprisingly, RNA40 did not induce IL-6 responses at all in both experiments. 

One representative of two performed experiments is shown in FIGURE 3.13. 

Altogether, neither expression patterns of surface markers nor functional analyses 

by stimulating TLRs display any significant difference between HoxA9-deficient and WT 

GM-CSF-induced cDCs/inflammatory DCs. 
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3.4 ANALYSIS OF IN VITRO GENERATED M-CSF-INDUCED MΦS AND DCS 

 

3.4.1 M-CSF-DERIVED HOXA9-/-
 MΦS ARE NORMAL IN TLR FUNCTION AND  

          EXPRESSION OF CELL SURFACE MARKERS 

 

Another cell subset responsible for innate immune reactions are MΦs, which express a 

broad range of PRRs including many TLRs. The expression profile of the latter in murine 

MΦs is quite similar to cDCs, especially referring to intracellular TLRs and their 

signaling pathways (Blasius and Beutler, 2010). TLR7 and 9 activation and further 

downstream signaling leads to proinflammatory cytokine responses and upregulation of 

MHC and co-stimulatory molecules via the transcription factor NFκB. Type I IFN 

production in MΦs is solely dependent on sensing dsRNA via TLR3 and is not mediated 

by TLR7 or 9, identically to cDCs (Blasius and Beutler, 2010).  

To examine TLR function in HoxA9-/- MΦs, freshly isolated BM cells from both 

genotypes were cultured with medium supplemented with the growth factor M-CSF for 

5 days at 37°C, 5 % CO2, and 100 % humidity (see section 2.2.6 for details). The quality 

of in vitro generated MΦs was tested by FACS analysis using fluorescence-labeled 

antibodies directed against the best known marker of mature murine macrophages F4/80 

(Austyn and Gordon, 1981; Hirsch et al., 1981). F4/80 is a transmembrane protein 

expressed on several kinds of MΦs and is probably involved in immune tolerance (Lin et 

al., 2005). An antibody against MHC-I was additionally applied to flow cytometry 

samples, as MΦs express high amounts of major histocompatibility complexes on their 

plasma membrane for antigen presentation. Dot plots with FSC-H and SSC-H of both 

genotypes in FIGURE 3.14 A depict the gated living cell fractions, which were checked 

for F4/80 and MHC-I expression shown in FIGURE 3.14 B. MΦs lacking HoxA9 did not 

significantly differ in cell surface expression of the used markers. 

Generated MΦs were functionally analyzed by TLR stimulation experiments 

according to the protocol described above (see section 2.2.7 for details). 200.000 

cells/well were seeded in 96-well plates and stimulated with Pam-3-Cys, Poly I:C, LPS, 

RNA40/R848, and non-CpG1720/CpG1668/CpG2216 to activate TLR2, 3, 4, 7, and 9, 

respectively. Subsequent IL-6 and IFN-α responses were detected by ELISA. FIGURE 

3.14 C shows one representative of two performed experiments. Both, IL-6 and IFN-α 

levels did not prominently differ between the two genotypes, accept IL-6 production upon 
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FIGURE 3.14 FACS ANALYSIS AND TLR STIMULATION OF M-CSF-INDUCED MΦS 
A) FSC-H (size)/SSC-H (granularity) gate was used to discriminate living cells from dead cells and cell 

debris B) Fluorochrome-labeled antibodies directed against F4/80 and MHC-I were used to determine 

quality of developed MΦs of M-CSF-supplemented HoxA9-/-
 
and WT cultures. C) TLR2, 3, 4, 7, and 9 were 

stimulated with  Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], RNA40[10µg/ml]/R848[5µg/ml], 

and non-CpG1720[1µM]/CpG1668[1µM]/CpG2216[1µM], respectively. 200.000 cells were suspended in 

100 µl medium per well with 100 µl diluted stimulus or medium/DOTAP control in 96-well plates for 18h 

overnight. Subsequently, murine IFN-α and IL-6 were detected by ELISA measured in dublicates (n.d., not 

detectable). Each panel shows one representative of two independently performed experiments. Bars and 

error bars represent means and standard deviations (SD), respectively. 
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RNA40-induced TLR7 activation, which was increased (289.19 %) in one and reduced 

(60.34 %) in the other experiment for the KO MΦs. Importantly, IFN-α induction by 

TLR3 activation was slightly increased in one and slightly decreased in the other 

experiment, thus showing no significant difference. 

In summary, HoxA9-deficient MΦs derived from in vitro generated M-CSF-

supplemented BM cultures express mature cell surface markers and elicit equal cytokine 

levels in response to TLR2, 3, 4, 7, and 9 activation compared to wild type MΦs. 

 

3.4.2 FREQUENCIES OF DCS AMONG SUSPENSION CELLS ARE CLEARLY REDUCED IN 

          HOXA9-/- M-CSF-SUPPLEMENTED CULTURES 

 

M-CSF-supplemented BM cultures are capable to drive differentiation from HSCs to 

MΦs, which are known to be adherent cells with their characteristic morphology. 

However, numerous cells of these cultures are found to be non-adherent and Francke et 

al. showed that differentiated cDCs and especially pDCs can be found amongst them 

(Fancke et al., 2008). Furthermore, M-CSF was shown to generate splenic pDCs and 

cDCs in Flt3L-/- mice in vivo (Fancke et al., 2008). In addition, M-CSF seems to be also 

important for migratory cDCs found in the gut, peripheral tissues, and Langerhans cells 

in the skin (Watowich and Liu, 2010). To check involvement of HoxA9 in M-CSF-

induced DC generation in vitro, all suspension cells were separated from adherent cells 

(see section 2.2.6 for details) and investigated by flow cytometry analysis using DC-

specific surface markers. 

 After marking the living cell fraction in the FSC-H/SSC-H dot plot, fluorochrome-

labeled antibodies directed against B220, CD11c, BST2, and CD11b were used to detect 

differentiated DCs. FIGURE 3.15 A shows one of two performed experiments. PDCs were 

found as B220+CD11c+, BST2+B220+, and CD11c+CD11b- cell populations with a 

percentage of approximately 3 % in WT and 1.5 % in KO cultures among all suspension 

cells. In addition, CD11b+CD11c+ cells were found in the cultures, reflecting cDCs, with 

similarly reduced proportions in the KO cultures (FIGURE 3.15 A CD11c/CD11b dot 

plot). Both experiments exhibited about half as much pDCs and cDCs in cultures lacking 

HoxA9 compared to WT cultures. 

 TLR stimulation of total suspension cells was done in the aforementioned way to 

check functional properties of the developed DC subsets among them. 150.000 cells/well 

were seeded in 96-well plates and faced with same stimuli used for MΦs. FIGURE 3.15 B 
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depicts one of two performed experiments. IFN-α induction upon TLR7/9 activation of 

pDCs was even stronger reduced in the KO samples compared to primary BM cells. 

Considering approximately 50 % less differentiated pDCs, the decrease of IFN-α was 

about comparable to the one observed for primary BM cells. The CpG-motif free ODNs 

AP-1 and 1720 did again also induce less amounts of IFN-α in the KO pDCs as CpG-

motif containing ODNs, whereas IL-6 was not detectable. R848 elicited very small 

amounts of IFN-α in WT cultures, with no response in the KO cultures. IL-6 levels upon 

TLR7/9 stimulation were less reduced than the IFN-α levels. In view of the differentiated 

DC proportions, IL-6 was rather slightly increased after stimulation of the KO cultures. 

Poly I:C-dependent IFN-α and IL-6 levels upon TLR3 stimulation were about equal, as 

well as Pam-3-Cys- and LPS-induced IL-6 secretion. 

Taken together, total M-CSF-induced suspension cells of HoxA9-deficient BM 

cells contained approximately 50 % less amounts of pDCs as well as cDCs. IFN-α 

reductions in HoxA9-/- cultures upon TLR7 and 9 stimulation were similar to those found 

in primary BM cells, considering the differentiated pDC proportions in both genotypes. 

IL-6 levels were rather slightly increased regarding the reduced DC amounts. 
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FIGURE 3.15 FACS ANALYSIS AND TLR STIMULATION OF M-CSF-INDUCED SUSPENSION      

              CELLS 
A) FSC-H (size)/SSC-H (granularity) gate was used to discriminate living cells from dead cells and cell 

debris. Fluorochrome-labeled antibodies directed against B220, CD11c, BST2, and CD11b were used to 

determine percentages of pDCs in M-CSF-induced HoxA9-/-
 
and WT cultures. B) TLR2, 3, 4, 7, and 9 were 

stimulated with  Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], RNA40[10µg/ml]/R848[5µg/ml], 

and non-CpGAP-1[1µM]/non-CpG1720[1µM]/CpG1668[1µM]/ CpG2216[1µM], respectively. 150.000 

cells were suspended in 100 µl medium per well with 100 µl diluted stimulus or medium/DOTAP control 

in 96-well plates for 18h overnight. Subsequently, murine IFN-α and IL-6 were detected by ELISA 

measured in dublicates (n.d., not detectable). Each panel shows one representative of two independently 

performed experiments. Bars and error bars represent means and standard deviations (SD), respectively. 
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3.5 ANALYSIS OF SPLENOCYTES EX VIVO 
 

3.5.1 SPLENIC DC SUBSETS OF HOXA9-/-
 ANIMALS EXPRESS MATURE SURFACE MARKERS 

 

Besides the existing DC population in the BM, DCs are of course also found in peripheral 

tissues and lymphoid organs including the spleen to function as pathogen recognizing 

“sentinels”, able to prompt first line defense mechanisms and to induce long-lasting 

adaptive immune responses (Watowich and Liu, 2010). To analyze quantities, expression 

FIGURE 3.16 FACS ANALYSIS OF SPLENOCYTES EX VIVO  
A) FSC-H (size)/SSC-H (granularity) gate was used to discriminate living cells from dead cells and cell 

debris. B) TO-PRO-3 Iodide stained cells were excluded from further flow cytometry analysis. C) 

Fluorochrome-labeled antibodies directed against B220, CD11c, BST2, SiglecH, and Ly6C were used to 

determine frequencies of DC subsets among HoxA9
-/- 

and WT splenocytes. PDCs are represented by the 

B220
+
CD11c

+
, BST2

+
CD11c

+
, SiglecH

+
CD11c

+
,
 
or Ly6C

+
CD11c

+
 population, whereas single CD11c

+
 

cells depict cDCs. Each panel shows one representative of two independently performed stainings. 
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patterns, and TLR function of primary resident DCs found in lymphoid organs, total 

splenocytes were isolated from HoxA9-deficient and WT mice to investigate splenic DC 

subsets. Total splenocytes of KO and WT mice were isolated by cutting spleens into 

pieces and incubating the pieces in a special spleen isolation medium including 

Collagenase D and DNAse for 45 min at 37°C. After mashing the pieces through a 70 µm 

cell strainer and lysis of the erythrocytes, leucocytes were isolated from the remaining 

cell fractions by using ficoll gradient separation (see section 2.2.3. for details). 

Flow cytometry analyses with the DC-specific markers B220, CD11c, BST2, 

SiglecH, Ly6C, Flt3, and CD11b were performed to determine frequencies and 

expression patterns of surface markers. FIGURE 3.16 A shows separation of living cells 

from dead cells and cell debris by detecting the size (FSC-H) and granularity (SSC-H) of 

the cells. TO-PRO-3 iodide staining was used to exclude the remaining dead cells 

(FIGURE 3.16 B). Significant differences between both genotypes regarding proportions 

of living or dead cells were not observed. FIGURE 3.16 C depicts one representative of 

two independently performed experiments of each staining. One experiment showed 

slightly increased (shown in FIGURE 3.16 C) and the other a rather small decrease (data 

not shown) of HoxA9-deficient splenic pDCs. The cDC fraction in the spleen was higher 

(pDC/cDC ratio nearly 1:6) compared to the BM (pDC/cDC ratio nearly 1:1 – 1.5), but 

equally amounted among WT and KO splenocytes. B220+CD11c+ pDCs as well as B220-

CD11c+ cDCs were additionally stained for BST2, SiglecH, Ly6C, or Flt3 and Flt3 or 

CD11b, respectively. Expression patterns of all DC-specific markers were not altered in 

the KO splenocytes compared to WT (FIGURE 3.17). Single B220+ B cells were equally 

distributed. 
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FIGURE 3.17 ADDITIONAL FACS ANALYSIS OF SPLENOCYTES EX VIVO  
PDCs (B220

+
CD11c

+
 cells) were additionally stained for the surface markers BST2, SiglecH, Ly6C, and 

Flt3. CDCs (B220
-
CD11c

+
 cells) were additionally stained for the surface markers Flt3 and CD11b. 

Shaded, black solid lined, black dotted lined, red solid lined, and red dotted lined histograms depict 

unstained control, WT pDCs, WT cDCs, HoxA9
-/- 

pDCs, and HoxA9
-/-

 cDCs, respectively. Each panel 

shows one representative experiment of two independently performed experiments. 
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3.5.2 CYTOKINE RESPONSES UPON TLR7/9 STIMULATION ARE IMPAIRED IN TOTAL 

          SPLENOCYTES EX VIVO 

 

Investigation of TLR function of HoxA9-/- DCs was performed by stimulating freshly 

isolated total splenocytes with TLR agonists according to the protocol described in 

section 2.2.6. Pam-3-Cys, Poly I:C, LPS, RNA40/R848, and non-CpGAP-1/non-

CpG1720/CpG1668/CpG2216 were used to activate TLR2, 3, 4, 7, and 9, respectively. 

After 18 h of incubation at 37°C, 5 % CO2, and 100 % humidity, IL-6 and IFN-α 

production were detected in the cell supernatants by performing ELISA. FIGURE 3.18 

illustrates results of one representative out of two performed experiments. Confirming 

previous data, IFN-α levels detected in the KO samples were clearly diminished upon 

TLR7 and 9 stimulation of all agonists, whereas TLR3-mediated IFN-α induction was not 

different to WT control. TLR9-dependent IL-6 secretion of HoxA9-/- splenocytes was 

slightly reduced after stimulation with CpG1668 and CpG2216 in both experiments, 

whereas non-CpGAP-1 and non-CpG1720 did not induce detectable IL-6 levels. TLR7-

mediated IL-6 production induced by R848 was also slightly increased in KO samples, 

FIGURE 3.18 TLR STIMULATION OF SPLENOCYTES EX VIVO 
TLR2, 3, 4, 7, and 9 were stimulated with  Pam-3-Cys[5µg/ml], Poly I:C[10µg/ml], LPS[1µg/ml], 

RNA40[10µg/ml]/R848[5µg/ml], and non-CpGAP-1[1µM]/non-CpG1720[1µM]/CpG1668[1µM]/ 

CpG2216, respectively. 200.000 cells were suspended in 100 µl medium per well with 100 µl diluted 

stimulus or medium/DOTAP control in 96-well plates and incubated for 18h overnight. Subsequently, 

murine IFN-α and IL-6 were detected by ELISA measured in dublicates (n.d., not detectable). One 

representative of two independently performed experiments is shown. Bars and error bars represent means 

and standard deviations (SD), respectively. 
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whereas RNA40 surprisingly elicited increased IL-6 in both experiments. Stimulation 

with Pam-3-Cys and LPS as TLR2 and 4 activating agents, respectively, led to equal IL-

6 proportions in one and slightly or clearly decreased mean IL-6 levels for the KO 

splenocytes in the other experiment.  

In summary, flow cytometry analyses of ex vivo isolated HoxA9-/- splenocytes 

revealed overall normal amounts of both DC subsets with equal expression of DC-specific 

surface markers including the cytokine receptor Flt3. Of note, TLR7/9-dependent IFN-α 

responses were again reproducibly impaired in HoxA9 knockout pDCs, consistent to the 

findings in BM-derived primary and in vitro generated pDCs. TLR3-mediated type I IFN 

induction was not affected by the KO. 
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3.6 GENOME-WIDE GENE EXPRESSION PROFILING BY MICROARRAY ANALYSIS OF 

       EX VIVO SORTED HOXA9-/- BM PDCS 

 
Several TLR stimulation experiments of different primary and in vitro generated DCs 

collectively indicated dysfunctions of murine HoxA9-/- pDCs upon TLR7/9-dependent 

IFN-α responses and some evidence suggested also involvement of proinflammatory 

cytokines, represented by IL-6, as well. As TLR7/9-mediated cytokine responses were 

not significantly altered in in vitro generated cDCs and MΦs, the HoxA9 knockout seems 

to impact specifically on pDCs. Moreover, alterations in cell counts and surface 

expression patterns of Flt3L-induced DC cultures in vitro implicated HoxA9 in 

developmental processes, however, which seemed to be compensated in vivo. For HoxA9 

is known as a transcription factor that was shown to have multiple transcriptional targets 

and is associated to epigenetic modifications in human hematopoietic cells (Huang et al 

2012), genome-wide gene expression profiling of ex vivo sorted HoxA9-/- and WT BM 

pDCs was performed by microarray analysis to identify potential HoxA9 target genes in 

this particular cell type. 

Total RNA from pooled ex vivo sorted BM pDCs (B220+CD11c+ cells) of HoxA9 

KO and WT animals (pooled BM cells of 4 mice per genotype) was purified using Trizol 

according to the protocol described in section 2.2.10. 1 µg of RNA was sent to the 

“Expression Core Facility” of the Institute for Medical Microbiology, Immunology, and 

Hygiene of the Technical University of Munich under the direction of Prof. Dr. med. D. 

H. Busch. After reverse transcription, amplification, and labeling, the cDNA was 

hybridized to Affymetrix Mouse Genome 1.0 ST arrays (28.853 probe set) for genome-

wide microarray gene expression profiling. Robust Multi-array Average (RMA) 

normalization was performed to adjust systematic errors. 

Pairwise comparison of raw microarray data of sorted HoxA9-/- and WT BM pDCs 

revealed a total of 68 downregulated genes ≥ 2-fold (WT/KO) and 38 upregulated genes 

≤ 0.5-fold (WT/KO) in the knockout pDCs. All down- and upregulated genes are depicted 

in TABLES 3.4 and 3.5, respectively. Underlined genes were shown to be significantly 

expressed in murine pDCs according to microarray metadata of the Immunological 

Genome Project consortium (www.immgen.org) (Heng et al., 2008). 
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TABLE 3.5 DOWNREGULATED GENES OF SORTED HOXA9-/-
 BM PDCS 

Gene Accession 

(Source) 

Fold Change  

(WT/KO) 

Description 

 

Taf1d 

 

 

Rnu12 

 

Snora3 

 

Snord34 

 

Snord104 

 

Snora44 

 

Snora34 

 

Snora69 

 

Snora16a 

 

Snord33 

 

Myo9a 

 

Snord35b 

 

Snhg1 

 

 

Snora7a 

 

Klra10 

 

Rnu2 

 

Cdkn1b 

 

Cd8a 

 

Snord32a 

 

Snord35a 

 

Naf1 

 

Hsd11b1 

 

 

 

BC056964 

(GenBank) 

 

NR_004432 

(RefSeq) 

NR_028079 

(RefSeq) 

NR_002455 

(RefSeq) 

NR_030703 

(RefSeq) 

NR_034050 

(RefSeq) 

NR_034051 

(RefSeq) 

NR_002900 

(RefSeq) 

NR_029412 

(RefSeq) 

NR_001277 

(RefSeq) 

NM_173018 

(RefSeq) 

NR_000004 

(RefSeq) 

AK051045 

(GenBank 

HTC) 

NR_028546 

(RefSeq) 

NM_008459 

(RefSeq) 

NR_004414 

(RefSeq) 

NM_009875 

(RefSeq) 

NM_001081

110 (RefSeq) 

NR_000002 

(RefSeq) 

NR_000003 

(RefSeq) 

NM_001163

564 (RefSeq) 

NM_008288 

(RefSeq) 

 

 

8.1 

 

 

4.3 

 

4.1 

 

3.6 

 

3.6 

 

3.6 

 

3.5 

 

3.5 

 

3.4 

 

3.4 

 

3 

 

2.9 

 

2.9 

 

 

2.9 

 

2.8 

 

2.8 

 

2.7 

 

2.7 

 

2.7 

 

2.7 

 

2.7 

 

2.7 

 

 

 

TATA box binding protein (Tbp)-

associated factor, RNA polymerase I, 

D 

U12 small nuclear RNA 

 

Small nucleolar RNA, H/ACA box 3 

 

Small nucleolar RNA, C/D box 34 

 

Small nucleolar RNA, C/D box 104 

 

Small nucleolar RNA, H/ACA box 44 

 

Small nucleolar RNA, H/ACA box 34 

 

Small nucleolar RNA, H/ACA box 69 

 

Small nucleolar RNA, H/ACA box 

16A 

Small nucleolar RNA, C/D box 33 

 

Myosin IXa 

 

Small nucleolar RNA, C/D box 35B 

 

Small nucleolar RNA host gene 1 

 

 

Small nucleolar RNA, H/ACA box 7A 

 

Killer cell lectin-like receptor 

subfamily A, member 10 

U2 small nuclear RNA 

 

Cyclin-dependent kinase inhibitor 1B 

 

Cluster of differentiation 8 alpha 

chain, transcript variant 1 

Small nucleolar RNA, C/D box 32A 

 

Small nucleolar RNA, C/D box 35A 

 

Nuclear assembly factor 1 homolog 

(S. cerevisiae) 

Hydroxysteroid 11-beta 

dehydrogenase 1, transcript variant 1  
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Uchl3 

 

Mir421 

 

Hist1h2bb 

 

Emp1 

 

Rnu73b 

 

Dpp4 

 

Snord47 

 

Gas5 

 

Snora20 

 

Scrn1 

 

Gng5 

 

Snora73b 

 

Olfr767 

 

Mrpl13 

 

 

Rpgrip1 

 

 

Snora73a 

 

D14Abb1e 

 

Ywhaq 

 

 

Apol9b 

 

Myo18b 

 

Fam133b 

 

Slc44a1 

 

 

 

 

 

NM_016723 

(RefSeq) 

NR_030558 

(RefSeq) 

NM_175664 

(RefSeq) 

NM_010128 

(RefSeq) 

NR_004418 

(RefSeq) 

NM_010074 

(RefSeq) 

NR_028543 

(RefSeq) 

NR_002840 

(RefSeq) 

NR_028479 

(RefSeq) 

NM_027268 

(RefSeq) 

NM_010318 

(RefSeq) 

NR_028513 

(RefSeq) 

NM_146318 

(RefSeq) 

NM_026759 

(RefSeq) 

 

NM_023879 

(RefSeq) 

 

NR_028512 

(RefSeq) 

NM_001114

879 (RefSeq) 

NM_011739 

(RefSeq) 

 

NM_173743 

(RefSeq) 

NM_028901 

(RefSeq) 

NM_001042

501 (RefSeq) 

ENSMUST0

0000107651 

(ENSEMBL) 

 

 

 

2.6 

 

2.6 

 

2.5 

 

2.4 

 

2.4 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

2.3 

 

 

2.2 

 

 

2.2 

 

2.2 

 

2.2 

 

 

2.2 

 

2.2 

 

2.2 

 

2.2 

 

 

 

 

 

Ubiquitin carboxyl-terminal esterase 

L3 

MicroRNA 421 

 

Histone cluster 1, H2bb 

 

Epithelial membrane protein 1 

 

U73B small nuclear RNA 

 

Dipeptidylpeptidase 4, transcript 

variant 1 

Small nucleolar RNA, C/D box 47 

 

Growth arrest specific 5, non-coding 

RNA 

Small nucleolar RNA, H/ACA box 20 

 

Secernin 1 

 

Guanine nucleotide binding protein (G 

protein), gamma 5 

Small nucleolar RNA, H/ACA box 

73b 

Olfactory receptor 767 

 

Mitochondrial ribosomal protein L13, 

nuclear gene encoding mitochondrial 

protein 

Retinitis pigmentosa GTPase regulator 

interacting protein 1, transcript variant 

1 

Small nucleolar RNA, H/ACA box 

73a 

DNA segment, Chr 14, Abbott 1 

expressed, transcript variant 1 

Tyrosine 3-monooxygenase/ 

tryptophan 5-monooxygenase 

activation protein, theta polypeptide 

Apolipoprotein L 9b, transcript variant 

2 

Myosin XVIIIb 

 

Family with sequence similarity 133, 

member B 

Solute carrier family 44, member 1 
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Ftl1 

 

Rny3 

 

Gdap10 

 

Snord87 

 

Mir297b 

 

Adam19 

 

Anxa4 

 

Rnu3b1 

 

Snord82 

 

Cd209d 

 

Snord14e 

 

Snord49a 

 

ND3 

 

 

Prdm1 

 

Ccdc69 

 

Atp13a3 

 

Prkce 

 

Scarna17 

 

Hoxa5 

 

Rps27 

 

Osm 

 

Eif3m 

 

Klri2 

 

Etohi1 

 

 

 

NM_010240 

(RefSeq) 

NR_024202 

(RefSeq) 

BC052902 

(GenBank) 

NR_004410 

(RefSeq) 

NR_030474 

(RefSeq) 

NM_009616 

(RefSeq) 

NM_013471 

(RefSeq) 

NR_004415 

(RefSeq) 

NR_002851 

(RefSeq) 

NM_130904 

(RefSeq) 

NR_028275 

(RefSeq) 

NR_028550 

(RefSeq) 

ENSMUST0

0000082411 

(ENSEMBL) 

NM_007548 

(RefSeq) 

NM_177471 

(RefSeq) 

NM_001128

096 (RefSeq) 

NM_011104 

(RefSeq) 

NR_028560 

(RefSeq) 

NM_010453 

(RefSeq) 

NM_027015 

(RefSeq) 

NM_001013

365 (RefSeq) 

NM_145380 

(RefSeq) 

NM_177155 

(RefSeq) 

NM_001177

399 (RefSeq) 

 

 

2.2 

 

2.1 

 

2.1 

 

2.1 

 

2.1 

 

2.1 

 

2.1 

 

2.1 

 

2.1 

 

2 

 

2 

 

2 

 

2 

 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

 

 

Ferritin light chain 1 

 

Y3 small cytoplasmic (associated with 

Ro protein), small cytoplasmic RNA 

Ganglioside-induced differentiation-

associated-protein 10 

Small nucleolar RNA, C/D box 87 

 

MicroRNA 297b 

 

A disintegrin and metallopeptidase 

domain 19 (meltrin beta) 

Annexin A4 

 

U3B small nuclear RNA 1 

 

Small nucleolar RNA, C/D box 82 

 

Cluster of differentiation 209d 

 

Small nucleolar RNA, C/D box 14E 

 

Small nucleolar RNA, C/D box 49A 

 

NADH-ubiquinone oxidoreductase 

chain 3 

 

PR domain containing 1, with ZNF 

domain 

Coiled-coil domain containing 69 

 

ATPase type 13A3, transcript variant 

1 

Protein kinase C, epsilon 

 

Small Cajal body-specific RNA 17 

 

Homeobox A5 

 

Ribosomal protein S27, transcript 

variant 1 

Oncostatin M 

 

Eukaryotic translation initiation factor 

3, subunit M 

Killer cell lectin-like receptor family I 

member 2 

Ethanol induced 1, transcript variant 1 
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Acat2 

 

Snora23 

 

Tmem222 

 

Ndufc1 

 

Dld 

 

Irgm1 

 

Ankrd32 

 

Rangrf 

 

Gtf3c3 

 

Zfp868 

 

 

 

NM_009338 

(RefSeq) 

NR_033336 

(RefSeq) 

NM_025667 

(RefSeq) 

NM_025523 

(RefSeq) 

NM_007861 

(RefSeq) 

NM_008326 

(RefSeq) 

NM_134071 

(RefSeq) 

NM_021329 

(RefSeq) 

NM_001033

194 (RefSeq) 

NM_172754 

(RefSeq) 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

 

Acetyl-Coenzyme A acetyltransferase 

2 

Small nucleolar RNA, H/ACA box 23 

 

Transmembrane protein 222 

 

NADH dehydrogenase (ubiquinone) 1, 

subcomplex unknown, 1 

Dihydrolipoamide dehydrogenase 

 

Immunity-related GTPase family M 

member 1 

Ankyrin repeat domain 32 

 

RAN guanine nucleotide release factor 

 

General transcription factor IIIC, 

polypeptide 3 

Zinc finger protein 868, transcript 

variant 1 

Shown are downregulated genes in HoxA9-/- BM pDCs compared to WT pDCs. Underlined genes indicate 

high gene expression in murine pDCs according to microarray data generated by the Immunological 

Genome Project consortium (www.immgen.org.) (Heng et al., 2008). Sources of gene cDNA sequences 

comprise RefSeq from NCBI reference sequence database (www.ncbi.nlm.nih.gov/refseq), ENSEMBL 

database (http://www.ensembl.org), and NCBI GenBank including the high-throughput cDNA (HTC) 

division (www.ncbi.nlm.nih.gov/genbank). 

 

TABLE 3.6 UPREGULATED GENES OF SORTED HOXA9-/-
 BM PDCS 

Gene Accession 

(Source) 

Fold Change  

(WT/KO) 

Description 

 

Cish 

 

Mrps10 

 

 

Lpcat2 

 

Slfn4 

 

Polr2k 

 

Parp10 

 

Lcn2 

 

Tcf19 

 

 

 

NM_009895 

(RefSeq) 

ENSMUST0

0000060752 

(ENSEMBL) 

NM_173014 

(RefSeq) 

NM_011410 

(RefSeq) 

NM_001039

368 (RefSeq) 

NM_001163

575 (RefSeq) 

NM_008491 

(RefSeq) 

NM_001163

763 (RefSeq) 

 

 

0.4 

 

0.4 

 

 

0.4 

 

0.4 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

 

 

Cytokine inducible SH2-containing 

protein 

28S ribosomal protein S10, 

mitochondrial isoform 3 

 

Lysophosphatidylcholine 

acyltransferase 2 

Schlafen 4 

 

Polymerase (RNA) II (DNA directed) 

polypeptide K, transcript variant 1 

Poly (ADP-ribose) polymerase family, 

member 10, transcript variant 1 

Lipocalin 2 

 

Transcription factor 19, transcript 

variant 1 
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Olfr1402 

 

Ctse 

 

Prnp 

 

Dcxr 

 

Ccnb1 

 

Bag3 

 

Cd302 

 

Ltf 

 

Minpp1 

 

Net1 

 

Stx2 

 

Lasp1 

 

 

Sh3bgrl2 

 

Ly6g 

 

 

Meis1 

 

Ncf2 

 

Tns1 

 

Bcl11b 

 

Alpk1 

 

Dock6 

 

Mthfr 

 

Ecm1 

 

Rfc3 

 

 

 

 

NM_146275 

(RefSeq) 

NM_007799 

(RefSeq) 

NM_011170 

(RefSeq) 

NM_026428 

(RefSeq) 

NM_172301 

(RefSeq) 

NM_013863 

(RefSeq) 

NM_025422 

(RefSeq) 

NM_008522 

(RefSeq) 

NM_010799 

(RefSeq) 

NM_019671 

(RefSeq) 

NM_007941 

(RefSeq) 

ENSMUST0

0000148280 

(ENSEMBL) 

NM_172507 

(RefSeq) 

ENSMUST0

0000023246 

(ENSEMBL) 

NM_001193

271 (RefSeq) 

NM_010877 

(RefSeq) 

NM_027884 

(RefSeq) 

NM_001079

883 (RefSeq) 

NM_027808 

(RefSeq) 

NM_177030 

(RefSeq) 

NM_001161

798 (RefSeq) 

NM_007899 

(RefSeq) 

NM_027009 

(RefSeq) 

 

 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

 

0.5 

 

0.5 

 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

 

 

 

Olfactory receptor 1402 

 

Cathepsin E 

 

Prion protein 

 

Dicarbonyl L-xylulose reductase 

 

Cyclin B1 

 

BCL2-associated athanogene 3 

 

Cluster of differentiation 302 

 

Lactotransferrin 

 

Multiple inositol polyphosphate 

histidine phosphatase 1 

Neuroepithelial cell transforming gene 

1, transcript variant 1 

Syntaxin 2 

 

LIM and SH3 protein 1 

 

 

SH3 domain binding glutamic acid-rich 

protein like 2 

Similar to lymphocyte antigen 6G 

 

 

Meis homeobox, transcript variant B 

 

Neutrophil cytosolic factor 2 

 

Tensin 1 

 

B-cell leukemia/lymphoma 11B, 

transcript variant 1 

Alpha-kinase 1 

 

Dedicator of cytokinesis 6 

 

5,10-methylenetetrahydrofolate 

reductase, transcript variant 1 

Extracellular matrix protein 1 

 

Replication factor C (activator 1) 3 
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Slc10a4 

 

Atad2 

 

Zfp280b 

 

Eya1 

 

Uqcr11 

 

Cdc42ep4 

 

Lphn2 

 

 

 

NM_173403 

(RefSeq) 

NM_027435 

(RefSeq) 

NM_177475 

(RefSeq) 

NM_010164 

(RefSeq) 

NM_025650 

(RefSeq) 

NM_020006 

(RefSeq) 

NM_001081

298 (RefSeq) 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

 

Solute carrier family 10 (sodium/bile 

acid cotransporter family), member 4 

ATPase family, AAA domain 

containing 2 

Zinc finger protein 280B 

 

Eyes absent 1 homolog (Drosophila) 

 

Ubiquinol-cytochrome c reductase, 

complex III subunit XI 

CDC42 effector protein (Rho GTPase 

binding) 4, transcript variant 1 

Latrophilin 2 

 

Shown are selected genes upregulated in HoxA9-/- BM pDCs compared to WT pDCs. Underlined genes 

indicate high gene expression in murine pDCs according to microarray data generated by the 

Immunological Genome Project consortium (www.immgen.org.) (Heng et al., 2008). Sources of gene cDNA 

sequences comprise RefSeq from NCBI reference sequence database (www.ncbi.nlm.nih.gov/refseq) and 

ENSEMBL database (http://www.ensembl.org).  
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4. DISCUSSION 

 

4.1 VARIABILITY OF BM CELL COUNTS 

 

At the outset of this study, I started to isolate BM cells ex vivo from HoxA9-deficient 

mice and the WT littermates by flushing the dissected femur and tibia. After lysis of the 

erythrocytes, the remaining nucleated BM cells were counted to determine possible 

variations. However, the data (FIGURE 3.1) shows a big variability in BM cell numbers 

with higher mean cell amounts in younger mice. Consistent with this observation, 

Sletvold et al. reported about a significantly reduced proliferative capacity of BM cells in 

older mice (Sletvold and Laerum, 1988). Known circadian variations were handled by 

doing BM preparations at the same daytime. In addition, also circannual alterations of 

mouse BM cell proliferation have been observed since the late 1980s (Laerum et al., 

1988) and peak in the first part of the year. Interestingly, almost all experiments with 

young mice were carried out in winter months from December till February, whereas BM 

cell numbers of old mice were determined in late summer and autumn from August till 

November. Thus, both age as wells as the time of the year are influencing proliferation in 

the BM and might therefore be responsible for the large variability in total BM cell counts. 

 

4.2 HOXA9 DEFICIENCY CAUSES REDUCED CELL NUMBERS IN THE BM 

 

The statistical analyses of mean total nucleated cell numbers in the BM revealed 

reductions for HoxA9-deficient compared to wild type mice, although not statistical 

significant. However, reduced BM cell numbers in HoxA9-/- animals have been shown in 

earlier studies. Gwin et al. reported about insignificantly decreased numbers of nucleated 

BM cells in HoxA9 knockout mice and revealed a significant reduction of 

lymphohematopoietic progenitors (CLPs), particularly in Flt3
+
 B cell progenitor lineages 

including Pre-Pro-B and Pro-B precursors (Gwin et al., 2010). Furthermore, Lawrence 

and colleagues determined normal quantities of nucleated BM cells per femur of HoxA9-

deficient mice, however, also with a small decrease of B lymphocytes (Lawrence et al., 

1997). Thus, the observed reduction of BM cell numbers, albeit small and statistically not 

significant, seems to be not simply due to natural variability, instead reflects altered 

development and differentiation of lymphoid progenitors especially affecting the B cell 

lineage. This circumstance has been partly linked to transcriptional regulation of Flt3 by 
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HoxA9 in hematopoietic progenitors through directly binding its promotor region (Gwin 

et al., 2010; Wang et al., 2006). The cytokine fms-like tyrosine kinase 3 ligand (Flt3L) 

and its receptor Flt3 are known to be essential factors for lymphoid priming and thus for 

B cell differentiation (Sitnicka et al., 2002). Nonetheless, they also represent crucial 

signals for steady-state DC development and the homeostasis of peripheral DCs (Schmid 

et al., 2010; Waskow et al., 2008). Latest investigations implicate an early contribution 

of Flt3 in hematopoietic stem cell differentiation including most lineages and probably 

marking the stage of losing self-renewal potency when expressed (Boyer et al., 2012; 

Boyer et al., 2011). Flt3 further seems to support the lymphoid and myeloid lineage 

differentiation rather than the development of erythroid and megakaryocytic cell types 

(Gwin et al., 2013b). A subgroup of Flt3
+
 multipotential progenitors (MPPs), which 

express lymphoid-lineage genes and high levels of Flt3, referred to as lymphoid-primed 

multipotential progenitors (LMPPs), possess the ability to differentiate into B, T, NK, and 

DCs through transition into common lymphoid progenitors (CLPs) and beyond subsets 

(Gwin et al., 2013b). Two studies revealed a synergistic instead of sequential role for 

HoxA9 and Flt3 in early lymphoid development, since double knockout mice display a 

profound block in generating lymphoid progenitors destined to become B or T cells and 

single HoxA9-/- mice show selective impairment in CLP subsets destined to become B 

cells (Gwin et al., 2013a; Gwin et al., 2013b). Interestingly, neither HoxA9 nor 

HoxA9/Flt3 deficiency had any impact on lymphoid lineage dependent NK cell 

development or homeostasis and the quantities of CD11c
+
 cDCs as well as B220

+
CD11c

+
 

pDCs in the BM beyond those observed in single Flt3 knockout mice (Gwin et al., 2013a). 

Thus, the regulation of Flt3 expression by the transcription factor HoxA9 seems to 

contribute only in part to the impaired B cell differentiation. One study implicates novel 

roles for HoxA9 in B cell fate regulation and together with Flt3 cooperative functions in 

controlling B and T cell lymphoid progeny (Gwin et al., 2013b). Important for this work, 

HoxA9 seems to be not involved or is completely dispensable in DC development in vivo, 

since normal numbers and frequencies of DC subsets in the BM of HoxA9-deficient mice 

were reported by the same authors (Gwin et al., 2013a; Gwin et al., 2013b). Consistent to 

this, ex vivo FACS analyses of HoxA9-deficient BM cells in this work displayed reduced 

frequencies of B220+ B cells but no difference in frequencies of all DC subsets compared 

to BM cells of wild type littermates. Thus, slightly decreased cell counts of total nucleated 

BM cells in HoxA9-/- mice are mainly due to impairment of selected lymphoid lineages 

resulting in altered B cell progeny. In addition, HoxA genes and especially HoxA9 have 
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been recently shown to generally impact on proliferation rather than differentiation of 

stem cells and progenitor cells in murine BM (Lebert-Ghali et al., 2016). However, the 

development of DCs seems to be not affected in vivo. One explanation might be the rise 

of DC precursors from both lymphoid and myeloid progenitor cells (see also FIGURE 1.4 

in section 1.3.1.1). The issue of differentiation and development in this context will be 

further discussed in detail in section 4.6. 

 

4.3 THE HYPOTHESIS THAT HOXA9 FUNCTIONS AS A CO-FACTOR FOR TLR9 IN  

       MURINE PDCS IS UNLIKELY 

 

The initial aim of this work was to clarify whether HoxA9 functions as a co-factor or is 

basically involved in direct recognition of microbial DNA by TLR9 specifically in mouse 

pDCs. The fact that murine pDCs are uniquely able to sense DNA via TLR9 in a CpG-

motif independent manner and even without containing purine or pyrimidine nucleobases 

(Bauer, 2013; Haas et al., 2008; Wagner, 2008; Yasuda et al., 2006) raised the question, 

if TLR9-dependent DNA recognition in pDCs is provided by additional DNA-binding 

co-factors, which are lacking in other cell types. Unpublished microarray data from the 

former group of Prof. Bauer in the Institute for Medical Microbiology and Hygiene in 

Munich revealed prominent expression levels of hoxa9 mRNA in murine TLR9-

stimulated Flt3L-induced pDCs and thus implicated HoxA9 as a potential candidate for 

pDC-specific TLR9-associated DNA recognition in mice. Furthermore, Philipp Kurbel 

from our research group was able to show an upregulation of hoxa9 mRNA in qPCR 

experiments after TLR9 activation in Flt3L-induced DCs and splenocytes (unpublished 

data). 

 Different ODNs either containing or lacking CpG-motifs were used to investigate 

whether HoxA9-deficient pDCs show different cytokine responses compared to WT 

pDCs upon TLR9 stimulation. The CpG-motif containing ODN 2216 (CpG2216) belongs 

to CpG type A ODNs, which are known to trigger a robust IFN-α response, whereas ODN 

1668 (CpG1668) is part of type B ODNs believed to induce higher quantities of 

proinflammatory cytokines including IL-6 via NFκB and strongly drive DC maturation 

(Hemmi et al., 2003; Verthelyi et al., 2001). However, type A as well as type B ODNs 

activate both signaling cascades via NFκB and IRF7 in pDCs. The ODNs AP-1 (non-

CpGAP-1) and 1720 (non-CpG1720) are free of CpG-motifs and have been shown to 

induce TLR9 activation exclusively in murine pDCs (Haas et al., 2008; Wagner, 2008).  
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 The results of TLR9 stimulation experiments of several settings including primary 

BM cells, ex vivo sorted BM pDCs, primary splenocytes as well as in vitro generated M-

CSF-induced suspension cells and Flt3L-induced cultures showed reproducibly reduced 

IFN-α levels upon stimulation with all TLR9-activating ODNs. Because pDCs are present 

in all of these settings, CpG-motif containing ODNs as well as ODNs that lack CpG-

motifs triggered robust IFN-α secretion in WT cells, whereas KO samples displayed 

significantly reduced IFN-α responses regardless of the DNA sequence. Unfortunately, 

Flt3L-induced DC cultures were only stimulated with CpG1668 and CpG2216 but not 

with ODNs free of CpG-motifs. Future experiments should include TLR9 stimulation 

with non-CpG ODNs in this cell setting. TLR9-dependent activation of the NFκB 

pathway and subsequent upregulation of proinflammatory cytokines represented by IL-6 

in pDC-containing cell settings showed alterations in total BM cells depending on the 

ODN (AP-1, 1720), moderately decreased levels in primary splenocytes and M-CSF-

induced suspension cells, and displayed a larger decrease in Flt3L-induced cultures and 

one experiment of ex vivo sorted pDCs. Higher IFN-α and IL-6 reductions in Flt3L-

induced DC cultures of KO animals compared to other cell settings seem to be mainly 

due to increased amounts of dead cells (HoxA9-/- cultures gained only 25.85 % mean cells 

in the life-gate compared to 34.31 % of WT cultures [75.28 % of the WT value]). 

Conflicting results for IL-6 levels between different cell settings seem to be due to a 

diverse composition of innate immune cell types that express TLR9 and are differently 

competent to respond to activating ODNs. Moreover, TLR9 signaling varies depending 

on the particular cell type. TLR9 activation in murine pDCs drives both signaling 

cascades via IRF7 and NFκB to induced type I IFNs and proinflammatory cytokines, 

respectively, whereas murine cDCs, MΦs (monocytes in the BM), and B cells only 

possess the ability to induce the NFκB pathway (Blasius and Beutler, 2010) (see section 

1.2.3.3 and 1.2.3.4 for details). Regarding primary BM cells, equal IL-6 levels were 

measured constantly in both genotypes upon stimulation with CpG-motif containing 

ODNs, while agonists with a CpG-motif free sequence exhibited clearly reduced IL-6 

amounts in three experiments and increased ones in one experiment. The evidence that 

only murine pDCs are able to sense DNA regardless of the sequence rather indicates 

selective impairment of the NFκB pathway in HoxA9-deficient pDCs. The latter 

suggestion gains support from the fact that one experiment of primary sorted knockout 

pDCs also showed diminished IL-6 responses (very low levels) upon CpG2216-mediated 

TLR9 activation and the remaining two experiments provided no detectable IL-6 in both 
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genotypes while IFN-α was still robustly induced. The observation that TLR9 triggered 

by CpG-motif containing ODNs in total BM cells reproducibly elicited equivalent IL-6 

amounts in the knockout samples compared to wild type, despite significantly reduced 

B220+ B cell percentages and presumably functionally impaired pDCs, leads to the 

question whether IL-6 proportions of these two cell subsets contribute only marginally to 

total IL-6 amounts or other cell types produce higher IL-6 amounts in HoxA9-deficient 

BM cells for compensation. Percentages of cDCs in the BM determined by flow 

cytometry were mostly equal but overall showed a tendency to be slightly more frequent 

among HoxA9-deficient BM cells especially in the BST2 CD11c staining. Sorted primary 

KO cDCs were competent to elicit IL-6 quantities not significantly different to WT ones 

with a slight tendency to be higher in KO samples. Other cells present in the BM that are 

able to produce large amounts of proinflammatory cytokines after triggering TLR9 are 

monocytes. To fully understand TLR9-induced proinflammatory cytokine responses in 

BM cells, B cells and monocytes should be investigated more precisely for instance by 

using FACS analysis of specific surface markers and by stimulating sorted cell fractions 

with several TLR9 ligands. Moreover, the expression of other proinflammatory cytokines 

such as TNF-α or IL-12, co-stimulatory molecules including CD80, CD86, or CD40 and 

MHC-I as well as MHC-II should be examined upon TLR9 activation separately in all 

cell types mentioned above. TLR9 stimulation of total splenocytes generated similar IL-

6 proportions like the BM experiments using CpG1668 and CpG2216. The non-CpG 

ODNs AP-1 and 1720 did not induce detectable levels of IL-6. Because only two 

experiments were done, further attempts need to be carried out and TLR9 activation 

should be examined in detail in sorted cell fractions including DCs, MΦs, and B cells. 

Regarding pDC-free cell preparations: primary sorted BM cDCs, GM-CSF-generated 

cDCs as well as M-CSF-induced MΦs did not show significant alterations in IL-6 

responses when faced with the TLR9 ligands CpG1668 and CpG2216. As expected, non-

CpG1720 did not induce cytokine responses in GM-CSF-induced cDCs and only 

marginally IL-6 amounts in WT M-CSF-induced MΦs in one experiment. The latter 

probably occured due to contamination by pDCs found among M-CSF-generated 

suspension cells. Primary cDCs were not stimulated with non-CpG ODNs due to little 

cell quantities. 

 Given that particularly IFN-α inductions by TLR9 agonists were constantly 

weaker in HoxA9-/- pDC-containing cell settings and sorted primary pDCs, and other cell 

types including primary and in vitro generated cDCs as well as MΦs seem to be not 
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affected by the KO, the hypothesis that HoxA9 is important for TLR9 function selectively 

in pDCs becomes more prevalent. Considering the initial hypothesis that HoxA9 might 

react as a co-factor for TLR9 in pDCs to sense DNA in a sequence independent manner, 

one would expect that TLR9-dependent cytokine inductions with ODNs that are lacking 

CpG-motifs should be completely abolished in HoxA9-deficient pDCs or at least show 

clearly stronger reductions compared to CpG-motif containing ODNs. As this is not the 

case and TLR7-induced cytokine responses (especially IFN-α) upon stimulation with 

RNA40 were similarly impaired in KO samples of several pDC-containing cell settings 

used in this study, it seems more likely that HoxA9 in its known function as a transcription 

factor influences TLR-mediated cytokine responses particularly in pDCs. Further 

possible scenarios include direct influence of the HoxA9 protein on translation of genes 

involved in the TLR machinery (signaling, processing, trafficking, or autophagy) or pDC-

specific genes as well as direct inhibition or activation of the gene products. Involvement 

of HoxA9 in regulating translation of mRNAs through direct binding to the translation 

initiation factor eIF4E was already shown by Topisirovic and colleagues in hematopoietic 

cells (Topisirovic et al., 2005). The translation efficiency of cyclin D1 and ornithine 

decarboxylase (ODC) mRNAs as well as their nuclear transport was enhanced by HoxA9 

(Topisirovic et al., 2005). By forming complexes with the ubiquitin ligase core 

component Roc1-Ddb1-Cul4a with subsequent activation of an E3 ligase resulting in the 

ubiquitination and thus degradation of the geminin protein, the HoxA9 protein positively 

influences cell proliferation in hematopoietic cells because geminin inhibits DNA 

replication (Ohno et al., 2013). These two examples demonstrate that HoxA9 can act on 

different levels beside its well-known function as a transcription factor. Even both 

situations, regulating multiple genes and directly control particular actions at several 

levels, are conceivable as growing evidence shows that Hox genes can adopt multifaceted 

functions in cooperation with different co-factors and cell type dependent transcription 

factors (Huang et al., 2012; Rezsohazy et al., 2015). Nonetheless, the most probable 

explanation lies within altered gene regulation at the level of transcription. Regarding the 

differential expression of multiple genes found by microarray analysis of pooled primary 

BM pDCs, I hypothesize that HoxA9 possesses a substantial role within pDC-specific 

processes in conjunction with TLR7 and 9 and its regulatory circuitry, by acting as 

transcription factor that enhances and silences multiple genes (see section 4.5 for details). 

Key prerequisite for this hypothesis is an upregulation of HoxA9 upon TLR activation in 

pDCs, meaning that HoxA9 is expressed or can be induced in matured differentiated cells 
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as well. To date, the established scientific doctrine teaches that HoxA9 is highly expressed 

in early hematopoietic progenitor cells and its expression is subsequently downregulated 

throughout differentiation resulting in complete inactivity in terminally differentiated 

cells (Alharbi et al., 2013; Collins and Hess, 2016; Rezsohazy et al., 2015). Similar 

processes are reported for Hox proteins in embryogenesis. However, the expression of 

Hox genes along body axes in adult cells has already been reported (Morgan, 2006).  

To prove this hypothesis, further investigations should include expression of the 

HoxA9 protein and mRNA in unstimulated and TLR-stimulated pDCs as well as other 

mature innate immune cells. Furthermore, regulation of genes on several levels and direct 

protein-protein interactions of HoxA9 in TLR-associated networks should be studied in 

the pDC subset in mice and humans. 

 

4.4 HOXA9-/- PDCS ARE SIGNIFICANTLY IMPAIRED IN TLR7 AND 9 FUNCTION 

 

All results of several pDC-containing cell settings used in this study show clearly 

impaired functions of TLR7 as well as TLR9 in terms of secreted IFN-α quantities in the 

KO group. This assertion is reinforced by the fact that statistically significant reductions 

of IFN-α were measured in primary total BM cells and sorted BM pDCs as well as in 

vitro generated Flt3L-induced DC cultures. Other pDC-containing cell settings including 

primary splenocytes and M-CSF-induced suspension cells also exhibited noticeable lower 

levels of IFN-α in HoxA9-/- samples, however, statistical analysis in these settings was 

not carried out due to few experiments. Interestingly, initial experiments using total BM 

cells of older mice (16 – 27 weeks) for testing purposes displayed no significant 

alterations in both IFN-α and IL-6 levels in the KO genotype (data not shown). Better 

compensational mechanisms in older mice might be one explanation of this effect. As for 

immunological experiments generally young mice are demanded, the data of older mice 

were not demonstrated and advanced experiments with older mice were not carried out. 

Nevertheless, further research in this field should take this observation into account. Thus, 

investigations of age-related influences are the logical consequence. 

IL-6 amounts in the same pDC-containing cell settings were inconsistent. As 

already mentioned before several times, proinflammatory cytokines such as IL-6 are 

produced by all innate immune cells and secretion takes place after stimulation of all 

TLRs or other PRRs. In mice, TLR7 and 9 are mainly expressed in DCs, B cells, and 

monocytes/MΦs, all of which secrete IL-6 after activation of these receptors (Blasius and 
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Beutler, 2010). Importantly, the quantities of IL-6 differ between different cell types. 

MΦs and cDCs produce huge amounts of IL-6, whereas pDCs contribute only in small 

fractions to total IL-6 amounts. Primary total BM cells displayed equal IL-6 levels in both 

genotypes after TLR7 as well as TLR9 stimulation. Considering that cDCs and 

monocytes are mainly responsible for total IL-6 quantities and pDCs (and also B cells) 

have only a small impact on total IL-6 production, the lacking reductions in IL-6 levels 

compared to IFN-α are explained. On the contrary, sorted BM pDCs and in vitro 

generated cultures that contain solely or higher frequencies of pDCs exhibited lower IL-

6 quantities in HoxA9-lacking samples, though statistical significance was only achieved 

in TLR7-mediated stimulation by RNA40 of Flt3L-induced DCs. Measurable IL-6 levels 

of ex vivo sorted BM pDCs were only found in one experiment showing reductions in the 

KO group. The remaining experiments revealed no detection of IL-6 at all in both 

genotypes, suggesting very low quantities outside the ELISA standard range. This 

observation might be due to the use of the CpG A ODN 2216, which is known to induce 

predominantly type I IFNs and less proinflammatory cytokines (see sections 1.2.3.2, 

1.2.3.4, and 1.3.1.2 for details). Regarding the only experiment with detected IL-6 levels, 

reductions nearly comparable to those observed for IFN-α upon TRL7 and 9 stimulation 

were measured for sorted KO pDCs, suggesting that HoxA9-mediated gene regulation 

might also be impacting on genes associated with NFκB or AP-1 pathways in this DC 

strain. However, the sorted pDC fraction in this experiment might have also been 

contaminated by cDCs, which of course induce higher amounts of IL-6 upon TLR7 and 

9 activation. The latter scenario would raise the question if the contamination occured in 

equal amounts for both genotypes. The purity samples of all experiments show a certain 

amount of contamination for both genotypes, indeed with a marginally increased purity 

for HoxA9 knockout pDCs (FIGURE 3.6 C). However, the contamination in the particular 

experiment was not higher compared to other experiments. Finally, more cells than 

intended could have been put into the wells mistakenly. 

In general, the reductions observed for IL-6 were constantly lower than those 

found for IFN-α, but still robustly reproducible. Possible reasons for this observation are 

found in the FACS data of the mentioned cell populations. Flt3L-induced DC cultures 

displayed statistically significant higher cDC fractions in the KO group, explaining higher 

IL-6 amounts after TLR7 and 9 activation, which were still noticeable below WT levels. 

Further, IL-6 amounts in the same cultures found after TLR2 and TLR4 stimulation, 

which were solely driven by cDCs, exhibited expectedly higher quantities in HoxA9-/- 
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samples (statistically significant for TLR4). Thus, taken together, IL-6 responses in cell 

settings containing solely or high frequencies of pDCs, were reproducibly weaker in the 

KO group, but did not reach results obtained for IFN-α. The fact that IL-6 is produced by 

all innate immune cells upon TLR7 and 9 activation, in contrast to IFN-α, complicates 

interpretation of the data. However, the generated data of different cell settings ex vivo 

and in vitro together clearly point towards disrupted functions of TLR7 as well as TLR9 

particularly in HoxA9 KO pDCs. This raises the question, why measured cytokine levels, 

especially IFN-α, in HoxA9 knockout cell settings are not completely abolished. Given 

that the formulated hypothesis from section 4.1 is true, that HoxA9 is upregulated in pDCs 

after TLR7 and 9 activation and functions as transcription factor in the TLR regulating 

machinery in this cell type, HoxA9 probably acts in concert with different co-factors and 

collaborators/general factors via binding to cis-regulatory elements and subsequently 

silences or enhances the transcription of respective genes. Direct binding to promotor 

regions of genes is not usually the case according to previous observations. Thus, HoxA9 

seems to rather modulate instead of dictate the TLR-mediated immune response in pDCs, 

probably in cooperation with multiple other factors, which would explain reduced but not 

completely abolished cytokine levels. Another possible explanation is due to the fact that 

adjacent Hox genes or co-factors could replace HoxA9. For instance, Meis1, the most 

important co-factor for HoxA9, was shown to co-bind at multiple (hundreds) binding sites 

together with HoxA9 (Huang et al., 2012), is a homeobox-containing transcription factor 

itself, and was upregulated 2-fold in the microarray gene expression profile of HoxA9-/- 

pDCs. Thus, Meis1 could be “stepped into the breach” to replace, or at least partly replace, 

HoxA9 in pDCs, resulting in reduced but not completely abrogated cytokine responses. 

One emphasis in future research in this field should deal with the complex mechanisms 

how HoxA9 and its multiple co-factors and collaborators act together particularly in TLR-

activated pDCs. Very interestingly, Hox proteins have been shown to recruit different 

other transcription factors depending on the cell type and context (Collins et al., 2014; 

Collins and Hess, 2016; Huang et al., 2012; Ladam and Sagerström, 2013; Rezsohazy et 

al., 2015). Transcription factors associated to HoxA9 function in pDCs should be 

promising targets for further research. 

 To confirm the postulated functional impairment of TLR7/9 biology in 

pDCs, I suggest detailed examination of HoxA9-/- pDCs in terms of expression of co-

stimulatory proteins such as CD40, CD80, and CD86 as well as MHC-I/MHC-II 

molecules upon TLR stimulation. Further, additional functional analyses of pDCs 
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including antigen presentation, priming and cross-priming of T cells, NK cell activation, 

immune cell recruitment via chemokines, driven plasma cell responses, and induction of 

immune regulation should be carried out under HoxA9-/- conditions. Experiments using 

viruses like murine cytomegalovirus (MCMV), lymphocytic choriomeningitis virus 

(LCMV), or herpes simplex typ 1 (HSV1) would clarify whether HoxA9-/- pDCs are still 

capable of fighting acute viral infections. 

 

4.5 TLR-MEDIATED CYTOKINE RESPONSES OF CDCS AND MΦS ARE NOT AFFECTED 

        BY THE HOXA9 KNOCKOUT 

 

Besides pDCs, the impact of the HoxA9 KO on TLR-mediated cytokine responses was 

also checked in cDCs and MΦs. Overall, two significant differences were observed. 

Firstly, TLR2 stimulation with Pam-3-Cys of total BM cells induced statistically 

significant less IL-6 in the HoxA9-/- group. Innate immune cells present in the BM that 

express TLR2 and secrete IL-6 are mainly monocytes and cDC progenitors. IL-6 

responses of TLR4, 7, and 9 reproducibly displayed no alteration in BM KO samples. 

Moreover, TLR2 responses in all other cell settings were stable without differing between 

the two genotypes. In the first place, this observation seems implausible. However, a 

lately published study indicates that murine pDCs also express TLR2 (Dasgupta et al., 

2014). Dasgupta and colleagues demonstrated that bacterial polysaccharide A (PSA) from 

Bacteroides fragilis induced production of MHC-II, CD86, and ICOSL via TLR2 in 

mouse pDCs and prompted IL-10 sectretion by CD4+ T cells (Dasgupta et al., 2014). This 

immunomodulatory effect caused by the commensal Bacteroides fragilis triggered 

protection against colitis (Swiecki and Colonna, 2015). To date, the production of 

proinflammatory cytokines via TLR2 by pDCs has not been reported. Nevertheless, the 

reduced IL-6 amounts in total BM cells following TLR2 stimulation might have also been 

achieved accidentally. Defining a statistical significance level of p < 0.05 implies an 

average incorrect result every 20th calculation.  

The second alteration was found for Flt3L-induced DC cultures in vitro. IL-6 

levels upon TLR4 stimulation were significantly increased for HoxA9-/- cultures 

compared to WT. TLR4 is not expressed by pDCs, thus IL-6 responses were solely driven 

by cDCs. Also TLR2-mediated IL-6 liberation showed a small increase in the knockout 

group, however, not statistically significant. Considering higher cDC amounts in the 

knockout cultures, increased Pam-3-Cys- and LPS-induced IL-6 levels rather indicate 
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normal functions of TLR2 and 4, respectively, in cDCs. Comparing these results to the 

other experiments, the assumption that pDCs rather than both cell types in Flt3L-induced 

DC cultures are dysfunctional seems to be likely. 

 TLR2, 3, 4, 7, and 9 stimulation experiments of in vitro generated GM-CSF-

induced cDCs and M-CSF-induced MΦs did not exhibit any significant differences in 

IFN-α as well as IL-6 quantities between both genotypes. Interestingly, TLR3-mediated 

cytokine production via Poly I:C stimulation was measured in both cell settings, whereas 

primary BM cells, sorted cDCs, and Flt3L-induced DCs did not show any cytokines at all 

upon TLR3 activation. This observation suggests lacking expression of TLR3 in primary 

BM cells as wells as Flt3L-induced DCs. However, in the beginning, I used Poly I:C from 

Invitrogen™, whereas later experiments including those with in vitro generated GM-

CSF-induced cDCs and M-CSF-induced MΦs were carried out with Poly I:C from GE 

healthcare™. Thus, Poly I:C from different manufacturers might have made the 

difference. 

 

4.6 HOXA9 IS IMPACTING ON DC DEVELOPMENT IN VITRO BUT NOT IN VIVO 

 

As pDCs are the only cell type able to produce large amounts of type I IFNs upon 

activation of TLR7 and 9, HoxA9 either contributes directly or indirectly (via gene 

regulation) to mechanistic processes of TLR-mediated functions in pDCs (see section 4.4) 

or precursors in the BM are not able to fully differentiate and thus lack maturity. The 

latter aspect is supported by the fact that HoxA9 is generally known to be a crucial player 

in normal hematopoiesis, responsible for maintenance of the stem cell status in HSCs 

(Alharbi et al., 2013; Collins and Hess, 2016; Lebert-Ghali et al., 2016). Furthermore, 

HoxA9 was shown to be the most expressed Hox gene in stem cells and early progenitors 

(Alharbi et al., 2013; Pineault et al., 2002). Interestingly, a lately published study shows 

that the whole HoxA gene cluster, including HoxA9 as its most prominent member, is 

predominantly involved in proliferation and has only subtle influence on differentiation 

(Lebert-Ghali et al., 2016). As already mentioned above, other findings implicated 

HoxA9 as a transcriptional regulator of Flt3 in early B cell progenitors (Gwin et al., 2010). 

Slightly reduced numbers of total BM cells and decreased frequencies of B220+ B cells 

in HoxA9-/- mice (statistically significant in the B220/SiglecH staining) confirm similar 

results of previous studies (Gwin et al., 2013a; Gwin et al., 2010; Gwin et al., 2013b; 

Lawrence et al., 2005; Lawrence et al., 1997). In line with these observations, Lawrence 
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and colleagues reported that HoxA9 knockout mice also display a slight hypocellularity 

in the spleen and thymus as well as a mild pancytopenia (Lawrence et al., 1997). Total 

splenocytes of only 2 mice per genotype in my study showed no significant difference 

(HoxA9-/- [n = 2] 8.2 x 106 versus WT [n = 2] 7.2 x 106) and a slightly higher average cell 

amount for the KO group.  

 The cytokine receptor Flt3 and its ligand Flt3L are essential for DC development 

(Schmid et al., 2010; Watowich and Liu, 2010), as noted several times before. Huang et 

al. demonstrated hundreds of DNA binding sites of HoxA9 in hematopoietic cells, which 

were mostly identified as enhancer regions and only a minority consisted of direct 

promotor binding sites (Huang et al., 2012). Among them, again Flt3 and multiple other 

genes involved in hematopoiesis, leukemogenesis, and inflammation were identified 

(Huang et al., 2012). Flow cytometry analyses of the BM and spleen of HoxA9-deficient 

animals showed no significant alterations in quantities of matured pDCs and cDCs. 

Normal expression of the pDC-specific surface markers B220, CD11c, Ly6C, BST2, Flt3, 

and SiglecH was observed among HoxA9-/- BM cells. Same results were found for 

CD11c+ cDCs/Pre-cDCs. Previously published data by Gwin et al. also showed no impact 

on DC subsets in the BM of HoxA9-/- mice using the markers B220 and CD11c (Gwin et 

al., 2013a). Of note, distinct precursors of NK cells called pre-mNK cells, which have 

initially been thought to reflect a hybrid cell subset between pDCs and NK cells called 

interferon-producing killer dendritic cells (IKDCs) (Blasius et al., 2007; Caminschi et al., 

2007; Guimont-Desrochers et al., 2012), also express B220 and CD11c on their plasma 

membrane. Altered differentiation and development of NK cells in HoxA9 deficiency 

could therefore bias these results. One study states that NK cell development is not 

different in HoxA9 knockout conditions (Gwin et al., 2013a), however, the authors did 

not focus on this particular cell type and thus further precise investigations need to be 

done to rule out this objection. Nonetheless, the results of my study together with previous 

data indicate a normal differentiation of DCs in HoxA9 knockout mice in vivo. According 

to this, either HoxA9 is not regulating Flt3 in direct precursors of DCs (e.g. CDPs, MDPs, 

CLPs, and Pre-DCs) in contrast to B cell progenitors or compensational mechanism, e.g. 

replacement of HoxA9 by adjacent HoxA genes or co-factors such as Meis1, take place 

in vivo. Regarding the first assumption, CDPs, the direct precursors of DCs, have been 

shown to be normal in HoxA9 knockout mice (Gwin et al., 2013a) and do not express 

HoxA9 mRNA according to data of the immunological genome project (Heng et al., 

2008). Interestingly, the latter assumption demonstrates expression of HoxA9 in MDPs, 
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CLPs, and almost all prior stem cell and precursor subsets. Looking at the displacement 

theory, the co-factor Meis1 has been shown to partly substitute HoxA9 function and 

induce expression of Flt3 in myeloid leukemogenesis models (Wang et al., 2006). 

Overall, both explanations are likely and might also occur simultaneously. 

 Reduced cytokine production of BM pDCs is therefore probably not due to 

incomplete differentiation. However, several studies indicate a complex diversity of pDC 

subsets within the BM. The pDC-specific surface markers CCR9, SCA1, Ly49Q, and 

CD9 were found to discriminate certain pDC subsets in the BM differing in degree of 

maturation as well as ability to produce type I IFNs and proinflammatory cytokines 

(Swiecki and Colonna, 2015). For instance, CCR9+ subsets represent mature pDCs, 

whereas CCR9- populations reflect pDC-like common DC progenitors (CDPs) (Schlitzer 

et al., 2011). Remarkably, pDC-like CDPs induce stronger type I IFN and 

proinflammatory cytokine responses that CCR9+ mature pDCs (Schlitzer et al., 2011). 

The latter can be further subdivided into SCA1low and SCA1high populations. The first of 

which is able to produce higher amounts of IFN-α and can give rise to the SCA1high subset 

after being activated by TLR-responses or IFN-α itself (Niederquell et al., 2013; Swiecki 

and Colonna, 2015). Ly49Q- pDCs are less capable in eliciting innate immune responses 

to RNA viruses than Ly49Q+ pDCs (Kamogawa-Schifter et al., 2005). Finally, the CD9+ 

pDC subset produces large amounts of type I IFNs and possesses a strong ability to prime 

T cells compared to CD9- pDCs (Björck et al., 2011). Furthermore, O’Keeffe et al. 

identified a “nonplasmacytoid” DC subset with high IFN-α producing capacity upon 

TLR9 activation in the murine BM (O'Keeffe et al., 2012). Consequently, a detailed 

screening of different pDC subsets in the BM of HoxA9-/- mice is needed to solve whether 

HoxA9 influences the function of certain subsets while others do not need HoxA9 

regulation.  

Surprisingly, Flt3L-induced DC cultures generated in vitro from HoxA9 knockout 

BM cells develop clearly decreased numbers of total cells that were differentiated after 8 

days in culture, although not statistically significant. Furthermore, the frequencies of 

differentiated pDCs were nearly equal in both genotypes with a littles tendency to be 

decreased in the KO group, whereas the cDC fractions were significantly increased in the 

KO cultures. In addition, the percentage of viable cells was reproducibly lower in HoxA9 

KO cultures (~ 75 % of WT), which explains stronger reductions of IFN-α and IL-6 levels 

in this cell setting compared to primary BM cells. FACS data exhibited a roughly equal 

expression prolife regarding pDC-specific surface markers with a little tendency of 
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reduced SiglecH expression in KO pDCs. Prominently stronger CD11b expression was 

present in both pDCs and cDCs. In line with this, FACS data of suspension cells in M-

CSF-induced cultures exhibited reduced frequencies of pDCs as well as cDCs. These 

observations clearly indicate an involvement of HoxA9 in developmental processes of 

DCs in vitro. Impaired proliferation capacity seems to be present in terms of reduced cell 

counts in in vitro cultures, confirming previously reported findings that HoxA9 is 

predominantly influencing proliferation rather than differentiation (Lebert-Ghali et al., 

2016). Nonetheless, increased cDC fractions and higher CD11b expression in Flt3L-

induced DC cultures are pointing towards a shift to the cDC subset in KO cultures, 

suggesting participation of HoxA9 in maintaining the pDC fate in vitro. The fact that the 

influence on developmental processes was not observed in primary cells again indicates 

compensational mechanisms in vivo.  

Besides the known growth factors in DC development Flt3L, GM-CSF, and M-

CSF, further factors seem to be involved in this process since KO animals lacking several 

growth factors are still able to generate DCs (Watowich and Liu, 2010). Interestingly, 

IFN-α and -β have been shown to be involved in development of DCs by enhancing 

differentiation into pDCs and inhibiting the cDC subset (Li et al., 2011; Watowich and 

Liu, 2010). This circumstance is believed to be utilized as an immune-evading mechanism 

by viruses (e.g measles virus (MV) and lymphocytic choriomeningitis virus (LCMV)) 

(Hahm et al., 2005; Watowich and Liu, 2010). Both, in vitro GM-CSF-induced 

inflammatory cDCs and Flt3L-induced cDCs as well as in vivo Flt3L-induced splenic 

cDC generation were inhibited by viral infection or by adding rIFN-β to in vitro cultures 

(Hahm et al., 2005). On the contrary, differentiation of the pDC subset seems to be rather 

promoted by type I IFNs (Li et al., 2011; Watowich and Liu, 2010). Moreover, IFN-α has 

been linked to hematopoietic processes in the past (Essers et al., 2009). Therefore, 

reductions of type I IFN levels in HoxA9-/- Flt3L-induced DC cultures could be 

responsible for the shifted differentiation towards the cDC subset and reduced total 

numbers of differentiated DCs. 

 

4.7 THE GENE EXPRESSION PROFILE OF HOXA9-/- PDCS DISPLAYS MULTIPLE 

       DIFFERENTIALLY EXPRESSED GENES 

 

Multiple genes were significantly either up- or downregulated in sorted HoxA9-/- BM 

pDCs compared to WT. Interestingly, among downregulated genes, 21 small nucleolar 
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RNAs (snoRNAs) of both the box C/D and box H/ACA type, 4 small nuclear RNAs 

(snRNAs), and 2 microRNAs (miRNAs) can be found. These non-coding RNAs do not 

serve as protein-coding genes. Instead, their functions include important roles in post-

transcriptional gene regulation (e.g. splicing) and translational mechanisms (ribosomal 

biogenesis through chemical modification of rRNAs) (Boivin et al., 2017). However, 

especially snoRNAs were shown to be involved in other functions in recent years such as 

regulating transcript stability, chromatin architecture, and serving as mediators in 

metabolic processes as well as stress responses (Boivin et al., 2017). The role of HoxA9 

in this instance is very unclear. Many non-coding RNAs are “nested” genes, which are 

located within protein-coding “host” genes and their transcription as well as function 

depend on the particular “host” gene, while others have their own promotor (Boivin et 

al., 2017). If and how HoxA9 is influencing the transcription of non-coding RNAs in 

pDCs or other cell types need to be examined in further research. It is noteworthy that 

more than one third of the downregulated genes encode non-coding RNAs, while none of 

these were found among the upregulated genes. 

Regarding the downregulated protein-coding genes, some interesting candidates 

need to be mentioned. The surface marker CD8 with its α and β subunit is expressed on 

some mouse pDC subsets (Swiecki and Colonna, 2015). The microarray data showed a 

downregulation of the CD8α subunit mRNA in KO pDCs of nearly one third compared 

to WT. Lombardi and colleagues reported that the expression of CD8α alone or in 

combination with the β subunit was found in tolerogenic pDCs that induce Foxp3+ 

regulatory T cells, whereas the lack of both subunits was restricted to cytokine secreting 

immunogenic pDCs (Lombardi et al., 2012). In contrast, Brown et al. observed an 

upregulation of both CD8 subunits in pDCs after TLR7 and 9 stimulation with R848 or 

CpG1668, respectively, and no stable expression in different pDC subsets. In line with 

this observation, O’Keeffe et al. reported about CD8 upregulation upon TLR stimulation 

in pDCs in earlier studies (O'Keeffe et al., 2005; O'Keeffe et al., 2002). The pDCs used 

for microarray analysis in my study were freshly isolated and not stimulated with TLR 

agonists prior to RNA purification. Nevertheless, it needs to be clarified whether HoxA9 

is involved in the upregulation of CD8 upon TLR activation in pDCs. CD209d, also 

known as DC-SIGN, is another interesting downregulated gene. It is a PRR and part of 

the c-type lectin family expressed in MΦs and DCs. According to metadata of the 

ImmGen consortium, some other downregulated genes in the knockout pDCs show a 

specific high expression level in different murine pDC subsets, suggesting an important 
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role in this cell type. These genes include Scrn1, Rpgrip1, and Slc44a. Their functions in 

pDCs have not been described so far. 

Besides Meis1, the most important co-factor of HoxA9 (already mentioned in 

section 4.4), two other genes among the upregulated genes in the microarray might be of 

interest. Ctse and Eya1 are both highly expressed in pDCs, thus future examinations 

should be targeting these genes.  

However, the data found in the microarray experiment does not directly explain 

the reduction of IFN-α levels after TLR stimulation in KO pDCs. Assuming that HoxA9 

is not expressed in mature pDCs and is upregulated upon TLR stimulation, this 

experiment needs to be done with TLR activated pDCs. TLR stimulation should be done 

using TLR7 and 9 agonists or even naturally infectious agents if possible (e.g. viruses). 

Furthermore, this experiment was performed only once due to very rare cell material and 

limited availability of young HoxA9-/- mice. To achieve better validity, at least three 

independently performed experiments are needed to further confirm the results and prove 

reproducibility. In addition, statistical analysis can be realized with three independently 

performed experiments to verify significance of the data. The discovery of a complex 

heterogeneity of pDC subsets within the BM the last couple of years (see the previous 

section 4.4 for details) further requires their discrimination by additional FACS markers 

to investigate a potential impact of HoxA9 on particular subgroups of pDCs. The 

transcriptome of peripheral pDCs found in the spleen or lymph nodes should be 

additionally investigated as stimulation experiments of total splenocytes revealed 

impaired IFN-α responses as well. Finally, research using human pDCs, e.g. isolated from 

PBMCs, needs to be carried out to prove the impact of HoxA9 on this issue in the human 

immune system. One approach could be the use of siRNA or small molecules that inhibit 

HoxA9 and its co-factors to study this system in human pDCs. By doing so, prominent 

downstream targets of HoxA9 in pDCs could be identified. Their expression should be 

confirmed with other methods e.g. qPCR and on the protein level using western plots or 

ELISA. In times of strong decline in sequencing costs, next-generation sequencing (NGS) 

should be used in the future if possible. Overall, data found in gene expression profiles 

need to be confirmed for single genes with qPCR and on the protein level. 
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5. SUMMARY AND FUTURE PROSPECTS 

 

 
Experiments of ex vivo isolated primary BM cells, splenocytes, and sorted BM pDCs as 

well as in vitro generated Flt3L- and M-CSF-induced pDCs reproducibly showed 

dysfunctional IFN-α responses upon TLR7 and 9 stimulation throughout all cell strains 

derived from HoxA9-/- mice. These data collectively implicate HoxA9 as an important 

mediator in TLR-associated functions particularly in pDCs. Reduced IL-6 levels in cell 

settings with high concentrations of pDCs point towards an impact of HoxA9 on both 

signaling pathways via NFκB and IRF7 leading to production of proinflammatory 

cytokines and type I IFNs, respectively. FACS data of the BM and spleen demonstrated 

no significant influence on frequencies and maturity of pDCs in vivo using standard 

surface expression markers. However, significantly reduced total cell counts and viable 

cells as well as shifted CD11b expression in Flt3L-induced DC cultures strongly suggest 

involvement of HoxA9 in DC development in vitro, probably in part via transcriptional 

regulation of the cytokine receptor Flt3. The fact that expression of the latter was only 

slightly decreased in FACS stainings as well as the microarray expression profil leads to 

the assumption that other genes might be involved and that compensation takes place in 

vivo. According to recent findings (Lebert-Ghali et al., 2016), it seems likely that HoxA9 

largely regulates genes involved in proliferation and has only little influence on 

differentiation of pDCs, which would explain reduced cell amounts in HoxA9-/- cultures. 

Other innate immune cells investigated in this study including cDCs and MΦs neither 

show functional impairment of TLR-mediated immune responses nor developmental 

alterations.  

Hox genes are evolutionary highly conserved genes and represent central players 

in different very important tasks. HoxA9 has been shown to participate in embryogenesis 

and hematopoiesis and plays a central role in leukemogenesis (Ramos-Mejía et al., 2014). 

My results implicate a substantial role for HoxA9 in TLR function particularly in pDCs 

and participation in DC development in vitro, which is dispensable in vivo. The 

upregulated co-factor Meis1 in the knockout pDCs might explain one compensational 

mechanism. The data generated in this study provides evidence for the involvement of 

Hox genes in differentiated hematopoietic cells and not only in HSCs and precursors cells, 

which has not been reported so far to the best of my knowledge. Because HoxA9 was 

shown to cooperate with different co-factors, general factors, and cell-type dependent 

transcription factors, future research should investigate the whole machinery associated 
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with HoxA9 in pDCs. To date, very less in known about the longevity of pDCs. However, 

it is believed that these cells can last for many months, or even years, in peripheral tissues 

in mice (Reizis et al., 2011). For HoxA9 and other Hox genes promote maintaining the 

stem cell status of HSCs, it is supposable that these genes might be involved in keeping 

some sort of self-renewal of peripheral pDCs when activated by TLRs, which could 

provide the longevity of this DC subset. Moreover, Hox genes are known to influence the 

spatiotemporal fate of embryonic tissues. Is it possible that certain expression patterns of 

Hox genes determine the spatiotemporal fate of pDCs when activated? 

The fact that pDCs are not simply IFN producing cells but play crucial roles in 

initiating different innate immune responses, providing adaptive immune responses, and 

inducing immune regulation, emphasizes the importance of these cells in physiologic 

immune mechanisms despite the rarity compared to other cells of the immune system. 

Recent years revealed the involvement of pDCs in several pathologic conditions such as 

infections, autoimmune diseases, and different types of cancer. Growing evidence in this 

field will unveil further knowledge that is needed to understand physiology as well as 

disease provided by these cells. Novel therapies or diagnostics may proceed from future 

research. 
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