Publikationsserver der Universitätsbibliothek Marburg

Titel:Trifluoperazin schützt humane dopaminerge Zellen durch Aktivierung der Autophagie vor Wildtyp-Alpha-Synuklein-induzierter Toxizität
Autor:Goebel, Joachim
Weitere Beteiligte: Höglinger, Günter (Professor Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0274
DOI: https://doi.org/10.17192/z2018.0274
URN: urn:nbn:de:hebis:04-z2018-02745
DDC:610 Medizin
Titel (trans.):Trifluoperazine rescues human dopaminergic cells by activation of autophagy from wildtype alpha-synuclein induced toxicity
Publikationsdatum:2018-06-11
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Autophagie, Trifluoperazin, Parkinson, Alpha-Synuklein, LUHMES,

Zusammenfassung:
Die Parkinson-Erkrankung ist die zweithäufigste neurodegenerative Erkrankung nach der Alzheimer-Demenz. In industrialisierten Ländern liegt die Prävalenz der Erkrankung bei knapp zwei Prozent für alle Personen über 65 Jahren. Klinisch ist die Erkrankung charakterisiert durch Bradykinese, Rigor, Ruhetremor und posturale Instabilität. Diese motorischen Symptome sind hauptsächlich durch einen Verlust dopaminerger Neurone in der Substantia nigra pars compacta verursacht. Das histopathologische Kennzeichen der Parkinson-Krankheit ist die Präsenz von intraneuronalen Einschlüssen, sogenannten Lewy-Körperchen, in überlebenden Neuronen der Substantia nigra pars compacta. Die Hauptkomponente der Lewy-Körperchen ist Alpha-Synuklein, ein Protein bestehend aus 140 Aminosäuren. Sinnverändernde Mutationen, Duplikationen und Triplikationen des Alpha-Synuklein-Gens führen zu seltenen genetischen Parkinson-Syndromen. Zudem haben genomweite Assoziationsstudien eine Vielzahl an Risikogenvarianten des Alpha-Synuklein-Gens als Risikofaktor für die Parkinson-Krankheit identifiziert. Aus diesen Gründen ist es heutzutage unbestritten, dass Alpha-Synuklein eine zentrale Rolle in der Entstehung der Parkinson-Krankheit spielt; allerdings ist weiterhin unklar, welche Alpha-Synuklein-Form die Neurodegeneration vermittelt. Bislang lindert die pharmakologische Therapie lediglich die Symptome der Parkinson-Krankheit und es existiert keine Therapie, die die Progression der Erkrankung nachweisbar verzögert oder gar aufhält. In unserer Forschungsgruppe wurde ein neues Zellkulturmodell der Parkinson-Krankheit entwickelt, in welchem die Überexpression des Alpha-Synuklein-Wildtyps durch adenovirale Transduktion zum Zelltod von humanen, postmitotischen, dopaminergen Neuronen (LUHMES-Zellen) führt. Ein Prozess der zellulären Homöostase um pathologische intrazelluläre Einschlüsse abzubauen, ist die Makroautophagie. Ziel dieser Dissertation war es deswegen zu untersuchen, ob Trifluoperazin, ein bekannter Aktivator der Makroautophagie in Neuronen, dopaminerge Zellen vor Wildtyp-Alpha-Synuklein-induzierter Toxizität schützen kann. Zunächst wurde durch Western-Blot-Analysen gezeigt, dass Trifluoperazin Makroautophagie auch in den hier verwendeten LUHMES-Neuronen aktiviert. Anschließend konnte nachgewiesen werden, dass diese Substanz tatsächlich die Zellen dosisabhängig vor Alpha-Synuklein-vermitteltem Zelltod schützt. Die dazu verwendeten Auswertungsmethoden umfassten die Messung der LDH-Konzentration im Zellkulturmedium sowie das Auszählen vitaler Zellen und apoptotischer Zellen nach der Zellfixierung und Färbung mittels DAPI. Die Überexpression von Wildtyp-Alpha-Synuklein führte zusätzlich zur Toxizität auch zum Erscheinen einer 37-kDa-Alpha-Synuklein-Western-Blot-Bande, welche in nicht-transduzierten Zellen nicht nachweisbar war. Interessanterweise konnte die Intensität dieser 37-kDa-Alpha-Synuklein-Bande durch Behandlung mit Trifluoperazin spezifisch und dosisabhängig reduziert werden, ohne die restlichen Alpha-Synuklein-Banden signifikant zu verändern. Chloroquin, ein Inhibitor der Autophagie, verstärkte passend dazu sowohl die Alpha-Synuklein-induzierte Toxizität als auch die 37-kDa-Alpha-Synuklein-Bande. Es ergab sich eine signifikante positive Korrelation zwischen der Toxizität und der Stärke dieser Western-Blot-Bande. Diese Daten legen den Schluss nahe, dass diese oligomerische Alpha-Synuklein-Bande eine Schlüsselrolle in der Alpha-Synuklein-vermittelten Toxizität zumindest innerhalb dieses Zellkulturmodells der Parkinson-Krankheit einnimmt. Der eigene Einfluss von Alpha-Synuklein auf die Makroautophagie (aktivierend oder hemmend) ist nach wie vor nicht vollständig geklärt. Die Ergebnisse der in dieser Dissertation durchgeführten Experimente lassen die Interpretation zu, dass eine Überexpression des Alpha-Synuklein-Wildtyps die Makroautophagie hemmt. Die Kernaussage dieser Doktorarbeit ist, dass die Aktivierung der Autophagie humane, postmitotische, dopaminerge Zellen vor Wildtyp-Alpha-Synuklein-induzierter Toxizität durch Abbau einer spezifischen Alpha-Synuklein-Form schützt. Diese Ergebnisse unterstützen die These, dass Autophagie-Aktivierung einen möglichen Ansatz in der Therapie der Parkinson-Krankheit darstellt. Zudem wurde eine 37-kDa-Alpha-Synuklein-Bande mittels Western Blot identifiziert, welche womöglich auch in der Pathogenese der Parkinson-Krankheit eine Rolle spielt.

Bibliographie / References

  1. Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D., and Stefanis, L. (2009). Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PloS One 4, e5515.
  2. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U. S. A. 97, 571-576.
  3. Hughes, A.J., Daniel, S.E., Kilford, L., and Lees, A.J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181-184.
  4. Stocchi, F., and Torti, M. (2016). Adjuvant therapies for Parkinson’s disease: critical evaluation of safinamide. Drug Des. Devel. Ther. 609.
  5. Rascol, O., Brooks, D.J., Korczyn, A.D., De Deyn, P.P., Clarke, C.E., and Lang, A.E. (2000). A five- year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. 056 Study Group. N. Engl. J. Med. 342, 1484-1491.
  6. Fearnley, J.M., and Lees, A.J. (1991). Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain J. Neurol. 114 ( Pt 5), 2283-2301.
  7. Hindle, J.V. (2010). Ageing, neurodegeneration and Parkinson's disease. Age Ageing 39, 156- 161.
  8. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci. Off. J. Soc. Neurosci. 27, 3338-3346.
  9. Ravikumar, B., Duden, R., and Rubinsztein, D.C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107-1117.
  10. Koo, H.-J., Choi, M.Y., and Im, H. (2009). Aggregation-defective alpha-synuclein mutants inhibit the fibrillation of Parkinson's disease-linked alpha-synuclein variants. Biochem. Biophys. Res. Commun. 386, 165-169.
  11. Taschenberger, G., Garrido, M., Tereshchenko, Y., Bähr, M., Zweckstetter, M., and Kügler, S. (2012). Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol. (Berl.) 123, 671-683.
  12. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem. 279, 4625-4631.
  13. McGeer, P.L., McGeer, E.G., and Suzuki, J.S. (1977). Aging and extrapyramidal function. Arch. Neurol. 34, 33-35.
  14. Giasson, B.I., Murray, I.V., Trojanowski, J.Q., and Lee, V.M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem. 276, 2380-2386.
  15. Krüger, R., Kuhn, W., Müller, T., Woitalla, D., Graeber, M., Kösel, S., Przuntek, H., Epplen, J.T., Schöls, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106-108.
  16. Peng, X., Peng, X.M., Tehranian, R., Dietrich, P., Stefanis, L., and Perez, R.G. (2005). Alpha- synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J. Cell Sci. 118, 3523-3530.
  17. Klucken, J., Poehler, A.-M., Ebrahimi-Fakhari, D., Schneider, J., Nuber, S., Rockenstein, E., Schlötzer-Schrehardt, U., Hyman, B.T., McLean, P.J., Masliah, E., et al. (2012). Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. Autophagy 8, 754-766.
  18. Ancolio, K., Alves da Costa, C., Uéda, K., and Checler, F. (2000). Alpha-synuclein and the Parkinson's disease-related mutant Ala53Thr-alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci. Lett. 285, 79-82.
  19. Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., Liu, K., Xu, K., Strathearn, K.E., Liu, F., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324-328.
  20. Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O.M., and Südhof, T.C. (2005). Alpha- synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383-396.
  21. Miller, D.W., Hague, S.M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M.R., and Singleton, A.B. (2004). Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62, 1835-1838.
  22. Tehranian, R., Montoya, S.E., Van Laar, A.D., Hastings, T.G., and Perez, R.G. (2006). Alpha- synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J. Neurochem. 99, 1188-1196.
  23. Alpha-synuclein in Lewy bodies. Nature 388, 839-840.
  24. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N., and Rubinsztein, D.C. (2003). Alpha- Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009- 25013.
  25. Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M.S., Shen, J., Takio, K., and Iwatsubo, T. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160-164.
  26. Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp. Neurol. 199, 249-256.
  27. Chartier-Harlin, M.-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167-1169.
  28. Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841.
  29. Tofaris, G.K., Layfield, R., and Spillantini, M.G. (2001). alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett. 509, 22-26.
  30. Sharon, R., Goldberg, M.S., Bar-Josef, I., Betensky, R.A., Shen, J., and Selkoe, D.J. (2001). alpha- Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 98, 9110-9115.
  31. Bloch, A., Probst, A., Bissig, H., Adams, H., and Tolnay, M. (2006). Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284-295.
  32. Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., Sherman, H., Yu, I., Shah, B., Weir, D., Thompson, C., Szu-Tu, C., Trinh, J., et al. (2013). Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 28, 811-813.
  33. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663- 1667.
  34. Zhang, N.-Y., Tang, Z., and Liu, C.-W. (2008). alpha-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. J. Biol. Chem. 283, 20288-20298.
  35. Recasens, A., and Dehay, B. (2014). Alpha-synuclein spreading in Parkinson's disease. Front. Neuroanat. 8, 159.
  36. Beyer, K. (2006). Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol. (Berl.) 112, 237-251.
  37. Kingsbury, A.E., Daniel, S.E., Sangha, H., Eisen, S., Lees, A.J., and Foster, O.J.F. (2004). Alteration in alpha-synuclein mRNA expression in Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 19, 162-170.
  38. Chu, Y., Dodiya, H., Aebischer, P., Olanow, C.W., and Kordower, J.H. (2009). Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385-398.
  39. McNaught, K.S.P., Belizaire, R., Isacson, O., Jenner, P., and Olanow, C.W. (2003). Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38-46.
  40. Hernán, M.A., Takkouche, B., Caamaño-Isorna, F., and Gestal-Otero, J.J. (2002). A meta- analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann. Neurol. 52, 276-284.
  41. Ahn, K.J., Paik, S.R., Chung, K.C., and Kim, J. (2006). Amino acid sequence motifs and mechanistic features of the membrane translocation of alpha-synuclein. J. Neurochem. 97, 265-279.
  42. Foix, C., and Nicolesco, J. (1925). Anatomie cérébrale. Les noyaux gris centraux et la région Mésencéphalo-sous-optique. Suivi d'un appendice sur l'anatomie pathologique de la maladie de Parkinson. Paris: Masson et Cie 508-39.
  43. Korzeniewski, C., and Callewaert, D.M. (1983). An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64, 313-320.
  44. Parkinson, J. (1817). An essay on the shaking palsy. Lond. Sherwood Neely Jones.
  45. Pasanen, P., Myllykangas, L., Siitonen, M., Raunio, A., Kaakkola, S., Lyytinen, J., Tienari, P.J., Pöyhönen, M., and Paetau, A. (2014). A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology. Neurobiol. Aging 35, 2180.e1-2180.e5.
  46. Ferris, C.F., Marella, M., Smerkers, B., Barchet, T.M., Gershman, B., Matsuno-Yagi, A., and Yagi, T. (2013). A phenotypic model recapitulating the neuropathology of Parkinson's disease. Brain Behav. 3, 351-366.
  47. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
  48. Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C., and Agid, Y. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25-31.
  49. Parkkinen, L., Pirttilä, T., and Alafuzoff, I. (2008). Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. (Berl.) 115, 399- 407.
  50. Decker, T., and Lohmann-Matthes, M.L. (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61-69.
  51. Deuschl, G., Schade-Brittinger, C., Krack, P., Volkmann, J., Schäfer, H., Bötzel, K., Daniels, C., Deutschländer, A., Dillmann, U., Eisner, W., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 355, 896-908.
  52. Perez, R.G., Waymire, J.C., Lin, E., Liu, J.J., Guo, F., and Zigmond, M.J. (2002). A role for alpha- synuclein in the regulation of dopamine biosynthesis. J. Neurosci. Off. J. Soc. Neurosci. 22, 3090-3099.
  53. Tsvetkov, A.S., Miller, J., Arrasate, M., Wong, J.S., Pleiss, M.A., and Finkbeiner, S. (2010). A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl. Acad. Sci. U. S. A. 107, 16982-16987.
  54. Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L.T.T., Liao, J., Auclair, J.R., Johnson, D., Landeru, A., Simorellis, A.K., et al. (2011). A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl. Acad. Sci. U. S. A. 108, 17797-17802.
  55. Lee, H.-J., Suk, J.-E., Bae, E.-J., Lee, J.-H., Paik, S.R., and Lee, S.-J. (2008). Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int. J. Biochem. Cell Biol. 40, 1835- 1849.
  56. Spillantini, M.G., Divane, A., and Goedert, M. (1995). Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics 27, 379- 381.
  57. Palma, J.-A., and Kaufmann, H. (2014). Autonomic disorders predicting Parkinson's disease. Parkinsonism Relat. Disord. 20 Suppl 1, S94-98.
  58. Kawai, A., Uchiyama, H., Takano, S., Nakamura, N., and Ohkuma, S. (2007). Autophagosome- lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3, 154- 157.
  59. Barth, S., Glick, D., and Macleod, K.F. (2010). Autophagy: assays and artifacts. J. Pathol. 221, 117-124.
  60. Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990-995.
  61. Cherra, S.J. 3rd, and Chu, C.T. (2008). Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 3, 309-323.
  62. Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH- SY5Y cells. Neurosci. Lett. 472, 47-52.
  63. Binolfi, A., Theillet, F.-X., and Selenko, P. (2012). Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Biochem. Soc. Trans. 40, 950-954.
  64. Jensen, P.H., Hojrup, P., Hager, H., Nielsen, M.S., Jacobsen, L., Olesen, O.F., Gliemann, J., and Jakes, R. (1997). Binding of Abeta to alpha-and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind Abeta and NAC. Biochem. J. 323 ( Pt 2), 539-546.
  65. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20, 415-455.
  66. Palacios, N., Gao, X., McCullough, M.L., Schwarzschild, M.A., Shah, R., Gapstur, S., and Ascherio, A. (2012). Caffeine and risk of Parkinson's disease in a large cohort of men and women. Mov. Disord. Off. J. Mov. Disord. Soc. 27, 1276-1282.
  67. Reardon, G.T., Rifkin, A., Schwartz, A., Myerson, A., and Siris, S.G. (1989). Changing patterns of neuroleptic dosage over a decade. Am. J. Psychiatry 146, 726-729.
  68. Kaushik, S., and Cuervo, A.M. (2008). Chaperone-mediated autophagy. Methods Mol. Biol. Clifton NJ 445, 227-244.
  69. Bandyopadhyay, U., Bandhyopadhyay, U., and Cuervo, A.M. (2007). Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. Exp. Gerontol. 42, 120-128.
  70. Hubbi, M.E., Hu, H., Kshitiz, Ahmed, I., Levchenko, A., and Semenza, G.L. (2013). Chaperone- mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J. Biol. Chem. 288, 10703-10714.
  71. George, J.M., Jin, H., Woods, W.S., and Clayton, D.F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361-372.
  72. Langston, J.W., Ballard, P., Tetrud, J.W., and Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979-980.
  73. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3-11.
  74. Lee, H.-J., Khoshaghideh, F., Patel, S., and Lee, S.-J. (2004). Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. Off. J. Soc. Neurosci. 24, 1888-1896.
  75. Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D.-S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., et al. (2004). Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann. Neurol. 55, 174-179.
  76. Lill, C.M., Roehr, J.T., McQueen, M.B., Kavvoura, F.K., Bagade, S., Schjeide, B.-M.M., Schjeide, L.M., Meissner, E., Zauft, U., Allen, N.C., et al. (2012). Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet. 8, e1002548.
  77. Tompkins, M.M., and Hill, W.D. (1997). Contribution of somal Lewy bodies to neuronal death. Brain Res. 775, 24-29.
  78. Kalaitzakis, M.E., Graeber, M.B., Gentleman, S.M., and Pearce, R.K.B. (2008). Controversies over the staging of α-synuclein pathology in Parkinson's disease. Acta Neuropathol. (Berl.) 116, 125-128.
  79. Tanious, F.A., Veal, J.M., Buczak, H., Ratmeyer, L.S., and Wilson, W.D. (1992). DAPI (4',6- diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry (Mosc.) 31, 3103-3112.
  80. Fily, F., Haegelen, C., Tattevin, P., Buffet-Bataillon, S., Revest, M., Cady, A., and Michelet, C. (2011). Deep brain stimulation hardware-related infections: a report of 12 cases and review of the literature. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 52, 1020-1023.
  81. Bennett, M.C., Bishop, J.F., Leng, Y., Chock, P.B., Chase, T.N., and Mouradian, M.M. (1999). Degradation of alpha-synuclein by proteasome. J. Biol. Chem. 274, 33855-33858.
  82. Schenck, C.H., Boeve, B.F., and Mahowald, M.W. (2013). Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med. 14, 744-748.
  83. Emre, M. (2003). Dementia associated with Parkinson's disease. Lancet Neurol. 2, 229-237.
  84. Kunz, J.B., Schwarz, H., and Mayer, A. (2004). Determination of four sequential stages during microautophagy in vitro. J. Biol. Chem. 279, 9987-9996.
  85. Hoshimaru, M., Ray, J., Sah, D.W., and Gage, F.H. (1996). Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. U. S. A. 93, 1518-1523.
  86. Danzer, K.M., Haasen, D., Karow, A.R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., and Kostka, M. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. J. Neurosci. Off. J. Soc. Neurosci. 27, 9220-9232.
  87. Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B.T., McLean, P.J., and Unni, V.K. (2011). Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J. Neurosci. Off. J. Soc. Neurosci. 31, 14508-14520.
  88. EHRINGER, H., and HORNYKIEWICZ, O. (1960). [Distribution of noradrenaline and dopamine (3- hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system].
  89. Klionsky, D.J., Elazar, Z., Seglen, P.O., and Rubinsztein, D.C. (2008). Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4, 849-850.
  90. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., and Mucke, L. (2000). Dopaminergic loss and inclusion body formation in alpha- synuclein mice: implications for neurodegenerative disorders. Science 287, 1265-1269.
  91. Whitworth, A.J. (2011). Drosophila models of Parkinson's disease. Adv. Genet. 73, 1-50.
  92. Rospigliosi, C.C., McClendon, S., Schmid, A.W., Ramlall, T.F., Barré, P., Lashuel, H.A., and Eliezer, D. (2009). E46K Parkinson's-linked mutation enhances C-terminal-to-N-terminal contacts in alpha-synuclein. J. Mol. Biol. 388, 1022-1032.
  93. Li, J., Uversky, V.N., and Fink, A.L. (2001). Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha- synuclein. Biochemistry (Mosc.) 40, 11604-11613.
  94. Lotharius, J., Barg, S., Wiekop, P., Lundberg, C., Raymon, H.K., and Brundin, P. (2002). Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J. Biol. Chem. 277, 38884-38894.
  95. Poole, B., and Ohkuma, S. (1981). Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol. 90, 665-669.
  96. Villar-Piqué, A., Lopes da Fonseca, T., Sant'Anna, R., Szegö, É.M., Fonseca-Ornelas, L., Pinho, R., Carija, A., Gerhardt, E., Masaracchia, C., Abad Gonzalez, E., et al. (2016). Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proc. Natl. Acad. Sci. 113, E6506-E6515.
  97. Migliore, L., and Coppedè, F. (2009). Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 674, 73-84.
  98. de Lau, L.M.L., and Breteler, M.M.B. (2006). Epidemiology of Parkinson's disease. Lancet Neurol. 5, 525-535.
  99. Steece-Collier, K., Maries, E., and Kordower, J.H. (2002). Etiology of Parkinson's disease: Genetics and environment revisited. Proc. Natl. Acad. Sci. U. S. A. 99, 13972-13974.
  100. Langston, J.W., Forno, L.S., Tetrud, J., Reeves, A.G., Kaplan, J.A., and Karluk, D. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598-605.
  101. Dickson, D.W., Fujishiro, H., DelleDonne, A., Menke, J., Ahmed, Z., Klos, K.J., Josephs, K.A., Frigerio, R., Burnett, M., Parisi, J.E., et al. (2008). Evidence that incidental Lewy body disease is pre-symptomatic Parkinson's disease. Acta Neuropathol. (Berl.) 115, 437-444.
  102. Volpicelli-Daley, L.A., Luk, K.C., Patel, T.P., Tanik, S.A., Riddle, D.M., Stieber, A., Meaney, D.F., Trojanowski, J.Q., and Lee, V.M.-Y. (2011). Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57-71.
  103. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., et al. (2009). Finding the missing heritability of complex diseases. Nature 461, 747-753.
  104. Katzenschlager, R., Head, J., Schrag, A., Ben-Shlomo, Y., Evans, A., Lees, A.J., and Parkinson's Disease Research Group of the United Kingdom (2008). Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 71, 474-480.
  105. Blandini, F., Nappi, G., Tassorelli, C., and Martignoni, E. (2000). Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog. Neurobiol. 62, 63-88.
  106. Lesage, S., Anheim, M., Letournel, F., Bousset, L., Honoré, A., Rozas, N., Pieri, L., Madiona, K., Dürr, A., Melki, R., et al. (2013). G51D α-synuclein mutation causes a novel parkinsonian- pyramidal syndrome. Ann. Neurol.
  107. Braak, H., de Vos, R.A.I., Bohl, J., and Del Tredici, K. (2006). Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396, 67-72.
  108. Edwards, T.L., Scott, W.K., Almonte, C., Burt, A., Powell, E.H., Beecham, G.W., Wang, L., Züchner, S., Konidari, I., Wang, G., et al. (2010). Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97-109.
  109. Simón-Sánchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S.W., Hernandez, D.G., et al. (2009). Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308-1312.
  110. Gosavi, N., Lee, H.-J., Lee, J.S., Patel, S., and Lee, S.-J. (2002). Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48984-48992.
  111. Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J.A., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544.
  112. Goldman, S.M., Tanner, C.M., Oakes, D., Bhudhikanok, G.S., Gupta, A., and Langston, J.W. (2006). Head injury and Parkinson's disease risk in twins. Ann. Neurol. 60, 65-72.
  113. Yoshino, H., Hirano, M., Stoessl, A.J., Imamichi, Y., Ikeda, A., Li, Y., Funayama, M., Yamada, I., Nakamura, Y., Sossi, V., et al. (2017). Homozygous alpha-synuclein p.A53V in familial Parkinson's disease. Neurobiol. Aging 57, 248.e7-248.e12.
  114. Worth, P.F. (2013). How to treat Parkinson's disease in 2013. Clin. Med. Lond. Engl. 13, 93-96.
  115. Jakes, R., Spillantini, M.G., and Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27-32.
  116. Hoyer, W., Cherny, D., Subramaniam, V., and Jovin, T.M. (2004). Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry (Mosc.) 43, 16233-16242.
  117. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292- 1295.
  118. DelleDonne, A., Klos, K.J., Fujishiro, H., Ahmed, Z., Parisi, J.E., Josephs, K.A., Frigerio, R., Burnett, M., Wszolek, Z.K., Uitti, R.J., et al. (2008). Incidental Lewy body disease and preclinical Parkinson disease. Arch. Neurol. 65, 1074-1080.
  119. Desplats, P., Lee, H.-J., Bae, E.-J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S.-J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. U. S. A. 106, 13010-13015.
  120. Paxinou, E., Chen, Q., Weisse, M., Giasson, B.I., Norris, E.H., Rueter, S.M., Trojanowski, J.Q., Lee, V.M., and Ischiropoulos, H. (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. Off. J. Soc. Neurosci. 21, 8053-8061.
  121. Deter, R.L., and De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 33, 437-449.
  122. Bower, J.H., Maraganore, D.M., McDonnell, S.K., and Rocca, W.A. (2000). Influence of strict, intermediate, and broad diagnostic criteria on the age-and sex-specific incidence of Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 15, 819-825.
  123. Lee, C.M., and Tannock, I.F. (2006). Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br. J. Cancer 94, 863-869.
  124. Rubinsztein, D.C., Cuervo, A.M., Ravikumar, B., Sarkar, S., Korolchuk, V., Kaushik, S., and Klionsky, D.J. (2009). In search of an "autophagomometer." Autophagy 5, 585-589.
  125. International Parkinson's Disease Genomics Consortium (IPDGC), and Wellcome Trust Case Control Consortium 2 (WTCCC2) (2011). A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet. 7, e1002142.
  126. Uversky, V.N. (2011). Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol. 43, 1090-1103.
  127. Dettmer, U., Newman, A.J., Luth, E.S., Bartels, T., and Selkoe, D. (2013). In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J. Biol. Chem. 288, 6371-6385.
  128. Winner, B., Jappelli, R., Maji, S.K., Desplats, P.A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., et al. (2011a). In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U. S. A. 108, 4194-4199.
  129. Winner, B., Jappelli, R., Maji, S.K., Desplats, P.A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., et al. (2011b). In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U. S. A. 108, 4194-4199.
  130. Olanow, C.W., and Prusiner, S.B. (2009). Is Parkinson's disease a prion disorder? Proc. Natl. Acad. Sci. U. S. A. 106, 12571-12572.
  131. Beekes, M., Thomzig, A., Schulz-Schaeffer, W.J., and Burger, R. (2014). Is there a risk of prion- like disease transmission by Alzheimer-or Parkinson-associated protein particles? Acta Neuropathol. (Berl.) 128, 463-476.
  132. Steele, J.W., Ju, S., Lachenmayer, M.L., Liken, J., Stock, A., Kim, S.H., Delgado, L.M., Alfaro, I.E., Bernales, S., Verdile, G., et al. (2013). Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain. Mol. Psychiatry 18, 882-888.
  133. Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., Tanner, C., Marek, K., and Parkinson Study Group (2004). Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351, 2498-2508.
  134. Kosaka, K. (1978). Lewy bodies in cerebral cortex, report of three cases. Acta Neuropathol. (Berl.) 42, 127-134.
  135. Li, J.-Y., Englund, E., Holton, J.L., Soulet, D., Hagell, P., Lees, A.J., Lashley, T., Quinn, N.P., Rehncrona, S., Björklund, A., et al. (2008). Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501-503.
  136. Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B., and Olanow, C.W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504- 506.
  137. Garske, A.L., Smith, B.C., and Denu, J.M. (2007). Linking SIRT2 to Parkinson's disease. ACS Chem. Biol. 2, 529-532.
  138. Yavich, L., Oksman, M., Tanila, H., Kerokoski, P., Hiltunen, M., van Groen, T., Puoliväli, J., Männistö, P.T., García-Horsman, A., MacDonald, E., et al. (2005). Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha- synuclein. Neurobiol. Dis. 20, 303-313.
  139. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884.
  140. Alegre-Abarrategui, J., Christian, H., Lufino, M.M.P., Mutihac, R., Venda, L.L., Ansorge, O., and Wade-Martins, R. (2009). LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18, 4022-4034.
  141. Reynolds, N.P., Soragni, A., Rabe, M., Verdes, D., Liverani, E., Handschin, S., Riek, R., and Seeger, S. (2011). Mechanism of membrane interaction and disruption by α-synuclein. J. Am. Chem. Soc. 133, 19366-19375.
  142. Singer, T.P., and Ramsay, R.R. (1990). Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 274, 1-8.
  143. van Rooijen, B.D., Claessens, M.M.A.E., and Subramaniam, V. (2010). Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism. PloS One 5, e14292.
  144. Gasser, T. (2009). Mendelian forms of Parkinson's disease. Biochim. Biophys. Acta 1792, 587- 596.
  145. Yu, W.H., Dorado, B., Figueroa, H.Y., Wang, L., Planel, E., Cookson, M.R., Clark, L.N., and Duff, K.E. (2009). Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. Am. J. Pathol. 175, 736-747.
  146. Abeliovich, A., Schmitz, Y., Fariñas, I., Choi-Lundberg, D., Ho, W.H., Castillo, P.E., Shinsky, N., Verdugo, J.M., Armanini, M., Ryan, A., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239-252.
  147. Gasser, T., Hardy, J., and Mizuno, Y. (2011). Milestones in PD genetics. Mov. Disord. Off. J. Mov. Disord. Soc. 26, 1042-1048.
  148. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1, 1269.
  149. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823-827.
  150. Shoffner, J.M., Watts, R.L., Juncos, J.L., Torroni, A., and Wallace, D.C. (1991). Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann. Neurol. 30, 332-339.
  151. Uéda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D.A., Kondo, J., Ihara, Y., and Saitoh, T. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 90, 11282-11286.
  152. Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244-250.
  153. Choubey, V., Safiulina, D., Vaarmann, A., Cagalinec, M., Wareski, P., Kuum, M., Zharkovsky, A., and Kaasik, A. (2011). Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286, 10814-10824.
  154. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047.
  155. Braak, H., and Del Tredici, K. (2009). Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1-119.
  156. Dickson, D.W., Braak, H., Duda, J.E., Duyckaerts, C., Gasser, T., Halliday, G.M., Hardy, J., Leverenz, J.B., Del Tredici, K., Wszolek, Z.K., et al. (2009a). Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol. 8, 1150-1157.
  157. Uversky, V.N. (2007). Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J. Neurochem. 103, 17-37.
  158. Dickson, D.W., Fujishiro, H., Orr, C., DelleDonne, A., Josephs, K.A., Frigerio, R., Burnett, M., Parisi, J.E., Klos, K.J., and Ahlskog, J.E. (2009b). Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat. Disord. 15 Suppl 3, S1-5.
  159. Iwamoto, K., Mata, D., Linn, D.M., and Linn, C.L. (2013). Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors. Neuroscience 237, 184-198.
  160. Park, H.J., Shin, J.Y., Kim, H.N., Oh, S.H., and Lee, P.H. (2014). Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol. Aging 35, 1920-1928.
  161. Schuepbach, W.M.M., Rau, J., Knudsen, K., Volkmann, J., Krack, P., Timmermann, L., Hälbig, T.D., Hesekamp, H., Navarro, S.M., Meier, N., et al. (2013). Neurostimulation for Parkinson's disease with early motor complications. N. Engl. J. Med. 368, 610-622.
  162. Hebron, M.L., Lonskaya, I., and Moussa, C.E.-H. (2013). Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models. Hum. Mol. Genet. 22, 3315-3328.
  163. Hoffman-Zacharska, D., Koziorowski, D., Ross, O.A., Milewski, M., Poznański, J., Jurek, M., Wszolek, Z.K., Soto-Ortolaza, A., Sławek, J., Janik, P., et al. (2013). Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson's disease. Parkinsonism Relat. Disord. 19, 1057-1060.
  164. Doty, R.L., Bromley, S.M., and Stern, M.B. (1995). Olfactory testing as an aid in the diagnosis of Parkinson's disease: development of optimal discrimination criteria. Neurodegener. J. Neurodegener. Disord. Neuroprotection Neuroregeneration 4, 93-97.
  165. Walsh, D.M., and Selkoe, D.J. (2004). Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. 11, 213-228.
  166. Inzelberg, R., Schechtman, E., and Paleacu, D. (2002). Onset age of Parkinson disease. Am. J. Med. Genet. 111, 459-460; author reply 461.
  167. Giasson, B.I., Duda, J.E., Murray, I.V., Chen, Q., Souza, J.M., Hurtig, H.I., Ischiropoulos, H., Trojanowski, J.Q., and Lee, V.M. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985-989.
  168. Owen, A.D., Schapira, A.H., Jenner, P., and Marsden, C.D. (1996). Oxidative stress and Parkinson's disease. Ann. N. Y. Acad. Sci. 786, 217-223.
  169. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10, 717-721.
  170. Schapira, A.H. (1995). Oxidative stress in Parkinson's disease. Neuropathol. Appl. Neurobiol. 21, 3-9.
  171. Narendra, D., Tanaka, A., Suen, D.-F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803.
  172. Lees, A.J., Hardy, J., and Revesz, T. (2009). Parkinson's disease. Lancet 373, 2055-2066.
  173. Samii, A., Nutt, J.G., and Ransom, B.R. (2004). Parkinson's disease. Lancet 363, 1783-1793.
  174. Dickson, D.W. (2012). Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2.
  175. Trojanowski, J.Q., and Lee, V.M.-Y. (2003). Parkinson's disease and related alpha- synucleinopathies are brain amyloidoses. Ann. N. Y. Acad. Sci. 991, 107-110.
  176. Kieburtz, K., and Wunderle, K.B. (2013). Parkinson's disease: evidence for environmental risk factors. Mov. Disord. Off. J. Mov. Disord. Soc. 28, 8-13.
  177. Shulman, J.M., De Jager, P.L., and Feany, M.B. (2011). Parkinson's Disease: Genetics and Pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6, 193-222.
  178. Li, L., Wang, X., Fei, X., Xia, L., Qin, Z., and Liang, Z. (2011). Parkinson's disease involves autophagy and abnormal distribution of cathepsin L. Neurosci. Lett. 489, 62-67.
  179. Engeholm, M., and Gasser, T. (2013). Parkinson's disease: is it all in the genes? Mov. Disord. Off. J. Mov. Disord. Soc. 28, 1027-1029.
  180. Deutsche Gesellschaft für Neurologie (2012). Parkinson-Syndrome -Diagnostik und Therapie, S2k Leitlinie.
  181. Deter, R.L., Baudhuin, P., and De Duve, C. (1967). Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 35, C11-16.
  182. Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O'Brien, P., Trojanowski, J.Q., and Lee, V.M.-Y. (2012). Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949-953.
  183. Zaccai, J., Brayne, C., McKeith, I., Matthews, F., Ince, P.G., and MRC Cognitive Function, Ageing Neuropathology Study (2008). Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology 70, 1042-1048.
  184. Oertel, W.H., Wolters, E., Sampaio, C., Gimenez-Roldan, S., Bergamasco, B., Dujardin, M., Grosset, D.G., Arnold, G., Leenders, K.L., Hundemer, H.-P., et al. (2006). Pergolide versus levodopa monotherapy in early Parkinson's disease patients: The PELMOPET study. Mov. Disord. Off. J. Mov. Disord. Soc. 21, 343-353.
  185. Ballard, P.A., Tetrud, J.W., and Langston, J.W. (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35, 949-956.
  186. Bodner, R.A., Outeiro, T.F., Altmann, S., Maxwell, M.M., Cho, S.H., Hyman, B.T., McLean, P.J., Young, A.B., Housman, D.E., and Kazantsev, A.G. (2006). Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. Proc. Natl. Acad. Sci. 103, 4246-4251.
  187. Duffy, P., and Tennyson, V. (1965). Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus caeruleus in Parkinson's disease. J Neuropathol Exp Neurol 398-414.
  188. Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.-F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298.
  189. Dumitriu, A., Moser, C., Hadzi, T.C., Williamson, S.L., Pacheco, C.D., Hendricks, A.E., Latourelle, J.C., Wilk, J.B., Destefano, A.L., and Myers, R.H. (2012). Postmortem Interval Influences α- Synuclein Expression in Parkinson Disease Brain. Park. Dis. 2012, 614212.
  190. He, H., Dang, Y., Dai, F., Guo, Z., Wu, J., She, X., Pei, Y., Chen, Y., Ling, W., Wu, C., et al. (2003). Post-translational Modifications of Three Members of the Human MAP1LC3 Family and Detection of a Novel Type of Modification for MAP1LC3B. J. Biol. Chem. 278, 29278-29287.
  191. Holloway, R.G., Shoulson, I., Fahn, S., Kieburtz, K., Lang, A., Marek, K., McDermott, M., Seibyl, J., Weiner, W., Musch, B., et al. (2004). Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch. Neurol. 61, 1044-1053.
  192. Karpinar, D.P., Balija, M.B.G., Kügler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H.-Y., Taschenberger, G., Falkenburger, B.H., Heise, H., et al. (2009). Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models. EMBO J. 28, 3256-3268.
  193. McDonald, W.M., Richard, I.H., and DeLong, M.R. (2003). Prevalence, etiology, and treatment of depression in Parkinson's disease. Biol. Psychiatry 54, 363-375.
  194. Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., Mann, D.M.A., and Hasegawa, M. (2013). Prion-like spreading of pathological α-synuclein in brain. Brain J. Neurol. 136, 1128-1138.
  195. Gousset, K., Schiff, E., Langevin, C., Marijanovic, Z., Caputo, A., Browman, D.T., Chenouard, N., de Chaumont, F., Martino, A., Enninga, J., et al. (2009). Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328-336.
  196. Lotharius, J., Falsig, J., van Beek, J., Payne, S., Dringen, R., Brundin, P., and Leist, M. (2005). Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J. Neurosci. Off. J. Soc. Neurosci. 25, 6329-6342.
  197. Rideout, H.J., Larsen, K.E., Sulzer, D., and Stefanis, L. (2001). Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J. Neurochem. 78, 899-908.
  198. Good, P.F., Hsu, A., Werner, P., Perl, D.P., and Olanow, C.W. (1998). Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57, 338-342.
  199. Caughey, B., and Lansbury, P.T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267-298.
  200. Hsiao, S.C., Liu, H., Holstlaw, T.A., Liu, C., Francis, C.Y., and Francis, M.B. (2013). Real time assays for quantifying cytotoxicity with single cell resolution. PloS One 8, e66739.
  201. Thacker, E.L., Chen, H., Patel, A.V., McCullough, M.L., Calle, E.E., Thun, M.J., Schwarzschild, M.A., and Ascherio, A. (2008). Recreational physical activity and risk of Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 23, 69-74.
  202. Barbour, R., Kling, K., Anderson, J.P., Banducci, K., Cole, T., Diep, L., Fox, M., Goldstein, J.M., Soriano, F., Seubert, P., et al. (2008). Red blood cells are the major source of alpha-synuclein in blood. Neurodegener. Dis. 5, 55-59.
  203. Lilienbaum, A. (2013). Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4, 1-26.
  204. Claassen, D.O., Josephs, K.A., Ahlskog, J.E., Silber, M.H., Tippmann-Peikert, M., and Boeve, B.F. (2010). REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 75, 494-499.
  205. Boeve, B.F. (2010). REM sleep behavior disorder: Updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann. N. Y. Acad. Sci. 1184, 15-54.
  206. Hashimoto, M., Takeda, A., Hsu, L.J., Takenouchi, T., and Masliah, E. (1999b). Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849-28852.
  207. Tanner, C.M., Kamel, F., Ross, G.W., Hoppin, J.A., Goldman, S.M., Korell, M., Marras, C., Bhudhikanok, G.S., Kasten, M., Chade, A.R., et al. (2011). Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119, 866-872.
  208. Trenkwalder, C., Kies, B., Rudzinska, M., Fine, J., Nikl, J., Honczarenko, K., Dioszeghy, P., Hill, D., Anderson, T., Myllyla, V., et al. (2011). Rotigotine effects on early morning motor function and sleep in Parkinson's disease: a double-blind, randomized, placebo-controlled study (RECOVER).
  209. Kostka, M., Högen, T., Danzer, K.M., Levin, J., Habeck, M., Wirth, A., Wagner, R., Glabe, C.G., Finger, S., Heinzelmann, U., et al. (2008). Single particle characterization of iron-induced pore- forming alpha-synuclein oligomers. J. Biol. Chem. 283, 10992-11003.
  210. Cedarbaum, J.M., and McDowell, F.H. (1987). Sixteen-year follow-up of 100 patients begun on levodopa in 1968: emerging problems. Adv. Neurol. 45, 469-472.
  211. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. U. S. A. 104, 19023-19028.
  212. Davidson, W.S., Jonas, A., Clayton, D.F., and George, J.M. (1998). Stabilization of alpha- synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443- 9449.
  213. Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., and Del Tredici, K. (2004). Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121-134.
  214. Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197- 211.
  215. Kim, H.-Y., Cho, M.-K., Kumar, A., Maier, E., Siebenhaar, C., Becker, S., Fernandez, C.O., Lashuel, H.A., Benz, R., Lange, A., et al. (2009). Structural properties of pore-forming oligomers of alpha-synuclein. J. Am. Chem. Soc. 131, 17482-17489.
  216. Okun, M.S., Gallo, B.V., Mandybur, G., Jagid, J., Foote, K.D., Revilla, F.J., Alterman, R., Jankovic, J., Simpson, R., Junn, F., et al. (2012). Subthalamic deep brain stimulation with a constant- current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 11, 140-149.
  217. Franco, R., and Cedazo-Minguez, A. (2014). Successful therapies for Alzheimer's disease: why so many in animal models and none in humans? Front. Pharmacol. 5, 146.
  218. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889.
  219. Venda, L.L., Cragg, S.J., Buchman, V.L., and Wade-Martins, R. (2010). α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends Neurosci. 33, 559-568.
  220. Winslow, A.R., Chen, C.-W., Corrochano, S., Acevedo-Arozena, A., Gordon, D.E., Peden, A.A., Lichtenberg, M., Menzies, F.M., Ravikumar, B., Imarisio, S., et al. (2010). α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190, 1023-1037.
  221. Fauvet, B., Mbefo, M.K., Fares, M.-B., Desobry, C., Michael, S., Ardah, M.T., Tsika, E., Coune, P., Prudent, M., Lion, N., et al. (2012). α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J. Biol. Chem. 287, 15345-15364.
  222. Breydo, L., Wu, J.W., and Uversky, V.N. (2012). Α-synuclein misfolding and Parkinson's disease. Biochim. Biophys. Acta 1822, 261-285.
  223. Bartels, T., Choi, J.G., and Selkoe, D.J. (2011). α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107-110.
  224. Hansen, C., Angot, E., Bergström, A.-L., Steiner, J.A., Pieri, L., Paul, G., Outeiro, T.F., Melki, R., Kallunki, P., Fog, K., et al. (2011). α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715- 725.
  225. Murphy, D.D., Rueter, S.M., Trojanowski, J.Q., and Lee, V.M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. Off. J. Soc. Neurosci. 20, 3214-3220.
  226. Twelves, D., Perkins, K.S.M., and Counsell, C. (2003). Systematic review of incidence studies of Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 18, 19-31.
  227. Hughes, A.J., Daniel, S.E., Ben-Shlomo, Y., and Lees, A.J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain J. Neurol. 125, 861- 870.
  228. Cufí, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Corominas-Faja, B., Cuyàs, E., López-Bonet, E., Martin-Castillo, B., Joven, J., and Menendez, J.A. (2013). The anti-malarial chloroquine overcomes Primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer. Sci. Rep. 3.
  229. Pennington, S., Snell, K., Lee, M., and Walker, R. (2010). The cause of death in idiopathic Parkinson's disease. Parkinsonism Relat. Disord. 16, 434-437.
  230. Meuvis, J., Gerard, M., Desender, L., Baekelandt, V., and Engelborghs, Y. (2010). The conformation and the aggregation kinetics of α-synuclein depend on the proline residues in its C-terminal region. Biochemistry (Mosc.) 49, 9345-9352.
  231. Greenbaum, E.A., Graves, C.L., Mishizen-Eberz, A.J., Lupoli, M.A., Lynch, D.R., Englander, S.W., Axelsen, P.H., and Giasson, B.I. (2005). The E46K mutation in alpha-synuclein increases amyloid fibril formation. J. Biol. Chem. 280, 7800-7807.
  232. Sharon, R., Bar-Joseph, I., Frosch, M.P., Walsh, D.M., Hamilton, J.A., and Selkoe, D.J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37, 583-595.
  233. Bendor, J.T., Logan, T.P., and Edwards, R.H. (2013). The function of α-synuclein. Neuron 79, 1044-1066.
  234. BETHLEM, J., and DEN HARTOG JAGER, W.A. (1960). The incidence and characteristics of Lewy bodies in idiopathic paralysis agitans (Parkinson's disease). J. Neurol. Neurosurg. Psychiatry 23, 74-80.
  235. Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 27, 494-506.
  236. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7-18.
  237. Poulopoulos, M., Levy, O.A., and Alcalay, R.N. (2012). The neuropathology of genetic Parkinson's disease. Mov. Disord. Off. J. Mov. Disord. Soc. 27, 831-842.
  238. Zarranz, J.J., Alegre, J., Gómez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atarés, B., et al. (2004). The new mutation, E46K, of alpha- synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164-173.
  239. Winslow, A.R., and Rubinsztein, D.C. (2011). The Parkinson disease protein α-synuclein inhibits autophagy. Autophagy 7, 429-431.
  240. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H.A., Kittel, A., and Saitoh, T. (1995). The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467-475.
  241. Gibb, W.R., and Lees, A.J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 51, 745-752.
  242. Deleersnijder, A., Gerard, M., Debyser, Z., and Baekelandt, V. (2013). The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol. Med. 19, 368-377.
  243. Lynch-Day, M.A., Mao, K., Wang, K., Zhao, M., and Klionsky, D.J. (2012). The role of autophagy in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a009357.
  244. Xiong, N., Xiong, J., Jia, M., Liu, L., Zhang, X., Chen, Z., Huang, J., Zhang, Z., Hou, L., Luo, Z., et al. (2013). The role of autophagy in Parkinson's disease: rotenone-based modeling. Behav. Brain Funct. BBF 9, 13.
  245. Deleidi, M., and Gasser, T. (2013). The role of inflammation in sporadic and familial Parkinson's disease. Cell. Mol. Life Sci. 70, 4259-4273.
  246. Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain J. Neurol. 122 ( Pt 8), 1437-1448.
  247. Schulz-Schaeffer, W.J. (2010). The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol. (Berl.) 120, 131-143.
  248. Winklhofer, K.F., Tatzelt, J., and Haass, C. (2008). The two faces of protein misfolding: gain-and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336-349.
  249. Marques, L.O., Lima, M.S., and Soares, B.G.O. (2004). Trifluoperazine for schizophrenia. Cochrane Database Syst. Rev. CD003545.
  250. Höllerhage, M., Goebel, J.N., de Andrade, A., Hildebrandt, T., Dolga, A., Culmsee, C., Oertel, W.H., Hengerer, B., and Höglinger, G.U. (2014). Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiol. Aging 35, 1700-1711.
  251. Trifluoperazine versus placebo for schizophrenia. Cochrane Database Syst. Rev. 1, CD010226.
  252. Tai, H.-C., and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826-838.
  253. Beach, T.G., Adler, C.H., Lue, L., Sue, L.I., Bachalakuri, J., Henry-Watson, J., Sasse, J., Boyer, S., Shirohi, S., Brooks, R., et al. (2009). Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. (Berl.) 117, 613-634.
  254. Löw, K., and Aebischer, P. (2012). Use of viral vectors to create animal models for Parkinson's disease. Neurobiol. Dis. 48, 189-201.
  255. Vogiatzi, T., Xilouri, M., Vekrellis, K., and Stefanis, L. (2008). Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542-23556.
  256. Lewy, F. (1913). Zur pathologischen Anatomie der Paralysis agitans. Dt Z Nervheil 50-5.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten