Publikationsserver der Universitätsbibliothek Marburg

Titel:Functional characterisation of cancer-associated mutations in the chromatin remodeler CHD4/dMi-2
Autor:Kovač, Kristina
Weitere Beteiligte: Brehm, Alexander, (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0256
URN: urn:nbn:de:hebis:04-z2018-02561
DOI: https://doi.org/10.17192/z2018.0256
DDC: Medizin
Titel (trans.):Funktionelle Charakterisierung von Tumor-assoziierten Mutationen in Chromatin Remodeler CHD4/dMi-2
Publikationsdatum:2018-06-04
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
chromatin, Chromatin, CHD4, Histone, mutation, chromatin remodelling, Tumor, Chromatin, tumour, nucleosome, Mutation, endometrium, Mutation, CHD4, Chromatin-Remodellierung, Gebärmutterschleimhaut, Gebärmutterschleimhaut, Tumor, Nukleosom

Summary:
CHD4/Mi-2 is a highly conserved ATP-dependent chromatin remodeller. It is essential in processes like transcription regulation, DNA damage response, cell cycle progression, as well as differentiation and development in eukaryotes. It is one of the catalytic components of the NuRD (nucleosome remodelling and deacetlyation) complex. ATP-dependent chromatin remodellers, including CHD4, are frequently mutated in human cancers. In this study, the effects of several missense mutations derived from endometrial cancer patients were analysed using dMi-2, a Drosophila melanogaster homologue of human CHD4, as a model. Selected point mutants, covering key domains and regions in dMi-2, were biochemically analysed. It was demonstrated through enzymatic and non-enzymatic assays that these mutations can have a wide variety of effects on nucleosome binding, ATP hydrolysis and nucleosome remodelling. Interestingly, this analysis uncovered that these mutations can impact dMi-2 in opposite manners, by lowering or increasing the protein’s remodelling ability. Some mutations caused changes in the coupling of ATP hydrolysis with nucleosome remodelling, revealing new roles of certain residues and regions in modulating protein activity. Additionally, a new regulatory region was identified in the C-terminal part of the protein, which is comparable to previously identified regulatory regions in CHD1, ISWI and Snf2. On the N-terminal side, analysis of chromodomain mutants allowed identification of a structural element in dMi-2, similar to one identified in CHD1, that likely contacts nucleosomal DNA during remodelling. Furthermore, in vivo genetic experiments in Drosophila melanogaster demonstrated that expression of selected dMi-2 point mutants can cause misregulation in development of epithelial wing structures. These phenotypes correlated with the nucleosome remodelling characteristics of dMi-2 point mutants. Together, the findings of this thesis give new insight into the consequences of mutations of chromatin remodellers in cancer and provide a basis for understanding molecular mechanisms used by the Mi-2 mutants to contribute to carcinogenesis.

Bibliographie / References

  1. Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol. 2013;20(1):14-22. doi:10.1038/nsmb.2461.
  2. Hoffmeister, H. et al. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res. 1-21 (2017). doi: 10.1093/nar/gkx711
  3. Gatchalian, J. et al. Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Nat. Commun. 8, 1489 (2017).
  4. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI- containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145-155 (1997).
  5. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529-1539 (1999).
  6. Smith, C. L. & Peterson, C. L. A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol. Cell. Biol. 25, 5880-5892 (2005).
  7. Wigley, D. B. & Bowman, G. D. A glimpse into chromatin remodeling. Nat.
  8. Workman, J. L. & Kingston, R. E. Alteration of Nucleosome Structure as a Mechanism of Transcriptional Regulation. Annu. Rev. Biochem. 67, 545-579 (1998).
  9. Delmas, V., Stokes, D. G. & Perry, R. P. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl.
  10. Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. U. S. A. 91, 1950-1954 (1994).
  11. Sen, P., Ghosh, S., Pugh, B. F. & Bartholomew, B. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39, 9155-9166 (2011).
  12. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.
  13. Leonard, J. D. & Narlikar, G. J. A Nucleotide-Driven Switch Regulates Flanking DNA Length Sensing by a Dimeric Chromatin Remodeler. Mol. Cell 57, 850-859 (2015).
  14. Banerjee, T. & Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 31, 4858-4873 (2011).
  15. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86-90 (2006).
  16. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
  17. Muchardt, C. & Yaniv, M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J Mol Biol 293, (1999).
  18. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833-842 (1999).
  19. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343-348 (2004).
  20. Wong, L. H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351-360 (2010).
  21. Verstappen, G. et al. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex.
  22. Musselman, C. A. et al. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem. J. 423, 179-187 (2009).
  23. Levenstein, M. E. & Kadonaga, J. T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem. 277, 8749- 8754 (2002).
  24. Musselman, C. A. et al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression.
  25. Kim, J. et al. Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression. Science 356, 717-721 (2017).
  26. Matsuda, S., Harmansa, S. & Affolter, M. BMP morphogen gradients in flies.
  27. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561-572 (1992).
  28. Logie, C. & Peterson, C. L. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J. 16, 6772-82 (1997).
  29. Stokes, D. G., Tartof, K. D. & Perry, R. P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci.
  30. Sun, F. et al. Chd4 and associated proteins function as corepressors of Sox9 expression during BMP-2-induced chondrogenesis. J. Bone Miner. Res. 28, 1950-1961 (2013).
  31. Xia, L. et al. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell 31, 653-668.e7 (2017).
  32. O'Shaughnessy, A. & Hendrich, B. CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochem. Soc. Trans. 41, 777-82 (2013).
  33. Potts, R. C. et al. CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes. PLoS One 6, (2011).
  34. Bagchi, A. et al. CHD5 Is a Tumor Suppressor at Human 1p36. Cell 128, 459- 475 (2007).
  35. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705 (2007).
  36. Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection.
  37. Längst, G. & Manelyte, L. Chromatin Remodelers: From Function to Dysfunction. Genes (Basel). 6, 299-324 (2015).
  38. Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339-346 (2006).
  39. Bouazoune, K. & Kingston, R. E. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl.
  40. Morrison, A. J. & Shen, X. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373-384 (2009).
  41. Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the
  42. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. U. S. A. 92, 1237-1241 (1995).
  43. Restrepo, S., Zartman, J. J. & Basler, K. Coordination of patterning and growth by the morphogen DPP. Curr. Biol. 24, R245-55 (2014).
  44. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449-460 (2003).
  45. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7, 1121-1124 (2000).
  46. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232-235 (2011).
  47. Luger, K., Mäder, a W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260 (1997).
  48. Murawska, M. et al. dCHD3, a novel ATP-dependent chromatin remodeler associated with sites of active transcription. Mol. Cell. Biol. 28, 2745-2757 (2008).
  49. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377-381 (2000).
  50. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433-438 (2017).
  51. Weiss, K. et al. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms. Am. J. Hum. Genet. 99, 934-941 (2016).
  52. Bergs, J. W. et al. Differential expression and sex chromosome association of CHD3/4 and CHD5 during spermatogenesis. PLoS One 9, e98203 (2014).
  53. Mohrmann, L. et al. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol. Cell. Biol. 24, 3077-3088 (2004).
  54. Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160-166 (2005).
  55. Sifrim, A. et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 48, 1060 -1065 (2016).
  56. Fan, H.-Y., He, X., Kingston, R. E. & Narlikar, G. J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311-1322 (2003).
  57. Kunert, N. et al. dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. EMBO J. 28, 533-44 (2009).
  58. Brehm, a et al. dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO J. 19, 4332-4341 (2000).
  59. Stokes, D. G. & Perry, R. P. DNA-binding and chromatin localization properties of CHD1. Mol. Cell. Biol. 15, 2745-2753 (1995).
  60. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J.
  61. Mohd-Sarip, A. et al. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. Cell Rep. 20, 61-75 (2017).
  62. Dang, W. & Bartholomew, B. Domain Architecture of the Catalytic Subunit in the ISW2-Nucleosome Complex. Mol. Cell. Biol. 27, 8306-8317 (2007).
  63. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181-1185 (2005).
  64. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. Double- stranded Brekas Induce Histone H2AX phosphorylation on Serine 139. J. Biol.
  65. Curtis, B. J., Zraly, C. B. & Dingwall, A. K. Drosophila LSD1-CoREST demethylase complex regulates DPP/TGFβ Signaling during wing development.
  66. Bond, H. M. et al. Early hematopoietic zinc finger protein-zinc finger protein 521: a candidate regulator of diverse immature cells. Int. J. Biochem. Cell Biol. 40, 848-854 (2008).
  67. Kreher J*, Kovač K*, Bouazoune K, Mačinković I, Ernst AL, Engelen E, Pahl R, Finkernagel F, Murawska M, Ullah I, Brehm A, EcR recruits dMi-2 and increases efficiency od dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes, Nature Communications (2017), Apr 5; 8:14806 (*equal contribution)
  68. Kreher, J. et al. EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes. Nat.
  69. Boyer, L. A. et al. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol. Cell 10, 935-942 (2002).
  70. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310-5 (2012).
  71. Oppikofer, M. et al. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep. 18, 1697-1706 (2017).
  72. Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853-868 (1984).
  73. Yuan, J., Adamski, R. & Chen, J. Focus on histone variant H2AX: to be or not to be. FEBS Lett. 584, 3717-3724 (2010).
  74. Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75-100 (2007).
  75. Narlikar, G. J., Phelan, M. L. & Kingston, R. E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219-1230 (2001).
  76. Neigeborn, L. & Carlson, M. Genes Affecting the Regulation of SUC2 Gene Expression by Glucose Repression in SACCHAROMYCES CEREVISIAE. Genetics 108, 845-858 (1984).
  77. Kim, M. S., Chung, N. G., Kang, M. R., Yoo, N. J. & Lee, S. H. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 58, 660-668 (2011).
  78. Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090-1097 (2005).
  79. Graph showing distribution (in %) of gain (blue) and loss (red) of PCV material for expression of WT and mutant dMi-2 as indicated. Relative ATPase and nucleosome remodelling
  80. Schindler, U., Beckmann, H. & Cashmore, A. R. HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J. 4, 137-150 (1993).
  81. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007).
  82. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673-691 (2014).
  83. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816 (2006).
  84. YANG, S. & YUJIANG, S. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. (2010).
  85. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178-189 (2015).
  86. Costanzi, C. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599-601 (1998).
  87. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343-357 (2012).
  88. Rossetto, D., Avvakumov, N. & Côté, J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7, 1098-1108 (2012).
  89. Gautier, T. et al. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 5, 715-720 (2004).
  90. Talbert, P. B. & Henikoff, S. Histone variants -ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264-275 (2010).
  91. Talbert, P. B. & Henikoff, S. Histone variants on the move: substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18, 115-126 (2016).
  92. Torigoe, S. E., Urwin, D. L., Ishii, H., Smith, D. E. & Kadonaga, J. T. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol. Cell 43, 638-648 (2011).
  93. Flaus, A., Martin, D. M. A., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887-2905 (2006).
  94. Patel, A., McKnight, J. N., Genzor, P. & Bowman, G. D. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J. Biol. Chem. 286, 43984-43993 (2011).
  95. Nodelman, I. M. et al. Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. Mol. Cell 65, 447-459.e6 (2017).
  96. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWl2/ SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83, 1021-1026 (1995).
  97. Zhao, S., Choi, M., Overton, J. D. & Santin, A. D. Landscape of somatic single- nucleotide and copy-number mutations in uterine serous carcinoma. PNAS (2012).
  98. Tang, Y. et al. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol. Cancer 16, 42 (2017).
  99. Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: Their role in genome organisation and expression. BioEssays 22, 124-137 (2000).
  100. Kunert, N. & Brehm, A. Mass production of Drosophila embryos and chromatographic purification of native protein complexes. Methods Mol. Biol. 420, 359-371 (2008).
  101. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440-445 (2017).
  102. Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-484 (2008).
  103. Zhou, C. Y., Johnson, S. L., Gamarra, N. I. & Narlikar, G. J. Mechanisms of ATP-Dependent Chromatin Remodeling Motors. Annu. Rev. Biophys. 45, 153- 181 (2016).
  104. Rasmussen, T. P. et al. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 27, 3685-3689 (1999).
  105. Wang, H. B. & Zhang, Y. Mi2, an auto-antigen for dermatomyositis, is an ATP- dependent nucleosome remodeling factor. Nucleic Acids Res. 29, 2517-2521 (2001).
  106. Mi-2 through protein translation and stability. J. Biol. Chem. 283, 34976-34982 (2008).
  107. Schmidt, D. R. & Schreiber, S. L. Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2
  108. Sambrook, J. and Russell, D.W. Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. (2001).
  109. Gamble, M. J. & Kraus, W. L. Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell Cycle 9, 2568-2574 (2010).
  110. Corona, D. F. V & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113-119 (2004).
  111. Carlson, M., Osmond, B. C. & Botstein, D. Mutants of yeast defective in sucrose utilization. Genetics 98, (1981).
  112. Elles, L. M. S. & Uhlenbeck, O. C. Mutation of the arginine finger in the active site of Escherichia coli DbpA abolishes ATPase and helicase activity and confers a dominant slow growth phenotype. Nucleic Acids Res. 36, 41-50 (2008).
  113. Lowary, P. . & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19-42 (1998).
  114. Farnung, L., Vos, S. M., Wigge, C. & Cramer, P. Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature 550, 539-542 (2017).
  115. Längst, G., Bonte, E. J., Corona, D. F. V. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843-852 (1999).
  116. Bao, Y. et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23, 3314-3324 (2004).
  117. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519-1529 (2007).
  118. Wei, Y., Mizzen, C. A., Cook, R. G., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl. Acad. Sci.
  119. Malik, H. S. & Henikoff, S. Phylogenomics of the nucleosome. Nat. Struct. Biol. 10, 882-891 (2003).
  120. Mansfield, R. E. et al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J. Biol. Chem. 286, 11779-11791 (2011).
  121. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9-22 (2007).
  122. Martens, J. A. & Winston, F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 13, 136-142 (2003).
  123. F.X. Wilhelm, M.L Wilhelm, M. Erard, M. P. D. Reconstitution of chromatin: assembly of the nucleosome. Nucleic Acids Res. 5, 3493-3502 (1978).
  124. Changolkar, L. N. & Pehrson, J. R. Reconstitution of nucleosomes with histone macroH2A1.2. Biochemistry 41, 179-184 (2002).
  125. Mathieu, E.-L. et al. Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes. Nucleic Acids Res. 40, 4879-4891 (2012).
  126. Huang, S. et al. Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene 31, 4164-4170 (2012).
  127. Blanc, R. S. & Richard, S. Regenerating muscle with arginine methylation. Transcription 8, 175-178 (2017).
  128. Cox, M. M. Regulation of bacterial RecA protein function. Crit. Rev. Biochem.
  129. Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S. P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130-9 (2010).
  130. Clapier, C. R. et al. Regulation of DNA Translocation Efficiency within the
  131. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116-1122 (2005).
  132. Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280-284 (2012).
  133. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141-150 (1997).
  134. Hake, S. B. et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl. Acad.
  135. Zraly, C. B. et al. SNR1 is an essential subunit in a subset of Drosophila brm complexes, targeting specific functions during development. Dev. Biol. 253, 291 -308 (2003).
  136. Jacobs, S. A. et al. Specificity of the HP1 chromo domain for the methylated N- terminus of histone H3. EMBO J. 20, 5232-5241 (2001).
  137. Bajaj, K. et al. Stereochemical criteria for prediction of the effects of proline mutations on protein stability. PLoS Comput. Biol. 3, e241 (2007).
  138. McNeill, H. Sticking together and sorting things out: adhesion as a force in development. Nat. Rev. Genet. 1, 100-108 (2000).
  139. Murawska, M., Hassler, M., Renkawitz-Pohl, R., Ladurner, A. & Brehm, A. Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. PLoS Genet. 7, e1002206 (2011).
  140. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287-300 (2006).
  141. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578-582 (2004).
  142. Marmorstein, R. & Berger, S. L. Structure and function of bromodomains in chromatin-regulating complexes. Gene 272, 1-9 (2001).
  143. Tang, L., Nogales, E. & Ciferri, C. Structure and function of SWI / SNF chromatin remodeling complexes and mechanistic implications for transcription.
  144. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23-50 (2007).
  145. Yan, L., Wang, L., Tian, Y., Xia, X. & Chen, Z. Structure and regulation of the chromatin remodeller ISWI. Nature 540, 466-469 (2016).
  146. Yang, X., Zaurin, R., Beato, M. & Peterson, C. L. Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat. Struct. Mol. Biol. 14, 540-547 (2007).
  147. Masliah-Planchon, J., Bièche, I., Guinebretière, J.-M., Bourdeaut, F. & Delattre, O. SWI/SNF chromatin remodeling and human malignancies. Annu. Rev. Pathol. 10, 145-171 (2015).
  148. Kassabov, S. R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391-403 (2003).
  149. Piestrzeniewicz-Ulanska, D. et al. TGF-beta signaling is disrupted in endometrioid-type endometrial carcinomas. Gynecol. Oncol. 95, 173-180 (2004).
  150. Lei, X., Wang, L., Yang, J. & Sun, L.-Z. TGFbeta signaling supports survival and metastasis of endometrial cancer cells. Cancer Manag. Res. 2009, 15-24 (2009).
  151. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 3, 15005 (2015).
  152. Manning, B. J. & Yusufzai, T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J. Biol. Chem. 292, 11927-11936 (2017).
  153. Rowe, C. E. & Narlikar, G. J. The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 49, 9882-9890 (2010).
  154. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes.
  155. Marfella, C. G. A. & Imbalzano, A. N. The Chd family of chromatin remodelers.
  156. Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin- remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078-1083 (2006).
  157. Hauk, G., McKnight, J. N., Nodelman, I. M. & Bowman, G. D. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor. Mol. Cell 39, 711-723 (2010).
  158. Hoppmann, V. et al. The CW domain, a new histone recognition module in chromatin proteins. EMBO J. 30, 1939-1952 (2011).
  159. Bouazoune, K. et al. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO J. 21, 2430- 2440 (2002).
  160. Chauhan, C., Zraly, C. B. & Dingwall, A. K. The Drosophila COMPASS-like Cmi- Trr coactivator complex regulates dpp/BMP signaling in pattern formation. Dev.
  161. Fasulo, B. et al. The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet. 8, e1002878 (2012).
  162. Szerlong, H. et al. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol. 2008 15, 469-476 (2008).
  163. Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433-5438 (2007).
  164. Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl.
  165. Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662-673 (2011).
  166. Watanabe, S. & Peterson, C. L. The INO80 family of chromatin-remodeling enzymes: Regulators of histone variant dynamics. Cold Spring Harb. Symp.
  167. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo.
  168. Seelig, H. P. et al. The major dermatomyositis-specific mi-2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum. 38, 1389-1399 (1995).
  169. Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes.
  170. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. U. S. A. 88, 10148-10152 (1991).
  171. Watson, A. A. et al. The PHD and chromo domains regulate the atpase activity of the human chromatin remodeler CHD4. J. Mol. Biol. 422, 3-17 (2012).
  172. Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56-59 (1995).
  173. Paro, R. & Hogness, D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. 88, 263-267 (1991).
  174. Doig, A. J. Thermodynamics of amino acid side-chain internal rotations.
  175. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. & Hansen, J. C. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).
  176. Boyer, L. A., Latek, R. R. & Peterson, C. L. The SANT domain: a unique histone-tail-binding module? Nat. Rev. Mol. Cell Biol. 5, 158-163 (2004).
  177. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 19, 6141-6149 (2000).
  178. Pyle, A. M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317-336 (2008).
  179. D. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2, 639-651 (1998).
  180. Seelig, H. P., Renz, M., Targoff, I. N., Ge, Q. & Frank, M. B. Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen.
  181. Burd, C. J., Kinyamu, H. K., Miller, F. W. & Archer, T. K. UV radiation regulates
  182. Chow, C.-M. et al. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep. 6, 354-60 (2005).
  183. Muchardt, C. & Yaniv, M. When the SWI/SNF complex remodels...the cell cycle. Oncogene 20, 3067-3075 (2001).
  184. Wu, L. M. N. et al. Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat. Neurosci. 19, 1060-1072 (2016).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten