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8.4 An adaptive wavelet frame Kačanov-type algorithm . . . . . . . . . . 121

9 Numerical Tests 125
9.1 Tests on the unit square . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.1.1 Example 1: smooth solution . . . . . . . . . . . . . . . . . . . 126
9.1.2 Example 2: solution of absolute value-type . . . . . . . . . . . 129

9.2 Tests on the L-shaped domain . . . . . . . . . . . . . . . . . . . . . . 132
9.2.1 Example 3: smooth solution . . . . . . . . . . . . . . . . . . . 132
9.2.2 Example 4: singularity function . . . . . . . . . . . . . . . . . 140

Concluding Remarks 143

V Appendix 147

A Appendix 149
A.1 Auxiliary lemmata and propositions . . . . . . . . . . . . . . . . . . . 149
A.2 The p-Laplace equation on a cone . . . . . . . . . . . . . . . . . . . . 159

A.2.1 The p-Laplace operator in polar coordinates . . . . . . . . . . 160
A.2.2 p-harmonic functions of the form rαt(φ) . . . . . . . . . . . . 162

A.3 Further results: Quasi-normed spaces . . . . . . . . . . . . . . . . . . 163
A.4 Alternative Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.4.1 Proof of Corollary 5.4 . . . . . . . . . . . . . . . . . . . . . . 165
A.4.2 Proof of Lemma 7.4 . . . . . . . . . . . . . . . . . . . . . . . . 170



CONTENTS ix

Zusammenfassung 181

List of Figures 189

Bibliography 191



x CONTENTS



Introduction

The mathematical modeling of many real life situations and phenomena leads to
(systems of) partial differential equations (PDEs). The properties of linear PDEs
and ways to numerically solve them have been subject to research for a long time
with extensive results, see, e.g. [23, 74] for an overview. However, many real
phenomena exhibit nonlinear characteristics and the description of the nonlinear
situation under consideration often naturally leads to nonlinear PDEs of various
types. The prominent class of quasilinear equations of the type

−div(α(·, |∇u|)∇u) = F (u) (QL)

appears in several problems in continuum mechanics, in particular in the mathematical
description of non-Newtonian fluids [95].

This thesis is concerned with an important subclass of (QL): the p-Poisson
equations

−∆p(u) := −div
(
|∇u|p−2∇u

)
= f in Ω, (PP)

where 1 < p < ∞, f ∈ W 1
0 (Lp(Ω))′ and Ω ⊂ Rd, d ≥ 2, denotes some bounded

Lipschitz domain. The differential operator ∆p is called p-Laplacian, and the
corresponding variational formulation takes the form

ˆ
Ω

〈
|∇u|p−2∇u,∇v

〉
dx = f(v) for all v ∈ W 1

0 (Lp(Ω)).

A detailed description of the scope of problems treated in this work is contained in
Chapter 3.

Problems of this latter type, i.e., with p-structure, arise in many applications, e.g.,
in non-Newtonian fluid theory [65, 95], non-Newtonian filtration [88, 109], turbulent
flows of a gas in porous media [60], plasticity theory [8], bimaterial problems in
elastic-plastic mechanics [101], and many others. Moreover, the p-Laplacian has a
similar model character for nonlinear (quasilinear) problems as the ordinary Laplace
equation for linear problems. We refer to [99] for an introduction. By now, many
results concerning existence and uniqueness of solution are known, see Section 3.3 and
[100], as well as [99] and the references therein. However, in many cases, the concrete
shape of the solutions is unknown, so that numerical schemes for the constructive
approximation are needed. Such schemes are generally based on a discretization of
the problem, for instance, with respect to some finite grid or triangulation of the
domain. The numerical computation of sufficiently accurate approximations to the
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2 INTRODUCTION

exact solution of a (nonlinear) partial differential equation in practice typically leads
to linear systems of many unknowns. Therefore, the efficiency of such schemes is of
fundamental importance. Now, the performance of such methods is usually governed
by the regularity of the exact solutions in specific scales of function spaces. In this
context, the adaptivity scale

Bσ
τ (Lτ (Ω), 1

τ
= σ

d
+ 1
p
, σ > 0, (∗)

of Besov spaces is of particular importance. This thesis is mainly concerned with the
two following subjects.

(S1) Regularity estimates for solutions to the p-Poisson equation (PP) in the scale
(∗) of Besov spaces.

(S2) A linearization scheme for the numerical solution of the p-Poisson equation
with a focus on implementation and numerical testing.

Before we concretize these topics and formulate more specific objectives (stated in
(O1) and (O2) below), we shall first motivate the consideration of these issues.

Motivation
In the sequel, the relation between the smoothness scale (∗) and the convergence
properties of certain numerical methods is outlined. Hereby, the emphasis is put on
the main principles and coherences. A more detailed presentation is contained in
Chapter 4, for a rigorous treatment see [17, 26, 47, 76].

A typical characteristic of solutions to PDEs is that they exhibit singularities (i.e.,
discontinuities/unboundedness of the solution and/or its derivatives), which may be
induced by a non-smooth domain boundary, the right-hand side or the operator itself.
One prominent example are elliptic equations on domains with re-entrant corners, see
[46, 70, 71, 89]. In such a situation, to obtain sufficiently accurate approximations
while keeping the number of unknowns at a reasonable size, the usage of highly
non-uniform spatial discretizations is often indispensable. In this context, adaptive
numerical approximation schemes aim to efficiently resolve the singularities of the
(unknown) solution.

Essentially, an adaptive algorithm is an updating strategy that iteratively gen-
erates a sequence of approximations, where additional degrees of freedom are only
spent in regions where the numerical approximation is still “far away” from the exact
solution. That is, given some Banach space (X, ‖·‖X) in which approximation takes
place, as well as an initial finite dimensional subspace X0 ⊂ X (based, e.g., on a
finite grid or triangulation of the domain), an adaptive method successively performs
the following steps for m ∈ N0:

1. Compute approximation um to u in Xm.

2. Estimate the local error of u− um.

3. Refine (locally) the approximation space Xm → Xm+1.



3

For instance, in case of the well-known Galerkin approach for linear elliptic problems,
step 1 corresponds to the solution of a system of linear equations which originates
from the projection of the continuous problem onto Xm. To perform step 2 - since
the solution u is generally unknown - an a posteriori error estimator is needed.
Here, in order to provide information for the subsequent step on where refinement is
necessary, such an error estimator should be based on local error indicators.

Nevertheless, although the idea of adaptivity is quite convincing, these schemes
are in general harder to analyze and to implement, compared to more conventional
uniform methods. In particular, the major difficulties concern the development of
local a posteriori error estimators as needed for adaptive strategies, as well as the proof
of convergence (rates) for adaptive schemes. Moreover, their implementation proves
to be much more complex compared to the implementation of uniform methods.

Consequently, some theoretical foundations that justify the development, analysis
and implementation of adaptive strategies are highly desirable. To this end, we
need to check whether adaptive schemes admit the potential to realize a higher
convergence rate than their uniform counterparts. Throughout this thesis, we say
that a numerical method for a given problem has convergence rate s > 0 in the
Banach space (X, ‖·‖X), if there exists a constant C > 0 such that

‖u− um‖X ≤ CN(m)−s for all m ∈ N0,

where u ∈ X denotes the exact solution and N(m) ∈ N denotes for each m ∈ N0
the number of parameters needed to describe the approximant um ∈ Xm. Hence, we
have to address the question if - for a given problem and a given class of numerical
schemes (e.g., methods based on a specific type of discretization) - the best possible
convergence rate which we can expect for an adaptive method is higher than the
best possible rate of uniform schemes of this type.

The analysis in this thesis regarding (S1) is motivated by this problem, in
particular in connection with adaptive wavelet algorithms. For schemes based on
wavelet discretizations, there is a clear understanding of the maximal achievable
convergence rates of adaptive and uniform methods, respectively. In summary, these
optimal rates depend on the regularity of the true solution in specific scales of
function spaces. Before we describe these coherences, we shall first introduce the
concept of wavelets.

Wavelet discretization

Wavelets are typically constructed to form special multiscale bases for the function
space under consideration, where each basis element is obtained by a dyadic dila-
tion and integer translation of one or more mother wavelets. In the classical one
dimensional case, a typical wavelet basis for L2(R) takes the form

Ψ =
{
ψj,k := 2j/2ψ(2j · −k) j, k ∈ Z

}
.

The major benefits of wavelets rely on their strong analytical properties. In particular,
wavelets can be designed to possess the following properties.
• Wavelet bases permit the characterization of smoothness spaces such as Sobolev

and Besov spaces, in the sense that the corresponding norm is equivalent to
some weighted sequence norm of the wavelet expansion coefficients.
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• Wavelets of arbitrary smoothness and with compact support can be constructed.

• The L2-inner product between a smooth function and a wavelet decays expo-
nentially with increasing scale j of the wavelet, i.e., wavelets satisfy certain
cancellation properties.

Due to these features, wavelets admit the capability to resolve well local character-
istics of a function such as singularities, while on the other hand smooth regions can
be represented by comparatively few expansion coefficients. This renders wavelets
suitable for numerous tasks. For instance, in the context of signal/image analysis and
processing (e.g., compression), wavelets are by now widely and successfully used [103].
We refer to Chapter 1 and to the textbooks [45, 108, 135] for further information
concerning the construction and the basic properties of wavelets.

Furthermore, many differential and integral operators admit a quasi-sparse rep-
resentation with respect to a wavelet basis [123], i.e., the entries of the related
system matrices decay exponentially in off-diagonal direction. By a simple diago-
nal preconditioning, the condition numbers of these matrices are usually uniformly
bounded (see, e.g., [38, 39]). Due to these properties, wavelets have turned out to be
a powerful tool also for the adaptive solution of a wide class of operator equations
[6, 18, 19, 20, 27, 28, 34, 38, 66, 67, 84, 96, 111, 119, 134].

In the wavelet setting, there exists a natural benchmark scheme for adaptivity,
referred to as best n-term approximation. In best n-term wavelet approximation, one
does not approximate by linear spaces but by nonlinear manifolds Sn, consisting of
functions of the form

S =
∑
λ∈Λ

cλψλ,

where {ψλ λ ∈ Λ} denotes a given wavelet basis and Λ ⊂ Λ with #Λ = n. A
best n-term wavelet approximation can be realized by extracting the n biggest
wavelet coefficients from the wavelet expansion of the (unknown) function one wants
to approximate. Clearly, on the one hand, such a scheme can never be realized
numerically, because this would require to compute all wavelet coefficients and to
select the n biggest. On the other hand, the best we can expect for an adaptive
wavelet algorithm would be that it (asymptotically) realizes the approximation
order of the best n-term approximation. In this sense, the use of adaptive wavelet
methods is theoretically justified if the best n-term wavelet approximation realizes a
significantly higher convergence order when compared to more conventional, uniform
approximation schemes. In the wavelet setting, it is known that the convergence
order of uniform schemes with respect to Lp depends on the regularity of the object
one wants to approximate in the scale W s(Lp(Ω)) of Lp-Sobolev spaces, whereas the
rate of best n-term wavelet approximation in Lp depends on the regularity in the
adaptivity scale Bσ

τ (Lτ (Ω)), 1/τ = σ/d + 1/p, of Besov spaces. We again refer to
Chapter 4 and [17, 26, 47, 76] for further information. Moreover, recently a similar
relation was established in the context of finite element approximations [68], see also
[10]. Therefore, the use of adaptive (wavelet) algorithms for (PP) would be justified
if the Besov smoothness σ of the solution in the adaptivity scale of Besov spaces is
higher than its Sobolev regularity s.
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Main objectives
The first main objective of this thesis is motivated by the problem illustrated above,
i.e., the question if adaptive schemes for the p-Poisson equation admit the potential
to outperform uniform methods. To give a well-founded answer, we have to study if
the Besov smoothness σ of the solutions in the adaptivity scale of Besov spaces is
higher than their Sobolev regularity s.

For linear second order elliptic equations, a lot of positive results in this direction
already exist; see, e.g., [25, 29, 36]. In contrast, it seems that not too much is known
for nonlinear equations. To the best of the author’s knowledge, the only contribution
is the paper [37] by Dahlke and Sickel which is concerned with semilinear equations
(besides the recent results in [30, 78] by the author and collaborators, which are
essential parts of this thesis). In the present work, we intend to show a first positive
result for quasilinear elliptic equations, i.e., for the p-Poisson equation (PP). Results
of Savaré [116] indicate that, on general Lipschitz domains, the Sobolev smoothness
of the solutions to (PP) is given by s∗ = 1 + 1/p if 2 ≤ p <∞, and by s∗ = 3/2 if
1 < p < 2. The first main objective of this thesis can thus be formulated as follows.

(O1) Regularity estimates for solutions of the p-Poisson equation (PP) in the adap-
tivity scale (∗) of Besov spaces shall be derived. Hereby we aim to clarify,
whether u ∈ Bσ

τ (Lτ (Ω)), 1/τ = σ/d+ 1/p, for some σ > s∗. In order to cover a
substantial class of problems, we shall consider the full range of the parameter
p, i.e., 1 < p <∞, as well as the general class of bounded Lipschitz domains.
Moreover, preferably also explicit assertions for the practically relevant class of
polygonal domains shall be proved.

To derive Besov regularity estimates for solutions to the p-Poisson equation, we follow
two approaches. The first one makes use of the fact that, under certain conditions,
the solutions possess higher regularity away from the Lipschitz boundary, in the
sense that they are locally Hölder continuous; see, e.g., [52, 61, 127, 132, 133]. The
local Hölder semi-norms may explode as one approaches the boundary, but this
singular behavior can be controlled by some power of the distance to the boundary
as shown, e.g., in [54, 93, 97, 98]. Properties like this very often hold in the context
of elliptic boundary problems on nonsmooth domains, we refer, e.g., to [105] and the
references therein for details. It turns out that the combination of the global Sobolev
smoothness and the local Hölder regularity can be used to establish Besov smoothness
for the solutions to (PP). As we will see, in many cases the Besov smoothness σ is
much higher than the Sobolev smoothness s∗ = 1 + 1/p or s∗ = 3/2 respectively, so
that the development of adaptive schemes for the p-Poisson problem is completely
justified.

On the one hand, this universal approach is applicable for the large class of
general Lipschitz domains, but on the other hand the local Hölder regularity result
which is used considers all boundary points as “equally bad”. However, for solutions
of PDEs on polygonal domains, it is known that the critical singularities typically
occur only at the corners of the domain. Indeed, for nonnegative solutions of the
p-Poisson equation on finite cones, there exist singular expansion results with respect
to the vertex, see [57, 126]. Essentially, (the derivatives of) the solution can be
estimated by some power of the distance to the vertex. Hence, by exploiting these
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stronger (local) results, one might expect better Besov smoothness estimates on
polygonal domains.

The purpose of the second approach is to make a first step in improving some of
the Besov regularity results derived with the first approach for polygonal domains.
Therefore, as outlined above, the natural first step is to study the regularity of
solutions in the vicinity of the corners x0 ∈ ∂Ω of the domain. To this end, we will
investigate the smoothness of solutions u to (PP) in a small cone C ⊂ Ω with vertex
x0, measured in the adaptivity scale Bσ

τ (Lτ (C)), 1/τ = σ/2 + 1/p, of Besov spaces.
As we shall see, in certain cases this ansatz indeed yields regularity assertions which
are - in a local sense, i.e., when considering small neighborhoods of the vertices -
stronger than those derived with the first approach in several aspects.

The findings of the first approach are stated in two steps. First of all, we prove a
general embedding theorem which says that the intersection of a classical Sobolev
space and a Hölder space with the properties outlined above can be embedded into
Besov spaces in the adaptivity scale 1/τ = σ/d + 1/p. Essentially, we show that
under suitable conditions on the parameters it holds that

C`,α
γ,loc(Ω) ∩ W s(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)), 1
τ

= σ

d
+ 1
p
. (E1)

It turns out that for a large range of parameters, the Besov smoothness σ is signifi-
cantly higher compared to the Sobolev smoothness s. The proof of this embedding
theorem is performed by exploiting the characterizations of Besov spaces by means of
wavelet expansion coefficients. Then we verify that under certain natural conditions
the solutions to (PP) indeed satisfy the assumptions of the embedding theorem, so
that its application yields the desired result.

In regard of the second approach, the proofs are based on a singular expansion of
the solution u in the vicinity of a conical boundary point, as well as on embeddings
of the type K`p,a(Ω) ∩ Bs

p(Lp(Ω)) ↪→ Bσ
τ (Lτ (Ω)), 1/τ = σ/2 + 1/p, where K`p,a(Ω)

denote the weighted Sobolev spaces referred to as Babuska-Kondratiev spaces (see
Section 1.3). As we will see in Chapter 7, in some cases the solutions to (PP)
admit arbitrary high weighted Sobolev regularity in the vicinity of a corner. Due
to this fact, we additionally examine the limit case `→∞ of the above embedding.
In this context, we will consider the topological vector spaces H∞,sa (Lp(Ω)) :=
∩∞`=1K`p,a(Ω)∩Bs

p(Lp(Ω)) and B∞NL(Lp(Ω)) := ∩σ>0B
σ
τ (Lτ (Ω)), 1/τ = σ/2+1/p, study

their topological properties (i.e., local convexity, metrizability and completeness),
and show that the embeddings of the type

H∞,sa (Lp(Ω)) ↪→ B∞NL(Lp(Ω)), (E2)

are continuous (in the sense of continuous mappings between topological vector
spaces).

It is worth noting that by the above embeddings, we provide universal functional
analytic tools, which allow to trace back the problem of deriving Besov regularity
assertions in the scale (∗) to the analysis of suitably weighted Hölder or Sobolev
regularity (cf. also Remark 5.10). Hence, besides our intention to use these embed-
dings in connection with the p-Poisson equation, they might prove beneficial for the
regularity analysis of various further problems.
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Constructive approximation of the p-Poisson equation

The second main subject of this thesis is the numerical solution of the p-Poisson
equation (PP). Compared to the numerious and extensive results concerning schemes
for linear problems, the study of methods for quasilinear equations is still in its infancy.
To the author’s best knowledge, by now there mainly exist two publications which
are concerned with numerically feasible approximation schemes for the p-Poisson
equation.

The work of Canuto and Urban [14] treats the fairly general framework of convex
minimization in Banach spaces, where convergence of a steepest descent type method
is established. This setting covers the p-Poisson problem with homogeneous Dirichlet
boundary conditions for all p > 2, yet excluding the case 1 < p ≤ 2.

In [53] Diening et al. proposed an iterative linearization scheme for the p-Poisson
equation with homogeneous Dirichlet boundary conditions. In particular, the case
1 < p ≤ 2 is treated. The main feature of this algorithm, which can be interpreted as
a relaxed Kačanov iteration, is that in each iteration only a linear elliptic subproblem
has to be solved, which is numerically accessible in a stable and approved way by,
e.g., a finite element or wavelet method. In this thesis we want to implement and
test this latter scheme, in connection with an appropriate adaptive wavelet frame
method for the solution of the linear subproblems.

Roughly speaking, the classical Kačanov scheme is an iteration method for solving
nonlinear problems via linearization. An early reference is [86]. For quasilinear elliptic
equations of the type

−div(α (|∇u|)∇u) = f in Ω,

the Kačanov iteration takes the following form. For a given function u0, the new
iterate un+1 is recursively defined as the solution of

−div(α (|∇un|)∇un+1) = f in Ω, n ≥ 0.

Note that now at each iteration only a linear problem has to be solved. It is proved
in [136] under certain assumptions on α that the Kačanov iteration converges to a
fixed point u which solves the original quasilinear problem. An a posteriori error
estimate is derived in [75]. Unfortunately, the p-Poisson equation, i.e. α(ξ) = ξp−2,
does not satisfy these conditions. Moreover, the linear equations which have to
be solved in the course of the Kačanov iteration are not numerically solvable in a
stable way if |∇un| vanishes or gets unbounded at certain points, since then the
weight |∇un|p−2 degenerates. One approach to overcome this problem is to truncate
the weight function α. With the notation ε− ∨ x ∧ ε+ := max{ε−,min{x, ε+}} for
0 < ε− ≤ ε+ <∞ and x ∈ R, the relaxed Kačanov iteration takes the form

−div
(
(ε− ∨ |∇un| ∧ ε+)p−2∇un+1

)
= f in Ω, n ≥ 0. (RKI)

To recover the p-Laplace operator, additionally the truncation interval [ε−, ε+] has to
be increased in the course of the iteration. This is shown in [53], where a convergence
analysis for this scheme is performed under the assumption that the linear, uniformly
elliptic PDEs occuring in (RKI) are solved exactly at each iteration. Clearly, to



8 INTRODUCTION

obtain a fully implementable algorithm, these subproblems have to be approximately
solved by some numerical scheme. We shall pursue an adaptive approach based on
wavelet discretizations here. The second main objective of this thesis can now be
formulated as follows.

(O2) We want to develop and implement a new adaptive solver for the p-Poisson
equation (PP) for all 1 < p < 2. This method shall be based on the relaxed
Kačanov iteration (RKI), where for the numerical solution of the arising linear
elliptic subproblems an adaptive wavelet method shall be utilized. The practical
properties of the new algorithm shall then be analyzed in a series of numerical
tests.

In particular, for the numerical solution of the linear elliptic subproblems, we will
apply the adaptive wavelet Galerkin method as proposed in [18], as well as the
adaptive multiplicative Schwarz frame scheme introduced in [124] (see Section 8.4,
and Section 1.5 for an introduction to wavelet frames). Both methods have been
proved to be of asymptotically optimal complexity, in the sense that they indeed
realize the same convergence rate as the best n-term approximation, while the number
of floating point operations and storage locations needed to compute an approximant
stays proportional to the respective number of degrees of freedom. Beyond that,
numerical tests in [6, 134] revealed that these schemes may outperform a standard
adaptive finite element solver with respect to the degrees of freedom spent.

This thesis provides a unified presentation of the Besov regularity results published
in [30, 78], extended by some further results, additional proofs, as well as the results
regarding (O2), i.e., the implementation and numerical testing of the Kačanov-type
iteration method.

Outline
This work is organized as follows: Part I contains several preliminaries required
for our analysis. In Chapter 1, we introduce all function spaces that will be
used in the thesis (Section 1.1 - Section 1.4) and summarize some notions and
assertions concerning wavelet bases and frames (Section 1.5), including the wavelet
characterization of Besov spaces (Section 1.6). In view of our analysis of (E2) -
including topological properties of the involved spaces - in Chapter 2 we first
recapitulate some topological notions and facts (Section 2.1 & Section 2.2), after
which we derive in Section 2.3 a quasi-/seminorm criterion for the continuity of a
linear map from a locally convex topological vector space into a topological vector
space equipped with a family of quasi-norms (Proposition 2.23).

Part II is devoted to the p-Poisson equation. In Chapter 3, after a short
introduction to the p-Laplace operator, a detailed description of the scope of problems
treated in this thesis is given in Section 3.2. Afterwards, a collection of some
fundamental properties of the p-Poisson equation is contained in Section 3.3.

Part III of this thesis addresses the first main objective (O1), i.e., the Besov
regularity analysis of solutions to the p-Poisson equation. In this context, in Chap-
ter 4 the well-known coherence between approximation rates of wavelet schemes
and the smoothness of the solution in specific scales of Besov spaces is presented.
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Afterwards, in Chapter 5 - Chapter 7 the main results are stated and proved: The
general embeddings of function spaces can be found in Chapter 5. Here, at first in
Section 5.1 an embedding of locally weighted Hölder spaces into the adaptivity scale
of Besov spaces (∗), i.e., an embedding of the type (E1), is presented and proved
(Theorem 5.1). Then, in Section 5.2, after introducing the well-known embedding of
Babuska-Kondratiev spaces into the scale (∗), we treat the case ` → ∞, i.e. (E2).
In Subsection 5.2.1, after showing that H∞,sa (Lp(Ω)) is a Fréchet space (Proposi-
tion 5.7) and B∞NL(Lp(Ω)) an F-space (Proposition 5.8), we prove the continuity of
the embedding (E2) (Theorem 5.9).

Then, in Chapter 6 we are concerned with the Besov regularity of solutions to
the p-Poisson equation on bounded Lipschitz domains. At first, in Section 6.1 we
derive (generic) sufficient conditions on the parameters of C`,α

γ,loc(Ω) which ensure that
the Besov regularity of solutions on general multidimensional domains exceeds their
maximal Sobolev regularity (Theorem 6.5). Then, in Section 6.2 we prove explicit
bounds on the Besov regularity of the unique solution to the p-Poisson equation
with homogeneous Dirichlet boundary conditions in two dimensions - for Lipschitz
domains (Theorem 6.14) as well as for polygonal domains (Theorem 6.17).

In Chapter 7 we study the Besov regularity of solutions to (PP) in the vicinity of
the vertices of a polygonal domain. Therefore, we first collect some results concerning
the singular expansion of solutions to the p-Poisson equation on finite cones, see
Section 7.1. Afterwards, our main (local) Besov regularity results are derived: those
cases in which the right-hand side of (PP) vanishes in a (small) neighborhood of
the corner are treated in Section 7.2 (Theorem 7.12), whereas in Section 7.3 local
regularity assertions are proved under some local growth condition on the source
term (Theorem 7.18).

Part IV of this thesis is concerned with the numerical solution of the p-Poisson
equation, i.e., with (O2). Chapter 8 contains a description as well as a collection of
fundamental properties of the Kačanov-type iteration method under consideration.
After the classical and the relaxed Kačanov iteration have been introduced in
Section 8.1, some of the convergence results from [53] for the exact scheme are
summarized in Section 8.2 and Section 8.3. Finally, the complete implementable
algorithm is given in Section 8.4, including a short description of the adaptive
multiplicative Schwarz frame scheme which we use for the solution of the linear
subproblems. The results of a series of numerical tests are presented in Chapter 9,
where we consider several non-trivial two-dimensional p-Poisson problems with
homogeneous Dirichlet boundary conditions for 1 < p < 2, on a convex as well as on
a nonconvex polygonal domain with a re-entrant corner.

Finally, the thesis is concluded with an Appendix which contains a couple of
auxiliary lemmata and propositions which are needed in our proofs, some additional
results as well as a few alternative proofs.
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Chapter 1

Function Spaces and Wavelet
Decompositions

In this chapter we first recall the definitions of several types of function spaces
that will be needed in this thesis (Section 1.1 - 1.4). Afterwards, we recapitulate
the multiscale decomposition of functions by means of a wavelet basis or frame
(Section 1.5) and collect some assertions such as, e.g., the characterization of Besov
spaces in terms of wavelet expansion coefficients (Section 1.6).

If not stated otherwise, in this chapter we assume Ω ⊆ Rd, d ∈ N, to be
either Rd itself, or some bounded domain, i.e., an open and connected set. Where
necessary, the class of admissable domains may be further restricted, for instance to
bounded Lipschitz domains (i.e., domains which possess a Lipschitz boundary; cf.
[131, Definition 1.103]), which will be explicitly stated then.

Notation

First of all, let us introduce some general notation we will use throughout this
thesis. For families {aJ }J and {bJ }J of non-negative real numbers over a common
index set we write aJ . bJ if there exists a constant C > 0 (independent of the
context-dependent parameters J ) such that

aJ ≤ C · bJ

holds uniformly in J . Consequently, aJ ∼ bJ means aJ . bJ and bJ . aJ . Next,
for a countable (and hence totally ordered) index set J and 0 < p ≤ ∞, by `p(J )
we denote the space of all real-valued sequences c = {cj}j∈J , for which

‖c‖`p(J ) :=


(∑

j∈J |cj|
p
)1/p

, 0 < p <∞,
supj∈J |cj| , p =∞,

is finite. Given a Hilbert space (H, 〈·, ·〉H), we will commonly use the abbreviation
〈·, ·〉 := 〈·, ·〉H if H is implicitly given by the context. As well, for a normed space
V and its (topological) dual V ′ we denote the dual pairing by 〈v′, v〉 := v′(v) for
v′ ∈ V ′, v ∈ V .

13
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1.1 Strongly differentiable functions: (weighted)
Hölder spaces

For ` ∈ N0, by C`(Ω) furnished with the norm∥∥∥g C`(Ω)
∥∥∥ =

∑
|ν|≤`

sup
x∈Ω
|∂νg(x)|

we denote the space of all real-valued functions g on Ω such that ∂νg is uniformly
continuous and bounded on Ω for every multi-index ν = (ν1, . . . , νd) ∈ Nd

0 with
0 ≤ |ν| ≤ `. Therein ∂ν = ∂|ν|/(∂xν1

1 . . . ∂xνdd ) denote the ν-th order strong derivatives.
If ` = 0 we abbreviate the notation and write C(Ω). If K is a compact subset of Ω
(denoted by K ⊂⊂ Ω), the spaces C`(K) are defined likewise. Unless otherwise
stated we restrict ourselves to those K ⊂⊂ Ω which can be described as the closure
of some open and simply connected set. Next let us recall that for g ∈ C`(Ω) the
`-th order Hölder semi-norm with exponent 0 < α ≤ 1 is given by

|g|C`,α(Ω) =
∑
|ν|=`

sup
x,y∈Ω,
x 6=y

|∂νg(x)− ∂νg(y)|
|x− y|α

. (1.1.1)

Consequently, for ` ∈ N0 and 0 < α ≤ 1,

C`,α(Ω) =
{
g ∈ C`(Ω)

∥∥∥g C`,α(Ω)
∥∥∥ =

∥∥∥g C`(Ω)
∥∥∥+ |g|C`,α(Ω) <∞

}
,

denote the (classical) Hölder spaces on Ω. Again we can replace Ω by K at every
occurrence to define the Hölder spaces also for compact subsets K ⊂⊂ Ω. Standard
proofs yield that all the spaces we defined so far are actually Banach spaces; see, e.g.,
[58, 90].

Furthermore, let us introduce the collection of all functions on Ω which are locally
Hölder continuous of order ` ∈ N0 with exponent 0 < α ≤ 1. This set will be denoted
by

C`,α
loc (Ω) =

{
g : Ω→ R g ∈ C`,α(K) for all K ⊂⊂ Ω

}
,

where we simplified the notation by denoting the restrictions g
∣∣∣
K

of functions g from
Ω to compact subsets K by g again. Since the latter collection of functions does not
perfectly fit for our purposes, in the sequel the following closely related (non-standard)
function spaces will be used instead. Therefore, let Ω be some bounded domain, and
let K denote an arbitrary but non-trivial family of compact subsets K ⊂⊂ Ω. Then
for every K ∈ K the quantity

δK = dist(K, ∂Ω), (1.1.2)

i.e., the distance of K to the boundary of Ω, is strictly positive. Thus, for each
` ∈ N0, all 0 < α ≤ 1, and every γ > 0, the space

C`,α
γ,loc(Ω;K)

=
{
g : Ω→ R g ∈ C`,α(K) for all K ∈ K and |g|C`,αγ,loc

= sup
K∈K

δγK |g|C`,α(K) <∞
}
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is well-defined and it is easily verified that |·|C`,αγ,loc
provides a semi-norm for this

space. In our applications (Section 5.1 and Chapter 6) K(c) will be the set of all
closed balls Br = Br(x0) ⊂ Ω (with center x0 ∈ Ω and radius r > 0) such that
the open ball Bc r = Bc r(x0) is still contained in Ω. Here c > 1 denotes a constant
which we assume to be given fixed in advance. Actually, it is not hard to see
that the space C`,α

γ,loc(Ω;K(c)) is independent of c. Consequently, we simply write
C`,α
γ,loc(Ω) = C`,α

γ,loc(Ω;K) for K = K(c). Those spaces are then referred to as locally
weighted Hölder spaces.

Remark 1.1. Obviously, for every choice of the parameters, C`,α
γ,loc(Ω) contains

C`,α(Ω) as a linear subspace, but it also contains functions g whose local Hölder
semi-norms |g|C`,α(K) grow to infinity as the distance δK of K ⊂⊂ Ω to the boundary
tends to zero. However, this possible blow-up is controlled by the parameter γ.
Moreover, in the appendix we show that the intersection of C`,α

γ,loc(Ω) with some Besov
space is a Banach space with respect to the canonical norm; see Proposition A.3.
Finally, we want to mention that the spaces C`,α

γ,loc(Ω) are monotone in γ, meaning
that C`,α

γ,loc(Ω) ⊆ C`,α
µ,loc(Ω) for γ ≤ µ. This can be seen by checking that δµK =

(δK/C)µCµ ≤ (δK/C)γCµ = δγKC
µ−γ for some universal constant C ≥ 1 (e.g.,

C = max{1, diam(Ω)}), thus |·|C`,αµ,loc
. |·|C`,αγ,loc

.

For the sake of completeness, we mention here that (as usual) the set of all
infinitely often (strongly) differentiable functions with compact support in Ω will be
denoted by C∞0 (Ω) or D(Ω). For its dual space we write D′(Ω). Once more, these
definitions apply likewise when Ω is replaced by some compact set K.

1.2 Weakly differentiable functions: Sobolev
spaces

Given 0 < p ≤ ∞ the Lebesgue spaces Lp(Ω) consist of all (equivalence classes of
real-valued) measurable functions g on Ω for which the (quasi-)norm

‖g Lp(Ω)‖ =


(ˆ

Ω
|g(x)|p dx

)1/p

if p <∞,

ess-sup
x∈Ω

|g(x)| if p =∞

is finite.
Moreover, for 1 ≤ p <∞ and ` ∈ N0, let

W `(Lp(Ω)) =

g ∈ Lp(Ω)
∥∥∥g W `(Lp(Ω))

∥∥∥ =
∑
|ν|≤`
‖Dνg Lp(Ω)‖ <∞


denote the classical Sobolev spaces on Ω, where Dν are the weak partial derivatives
of order ν ∈ Nd

0. For fractional smoothness parameters s = `+ β > 0 (with ` ∈ N0
and 0 < β < 1) we extend the definition in the usual way by setting

W s(Lp(Ω)) =
{
g ∈ W `(Lp(Ω)) ‖g W s(Lp(Ω))‖ <∞

}
,
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where here the norm is given by ‖g W s(Lp(Ω))‖ =
∥∥∥g W `(Lp(Ω))

∥∥∥ + |g|W s(Lp(Ω))
and

|g|W s(Lp(Ω)) =
∑
|ν|=`

ˆ
Ω

ˆ
Ω

|Dνg(x)−Dνg(y)|p

|x− y|d+β p dx dy
1/p

denotes the common Sobolev-Slobodeckij semi-norm on Ω.
Furthermore, for s > 0 and 1 < p < ∞, let us denote the closure of C∞0 (Ω)

in the norm of W s(Lp(Ω)) by W s
0 (Lp(Ω)). Then we define W−s(Lp′(Ω)) to be the

dual space of W s
0 (Lp(Ω)), where p′ is determined by the relation 1/p + 1/p′ = 1.

By 〈·, ·〉 we denote the canonical duality pairing on W−s(Lp′(Ω))×W s
0 (Lp(Ω)), i.e.,

〈f, v〉 = f(v) for f ∈ W−s(Lp′(Ω)), v ∈ W s
0 (Lp(Ω)).

For a detailed discussion of the scale of Banach spaces W s(Lp(Ω)), s ∈ R, we
refer to standard textbooks such as [1, 129] and the references given therein.

Finally, for bounded Lipschitz domains Ω ⊂ Rd and 1 ≤ p ≤ ∞, the Lebesgue
spaces Lp(∂Ω) on the boundary ∂Ω consist of all measurable functions g on ∂Ω for
which the norm

‖g Lp(∂Ω)‖ =


(ˆ

∂Ω
|g(x)|p dS

)1/p

if p <∞,

ess-sup
x∈∂Ω

|g(x)| if p =∞

is finite, where dS denotes the usual surface measure on ∂Ω. Likewise, for 0 < s < 1
and 1 ≤ p <∞, the Sobolev spaces on the boundary ∂Ω of some bounded Lipschitz
domain Ω are defined as usual as

W s(Lp(∂Ω)) = {g ∈ Lp(∂Ω) ‖g W s(Lp(∂Ω))‖ <∞} ,

where the norm is given by ‖g W s(Lp(∂Ω))‖ = ‖g Lp(∂Ω)‖+ |g|W s(Lp(∂Ω)) and

|g|W s(Lp(∂Ω)) =
(ˆ

∂Ω

ˆ
∂Ω

|g(x)− g(y)|p

|x− y|d−1+sp dSx dSy
)1/p

.

For further information on Sobolev spaces on surfaces or manifolds, see [70, Chap-
ter 1.3.3] and [83].

The treatment of boundary value problems requires a proper definition of the
restriction of a (Sobolev) function to the boundary. For a bounded Lipschitz domain
Ω and g ∈ C(Ω), we define the trace of g simply as its restriction to the boundary,
i.e.,

tr g = g|∂Ω. (1.2.1)

Now, it turns out that this trace can be generalized to functions g ∈ W 1(Lp(Ω)) in
the following way. For a proof of this result see [70, Theorem 1.5.1.3].
Proposition 1.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and 1 < p < ∞.
Then, the trace operator (1.2.1) has a unique continuous extension to an operator
from W 1(Lp(Ω)) onto W 1−1/p(Lp(∂Ω)). This operator has a continuous right inverse
E independent of p, i.e.,

E : W 1−1/p(Lp(∂Ω))→ W 1(Lp(Ω))

with tr ◦ E = id.
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With the help of this extended trace operator, which we denote as well by tr, the
space W 1

0 (Lp(Ω)) admits the following characterization. A proof can be found in [70,
Corollary 1.5.1.6].

Proposition 1.3. Let Ω ⊂ Rd be a bounded Lipschitz domain and 1 < p <∞. Then,
g ∈ W 1

0 (Lp(Ω)) if and only if g ∈ W 1(Lp(Ω)) and tr g = 0.

1.3 Weighted Sobolev spaces
Besides the classical Sobolev spaces introduced above, we will make use of two classes
of weighted Sobolev spaces. For our purposes it is most suitable to consider weight
functions which essentially depend on the distance to a subset S of the boundary of
Ω. Therefore, in case Ω is a bounded domain, let S ⊆ ∂Ω. If Ω = Rd, we assume
that S ⊆ ∂Ω′ for some bounded domain Ω′. In both cases we suppose that S 6= ∅.
Then, let ρ = ρS : Ω→ [0, 1] be the smooth distance to the set S, meaning that ρ
is smooth on Ω \ S and in the vicinity of S it is equivalent to the distance to that
set. Now, for ` ∈ N0, 1 < p <∞ and a ≥ 0, the Babuska-Kondratiev spaces K`p,a(Ω)
consist of all (equivalence classes of real-valued) measurable functions g on Ω for
which the norm

∥∥∥g K`p,a(Ω)
∥∥∥ =

∑
|ν|≤`

ˆ
Ω

∣∣∣ρ(x)|ν|−aDνg(x)
∣∣∣p dx

1/p

(1.3.1)

is finite. For further reading, we refer to [5] and the references given therein.

Remark 1.4.

(i) For the range of parameters as stated above, the spaces K`p,a(Ω) are Banach
spaces, see [91, Theorem 1.11 & Remark 4.10].

(ii) Note that ∥∥∥· K`p,a(Ω)
∥∥∥ ≤ ∥∥∥· K`+1

p,a (Ω)
∥∥∥

and hence K`+1
p,a (Ω) ↪→ K`p,a(Ω). That is, the Babuska-Kondratiev spaces K`p,a(Ω)

are ordered w.r.t. the smoothness index `. Moreover, if a ≥ ` ∈ N0, then
K`p,a(Ω) ↪→ W `(Lp(Ω)) with∥∥∥· W `(Lp(Ω))

∥∥∥ . ∥∥∥· K`p,a(Ω)
∥∥∥ .

In particular, all K`p,a(Ω) are continuously embedded into Lp(Ω) (with norm
estimate ‖· Lp(Ω)‖ ≤

∥∥∥· K`p,a(Ω)
∥∥∥).

The second, closely related class of weighted Sobolev spaces is defined as follows.
For ` ∈ N, 1 < p < ∞ and some weight paramter β ∈ R we set W`

p,β(Ω) :={
g : Ω→ R

∥∥∥g W`
p,β(Ω)

∥∥∥ <∞}, where

∥∥∥g W`
p,β(Ω)

∥∥∥ :=
∑
|ν|≤`

∥∥∥Dν(ρβg) Lp(Ω)
∥∥∥p
1/p

+
∥∥∥ρβ−`g Lp(Ω)

∥∥∥ . (1.3.2)
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In regularity theory for elliptic PDEs, the set S is typically chosen to be the so-called
singular set of Ω, i.e., the collection of non-smooth boundary points. E.g., for
polyhedral domains, in case d = 2 this singular set consists exactly of the vertices of
Ω, whereas for d = 3 it consists of the vertices and edges of the domain.

Remark 1.5. In this work, the two introduced classes of weighted Sobolev spaces
will occur only in connection with (two-dimensional, non-degenerated) finite cones
or finite polygonal domains in R2. If not explicitly stated otherwise, we will at every
occurance of these spaces implicitly assume that the set S consists of the collection
of vertices (of the polygonal domain or the cone, respectively).

1.4 Generalized smoothness: Besov spaces
A more advanced way to measure the smoothness of functions is provided by the
framework of Besov spaces which essentially generalizes the concept of Sobolev spaces
introduced above. Besov spaces can be defined in various ways which (for a large
range of the parameters involved) lead to equivalent descriptions; cf. [9, 35, 129, 131].
For our purposes the following approach based on iterated differences seems to be the
most reasonable one, since it provides an entirely intrinsic definition when dealing
with Lipschitz domains. We refer, e.g., to [17, 47, 49, 50, 51].

In the following let Ω ⊆ Rd be either Rd itself, or some bounded Lipschitz domain.
Moreover, let r ∈ N and h ∈ Rd. Then Ωr,h denotes the set of all x ∈ Ω such that
the line segment [x, x+ rh] belongs to Ω. Moreover, for functions g on Ω the iterated
difference of order r with step size h is recursively given by

∆1
h(g, x) = g(x+ h)− g(x) and ∆r

h(g, x) = ∆1
h(∆r−1

h (g, ·), x), r ≥ 2,

for every x ∈ Ωr,h. It is easily verified that

∆r
h(g, x) =

r∑
k=0

(−1)r−k
(
r

k

)
g(x+ kh) for all r ∈ N, h ∈ Rd, x ∈ Ωr,h.

Those differences can be used to quantify smoothness: For 0 < p ≤ ∞ and every
g ∈ Lp(Ω) let

ωr(g, t,Ω)p = sup
h∈Rd,|h|≤t

‖∆r
h(g, ·) Lp(Ωr,h)‖ , t > 0, (1.4.1)

denote the modulus of smoothness of order r. It is well-known that ωr(g, t,Ω)p → 0
monotonically as t tends to zero and the faster this convergence the smoother is g.

Now let s = `+ β > 0 with ` ∈ N0 and 0 ≤ β < 1. Then, for 0 < p, q ≤ ∞, the
Besov space Bs

q(Lp(Ω)) is defined as the collection of all g ∈ Lp(Ω) for which the
semi-norm

|g|Bsq(Lp(Ω)) =


(ˆ ∞

0

[
t−s ωr(g, t,Ω)p

]q dt
t

)1/q

if q <∞,

sup
t>0

t−s ωr(g, t,Ω)p if q =∞,
(1.4.2)
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with r ≥ `+ 1 is finite. Endowed with the canonical (quasi-)norm∥∥∥g Bs
q(Lp(Ω))

∥∥∥ = ‖g Lp(Ω)‖+ |g|Bsq(Lp(Ω))

these spaces turn out to be quasi-Banach spaces (and Banach spaces if and only if
min{p, q} ≥ 1). A proof of this fact (for the range of parameters which is relevant for
our purposes) is given by [129, Theorem 2.3.3 & Proposition 3.2.3] in combination
with the norm equivalences shown in [129, Section 2.5.12] and [131, Theorem 1.118
& Remark 1.119]. Roughly speaking, with

∥∥∥g Bs
q(Lp(Ω))

∥∥∥ we can control all (weak)
partial derivatives Dνg up to the order s, measured in Lp(Ω). The influence of the
additional fine index q is rather small compared to the smoothness parameter s and
the integrability index p.

Remark 1.6. Some comments are in order:

(i) We note that different choices of r ≥ bsc + 1 in (1.4.2) lead to equivalent
(quasi-)norms. The same is true when we restrict the range for t in (1.4.2) to
the interval (0, 1). Both results are proved in [48, Chapter 2, Theorem 10.1].
By these two facts we conclude that for all 0 < s0 < s1 and 0 < q, p ≤ ∞ it
holds

Bs1
q (Lp(Ω)) ↪→ Bs0

q (Lp(Ω)). (1.4.3)

(ii) The scale of Besov spaces as defined above is well-studied. In particular,
sharp assertions on embeddings, interpolation and duality properties, char-
acterizations in terms of various building blocks (e.g., atoms, local means,
quarks, or wavelets) and best n-term approximation results are known; see, e.g.,
[35, 47, 51, 77]. Many of them can also be shown using the Fourier analytic
definition of Bs

q(Lp(Ω)) as spaces of (restrictions of) tempered distributions
[64, 129, 131]. It is known [55, 118, 131] that both definitions coincide in the
sense of equivalent (quasi-)norms if

s > σp = d ·max
{

1
p
− 1, 0

}
. (1.4.4)

(iii) Besov spaces are closely related to Sobolev spaces. Indeed, it has been shown
that for 1 < p < ∞ and 0 < s /∈ N the space Bs

p(Lp(Ω)) coincides with
W s(Lp(Ω)) in the sense of equivalent norms; see, e.g., [51, Theorem 6.7] in case
Ω is a bounded Lipschitz domain and [130, Section 2.5.1] for Ω = Rd. Using
the fact that Xs(Lp(Ω)) ↪→ Xs−ε(Lp(Ω)) for X ∈ {Bp,W} and arbitrary small
ε > 0 we thus have

W s+ε(Lp(Ω)) ↪→ Bs
p(Lp(Ω)) ↪→ W s−ε(Lp(Ω)) (1.4.5)

for all 1 < p <∞ and every s > ε > 0.

(iv) For every bounded Lipschitz domain Ω ⊂ Rd there exists a linear extension
operator

EΩ : Bs
q(Lp(Ω))→ Bs

q(Lp(Rd))
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which is simultaneously bounded for all parameters that satisfy (1.4.4); cf.
[115]. Moreover, EΩ is local in the sense that supp(EΩu) is contained in some
bounded neighborhood of Ω; see [35].

Remark 1.7. In addition to Remark 1.6(iv), let us also mention Stein’s linear exten-
sion operator for Sobolev spaces on Lipschitz domains Ω ⊂ Rd [121, Section VI.3.2],
which we denote by ES = ES(Ω). We note that ES : W `(Lp(Ω))→ W `(Lp(Rd)) is si-
multaneously bounded for all ` ∈ N0 and 1 < p <∞, as well as local in the sense that
supp(ESg) is contained in some bounded neighborhood of Ω, see [121, Section VI.3.1,
Theorem 5]. Hansen [76, Lemma 5.1] has shown for polyhedral Lipschitz domains
that Stein’s extension operator is also bounded with respect to the K`p,a-norms, i.e.,
for every a ≥ 0, ES is bounded as a mapping ES : K`p,a(Ω) → K`p,a(Rd). Hence, it
holds ∥∥∥ESg K`p,a(Rd)

∥∥∥ . ∥∥∥g K`p,a(Ω)
∥∥∥

for all g ∈ K`p,a(Ω). Here, K`p,a(Ω) and K`p,a(Rd) are supposed to admit the same
singular set S, consisting of the non-smooth boundary points of Ω (cf. Section 1.3).
Furthermore, for every s > 0, 1 < p <∞ and 0 < q ≤ ∞, the operator ES is bounded
as a mapping Bs

q(Lp(Ω))→ Bs
q(Lp(Rd)), i.e.,

∥∥∥ESg Bs
q(Lp(Rd))

∥∥∥ . ∥∥∥g Bs
q(Lp(Ω))

∥∥∥
for all g ∈ Bs

q(Lp(Ω)), see [76, Lemma 5.2].

The relations of Besov spaces corresponding to different values of the integrability
and fine index are summarized by the next lemma.

Lemma 1.8.

(i) Let Ω ⊆ Rd, d ≥ 2, be either Rd itself, or some bounded Lipschitz domain, as
well as 0 < p < ∞ and s > σp. Then, for all 0 < q0 ≤ q1 ≤ ∞ we have the
continuous embedding

Bs
q0(Lp(Ω)) ↪→ Bs

q1(Lp(Ω)), (1.4.6)

as well as

Bs+ε
q1 (Lp(Ω)) ↪→ Bs

q0(Lp(Ω)) (1.4.7)

for any ε > 0.

(ii) Let Ω ⊂ Rd, d ≥ 2, be some bounded Lipschitz domain, as well as s > 0 and
0 < q ≤ ∞. Then, for all 0 < p0 < p1 ≤ ∞ the continuous embedding

Bs
q(Lp1(Ω)) ↪→ Bs

q(Lp0(Ω)) (1.4.8)

holds true.
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Proof. A proof of part (i) for Ω = Rd can be found in [129, Proposition 2.3.2/2].
In case Ω is a bounded Lipschitz domain, see [131, (1.299)] for the first embedding
and [131, Theorem 1.107] for the second. Let us remark that for the parameter
constellations considered here, our characterization of Besov spaces (see (1.4.2))
coincides with the one used in the references given above in the sense of equivalent
norms, see [129, Section 2.5.12] and [131, Theorem 1.118 & Remark 1.119].

To prove part (ii), note that from Hölder’s inequality (applied for p := p1/p0 > 1,
f̃ := |f |p0 ∈ Lp(Ω) and g ≡ 1) we know that ‖f Lp0(Ω)‖ ≤ |Ω|1/p0−1/p1 ‖f Lp1(Ω)‖
for all 0 < p0 < p1 ≤ ∞. Now the assertion follows readily from (1.4.1) and
(1.4.2).

A result analog to the well-known Sobolev embedding theorem holds true for
Besov spaces, as the following lemma states.

Lemma 1.9. Let Ω ⊆ Rd, d ≥ 2, be either Rd itself, or some bounded Lipschitz
domain.

(i) Let 0 < p0 < p1 ≤ ∞ and s0 > s1 > σp1 with s0 − d/p0 = s1 − d/p1. Then, the
continuous embedding

Bs0
q0 (Lp0(Ω)) ↪→ Bs1

q1 (Lp1(Ω)) (1.4.9)

holds true if 0 < q0 ≤ q1 ≤ ∞ and q0 <∞.

(ii) Let 1 < p < ∞ and σ0 > σ1 > 0, as well as 1/τi = σi/d + 1/p for i ∈ {0, 1}.
Then, the continuous embeddings

Bσ0
τ0 (Lτ0(Ω)) ↪→ Bσ1

τ1 (Lτ1(Ω)) ↪→ Lp(Ω) (1.4.10)

hold true.

Proof. Part (i). If Ω = Rd, the assertion follows from [129, Theorem 2.7.1/1] and [129,
Proposition 2.3.2/2]. In case Ω is a bounded Lipschitz domain, see [131, (1.301)].

Part (ii). The first embedding follows from part (i) of this lemma. A proof of the
second embedding for Ω = Rd can be found in [131, Theorem 1.73(i)]. Finally, this
latter result transfers to the case of bounded Lipschitz domains by an application of
the bounded extension operator EΩ, see Remark 1.6(iv).

In Figure 1.1 some of the above embedding results for Besov spaces are visualized
by means of a so-called DeVore-Triebel diagram. In this (1/τ, σ)-diagram each point
(1/p, s) ∈ (0,∞)2 represents a Besov space Bs

p(Lp(Ω)). Moreover, the points (1/p, 0),
0 < 1/p <∞, stand for the Lebesgue spaces Lp(Ω). The three arrows starting from
(1/p, s) and pointing to the north-west, north and east correspond to the embeddings
(1.4.9) (with qi = pi for i ∈ {0, 1}), (1.4.3) (with q = p), and (1.4.8) (with q = p1),
respectively. The last embedding clearly only holds true if Ω is bounded and the
fine index q of the target space is not decreased. However, if the smoothness of the
target space is decreased by an arbitrary small ε > 0 (indicated by the ε attached to
the respective arrow), with the help of (1.4.7) we conclude that

Bs
p1(Lp1(Ω)) ↪→ Bs−ε

p0 (Lp0(Ω))

for p1 > p0.
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−dp
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Figure 1.1: Embeddings of Besov spaces illustrated by a DeVore-Triebel diagram.

Remark 1.10. The demarcation line for embeddings of Besov spaces into Lp(Ω),
1 < p <∞, is given by

1
τ

= σ

d
+ 1
p
. (1.4.11)

Every Besov space with smoothness and integrability indices corresponding to a point
above that line is continuously embedded into Lp(Ω) (regardless of the fine index
q). This follows from Lemma 1.8(i) and (1.4.10). The points below this line never
embed into Lp(Ω). For spaces Bσ

q (Lτ (Ω)) with (σ, τ) that satisfy (1.4.11) some care is
needed. However, if q = τ , then the embedding still holds, see (1.4.10). Observe that
(1.4.11) exactly coincides with the adaptivity scale of Besov spaces we are interested
in.

1.5 Wavelet bases and frames
In numerous areas of applied mathematics one is interested in the decomposition of
a general function f into components corresponding to different scales of resolution.
Such a multiscale decomposition can formally be written as

f = fj0 +
∑
j≥j0

gj,

where fj0 denotes some coarsest approximation to f and gj = fj+1−fj represents the
fluctuation (additional detail) between the approximations fj and fj+1 at resolution
levels j and j + 1, respectively. Moreover, it is clearly desirable (in particular in the
context of numerical applications) to further decompose each fluctuation gj into local
contributions.

In many situations, wavelet bases constitute an elegant way to achieve this task.
Moreover, they give rise to computationally efficient decomposition and reconstruction
algorithms (see, e.g., [17, Section 2.6]), allow for the characterization of function
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spaces (see Section 1.6) and admit certain cancellation properties, in the sense that
the L2-inner product between a wavelet and a smooth function either vanishes or
decays exponentially with increasing scale j of the wavelet. Due to these properties,
wavelets are widely-used in the context of signal analysis, image processing and
numerical analysis. Here, let us in particular mention the wavelet discretization of
operator equations [24].

In the following Subsection 1.5.1 we give a general introduction to wavelet bases
including a short summary of a common construction method and typical properties of
wavelets. To circumvent certain difficulties that appear in the construction of wavelet
bases on general, more complex domains, the use of (wavelet) frames often constitutes
a practical alternative to bases [31, 32, 33, 85, 111, 134]. In Subsection 1.5.2 we
give a short description of the type of wavelet frames we will use for our numerical
applications in Part IV.

1.5.1 Wavelet bases
In order to keep the notation simple and to focus on the main features, let us first
consider the Hilbert space L2(Ω) with Ω = R. In this classical setting, the term
wavelet usually denotes a univariate function ψ : R→ R which, when subjected to
shifts (i.e., translation by integers) and dyadic dilation, yields an orthogonal basis of
L2(R). That is, the collection of functions

Ψ =
{
ψj,k := 2j/2ψ(2j · −k) j, k ∈ Z

}
forms an orthonormal basis of L2(R), so that each f ∈ L2(R) admits a unique
(wavelet) expansion

f =
∑
j∈Z

∑
k∈Z
〈f, ψj,k〉ψj,k

with unconditional convergence in L2(R). The system Ψ is called orthonormal wavelet
basis of L2(R).

However, there are several generalizations of this definition which drop the re-
quirement of orthogonality. In the following we outline a commonly used construction
principle which leads to so-called biorthogonal wavelet bases. We confine ourselves
hereby to the summary of those results which are relevant for our purposes. A
rigorous treatment of this topic as well as proofs of all subsequent assertions can be
found in [17, Chapter 2].

Before we describe this construction scheme, let us first recall the notion of a
Riesz basis.
Definition 1.11 (Riesz basis). Let H be a separable Hilbert space with inner product
〈·, ·〉H and induced norm ‖·‖H = 〈·, ·〉1/2H , and let J be a countable index set. Then,
a sequence {en}n∈J in H is called Riesz basis for H, if the span of {en}n∈J is dense
in H and if there exist constants 0 < A ≤ B <∞ (called Riesz basis bounds), such
that

A ‖c‖2
`2(J ) ≤

∥∥∥∥∥∥
∑
n∈J

cnen

∥∥∥∥∥∥
2

H

≤ B ‖c‖2
`2(J ) (1.5.1)
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for all c = {cn}n∈J ∈ `2(J ).

Note that every Riesz basis is a Schauder basis, and that property (1.5.1) expresses
the ’stability’ of the expansion in this basis with respect to the coordinates.

Common construction principle

In practice, (biorthogonal) wavelet (Riesz) bases are typically constructed by means
of a multiresolution analysis (MRA) [102, 107], i.e., a sequence (Vj)j∈Z of closed
linear subspaces of L2(R) with

Vj ⊂ Vj+1 and f ∈ Vj ⇔ f(2·) ∈ Vj+1 for all j ∈ Z, (1.5.2)

as well as ⋃
j∈Z

Vj

 = L2(R) and
⋂
j∈Z

Vj = 0.

Moreover, it is assumed that there exists a function φ ∈ V0 such that

Φ0 := {φ(· − k) k ∈ Z}

is a Riesz basis of V0. The function φ is called scaling function, and from (1.5.2) it
follows that the system Φj := {φj,k := 2j/2φ(2j · −k) k ∈ Z} constitutes a Riesz
basis for Vj, j ∈ Z.

A pair of MRA’s V and Ṽ with corresponding scaling fuctions φ and φ̃ is called
biorthogonal, if it holds

〈φ(· − k), φ̃(· − `)〉 = δk,`, k, ` ∈ Z.

Now, given a pair of biorthogonal MRA (V, Ṽ ) with compactly supported scaling
functions (φ, φ̃), we can define (oblique) projectors Pj : L2(R) → Vj and P ∗j :
L2(R)→ Ṽj by

Pjf :=
∑
k∈Z
〈f, φ̃j,k〉φj,k and P ∗j f :=

∑
k∈Z
〈f, φj,k〉φ̃j,k,

respectively. These projectors in turn induce (detail) operators Qj := Pj+1 − Pj and
Q∗j := P ∗j+1 − P ∗j . In fact, Qj is a projector onto a complementary space Wj of Vj in
Vj+1, i.e.,

Qj : L2(R)→ Wj and Vj+1 = Vj ⊕Wj,

where ⊕ denotes the direct sum. Here, an analogous assertion holds true for Q∗j .
Now, it is possible to construct in a systematic way functions ψ ∈ W1 and ψ̃ ∈ W̃1
(the biorthogonal wavelets) with

〈ψ(· − k), ψ̃(· − `)〉 = δk,` and 〈ψ(· − k), φ̃(· − `)〉 = 〈ψ̃(· − k), φ(· − `)〉 = 0

for all k, ` ∈ Z, such that Ψj := {ψj,k := 2j/2ψ(2j · −k) k ∈ Z} and Ψ̃j := {ψ̃j,k :=
2j/2ψ̃(2j · −k) k ∈ Z} constitute Riesz bases of Wj and W̃j , respectively. Altogether,
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the pairs of scaling functions and wavelets provide for each f ∈ L2(R) and j0 ∈ Z
the multiscale decomposition

f =
∑
k∈Z
〈f, φ̃j0,k〉φj0,k +

∑
j≥j0

∑
k∈Z
〈f, ψ̃j,k〉ψj,k (1.5.3)

and satisfy the biorthogonality relations

〈φj0,k, ψ̃j,m〉 = 〈φ̃j0,k, ψj,m〉 = 0, j ≥ j0, and 〈ψj,k, ψ̃`,m〉 = δj,`δk,m

for all j, k, `,m ∈ Z. Moreover, if φ, φ̃ ∈ W ε(L2(R)) for some ε > 0, the systems

Ψ := Φj0 ∪
⋃
j≥j0

Ψj and Ψ̃ := Φ̃j0 ∪
⋃
j≥j0

Ψ̃j (1.5.4)

constitute biorthogonal (wavelet) Riesz bases of L2(R) [17, Section 3.8]. If additionally
φ, φ̃ ∈ C0,ε(R) for some ε > 0, then the systems Ψ and Ψ̃ are also unconditional
bases for Lp(R) for all 1 < p < ∞ [17, Theorem 3.8.3]. Finally, we note that the
expansion (1.5.3) can also be written as

f =
∑
j∈Z

∑
k∈Z
〈f, ψ̃j,k〉ψj,k,

and that the particular case of an orthonormal scaling function in the construction
above, i.e., φ = φ̃, leads to an orthonormal wavelet basis, i.e., ψ = ψ̃.

Typical properties

Typically wavelet bases are constructed in a way such that its elements have compact
support, satisfy appropriate smoothness assumptions and that the spaces Vj admit
polynomial exactness of some order m ∈ N, i.e, there exist constants ck,q ∈ R such
that

xq =
∑
k∈Z

ck,qφ(x− k)

allmost everywhere for all 0 ≤ q < m. The latter property is closely related to the
vanishing moments property of order m of the dual wavelet, i.e.,ˆ

R
xq ψ̃(x) dx = 0

for all 0 ≤ q < m.
As prominent instances of wavelet bases for the space L2(R) let us mention the

compactly supported orthonormal wavelets of Daubechies [44, 45] and the compactly
supported biorthogonal spline wavelets of Cohen, Daubechies and Feauveau [21].

Remark 1.12.

(i) By the commonly used tensor product strategy (see, e.g., [17, Section 2.12]),
univariate wavelet bases can easily be extended to the multivariate case. We
describe and apply this approach in Section 1.6 to construct wavelet bases for
the spaces Lp(Rd), where d ≥ 2 and 1 < p <∞, from univariate Daubechies
wavelets.
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(ii) The construction principle for wavelet bases via MRA we outlined above has
been successfully adapted to the interval Ω = [0, 1], see [2, 11, 16, 22, 40, 110].
An application of the tensor product approach from part (i) of this remark then
readily yields wavelet bases of L2(Ω) for the unit cube Ω = [0, 1]d, d ≥ 2. Clearly,
by scaling, these instances generalize to rectangular domains Ω = I1 × · · · × Id,
where Ij, 1 ≤ j ≤ d, denote bounded intervals.

(iii) For bounded domains Ω ⊂ Rd which can be represented as the disjoint union
of smooth parametric images of the standard cube, i.e., Ω = ∪ni=1Ωi, where
Ωi = Ti((0, 1)d) with smooth isoparametric maps Ti, 1 ≤ i ≤ n, it is further
possible to construct (composite) wavelet bases based on a basis on the reference
cube (0, 1)d, see [12, 13, 41, 42, 43] for a detailed discussion.

Finally, we introduce the following notation which aims to simplify the repre-
sentation of a function in a wavelet basis, in particular when working with bases
on multivariate domains as described in Remark 1.12. We will use this notation
whenever the concrete shape of the wavelet indices is not relevant (e.g., in Chapter 4).

By Φj := {φγ γ ∈ Γj} we denote the scaling function basis of Vj and by
Ψj := {ψλ λ ∈ Λj} the wavelet basis of Wj for j ≥ j0 ∈ Z (with an analogous
notation for the dual MRA). Moreover, we set Ψj0−1 := Φj0 , i.e., at the coarsest level
j0 we denote {φγ γ ∈ Γj0} by {ψλ λ ∈ Λj0−1} (analogously for the dual functions),
so that the wavelet expansion takes the form

f =
∑

j≥j0−1

∑
λ∈Λj
〈f, ψ̃λ〉ψλ =

∑
λ∈Λ
〈f, ψ̃λ〉ψλ,

where we have set Λ := ∪j≥j0−1Λj. We also write Λj := ∪j0−1≤i<jΛi for j ≥ j0.
Further, we use the same notation as in (1.5.4) for the primal/dual wavelet basis.
For an index λ ∈ Λj ∪ Γj we set |λ| := j. For notational convenience and w.l.o.g. we
may assume that j0 = 0.

1.5.2 Aggregated wavelet frames
In view of our applications in Part IV, in this subsection we introduce the concept of
aggregated wavelet frames. This approach aims at a simplified construction principle,
compared to the construction of wavelet bases on general bounded domains (cf.
[41, 42, 43]). Therefore, one gives up the Riesz basis property and works in the
context of frames, while retaining most of the beneficial properties of wavelets.
In particular, aggregated wavelet frames are well suited for the discretization and
adaptive approximation of linear operator equations ([31, 32, 122, 124, 134]). In
Section 8.4 we will utilize such an adaptive solver based on aggregated wavelet frames
for the numerical approximation of certain linear elliptic subproblems.

To begin with, let us shortly summarize some assertions regarding general frames
in Hilbert spaces.

Frames in Hilbert spaces

In the following, let H be a separable Hilbert space with inner product 〈·, ·〉H and
induced norm ‖·‖H = 〈·, ·〉1/2H , and let J be a countable index set.
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Definition 1.13 (Hilbert frame). A sequence {en}n∈J in H is called (Hilbert) frame
for H, if there exist constants 0 < A ≤ B <∞ (called frame bounds) such that

A ‖f‖2
H ≤

∑
n∈J
|〈f, en〉H |

2 ≤ B ‖f‖2
H (1.5.5)

for all f ∈ H.

From the second inequality in (1.5.5) we conclude that the linear operator

F : H → `2(J ), f 7→ {〈f, en〉H}n∈J ,

the so-called analysis operator, is bounded with ‖F‖ ≤
√
B (here ‖·‖ denotes the

usual operator norm). A short computation (cf. [45, (3.2.3)]) yields that the adjoint
of F is given by

F ∗ : `2(J )→ H, {cn}n∈J 7→
∑
n∈J

cnen,

the so-called synthesis operator (with ‖F ∗‖ = ‖F‖). Now, for their composition

S := F ∗F : H → H, f 7→
∑
n∈J
〈f, en〉H en,

the so-called frame operator, the following assertions are well-known. For a proof,
see [15, Lemma 5.1.5].

Lemma 1.14. Let {en}n∈J be a frame for H with frame operator S and frame
bounds 0 < A ≤ B <∞.

(i) The frame operator S is bounded, invertible, self-adjoint and positive definite.
Moreover, it holds A ‖f‖2

H ≤ 〈Sf, f〉H ≤ B ‖f‖2
H for all f ∈ H.

(ii) The sequence {ẽn}n∈J := {S−1en}n∈J is as well a frame for H with frame
bounds B−1, A−1. The frame operator corresponding to {ẽn}n∈J is S−1.

Now, with the help of the frame {ẽn}n∈J from Lemma 1.14(ii), called canonical
dual frame, each element in H admits the following frame decomposition; cf. [15,
Theorem 5.1.6].

Proposition 1.15. Let {en}n∈J be a frame for H with frame operator S and canon-
ical dual frame {ẽn}n∈J . Then, each f ∈ H admits the representation

f = S−1Sf =
∑
n∈J
〈f, en〉H ẽn = SS−1f =

∑
n∈J
〈f, ẽn〉H en (1.5.6)

with unconditional convergence in H.

In addition, if we denote the analysis and synthesis operator corresponding to
the canonical dual frame by F̃ and F̃ ∗, respectively, the frame decomposition (1.5.6)
can also be written as f = F̃ ∗Ff = F ∗F̃ f . From this latter representation we infer
that F ∗ must be onto, and from the first inequality of (1.5.5) we conclude that F is
injective. However, F ∗ is not necessarily injective, as the following remark points
out.
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Remark 1.16.

(i) Every Riesz basis for H is in particular a frame for H, and the Riesz basis
bounds coincide with the frame bounds. A proof of this fact can be found in
[15, Theorem 5.4.1].

(ii) The opposite statement is not true, i.e., a frame is in general not a (Riesz or
Schauder) basis; for an example see [15, Example 5.4.5]. If a frame {en}n∈J
for H is not a (Schauder) basis, then there exists some c = {cn}n∈J ∈ `2(J )
with c 6= 0, such that ∑n∈J cnen = 0 (cf. [15, Theorem 6.1.1]). Hence, frames
generally allow for redundancies, in which case the frame representation (1.5.6)
is not unique.

Aggregated wavelet frames

As outlined at the beginning of this subsection, we now turn to the specific instance
of wavelet frames which are well suited for the discretization of linear elliptic PDEs.
In what follows we summarize a method (introduced in [122]) to construct wavelet
frames for W s

0 (L2(Ω)), s ≥ 0, over a bounded domain Ω ⊂ Rd. Therefore, let us
assume that Ω is decomposed into NΩ ∈ N overlapping subdomains Ωi ⊂ Ω, i.e.,

Ω =
NΩ−1⋃
i=0

Ωi. (1.5.7)

Now, the basic idea is to choose (local) wavelet bases for the subspaces W s
0 (L2(Ωi)),

0 ≤ i < NΩ, and to aggregate them into a (global) frame for W s
0 (L2(Ω)). However,

for this approach an appropriate partition of unity is required.

Definition 1.17. A collection of functions {ηi}NΩ−1
i=0 , ηi : Ω→ R is called a partition

of unity subordinate to the covering {Ωi}NΩ−1
i=0 , Ω = ∪NΩ−1

i=0 Ωi, if for a given s ≥ 0
the following conditions hold true.

(i) supp ηi ⊂ Ωi and ΣNΩ−1
i=0 ηi ≡ 1.

(ii) ηiv ∈ W s
0 (L2(Ωi)) for all v ∈ W s

0 (L2(Ω)).
(iii) ‖ηiv W s(L2(Ωi))‖ . ‖v W s(L2(Ω))‖ for all v ∈ W s

0 (L2(Ω)).

Further, by Ei : W s
0 (L2(Ωi))→ W s

0 (L2(Ω)), 0 ≤ i < NΩ, we denote the canonical
extension by zero. Then, a frame for W s

0 (L2(Ω)) can be constructed as follows. For
a proof, see [134, Proposition 2.8].

Proposition 1.18. Let F (i), 0 ≤ i < NΩ, be a Riesz basis or a frame for W s
0 (L2(Ωi)).

Furthermore, assume that a partition of unity subordinate to the covering {Ωi}NΩ−1
i=0

from (1.5.7) exists. Then, the collection

F :=
NΩ−1⋃
i=0

EiF (i)

is a frame for W s
0 (L2(Ω)).
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Remark 1.19. For general domain decompositions, the existence of a partition of
unity as required by Proposition 1.18 is not always obvious. However, for the two
dimensional L-shaped domain which we will use for our numerical experiments in
Chapter 9,

ΩL = (−1, 1)2 \ [0, 1)2 (1.5.8)

with covering ΩL = Ω0∪Ω1, where Ω0 = (−1, 0)× (−1, 1) and Ω1 = (−1, 1)× (−1, 0),
an appropriate partition of unity has been constructed in [134, Chapter 2.7] which
satisfies the conditions of Definition 1.17 for all s ∈ N.

Now, a common way to construct Riesz bases or frames for W s
0 (L2(Ωi)) on the

patches Ωi is to lift a basis or frame for W s
0 (L2(�)) on a reference domain � to Ωi.

Here, as the reference domain we choose the open unit cube, i.e., � := (0, 1)d. In
detail, for 0 ≤ i < NΩ, let

κi : �→ Ωi

be smooth parametrizations of Ωi with respect to �, where we additionally assume
that the κi are Ck-diffeomorphisms for some k ≥ s and |detDκi| ∼ 1 uniformly in �.
Now, for each 0 ≤ i < NΩ, let F�i be a Riesz basis or frame for W s

0 (L2(�)). Then,
the collection of lifted elements

F (i) := F�i ◦ κ−1
i =

{
e(i) ◦ κ−1

i e(i) ∈ F�i
}
,

forms a Riesz basis or frame for W s
0 (L2(Ωi)), respectively.

Finally, by choosing (e.g., tensor product type) wavelet Riesz bases Ψ�i for
W s

0 (L2(�)) over the unit cube, i.e., setting F�i = Ψ�i in the construction above, by
Proposition 1.18 we obtain a frame for W s

0 (L2(Ω)), which we refer to as an aggregated
wavelet frame.

1.6 Wavelet characterization of Besov spaces
Under suitable conditions on the parameters involved it is possible to characterize
Besov spaces by means of wavelet decompositions [45, 79, 108, 131]. These character-
izations are one of the most important ingredients of wavelet analysis. In particular,
they provide the basis for several numerical applications such as preconditioning and
the design of adaptive algorithms. We refer to [17, 18, 26] for details. Moreover, the
resulting (quasi-)norm equivalences provide a powerful tool which allows to prove
continuous embeddings such as the one stated in Theorem 5.1 in Chapter 5 below.

To start with, we recall some basic assertions related to expansions with respect
to Daubechies wavelets. We essentially follow the lines of [29]: Let {Dm m ∈ N}
denote the univariate family of compactly supported Daubechies wavelets [44, 45].
We remind the reader that Dm has m vanishing moments and the smoothness of
these functions increases without bound as m tends to infinity. So, let us fix an
arbitrary value of m and let ψ0 = φm denote the univariate scaling function which
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generates the wavelet ψ1 = Dm. Furthermore, by E we denote the non-zero vertices
of the unit cube [0, 1]d. Then, in dimension d, the set

ΨM = ΨM(d) =
{
ψe =

d⊗
n=1

ψen e = (e1, . . . , ed) ∈ E
}

of 2d − 1 (tensor product) functions (so-called mother wavelets) generates (by shifts
and dilates) an orthonormal wavelet basis for L2(Rd) as follows: If

I = I(Rd) =
{
Ij,k = 2−jk + 2−j[0, 1]d k ∈ Zd, j ∈ Z

}
denotes the set of all dyadic intervals in Rd, then the basis Ψ consists of all functions
of the form

ψI = ψj,k = 2j d/2 ψ(2j · −k) with I = Ij,k ∈ I, k ∈ Zd, j ∈ Z, and ψ ∈ ΨM .
(1.6.1)

In view of our application below, we remark that there exists some open cube
Q ⊂ Rd, centered at the origin with sides parallel to the coordinate axes, such
that supp(ψ) ⊂ Q for all ψ ∈ ΨM . Accordingly, all basis functions (1.6.1) satisfy
supp(ψI) ⊂ Q(I) = 2−jk + 2−jQ, where

|Q(I)| ∼ |I| = 2−j d and Q(I) ⊂ B(I) = B2−(j+1) diam(Q)(2−jk), I = Ij,k ∈ I.
(1.6.2)

For every 1 < q <∞ the system defined in (1.6.1) also forms an unconditional basis
for Lq(Rd). Hence, for those q each g ∈ Lq(Rd) possesses a wavelet expansion

g =
∑
I∈I

∑
ψ∈ΨM

〈g, ψI〉ψI (1.6.3)

which converges in Lq(Rd).
For our purposes it is convenient to slightly modify this decomposition. Therefore

let S0 be the closure of all finite linear combinations of integer shifts of ⊗d
n=1 φm

in L2(Rd) and let P0 denote the orthogonal projector which maps L2(Rd) onto S0.
Then, for every 1 < q <∞, the operator P0 can be extended to a projector on Lq(Rd)
and in (1.6.3) we can restrict ourselves to those ψI for which

I ∈ I+ = I+(Rd) = {I ∈ I(Rd) |I| ≤ 1},

i.e., to wavelets corresponding to levels j ∈ N0. Moreover, we shall renormalize our
wavelets and set

ψI,p = |I|1/2−1/p ψI for all I ∈ I+, ψ ∈ ΨM , and 0 < p <∞,

such that
∥∥∥ψI,p Lp(Rd)

∥∥∥ =
∥∥∥ψ Lp(Rd)

∥∥∥ does not depend on I. Incorporating these
conventions, from (1.6.3) we conclude that every g ∈ Lq(Rd), 1 < q < ∞, can be
expanded as

g = P0(g) +
∑
I∈I+

∑
ψ∈ΨM

〈g, ψI〉ψI

= P0(g) +
∑
I∈I+

∑
ψ∈ΨM

〈g, ψI,p′〉ψI,p, (1.6.4)

where p′ satisfies 1/p′ = 1− 1/p.
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Lemma 1.20. Let d ∈ N, 0 < p < ∞, and σp < s < r ∈ N. Moreover, choose
m ∈ N such that φm, Dm ∈ Cr(R). Then a function g belongs to the Besov space
Bs
p(Lp(Rd)) if and only if (1.6.4) holds with

∥∥∥P0(g) Lp(Rd)
∥∥∥+

∑
I∈I+

∑
ψ∈ΨM

|I|−s p/d |〈g, ψI,p′〉|p
1/p

<∞. (1.6.5)

Furthermore, (1.6.5) provides an equivalent (quasi-)norm for Bs
p(Lp(Rd)).

The proof of this assertion is quite standard. For the case of Banach spaces
(p ≥ 1) it can be found, e.g., in [108]. For the quasi-Banach case 0 < p < 1 we refer
to [94]. Similar assertions can also be found in [131].

Remark 1.21. We stress the point that due to s > σp every g ∈ Bs
p(Lp(Rd)) belongs

to some Lq(Rd), 1 < q < ∞, such that (1.6.4) is well-defined; see Lemma 1.9
and Remark 1.10. Moreover, we can use the extension operator EΩ described in
Remark 1.6(iv) to obtain similar norm equivalences for functions in Bs

p(Lp(Ω)), where
Ω ⊂ Rd is a bounded Lipschitz domain.

As mentioned already in the introduction, we are particularly interested in Besov
spaces Bσ

τ (Lτ (Ω)) within the adaptivity scale of Lp(Ω), 1 < p < ∞, i.e., spaces
with parameters that satisfy (1.4.11). Therefore, we specialize Lemma 1.20 for the
corresponding spaces on Rd:

Proposition 1.22. Let d ∈ N, 1 < p < ∞, as well as 0 < σ < r ∈ N, and
τ = (σ/d + 1/p)−1. Moreover, choose m ∈ N such that φm, Dm ∈ Cr(R). Then a
function g belongs to the Besov space Bσ

τ (Lτ (Rd)) if and only if

g = P0(g) +
∑
I∈I+

∑
ψ∈ΨM

〈g, ψI,p′〉ψI,p

with ∥∥∥P0(g) Lτ (Rd)
∥∥∥+

∑
I∈I+

∑
ψ∈ΨM

|〈g, ψI,p′〉|τ
1/τ

<∞ (1.6.6)

and (1.6.6) provides an equivalent (quasi-)norm for Bσ
τ (Lτ (Rd)).

Proof. Observe that ψI,τ ′ = |I|1/p
′−1/τ ′ ψI,p′ implies |I|−στ/d |〈g, ψI,τ ′〉|τ = |〈g, ψI,p′〉|τ .

Then the proof easily follows from Lemma 1.20.
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Chapter 2

Topological Vector Spaces and
Continuity

In view of the embeddings of function spaces that will be presented and proved in
Subsection 5.2.1, we introduce some topological notions and facts. In Section 2.1
some topological basics are recapitulated. After this the concept of locally convex
topological vector spaces is outlined in Section 2.2. Quasi-normed spaces, and in
particular topological vector spaces whose topology is induced by a family of quasi-
norms, are treated in Section 2.3. There, we also study linear continuous mappings
from a locally convex topological vector space into such a topological vector space,
which is induced by a family of quasi-norms. Finally, in Section 2.4 the notions of
metrizability and completeness of topological vector spaces are summarized. For
additional reading on this topic we refer to the textbooks [80, 87, 117, 128].

2.1 Topological basics
We begin with a summary of some basic topological notions.
Definition 2.1 (Topology). A topology O on a set X is a collection of subsets
O ⊂ P(X), called open sets, with

(i) ∅, X ∈ O;
(ii) for Ui ∈ O, i ∈ I, where I is an arbitrary index set, it holds ⋃i∈I Ui ∈ O;

(iii) for U, V ∈ O it holds U ∩ V ∈ O.
Then, (X,O) is called a topological space.
Definition 2.2 (Neighborhood). Let (X,O) be a topological space and x ∈ X. A
set V ⊂ X is called neighborhood of x, if there exists an open set U ∈ O with x ∈ U
and U ⊂ V .

A topological space (X,O) is called Hausdorff space (or separated), if for all
x, y ∈ X with x 6= y, there exist neighborhoods U(x), U(y) of x and y, respectively,
such that U(x)∩U(y) = ∅. In other words, any two distinct points can be separated
by neighborhoods. Furthermore, we will need the following notion of a basis of a
topology.

33
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Definition 2.3 (Neighborhood basis). Let (X,O) be a topological space and x ∈ X.
A system of open subsets {Ui(x) i ∈ I} is called neighborhood basis of x, if for each
neighborhood V of x there exists an Index k ∈ I with Uk(x) ⊂ V .

If a neighborhood basis is given for all x ∈ X, every open set U ∈ O can be
expressed in terms of these basis elements, namely, as the union U = ∪x∈UU(x),
where for each x ∈ U , U(x) ⊂ U is an element of the neighborhood basis of x. In
this case, the union of all neighborhood bases forms a basis of the topology O.

Definition 2.4 (Basis). Let (X,O) be a topological space. A collection B ⊂ O of
open sets is called basis for O, if every open set U ∈ O is a union of members of B.

Now, for the moment, let us consider an arbitrary set X without a given topology.
One way to define a topology on X is described in the following.

Definition 2.5 (Local basis). Let X be an arbitrary set.

(i) A nonempty system of subsets {Ui(x) i ∈ I} is called local basis of x ∈ X,
if x ∈ Ui(x) for all i ∈ I, and if for all i, j ∈ I there exists k ∈ I with
Uk(x) ⊂ Ui(x) ∩ Uj(x).

(ii) Assume that a local basis is given for each x ∈ X and let A be a subset of X.
Then, a point x ∈ A is called inner point of A, if there exists an element Ui(x)
of the local basis of x with Ui(x) ⊂ A. The set A is called open, if each point
of A is an inner point.

If a local basis is given for each x ∈ X, the open sets as defined in Definition 2.5(ii)
indeed form a topology on X, which immediately follows from Definition 2.1. We
state this fact by the following lemma.

Lemma 2.6. Let X be an arbitrary set and assume a local basis is given for each
x ∈ X. Then the open sets as defined in Definition 2.5(ii) form a topology on X.

In case X is a normed space, a natural choice for a local basis are the balls with
radius r > 0 centered at x ∈ X, i.e., Br(x) = {y ∈ X ‖x− y‖ < r}. The topology
which is defined via this local basis will be referred to as the norm topology. Note
that in this case the local basis elements Br(x) are open by theirselves, and hence
form a neighborhood basis as well. The closed balls Br(x) also form a local basis and
generate the same topology, but are clearly not open and hence no neighborhood
basis anymore.

Next, we recall the notion of continuity for functions between general topological
spaces.

Definition 2.7 (Continuity). Let X, Y be topological spaces and f : X → Y a
function.

(i) f is called continuous in x ∈ X, if for each (open) neighborhood V of y = f(x)
there exists an (open) neighborhood U of x with f(U) ⊂ V .

(ii) f is called continuous, if f is continuous in x for all x ∈ X.
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Sometimes it is more convenient to use the following, equivalent characterization of
continuity. Its proof is straightforward, see e.g. [104, Theorem 3.28].
Lemma 2.8. Let X, Y be topological spaces and f : X → Y a function. Then the
two following properties are equivalent:

(i) f is continuous.

(ii) For each open set V ⊂ Y , the inverse image f−1(V ) is an open subset of X.
For vector spaces X, which are additionally equipped with a topology O on X,

we recap the notion of topological vector spaces. Here and in the following, K may
denote either R or C.
Definition 2.9 (Topological vector space). Let X be a K-vector space and O a
topology on X. If the vector space addition, as well as the scalar multiplication, are
continuous functions (with respect to O), then (X,O) is called a topological vector
space (TVS).

Note that in a normed vector space, the vector space operations are always
continuous with respect to the norm topology, i.e., to the topology induced by the
norm. Hence, normed vector spaces are always topological vector spaces. In the
subsequent section we will be faced with (function-) spaces that are possibly not
normable, but which are equipped with a family of seminorms.

2.2 Locally convex topological vector spaces
Definition 2.10 (Seminorm). Let X be a K-vector space. A seminorm on X is a
mapping s : X → [0,∞) with the following properties:

(i) s(λx) = |λ|s(x) for all x ∈ X,λ ∈ K.
(ii) s(x+ y) ≤ s(x) + s(y) for all x, y ∈ X.

One can show completely analogously to normed spaces, that a seminorm on a
vector space X induces a topology O on X, and (X,O) is a topological vector space.
But, (X,O) is in general not separated in this case, in contrast to a normed space
equipped with the norm topology. Hence, the concept of locally convex vector space
topologies is introduced.
Definition 2.11 (Locally convex topological vector space). Let X be a K-vector
space and {si i ∈ I} a family of seminorms on X, such that

for each x ∈ X \ {0} there exists i ∈ I with si(x) 6= 0. (2.2.1)
For i ∈ I, r > 0 and x ∈ X we set

Vi,r(x) := {y ∈ X si(y − x) < r} = x+ Vi,r(0).
Then, the topology generated by the local bases

UI0,r(x) :=
⋂
i∈I0

Vi,r(x), I0 ⊂ I finite, r > 0, x ∈ X,

is called the locally convex vector space topology and (X, {si i ∈ I}) is called a
locally convex topological vector space (LCTVS).
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Remark 2.12.

(i) Note that the local basis elements UI0,r(x) are open. Hence, the sets UI0,r(x)
build up a neighborhood basis of x.

(ii) Due to assumption (2.2.1) on the seminorms si, every LCTVS is a Hausdorff
space.

For a proof of the following lemma we refer to [72, Theorem B.5].

Lemma 2.13. Let (X, {si i ∈ I}) be a locally convex topological vector space.
Then, the seminorms si, the vector space addition and the scalar multiplication are
continuous.

Hence, a LCTVS is indeed a topological vector space in the sense of Definition 2.9.
Instead of the definition via a family of seminorms, LCTVSs can equivalently be
defined via convex sets in the following way. Let U be a subset of X. Then, U is
called

· convex, if x, y ∈ U, 0 ≤ t ≤ 1 =⇒ tx+ (1− t)y ∈ U,
· balanced, if x ∈ U, |λ| ≤ 1 =⇒ λx ∈ U,
· absorbent, if x ∈ X =⇒ tx ∈ U for some t > 0.

Now, a topological vector space is locally convex if and only if the origin has a
neighborhood basis of convex, balanced and absorbent sets. We formulate this result
in the following lemma, a proof can be found in [114, Theorem 1.36, Theorem 1.37,
Remark 1.38].

Lemma 2.14. Let (X,O) be a topological vector space.

(i) If the topology O is generated by a family of seminorms as described in Defi-
nition 2.11, i.e., if X is a LCTVS, then the sets UI0,r(0), which constitute a
neighborhood basis of the origin, are convex, balanced and absorbent.

(ii) If the origin admits a neighborhood basis of convex, balanced and absorbent sets,
then X is a LCTVS, i.e., there exists a family of seminorms, which generate
the topology O.

Finally, let us consider linear functions between two LCTVSs. The following
characterization of continuity in terms of the corresponding seminorms is well-known,
for a proof see [72, Lemma B.7 & Remark B.8].

Lemma 2.15. Let (X, {si i ∈ I}), (Y, {s̃j j ∈ J}) be locally convex topological
vector spaces and T : X → Y a linear map. Then, the following properties are
equivalent:

(i) T is continuous.

(ii) T is continuous in 0.

(iii) For each j ∈ J there exists a finite subset I0 ⊂ I and a constant C, such that

s̃j(Tx) ≤ C max
i∈I0

si(x) for all x ∈ X.
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2.3 Quasi-normed spaces

In what follows we will show that, like in the case of semi-norms, any family of quasi-
norms defined on a vector space turns this space into a Hausdorff TVS. Furthermore,
we will derive an assertion similar to Lemma 2.15.

Definition 2.16 (Quasi-norm, p-norm). Let X be a K-vector space.

(i) A quasi-norm on X is a mapping q : X → [0,∞) with the following properties:

(1) If q(x) = 0, then x = 0.
(2) q(λx) = |λ| q(x) for all x ∈ X,λ ∈ K.
(3) There exists a constant C > 0, such that

q(x+ y) ≤ C (q(x) + q(y)) for all x, y ∈ X. (2.3.1)

(ii) Let 0 < p ≤ 1. A p-norm on X is a mapping ‖·‖p : X → [0,∞), which satisfies
properties (1), (2) and

(4) ‖x+ y‖pp ≤ ‖x‖
p
p + ‖y‖pp for all x, y ∈ X.

Note that for a quasi-normed space (X, q), the constant C of inequality (2.3.1) always
satisfies C ≥ 1, since property (2) implies q(0) = 0 so that (3) gives q(x) = q(x+0) ≤
Cq(x) for all x ∈ X. We set

CX := min {C ≥ 1 C satisfies inequality (2.3.1) for all x, y ∈ X} .

If CX = 1, then (X, q) is just a normed space.
Of course, a p-norm with p = 1 is just a norm. We note that every p-norm is a

quasi-norm. This can be seen with the help of Lemma A.13. On the other hand, for
every quasi-norm there exists an equivalent p-norm, which has been proven by Aoki
[3] and Rolewicz [112].

Lemma 2.17 (Aoki-Rolewicz). Let (X, q) be a quasi-normed vector space. Let
p ∈ (0, 1] be such that

C = 21/p−1,

where C is the constant of the quasi-triangle inequality (2.3.1). Then there exists a
p-norm ‖·‖p on X, which is equivalent to q. In detail it holds

‖x‖p ≤ q(x) ≤ 41/p ‖x‖p for all x ∈ X.

In the following, let us consider a vector space Y equipped with a family of
quasi-norms {qj j ∈ J}, where J denotes an arbitrary index set. Like in the case of
semi-norms, the family of quasi-norms defines a topology on Y .
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Proposition 2.18. Let Y be a K-vector space and {qj j ∈ J} a family of quasi-
norms on Y . For j ∈ J , r > 0 and y ∈ Y we set

Vj,r(y) := {z ∈ Y qj(z − y) < r} = y + Vj,r(0). (2.3.2)

Then, the sets

UJ0,r(y) :=
⋂
j∈J0

Vj,r(y), J0 ⊂ J finite, r > 0, y ∈ Y, (2.3.3)

form a local basis on Y , and hence generate a topology O on Y .

Proof. Let y ∈ Y . Clearly, y ∈ UJ0,r(y) for all finite J0 ⊂ J and r > 0. Next, let
UJ0,r0(y) and UJ1,r1(y) be two arbitrary sets as defined in (2.3.3). With J2 := J0 ∪ J1
and r2 := min{r0, r1} we have

UJ2,r2(y) =
⋂
j∈J2

Vj,r2(y)

=
 ⋂
j∈J0

Vj,r2(y)
 ∩

 ⋂
j∈J1

Vj,r2(y)


⊆

 ⋂
j∈J0

Vj,r0(y)
 ∩

 ⋂
j∈J1

Vj,r1(y)


= UJ0,r0(y) ∩ UJ1,r1(y).

Thus, the sets as defined in (2.3.3) form a local basis on Y , and the assertion follows
with Lemma 2.6.

Remark 2.19.

(i) Note that the sets UJ0,r(y) as defined in (2.3.3) are not necessarily open in the
sense that they are contained in O. Furthermore, quasi-norms need not be
continuous. An example of a discontinuous quasi-norm can be found in [3],
where, as a consequence, the sets UJ0,r(y) are not open.

(ii) The situation is quite different for p-norms. In case all quasi-norms qj are
p-norms, i.e., qj = ‖·‖pj with 0 < pj ≤ 1 for all j ∈ J , then the sets UJ0,r(y) as
defined in (2.3.3) are open. Furthermore, then all qj are continuous functions
(with respect to the topology as defined in Proposition 2.18). A proof is given
in the appendix, see Proposition A.18.

Although the sets UJ0,r(y) are not necessarily open, they nevertheless always
contain an open neighborhood of y, as the following lemma states.

Lemma 2.20. Let the assumptions of Proposition 2.18 hold. Then, for each of the
sets UJ0,r(y) as defined in (2.3.3), there exists an open set U , such that y ∈ U and
U ⊆ UJ0,r(y).
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Proof. It suffices to show that each of the sets Vj,r(y) defined in (2.3.2) contains an
open neighborhood V of y. Thus, in the following we fix j ∈ J , r > 0 and y ∈ Y .

Step 1. From Lemma 2.17 we know that there exists a p-norm ‖·‖pj , which is
equivalent to qj. Based on this we define the balls

Ṽj,r(y) :=
{
z ∈ Y ‖z − y‖pj < r

}
(2.3.4)

with respect to this p-norm and show that

Ṽj,ε(y) ⊆ Vj,r(y) ⊆ Ṽj,r(y) for all 0 < ε < 4−1/pjr. (2.3.5)

To do so, let z ∈ Ṽj,ε(y), i.e., ‖z − y‖pj < ε. Then, with Lemma 2.17 we get

qj(z − y) ≤ 41/pj ‖z − y‖pj < 41/pjε < r.

Hence, z ∈ Vj,r(y). Completely analogously, one proves the second inclusion of
(2.3.5).

Step 2. We show that the balls Ṽj,r(y) as defined in (2.3.4) are open. Therefore,
for each qj we choose an equivalent p-norm ‖·‖pj (which exists due to Lemma 2.17).
Now, from (2.3.5) it follows that both families of quasi-norms, {qj j ∈ J} and
{‖·‖pj j ∈ J}, induce the same topology on Y . In this topology, the sets Ṽj,r(y) =
{z ∈ Y ‖z − y‖pj < r} are open, see Proposition A.18.

Step 3. We choose 0 < ε < 4−1/pjr and set V := Ṽj,ε(y). Now, V is open due to
Step 2, and with (2.3.5) we conclude that

y ∈ V ⊆ Vj,r(y),

i.e., we have found an open neighborhood of y, which is contained in Vj,r(y).

We note that due to Lemma 2.20, the local basis elements UJ0,r(y) of y as defined
in (2.3.3) are indeed neighborhoods of y.

Remark 2.21. The topology we found in Proposition 2.18 is Hausdorff, since for
x 6= y ∈ Y and arbitrary j ∈ J , the neighborhoods Vj,r(x) and Vj,r(y) are disjoint
for 0 < r < δj/(2Cj), where δj := qj(x − y) and Cj denotes the constant of the
quasi-triangle inequality of qj.

Next we show that a vector space Y , together with the topology induced by a
family of quais-norms as stated in Proposition 2.18, indeed forms a topological vector
space.

Proposition 2.22. Let Y be a K-vector space and {qj j ∈ J} a family of quasi-
norms on Y . Let O denote the topology induced by {qj j ∈ J}, as stated in
Proposition 2.18. Then (Y,O) is a topological vector space.

Proof. We have to show that the vector space operations are continuous with respect
to O. Let α and β denote the vector addition and scalar multiplication on Y ,
respectively.

Step 1. We consider α : Y × Y → Y and prove continuity in (x, y) ∈ Y × Y .
Thus, we have to show that for all open neighborhoods W (z) of z := α(x, y) = x+ y



40 CHAPTER 2. TOPOLOGICAL VECTOR SPACES AND CONTINUITY

there exists an open neighborhood W (x, y) of (x, y), such that α(W (x, y)) ⊆ W (z).
Now, fix (x, y) and W (z). Since W (z) is open, there exists a local basis element
UJ0,r(z) of z with

UJ0,r(z) ⊆ W (z).

For j ∈ J0, let Cj denote the constant from the quasi-triangle inequality of qj and set

εj := r

2Cj
.

Then, for (x̃, ỹ) ∈ Vj,εj(x)× Vj,εj(y) we have

qj(α(x̃, ỹ)− z) = qj(x̃+ ỹ − (x+ y))
≤ Cj (qj(x̃− x) + qj(ỹ − y))
< Cj (εj + εj)
= r.

Thus, α(x̃, ỹ) ∈ Vj,r(z) and therefore

α
(
Vj,εj(x)× Vj,εj(y)

)
⊆ Vj,r(z).

Next, from Lemma 2.20 we know that there exist open neighborhoods Wj(x) and
Wj(y) of x and y, respectively, which are contained in Vj,εj (x) and Vj,εj (y), respectively.
Hence, Wj(x)×Wj(y) is an open neighborhood of (x, y) with

α (Wj(x)×Wj(y)) ⊆ Vj,r(z).

Setting

W (x, y) :=
⋂
j∈J0

Wj(x)×Wj(y)

yields

α (W (x, y)) ⊆
⋂
j∈J0

Vj,r(z) = UJ0,r(z) ⊆ W (z).

Step 2. It remains to prove continuity of β : K×Y → Y in (λ, y) ∈ K×Y . Thus,
we have to show that for all open neighborhoods W (z) of z := β(λ, y) = λy there
exists an open neighborhood W (λ, y) of (λ, y), such that α(W (λ, y)) ⊆ W (z). Now,
fix (λ, y) and W (z). Since W (z) is open, there exists a local basis element UJ0,r(z)
of z with

UJ0,r(z) ⊆ W (z).

For j ∈ J0, let Cj denote the constant from the quasi-triangle inequality of qj and set

εj := r

2Cj|λ|
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and

δj := εj|λ|
Cj (εj + qj(y)) .

Then, for ỹ ∈ Vj,εj(y) and λ̃ ∈ Wj(λ) := {ξ ∈ K |λ− ξ| < δj} we have

qj(β(λ̃, ỹ)− z) = qj(λ̃ỹ − λy)
= qj(λ(ỹ − y) + (λ̃− λ)ỹ)
≤ Cj

(
|λ|qj(ỹ − y) + |λ̃− λ|qj(ỹ)

)
< Cj (|λ|εj + δjqj(ỹ − y + y))

≤ r

2 + C2
j δj (qj(ỹ − y) + qj(y))

<
r

2 + C2
j δj (εj + qj(y))

= r.

Thus, β(λ̃, ỹ) ∈ Vj,r(z) and therefore

β
(
Wj(λ)× Vj,εj(y)

)
⊆ Vj,r(z).

Next, from Lemma 2.20 we know that there exists an open neighborhood Wj(y) of
y, which is contained in Vj,εj(y). Hence, Wj(λ)×Wj(y) is an open neighborhood of
(λ, y) with

β (Wj(λ)×Wj(y)) ⊆ Vj,r(z).

Setting

W (λ, y) :=
⋂
j∈J0

Wj(λ)×Wj(y)

then yields

β(W (λ, y)) ⊆
⋂
j∈J0

Vj,r(z) = UJ0,r(z) ⊆ W (z)

and completes the proof.

Hence, given a vector space Y and a family of quasi-norms {qj j ∈ J} on Y , we
have seen that the qj induce a topology O on Y which is Hausdorff, and that (Y,O)
is a topological vector space. But, in contrast to the case of seminorms, the resulting
topology is not necessarily locally convex.
Now we have everything at hand to formulate and prove a variant of Lemma 2.15,
where we consider functions mapping a LCTVS X into a topological vector space Y
equipped with a family of quasi-norms.

Proposition 2.23. Let (X, {si i ∈ I}) be a locally convex topological vector space
and Y a topological vector space, where the topology of Y is defined by a family of
quasi-norms {qj j ∈ J} as stated in Proposition 2.18. Furthermore, let T : X → Y
be a linear map. Then, the following properties are equivalent:
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(i) T is continuous.

(ii) T is continuous in 0.

(iii) For each j ∈ J there exists a finite subset I0 ⊂ I and a constant C, such that

qj(Tx) ≤ C max
i∈I0

si(x) for all x ∈ X.

Proof. (i) ⇔ (ii): The first implication is trivial. To show (ii) ⇒ (i), we fix x ∈ X
and note that

T (x̃) = T (x) + T (x̃− x), x̃ ∈ X. (2.3.6)

For ξ ∈ X, by Θξ we denote the translation in X by ξ, i.e., Θξ(x̃) = x̃+ξ. Analogously,
by Υη we denote the translation by η ∈ Y . Then, (2.3.6) can be written as

T (x̃) = (ΥT (x) ◦ T ◦Θ−x)(x̃).

Next, note that from Lemma 2.13 and Proposition 2.22 we know that X and Y are
topological vector spaces. By definition, translations are continuous in topological
vector spaces, and we conclude that Θξ and Υη are continuous. Now, T is continuous
in 0 = Θ−x(x), and therefore T = ΥT (x)◦T ◦Θ−x is continuous in x as a concatenation
of continuous functions.

(ii) ⇒ (iii): Let j ∈ J . Due to Lemma 2.20, the local basis element Vj,1(0Y )
contains an open neighborhood V of 0Y . Since T is continuous in 0X , there exists an
open neighborhood U of 0X , such that T (U) ⊆ V . Because U is open, there exists
an element UI0,r(0X) of the local basis of 0X with

UI0,r(0X) ⊆ U,

and we have

T (UI0,r(0X)) ⊆ T (U) ⊆ V ⊆ Vj,1(0Y ).

Hence,

x ∈ UI0,r(0X) =⇒ T (x) ∈ Vj,1(0Y ),

which is equivalent to

max
i∈I0

si(x) < r =⇒ qj(Tx) < 1. (2.3.7)

Now, let x ∈ X and set

Cx := max
i∈I0

si(x).

If Cx > 0, we have

max
i∈I0

si

(
r

2Cx
x
)

= r

2Cx
max
i∈I0

si(x) = r

2 ,
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and (2.3.7) yields

qj

(
T
(

r

2Cx
x
))

< 1,

thus

qj(Tx) < 2Cx
r

= 2
r

max
i∈I0

si(x),

which proves the assertion with C := 2/r. If Cx = 0, i.e., si(x) = 0 for all i ∈ I0, it
holds that si(λx) = 0 for all i ∈ I0 and all λ ∈ K. Hence, from (2.3.7) we conclude

qj(T (λx)) < 1 for all λ ∈ K,

and therefore

qj(Tx) < |λ|−1 for all λ ∈ Kr {0} ,

which yields qj(Tx) = 0.
(iii)⇒ (ii): From (iii) we know that for all finite J0 ⊂ J there exits a finite I0 ⊂ I

and a constant C > 0, such that

max
j∈J0

qj(Tx) ≤ C max
i∈I0

si(x) for all x ∈ X. (2.3.8)

Now, let V be an open neighborhood of 0Y . Since V is open, there exists an element
UJ0,r(0Y ) of the local basis of 0Y with UJ0,r(0Y ) ⊆ V . Next, from (iii) we know that
for this index set J0 there exists a finite I0 ⊂ I and a constant C, such that (2.3.8)
holds true. Then, for x ∈ UI0,r/C(0X), i.e., for each x ∈ X with

max
i∈I0

si(x) < r

C
,

we know that

max
j∈J0

qj(Tx) < r,

i.e., Tx ∈ UJ0,r(0Y ). Hence, we have

T
(
UI0,r/C(0X)

)
⊆ UJ0,r(0Y ) ⊆ V.

Finally, from Remark 2.12(i) we know that UI0,r/C(0X) is open, and we have shown
that T is continuous in 0X .

2.4 Metrizability, normability and completeness
In this section we recall the notion of completeness for TVSs, and address the question
whether a topological (vector) space is compatible with some metric or norm on that
space (in the sense of Definition 2.24 below).

First recall that a metric on a set X is a mapping d : X ×X → [0,∞), such that
for any x, y, z ∈ X it holds
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(i) d(x, y) = 0⇔ x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

Definition 2.24 (Metrizability, normability).

(i) A topological space (X,O) is called metrizable, if there exists a metric d on X
which generates the topology O, i.e., the open balls Br(x) = {y ∈ X d(y, x) <
r}, where x ∈ X and r > 0, form a basis for O.

(ii) A TVS (X,O) is called normable, if there exists a norm ‖·‖ on X which
generates the topology O, i.e., the open balls Br(x) = {y ∈ X ‖y − x‖ < r},
where x ∈ X and r > 0, form a basis for O.

Now, for TVSs, the following characterization of metrizability holds true [117,
Chapter I, §6].

Proposition 2.25. Let (X,O) be a TVS. Then, the following properties are equiva-
lent:

(i) (X,O) is metrizable.

(ii) (X,O) is a Hausdorff space and has a countable neighborhood basis of the
origin.

Furthermore, if (X,O) is metrizable, the metric d which generates O can be chosen to
be translationally invariant, i.e., it holds d(x, y) = d(x+ z, y + z) for all x, y, z ∈ X.

In order to characterize the normable TVSs, we first need to introduce the notion
of bounded sets.

Definition 2.26 (Bounded set). Let (X,O) be a TVS. A subset U ⊂ X is called
bounded, if for every neighborhood V (0) of the origin there exists t0 ∈ R such that

U ⊂ tV (0)

for all t > t0.

For a proof of the following proposition see [117, Chapter II, §2].

Proposition 2.27. Let (X,O) be a TVS. Then, the following properties are equiva-
lent:

(i) (X,O) is normable.

(ii) (X,O) is a Hausdorff space and has a bounded convex neighborhood of the
origin.

In analogy to metric spaces, we define (sequential) completeness of general TVSs
via the convergence of Cauchy sequences. Recall that in a metric space (X, d) a
sequence (xn)n∈N is called Cauchy sequence, if for all ε > 0 there exists N ∈ N, such
that d(xm, xn) < ε for all m,n ≥ N .
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Definition 2.28 (Cauchy sequence). Let (X,O) be a TVS. Then, a sequence
(xn)n∈N ⊂ X is called Cauchy sequence, if for all neighborhoods V (0) of the origin
there exists N ∈ N, such that

xm − xn ∈ V (0) for all m,n ≥ N.

Remark 2.29. If a TVS (X,O) is metrizable, where we denote the translationally
invariant metric by d, then a sequence (xn)n∈N is a Cauchy sequence in the sense
of Definition 2.28, if and only if (xn)n∈N is a Cauchy sequence with respect to the
metric d.

Now, a TVS (X,O) is called sequentially complete, if every Cauchy sequence
(xn)n∈N ⊂ X converges to a point x ∈ X. A metrizable and sequentially complete
TVS is just called complete.

Definition 2.30 (F-space, Fréchet space). A metrizable and complete TVS is called
F-space. A locally convex F-space is called Fréchet space.

Note that every Banach space is a Fréchet space, and every Fréchet space is an
F-space.
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Part II

The p-Poisson Equation
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Chapter 3

Scope of Problems and Basic
Properties

In this chapter, after a short introduction to the p-Laplace operator, we specify the
class of p-Poisson problems considered in this thesis. Afterwards, a summary of some
basic properties of (solutions to) the p-Poisson equation concludes this chapter.

3.1 The p-Laplacian
Quasilinear equations of the type

−div(α(·, |∇u|)∇u) = F (u) (3.1.1)

appear in several problems in continuum mechanics, in particular in the mathematical
description of non-Newtonian fluids [95]. Other relevant instances of (3.1.1) come
from classical problems, e.g., the mean curvature equation [63, 69] or modern
applications in image processing, with the minimal total variation equation [113]. In
this thesis we will focus on a prominent subclass of equations of the type (3.1.1),
which we introduce in the following.

For 1 < p <∞, the p-Poisson equations are given by

−div
(
|∇u|p−2∇u

)
= f in Ω. (3.1.2)

Here, the differential operator

−∆p(u) := −div
(
|∇u|p−2∇u

)
is called the p-Laplacian. There are various reasons for the importance of this class
of equations. On the one hand, problems of this type arise in many applications, as
outlined in the introduction of this thesis. On the other hand the p-Laplacian has a
similar prototype character for more general quasilinear problems as the ordinary
Laplace equation for linear problems.

At the critical points, i.e., where ∇u = 0, the equation is degenerate for p > 2 and
singular for p < 2. Moreover, note that for p = 2 the equation (3.1.2) corresponds
to the classical Poisson equation and for p = 1 it formally yields the equation of
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total variation minimization [113]. In analogy to the linear case, equation (3.1.2)
with f = 0 is called p-Laplace equation and the corresponding solutions are called p-
harmonic functions. Clearly, the p-Poisson equations (3.1.2) are quasilinear PDEs of
order two. For suitable right-hand side f , the variational formulation corresponding
to (3.1.2) is given by

ˆ
Ω

〈
|∇u|p−2∇u,∇v

〉
dx =

ˆ
Ω
fv dx for all v ∈ W 1

0 (Lp(Ω)). (3.1.3)

In this weak setting, the p-Laplacian can be considered as a mapping from W 1(Lp(Ω))
into its (topological) dual W 1(Lp(Ω))′. Indeed, for any u, v ∈ W 1(Lp(Ω)), with
Hölder’s inequality and Lemma A.13 we estimate∣∣∣∣∣

ˆ
Ω

〈
|∇u|p−2∇u,∇v

〉
dx
∣∣∣∣∣ . ∥∥∥u W 1(Lp(Ω))

∥∥∥p−1 ∥∥∥v W 1(Lp(Ω))
∥∥∥ (3.1.4)

with a constant depending on d and p.

3.2 Scope of p-Poisson problems
Let us briefly describe the scope of problems treated in this work. Throughout this
thesis, we consider the p-Poisson equation (3.1.2) with Dirichlet boundary conditions,
i.e.,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = g on ∂Ω.
(3.2.1)

In the most general case we assume that Ω ⊂ Rd, d ≥ 2, denotes some bounded
domain, 1 < p < ∞, as well as f ∈ W−1(Lp′(Ω)) and g ∈ W 1(Lp(Ω)). Then, we
consider the problem of finding a weak solution to (3.2.1), i.e., we are searching for a
solution u ∈ W 1(Lp(Ω)) to the variational problem

ˆ
Ω

〈
|∇u|p−2∇u,∇v

〉
dx = f(v) for all v ∈ W 1

0 (Lp(Ω)), (3.2.2)

which satisfies

u− g ∈ W 1
0 (Lp(Ω)).

Occasionally, the main focus will be put on the p-Poisson equation with homoge-
neous Dirichlet boundary conditions,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = 0 on ∂Ω,
(3.2.3)

in which case we are searching for a weak solution u ∈ W 1
0 (Lp(Ω)) which satisfies

(3.2.2).



3.3. BASIC PROPERTIES 51

Remark 3.1.

(i) For most of the results in this work, some (minimum) regularity of the boundary
of the domain is required. We will restrict the class of admissible domains
to Lipschitz or polyhedral Lipschitz domains then (e.g., for the numerical
discretization in Part IV).

(ii) Furthermore, for some results a certain (minimum) integrability of the right-
hand side is needed. We will assume that f ∈ Lq(Ω) for appropriate values
of q then. However, in all considered cases Lemma A.8 ensures that f is also
contained in W−1(Lp′(Ω)). Note that the variational formulation (3.2.2) then
takes the form (3.1.3).

3.3 Basic properties
Existence and uniqueness of weak solutions to all problems we are going to consider is
guaranteed by the following fairly general result which is well-known in the literature.
Its proof can be found, e.g., in Lions [100, Chapter 2].

Proposition 3.2 (Existence and uniqueness). For d ≥ 2 let Ω ⊂ Rd denote a
bounded domain and let 1 < p <∞. Moreover, assume f ∈ W−1(Lp′(Ω)), as well as
g ∈ W 1(Lp(Ω)). Then the p-Poisson problem (3.2.1), i.e.,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u− g ∈ W 1
0 (Lp(Ω)),

admits a unique weak solution u ∈ W 1(Lp(Ω)).

In regard of classical regularity, the local Hölder regularity of solutions to the
p-Poisson equation (3.1.2), as well as to more general quasi-linear elliptic problems,
was studied in several papers. We refer, e.g., to Ural’ceva [133], Uhlenbeck [132],
Evans [61], Lewis [97], DiBenedetto [52], Tolksdorf [127], Diening, Kaplický and
Schwarzacher [54], Kuusi and Mingione [93], as well as to Teixeira [125]. The
subsequent proposition can be derived as a special case from [54, Corollary 5.5] (see
also [54, Remark 5.7]).

Proposition 3.3 (C1,α
loc (Ω) regularity). For d ≥ 2 let Ω ⊂ Rd denote any bounded

domain, let 1 < p < ∞, and q > d. Then there exists α ∈ (0, 1) such that
all u ∈ W 1(Lp(Ω)) which are weak solutions to (3.1.2) with f ∈ Lq(Ω) belong to
C1,α

loc (Ω).

Remark 3.4. It is well-known that, for p > 2, solutions to (3.1.2) do not possess
continuous second derivatives in general, even if f is smooth. For instance, a weak
solution to the equation

div
(
|∇u|p−2∇u

)
= 1 on B1(0)

is given by
u(x1, . . . , xd) = p− 1

p
|x1|p/(p−1) ,
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see [120, Proposition 5.4] and [98]. Hence, in this respect ` = 1 in Proposition 3.3 is
sharp at least for p > 2.

Here and in what follows we shall say a given problem is of sharp regularity α if α
is a lower bound for the smoothness (measured in a certain scale) of all solutions to
any problem instances (e.g., for all Lipschitz domains Ω and each f ∈ Lp′(Ω)), but
for every ε > 0 there exists a problem instance such that its corresponding solution
has a regularity strictly less than α + ε.

We conclude this section by noting that the weak comparison principle is well-
known to hold true for the p-Laplace operator. For a proof see, e.g., [126, Lemma 3.1]
or [56, Section 1].

Proposition 3.5 (Weak comparison principle). Let Ω ⊂ Rd, d ≥ 2, be some
bounded Lipschitz domain, 1 < p < ∞ and assume that for u1, u2 ∈ W 1(Lp(Ω)) it
holds −∆p(u1) ≤ −∆p(u2) in the weak sense, i.e.,

ˆ
Ω

〈
|∇u1|p−2∇u1,∇v

〉
dx ≤

ˆ
Ω

〈
|∇u2|p−2∇u2,∇v

〉
dx

for all nonnegative v ∈ W 1
0 (Lp(Ω)). Then, the inequality

u1(x) ≤ u2(x) for a.e. x ∈ ∂Ω

implies that

u1(x) ≤ u2(x) for a.e. x ∈ Ω.

Further results in regard of the p-Poisson equation - in particular Sobolev reg-
ularity assertions or the singular expansion of the solution near conical boundary
points - will be presented further below at the places where we need them.
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Chapter 4

Approximation rates and
smoothness of the solution

The efficiency of a numerical method for the approximate solution of a PDE such
as (3.1.2) is doubtlessly of vital importance. Here, by efficiency we mean the
following: assume that a numerical scheme generates for every error tolerance ε > 0
an approximation uN(ε) to the exact solution u of the PDE with

∥∥∥u− uN(ε)

∥∥∥ < ε for
some norm ‖·‖ we want to measure the error with, and that N(ε) ∈ N represents
the number of parameters wich are needed to describe uN(ε). Typically, N(ε) goes to
infinity as ε tends to zero. In many cases it can be shown that the computational
cost - i.e., the number of arithmetic operations - that is required to compute uN(ε)
stays proportional to N(ε) as ε decreases. Now, we are interested in the efficiency
of this trade-off, i.e., the relation between the number of degrees of freedom N(ε)
and the error of approximation. If N(ε) . ε−1/s or equivalently ε . N(ε)−s for some
s > 0, we say that u is approximated at rate s.

In this chapter we are concerned with the maximal approximation rate that
can be realized by a certain class of numerical schemes. Since in this thesis we
are in particular interested in methods based on wavelet discretizations, we will
consider the two prominent types of approximation referred to as uniform and n-term
wavelet approximation. As we will see, in this setting there exist natural benchmark
schemes, namely best uniform and best n-term wavelet approximation, constituting
the optimal approximation scheme of the respective type. The convergence rate of
these benchmark schemes in turn depends on the smoothness of the function one
wants to approximate in certain scales of Besov spaces.

This chapter is organized as follows. After introducing the general concepts of
uniform (linear) and n-term (nonlinear) wavelet approximation in Section 4.1, we
describe the connection between the best possible approximation rate of such schemes
and the smoothness of the target function one wants to approximate in Section 4.2.
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4.1 Uniform and n-term wavelet approximation

Linear and nonlinear approximation
The central subject in approximation theory is the problem to approximate a (possibly
complicated) function f of a normed linear space (X, ‖· X‖) by (in general simpler)
functions fn ∈ Yn, where (Yn)n∈N =: Y denotes a sequence of subspaces of X.
Hereby one generally distinguishes two types of approximation: In case the subsets
Yn ⊂ X constitute linear subspaces of X we speak of linear approximation, whereas
in nonlinear approximation the subsets Yn can be chosen to be nonlinear manifolds.
In either case, for f ∈ X and n ∈ N we denote the best approximation error in Yn by

En,X,Y(f) := distX (f, Yn) := inf
fn∈Yn

‖f − fn X‖ .

Note that if the subsets Yn are nested and asymptotically dense in X, it follows that
En,X,Y(f) monotonically tends to zero as n → ∞. Moreover, if for some s > 0 it
holds that

En,X,Y(f) . n−s for all n ∈ N,

we say that f can be approximated at rate s.

Approximation by wavelets
For the rest of this chapter we will be concerned with the following setting of wavelet
approximation. Let be given:

• Ω = Rd or Ω ⊂ Rd a bounded Lipschitz domain of the type as described in
Remark 1.12,

• a target function u ∈ Lp(Ω), where 1 < p <∞,

• a unconditional wavelet basis Ψ = {ψλ}λ∈Λ of Lp(Ω), constructed by means
of a pair of biorthogonal MRA (Vj)j≥0 and (Ṽj)j≥0 with compactly supported
tensor product type scaling functions φ and φ̃, see Subsection 1.5.1. For
simplicity, throughout this chapter we assume that φ and φ̃ possess some
minimal smoothness in the sense that φ, φ̃ ∈ C0,ε(Ω) for some ε > 0.

In regard of the wavelet basis Ψ we use the notation as introduced at the end of
Subsection 1.5.1. Then, clearly u admits a unique wavelet expansion

u =
∑
λ∈Λ

cλψλ,

with cλ = 〈u, ψ̃λ〉. Now, a wavelet approximation method is defined by the choice
of the sequence of subsets Yn ⊂ Lp(Ω), n ∈ N, and a rule how to select approxi-
mants fn to f from Yn. In the sequel we will describe two fundamental classes of
wavelet approximation schemes, corresponding to linear and nonlinear approximation,
respectively.
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Uniform approximation

As an instance of linear approximation we will consider uniform wavelet approxima-
tion in the following. Therefore one sets

Yn := Vn = closLp(Ω) span {ψλ λ ∈ Λ, |λ| < n} , n ∈ N0,

i.e., the approximants come from the linear subspaces Vn of Lp(Ω) which are spanned
by all wavelets up to some given fixed refinement level n. Note that in case Ω is a
bounded domain, the spaces Vn are finite dimensional with

Nn := dimVn = #Λn ∼ 2dn. (4.1.1)

We set V := (Vn)n∈N0 . Now, if we measure the approximation error in some subspace
X ⊂ Lp(Ω) with (quasi-)norm ‖· X‖ and u ∈ X as well as Vn ⊂ X, n ∈ N0, the
best approximation error writes as

En,X,V(u) = inf
un∈Vn

‖u− un X‖ .

Clearly, the best one can hope to expect for any uniform wavelet scheme is that its
error propagates like En,X,V(u).

n-term approximation

A prominent instance of nonlinear approximation is n-term wavelet approximation.
There, the approximants are chosen from the sets

Sn :=

∑
λ∈Λ

cλψλ Λ ⊂ Λ, #Λ ≤ n, cλ ∈ R

 ,
i.e., the nonlinear manifold of all functions from Lp(Ω) that can be represented by
a linear combination of at most n arbitrary wavelet basis elements. Clearly these
subspaces are not linear, since in general the sum of two functions from Sn is only
contained in S2n (it holds Sn + Sn = S2n). We set S := (Sn)n∈N0 . Further note
that on bounded domains n-term approximation covers uniform approximation since
Vn ⊂ SNn .

Moreover, let us stress the fact that every adaptive wavelet method is a form
of n-term approximation. Hence, the best we can expect for any adaptive wavelet
method (corresponding to the basis Ψ) is to realize the convergence rate of best
n-term approximation, i.e., that its approximation error decays with the same rate
as the error of best approximation,

En,X,S(u) = inf
un∈Sn

‖u− un X‖ .

In this sense, the approximation rate of best n-term approximation serves as a
benchmark for adaptive methods.
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4.2 Approximation rates
For the remainder of this chapter we are concerned with the decay rate of the best
approximation error for uniform and n-term wavelet approximation, respectively. It
is well-known that these rates are governed by the smoothness of the target function
in certain scales of Besov spaces. First of all, to subsume all functions permitting a
certain rate of approximation, let us introduce the following definition.

Definition 4.1 (Approximation space). Let X be a Banach space and Y = (Yn)n∈N0

a nested sequence of (not necessarily linear) subspaces of X such that ∪n∈N0Yn is
dense in X. Moreover, we assume that aYn = Yn for all a ∈ R, a 6= 0, as well as
0 ∈ Y0 and Yn + Yn ⊂ Yn+b for some b ∈ N0 independent of n ∈ N0. Then, for s > 0
and 0 < q ≤ ∞ we define the approximation space Asq(X,Y) by

Asq(X,Y) :=
{
f ∈ X |f |Asq(X,Y) <∞

}
, (4.2.1)

where

|f |Asq(X,Y) :=
∥∥∥(2sn distX(f, Yn))n∈N0

`q(N0)
∥∥∥ . (4.2.2)

We further set ∥∥∥f Asq(X,Y)
∥∥∥ := ‖f X‖+ |f |Asq(X,Y) . (4.2.3)

Remark 4.2.

(i) The approximation space (4.2.1) is a linear subspace of X with quasi-norm
(4.2.3). This can readily be seen as follows. Since 0 ∈ Yn for all n ∈ N0, it
clearly holds that

∥∥∥f Asq(X,Y)
∥∥∥ = 0 if and only if f = 0. The homogeneity

follows from the assumption that aYn = Yn for all a ∈ R, a 6= 0. Finally, since
Yn+Yn ⊂ Yn+b for some b ∈ N0 independent of n, it holds that En+b,X,Y(f+g) ≤
En,X,Y(f) + En,X,Y(g), from which we derive the validity of the quasi-triangle
inequality.

(ii) In case the subsets Yn, n ∈ N0, in Definition 4.1 are linear subspaces of X and
if q ≥ 1, then (4.2.3) defines a norm on Asq(X,Y). This follows from part (i)
with b = 0.

(iii) From (4.2.2) we immediately deduce the continuous embeddings

As1q1(X,Y) ↪→ As2q2(X,Y) if s1 > s2, or if s1 = s2 and q1 ≤ q2.

Hence, each space Asq(X,Y) is contained in As∞(X,Y), which consists exactly
of those functions f ∈ X that satisfy En,X,Y(f) . 2−sn.

Now, it is well-known that the approximation spaces corresponding to uniform
wavelet approximation in Lp(Ω) can be exactly characterized by means of classical
smoothness spaces. For a proof of the following result see [17, Theorem 3.6.1 &
Section 3.9].
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Proposition 4.3. Let 1 ≤ p, q ≤ ∞. Moreover, let m be the order of polynomial
reproduction of the spaces (Vj)j∈N0 and φ ∈ B s̄

q0(Lp(Ω)) for some s̄ > 0 and q0 > 0.
Then it holds ∥∥∥f Asq(Lp(Ω),V)

∥∥∥ ∼ ∥∥∥f Bs
q(Lp(Ω))

∥∥∥ (4.2.4)

for all 0 < s < min{m, s̄}.

If we measure the approximation error in a Besov norm, an analog result holds
true (cf. [17, Corollary 3.6.1 & Section 3.9]).

Proposition 4.4. Under the same assumptions as in Proposition 4.3 it holds∥∥∥f As−tq (Bt
p(Lp(Ω)),V)

∥∥∥ ∼ ∥∥∥f Bs
q(Lp(Ω))

∥∥∥
for all 0 < t < s < min{m, s̄}.

Next, let us consider approximation rates of best n-term wavelet approximation.
Therefore, let Σ denote the subsequence of S defined by

Σj := S2dj , j ∈ N0,

and note that Σj + Σj ⊂ Σj+1.

Remark 4.5. From the monotonicity of the sequence En,X,S(f), it follows that for
s > 0 and 0 < q <∞ it holds

|f |qAsq(X,Σ) =
∑
j≥0

[
2jsE2dj ,X,S(f)

]q
∼
∑
n≥1

n−1
[
ns/dEn,X,S(f)

]q
, (4.2.5)

where the constants of equivalence depend on d, s, and q. In case q =∞, we have

|f |As∞(X,Σ) = sup
j≥0

(
2jsE2dj ,X,S(f)

)
∼ sup

n≥1

(
ns/dEn,X,S(f)

)
(4.2.6)

with constants depending only on s.

If the approximation error is measured in the Lp(Ω)-norm, the following result
holds true [17, Theorem 4.3.3, Theorem 3.7.7 & Section 3.9].

Proposition 4.6. Let 1 < p <∞. Moreover, let m ∈ N be the order of polynomial
reproduction of the spaces (Vj)j∈N0 and φ ∈ Bs′

q (Lq(Ω)) for some s′ > s̄ > 0 and
1/q = s̄/d+ 1/p. Then, the (quasi-)norm equivalence

‖f Aστ (Lp(Ω),Σ)‖ ∼ ‖f Bσ
τ (Lτ (Ω))‖

holds true for all 0 < σ < min{m, s̄} and 1/τ = σ/d+ 1/p.

For a proof of the following result, see [17, Theorem 4.2.2, Theorem 3.7.7 &
Section 3.9].



60 CHAPTER 4. APPROXIMATION RATES AND SMOOTHNESS

Proposition 4.7. Let 1 < p < ∞ and t > 0. Moreover, let m > t be the order
of polynomial reproduction of the spaces (Vj)j∈N0 and φ ∈ Bs′

q (Lq(Ω)) for some
s′ > s̄ > t and 1/q = (s̄− t)/d+ 1/p. Then, the (quasi-)norm equivalence

∥∥∥f Aσ−tτ (Bt
p(Lp(Ω)),Σ)

∥∥∥ ∼ ‖f Bσ
τ (Lτ (Ω))‖

holds true for all t < σ < min{m, s̄} and 1/τ = (σ − t)/d+ 1/p.

Remark 4.8. An analogous result holds true if the approximation error is measured
in a Sobolev norm with integral smoothness parameter. Under the assumptions of
Proposition 4.7 with t = ` ∈ N, the (quasi-)norm equivalence

∥∥∥f Aσ−`τ (W `(Lp(Ω)),Σ)
∥∥∥ ∼ ‖f Bσ

τ (Lτ (Ω))‖

holds true for all ` < σ < min{m, s̄} and 1/τ = (σ − `)/d+ 1/p. For a proof of this
result see [17, Remark 4.3.3].

Note that Proposition 4.3 and Proposition 4.6 (Proposition 4.4 and Proposi-
tion 4.7) provide an exact characterization of the approximation spaces corresponding
to uniform and n-term wavelet approximation when the error is measured in the
Lp(Ω)-norm (Bt

p(Lp(Ω))-norm). The relevant scales of function spaces are visualized
by a (1/τ, σ)-DeVore-Triebel diagram in Figure 4.1 (Figure 4.2).

1

σ

Bsp(Lp(Ω))s
Bsτ0

(Lτ0(Ω)), 1
τ0

= s
d + 1

p

1
p

Lp(Ω) 1
τ

1
τ = σ

d + 1
p

1
τ0

Figure 4.1: Scales of function spaces governing the convergence rates of uniform
(linear) and n-term (nonlinear) wavelet approximation in Lp(Ω).
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1

σ

Btp(Lp(Ω))t

s+ t
Bs+t
τ0

(Lτ0(Ω)), 1
τ0

= s
d + 1

p

1
p

Bs+t
p (Lp(Ω))

1
τ

1
τ = σ−t

d + 1
p

1
τ0

Figure 4.2: Scales of function spaces governing the convergence rates of uniform
(linear) and n-term (nonlinear) wavelet approximation in Bt

p(Lp(Ω)).

Now, let us compare the above results for uniform and n-term wavelet approxi-
mation, respectively, when measuring the approximation error in the Lp(Ω)-norm on
a bounded domain. Therefore, from Proposition 4.3 and Proposition 4.6 we deduce
the following corollaries.

Corollary 4.9. Let 1 < p <∞ and Ω be bounded, and let (Vj)j∈N0 and φ satisfy the
assumptions of Proposition 4.3. Then, for 0 < s < min{m, s̄}, it holds

∞∑
n=0

[
N s/d
n En,Lp(Ω),V(u)

]p
< ∞ ⇐⇒ u ∈ Bs

p(Lp(Ω)). (4.2.7)

Consequently, for arbitrarily small 0 < ε < s, the implications

f ∈ W s(Lp(Ω)) =⇒ En,Lp(Ω),V(f) . N−(s−ε)/d
n for all n ∈ N0, (4.2.8)

and

En,Lp(Ω),V(f) . N−s/dn for all n ∈ N0 =⇒ f ∈ W s−ε(Lp(Ω)), (4.2.9)

hold true.

Proof. The equivalence (4.2.7) readily follows from Proposition 4.3 by setting q = p
and using that Nn ∼ 2dn, see (4.1.1). Next, from (4.2.7) and (1.4.5) we derive (4.2.8).
To prove (4.2.9), note that from En,Lp(Ω),V(f) . N−s/dn , i.e., N (s−ε)/d

n En,Lp(Ω),V(f) .
N−ε/dn , it follows that ∑∞n=0

[
N (s−ε)/d
n En,Lp(Ω),V(u)

]p
.
∑∞
n=0 2−εnp < ∞, and apply

(4.2.7) and (1.4.5).

Corollary 4.10. Let 1 < p <∞, and let (Vj)j∈N0 and φ satisfy the assumptions of
Proposition 4.6. Then, for 0 < σ < min{m, s̄} and 1/τ = σ/d+ 1/p, it holds

∞∑
n=1

n−1
[
nσ/dEn,Lp(Ω),S(u)

]τ
< ∞ ⇐⇒ u ∈ Bσ

τ (Lτ (Ω)). (4.2.10)
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Consequently, the implications

f ∈ Bσ
τ (Lτ (Ω)) =⇒ En,Lp(Ω),S(f) . n−σ/d for all n ∈ N, (4.2.11)

and

En,Lp(Ω),S(f) . n−σ/d for all n ∈ N =⇒ f ∈ Bσ̃
τ̃ (Lτ̃ (Ω)) (4.2.12)

hold true for all 0 < σ̃ < σ and 1/τ̃ = σ̃/d+ 1/p.

Proof. The equivalence (4.2.10) readily follows from Proposition 4.6 and (4.2.5),
and (4.2.10) clearly implies (4.2.11). To prove (4.2.12), choose 0 < σ̃ < σ and
set 1/τ̃ = σ̃/d + 1/p and ε = σ − σ̃ > 0. Then, from En,Lp(Ω),S(f) . n−σ/d,
i.e., nσ̃/dEn,Lp(Ω),S(f) . n−ε/d, we conclude that ∑∞n=1 n

−1
[
nσ̃/dEn,Lp(Ω),S(u)

]τ̃
.∑∞

n=1 n
−(1+ετ̃/d) <∞, and hence f ∈ Bσ̃

τ̃ (Lτ̃ (Ω)) due to (4.2.10).

Hence, under appropriate assumptions on the wavelet basis, the rate of best
uniform wavelet approximation in Lp(Ω) is essentially governed by the smoothness s
of the target function in the scale of Sobolev spaces W s(Lp(Ω)), whereas the rate of
best n-term wavelet approximation is determined by the smoothness σ of the target
function in the scale of Besov spaces Bσ

τ (Lτ (Ω)), 1/τ = σ/d + 1/p. Consequently,
adaptive wavelet schemes potentially pay off, if

f ∈ Bσ
τ (Lτ (Ω)), 1

τ
= σ

d
+ 1
p
, for some σ > s∗ := sup {s > 0 f ∈ W s(Lp(Ω))} .

We finish this chapter with some additional notes on the corresponding scales of
function spaces.

Remark 4.11.

(i) Note that with increasing parameter s the functions in Bs
p(Lp(Ω)) become

smooth in the classical sense due to Sobolev’s embedding theorem, whereas
functions from Bσ

τ (Lτ (Ω)), 1/τ = σ/d+ 1/p, may still be discontinuous even
for large values of σ. This can be seen by the following example on the
unit interval Ω = (0, 1). Let f = χ[1/2,1). A short computation yields that
|f |Bsq(Lp(Ω)) is finite if and only if

´ 1
0 t

q(1/p−s)t−1 dt is finite. Thus, we conclude
that f ∈ Bs

p(Lp(Ω)) if and only if 0 < s < 1/p, whereas f ∈ Bσ
τ (Lτ (Ω)) for all

σ > 0 and 1/τ = σ + 1/p.

(ii) For the solution u to a linear elliptic boundary value problem on a polygonal
domain Ω with right-hand side f ∈ W s(L2(Ω)) for some s ≥ −1, it holds that
u /∈ W s(L2(Ω)) for s > 3/2 in general (cf. [82]), but u ∈ Bσ

τ (Lτ (Ω)) for all
0 < σ < s+ 2, where 1/τ = σ/2 + 1/2, see [25].



Chapter 5

General Embeddings

One of the main goals of this thesis is the study if adaptive wavelet schemes for the
numerical solution of the p-Poisson equation (3.1.2) admit the potential to outperform
uniform methods, i.e., to explore if the development (and use) of adaptive methods is
theoretically justified for this class of problems. According to the results of Chapter 4,
to this end we have to compare the convergence rates of best n-term and best
uniform approximation, which in turn are governed by the regularity of the solution
in the adaptivity scale of Besov spaces and the Sobolev smoothness, respectively;
cf. Corollary 4.10 and Corollary 4.9 for the case of Lp(Ω)-error measurement we are
interested in.

To derive nontrivial Besov regularity assertions for solutions of the p-Poisson
equation, we follow two approaches. Firstly, for general Lipschitz domains it is well-
known that the solution possesses certain local Hölder regularity (see Proposition 3.3).
Hereby, the Hölder seminorm over compact subsets of the domain usually tends
to infinity as these subsets approach the boundary of the domain, but this growth
can be controlled by some power of the distance to the boundary. In summary, as
we will see in Chapter 6, one can show the containedness of the solution in certain
locally weighted Hölder spaces C`,α

γ,loc(Ω). Secondly, on polygonal domains it is known
that the solution admits a singular expansion in the vicinity of a corner of the
domain, which implies the membership of the solution in certain Babuska-Kondratiev
spaces K`p,a as will be shown in Chapter 7. Here, it turns out that in some cases the
solution even possesses arbitrary high Babuska-Kondratiev regularity ` ∈ N (in a
neighborhood of the corner).

In order to exploit the just mentioned additional information about the solution,
we derive appropriate general embeddings of function spaces in this chapter. In
Section 5.1 we prove that

C`,α
γ,loc(Ω) ∩ Bs

p(Lp(Ω)) ↪→ Bσ
τ (Lτ (Ω)), 1

τ
= σ

d
+ 1
p
,

under certain conditions on the parameters involved. Afterwards, we introduce the
well-known embeddings of the type

K`p,a(Ω) ∩Bs
p(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)), 1
τ

= σ

2 + 1
p
, (5.0.1)

63



64 CHAPTER 5. GENERAL EMBEDDINGS

at the beginning of Section 5.2. As noted above, some solutions are contained in
K`p,a for all ` ∈ N. For that reason, in Subsection 5.2.1 we then consider (5.0.1) as
`→∞, i.e., we examine an embedding of the type

∞⋂
`=1
K`p,a(Ω) ∩Bs

p(Lp(Ω)) ↪→
⋂
σ>0

Bσ
τ (Lτ (Ω)), 1

τ
= σ

2 + 1
p
.

Besides the continuity of this embedding, we will furthermore prove some topological
properties of the involved function spaces.

We stress the fact that all subsequent embeddings are independent of the p-
Poisson problem and therefore universally applicable - for instance to derive Besov
regularity assertions for solutions to some other PDE. In this sense, the results of
this chapter are of certain interest on their own.

5.1 Embeddings of locally weighted Hölder
spaces

In this section we prove that, under some growth condition on the local Hölder
semi-norm, the intersection Bs

p(Lp(Ω)) ∩ C`,α
γ,loc(Ω) is continuously embedded into

certain Besov spaces Bσ
τ (Lτ (Ω)) in the adaptivity scale. The results of this section

have been primarily published in [30]. Now, the assertion reads as follows.

Theorem 5.1. For d ∈ N with d ≥ 2, let Ω ⊂ Rd denote some bounded Lipschitz
domain. Moreover, let s > 0 and 1 < p < ∞, as well as ` ∈ N0, 0 < α ≤ 1, and
0 < γ < `+ α + 1/p. If we define

σ∗ =


`+ α if 0 < γ <

`+ α

d
+ 1
p
,

d

d− 1

(
`+ α + 1

p
− γ

)
if `+ α

d
+ 1
p
≤ γ < `+ α + 1

p
,

(5.1.1)

then for all

0 < σ < min
{
σ∗,

d

d− 1 s
}

and 1
τ

= σ

d
+ 1
p

(5.1.2)

we have the continuous embedding

Bs
p(Lp(Ω)) ∩ C`,α

γ,loc(Ω) ↪→ Bσ
τ (Lτ (Ω)),

i.e., for all u ∈ Bs
p(Lp(Ω)) ∩ C`,α

γ,loc(Ω) it holds

‖u Bσ
τ (Lτ (Ω))‖ . max

{∥∥∥u Bs
p(Lp(Ω))

∥∥∥ , |u|C`,αγ,loc

}
. (5.1.3)

Let us briefly comment on Theorem 5.1 before we give its proof: From the theory
of function spaces it is well-known that (standard) embeddings between Besov spaces,
e.g.,

Bs
p(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)),
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are valid only if the regularity of the target space is at most as large as the smoothness
of the space we start from, i.e., only if σ ≤ s. Theorem 5.1 now states that,
under suitable assumptions on the parameters involved, exploiting the additional
information on locally weighted Hölder regularity (encoded by the membership of u in
C`,α
γ,loc(Ω)) enables us to prove that functions from Bs

p(Lp(Ω)) indeed possess a higher-
order Besov regularity σ > s measured in the adaptivity scale corresponding to Lp(Ω).
Since Bs

p(Lp(Ω)) almost equals the Sobolev space W s(Lp(Ω)) (cf. Remark 1.6(iii))
this shows that approximating u ∈ W s(Lp(Ω)) ∩ C`,α

γ,loc(Ω) in an adaptive way is
justified whenever σ∗ defined by (5.1.1) is larger than s. At this point we remark that
σ∗ is a continuous piecewise linear function of γ ∈ (0, `+ α + 1/p) which decreases
to zero when γ approaches its upper bound. Hence, in any case 0 < σ∗ ≤ ` + α.
Thus, for a fixed value of s, the maximal regularity d/(d− 1) · s is achieved if `+ α
is sufficiently large and γ is small enough.

The proof of Theorem 5.1 given below is inspired by ideas first given in [29].
For the rest of this section we adopt the notation of Section 1.6. Due to extension
arguments in conjunction with the wavelet characterization of Besov spaces on Rd

(see Remark 1.21) it suffices to find suitable estimates for the wavelet coefficients
〈u, ψI,p′〉, I ∈ I+, ψ ∈ ΨM , which then imply (5.1.3). The contribution of (the
relatively small number of) wavelets supported in the vicinity of the boundary of Ω
(boundary wavelets) can be bounded in terms of the norm of u in Bs

p(Lp(Ω)). Here
the restriction σ < s · d/(d − 1) comes in. The coefficients corresponding to the
remaining interior wavelets can be upper bounded by the semi-norm of u in C`,α

γ,loc
using a Whitney-type argument which then gives rise to the restriction σ < σ∗. The
detailed proof reads as follows:

Proof (of Theorem 5.1). Step 1. Let u ∈ Bs
p(Lp(Ω))∩C`,α

γ,loc(Ω). Since for 1 < p <∞
it is σp = 0 and s > 0, every such u can be extended to some EΩu ∈ Bs

p(Lp(Rd)); see
Remark 1.6(iv). In particular, EΩu ∈ Lp(Rd) such that it can be written as

EΩu = P0(EΩu) +
∑

(I,ψ)∈I+×ΨM
〈EΩu, ψI,p′〉ψI,p.

Here the ψI form a system of Daubechies wavelets (1.6.1), where m ∈ N is chosen
such that m > ` and φm, Dm ∈ Cr(R) for some r ∈ N with r > max{σ, s}; see
Section 1.6 for details. We restrict the latter expansion and consider only those
wavelets for which (I, ψ) belongs to

Λ =
⋃
j∈N0

Λj,

where we set

Λj =
{

(I, ψ) ∈ I+ ×ΨM Bc(I) ∩ Ω 6= ∅ and |I| = 2−jd
}
.

Therein Bc(I) denotes the ball B(I) (see (1.6.2)) concentrically expanded by the
factor c > 1 which we used to define the class C`,α

γ,loc(Ω); cf. Section 1.1. Note that
thus supp(ψI) ⊂ Bc(I) for all I and ψ. Next we split up the index sets Λj once more
and write

Λj =
⋃
n∈N0

Λj,n
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with

Λj,n =
{

(Ij,k, ψ) ∈ Λj n 2−j ≤ dist
(
2−jk, ∂Ω

)
< (n+ 1) 2−j

}
,

for every dyadic level j ∈ N0. Note that, due to the boundedness of Ω, there exists
an absolute constant C1 such that Λj,n = ∅ for all j ∈ N0 and n > C1 2j. For
example, we may take C1 = max{diam(Ω), c diam(Q)}. Moreover, our assumption
that Ω is a bounded Lipschitz domain ensures that all remaining index sets satisfy
at least |Λj,n| . 2−j(d+1). Finally, we note that all balls Bc(I) corresponding to
(I, ψ) ∈ Λj,n with j ∈ N0 and n strictly larger than C0 = dc diam(Q)/2e are
completely contained in Ω. These considerations justify the disjoint splitting Λ =(⋃

j∈N0 Λbnd
j

)
∪
(⋃

j∈N0 Λint
j

)
, where

Λbnd
j =

C0⋃
n=0

Λj,n and Λint
j =

C1 2j⋃
n=C0+1

Λj,n

correspond to the sets of boundary and interior wavelets at level j ∈ N0, respectively.
Observe that then ũ = u0 + u1 + u2, defined by

u0 = P0(EΩu), u1 =
∑
j∈N0

∑
(I,ψ)∈Λbnd

j

〈EΩu, ψI,p′〉ψI,p, u2 =
∑
j∈N0

∑
(I,ψ)∈Λint

j

〈u, ψI,p′〉ψI,p,

is an extension of u as well, i.e., it satisfies ũ
∣∣∣
Ω

= u. In Step 2–4 below we will show
that for the adaptivity scale τ = (σ/d+ 1/p)−1 it holds∥∥∥u0 Bσ

τ (Lτ (Rd))
∥∥∥ . ∥∥∥P0(EΩu) Lp(Rd)

∥∥∥ if 0 < σ, (5.1.4)

∥∥∥u1 Bσ
τ (Lτ (Rd))

∥∥∥ .
∑
j∈N0

∑
(I,ψ)∈Λbnd

j

|I|−s p/d |〈EΩu, ψI,p′〉|p


1/p

if 0 < σ <
d

d− 1 s,

(5.1.5)∥∥∥u2 Bσ
τ (Lτ (Rd))

∥∥∥ . |u|C`,αγ,loc
if 0 < σ < σ∗.

(5.1.6)

Suppose we already know that those relations hold for all σ and τ that satisfy (5.1.2).
Then we can extend the index set in (5.1.5) from ⋃

j∈N0 Λbnd
j to I+ ×ΨM and the

wavelet characterization of EΩu ∈ Bs
p(Lp(Rd)) (cf. Lemma 1.20) together with the

continuity of EΩ implies∥∥∥u0 + u1 Bσ
τ (Lτ (Rd))

∥∥∥ . ∥∥∥EΩu Bs
p(Lp(Rd))

∥∥∥ ∼ ∥∥∥u Bs
p(Lp(Ω))

∥∥∥ (5.1.7)

which is finite due to our assumptions. Therefore, the special choice g = ũ =
(u0 + u1) + u2, in conjunction with (5.1.6) and (5.1.7), yields the desired estimate

‖u Bσ
τ (Lτ (Ω))‖ ∼ inf

{∥∥∥g Bσ
τ (Lτ (Rd))

∥∥∥ g ∈ Bσ
τ (Lτ (Rd)) with g

∣∣∣
Ω

= u
}

.
∥∥∥u0 + u1 Bσ

τ (Lτ (Rd))
∥∥∥+

∥∥∥u2 Bσ
τ (Lτ (Rd))

∥∥∥
. max

{∥∥∥u Bs
p(Lp(Ω))

∥∥∥ , |u|C`,αγ,loc

}
.
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This proves Theorem 5.1 since u ∈ Bs
p(Lp(Ω)) with s > 0 = σp particularly implies

that u ∈ Lp(Ω) ↪→ Lτ (Ω), due to τ < p and the boundedness of Ω. Hence,
u ∈ Bσ

τ (Lτ (Ω)).
Step 2 (Estimate for u0). To show the bound on the projection onto the coarse

levels let τ = (σ/d+ 1/p)−1 and σ > 0. We note that u0⊥ψI,p′ for all I ∈ I+ and
ψ ∈ ΨM , i.e., u0 = P0(u0). Moreover, by definition, this equals P0(EΩu) which has
compact support in Rd since EΩ is local; see Remark 1.6(iv). Proposition 1.22, i.e.,
the wavelet characterization of Bσ

τ (Lτ (Rd)), therefore gives∥∥∥u0 Bσ
τ (Lτ (Rd))

∥∥∥ ∼ ∥∥∥P0(EΩu) Lτ (Rd)
∥∥∥ . ∥∥∥P0(EΩu) Lp(Rd)

∥∥∥ ,
due to τ < p. That is, we have shown (5.1.4).

Step 3 (Estimate for u1). Here we establish the bound on the contribution of all
wavelets near ∂Ω. To this end, assume again that τ = (σ/d+ 1/p)−1 with σ > 0.
We fix j ∈ N0 for a moment and apply Hölder’s inequality (with q = p/τ > 1) to
estimate

∑
(I,ψ)∈Λbnd

j

|〈EΩu, ψI,p′〉|τ ≤
∣∣∣Λbnd

j

∣∣∣1−τ/p
 ∑

(I,ψ)∈Λbnd
j

|〈EΩu, ψI,p′〉|p

τ/p

. 2j(d−1)(1−τ/p) 2−j s τ
 ∑

(I,ψ)∈Λbnd
j

|I|−s p/d |〈EΩu, ψI,p′〉|p

τ/p

.

Taking the sum over all levels j and using Hölder’s inequality once more (with the
same q), we find∑

j∈N0

∑
(I,ψ)∈Λbnd

j

|〈EΩu, ψI,p′〉|τ (5.1.8)

.

∑
j∈N0

[
2(d−1)−s τ/(1−τ/p)

]j1−τ/p
∑
j∈N0

∑
(I,ψ)∈Λbnd

j

|I|−s p/d |〈EΩu, ψI,p′〉|p

τ/p

.

∑
j∈N0

∑
(I,ψ)∈Λbnd

j

|I|−s p/d |〈EΩu, ψI,p′〉|p

τ/p

,

provided that we additionally assume

σ <
d

d− 1 s,

since this condition is equivalent to 1/τ < s/(d − 1) + 1/p which in turn holds if
and only if (d− 1)− s τ/(1− τ/p) < 0. Finally, the structure of u1 together with
Proposition 1.22 shows that the quantity (5.1.8) is equivalent to

∥∥∥u1 Bσ
τ (Lτ (Rd))

∥∥∥τ
such that (5.1.5) follows.

Step 4 (Estimate for u2). We are left with the proof of (5.1.6), i.e., the bound for
the interior wavelets indexed by (I, ψ) ∈ ⋃j∈N0 Λint

j . Recall that ψI,p′ is orthogonal
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to every polynomial P of total degree strictly less than m. Therefore, for all (I, ψ)
under consideration,

|〈u, ψI,p′〉| = |〈u− P , ψI,p′〉| ≤ ‖u− P Lp(Q(I))‖ · ‖ψI,p′ Lp′(Q(I))‖
. ‖u− P Lp(Q(I))‖ .

Consequently, a Whitney-type argument (i.e., the application of Proposition A.1
stated in the Appendix with t = `+ α and q =∞) shows that

|〈u, ψI,p′〉| . inf
P∈Π`

‖u− P Lp(Q(I))‖ . |Q(I)|(`+α)/d+1/p |u|B`+α∞ (L∞(Q(I)) ,

since we assumed m > `. Next we use (1.6.2) and estimate the Besov semi-norm by
the Hölder semi-norm (see Proposition A.2) to obtain

|〈u, ψI,p′〉| . 2−j(`+α+d/p) |u|C`,α(Q(I))

. 2−j(`+α+d/p)δ−γ
B(I) |u|C`,αγ,loc

for all (I, ψ) ∈
⋃
j∈N0

Λint
j =

⋃
j∈N0

C1 2j⋃
n=C0+1

Λj,n,

(5.1.9)

because the open cubes Q(I) are contained in the closed balls B(I) by definition.
For fixed j ∈ N0, n ∈ {C0 + 1, C0 + 2, . . . , C1 2j}, and (I, ψ) ∈ Λj,n, we have

δB(I) ≥ δBc(I) ≥ dist
(
2−jk, ∂Ω

)
− c diam(Q)

2 2−j ≥ (n− C0) 2−j. (5.1.10)

Now let τ > 0 and recall the estimate |Λj,n| . 2j(d−1) which we found in Step 1.
Combining this with (5.1.9) and (5.1.10) thus yields

∑
(I,ψ)∈Λint

j

|〈u, ψI,p′〉|τ .
C1 2j∑

n=C0+1

∑
(I,ψ)∈Λj,n

2−j(`+α+d/p)τ (n− C0)−γτ 2jγτ |u|τC`,αγ,loc

. |u|τC`,αγ,loc
2−j(`+α+d/p−γ)τ+j(d−1)

C1 2j∑
t=1

t−γτ , j ∈ N0.

(5.1.11)

Note that, due to the assumption γ > 0, the quantity γτ is always positive. Then
straightforward calculations show that for all j ∈ N0

1 ≤
C1 2j∑
t=1

t−γτ .


2j(1−γτ) if γτ ∈ (0, 1),
1 + j if γτ = 1,
1 if γτ > 1,

such that we have to distinguish several cases for γ in what follows:
Substep 4.1 (Small γ). Let us consider the case 0 < γ < (` + α)/d + 1/p first.

Then obviously d(γ − 1/p) < `+ α, such that we can set

τ =
(
σ

d
+ 1
p

)−1

with max
{

0, d
(
γ − 1

p

)}
< σ < `+ α. (5.1.12)
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From d(γ − 1/p) < σ we particularly infer that γ < τ−1, i.e., γτ < 1, for this choice
of τ . Therefore, from the considerations stated above we conclude that∑

j∈N0

∑
(I,ψ)∈Λint

j

|〈u, ψI,p′〉|τ . |u|τC`,αγ,loc

∑
j∈N0

2−j(`+α+d/p−γ)τ+j(d−1)+j(1−γτ)

= |u|τC`,αγ,loc

∑
j∈N0

(
2d−(`+α+d/p)τ

)j
. |u|τC`,αγ,loc

,

because the sum in the second line converges for d − (` + α + d/p)τ < 0 which is
equivalent to σ < `+ α = σ∗. Similar to the end of Step 3, we note that the double
sum on the left-hand side is equivalent to

∥∥∥u2 Bσ
τ (Lτ (Rd))

∥∥∥τ such that (5.1.6) follows
(in the case of small γ) for all σ that satisfy (5.1.12). Note that if γ > 1/p, then
the maximum in (5.1.12) is strictly positive. The result (5.1.6) for σ > 0 below this
value can be deduced from the assertion we just proved by means of the embedding
along the adaptivity scale:

Bσ2
τ2 (Lτ2(Rd)) ↪→ Bσ1

τ1 (Lτ1(Rd)) for all σ2 ≥ σ1 > 0,

where 1/τi = σi/d+ 1/p for each i ∈ {1, 2}, see Lemma 1.9(ii).
Substep 4.2 (Large γ). We turn to the case

`+ α

d
+ 1
p
≤ γ < `+ α + 1

p
.

As mentioned right after the statement of Theorem 5.1, for γ in this range we have
that

σ∗ = d

d− 1

(
`+ α + 1

p
− γ

)
≤ `+ α.

The lower bound for γ thus implies that σ∗ ≤ d γ − d/p. Therefore, for every
0 < σ < σ∗ the corresponding τ in the adaptivity scale satisfies

1
p
<

1
τ

= σ

d
+ 1
p
< γ,

i.e., γτ > 1. Hence, proceeding as in the previous substep yields∑
j∈N0

∑
(I,ψ)∈Λint

j

|〈u, ψI,p′〉|τ . |u|τC`,αγ,loc

∑
j∈N0

2−j(`+α+d/p−γ)τ+j(d−1)

= |u|τC`,αγ,loc

∑
j∈N0

(
2d−1−τ(`+α+d/p−γ)

)j
. |u|τC`,αγ,loc

,

where this time the sum over j converges if d− 1− τ(` + α + d/p− γ) < 0 which
is (for the assumed range of γ) equivalent to σ < σ∗. Since this implies the desired
estimate (5.1.6), finally, the proof is complete.

Remark 5.2.
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(i) The interested reader might ask what happens if γ ≥ ` + α + 1/p. For
γ ≥ `+ α + d/p the sum over (5.1.11) w.r.t. j ∈ N0 can never be convergent,
because due to τ > 0 the exponent −j(` + α + d/p − γ)τ + j(d − 1) would
be non-negative for all j and the sum over t is bounded from below by 1.
Hence, we are left with `+ α + 1/p ≤ γ < `+ α + d/p. Choosing τ > 0 such
that γ ≤ 1/τ then implies σ ≥ d(`+ α) for σ in the adaptivity scale. On the
other hand, σ < `+ α would be necessary for the geometric series to converge;
see Substep 4.1. In contrast, if we choose τ > 0 such that γ > 1/τ , then
convergence is equivalent to σ < d

d−1(`+ α+ 1/p− γ) which contradicts σ > 0
for the range of γ under consideration.

(ii) The assertion of Theorem 5.1 clearly holds true analogously when Bs
p(Lp(Ω))

is replaced by W s(Lp(Ω)). This follows immediately from (1.4.5).

5.2 Embeddings of Babuska-Kondratiev spaces

First, let us mention that all results of this section stem from [78].
The derivation of our Besov regularity results for solutions to the p-Poisson

equation in Chapter 7 is based on embeddings from Babuska-Kondratiev spaces
K`p,a(Ω), intersected with some Besov space Bs

p(Lp(Ω)), into Besov spaces in the
adaptivity scale Bσ

τ (Lτ (Ω)), 1/τ = σ/d+ 1/p. Such kind of embeddings - for slightly
different scales of Besov spaces - have been proved to hold true by Hansen [76]
for polyhedral domains in Rd, d ≥ 2, under certain conditions on the parameters
involved. One of his results ([76, Theorem 3]), formulated for d = 2, reads as follows.

Proposition 5.3. Let Ω ⊂ R2 be some bounded polygonal domain and 1 < p <∞.
Furthermore, let ` ∈ N, a > 0 and s > 0. We set 1/τ∗ := `/2 + 1/p. Then there
exists some τ0 ∈ (τ∗, p], such that the chain of continuous embeddings

K`p,a(Ω) ∩Bs
∞(Lp(Ω)) ↪→ B`

∞(Lτ (Ω)) ↪→ Lp(Ω)

holds true for all τ ∈ (τ∗, τ0).

We recall in passing that here (and in the following) the singular set S ⊆ ∂Ω
corresponding to the spaces K`p,a(Ω) is implicitly assumed to consist of the collection
of vertices of the domain Ω, cf. Remark 1.5.

Note that the smoothness ` of the Babuska-Kondratiev space leads to Besov
smoothness ` measured in the scale B`

∞(Lτ (Ω)), but excluding the case 1/τ =
`/2 + 1/p we are interested in. However, if we relax the Besov smoothness parameter
of the target space slightly to σ < `, the above embedding still holds true with the
right-hand side replaced by Bσ

τ (Lτ (Ω)), where 1/τ = σ/2 + 1/p. Furthermore, we
may certainly impose the slightly more restrictive condition q = p for the fine index
parameter on the left-hand side. We state the resulting embedding by the following
Corollary 5.4, and carry out in detail the arguments just given. For the interested
reader, an alternative proof based on wavelet characterizations of Besov spaces can
be found in Appendix A, see Subsection A.4.1.
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Corollary 5.4. Let Ω ⊂ R2 denote some bounded polygonal domain and let 1 < p <
∞. Furthermore, let ` ∈ N, a > 0 and s > 0. Then for all

0 < σ < ` and 1
τ

= σ

2 + 1
p

(5.2.1)

we have the continuous embedding

K`p,a(Ω) ∩Bs
p(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)), (5.2.2)

i.e., for all u ∈ K`p,a(Ω) ∩Bs
p(Lp(Ω)) it holds

‖u Bσ
τ (Lτ (Ω))‖ .

∥∥∥u K`p,a(Ω)
∥∥∥+

∥∥∥u Bs
p(Lp(Ω))

∥∥∥ . (5.2.3)

Proof. Let τ∗ and τ0 denote the bounds from Proposition 5.3. At first, we consider
the case σ0 < σ < `, where σ0 := 2(1/τ0 − 1/p). We set 1/τ = σ/2 + 1/p. Since
σ0 < σ < ` is equivalent to τ∗ < τ < τ0, from Proposition 5.3 we know that

K`p,a(Ω) ∩Bs
∞(Lp(Ω)) ↪→ B`

∞(Lτ (Ω)). (5.2.4)

Next, from the embedding (1.4.7), see Lemma 1.8, we know that

B`
∞(Lτ (Ω)) ↪→ Bσ

τ (Lτ (Ω)) (5.2.5)

for all 0 < σ < `. With the help of the embedding

Bs
p(Lp(Ω)) ↪→ Bs

∞(Lp(Ω)),

see (1.4.6), from (5.2.4) and (5.2.5) we conclude that

K`p,a(Ω) ∩Bs
p(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω))

holds true for all σ0 < σ < ` and 1/τ = σ/2 + 1/p. Finally, to prove the case
0 < σ ≤ σ0, note that from Lemma 1.9 we know that for all σ1 > σ2 > 0 it holds

Bσ1
τ1 (Lτ1(Ω)) ↪→ Bσ2

τ2 (Lτ2(Ω)),

where 1/τi = σi/2 + 1/p for i ∈ {1, 2}. This completes the proof.
Remark 5.5.

(i) In view of Remark 1.6(iii) the space Bs
p(Lp(Ω)) in (5.2.2) and (5.2.3) can

be replaced by W s(Lp(Ω)). Moreover, Remark 1.4(ii) shows that under the
additional assumption a ≥ 1 we can even drop it completely, because then
K`p,a(Ω) ↪→ K1

p,a(Ω) ↪→ W 1(Lp(Ω)).

(ii) The assertion of Proposition 5.3 - and consequently Corollary 5.4 - also holds
true for the more general setting of Lipschitz domains with polyhedral structure,
see [76, Chapter 2.3]. For a precise definition of such domains we refer to
[46, 106]. The finite cones we will be concerned with in Chapter 7 (defined by
(7.0.1)) are in particular included by this class of domains.

Due to the ordering of the Kondratiev spaces (see Remark 1.4(ii)) it is obvious
that also the spaces K`p,a(Ω) ∩Bs

p(Lp(Ω)) get smaller with increasing `. In turn, by
Corollary 5.4 we then gain more and more smoothness in the adaptivity scale of
Besov spaces. Therefore, the question arises what happens to the embedding (5.2.2)
if we let `→∞.
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5.2.1 The limit case `→∞
For the rest of this section, we will examine the borderline case ` =∞ of the embed-
dings (5.2.2) stated in Corollary 5.4. Therefore, let us introduce the abbreviation

H`,s
a (Lp(Ω)) := K`p,a(Ω) ∩Bs

p(Lp(Ω)).

The canonical norm on H`,s
a (Lp(Ω)) is given by∥∥∥· H`,s

a (Lp(Ω))
∥∥∥ :=

∥∥∥· K`p,a(Ω)
∥∥∥+

∥∥∥· Bs
p(Lp(Ω))

∥∥∥ . (5.2.6)

Then, for some fixed bounded polygonal domain Ω ⊂ R2 and s > 0, as well as a ≥ 0
and 1 < p <∞, we consider the vector space

H∞,sa (Lp(Ω)) :=
∞⋂
`=1

H`,s
a (Lp(Ω))

endowed with the family of norms

N := {n` ` ∈ N} , where n` :=
∥∥∥· H`,s

a (Lp(Ω))
∥∥∥

as defined in (5.2.6). Analogously, for 1 < p < ∞, we define the vector space
B∞NL(Lp(Ω)) as the intersection of all Besov spaces Bσ

τ (Lτ (Ω)), σ > 0, in the adaptivity
scale, thus

B∞NL(Lp(Ω)) :=
⋂
σ>0

Bσ
τ (Lτ (Ω)), 1

τ
= σ

2 + 1
p
, (5.2.7)

equipped with the family of quasi-norms

Q := {qσ σ > 0} , where qσ := ‖· Bσ
τ (Lτ (Ω))‖ with 1

τ
= σ

2 + 1
p
.

Remark 5.6. Recall that a family of (semi-, quasi-, p-)norms induces a topology on
the corresponding vector space, cf. Chapter 2. In the particular case of H∞,sa (Lp(Ω))
equipped with N , for each g ∈ H∞,sa (Lp(Ω)) a local basis is given by the sets

UL0,r(g) =
⋂
`∈L0

V`,r(g) with L0 ⊂ N finite, r > 0, (5.2.8)

where

V`,r(g) = {f ∈ H∞,sa (Lp(Ω)) n`(f − g) < r} = g + V`,r(0), (5.2.9)

see Definition 2.5(i). These local bases in turn allow to define a topology on
H∞,sa (Lp(Ω)), see Definition 2.5(ii) and Lemma 2.6. The topology on B∞NL(Lp(Ω))
induced by Q is defined likewise, cf. Proposition 2.18.

In a first step, we investigate properties of the topologies of the spaces H∞,sa (Lp(Ω))
and B∞NL(Lp(Ω)) generated by N and Q, respectively.
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Proposition 5.7. Let Ω ⊂ R2 denote some bounded polygonal domain and 1 < p <
∞. Furthermore, let s > 0 and a ≥ 0. Then, the space H∞,sa (Lp(Ω)), equipped with
the topology induced by the family of norms N , is a LCTVS. Furthermore, it is
metrizable and complete, i.e., H∞,sa (Lp(Ω)) is a Fréchet space.

Proof. Step 1. At first, according to Remark 5.6 and Definition 2.11, the space
(H∞,sa (Lp(Ω)),N ) clearly is a LCTVS.

Step 2. We prove metrizability. From Remark 2.12 we know that H∞,sa (Lp(Ω)) is
a Hausdorff space and that the sets

UL0,r(0) with L0 ⊂ N finite, r > 0,

defined by (5.2.8), (5.2.9) constitute a neighborhood basis of the origin. Next, from
(5.2.6) and Remark 1.4(ii) it follows that

ni(·) ≤ n`(·) for all i ≤ `,

where i, ` ∈ N. Hence,

V`,r(0) ⊂ Vi,r(0) for all i ≤ `,

and therefore

UL0,r(0) = V`0,r(0), where `0 = max {` ` ∈ L0} .

Thus, the sets V`,r(0), ` ∈ N, r > 0, form a neighborhood basis of the origin, and one
easily checks that countable many of them, namely V`,1/m(0), ` ∈ N, m ∈ N, are a
neighborhood basis of the origin as well. Now, from Proposition 2.25 we conclude
that H∞,sa (Lp(Ω)) is metrizable.

Step 3. The proof of completeness is subdivided into two substeps.
Substep 3.1. We first show that for all ` ∈ N the spaces

(
H`,s
a (Lp(Ω)), n`

)
are

Banach spaces. This can either be seen by the use of standard arguments [9], or
be proved directly. For the sake of completeness, a straightforward, direct proof
is presented in the following. Therefore, let (gj)j∈N ⊂ H`,s

a (Lp(Ω)) denote some
arbitrary Cauchy sequence. Note that

∥∥∥g K`p,a(Ω)
∥∥∥ ≤ n`(g) for all g ∈ H`,s

a (Lp(Ω)),
and hence (gj)j∈N is also a Cauchy sequence in K`p,a(Ω). Now, from Remark 1.4(i)
we know that K`p,a(Ω) is a Banach space, and therefore

gj → gK ∈ K`p,a(Ω) (5.2.10)

for j →∞. The same holds true with respect to Bs
p(Lp(Ω)), i.e.,

gj → gB ∈ Bs
p(Lp(Ω)) (5.2.11)

for j → ∞, since
∥∥∥· Bs

p(Lp(Ω))
∥∥∥ ≤ n`(·) and Bs

p(Lp(Ω)) is a Banach space, see
Section 1.4. Next, from Remark 1.4(ii) we know that ‖· Lp(Ω)‖ ≤

∥∥∥· K`p,a(Ω)
∥∥∥, and
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the definition of the Besov norm immediately yields ‖· Lp(Ω)‖ ≤
∥∥∥· Bs

p(Lp(Ω))
∥∥∥.

With these inequalities we estimate for j ∈ N,

0 ≤
∥∥∥gK − gB Lp(Ω)

∥∥∥
≤
∥∥∥gK − gj Lp(Ω)

∥∥∥+
∥∥∥gB − gj Lp(Ω)

∥∥∥
≤
∥∥∥gK − gj K`p,a(Ω)

∥∥∥+
∥∥∥gB − gj Bs

p(Lp(Ω))
∥∥∥ ,

and with (5.2.10) and (5.2.11) we conclude that
∥∥∥gK − gB Lp(Ω)

∥∥∥ = 0, i.e., gK = gB

in Lp(Ω). Thus, setting ĝ := gK = gB, we have shown that ĝ ∈ H`,s
a (Ω) with

n`(gj − ĝ) =
∥∥∥gj − ĝ K`p,a(Ω)

∥∥∥+
∥∥∥gj − ĝ Bs

p(Lp(Ω))
∥∥∥ −→

j→∞
0,

i.e., gj → ĝ in
(
H`,s
a (Lp(Ω)), n`

)
.

Substep 3.2. Finally, we prove completeness of H∞,sa (Lp(Ω)). Hence, let (gj)j∈N ⊂
H∞,sa (Lp(Ω)) denote some arbitrary Cauchy sequence. At first, we show that (gj)j∈N
is also a Cauchy sequence in

(
H`,s
a (Lp(Ω)), n`

)
for all ` ∈ N. Therefore, fix ` ∈ N and

note that H∞,sa (Lp(Ω)) ⊂ H`,s
a (Lp(Ω)). Let U0,` denote some arbitrary neighborhood

of the origin in
(
H`,s
a (Lp(Ω)), n`

)
. Consequently, there exists an open ball Ṽ`,r(0) =

{g ∈ H`,s
a (Lp(Ω)) n`(g) < r} with Ṽ`,r(0) ⊂ U0,`. Now, consider the element V`,r(0)

of the neighborhood basis of the origin in the LCTVS H∞,sa (Lp(Ω)), i.e.,

V`,r(0) = {g ∈ H∞,sa (Lp(Ω)) n`(g) < r} .

Clearly, V`,r(0) ⊂ Ṽ`,r(0), and since (gj)j∈N is a Cauchy sequence in H∞,sa (Lp(Ω)),
there exists N ∈ N such that

gm − gj ∈ V`,r(0) ⊂ Ṽ`,r(0) ⊂ U0,` for all m, j ≥ N.

Thus, we have shown that (gj)j∈N is a Cauchy sequence in the space
(
H`,s
a (Lp(Ω)), n`

)
,

which is complete according to Substep 3.1. Hence, there exists g` ∈ H`,s
a (Lp(Ω))

with

gj −→
j→∞

g`, (5.2.12)

i.e., for all neighborhoods U0,` of 0 in H`,s
a (Lp(Ω)) there exists N(U0,`) ∈ N such

that gm − g` ∈ U0,` for all m ≥ N(U0,`). Equivalently, for every ε > 0 there exists
N(ε, `) ∈ N such that

n`(gm − g`) < ε for all m ≥ N(ε, `). (5.2.13)

Now, since ‖· Lp(Ω)‖ ≤ n1(·) ≤ n`(·), for sufficiently large m it holds

0 ≤
∥∥∥g1 − g` Lp(Ω)

∥∥∥ ≤ n1(g1 − g`) ≤ n1(g1 − gm) + n`(g` − gm) ≤ 2ε,

and we conclude that
∥∥∥g1 − g` Lp(Ω)

∥∥∥ = n1(g1− g`) = 0. As ` was arbitrary, setting
ĝ := g1 we have shown that ĝ = g` in Lp(Ω) for all ` ∈ N, and since g` ∈ H`,s

a (Lp(Ω)),
this shows ĝ ∈ H`,s

a (Lp(Ω)) for all ` ∈ N, i.e., ĝ ∈ H∞,sa (Lp(Ω)).
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Finally, we show that gj → ĝ in H∞,sa (Lp(Ω)) as j → ∞. Therefore, it suffices
to consider an arbitrary element V`,r(0) of the neighborhood basis of the origin in
H∞,sa (Lp(Ω)). With (5.2.13) and the fact that n`(ĝ − g`) = 0, for sufficiently large j
we estimate

n`(ĝ − gj) ≤ n`(ĝ − g`) + n`(g` − gj) = n`(g` − gj) < r,

i.e., ĝ − gj ∈ V`,r(0). This shows that gj → ĝ in H∞,sa (Lp(Ω)).

Let us turn to the space B∞NL(Lp(Ω)) as defined in (5.2.7). Note that for σ >
2(p− 1)/p it holds τ < 1 such that then qσ = ‖· Bσ

τ (Lτ (Ω))‖ ∈ Q is only a quasi-
norm. However, it turns out that B∞NL(Lp(Ω)), equipped with the topology induced
by Q, is a metrizable and complete TVS, as stated by the following Proposition 5.8.
The corresponding proof is quite similar to the one of Proposition 5.7; nevertheless,
for the readers convenience it is presented below.

Proposition 5.8. Let Ω ⊂ R2 denote some bounded polygonal domain and 1 <
p < ∞. Then, the space B∞NL(Lp(Ω)), equipped with the topology induced by the
family of quasi-norms Q, is a TVS. Furthermore, it is metrizable and complete, i.e.,
B∞NL(Lp(Ω)) is an F-space.

Proof. Step 1. From Proposition 2.22 it follows that (B∞NL(Lp(Ω)),Q) is a TVS.
Step 2. We prove metrizability, i.e., due to Proposition 2.25, we have to show

that B∞NL(Lp(Ω)) is a Hausdorff space and admits a countable neighborhood basis of
the origin. The Hausdorff property follows from Remark 2.21. Recall that according
to (2.3.3) the local basis of the origin is given by

UΣ0,r(0) =
⋂
σ∈Σ0

Vσ,r(0), Σ0 ⊂ {σ ∈ R σ > 0} finite, r > 0,

where

Vσ,r(0) = {g ∈ B∞NL(Lp(Ω)) qσ(g) < r} .

Now, consider the countable collection of sets

Vm,1/j(0), m, j ∈ N.

From Lemma 2.20 we know that for each of the local basis elements Vm,1/j(0) there
exists an open neighborhood Ṽm,1/j(0) of the origin in B∞NL(Lp(Ω)) with Ṽm,1/j(0) ⊂
Vm,1/j(0). We will show that the collection of open sets

Ṽm,1/j(0), m, j ∈ N, (5.2.14)

indeed forms a neighborhood basis of the origin. Hence, let U denote some arbitrary
open neighborhood of 0. Then, since 0 is an inner point of U , due to Definition 2.5(ii)
there exists a local basis element UΣ0,r(0) such that

UΣ0,r(0) ⊂ U. (5.2.15)
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Now, from Lemma 1.9 we know that for σ1 > σ0 > 0 we have

Bσ1
τ1 (Lτ1(Ω)) ↪→ Bσ0

τ0 (Lτ0(Ω)), (5.2.16)

where 1/τi = σi/2 + 1/p for i ∈ {0, 1}, i.e.,

qσ0(g) =
∥∥∥g Bσ0

τ0 (Lτ0(Ω))
∥∥∥ ≤ C

∥∥∥g Bσ1
τ1 (Lτ1(Ω))

∥∥∥ = Cqσ1(g) (5.2.17)

for some C > 0 and all g ∈ Bσ1
τ1 (Lτ1(Ω)). Hence, fixing m ∈ N with m ≥

max {σ σ ∈ Σ0}, it follows from (5.2.17) that we can always find some j > 0
such that

Vm,1/j(0) ⊂ UΣ0,r(0).

Finally, with (5.2.15) and the fact that Ṽm,1/j(0) ⊂ Vm,1/j(0), we conclude that
Ṽm,1/j(0) ⊂ U . Thus, the sets (5.2.14) indeed form a countable neighborhood basis
of the origin.

Step 3. We prove completeness of B∞NL(Lp(Ω)). Hence, let (gj)j∈N ⊂ B∞NL(Lp(Ω))
denote some arbitrary Cauchy sequence. At first, we show that (gj)j∈N is also
a Cauchy sequence in (Bσ

τ (Lτ (Ω)), qσ) for all σ > 0. Therefore, fix σ > 0 and
note that B∞NL(Lp(Ω)) ⊂ Bσ

τ (Lτ (Ω)). Let U0,σ denote some arbitrary neighborhood
of the origin in (Bσ

τ (Lτ (Ω)), qσ). Consequently, there exists a local basis element
Ṽσ,r(0) = {g ∈ Bσ

τ (Lτ (Ω)) qσ(g) < r} with Ṽσ,r(0) ⊂ U0,σ. Now, consider the
element Vσ,r(0) of the local basis of the origin in the TVS B∞NL(Lp(Ω)), i.e.,

Vσ,r(0) = {g ∈ B∞NL(Lp(Ω)) qσ(g) < r} .

Clearly, Vσ,r(0) ⊂ Ṽσ,r(0), and from Lemma 2.20 we know that there exists an open
set W (0) in B∞NL(Lp(Ω)) with 0 ∈ W (0) ⊂ Vσ,r(0). Hence,

W (0) ⊂ Vσ,r(0) ⊂ Ṽσ,r(0) ⊂ U0,σ,

and since (gj)j∈N is a Cauchy sequence in B∞NL(Lp(Ω)), there exists N ∈ N such that

gm − gj ∈ W (0) ⊂ U0,σ for all m, j ≥ N.

Thus, we have shown that (gj)j∈N is a Cauchy sequence in the space (Bσ
τ (Lτ (Ω)), qσ).

Since Bσ
τ (Lτ (Ω)) is complete (see Section 1.4), there exists gσ ∈ Bσ

τ (Lτ (Ω)) with

gj −→
j→∞

gσ, (5.2.18)

i.e., for all neighborhoods U0,σ of 0 in Bσ
τ (Lτ (Ω)) there exists N(U0,σ) ∈ N such

that gm − gσ ∈ U0,σ for all m ≥ N(U0,σ). Equivalently, for every ε > 0 there exists
N(ε, σ) ∈ N such that

qσ(gm − gσ) < ε (5.2.19)

for all m ≥ N(ε, σ). Now, from (5.2.17) we know that q1(·) ≤ Cσqσ(·) for some
Cσ > 0 and σ > 1. For the moment, assume that σ > 1. Then, for sufficiently large
m it holds

0 ≤ q1(g1 − gσ) ≤ C
(
q1(g1 − gm) + Cσqσ(gσ − gm)

)
≤ 2ε,
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where C ≥ 1 denotes the constant from the (quasi-)triangle inequality of q1. We
conclude that q1(g1 − gσ) = 0. Since ‖· Lp(Ω)‖ . q1(·) (see Lemma 1.9), setting
ĝ := g1, we have shown that ĝ = gσ in Lp(Ω) for all σ ≥ 1, and analogously one
proves that ĝ = gσ in Lp(Ω) for all 0 < σ < 1. Since gσ ∈ Bσ

τ (Lτ (Ω)) ↪→ Lp(Ω), it
holds that ĝ ∈ Bσ

τ (Lτ (Ω)) for all σ > 0, i.e., ĝ ∈ B∞NL(Lp(Ω)).
Finally, we show that gj → ĝ in B∞NL(Lp(Ω)) as j →∞. Since every neighborhood

of the origin contains a local basis element of 0, it suffices to consider such an element
UΣ0,r(0). Let σ ∈ Σ0. With (5.2.19) and the fact that qσ(ĝ − gσ) = 0, for sufficiently
large j we estimate

qσ(ĝ − gj) ≤ C (qσ(ĝ − gσ) + qσ(gσ − gj)) = Cqσ(gσ − gj) < r, (5.2.20)

i.e., ĝ − gj ∈ Vσ,r(0). Since Σ0 is finite, it holds that ĝ − gj ∈ UΣ0,r(0) for sufficiently
large j. This shows that gj → ĝ in B∞NL(Lp(Ω)).

From Corollary 5.4 we immediately conclude that H∞,sa (Lp(Ω)) ⊂ B∞NL(Lp(Ω)).
Now, with respect to the topologies on these spaces induced by the corresponding
families of (quasi-)norms, this embedding is in fact continuous.

Theorem 5.9. Let Ω ⊂ R2 denote some bounded polygonal domain and 1 < p <
∞. Furthermore, let s > 0 and a > 0. Then, the Fréchet space H∞,sa (Lp(Ω)) is
continuously embedded into the F-space B∞NL(Lp(Ω)), i.e.,

H∞,sa (Lp(Ω)) ↪→ B∞NL(Lp(Ω)).

Here, the (locally convex) topology of H∞,sa (Lp(Ω)) is induced by the family of norms
N , whereas the topology of B∞NL(Lp(Ω)) is induced by the family of quasi-norms Q.

Proof. First note that H∞,sa (Lp(Ω)) ⊂ B∞NL(Lp(Ω)) due to Corollary 5.4. To prove
continuity of the identity map id : H∞,sa (Lp(Ω))→ B∞NL(Lp(Ω)), from Proposition 2.23
we know that it suffices to show that for each σ > 0 there exists a finite subset
L0 ⊂ N and a constant C > 0, such that

qσ(u) ≤ C max
`∈L0

n`(u) for all u ∈ H∞,sa (Lp(Ω)),

i.e.,

‖u Bσ
τ (Lτ (Ω))‖ ≤ C max

`∈L0

∥∥∥u H`,s
a (Lp(Ω))

∥∥∥ for all u ∈ H∞,sa (Lp(Ω)),

where 1/τ = σ/2 + 1/p. Now, for given σ > 0, choose `0 ∈ N with `0 > σ and set
L0 := {`0}. Then the assertion follows from Corollary 5.4.

Remark 5.10. Note that by continuous embeddings of TVSs, convergence of a
sequence in the source space implies convergence in the target space. E.g., each
Cauchy sequence in H∞,sa (Lp(Ω)) is also a Cauchy sequence in B∞NL(Lp(Ω)), and since
H∞,sa (Lp(Ω)) is complete (Proposition 5.7), it converges to an element in B∞NL(Lp(Ω)).
This observation leads to the following approach to derive regularity assertions
for solutions to general (nonlinear) PDEs: Assume that little is known about the
exact solution u to some specific PDE in terms of classical (weighted) Hölder or
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Sobolev regularity, except that it is contained in Lp(Ω). Now, if an Lp-convergent
approximation scheme is known, where the approximants un form a Cauchy sequence
in some complete subspace X ⊂ Lp (e.g. X = H∞,sa (Lp(Ω))) which is continuously
embedded into some other function space Y of interest (e.g. Y = B∞NL(Lp(Ω))),
then we know that the exact solution, i.e. the limit of un, is contained in Y . The
advantage of this concept - compared to directly proving that u ∈ Y - is that often
the approximants un are solutions to linear (sub-) problems, for which in general
much more is known in regard of regularity compared to the solution of the nonlinear
problem itself. In this way, the embedding Theorem 5.9 provides a tool for such kind
of regularity proofs.

However, the derivation of our Besov regularity results in the next two chapters
is not based on this approach. Instead, we will be able to apply the corresponding
embeddings to solutions of the p-Poisson equation directly.



Chapter 6

Besov Regularity on Lipschitz
Domains

This chapter is concerned with the regularity of solutions to the p-Poisson equation
(3.1.2), 1 < p < ∞, in the adaptivity scale of Besov spaces Bσ

τ (Lτ (Ω)), 1/τ =
σ/d+ 1/p. In Section 6.1 we deal with the general case of multidimensional, bounded
Lipschitz domains. The main result of this part, Theorem 6.5, describes (generic)
sufficient conditions on the parameters of locally weighted Hölder spaces which ensure
that the Besov regularity of all solutions u to (3.1.2) that are contained in such
spaces exceeds the Sobolev smoothness of u. Section 6.2 then is devoted to problems
on two-dimensional domains, since there many more results concerning local Hölder
regularity are available in the literature. Among other things, in this section, we state
and prove explicit Besov regularity assertions for the unique solution to the p-Poisson
equation (3.1.2), with a right-hand in Lq(Ω), q ≥ p′, which satisfies a homogeneous
Dirichlet boundary condition. These statements constitute the main results of the
present chapter. In Theorem 6.14 we deal with general bounded Lipschitz domains
Ω ⊂ R2, whereas Theorem 6.17 contains the results for the special case of bounded
polygonal domains. All results of this chapter have been primarily published in [30].

Remark 6.1. Note that, since we like to deal with bounded Lipschitz domains Ω
and q ≥ p′, the chain of embeddings

Lq(Ω) ↪→ Lp′(Ω) ↪→ W−1(Lp′(Ω))

together with Proposition 3.2 (applied for g ≡ 0) guarantees that there is at least
one u ∈ W 1(Lp(Ω)) that solves the p-Poisson equation (3.1.2) with f ∈ Lq(Ω).

In order to prove non-trivial Besov regularity results, we will make use of the
general embedding Theorem 5.1. For that reason, we need to determine preferably
small spaces Bs

p(Lp(Ω)) and C`,α
γ,loc(Ω) which still contain the solution u to the

respective problem under consideration. Clearly, smoothness results w.r.t. the Besov
scaleBs

p(Lp(Ω)) can be derived easily from corresponding Sobolev regularity assertions
using the intimate relation of Sobolev and Besov spaces described in Remark 1.6(iii).

79
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6.1 The p-Poisson equation in arbitrary
dimensions

Regularity results for partial differential equations are usually stated in terms of shift
theorems. Concerning the p-Poisson equation with homogeneous Dirichlet boundary
conditions (3.2.3), i.e.,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = 0 on ∂Ω,

and the scale of Sobolev spaces W s(Lp(Ω)) one such result is due to Savaré [116,
Theorems 2 and 2’]:

Proposition 6.2 (Sobolev regularity on Lipschitz domains). For d ≥ 2 let Ω ⊂ Rd

be a bounded Lipschitz domain. Given 1 < p < ∞ and f ∈ W−1(Lp′(Ω)) let
u ∈ W 1

0 (Lp(Ω)) denote the unique solution to (3.2.3). Then, for θ ∈ [0, 1),

f ∈ W tθ(Lp′(Ω)) with tθ =

−1 + θ/2 if 1 < p ≤ 2,
−1 + θ/p′ if 2 < p <∞

(6.1.1)

implies that

u ∈ W sθ(Lp(Ω)) with sθ =

1 + θ/2 if 1 < p ≤ 2,
1 + θ/p if 2 < p <∞.

Remark 6.3. In [116, Remark 4.3] Savaré states that the regularity results given in
Proposition 6.2 are sharp (in the sense defined in Section 3.3), even for the class of
smooth domains.

Observe that Lp′(Ω) ↪→ W tθ(Lp′(Ω)) for all θ under consideration. Hence, pro-
vided that f ∈ Lp′(Ω), the preceding Proposition 6.2 shows that the unique solution
to (3.2.3) is contained in W s(Lp(Ω)) and in Bs

p(Lp(Ω)), respectively, for all s < s∗,
where we set

s∗ =

3/2 if 1 < p ≤ 2,
1 + 1/p if 2 < p <∞.

(6.1.2)

Moreover, let us mention that Savaré actually proved (for an even larger class of
equations and slightly weaker assumptions on f) that we may replace Bs

p(Lp(Ω)),
s < s∗, by Bs∗

∞(Lp(Ω)). However, this slightly stronger assertion would not provide
any gain in what follows.

Remark 6.4. In addition to Remark 6.3 we state that there are good reasons to
assume that s∗ given in (6.1.2) defines a sharp bound for the Sobolev regularity of
solutions u to (3.2.3), even for much smoother right-hand sides f . First of all, this
conjecture is supported by the well-known fact that there exist Lipschitz domains
Ω such that the solution for p = 2 and some f ∈ C∞(Ω) does not belong to any
W 3/2+ε(L2(Ω)), ε > 0; see, e.g., Jerison and Kenig [82, Theorem A]. Moreover, for
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d = 2 and p > 2 it can be seen easily that s∗ = 1 + 1/p can not be improved for
general Lipschitz domains, as the following example shows: Given ω ∈ (0, 2π) let

C(ω) = {(r, θ) ∈ [0,∞)× [0, 2π] 0 < r < 1 and 0 < θ < ω}

denote an (open) circular sector of radius 1 which is centered at the origin and
possesses a central angle ω. Then, by [57, Theorem 3] (see also Section 7.1 and [4]),
there exist α(ω) > 0 which can be computed explicitly and some function t such
that, under quite mild conditions on the right-hand side f , for every solution u to
(3.2.3) in Ω = C(ω) there exist a positive constant k and a function v such that

u(r, θ) = k · rα(ω)t(θ) + v(r, θ), (r, θ) ∈ C(ω), (6.1.3)

where v fulfills

|v(r, θ)| . rα(ω)+η and |∇v(r, θ)| . rα(ω)−1+η (6.1.4)

for some absolute constant η > 0. It follows from (6.1.3), (6.1.4), and the special
structure of t(θ), cf. [57, Theorem 1], that |∇u(r, θ)| ∼ rα(ω)−1 near the origin.
Therefore |∇u| ∈ Lµ(C(ω)) can hold true only if µ · (α(ω)− 1) > −2. On the other
hand, the behavior of α(ω) for large central angles ω, is known: It has been shown
that

lim
ω→2π

α(ω) = p− 1
p

. (6.1.5)

Hence, by (6.1.5), for every µ > 2p there exists a two-dimensional Lipschitz domain
Ω = C(ω) and a solution u to (3.2.3) such that |∇u| does not belong to Lµ(Ω).
Consequently, for this solution Sobolev’s embedding yields that |∇u| is not contained
in W 1/p+ε(Lp(Ω)) for any ε > 0 and thus

u /∈ W 1+1/p+ε(Lp(Ω)). (6.1.6)

Finally, let us remark that for the open circular sector with ω = 2π the same
arguments yield (6.1.6) with ε = 0. However, note that then Ω = C(2π) is not a
Lipschitz domain anymore.

Unfortunately, if d ≥ 3, then (to the author’s best knowledge) finding the sharp
local Hölder regularity α of solutions to (3.1.2), (3.2.1), or (3.2.3), respectively, still
is an open problem. Moreover, in the articles mentioned before the statement of
Proposition 3.3, there appear too many unspecified constants that do not seem to
allow estimates for the local Hölder semi-norms which are sufficient for our purposes,
i.e., to obtain a satisfactory bound for the parameter γ. In contrast, for the case
d = 2 much more explicit results are available such that these two drawbacks can be
resolved. Consequently, we present a detailed discussion of the two-dimensional case
in Section 6.2. To conclude the current subsection, at least we want to determine
the range of the parameters α and γ for which the Besov regularity of the solution u
(in the general multidimensional setting) would exceed its Sobolev regularity.
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Theorem 6.5. For d ≥ 2 let Ω ⊂ Rd denote a bounded Lipschitz domain. Moreover,
for 1 < p < ∞ and f ∈ W−1(Lp′(Ω)) let u be a weak solution to (3.1.2) which
satisfies u ∈ W s(Lp(Ω)) for all s < s ∈ [`, `+ 1) with some ` ∈ N. If, additionally, u
is contained in C`,α

γ,loc(Ω) with

s− ` < α ≤ 1 and 0 < γ < `+ α + 1
p
− d− 1

d
s, (6.1.7)

then there exists σ > s such that

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ < σ and 1

τ
= σ

d
+ 1
p
.

Before proving Theorem 6.5 we stress that, according to Proposition 3.2, we know
that there indeed exists s ≥ 1 such that all solutions u to the p-Poisson equation
(3.1.2) are contained in W s(Lp(Ω)) for all s < s. Moreover, at least when dealing
with homogeneous boundary conditions (i.e., solutions of (3.2.3)), it is reasonable
to assume that s ∈ [`, `+ 1) and that u ∈ C`,α

γ,loc(Ω) with ` = 1; see Remark 6.4 and
Remark 3.4, respectively. Hence, Theorem 6.5 particularly describes a wide range
of sufficient conditions which ensure that the Besov regularity σ (measured in the
adaptivity scale w.r.t. Lp(Ω)) of solutions u to (3.2.3) on bounded Lipschitz domains
is strictly larger than its maximal Sobolev regularity s. Moreover, we note that the
upper bound σ can be calculated (from p, the regularity parameters `, α, and γ, as
well as the dimension d), as the following proof shows.

Proof (of Theorem 6.5). Since we assume that u ∈ W s(Lp(Ω)), s < s, standard
embeddings (cf. Remark 1.6(iii)) imply that u ∈ Bs

p(Lp(Ω)) for all s ∈ (0, s). Then, for
general 0 < α ≤ 1 and 0 < γ < `+α+1/p, our embedding result (Theorem 5.1) states
that the additional assumption u ∈ C`,α

γ,loc(Ω) yields u ∈ Bσ
τ (Lτ (Ω)), 1/τ = σ/d+ 1/p,

for all

0 < σ < min
{
σ∗,

d

d− 1 (s− ε)
}

=: σ,

where ε > 0 can be chosen arbitrarily small and σ∗ depends on d, p, `, α, and γ, as
described in (5.1.1). Thus, the maximal Besov regularity (w.r.t. the adaptivity scale)
σ of the solution u exceeds its maximal Sobolev regularity s provided that σ∗ > s.
Due to (5.1.1), this is the case if α and γ satisfy

`+ α > s and 0 < γ <
`+ α

d
+ 1
p
,

or if
d

d− 1

(
`+ α + 1

p
− γ

)
> s and `+ α

d
+ 1
p
≤ γ < `+ α + 1

p
. (6.1.8)

Now the first inequality in (6.1.8) is equivalent to γ < `+ α+ 1/p− s (d− 1)/d such
that (6.1.8) reduces to

`+ α

d
+ 1
p
≤ γ < `+ α + 1

p
− d− 1

d
s.

This range for γ is non-empty if and only if `+ α > s. In summary, the condition
`+α > s is necessary in both cases and the union of the two ranges for γ yields that
σ∗ > s for all values of α and γ satisfying (6.1.7), as claimed.
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6.2 The p-Poisson equation in two dimensions
As mentioned earlier, in order to derive non-trivial Besov regularity results by means
of Theorem 5.1, we need to determine (preferably small) spaces C`,α

γ,loc(Ω) which
contain the solutions u to the p-Poisson equation (3.1.2); see Section 1.1 for the
definition of these spaces. For this purpose we proceed as follows. Starting from a
known local Hölder regularity result, we estimate the Hölder semi-norms |u|C`,α(K)
on compact subsets K ⊂⊂ Ω in terms of δK , in order to conclude estimates on the
parameter γ. In what follows we restrict ourselves to the situation d = 2, because
in this case explicit bounds on the (local) Hölder regularity are available in the
literature. In particular, quite recently Kuusi and Mingione [92] and Lindgren and
Lindqvist [98] have proven a lower bound for the Hölder exponent of solutions to
(3.1.2) with right-hand side f ∈ Lq(Ω), q > 2; see Proposition 6.8 below.

Remark 6.6. We note in passing that we have Lq(Ω) ↪→ W−1(Lp′(Ω)) in dimension
two, provided that 2/q < 1 + 2/p′. Hence, Proposition 3.2 guarantees that the
problem (3.1.2) is solvable for all 1 < p <∞ and q > 2.

The subsequent definition is inspired by [98].

Definition 6.7. Let us define the local Hölder exponent α∗q = α∗q(p) for 2 < q ≤ ∞
by

•) 1 < p ≤ 2: If q =∞, let α∗q be any number less than 1, and if q <∞, let

α∗q = 1− 2
q
.

•) 2 < p <∞: If q =∞, let α∗q = 1/(p− 1), and if q <∞, let

α∗q = 1− 2/q
p− 1 .

The results of Kuusi and Mingione [92] and Lindgren and Lindqvist [98] can be
summarized as follows.

Proposition 6.8. Let Ω ⊂ R2 be a bounded domain and let 1 < p < ∞. For
2 < q ≤ ∞, let f ∈ Lq(Ω) and set α = α∗q as specified in Definition 6.7. Moreover,
let u ∈ W 1(Lp(Ω)) be a solution to (3.1.2). Then u ∈ C1,α

loc (Ω) and for any compact
set K ⊂ Ω, it holds

|u|C1,α(K) ≤ C(q, p, α,K) max
{
‖f Lq(Ω)‖1/(p−1) , ‖u L∞(Ω)‖

}
. (6.2.1)

Proof. Everything except the case p > 2 and q = ∞ is contained in [98]. In
the remaining case Lindgren and Lindqvist only show membership in C1,α

loc (Ω) for
any α < 1/(1 − p). The limiting case α = 1/(1 − p) however follows from the
sharper pointwise estimates [92, (1.38)] and the characterization of Hölder spaces by
Campanato spaces.
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Remark 6.9. It is known that the Hölder exponent α∗q defined above is sharp, at
least for p > 2 and 2 < q ≤ ∞. If q =∞, then this follows from the example given
in Remark 3.4. Corresponding examples for finite q can be found in [98].

Based on the local Hölder regularity result given in Proposition 6.8, we are
able to show that, for α = α∗q and certain values of γ, solutions to the p-Poisson
equation (3.1.2) are contained in locally weighted Hölder spaces C1,α

γ,loc(Ω), too; see
Proposition 6.11 below. To do so, we have to examine the dependence of the constant
C(q, p, α,K) in (6.2.1) on K ⊂⊂ Ω. This is performed in the subsequent lemma.

Lemma 6.10. Let the assumptions of Proposition 6.8 be satisfied. Then, for every
closed disc Br/4 ⊂ Ω of radius r/4 > 0 such that B2r is contained in Ω as well, we
have

|u|C1,α(Br/4) ≤ C(q, p, α,Ω) r−α−1 max
{
‖f Lq(Br)‖1/(p−1) , ‖u L∞(Br)‖

}
(6.2.2)

and, for t > 2,

|u|C1,α(Br/4) ≤ Ĉ(q, p, α,Ω, t) r−α−2/t max
{
‖f Lq(B2r)‖1/(p−1) , ‖∇u Lt(B2r)‖

}
.

(6.2.3)

Proof. To show the claim, assume that u solves (3.1.2) on the whole domain Ω and
let Br(x0) ⊂ Ω denote a disc of radius r > 0 around an arbitrary point x0. Then,
certainly, u is a solution of the restricted problem −div(|∇u|p−2∇u) = f in Br(x0),
as well. Moreover, from Proposition 6.8 we infer that u belongs to C1,α

loc (Ω) with
α = α∗q given in Definition 6.7. Hence, in particular u ∈ L∞(Br(x0)).

Now let us perform a translation to the origin. One checks easily that then
ũ = u(·+ x0) solves

−div
(
|∇ũ|p−2∇ũ

)
= f̃ in Br(0),

where f̃ = f(·+ x0). Thus, it suffices to prove (6.2.2) and (6.2.3) only for solutions
to the p-Poisson equation (3.1.2) in Br(0), r > 0.

To do so, we use a result for the unit disc B1(0). By Proposition 6.8, with
Ω = B1(0) and K = B1/4(0), we know that if u solves −div(|∇u|p−2∇u) = f
in B1(0) with u ∈ L∞(B1(0)) and f ∈ Lq(B1(0)), then there exists a constant
C = C(q, p, α) > 0, such that for all x, y ∈ B1/4(0) it holds

|∇u(x)−∇u(y)| ≤ C|x− y|α max
{
‖f Lq(B1(0))‖1/(p−1) , ‖u L∞(B1(0))‖

}
.

(6.2.4)

Now suppose that u solves −div(|∇u|p−2∇u) = f in some dilated disc Br(0) and let
F = rp f(r·). Then it is easy to see that U = u(r·) solves

−div
(
|∇U |p−2∇U

)
= F in B1(0).

Clearly, it holds that ‖F Lq(B1(0))‖ = rp−2/q ‖f Lq(Br(0))‖ and ‖U L∞(B1(0))‖ =
‖u L∞(Br(0))‖. Next, we apply the estimate (6.2.4) to U which yields that for all
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x, y ∈ B1/4(0)

|∇u(rx)−∇u(ry)|
= r−1 |∇U(x)−∇U(y)|
≤ C r−1 |x− y|α max

{
‖F Lq(B1(0))‖1/(p−1) , ‖U L∞(B1(0))‖

}
≤ C r−1−α |rx− ry|α max

{
r(p−2/q)/(p−1) ‖f Lq(Br(0))‖1/(p−1) , ‖u L∞(Br(0))‖

}
.

Hence, for all x 6= y in Br/4(0) it holds

|∇u(x)−∇u(y)|
|x− y|α

≤ C r−1−α max
{
r(p−2/q)/(p−1) ‖f Lq(Br(0))‖1/(p−1) , ‖u L∞(Br(0))‖

}
(6.2.5)

≤ C̃ r−1−α max
{
‖f Lq(Br(0))‖1/(p−1) , ‖u L∞(Br(0))‖

}
,

where C̃ = C ·max
{

1, diam(Ω)(p−2/q)/(p−1)
}

and (p− 2/q)/(p− 1) > 0, since 2/q <
1 < p. This shows (6.2.2) for all discs Br/4(0) under consideration.

We are left with the proof of (6.2.3) for these discs. Note that if u solves (3.1.2),
so does u− c for every constant c. Hence, from (6.2.5) we infer

|∇u(x)−∇u(y)|
|x− y|α

≤ C r−1−α max
{
r(p−2/q)/(p−1) ‖f Lq(Br(0))‖1/(p−1) , ‖u− c L∞(Br(0))‖

}
,

(6.2.6)

whenever x 6= y belong to Br/4(0). Next we apply Whitney’s estimate (see Proposi-
tion A.1) with k = 1, d = 2, p =∞, and q = t. Thus, for every t > d = 2 and every
square Q ⊂ Ω, there exist constants c and C ′, such that

‖u− c L∞(Q)‖ ≤ C ′ |Q|1/2−1/t |u|W 1(Lt(Q)) . (6.2.7)

Let Qr denote the square in R2 with sides parallel to the coordinate axes and side
length 2r that contains Br(0). Using the fact that |Qr|1/2−1/t = (2r)1−2/t, from
(6.2.7) we conclude

‖u− c L∞(Br(0))‖ ≤ C ′ |Qr|1/2−1/t |u|W 1(Lt(Qr)) ≤ C ′′ r1−2/t ‖∇u Lt(B2r(0))‖
(6.2.8)

Now, (6.2.6) and (6.2.8) together yield the upper bound

|∇u(x)−∇u(y)|
|x− y|α

≤ CC ′′ r−2/t−α max
{
r−1+2/t+(p−2/q)/(p−1) ‖f Lq(Br(0))‖1/(p−1) , ‖∇u Lt(B2r(0))‖

}
.
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Since, clearly,

−1 + 2
t

+ p− 2/q
p− 1 = 2

t
+ 1− 2/q

p− 1 > 0,

by setting Ĉ = C · C ′′ ·max
{

1, diam(Ω)2/t+(1−2/q)/(p−1)
}

we finally arrive at

|∇u(x)−∇u(y)|
|x− y|α

≤ Ĉ r−2/t−α max
{
‖f Lq(B2r(0))‖1/(p−1) , ‖∇u Lt(B2r(0))‖

}
for all x 6= y in Br/4(0). This shows (6.2.3) for all discs of interest.

The locally weighted Hölder regularity result which forms the basis for our further
analysis now can be derived from (6.2.3):

Proposition 6.11 (C1,α
γ,loc(Ω) regularity). Let Ω ⊂ R2 be a bounded Lipschitz domain

and assume 1 < p < ∞. Furthermore, for 2 < q ≤ ∞ and f ∈ Lq(Ω), let
u ∈ W 1(Lp(Ω)) be some solution to the p-Poisson equation (3.1.2) and set α = α∗q
as in Definition 6.7.

(i) If |∇u| ∈ Lt(Ω) for some t > 2, then we have

u ∈ C1,α
γ,loc(Ω) for α = α∗q , (6.2.9)

as well as every weight parameter γ ≥ α + 2/t.

(ii) If u ∈ W s(Lp(Ω)) for all s < s with some s > max{2/p, 1}, then (6.2.9) holds
true for all

γ > α + max
{

0, 1− s+ 2
p

}
.

Proof. Let us first prove part (i). Since the locally weighted Hölder spaces C1,α
γ,loc(Ω) =

C1,α
γ,loc(Ω;K(c)) are monotone in γ (see Remark 1.1), we may restrict ourselves to the

limiting case γ = α+ 2/t. Moreover, without loss of generality, we can assume c > 8;
cf. Section 1.1. Then let us consider a compact disc Br ∈ K(c), i.e., Br = Br(x0)
with x0 ∈ Ω and r > 0 such that the (open) disc Bc r(x0) still is contained in Ω.
Clearly, r < dist(x0, ∂Ω)/8, so that we can choose R ≥ r with

dist(x0, ∂Ω)
16 < R <

dist(x0, ∂Ω)
8 .

Consequently, BR = BR(x0) is a compact disc with Br ⊆ BR ⊂ B8R ⊂ Ω. Therefore,
(6.2.3) applied for BR yields

|u|C1,α(Br) ≤ |u|C1,α(BR) ≤ C R−α−2/t max
{
‖f Lq(B8R)‖1/(p−1) , ‖∇u Lt(B8R)‖

}
,

where C = C(q, p, α,Ω) does not depend on r. Since δBr < dist(x0, ∂Ω) < 16R and
γ = α + 2/t, setting C ′ = C · 16γ we may estimate further

|u|C1,α(Br) ≤ C ′ δ−γ
Br

max
{
‖f Lq(Ω)‖1/(p−1) , ‖∇u Lt(Ω)‖

}
.
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Observe that the latter maximum is finite due to the additional assumption that |∇u|
belongs to Lt(Ω). Multiplying by δγ

Br
and taking the supremum over all Br ∈ K(c)

thus proves the claim stated in (i).
The proof of (ii) follows from Sobolev’s embedding: At first, note that s > 2/p

yields that 1 > max{0, 1− s+ 2/p}. Therefore, we can choose s < s and t > 2 such
that 2/t > max{0, 1− s+ 2/p} is arbitrary close to max{0, 1− s+ 2/p}. Thus, in
view of (6.2.9), it remains to show that |∇u| ∈ Lt(Ω) for this choice of s and t. To
do so, observe that s− 1 > 2/p− 2/t. Since we imposed the additional condition
that s > 1, we may assume that s− 1 > 0. Hence, it follows

s− 1 > 2 ·max
{

0, 1
p
− 1
t

}

which particularly implies the embedding W s−1(Lp(Ω)) ↪→ Lt(Ω). Finally, the fact
that u ∈ W s(Lp(Ω)) yields |∇u| ∈ W s−1(Lp(Ω)) completes the proof.

Next let us combine the locally weighted Hölder regularity result obtained in
Proposition 6.11 above with the generic Besov regularity result stated in Theorem 6.5.
This leads to conditions on the Sobolev smoothness of solutions u to the p-Poisson
equation (3.1.2) which imply (non-trivial) Besov regularity assertions for these u.

Theorem 6.12. Let Ω ⊂ R2 be a bounded Lipschitz domain and assume 1 < p <∞.
Moreover, for 2 < q ≤ ∞, as well as f ∈ Lq(Ω), let u be some solution to the
p-Poisson equation (3.1.2) which satisfies u ∈ W s(Lp(Ω)) for all s < s. Then the
conditions

•) 1 < p ≤ 2 and 2
p
< s < 2− 2

q
,

•) 2 < p <∞ and 1 < s < 1 + 1−2/q
p−1

imply that there exists σ > s such that

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ < σ and 1

τ
= σ

2 + 1
p
. (6.2.10)

Proof. Note that our assumptions particularly imply

max
{

1, 2
p

}
< s < 2. (6.2.11)

Therefore, in view of Theorem 6.5 (applied with d = 2 and ` = 1), it suffices to find
parameters α and γ with s− 1 < α ≤ 1 and

0 < γ < 1 + α + 1
p
− s

2 (6.2.12)

such that u ∈ C1,α
γ,loc(Ω). Observe that from (6.2.11) it follows

α + max
{

0, 1− s+ 2
p

}
< 1 + α + 1

p
− s

2 for all 0 < α ≤ 1.
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Thus, due to Proposition 6.11(ii), choosing α = α∗q (as given in Definition 6.7), there
exists γ which satisfies (6.2.12) such that u ∈ C1,α

γ,loc(Ω). To complete the proof, it
remains to check that this choice of α belongs to the interval (s − 1, 1] which is
obvious in view of Definition 6.7, as well as our restrictions on s.

Remark 6.13. Note that the bound σ in Theorem 6.12 can be calculated explicitly,
provided that the maximal Sobolev regularity s is known; see, e.g., the proof of
Theorem 6.14 below.

Now we are well-prepared to state and prove one of the main results of this
thesis. It shows that for a large range of parameters p and q the (unique) solution
to (3.2.3), i.e., to the p-Poisson with homogeneous Dirichlet boundary conditions,
has a significantly higher Besov regularity compared to its Sobolev smoothness.
Indeed, as we shall see, on bounded Lipschitz domains Ω ⊂ R2 this happens whenever
4/3 < p <∞ and max{4, 2 p} < q ≤ ∞. Therefore, for the same range of parameters,
the application of adaptive (wavelet) algorithms for the numerical treatment of (3.2.3)
is completely justified. Recall that from Proposition 6.2 (and the subsequent remarks)
it follows that the solution u to this problem is contained in W s(Lp(Ω)) for all s < s∗

given in (6.1.2). Consequently, the proof of the subsequent result is obtained by
applying Theorem 6.12 with s = s∗ together with some straightforward calculations.

Theorem 6.14 (Besov regularity on Lipschitz domains in 2D). Let Ω ⊂ R2 be a
bounded Lipschitz domain, 1 < p < ∞, as well as f ∈ Lq(Ω) with 2 < q ≤ ∞ and
q ≥ p′. Then the unique solution u to the p-Poisson equation with homogeneous
Dirichlet boundary conditions (3.2.3) satisfies

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ < σ and 1

τ
= σ

2 + 1
p
,

where

σ =



3
2 if 1 < p < 4/3 and p′ ≤ q ≤ ∞,
3
2 if p = 4/3 and 4 < q ≤ ∞,
3− 2

p
if 4/3 < p ≤ 2 and (1

p
− 1

2)−1 ≤ q ≤ ∞,
2− 2

q
if 4/3 < p ≤ 2 and 4 < q < (1

p
− 1

2)−1,
3
2 if 4/3 ≤ p < 2 and p′ ≤ q ≤ 4,
3
2 if p = 2 and 2 < q ≤ 4,
1 + 1−2/q

p−1 if 2 < p <∞ and 2 p < q ≤ ∞,
1 + 1

p
if 2 < p <∞ and 2 < q ≤ 2 p.

Proof. Step 1. Let us start with the cases where σ = s∗, i.e., where σ equals
3/2 or 1 + 1/p. Then from classical embeddings of Besov spaces it follows that
u ∈ W s(Lp(Ω)) for all 0 < s < s implies that u also belongs to Bs

p(Lp(Ω)) for all
these s which in turn yields the claim; cf. Remark 1.6(iii).

Step 2. We are left with proving the assertion for the third, fourth, and seventh
line in the definition of σ. According to (the proof of) Theorem 6.12 we know that in
all these remaining cases Proposition 6.11(ii) ensures the existence of some reasonably
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small γ such that u ∈ C`,α
γ,loc(Ω), where α = α∗q (as given in Definition 6.7) and ` = 1.

In fact, it can be checked that we can use

γ = α + ε+

2/p− 1/2 if p < 2,
1/p, if p ≥ 2

with arbitrarily small ε > 0. As shown in the proof of Theorem 6.5 (which we used
to derive Theorem 6.12), the desired quantity σ then is given by σ∗ defined in (5.1.1)
in Theorem 5.1. Thus, we need to determine whether our choice of γ is smaller or
larger than (1 + α)/2 + 1/p. Note that, according to Theorem 6.5, we already know
that for all cases of interest it is smaller than 1 + α + 1/p. It turns out that for
4/3 < p ≤ 2 and (1/p− 1/2)−1 ≤ q ≤ ∞, i.e., for the constellation described in the
third line, the second case in (5.1.1) applies, i.e., then

1 + α

2 + 1
p
≤ γ < 1 + α + 1

p
.

Consequently, for these p and q, the quantity σ = σ∗ is given by 2(1 +α+ 1/p− γ) =
3− 2/p− ε, where ε can be neglected since it can be chosen arbitrarily small.

For the remaining two ranges for p and q the chosen weight γ is small enough
such that the first case in (5.1.1) applies. Thus, for p and q as described in the fourth
and seventh line, we obtain σ = σ∗ = `+ α with ` = 1 and α = α∗q . This finishes the
proof.

In the more restrictive (but practically more important) setting of polygonal
domains slightly better Besov regularity assertions for the unique solutions to (3.2.3)
with f ∈ Lq(Ω) can be deduced using our method, at least for some cases. For this
purpose, we will employ a further Sobolev regularity result which was shown by
Ebmeyer [59, Corollary 2.3] for polyhedral Lipschitz domains in arbitrary dimensions:

Proposition 6.15. For d ≥ 2 let Ω ⊂ Rd be a bounded polyhedral Lipschitz domain
and for 1 < p < ∞ let f ∈ Lp′(Ω). Then the unique solution u ∈ W 1(Lp(Ω)) to
(3.2.3) satisfies

|∇u| ∈ Lt(Ω) for all t <
d

d− 1 p.

Remark 6.16. The example described in Remark 6.4 shows that, for d = 2,
Ebmeyer’s result (Proposition 6.15) is sharp, meaning that there are cases in which

|∇u| /∈ Lt(Ω) if t > 2p = d

d− 1 p.

Our improved Besov regularity result for solutions to p-Poisson equations with
homogeneous boundary conditions (3.2.3) on bounded polygonal domains then reads
as follows.

Theorem 6.17 (Besov regularity on polygonal domains). Let Ω ⊂ R2 denote a
bounded polygonal domain and let 1 < p <∞, as well as f ∈ Lq(Ω) with 2 < q ≤ ∞
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and q ≥ p′. Then the unique solution u to the p-Poisson equation with homogeneous
Dirichlet boundary conditions (3.2.3) satisfies

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ < σ and 1

τ
= σ

2 + 1
p
,

where

σ =



2− 2
q

if 1 < p < 4/3 and p′ ≤ q ≤ ∞,
2− 2

q
if p = 4/3 and 4 < q ≤ ∞,

2− 2
q

if 4/3 < p ≤ 2 and 4 < q ≤ ∞,
3
2 if 4/3 ≤ p < 2 and p′ ≤ q ≤ 4,
3
2 if p = 2 and 2 < q ≤ 4,
1 + 1−2/q

p−1 if 2 < p <∞ and 2 p < q ≤ ∞,
1 + 1

p
if 2 < p <∞ and 2 < q ≤ 2 p.

Before giving the proof of this assertion we want to stress that in the first three
cases, as well as in the sixth one, the upper bound σ for the regularity of the solution
u in the adaptivity scale of Besov spaces is strictly larger than s = s∗ as defined in
(6.1.2) which is considered to be a sharp bound for the regularity in the Sobolev
scale; see Remark 6.4. Hence, in contrast to Theorem 6.14 (which deals with general
bounded Lipschitz domains in R2), on polygonal domains u gains some additional
regularity also in the range 1 < p ≤ 4/3 (except for the case p = 4/3 and q = 4).
Furthermore, observe that for the case of p ∈ (4/3, 2) and large q the value 3− 2/p
for Lipschitz domains is strictly worse than 2− 2/q obtained in Theorem 6.17 for
polygonal domains. Finally we note that, given some fixed p, in all cases in which
σ > s this quantity grows with increasing integrability q of the right-hand side
f . This is not the case for s∗. Accordingly, the largest gain σ − s is obtained for
f ∈ L∞(Ω). This situation is illustrated in Figure 6.1 below.

Proof (of Theorem 6.17). Step 1. Since q ≥ p′, we have that Lq(Ω) ↪→ Lp′(Ω) ↪→
W−1(Lp′(Ω)), see Lemma A.8. Consequently, Proposition 3.2 assures a unique
solution u ∈ W 1(Lp(Ω)). Then Remark 1.6(iii) implies u ∈ B1−ε

p (Lp(Ω)) for all
ε ∈ (0, 1). Moreover, by Proposition 6.11(i) we know that u ∈ C1,α

γ,loc(Ω) for all
γ ≥ α + 2/t, with α = α∗q given in Definition 6.7 and t > 2 such that |∇u| ∈ Lt(Ω).
Proposition 6.15 shows that the latter condition is fulfilled for all t < 2p, i.e., for all
2/t strictly larger (but arbitrary close to) 1/p. Thus, since α ∈ (0, 1), we can choose
γ such that

α + 1
p
< γ <

1 + α

2 + 1
p
.

Then, for this choice of α and γ, as well as d = 2, s = 1 − ε, and ` = 1, we apply
Theorem 5.1 (note that every polygonal domain Ω ⊂ R2 is Lipschitz!) and conclude
that u belongs to Bσ

τ (Lτ (Ω)), 1/τ = σ/2 + 1/p, for all

0 < σ < min
{

1 + α,
2

2− 1 (1− ε)
}

= 1 + α,
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Figure 6.1: Bounds σ and s∗ for the regularity of solutions u to (3.2.3) with f ∈ L∞(Ω)
on bounded 2D Lipschitz domains (top) and bounded polygonal domains
(bottom), measured in Bσ

τ (Lτ (Ω)), 1/τ = σ/2 + 1/p, and in W s(Lp(Ω)),
respectively.

where the last equality holds provided that ε > 0 is chosen sufficiently small.
Step 2. Since f ∈ Lp′(Ω), we furthermore can employ Proposition 6.2 (as well as

the subsequent remarks) to see that u ∈ W s(Lp(Ω)) for all s < s∗. This implies that
u belongs to Bs

p(Lp(Ω)) and Bσ
τ (Lτ (Ω)) for all s and σ less than s∗, respectively.

In conclusion, combining both steps yields

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ < max{1 + α, s∗} and 1

τ
= σ

2 + 1
p
.

Now the claim directly follows from the definitions of α = α∗q and s∗.

Remark 6.18. We add some comments on our main results in Theorem 6.14 and
6.17, respectively:

(i) The restriction q ≥ p′ in Theorem 6.14 can be weakened. Anyhow, note that
for p in the vicinity of 1 and q close to 2, Proposition 6.2 only guarantees that
the unique solution u to (3.2.3) satisfies u ∈ W s(Lp(Ω)) for all s < s with some
1 ≤ s < s∗.
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(ii) According to [59, Section 5.3] Proposition 6.15 remains valid for special classes
of bounded Lipschitz domains with polyhedral structure. Hence, also Theo-
rem 6.17 applies to this slightly generalized situation.

(iii) Observe that for large q our bound σ in Theorem 6.17 always equals 1 + α,
where α = α∗q is the local Hölder exponent given in Definition 6.7 which is
known to be optimal at least for p > 2; see Remark 6.9. Thus, by (5.1.1), as well
as the subsequent statements, we see that the results stated in Theorem 6.17
are the best possible we can achieve by our method (i.e., by Theorem 5.1).
On the other hand, we do not know whether they are sharp, as (for general
p) in the current literature there seem to exist no results at all which address
comparable regularity questions. However, for example in the case of the
classical Laplacian (p = 2) Besov regularity larger than two cannot be expected
for general right-hand sides of smoothness zero, since then we deal with a linear
operator of order two.

Finally, let us briefly consider p-harmonic functions, i.e., solutions to the p-Laplace
equation

div
(
|∇u|p−2∇u

)
= 0 in Ω, (6.2.13)

where Ω ⊂ R2 is a bounded domain and 1 < p <∞. In [59, Remark 2.5(iv)] Ebmeyer
states that if Ω is a bounded polyhedral Lipschitz domain (of arbitrary dimension
d ≥ 2), then all solutions to (6.2.13) with boundary data g ∈ W 1(Lp(∂Ω)) are as
well contained in W s(Lp(Ω)) for all s < s∗ defined by (6.1.2). However, he does not
provide a proof of this statement. Using this claim, the arguments in Step 1 of the
proof of Theorem 6.17 would imply that all p-harmonic functions u on bounded
polygonal domains Ω satisfy

u ∈ Bσ
τ (Lτ (Ω)) for all 0 < σ <

2 if 1 < p ≤ 2,
1 + 1

p−1 if 2 < p <∞
and 1

τ
= σ

2 + 1
p
.

(6.2.14)
In addition, we remark that the local Hölder regularity of two-dimensional p-harmonic
functions is known to be higher than for general solutions to the p-Poisson equation
(3.1.2): In fact, Iwaniec and Manfredi [81] showed that in the case d = 2 all p-
harmonic functions are contained in C`,α

loc (Ω), where ` ∈ N and 0 < α ≤ 1 are
determined by the formula

`+ α = 1 + 1
6

(
1 + 1

p− 1 +
√

1 + 14
p− 1 + 1

(p− 1)2

)
. (6.2.15)

Furthermore, for p 6= 2 this result is known to be sharp; see [81]. Note that for all
1 < p <∞ the right-hand side of (6.2.15) indeed is larger than 1 +α∗∞. In conclusion,
one might expect to achieve even higher Besov regularity for p-harmonic functions
than stated in (6.2.14). To prove this conjecture (by means of our embedding result
Theorem 5.1), we would need to exploit the sharp Hölder regularity (6.2.15) instead
of Proposition 6.8; provided we could show that p-harmonic functions belong to
C`,α
γ,loc(Ω) for these ` and α, as well as for sufficiently small values of γ, and provided

that Ebmeyer’s claim holds true. Unfortunately, sufficient estimates for the parameter
γ do not seem to exist, yet.



Chapter 7

Besov Regularity in the Vicinity of
a Corner

In this chapter we study the Besov smoothness of solutions to the p-Poisson equation
(3.1.2), measured in the adaptivity scale of Besov spaces, in the vicinity of a corner
of a polygonal domain. The results of this chapter stem from [78].

To describe the scope of problems considered here, let us introduce the following
notation first. For a function f (in Cartesian coordinates x), by f̃ we denote its
representation in polar coordinates, i.e., f̃(r, φ) := f(Ξ−1(r, φ)), where Ξ denotes
the corresponding transformation of coordinates, see (A.2.1). When appropriate, we
will omit the transformation Ξ or Ξ−1, and just write f or f̃ for the representation
in Cartesian or polar coordinates, respectively. Analogously, the same applies to
domains, i.e., Ω̃ := Ξ(Ω). Recall that BR(x) ⊂ R2 denotes the open Euclidean ball
with radius R > 0 centered at x ∈ R2.

Now, let Ω ⊂ R2 be some bounded polygonal domain and let x0 ∈ ∂Ω denote
some arbitrary but fixed corner of Ω. Furthermore, let R0 > 0 be sufficiently small
such that

CR0(x0) := BR0(x0) ∩ Ω

is congruent to some cone

C̃(R0, ω) = {(r, φ) ∈ (0, R0)× (0, ω)} (7.0.1)

of radius R0 and inner angle 0 < ω < 2π. As part of the boundary, we denote the
straight sides of ∂CR0(x0) by SR0(x0), i.e.,

SR0(x0) := BR0(x0) ∩ ∂Ω,

see Figure 7.1.

93
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Ω

CR0(x0)

SR0(x0)

SR0(x0)x0
R0

Figure 7.1: Polygonal domain Ω and cone CR0(x0) with sides SR0(x0).

Then, for 1 < p < ∞, we consider problem (3.2.1), i.e., the problem of finding
u ∈ W 1(Lp(Ω)) with

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = g on ∂Ω.

We assume that

g ∈ W 1−1/p(Lp(∂Ω)) and f ∈ Lq(Ω) with


2p

3p−2 ≤ q ≤ ∞, if 1 < p < 2,
1 < q ≤ ∞, if p = 2,
1 ≤ q ≤ ∞, if 2 < p <∞,

(7.0.2)

satisfy

f ≥ 0 and g ≥ 0 pointwise almost everywhere. (7.0.3)

Remark 7.1.

(i) Problem (3.2.1), (7.0.2) ,(7.0.3) admits a uniquely determined weak solution u ∈
W 1(Lp(Ω)). To see this, first note that (7.0.2) implies Lq(Ω) ↪→ W−1(Lp′(Ω)),
see Lemma A.8. Furthermore, by Proposition 1.2 there exists a continuous exten-
sion operator E : W 1−1/p(Lp(∂Ω))→ W 1(Lp(Ω)). Now, for f ∈ W−1(Lp′(Ω))
and Dirichlet boundary conditions given by g ∈ W 1(Lp(Ω)) in the sense that
u− g ∈ W 1

0 (Lp(Ω)), we know from Proposition 3.2 that the p-Poisson equation
admits a unique weak solution.

(ii) Clearly, q = 2 would be a sufficient condition for (7.0.2) to hold true for all
1 < p <∞. Hence, for simplicity, one may impose the (less general) condition
f ∈ L2(Ω).

(iii) Using the weak comparison principle (Proposition 3.5) the assumption (7.0.3)
assures that u ≥ 0 in Ω. We treat only nonnegative solutions because the
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type of results - concerning the (growth-) behavior in the vicinity of a conical
boundary point - needed for our proofs below are known only for solutions
which are nonnegative in CR0(x0). Hence, all results remain valid if we drop
assumption (7.0.3) and instead require the solution u to be nonnegative a.e. in
CR0(x0).

This chapter is organized as follows. In Section 7.1 we collect some known
facts about the singular expansion of solutions to the p-Poisson equation in a
cone. Afterwards, in Section 7.2 we treat problem (3.2.1), (7.0.2), (7.0.3) under the
additional assumption that f = 0 in CR0(x0) and g = 0 on SR0(x0). Our main result
here (Theorem 7.12) will show that then the solution u possesses arbitrary high
Besov regularity in CR(x0) for some 0 < R < R0. Finally, in Section 7.3 we prove
that for the more general case of local growth conditions on f in CR0(x0) it holds
u ∈ Bσ

τ (Lτ (CR(x0))), 1/τ = σ/2 + 1/p, at least for all 0 < σ < 2 (see Theorem 7.18).

7.1 Singular expansions
In this section we recall some known facts about the singular expansion of solutions
to the p-Poisson equation in a cone. In the following, for notational convenience,
we consider the unit cone C(1, ω) ⊂ R2 with opening angle 0 < ω < 2π, see (7.0.1).
However, we remark that all results are valid as well for cones C(R0, ω) of arbitrary
radius R0 > 0. In order to describe these expansion results, we first consider the
p-Laplace equation

−div
(
|∇u|p−2∇u

)
= 0 in C(1, ω),

u = 0 on S(1, ω),
(7.1.1)

where S(1, ω) in polar coordinates is given by S̃(1, ω) = [0, 1)× {0, ω}. First of all,
let us look for (strong) solutions of the form u = s with

s̃(r, φ) := rαt(φ), (r, φ) ∈ C̃(1, ω), (7.1.2)

where α ∈ R and t ∈ C2((0, ω)). From Proposition A.17 we know that these solutions
satisfy the nonlinear eigenvalue problem

∂

∂φ


α2t(φ)2 +

(
∂t

∂φ
(φ)

)2
(p−2)/2

∂t

∂φ
(φ)


+ α (α (p− 1) + 2− p)

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

t(φ) = 0 for all φ ∈ (0, ω),

t(0) = t(ω) = 0,
(7.1.3)

and vice versa, for solutions (α, t(·)) of (7.1.3), the function u = s given by (7.1.2)
solves the primary problem (7.1.1). The first positive eigenvalue α of (7.1.3) is given
by the following lemma, see [57, Theorem 1].
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Lemma 7.2. Let 1 < p <∞ and ω ∈ (0, 2π]. Moreover, for ω 6= 2π let

Θ(Γ, p) := (Γ− 1)p− 2Γ
2Γ(p− 1) , where Γ(ω) :=

(
ω

π
− 1

)2
− 1.

Then, for

α := α(ω, p) :=


Θ(Γ, p) +

√
Θ(Γ, p)2 + Γ−1 if ω ≤ π,

Θ(Γ, p)−
√

Θ(Γ, p)2 + Γ−1 if π ≤ ω < 2π,
(p− 1)/p if ω = 2π,

(7.1.4)

there exists a solution t ∈ C2([0, ω]) of (7.1.3) with t > 0 in (0, ω). Further, it holds

α > max{0, (p− 2)/(p− 1)} (7.1.5)

and

t(φ)2 + t′(φ)2 > 0 for all φ ∈ [0, ω]. (7.1.6)

Any two positive solutions t1, t2 corresponding to α which satisfy (7.1.6) are scalar
multiples of each other.

Remark 7.3. A short computation yields that for all 1 < p <∞ it holds

α(ω, p) > 1 ⇐⇒ 0 < ω < π,

0 < α(ω, p) < 1 ⇐⇒ π < ω ≤ 2π,

and hence α(ω, p) = 1 if and only if ω = π. Moreover, for ω 6= π it holds

lim
p→1

α(ω, p) =

∞ if 0 < ω < π,

0 if π < ω ≤ 2π,
lim
p→∞

α(ω, p) =

−1/Γ if 0 < ω < π,

1 if π < ω ≤ 2π.

The positive solution t(·) of problem (7.1.3) from Lemma 7.2 (corresponding to
α given by (7.1.4)) turns out to be arbitrarily smooth. For a proof of this result, see
[126, Theorem 2.1.1 & Corollary 2.1]. An alternative, more elementary proof based
on a construction of t(·) is presented in Appendix A, see Subsection A.4.2.

Lemma 7.4. Let (α, t(·)) be the solution of the nonlinear eigenvalue problem (7.1.3)
according to Lemma 7.2. It holds t ∈ C∞((0, ω)), as well as t ∈ Ci([0, ω]) for all
i ∈ N.

Now we have everything at hand to describe the above mentioned singular
expansion results for solutions to the p-Poisson equation in a cone. We will consider
both the homogeneous and the inhomogeneous case. In regard of the homogeneous
problem (7.1.1), the following expansion result by Tolksdorf ([126, Theorem 1.3])
holds true.
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Proposition 7.5. For 1 < p < ∞ and ω ∈ (0, 2π) let s be given by (7.1.2) with
(α, t(·)) according to Lemma 7.2. Then for every nonnegative (pointwise a.e.) solution
u ∈ W 1(Lp(C(1, ω))) to (7.1.1) there exists some 0 < R < 1, such that either

u = 0 in C(R,ω),

or there exists κ > 0 such that for all ν ∈ N2
0 it holds

Dνu(x) = κDνs(x) + wν(x) for a.e. x ∈ C(R,ω),

with

|wν(x)| < cν |x|α−|ν| for some cν > 0 and all x ∈ C(R,ω). (7.1.7)

Moreover, for the functions wν it holds

lim
|x|→0

|wν(x)|
|x|α−|ν|

= 0

in C(R,ω).

Next, let us consider the inhomogeneous problem

−div
(
|∇u|p−2∇u

)
= f in C(1, ω),

u = 0 on S(1, ω).
(7.1.8)

We will use an expansion result due to Dobrowolski, see [57, Theorem 3], originally
formulated for the case of a general domain containing a conical boundary point.
However, the corresponding proof is based solely on considerations in a neighborhood
of that point, by reducing the global problem to a related one on the cone at the
beginning. Hence, we may reformulate the assertion [57, Theorem 3] for C(1, ω) as
follows.

Proposition 7.6. For 1 < p < ∞ and ω ∈ (0, 2π) let s be given by (7.1.2) with
(α, t(·)) according to Lemma 7.2. Assume that for some c > 0 and γ > γ0 :=
(α− 1)(p− 1)− 1 it holds

0 ≤ f(x) ≤ c |x|γ for a.e. x ∈ C(1, ω). (7.1.9)

Then for every nonnegative (pointwise a.e.) solution u ∈ W 1(Lp(C(1, ω))) to (7.1.8)
there exists some 0 < R < 1 such that either

u = 0 in C(R,ω),

or there exist constants κ, c′, η > 0 such that u admits the singular expansion

u(x) = κs(x) + w(x) for a.e. x ∈ C(R,ω) (7.1.10)

with a remainder w that satisfies

|w(x)| ≤ c′ |x|α+η and |∇w(x)| ≤ c′ |x|α−1+η for all x ∈ C(R,ω).

The maximum η > 0 depends on γ and the eigenvalue problem (7.1.3).
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Remark 7.7.

(i) For re-entrant corners, i.e. ω > π, it holds γ0 < −1, since 0 < α < 1 in this
case, see Remark 7.3.

(ii) Note that the local growth condition (7.1.9) implies f ∈ Lq(C(1, ω)) for all1 ≤ q < −2/γ, if γ < 0,
1 ≤ q ≤ ∞, if γ ≥ 0.

(7.1.11)

In case γ < 0, we can use α > max{(p− 2)/(p− 1), 0}, see (7.1.5), to estimate

−2
γ
>

−2
(α− 1)(p− 1)− 1 >

2/p, if 1 < p ≤ 2,
1, if 2 < p <∞.

Since 2/p ≥ 2p/(3p− 2) for all 1 < p ≤ 2, we see that in all cases we can find
some q with (7.1.11) which satisfies condition (7.0.2). Hence, by Remark 7.1(i)
it particularly follows that problem (7.1.8), (7.1.9) admits at least one solution
u ∈ W 1(Lp(C(1, ω))), e.g., for the boundary condition u = 0 on the whole
boundary ∂C(1, ω).

(iii) Retracing Dobrowolski’s proof of Proposition 7.6, see [57], one checks that for
the remainder w in (7.1.10) it even holds

w ∈ W2
q,β(C(R,ω)) for all 2 < q <∞ (7.1.12)

and all β with

−min
{
α + δ,Reβ(2)

}
+ 2− 2

q
< β < −α + 2− 2

q
,

where δ := γ−(α−1)(p−1)+1 > 0. Here, β(2) denotes the second eigenvalue of
the eigenvalue problem (7.1.3), where all eigenvalues are ordered by increasing
real parts. It holds 0 < Reβ(1) = β(1) = α < Reβ(2), see [57, Lemma 4].
Recall that for the definition of the weighted Sobolev spaces W2

q,β(C(R,ω)) in
(7.1.12), the set S ⊂ ∂C(R,ω) corresponding to the smooth distance function
ρ : C(R,ω) → [0, 1] has to be fixed, see Section 1.3. Here, as an exception
(cf. Remark 1.5), S consists only of the apex of the cone, i.e., S = {0}. Since
0 < R < 1 we may then simply set

ρ(x) := |x| , x ∈ C(R,ω), (7.1.13)

for the spaces W2
q,β(C(R,ω)) in (7.1.12).

7.2 Besov regularity: Locally vanishing source
term

In order to discuss regularity properties of solutions to the p-Poisson equation (3.2.1),
(7.0.2), (7.0.3) with right-hand sides f, g that vanish in the vicinity of a corner, we
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first consider the corresponding problem (7.1.1) on the unit cone. With the help of
the singular expansion results of the last section we are able to prove the following
Babuska-Kondratiev regularity assertion.

Proposition 7.8. Let 1 < p <∞ and ω ∈ (0, 2π), and let u ∈ W 1(Lp(C(1, ω))) be
a nonnegative solution of (7.1.1). Then there exists some 0 < R < 1, such that

u ∈ K`p,a(C(R,ω)) for all ` ∈ N and 0 ≤ a <
2
p
. (7.2.1)

Proof. Clearly, the assertion holds true if u = 0 in C(R,ω) for some 0 < R < 1.
Hence, let us assume that u 6= 0 in the vicinity of the origin, and let (α, t(·)) be the
solution of the eigenvalue problem (7.1.3) according to Lemma 7.2. For the rest of
this proof let ` ∈ N be arbitrary but fixed.

Step 1. From Proposition 7.5 we know that there exists some 0 < R < 1 and
κ > 0, such that for all ν ∈ N2

0 it holds

Dνu(x) = κDνs(x) + wν(x) for a.e. x ∈ C(R,ω),

where wν satisfies (7.1.7). Since s(x) = s̃(Ξ(x)) with s̃(r, φ) = rαt(φ), this means

Dνu(x) = κDν (|x|α t (Ξφ(x))) + wν(x). (7.2.2)

At first, with Leibniz’ rule for higher order (weak) partial derivatives we compute

Dν (|x|α t (Ξφ(x))) =
∑
β≤ν

(
ν

β

)
Dβ (|x|α)Dν−βt (Ξφ(x)) ,

where (
ν

β

)
=
(
ν1

β1

)
·
(
ν2

β2

)
for β ≤ ν,

and with the help of Lemma A.11, for arbitrary ν ∈ N2
0 with |ν| ≤ ` we estimate

|Dν (|x|α t (Ξφ(x)))| .
∑
β≤ν
|x|α−|β|

∣∣∣Dν−βt(Ξφ(x))
∣∣∣ . (7.2.3)

Furthermore, with Lemma A.12 and Lemma 7.4 we find

∣∣∣Dν−βt(Ξφ(x))
∣∣∣ ≤ |ν−β|∑

k=1

∑
j1+j2=|ν−β|

∣∣∣cν−β,k,j1,j2t(k)(Ξφ(x))
∣∣∣ |x|j1+j2

|x|2|ν−β|

.
|ν−β|∑
k=1

∑
j1+j2=|ν−β|

∥∥∥t Ck([0, ω])
∥∥∥ |x|−|ν−β|

.
∥∥∥t C |ν−β|([0, ω])

∥∥∥ |x|−|ν|+|β| . (7.2.4)

Now, the estimates (7.2.3) and (7.2.4) yield

|Dν(|x|α t(Ξφ(x)))| .
∥∥∥t C |ν|([0, ω])

∥∥∥ ∑
β≤ν
|x|α−|ν| . |x|α−|ν| ,
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so that from (7.1.7) and (7.2.2) we conclude

|Dνu(x)| . |x|α−|ν| for a.e. x ∈ C(R,ω).

Hence, for the K`p,a-norm of u, see Section 1.3, it holds∥∥∥u K`p,a(C(R,ω))
∥∥∥p =

∑
|ν|≤`

ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−aDνu(x)
∣∣∣p dx

.
∑
|ν|≤`

ˆ
C(R,ω)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx. (7.2.5)

Step 2. To estimate the terms occuring in (7.2.5), we will use the following
partition of C(R,ω). By xi, i ∈ {0, 1, 2}, we denote the vertices of C(R,ω), where
x0 = (0, 0). Then we set U(xi) := C(R,ω) ∩ Bε(xi), i ∈ {0, 1, 2}, and choose
ε ∈ (0, R) sufficiently small such that ρ(x) ∼ |x− xi| in U(xi) for all i ∈ {0, 1, 2}.
Furthermore, we set U c := C(R,ω) \ {∪2

i=0U(xi)} and rmin := infx∈Uc ρ(x) > 0. Now,
since rmin ≤ ρ(x) ≤ 1 for all x ∈ U c, for arbitrary ν ∈ N2

0 and a ∈ R it clearly holds

ρ(x)|ν|−a ≤ max
{

1, r|ν|−amin

}
for all x ∈ U c. (7.2.6)

Similarly, since ε ≤ |x| < 1 for all x ∈ C(R,ω) \ U(x0), it holds

|x|α−|ν| ≤ max
{

1, εα−|ν|
}

for all x ∈ C(R,ω) \ U(x0). (7.2.7)

With the help of (7.2.6) and (7.2.7), for arbitrary ν ∈ N2
0 we estimate

ˆ
C(R,ω)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx .

ˆ
Uc
|x|(α−|ν|)p dx+

2∑
i=0

ˆ
U(xi)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx

. 1 +
ˆ
U(x0)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx+

2∑
i=1

ˆ
U(xi)

(
ρ(x)|ν|−a

)p
dx.

Next, using that ρ(x) ∼ |x− xi| in U(xi) for all i ∈ {0, 1, 2}, we further get
ˆ
C(R,ω)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx . 1 +

ˆ
U(x0)
|x|(α−a)p dx+

2∑
i=1

ˆ
U(xi)

(
|x− xi||ν|−a

)p
dx

. 1 +
ˆ
U(x0)

|x|−ap dx+
2∑
i=1

ˆ
U(xi)
|x− xi|−ap dx,

(7.2.8)

where we used that α > 0 and |ν| ≥ 0 in the last step. Finally, since for all
i ∈ {0, 1, 2} it holdsˆ

U(xi)
|x− xi|−ap dx <

ˆ
Bε(0)
|x|−ap dx <∞

for −ap > −2, i.e., a < 2/p, from (7.2.8) we concludeˆ
C(R,ω)

(
ρ(x)|ν|−a |x|α−|ν|

)p
dx <∞ for all a <

2
p
, ν ∈ N2

0. (7.2.9)

Now, this last estimate together with (7.2.5) proves the assertion.
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Remark 7.9.

(i) In regard of the Babuska-Kondratiev spaces K`p,a(C(R,ω)) in (7.2.1) we im-
plicitly assumed that the corresponding singular set S consists of the three
vertices of C(R,ω), cf. Remark 1.5. However, if we choose S to consist only of
the apex of the cone, i.e., S = {0}, the assertion of Proposition 7.8 holds true
analogously with an improved upper bound for a, i.e., then there exists some
0 < R < 1 such that

u ∈ K`p,a(C(R,ω)) for all ` ∈ N and 0 ≤ a < α + 2
p
.

To see this, only minor modifications in Step 2 of the above proof of Proposi-
tion 7.8 are necessary (using exactly the same arguments).

(ii) Under the assumptions of Proposition 7.8, part (i) of this remark and Re-
mark 1.4(ii) imply u ∈ W `(Lp(C(R,ω))), provided that α = α(ω, p) > `−2/p =
`− 2 + 2/p′. This happens, e.g., for small values of p and small angles ω, see
Remark 7.3.

Now we are in the position to apply the embedding Corollary 5.4 of Section 5.2.
The resulting Besov regularity assertion for solutions to (7.1.1) on the unit cone
reads as follows.

Proposition 7.10. Let 1 < p < ∞ and ω ∈ (0, 2π), and let u ∈ W 1(Lp(C(1, ω)))
be a nonnegative solution of (7.1.1). Then there exists some 0 < R < 1, such that

u ∈ Bσ
τ (Lτ (C(R,ω))) for all σ > 0, 1

τ
= σ

2 + 1
p
,

i.e., u ∈ B∞NL(Lp(C(R,ω))).

Proof. First note that W 1(Lp(C(R,ω))) ↪→ B1−ε
p (Lp(C(R,ω))) for all 0 < ε < 1, see

Remark 1.6(iii). Hence, with Proposition 7.8 we conclude that

u ∈ K`p,a(C(R,ω)) ∩Bs
p(Lp(C(R,ω))) for all ` ∈ N, 0 ≤ a <

2
p
, 0 < s < 1.

(7.2.10)

Now, by Remark 5.5(ii) the continuous embedding stated in Corollary 5.4 can be
applied which proves the assertion.

Remark 7.11.

(i) Under the assumptions of Proposition 7.10, for arbitrary ` ∈ N, 0 < a < 2/p
and 0 < σ < ` the (quasi-) norm estimate

‖u Bσ
τ (Lτ (C(R,ω)))‖ .

∥∥∥u K`p,a(C(R,ω))
∥∥∥+

∥∥∥u W 1(Lp(C(R,ω)))
∥∥∥ ,

1/τ = σ/2 + 1/p, holds true. This follows from (7.2.10), Remark 5.5 and
Corollary 5.4.
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(ii) Note that all assertions stated in this section so far in particular hold for the
singular function u = s, since s is a (special) positive solution of (7.1.1).

Finally, let us turn to our primary global problem (3.2.1), (7.0.2), (7.0.3). By
means of a transformation of coordinates, Proposition 7.10 implies the following
Besov regularity result.

Theorem 7.12. Let Ω ⊂ R2 be some bounded polygonal domain, 1 < p <∞, and
let u ∈ W 1(Lp(Ω)) be the unique solution to problem (3.2.1), (7.0.2), (7.0.3). Let
x0 ∈ ∂Ω denote an arbitrary vertex of Ω. If, for some R0 > 0, it holds f = 0 in
CR0(x0) = BR0(x0)∩Ω and g = 0 on SR0(x0) = BR0(x0)∩∂Ω, then there exists some
0 < R < R0 such that

u|CR(x0) ∈ Bσ
τ (Lτ (CR(x0))) for all σ > 0, 1

τ
= σ

2 + 1
p
,

i.e.,

u|CR(x0) ∈ B∞NL(Lp(CR(x0))).

Proof. Step 1. Let us first verify that problem (3.2.1) is invariant with respect to
translation and rotation in the following sense. Translating the whole problem to
the origin, i.e., Ω̂ := Ω− x0, f̂(·) := f(·+ x0) and ĝ(·) := g(·+ x0), one immediatelly
checks that the corresponding solution is given by û(·) := u(·+ x0). Similarly, for
a rotation Υ by a fixed angle θ about the origin, with Ω̌ := Υ−1(Ω̂), f̌ := f̂ ◦ Υ
and ǔ := û ◦Υ, by a change of variables and the orthogonality of the corresponding
rotation matrix Mθ, a short computation yields that for all v̌ ∈ C∞0 (Ω̌), where we
set v̂ = v̌ ◦Υ−1 ∈ C∞0 (Ω̂), it holds
ˆ

Ω̌

〈
|∇ǔ|p−2∇ǔ,∇v̌

〉
dx =

ˆ
Ω̌

〈∣∣∣M−1
θ (∇û) ◦Υ

∣∣∣p−2
M−1

θ (∇û) ◦Υ,M−1
θ (∇v̂) ◦Υ

〉
dx

=
ˆ

Υ−1(Ω̂)

〈
|(∇û) ◦Υ|p−2 (∇û) ◦Υ, (∇v̂) ◦Υ

〉
dx

=
ˆ

Ω̂

〈
|∇û|p−2∇û,∇v̂

〉
dx,

where we have used that detDΥ = 1. Since û is the weak solution of the translated
problem, we further get

ˆ
Ω̌

〈
|∇ǔ|p−2∇ǔ,∇v̌

〉
dx =

ˆ
Ω̂
f̂ v̂ dx =

ˆ
Ω̌
f̌ v̌ dx,

i.e., ǔ solves the translated and rotated problem −div
(
|∇ǔ|p−2∇ǔ

)
= f̌ in Ω̌ with

ǔ = ǧ := ĝ ◦Υ on ∂Ω̌.
Step 2. Now, let u ∈ W 1(Lp(Ω)) denote the unique solution to problem (3.2.1),

(7.0.2), (7.0.3), and let ǔ(x) = u(Υ(x) + x0) be the solution to the appropriately
translated and rotated problem according to Step 1, such that the setting of equation
(7.1.1) applies (i.e., with radius R0 instead of 1). Note that the restriction ǔ|C(R0,ω)

of the solution ǔ on the whole polygonal domain Ω̌ is in particular a solution of
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the local problem −div(|∇ǔ|p−2∇ǔ) = f̌ |C(R0,ω) = 0 in C(R0, ω), ǔ = 0 on S(R0, ω).
Since f, g ≥ 0, from the weak comparison principle, see Proposition 3.5, we know
that u ≥ 0 in Ω, which implies ǔ ≥ 0 in Ω̌. Hence, ǔ|C(R0,ω) ∈ W 1(Lp(C(R0, ω))) is a
nonnegative solution of (7.1.1), and from Proposition 7.10 we know that there exists
some 0 < R < R0, such that

ǔ|C(R,ω) ∈ Bσ
τ (Lτ (C(R,ω))) for all σ > 0, 1

τ
= σ

2 + 1
p
.

Finally, from the definition of the Besov spaces in Section 1.4, we see that
‖ǔ Bσ

τ (Lτ (C(R,ω)))‖ = ‖u Bσ
τ (Lτ (C(x0, R)))‖, which proves the assertion.

Remark 7.13.

(i) Note that for the (global) solution u in Theorem 7.12 it also holds

u|CR(x0) ∈ K`p,a(CR(x0)) for all ` ∈ N and 0 ≤ a <
2
p
. (7.2.11)

This follows from Proposition 7.8 by using the same transformation arguments
as in the proof of Theorem 7.12.

(ii) The assertions of Remark 7.9 hold true analogously for Theorem 7.12. I.e.,
if the set S corresponding to the spaces K`p,a(CR(x0)) is chosen as S = {x0},
the upper bound in (7.2.11) improves to 0 ≤ a < α + 2/p. In particular,
u|CR(x0) ∈ W `(Lp(CR(x0))), provided that α = α(ω, p) > `− 2/p.

Now, by (7.2.11) and with the help of the embedding Theorem 5.9, we may
formulate the following corollary.

Corollary 7.14. Let the assumptions of Theorem 7.12 hold. Then there exists some
0 < R < R0, such that for all 0 < a < 2/p and 0 < s < 1 it holds

u|CR(x0) ∈ H∞,sa (Lp(CR(x0))) ↪→ B∞NL(Lp(CR(x0))).

7.3 Besov regularity: The inhomogeneous
equation

In the sequel we treat the class of p-Poisson problems (3.2.1), (7.0.2), (7.0.3), where
g locally vanishes and the right-hand side f satisfies a local growth condition in
the vicinity of a vertex of the polygonal domain. To prove our second main Besov
smoothness result, similar to the previous section at first we derive a weighted
Sobolev regulartiy result for problem (7.1.8) on the unit cone.

Proposition 7.15. For 1 < p <∞ and ω ∈ (0, 2π) let α > max{0, (p− 2)/(p− 1)}
be given by (7.1.4). Assume that for some c > 0 and γ > γ0 := (α − 1)(p − 1) − 1
it holds 0 ≤ f(x) ≤ c |x|γ for a.e. x ∈ C(1, ω). Let u ∈ W 1(Lp(C(1, ω))) be a
nonnegative solution of (7.1.8). Then there exists some 0 < R < 1 such that

u ∈ K2
p,a(C(R,ω)) for all 0 ≤ a <

2
p
. (7.3.1)
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Proof. Again, w.l.o.g. we assume that u 6= 0 in the vicinity of the origin. First, from
Proposition 7.6 we know that u can be expanded into

u(x) = κs(x) + w(x) for a.e. x ∈ C(R,ω),

with κ > 0 and

|w(x)| ≤ c′ |x|α+η , |∇w(x)| ≤ c′ |x|α−1+η for all x ∈ C(R,ω), (7.3.2)

where c′, η > 0. In regard of the singular part s, from Proposition 7.8 and Re-
mark 7.11(ii) we know that

s ∈ K`p,a(C(R,ω)) for all ` ∈ N and 0 ≤ a <
2
p
.

Hence, it remains to show that w ∈ K2
p,a(C(R,ω)).

Step 1. Therefore, as a first step, we will show that

w ∈ K2
q,a(C(R,ω)) for all q > 2, 0 ≤ a <

2
q
. (7.3.3)

Thus, from now on let q > 2 and 0 ≤ a < 2/q be arbitrary, but fixed. Note that a < 1
in this case and therefore |ν| − a > 0 for all ν ∈ N2

0 with |ν| ≥ 1. Since ρ(x) . |x|
for all x ∈ C(R,ω), using (7.3.2) we get

∥∥∥w K2
q,a(C(R,ω))

∥∥∥q =
∑
|ν|≤2

ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−aDνw(x)
∣∣∣q dx

.
∑
|ν|≤1

ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−a |x|α+η−|ν|
∣∣∣q dx+

∑
|ν|=2

ˆ
C(R,ω)

∣∣∣|x|2−aDνw(x)
∣∣∣q dx.

(7.3.4)

The first sum in (7.3.4) can be treated exactly like in Step 2 of the proof of Proposi-
tion 7.8, thus from (7.2.9) we conclude

∑
0≤|ν|≤1

ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−a |x|α+η−|ν|
∣∣∣q dx <∞. (7.3.5)

To estimate the terms involving second order derivatives of w, we will make use of
the fact that w ∈ W2

q,β(C(R,ω)) for all q > 2 and −min{α+ δ,Reβ(2)}+ 2− 2/q <
β < −α + 2− 2/q, where δ > 0 and Reβ(2) > α, see Remark 7.7(iii). Note that for
those specific spaces W2

q,β it holds S = {0} and the corresponding smooth distance
function is given by ρ(x) = |x|, see (7.1.13) in Remark 7.7(iii). Hence, with the help
of Lemma A.13 we conclude that for the W2

q,β-norm (cf. (1.3.2)) it holds

∥∥∥w W2
q,β(C(R,ω))

∥∥∥q ∼ ˆ
C(R,ω)

∣∣∣|x|β−2w(x)
∣∣∣q dx+

∑
|ν|≤2

ˆ
C(R,ω)

∣∣∣Dν
(
|x|β w(x)

)∣∣∣q dx.

(7.3.6)
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Now, set ε := 2− a− β > 0. With the help of Leibniz’ rule and Lemma A.13, for
ν ∈ N2

0 with |ν| = 2 we computeˆ
C(R,ω)

∣∣∣|x|2−aDνw(x)
∣∣∣q dx =

ˆ
C(R,ω)

|x|εq
∣∣∣|x|βDνw(x)

∣∣∣q dx

=
ˆ
C(R,ω)

|x|εq
∣∣∣∣∣∣Dν

(
|x|β w(x)

)
−

∑
06=µ≤ν

(
ν

µ

)(
Dµ |x|β

) (
Dν−µw(x)

)∣∣∣∣∣∣
q

dx

.
ˆ
C(R,ω)

∣∣∣Dν
(
|x|β w(x)

)∣∣∣q dx+
ˆ
C(R,ω)

∑
06=µ≤ν

∣∣∣|x|ε (Dµ |x|β
) (
Dν−µw(x)

)∣∣∣q dx.

With (7.3.2) and (7.3.6), as well as Lemma A.11 we further estimateˆ
C(R,ω)

∣∣∣|x|2−aDνw
∣∣∣q dx .

∥∥∥w W2
q,β(C(R,ω))

∥∥∥q +
ˆ
C(R,ω)

∑
0 6=µ≤ν

∣∣∣|x|ε+β+α+η−2
∣∣∣q dx

.
∥∥∥w W2

q,β(C(R,ω))
∥∥∥q + 1, (7.3.7)

since

(ε+ β + α + η − 2) q = (α + η − a) q > −aq > −2.

Finally, using the estimates (7.3.5) and (7.3.7), from (7.3.4) we derive∥∥∥w K2
q,a(C(R,ω))

∥∥∥ <∞ for all q > 2, 0 ≤ a <
2
q
,

which proves (7.3.3). Hence, we have shown that the assertion (7.3.1) holds true for
2 < p <∞.

Step 2. To conclude the proof, it remains to consider the case 1 < p ≤ 2.
Therefore, we will show that for 1 ≤ p < q <∞ and ` ∈ N0 the embedding

K`q,ã(C(R,ω)) ↪→ K`p,a(C(R,ω)) (7.3.8)

holds true for all a, ã ≥ 0 with a < ã−2/q+2/p. With the help of Hölder’s inequality
we get∥∥∥w K`p,a(C(R,ω))

∥∥∥p =
∑
|ν|≤`

ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−aDνw
∣∣∣p dx

=
∑
|ν|≤`

ˆ
C(R,ω)

ρ(x)(ã−a)p
∣∣∣ρ(x)|ν|−ãDνw

∣∣∣p dx

≤
∑
|ν|≤`

(ˆ
C(R,ω)

(
ρ(x)(ã−a)p

)q/(q−p)
dx
)1−p/q(ˆ

C(R,ω)

∣∣∣ρ(x)|ν|−ãDνw
∣∣∣q dx

)p/q
,

and to estimate the above integral not depending on w, note that 0 < ρ ≤ 1 only
approaches zero in the vicinity of the corners of C(R,ω). Hence, we conclude that
for (ã− a)pq/(q − p) > −2, i.e., a < ã− 2/q + 2/p it holds

∥∥∥w K`p,a(C(R,ω))
∥∥∥p . ∑

|ν|≤`

(ˆ
C(R,ω)

∣∣∣ρ(x)|ν|−ãDνw
∣∣∣q dx

)p/q
.
∥∥∥w K`q,ã(C(R,ω))

∥∥∥p ,



106 CHAPTER 7. BESOV REGULARITY IN THE VICINITY OF A CORNER

which proves (7.3.8). Now, let 1 < p ≤ 2 and 0 ≤ a < 2/p. Choose any q > 2 and
ã ≥ 0 such that a− 2/p+ 2/q < ã < 2/q. Then, from (7.3.3) and (7.3.8) we conclude
that

w ∈ K2
q,ã(C(R,ω)) ↪→ K2

p,a(C(R,ω)).

Remark 7.16. The assertions of Remark 7.9 hold true analogously for Proposi-
tion 7.15 with ` = 2. In particular, u ∈ W 2(Lp(C(R,ω))) provided that α(ω, p) >
2− 2/p.

With the help of this weighted Sobolev regularity result, we can derive the
following Besov smoothness estimate for solutions on the unit cone.

Proposition 7.17. For 1 < p <∞ and ω ∈ (0, 2π) let α > max{0, (p− 2)/(p− 1)}
be given by (7.1.4). Assume that for some c > 0 and γ > γ0 := (α − 1)(p − 1) − 1
it holds 0 ≤ f(x) ≤ c |x|γ for a.e. x ∈ C(1, ω). Let u ∈ W 1(Lp(C(1, ω))) be a
nonnegative solution of (7.1.8). Then there exists some 0 < R < 1 such that

u ∈ Bσ
τ (Lτ (C(R,ω))) for all 0 < σ < 2, 1

τ
= σ

2 + 1
p
.

Proof. The proof is completely analogous to the one of Proposition 7.10, where here
we apply Proposition 7.15 instead of Proposition 7.8.

By the same arguments as before, we can transfer the local smoothness estimate
from the unit cone to our primary global problem (3.2.1), (7.0.2), (7.0.3) to obtain
our second main Besov regularity result.

Theorem 7.18. Let Ω ⊂ R2 be some bounded polygonal domain, 1 < p <∞, and
let u ∈ W 1(Lp(Ω)) be the unique solution to problem (3.2.1), (7.0.2), (7.0.3). Let
x0 ∈ ∂Ω be a vertex of Ω with interior angle ω ∈ (0, 2π). Moreover, assume that for
some R0 > 0 there exists c > 0 and γ > (α − 1)(p − 1) − 1 with α = α(ω, p) > 0
given by (7.1.4) such that 0 ≤ f(x) ≤ c |x− x0|γ for a.e. x ∈ CR0(x0) = BR0(x0)∩Ω
and g = 0 on SR0(x0) = BR0(x0)∩ ∂Ω. Then there exists some 0 < R < R0 such that

u|CR(x0) ∈ Bσ
τ (Lτ (CR(x0))) for all 0 < σ < 2, 1

τ
= σ

2 + 1
p
.

Proof. The proof follows almost exactly the lines of the proof of Theorem 7.12, where
here we apply Proposition 7.17 instead of Proposition 7.10.

Remark 7.19.

(i) In [57, p. 188] Dobrowolski notes that for the regular part w of the expansion
(7.1.10) it holds |∇2w(x)| ≤ c |x− x0|α−2+η etc. in a neighborhood of x0 if the
right-hand side f and ∂Ω \ {x0} are sufficiently smooth. In this case, as can be
seen from the proofs of Proposition 7.15 and Proposition 7.17, also the Besov
regularity of the solution, measured in the adaptivity scale, would improve
correspondingly.



7.3. BESOV REGULARITY: THE INHOMOGENEOUS EQUATION 107

(ii) By the same arguments as in Section 7.2 we conclude that for the solution u in
Theorem 7.18 it holds

u|CR(x0) ∈ K2
p,a(CR(x0)) for all 0 ≤ a <

2
p
.

Moreover, if α(ω, p) > 2− 2/p then u ∈ W 2(Lp(CR(x0))), cf. Remark 7.13.
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Chapter 8

A Kačanov-type Iteration Method

In this chapter the Kačanov-type iteration scheme as proposed in [53] for the numerical
treatment of the p-Poisson equation is introduced. Due to the nonlinear structure
of the p-Laplacian, the numerical approximation is a nontrivial, rather unexplored
subject of research. To the author’s best knowledge, by now there mainly exist two
publications which are concerned with numerically feasible approximation schemes
for the p-Poisson equation.

The work of Canuto and Urban [14] treats the fairly general framework of convex
minimization in Banach spaces, where convergence of a steepest descent type method
is established. This setting covers the p-Poisson problem with homogeneous Dirichlet
boundary conditions for all p > 2, yet excluding the case 1 < p ≤ 2.

In [53] Diening et al. proposed an iterative linearization scheme for the p-Poisson
equation which can be interpreted as a relaxed Kačanov iteration. In particular, the
case 1 < p ≤ 2 is treated. The main feature of this algorithm is that in each iteration
only a linear elliptic subproblem has to be solved, which is numerically accessible
in a stable and approved way by, e.g., a finite element or wavelet method. In this
chapter we will focus on this algorithm, in connection with an appropriate adaptive
wavelet frame method for the solution of the linear subproblems.

Throughout this chapter, we consider the p-Poisson problem with homogeneous
Dirichlet boundary data (3.2.3), i.e.,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = 0 on ∂Ω,

for 1 < p ≤ 2 on a bounded domain Ω ⊂ Rd, d ≥ 2, with f ∈ W−1(Lp′(Ω)). Where
necessary (i.e., for some assertions in Section 8.3, as well as in Section 8.4), we may
restrict the class of admissible domains to polyhedral Lipschitz domains, which will
be explicitly stated then.

This chapter is organized as follows. First, in Section 8.1 the relaxed Kačanov
iteration method is introduced. The error analysis done in [53] for this scheme -
which we summarize in Section 8.3 - is based on a characterization of the p-Poisson
problem and of the subproblems occuring in this Kačanov-type iteration, as certain
energy minimization problems. Moreover, all approximation error assertions are
formulated in terms of (differences of) those energies. Therefore, this correspondence

111
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between weak solutions and minimizers of specific energy functionals is outlined in
Section 8.2. Finally, in Section 8.4, we will describe the discretization of the linear
subproblems which have to be solved at each relaxed Kačanov iteration, by means of
an adaptive wavelet (frame) algorithm.

8.1 A Kačanov-type iteration method

8.1.1 The classical Kačanov iteration
Roughly speaking, the classical Kačanov scheme is an iteration method for solving
nonlinear problems via linearization. An early reference is [86]. For quasilinear
elliptic equations of the type

−div(α (|∇u|)∇u) = f in Ω, (8.1.1)

the Kačanov iteration takes the following form. For a given function u0, the new
iterate un+1 is recursively defined as the solution of

−div(α (|∇un|)∇un+1) = f in Ω, n ≥ 0. (8.1.2)

Note that now at each iteration only a linear problem has to be solved.
If α : R+ → R+ is continuously differentiable, under certain monotonicity

properties on α, i.e., if

c1 ≤ α(ξ) ≤ c2, α′(ξ) ≤ 0, 2α′(ξ) ξ + α(ξ) ≥ c3 (8.1.3)

for suitable positive constants c1, c2, c3 and all ξ ≥ 0, it is proved in [136] that the
Kačanov iteration (8.1.2) converges to a fixed point u which solves (8.1.1). An a
posteriori error estimate is derived in [75].

Unfortunately, the p-Poisson equation, i.e. α(ξ) = ξp−2, does not satisfy the
conditions in (8.1.3). Moreover, equation (8.1.2) is not numerically solvable in a
stable way if |∇un| vanishes or gets unbounded at certain points, since then the
weight |∇un|p−2 degenerates. A natural approach is to modify the weight function
α(ξ) = ξp−2 appropriately, as described in the next subsection.

8.1.2 A relaxed Kačanov iteration method

To overcome the above mentioned problem of a possibly degenerate weight |∇un|p−2

in the course of the Kačanov iteration (8.1.2), a self-evident approach is to simply
truncate the weight function. Therefore, for 0 < ε− ≤ ε+ <∞ and x ∈ R we define

ε− ∨ x ∧ ε+ :=


ε−, if x ≤ ε−,

x, if ε− < x < ε+,

ε+, if x ≥ ε+.

Similarly, for a function a : Ω 7→ R we define the corresponding truncated function

ε− ∨ a ∧ ε+ : Ω→ [ε−, ε+]
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by

x 7→ ε− ∨ a(x) ∧ ε+.

Note that ε− ∨ a ∧ ε+ ∈ L∞(Ω) for any measurable function a. We will write
ε := [ε−, ε+] for the truncation interval.

Now, modifying the classical Kačanov iteration (8.1.2) by truncating the (ar-
gument of the) weight function α(ξ) = ξp−2, the new iteration scheme takes the
form

−div
(
(ε− ∨ |∇un| ∧ ε+)p−2∇un+1

)
= f in Ω, n ≥ 0. (8.1.4)

Moreover, to recover the p-Laplace operator, we will additionally have to increase
the truncation interval during the iteration. Then, the resulting relaxed Kačanov
algorithm for the p-Poisson problem, as proposed in [53], reads as follows.

Algorithm 1 (relaxed Kačanov algorithm).

Data: Given f ∈ W−1(Lp′(Ω)), u0 ∈ W 1
0 (L2(Ω));

Result: Approximate solution of the p-Poisson problem (3.2.3);
Initialize: ε0 = [ε0,−, ε0,+] ⊂ (0,∞), n = 0;

while desired accuracy is not achieved yet do
Define un+1 ∈ W 1

0 (L2(Ω)) as the solution of
ˆ

Ω
(εn,− ∨ |∇un| ∧ εn,+)p−2∇un+1 · ∇v dx = 〈f, v〉 for all v ∈ W 1

0 (L2(Ω));

(8.1.5)

Choose new relaxation interval εn+1 ⊃ εn;
Increase n by 1;

end

Some comments are in order. First note that the matrix of coefficients corre-
sponding to (8.1.5), which is given by (ai,j(x))di,j=1 := (εn,− ∨ |∇un(x)| ∧ εn,+)p−2 I,
where I ∈ Rd×d denotes the unit matrix, is uniformly elliptic because

d∑
i,j=1

ai,j(x)ξiξj = (εn,− ∨ |∇un(x)| ∧ εn,+)p−2 |ξ|2 ≥ |ξ|2 ·

ε
p−2
n,+ , if 1 < p < 2,
εp−2
n,− , if p ≥ 2,

for all ξ ∈ Rd and x ∈ Ω. Hence, the subproblem (8.1.5) which has to be solved at
each iteration is a linear, uniformly elliptic PDE. The unique solvability of these
equations is guaranteed by the following well-known result, formulated for our
particular instance (8.1.5). A proof can be found, e.g., in [73].

Proposition 8.1. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain and 1 < p < ∞, as
well as [ε−, ε+] ⊂ (0,∞) and a ∈ L1(Ω). Furthermore, let f ∈ W−1(L2(Ω)) and
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g ∈ W 1(L2(Ω)). Then, there exists a unique u ∈ W 1(L2(Ω)) with (u−g) ∈ W 1
0 (L2(Ω))

such thatˆ
Ω

(ε− ∨ |a| ∧ ε+)p−2∇u · ∇v dx = 〈f, v〉 for all v ∈ W 1
0 (L2(Ω)).

Remark 8.2.

(i) Note that in Algorithm 1 it is assumed f ∈ W−1(Lp′(Ω)) to assure the
solvability of the p-Poisson problem (3.2.3), see Proposition 3.2, whereas for
the solvability of the subproblems (8.1.5) it is required f ∈ W−1(L2(Ω)),
see Proposition 8.1. But, since W 1

0 (L2(Ω)) is continuously embedded into
W 1

0 (Lp(Ω)) for all 1 < p < 2, we see that W−1(Lp′(Ω)) ⊂ W−1(L2(Ω)). Hence,
under the assumptions of Algorithm 1 the linear subproblems (8.1.5) are
uniquely solvable.

(ii) For the reader’s convenience, we shortly sketch the proof of Proposition 8.1
given in [73]. Setting

b(u, v) :=
ˆ

Ω
(ε− ∨ |a| ∧ ε+)p−2∇u · ∇v dx, (8.1.6)

where a ∈ L1(Ω), we estimate for v ∈ W 1
0 (L2(Ω))

b(v, v) ≥ C|v|2W 1(L2(Ω)) ≥ CΩ‖v‖2
W 1(L2(Ω)),

where the last estimate holds due to Poincaré-Friedrich’s inequality (see, e.g.,
[73, Lemma 6.2.11]). Hence, b(·, ·) is W 1

0 (L2(Ω))-elliptic, and it is not diffi-
cult to see that b(·, ·) is bounded on W 1(L2(Ω))×W 1(L2(Ω)). Consequently,
(W 1

0 (L2(Ω)), b(·, ·)) is a Hilbert space on its own right, and the Riesz represen-
tation theorem yields the existence of a unique solution ũ ∈ W 1

0 (L2(Ω)) of the
problem

b(ũ, v) = 〈f, v〉 − b(g, v) for all v ∈ W 1
0 (L2(Ω)),

since the above right-hand side is a linear bounded functional on W 1
0 (L2(Ω)).

Setting u := ũ+ g finally yields

b(u, v) = b(ũ, v) + b(g, v) = 〈f, v〉 for all v ∈ W 1
0 (L2(Ω))

and (u− g) ∈ W 1
0 (L2(Ω)).

In summary, we have seen that Algorithm 1 is well-defined. Moreover, we
remark that the algorithm is fully implementable, since clearly the linear, uniformly
elliptic equations (8.1.5) can be approximately solved by a finite element or wavelet
(frame) method in a stable way. Before we address this topic in Section 8.4, prior to
that let us consider the question whether the relaxation and linearization performed
above is consistent with the original p-Poisson equation. Therefore, we assume that
the linear subproblems (8.1.5) are solved exactly, and summarize some convergence
results for Algorithm 1 in Section 8.3. To describe these results, we first need to
introduce an equivalent characterization of the p-Poisson problem, as well as of the
subproblems (8.1.5), as an energy minimization problem in the next section.
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8.2 Energy minimizer and weak solutions

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain, 1 < p <∞ and f ∈ W−1(Lp′(Ω)). Then,
the energy functional related to the p-Poisson problem (3.2.3) is defined as

J : W 1
0 (Lp(Ω))→ R,

J (u) :=
ˆ

Ω

1
p
|∇u|p dx− 〈f, u〉. (8.2.1)

Now, the Dirichlet p-Poisson problem can be interpreted as an energy minimization
problem as follows. A proof of this assertion for f = 0 can be found in [99]. For the
readers convenience, we present the adapted proof below.

Proposition 8.3. The following conditions are equivalent for u ∈ W 1
0 (Lp(Ω)).

(i) u is a minimizer of J :

J (u) ≤ J (v) for all v ∈ W 1
0 (Lp(Ω)). (8.2.2)

(ii) The first variation vanishes:
ˆ

Ω
|∇u|p−2 ∇u · ∇v dx = 〈f, v〉 for all v ∈ W 1

0 (Lp(Ω)). (8.2.3)

Proof. (i) ⇒ (ii). Let u be a minimizer of J and v ∈ W 1
0 (Lp(Ω)) be arbitrary

but fixed. For real t we set vt := u + tv. Note that vt ∈ W 1
0 (Lp(Ω)) and hence

J (u) ≤ J (vt) for all t ∈ R. Next we set

I(t) := J (vt) = J (u+ tv)

and note that I has a minimum in t = 0. In the following, w.l.o.g. we restrict t to
the intervall (−1, 1) and set

G(t) :=
ˆ

Ω
g(t, x) dx with g(t, x) := 1

p
|∇u(x) + t∇v(x))|p,

H(t) := (F ◦ h)(t) with F (v) := 〈f, v〉 and h(t) = u+ tv,

i.e., I = G − H. Clearly, g(t, ·) ∈ L1(Ω) for all t ∈ (−1, 1) and |·|p is continu-
ously differentiable on Rd, see Lemma A.10. It follows that g(·, x) is continuously
differentiable for a.e. x ∈ Ω and we compute

∂

∂t
g(t, x) = |∇u(x) + t∇v(x)|p−2 (∇u(x) + t∇v(x)) · ∇v(x).

We estimate ∣∣∣∣∣ ∂∂tg(t, x)
∣∣∣∣∣ ≤ (|∇u(x)|+ |t| |∇v(x)|)p−1 |∇v(x)| ,
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and since |t| < 1, it holds∣∣∣∣∣ ∂∂tg(t, x)
∣∣∣∣∣ ≤ (|∇u(x)|+ |∇v(x)|)p ≤ 2p−1 (|∇u(x)|p + |∇v(x)|p) ∈ L1(Ω),

where for the last estimate we have used Lemma A.13. Now we have shown that
g satisfies all conditions of Lemma A.9 and hence G is continuously differentiable.
Clearly, f is Fréchet differentiable and thus it holds H ′(t) = (F ′ ◦ h)(t)h′(t) =
F (h′(t)) = F (v). We derive

I ′(t) = G′(t)−H ′(t)

=
ˆ

Ω

∂

∂t
g(t, x) dx− F (v)

=
ˆ

Ω
|∇u(x) + t∇v(x)|p−2 (∇u(x) + t∇v(x)) · ∇v(x) dx− 〈f, v〉.

Since I has a minimum in t = 0, it must hold

0 = I ′(0) =
ˆ

Ω
|∇u(x)|p−2 ∇u(x) · ∇v(x) dx− 〈f, v〉.

This is (ii).
(ii) ⇒ (i). Since p > 1, for vectors ϑ1, ϑ2 ∈ Rd the inequality

|ϑ2|p ≥ |ϑ1|p + p〈|ϑ1|p−2 ϑ1, ϑ2 − ϑ1〉

holds by convexity, see Lemma A.14, such that for v ∈ W 1
0 (Lp(Ω)) we estimate

J (v) =
ˆ

Ω

1
p
|∇v|p dx− 〈f, v〉

≥
ˆ

Ω

1
p
|∇u|p dx+

ˆ
Ω
|∇u|p−2∇u · (∇v −∇u) dx− 〈f, v〉

=
ˆ

Ω

1
p
|∇u|p dx+ 〈f, v − u〉 − 〈f, v〉

= J (u).

Hence, the p-Poisson equation with homogeneous Dirichlet boundary conditions
can be equivalently described as an energy minimization problem with the same
boundary constraint. The rest of this section will be devoted to the derivation of a
characterization of the linear subproblems (8.1.5) as a (two-step) energy minimization
problem.

8.2.1 Relaxed energy
If the energy functional J is extended by an additional parameter a in the following
way,

Js(u, a) :=
ˆ

Ω

1
2a

p−2 |∇u|2 +
(

1
p
− 1

2

)
ap dx− 〈f, u〉, (8.2.4)
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we see that Js is now quadratic with respect to u. Note that for a = |∇u| it holds
Js(u, |∇u|) = J (u). Moreover, this functional is well-defined for u ∈ W 1

0 (Lp(Ω))
and measurable a : Ω→ [0,∞), where Js might take the value ∞. Furthermore, Js
is convex with respect to (u, a).

Now, the main idea is to iteratively minimize Js with respect to u and a. A
minimization with respect to u (for fixed a) leads formally to the elliptic equation
−div(ap−2∇u) = f , see [53, Section 2]. However, the same problem as in Subsec-
tion 8.1.1 of a degenerating ellipticity occurs at points where a vanishes or gets
unbounded. Therefore, like in Subsection 8.1.2, we will follow the approach to
appropriately truncate the weight function a. Hence, for fixed u, let us confine the
minimization of Js(u, ·) to those functions which satisfy ε− ≤ a ≤ ε+. It turns out
that this restricted minimization has a simple solution. A proof of the following
statement can be found in [53, (2.1)].

Proposition 8.4. Let 1 < p < 2 and ε = [ε−, ε+] ⊂ (0,∞), as well as u ∈
W 1

0 (L2(Ω)) be fixed. Then, when restricting the minimization of Js(u, ·) to those
functions a ∈ L1(Ω) which satisfy a = ε− ∨ a ∧ ε+, there exists a unique minimizer.
This minimizer m admits the representation

m = argmin
a : ε−≤a≤ε+

Js(u, a) = ε− ∨ |∇u| ∧ ε+.

Hence, for the restricted minimization of Js with respect to a (for fixed u) it
holds

min
a : ε−≤a≤ε+

Js(u, a) = Js(u, ε− ∨ |∇u| ∧ ε+). (8.2.5)

Next, for fixed measurable a, let us consider the minimization of Js(·, ε− ∨ a ∧ ε+)
with respect to u. To stress the fact that this step indeed corresponds to the solution
of the linear elliptic problems (8.1.5), for the readers convenience we state this
equivalence by the following proposition and give a short proof.

Proposition 8.5. Let a ∈ L1(Ω) be fixed. Then, the following conditions are
equivalent for u ∈ W 1

0 (L2(Ω)).

(i) u is a minimizer of Js(·, ε− ∨ a ∧ ε+):

Js(u, ε− ∨ a ∧ ε+) ≤ Js(v, ε− ∨ a ∧ ε+) for all v ∈ W 1
0 (L2(Ω)).

(ii) The first variation vanishes:
ˆ

Ω
(ε− ∨ |a| ∧ ε+)p−2∇u · ∇v dx = 〈f, v〉 for all v ∈ W 1

0 (L2(Ω)).

Proof. First note that u minimizes Js(·, ε− ∨ a ∧ ε+) among all v ∈ W 1
0 (L2(Ω)) if

and only if u minimizes I(v) := 1/2 b(v, v)− F (v) among all such v, where

b(u, v) :=
ˆ

Ω
(ε− ∨ |a| ∧ ε+)p−2∇u · ∇v dx and F (v) := 〈f, v〉.
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Since b(·, ·) is symmetric and W 1
0 (L2(Ω))-elliptic, we know from [73, Theorem 7.2.9]

that for u ∈ W 1
0 (L2(Ω)) the condition

I(u) ≤ I(v) for all v ∈ W 1
0 (L2(Ω)) (8.2.6)

is equivalent to

b(u, v) = F (v) for all v ∈ W 1
0 (L2(Ω)). (8.2.7)

This finishes the proof.

The full two-step energy minimization algorithm reads as follows.

Algorithm 2 (relaxed Kačanov algorithm, energy version).

Data: Given f ∈ W−1(Lp′(Ω), u0 ∈ W 1
0 (L2(Ω));

Result: Approximate solution of the p-Poisson problem (3.2.3);
Initialize: ε0 = [ε0,−, ε0,+] ⊂ (0,∞), n = 0;

while desired accuracy is not achieved yet do
Define an as the solution of

an := argmin
a : ε−≤a≤ε+

Js(un, a); (8.2.8)

Define un+1 ∈ W 1
0 (L2(Ω)) as the solution of

un+1 := argmin
u∈W 1

0 (L2(Ω))
Js(u, an); (8.2.9)

Choose new relaxation interval εn+1 ⊃ εn;
Increase n by 1;

end

Note that this is indeed Algorithm 1 formulated as an energy minimization
scheme, producing exactly the same iterates un.

To conclude this section, let us take a closer look at the correspondence of
Algorithm 1 and 2. Recall that the relaxed Kačanov iteration can be interpreted
as a relaxation and subsequent linearization of the p-Poisson equation, where the
relaxed p-Poisson equation

−div
(
(ε− ∨ |∇u| ∧ ε+)p−2∇u

)
= f, (8.2.10)

is approximated by the iterative linearization scheme (8.1.4), i.e.,

−div
(
(ε− ∨∇un ∧ ε+)p−2∇un+1

)
= f.

With other words, the solution uε ∈ W 1
0 (L2(Ω)) of (8.2.10) is approximated by

the solutions un ∈ W 1
0 (L2(Ω)) of the linear equations (8.1.4). Now, similar to the
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p-Poisson problem and (8.1.5), also problem (8.2.10) admits a characterization as a
certain energy minimization problem.

To introduce this energy, recall that from Proposition 8.4 we know that, for fixed
u ∈ W 1

0 (L2(Ω)), the minimizer of Js(u, ·) among all measurable a with ε− ≤ a ≤ ε+ is
explicitly given by ε−∨|∇u|∧ε+, see also (8.2.5). Hence, this restricted minimization
with respect to the second variable only depends on the fixed and known first variable
u. This suggests the following definition. For 1 < p < 2 and ε = [ε−, ε+] ⊂ (0,∞)
we define the relaxed energy Jε : W 1

0 (Lp(Ω))→ R ∪ {∞} as

Jε(u) := Js(u, ε− ∨ |∇u| ∧ ε+). (8.2.11)

From (8.2.4) we see that Jε may be written as

Jε(u) =
ˆ

Ω

1
2 (ε− ∨ |∇u| ∧ ε+)p−2 |∇u|2 +

(
1
p
− 1

2

)
(ε− ∨ |∇u| ∧ ε+)p dx− 〈f, u〉.

Now, for this relaxed energy Jε, one can proof analogously as in Proposition 8.3 the
following result.

Proposition 8.6. The following conditions are equivalent for uε ∈ W 1
0 (L2(Ω)).

(i) uε is a minimizer of Jε:

Jε(uε) ≤ Jε(v) for all v ∈ W 1
0 (L2(Ω)).

(ii) The first variation vanishes:
ˆ

Ω
(ε− ∨ |∇uε| ∧ ε+)p−2∇uε · ∇v dx = 〈f, v〉 for all v ∈ W 1

0 (L2(Ω)).

(8.2.12)

Hence, the above result allows to formulate the relaxed p-Poisson equation (8.2.12)
as an energy minimization problem as well. Now we have everything at hand to
summarize the convergence results mentioned at the beginning of this chapter.

8.3 Convergence results
In this section we outline the convergence analysis done in [53] for Algorithm 1.
Therefore, in the following let 1 < p ≤ 2 and f ∈ W−1(Lp′(Ω)), where Ω ⊂ Rd

denotes some bounded domain.
Let us settle the notation for this section first. By u ∈ W 1

0 (Lp(Ω)) we denote
the (unique) exact solution to the p-Poisson equation with homogeneous Dirichlet
boundary conditions (3.2.3). For ε ⊂ (0,∞), by uε ∈ W 1

0 (L2(Ω)) we denote the
unique minimizer with vanishing trace of the relaxed energy functional Jε, see
(8.2.11), i.e.,

uε := argmin
u∈W 1

0 (L2(Ω))
Jε(u).
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Recall that uε is also the solution to the relaxed p-Poisson equation (8.2.12)), see
Proposition 8.6. Finally, by un ∈ W 1

0 (L2(Ω)), n ∈ N, we denote the iterates generated
by Algorithm 1.

For the subsequent results to hold true, we assume that all iterates un - i.e., the
solutions to the linear elliptic subproblems (8.1.5) - are computed exactly. Hence,
the discretization error which in practice is introduced by the numerical solution of
the linear elliptic subproblems shall be neglected here.

At first, let us consider the approximation error with respect to the minimizer
uε of the relaxed energy functional Jε. The iterates un of the regularized Kačanov
iteration converge to uε as follows. For a proof see [53, Corollary 4.2].

Proposition 8.7. Let un, n ≥ N, denote the iterates generated by the regularized
Kačanov iteration and let uε denote the minimizer of Jε. Then there exists a constant
c > 1, such that

Jε(un)− Jε(uε) ≤ (1− δ)n (Jε(u0)− Jε(uε)) ,

where δ = c−1 (ε−/ε+)2−p.

Next we will see that the relaxation performed so far is indeed consistent with the
original p-Poisson problem (3.2.3), in the sense that uε → u for ε− → 0, ε+ → ∞.
For a proof of the following result, see [53, Corollary 3.4 & Corollary 3.8].

Proposition 8.8. It holds Jε(uε) → J (u) and J (uε) → J (u) as ε → [0,∞].
Furthermore, it holds uε → u in W 1

0 (Lp(Ω)) for ε→ [0,∞].

The next result is proved in [53, Corollary 3.14].

Proposition 8.9. Let Ω be a polyhedral domain and f ∈ Lp′(Ω), 1/p + 1/p′ = 1.
Then

Jε(uε)− J (u) . εp− + ε
−p/(d−1)
+ .

Hence, from Proposition 8.7 and Proposition 8.9 we conclude convergence of the
full error Jε(un)− J (u)→ 0 for ε→ [0,∞], n→∞.

Finally, if εn,− → 0 and εn,+ →∞ for n→∞ are steered adequately, an overall
algebraic convergence rate in the following sense can be guaranteed. For a proof see
[53, Theorem 5.3].

Theorem 8.10. Let Ω be a polyhedral domain, f ∈ Lp′(Ω), where 1/p + 1/p′ = 1,
and let α, β > 0 such that α + β < 1/(2− p). Moreover, let un denote the iterates
generated by Algorithm 1, where the truncation intervals are chosen as

εn :=
[
(n+ 1)−α, (n+ 1)β

]
, n ∈ N.

Then there exists a constant c ≥ 1 such that

Jεn(un)− J (u) . n−1/c

for all n ∈ N. In particular, the energy error decreases at least algebraically.
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8.4 An adaptive wavelet frame Kačanov-type
algorithm

In this section a fully implementable algorithm for problem (3.2.3) is presented.
Therefore, it remains to treat the numerical approximation of the infinite dimen-
sional linear elliptic problems (8.1.5) which have to be solved at each iteration of
Algorithm 1. We want to pursue an adaptive approach based on wavelets here.

Given the case that we have an appropriate wavelet basis for W 1
0 (L2(Ω)) over

the bounded (polyhedral) domain Ω ⊂ Rd at our disposal, then we shall utilize the
adaptive wavelet Galerkin scheme introduced in [18]; there, besides convergence also
quasi-optimality of this residual-based approach has been proved.

As a practical alternative to methods based on wavelet bases (in particular when
dealing with more complicated domain geometries) we additionally want to consider
an approach based on overlapping domain decompositions. In particular, we will
employ the multiplicative Schwarz adaptive wavelet frame method as introduced in
[124], see also [134, Chapter 6]. In the following description of this scheme we will
put the focus on the main principle of the multiplicative Schwarz method. For the
complete algorithm as well as further details we refer to [134, Algorithm 6, Chapter
6.1].

Therefore, we first refer to the exact multiplicative Schwarz method for the
approximation of a linear elliptic equation of the form

a(u, v) = f(v) for all v ∈ W s
0 (L2(Ω)), (8.4.1)

where f ∈ W−s(L2(Ω)), s ∈ N, and the symmetric bilinear form a(·, ·) is bounded
and elliptic on W s

0 (L2(Ω)). Here, we assume that Ω is decomposed by an overlapping
covering of NΩ patches Ωi ⊂ Ω, i.e., Ω = ∪NΩ−1

i=0 Ωi. The exact multiplicative Schwarz
method is presented in Algorithm 3.

Algorithm 3 (Multiplicative Schwarz method).

Data: Given f ∈ W−s(L2(Ω)), u0 ∈ W s
0 (L2(Ω));

Result: Approximate solution of the elliptic problem (8.4.1);
Initialize: u0 := 0, n = 0;

for k = 1, 2, . . . ,
i := (k − 1) mod m
Determine ek−1 ∈ W s

0 (L2(Ωi)) as the solution of the problem

a(ek−1, v) = f(v)− a(uk−1, v) for all v ∈ W s
0 (L2(Ωi)). (8.4.2)

uk := uk−1 + ek−1

endfor

The convergence of Algorithm 3 is guaranteed under certain assumptions on
the domain decomposition (i.e., on the subspaces W s

0 (L2(Ωi))), see [134, Theorem
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6.1]. However, for the L-shaped domain ΩL as defined in (1.5.8), which will be used
for our numerical tests in the next chapter, these conditions are satisfied (cf. [134,
Remark 6.1 & Chapter 2]).

Next, to obtain an implementable version of the exact multiplicative Schwarz
method, clearly the problems (8.4.2) on the subdomains Ωi have to be numerically
approximated. To this end, let Ψ = ∪NΩ−1

i=0 Ψ(i) be an aggregated wavelet frame com-
posed of biorthogonal wavelet Riesz bases Ψ(i) for W s

0 (L2(Ωi)), cf. Subsection 1.5.2.
Then, based on a discretization of the elliptic problem (8.4.2) by means of the
basis Ψ(i), an adaptive wavelet method shall be applied. To formulate the resulting
(inexact) multiplicative Schwarz algorithm, we denote this adaptive wavelet scheme
by AdaptWav.

Algorithm 4 (MultSchw).

Data: Given f ∈ W−s(L2(Ω)), u0 ∈ W s
0 (L2(Ω));

Result: Approximate solution of the elliptic problem (8.4.1);
Initialize: u0 := 0, n = 0;

for k = 1, 2, . . . ,
i := (k − 1) mod m
Apply AdaptWav to determine approximate solution ẽk−1 ∈ W s

0 (L2(Ωi))
to the problem

a(ek−1, v) = f(v)− a(uk−1, v) for all v ∈ W s
0 (L2(Ωi)).

uk := uk−1 + ẽk−1

endfor

With the help of Algorithm 4 we can now formulate a fully implementable
variant of the relaxed Kačanov algorithm.
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Algorithm 5 (rKačanov).

Data: Given f ∈ W−1(Lp′(Ω)), u0 ∈ W 1
0 (L2(Ω));

Result: Approximate solution of the p-Poisson problem (3.2.3);
Initialize: ε0 = [ε0,−, ε0,+] ⊂ (0,∞), n = 0;

while desired accuracy is not achieved yet do
Apply MultSchw to determine approximate solution ũn+1 ∈ W 1

0 (L2(Ω))
to the problem
ˆ

Ω
(εn,− ∨ |∇ũn| ∧ εn,+)p−2∇un+1 · ∇v dx = 〈f, v〉 for all v ∈ W 1

0 (L2(Ω));

Choose new relaxation interval εn+1 ⊃ εn;
Increase n by 1;

end

For the numerical experiments in the next chapter, as AdaptWav we will always
choose the adaptive wavelet method from [18].
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Chapter 9

Numerical Tests

For all numerical computations in this chapter, we consider the p-Poisson problem
(3.2.3) for 1 < p < 2, i.e.,

−div
(
|∇u|p−2∇u

)
= f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R2 denotes a polygonal domain. Furthermore, all examples are constructed
in such a way that we start with a given solution u ∈ W 1

0 (Lp(Ω)), and set the right-
hand side to

f(v) :=
ˆ

Ω
|∇u|p−2 ∇u · ∇v dx (9.0.1)

for v ∈ W 1
0 (Lp(Ω)). From (3.1.4) we know that f is bounded on W 1

0 (Lp(Ω)) with
operator norm ‖f‖ . ‖u W 1(Lp(Ω))‖p−1, i.e., f ∈ W−1(Lp′(Ω)). Hence, the unique
solvability of all subsequent problems is guaranteed (cf. Proposition 3.2) and algo-
rithm rKačanov is well-defined. In case u is sufficiently smooth, we may as well
define the right-hand side f pointwise as

f := −∆pu = −(p− 2)|∇u|p−4
(
u2
xuxx + 2uxuyuxy + u2

yuyy
)
− |∇u|p−2∆u. (9.0.2)

The initial guess u0 ∈ W 1
0 (L2(Ω)) required by rKačanov is always chosen as u0 ≡ 0.

9.1 Tests on the unit square

In this section we consider the unit square Ω� := (0, 1)2. For discretization, a
biorthogonal tensor product wavelet basis constructed from univariate spline wavelet
bases on the unit interval as introduced in [110] is used. In particular we utilize
linear spline wavelets having m = 2 vanishing moments. As already noted at the
beginning of Section 8.4, for the solution of the linear subproblems (8.1.5) on Ω�
the adaptive wavelet Galerkin method from [18] is applied in this case. That is, the
frame method MultSchw in rKačanov is replaced by this wavelet method.

125
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9.1.1 Example 1: smooth solution

For our first numerical experiment we choose a smooth solution u ∈ C∞(Ω�) ⊂
W 1(Lp(Ω�)), namely

u : [0, 1]2 → R,
u(x, y) = x (x− 1) y (y − 1) .

The function u is depicted in Figure 9.2(d). Here, the functional f ∈ W−1(Lp′(Ω�))
as defined in (9.0.1) also admits the following pointwise representation. With

∇u(x, y) =
(

(2x−1) y (y−1)
(2y−1)x (x−1)

)
, D2u(x, y) =

(
2y (y−1) (2x−1) (2y−1)

(2y−1) (2x−1) 2x (x−1)

)
,

and (9.0.2), by setting G(x, y) := (2x− 1)2 (y2 − y)2 + (2y − 1)2 (x2 − x)2 and
H(x, y) := (2x−1)2(y2−y)3 +(2y−1)2(x2−x)3 +(2x−1)2(x2−x)(2y−1)2(y2−y), the
right-hand side takes the form

f(x, y) = (4− 2p)G(x, y)(p−4)/2H(x, y)− 2G(x, y)(p−2)/2
(
x2 + y2 − x− y

)
.

A short computation shows that in the vicinity of each root (x0, y0) ∈ R2 of G, the
growth of f can be estimated as |f(x, y)| . |(x, y)− (x0, y0)|p−2. Hence, we conclude
that f ∈ Lq(Ω�) for all 1 ≤ q < 2/(2− p).

For our first numerical test we choose p = 1.5. The right-hand side corresponding
to this value of p is illustrated in Figure 9.1. Note that since p′ = 3 < 2/(2− p) = 4,
in this case in particular it holds f ∈ Lp′(Ω�). Moreover, we shall keep the relaxation
interval constant in the course of the Kačanov iteration. We choose εn = [εn,−, εn,+] =
[10−3, 103] for all n ∈ N0.
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Figure 9.1: Right-hand side f of example 1 for p = 1.5.
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The approximations u1, u3 and u10 generated by rKačanov after one, three and
ten iterations, respectively, are depicted in Figure 9.2(a)-(c).

In Figure 9.3 the error decay of rKačanov for example 1 with p = 1.5 is illustrated
for various error measures. By the pictured slope of −0.6 in Figure 9.3(a), we observe
that within a limited range for n the energy error is reduced by a constant factor
of approximately 1/4 at each iteration, i.e., J (un+1)− J (u) ∼ 1/4 (J (un)− J (u)).
Measured in the W 1(Lp(Ω�))- and (Lp(Ω�)-norm, the error is reduced by a factor of
about 1/2 per iteration. Hence, we can observe linear convergence with respect to
all error measures.
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(a) Approximant u1.
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(b) Approximant u3.
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Figure 9.2: From top left to bottom right: approximations u1, u3, u10 and the exact
solution u of example 1.
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Figure 9.3: Error plots for example 1 with p = 1.5 on Ω�: Energy-, W 1(Lp)- and
Lp-error.
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9.1.2 Example 2: solution of absolute value-type

For our next practical test we consider the function

u : [0, 1]2 → R,

u(x, y) = max
{1

2 −
∣∣∣∣(x, y)−

(1
2 ,

1
2

)∣∣∣∣ , 0
}
.

A graphical representation of u is given in Figure 9.5(d). With B := B1/2((1/2, 1/2))
(note that suppu = B), the gradient of u for (x, y) ∈ G := Ω� \ {∂B ∪ (1/2, 1/2)}
takes the form

∇u(x, y) = χB(x, y)∣∣∣(x, y)− (1
2 ,

1
2)
∣∣∣ ·
(

1
2 − x
1
2 − y

)
.

Since |∇u| = χB on G, we conclude that u ∈ W 1(L∞(Ω�)). We remark in passing
that hence the functional f defined by (9.0.1) is contained in W−1(Lp′(Ω�)). The
second partial derivatives of u on G,

∂2u

∂x2 (x, y) = − (y − 1/2)2

|(x, y)− (1/2, 1/2)|3 · χB,
∂2u

∂y2 (x, y) = − (x− 1/2)2

|(x, y)− (1/2, 1/2)|3 · χB,

and

∂2u

∂x∂y
(x, y) = (x− 1/2) (y − 1/2)

|(x, y)− (1/2, 1/2)|3 · χB = ∂2u

∂y∂x
(x, y) ,

are bounded by |(x, y)− (1/2, 1/2)|−1, and therefore u ∈ W 2(Lq(Ω�)) for all 1 ≤
q < 2. Moreover, since

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) = − 1
|(x, y)− (1/2, 1/2)| /∈ L2(Ω�),

we conclude that u /∈ W 2(L2(Ω�)).
According to (9.0.2), the pointwise representation of f on G computes to

f(x, y) = χB∣∣∣(x, y)−
(

1
2 ,

1
2

)∣∣∣ .
We note that in this example the right-hand side does not depend on the parameter
p, and that f ∈ Lq(Ω�) for all 1 ≤ q < 2, but f /∈ L2(Ω�). In particular, f /∈ Lp′(Ω�)
for all 1 < p < 2. A pictorial representation of f is given in Figure 9.4.
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Figure 9.4: Right-hand side f of example 2.
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Figure 9.5: From top left to bottom right: approximations u1, u3, u10 and the exact
solution u of example 2.
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The energy of u, see (8.2.1), can be determined explicitly as

J(u) =
ˆ

Ω�

1
p
|∇u|p dx− f(u) =

(
1
p
− 1

)ˆ
Ω�

|∇u|p dx =
(

1
p
− 1

)
π

4 ,

where we used that |∇u| = χB.
For our second test run of rKačanov we choose the same parameters as in

example 1, i.e., p = 1.5 and εn = [εn,−, εn,+] = [10−3, 103] for all n ∈ N0. Analogous
to the first test run, the approximations u1, u3 and u10 generated by rKačanov after
one, three and ten iterations, respectively, are depicted (Figure 9.5(a)-(c)) and error
plots are presented with respect to various error measures (Figure 9.6).

The observed error decay is of approximately the same order as in example 1,
although slightly worse. For instance, in regard of the W 1(Lp)-error, the smallest
ratio

∥∥∥u− un+1 W 1(Lp(Ω�))
∥∥∥ / ∥∥∥u− un W 1(Lp(Ω�))

∥∥∥ was achieved for n = 5 with
a value of about 0.55, compared to a value of 0.48 for n = 7 in the first test run.
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Figure 9.6: Error plots for example 2 with p = 1.5 on Ω�: Energy-, W 1(Lp)- and
Lp-error.

9.2 Tests on the L-shaped domain

For all subsequent numerical tests we consider the L-shaped domain as defined in
(1.5.8), i.e.,

ΩL = (−1, 1)2 \ [0, 1)2. (9.2.1)

For discretization, we use an aggregated wavelet frame constructed from tensor
product type wavelets bases, where again the univariate wavelet basis from [110] is
used. Here, we utilize quadratic spline wavelets having order m = 3 of polynomial
reproduction. As noted above, for the solution of the linear subproblems (8.1.5)
on ΩL, the adaptive multiplicative Schwarz frame method as introduced in [124] is
applied in this case, i.e., algorithm MultSchw of Section 8.4.

9.2.1 Example 3: smooth solution

We start with a smooth solution u ∈ C∞(ΩL) to the p-Poisson problem (3.2.3) on
ΩL, namely

u : ΩL → R,

u(x, y) = x
(
1− x2

)
y
(
1− y2

)
.

(9.2.2)

A graphical representation of the function u is given in Figure 9.7.
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Figure 9.7: Exact solution of example 3.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-600

-400

-200

0

200

400

600

(a) p = 1.1.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-60

-40

-20

0

20

40

60

(b) p = 1.5.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-6

-4

-2

0

2

4

6

(c) p = 1.9.

Figure 9.8: Right-hand side of example 3 for different values of p.
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With

∇u(x, y) =
(

(1−3x2) (y−y3)
(x−x3) (1−3y2)

)
, D2u(x, y) =

(
−6x (y−y3) (1−3x2) (1−3y2)

(1−3x2) (1−3y2) −6y (x−x3)

)
,

and by setting G(x, y) := (1−3x2)2 (y−y3)2 + (x−x3)2 (1−3y2)2 and H(x, y) :=
2 (1−3x2)2 (y−y3) (x−x3) (1−3y2)2 − (1−3x2)2 (y−y3)3 6x− (x−x3)3 (1−3y2)2 6y,
according to (9.0.2) the right-hand side f computes to

f(x, y) = (2− p)G(x, y)(p−4)/2H(x, y) + 6G(x, y)(p−2)/2
[
x
(
y − y3

)
+ y

(
x− x3

)]
.

Similar to Subsection 9.1.1, one estimates |f(x, y)| . |(x− x0, y − y0)|p−2 in the
vicinity of the roots (x0, y0) of G, such that f ∈ Lq(ΩL) for all 1 ≤ q < 2/(2− p).

We shall perform several test runs for p = 1.1, p = 1.5 and p = 1.9. In Figure 9.8
the right-hand side f of the p-Poisson equation, corresponding to the solution (9.2.2),
is depicted for these values of p. Note that f /∈ Lp′(ΩL) for p = 1.1.

Tests for p=1.1

For our first numerical tests on ΩL, we choose the relaxation interval to be constant
in the course of the Kačanov iteration, i.e., εn = [εn,−, εn,+] := [ε−, ε+] for all n ∈ N0.
The results, in terms of error plots with respect to various error measures, are shown
in Figure 9.9 for several different values of [ε−, ε+].

We can observe that with respect to all error measures, no error reduction is
obtained for the relaxation interval [ε−, ε+] = [0.5, 2], and that the approximation
accuracy which is achieved after 80 iterations increases as the relaxation interval gets
larger. For the two largest intervals, within a limited range for n the energy error is
reduced by a constant factor of approximately 0.8 at each iteration, see Figure 9.9(a),
whereas the Lp- and W 1(Lp)-error are reduced by a factor of approximately 0.9 per
iteration.
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Figure 9.9: Error plots for example 3 and p = 1.1 for different constant values of the
relaxation parameter ε: Energy-, W 1(Lp)- and Lp-error.

Tests for p=1.5

At first, we again choose the relaxation interval ε = [ε−, ε+] to be constant in the
course of the Kačanov iteration. The results for p = 1.5 and various values of ε can be
seen in Figure 9.10(a)-(c) for the energy error, W 1(Lp(ΩL))-error and Lp(ΩL)-error,
respectively.

Again, the maximal approximation accuracy increases (at least with respect to
the energy- and W 1(Lp)-error) with growing relaxation interval. However, the error
decay is much faster than for p = 1.1, with similar decrease as in example 1.

In our next test runs, we want to pursue several different strategies regarding the
way how to decrease ε− and increase ε+, i.e., how to enlarge the size of the relaxation
interval ε, in the course of the Kačanov iteration. In particular, we choose

εn =
[
(n+ 1)−α, (n+ 1)α

]
, n ∈ N0, (9.2.3)

and perform tests for α = 0.9, α = 1 and α = 2.
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Figure 9.10: Error plots for example 3 and p = 1.5 for different constant values of
the relaxation parameter ε: Energy-, W 1(Lp)- and Lp-error.
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Hereby, the prescribed error tolerance for the solution of the linear subproblems
(8.1.5), handed to MultSchw in terms of an `2-tolerance δ, is set to a rather small
value, being constant for all n ∈ N0. Clearly, the accurate approximation of the
problems (8.1.5) helps to highlight the influence of the relaxation parameter ε.
However, a natural approach is to gradually decrease the error tolerance δ as n
increases. Therefore, we perform another test run with α = 2 and δn = c 2−n.
Here, c > 0 denotes a suitably chosen constant. The respective results are given in
Figure 9.11.

It can be seen that the fastest convergence is obtained for the choice of α = 2 in
(9.2.3). Moreover, the corresponding test run with decreasing error tolerances δn for
the solution of the linear subproblems practically shows the same error decay as the
one with a constant, small tolerance δ. For the former test run, in Figure 9.12 an
additional error plot is given, where the error in relation to the degrees of freedom
is depicted. In regard to the energy- and W 1(Lp)-error, a convergence rate of
approximately 2 and 1 can be observed, respectively.
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Figure 9.11: Error plots for example 3 and p = 1.5 for different strategies for decreas-
ing the relaxation parameter ε: Energy-, W 1(Lp)- and Lp-error.
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Figure 9.12: Error plots for example 3 and p = 1.5 with respect to degrees of freedom:
Energy-, W 1(Lp)- and Lp-error.

Tests for p=1.9

We adopt the setting from the tests for p = 1.1, i.e., we again choose constant
relaxation intervals and set δ to a fixed, small value. The results are given in
Figure 9.13. Compared to the tests for p = 1.1 and p = 1.5, here the fastest
convergence can be observed. The energy error is reduced by a constant factor of
approximately 0.01 at each iteration, whereas the W 1(Lp)- and Lp-error are decreased
by a factor of about 0.1 per iteration.
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Figure 9.13: Error plots for example 3 and p = 1.9 for different constant values of
the relaxation parameter ε: Energy-, W 1(Lp)- and Lp-error.

9.2.2 Example 4: singularity function
For our last numerical tests we consider the singularity function

u : ΩL → R,

ũ(r, φ) = ζ(r)r2/3 sin(2
3φ),

(9.2.4)

where ũ denotes the representation of u in polar coordinates (r, φ) = Ξ(x, y) with
respect to the re-entrant corner at the origin (cf. (A.2.1)). Therein, ζ : [0, 1]→ [0, 1]
is a smooth (cutoff) function which is identically 1 on [0, r0] and vanishes on [r1, 1]
for some 0 < r0 < r1 < 1. A graphical representation of the function u is given in
Figure 9.14.

We perform two test runs, for which we choose the relaxation intervals as in
(9.2.3), with α = 1 and α = 2, respectively. In addition, another one is performed for
[εn,−, εn,+] =

[
2−(n+1), 2n+1

]
. In all cases, the `2-tolerance for MultSchw is chosen

as c2−n. The corresponding error plots are presented in Figure 9.15.
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Figure 9.14: Exact solution of example 4.
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Figure 9.15: Error plots for example 4 and p = 1.5 for different strategies for decreas-
ing the relaxation parameter ε: Energy-, W 1(Lp)- and Lp-error.



Concluding Remarks

The first main objective of this thesis - the derivation of regularity estimates for
solutions of the p-Poisson equation in the adaptivity scale

Bσ
τ (Lτ (Ω), 1

τ
= σ

d
+ 1
p
, σ > 0, (∗)

of Besov spaces - was motivated by the question whether adaptive schemes for
the numerical solution of the p-Poisson equation pay off, in comparison to more
conventional, uniform methods. In summary, the theoretical superiority of adaptive
wavelet methods for a large class of p-Poisson problems could be shown. In particular
for the practically relevant cases of polygonal domains we could prove that, for a
wide range of parameters, a significantly higher optimal convergence rate can be
achieved by adaptive wavelet methods, compared to the best possible rate of uniform
schemes. In this sense, it could be shown that the development of adaptive methods
for the numerical solution of the p-Poisson equation is completely justified.

The second main objective - the implementation and extensive testing of the
regularized Kačanov-type iteration method for the numerical solution of the p-
Poisson equation - was accomplished in Part IV of this thesis. A series of numerical
experiments revealed a promising stability and convergence behavior of this approach.
In summary, existing theoretical results on the convergence of the exact scheme could
be practically confirmed for the fully implemented algorithm.

Discussion of the results

For the derivation of our Besov regularity results for the p-Poisson equation, we made
use of the fact that in many cases the solutions possess a certain higher regularity in
appropriately weighted function spaces. In order to provide a more general framework
for the usage of this sort of information - independent of the p-Poisson equation - we
proved two general embeddings of function spaces. At first, in Section 5.1 we showed
that the intersection of a locally weighted Hölder space with an Lp-Besov space is
continuously embedded into certain Besov spaces in the adaptivity scale, i.e., we
derived an embedding of the type

C`,α
γ,loc(Ω) ∩ Bs

p(Lp(Ω)) ↪→ Bσ
τ (Lτ (Ω)), 1

τ
= σ

d
+ 1
p
,

under suitable assumptions on the involved parameters, see Theorem 5.1. The proof
of this embedding theorem was performed using extension arguments in conjunction
with characterizations of Besov spaces by means of wavelet expansion coefficients. The
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second embedding that we considered - allowing to infer Besov regularity assertions
from information on weighted Sobolev regularity, encoded by the membership in
certain Babuska-Kondratiev spaces K`p,a(Ω) - is well-known for finite ` ∈ N. Inspired
by singular expansion results for the p-Poisson equation, we extended this embedding
to infinite intersections, i.e., we proved that

H∞,sa (Lp(Ω)) ↪→ B∞NL(Lp(Ω)),

see Theorem 5.9. To verify the continuity of this embedding, we made use of a
quasi-norm criterion that we derived in Proposition 2.23. Moreover, we showed that
H∞,sa (Lp(Ω)) is a Fréchet space (Proposition 5.7) and B∞NL(Lp(Ω)) is an F-space
(Proposition 5.8) in the sense as described in Subsection 5.2.1.

Let us stress the fact that with the help of these functional analytic tools, the
knowledge of a certain regularity in locally weighted Hölder or Kondratiev spaces for
the solution of any PDE can thus universally be employed to derive Besov regularity
assertions in the scale (∗).

Then, for the case of general multidimensional Lipschitz domains, we first derived
generic sufficient conditions on the parameters of the spaces C`,α

γ,loc(Ω) which would
ensure that the Besov regularity of all solutions u to (3.1.2) that are contained in such
spaces exceeds the Sobolev smoothness (Theorem 6.5). Afterwards, in Section 6.2 we
proved explicit Besov regularity results for the case d = 2 and homogeneous Dirichlet
boundary conditions. We derived smoothness estimates for the p-Poisson equation
(3.2.3) on bounded Lipschitz domains (Theorem 6.14). This was accomplished by
establishing sufficient regularity of the solutions in locally weighted Hölder spaces
(Proposition 6.11), combined with the embedding Theorem 5.1. A comparison of
these results with existing Sobolev smoothness assertions (cf. Proposition 6.2 and the
subsequent remarks), showed that the Besov regularity in the scale (∗) is significantly
higher whenever

4
3 < p <∞ and f ∈ Lq(Ω) with max{4, 2 p} < q ≤ ∞. (∗∗)

Let us recall that this assertion is based on the Sobolev regularity bounds s∗ = 3/2
for 1 < p ≤ 2 and s∗ = 1 + 1/p for 2 < p < ∞. While for the latter case it is
known that s∗ indeed constitutes a sharp bound even for problems with smooth
right-hand side f (cf. Remark 6.4 and Proposition 7.6), this is not rigorously assured
for 1 < p < 2. However, there are good reasons to assume that this conjecture is
true, as outlined at the beginning of Section 6.1.

The derived Besov regularity estimates could be improved for the case of polygonal
domains and small values of p (Theorem 6.17). In particular, for the parameter
constellations 1 < p < 4/3 and p′ ≤ q ≤ ∞, as well as for 4/3 ≤ p < 2 and
(1/p− 1/2)−1 < q ≤ ∞, the bounds for the Besov regularity on polygonal domains
are significantly larger than those for Lipschitz domains. This extends the cases (∗∗),
for which the Besov regularity σ of solutions to (3.2.3) is significantly higher than
their Sobolev regularity s∗, to

1 < p <
4
3 and p′ ≤ q ≤ ∞,
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as well as
4
3 ≤ p <∞ and max{4, 2 p} < q ≤ ∞.

Therefore, for the same range of parameters, the development and application of
adaptive (wavelet) algorithms for the numerical treatment of (3.2.3) on polygonal
domains is completely justified.

Moreover, for the p-Poisson problem (3.2.1) on polygonal domains we could
show - under the additional assumption that both the right-hand side and Dirichlet
boundary data vanish in a small neighborhood of a corner - that nonnegative solutions
admit arbitrary high Besov regularity in the vicinity of that corner (Theorem 7.12).
When the condition on f is weakened to a rather mild local growth condition, then
the solutions still possess Besov regularity σ for all σ < 2 (Theorem 7.18). We
remark that for certain cases and in a local sense, i.e., when considering solely a
small neighborhood of a corner, these results are indeed stronger than those of
Theorem 6.17. E.g., for nonnegative solutions of problem (3.2.3) with a right-hand
side f ∈ L∞(Ω) that vanishes in the vicinity of a corner, from Theorem 6.17 we
obtain the global Besov regularity estimate of 2 for 1 < p ≤ 2 and 1 + 1/(p− 1) for
2 < p < ∞, whereas Theorem 7.18 assures arbitrary high local Besov smoothness
for all p. Also note that in case of a re-entrant corner, each f ∈ L∞(Ω) satisfies a
local growth condition as required by Theorem 7.18, since γ0 < 0 in this case (cf.
Remark 7.7).

The numerical results in Chapter 9 demonstrated the stability and convergence
of the Kačanov-type iteration method in practice. After a functional demonstration
of the implemented algorithm by means of some tests on the unit square, in a series
of numerical experiments on the L-shaped domain, the algorithm rKačanov could
be practically verified to work stable for a wide range of the parameter 1 < p < 2.
In particular, the existing convergence result for the Kačanov scheme with exact
subproblem solves (cf. Theorem 8.10) could be practically confirmed also for the
case of an inexact solution of the linear subproblems. Moreover, several test runs
indicated that the condition on the relaxation intervals in Theorem 8.10 may be
weakend.
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Appendix

The final part of this work is concerned with estimates needed in our proofs, as well
as with auxiliary assertions and additional results that are of interest on their own.
Finally, some alternative proofs are presented.

A.1 Auxiliary lemmata and propositions
To begin with, we state the following well-known Whitney-type estimates which can
be found, e.g., in DeVore [47, Subsection 6.1]. Here and in what follows we let Πk(S)
denote the set of all polynomials P on some bounded and simply connected set
S ⊂ Rd, d ∈ N, which possess a total degree degP not larger than k ∈ N0. As usual,
dxe (and bxc, respectively) means the smallest (largest) integer larger (smaller) or
equal to x ∈ R.

Proposition A.1 (Whitney’s estimate). For d ∈ N let Q denote an arbitrary cube
in Rd with sides parallel to the coordinate axes.

(i) Let 1 ≤ p, q ≤ ∞ and k ∈ N with k > d max{0, 1/q − 1/p}. Then it holds

inf
P∈Πk−1(Q)

‖f − P Lp(Q)‖ ≤ C |Q|k/d+1/p−1/q |f |Wk(Lq(Q)) ,

whenever the right-hand side is finite. Therein the constant C depends only on
k.

(ii) Let 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. Furthermore, assume that 0 < t <∞ satisfies
t ≥ d max{0, 1/q − 1/p}. Then we have

inf
P∈Πdte−1(Q)

‖f − P Lp(Q)‖ ≤ C |Q|t/d+1/p−1/q |f |Btq(Lq(Q)) ,

whenever the right-hand side is finite. Here the constant C depends only on t.

In the proof of our general embedding result (Theorem 5.1) the subsequent bound
is used. As no explicit derivation of this quite natural assertion seems to be available
in the literature, a detailed proof is added here for the reader’s convenience.

Proposition A.2. For d ∈ N let Q denote some open cube in Rd with sides parallel
to the coordinate axes. Then for all ` ∈ N0 and 0 < α ≤ 1 it holds

|g|B`+α∞ (L∞(Q)) . |g|C`,α(Q) ,

whenever the right-hand side is finite.
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Proof. Step 1. Assume that ` = 0. Then, for 0 < α < 1, the assertion follows from
the definition of the involved semi-norms; see (1.1.1) and (1.4.2) in Chapter 1. If
α = 1, then we use the triangle inequality to see that for all h ∈ Rd it holds∥∥∥∆2

h(g, ·) L∞(Q2,h)
∥∥∥ =

∥∥∥∆1
h(g, ·+ h)−∆1

h(g, ·) L∞(Q2,h)
∥∥∥ . ∥∥∥∆1

h(g, ·) L∞(Q1,h)
∥∥∥ ,

(A.1.1)

where we recall that for r ∈ N the set Qr,h denotes the collection of all x ∈ Q such
that [x, x+ rh] ⊂ Q. Then, as before, the claim directly follows from the definitions
of the semi-norms.

Step 2. Now let ` ∈ N. Given t > 0, as well as h ∈ Rd with 0 < |h| ≤ t, and any
function f on some domain Ω ⊂ Rd, the mean value theorem ensures that for all
x ∈ Ω1,h there exists some ξx ∈ [x, x+ h] ⊂ Ω with∣∣∣∆1

h(f, x)
∣∣∣ = |h · ∇f(ξx)| ≤ |h| |∇f(ξx)| . t

∑
|ν|=1
|∂νf(ξx)| ,

whenever the right-hand side is finite. Obviously, the same is true also for h = 0.
Thus, we conclude that for every such f and all |h| ≤ t∥∥∥∆1

h(f, ·) L∞(Ω1,h)
∥∥∥ . t sup

x∈Ω1,h

∑
|ν|=1
|∂νf(ξx)| ≤ t

∑
|ν|=1
‖∂νf L∞(Ω)‖ . (A.1.2)

Observe that r := b`+ αc+ 1 ≥ 2 for all 0 < α ≤ 1. Therefore, if we use (A.1.2) for
f := ∆r−1

h (g, ?) together with the linearity of ∂ν and ∆r−1
h ,

|g|B`+α∞ (L∞(Q)) = sup
t>0

t−(`+α) sup
h∈Rd,|h|≤t

∥∥∥∆1
h(∆r−1

h (g, ?), ·) L∞(Qr,h)
∥∥∥

. sup
t>0

t−(`+α) sup
h∈Rd,|h|≤t

t
∑
|ν|=1

∥∥∥∂ν∆r−1
h (g, ?) L∞(Ωr−1,h)

∥∥∥
≤
∑
|ν|=1

sup
t>0

t−(`+α)+1 sup
h∈Rd,|h|≤t

∥∥∥∆r−1
h (∂νg, ·) L∞(Ωr−1,h)

∥∥∥ .
If necessary, we can iterate this argument and deduce

|g|B`+α∞ (L∞(Q)) .
∑
|ν|=r−1

sup
t>0

t−(`+α)+r−1 sup
h∈Rd,|h|≤t

∥∥∥∆1
h(∂νg, ·) L∞(Ω1,h)

∥∥∥ . (A.1.3)

For 0 < α < 1 it is r − 1 = `. Consequently, in this case we obtain

|g|B`+α∞ (L∞(Q)) .
∑
|ν|=`

sup
t>0

sup
h∈Rd,|h|≤t

‖∂νg(·+ h)− ∂νg(·) L∞(Ω1,h)‖
tα

(A.1.4)

=
∑
|ν|=`

sup
x,y∈Q,
x 6=y

|∂νg(x)− ∂νg(y)|
|x− y|α

.

Since the last term equals |g|C`,α(Q), this shows the claim in the case α < 1.
Finally, we note that if α = 1, then r ≥ 3. Thus, by means of the same (iterative)

argument as above, this time we derive

|g|B`+α∞ (L∞(Q)) .
∑
|ν|=r−2

sup
t>0

t−(`+α)+r−2 sup
h∈Rd,|h|≤t

∥∥∥∆2
h(∂νg, ·) L∞(Ω2,h)

∥∥∥
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instead of (A.1.3). Using r− 2 = ` in conjunction with an estimate similar to (A.1.1)
from Step 1 this allows to conclude (A.1.4) also for this case. Hence, the proof is
complete.

In Remark 1.1, among other things, we stated that intersections of locally weighted
Hölder spaces (as introduced in Section 1.1) with certain Besov spaces form Banach
spaces w.r.t. the canonical maximum norm. Proposition A.3 below is devoted to
this claim. The subsequent three lemmata are used to derive a sound mathematical
proof.

Proposition A.3. For d ∈ N let Ω ⊂ Rd be a bounded Lipschitz domain and for
` ∈ N0, 0 < α ≤ 1, as well as γ > 0, let C`,α

γ,loc(Ω) denote a locally weighted Hölder
space. Then for all s > 0 and 1 ≤ p, q ≤ ∞ the space

Bs
q(Lp(Ω)) ∩ C`,α

γ,loc(Ω) (A.1.5)

endowed with the norm

‖ · ‖ = max
{∥∥∥ · Bs

q(Lp(Ω)
∥∥∥ , | · |C`,αγ,loc

}
(A.1.6)

is a Banach space.

Proof. Since
∥∥∥ · Bs

q(Lp(Ω)
∥∥∥ is a norm on Bs

q(Lp(Ω)) and | · |C`,αγ,loc
defines a semi-norm

for C`,α
γ,loc(Ω), it obviously holds that ‖ · ‖ is a norm for the space (A.1.5). To show

completeness, let {fj}j∈N0 be a Cauchy sequence in (A.1.5) with respect to ‖ · ‖.
Then, by completeness of the Besov space, there exists some f ∈ Bs

q(Lp(Ω)) such
that

fj → f in Bs
q(Lp(Ω)), as j →∞. (A.1.7)

This clearly remains true for all restrictions of fj and f , respectively, e.g., when Ω is
replaced by an open ball B ⊂ Ω.

In the following, we will show that fj converges to f with respect to | · |C`,αγ,loc
, too.

Let B = Br(x0) ⊂ Ω be a non-empty closed ball such that Bc r(x0) is still contained
in Ω for some c > 1. Given some function g ∈ C`(B) we denote by T `,x0 [g] its Taylor
polynomial of degree ` at x0, i.e.,

T `,x0 [g](x) =
∑
|ν|≤`

∂νg(x0)
ν! (x− x0)ν , x ∈ B.

Step 1. Here we prove that, if {fj}j∈N0 is a Cauchy sequence w.r.t. |·|C`,α(B), then

{fj − T `,x0 [fj]}j∈N0 (A.1.8)

forms a Cauchy sequence with respect to the norm in the Hölder space C`,α(B),∥∥∥· C`,α(B)
∥∥∥ =

∥∥∥· C`(B)
∥∥∥+ |·|C`,α(B) .
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Since the definition of the semi-norm |·|C`,α(B) given in (1.1.1) is based on derivatives
of degree `, we have ∣∣∣fj − T `,x0 [fj]

∣∣∣
C`,α(B)

= |fj|C`,α(B) . (A.1.9)

Therefore it remains to show that (A.1.8) is a Cauchy sequence with respect to the
norm

∥∥∥· C`(B)
∥∥∥. For j, k ∈ N0 let gj,k = fj − fk and choose ν ∈ Nd

0 with |ν| ≤ `.
Then, by linearity of the Taylor polynomial, for all x ∈ B it holds

∂ν
((
fj − T `,x0 [fj]

)
−
(
fk − T `,x0 [fk]

))
(x) = ∂ν

(
gj,k − T `,x0 [gj,k]

)
(x)

= ∂νgj,k(x)− T `−|ν|,x0 [∂νgj,k](x).
(A.1.10)

According to Lemma A.5 below, we thus have

sup
x∈B

∣∣∣∂νgj,k(x)− T `−|ν|,x0 [∂νgj,k](x)
∣∣∣ . |∂νgj,k|C`−|ν|,α(B) ≤ |fj − fk|C`,α(B)

for all |ν| ≤ `. Together with (A.1.10) this shows that∥∥∥(fj − T `,x0 [fj]
)
−
(
fk − T `,x0 [fk]

)
C`(B)

∥∥∥ . |fj − fk|C`,α(B) ,

i.e., (A.1.8) forms a Cauchy sequence w.r.t.
∥∥∥· C`(B)

∥∥∥. This observation in conjunc-
tion with (A.1.9) finally proves that {fj − T `,x0 [fj ]}j∈N0 is a Cauchy sequence in the
norm of the Hölder space C`,α(B), too.

Step 2. Of course, the space C`,α(B) endowed with the norm
∥∥∥· C`,α(B)

∥∥∥ is
complete. Since we have shown that {fj − T `,x0 [fj]}j∈N0 is a Cauchy sequence with
respect to this norm, there exists some fB ∈ C`,α(B) such that(

fj − T `,x0 [fj]
)
→ fB in

∥∥∥· C`,α(B)
∥∥∥ , as j →∞.

Step 3. In the previous steps it was proven that every Cauchy sequence {fj}j∈N0

in Bs
q(Lp(Ω)) ∩ C`,α

γ,loc(Ω) (w.r.t. ‖·‖) converges to some f in Bs
q(Lp(Ω)) and that for

every non-empty closed ball B = Br(x0) ⊂ Rd for which Bc r(x0) is still contained in
Ω the sequence {fj−T `,x0 [fj ]}j∈N0 restricted to B converges to some fB with respect
to
∥∥∥· C`,α(B)

∥∥∥. It remains to show that fj → f in the semi-norm of C`,α
γ,loc(Ω). Let

B be the interior of B. Lemma A.6, applied to X = Bs
q(Lp(B)), implies that the

restriction of f to B belongs to C`,α(B) and that

fj → f with respect to |·|C`,α(B) , as j →∞.

Since clearly, for all j ∈ N0 and every B, it holds

|fj − f |C`,α(B) ≤ lim
k→∞
|fj − fk|C`,α(B) ,

the definition of |·|C`,αγ,loc(Ω) as a weighted supremum of C`,α(B)-semi-norms yields

|fj − f |C`,αγ,loc(Ω) ≤ lim
k→∞
|fj − fk|C`,αγ,loc(Ω) .
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Hence, from the assumption that {fj}j∈N0 is a Cauchy sequence in C`,α
γ,loc(Ω) and by

(A.1.7) it follows that

fj → f in Bs
q(Lp(Ω)) ∩ C`,α

γ,loc(Ω), as j →∞,

and thus the proof is finished.

Remark A.4. Let s > 0. If 0 < p < 1 or 0 < q < 1, then Bs
q(Lp(Ω)) is only a

quasi-Banach space, i.e., it is complete with respect to the quasi-norm
∥∥∥ · Bs

q(Lp(Ω)
∥∥∥.

However, in the same way as in Proposition A.3, one can show that in this case
the intersection (A.1.5) endowed with the quasi-norm ‖·‖ given by (A.1.6) defines a
quasi-Banach space.

Lemma A.5. Let B ⊂ Rd, d ∈ N, denote a non-trivial closed ball with center x0
and let ` ∈ N0. For g ∈ C`,α(B) let T `,x0 [g] be the Taylor polynomial of degree ` at
x0. Then there exists a constant C`,α,B > 0 such that

sup
x∈B

∣∣∣g(x)− T `,x0 [g](x)
∣∣∣ ≤ C`,α,B |g|C`,α(B) for all g ∈ C`,α(B).

Proof. Let ` ∈ N. Then, by Taylor’s theorem for order ` − 1, for all x ∈ B there
exists a θ ∈ (0, 1) such that

g(x)− T `,x0 [g](x) = g(x)− T `−1,x0 [g](x)−
∑
|ν|=`

∂νg(x0)
ν! (x− x0)ν

=
∑
|ν|=`

∂νg(x0 + θ(x− x0))
ν! (x− x0)ν −

∑
|ν|=`

∂νg(x0)
ν! (x− x0)ν .

Now, estimating the right-hand side with the help of |g|C`,α(B) results in

∣∣∣g(x)− T `,x0 [g](x)
∣∣∣ ≤ ∑

|ν|=`

|∂νg(x0 + θ(x− x0))− ∂νg(x0)|
|(x0 + θ(x− x0))− x0|α

θα |x− x0||ν|+α

ν!

≤ C`,α,B |g|C`,α(B)

for all x ∈ B \ {x0} and ` ∈ N. Since this bound obviously holds for x = x0 and for
` = 0 as well, the claim is proven.

Lemma A.6. Let B ⊂ Rd be a non-trivial closed ball and denote its interior by
B. Moreover, for k, ` ∈ N0 with k ≤ `, let {Pkj }j∈N0 ⊂ Πk(B) be a sequence of
polynomials and suppose that X(B) denotes a quasi-Banach space of functions on B,
which is continuously embedded into D′(B). Finally, assume that

(fj − Pkj )→ f 1 with respect to
∥∥∥· C`,α(B)

∥∥∥ and fj → f in X(B),

as j approaches infinity. Then f ∈ C`,α(B) and

fj → f with respect to |·|C`,α(B) , as j →∞.
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Proof. Since both the spaces C`,α(B) and X(B) are continuously embedded into
D′(B), the convergence

(fj − Pkj )→ f 1 and fj → f

takes place in D′(B). Hence, Pkj → (f − f 1) ∈ D′(B), as j →∞.
On the other hand, the linear space Πk(B) of polynomials of degree not larger

than k is closed with respect to the convergence (cf. Lemma A.7 below) in D′(B).
Consequently, f − f 1 =: Pk ∈ Πk(B) and

f = f 1 + Pk ∈ C`,α(B).

Finally, as |·|C`,α(B) can not distinguish polynomials of degree less or equal to `,

|fj − f |C`,α(B) =
∣∣∣(fj − Pkj )− (f − Pk)∣∣∣C`,α(B)

=
∣∣∣(fj − Pkj )− f 1

∣∣∣
C`,α(B)

→ 0, as j →∞,

due to our assumption.

Lemma A.7. Let B denote an open ball in Rd, d ∈ N. Then the set of polynomials
Πk(B) of degree at most k ∈ N0 on B is closed with respect to convergence in D′(B).

Proof. For all {Pkj }j∈N0 ⊂ Πk(B) with

Pkj → P ∈ D′(B), as j →∞,

we have to show that P ∈ Πk(B). We shall prove this statement by induction on
k ∈ N0. Let k = 0. Then P0

j ≡ aj ∈ R is a sequence of constants converging to
P ∈ D′(B), i.e.,

aj

ˆ
B

ϕ(x) dx =
ˆ
B

P0
j (x)ϕ(x) dx→ P(ϕ) for all ϕ ∈ D(B), as j →∞.

Obviously, the sequence {aj}j∈N0 has to be bounded in R and hence there is a
subsequence {aj`}`∈N0 with aj` → a ∈ R, as `→∞. By uniqueness of convergence
of this subsequence it holds

P(ϕ) = a

ˆ
B

ϕ(x) dx

and thus P ≡ a ∈ Π0(B).
Let us now assume that k ∈ N and that the statement of the lemma is already

shown for 0 ≤ ` ≤ k− 1. In addition, let ν ∈ Nd
0 with |ν| = k be a given multi-index.

If Pkj → P in D′(B), then also ∂νPkj → ∂νP in D′(B), as j →∞. But, for all j ∈ N0,
∂νPkj ≡ aνj ∈ R is a polynomial of degree 0. Hence, by the base step of the induction,
the sequence {∂νPkj }j∈N0 converges to some constant aν in D′(B). This shows that

Pk−1
j := Pkj −

∑
|ν|=k

∂νPkj
ν! xν tends to P̃ := P −

∑
|ν|=k

aν

ν!x
ν in D′(B), as j →∞.

Since Pk−1
j belongs to Πk−1(B), by induction it follows that P̃ ∈ Πk−1(B), too.

Therefore, P belongs to Πk(B) and the proof is complete.
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The next embedding result concerning dual Sobolev spaces readily follows from
the classical embedding of Sobolev spaces and Hölder’s inequality. We additionally
refer to [62, Theorem 1.7] for a proof (actually compact embeddings are proven
in this reference - however the modifications which yield the assertion below are
straightforward).

Lemma A.8. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain, k ∈ N, 1 < p <∞
and p∗ := dp/(d− kp). Then, for q ≤ ∞ with


q ≥ p∗

p∗−1 , if kp < d,

q > 1, if kp = d,

q ≥ 1, if kp > d,

there exists a continuous embedding

Lq(Ω) ↪→ W−k(Lp′(Ω)), 1
p

+ 1
p′

= 1.

For a proof of the following well-known differentiability result concerning integrals
involving parameters, see [7, Corollary 16.3].

Lemma A.9. Let U ⊂ Rd be open, j ∈ {1, . . . , d} and (Ω,A, µ) a measure space.
Assume that for a mapping f : U × Ω→ R it holds

(i) f(x, ·) ∈ L1(Ω, µ,R) for all x ∈ U ;
(ii) f(·, ω) has an j-th partial derivative at each x ∈ U for µ− a.e. ω ∈ Ω;

(iii) there exists g ∈ L1(Ω, µ,R) with |(∂f/∂xj)(x, ω)| ≤ g(ω) for all (x, ω) ∈ U×Ω.
Then F : U → R, x 7→

´
Ω f(x, ω)µ(dω) has an j-th partial derivative at every x ∈ U

with

∂F

∂xj
(x) =

ˆ
Ω

∂f

∂xj
(x, ω)µ(dω).

Lemma A.10. For p > 1, |·|p : Rd → R is continuously differentiable on Rd.

Proof. Clearly, |·|p is continuously differentiable on Rd\{0}. For x = 0 and 1 ≤ i ≤ d
one computes

∂

∂xi
|0|p = lim

h→0

|hei|p

h
= lim

h→0

|h|p

h
= lim

h→0
sgn(h)|h|p−1 = 0,

thus all partial derivatives exist in x = 0. For x 6= 0, with (∂/∂xi) |x|p = p |x|p−2 xi
we estimate ∣∣∣∣∣ ∂∂xi |x|p

∣∣∣∣∣ =≤ p |x|p−1 ,

hence limx→0(∂/∂xi) |x|p = 0, i.e., all partial derivatives are continuous in 0.
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Lemma A.11. Let r : R2 → R, r(x) = |x| and β ∈ R. Then for all ν ∈ N2
0 it holds∣∣∣(∂νrβ) (x)

∣∣∣ . r(x)β−|ν| for all x ∈ R2 \ {0}.

Proof. Step 1. We first prove that for m ∈ N0, where k ∈ N0 is chosen such that
m = 2k or m = 2k + 1, it holds that

∂m

∂xmi
rβ =

k∑
j=0

cj,mr
β−2(m−k+j)xm−2k+2j

i , i ∈ {1, 2}. (A.1.11)

Therefore, note that the equality surely holds for m = 0 and m = 1. Assuming that
(A.1.11) holds for m = 2k, we derive

∂m+1

∂xm+1
i

rβ

= c0,m
∂

∂xi
rβ−2(m−k) +

k∑
j=1

cj,m
∂

∂xi

(
rβ−2(m−k+j)xm−2k+2j

i

)
= c0,m (β − 2(m− k)) rβ−2(m−k)−2xi

+
k∑
j=1

cj,m
[
(β − 2(m− k + j))rβ−2(m−k+j)−2xm−2k+2j+1

i

+ rβ−2(m−k+j)(m− 2k + 2j)xm−2k+2j−1
i

]
=: c̃0,mr

β−2((m+1)−k)x
(m+1)−2k
i

+
k∑
j=1

c̃j,mr
β−2((m+1)−k+j)x

(m+1)−2k+2j
i + ĉj,mr

β−2((m+1)−k+(j−1))x
(m+1)−2k+2(j−1)
i

=:
k∑
j=0

cj,m+1r
β−2((m+1)−k+j)x

(m+1)−2k+2j
i ,

this is (A.1.11) for m+ 1. For m = 2k + 1, the induction step m→ m+ 1 is proved
analogously.

Step 2. Now, let ν = (ν1, ν2) ∈ N2
0 and choose ki, i = 1, 2, such that νi = 2ki or

νi = 2ki + 1. With (A.1.11) we get

∂νrβ = ∂ν2

∂xν2
2

(
∂ν1

∂xν1
1
rβ
)

= ∂ν2

∂xν2
2

 k1∑
i=0

ci,ν1r
β−2(ν1−k1+i)xν1−2k1+2i

1


=

k1∑
i=0

ci,ν1x
ν1−2k1+2i
1

(
∂ν2

∂xν2
2
rβ−2(ν1−k1+i)

)

=
k1∑
i=0

ci,ν1x
ν1−2k1+2i
1

 k2∑
j=0

cj,ν2,ir
β−2(ν1−k1+i)−2(ν2−k2+j)xν2−2k2+2j

2


=

k1∑
i=0

k2∑
j=0

ci,j,νr
β−2(ν1+ν2−k1−k2+i+j)xν1−2k1+2i

1 xν2−2k2+2j
2 .
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Now, since (ν1 − 2k1 + 2i) and (ν2 − 2k2 + 2j) are nonnegative and |x1| , |x2| ≤ r, we
finally estimate∣∣∣∂νrβ∣∣∣ ≤ k1∑

i=0

k2∑
j=0
|ci,j,ν | rβ−2(ν1+ν2−k1−k2+i+j)rν1+ν2−2k1−2k2+2i+2j

=
k1∑
i=0

k2∑
j=0
|ci,j,ν | rβ−|ν|

. rβ−|ν|.

Lemma A.12. For 1 < p < ∞ and ω ∈ (0, 2π) let (α, t(·)) be the solution of the
eigenvalue problem (7.1.3) according to Lemma 7.2. We set T (x, y) := t((Ξφ(x, y))
for (x, y) ∈ C(1, ω), where Ξ denotes the transformation of coordinates as defined in
(A.2.1). Then, for all ν ∈ N2

0 there exist constants cν,k,j1,j2 ∈ R, such that

∂ν T (x, y) =
|ν|∑
k=1

∑
j1+j2=|ν|

cν,k,j1,j2t
(k) (Ξφ(x, y)) x

j1yj2

r2|ν| , (x, y) ∈ C(1, ω),

(A.1.12)
where r = |(x, y)|.

Proof. At first, since
∂

∂x
(t(Ξφ(x, y))) = −t′(Ξφ(x, y)) y

r2 ,

∂

∂y
(t(Ξφ(x, y))) = t′(Ξφ(x, y)) x

r2 ,

we see that (A.1.12) holds true for |ν| = 1. Now, let ` ∈ N and assume that (A.1.12)
holds for all ν ∈ N2

0 with |ν| ≤ `. Let ν̃ ∈ N2
0 be arbitrary with |ν̃| = `+ 1. W.l.o.g.

we assume that ∂ ν̃ = ∂/∂x ◦ ∂ν for some ν ∈ N2
0 with |ν| = `. Then

∂ ν̃ T (x, y) = ∂

∂x

 |ν|∑
k=1

∑
j1+j2=|ν|

cν,k,j1,j2t
(k)(Ξφ(x, y))x

j1yj2

r2|ν|


=
|ν|∑
k=1

∑
j1+j2=|ν|

cν,k,j1,j2

(
− t(k+1)(Ξφ(x, y)) y

r2
xj1yj2

r2|ν|

+ t(k)(Ξφ(x, y))j1x
j1−1yj2r2|ν| − 2 |ν|xj1yj2r2|ν|−2x

r4|ν|

)
.

With j1x
j1−1yj2r2|ν| = j1 (xj1+1yj2 + xj1−1yj2+2) r2|ν|−2 we arrive at

∂ ν̃ T (x, y) =
|ν|∑
k=1

∑
j1+j2=|ν|

cν,k,j1,j2

(
− t(k+1)(Ξφ(x, y))x

j1yj2+1

r2(|ν|+1)

+ t(k)(Ξφ(x, y))j1 (xj1+1yj2 + xj1−1yj2+2)− 2 |ν|xj1+1yj2

r2(|ν|+1)

)

=
|ν̃|∑
k=1

∑
j1+j2=|ν̃|

cν̃,k,j1,j2t
(k)(Ξφ(x, y))x

j1yj2

r2(|ν̃|)
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as claimed.
Lemma A.13. Let p > 0 and a, b ≥ 0.

(i) If 0 < p ≤ 1, then

2p−1 (ap + bp) ≤ (a+ b)p ≤ ap + bp.

(ii) If p > 1, then

ap + bp ≤ (a+ b)p ≤ 2p−1 (ap + bp) .

Proof. Part (i). Since (·)p is concave for 0 < p ≤ 1, it holds(
a+ b

2

)p
≥ 1

2 (ap + bp)

and the first inequality of (i) follows directly. To prove the second inequality, w.l.o.g.
let b ≥ a > 0. Then there exists 0 < λ ≤ 1 such that a = λb. We estimate

(a+ b)p = (λb+ b)p = (1 + λ)p bp ≤ (1 + λ) bp = λ
ap

λp
+ bp = λ1−pap + bp ≤ ap + bp.

Part (ii). Let p > 1. To prove the first inequality, we write

ap + bp =
(
(ap + bp)1/p

)p
,

and since 1/p < 1, we can apply the second inequality of part (i) to estimate

ap + bp ≤
(
(ap)1/p + (bp)1/p

)p
= (a+ b)p .

The last inequality follows from the convexity of (·)p, analogously to the case 0 < p ≤ 1
above.
Lemma A.14. For p ≥ 1 and a, b ∈ Rd it holds

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉.

Proof. First note that for a convex and continuously differentiable function f : R→ R
it holds that

f(x) + f ′(x)(y − x) ≤ f(y) for all x, y ∈ R,

i.e., for |·|p : R→ R we get

|x|p + p|x|p−2x(y − x) ≤ |y|p.

With the choice x = |a| and y = |b| for a, b ∈ Rd it follows that

|a|p + p|a|p−2|a| (|b| − |a|) ≤ |b|p,

and we finally estimate

|a|p + p〈|a|p−2a, b− a〉 = |a|p + p〈|a|p−2a, b〉 − p|a|p

≤ |a|p + p|a|p−1 (|b| − |a|)
≤ |b|p.

(One can moreover show: a differentiable function f : Ω → R, Ω ⊂ Rd convex, is
convex if and only if f(y) ≥ f(x) +∇f(x) · (y − x) for all x, y ∈ Ω.)
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Lemma A.15. Let 1 < p <∞ and 0 < ω < 2π. Moreover, let (α, t) be the solution
of the eigenvalue problem (7.1.3) from Lemma 7.2. It holds rαt ∈ W 1(Lp(C(1, ω))).

Proof. First, with z := (x, y), Lemma 7.4 and the fact that α > 0 we estimate

‖rαt Lp(C(1, ω))‖p =
ˆ
C(1,ω)

rαp |t(Ξφ(z)|p dz ≤ ‖t C([0, ω])‖p
ˆ
C(1,ω)

rαp dz <∞,

where Ξ denotes the transformation of coordinates as defined in (A.2.1). Next, with

∂

∂x
(rαt(φ)) = αxrα−2t(φ)− yrα−2t′(φ),

and Lemma 7.4 we estimate∥∥∥∥∥ ∂∂x (rαt) Lp(C(1, ω))
∥∥∥∥∥
p

≤
ˆ
C(1,ω)

(
αrα−1 |t(Ξφ(z))|+ rα−1 |t′(Ξφ(z))|

)p
dz

.
ˆ
C(1,ω)

r(α−1)p
(
‖t C([0, ω])‖+

∥∥∥t C1([0, ω])
∥∥∥)p dz

.
ˆ
C(1,ω)

r(α−1)p dz. (A.1.13)

Finally, since α > max {0, (p− 2)/(p− 1)},see (7.1.5), for p ≥ 2 it holds

α >
p− 2
p− 1 >

p− 2
p

= 1− 2
p
,

i.e., (α− 1)p > −2. For 1 < p < 2, it holds

1− 2
p
< 0 < α,

i.e., (α − 1)p > −2 also in this case. Hence, the integral in (A.1.13) is finite. The
Lp-norm of the partial derivative of rαt with respect to y is estimated completely
analogously.

A.2 The p-Laplace equation on a cone

In this section we consider the p-Laplace equation on finite cones C(R,ω) ⊂ R2 of
radius R > 0 and inner angle 0 < ω < 2π, see (7.0.1). Therefore, we introduce the
following notation first. For d = 2, let Ξ denote the transformation of Cartesian
coordinates to polar coordinates, i.e.,

Ξ : R2 → [0,∞)× [0, 2π),
(x, y) 7→ (r, φ),

(A.2.1)
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where

r := Ξr(x, y) :=
√
x2 + y2,

φ := Ξφ(x, y) :=



arctan
(
y
x

)
, if x > 0, y ≥ 0,

arctan
(
y
x

)
+ 2π, if x > 0, y < 0,

arctan
(
y
x

)
+ π, if x < 0,

π
2 , if x = 0, y > 0,
3π
2 , if x = 0, y < 0,

0, if x = 0, y = 0.

Furthermore, we will need the derivative of Ξ,

DΞ(x, y) =
 ∂Ξr

∂x
(x, y) ∂Ξr

∂y
(x, y)

∂Ξφ
∂x

(x, y) ∂Ξφ
∂y

(x, y)

 =
 x√

x2+y2
y√
x2+y2

− y
x2+y2

x
x2+y2

 =
(

x
r

y
r−y

r2
x
r2

)
,

where (x, y) ∈ R2 \{0}. Now, for a function u : R2 → R, we denote its representation
in polar coordinates by ũ, i.e.,

ũ : [0,∞)× [0, 2π)→ R, ũ(r, φ) := u
(
Ξ−1(r, φ)

)
.

Hence, ũ ◦ Ξ = u.

A.2.1 The p-Laplace operator in polar coordinates
Lemma A.16. With the notation of this section, the identity

− div
(
|∇u(x, y)|p−2∇u(x, y)

)
= −1

r

∂

∂r


(∂ũ

∂r
(r, φ)

)2

+
(

1
r

∂ũ

∂φ
(r, φ)

)2
(p−2)/2

r
∂ũ

∂r
(r, φ)


− 1
r2

∂

∂φ


(∂ũ

∂r
(r, φ)

)2

+
(

1
r

∂ũ

∂φ
(r, φ)

)2
(p−2)/2

∂ũ

∂φ
(r, φ)


holds true for all (x, y) ∈ R2 \ {0}.

Proof. Let (x, y) ∈ R2 \ {0}. First, we compute

∇u(x, y) = ∇ũ (Ξ(x, y)) ·DΞ(x, y)

=
(
∂ũ

∂r
(Ξ(x, y)) ,

∂ũ

∂φ
(Ξ(x, y))

)
·
(

x
r

y
r−y

r2
x
r2

)

=
(
x

r

∂ũ

∂r
(Ξ(x, y))− y

r2
∂ũ

∂φ
(Ξ(x, y)) ,

y

r

∂ũ

∂r
(Ξ(x, y)) + x

r2
∂ũ

∂φ
(Ξ(x, y))

)

and

|∇u(x, y)|2 =
(
∂ũ

∂r
(Ξ(x, y))

)2

+ 1
r2

(
∂ũ

∂φ
(Ξ(x, y))

)2

.
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Hence,
|∇u(x, y)|p−2∇u(x, y)

=
(∂ũ

∂r
(Ξ(x, y))

)2

+
(

1
r

∂ũ

∂φ
(Ξ(x, y))

)2
(p−2)/2

·
(
x

r

∂ũ

∂r
(Ξ(x, y))− y

r2
∂ũ

∂φ
(Ξ(x, y)) ,

y

r

∂ũ

∂r
(Ξ(x, y)) + x

r2
∂ũ

∂φ
(Ξ(x, y))

)
.

(A.2.2)
Now, with

G(Ξ(x, y)) :=
(∂ũ

∂r
(Ξ(x, y))

)2

+
(

1
r

∂ũ

∂φ
(Ξ(x, y))

)2
(p−2)/2

r
∂ũ

∂r
(Ξ(x, y))

and

H(Ξ(x, y)) :=
(∂ũ

∂r
(Ξ(x, y))

)2

+
(

1
r

∂ũ

∂φ
(Ξ(x, y))

)2
(p−2)/2

∂ũ

∂φ
(Ξ(x, y)),

the partial derivative of the first component of |∇u(x, y)|p−2∇u(x, y) with respect
to x computes to

∂

∂x


(∂ũ

∂r
(Ξ(x, y))

)2

+
(

1
r

∂ũ

∂φ
(Ξ(x, y))

)2
(p−2)/2(

x

r

∂ũ

∂r
(Ξ(x, y))− y

r2
∂ũ

∂φ
(Ξ(x, y))

)
= ∂

∂x

{
G(Ξ(x, y)) x

r2 −H(Ξ(x, y)) y
r2

}
= ∂G(Ξ(x, y))

∂x

x

r2 +G(Ξ(x, y))y
2 − x2

r4 − ∂H(Ξ(x, y))
∂x

y

r2 +H(Ξ(x, y))2xy
r4

=
(
∂G

∂r
(Ξ(x, y))x

r
− ∂G

∂φ
(Ξ(x, y)) y

r2

)
x

r2 +G(Ξ(x, y))y
2 − x2

r4

−
(
∂H

∂r
(Ξ(x, y))x

r
− ∂H

∂φ
(Ξ(x, y)) y

r2

)
y

r2 +H(Ξ(x, y))2xy
r4 , (A.2.3)

and analogously taking the partial derivative of the second component with respect
to y yields

∂

∂y


(∂ũ

∂r
(Ξ(x, y))

)2

+
(

1
r

∂ũ

∂φ
(Ξ(x, y))

)2
(p−2)/2(

y

r

∂ũ

∂r
(Ξ(x, y)) + x

r2
∂ũ

∂φ
(Ξ(x, y))

)
= ∂

∂y

{
G(Ξ(x, y)) y

r2 +H(Ξ(x, y)) x
r2

}

= ∂G(Ξ(x, y))
∂y

y

r2 +G(Ξ(x, y))x
2 − y2

r4 + ∂H(Ξ(x, y))
∂y

x

r2 −H(Ξ(x, y))2xy
r4

=
(
∂G

∂r
(Ξ(x, y))y

r
+ ∂G

∂φ
(Ξ(x, y)) x

r2

)
y

r2 +G(Ξ(x, y))x
2 − y2

r4

+
(
∂H

∂r
(Ξ(x, y))y

r
+ ∂H

∂φ
(Ξ(x, y)) x

r2

)
x

r2 −H(Ξ(x, y))2xy
r4 . (A.2.4)
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Then, from (A.2.2), (A.2.3) and (A.2.4) it follows

−div
(
|∇u(x, y)|p−2∇u(x, y)

)
=−

(
∂G

∂r
(Ξ(x, y))x

2 + y2

r3 + ∂G

∂φ
(Ξ(x, y))xy − xy

r4

)

−
(
∂H

∂r
(Ξ(x, y))xy − xy

r3 + ∂H

∂φ
(Ξ(x, y))x

2 + y2

r4

)

=− 1
r

∂G

∂r
(Ξ(x, y))− 1

r2
∂H

∂φ
(Ξ(x, y)).

A.2.2 p-harmonic functions of the form rαt(φ)
Now, it is possible to characterize all strong solutions to the p-Laplace equation on
the cone which take the form ũ(r, φ) = rαt(φ).

Proposition A.17. Let 1 < p < ∞ and let C(R,ω) with R > 0 and 0 < ω < 2π
denote some cone as defined by (7.0.1). Then, for ũ(r, φ) = rαt(φ) with α ∈ R and
t ∈ C2((0, ω)), the following two properties are equivalent:

(i) ũ is p-harmonic in C(R,ω).
(ii) α and t(·) satisfy

∂

∂φ


α2t(φ)2 +

(
∂t

∂φ
(φ)

)2
(p−2)/2

∂t

∂φ
(φ)


+ α

(
α (p− 1) + 2− p

)α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

t(φ) = 0 for all φ ∈ (0, ω).

Proof. We apply Lemma A.16 for ũ(r, φ) = rαt(φ). Hence, for (x, y) ∈ C(R,ω) and
(r, φ) = Ξ(x, y) we get

− div
(
|∇(ũ ◦ Ξ)(x, y)|p−2 ∇(ũ ◦ Ξ)(x, y)

)
= −1

r

∂

∂r


(αrα−1t(φ)

)2
+ 1
r2

(
rα
∂t

∂φ
(φ)

)2
(p−2)/2

rαrα−1t(φ)


− 1
r2

∂

∂φ


(αrα−1t(φ)

)2
+ 1
r2

(
rα
∂t

∂φ
(φ)

)2
(p−2)/2

rα
∂t

∂φ
(φ)


= −1

r

∂

∂r

r(α−1)(p−2)

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

αrαt(φ)


− 1
r2

∂

∂φ

r(α−1)(p−2)

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

rα
∂t

∂φ
(φ)

 .
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Next, calculating the derivatives further yields

− div
(
|∇(ũ ◦ Ξ)(x, y)|p−2 ∇(ũ ◦ Ξ)(x, y)

)
= −1

r
((α− 1)(p− 2) + α) r(α−1)(p−2)+α−1α

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

t(φ)

− 1
r2 r

(α−1)(p−2)+α ∂

∂φ


α2t(φ)2 +

(
∂t

∂φ
(φ)

)2
(p−2)/2

∂t

∂φ
(φ)


= −α (α(p− 1) + 2− p) r(α−1)(p−1)−1

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

t(φ)

− r(α−1)(p−1)−1 ∂

∂φ


α2t(φ)2 +

(
∂t

∂φ
(φ)

)2
(p−2)/2

∂t

∂φ
(φ)

 .
Thus, ũ is p-harmonic in C(R,ω) if and only if

0 = −α (α(p− 1) + 2− p) r(α−1)(p−1)−1

α2t(φ)2 +
(
∂t

∂φ
(φ)

)2
(p−2)/2

t(φ)

− r(α−1)(p−1)−1 ∂

∂φ


α2t(φ)2 +

(
∂t

∂φ
(φ)

)2
(p−2)/2

∂t

∂φ
(φ)


for all 0 < r < R and all 0 < φ < ω. Now, dividing through −r(α−1)(p−1)−1 proves
the assertion.

A.3 Further results: Quasi-normed spaces
Proposition A.18. Let Y be a K-vector space and {‖·‖p(j),j j ∈ J} a family of
p-norms on Y , where 0 < p(j) ≤ 1 for all j ∈ J . For j ∈ J , r > 0 and y ∈ Y we set

Vj,r(y) =
{
z ‖z − y‖p(j),j < r

}
= y + Vj,r(0).

Furthermore, we define the sets

UJ0,r(y) =
⋂
j∈J0

Vj,r(y), J0 ⊂ J finite, r > 0, y ∈ Y.

With O we denote the topology generated by the sets UJ0,r(y), as stated in Proposi-
tion 2.18. Then, with respect to this topology O, the sets UJ0,r(y) are open and all
p-norms ‖·‖p(j),j are continuous.

Proof. Step 1. We first show that the sets UJ0,r(y) are open. Since finite intersections
of open sets are always open, it suffices to show that the sets Vj,r(y) are open.
Therefore, let y ∈ Y , j ∈ J and r > 0 be arbitrary, but fixed. To simplify notation,
we set p = p(j). Due to Definition 2.5(ii), we have to show that each x ∈ Vj,r(y) is an
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inner point of Vj,r(y), i.e., that there exists an element of the local basis of x which
is contained in Vj,r(y). Hence, fix x ∈ Vj,r(y) and set ‖x− y‖p,j =: δ < r. Since
rp > δp, it holds that εp := rp − δp > 0. Now, for arbitrary z ∈ Vj,ε(x) we estimate

‖z − y‖pp,j = ‖z − x+ x− y‖pp,j
≤ ‖z − x‖pp,j + ‖x− y‖pp,j
< εp + δp

= rp,

thus z ∈ Vj,r(y) and therefore Vj,ε(x) ⊂ Vj,r(y). Hence, x is an inner point of Vj,r(y),
and since x ∈ Vj,r(y) was arbitrary, we proved that Vj,r(y) is open.

Step 2. Let j ∈ J and y ∈ Y be arbitrary, but fixed. Again, we set p = p(j). We
show that ‖·‖p,j is continuous in y. Note that, due to Definition 2.7, we have to show
that for each open neighborhood W of ‖y‖p,j there exist an open neighborhood V
of y such that ‖V ‖p,j ⊂ W . Now, since the sets Vj,r(y) are open due to Step 1, it
suffices to show that for each ε > 0 there exists an r > 0 such that∣∣∣‖y‖p,j − ‖z‖p,j∣∣∣ < ε for all z ∈ Vj,r(y). (A.3.1)

Now, let ε > 0. In case y = 0, we can choose r = ε. Hence, let y 6= 0 and w.l.o.g.
0 < ε < ‖y‖p,j. Choose r > 0, such that

r <

(
1−

(
1− 2−1/pε

‖y‖p,j

)p)1/p

‖y‖p,j . (A.3.2)

Let z ∈ Vj,r(y). We get ∣∣∣‖y‖pp,j − ‖z‖pp,j∣∣∣ ≤ ‖y − z‖pp,j < rp. (A.3.3)

To show (A.3.1), we distinguish two cases. In case ‖z‖p,j ≤ ‖y‖p,j, we estimate

‖y‖pp,j − ‖z‖
p
p,j < rp <

(
1−

(
1− 2−1/pε

‖y‖p,j

)p)
‖y‖pp,j ,

hence (
1− 2−1/pε

‖y‖p,j

)p
‖y‖pp,j < ‖z‖

p
p,j ,

and we conclude that

‖y‖p,j − ‖z‖p,j < 2−1/pε < ε.

Now we consider ‖z‖p,j > ‖y‖p,j. From (A.3.2) and (A.3.3) we get

‖z‖pp,j − ‖y‖
p
p,j <

(
1−

(
1− 2−1/pε

‖y‖p,j

)p)
‖z‖pp,j ,
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where we used that ‖y‖p,j < ‖z‖p,j. Hence,(
1− 2−1/pε

‖y‖p,j

)p
‖z‖pp,j < ‖y‖

p
p,j ,

and we conclude that

‖z‖p,j − ‖y‖p,j < 2−1/pε
‖z‖p,j
‖y‖p,j

. (A.3.4)

Now, using again (A.3.3) as well as Lemma A.13(i), we estimate

‖z‖pp,j < ‖y‖
p
p,j + rp ≤ 21−p

(
‖y‖p,j + r

)p
,

i.e.,

‖z‖p,j < 2(1−p)/p
(
‖y‖p,j + r

)
. (A.3.5)

Finally, combining (A.3.4) and (A.3.5) we arrive at

‖z‖p,j − ‖y‖p,j <
ε

2

(
1 + r

‖y‖p,j

)
< ε,

where in the last step we used that r < ‖y‖p,j.

A.4 Alternative Proofs

A.4.1 Proof of Corollary 5.4
The following proof of Corollary 5.4 closely follows the lines of [76, Theorem 3].

Proof. Let u ∈ K`p,a(Ω) ∩ Bs
p(Lp(Ω)) and let ES denote the extension operator,

which simultaneously extends the spaces K`p,a(Ω) and Bs
p(Lp(Ω)) to K`p,a(R2) and

Bs
p(Lp(R2)), respectively, see Remark 1.7. We emphasize that K`p,a(Ω) and K`p,a(R2)

admit the same singular set S, consisting of the vertices of Ω. Furthermore, let
ψI denote the system of Daubechies wavelets, see Section 1.6 for details, where we
choose m ∈ N sufficiently large such that m ≥ ` and φm, Dm ∈ Cr(R) for some
r ∈ N with r > s and r ≥ `. Now, first note that we can extend u to some
ESu ∈ K`p,a(R2) ∩Bs

p(Lp(R2)). Since in particular ESu ∈ Lp(R2) and the system ψI
forms a basis for Lp(R2), it can be written as

ESu = P0(ESu) +
∑

(I,ψ)∈I+×ΨM
〈ESu, ψI〉ψI

= P0(ESu) +
∑

(I,ψ)∈I+×ΨM
〈ESu, ψI,p′〉ψI,p.

Next we restrict this expansion and consider only those wavelets for which (I, ψ)
belongs to

Λρ :=
⋃
j≥0

Λρ
j ,
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where we set

Λρ
j :=

{
(I, ψ) ∈ I+ ×ΨM |I| = 2−2j and Q(I) ∩ Ω 6= ∅

}
.

Next we split up the index sets Λρ
j once more and write

Λρ
j =

⋃
n≥0

Λρ
j,n, with Λρ

j,n :=
{

(I, ψ) ∈ Λρ
j n2−j ≤ ρI < (n+ 1)2−j

}
,

where

ρI := inf
x∈Q(I)

ρ(x)

and ρ denotes the smooth distance function from the definition of the Babuska-
Kondratiev spaces K`p,a(R2), see Section 1.3. We define

Pregu :=
∑
j≥0

∑
n>0

∑
(I,ψ)∈Λρj,n

〈ESu, ψI,p′〉ψI,p

and

Psingu :=
∑
j≥0

∑
(I,ψ)∈Λρj,0

〈ESu, ψI,p′〉ψI,p,

we have

u = ESu Ω = P0(ESu) Ω + Pregu Ω + Psingu Ω. (A.4.1)

Step 1. We show that ‖P0(ESu) Bσ
τ (Lτ (R2))‖ .

∥∥∥u Bs
p(Lp(Ω))

∥∥∥. Note that since
P0 is the projection onto the coarse levels, it holds that P0(ESu) ⊥ ψI,p′ for all I ∈ I+

and ψ ∈ ΨM , i.e., P 2
0 (ESu) = P0(ESu). Now, Proposition 1.22, i.e., the wavelet

characterization of Bσ
τ (Lτ (R2)), yields

∥∥∥P0(ESu) Bσ
τ (Lτ (R2))

∥∥∥ ∼ ∥∥∥P 2
0 (ESu) Lτ (R2)

∥∥∥+
∑
I∈I+

∑
ψ∈ΨM

|〈P0(ESu), ψI,p′〉|τ
1/τ

=
∥∥∥P0(ESu) Lτ (R2)

∥∥∥ . (A.4.2)

Next, P0(ESu) has compact support in R2, since ES is local, and therefore∥∥∥P0(ESu) Lτ (R2)
∥∥∥ . ∥∥∥P0(ESu) Lp(R2)

∥∥∥ (A.4.3)

due to τ < p. Further, from the wavelet characterization of Bs
p(Lp(R2)), see

Lemma 1.20, we conclude∥∥∥P0(ESu) Lp(R2)
∥∥∥ . ∥∥∥ESu Bs

p(Lp(R2))
∥∥∥ . (A.4.4)

Finally, the continuity of ES, together with (A.4.2), (A.4.3) and (A.4.4) yields∥∥∥P0(ESu) Bσ
τ (Lτ (R2))

∥∥∥ . ∥∥∥u Bs
p(Lp(Ω))

∥∥∥ .
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Step 2. We show that ‖Pregu Bσ
τ (Lτ (R2))‖ .

∥∥∥u K`p,a(Ω)
∥∥∥. Therefore, w.l.o.g.

we may assume that a ≤ `, since K`p,ã(Ω) ↪→ K`p,a(Ω) for all ã ≥ a. Now, let n > 0
and (I, ψ) ∈ Λρ

j,n. First note that from Proposition A.1 we know, that for each I
there exists a polynomial PI of degree less than `, such that

‖ESu− PI Lp(Q(I))‖ ≤ c0 |Q(I)|`/2 |ESu|W `(Lp(Q(I)))

≤ c1 |I|`/2 |ESu|W `(Lp(Q(I))) . (A.4.5)

Now, the vanishing moment property of ψI,p′ , together with an application of Hölder’s
inequality yields

|〈ESu, ψI,p′〉| = |〈ESu− PI , ψI,p′〉|
≤ ‖ESu− PI Lp(Q(I))‖ · ‖ψI,p′ Lp′(Q(I))‖ .

Using (A.4.5) and `− a ≥ 0, we further estimate

|〈ESu, ψI,p′〉| ≤ c1 |I|`/2 |ESu|W `(Lp(Q(I)))

= c1 |I|`/2
∑
|ν|=`

ˆ
Q(I)
|DνESu|p dx

1/p

≤ c1 |I|`/2 ρ−`+aI

∑
|ν|=`

ˆ
Q(I)

∣∣∣ρ(x)`−aDνESu
∣∣∣p dx

1/p

.

With

µI :=
∑
|ν|=`

ˆ
Q(I)

∣∣∣ρ(x)`−aDνESu
∣∣∣p dx

1/p

we hence get

|〈ESu, ψI,p′〉| ≤ c1 |I|`/2 ρ−`+aI µI .

Now, for fixed j ≥ 0, we estimate

∑
n>0

∑
(I,ψ)∈Λρj,n

|〈ESu, ψI,p′〉|τ ≤ cτ1
∑
n>0

∑
(I,ψ)∈Λρj,n

(
|I|`/2 ρ−`+aI µI

)τ

≤ cτ1

∑
n>0

∑
(I,ψ)∈Λρj,n

(
|I|`τ/2 ρ(a−`)τ

I

)p/(p−τ)


(p−τ)/p∑

n>0

∑
(I,ψ)∈Λρj,n

µpI


τ/p

,

where in the last step we applied Hölder’s inequality once again. Since for fixed
j every x ∈ Ω is contained in a finite number of cubes Q(I), and this number is
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bounded by some constant independent of x and j, we get
∑
n>0

∑
(I,ψ)∈Λρj,n

µpI


1/p

=

∑
n>0

∑
(I,ψ)∈Λρj,n

∑
|ν|=`

ˆ
Q(I)

∣∣∣ρ(x)`−aDν(ESu)(x)
∣∣∣p dx


1/p

≤ c2

∑
|ν|=`

ˆ
R2

∣∣∣ρ(x)`−aDν(ESu)(x)
∣∣∣p dx

1/p

≤ c2

∥∥∥ESu K`p,a(R2)
∥∥∥

≤ c3

∥∥∥u K`p,a(Ω)
∥∥∥ .

Since ρI ≤ 1, it holds Λρ
j,n = ∅ for n > 2j. Furthermore, #Λρ

j,n . n. With this we
estimate∑

n>0

∑
(I,ψ)∈Λρj,n

(
|I|`τ/2 ρ(a−`)τ

I

)p/(p−τ)


(p−τ)/p

≤

∑
n>0

∑
(I,ψ)∈Λρj,n

(
|I|`τ/2 n(a−`)τ2−j(a−`)τ

)p/(p−τ)


(p−τ)/p

≤

 2j∑
n=1

∑
(I,ψ)∈Λρj,n

(
2−jaτn(a−`)τ

)p/(p−τ)


(p−τ)/p

.

2−japτ/(p−τ)
2j∑
n=1

n(a−`)pτ/(p−τ)+1

(p−τ)/p

= 2−jaτ
 2j∑
n=1

n(a−`)pτ/(p−τ)+1

(p−τ)/p

.

Note that

(a− `) pτ

p− τ
+ 1 = pτ

p− τ

(
a− `+ 1

τ
− 1
p

)
= pτ

p− τ

(
a− `+ σ

2

)
> −1

if and only if

a− `+ σ

2 >
1
p
− 1
τ

= −σ2 ,

which is equivalent to a− `+ σ > 0. We distinguish between three cases.

∑
n>0

∑
(I,ψ)∈Λρj,n

(
|I|`τ/2 ρ(a−`)τ

I

)p/(p−τ)


(p−τ)/p

. 2−jaτ


2j(a−`)τ+2j(p−τ)/p, a− `+ σ > 0,
(j + 1)(p−τ)/p, a− `+ σ = 0,
1, a− `+ σ < 0.
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In the first case we get∑
j≥0

∑
n>0

∑
(I,ψ)∈Λρj,n

|〈ESu, ψI,p′〉|τ .
∑
j≥0

2−j`τ+2j(p−τ)/p
∥∥∥u K`p,a(Ω)

∥∥∥τ
.
∥∥∥u K`p,a(Ω)

∥∥∥τ ,
where the last estimate holds if and only if −`τ + 2(p− τ)/p < 0, which is equivalent
to

` > 2
(

1
τ
− 1
p

)
= σ.

In case a− `+ σ = 0 we get∑
j≥0

∑
n>0

∑
(I,ψ)∈Λρj,n

|〈ESu, ψI,p′〉|τ .
∑
j≥0

2−jaτ (j + 1)(p−τ)/p
∥∥∥u K`p,a(Ω)

∥∥∥τ
.
∥∥∥u K`p,a(Ω)

∥∥∥τ ,
where the last estimate holds if and only if a = `− σ > 0, thus if ` > σ. For the last
case we get ∑

j≥0

∑
n>0

∑
(I,ψ)∈Λρj,n

|〈ESu, ψI,p′〉|τ .
∑
j≥0

2−jaτ
∥∥∥u K`p,a(Ω)

∥∥∥τ
.
∥∥∥u K`p,a(Ω)

∥∥∥τ ,
since aτ > 0 due to our assumptions.

Step 3. We show that ‖Psingu Bσ
τ (Lτ (R2))‖ .

∥∥∥u Bs
p(Lp(Ω))

∥∥∥. To do so, first
note that #Λρ

j,0 ≤ C. An application of Hölder’s inequality yields

∑
(I,ψ)∈Λρj,0

|〈ESu, ψI,p′〉|τ .

 ∑
(I,ψ)∈Λρj,0

|〈ESu, ψI,p′〉|p

τ/p

= 2−jsτ
 ∑

(I,ψ)∈Λρj,0

|I|−sp/2 |〈ESu, ψI,p′〉|p

τ/p

.

Now, summing over j and applying Hölder’s inequality once more yields

∑
j≥0

∑
(I,ψ)∈Λρj,0

|〈ESu, ψI,p′〉|τ .
∑
j≥0

2−jsτ
 ∑

(I,ψ)∈Λρj,0

|I|−sp/2 |〈ESu, ψI,p′〉|p

τ/p

≤

∑
j≥0

2−jsτp/(p−τ)

(p−τ)/p
∑
j≥0

∑
(I,ψ)∈Λρj,0

|I|−sp/2 |〈ESu, ψI,p′〉|p

τ/p

.

∑
j≥0

2−jsτp/(p−τ)

(p−τ)/p ∥∥∥ESu Bs
p(Lp(R2))

∥∥∥τ
.
∥∥∥u Bs

p(Lp(Ω))
∥∥∥τ ,
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where the last inequality holds true because s > 0 and 0 < τ < p, thus sτp/(p−τ) > 0.
Step 4. Finally, with (A.4.1) and Step 1 - 3, we estimate

‖u Bσ
τ (Lτ (Ω))‖ = ‖P0(ESu) + Pregu+ Psingu Bσ

τ (Lτ (Ω))‖
. ‖P0(ESu) Bσ

τ (Lτ (Ω))‖+ ‖Pregu Bσ
τ (Lτ (Ω))‖+ ‖Psingu Bσ

τ (Lτ (Ω))‖
.
∥∥∥P0(ESu) Bσ

τ (Lτ (R2))
∥∥∥+

∥∥∥Pregu Bσ
τ (Lτ (R2))

∥∥∥+
∥∥∥Psingu Bσ

τ (Lτ (R2))
∥∥∥

.
∥∥∥u K`p,a(Ω)

∥∥∥+
∥∥∥u Bs

p(Lp(Ω))
∥∥∥ .

A.4.2 Proof of Lemma 7.4
To prove Lemma 7.4, we need a representation of the solution t of problem (7.1.3) - as
well as some other assertions - as derived by Dobrowolski in his proof of Lemma 7.2,
see [57, Proof of Theorem 1]. Hence, at first we give a rigorous proof of Lemma 7.2,
which essentially is a detailed version of the outline given in [57].

Proof of Lemma 7.2.

Proof. For simplicity, we will use the notation t′, t′′ etc. for the derivatives of t and
when appropriate, we may as well omit the argument φ. First note that problem
(7.1.3) is invariant under translations, i.e., we may consider (7.1.3) on the interval
(−ω/2, ω/2) with boundary conditions t(−ω/2) = t(ω/2) = 0 and seek a positive
solution t ∈ C2([−ω/2, ω/2]). Furthermore, we impose the additional conditions
t′(0) = 0, as well as t′(−ω/2) 6= 0 and t′(ω/2) 6= 0. In the following, we will show
that for α as given by (7.1.4), this problem admits a unique (up to multiplication by
scalars) solution t .

Step 1. We derive a problem of a simpler shape. Therefore, at first we write
(7.1.3) as

(p− 2)
[
α2t2 + (t′)2

](p−4)/2 [
α2tt′ + t′t′′

]
t′ +

[
α2t2 + (t′)2

](p−2)/2
t′′

+ α (α (p− 1) + 2− p)
[
α2t2 + (t′)2

](p−2)/2
t = 0 in

(
−ω2 ,

ω

2

)
.

(A.4.6)

Before we proceed, note that −1 ≤ Γ < 0, and therefore

Θ = p(Γ− 1)− 2Γ
2Γ(p− 1) ≥ 2Γp− 2Γ

2Γ(p− 1) = 1. (A.4.7)

Furthermore, it holds

Θ2 + 1
Γ = (Γ− 1)2p2 − 4Γp(Γ− 1) + 4Γ2 + 4Γ(p− 1)2

4Γ2(p− 1)2

= (Γ + 1)2p2 − 4Γ(Γ + 1)(p− 1)
4Γ2(p− 1)2 (A.4.8)

≥ 0,



A.4. ALTERNATIVE PROOFS 171

and from (A.4.8) with −1 ≤ Γ < 0 we estimate

Θ2 + 1
Γ <

(Γ + 1)2p2 − 4Γ(Γ + 1)p+ 4Γ2

4Γ2(p− 1)2

=
(

2Γ− (Γ + 1)p
2Γ(p− 1)

)2

=
(

(Γ− 1)p− 2Γ− 2Γ(p− 2)
2Γ(p− 1)

)2

=
(

Θ− p− 2
p− 1

)2

,

i.e.,

0 ≤ Θ2 + 1
Γ <

(
Θ− p− 2

p− 1

)2

.

Thus, we conclude

Θ−
√

Θ2 + Γ−1 >
p− 2
p− 1 ,

and since 0 ≤
√

Θ2 + Γ−1 < Θ, it holds

α > max
{

0, p− 2
p− 1

}

for all 0 < ω ≤ 2π and 1 < p < ∞. Now, dividing equation (A.4.6) through
[α2t2 + (t′)2](p−4)/2

> 0 yields

0 = (p− 2)
[
α2tt′ + t′t′′

]
t′ +

[
α2t2 + (t′)2

]
t′′ + α (α (p− 1) + 2− p)

[
α2t2 + (t′)2

]
t

=
[
α2(p− 2) + α (α (p− 1) + 2− p)

]
(t′)2t+ [p− 2 + 1] (t′)2t′′ + α2t2t′′

+
[
α (α (p− 1) + 2− p)α2

]
t3

=
[
α2(2p− 3) + α(2− p)

]
(t′)2t+ (p− 1)(t′)2t′′ + α2t2t′′

+
[
α4(p− 1) + α3(2− p)

]
t3

in (−ω/2, ω/2). Dividing through t3 gives

0 =
[
α2(2p− 3) + α(2− p)

](t′
t

)2

+ (p−1)
(
t′

t

)2
t′′

t
+ α2 t

′′

t
+
[
α4(p−1) + α3(2− p)

]
in (−ω/2, ω/2).

Next, we set v(φ) := t′(φ)/t(φ) for φ ∈ (−ω/2, ω/2). Since t(0) > 0 and t′(0) = 0,
we have v(0) = 0. Since t(−ω/2) = t(ω/2) = 0, as well as t′(−ω/2) > 0 and
t′(ω/2) < 0, it holds limφ→−ω/2 v(φ) = ∞ and limφ→ω/2 v(φ) = −∞. Using that
t′′ = t(v′ + v2), this substitution yields

0 =
[
α2(2p−3)+α(2−p)

]
v2 + (p−1)v2(v′+v2) + α2(v′+v2) +

[
α4(p−1)+α3(2−p)

]
= (p−1)v4 +

[
α2(2p−2)+α(2−p)

]
v2 +

[
(p−1)v2+α2

]
v′ +

[
α4(p−1)+α3(2−p)

]
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in (−ω/2, ω/2). Next, dividing through (p− 1)v2 + α2 gives

−v′ = (p− 1)v4 + [α2(2p− 2) + α(2− p)] v2 + [α4(p− 1) + α3(2− p)]
(p− 1)v2 + α2

= v4 + [2α2 + α(2− p)/(p− 1)] v2 + [α4 + α3(2− p)/(p− 1)]
v2 + α2/(p− 1) in

(
−ω2 ,

ω

2

)
.

Setting a := α2/(p− 1), f := α2 and g := α2 + α(2− p)/(p− 1), we arrive at

−v′ = v4 + (f + g)v2 + fg

v2 + a
= (v2 + f)(v2 + g)

v2 + a
in

(
−ω2 ,

ω

2

)
.

Hence, we have to find a solution v ∈ C1((−ω/2, ω/2)) of the problem

v′(φ) = −(v(φ)2 + f)(v(φ)2 + g)
v(φ)2 + a

for all φ ∈
(
−ω2 ,

ω

2

)
, (A.4.9)

which satisfies

v(0) = 0, lim
φ→−ω/2

v(φ) =∞, lim
φ→ω/2

v(φ) = −∞. (A.4.10)

Step 2. Before we solve problem (A.4.9), (A.4.10), note that a, f and g are
positive, since α > max{0, (p− 2)/(p− 1)}. Hence, from (A.4.9) it follows that the
derivative v′ is strictly negative, i.e., v is strictly decreasing in (−ω/2, ω/2). Thus, v
has a unique inverse, and for y ∈ R it holds

(v−1)′(y) = 1
v′(v−1(y)) = − y2 + a

(y2 + f)(y2 + g) .

From the condition v(0) = 0, i.e. v−1(0) = 0, it follows

v−1(y) =
ˆ y

0
(v−1)′(η) dη.

Note that v−1 is odd and therefore v is odd as well. Hence, it remains to check one
of the boundary conditions in (A.4.10).

We consider φ→ ω/2. From the condition limφ→ω/2 v(φ) = −∞, we have to solve
limy→−∞ v

−1(y) = ω/2. For v−1 we compute

v−1(y) = −
ˆ y

0

η2 + a

(η2 + f)(η2 + g) dη

= −
ˆ y

0

η2 + f

(η2 + f)(η2 + g) + a− f
(η2 + f)(η2 + g) dη

= −
ˆ y

0

1
η2 + g

dη −
ˆ y

0

a− f
(η2 + f)(η2 + g) dη, y ∈ R.

In case p 6= 2, a partial fraction decomposition yields

a− f
(η2 + f)(η2 + g) = f − a

f − g
· 1
η2 + f

+ a− f
f − g

· 1
η2 + g

,
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and with arctan(η)′ = 1/(1 + η2) we get

v−1(y) = −
ˆ y

0

1
η2 + g

dη − a− f
g − f

ˆ y

0

1
η2 + f

dη − a− f
f − g

ˆ y

0

1
η2 + g

dη

= −
ˆ y

0

(
1
√
g

arctan
(
η
√
g

))′
dη − a− f

g − f

ˆ y

0

(
1√
f

arctan
(
η√
f

))′
dη

− a− f
f − g

ˆ y

0

(
1
√
g

arctan
(
η
√
g

))′
dη

= − 1
√
g

a− g
f − g

ˆ y

0

(
arctan

(
η
√
g

))′
dη − 1√

f

a− f
g − f

ˆ y

0

(
arctan

(
η√
f

))′
dη.

Now, it holds (a− g)/(f − g) = 1− α and (a− f)/(g − f) = α, and we arrive at

v−1(y) = −1− α
√
g

arctan
(
y
√
g

)
− arctan

(
y

α

)
, y ∈ R. (A.4.11)

A short computation shows that (A.4.11) also holds for p = 2. Now, from the
condition limy→−∞ v

−1(y) = ω/2 we conclude

ω

2 =
[

1− α
√
g

+ 1
]
π

2 , (A.4.12)

and thus the boundary condition is satisfied if

ω

π
− 1 = 1− α√

α2 + α(2− p)/(p− 1)
. (A.4.13)

For ω = 2π, a short computation yields α = (p − 1)/p, as stated in (7.1.4). Note
that from (A.4.13) it follows

α ≥ 1, if 0 < ω ≤ π, (A.4.14)
α < 1, if π < ω ≤ 2π. (A.4.15)

In case 0 < ω < 2π, using Γ = Γ(ω) = (ω/π − 1)2 − 1, we further get

Γ + 1 = (1− α)2

α2 + α(2− p)/(p− 1) ,

hence,

0 = (Γ + 1)
(
α2 + α

2− p
p− 1

)
− 1 + 2α− α2

= α2Γ + α

(
(Γ + 1)2− p

p− 1 + 2
)
− 1

= α2Γ + α
(Γ + 1)(2− p) + 2p− 2

p− 1 − 1

= α2Γ + α
p(1− Γ) + 2Γ

p− 1 − 1.
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Dividing through Γ and using Θ = Θ(Γ, p) = [p(Γ− 1)− 2Γ] / [2Γ(p− 1)] yields

0 = α2 − 2Θα− 1
Γ ,

i.e.,

α = Θ±
√

Θ2 + Γ−1. (A.4.16)

Note that for ω = π, we get Γ = −1 and Θ = 1, hence α = 1 as stated in (7.1.4). In
the following, let ω ∈ (0, 2π) \ {π}. Since then −1 < Γ < 0, from (A.4.7) we know
that Θ > 1 for all p > 1. Furthermore, it holds

1
Γ >

1
Γ ·

p+ Γ
p− 1 = (1− Γ)p+ 2Γ

Γ(p− 1) + 1 = −2Θ + 1,

and therefore

(Θ− 1)2 < Θ2 + Γ−1.

Now, since Θ > 1, this implies

0 < Θ− 1 <
√

Θ2 + Γ−1,

thus

Θ−
√

Θ2 + Γ−1 < 1 (A.4.17)

and

Θ +
√

Θ2 + Γ−1 > 1 (A.4.18)

for all p > 1 and ω ∈ (0, 2π) \ {π}. Finally, the conditions (A.4.14), (A.4.15) on
α, together with (A.4.16), (A.4.17) and (A.4.18) show that α as stated in (7.1.4)
uniquely solves equation (A.4.13). Thus, we have shown that limy→−∞ v

−1(y) = ω/2,
and v is a solution of problem (A.4.9), (A.4.10). Note that since v−1 is uniquely
determined, v is unique as well.

Step 3. Next, we build the solution t of the original problem with the help of v.
Since

(ln ◦ t)′ (φ) = t′(φ)
t(φ) = v(φ)

for all φ ∈ (−ω/2, ω/2), we have

ln(t(φ))− ln(t(0)) =
ˆ φ

0
(ln ◦ t)′ (ξ) dξ =

ˆ φ

0
v(ξ) dξ,

hence,

t(φ) = t(0) exp
(ˆ φ

0
v(ξ) dξ

)
, φ ∈

(
−ω2 ,

ω

2

)
.
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Now we have found a solution t of (7.1.3) on the interval (−ω/2, ω/2). For the
sake of simplicity, we set t(0) := 1. Note that t > 0 on (−ω/2, ω/2), and that
t′(0) = t(0)v(0) = 0, since v(0) = 0.

Step 4. Next, we show that the boundary conditions for t and t′ are satisfied. To
do so, note that v is odd, and therefore t is an even function, and t′ is odd. Hence, it
suffices to consider φ = ω/2.

Substep 4.1. First, we prove that limφ→ω/2 t(φ) = 0, i.e.,

lim
φ→ω/2

ˆ φ

0
v(ξ) dξ = −∞.

For φ ∈ (−ω/2, ω/2), a change of variables and integration by parts yields
ˆ φ

0
v(ξ) dξ =

ˆ v(φ)

0
y · (v−1)′(y) dy

= v(φ) · φ−
ˆ v(φ)

0
v−1(y) dy. (A.4.19)

Now, with
ˆ

arctan
(
y

b

)
dy = y arctan

(
y

b

)
− b

2 ln(b2 + y2), b ∈ R,

from (A.4.11) we get
ˆ v(φ)

0
v−1(y) dy = −1− α

√
g

ˆ v(φ)

0
arctan

(
y
√
g

)
dy −

ˆ v(φ)

0
arctan

(
y

α

)
dy

= −1− α
√
g

ˆ v(φ)

0

(
y arctan

(
y
√
g

)
−
√
g

2 ln
(
g + y2

))′
dy

−
ˆ v(φ)

0

(
y arctan

(
y

α

)
− α

2 ln
(
α2 + y2

))′
dy

= −1− α
√
g

(
v(φ) arctan

(
v(φ)
√
g

)
−
√
g

2 ln
(
g + v(φ)2

))

−
(
v(φ) arctan

(
v(φ)
α

)
− α

2 ln
(
α2+v(φ)2

))
− 1−α

2 ln(g)− α ln(α).

Next, using this result and setting C := (1− α)/2 ln(g) + α ln(α), from (A.4.19) we
derive

ˆ φ

0
v(ξ) dξ = v(φ) · φ+ 1− α

√
g

(
v(φ) arctan

(
v(φ)
√
g

)
−
√
g

2 ln
(
g + v(φ)2

))

+
(
v(φ) arctan

(
v(φ)
α

)
− α

2 ln
(
α2 + v(φ)2

))
+ C

= v(φ)A(φ) +B(φ) + C, φ ∈
(
−ω2 ,

ω

2

)
, (A.4.20)
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where we have set

A(φ) = φ+ 1− α
√
g

arctan
(
v(φ)
√
g

)
+ arctan

(
v(φ)
α

)
,

B(φ) = −1− α
2 ln

(
g + v(φ)2

)
− α

2 ln
(
α2 + v(φ)2

)
.

Next we show that

lim
φ→ω/2

v(φ)A(φ) = lim
φ→ω/2

A(φ)
1/v(φ) = 0. (A.4.21)

To do so, first note that limφ→ω/2 1/v(φ) = 0, and from (A.4.12) we know that

lim
φ→ω/2

A(φ) = ω/2−
(

1− α
√
g

+ 1
)
π

2 = 0.

Now, with (A.4.9) we derive(1
v

)′
(φ) = − v

′(φ)
v(φ)2 = (v(φ)2 + f)(v(φ)2 + g)

v(φ)2(v(φ)2 + a) ,

and thus

lim
φ→ω/2

(1
v

)′
(φ) = 1. (A.4.22)

For the derivative of A we again use (A.4.9) and α2 = f to compute

A′(φ) = 1 + 1− α
v(φ)2 + g

v′(φ) + α

v(φ)2 + α2v
′(φ)

= 1− (1− α)v(φ)2 + f

v(φ)2 + a
− αv(φ)2 + g

v(φ)2 + a

= a− (1− α)f − αg
v(φ)2 + a

= 0 for all φ ∈
(
−ω2 ,

ω

2

)
,

since a− (1− α)f − αg = 0. In particular it holds

lim
φ→ω/2

A′(φ) = 0, (A.4.23)

and together with (A.4.22) an application of L’Hôpital’s rule proves equation (A.4.21).
Next, writing B as

B(φ) = −1
2 ln

(
v(φ)2 + g

)
+ α

2 ln
(
v(φ)2 + g

v(φ)2 + α2

)
, (A.4.24)

we see that

lim
φ→ω/2

B(φ) = −∞. (A.4.25)
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Hence, we have shown that

lim
φ→ω/2

ˆ φ

0
v(ξ) dξ = −∞,

i.e., limφ→ω/2 t(φ) = 0.
Substep 4.2. Next, we compute limφ→ω/2 t

′(φ). First, from (A.4.20) and (A.4.24),
we get

t(φ) = exp (v(φ)A(φ) +B(φ) + C)

= exp (v(φ)A(φ) + C) ·
(
g + v(φ)2

α2 + v(φ)2

)α/2
·
(
g + v(φ)2

)−1/2
.

Then, since v(φ) < 0 and therefore v(φ) = −
√
v(φ)2 for φ ∈ (0, ω/2), we derive

t′(φ) = t(φ)v(φ)

= − exp (v(φ)A(φ) + C) ·
(
g + v(φ)2

α2 + v(φ)2

)α/2
·
(

v(φ)2

g + v(φ)2

)1/2

.

Now, since v · A→ 0 for φ→ ω/2 due to (A.4.21), we see that

lim
φ→ω/2

t′(φ) = − exp(C) = −g(1−α)/2 − αα < 0

is finite.
Step 5. Finally, for the second derivative of t with the help of (A.4.9) we compute

t′′(φ) = t(φ)
(
v(φ)2 + v′(φ)

)
= t(φ)

(
v(φ)2 − (f + v(φ)2)(g + v(φ)2)

a+ v(φ)2

)

= t(φ)v(φ)2(a− f − g)− fg
a+ v(φ)2 , (A.4.26)

and therefore

lim
φ→ω/2

t′′(φ) = (a− f − g) lim
φ→ω/2

t(φ) = 0.

Since t′′ is even, it holds limφ→−ω/2 t
′′(φ) = 0, and we have shown that t ∈

C2([−ω/2, ω/2]).

Now we have everything at hand to prove Lemma 7.4.

Proof of Lemma 7.4.

Proof. We keep the notation from the proof of Lemma 7.2. In particular, we consider
t on the interval (−ω/2, ω/2). First, we show t ∈ C∞((−ω/2, ω/2)) with

t(i)(φ) = t(φ)Pi(v(φ))
Qi(v(φ)) , (A.4.27)
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where Pi and Qi are polynomials. Here, Qi takes the form

Qi(x) =
(
x2 + a

)ki
, (A.4.28)

where ki = 2i−1−1 and a = α2/(p−1) > 0. For i even, Pi is an even polynomial with
deg(Pi) ≤ deg(Qi). For i odd, Pi is an odd polynomial with deg(Pi) ≤ deg(Qi) + 1.

Step 1. For the basis, we consider i = 1 and i = 2. Note that from Lemma 7.2
we know that t ∈ C2([−ω/2, ω/2]). Since t′(φ) = t(φ)v(φ), we have P1(x) = x and
Q1(x) = 1. For i = 2, from (A.4.26) we know that

t′′(φ) = t(φ)(a− f − g)v(φ)2 − fg
v(φ)2 + a

.

Hence, P2(x) = (a− f − g)x2 − fg and Q2(x) = x2 + a.
Step 2. Inductive step. Since a > 0 and t and v are differentiable, from (A.4.27)

we know that t(i+1) exists. We compute

t(i+1) = t′
Pi(v)
Qi(v) + t

∂
∂φ

[Pi(v)]Qi(v)− Pi(v) ∂
∂φ

[Qi(v)]
Qi(v)2

= t ·
(
v
Pi(v)
Qi(v) + v′

P ′i (v)Qi(v)− Pi(v)Q′i(v)
Qi(v)2

)
,

where we used the fact that t′ = tv. Using equation (A.4.9) we further get

t(i+1) = t ·
(
v
Pi(v)
Qi(v) −

(v2 + f)(v2 + g)
v2 + a

· P
′
i (v)Qi(v)− Pi(v)Q′i(v)

Qi(v)2

)
.

Hence,

Pi+1(v) = v(v2 + a)Qi(v)Pi(v)− (v2 + f)(v2 + g) (P ′i (v)Qi(v)− Pi(v)Q′i(v)) ,
(A.4.29)

and with (A.4.28) it holds

Qi+1(v) = (v2 + a)Qi(v)2 = (v2 + a)2ki+1,

i.e., ki+1 = 2ki + 1 = 2i − 1.
Let n = 2ki denote the degree of Qi. We first assume that i is even. Due to our

assumptions, Pi is an even polynomial with deg(Pi) ≤ n. From (A.4.29) we see that
Pi+1 is an odd polynomial with deg(Pi+1) ≤ 2n+ 3 = deg(Qi+1) + 1. To complete
the inductive step, we next assume that i is odd, i.e., Pi is an odd polynomial with
deg(Pi) ≤ n+ 1. First note from (A.4.29), that Pi+1 is an even polynomial in this
case. We may write Pi as

Pi(x) = aix
n+1 + P̃i(x), (A.4.30)

where ai ∈ R and P̃i is an odd polynomial with deg(P̃i) ≤ n− 1. Analogously, we
write Qi as

Qi(x) = xn + Q̃i(x), (A.4.31)
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where Q̃i is an even polynomial of degree n− 2. Now with (A.4.29) we get

Pi+1(v) = aiv
2n+4 − v4

(
(n+ 1)aiv2n − naiv2n

)
+R(v)

= R(v),

where R is an even polynomial with deg(R) ≤ 2n+ 2 = deg(Qi+1). This proves the
inductive step.

Step 3. We show t ∈ Ci([−ω/2, ω/2]). Since t(i) is continuous in (−ω/2, ω/2), it
suffices to consider the boundary points. Furthermore, from the proof of Lemma 7.2
we know that t is an even function. Hence, for i even, we know that t(i) is an even
function, and for i odd it holds that t(i) is odd. Thus, we can confine ourselves to
check if limφ→ω/2 t

(i)(φ) is bounded. To do so, recall that v(φ) < 0 for φ > 0, so that
in this case we can write t(i)(φ) as

t(i)(φ) = t′(φ) Pi(v(φ))
v(φ)Qi(v(φ)) ,

where we used that t′ = tv. Note that limφ→ω/2 t
′(φ) exists, since t ∈ C2([−ω/2, ω/2])

due to Lemma 7.2.
Let us first assume that i is odd. Then, using (A.4.30) and (A.4.31) yields

t(i)(φ) = t′(φ) aiv(φ)n+1 + P̃i(v(φ))
v(φ)n+1 + v(φ)Q̃i(v(φ))

,

where deg(P̃i) ≤ n−1 and deg(Q̃i) = n−2. Since limφ→ω/2 v(φ) = −∞, we conclude

lim
φ→ω/2

t(i)(φ) = ai lim
φ→ω/2

t′(φ) = ai t
′(ω/2).

Finally, for i even, a proof completely analog to the one above shows that

lim
φ→ω/2

t(i)(φ) = 0.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer speziellen Klasse von quasilinearen
elliptischen Differentialgleichungen: den p-Poisson-Gleichungen

−div
(
|∇u|p−2∇u

)
= f in Ω, (PP)

wobei 1 < p <∞, f ∈ W−1(Lp′(Ω)) und Ω ⊂ Rd für d ≥ 2 ein beschränktes Lipschitz-
Gebiet bezeichnet. Zentraler Aspekt der Arbeit ist die Analyse der Regularität von
Lösungen u der p-Poisson-Gleichungen in der sogenannten Adaptivitätsskala

Bσ
τ (Lτ (Ω), 1

τ
= σ

d
+ 1
p
, σ > 0, (∗)

von Besov-Räumen. Einen weiteren Gegenstand bildet die Implementierung sowie
das numerische Testen eines relaxierten Iterationsverfahrens vom Kačanov-Typ zur
approximativen Lösung der p-Poisson-Gleichung (PP) mit homogenen Dirichlet-
Randbedingungen.

Hintergrund und Motivation

Bei der mathematischen Modellierung naturwissenschaftlicher Phänomene spielen
partielle Differentialgleichungen (PDEs) häufig eine zentrale Rolle. Eigenschaften
sowie Verfahren zur numerischen Lösung von linearen Gleichungen sind seit geraumer
Zeit Gegenstand von Forschung, mit dem Resultat vielfältiger Ergebnisse; für einen
Überblick siehe beispielsweise [23, 74]. Viele reale Zusammenhänge weisen aller-
dings nichtlineare Charakteristika auf, und die Beschreibung der zugrundeliegenden
Situation führt oft auf natürliche Weise auf nichtlineare PDEs. Die Klasse der quasi-
linearen Gleichungen vom Typ −div(α(·, |∇u|)∇u) = F (u) kommt beispielsweise bei
verschiedenen Problemen der Kontinuumsmechanik vor, insbesondere bei der mathe-
matischen Modellierung von nichtnewtonschen Fluiden [95], aber auch beispielsweise
in der Theorie nichtnewtonscher Filtration [88, 109], turbulenter Strömung eines
Gases in einem porösen Medium [60] oder der Plastizitätstheorie [8]. Hierbei haben
die p-Poisson-Gleichungen (PP) einen ähnlichen Modellcharakter für allgemeinere
quasilineare elliptische Probleme wie die gewöhnliche Poisson-Gleichung für lineare
elliptische Probleme. Für eine allgemeine Einführung sei auf [99] verwiesen.

Bedingungen für die Existenz und Eindeutigkeit von Lösungen von (PP) sind
zwar wohlbekannt [100], allerdings ist eine explizite Darstellung der Lösung, d.h.
ihre konkrete Gestalt, im Allgemeinen nicht gegeben. Aus diesem Grund werden
numerische Verfahren zur konstruktiven Approximation der Lösung benötigt. Solche

181



182 ZUSAMMENFASSUNG

Verfahren beruhen gewöhnlich auf einer Diskretisierung des Problems, beispielsweise
basierend auf einem endlichen Gitter oder einer Triangulierung des Gebietes. Die
numerische Berechnung hinreichend genauer Approximationen an die exakte Lösung
einer (nichtlinearen) PDE führt in der Praxis typischerweise zu linearen Gleichungs-
systemen mit sehr vielen Unbekannten. Aus diesem Grund ist die Effizienz solcher
Verfahren von entscheidender Bedeutung. Grundsätzlich wird zwischen uniformen
und adaptiven numerischen Verfahren unterschieden.

Ein adaptives Verfahren ist im Wesentlichen eine Update-Strategie, welche iterativ
eine Folge von Approximationen generiert, wobei zusätzliche Freiheitsgrade nur
dort hinzugefügt werden, wo die Näherungslösung noch ‘weit entfernt’ von der
exakten Lösung ist. Eine typische Eigenschaft von Lösungen von PDEs ist das
Auftreten von Singularitäten, welche durch den Gebietsrand, den Quellterm oder
den Operator induziert sein können ([46, 70, 71, 89]). Um in solchen Situationen
eine hinreichend genaue Approximation bei gleichzeitiger Beschränkung der Anzahl
an Freiheitsgraden zu erzielen, ist die Verwendung von hochgradig nicht-uniformen
räumlichen Diskretisierungen oft unumgänglich. In diesem Zusammenhang zielen
adaptive numerische Verfahren auf eine effiziente Auflösung der Singularitäten der
(unbekannten) Lösung.

Obwohl das Konzept adaptiver Verfahren durchaus vielversprechend ist, sind
diese Methoden meist schwieriger zu analysieren und implementieren, verglichen
mit konventionelleren uniformen Methoden. Aus diesem Grund sind theoretische
Grundlagen, welche die Entwicklung, Analyse und Implementierung von adaptiven
Verfahren rechtfertigen, höchst wünschenswert. Hierzu ist zu untersuchen, ob ad-
aptiven Verfahren prinzipiell eine höhere Konvergenzrate als uniforme Methoden
erzielen können. Die Regularitätsanalyse in dieser Arbeit ist durch eben jenes Pro-
blem motiviert, insbesondere im Zusammenhang mit Waveletverfahren. Bei dieser
Art Verfahren ist ein klares Verständis der maximal erzielbaren Konvergenzraten von
adaptiven und uniformen Verfahren vorhanden.

Wavelets werden typischerweise derart konstruiert, dass sie eine spezielle Mul-
tiskalenbasis des zugrundeliegenden Funktionenraums bilden. Hierbei wird jedes
Basiselement durch dyadische Dilatation und ganzzahlige Translation eines oder
mehrerer Mother-Wavelets erzeugt ([45, 108, 135]). Ein großer Vorteil von Wavelets
liegt in ihren starken analytischen Eigenschaften. So können viele Funktionenräume
wie beispielsweise Sobolev- und Besov-Räume mit Hilfe von Wavlelets charakte-
risiert werden, im Sinne einer Äquivalenzen der jeweiligen Norm zu gewichteten
Folgennormen der Wavelet-Entwicklungskoeffizienten. Wavelets haben sich - neben
ihrer Verwendung in der Signal/Bild-Analyse und Verarbeitung [103] - ebenfalls als
geeignetes Mittel zur adaptiven Lösung verschiedener Operatorgleichungen erwiesen
([6, 18, 19, 20, 27, 28, 34, 38, 66, 67, 84, 96, 111, 119, 134]).

Im Wavelet-Setting existiert ein natürliches Benchmark-Verfahren für Adaptivität,
genannt ‘best n-term’-Approximation. Bei diesem Verfahren stammen die Approxi-
mierenden nicht aus linearen Räumen, sondern aus nichtlinearen Mannigfaltigkeiten
Sn, bestehend aus Funktionen der Form

S =
∑
λ∈Λ

cλψλ,

wobei {ψλ λ ∈ Λ} eine gegebene Waveletbasis bezeichnet und Λ ⊂ Λ mit #Λ = n.
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Eine ‘best n-term’-Waveletapproximation kann gebildet werden, indem die n größten
Koeffizienten der Waveletentwicklung von der (unbekannten) Funktion ausgewählt
werden, welche approximiert werden soll. Auf der einen Seite kann solch ein Verfahren
natürlich niemals numerisch realisiert werden, da dies die Berechnung aller Wavelet-
koeffizienten und die Auswahl der n größten erfordern würde. Auf der anderen Seite
ist das Optimum was wir von einem adaptiven Waveletalgorithmus erwarten können,
dass er (asymptotisch) die Konvergenzrate der ‘best n-term’-Approximation realisiert.
In diesem Sinne ist die Verwendung von adaptiven Waveletmethoden theoretisch
gerechtfertigt, falls die ‘best n-term’-Waveletapproximation eine signifikant höhere
Konvergenzrate realisiert als konventionellere, uniforme Approximationsverfahren.
Diese maximalen Konvergenzraten werden nun wiederum von der Regularität der
exakten Lösung in bestimmten Skalen von Funktionenräumen bestimmt.

Im Wavelet-Setting ist bekannt, dass die Konvergenzrate von uniformen Verfahren
bezüglich Lp von der Glattheit der Zielfunktion, welche approximiert werden soll,
in der Skala W s(Lp(Ω)) von Lp-Sobolev-Räumen abhängt. Im Unterschied dazu
hängt die Konvergenzrate der ‘best n-term’-Waveletapproximation in Lp von der
Regularität in der Adaptivitätsskala (∗) von Besov-Räumen ab ([17, 26, 47, 76]). Ein
ähnlicher Zusammenhang wurde kürzlich im Zusammenhang von Finite-Elemente-
Approximationen nachgewiesen [68], siehe auch [10].

Demzufolge ist die Verwendung von adaptiven (Wavelet-)Algorithmen für (PP) ge-
rechtfertigt, falls die Besov-Regularität σ der exakten Lösung in der Adaptivitätsskala
von Besov-Räumen höher ist als ihre Sobolev-Regularität s.

Ziele der Arbeit

Das erste grundlegende Ziel dieser Arbeit ist durch das oben beschriebene Problem
motiviert, das heißt die Frage, ob adaptive Verfahren für die p-Poisson-Gleichung
das Potential besitzen, uniforme Verfahren hinsichtlich ihrer Effizienz zu übertreffen.
Um eine fundierte Antwort geben zu können, muss untersucht werden, ob die Besov-
Glattheit σ der Lösungen in der Adaptivitätsskala von Besov-Räumen höher ist als
ihre Sobolev-Regularität s.

In der vorliegenden Arbeit soll diesbezüglich ein erstes positives Resultat für
quasilineare elliptische Gleichungen, d.h. für die p-Poisson-Gleichung (PP), gezeigt
werden. Ergebnisse von Savaré [116] zeigen, dass auf allgemeinen Lipschitz-Gebieten
die Sobolev-Regularität der Lösungen von (PP) durch s∗ = 1 + 1/p für 2 ≤ p <∞,
sowie durch s∗ = 3/2 für 1 < p < 2 gegeben ist. Das erste zentrale Ziel dieser Arbeit
kann somit wie folgt formuliert werden.

(O1) Es sollen Regularitäts-Abschätzungen für Lösungen der p-Poisson-Gleichung
(PP) in der Adaptivitätsskala (∗) von Besov-Räumen hergeleitet werden. Hierbei
soll geklärt werden, ob u ∈ Bσ

τ (Lτ (Ω)), 1/τ = σ/d+ 1/p, für ein σ > s∗. Um
eine substanzielle Klasse von Problemen abzudecken, soll sowohl 1 < p <∞,
also auch die allgemeine Klasse der beschränkten Lipschitz-Gebiete betrachtet
werden. Desweiteren sollen zusätzlich explizite Aussagen für die praktisch
relevante Klasse der polygonalen Gebiete bewiesen werden.

Das zweite zentrale Thema dieser Arbeit ist die numerische Lösung der p-Poisson-
Gleichung (PP). In [53] haben Diening et al. ein iteratives Linearisierungsverfahren für
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die p-Poisson-Gleichung mit homogenen Dirichlet-Randbedingungen vorgeschlagen.
Insbesondere wird der Fall 1 < p ≤ 2 behandelt. Das wesentliche Merkmal dieses
Algorithmus, welcher als relaxierte Kačanov-Iteration interpretiert werden kann, ist,
dass in jeder Iteration nur noch ein lineares elliptisches Problem gelöst werden muss.
Diese linearen (Unter-)Probleme können numerisch auf stabile und bewährte Art
gelöst werden, bspw. mittels eines Finite-Elemente- oder Wavelet-Verfahrens. In
der vorliegenden Arbeit soll dieses Verfahren implementiert und getestet werden, in
Verbindung mit einem geeigneten adaptiven Wavelet-Frame-Verfahren zur Lösung
der linearen Teilprobleme.

Das zweite wesentliche Ziel dieser Arbeit kann also wie folgt fomuliert werden.

(O2) Es soll ein neuer adaptiver Löser für die p-Poisson-Gleichung (PP), für alle
1 < p < 2, entwickelt und implementiert werden. Dieses Verfahren soll auf
der relaxierten Kačanov-Iteration basieren, wobei für die numerische Lösung
der linearen elliptischen Teilprobleme ein adaptives Wavelet Verfahren verwen-
det werden soll. Die praktischen Eigenschaften des neuen Algorithmus sollen
schließlich in einer Reihe numerischer Tests analysiert werden.

(O1) Regularität in der Skala (∗) von Besov-Räumen

Um Besov-Regularitäts-Abschätzungen für Lösungen der p-Poisson-Gleichung herzu-
leiten, werden in dieser Arbeit zwei Ansätze verfolgt.

Der erste Ansatz macht von der Tatsache Gebrauch, dass die Lösungen von
(PP) unter gewissen Voraussetzungen eine höhere Regularität im Innern des Gebiets
besitzen, in dem Sinne dass sie lokal Hölder-stetig sind; siehe beispielsweise [52, 61,
127, 132, 133]. Dabei können im Allgemeinen bei Annäherung an den Gebietsrand
die lokalen Hölder-Seminormen explodieren, jedoch kann dieses singuläre Verhalten
durch eine gewisse Potenz des Abstandes zum Gebietsrand kontrolliert werden
([54, 93, 97, 98]). Derartige Eigenschaften gelten sehr oft im Zusammenhang mit
elliptischen Randwertproblemen auf nichtglatten Gebieten, siehe beispielsweise [105].

Es stellt sich heraus, dass die Kombination von globaler Sobolev-Glattheit und
lokaler Hölder-Regularität dazu verwendet werden kann, um Besov-Glattheit in der
Skala (∗) für die Lösungen von (PP) nachzuweisen. Wie gezeigt wird, ist in vielen
Fällen die Besov-Glattheit σ deutlich höher als die Sobolev-Glattheit s∗ = 1 + 1/p
beziehungsweise s∗ = 3/2, so dass die Entwicklung von adaptiven Verfahren für das
p-Poisson-Problem gerechtfertigt ist.

Auf der einen Seite ist dieser universelle Ansatz für die allgemeine Klasse von
Lipschitz-Gebieten anwendbar. Auf der anderen Seite ist für Lösungen von parti-
ellen PDEs auf polygonalen Gebieten bekannt, dass die kritischen Singularitäten
gewöhnlich nur in den Ecken des Gebietes vorkommen. In der Tat existieren für
(nicht-negative) Lösungen der p-Poisson-Gleichung auf endlichen Kegeln Ergebnisse
zur singulären Entwicklung bezüglich der Ecke [57, 126]. Im Wesentlichen kann
die Lösung (bzw. ihre Ableitungen) durch eine Potenz des Abstandes zur Ecke
abgeschätzt werden. Infolgedessen könnte man - unter Verwendung dieser stärkeren
(lokalen) Ergebnisse - bessere Besov-Regularitäts-Abschätzungen auf polygonalen
Gebieten erwarten.
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Das Ziel des zweiten Ansatzes ist es, einen ersten Schritt zur Verbesserung einiger
der Besov-Regularitäts-Ergebnisse zu machen, welche mittels des ersten Ansatzes für
polygonale Gebiete hergeleitet wurden. Dabei ist der natürliche erste Schritt, wie
oben dargestellt, die Untersuchung der Regularität von Lösungen in einer Umgebung
der Gebietsecken x0 ∈ ∂Ω. Dazu wird die Glattheit von Lösungen u von (PP) in
einem kleinen Kegel C ⊂ Ω mit Spitze x0, in der Adaptivitätsskala Bσ

τ (Lτ (C)),
1/τ = σ/2 + 1/p, von Besov-Räumen, untersucht. Wie gezeigt wird, führt dieser
Ansatz tatsächlich zu Regularitätsaussagen, welche - in einem lokalen Sinn, d.h. bei
Betrachtung kleiner Umgebungen der Ecken - in einigen Fällen stärker sind als jene
mittels des ersten Ansatzes hergeleiteten.

Die Resultate des ersten Ansatzes werden in zwei Schritten dargelegt. Zunächst
wird ein allgemeines Einbettungstheorem bewiesen, welches besagt dass der Schnitt
eines klassischen Sobolev-Raums mit einem Hölder-Raum mit den oben beschriebenen
Eigenschaften in gewisse Besov-Räume in der Adaptivitätsskala 1/τ = σ/d + 1/p
eingebettet werden kann, d.h., dass unter geeigneten Bedingungen an die Parameter

C`,α
γ,loc(Ω) ∩ W s(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)), 1
τ

= σ

d
+ 1
p

(E1)

gilt. Dabei stellt sich heraus, dass für einen großen Bereich von Parametern die
Besov-Regularität σ signifikant höher ist als die Sobolev-Glattheit s. Der Beweis
dieses Einbettungs-Theorems beruht auf Fortsetzungsargumenten in Verbindung mit
der Charakterisierung von Besov-Räumen mittels Wavelet-Entwicklungskoeffizienten.
Im Anschluss wird verifiziert, dass in vielen Fällen die Lösungen von (PP) in der Tat
die Voraussetzungen des Einbettungs-Theorems erfüllen, so dass seine Anwendung
das gewünschte Regularitätsresultat liefert.

Die Beweise der mittels des zweiten Ansatzes hergeleiteten Ergebnisse basieren
auf bekannten Resultaten über die singuläre Entwicklung der Lösung u in einer
Umgebung eines konischen Randpunktes, sowie auf Einbettungen des Typs K`p,a(Ω)∩
Bs
p(Lp(Ω)) ↪→ Bσ

τ (Lτ (Ω)), 1/τ = σ/2 + 1/p, wobei K`p,a(Ω) spezielle gewichtete
Sobolev-Räume bezeichnen, Babuska-Kondratiev-Räume genannt (siehe Section 1.3).
Wie in Chapter 7 gezeigt wird, besitzen in einigen Fällen die Lösungen von (PP)
beliebig hohe gewichtete Sobolev-Regularität ` in einer Umgebung der Ecken.

Aufgrund dieser Tatsache wird zusätzlich der Grenzfall `→∞ der obigen Ein-
bettung analysiert. In diesem Zusammenhang werden die topologischen Vektorräume
H∞,sa (Lp(Ω)) := ∩∞`=1K`p,a(Ω) ∩ Bs

p(Lp(Ω)) und B∞NL(Lp(Ω)) := ∩σ>0B
σ
τ (Lτ (Ω)),

1/τ = σ/2 + 1/p betrachtet, ihre topologischen Eigenschaften untersucht (bzgl.
lokaler Konvexität, Metrisierbarkeit und Vollständigkeit), und schließlich gezeigt,
dass die Einbettungen vom Typ

H∞,sa (Lp(Ω)) ↪→ B∞NL(Lp(Ω)), (E2)

stetig sind (im Sinne von stetigen Abbildungen zwischen topologischen Vektorräumen).
Es ist erwähnenswert, dass mit den obigen Einbettungen insbesondere universelle

funktionalanalytische Tools bereitgestellt werden, welche es erlauben, das Problem
der Herleitung von Besov-Regularitäts-Aussagen in der Skala (∗) zurückzuführen
auf die Analyse geeignet gewichteter Hölder- beziehungsweise Sobolev-Glattheit
(vergleiche auch Remark 5.10). Folglich könnten sich diese Einbettungen - neben
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der Verwendung in dieser Arbeit im Zusammenhang mit der p-Poisson-Gleichung -
auch für die Regularitätsanalyse von verschiedenen weiteren Problemen als nützlich
erweisen.

(O2) Numerische Lösung der p-Poisson Gleichung

Das klassische Kačanov-Verfahren ist eine iterative Methode zur näherungsweisen
Lösung bestimmter nichtlinearer Probleme mittels Linearisierung [86]. Für quasili-
neare elliptische Gleichungen vom Typ

−div(α (|∇u|)∇u) = f in Ω,

hat die Kačanov-Iteration die folgende Gestalt. Für eine gegebene Funktion u0, ist
die neue Iterierte un+1 rekursiv definiert als die Lösung von

−div(α (|∇un|)∇un+1) = f in Ω, n ≥ 0.

Entscheidend ist hierbei, dass in jeder Iteration nur noch ein lineares Problem gelöst
werden muss. In [136] wurde unter gewissen Annahmen an α bewiesen, dass die
Kačanov-Iteration gegen einen Fixpunkt u konvergiert, welcher das ursprüngliche
quasilineare Problem löst. Ein a-posteriori-Fehlerschätzer wurde in [75] hergeleitet.
Zum einen erfüllt die p-Poisson-Gleichung, d.h. α(ξ) = ξp−2, diese Bedingungen nicht,
zum anderen sind die linearen Gleichungen, welche im Verlauf der Kačanov-Iteration
gelöst werden müssen, numerisch nicht stabil lösbar, falls |∇un| an gewissen Punkten
verschwindet, da in diesem Fall das Gewicht |∇un|p−2 degeneriert. Ein Ansatz zur
Überwindung dieses Problems ist die Gewichtsfunktion α abzuschneiden. Unter
Verwendung der Schreibweise ε− ∨ x ∧ ε+ := max{ε−,min{x, ε+}} für 0 < ε− ≤
ε+ <∞ und x ∈ R, hat die relaxierte Kačanov-Iteration die folgende Gestalt

−div
(
(ε− ∨ |∇un| ∧ ε+)p−2∇un+1

)
= f in Ω, n ≥ 0. (RKI)

Unter geeigneter Vergrößerung des Abschneide-Intervalls [ε−, ε+] im Verlauf der
Iteration konnte in [53] die Konvergenz für dieses Verfahren gezeigt werden, unter
der Annahme, dass die linearen elliptischen PDEs in jeder Iteration exakt gelöst
werden. Um einen vollständig implementierbaren Algorithmus zu erhalten, müssen
diese Teilprobleme allerdings approximativ, beispielsweise mit einem Finite-Elemente-
oder Waveletverfahren, gelöst werden. In dieser Arbeit wird ein adaptiver Ansatz
basierend auf einer Wavelet-Diskretisierungen verfolgt.

Für die numerische Lösung der linearen elliptischen Teilprobleme wird insbesonde-
re sowohl das adaptive Wavelet-Galerkin-Verfahren aus [18] verwendet, als auch das
adaptive multiplikative Schwarz-Frame-Verfahren aus [124] (siehe Section 8.4, und
Section 1.5 für eine Einführung in Wavelet Frames). Für beide Verfahren wurde in
den angegebenen Quellen gezeigt, dass sie von asymptotisch optimaler Komplexität
sind, in dem Sinne dass sie tatsächlich die gleiche Konvergenzrate erzielen wie die
‘best n-term’-Approximation, während die Anzahl der Floating-Point-Operationen
und Speicherplätze, welche zur Berechnung einer Approximation benötigt werden,
proportional zur jeweiligen Anzahl an Freiheitsgraden bleibt.
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Der resultierende Algorithmus wird in einer Reihe von numerischen Tests un-
tersucht. Hierbei werden verschiedene nicht-triviale zweidimensionale p-Poisson-
Probleme mit homogenen Dirichlet-Randbedingungen für 1 < p < 2 betrachtet, auf
einem konvexen als auch auf einem nicht-konvexen polygonalen Gebiet mit einer
einspringenden Ecke. Hierbei zeigt sich, dass der implementierte Algorithmus vom
Kačanov-Typ in der Praxis ein stabiles Konvergenzverhalten aufweist. Die in [53]
theoretisch bewiesene Konvergenz des exakten Verfahrens (RKI) wird somit auch in
der Praxis bei approximativer Lösung der Teilprobleme nachgewiesen.

Diese Arbeit enthält eine einheitliche Darstellung der Regularitäts-Ergebnisse
aus [30, 78], ergänzt durch einige weitere Resultate, alternative Beweise, sowie die
Ergebnisse in Bezug auf (O2), d.h. die Implementierung und numerischen Tests des
relaxierten Kačanov-Iterationsverfahrens.
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anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken
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