Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Rolle der DNA-Bindungskooperativität für die p53-vermittelte Tumorsuppression im Lungentumor-Xenograft-Modell
Autor:Brehm, Corinna Ulrike
Weitere Beteiligte: Stiewe, Thorsten (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0201
URN: urn:nbn:de:hebis:04-z2018-02013
DOI: https://doi.org/10.17192/z2018.0201
DDC: Medizin
Titel (trans.):The role of DNA-binding-cooperativity for p53-mediated tumor suppression lung tumor xenograft model
Publikationsdatum:2018-05-03
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
p53, Tumorsuppression

Zusammenfassung:
p53 wird wegen seiner herausragenden Rolle als Tumorsuppressor auch als Wächter des Genoms bezeichnet: als Transkriptionsfaktor reguliert es die Expression zahlreicher Gene und nimmt hierdurch Einfluss auf die Zellproliferation. Bei zellulärem Stress, wie zum Beispiel bei DNA-Schädigung oder Aktivierung von Onkogenen, steigt der Spiegel von p53 in der Zelle rasch an. Mögliche Konsequenzen sind ein transienter Zellzyklusarrest, der eine DNAReparatur ermöglicht, die Seneszenz, ein irreversibler Zellzyklusarrest, oder die Apoptose, der programmierte Zelltod. Durch diese Maÿnahmen wird die Proliferation der Zelle vorerst gestoppt und der Organismus vor Generierung und Vermehrung von Krebszellen geschützt. Wie genau die Entscheidung zwischen transientem Zellzyklusarrest, Seneszenz und Apoptose getroffen wird, ist bis heute nicht abschließend geklärt. p53 bindet als Tetramer kooperativ an die DNA, was bedeutet, dass die Bindung des kompletten p53-Tetramers an die DNA stärker ist als die Summe der Bindungen der vier einzelnen p53-Monomere. Die Stabilität der Bindung zwischen den einzelnen p53-Molekülen beeinflusst die Auswahl der Target-Gene entscheidend und korreliert mit dem Ausmaÿ der induzierten Apoptose. Um den Einfluss der DNA-Bindungskooperativität von p53 auf die Tumorsuppression zu untersuchen, wurden in dieser Arbeit unterschiedlich stark kooperative p53-Mutanten stabil in eine p53-negative Lungenkarzinomzelllinie transfiziert. Im Lungentumor-Xenograft-Modell konnte gezeigt werden, dass sich bei höherer DNA-Bindungskooperativität von p53 signifikant weniger Tumore entwickeln. Eine zusätzliche Chemotherapie mit Doxorubicin vermochte die Tumormasse nochmals zu reduzieren. Diese Ergebnisse belegen eindrucksvoll die Abhängigkeit der Tumorsuppression sowie der Chemosensibilität von der DNA-Bindungskooperativität von p53. Interessanterweise war keine konstitutive Aktivität von p53 notwendig, sondern eine konditionelle Aktivierung ausschlieÿlich in der letzten Behandlungswoche führte zu einem gleichwertigen tumorsuppressiven Effekt. Dieses Wissen um die Effekte der DNA-Bindungskooperativität ist therapeutisch hoch interessant, da Substanzen, die die Kooperativität erhöhen und somit die Apoptoserate steigern, zur Behandlung von Tumorerkrankungen eingesetzt werden könnten. Alternativ könnte eine transiente Absenkung der Kooperativit ät der gesunden Körperzellen bei Chemotherapie die Nebenwirkungsrate senken.

Bibliographie / References

  1. H. Hermeking, C. Lengauer, K. Polyak, T. C. He, L. Zhang, S. Thiagalingam, K. W. Kinzler, and B. Vogelstein. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell, 1(1):311, Dec 1997.
  2. Y. S. Guan, Y. Liu, Q. Zou, Q. He, Z. La, L. Yang, and Y. Hu. Adenovirus- mediated wild-type p53 gene transfer in combination with bronchial arteri- al infusion for treatment of advanced non-small-cell lung cancer, one year follow-up. J Zhejiang Univ Sci B, 10(5):331340, May 2009.
  3. J. P. Morgenstern and H. Land. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res., 18(12):35873596, Jun 1990.
  4. M. B. Kastan, Q. Zhan, W. S. el Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace. A mammalian cell cy- cle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia- telangiectasia. Cell, 71(4):587597, Nov 1992.
  5. Evan. A modied oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res., 23 (10):16861690, May 1995.
  6. J. F. Kerr, A. H. Wyllie, and A. R. Currie. Apoptosis: a basic biological phe- nomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26(4):239257, Aug 1972.
  7. Y. Samuels-Lev, D. J. O'Connor, D. Bergamaschi, G. Trigiante, J. K. Hsieh, S. Zhong, I. Campargue, L. Naumovski, T. Crook, and X. Lu. ASPP proteins specically stimulate the apoptotic function of p53. Mol. Cell, 8(4):781794, Oct 2001.
  8. M. Kracikova, G. Akiri, A. George, R. Sachidanandam, and S. A. Aaronson. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Dier., 20(4):576588, Apr 2013.
  9. C. H. Westphal, S. Rowan, C. Schmaltz, A. Elson, D. E. Fisher, and P. Leder. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat. Genet., 16(4):397401, Aug 1997.
  10. Q. Hao and W. C. Cho. Battle Against Cancer: An Everlasting Saga of p53. Int J Mol Sci, 15(12):2210922127, 2014.
  11. K. H. Vousden and C. Prives. Blinded by the Light: The Growing Complexity of p53. Cell, 137(3):413431, May 2009.
  12. J. P. Brown, W. Wei, and J. M. Sedivy. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human broblasts. Science, 277 (5327):831834, Aug 1997.
  13. D. W. Nicholson and N. A. Thornberry. Caspases: killer proteases. Trends Biochem. Sci., 22(8):299306, Aug 1997.
  14. K. Schlereth, C. Heyl, A. M. Krampitz, M. Mernberger, F. Finkernagel, M. Scharfe, M. Jarek, E. Leich, A. Rosenwald, and T. Stiewe. Characteri- zation of the p53 cistromeDNA binding cooperativity dissects p53's tumor suppressor functions. PLoS Genet., 9(8):e1003726, 2013.
  15. P. A. Speth, Q. G. van Hoesel, and C. Haanen. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet, 15(1):1531, Jul 1988.
  16. G. X. Chen, S. Zhang, X. H. He, S. Y. Liu, C. Ma, and X. P. Zou. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives.
  17. R. L. Weinberg, D. B. Veprintsev, M. Bycroft, and A. R. Fersht. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol., 348(3):589596, May 2005.
  18. Y. L. Chang, C. T. Wu, J. Y. Shih, and Y. C. Lee. Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers. Ann. Surg. Oncol., 18(2):543550, Feb 2011.
  19. A. Dehner, C. Klein, S. Hansen, L. Muller, J. Buchner, M. Schwaiger, and H. Kessler. Cooperative binding of p53 to DNA: regulation by protein- protein interactions through a double salt bridge. Angew. Chem. Int. Ed. Engl., 44(33):52475251, Aug 2005.
  20. Y. Cho, S. Gorina, P. D. Jerey, and N. P. Pavletich. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170):346355, Jul 1994.
  21. Y. Chen, R. Dey, and L. Chen. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure, 18(2): 246256, Feb 2010.
  22. D. R. Green and G. Kroemer. Cytoplasmic functions of the tumour suppressor p53. Nature, 458(7242):11271130, Apr 2009.
  23. W. S. el Deiry, S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein. Denition of a consensus binding site for p53. Nat. Genet., 1(1):4549, Apr 1992.
  24. J. E. Chipuk, T. Kuwana, L. Bouchier-Hayes, N. M. Droin, D. D. Newmeyer, M. Schuler, and D. R. Green. Direct activation of Bax by p53 mediates mit- ochondrial membrane permeabilization and apoptosis. Science, 303(5660): 10101014, Feb 2004.
  25. M. Kitayner, H. Rozenberg, R. Rohs, O. Suad, D. Rabinovich, B. Honig, and Z. Shakked. Diversity in DNA recognition by p53 revealed by crystal struc- tures with Hoogsteen base pairs. Nat. Struct. Mol. Biol., 17(4):423429, Apr 2010.
  26. K. Schlereth, R. Beinoraviciute-Kellner, M. K. Zeitlinger, A. C. Bretz, M. Sau- er, J. P. Charles, F. Vogiatzi, E. Leich, B. Samans, M. Eilers, C. Kisker, A. Rosenwald, and T. Stiewe. DNA binding cooperativity of p53 modula- tes the decision between cell-cycle arrest and apoptosis. Mol. Cell, 38(3): 356368, May 2010a.
  27. S. Wang, E. A. Konorev, S. Kotamraju, J. Joseph, S. Kalivendi, and B. Kalyan- araman. Doxorubicin induces apoptosis in normal and tumor cells via dis- tinctly dierent mechanisms. intermediacy of H(2)O(2)-and p53-dependent pathways. J. Biol. Chem., 279(24):2553525543, Jun 2004.
  28. K. H. Khoo, K. K. Hoe, C. S. Verma, and D. P. Lane. Drugging the p53 pathway: understanding the route to clinical ecacy. Nat Rev Drug Discov, 13(3):217236, Mar 2014.
  29. J. P. Goldman, M. P. Blundell, L. Lopes, C. Kinnon, J. P. Di Santo, and A. J. Thrasher. Enhanced human cell engraftment in mice decient in RAG2 and the common cytokine receptor gamma chain. Br. J. Haematol., 103(2): 335342, Nov 1998.
  30. A. J. Alberg and J. M. Samet. Epidemiology of lung cancer. Chest, 123(1
  31. Fornace. Gadd45, a p53-responsive stress protein, modies DNA accessibi- lity on damaged chromatin. Mol. Cell. Biol., 19(3):16731685, Mar 1999.
  32. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman. Global cancer statistics. CA Cancer J Clin, 61(2):6990, 2011.
  33. L. K. Linares, A. Hengstermann, A. Ciechanover, S. Muller, and M. Schener. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53.
  34. G. D'Orazi, B. Cecchinelli, T. Bruno, I. Manni, Y. Higashimoto, S. Saito, M. Gostissa, S. Coen, A. Marchetti, G. Del Sal, G. Piaggio, M. Fanciulli, E. Appella, and S. Soddu. Homeodomain-interacting protein kinase-2 phos- phorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol., 4(1):1119, Jan 2002.
  35. M. Schener, B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. How- ley. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63(6):11291136, Dec 1990.
  36. L. Jiang, M. K. Siu, O. G. Wong, K. F. Tam, X. Lu, E. W. Lam, H. Y. Ngan, X. F. Le, E. S. Wong, L. J. Monteiro, H. Y. Chan, and A. N. Cheung. iASPP and chemoresistance in ovarian cancers: eects on paclitaxel-mediated mit- otic catastrophe. Clin. Cancer Res., 17(21):69246933, Nov 2011.
  37. O. Niwa, Y. Yokota, H. Ishida, and T. Sugahara. Independent mechanisms involved in suppression of the Moloney leukemia virus genome during die- rentiation of murine teratocarcinoma cells. Cell, 32(4):11051113, Apr 1983.
  38. M. Y. Yang, P. M. Lin, Y. C. Liu, H. H. Hsiao, W. C. Yang, J. F. Hsu, C. M. Hsu, and S. F. Lin. Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells. PLoS ONE, 7(5):e37205, 2012.
  39. M. H. Kubbutat and K. H. Vousden. Keeping an old friend under control: regulation of p53 stability. Mol Med Today, 4(6):250256, Jun 1998.
  40. K. Schlereth, J. P. Charles, A. C. Bretz, and T. Stiewe. Life or death: p53- induced apoptosis requires DNA binding cooperativity. Cell Cycle, 9(20): 40684076, Oct 2010b.
  41. K. H. Vousden and X. Lu. Live or let die: the cell's response to p53. Nat. Rev. Cancer, 2(8):594604, Aug 2002.
  42. Y. Barak, T. Juven, R. Haner, and M. Oren. mdm2 expression is induced by wild type p53 activity. EMBO J., 12(2):461468, Feb 1993.
  43. Y. Haupt, R. Maya, A. Kazaz, and M. Oren. Mdm2 promotes the rapid de- gradation of p53. Nature, 387(6630):296299, May 1997.
  44. J. P. Kruse and W. Gu. Modes of p53 regulation. Cell, 137(4):609622, May 2009.
  45. I. I. Wistuba, A. F. Gazdar, and J. D. Minna. Molecular genetics of small cell lung carcinoma. Semin. Oncol., 28(2 Suppl 4):313, Apr 2001.
  46. Miller, J. S. Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael, and L. Ding. Mutational landscape and signicance across 12 major cancer types. Nature, 502(7471):333339, Oct 2013.
  47. C. Klein, E. Planker, T. Diercks, H. Kessler, K. P. Kunkele, K. Lang, S. Hansen, and M. Schwaiger. NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J. Biol. Chem., 276(52):4902049027, Dec 2001.
  48. E. Oda, R. Ohki, H. Murasawa, J. Nemoto, T. Shibue, T. Yamashita, T. To- kino, T. Taniguchi, and N. Tanaka. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288(5468): 10531058, May 2000a.
  49. J. D. Weber, L. J. Taylor, M. F. Roussel, C. J. Sherr, and D. Bar-Sagi. Nucleo- lar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol., 1(1):2026, May 1999.
  50. J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 362(6423):857860, Apr 1993.
  51. R. Honda, H. Tanaka, and H. Yasuda. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett., 420(1):2527, Dec 1997.
  52. Z. Jin and W. S. El-Deiry. Overview of cell death signaling pathways. Cancer Biol. Ther., 4(2):139163, Feb 2005.
  53. K. Oda, H. Arakawa, T. Tanaka, K. Matsuda, C. Tanikawa, T. Mori, H. Nis- himori, K. Tamai, T. Tokino, Y. Nakamura, and Y. Taya. p53AIP1, a po- tential mediator of p53-dependent apoptosis, and its regulation by Ser-46- phosphorylated p53. Cell, 102(6):849862, Sep 2000b.
  54. C. A. Brady and L. D. Attardi. p53 at a glance. J. Cell. Sci., 123(Pt 15): 25272532, Aug 2010.
  55. O. Timofeev, K. Schlereth, M. Wanzel, A. Braun, B. Nieswandt, A. Pagen- stecher, A. Rosenwald, H. P. Elsasser, and T. Stiewe. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep, 3(5):15121525, May 2013.
  56. Scott, A. Janic, and A. Strasser. p53 eciently suppresses tumor develop- ment in the complete absence of its cell-cycle inhibitory and proapoptotic eectors p21, Puma, and Noxa. Cell Rep, 3(5):13391345, May 2013.
  57. K. H. Vousden and D. P. Lane. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8(4):275283, Apr 2007.
  58. S. A. Gatz and L. Wiesmuller. p53 in recombination and repair. Cell Death Dier., 13(6):10031016, Jun 2006.
  59. X. Chen, L. J. Ko, L. Jayaraman, and C. Prives. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev., 10(19):24382451, Oct 1996.
  60. A. M. Bode and Z. Dong. Post-translational modication of p53 in tumorige- nesis. Nat. Rev. Cancer, 4(10):793805, Oct 2004.
  61. B. Ma and A. J. Levine. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Res., 35(22):77337747, 2007.
  62. A. V. Gudkov and E. A. Komarova. Prospective therapeutic applications of p53 inhibitors. Biochem. Biophys. Res. Commun., 331(3):726736, Jun 2005.
  63. K. Nakano and K. H. Vousden. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell, 7(3):683694, Mar 2001.
  64. Green. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 309(5741):17321735, Sep 2005.
  65. Carazo, D. I. Svergun, M. Valle, and A. R. Fersht. Quaternary structures of tumor suppressor p53 and a specic p53 DNA complex. Proc. Natl. Acad. Sci. U.S.A., 104(30):1232412329, Jul 2007.
  66. J. Brugarolas, C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon. Radiation-induced cell cycle arrest compromised by p21 deciency. Nature, 377(6549):552557, Oct 1995.
  67. T. M. Rippin, S. M. Freund, D. B. Veprintsev, and A. R. Fersht. Recogniti- on of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol. Biol., 319(2):351358, May 2002.
  68. W. S. el Deiry. Regulation of p53 downstream genes. Semin. Cancer Biol., 8 (5):345357, 1998.
  69. A. Ventura, D. G. Kirsch, M. E. McLaughlin, D. A. Tuveson, J. Grimm, L. Lin- tault, J. Newman, E. E. Reczek, R. Weissleder, and T. Jacks. Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128):661665, Feb 2007.
  70. Ecker J. R. und Bushman F. D. Mitchell, R. S. und Beitzel. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
  71. J. W. Schott, D. Homann, and A. Schambach. Retrovirus-based vectors for transient and permanent cell modication. Curr Opin Pharmacol, 24:135 146, Sep 2015.
  72. E. Steels, M. Paesmans, T. Berghmans, F. Branle, F. Lemaitre, C. Mascaux, A. P. Meert, F. Vallot, J. J. Latte, and J. P. Sculier. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur. Respir. J., 18(4):705719, Oct 2001.
  73. W. Xue, L. Zender, C. Miething, R. A. Dickins, E. Hernando, V. Krizhanovsky, C. Cordon-Cardo, and S. W. Lowe. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128): 656660, Feb 2007.
  74. I. Beno, K. Rosenthal, M. Levitine, L. Shaulov, and T. E. Haran. Sequence- dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res., 39(5): 19191932, Mar 2011.
  75. D. M. Feldser and C. W. Greider. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 11(5):461469, May 2007.
  76. M. Ashcroft, Y. Taya, and K. H. Vousden. Stress signals utilize multiple pathways to stabilize p53. Mol. Cell. Biol., 20(9):32243233, May 2000.
  77. A. C. Joerger and A. R. Fersht. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem., 77:557582, 2008.
  78. B. Gu and W. G. Zhu. Surf the post-translational modication network of p53 regulation. Int. J. Biol. Sci., 8(5):672684, 2012.
  79. B. Vogelstein, D. Lane, and A. J. Levine. Surng the p53 network. Nature, 408(6810):307310, Nov 2000.
  80. H. Iba, T. Mizutani, and T. Ito. SWI/SNF chromatin remodelling complex and retroviral gene silencing. Rev. Med. Virol., 13(2):99110, 2003.
  81. Multani, and S. Chang. Telomere dysfunction suppresses spontaneous tu- morigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep., 8(5):497503, May 2007.
  82. S. Cory and J. M. Adams. The Bcl2 family: regulators of the cellular life-or- death switch. Nat. Rev. Cancer, 2(9):647656, Sep 2002.
  83. M. F. Lavin and N. Gueven. The complexity of p53 stabilization and activation. Cell Death Dier., 13(6):941950, Jun 2006.
  84. D. Menendez, A. Inga, and M. A. Resnick. The expanding universe of p53 targets. Nat. Rev. Cancer, 9(10):724737, Oct 2009.
  85. X. Zhang, M. Wang, C. Zhou, S. Chen, and J. Wang. The expression of iASPP in acute leukemias. Leuk. Res., 29(2):179183, Feb 2005.
  86. A. V. Vaseva and U. M. Moll. The mitochondrial p53 pathway. Biochim. Biophys. Acta, 1787(5):414420, May 2009.
  87. J. L. Moreland, A. Gramada, O. V. Buzko, Q. Zhang, and P. E. Bourne. The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics, 6:21, Feb 2005.
  88. H. C. Reinhardt and B. Schumacher. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet., 28(3):128136, Mar 2012.
  89. C. Prives and P. A. Hall. The p53 pathway. J. Pathol., 187(1):112126, Jan 1999.
  90. A. C. Joerger and A. R. Fersht. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu. Rev. Biochem., 85: 375404, Jun 2016.
  91. J. Elias, L. Dimitrio, J. Clairambault, and R. Natalini. The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate. Biochim. Biophys. Acta, 1844(1 Pt B):232247, Jan 2014. Hum. Gene Ther., 16(11):12411246, Nov 2005.
  92. Evan. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature, 443(7108):214217, Sep 2006.
  93. A. J. Levine and M. Oren. The rst 30 years of p53: growing ever more complex. Nat. Rev. Cancer, 9(10):749758, Oct 2009.
  94. A. N. Blackford and S. P. Jackson. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol. Cell, 66(6):801817, Jun 2017.
  95. A. C. Joerger and A. R. Fersht. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol, 2(6):a000919, Jun 2010.
  96. Hooper, and A. H. Wyllie. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362(6423):849852, Apr 1993.
  97. T. Riley, E. Sontag, P. Chen, and A. Levine. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol., 9(5):402412, May 2008.
  98. A. Pfeifer, M. Ikawa, Y. Dayn, and I. M. Verma. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and pre- implantation embryos. Proc. Natl. Acad. Sci. U.S.A., 99(4):21402145, Feb 2002.
  99. J. Liu, C. Zhang, and Z. Feng. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim. Biophys. Sin. (Shanghai), 46(3):170179, Mar 2014.
  100. T. Miyashita and J. C. Reed. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80(2):293299, Jan 1995.
  101. S. Kato, S. Y. Han, W. Liu, K. Otsuka, and R. andIshioka C. Shibata, H. and- Kanamaru. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. U.S.A., 100(14):84248429, Jul 2003.
  102. W. Maltzman and L. Czyzyk. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol., 4(9):1689 1694, Sep 1984.
  103. D. van Heemst, S. P. Mooijaart, M. Beekman, J. Schreuder, A. J. de Craen, B. W. Brandt, P. E. Slagboom, and R. G. Westendorp. Variation in the hu- man TP53 gene aects old age survival and cancer mortality. Exp. Gerontol., 40(1-2):1115, 2005.
  104. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO- 1 expression. Mol. Cell. Biol., 15(6):30323040, Jun 1995.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten