Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss des Hämagglutinins und der Neuraminidase auf die Influenza-A-Virus Sensitivität gegenüber humanen Wirtsfaktoren
Autor:Gerlach, Thomas
Weitere Beteiligte: Matrosovich, Mikhail (Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0143
URN: urn:nbn:de:hebis:04-z2018-01433
DOI: https://doi.org/10.17192/z2018.0143
DDC: Medizin
Titel (trans.):Properties of hemagglutinin and neuraminidase affecting influenza A virus sensitivity to human host factors
Publikationsdatum:2018-02-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Fusion, Hemagglutinin, H7N9, Influenza, H7N9, H5N1, Hämagglutinin, Fusion, H5N1, Influenza

Zusammenfassung:
Aus Vögeln stammende Influenza-A-Viren (IAV) können im Menschen einen schweren Krankheitsverlauf verursachen. Unter den diversen Subtypen, die vom Vogel auf den Menschen übertragen werden, sind vor allem die Subtypen H5N1 und H7N9 von besonderem Interesse, da sie für IAV-Ausbrüche mit hohen Mortalitätsraten verantwortlich sind. Diese Viren werden gelegentlich vom Vogel auf den Menschen übertragen und stellen deswegen ein pandemisches Risiko dar. Während der Infektion müssen IAV verschiedene wirtsspezifische Verteidigungsmechanismen der angeborenen Immunantwort überwinden, deren Effekt auf die Infektion durch IAV nicht vollständig bekannt ist. In dieser Arbeit sollte die Interaktion von IAV mit zwei Faktoren der angeborenen Immunantwort näher untersucht werden: die Interaktion von IAV mit humanem Atemwegsmucus und die Interaktion mit IFN-induzierten antiviralen Proteinen. Im Menschen replizieren IAV im Epithel des Respirationstraktes. Das Epithel ist dabei von einer Mucusschicht bedeckt. Mucine, welche hochgradig glykosilierte sialinsäurehaltige Proteine sind, bilden dabei den Hauptanteil des Mucus aus. Sie dienen als extrazelluläre Rezeptoren für Pathogene, wie zum Beispiel Viren. Im Allgemeinen wird angenommen, dass humane Mucine hauptsächlich α2-3-verknüpfte Sialinsäuren exprimieren und dass aviäre Viren sensitiver gegenüber der Neutralisation durch Mucus sind als humane Viren (Couceiro et al., 1993). Neuere Studien hingegen zeigen, dass humane Viren sensitiver gegenüber Mucus sind als aviäre Viren. Im ersten Teil der Arbeit sollte diese Diskrepanz in der Literatur und der inhibitorische Effekt von Mucus aus humanen tracheo-bronchialen Epithel (HTBE)-Kulturen auf die IAV-Infektion untersucht werden. Es konnte gezeigt werden, dass die Inhibition abhängig vom genutzten Zellsystem war. Im Standardzellsystem, MDCK-Zellen, zeigte das humane saisonale Virus eine hohe Sensitivität gegenüber Mucus, während die Infektion aviärer Viren nicht inhibiert wurde. Dahingegen zeigten das aviäre und das humane Virus in HTBE-Kulturen eine vergleichbare Inhibition durch Mucus. Dieses Ergebnis wurde dadurch unterstützt, dass aviäre und humane Viren Mucus im vergleichbaren Ausmaß banden. Um die inhibitorischen Komponenten im Mucus zu identifizieren, wurden die Mucuseigenschaften bestimmt. Dabei konnte festgestellt werden, dass die Mucusproben sowohl α2-6- als auch α2-3-verknüpfte Sialinsäuren aufweisen und dass die Inhibition von IAV abhängig von den Sialinsäuren im Mucus ist. Zusammenfassend lässt sich sagen, dass sowohl aviäre als auch humane Viren durch humanen bronchialen Mucus inhibiert werden. Dies widerspricht der allgemeinen Hypothese, dass aviäre Viren sensitiver gegenüber bronchialen Mucus sind als humane Viren. Im zweiten Teil dieser Arbeit wurde untersucht, inwiefern die Eigenschaften des HAs und der NA die Virussensitivität gegenüber dem IFN-β-induzierten antiviralen Status beeinflussen. Dafür wurden rekombinante Viren hergestellt, die das HA und NA repräsentativer aviärer, zoonotischer und humaner Viren sowie die internen Gene des Laborstammes A/Puerto Rico/8/1934 besitzen. IFN-β wird während der initialen Phase einer Virusinfektion sezerniert und induziert die Expression mehrerer hundert sogenannter Interferon-stimulierter Gene (ISGs). Diese Proteine können eine antivirale Aktivität aufweisen wie zum Beispiel die Interferon-induzierte-Transmembran-Protein-Familie (IFITM), welche die Fusion zwischen viralen und zellulären Membranen inhibieren. Der genaue Wirkmechanismus der IFITM-Proteine ist jedoch nicht bekannt. Die Virussensitivität gegenüber dem antiviralen Status korrelierte mit dem pH-Optimum der Fusion. Viren mit einem hohen pH-Optimum der Fusion, wie zum Beispiel Viren, die das HA und NA der zoonotischen Viren H5N1 und H7N9 besaßen, infizierten mit IFN-β vorstimulierte Zellen effizienter als die Viren mit einem niedrigen pH-Optimum der Fusion. Dieses Ergebnis wurde bestätigt, indem rekombinante Viren getestet wurden, die einzelne Punktmutationen im HA des A/Hong Kong/1/1968 besaßen, die das pH-Optimum der Fusion beeinflussten. In Übereinstimmung mit den Ergebnissen der rekombinanten Viren wiesen die korrespondierenden Wildtypisolate des H5N1-, des H7N9-Virus und des pandemischen Virus von 2009 ein höheres pH-Optimum der Fusion sowie eine geringere Sensitivität gegenüber dem IFN-β-induzierten antiviralen Status auf als das pandemische Virus von 1968 und ein humanes saisonales Virus. Es wurde bereits beschrieben, dass IFITM-Proteine wirksame Inhibitoren der viralen Fusion sind. In dieser Arbeit wird gezeigt, dass die Inhibition von Viren durch IFITM-Proteine abhängig vom pH-Optimum der viralen Fusion ist. Viren mit einem hohem Fusions-pH, wie zum Beispiel H5N1 und H7N9, zeigten eine geringere Reduktion der Infektion in MDCK-Zellen, welche das humane IFITM2 und IFITM3 stabil exprimierten, als Viren mit einem niedrigen Fusions-pH. Die Ergebnisse dieser Arbeit zeigen zum ersten Mal, dass das pH-Optimum der Fusion die Virussensitivität gegenüber IFN-induzierten Effektormolekülen, inklusive IFITM-Proteine, beeinflusst. Diese Daten deuten des Weiteren darauf hin, dass das hohe pH-Optimum der Fusion zoonotischer Viren, wie zum Beispiel das H5N1- und das H7N9-Virus, zu ihrer Fähigkeit beitragen könnte, den Menschen zu infizieren und schwere Krankheitsverläufe zu verursachen.

Bibliographie / References

  1. Klenk, H.-D., Garten, W., Matrosovich, M., 2011. Molecular mechanisms of interspecies transmission and pathogenicity of influenza viruses: Lessons from the 2009 pandemic. Bioessays 33, 180-8. doi:10.1002/bies.201000118
  2. Long, J.S., Benfield, C.T., Barclay, W.S., 2014. One-way trip: influenza virus' adaptation to gallinaceous poultry may limit its pandemic potential. Bioessays 37, 204-12. doi:10.1002/bies.201400133
  3. Limsuwat, N., Suptawiwat, O., Boonarkart, C., Puthavathana, P., Auewarakul, P., Wiriyarat, W., 2013. Susceptibility of Human and Avian Influenza Viruses to Human and Chicken Saliva. J. Med. Virol. 1-7. doi:10.1002/jmv
  4. Noda, T., Kawaoka, Y., 2010. Structure of influenza virus ribonucleoprotein complexes and their packaging into virions. Rev. Med. Virol. 380-391. doi:10.1002/rmv
  5. Wagner, R., Matrosovich, M., Klenk, H.-D., 2002. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 12, 159-66. doi:10.1002/rmv.352
  6. Röhm, C., Zhou, N., Süss, J., Mackenzie, J., Webster, R.G., 1996. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217, 508-516. doi:10.1006/viro.1996.0145
  7. Matrosovich, M., Gambaryan, A.S., Teneberg, S., Piskarev, V.E., Yamnikova, S.S., Lvov, D.K., Robertson, J.S., Karlsson, K. a, 1997. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224-34. doi:10.1006/viro.1997.8580
  8. Russell, C.J., 2014. Acid-Induced Membrane Fusion by the Hemagglutinin Protein and Its Role in Influenza Virus Biology, in: Current Topics in Microbiology and Immunology. Springer international Publishing Switzerland, pp. 93-116. doi:10.1007/82
  9. Pulendran, B., Maddur, M.S., 2014. Innate Immune Sensing and Response to Influenza. Curr. Top. Microbiol. Immunol. doi:10.1007/82_2014_405
  10. Matrosovich, M.N., Gambaryan, A.S., 2012. Solid-Phase Assays of Receptor-Binding Specificity, in: Methods in Moleculr Biology. pp. 71-94. doi:10.1007/978-1-61779-621-0
  11. Klenk, H.-D., 2012. Evolution und Infektionsbiologie neuer Influenza-A-Viren mit pandemischem Potenzial. Bundesgesundheitsblatt 15-21. doi:10.1007/s00103-012-1584-2
  12. Shori, D.K., Genter, T., Hansen, J., Koch, C., Wyatt, H., Kariyawasam, H.H., Knight, R.A., Hodson, M.E., Kalogeridis, A., Tsanakas, I., 2001. Altered sialyl- and fucosyl-linkage on mucins in cystic fibrosis patients promotes formation of the sialyl-Lewis X determinant on salivary MUC-5B and MUC-7. Pflugers Arch. 443 Suppl, S55-61. doi:10.1007/s004240100645
  13. Okamatsu, M., Motohashi, Y., Hiono, T., Tamura, T., Nagaya, K., Matsuno, K., Sakoda, Y., Kida, H., 2016. Is the optimal pH for membrane fusion in host cells by avian influenza viruses related to host range and pathogenicity? Arch. Virol. 161, 2-9. doi:10.1007/s00705-016-2902-z
  14. Stiasny, K., Fritz, R., Pangerl, K., Heinz, F.X., 2011. Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41, 1159-1163. doi:10.1007/s00726-009-0370-4
  15. López-Rodriguez, M., Herrera-Ramos, E., Solé-Violan, J., Ruiz-Hernandez, J.J., Borderias, L., Horcajada, J.P., Lerma-Chippirraz, E., Rajas, O., Briones, M., Perez-Gonzalez, M.C., Garcia-Bello, M.A., Lopez-Granados, E., Rodriguez de Castro, F., Rodriguez-Gallego, C., 2016. IFITM3 and severe influenza virus infection . No evidence of genetic association. Eur. J. Clin. Microbiol. Infect. Dis. 1811-1817. doi:10.1007/s10096-016-2732-7
  16. Leibler, J.H., Otte, J., Roland-Holst, D., Pfeiffer, D.U., Magalhaes, R.S., Rushton, J., Graham, J.P., Silbergeld, E.K., 2009. Industrial Food Animal Production and Global Health Risks : Exploring the Ecosystems and Economics of Avian Influenza. Ecohealth 6, 58-70. doi:10.1007/s10393-009-0226-0
  17. Lazarowitz, S.G., Choppin, P.W., 1975. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68, 440-454. doi:10.1016/0042-6822(75)90285-8
  18. Rogers, G.N., D'Souza, B.L., 1989. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 317-322. doi:10.1016/0042-6822(89)90249-3
  19. Rott, R., 1992. The pathogenic determinant of influenza virus. Vet. Microbiol. 33, 303-310. doi:10.1016/0378-1135(92)90058-2
  20. Mair, C.M., Ludwig, K., Herrmann, A., Sieben, C., 2014. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta 1838, 1153-68. doi:10.1016/j.bbamem.2013.10.004
  21. Linster, M., van Boheemen, S., de Graaf, M., Schrauwen, E.J.A., Lexmond, P., Mänz, B., Bestebroer, T.M., Baumann, J., van Riel, D., Rimmelzwaan, G.F., Osterhaus, A.D.M.E., Matrosovich, M., Fouchier, R., Herfst, S., 2014. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157, 329-39. doi:10.1016/j.cell.2014.02.040
  22. Sun, X., Shi, Y., Lu, X., He, J., Gao, F., Yan, J., Qi, J., Gao, G.F., 2013. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep. 3, 769-78. doi:10.1016/j.celrep.2013.01.025
  23. Savidis, G., Perreira, J.M., Portmann, J.M., Meraner, P., Guo, Z., Green, S., Brass, A.L., 2016. The IFITMs Inhibit Zika Virus Replication. CellReports 15, 2323-2330. doi:10.1016/j.celrep.2016.05.074
  24. Wang, X., Hinson, E.R., Cresswell, P., 2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2, 96-105. doi:10.1016/j.chom.2007.06.009
  25. Weber, M., Gawanbacht, A., Habjan, M., Rang, A., Borner, C., Schmidt, A.M., Veitinger, S., Jacob, R., Devignot, S., Kochs, G., García-Sastre, A., Weber, F., 2013. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13, 336-46. doi:10.1016/j.chom.2013.01.012
  26. Weber, M., Sediri, H., Felgenhauer, U., Binzen, I., Bänfer, S., Jacob, R., Brunotte, L., GarcíaSastre, A., Schmid-Burgk, J.L., Schmidt, T., Hornung, V., Kochs, G., Schwemmle, M., Klenk, H.-D., Weber, F., 2015. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17, 309-319. doi:10.1016/j.chom.2015.01.005
  27. Wendel, I., Matrosovich, M., Klenk, H.-D., Virologie, I., 2015. SnapShot : Evolution of Human Influenza A Viruses. Cell Host Microbe 17. doi:10.1016/j.chom.2015.02.001
  28. Smith, S., Weston, S., Kellam, P., Marsh, M., 2014. IFITM proteins-cellular inhibitors of viral entry. Curr. Opin. Virol. 4, 71-7. doi:10.1016/j.coviro.2013.11.004
  29. Weber, M., Weber, F., 2014. RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev. 25, 621-628. doi:10.1016/j.cytogfr.2014.05.004
  30. Liu, S.-Y., Aliyari, R., Chikere, K., Li, G., Marsden, M.D., Smith, J.K., Pernet, O., Guo, H., Nusbaum, R., Zack, J.A., Freiberg, A.N., Su, L., Lee, B., Cheng, G., 2013. Interferoninducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25- hydroxycholesterol. Immunity 38, 92-105. doi:10.1016/j.immuni.2012.11.005
  31. Perreira, J.M., Chin, C.R., Feeley, E.M., Brass, A.L., 2013. IFITMs restrict the replication of multiple pathogenic viruses. J. Mol. Biol. 425, 4937-55. doi:10.1016/j.jmb.2013.09.024
  32. Leyva-Grado, V.H., Hai, R., Fernandes, F., Belicha-Villanueva, A., Carter, C., Yondola, M.A., 2014. Modulation of an ectodomain motif in the influenza A virus neuraminidase alters tetherin sensitivity and results in virus attenuation in vivo. J. Mol. Biol. 426, 1308-21. doi:10.1016/j.jmb.2013.12.023
  33. Resende, C.R., Motta, F.C., Born, P.S., Machado, D., Caetano, B.C., Brown, D., Siqueira, M.M., 2015. Phylogenetic analyses of influenza A (H1N1)pdm09 hemagglutinin gene during and after the pandemic event in Brazil. Infect. Genet. Evol. 36, 147-155. doi:10.1016/j.meegid.2015.09.007
  34. Ohuchi, M., Asaoka, N., Sakai, T., Ohuchi, R., 2006. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 8, 1287-93. doi:10.1016/j.micinf.2005.12.008
  35. Swiecki, M., Omattage, N.S., Brett, T.J., 2013. BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol. Immunol. 54, 132- 9. doi:10.1016/j.molimm.2012.11.008
  36. Short, K.R., Richard, M., Verhagen, J.H., Riel, D. Van, Schrauwen, E.J.A., Brand, J.M.A. Van Den, Mänz, B., Bodewes, R., Herfst, S., 2015. One health , multiple challenges : The interspecies transmission of influenza A virus. One Heal. 1, 1-13. doi:10.1016/j.onehlt.2015.03.001
  37. Matrosovich, M., Matrosovich, T., Uhlendorff, J., Garten, W., Klenk, H.-D., 2007. Avian-viruslike receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology 361, 384-90. doi:10.1016/j.virol.2006.11.030
  38. Neumann, G., Kawaoka, Y., 2015. Transmission of influenza A viruses. Virology 480, 234- 246. doi:10.1016/j.virol.2015.03.009
  39. Paulson, J.C., de Vries, R.P., 2013. H5N1 receptor specificity as a factor in pandemic risk. Virus Res. 178, 99-113. doi:10.1016/j.virusres.2013.02.015
  40. Vasin, A. V., Temkina, O.A., Egorov, V. V., Klotchenko, S.A., Plotnikova, M.A., Kiselev, O.I., 2014. Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins. Virus Res. 185, 53-63. doi:10.1016/j.virusres.2014.03.015
  41. Suzuki, T., Takahashi, T., Nishinaka, D., Murakami, M., Fujii, S., Hidari, K.I.-P.J., Miyamoto, D., Li, Y.-T., Suzuki, Y., 2003. Inhibition of influenza A virus sialidase activity by sulfatide. FEBS Lett. 553, 355-359. doi:10.1016/S0014-5793(03)01045-7
  42. Nair, H., Brooks, W.A., Katz, M., Roca, A., Berkley, J.A., Madhi, S.A., Simmerman, J.M., Gordon, A., Buchy, P., Harris, E., Evans, V., Katayose, M., Gaur, B., Callaghan-gordo, C.O., Goswami, D., Arvelo, W., Venter, M., Briese, T., Tokarz, R., Widdowson, M., Mounts, A.W., Breiman, R.F., Feikin, D.R., Klugman, K.P., Olsen, S.J., Gessner, B.D., Wright, P.F., Rudan, I., Broor, S., Simões, E.A.F., Campbell, H., 2011. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet 378, 1917-1930. doi:10.1016/S0140-6736(11)61051-9
  43. Weis, W., Brown, J.H., Cusack, S., Paulson, J.C., Skehel, J.J., Wiley, D.C., 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426-431. doi:10.1038/333426a0
  44. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y., 2006. Avian flu: influenza virus receptors in the human airway. Nature 440, 435-6. doi:10.1038/440435a
  45. Liu, Q., Liu, D.-Y., Yang, Z.-Q., 2013. Characteristics of human infection with avian influenza viruses and development of new antiviral agents. Acta Pharmacol. Sin. 34, 1257-69. doi:10.1038/aps.2013.121
  46. Neumann, G., Noda, T., Kawaoka, Y., 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939. doi:10.1038/nature08157.Emergence
  47. Nicholls, J.M., Chan, M.C.W., Chan, W.Y., Wong, H.K., Cheung, C.Y., Kwong, D.L.W., Wong, M.P., Chui, W.H., Poon, L.L.M., Tsao, S.W., Guan, Y., Peiris, J.S.M., 2007. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat. Med. 13, 147-9. doi:10.1038/nm1529
  48. Subbarao, K., Joseph, T., 2007. Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 7, 267-78. doi:10.1038/nri2054
  49. Park, H.E., Gruenke, J.A., White, J.M., 2003. Leash in the groove mechanism of membrane fusion. Nat. Struct. Biol. 10, 1048-1053. doi:10.1038/nsb1012
  50. Skehel, J.J., Cross, K.J., Steinhauer, D., Wiley, D.C., 2001. Influenza fusion peptides. Biochem. Soc. Trans. 29, 623-626. doi:10.1042/BST0290623
  51. Matrosovich, M., Matrosovich, T., Gray, T., Roberts, N., Klenk, H.-D., 2004b. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. U. S. A. 101, 4620-4. doi:10.1073/pnas.0308001101
  52. Russier, M., Yang, G., Rehg, J.E., Wong, S.-S., Mostafa, H.H., Fabrizio, T.P., Barman, S., Krauss, S., Webster, R.G., Webby, R.J., Russell, C.J., 2016. Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proc. Natl. Acad. Sci. 113, 1636-1641. doi:10.1073/pnas.1524384113
  53. Mangeat, B., Cavagliotti, L., Lehmann, M., Gers-Huber, G., Kaur, I., Thomas, Y., Kaiser, L., Piguet, V., 2012. Influenza virus partially counteracts restriction imposed by tetherin/BST2. J. Biol. Chem. 287, 22015-29. doi:10.1074/jbc.M111.319996
  54. Narayana, S.K., Helbig, K.J., Mccartney, E.M., Eyre, N.S., Bull, R.A., Eltahla, A., Lloyd, A.R., Beard, M.R., 2015. The Interferon-induced Transmembrane Proteins , IFITM1 , IFITM2 , and IFITM3 Inhibit Hepatitis C Virus Entry. J. Biol. Chem. 290, 25946-25959. doi:10.1074/jbc.M115.657346
  55. Leikina, E., Mittal, A., Cho, M., Melikov, K., Kozlov, M.M., Chernomordik, L. V, 2004. Influenza Hemagglutinins Outside of the Contact Zone Are Necessary for Fusion Pore Expansion. J. Biol. Chem. 279, 26526-26532. doi:10.1074/jbc.M401883200
  56. Kesimer, M., Scull, M., Brighton, B., DeMaria, G., Burns, K., O'Neal, W., Pickles, R.J., Sheehan, J.K., 2009b. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 23, 1858-68. doi:10.1096/fj.08-119131
  57. Roberts, K.L., Shelton, H., Scull, M., Pickles, R., Barclay, W.S., 2011. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo. J. Gen. Virol. 92, 1822-31. doi:10.1099/vir.0.031203-0
  58. Shelton, H., Roberts, K.L., Molesti, E., Temperton, N., Barclay, W.S., 2013. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J. Gen. Virol. 94, 1220-9. doi:10.1099/vir.0.050526-0
  59. Ramos, I., Krammer, F., Hai, R., Aguilera, D., Bernal-Rubio, D., Steel, J., García-Sastre, A., Fernandez-Sesma, A., 2013. H7N9 influenza viruses interact preferentially with α2,3- linked sialic acids and bind weakly to α2,6-linked sialic acids. J. Gen. Virol. 94, 2417-23. doi:10.1099/vir.0.056184-0
  60. Marc, D., 2014. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95, 2594-611. doi:10.1099/vir.0.069542-0
  61. Rojek, J.M., Kunz, S., 2008. Microreview Cell entry by human pathogenic arenaviruses. Cell. Microbiol. 10, 828-835. doi:10.1111/j.1462-5822.2007.01113.x
  62. Madec, F., Kuntz-Simon, G., Madec, F., 2009. Genetic and antigenic evolution of swine influenza viruses in Europe and evaluation of their zoonotic potential. Zoonoses Public Health 56, 310-25. doi:10.1111/j.1863-2378.2009.01236.x
  63. Weston, S., Czieso, S., White, I.J., Smith, S.E., Wash, R.S., Diaz-soria, C., Kellam, P., Marsh, M., 2016. Alphavirus Restriction by IFITM Proteins. Traffic 17, 997-1013. doi:10.1111/tra.12416
  64. Stevens, J., Corper, A.L., Basler, C.F., Taubenberger, J.K., Palese, P., Wilson, I.A., 2004. Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus. Science (80-. ). 303, 1866-1870. doi:10.1126/science.1093373
  65. Olsen, B., Munster, V.J., Wallensten, A., Waldenström, J., Osterhaus, A.D.M.E., Fouchier, R., 2006. Global patterns of influenza a virus in wild birds. Science (80-. ). 312, 384-8. doi:10.1126/science.1122438
  66. Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., Bender, C., Huang, J., Hemphill, M., Rowe, T., Shaw, M., Xu, X., Fukuda, K., Cox, N.J., 1998. Characterization of an Avian Influenza A (H5N1) Virus Isolated from a Child with a Fatal Respiratory Illness. Sciences (New. York). 279, 393-396. doi:10.1126/science.279.5349.393
  67. Ocaña-Macchi, M., Bel, M., Guzylack-Piriou, L., Ruggli, N., Liniger, M., McCullough, K.C., Sakoda, Y., Isoda, N., Matrosovich, M., Summerfield, A., 2009. Hemagglutinin-dependent tropism of H5N1 avian influenza virus for human endothelial cells. J. Virol. 83, 12947-55. doi:10.1128/JVI.00468-09
  68. Marcus, P.I., Ngunjiri, J.M., Sekellick, M.J., Wang, L., Lee, C.-W., 2010. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines. J. Virol. 84, 10974-10981. doi:10.1128/JVI.00502-10
  69. Sun, X., Zeng, H., Kumar, A., Belser, J.A., Maines, T.R., Tumpey, T.M., 2016. Constitutively expressed IFITM3 protein in human pulmonary endothelial cells poses an early infection block to human influenza viruses. J. Virol. doi:10.1128/JVI.01254-16
  70. Smith, S.E., Gibson, M.S., Wash, R.S., Ferrara, F., Wright, E., Temperton, N., Kellam, P., Fife, M., 2013. Chicken Interferon-Inducible Transmembrane Protein 3 Restricts Influenza Viruses and Lyssaviruses In Vitro. J. Virol. 87, 12957-12966. doi:10.1128/JVI.01443-13
  71. Silverman, R.H., 2007. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 81, 12720-12729. doi:10.1128/JVI.01471-07
  72. Liu, Y., Childs, R.A., Matrosovich, T., Wharton, S., Palma, A.S., Chai, W., Daniels, R.S., Gregory, V., Uhlendorff, J., Kiso, M., Klenk, H.-D., Hay, A., Feizi, T., Matrosovich, M., 2010. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J. Virol. 84, 12069- 74. doi:10.1128/JVI.01639-10
  73. Reed, M.L., Bridges, O.A., Seiler, P., Kim, J.-K., Yen, H.-L., Salomon, R., Govorkova, E.A., Webster, R.G., Russell, C.J., 2010. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J. Virol. 84, 1527-35. doi:10.1128/JVI.02069-09
  74. Ramos, I., Bernal-Rubio, D., Durham, N., Belicha-Villanueva, A., Lowen, A.C., Steel, J., Fernandez-Sesma, A., 2011. Effects of receptor binding specificity of avian influenza virus on the human innate immune response. J. Virol. 85, 4421-31. doi:10.1128/JVI.02356-10
  75. Murakami, S., Horimoto, T., Ito, M., Takano, R., Katsura, H., Shimojima, M., Kawaoka, Y., 2012. Enhanced Growth of Influenza Vaccine Seed Viruses in Vero Cells Mediated by Broadening the Optimal pH Range for Virus Membrane Fusion. J. Virol. 1405-1410. doi:10.1128/JVI.06009-11
  76. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A.S., Klimov, A., Maria, R., Donatelli, I., Kawaoka, Y., 2000. Early Alterations of the Receptor-Binding Properties of H1 , H2 , and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals Early Alterations of the Receptor-Binding Properties of H1 , H2 , and H3 Avian Influenza Virus Hemagglutini. doi:10.1128/JVI.74.18.8502-8512.2000.Updated
  77. Suzuki, Y., Ito, T., Suzuki, T., Robert, E., Jr, H., Chambers, T.M., Kiso, M., 2000. Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses. J. Virol. 74, 11825-11831. doi:10.1128/JVI.74.24.11825-11831.2000.Updated
  78. Matrosovich, M., Matrosovich, T., Carr, J., Roberts, N.A., Klenk, H.-D., 2003. Overexpression of the α-2 , 6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. J. Virol. 77, 8418-8425. doi:10.1128/JVI.77.15.8418
  79. Matrosovich, M., Matrosovich, T., Gray, T., Roberts, N.A., Klenk, H., 2004a. Neuraminidase Is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium. Society 78, 12665-12667. doi:10.1128/JVI.78.22.12665
  80. Qi, X., Qian, Y.-H., Bao, C.-J., Guo, X., 2013. Probable person to person transmission of novel avian influenza A ( H7N9 ) virus in Eastern China , 2013 : epidemiological investigation. Br. Med. J. 4752, 1-8. doi:10.1136/bmj.f4752
  81. Skehel, J.J., Wiley, D.C., 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531-69. doi:10.1146/annurev.biochem.69.1.531
  82. Schneider, W.M., Chevillotte, M.D., Rice, C.M., 2015. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 513-545. doi:10.1146/annurevimmunol-032713-120231.Interferon-Stimulated
  83. (zusammengefasst in Cox, Neumann und Donis, 2004 und Vasin et al., 2014). Cell. Mol. Physiol. 296, L92-L100. doi:10.1152/ajplung.90388.2008
  84. Rose, M.C., 2006. Respiratory Tract Mucin Genes and Mucin Glycoproteins in Health and Disease. Physiol. Rev. 86, 245-278. doi:10.1152/physrev.00010.2005
  85. Veit, M., Thaa, B., 2011. Association of influenza virus proteins with membrane rafts. Adv. Virol. 2011, 370606. doi:10.1155/2011/370606
  86. Knowles, M.R., Boucher, R.C., 2002. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest. 109, 571-577. doi:10.1172/JCI200215217
  87. Wee, Y.S., Roundy, K.M., Weis, J.J., Weis, J.H., 2012. Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function. Innate Immun. 18, 834-45. doi:10.1177/1753425912443392
  88. Matrosovich, M., Matrosovich, T., Garten, W., Klenk, H.-D., 2006. New low-viscosity overlay medium for viral plaque assays. Virol. J. 3, 63. doi:10.1186/1743-422X-3-63
  89. Krenn, B.M., Egorov, A., Romanovskaya-Romanko, E., Wolschek, M., Nakowitsch, S., Ruthsatz, T., Kiefmann, B., Morokutti, A., Humer, J., Geiler, J., Cinatl, J., Michaelis, M., Wressnigg, N., Sturlan, S., Ferko, B., Batishchev, O. V, Indenbom, A. V, Zhu, R., Kastner, M., Hinterdorfer, P., Kiselev, O., Muster, T., Romanova, J., 2011. Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS One 6, e18577. doi:10.1371/journal.pone.0018577
  90. Seidel, N., Sauerbrei, A., Wutzler, P., Schmidtke, M., 2014. Hemagglutinin 222D / G Polymorphism Facilitates Fast Intra-Host Evolution of Pandemic ( H1N1 ) 2009 Influenza A Viruses. PLoS Comput. Biol. 9. doi:10.1371/journal.pone.0104233
  91. Tamura, S., Kurata, T., 2004. Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn. J. Infect. Dis. 57, 236-47. the level of the MAVS adaptor protein. PLoS Pathog. 7. doi:10.1371/journal.ppat.1002067
  92. Li, K., Markosyan, R.M., Zheng, Y.-M., Golfetto, O., Bungart, B., Li, M., Ding, S., He, Y., Liang, C., Lee, J.C., Gratton, E., Cohen, F.S., Liu, S.-L., 2013. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9, e1003124. doi:10.1371/journal.ppat.1003124
  93. Voynow, J.A., Mengr, B.K.R., Rubin, B.K., 2009. Mucins, mucus, and sputum. Chest 135, 505- 12. doi:10.1378/chest.08-0412
  94. Nunberg, J.H., York, J., 2012. The Curious Case of Arenavirus Entry, and Its Inhibition. Viruses 4, 83-101. doi:10.3390/v4010083
  95. Nicholls, J.M., 2013. The battle between influenza and the innate immune response in the human respiratory tract. Infect. Chemother. 45, 11-21. doi:10.3947/ic.2013.45.1.11
  96. Szewczyk, B., Bienkowska-Szewczyk, K., Król, E., 2014. Introduction to molecular biology of influenza A viruses. Acta Biochim. Pol. 61, 397-401. doi:Epub 2014 Sep 3
  97. Klenk, H.-D., Rott, R., Orlich, M., Blödorn, J., 1975. Activation of Influenza A Viruses by Trypsin Treatment. Virology 439, 426-439.
  98. Lin, Y.P., Wharton, S.A., Martín, J., Skehel, J.J., Wiley, D.C., Steinhauer, D.A., 1997. Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. Virology 233, 402-10.
  99. Lamblin, G., Roussel, P., 1993. Airway mucins and their role in defence against microorganisms. Respir. Med. 87, 421-426.
  100. Steinhauer, D.A., Wharton, S.A., Skehel, J.J., Wiley, D.C., Hay, A.J., 1991. Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc. Natl. Acad. Sci. U. S. A. 88, 11525-9.
  101. Kobasa, D., Kodihalli, S., Luo, M., Castrucci, M.R., Donatelli, I., Suzuki, Y., Suzuki, T., Kawaoka, Y., 1999. Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. J. Virol. 73, 6743-51.
  102. Scholtissek, C., Ludwig, S., Fitch, W.M., 1993. Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. Arch. Virol. 131, 237-250.
  103. Lamblin, G., Lhermitte, M., Klein, A., Roussel, P., Van Halbeek, H., Vliegenthart, J.F.G., 1984. Carbohydrate chains from human bronchial mucus glycoproteins: a wide spectrum of oligosaccharide structures.
  104. White, J., Matlin, K., Helenius, A.R.I., 1981. Cell Fusion by Semliki Forest, Influenza, and Vesicular Stomatitis Viruses. J. Cell Biol. 89, 1-6.
  105. Palese, P., Tobita, K., Ueda, M., Compans, R.W., 1974. Characterization of Temperature Defective Sensitive Influenza Virus Mutants in Neuraminidase. Virology 61, 397-410.
  106. WHO, 2016d. Cumulative number of confirmed human cases for avian influenza A ( H5N1 ) reported to WHO , 2003-2016.
  107. Washington, N., Steele, R.J.C., Jackson, S.J., Bush, D., Mason, J., Gill, D.A., Pitt, K., Rawlins, D.A., 2000. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int. J. Pharm. 198, 139-146.
  108. Segal, M.S., Bye, J.M., Sambrook, J.F., Gething, M.-J., 1992. Disulfide bond formation during the folding of influenza virus hemagglutinin. J. Cell Biol. 118, 227-244.
  109. Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152-79.
  110. Tabelle 1.1: Genesegment, Größe und Funktion der Influenza-A-Proteine des Virus A/Anhui/1/2013
  111. WHO, 2016a. Influenza at the human-animal interface.
  112. Stieneke-Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.-D., Garten, W., 1992. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 11, 2407-14.
  113. Laver, W.G., Colman, P.M., Webster, R.G., Hinshaw, V.S., Air, G.M., 1984. Influenza virus neuraminidase with hemagglutinin activity. Virology 137, 314-23.
  114. Scharfman, A., Lamblin, G., Roussel, P., 1995. Interactions between human respiratory mucins and pathogens. Biochem. Soc. Trans. 23, 836-839.
  115. Wagner, R., Wolff, T., Herwig, A., Pleschka, S., Klenk, H.-D., 2000. Interdependence of Hemagglutinin Glycosylation and Neuraminidase as Regulators of Influenza Virus Growth : a Study by Reverse Genetics. J. Virol. 74, 6316-6323.
  116. Lo-Guidice, J.-M., Merten, M.D., Lamblin, G., Porchet, N., Houvenaghel, M.-C., Figarella, C., Roussel, P., Perini, J., 1997. Mucins secreted by a transformed cell line derived from human tracheal gland cells. Biochem. J. 326, 431-437.
  117. Kobasa, D., Rodgers, M.E., Wells, K., Kawaoka, Y., Kobasa, D., Rodgers, M.E., Wells, K., 1997. Neuraminidase Hemadsorption Activity , Conserved in Avian Influenza A Viruses , Does Not Influence Viral Replication in Ducks. Microbiology 71.
  118. WHO, 2011. Pandemic Influenza A (H1N1), Donor Report.
  119. Rogers, N., Paulson, J.C., 1983. Receptor Determinants of Human and Animal Influenza Virus Isolates : Differences in Receptor Specificity of the H3 Hemagglutinin Based on Species of Origin. Virology 127, 361-373.
  120. Peiris, J.S.M., Yu, W.C., Leung, C.W., Cheung, C.Y., Ng, W.F., Nicholls, J.M., Ng, T.K., Chan, K.H., Lai, S.T., Lim, W.L., Yuen, K.Y., Guan, Y., 2004. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617-619. doi:10.1016/S0140- 6736(04)15595-5
  121. Nicholls, J.M., Bourne, A.J., Chen, H., Guan, Y., Peiris, J.S.M., 2007. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir. Res. 8, 73. doi:10.1186/1465- 9921-8-73
  122. Scholtissek, C., 1985. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 3, 215-8.
  123. Nayak, D.P., Jabbar, M.A., 1989. Structural domains and organizational conformation involved in the sorting and transport of influenza virus transmembrane proteins. Annu. Rev. Microbiol. 43, 465-501.
  124. Shi, Y., Zhang, W., Wang, F., Qi, J., Wu, Y., Song, H., Gao, F., Bi, Y., Zhang, Y., Fan, Z., Qin, C., Sun, H., Liu, J., Haywood, J., Liu, W., Gong, W., Wang, D., Shu, Y., Wang, Y., Yan, J., Gao, G.F., 2013. Structures and Receptor Binding of Hemagglutinins from HumanInfecting H7N9 Influenza Viruses. Science (80-. ). 342, 243-247.
  125. Liu, J., Stevens, D.J., Haire, L.F., Walker, P.A., Coombs, P.J., Russell, R.J., Gamblin, S.J., Skehel, J.J., 2009. Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. PNAS 106, 17175-17180.
  126. Martin, J., Wharton, S.A., Lin, Y.P., Takemoto, D.K., Skehel, J.J., Wiley, D.C., Steinhauer, D.A., 1998. Studies of the Binding Properties of Influenza Hemagglutinin Receptor-Site Mutants. Virology 241, 101-111.
  127. Rott, R., Klenk, H.-D., Orlich, M., Wang, M.L., Skehel, J., Wiley, D., 1984. Studies on the adaptation of influenza to MDCK cells. EMBO J. 3, 3329-3332.
  128. Matrosovich, M., Zhou, N., Kawaoka, Y., Webster, R.G., 1999. The Surface Glycoproteins of H5 Influenza Viruses Isolated from Humans , Chickens , and Wild Aquatic Birds Have Distinguishable Properties. J. Virol. 73, 1146-1155.
  129. WHO, 2016b. Tool for Influenza Pandemic Risk Assessment ( TIPRA ).
  130. Maxfield, F.R., 1982. Weak Bases and Ionophores Rapidly and Reversibly Raise the pH of Endocytic Vesicles in Cultured Mouse Fibroblasts Quan titative Fluorescence Microscopy. J. Cell Biol. 676-681.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten