Publikationsserver der Universitätsbibliothek Marburg

Titel:The connection between action and perception
Autor:Veto, Peter
Weitere Beteiligte: Schubö, Anna (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0105
DOI: https://doi.org/10.17192/z2018.0105
URN: urn:nbn:de:hebis:04-z2018-01053
DDC: Psychologie
Publikationsdatum:2018-10-15
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
Wahrnehmung, Psychophysik, Aktion, size perce, Handlung, rivalry, ambiguous perception, action-perception coupling, perception, biological motion perception, action, action-to-perception transfer, Psychologie

Summary:
This thesis consists of three main studies that cover complementary aspects of action-to-perception transfer. In the recent decades, cognitive psychology has started a paradigm shift from its traditional approach to put the stimulus first and treat the action as response to a less one-directional view of perception and action. Quite trivially, action influences perception by changing the external world: we move objects, we locomote or we move our sensory organs. More crucially, action also influences perception internally. Study II and III will address this question directly, by studying perceptual effects of action on physically unchanged stimuli. Study I deals with biological motion. I will argue that the perception of biological motion may present a naturalistic example for direct action-to-perception transfer. The cues of animate locomotion are detected rapidly and effortlessly, and allow quick retrieval of detailed information about the actor, as we related to our immense experience with moving our own bodies in ways that correspond to the physical “laws” which the dynamics of these cues represent. In sum, the studies reported in this thesis provide novel insight on shared action-perception representations, their perceptual consequences and their relation to cognitive models of the world. In Study I, we showed that biological motion cues distort the perceived size of the actor’s figure: a biological motion stimulus is perceived larger than matched control stimuli and lets subsequent stimuli appear smaller. Provided the importance of biological motion, this is in line with other studies that relate subjective importance to perceived size – however, the connection with animate motion has not been reported earlier. If there are shared action-perception representations, do they operate on different representational levels? In Study II, we coupled a stimulus that was in competition with another to action more or less strongly. While the degree of action-perception coupling did not affect overt reports of stimulus’ visibility, oculomotor measures were modulated. This suggests different degrees of action perception coupling on different representational levels, with varying access to awareness. Does in turn the internal cognitive model of the world penetrate action perception coupling? In Study III, we showed that the effect of action-perception congruency on perceptual stability critically depends on the internal cognitive model of action perception coupling. Studies II and III together indicate that no single mechanism or representation can account for all action-perception findings. In the general discussion, I will consider the needed adjustments to current models as well as alternative theoretical approaches.

Zusammenfassung:
Diese Dissertationsschrift besteht aus drei Studien, die sich mit komplementären Aspekten der Handlungs-Wahrnehmungs-Kopplung beschäftigen. In den letzten Jahrzehnten hat in der kognitiven Psychologie ein Paradigmenwechsel begonnen: an die Stelle des traditionellen Zugangs - zuerst kommt der Reiz, dann folgt die Handlung als bloße Antwort darauf – tritt mehr und mehr ein weniger unidirektionales Bild von Handlung und Wahrnehmung. Handlung beeinflusst Wahrnehmung zunächst auf mehr oder weniger triviale Weise durch ihren Effekt auf die Außenwelt – wir bewegen uns oder unsere Sinnesorgane im Raum oder wir bewegen Objekte. Interessanter ist der interne Einfluss der Handlung auf die Wahrnehmung. Studien II und III dieser Arbeit beschäftigen sich direkt mit diesem Thema, indem sie den Einfluss der Handlung auf die Wahrnehmung physisch unveränderliche Reize untersuchen. Studie I beschäftigt sich mit biologischer Bewegung. In meiner Arbeit lege ich dar, dass die Wahrnehmung biologischer Bewegung einen realitätsnahen Spezialfall direkten Handlungs-Wahrnehmungs-Transfers darstellt. Die Hinweisreize für belebte Fortbewegung werden schnell und aufwandsfrei erkannt und erlauben gleichzeitig eine schnelle Aufnahme detaillierter Information über den Handelnden, da wir hierbei unsere immense Erfahrung mit der Bewegung unseres eigenen Körpers unter berücksichtigung physikalischer Gesetze zur Interpretation dieser Hinweisreize nutzen können. Zusammengefasst ergeben die Studien dieser Arbeit ein frisches Bild der gemeinsamer Repräsentationen von Wahrnehmung und Handlung, ihrer perzeptuellen Folgen und ihrer Beziehung zu kognitiven Modellen der Welt. In Studie I zeigten wir, dass biologischer Bewegung die Wahrnehmung der Größe des Handelnden beeinflusst. Ein Reiz, der biologische Bewegung darstellt, wird größer wahrgenommen als ein visuell vergleichbarer Kontrollreiz und lässt nachfolgende Reize kleiner erscheinen. Vor dem Hintergrund der Wichtigkeit biologischer Bewegung ist dieses Ergebnis mit anderen Studien im Einklang, die Wichtigkeit zu wahrgenommener Größe in Beziehung setzen. Die Verbindung zu biologischer Bewegung wurde vor dieser Arbeit noch nicht hergestellt. In Studie II verbanden wir einen Reiz, der sich mit einem anderen in Wettstreit befand, mehr oder weniger stark mit einer gleichzeitig ausgeführten Handlung. Während der Grad der Kopplung zwischen Handlung und Wahrnehmung den Bericht der Versuchsperson über die Sichtbarkeit nicht nachweislich beeinflusste, zeigte sich eine deutliche Modulation okulomotorischer Maße. Dieses Ergebnis legt verschiedene Stufen der Handlungs-Wahrnehmungs-Kopplung auf verschiedenen Repräsentationsstufen nahe, die wiederum unterschiedlichen Zugang zu bewusster Wahrnehmung haben. Beeinflusst umgekehrt das kognitive Modell der Welt den Grad der Handlungs-Wahrnehmungs-Kopplung? In Studie III zeigten wir, dass der Effekt der Handlungs-Wahrnehmungs-Kongruenz auf die Wahrnehmungsstabilität kritisch vom kognitiven Modell der Handlungs-Wahrnehmungs-Kopplung abhängt. Zusammengenommen zeigen Studien II und III, dass kein einzelner Mechanismus und keine einzelne Repräsentation allein für alle Befunde zur Handlungs-Wahrnehmungs-Kopplung verantwortlich sein können. In der übergreifenden Diskussion werde ich die nötigen Anpassungen existierender Modelle betrachten und alternative theoretische Ansätze aufzeigen.

Bibliographie / References

  1. Abraham, H., Reimer, B., Seppelt, B., Fitzgerald, C., Mehler, B, & Coughlin, J. F. (2017). Consumer interest in automation: Preliminary observations exploring a year's change. [White paper]. Retrieved January 4, 2018, from MIT Agelab: http://agelab.mit.edu/sites/default/files/MIT%20-
  2. Ahissar, M. & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457-464.
  3. Althoff, T., Sosic, R., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336-339.
  4. Anderson, L. C., Bolling, D. Z., Schelinski, S., Coffman, M. C., Pelphrey, K. A., & Kaiser, M. D. (2013). Sex differences in the development of brain mechanisms for processing biological motion. Neuroimage, 83, 751- 760.
  5. Arrighi, R., Cartocci, G., & Burr, D. (2011). Reduced perceptual sensitivity for biological motion in paraplegia patients. Current Biology, 21(22), 910-911.
  6. Aschersleben, G. & Prinz, W. (1995). Synchronizing actions with events: the role of sensory information. Perception & Psychophysics, 57(3), 305-317.
  7. Atkinson, A. P., Tunstall, M. L., & Dittrich, W. H. (2007). Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures. Cognition, 104(1), 59-72.
  8. Bassett, D. R., Wyatt, H. R., Thompson, H., Peters, J. C., & Hill, J. O. (2010). Pedometer-measured physical activity and health behaviors in U. S. adults. Medicine & Science in Sports & Exercise, 42(10), 1819-1825.
  9. Beets, I. A. M., Rösler, F., & Fiehler, K. (2010). Nonvisual motor learning improves visual motion perception: Evidence from violating the two-thirds power law. Journal of Neurophysiology, 104(3), 1612-1624.
  10. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to- perception transfer: Only percept-dependent action affects perception. Vision Research, 50(24), 2633-2641.
  11. Beintema, J. A. & Lappe, M. (2001). Perception of biological motion without local image motion. Proceedings of the National Academy of Science, 99(8), 5661-5663.
  12. Bertenthal, B. I. & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5(4), 221-225.
  13. Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Perception & Psychophysics, 23(2), 145-152.
  14. Blaker, N. M. & van Vugt, M. (2014). The status-size hypothesis: How cues of physical size and social status influence each other. In J. T. Cheng, J. L. Tracy, & C. Anderson (Eds.), The Psychology of Social Status (pp. 119-137). New York: Springer.
  15. Casile, A. & Giese, M. A. (2006). Non-visual motor learning influences the recognition of biological motion. Current Biology, 16(1), 69-74.
  16. Chang, D. H. & Troje, N. F. (2009). Acceleration carries the local inversion effect in biological motion perception. Journal of Vision, 16(9), 1-17.
  17. Coulson, M. (2004). Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. Journal of Nonverbal Behavior, 28(2), 117-139.
  18. Cutting, J. E. (1981). Coding theory adapted to gait perception. Journal of Experimental Psychology: Human Perception and Performance, 7(1), 71-87.
  19. Deen, B. & McCarthy, G. (2010). Reading about the actions of others: Biological motion imagery and action congruency influence brain activity. Neuropsychologia, 48(6), 1607-1615.
  20. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology, 122(3), 371-396.
  21. Di Pace, E. & Saracini, C. (2014). Action imitation changes perceptual alternations in binocular rivalry. PLoS ONE, 9(5), e98305.
  22. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176-180.
  23. Dubois, D., Rucker, D. D., & Galinsky, A. D. (2011). Super size me: Product size as a signal of status. Journal of Consumer Research, 38(6), 1047-1061.
  24. Duguid, M. M. & Goncalo, J. A. (2012). Living large: The powerful overestimate their own height. Psychological Science, 23(1), 36-40.
  25. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where's the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202-209.
  26. Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action- related stimulus dimensions. Psychological Research, 71(1), 22-29.
  27. Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11(4), 461-481.
  28. Fox, R. & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218(4571), 486-487.
  29. Gibson, J. J. (2015). The ecological approach to visual perception (Classic Edition). New York, NY: Taylor & Francis.
  30. Gravano, S., Zago, M., & Lacquaniti, F. (2017). Mental imagery of gravitational motion. Cortex, 95,172-191.
  31. Grosjean, M., Shiffrar, M., & Knobilch, G. (2007). Fitts's law holds for action perception. Psychological Science, 18(2), 95-99.
  32. Grossman, E. D. & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41(10), 1475-1482.
  33. Hall, C. R., Rodgers, W. M., & Barr, K. A. (1990). The use of imagery by athletes in selected sports. The Sport Psychologist, 4(1), 1-10.
  34. Hecht, H., Vogt, S., & Prinz, W., (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65(1), 3-14.
  35. Hemeren, P.E. (2008). Mind in Action: Action recognition and the perception of biological motion. Lund University Cognitive Studies 140, Lund University, Sweden.
  36. Hill, H. & Johnston, A. (2001). Categorizing sex and identity from the biological motion of faces. Current Biology, 11(11), 880-885.
  37. Hirai, M., Chang, D. H. F., Saunders, D. R., & Troje, N. F. (2011). Body configuration modulates the usage of local cues to direction in biological-motion perception. Psychological Science, 22(12), 1543-1549.
  38. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849-937.
  39. Ikeda, H. & Watanabe, K. (2009). Anger and happiness are linked differently to the explicit detection of biological motion. Perception, 38(7), 1002-1011.
  40. Inagaki, T. & Itoh, M. (2013). Human's overtrust in and overreliance on advanced driver assistance systems: A theoretical framework. International Journal of Vehicular Technology, vol. 2013, p. 8.
  41. Itto, Y. & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673.
  42. Ivanenko, Y. P., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Two-thirds power law in human locomotion: Role of ground contact forces. NeuroReport, 13(9), 1171-1174.
  43. James, W. (1890). The principles of psychology. New York: Holt.
  44. James, W. (1912). Essays in Radical Empiricism. New York: Longmans, Green, and Company.
  45. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201-211.
  46. Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 38(4), 379-393.
  47. Jokisch, D., Daum, I., Suchan, B., & Troje, N. F. (2005). Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis. Behavioral Brain Research, 157(2), 195-204.
  48. Jokisch, D. & Troje, N. F. (2003). Biological motion as a cue for the perception of size. Journal of Vision, 3(4), 252- 264.
  49. Jörges, B. & López-Moliner, J. (2017). Gravity as a strong prior: Implications for perception and action. Frontiers in Human Neuroscience, 11(203), 1-16.
  50. Keetels, M. & Stekelenburg, J. J. (2014). Motor-induced visual motion: Hand movements driving visual motion perception. Experimental Brain Research, 232(9), 2865-2877.
  51. Kidd, D. G., Cicchino, J. B., Reagan, I. J., & Kerfoot, L. B. (2017). Driver trust in five driver assistance technologies following real-world use in four production vehicles. Traffic Injury Prevention, 18(1), 44-50.
  52. Knoblich, G. & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12(6), 467-472.
  53. Kozlowski, L. T. & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21(6), 575-580.
  54. Lacquaniti, F., Carrozzo, M., & Borghese, N. (1993). The role of vision in tuning anticipatory motor responses of the limbs. In A. Berthoz, C. Gielen, V. Henn, K. P. Hoffmann, M. Imbert, F. Lacquaniti & A. Roucoux (Eds), Multisensory Control of Movement (pp. 379-393). Oxford: Oxford University Press.
  55. Lacquaniti F., Terzuolo C., & Viviani P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1), 115-130.
  56. Lange, J. & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26(11), 2894-2906.
  57. Lindqvist, E. (2012). Height and leadership. Review of Economics and Statistics, 94(4), 1191-1196.
  58. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210-220.
  59. Marsh, A. A., Yu, H. H., Schechter, J. C., & Blair, R. J. R. (2009). Larger than life: Humans' nonverbal status cues alter perceived size. PLoS ONE, 4(5), 1-8.
  60. Maruya, K., Yang, E., & Blake, R. (2007). Voluntary action influences visual competition. Psychological Science, 18(12), 1090-1098.
  61. Masters, R., Poolton, J., & van der Kamp, J. (2010). Regard and perceptions of size in soccer: better is bigger. Perception, 39(9), 1290-1295.
  62. Mather, G. & Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society of London. Series B: Biological Sciences, 258(1353), 273-279.
  63. Mather, G., Radford, K., & West, S. (1992). Low-level visual processing of biological motion. Proceedings of the Royal Society London B, Biological Sciences, 249(1325), 149-155.
  64. Meier, B. P., Robinson, M. D., & Caven, A. J. (2008). Why a big mac is a good mac: Associations between affect and size. Basic and Applied Social Psychology, 30(1),46-55.
  65. Meng, M. & Tong, F. (2006). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 539-551.
  66. Miller, L. E. & Saygin, A. P. (2013). Individual differences in the perception of biological motion: Links to social cognition and motor imagery. Cognition, 128(2), 140-148.
  67. Montepare, J. M., Goldstein, S. B., & Clausen, A. (1987). The identification of emotions from gait information. Journal of Nonverbal Behavior, 11(1), 33-42.
  68. Murray, G. R. & Schmitz, J. D. (2011). Caveman politics: Evolutionary leadership preferences and physical stature. Social Science Quarterly, 92(5), 1215-1235.
  69. Müsseler, J. (1999). How independent from action is perception? An event-coding account for more equally-ranked crosstalks. In G. Ascherleben, T. Bachman, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 121-147). Amsterdam: Elsevier.
  70. Neri, P., Morrone, M. C., & Burr, D. C. (1998). Seeing biological motion. Nature, 395(6705), 894-896.
  71. O'Regan, J. K. & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939-1031.
  72. Pavlova, M., Krageloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of point-light biological motion displays by young children. Perception, 30(8), 925-933.
  73. Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42(20), 2345-2355.
  74. Pollick, F. E., Paterson, H. M., Bruderlin, A., & Sanford, A. J. (2001). Perceiving affect from arm movement. Cognition, 82(2), 51-61.
  75. Polsinelli, M., Milanesi, G., & Ganesan, A. T. (1969). Size adaptation: a new aftereffect. Science, 166(3902), 245- 247.
  76. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154.
  77. Repp, B. H. & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18(1), 6-7.
  78. Saunders, D. R., Suchan, J., & Troje, N. F. (2009). Off on the wrong foot: local features in biological motion. Perception, 38(4), 522-532.
  79. Sheikh, A. A. & Korn, E. R. (1994). Imagery in sports and physical performance. Amityville, New York: Baywood Publishing Company Inc.
  80. Shi, J., Weng, X., He, S., & Jiang, Y. (2010). Biological motion cues trigger reflexive attentional orienting. Cognition, 117(3), 348-354.
  81. Shiffrar, M., Lichtey, L., & Haptulla-Chatterjee, S. (1997). Percepts of biological motion across apertures. Perception & Psychophysics, 59(1), 51-59.
  82. Schütz-Bosbach, S. & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349-355.
  83. Silvera, D. H., Josephs, R. A., & Giesler, R. B. (2002). Bigger is better: The influence of physical size on aesthetic preference judgments. Journal of Behavioral Decision Making, 15(3), 189-202.
  84. Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. PNAS, 105(2), 809-813.
  85. Sonoda, K. & Wada, T. (2017). Displaying system situation awareness increases driver trust in automated driving. IEEE Transactions on Intelligent Vehicles, 2(3), 185-193.
  86. Stephen, D. G., Stepp, N., Dixon, J. A., & Turvey, M. T. (2008). Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A: Statistical and Theoretical Physics, 387, 5271-5278.
  87. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276-315.
  88. Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13(3), 283-286.
  89. Thornton, I. M. & Vuong, Q. C. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084- 1089.
  90. Troje, N. F. (2008). Biological motion perception. In A. I. Basbaum, M. C. Bushnell, D. V. Smith, G. K. Beauchamp, S. J. Firestein, P. Dallos, D. Oertel, R. H. Masland, T. D. Albright, J. H. Kaas, & E. P. Gardner (Eds.), The Senses: A Comprehensive Reference (pp. 231-238). Oxford, Elsevier.
  91. Troje, N. F. (2013). What is biological motion?: Definition, stimuli and paradigms. In M. D. Rutherford, & V. A. Kuhlmeier (Eds.), Social Perception: Detection and Interpretation of Animacy, Agency, and Intention (pp. 13- 36). Cambridge, MA: MIT Press.
  92. Troje, N. F. & Chang, D. H. F. (2013). Shape-independent processes in biological motion perception. In K. L.
  93. Johnson & M. Shiffrar (Eds.) People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (pp. 82-100). New York: Oxford University Press.
  94. Troje, N. F. & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a "life detector"? Current Biology, 16(8), 821-824.
  95. Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues. Perception & Psychophysics, 67(4), 667-675.
  96. Tsuchiya, N., Koch, C., Gilroy, L. A., & Blake, R. (2006). Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. Journal of Vision, 6(10), 1068-1078.
  97. Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2011). Understanding motor resonance. Social Neuroscience, 6(4), 388-397.
  98. Yap, A. J., Mason, M. F., & Ames, D. R. (2013). The powerful size others down: The link between power and estimates of others' size. Journal of Experimental Social Psychology, 49(3), 591-594.
  99. Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PloS Biology, 3(7), 1312-1316.
  100. Vanrie, J., Dekeyser, M., & Verfaillie, K. (2004). Bistability and biasing effects in the perception of ambiguous point- light walkers. Perception, 33(5), 547-560.
  101. Vanrie, J. & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36(4), 625-629.
  102. Van Vleet, T. M., Hoang-duc, A. K., DeGutis, J., & Robertson, L. C. (2011). Modulation of non-spatial attention and the global/local processing bias. Neuropsychologia, 49(3), 352-359.
  103. Veltkamp, M., Aarts, H., & Custers, R. (2008). Perception in the service of goal pursuit: Motivation to attain goals enhances the perceived size of goal-instrumental objects. Social Cognition, 26(6), 720-736.
  104. Veto, P., Einhäuser, W., & Troje, N. F. (2017). Biological motion distorts size perception. Scientific Reports, 7(10), 42576.
  105. Veto, P., Schütz, I., & Einhäuser, W. (in press). Continuous flash suppression: Manual action affects eye movements but not the reported percept. Journal of Vision
  106. Veto, P., Uhlig, M., Troje, N. F., & Einhäuser, W. (submitted manuscript). What you see is what you expect: Cognitive assumptions influence the action-to-perception transfer in ambiguous perception.
  107. Wang, L., Yang, X., Shi, J., & Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84(1), 217-224.
  108. Wang, L., Zhang, K., He, S., & Jiang, Y. (2010). Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychological Science, 21(8), 1083-1089.
  109. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117.
  110. Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation.. Cognition, 68(1), 77-94.
  111. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40(8), 925-930.
  112. Wohlschläger, A. & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 397-412.
  113. Zacks, J. M. (2004). Using movement and intentions to understand simple events. Cognitive Science, 28(6), 979-1008.
  114. Polsinelli, M., Milanesi, G. & Ganesan, A. T. Size adaptation: A new aftereffect. Science, 166, 245-247 (1969).
  115. Sperandio, I., Lak, A. & Goodale, M. A. Afterimage size is modulated by size-contrast illusions. J. Vis. 12, 1-10 (2012).
  116. Sperandio, I., Savazzi, S. & Marzi, C. A. Is simple reaction time affected by visual illusions? Exp. Brain Res. 201, 345- 350 (2010).
  117. Savazzi, S., Emanuele, B., Scalf, P. & Beck, D. Reaction times and perceptual adjustments are sensitive to the illusory distortion of space. Exp. Brain Res. 218, 119-128 (2012).
  118. Meier, B. P., Robinson, M. D. & Caven, A. J. Why a big mac is a good mac: Associations between affect and size. Basic Appl. Soc. Psych. 30, 46-55 (2008).
  119. Murray, G. R. & Schmitz, J. D. Caveman politics: Evolutionary leadership preferences and physical stature. Soc. Sci. Q. 92, 1215-1235 (2011).
  120. Blaker, N. M. & van Vugt, M. The status-size hypothesis: How cues of physical size and social status influence each other in The Psychology of Social Status (ed. Cheng, J. T., Tracy, J. L. & Anderson, C.), 119-137 (Springer, 2014).
  121. Lindqvist, E. Height and leadership. REStat 94, 1191-1196 (2012).
  122. Yap, A. J., Mason, M. F. & Ames, D. R. The powerful size others down: The link between power and estimates of others' size. J. Exp. Soc. Psychol. 49, 591-594 (2013).
  123. Duguid, M. M. & Goncalo, J. A. Living large: The powerful overestimate their own height. Psychol. Sci. 23, 36-40 (2012).
  124. Marsh, A. A., Yu, H. H., Schechter, J. C. & Blair, R. J. R. Larger than life: Humans' nonverbal status cues alter perceived size. PLoS ONE 4, 1-8 (2009).
  125. Dubois, D., Rucker, D. D. & Galinsky, A. D. Super size me: Product size as a signal of status. J. Cons. Res. 38, 1047- 1061 (2011).
  126. Veltkamp, M., Aarts, H. & Custers, R. Perception in the service of goal pursuit: Motivation to attain goals enhances the perceived size of goal-instrumental objects. Soc.Cogn. 26, 720-736 (2008).
  127. Silvera, D. H., Josephs, R. A. & Giesler, R. B. Bigger is better: The influence of physical size on aesthetic preference judgments. J. Behav. Decis. Mak. 15, 189-202 (2002).
  128. Johansson, G. Spatio-temporal differentiation and integration in visual motion perception. Psychol Res, 38, 379-393 (1976).
  129. Jokisch, D., Daum, I., Suchan, B. & Troje, N. F. Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis. Behav. Brain Res., 157, 195-204 (2005).
  130. Wang, L., Yang, X., Shi, J. & Jiang, Y. The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224 (2014).
  131. Tyler, S. C. & Grossman, E. D. Feature-based attention promotes biological motion recognition. JoV, 11, 1-16 (2011).
  132. Barclay, C. D., Cutting, J. E. & Kozlowski, L. T. Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys., 23, 145-152 (1978).
  133. Montepare, J. M., Goldstein, S. B. & Clausen, A. The identification of emotions from gait information. J. Nonverbal Behav., 11, 33-42 (1987).
  134. Troje, N. F., Westhoff, C. & Lavrov, M. Person identification from biological motion: Effects of structural and kinematic cues. Percept. Psychophys., 67, 667-675 (2005).
  135. Thornton, I. M. & Vuong, Q. C. Incidental processing of biological motion. Curr. Biol. 14, 1084-1089 (2004).
  136. Wang, L., Zhang, K., He, S. & Jiang, Y. Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychol. Sci. 21, 1083-1089 (2010).
  137. Shi, J., Weng, X., He, S. & Jiang, Y. Biological motion cues trigger reflexive attentional orienting. Cogn. 117, 348-354 (2010).
  138. Hirai, M., Chang, D. H. F., Saunders, D. R. & Troje, N. F. Body configuration modulates the usage of local cues to direction in biological-motion perception. Psychol. Sci. 22, 1543-1549 (2011).
  139. Troje, N. F. & Chang, D. H. F. Shape-independent processes in biological motion perception in People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (ed. Johnson, K. L. & Shiffrar, M.) 82-100 (Oxford University Press, 2013).
  140. Troje, N. F. & Westhoff, C. The inversion effect in biological motion perception: Evidence for a "life detector"? Curr. Biol. 16, 821-824 (2006).
  141. Vanrie, J. & Verfaillie, K. Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Methods Instrum. Comput. 36, 625-629 (2004).
  142. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vis. 10, 437-442 (1997).
  143. Simion, F., Regolin, L. & Bulf, H. A predisposition for biological motion in the newborn baby. PNAS, 105, 809-813 (2008).
  144. Vallortigara, G., Regolin, L. & Marconato, F. Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PloS Biol., 3, 1312-1316 (2005).
  145. Posner, M. I. & Cohen, Y. Components of visual orienting in Attention and Performance Vol. X (ed. Bouma, H. & Bouwhuis, D.) 531-556 (Erlbaum, 1984).
  146. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to- perception transfer: Only percept-dependent action affects perception. Vision Research, 50, 2633-2641.
  147. Boring, E. G. (1930). A new ambiguous figure. American Journal of Psychology, 42, 444-445.
  148. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436, doi:10.1163/156856897X00357
  149. Brascamp, J. W., Klink, P. C., & Levelt, W. J. (2015). The 'laws' of binocular rivalry: 50 years of Levelt's propositions. Vision Research, 109, 20-37.
  150. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink toolbox: Eye tracking with Matlab and the psychophysics toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613-617, doi:10.3758/BF03195489.
  151. Di Pace, E., & Saracini, C. (2014). Action imitation changes perceptual alternations in binocular rivalry. PloS ONE, 9(5), e98305
  152. Einhäuser, W., Martin, K. A. C., & König, P. (2004). Are switches in perception of the Necker cube related to eye-position? European Journal of Neuroscience, 20(10), 2811-2818.
  153. Fahle, M. W., Stemmler, T., & Spang, K. M. (2011). How much of the "unconscious" is just pre-threshold? Frontiers in Human Neuroscience, 5(120), 1-6.
  154. Keetels, M., & Stekelenburg, J. J. (2014). Motor-induced visual motion: hand movements driving visual motion perception. Experimental Brain Research, 232, 2865-2877.
  155. Levelt, W. J. M. (1965). On binocular rivalry. Soesterberg, The Netherlands: Institute for Perception RVO-TNO.
  156. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164, 177-190.
  157. Maruya, K., Yang, E., & Blake, R. (2007). Voluntary action influences visual competition. Psychological Science, 18(12), 1090-1098.
  158. Meng, M., & Tong, F. (2006). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, (7):2, 539-551, http://journalofvision.org/4/7/2/, doi:10.1167/4.7.2.
  159. Metzger, W. (1934). Beobachtung über phänomenale Identität. Psychologische Forschung, 19, 1-60.
  160. Mitsumatsu, H. (2009). Voluntary action affects perception of bistable motion display. Perception, 38, 1522-1535.
  161. Müsseler, J. (1999). How independent from action is perception? An event-coding account for more equally-ranked crosstalks. In G. Ascherleben, T. Bachman, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 121-147). Amsterdam: Elsevier.
  162. Naber M., Frässle S., & Einhäuser W. (2011). Perceptual rivalry: Reflexes reveal the gradual nature of visual awareness. PLoS One, 6, e20910.
  163. Necker, L. A. (1832). Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid. London Edinburgh Philosophical Magazine and Journal of Science, 1(5), 329-337.
  164. Pelli, D. G. (1997). The video toolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442, doi:10.1163/15685689X00366.
  165. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349-355.
  166. Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096-1101.
  167. Tsuchiya, N., Koch, C., Gilroy, L. A., & Blake, R. (2006). Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. Journal of Vision, 6, (10):6, 1068-1078, doi:10.1167/6.10.6.
  168. Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68, 77-94.
  169. Wexler, M., & van Boxtel, J. J. (2005). Depth perception by the active observer. Trends in Cognitive Sciences, 9(9), 432- 438.
  170. Wheatstone, C. (1838). Contributions to the Physiology of Vision. Part the First. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London, 128, 371-394.
  171. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925-930.
  172. Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance, 24, 397-412.
  173. Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76(2), 171-182.
  174. Casile, A. & Giese, M. A. Nonvisual motor training influences biological motion perception. Curr. Biol. 16, 69-74 (2006).
  175. Mataric, M. J. Sensory-motor primitives as a basis for imitation: Linking perception to action and biology to robotics in Imitation in Animals and Artifacts (ed. C. Nehaniv & K. Dautenhahn) 391-422 (Cambridge, MA: MIT Press, 2000).
  176. Troje, N. F. Biological motion perception in The Senses: A Comprehensive Reference (ed. A. I. Basbaum, M. C.
  177. Troje, N. F. What is biological motion?: Definition, stimuli and paradigms in Social Perception: Detection and Interpretation of Animacy, Agency, and Intention (ed. M. D. Rutherford & V. A. Kuhlmeier) 13-36 (Cambridge, MA: MIT Press, 2013).
  178. Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129-154 (1997).
  179. Müsseler, J. How independent from action is perception? An event-coding account for more equally-ranked crosstalks in Cognitive Contributions to the Perception of Spatial and Temporal Events (ed. G. Aschersleben, T. Bachman & J.
  180. Metzger, W. Beobachtung über phänomenale Identität. Psychol. Res. 19, 1-60 (1934).
  181. Mitsumatsu, H. Voluntary action affects perception of bistable motion display. Percept. 38, 1522-1535 (2009).
  182. Wohlschläger, A. Visual motion priming by invisible actions. Vis. Res. 40, 925-930 (2000).
  183. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W. & Fiehler, K. Online action-to-perception transfer: Only percept-dependent action affects perception. Vis. Res. 50, 1633-1641 (2010).
  184. Maruya, K., Yang, E. & Blake, R. Voluntary action influences visual competition. Psychol. Sci. 18, 1090-1098 (2007).
  185. Keetels, M. & Stekelenburg, J. J. Motor-induced visual motion: Hand movements driving visual motion perception. Exp. Brain Res. 232 2865-2877 (2014).
  186. Lupyan, G. Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Rev. Philos. Psychol. 6, 547-569 (2015).
  187. Pylyshyn, Z. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Bran Sci. 22, 341-423 (1999).
  188. O'Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939-1031 (2001).
  189. Engel, A. K., Maye, A., Kurthen, M. & König, P. Where's the action? The pragmatic turn in cognitive science. Trends Cogn. Sci. 17, 202-209 (2013).
  190. Brainard, D. H. The psychophysics toolbox. Spatial Vis. 10, 433-436 (1997).
  191. Pelli, D. G. The video toolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vis. 10, 437-442 (1997).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten