Publikationsserver der Universitätsbibliothek Marburg

Titel:Herstellung und Charakterisierung tetraetherlipidhaltiger Lipoplexe und Lipopolyplexe als neuartige Vehikel für die orale Gentherapie
Autor:Engelhardt, Konrad
Weitere Beteiligte: Bakowsky, Udo (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0096
DOI: https://doi.org/10.17192/z2018.0096
URN: urn:nbn:de:hebis:04-z2018-00962
DDC: Pharmakologie, Therapeutik
Titel (trans.):Preparation and characterization of tetraetherlipid containing lipoplexes and lipopolyplexes as novel vehicles for oral gene therapy
Publikationsdatum:2018-03-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Gentherapie, Sulfolobus, sulfolobus, lipoplexes, transfection, extract, gene transfer, liposomes, polymer, lipopolyplexes, toxicity, polyplexes, Transfektion, Toxizität, Tetraetherlipide, Lipoplexe, Liposomen, Extraktion, Lipopolyplexe, tetraetherlipids, Gentransfer, Polymer,Polyplexe, gene therapy

Zusammenfassung:
Die Gentherapie bietet ein großes Potential für die Behandlung von schweren chronischen Erkrankungen wie z.B. Krebs oder Erbkrankheiten. Hierbei werden nicht nur die Symptome der Krankheiten behandelt, sondern man versucht defekte Gene zu ersetzen. Mit sogenannten Genvektoren (viral oder nicht-viral) werden dabei Gene in menschliche Zellen eingeschleust. Ein Genvektor muss nicht nur eine hohe Transfektionseffizienz besitzen, sondern auch eine geringe Toxizität und hohe Patientencompliance aufweisen. Ein Gentherapeutikum zur oralen Anwendung, das eine hohe Stabilität gegenüber dem sauren pH-Wert im Magen hat, würde diese Kriterien am besten erfüllen. Ein vielversprechender Ansatz, um Genvektoren herzustellen, die in sauren pH-Werten stabil bleiben, stellt die Nutzung von Tetraetherlipiden der Archaeen dar. Archaeen bilden neben den Bakterien und Eukaryoten eine der drei Domänen zellulärer Lebewesen. Sie sind an extreme Milieubedingungen angepasst, z.B. wachsen sie bevorzugt bei +80 °C (hyperthermophil), in stark konzentrierten Salzlösungen (halophil) oder bei niedrigen pH-Werten (acidophil). Der Grund für diese außergewöhnliche Stabilität liegt darin, dass die Zellmembran der Archaeen aus Tetraetherlipiden aufgebaut ist. Im Gegensatz zu eukaryotischen Membranlipiden besitzen Tetraetherlipide keine Ester- sondern Etherbindungen. Des Weiteren durchspannen Tetraetherlipide die Membran vollständig und ordnen sich nicht zu einer Doppelmembran an. In der vorliegenden Arbeit wurden Tetraetherlipide aus den gefriergetrockneten Biomassen von Archaeen mittels Soxhlet-Extraktion extrahiert. Eine darauffolgende Aufreinigung fand an einer Kieselgelsäule statt. Die extrahierten Lipidfraktionen beschränkten sich auf TEL (Rohlipide), PLFE (polare Lipidfraktion E), hGDNT (hydrolysiertes Glycerol-Di-Alkyl-Nonitol-Tetraetherlipid) und hGDGT (hydrolysiertes Glycerol-Di-Glycerol-Tetraetherlipid). Zudem wurde ein neuartiges Tetraetherlipid (MI-0907) mit positiv geladener Kopfgruppe synthetisiert. Alle fünf Tetraetherlipide erhielt man als dunkelbraune bzw. hellgelbe waxartige Massen mit Ausbeuten von 1,9 - 46,89 % (bezogen auf die Ausgangsmasse). Für die Herstellung von Liposomen wurden Tetraetherlipide und konventionelle Lipide wie z.B. DPPC (1,2-Di-palmitoyl-sn-glycero-3-phosphocholin), CH (Cholesterol) oder DOTAP (1,2-Dioleoyl-3-Trimethylammoniumpropan) in verschiedenen molaren Verhältnissen in einem organischen Lösungsmittel miteinander gemischt. Durch Verdampfung des ii Lösungsmittels bildete sich ein dünner Lipidfilm, der durch Zugabe einer wässrigen Pufferlösung in eine liposomale Suspension überführt wurde. Die so hergestellten Liposomen zeigten Durchmesser von 101 - 351 nm und PDI-Werte von 0,2 - 0,4. Liposomen mit günstigen Parametern bzgl. Größe und PDI-Wert stellten die Formulierungen hGDNT/DPPC/DOTAP (20/55/25 mol/mol/mol), MI-0907/DPPC/CH (20/55/25 mol/mol/mol) und hGDNT/DPPC/CH (20/55/25 mol/mol/mol) dar. Sie wurden in weiteren Experimenten in Pufferlösungen mit pH-Werten von 2 - 9 inkubiert und bzgl. der Änderung des Durchmessers nach einem Scoring System (--- bis +++) bewertet. Die oben genannten Formulierungen zeigten minimale Veränderungen bzgl. der Durchmesser und PDI-Werte. Die Komplexierung der positiv geladenen Formulierungen mit pDNA führte zu Lipoplexen, die ebenfalls eine hohe Stabilität bei pH-Werten von 2 - 9 zeigten. Die Transfektionseffizienzen der Formulierungen lagen ca. 30 - 40 % unter den Referenzsubstanzen (25kDa-bPEI oder DOTAP). Zur Verbesserung der Transfektionseffizienzen, bildete man Komposite aus Liposomen, Polymer und pDNA, sogenannte Lipopolyplexe. Als Liposomen wurden die oben genannten Formulierungen eingesetzt. Die Transfektionseffizienz lag bei Lipopolyplexen bis zu 50 % über den Referenzsubstanzen. Zudem wiesen Lipopolyplexe in Toxizitätsversuchen wie z.B. LDH-Assay eine um ca. 75 % reduzierte Toxizität im Vergleich zu einfachen Polyplexen auf. Die besondere Stabilität der tetraetherlipidhaltigen Lipopolyplexe wurde in einem Heparin-Assay ermittelt, wobei der Stabilitätseffekt deutlich höher war als für einfache Polyplexe. Die morphologischen Besonderheiten von Lipoplexen konnte mittels Rasterkraftmikroskopie untersucht werden. Hierbei war zu erkennen, dass sich pDNA um Liposomen windet und der Aufbau multilamellar erfolgt, d.h. mehrere Lipidschichten sind übereinander angeordnet und bilden einen „zwiebelartigen“ Aufbau der Komplexe. Bei Lipopolyplexen, die Durchmesser von 138 nm bis 156 nm annehmen, ist ein Polyplexkern von einer ca. 4 nm dicken Lipidschicht ummantelt. Die erfolgreiche Extraktion und Aufreinigung von Tetraetherlipiden aus Archaeen, ist für die Herstellung von Genvektoren eine wichtige Grundlage. Qualitätsbestimmende Kriterien der gewonnenen Lipoplexe und Lipopolyplexe wie reduzierte Toxizität, Stabilität im sauren pH-Milieu und erhöhte Transfektionseffizienz legen nahe, dass sich Genvektoren auf der Basis von Tetraetherlipiden der Archaeen für die orale Gentherapie eignen sollten.

Bibliographie / References

  1. Elias Baghdan, Shashank Reddy Pinnapireddy, Boris Strehlow, Konrad Heinrich Engelhardt, Jens Schäfer, Udo Bakowsky Lipid coated Chitosan-DNA nanoparticles for enhanced gene delivery, International Journal of Pharmaceutics (2017) DOI: 10.1016/j.ijpharm.2017.11.045
  2. Konrad Heinrich Engelhardt, Shashank Reddy Pinnapireddy, Elias Baghdan, Jarmila Jedelská, Udo Bakowsky Transfection studies with colloidal systems containing highly purified bipolar tetraether lipids from Sulfolobus acidocaldarius, Archaea (2017) DOI: 10.1155/2017/8047149
  3. Ylä-Herttuala S. ADA-SCID gene therapy endorsed by European medicines agency for marketing authorization. Molecular Therapy. 2016; 24: 1013-1014.
  4. Aiuti A. Advances in gene therapy for ADA-deficient SCID. Current opinion in molecular therapeutics. 2002; 4: 515-522.
  5. Jeppson JO, Laurell CB, Franzén B. Agarose gel electrophoresis. Clinical Chemistry. 1979; 25: 629-638.
  6. Montalbetti CA, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005; 61: 10827-10852.
  7. Brierley CL, Brierley JA. Anaerobic reduction of molybdenum by Sulfolobus species. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie. 1982; 3: 289-294.
  8. Hopmans EC, Schouten S, Pancost RD, van der Meer MT, Sinninghe Damsté JS. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry. 2000; 14: 585-589.
  9. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Bushman FD. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PloS one. 2013; 8: e66019.
  10. Benvegnu T, Réthoré G, Brard, M, Richter W, Plusquellec D. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chemical Communications. 2003; 5536-5538.
  11. Réthoré G, Montier T, Le Gall T, Delepine P, Cammas-Marion S, Lemiègre L, Benvegnu, T. Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems. Chemical Communications. 2007; 2054-2056.
  12. Byrdwell WC. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001; 36: 327-346.
  13. Binnig G, Quate CF, Gerber, C. Atomic force microscope. Physical review letters. 1986; 56: 930.
  14. Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Dong H. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environmental microbiology. 2013; 15: 1160-1175.
  15. Jain S, Caforio A, Driessen AJ. Biosynthesis of archaeal membrane ether lipids. Frontiers in microbiology. 2014; 5.
  16. Mahmoud G, Jedelská J, Strehlow B, Bakowsky U. Bipolar tetraether lipids derived from thermoacidophilic archaeon Sulfolobus acidocaldarius for membrane stabilization of chlorin e6 based liposomes for photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 95: 88-98.
  17. Kingston RE, Chen CA, Rose JK. Calcium phosphate transfection. Current protocols in molecular biology. 2003; 9-1
  18. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. Journal of Controlled Release. 2006; 116: 255-264.
  19. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. Journal of nanoscience and nanotechnology. 2004; 4: 876- 881.
  20. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: methods and protocols. 2001; 237-245.
  21. Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Human gene therapy. 1996; 7: 2123-2133.
  22. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Mahnke Y D. Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine. 2014; 371: 1507-1517.
  23. Szoka Jr F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual review of biophysics and bioengineering. 1980; 9: 467- 508.
  24. Kumar VV. Complementary molecular shapes and additivity of the packing parameter of lipids. Proceedings of the National Academy of Sciences. 1991; 88: 444-448.
  25. Pinnapireddy SR, Duse L, Strehlow B, Schäfer J, Bakowsky U. Composite liposome- PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids and Surfaces B: Biointerfaces. 2017; 158: 93-101.
  26. Pinnapireddy SR, Duse L, Strehlow B, Schäfer J, Bakowsky U. Composite liposome- PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids and Surfaces B: Biointerfaces. 2017; 158: 93-101.
  27. Damsté JSS, Schouten S, Hopmans EC, van Duin AC, Geenevasen JA. Crenarchaeol the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research. 2002; 43: 1641-1651.
  28. Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts: BI. 2011; 1: 23.
  29. Schenborn ET, Goiffon V. DEAE-dextran transfection of mammalian cultured cells. Transcription Factor Protocols. 2000; 147-153.
  30. Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology. 1987; 5: 27- 37.
  31. Zhang L, Li L, Hoffmann GA, Hoffman RM. Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochemical and biophysical research communications. 1996; 220: 633-636.
  32. Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. The journal of gene medicine. 2001; 3: 362-372.
  33. Zaiss AK, Liu Q, Bowen, GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. Journal of virology. 2002; 76: 4580-4590.
  34. Tornabene TG, Langworthy TA. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science. 1979; 203: 51-53.
  35. Yang JP, Huang L. Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene therapy. 1996; 3: 542-548.
  36. Takai K, Komatsu T, Inagaki F, Horikoshi K. Distribution of archaea in a black smoker chimney structure. Applied and Environmental Microbiology. 2001; 67: 3618-3629.
  37. Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation. 2000.
  38. Alamelu, S, Rao KP. Effect of surfactants on the stability of modified egg-yolk phosphatidyl choline liposomes. Journal of microencapsulation. 1990; 7: 541-551.
  39. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica. 2003; 177: 437-447.
  40. Ho CS, Lam,CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, Tai HL. Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical Biochemist Reviews. 2003; 24: 3.
  41. Koga Y, Nishihara M, Morii, H, Akagawa-Matsushita M. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiological Reviews. 1993; 57: 164-182.
  42. Iwabe N, Kuma KI, Hasegawa M, Osawa S, Miyata T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proceedings of the National Academy of Sciences. 1989; 86: 9355-9359.
  43. Fletcher JC.Evolution of ethical debate about human gene therapy. Human gene therapy. 1990; 1: 55-68.
  44. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine. 2005; 7: 657-663.
  45. Nishihara M, Koga Y. Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. The Journal of Biochemistry. 1987; 101: 997- 1005.
  46. Bode ML, Buddoo SR, Minnaar SH, du Plessis CA. Extraction, isolation and NMR data of the tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus harvested from a bioleaching reactor. Chemistry and physics of lipids. 2008; 154: 94- 104.
  47. Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL, Lou J. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene therapy. 2003; 10: 2013-2019.
  48. Factors determining the superior performance of lipid/DNA/protammine nanoparticles over lipoplexes. Journal of medicinal chemistry. 2011; 54: 4160-4171.
  49. Marques SM, Esteves da Silva JC. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB life. 2009; 61: 6-17.
  50. Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular therapy. 2005; 11: 336-347.
  51. Schlichtenbrede FC, Sarra GM, Ali RR, Wiedemann P, Reichel MB. Fortschritte in der somatischen Gentherapie von Netzhautdegenerationen am Tiermodell. Der Ophthalmologe. 2002; 99: 259-265.
  52. Antonopoulos E, Freisleben HJ, Krisnamurti DGB, Estuningtyas A, Mulyanto C, Ridwan, R, Freisleben SKU. Fractionation and purification of membrane lipids from the archaeon Thermoplasma acidophilum DSM 1728/10217. Separation and Purification Technology. 2013; 110: 119-126.
  53. Manthorpe M, Cornefert-Jensen F, Hartikka J, Felgner J, Rundell A, Margalith M, Dwarki V. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Human gene therapy. 1993; 4: 419-431.
  54. Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science. 2004; 303: 333-333.
  55. Niidome T, Huang, L. Gene therapy progress and prospects: nonviral vectors. Gene therapy. 2002; 9: 1647.
  56. Verma IM, Somia N. Gene therapy-promises, problems and prospects. Nature. 1997; 389: 239-242.
  57. Chalfie M. Green fluorescent protein. Photochemistry and photobiology. 1995; 62: 651- 656.
  58. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Human gene therapy. 1999; 10: 2451-2459.
  59. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Willson JK. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004; 304; 554-554.
  60. Sprong H, van der Sluijs P, van Meer G. How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology. 2001; 2: 504-513.
  61. Resnik DB, Langer PJ. Human germline gene therapy reconsidered. Human gene therapy. 2001; 12: 1449-1458.
  62. Swain M, Brisson JR, Sprott GD, Cooper FP, Patel GB. Identification of β-l-gulose as the sugar moiety of the main polar lipid of Thermoplasma acidophilum. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1997; 1345: 56-64.
  63. Felgner PL, Tsai YJ, Sukhu L, Wheeler CJ, Manthorpe M, Marshall J, Cheng SH. Improved cationic lipid formulations for in vivo gene therapy. Annals of the New York Academy of Sciences. 1995; 772: 126-139.
  64. Semete B, Booysen LIJ, Kalombo L, Venter JD, Katata L, Ramalapa B, Swai H. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicology and applied pharmacology. 2010; 249: 158-165.
  65. Zuidam NJ, Hirsch-Lerner D, Margulies S, Barenholz Y. Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1999; 1419: 207-220.
  66. Ewert KK, Samuel CE, Safinya CR. Lipid-DNA interactions: structure-function studies of nanomaterials for gene delivery. DNA Interact. Polym. Surfactants. 2008; 377-404.
  67. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. European journal of pharmaceutics and biopharmaceutics. 2013; 85: 427-443.
  68. Schäfer J, Höbel S, Bakowsky U, Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials. 2010; 31: 6892-6900.
  69. Jensen SM, Christensen CJ, Petersen JM, Treusch AH, Brandl M. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: an approach for oral drug delivery?. International journal of pharmaceutics. 2015; 493: 63-69.
  70. Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hügler M, Fuchs G. Malonyl- coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. Journal of bacteriology. 2006; 188: 8551-8559.
  71. Ertel, A, Marangoni AG, Marsh J, Hallett FR, Wood JM. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophysical journal. 1993; 64: 426-434.
  72. Hallett FR, Marsh J, Nickel BG, Wood JM. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophysical journal. 1993; 64: 435-442.
  73. Oren A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology. 2002; 39: 1-7.
  74. Cavagnetto F, Relini A, Mirghani Z, Gliozzi A, Bertoia D, Gambacorta A. Molecular packing parameters of bipolar lipids. Biochimica et Biophysica Acta (BBA)-
  75. Edward JT. Molecular volumes and the Stokes-Einstein equation. J. chem. Educ. 1970; 47: 261.
  76. Lai E, van Zanten JH. Monitoring DNA/poly-L-lysine polyplex formation with time- resolved multiangle laser light scattering. Biophysical journal. 2001; 80: 864-873.
  77. Van Tendeloo VF, Ponsaerts P, Berneman ZN. mRNA-based gene transfer as a tool for gene and cell therapy. Current opinion in molecular therapeutics. 2007; 9: 423-431.
  78. Maret G, Wolf PE. Multiple light scattering from disordered media. The effect of Brownian motion of scatterers. Zeitschrift für Physik B Condensed Matter. 1987; 65: 409- 413.
  79. Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW, Huard J. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. The Journal of rheumatology.2002; 29: 1920-1930.
  80. Siesler HW, Ozaki Y, Kawata S, Heise HM (Eds.). Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons.2008.
  81. Pennings G. New Belgian law on research on human embryos: trust in progress through medical science. Journal of assisted reproduction and genetics. 2003; 20: 343-346.
  82. Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MC, Engberts JB, Hoekstra D. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Molecular therapy. 2005; 11: 801-810.
  83. Schatzlein AG. Non-viral vectors in cancer gene therapy: principles and progress. Anti- Cancer Drugs. 2001; 12: 275-304.
  84. Parmentier J, Thewes B, Gropp F, Fricker G. Oral peptide delivery by tetraether lipid liposomes. International journal of pharmaceutics. 2011; 415: 150-157.
  85. Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJ, Reider PJ. Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. The Journal of Organic Chemistry. 1990; 64: 2564-2566.
  86. Takai K, Sugai A, Itoh T, Horikoshi K. Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. International Journal of Systematic and Evolutionary Microbiology. 2000; 50: 489-500.
  87. Ledley FD. Pharmaceutical approach to somatic gene therapy. Pharmaceutical research. 1996; 13: 1595-1614.
  88. Mahmoud G, Jedelská J, Strehlow B, Omar S, Schneider M, Bakowsky U. Photo- responsive tetraether lipids based vesicles for prophyrin mediated vascular targeting and direct phototherapy. Colloids and Surfaces B: Biointerfaces. 2017; 159: 720-728.
  89. Denis-Mize KS, Dupuis M, MacKichan ML, Singh M, Doe B, O'Hagan D, Ott G. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene therapy. 2000; 7; 2105.
  90. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. Journal of Experimental Medicine. 1998; 188: 1075-1082.
  91. Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. 1987.
  92. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics. 2003; 4: 346-358.
  93. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008; 29: 3477-3496.
  94. Rahib L, Smith BD, Aizenberg R, Rosenzweig, AB, Fleshman, JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research. 2014; 74: 2913-2921.
  95. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991; 64: 867-869.
  96. Lo SL, Chang EL. Purification and characterization of a liposomal-forming tetraether lipid fraction. Biochemical and biophysical research communications. 1990; 167: 238- 243.
  97. Lo SL, Chang EL. Purification and characterization of a liposomal-forming tetraether lipid fraction. Biochemical and biophysical research communications. 1990; 167: 238- 243.
  98. Knappy CS, Chong JP, Keely BJ. Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry. Journal of the American Society for Mass Spectrometry. 2009; 20: 51-59.
  99. Barns SM, Fundyga RE, Jeffries MW, Pace NR. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of sciences. 1994; 91: 1609-1613.
  100. Gilmore SF, Yao, AI, Tietel Z, Kind T, Facciotti MT, Parikh AN. Role of squalene in the organization of monolayers derived from lipid extracts of Halobacterium salinarum. Langmuir. 2013: 29: 7922-7930.
  101. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor-or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001; 20: 5865-5877.
  102. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer gene therapy. 2005; 12: 217-227.
  103. Helenius A, Simons K. Solubilization of membranes by detergents. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 1975; 415: 29-79.
  104. De Castro ML, Garcıa-Ayuso LE. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica chimica acta. 1998; 369: 1-10.
  105. Jeffreys AJ, Royle NJ, Wilson V, Wong, Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988; 332: 278- 281.
  106. Parmentier J, Becker MM, Heintz U, Fricker G. Stability of liposomes containing bio- enhancers and tetraether lipids in simulated gastro-intestinal fluids. International journal of pharmaceutics. 2011; 405: 210-217.
  107. Glazer AN, Rye HS. Stable dye-DNA intercalation complexes as reagents for high- sensitivity fluorescence detection. Nature. 1992; 359: 859-861.
  108. Ewe A, Schaper A, Barnert S, Schuber, R, Temme A, Bakowsky U, Aigner A. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta biomaterialia. 2014; 10: 2663-2673.
  109. Ulrih NP, Gmajner D, Raspor, P. Structural and physicochemical properties of polar lipids from thermophilic archaea. Applied microbiology and biotechnology. 2009; 84: 249-260.
  110. Safinya CR. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Current opinion in structural biology. 2001; 11: 440-448.
  111. Lindahl T. Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutation Research/Reviews in Mutation Research. 2000; 462: 129-135.
  112. Lecollinet G, Auzély-Velty R, Danel M, Benvegnu T, Mackenzie G, Goodby JW, Plusquellec D. Synthetic approaches to novel archaeal tetraether glycolipid analogues. The Journal of organic chemistry. 1999; 64: 3139-3150.
  113. Knoll A, Magerle R, Krausch G. Tapping mode atomic force microscopy on polymers: where is the true sample surface?. Macromolecules. 2001; 34: 4159-4165.
  114. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science translational medicine. 2011; 3: 95ra73- 95ra73.
  115. Özcetin A. Tetraether lipid Liposomes for the Preparation of Novel Liposomal Drug Carriers. Dissertation (2011).
  116. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer discovery. 2013; 3: 388-398.
  117. Walker JM. The bicinchoninic acid (BCA) assay for protein quantitation. Basic protein and peptide protocols. 1994; 5-8.
  118. Wilson JM. Gendicine: The first commercial gene therapy product; Chinese translation of editorial. Human gene therapy. 2005; 16: 1014-1015.
  119. De Rosa M, Gambacorta A. The lipids of archaebacteria. Progress in lipid research. 1988; 27: 153-175.
  120. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1977; 470: 185-201.
  121. Haldane JBS. The rate of spontaneous mutation of a human gene. Current Science. 1992; 63: 589-598.
  122. Segerer A, Langworthy TA, Stetter KO. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Systematic and Applied Microbiology. 1988; 10: 161-171.
  123. Searcy, D. G. (1976). Thermoplasma acidophilum: intracellular pH and potassium concentration. Biochimica et Biophysica Acta (BBA)-General Subjects, 451(1), 278-286.
  124. Eguchi T, Ibaragi K, Kakinuma K. Total synthesis of archaeal 72-membered macrocyclic tetraether lipids. The Journal of organic chemistry. 1998; 63: 2689-2698.
  125. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences. 1990; 87: 4576-4579.
  126. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release. 2006; 114: 100-109.
  127. Balakireva Larissa A, Maxim Yu Balakirev, Transfection of Eukaryotic Cells with Bipolar Cationic Derivatives of Tetraether Lipid, Membrane Structure in Disease and Drug Therapy (2000) 153.
  128. Wehling P, Schulitz KP, Robbins PD, Evans CH, Reinecke JA. Transfer of genes to chondrocytic cells of the lumbar spine: proposal for a treatment strategy of spinal disorders by local gene therapy. Spine. 1997; 22: 1092-1097.
  129. Konrad Heinrich Engelhardt, Shashank Reddy Pinnapireddy, Udo Bakowsky Lipoplexes containing bipolar tetraether lipids for transfection of cancer cell lines 24th Liposome Workshop, Ameland, Netherlands, 5.-8. Oktober 2015 (Vortrag)
  130. Konrad Heinrich Engelhardt, Shashank Reddy Pinnapireddy, Udo Bakowsky Lipoplexes containing bipolar tetraether lipids for transfection of cancer cell lines Controlled Release Society (CRS), Edinburgh, Scotland, 26.-29. Juli 2015 (Poster)
  131. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Oberdörster G. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology. 2011; 287: 99-104.
  132. Uda I, Sugai A, Itoh YH, Itoh T. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids. 2001; 36: 103-105.
  133. Antonietti M, Förster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Advanced Materials. 2003;15: 1323-1333.
  134. Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1986; 858: 161-168.
  135. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine. 2001;7: 33-40.
  136. Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. Journal of colloid and interface science. 2003; 261: 402-410.
  137. Edelstein M. Number of gene therapy clinical trials approved worldwide 1989-2016, available at http://www.wiley.com/legacy/wileychi/genmed/clinical/ (accessed on October 14, 2017)
  138. Phylogenetic tree of life, available at: https://tree.opentreeoflife.org/opentree/argus/opentree9.1@ott93302, (accessed on 13


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten