Publikationsserver der Universitätsbibliothek Marburg

Titel:Multiple ionization in strong laser fields
Autor:Thiede, Jan
Weitere Beteiligte: Eckhardt, Bruno (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0094
URN: urn:nbn:de:hebis:04-z2018-00948
DOI: https://doi.org/10.17192/z2018.0094
DDC:530 Physik
Titel (trans.):Mehrfachionisation in starken Laserfeldern
Publikationsdatum:2018-03-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
ultrashort laser pulses, moment, Tunnelionisation, Dreifachionisation, tunneling ionization, Rückstreumechanismus, ionization yields, rescattering mechanism, nichtsequentielle Mehrfachionisation, ultrakurze Laserpulse, triple ionization, nonsequential multiple ionization, Ionisationsausbeuten

Summary:
With the ultrashort laser pulses available today, intensities which exceed the binding electrical field of an atom by several orders of magnitude are routinely achieved. As a consequence, it is possible to remove (ionize) one electron or several electrons from an atom within one pulse. The intensity dependence of laser-induced ionization is highly nonlinear and is mostly studied with chemically inert noble gases, using pulses with frequencies in the visible or near-infrared range. For intensities above 10^14 W/cm^2 and femtosecond pulse durations, single ionization (A->A+) can be described very well as a tunneling process with subsequent classical motion of the electron in the laser field. Ionization of \textit{two} electrons can be expressed in terms of two independent single ionization steps (sequential double ionization, A->A+->A2+) if the intensity is high enough (e.g. I>10^15 W/cm^2 for neon). However, for smaller intensities, the measured A2+ ion yields are several orders of magnitude larger than those expected from the sequential mechanism and the transition to the sequential regime leads to a characteristic knee structure in the intensity dependence of the yield. The ionization pathway responsible for the increased production of A2+ ions, i.e. the simultaneous ejection of two electrons (A->A2+), is called nonsequential double ionization (NSDI). For the description of this process, a semiclassical rescattering mechanism has proved successful. According to the rescattering mechanism, an electron tunnels from the atomic potential, is accelerated by the laser field and driven back to the ion where, in an inelastic collision, a second electron is released. With respect to the final momenta of the ionized electrons, the rescattering mechanism also allows for quantitative predictions which are in good agreement with experimental results. The mechanisms of double ionization can be generalized to ionization of an arbitrary number of electrons, with all pathways deviating from the sequential one being referred to as nonsequential multiple ionization. An understanding of triple ionization is of special interest since it is the first case for which several competing nonsequential pathways exist, i.e. simultaneous ionization of three electrons described by the rescattering mechanism (I: A->A3+) and the two combinations of single ionization with NSDI by rescattering (II: A->A+->A3+ and III: A->A2+->A3+). Considering the nonlinear dependence of the tunneling probability on the ionization energies of the participating charge states, one expects that only the pathways I and II contribute significantly to the A3+ yield in the nonsequential intensity regime (e.g. I<10^16 W/cm^2 for neon). Furthermore, one expects two knee structures in the A3+ yield which indicate the transition from I to II and from II to sequential triple ionization (IV: A->A+->A2+->A3+), respectively. Based on the predictions of the rescattering mechanism, these transitions should also manifest themselves in the momentum distributions of the A3+ ions. Since experiments could only partially confirm the above expectations, a detailed theoretical investigation of triple ionization is desirable. In this work, quantum mechanical simulations of triple ionization with laser pulses of visible and near-infrared frequencies are presented. To allow for efficient numerical calculations, the motion of the electrons is restricted to a three-dimensional subspace of the full configuration space. This modeling approach has already proved successful in the qualitative investigation of double ionization. From the quantum mechanical wave function of the model, several quantities are calculated which can also be measured experimentally (ion yields, electron and ion momentum distributions) and their dependence on the laser parameters (intensity, frequency, pulse duration) is studied. The main goal of this work is to understand the pathways and mechanisms of triple ionization in the different intensity regimes. For this purpose, we first study the ion yields as a function of intensity. Using one- and two-electron approximations, the yields of the pathways II - IV can be written as products of the yields of the intermediate charge states. This way, it is possible to quantitatively understand the A3+ yields in a wide range of intensities. To quantify the remaining pathway I, rescattering of an electron is analyzed classically (by performing trajectory studies) and quantum mechanically (by considering the time-dependent probability flux). Finally, the insights gained from the product yields and the rescattering analysis are used to interpret the A3+ ion momentum distributions which reflect the change of the prevalent ionization pathway more clearly than the yields. A major result of this work is the importance of classical thresholds for simultaneous multiple ionization. For example, the onset of the regime where the intensity-dependent A3+/A+ yield ratio is approximately constant can be identified with the threshold intensity of simultaneous triple ionization where the energy of the rescattered electron is equal to the sum of the two ionization energies of the A+ ion. Furthermore, the investigation of the A3+ yields indicates that the pathway III plays a much more important role for triple ionization in the nonsequential intensity regime than previously thought. Finally, one has to emphasize the ability of the model to qualitatively reproduce the essential experimental observations on triple ionization.

Bibliographie / References

  1. DiMauro, L., Frolov, M., Ishikawa, K. L., and Ivanov, M. 50 years of optical tunneling. J. Phys. B: At. Mol. Opt. Phys. 47, 200301 (2014).
  2. Ruiz, C., Plaja, L., Roso, L., and Becker, A. Ab initio calculation of the double ioniza- tion of helium in a few-cycle laser pulse beyond the one-dimensional approximation. Phys. Rev. Lett. 96, 053001 (2006).
  3. Loughan, A. M. Above and below the Wannier threshold. In Adv. Chem. Phys. (edited by I. Prigogine and S. A. Rice), volume 114, 311-418 (John Wiley & Sons, Inc., 2000).
  4. Milošević, D. B., Paulus, G. G., Bauer, D., and Becker, W. Above-threshold ionization by few-cycle pulses. J. Phys. B: At. Mol. Opt. Phys. 39, R203 (2006).
  5. Gallagher, T. F. Above-threshold ionization in low-frequency limit. Phys. Rev. Lett. 61, 2304 (1988).
  6. Corkum, P. B., Burnett, N. H., and Brunel, F. Above-threshold ionization in the long- wavelength limit. Phys. Rev. Lett. 62, 1259 (1989).
  7. Beran, L. A classical analysis of double ionization of helium in ultrashort laser pulses. Ph.D. thesis, Philipps-Universität Marburg (2014).
  8. Delone, N. B. and Krainov, V. P. AC stark shift of atomic energy levels. Phys.-Usp. 42, 669 (1999).
  9. Yu, C.-X., Liu, S.-B., Shu, X.-F., Song, H.-Y., and Yang, Z. A modified rate equation for the propagation of a femtosecond laser pulse in field-ionizing medium. Opt. Express 21, 5413 (2013).
  10. Richter, K. and Wintgen, D. Analysis of classical motion on the Wannier ridge. J. Phys. B: At. Mol. Opt. Phys. 23, L197 (1990).
  11. Bhardwaj, V. R., Aseyev, S. A., Mehendale, M., Yudin, G. L., Villeneuve, D. M., Rayner, D. M., Ivanov, M. Y., and Few cycle dynamics of multiphoton double ion- ization. Phys. Rev. Lett. 86, 3522 (2001).
  12. Heather, R. and Metiu, H. An efficient procedure for calculating the evolution of the wave function by fast Fourier transform methods for systems with spatially extended wave function and localized potential. J. Chem. Phys. 86, 5009 (1987).
  13. Monmayrant, A., Weber, S., and Chatel, B. A newcomer's guide to ultrashort pulse shaping and characterization. J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
  14. Ho, P. J. and Eberly, J. H. Argon-like three-electron trajectories in intense-field double and triple ionization. Opt. Express 15, 1845 (2007).
  15. Langhoff, P. W., Epstein, S. T., and Karplus, M. Aspects of time-dependent perturba- tion theory. Rev. Mod. Phys. 44, 602 (1972).
  16. Grobe, R., Haan, S., and Eberly, J. A split-domain algorithm for time-dependent multi-electron wave functions. Comp. Phys. Comm. 117, 200 (1999).
  17. Zhou, Y., Liao, Q., and Lu, P. Asymmetric electron energy sharing in strong-field double ionization of helium. Phys. Rev. A 82, 053402 (2010a).
  18. Kuchiev, M. Y. Atomic antenna. JETP Lett. 45, 404 (1987).
  19. Kramida, A., Ralchenko, Y., and Reader, J. NIST Atomic Spectra Database (Version 5.4). National Institute of Standards and Technology, Gaithersburg, MD. http:// physics.nist.gov/asd. Accessed: 2017-10-26 (2016).
  20. de Jesus, V. L. B., Feuerstein, B., Zrost, K., Fischer, D., Rudenko, A., Afaneh, F., Schröter, C. D., Moshammer, R., and Ullrich, J. Atomic structure dependence of nonsequential double ionization of He, Ne and Ar in strong laser pulses. J. Phys. B: At. Mol. Opt. Phys. 37, L161 (2004).
  21. Camus, N., Fischer, B., Kremer, M., Sharma, V., Rudenko, A., Bergues, B., Kübel, M., Johnson, N. G., Kling, M. F., Pfeifer, T., Ullrich, J., and Moshammer, R. Attosecond correlated dynamics of two electrons passing through a transition state. Phys. Rev. Lett. 108, 073003 (2012).
  22. Corkum, P. B. and Krausz, F. Attosecond science. Nat. Phys. 3, 381 (2007).
  23. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132 (1905).
  24. Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys., Lpz. 401, 273 (1931).
  25. Staudte, A., Ruiz, C., Schöffler, M., Schössler, S., Zeidler, D., Weber, T., Meckel, M., Villeneuve, D. M., Corkum, P. B., Becker, A., and Dörner, R. Binary and recoil collisions in strong field double ionization of helium. Phys. Rev. Lett. 99, 263002 (2007).
  26. Singh, D., Varshni, Y. P., and Dutt, R. Bound eigenstates for two truncated Coulomb potentials. Phys. Rev. A 32, 619 (1985).
  27. Powell, P. D. Calculating determinants of block matrices. ArXiv e-prints 1112.4379 (2011).
  28. Davis, P. J. Circulant matrices (Wiley New York, 1979).
  29. Ho, P. J. and Eberly, J. H. Classical effects of laser pulse duration on strong-field double ionization. Phys. Rev. Lett. 95, 193002 (2005).
  30. Eckhardt, B. and Sacha, K. Classical threshold behaviour in a (1+1)-dimensional model for double ionization in strong fields. J. Phys. B: At. Mol. Opt. Phys. 39, 3865 (2006).
  31. Ye, D. F., Liu, X., and Liu, J. Classical trajectory diagnosis of a fingerlike pattern in the correlated electron momentum distribution in strong field double ionization of helium. Phys. Rev. Lett. 101, 233003 (2008).
  32. Liu, W.-C. and Clark, C. W. Closed-form solutions of the Schrödinger equation for a model one-dimensional hydrogen atom. J. Phys. B: At. Mol. Opt. Phys. 25, L517 (1992).
  33. Eichmann, U., Dörr, M., Maeda, H., Becker, W., and Sandner, W. Collective multi- electron tunneling ionization in strong fields. Phys. Rev. Lett. 84, 3550 (2000).
  34. Zhou, Y., Liao, Q., and Lu, P. Complex sub-laser-cycle electron dynamics in strong-field nonsequential triple ionization. Opt. Express 18, 16025 (2010b).
  35. Strickland, D. and Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447 (1985).
  36. Weber, T., Giessen, H., Weckenbrock, M., Urbasch, G., Staudte, A., Spielberger, L., Jagutzki, O., Mergel, V., Vollmer, M., and Dörner, R. Correlated electron emission in multiphoton double ionization. Nature 405, 658 (2000a).
  37. Tang, Q., Huang, C., Zhou, Y., and Lu, P. Correlated multielectron dynamics in mid- infrared laser pulse interactions with neon atoms. Opt. Express 21, 21433 (2013).
  38. Rudenko, A., de Jesus, V. L. B., Ergler, T., Zrost, K., Feuerstein, B., Schröter, C. D., Moshammer, R., and Ullrich, J. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm. Phys. Rev. Lett. 99, 263003 (2007).
  39. Liu, W.-C., Eberly, J. H., Haan, S. L., and Grobe, R. Correlation effects in two-electron model atoms in intense laser fields. Phys. Rev. Lett. 83, 520 (1999).
  40. Brabec, T., Ivanov, M. Y., and Corkum, P. B. Coulomb focusing in intense field atomic processes. Phys. Rev. A 54, R2551 (1996).
  41. Rost, J. M. Critical phenomena in atomic physics. Physica E 9, 467 (2001).
  42. Campi, F., Coudert-Alteirac, H., Miranda, M., Rading, L., Manschwetus, B., Rudawski, P., L'Huillier, A., and Johnsson, P. Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments. Rev. Sci. Instrum. 87, 023106 (2016).
  43. Silvester, J. R. Determinants of block matrices. Math. Gaz. 84, 460 (2000).
  44. de Bohan, A., Piraux, B., Ponce, L., Taïeb, R., Véniard, V., and Maquet, A. Direct and indirect pathways in strong field atomic ionization dynamics. Phys. Rev. Lett. 89, 113002 (2002).
  45. Parker, J. S., Moore, L. R., Meharg, K. J., Dundas, D., and Taylor, K. T. Double- electron above threshold ionization of helium. J. Phys. B: At. Mol. Opt. Phys. 34, L69 (2001).
  46. Dundas, D., Taylor, K. T., Parker, J. S., and Smyth, E. S. Double-ionization dynamics of laser-driven helium. J. Phys. B: At. Mol. Opt. Phys. 32, L231 (1999).
  47. Walker, B., Mevel, E., Yang, B., Breger, P., Chambaret, J. P., Antonetti, A., DiMauro, L. F., and Agostini, P. Double ionization in the perturbative and tunneling regimes. Phys. Rev. A 48, R894 (1993).
  48. Zhang, Z., Bai, L., and Zhang, J. Double ionization of Ar below the recollision threshold intensity. Phys. Rev. A 90, 023410 (2014).
  49. Véniard, V., Taïeb, R., and Maquet, A. Double ionization of excited helium states by an intense laser field: spin and dressing effects. J. Phys. B: At. Mol. Opt. Phys. 36, 4145 (2003).
  50. Chen, S., Ruiz, C., and Becker, A. Double ionization of helium by intense near-infrared and VUV laser pulses. Phys. Rev. A 82, 033426 (2010).
  51. Liu, Y., Ye, D., Liu, J., Rudenko, A., Tschuch, S., Dürr, M., Siegel, M., Morgner, U., Gong, Q., Moshammer, R., and Ullrich, J. Electron correlation dynamics of strong- field double ionization of atoms below recollision threshold. J. Phys.: Conf. Ser. 276, 012004 (2011).
  52. Lappas, D. G. and van Leeuwen, R. Electron correlation effects in the double ionization of He. J. Phys. B: At. Mol. Opt. Phys. 31, L249 (1998).
  53. de Morisson Faria, C. F. and Liu, X. Electron-electron correlation in strong laser fields. J. Mod. Opt. 58, 1076 (2011).
  54. Weckenbrock, M., Becker, A., Staudte, A., Kammer, S., Smolarski, M., Bhardwaj, V. R., Rayner, D. M., Villeneuve, D. M., Corkum, P. B., and Dörner, R. Electron- electron momentum exchange in strong field double ionization. Phys. Rev. Lett. 91, 123004 (2003).
  55. Kästner, A., Saalmann, U., and Rost, J. M. Electron-energy bunching in laser-driven soft recollisions. Phys. Rev. Lett. 108, 033201 (2012a).
  56. Mulliken, R. S. Electronic structures of polyatomic molecules and valence. IV. electronic states, quantum theory of the double bond. Phys. Rev. 43, 279 (1933).
  57. Tong, X. M. and Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B: At. Mol. Opt. Phys. 38, 2593 (2005).
  58. Hall, R. L., Saad, N., Sen, K. D., and Ciftci, H. Energies and wave functions for a soft-core Coulomb potential. Phys. Rev. A 80, 032507 (2009).
  59. Delone, N. B. and Krainov, V. P. Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation. J. Opt. Soc. Am. B 8, 1207 (1991).
  60. Kästner, A., Saalmann, U., and Rost, J. M. Energy bunching in soft recollisions revealed with long-wavelength few-cycle pulses. J. Phys. B: At. Mol. Opt. Phys. 45, 074011 (2012b).
  61. Bauer, D. and Mulser, P. Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrödinger-equation calculations. Phys. Rev. A 59, 569 (1999).
  62. Chen, H. Excursions in Classical Analysis. Classroom Resource Materials (Mathemat- ical Association of America, 2010).
  63. Wang, X., Tian, J., and Eberly, J. H. Extended virtual detector theory for strong-field atomic ionization. Phys. Rev. Lett. 110, 243001 (2013).
  64. Dimitrijević, M., Grujić, P., and Simonović, N. Fourfold ionization by electrons near the threshold. Z. Phys. D: At. Mol. Clust. 15, 203 (1990).
  65. Thiede, J. H. Frequency dependence of double ionization in strong laser fields. Diplo- marbeit, Philipps-Universität Marburg (2011).
  66. Chin, S. L. From multiphoton to tunnel ionization. In Advances In Multi-Photon Processes And Spectroscopy, 249-271 (World Scientific, 2004).
  67. Rudenko, A., Ergler, T., Zrost, K., Feuerstein, B., de Jesus, V. L. B., Schröter, C. D., Moshammer, R., and Ullrich, J. From non-sequential to sequential strong-field mul- tiple ionization: identification of pure and mixed reaction channels. J. Phys. B: At. Mol. Opt. Phys. 41, 081006 (2008a).
  68. Weckenbrock, M., Zeidler, D., Staudte, A., Weber, T., Schöffler, M., Meckel, M., Kam- mer, S., Smolarski, M., Jagutzki, O., Bhardwaj, V. R., Rayner, D. M., Villeneuve, D. M., Corkum, P. B., and Dörner, R. Fully differential rates for femtosecond mul- tiphoton double ionization of neon. Phys. Rev. Lett. 92, 213002 (2004).
  69. Wigner, E. P. Group theory and its application to the quantum mechanics of atomic spectra (Academic Press, 1959), expanded and improved edition.
  70. Parker, J. S., Doherty, B. J. S., Taylor, K. T., Schultz, K. D., Blaga, C. I., and DiMauro, L. F. High-energy cutoff in the spectrum of strong-field nonsequential double ionization. Phys. Rev. Lett. 96, 133001 (2006).
  71. Dietrich, P., Burnett, N. H., Ivanov, M., and Corkum, P. B. High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, R3585 (1994).
  72. Krause, J. L., Schafer, K. J., and Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535 (1992).
  73. Collins, P., Ezra, G. S., and Wiggins, S. Index k saddles and dividing surfaces in phase space with applications to isomerization dynamics. J. Chem. Phys. 134, 244105 (2011).
  74. DiChiara, A. D., Sistrunk, E., Blaga, C. I., Szafruga, U. B., Agostini, P., and DiMauro, L. F. Inelastic scattering of broadband electron wave packets driven by an intense midinfrared laser field. Phys. Rev. Lett. 108, 033002 (2012).
  75. Ho, P. J. and Eberly, J. H. In-plane theory of nonsequential triple ionization. Phys. Rev. Lett. 97, 083001 (2006).
  76. Brabec, T. and Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000).
  77. Lein, M., Gross, E. K. U., and Engel, V. Intense-field double ionization of helium: Identifying the mechanism. Phys. Rev. Lett. 85, 4707 (2000).
  78. Rudenko, A., Ergler, T., Zrost, K., Feuerstein, B., de Jesus, V. L. B., Schröter, C. D., Moshammer, R., and Ullrich, J. Intensity-dependent transitions between different pathways of strong-field double ionization. Phys. Rev. A 78, 015403 (2008b).
  79. Müller, A. Ion formation processes: Ionization in ion-electron collisions. In Physics of Ion Impact Phenomena (edited by D. Mathur), volume 54 of Springer Series in Chemical Physics, 13-90 (Springer Berlin Heidelberg, 1991).
  80. Scrinzi, A., Geissler, M., and Brabec, T. Ionization above the Coulomb barrier. Phys. Rev. Lett. 83, 706 (1999).
  81. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965).
  82. Perelomov, A., Popov, V., and Terent'ev, M. Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924 (1966).
  83. Ilkov, F. A., Decker, J. E., and Chin, S. L. Ionization of atoms in the tunnelling regime with experimental evidence using Hg atoms. J. Phys. B: At. Mol. Opt. Phys. 25, 4005 (1992).
  84. McGowan, J. W. and Clarke, E. M. Ionization of H(1s) near threshold. Phys. Rev. 167, 43 (1968).
  85. Yamakawa, K., Akahane, Y., Fukuda, Y., Aoyama, M., Inoue, N., and Ueda, H. Ion- ization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 10 19 W/cm 2 . Phys. Rev. A 68, 065403 (2003).
  86. Krainov, V. P. Ionization rates and energy and angular distributions at the barrier- suppression ionization of complex atoms and atomic ions. J. Opt. Soc. Am. B 14, 425 (1997).
  87. Kulander, K. C., Cooper, J., and Schafer, K. J. Laser-assisted inelastic rescattering during above-threshold ionization. Phys. Rev. A 51, 561 (1995).
  88. Taylor, K., Parker, J., Meharg, K., and Dundas, D. Laser-driven helium at 780 nm. Eur. Phys. J. D 26, 67 (2003).
  89. Taylor, K., Parker, J., Dundas, D., Smyth, E., and Vivirito, S. Laser-driven helium in full-dimensionality. Laser Phys. 9, 98 (1998).
  90. Cornaggia, C. and Hering, P. Laser-induced non-sequential double ionization of small molecules. J. Phys. B: At. Mol. Opt. Phys. 31, L503 (1998).
  91. Augst, S., Meyerhofer, D. D., Strickland, D., and Chin, S. L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858 (1991).
  92. L'Huillier, A., Lompré, L. A., Mainfray, G., and Manus, C. Laser pulse duration effects in Xe 2+ ions induced by multiphoton absorption at 0.53 µm. J. Phys. France 44, 1247 (1983a).
  93. Welker, V. and Thiede, J. Lecture notes in Algebra. Philipps-Universität Marburg (2010).
  94. Vvedensky, D. Lecture notes in Group theory. Imperial College London. http://www. cmth.ph.ic.ac.uk/people/d.vvedensky/groups/Chapter6.pdf. Accessed: 2017- 10-26 (2001).
  95. Guo, J. and Liu, X.-s. Lithium ionization by an intense laser field using classical ensemble simulation. Phys. Rev. A 78, 013401 (2008).
  96. Ruiz, C., Plaja, L., and Roso, L. Lithium ionization by a strong laser field. Phys. Rev. Lett. 94, 063002 (2005).
  97. Zon, B. A. Many-electron tunneling in atoms. J. Exp. Theor. Phys. 89, 219 (1999).
  98. Voronov, G. S. and Delone, N. B. Many photon ionization of the xenon atom by ruby laser radiation. Sov. Phys. JETP 23, 54 (1966).
  99. Moshammer, R., Feuerstein, B., Schmitt, W., Dorn, A., Schröter, C. D., Ullrich, J., Rottke, H., Trump, C., Wittmann, M., Korn, G., Hoffmann, K., and Sandner, W. Momentum distributions of Ne n+ ions created by an intense ultrashort laser pulse. Phys. Rev. Lett. 84, 447 (2000).
  100. Chowdhury, E. A. and Walker, B. C. Multielectron ionization processes in ultrastrong laser fields. J. Opt. Soc. Am. B 20, 109 (2003).
  101. Kamta, G. L. and Starace, A. F. Multielectron system in an ultrashort, intense laser field: A nonperturbative, time-dependent two-active-electron approach. Phys. Rev. A 65, 053418 (2002).
  102. Taylor, K. T. and Dundas, D. Multiphoton absorption by multielectron atoms. Phil. Trans. R. Soc. Lond. A 357, 1331 (1999).
  103. Liu, Y., Ye, D., Liu, J., Rudenko, A., Tschuch, S., Dürr, M., Siegel, M., Morgner, U., Gong, Q., Moshammer, R., and Ullrich, J. Multiphoton double ionization of Ar and Ne close to threshold. Phys. Rev. Lett. 104, 173002 (2010).
  104. Rudati, J., Chaloupka, J. L., Agostini, P., Kulander, K. C., and DiMauro, L. F. Multi- photon double ionization via field-independent resonant excitation. Phys. Rev. Lett. 92, 203001 (2004).
  105. Chin, S. L. and Isenor, N. R. Multiphoton ionization in atomic gases with depletion of neutral atoms. Can. J. Phys. 48, 1445 (1970).
  106. Mainfray, G. and Manus, G. Multiphoton ionization of atoms. Rep. Prog. Phys. 54, 1333 (1991).
  107. Bebb, H. B. and Gold, A. Multiphoton ionization of hydrogen and rare-gas atoms. Phys. Rev. 143, 1 (1966).
  108. Cervenan, M. and Isenor, N. Multiphoton ionization yield curves for Gaussian laser beams. Opt. Comm. 13, 175 (1975).
  109. Alnaser, A. S., Maharjan, C. M., Wang, P., and Litvinyuk, I. V. Multi-photon reso- nant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions. J. Phys. B: At. Mol. Opt. Phys. 39, L323 (2006).
  110. L'Huillier, A., Lompré, L. A., Mainfray, G., and Manus, C. Multiply charged ions formed by multiphoton absorption processes in the continuum. Phys. Rev. Lett. 48, 1814 (1982).
  111. L'Huillier, A., Lompré, L. A., Mainfray, G., and Manus, C. Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 µm. Phys. Rev. A 27, 2503 (1983b).
  112. L'Huillier, A., Lompré, L. A., Mainfray, G., and Manus, C. Multiply charged ions induced by multiphoton absorption processes in rare-gas atoms at 1.064 µm. J. Phys. B: At. Mol. Opt. Phys. 16, 1363 (1983c).
  113. Auguste, T., Monot, P., Lompré, L. A., Mainfray, G., and Manus, C. Multiply charged ions produced in noble gases by a 1 ps laser pulse at λ = 1053 nm. J. Phys. B: At. Mol. Opt. Phys. 25, 4181 (1992).
  114. Talebpour, A., Larochelle, S., and Chin, S. L. Non-sequential and sequential double ionization of NO in an intense femtosecond Ti:sapphire laser pulse. J. Phys. B: At. Mol. Opt. Phys. 30, L245 (1997b).
  115. Liu, X., Rottke, H., Eremina, E., Sandner, W., Goulielmakis, E., Keeffe, K. O., Lez- ius, M., Krausz, F., Lindner, F., Schätzel, M. G., Paulus, G. G., and Walther, H. Nonsequential double ionization at the single-optical-cycle limit. Phys. Rev. Lett. 93, 263001 (2004).
  116. Rottke, H., Liu, X., Eremina, E., Sandner, W., Goulielmakis, E., Keeffe, K. O., Lezius, M., Krausz, F., Lindner, F., Schätzel, M. G., Paulus, G. G., and Walther, H. Non- sequential double ionization in a few-cycle laser pulse: the influence of the carrier- envelope phase. J. Mod. Opt. 53, 149 (2006).
  117. Kübel, M., Betsch, K. J., Kling, N. G., Alnaser, A. S., Schmidt, J., Kleineberg, U., Deng, Y., Ben-Itzhak, I., Paulus, G. G., Pfeifer, T., Ullrich, J., Moshammer, R., Kling, M. F., and Bergues, B. Non-sequential double ionization of Ar: from the single-to the many-cycle regime. New J. Phys. 16, 033008 (2014).
  118. Baier, S., Ruiz, C., Plaja, L., and Becker, A. Nonsequential double ionization of the hydrogen molecule in a few-cycle laser pulse. Phys. Rev. A 74, 033405 (2006).
  119. Talebpour, A., Chien, C.-Y., Liang, Y., Larochelle, S., and Chin, S. L. Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse. J. Phys. B: At. Mol. Opt. Phys. 30, 1721 (1997a).
  120. Feuerstein, B., Moshammer, R., and Ullrich, J. Nonsequential multiple ionization in intense laser pulses: interpretation of ion momentum distributions within the classical 'rescattering' model. J. Phys. B: At. Mol. Opt. Phys. 33, L823 (2000).
  121. Larochelle, S., Talebpour, A., and Chin, S. L. Non-sequential multiple ionization of rare gas atoms in a Ti:sapphire laser field. J. Phys. B: At. Mol. Opt. Phys. 31, 1201 (1998).
  122. Sacha, K. and Eckhardt, B. Nonsequential triple ionization in strong fields. Phys. Rev. A 64, 053401 (2001a).
  123. Augst, S., Talebpour, A., Chin, S. L., Beaudoin, Y., and Chaker, M. Nonsequential triple ionization of argon atoms in a high-intensity laser field. Phys. Rev. A 52, R917 (1995).
  124. Tian, J., Wang, X., and Eberly, J. H. Numerical detector theory for the longitudinal momentum distribution of the electron in strong field ionization. Phys. Rev. Lett. 118, 213201 (2017).
  125. Javanainen, J., Eberly, J. H., and Su, Q. Numerical simulations of multiphoton ion- ization and above-threshold electron spectra. Phys. Rev. A 38, 3430 (1988).
  126. Bouri, C., Malegat, L., Selles, P., and Njock, M. G. K. Numerical test of the Wannier threshold law for double photoionization of helium. J. Phys. B: At. Mol. Opt. Phys. 40, F51 (2007).
  127. Paul, P. M., Toma, E. S., Breger, P., Mullot, G., Augé, F., Balcou, P., Muller, H. G., and Agostini, P. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689 (2001).
  128. Chaloupka, J. L., Rudati, J., Lafon, R., Agostini, P., Kulander, K. C., and DiMauro, L. F. Observation of a transition in the dynamics of strong-field double ionization. Phys. Rev. Lett. 90, 033002 (2003).
  129. Henrichs, K., Waitz, M., Trinter, F., Kim, H., Menssen, A., Gassert, H., Sann, H., Jahnke, T., Wu, J., Pitzer, M., Richter, M., Schöffler, M. S., Kunitski, M., and Dörner, R. Observation of electron energy discretization in strong field double ion- ization. Phys. Rev. Lett. 111, 113003 (2013).
  130. Fittinghoff, D. N., Bolton, P. R., Chang, B., and Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642 (1992).
  131. Grobe, R. and Eberly, J. H. One-dimensional model of a negative ion and its interaction with laser fields. Phys. Rev. A 48, 4664 (1993).
  132. Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002 (1948).
  133. Zhang, Q., Basnayake, G., Winney, A., Lin, Y. F., Debrah, D., Lee, S. K., and Li, W. Orbital-resolved nonadiabatic tunneling ionization. Phys. Rev. A 96, 023422 (2017).
  134. Sacha, K. and Eckhardt, B. Pathways to double ionization of atoms in strong fields. Phys. Rev. A 63, 043414 (2001b).
  135. Sacha, K. and Eckhardt, B. Pathways to non-sequential multiple ionization in strong laser fields. J. Phys. B: At. Mol. Opt. Phys. 36, 3923 (2003).
  136. Eckhardt, B., Prauzner-Bechcicki, J. S., Sacha, K., and Zakrzewski, J. Phase effects in double ionization by strong short pulses. Chem. Phys. 370, 168 (2010).
  137. Freitag, S. Phase space analysis and threshold behaviour of a model for triple ionization in strong static fields. Diplomarbeit, Philipps-Universität Marburg (2014).
  138. Grobe, R. and Eberly, J. H. Photoelectron spectra for a two-electron system in a strong laser field. Phys. Rev. Lett. 68, 2905 (1992).
  139. Yudin, G. L. and Ivanov, M. Y. Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit. Phys. Rev. A 63, 033404 (2001).
  140. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).
  141. Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P., and Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851 (1994b).
  142. Walker, B., Sheehy, B., DiMauro, L. F., Agostini, P., Schafer, K. J., and Kulander, K. C. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227 (1994).
  143. Dong, S., Chen, X., Zhang, J., and Ren, X. Pulse-duration effect in nonsequential double ionization of Ar atoms. Phys. Rev. A 93, 053410 (2016).
  144. Micheau, S., Chen, Z., Le, A.-T., and Lin, C. D. Quantitative rescattering theory for nonsequential double ionization of atoms by intense laser pulses. Phys. Rev. A 79, 013417 (2009).
  145. Bannow, L. C. Quantum calculations of multiple ionization in diatomic molecules. Masterarbeit, Philipps-Universität Marburg (2013).
  146. Prauzner-Bechcicki, J. S., Sacha, K., Eckhardt, B., and Zakrzewski, J. Quantum model for double ionization of atoms in strong laser fields. Phys. Rev. A 78, 013419 (2008).
  147. Ullrich, J., Moshammer, R., Dorn, A., Dörner, R., Schmidt, L. P. H., and Schmidt- Böcking, H. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).
  148. Weber, T., Weckenbrock, M., Staudte, A., Spielberger, L., Jagutzki, O., Mergel, V., Afaneh, F., Urbasch, G., Vollmer, M., Giessen, H., and Dörner, R. Recoil-ion mo- mentum distributions for single and double ionization of helium in strong laser fields. Phys. Rev. Lett. 84, 443 (2000b).
  149. Strohaber, J., Kolomenskii, A. A., and Schuessler, H. A. Reconstruction of ionization probabilities from spatially averaged data in N dimensions. Phys. Rev. A 82, 013403 (2010).
  150. Mourou, G. A., Labaune, C. L., Dunne, M., Naumova, N., and Tikhonchuk, V. T. Rel- ativistic laser-matter interaction: from attosecond pulse generation to fast ignition. Plasma Phys. Control. Fusion 49, B667 (2007).
  151. Paulus, G. G., Becker, W., Nicklich, W., and Walther, H. Rescattering effects in above- threshold ionization: a classical model. J. Phys. B: At. Mol. Opt. Phys. 27, L703 (1994a).
  152. Moshammer, R., Ullrich, J., Feuerstein, B., Fischer, D., Dorn, A., Schröter, C. D., Crespo Lopez-Urrutia, J. R., Hoehr, C., Rottke, H., Trump, C., Wittmann, M., Korn, G., and Sandner, W. Rescattering of ultralow-energy electrons for single ionization of Ne in the tunneling regime. Phys. Rev. Lett. 91, 113002 (2003).
  153. Panfili, R. and Liu, W.-C. Resonances in the double-ionization signal of two-electron model atoms. Phys. Rev. A 67, 043402 (2003).
  154. Rudenko, A., Zrost, K., Schröter, C. D., de Jesus, V. L. B., Feuerstein, B., Moshammer, R., and Ullrich, J. Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime. J. Phys. B: At. Mol. Opt. Phys. 37, L407 (2004).
  155. Eberly, J. H. Scale variation in a one-dimensional model of an atom interacting with a strong laser field. Phys. Rev. A 42, 5750 (1990).
  156. van de Sand, G. and Rost, J. M. Semiclassical description of multiphoton processes. Phys. Rev. A 62, 053403 (2000).
  157. Guo, C., Li, M., Nibarger, J. P., and Gibson, G. N. Single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A 58, R4271 (1998).
  158. Sheehy, B., Lafon, R., Widmer, M., Walker, B., DiMauro, L. F., Agostini, P. A., and Kulander, K. C. Single-and multiple-electron dynamics in the strong-field tunneling limit. Phys. Rev. A 58, 3942 (1998).
  159. Goulielmakis, E., Schultze, M., Hofstetter, M., Yakovlev, V. S., Gagnon, J., Uiberacker, M., Aquila, A. L., Gullikson, E. M., Attwood, D. T., Kienberger, R., Krausz, F., and Kleineberg, U. Single-cycle nonlinear optics. Science 320, 1614 (2008).
  160. Becker, A. and Faisal, F. H. M. S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses. J. Phys. B: At. Mol. Opt. Phys. 32, L335 (1999).
  161. Feit, M. D., Fleck, Jr., J. A., and Steiger, A. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47, 412 (1982).
  162. Hermann, M. R. and Fleck, Jr., J. A. Split-operator spectral method for solving the time-dependent Schrödinger equation in spherical coordinates. Phys. Rev. A 38, 6000 (1988).
  163. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493 (1960).
  164. Liu, Y., Tschuch, S., Rudenko, A., Dürr, M., Siegel, M., Morgner, U., Moshammer, R., and Ullrich, J. Strong-field double ionization of ar below the recollision threshold. Phys. Rev. Lett. 101, 053001 (2008a).
  165. Liu, Y., Tschuch, S., Rudenko, A., Dürr, M., Siegel, M., Morgner, U., Moshammer, R., and Ullrich, J. Strong-field double ionization of Ar below the recollision threshold. Phys. Rev. Lett. 101, 053001 (2008b).
  166. Geltman, S. Strong-field ionization of helium in the independent-electron model. Phys. Rev. A 52, 2468 (1995).
  167. Alnaser, A. S., Comtois, D., Hasan, A. T., Villeneuve, D. M., Kieffer, J.-C., and Litvinyuk, I. V. Strong-field non-sequential double ionization: wavelength dependence of ion momentum distributions for neon and argon. J. Phys. B: At. Mol. Opt. Phys. 41, 031001 (2008).
  168. Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U., and Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).
  169. Cvejanovic, S. and Read, F. H. Studies of the threshold electron impact ionization of helium. J. Phys. B: At. Mol. Phys. 7, 1841 (1974).
  170. Eckhardt, B., Prauzner-Bechcicki, J. S., Sacha, K., and Zakrzewski, J. Suppression of correlated electron escape in double ionization in strong laser fields. Phys. Rev. A 77, 015402 (2008).
  171. Samson, J. A. R. and Angel, G. C. Test of the threshold law for triple photoionization in atomic oxygen and neon. Phys. Rev. Lett. 61, 1584 (1988).
  172. Kossmann, H., Schmidt, V., and Andersen, T. Test of Wannier threshold laws: Double- photoionization cross section in helium. Phys. Rev. Lett. 60, 1266 (1988).
  173. Frigo, M. and Johnson, S. G. The design and implementation of FFTW3. Proc. IEEE 93, 216. Special issue on "Program Generation, Optimization, and Platform Adaptation" (2005).
  174. Grujić, P. The fourfold escape threshold law. Phys. Lett. A 96, 233 (1983).
  175. Grossmann, F. Theoretical femtosecond physics, volume 48 of Springer Series on Atomic, Optical and Plasma Physics (Springer Berlin Heidelberg, 2008).
  176. Becker, W., Liu, X., Ho, P. J., and Eberly, J. H. Theories of photoelectron correlation in laser-driven multiple atomic ionization. Rev. Mod. Phys. 84, 1011 (2012).
  177. Watson, G. XVI. The sum of a series of cosecants. Phil. Mag. Ser. 6 31, 111 (1916).
  178. Watson, G. LVIII. The sum of series of cosecants. Phil. Mag. Ser. 6 45, 577 (1923).
  179. Wannier, G. H. The threshold law for single ionization of atoms or ions by electrons. Phys. Rev. 90, 817 (1953).
  180. Wigner, E. P. The transition state method. Trans. Faraday Soc. 34, 29 (1938).
  181. Rau, A. R. P. The Wannier theory for two electrons escaping from a positive ion. Phys. Rep. 110, 369 (1984).
  182. Wehlitz, R., Huang, M.-T., Sellin, I. A., and Azuma, Y. The Wannier threshold law examined by photoelectron satellite measurements. J. Phys. B: At. Mol. Opt. Phys. 32, L635 (1999).
  183. Wannier, G. H. Threshold law for multiple ionization. Phys. Rev. 100, 1180 (1955).
  184. Kuchiev, M. Y. and Ostrovsky, V. N. Threshold laws for the breakup of atomic particles into several charged fragments. Phys. Rev. A 58, 321 (1998).
  185. Klar, H. and Schlecht, W. Threshold multiple ionization of atoms. Energy dependence for double and triple escape. J. Phys. B: At. Mol. Phys. 9, 1699 (1976).
  186. Parker, J. S., Doherty, B. J. S., Meharg, K. J., and Taylor, K. T. Time delay between singly and doubly ionizing wavepackets in laser-driven helium. J. Phys. B: At. Mol. Opt. Phys. 36, L393 (2003).
  187. Corso, P. P., Lappas, D. G., and Knight, P. L. Time-dependent effects in the nonse- quential ionization of helium at various wavelengths. Laser and Particle Beams 18, 433 (2000).
  188. Kulander, K. C. Time-dependent Hartree-Fock theory of multiphoton ionization: He- lium. Phys. Rev. A 36, 2726 (1987).
  189. Kosloff, R. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem. 92, 2087 (1988).
  190. Kulander, K. C. Time-dependent theory of multiphoton ionization of xenon. Phys. Rev. A 38, 778 (1988).
  191. Prauzner-Bechcicki, J. S., Sacha, K., Eckhardt, B., and Zakrzewski, J. Time-resolved quantum dynamics of double ionization in strong laser fields. Phys. Rev. Lett. 98, 203002 (2007).
  192. Lambropoulos, P. Topics on multiphoton processes in atoms. volume 12 of Advances in Atomic and Molecular Physics, 87-164 (Academic Press, 1976).
  193. Liu, Y., Tschuch, S., Dürr, M., Rudenko, A., Moshammer, R., Ullrich, J., Siegel, M., and Morgner, U. Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator. Opt. Express 15, 18103 (2007).
  194. Li, Y., Yu, B., Tang, Q., Wang, X., Hua, D., Tong, A., Jiang, C., Ge, G., Li, Y., and Wan, J. Transition of recollision trajectories from linear to elliptical polarization. Opt. Express 24, 6469 (2016).
  195. Haller, G., Uzer, T., Palacián, J., Yanguas, P., and Jaffé, C. Transition state geometry near higher-rank saddles in phase space. Nonlinearity 24, 527 (2011).
  196. Emmanouilidou, A. and Rost, J. M. Triple photoionization of lithium near threshold. J. Phys. B: At. Mol. Opt. Phys. 39, L99 (2006).
  197. Delone, N. B. and Krainov, V. P. Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field. Phys.-Usp. 41, 469 (1998).
  198. Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L., and Eberly, J. H. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212 (1989).
  199. Chin, S. L., Yergeau, F., and Lavigne, P. Tunnel ionisation of Xe in an ultra-intense CO 2 laser field (10 14 W cm −2 ) with multiple charge creation. J. Phys. B: At. Mol. Phys. 18, L213 (1985).
  200. Ammosov, M. V., Delone, N. B., and Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191 (1986).
  201. Walsh, T. D. G., Decker, J. E., and Chin, S. L. Tunnel ionization of simple molecules by an intense CO 2 laser. J. Phys. B: At. Mol. Opt. Phys. 26, L85 (1993).
  202. Bauer, D. Two-dimensional, two-electron model atom in a laser pulse: Exact treat- ment, single-active-electron analysis, time-dependent density-functional theory, clas- sical calculations, and nonsequential ionization. Phys. Rev. A 56, 3028 (1997).
  203. Rost, J.-M. Two-electron escape near threshold: A classical process? Phys. Rev. Lett. 72, 1998 (1994).
  204. Amusia, M., Krivec, R., and Mandelzweig, V. Two-electron photoionization cross sec- tions at high energies. In Few-Body Problems in Physics '02 (edited by R. Krivec, M. Rosina, B. Golli, and S. Širca), volume 14 of Few-Body Systems, 147-152 (Springer Vienna, 2003).
  205. Rau, A. R. P. Two electrons in a Coulomb potential. double-continuum wave functions and threshold law for electron-atom ionization. Phys. Rev. A 4, 207 (1971).
  206. Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G., and Krushelnick, K. Ultra- high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 2109 (2008).
  207. Palaniyappan, S., DiChiara, A., Chowdhury, E., Falkowski, A., Ongadi, G., Huskins, E. L., and Walker, B. C. Ultrastrong field ionization of Ne n+ (n ≤ 8): Rescattering and the role of the magnetic field. Phys. Rev. Lett. 94, 243003 (2005).
  208. Zhang, K., Lai, Y. H., Diesen, E., Schmidt, B. E., Blaga, C. I., Xu, J., Gorman, T. T., Légaré, F. m. c., Saalmann, U., Agostini, P., Rost, J. M., and DiMauro, L. F. Universal pulse dependence of the low-energy structure in strong-field ionization. Phys. Rev. A 93, 021403 (2016).
  209. Reiss, H. R. Unsuitability of the Keldysh parameter for laser fields. Phys. Rev. A 82, 023418 (2010).
  210. Pindzola, M. S., Griffin, D. C., and Bottcher, C. Validity of time-dependent Hartree- Fock theory for the multiphoton ionization of atoms. Phys. Rev. Lett. 66, 2305 (1991).
  211. Eckhardt, B. and Sacha, K. Wannier threshold law for two-electron escape in the presence of an external electric field. Europhys. Lett. 56, 651 (2001).
  212. Kondo, K., Sagisaka, A., Tamida, T., Nabekawa, Y., and Watanabe, S. Wavelength dependence of nonsequential double ionization in He. Phys. Rev. A 48, R2531 (1993).
  213. Peterkop, R. WKB approximation and threshold law for electron-atom ionization. J. Phys. B: At. Mol. Phys. 4, 513 (1971).
  214. Einstein, A. Zur Quantentheorie der Strahlung. Physik. Z. 18, 121 (1917).
  215. Taylor, K., Parker, J., Moore, L., Roy, K., and Edwards, T. High intensity 800 nm laser simulations. http://www.hector.ac.uk/coe/pdf/HELIUM_FinalReport_ July2010.pdf. Accessed: 2017-10-26 (2010).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten