Publikationsserver der Universitätsbibliothek Marburg

Titel:Microenvironment and bacterial community structure in the gut of wood- and litter-feeding cockroaches
Autor:Lampert, Niclas
Weitere Beteiligte: Brune, Andreas (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0081
URN: urn:nbn:de:hebis:04-z2018-00811
DOI: https://doi.org/10.17192/z2018.0081
DDC: Biowissenschaften, Biologie
Titel (trans.):Mikroumgebung und bakterielle Gemeinschaftsstruktur im Darm von xylophagen und detritivoren Schaben
Publikationsdatum:2018-02-12
Lizenz:https://creativecommons.org/licenses/by-sa/4.0

Dokument

Schlagwörter:
Insekten, deep sequencing, Lignocellulose, Mikrobiologie, Mikroflora, Ribosomale RNS, Darm, cockroaches, Hochdurchsatzsequenzierung, lignocellulose, gut microbiota, Darmmikrobiota, Lignocellulose, Schaben, insects

Summary:
While the gut microbiota of termites and its role in symbiotic digestion have been studied for decades, little is known about the bacteria colonizing the intestinal tract of detritivorous cockroaches. To improve the phylogenetic classification of short-read libraries, we first created a curated reference database of the bacterial 16S rRNA gene, based on the SILVA database and 1048 additional full-length 16S rRNA gene sequences from the intestinal tracts of 24 dictyopteran insects (chapter 2). The performance of the database in the classification of short-read libraries from termites and cockroaches was highly superior to that of the current SILVA and RDP databases. We then investigated the bacterial gut communities in the crop, midgut and hindgut of two xylophagous (chapter 3) and three litter-feeding (chapter 4) cockroaches by Illumina sequencing, and compared them to those in omnivorous cockroaches and termites, focusing on two main questions: First, if host diet determines the gut microbiota in cockroaches, and second, what role environmental variables play in different gut compartments. We found that the gut microbiotas of cockroaches share rare lineages and the phenomenon of gut compartment-specific communities with those of termites, but differ in community structure and show only little diet-specific distinction. In order to identify other potential drivers of microbial community structure in cockroach guts, we determined the intestinal physicochemical parameters pH, redox potential, and oxygen and hydrogen partial pressure. Surprisingly, the localization of intestinal hydrogen accumulation in the crop of two cockroach species differed from that in the posterior midgut observed previously for omnivorous species. Intestinal pH, in addition to other, yet unidentified factors, was a strong determinant of bacterial community structure, posing a strong selection pressure particularly in the hindgut compartment. For a better understanding of the digestion of lignocellulose by cockroaches in nature, I fed two cockroach species on oak leaf litter, and determined the degradation efficiency and metabolization rates of lignocellulosic fractions and carbohydrate monomers through controlled mass balances (chapter 5). I found that xylan rather than cellulose was degraded in the gut, suggesting that litter-feeding cockroaches preferentially degrade the easily solubilizable diet fractions like hemicelluloses.

Bibliographie / References

  1. Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.syapm.2015
  2. Cookson LJ. (1987). 14C-Lignin degradation by three Australian termite species -Isoptera:
  3. Lane DJ. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds.), Nucleic acid techniques in bacterial systematics. Chichester, UK: John Wiley and Sons.
  4. McKittrick FA. (1965). A contribution to the understanding of cockroach-termite affinities. Annals of the Entomological Society of America 58(1): 18-22.
  5. Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, and Hackstein JH. (1998). A hydrogenosome with a genome. Nature 396(6711): 527-528.
  6. Song Y, Könönen E, Rautio M, Liu C, Bryk A, Eerola E, and Finegold SM. (2006). Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. International Journal of Systematic and Evolutionary Microbiology 56(8): 1985-1990.
  7. Nalepa CA, Maekawa K, Shimada K, Saito Y, Arellano C, and Matsumoto T. (2008). Altricial development in subsocial wood-feeding cockroaches. Zoological Science 25(12): 1190- 8.
  8. Kopanic RJ, Holbrook GL, Sevala V, and Schal and C. (2001). An adaptive benefit of facultative coprophagy in the German cockroach Blattella germanica. Ecological Entomology 26(2): 154-162.
  9. Cohen W. (1933). Analysis of termite (Eutermes exitiosus) mound material. Journal of scientific and industrial research 6: 166-169.
  10. Noirot C and Kovoor J. (1958). Anatomie comparee du tube digestif des termites I. Sous- famille des Termitinae. Insectes Sociaux 5(4): 439-471.
  11. Davison A and Blaxter M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Molecular Biology and Evolution 22(5): 1273-1284.
  12. Bignell DE. (1977). An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Canadian Journal of Zoology 55(3): 579- 589.
  13. Hutchinson GE. (1978). An introduction to population ecology. New Haven, Connecticut: Yale University Press.
  14. Tolstoy L. (1878). Anna Karenina. Moscow, Russia: The Russian Messenger.
  15. Bray JR and Curtis JT. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4): 325.
  16. Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, and Hugenholtz P. (2015). A phylogenomic analysis of the bacterial phylum Fibrobacteres. Frontiers in Microbiology 6: 1469.
  17. Guindon S and Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5): 696-704.
  18. Roth L. (1979). A Taxonomic revision of the Panesthiinae of the world. III.* The genera Panesthia Serville and Miopanesthia Saussure (Dictyoptera : Blattaria : Blaberidae).
  19. Bertino-Grimaldi D, Medeiros MN, Vieira RP, Cardoso AM, Turque AS, Silveira CB, Albano RM, Bressan-Nascimento S, Garcia ES, de Souza W, Martins OB, and Machado EA. (2013). Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials. SpringerPlus 2(1): 609.
  20. Bertino-Grimaldi D, Medeiros MN, Vieira RP, Cardoso AM, Turque AS, Silveira CB, Albano RM, Bressan-Nascimento S, Garcia ES, de Souza W, Martins OB, and Machado EA. (2013). Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials. SpringerPlus 2(1): 609.
  21. Bertino-Grimaldi D, Medeiros MN, Vieira RP, Cardoso AM, Turque AS, Silveira CB, Albano RM, Bressan-Nascimento S, Garcia ES, de Souza W, Martins OB, and Machado EA. (2013). Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials. SpringerPlus 2(1): 609.
  22. Esenther GR and Kirk TK. (1974). Catabolism of aspen sapwood in Reticulitermes flavipes. Annals of the Entomological Society of America 67: 989-991.
  23. Watanabe H and Tokuda G. (2010). Cellulolytic systems in insects. Annual Review of Entomology 55(1): 609-632.
  24. Martin MM. (1983). Cellulose digestion in insects. Comparative Biochemistry and Physiology -Part A: Physiology 75(3): 313-324.
  25. Slaytor M. (1992). Cellulose digestion in termites and cockroaches: What role do symbionts play? Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 103(4): 775-784.
  26. Slaytor M. (1992). Cellulose digestion in termites and cockroaches: What role do symbionts play? Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 103(4): 775-784.
  27. Montgomery L and Macy JM. (1982). Characterization of rat cecum cellulolytic bacteria. Applied and Environmental Microbiology 44(6): 1435-1443.
  28. Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, Ma Y, Purdue MP, Jacobs EJ, Gapstur SM, Li H, Alekseyenko A V, Hayes RB, and Ahn J. (2016). Cigarette smoking and the oral microbiome in a large study of American adults. The ISME Journal 10(10): 2435-2446.
  29. Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser K, and Brune A. (2015). Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Systematic and Applied Microbiology 38(7): 472-482.
  30. Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser K, and Brune A. (2015). Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Systematic and Applied Microbiology 38(7): 472-482.
  31. Lesser MP, Fiore C, Slattery M, and Zaneveld J. (2016). Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. Journal of Experimental Marine Biology and Ecology 475: 11-18.
  32. Bell W, Roth L, and Nalepa C. (2007). Cockroaches: ecology, behavior, and natural history. Baltimore: Johns Hopkins University Press.
  33. Bell W, Roth L, and Nalepa C. (2007). Cockroaches: ecology, behavior, and natural history. Baltimore: Johns Hopkins University Press.
  34. Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK, and Keshavarzian A. (2012). Colonic microbiome is altered in alcoholism. AJP: Gastrointestinal and Liver Physiology 302(9): G966-G978.
  35. Zimmer M. (1999). Combined methods for the determination of lignin and cellulose in leaf litter. Sciences of Soils 4(1): 14-21.
  36. He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, and Hugenholtz P. (2013). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood-and dung-feeding higher termites. PLOS ONE 8(4): e61126.
  37. He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, and Hugenholtz P. (2013). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood-and dung-feeding higher termites. PLOS ONE 8(4): e61126.
  38. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, and Ohkuma M. (2007). Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Molecular Ecology 16(6): 1257-1266.
  39. Ikeda-Ohtsubo W and Brune A. (2009). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Molecular Ecology 18(2): 332-342.
  40. Ikeda-Ohtsubo W and Brune A. (2009). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Molecular Ecology 18(2): 332-342.
  41. Lemke T, Van Alen T, Hackstein JHP, and Brune A. (2001). Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Applied and Environmental Microbiology 67(10): 4657-4661.
  42. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, and Moøller K. (2002). Culture- independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology 68(2): 673-690.
  43. Inward D, Beccaloni G, and Eggleton P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3(3):
  44. Inward D, Beccaloni G, and Eggleton P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3(3): 331-335.
  45. Inward D, Beccaloni G, and Eggleton P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3(3): 331-335.
  46. Inward D, Beccaloni G, and Eggleton P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3(3): 331-335.
  47. Swift MJ, Heal OW, and Anderson JM. (1979). Decomposition in terrestrial ecosystems (vol. 5). (D. Anderson, P. Greig-Smith & F. Pitelka, eds.). Berkeley and Los Angeles: University of California Press.
  48. Swift MJ, Heal OW, and Anderson JM. (1979). Decomposition in terrestrial ecosystems (vol. 5). (D. Anderson, P. Greig-Smith & F. Pitelka, eds.). Berkeley and Los Angeles: University of California Press.
  49. Shimada K and Maekawa K. (2011). Description of the basic features of parent-offspring stomodeal trophallaxis in the subsocial wood-feeding cockroach Salganea esakii (Dictyoptera, Blaberidae, Panesthiinae). Entomological Science 14(1): 9-12.
  50. Cato EP, Moore WEC, and Bryant MP. (1978). Designation of Neotype Strains for Bacteroides amylophilus Hamlin and Hungate 1956 and Bacteroides succinogenes Hungate 1950. International Journal of Systematic Bacteriology 28(4): 491-495.
  51. Nalepa CA, Bignell DE, and Bandi C. (2001). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Sociaux 48(3): 194-201.
  52. Anderson NH and Sedell JR. (1979). Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24(1): 351-377.
  53. Zhang J, Scrivener AM, Slaytor M, and Rose HA. (1993). Diet and carbohydrase activities in three cockroaches, Calolampra elegans roth and princis, Geoscapheus dilatatus saussure and Panesthia cribrata saussure. Comparative Biochemistry and Physiology Part A: Physiology 104(1): 155-161.
  54. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, and Brune A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology 24(20): 5284-95.
  55. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, and Brune A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology 24(20): 5284-95.
  56. Perez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, and Latorre A. (2015). Diet shapes the gut microbiota of the omnivorous cockroach Blatella germanica. FEMS Microbiology Ecology 91(4): 1-14.
  57. Perez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, and Latorre A. (2015). Diet shapes the gut microbiota of the omnivorous cockroach Blatella germanica. FEMS Microbiology Ecology 91(4): 1-14.
  58. Wigglesworth VB. (1927). Digestion in the cockroach -II. The digestion of carbohydrates. Biochemical Journal 21(4): 797-811.
  59. Butler JHA and Buckerfield JCC. (1979). Digestion of lignin by termites. Soil Biology and Biochemistry 11(5): 507-513.
  60. Veivers PCC, Musca AM, Brien RWO, Slaytor M, O'Brien RW, and Slaytor M. (2006). Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochemistry 12(1): 35-40.
  61. Holmes I, Harris K, and Quince C. (2012). Dirichlet multinomial mixtures: Generative models for microbial metagenomics. PLOS ONE 7(2): e30126.
  62. Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman FD, and Collman RG. (2010). Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLOS ONE 5(12): e15216.
  63. Bignell DE, Oskarsson H, and Anderson JM. (1980). Distribution and abundance of bacteria in the gut of a soil-feeding termite Procutiermes aburiensis (Termitidae, Termitinae). Journal of general microbiology 117: 393-403.
  64. Dillon RJ, Vennard CT, Buckling A, and Charnley AK. (2005). Diversity of locust gut bacteria protects against pathogen invasion. Ecology Letters 8(12): 1291-1298.
  65. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman D a, Berstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, and Relman D a. (2005). Diversity of the human intestinal microbial flora. Science 308(5728): 1635-1638.
  66. Ohkuma M and Brune A. (2011). Diversity, structure, and evolution of the termite gut microbial community. (D.E. Bignell, Y. Roisin & N. Lo, eds.). Dordrecht: Springer.
  67. Ghodsi M, Liu B, and Pop M. (2011). DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC bioinformatics 12: 271.
  68. Colman DR, Toolson EC, and Takacs-Vesbach CD. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21(20): 5124-5137.
  69. Gijzen HJ, van der Drift C, Barugahare M, and Op den Camp HJ. (1994). Effect of host diet and hindgut microbial composition on cellulolytic activity in the hindgut of the American cockroach, Periplaneta americana. Applied and Environmental Microbiology 60(6): 1822-6.
  70. Gijzen HJ, van der Drift C, Barugahare M, and Op den Camp HJ. (1994). Effect of host diet and hindgut microbial composition on cellulolytic activity in the hindgut of the American cockroach, Periplaneta americana. Applied and Environmental Microbiology 60(6): 1822-6.
  71. Kane MD and Breznak JA. (1991). Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Applied and Environmental Microbiology 57(9): 2628-2634.
  72. Kane MD and Breznak JA. (1991). Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Applied and Environmental Microbiology 57(9): 2628-2634.
  73. Bignell DE. (1978). Effects of cellulose in the diets of cockroaches. Entomologia Experimentalis et Applicata 24(3): 254-257.
  74. Hackstein JHP. (1997). Eukaryotic molecular biodiversity: Systematic approaches for the assessment of symbiotic associations. In Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology (Vol. 72).
  75. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, and Noda H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood- feeding cockroaches. Current Biology 10(13): 801-804.
  76. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, and Gordon JI. (2008). Evolution of mammals and their gut microbes. Science 320(5883): 1647-1651.
  77. Goering HK and Van Soest PJ. (1970). Forage fiber analyses (apparatus, Reagents, Procedures, and Some Applications). USDA Agriculture Handbook No. 379.
  78. Bignell DE. (1976). Gnawing activity, dietary carbohydrate deficiency and oothecal production in the American cockroach (Periplaneta americana). Experientia 32(11): 1405-1406.
  79. Möller J. (2009). Gravimetric determination of acid detergent fiber and lignin in feed: Interlaboratory study. Journal of AOAC International 92(1): 74-90.
  80. Körner M, Diehl JM, and Meunier J. (2016). Growing up with feces: benefits of allo- coprophagy in families of the European earwig. Behavioral Ecology 27(6): 1775-1781.
  81. Diamond JM. (1997). Guns, germs, and steel: the fates of human societies. New York, USA: W.W. Norton & Co.
  82. Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, and Schal C. (2015). Gut bacteria mediate aggregation in the German cockroach. Proceedings of the National Academy of Sciences 112(51): 201504031.
  83. Day A. (2012). Heatmap.plus -heatmap with more sensible behavior. In R package version 1.3. Vienna: R Foundation for Statistical Computing.
  84. Tokuda G and Watanabe H. (2007). Hidden cellulases in termites: revision of an old hypothesis. Biology Letters 3(3): 336-339.
  85. Köhler T, Dietrich C, Scheffrahn RH, and Brune A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Applied and Environmental Microbiology 78(13): 4691-701.
  86. Köhler T, Dietrich C, Scheffrahn RH, and Brune A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Applied and Environmental Microbiology 78(13): 4691-701.
  87. Köhler T, Dietrich C, Scheffrahn RH, and Brune A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Applied and Environmental Microbiology 78(13): 4691-701.
  88. Sabree ZL and Moran NA. (2014). Host-specific assemblages typify gut microbial communities of related insect species. SpringerPlus 3(1): 138.
  89. Ebert A and Brune A. (1997). Hydrogen concentration profiles at the oxic-anoxic interface : a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Microbiology 63(10): 4039-4046.
  90. Pester M and Brune A. (2007). Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. The ISME Journal 1(6): 551-565.
  91. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104(2001): 1-13.
  92. Schmitt-Wagner D and Brune A. (1999). Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Applied and Environmental Microbiology 65(10): 4490-4496.
  93. Fengel D and Wegener G. (1979). Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis 181(181): 145-158.
  94. Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, and Poulsen M. (2014). Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology 23(18): 4631-4644.
  95. Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, and Poulsen M. (2014). Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology 23(18): 4631-4644.
  96. Bracke JW, Cruden DL, and Markovetz AJ. (1979). Intestinal microbial flora of the american cockroach, Periplaneta americana L. Applied and Environmental Microbiology 38(5):
  97. Bracke JW, Cruden DL, and Markovetz AJ. (1979). Intestinal microbial flora of the american cockroach, Periplaneta americana L. Applied and Environmental Microbiology 38(5): 945-955.
  98. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, and Kudo T. (2005). Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environmental Microbiology 71(11): 6590-6599.
  99. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, and Kudo T. (2005). Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environmental Microbiology 71(11): 6590-6599.
  100. Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, and Kudo T. (2006). Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Molecular Ecology 15(2): 505-516.
  101. Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, and Weber CF. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23): 7537-7541.
  102. Fioretto A, Di Nardo C, Papa S, and Fuggi A. (2005). Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology and Biochemistry 37(6): 1083-1091.
  103. Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, and Mo J. (2017). Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences 201618360.
  104. Bray JR and Gorham E. (1964). Litter production in forests of the world. Advances in Ecological Research 2(C): 101-157.
  105. Horn HS. (1966). Measurement of 'overlap' in comparative ecological studies. The American Naturalist 100(914): 419-424.
  106. Morisita M. (1959). Measuring of the dispersion of individuals and analysis of the distributional patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 2(21): 5-23.
  107. Hackstein J, van Alen T, and Rosenberg J. (2006). Methane production by terrestrial arthropods. In König H & Varma A (eds.), Intestinal microorganisms of termites and other invertebrates. Berlin, Heidelberg: Springer.
  108. Hackstein JH and Stumm CK. (1994). Methane production in terrestrial arthropods. Proceedings of the National Academy of Sciences 91(12): 5441-5445.
  109. Hackstein JH and Stumm CK. (1994). Methane production in terrestrial arthropods. Proceedings of the National Academy of Sciences 91(12): 5441-5445.
  110. Brune A. (2010). Methanogenesis in the digestive tracts of insects. In Handbook of Hydrocarbon and Lipid Microbiology.
  111. Gijzen HJ, Broers CAM, Barughare M, and Stumm CK. (1991). Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Applied and Environmental Microbiology 57(6): 1630-1634.
  112. Gijzen HJ, Broers CAM, Barughare M, and Stumm CK. (1991). Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Applied and Environmental Microbiology 57(6): 1630-1634.
  113. Dridi B, Fardeau ML, Ollivier B, Raoult D, and Drancourt M. (2012). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 62(8): 1902-1907.
  114. Paul K, Nonoh JO, Mikulski L, and Brune A. (2012). 'Methanoplasmatales', Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Applied and Environmental Microbiology 78(23): 8245- 8253.
  115. Paul K, Nonoh JO, Mikulski L, and Brune A. (2012). 'Methanoplasmatales', Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Applied and Environmental Microbiology 78(23): 8245- 8253.
  116. Cruden DL and Markovetz AJ. (1984). Microbial aspects of the cockroach hindgut. Archives of Microbiology 138(2): 131-139.
  117. Cruden DL and Markovetz AJ. (1987). Microbial Ecology of the Cockroach Gut. Annual Review of Microbiology 41(1): 617-643.
  118. Mikaelyan A, Meuser K, and Brune A. (2016). Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood-and humus-feeding higher termites. FEMS Microbiology Ecology 3(July 2016): 1-11.
  119. Mikaelyan A, Meuser K, and Brune A. (2016). Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood-and humus-feeding higher termites. FEMS Microbiology Ecology 3(July 2016): 1-11.
  120. Greenberg B, Kowalski J, and Karpus J. (1970). Micro-potentiometric pH determinations of the gut of Periplaneta americana fed three different diets. Journal of Economic Entomology 63(6): 1795-1797.
  121. Mullins DE and Cochran DG. (1973). Nitrogenous excretory materials from the American cockroach. Journal of Insect Physiology 19(5): 1007-1018.
  122. Rüdiger Plarre, Kiyoto Maekawa, and James Nonoh for providing insects, Cameron Anderson for technical assistance, and Karen A. Brune for linguistic comments on the manuscript.
  123. Chao A and Shen TJ. (2003). Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environmental and Ecological Statistics 10(4): 429- 443.
  124. Chao A and Shen TJ. (2003). Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environmental and Ecological Statistics 10(4): 429- 443.
  125. Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scanadinavian Journal of Statistics 11(4): 265-270.
  126. Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scanadinavian Journal of Statistics 11(4): 265-270.
  127. Legendre P and Legendre L. (1998). Numerical ecology, 2nd English Edition. Amsterdam, NL: Elsevier.
  128. Vitousek P. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist 119(4): 553-572.
  129. Vitousek P. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist 119(4): 553-572.
  130. Bignell DE. (1981). Nutrition and digestion. In D. E. Bignell (ed.), The American Cockroach. Dordrecht: Springer Netherlands.
  131. Beccaloni G and Eggleton P. (2013). Order blattodea. Zootaxa 3703(1): 46-48.
  132. Jones CG, Lawton JH, and Shachak M. (1994). Organisms as ecosystem engineers. Oikos (69): 373-386.
  133. Tegtmeier D, Thompson CL, Schauer C, and Brune A. (2015). Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Applied and Environmental Microbiology 82(4): 1080-9.
  134. Tegtmeier D, Thompson CL, Schauer C, and Brune A. (2015). Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Applied and Environmental Microbiology 82(4): 1080-9.
  135. Illingworth JF. (1929). Pests of pineapple in Hawaii. Proceedings of the Hawaiian Entomological Society 7: 254-256.
  136. Brune A and Kühl M. (1996). pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. Journal of Insect Physiology 42(11-12): 1121-1127.
  137. Hara K, Shinzato N, Seo M, Oshima T, and Yamagishi A. (2002). Phylogenetic analysis of symbiotic archaea living in the gut of xylophagous cockroaches. Microbes and Environments 17(4): 185-190.
  138. Shinzato N, Muramatsu M, Matsui T, and Watanabe Y. (2007). Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus.
  139. Schmitt-Wagner D, Friedrich MW, Wagner B, and Brune A. (2003). Phylogenetic diversity, abundance, and axial distribution of Bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Applied and Environmental Microbiology 69(10): 6007- 6017.
  140. Breznak JA. (2002). Phylogenetic diversity and physiology of termite gut spirochetes. Integrative and Comparative Biology 42(2): 313-318.
  141. Ikeda-Ohtsubo W, Desai M, Stingl U, and Brune A. (2007). Phylogenetic diversity of 'Endomicrobia' and their specific affiliation with termite gut flagellates. Microbiology 153(10): 3458-3465.
  142. Legendre F, Nel A, Svenson GJ, Robillard T, Pellens R, and Grandcolas P. (2015). Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLOS ONE 10(7): e0130127.
  143. Legendre F, Nel A, Svenson GJ, Robillard T, Pellens R, and Grandcolas P. (2015). Phylogeny of Dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLOS ONE 10(7): e0130127.
  144. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiology Ecology 91(2): 1-14.
  145. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiology Ecology 91(2): 1-14.
  146. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiology Ecology 91(2): 1-14.
  147. Scrivener AM, Watanabe H, and Noda H. (1998). Properties of digestive carbohydrase activities secreted by two cockroaches, Panesthia cribrata and Periplaneta americana. Comparative Biochemistry and Physiology -B Biochemistry and Molecular Biology 119(2): 273-282.
  148. Scrivener AM, Watanabe H, and Noda H. (1998). Properties of digestive carbohydrase activities secreted by two cockroaches, Panesthia cribrata and Periplaneta americana. Comparative Biochemistry and Physiology -B Biochemistry and Molecular Biology 119(2): 273-282.
  149. Scrivener AM and Slaytor M. (1994). Properties of the endogenous cellulase from Panesthia cribrata saussure and purification of major endo-β-1,4-glucanase components. Insect Biochemistry and Molecular Biology 24(3): 223-231.
  150. Scrivener AM and Slaytor M. (1994). Properties of the endogenous cellulase from Panesthia cribrata saussure and purification of major endo-β-1,4-glucanase components. Insect Biochemistry and Molecular Biology 24(3): 223-231.
  151. Scrivener AM and Slaytor M. (1994). Properties of the endogenous cellulase from Panesthia cribrata saussure and purification of major endo-β-1,4-glucanase components. Insect Biochemistry and Molecular Biology 24(3): 223-231.
  152. Honigberg. (1970). Protozoa associated with termites and their role in digestion. In K. Krishna & F. M. Weesner (eds.), Biology of termites II. New York: Springer-Verlag.
  153. Griffiths BS, Bracewell JM, Robertson GW, and Bignell DE. (2013). Pyrolysis-mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biology and Biochemistry 57: 957-959.
  154. Schauer C, Thompson C, and Brune A. (2014). Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLOS ONE 9(1): 1-8.
  155. Schauer C, Thompson C, and Brune A. (2014). Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLOS ONE 9(1): 1-8.
  156. Schauer C, Thompson C, and Brune A. (2014). Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLOS ONE 9(1): 1-8.
  157. Schauer C, Thompson C, and Brune A. (2014). Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLOS ONE 9(1): 1-8.
  158. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, … Knight R. (2010). QIIME allows analysis of high- throughput community sequencing data. Nature Methods 7(5): 335-336.
  159. R Core Development Team. (2012). R: A language and environment for statistical computing.
  160. Kopanic RJ and Schal C. (1997). Relative significance of direct ingestion and adult -mediated translocation of bait to German cockroach (Dictyoptera: Blattellidae) nymphs. Journal of Economic Entomology 90(5): 1073-1079.
  161. Breznak JA and Brune A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39(1): 453-487.
  162. Brune A and Ohkuma M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin & N. Lo (eds.), Biology of termites. Dodrecht: Springer.
  163. Shimamura H, Hori S, Nagano H, Matsunaga S, and Urushizaki F. (1994). Secondary kill effect of hydramethylnon bait against several species of cockroach. Medical Entomology and Zoology 45(1): 97-100.
  164. Keddie B a and Zurek L. (1998). Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J Insect Physiol 44(7-8): 645-651.
  165. Koch H and Schmid-Hempel P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences 108(48): 19288-19292.
  166. Bignell DE. (1977). Some observations on the distribution of gut flora in the American cockroach, Periplaneta americana. Journal of Invertebrate Pathology 29(3): 338-343.
  167. Fenchel T. (1970). Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnology and Oceanography 15(1): 14-20.
  168. Anisimova M, Gil M, Dufayard JF, Dessimoz C, and Gascuel O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology 60(5): 685-699.
  169. Scrivener AM, Slaytor M, and Rose HA. (1989). Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. Journal of Insect Physiology 35(12): 935-941.
  170. Scrivener AM, Slaytor M, and Rose HA. (1989). Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. Journal of Insect Physiology 35(12): 935-941.
  171. Scrivener AM, Slaytor M, and Rose HA. (1989). Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. Journal of Insect Physiology 35(12): 935-941.
  172. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, and Fukatsu T. (2012). Symbiont- mediated insecticide resistance. Proceedings of the National Academy of Sciences 109(22): 8618-8622.
  173. Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-80.
  174. Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-80.
  175. Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-80.
  176. Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-80.
  177. Breznak JA and Leadbetter JR. (2006). Termite gut spirochetes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (eds.), Prokaryotes. New York: Springer.
  178. Schauer C, Thompson CL, and Brune A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology 78(8): 2758-2767.
  179. Schauer C, Thompson CL, and Brune A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology 78(8): 2758-2767.
  180. Schauer C, Thompson CL, and Brune A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology 78(8): 2758-2767.
  181. Gurney AB. (1969). The biology of the cockroach. In D. M. Gujtirie, A. R. Tindali & S. Martin (eds.), Science (Vol. 163). New York, NY.
  182. Dietrich C, Köhler T, and Brune A. (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology 80(7): 2261-2269.
  183. Dietrich C, Köhler T, and Brune A. (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology 80(7): 2261-2269.
  184. Dietrich C, Köhler T, and Brune A. (2014). The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology 80(7): 2261-2269.
  185. Wang CH, Yang HT, and Chow YS. (1995). The controlling effects of abamectin and hydramethylnon for the Australian cockroach, Periplaneta australasiae (F.) (Orthoptera: Blattellidae), in Taiwan. Journal of Entomological Science 30(1): 154-163.
  186. Tinker KA and Ottesen EA. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology 82(September): AEM.01837-16.
  187. Tinker KA and Ottesen EA. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology 82(September): AEM.01837-16.
  188. Tinker KA and Ottesen EA. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology 82(22): 6603-6610.
  189. Mikaelyan A, Thompson CL, Hofer MJ, and Brune A. (2015). The deterministic assembly of complex bacterial communities in germ-free cockroach guts. Applied and Environmental Microbiology AEM.03700-15-.
  190. Mikaelyan A, Thompson CL, Hofer MJ, and Brune A. (2015). The deterministic assembly of complex bacterial communities in germ-free cockroach guts. Applied and Environmental Microbiology AEM.03700-15-.
  191. Martin MM, Jones CG, and Bernays EA. (1991). The evolution of cellulose digestion in insects [and discussion]. Philosophical Transactions: Biological Sciences 333(1267): 281-288.
  192. Mikaelyan A, Strassert JFH, Tokuda G, and Brune A. (2014). The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.).
  193. Mikaelyan A, Strassert JFH, Tokuda G, and Brune A. (2014). The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.).
  194. Brune A and Dietrich C. (2015). The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology 69(1).
  195. Brune A and Dietrich C. (2015). The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology 69(1).
  196. Brune A and Dietrich C. (2015). The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology 69(1).
  197. Charrier M and Brune A. (2003). The gut microenvironment of helicid snails (Gastropoda : Pulmonata): in-situ profiles of pH, oxygen, and hydrogen determined by microsensors. Recherche 935: 928-935.
  198. Gullan PJ and Cranston PS. (2005). The Insects An Outline of Entomology. In Science (Vol. 144).
  199. Gullan PJ and Cranston PS. (2014). The insects: an outline of entomology. Wiley-Blackwell.
  200. Kidder GW. (1937). The intestinal protozoa of the wood-feeding roach Panesthia. Parasitology 29(2): 163-205.
  201. Kidder GW. (1937). The intestinal protozoa of the wood-feeding roach Panesthia. Parasitology 29(2): 163-205.
  202. Grinnell J. (1917). The niche-relationships of the California Thrasher. The Auk 34(4): 427- 433.
  203. Hutchinson GE. (1961). The paradox of the plankton. The American Naturalist 95(882): 137- 145.
  204. Good IJ. (1953). The population frequencies of species and the estimation of population parameters. Biometrika Trust 40(3): 237-264.
  205. Good IJ. (1953). The population frequencies of species and the estimation of population parameters. Biometrika Trust 40(3): 237-264.
  206. Brune A, Emerson D, and Breznak JA. (1995). The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61(7): 2681-2687.
  207. Brune A, Emerson D, and Breznak JA. (1995). The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61(7): 2681-2687.
  208. Cleveland LR, Hall SR, Sanders EP, and Collier J. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American academy of arts and sciences iii--342.
  209. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, … Zeng G. (2013). Three decades of global methane sources and sinks. Nature Geoscience 6(10): 813-823.
  210. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, and Triplett EW. (2011). Toward defining the autoimmune microbiome for type 1 diabetes. The ISME Journal 5(1): 82-91.
  211. Montgomery L, Flesher B, and Stahl D. (1988). Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and Description of Fibrobacter intestinalis sp. nov. International Journal of Systematic Bacteriology 38(4): 430-435.
  212. Bracke JW and Markovetz AJ. (1980). Transport of bacterial end products from the colon of Periplaneta americana. Journal of Insect Physiology 26(2): 85-89.
  213. Hogan ME, Slaytor M, and O'Brien RW. (1985). Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Saussure and the termite, Mastotermes darwiniensis Froggatt. Journal of Insect Physiology 31(7): 587-591.
  214. Hogan ME, Slaytor M, and O'Brien RW. (1985). Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Saussure and the termite, Mastotermes darwiniensis Froggatt. Journal of Insect Physiology 31(7): 587-591.
  215. Edgar RC, Haas BJ, Clemente JC, Quince C, and Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194-2200.
  216. Lozupone C and Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71(12): 8228-8235.
  217. Van Soest PJ. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the AOAC 46(5): 829.
  218. Sariyildiz T and Anderson JM. (2005). Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. Forest Ecology and Management 210(1): 303-319.
  219. Klass K-D, Nalepa C, and Lo N. (2008). Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. Molecular Phylogenetics and Evolution 46(3): 809-817.
  220. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, and Wagner H. (2016). vegan: community ecology package. Retrieved from https://cran.r-project.org/package=vegan
  221. Sanchez G. (2014). arcdiagram: Plot pretty arc diagrams. R package version 0.1.11. https://github.com/gastonstat/arcdiagram.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten