Publikationsserver der Universitätsbibliothek Marburg

Titel:Proteindynamik - Flexibilität in Zielproteinen des strukturbasierten Wirkstoffdesigns
Autor:Terwesten, Felix
Weitere Beteiligte: Klebe, Gerhard (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0049
DOI: https://doi.org/10.17192/z2018.0049
URN: urn:nbn:de:hebis:04-z2018-00497
DDC:540 Chemie
Titel (trans.):Proteindynamics - Flexibility in Targets of Structure-Based Drug Design
Publikationsdatum:2018-01-18
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
cryptic binding sites, Shigella, Protein-Arginin-Methyltransferasen, Aldosereduktase, tRNA-Guanin Transglykosylase, structure-based drug design, TGT, homology modeling, PRMTs, transient binding pockets, computer-aided drug design, transiente Bindungstas, Aldo-Keto-Reduktasen

Zusammenfassung:
In der vorliegenden Arbeit wurden unterschiedliche Methoden des computergestützten strukturbasierten Wirkstoffdesigns in verschiedenen Projekten zur Anwendung gebracht. // Es wurden dabei fünf verschiedenen Zielproteine in drei Targetklassen untersucht. (1) Aus der Superfamilie der Aldo-Keto-Reduktasen wurden zwei Mitglieder der Familie 1 untersucht: Zum einen Aldosereduktase, die auf Grund ihrer Beteiligung an diabetischen Komplikationen im fortgeschrittenen Stadium dieser Erkrankung von Interesse ist, zum anderen das Mitglied AKR1B10 dieser Familie, dessen Überexpression mit verschiedenen Krebsarten assoziiert ist. (2) PRMT4 und PRMT6, die als epigenetische Zielproteine ein aktuelles und zukunftsträchtiges Themengebiet darstellen. (3) Ein bakterielles Target in dieser Arbeit stellte die tRNA-Guanin Transglykosylase (TGT) dar, die auf Grund ihrer initialen Funktion in der Aktivierungskaskade des pathogenen Phänotyps von Shigella flexneri ein interessantes Target für die Behandlung der durch Shigellen ausgelösten Bakterienruhr darstellt. //// Aldosereduktase // Die AR gehört zu der Superfamilie der Aldo-Keto-Reduktasen. Als NAD(P)(H)-abhängige Oxidoreduktase ist sie in erster Linie für die Umwandlung von Glukose zu Sorbitol im Polyolweg bekannt. Darüber hinaus leistet sie durch die Reduktion von giftigen Aldehyden und Carbonylen einen wichtigen Beitrag zur Entgiftung des Organismus. Die Aldosereduktase wurde in Kooperation mit der Arbeitsgruppe Diederich (Marburg) und GE Healthcare Bio-Sciences AB untersucht. Der Fokus dieses Projekts lag auf der Charakterisierung einer Ligandenserie und Untersuchung des Bindungsverhaltens dieser Liganden in Hinblick auf das Öffnungsverhalten der transienten Spezifitätstasche des Proteins. Der Beitrag dieser Dissertation war die Untersuchung der Proteindynamik im Bezug auf diese Tasche und die Analyse und Beschreibung eines möglichen Öffnungsmechanismus. Die Daten für diese Analysen wurden durch molekulardynamische Simulationen gewonnen. Ein weiterer Beitrag war die Durchführung von MM-GBSA-Berechnungen zur Evaluierung der Bindungspräferenz zweier ähnlicher Liganden in Bezug auf die Spezifitätstasche. // AKR1B10 // In diesem Kooperationsprodukt wurden vergleichende Simulationen eines Liganden (JF0064) durchgeführt, um (1) die röntgenkristallographisch beobachtete Protonierung des Liganden im Komplex mit dem Protein zu validieren und (2) strukturelle Einblicke in die Bindungskonformation des Liganden im Komplex mit dem Wildtyp-Protein zu bieten. Die molekulardynamischen Simulationen boten hier einen Einblick in die Struktur des Wildtyp:JF0064-Komplexes, dessen röntgenkristallographische Aufklärung nicht möglich war. // Protein-Arginin-Methyltransferasen // In diesem Kapitel wurden verschiedene Verfahren verwendet, um zwei Aufgabenstellungen umzusetzen. (1) In Kooperation mit der Arbeitsgruppe Bauer wurde ein Homologiemodell für die Gallus gallus PRMT4 erstellt. Bisher wurde in Vögeln, als einziger Klasse der Wirbeltiere, kein PRMT4-Homolog nachgewiesen. Hannah Berberich gelang erstmalig der Nachweis einer putativen Gallus gallus PRMT4 (ggPRMT4). Der Anteil dieser Dissertation war die Erstellung eines plausiblen in silico Modells der ggPRMT4. Dafür wurden verschiedene in silico Methoden miteinander kombiniert. Im Rahmen dieses Projekts wurde zur Erstellung des ggPRMT4-Modells eine Homologiemodellierung kombiniert mit einem Protein-Protein-Docking durchgeführt. Die Validierung und Untersuchung der Dynamik des modellierten Komplexes erfolgte durch ergänzende molekulardynamische Simulationen. (2) Im Rahmen eines Dockings von organischen Kleinmolekülen wurden die beiden Proteine PRMT4 und PRMT6 – ausgehend von bekannten Kristallstrukturen – als Targets adressiert. Diesen Dockingläufen schloss sich die visuelle Inspektion der durch Scoring-Funktionen vorselektierten Moleküle an. Anschließend wurden interessante Verbindungen kommerziell erworben und in Kooperation mit der Arbeitsgruppe Bauer von Antje Repenning in einem Assay getestet. Dabei konnten aktive Substanzen gefunden werden, die nun weiter untersucht werden und als Ausgangspunkte für rationales Wirkstoffdesign dienen können. // tRNA-Guanin Transglykosylase // Dieses Target wurde im Rahmen von zwei Studien untersucht. In (1) wurde zunächst die Dynamik einer bei röntgenkristallographischen Untersuchungen neu entdeckten Subtasche unter der beta1alpha1-Schleife untersucht. Dabei erfolgte die Untersuchung erst mit Hilfe molekulardynamischer Simulationen. Im zweiten Schritt wurde diese Tasche dann in einem Docking mit organischen Molekülen adressiert. In (2) wurde das Öffnungsereignis der transienten erweiterten Guanin/preQ1-Bindetasche durch molekulardynamische Simulationen analysiert.

Bibliographie / References

  1. Le Dily, F.; Serra, F. and Marti-Renom, M. A. 3D modeling of chromatin structure: Is there a way to integrate and reconcile single cell and population experimental data? WIREs Comput. Mol. Sci. 2017, 3, e1308.
  2. Shi, M. A.; Lougarre, A.; Alies, C.; Frémaux, I.; Tang, Z. H.; Stojan, J. and Fournier, D. Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol. Biol. 2004, 4, 5.
  3. Ou, C.-Y.; LaBonte, M. J.; Manegold, P. C.; So, A. Y.-L.; Ianculescu, I.; Gerke, D. S.; Yamamoto, K. R.; Ladner, R. D.; Kahn, M.; Kim, J. H. and Stallcup, M. R. A coactivator role of CARM1 in the dysregulation of β-catenin activity in colorectal cancer cell growth and gene expression. Mol. Cancer Res. 2011, 9, 660-670.
  4. Kohl, N. E.; Emini, E. A.; Schleif, W. A.; Davis, L. J.; Heimbach, J. C.; Dixon, R. A.; Scolnick, E. M. and Sigal, I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 1988, 85, 4686-4690.
  5. Dill, K. A. Additivity principles in biochemistry. J. Biol. Chem. 1997, 272, 701-704.
  6. Niewmierzycka, A. and Clarke, S. S-Adenosylmethionine-dependent Me- thylation in Saccharomyces cerevisiae: Identification of a novel Protein Arginine Methyltransferase. J. Biol. Chem. 1999, 274, 814-824.
  7. Muegge, I. and Martin, Y. C. A general and fast scoring function for protein- ligand interactions: a simplified potential approach. J. Med. Chem. 1999, 42, 791-804.
  8. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R. and Ferrin, T. E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269-288.
  9. Savarino, A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin. Investig. Drugs 2006, 15, 1507-1522.
  10. Debroise, T.; Shakhnovich, E. I. and Chéron, N. A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016. J. Chem. Inf. Model. 2017, 57, 584-593.
  11. Raub, S.; Steffen, A.; Kämper, A. and Marian, C. M. AIScore chemically diverse empirical scoring function employing quantum chemical binding energies of hydrogen-bonded complexes. J. Chem. Inf. Model. 2008, 48, 1492-1510.
  12. Huang, S.-Y. and Zou, X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res. 2014, 42, e55.
  13. Sangshetti, J.; Chouthe, R.; Sakle, N.; Gonjari, I. and Shinde, D. Aldose Reductase: A Multi-disease Target. Curr. Enzym. Inhib. 2013, 10, 2-12.
  14. Petrash, J. M. All in the family: Aldose reductase and closely related aldo-keto reductases. Cell. Mol. Life Sci. 2004, 61, 737-749.
  15. Acker, T. M.; Gable, J. E.; Bohn, M.-F.; Jaishankar, P.; Thompson, M. C.; Fraser, J. S.; Renslo, A. R. and Craik, C. S. Allosteric Inhibi- tors, Crystallography, and Comparative Analysis Reveal Network of Coordinated Movement across Human Herpesvirus Proteases. J. Am. Chem. Soc. 2017, 139, 11650-11653.
  16. Kar, G.; Keskin, O.; Gursoy, A. and Nussinov, R. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 2010, 10, 715-722.
  17. Cooper, A. and Dryden, D. T. F. Allostery without a conformational change - A plausible model. Eur. Biophys. J. 1984, 11, 103-109.
  18. Nussinov, R. and Tsai, C.-J. Allostery without a conformational change? Revisiting the paradigm. Curr. Opin. Struct. Biol. 2015, 30, 17-24.
  19. Ballester, P. J. and Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169-1175.
  20. Kinnings, S. L.; Liu, N.; Tonge, P. J.; Jackson, R. M.; Xie, L. and Bourne, P. E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model. 2011, 51, 408-419.
  21. Shatsky, M.; Nussinov, R. and Wolfson, H. J. A method for simultaneous alignment of multiple protein structures. Proteins 2004, 56, 143-156.
  22. Weiner, S. J.; Kollman, P. A.; Nguyen, D. T. and Case, D. A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem 1986, 7, 230-252.
  23. Hansch, C. and Fujita, T. ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616-1626.
  24. McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y. M.; Buso, N.; Cowley, A. P. and Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597-600.
  25. Liang, J.; Edelsbrunner, H.; Fu, P.; Sudhakar, P. V. and Subramaniam, S. Analytical shape computation of macromolecules: I. Molecular area and volume through alpha shape. Proteins: Struct., Funct., Bioinf. 1998, 33, 1-17.
  26. Kinch, M. S.; Patridge, E.; Plummer, M. and Hoyer, D. An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov. Today 2014, 19, 1283-1287.
  27. Goujon, M.; McWilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J. and Lopez, R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38, W695-9.
  28. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S. and Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765-784.
  29. Jez, J. M.; Flynn, T. and Penning, T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 1997, 54, 639-647.
  30. Grädler, U.; Gerber, H.-D.; Goodenough-Lashua, D. M.; Garcia, G. A.; Ficner, R.; Reuter, K.; Stubbs, M. T. and Klebe, G. A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase. J. Mol. Biol. 2001, 306, 455-467.
  31. Nissink, J. W. M.; Murray, C. W.; Hartshorn, M.; Verdonk, M. L.; Cole, J. C. and Taylor, R. A new test set for validating predictions of protein-ligand interaction. Proteins: Struct., Funct., Bioinf. 2002, 49, 457-471.
  32. Ritschel, T.; Atmanene, C.; Reuter, K.; van Dorsselaer, A.; Sanglier- Cianferani, S. and Klebe, G. An integrative approach combining noncovalent mass spectrometry, enzyme kinetics and X-ray crystallography to decipher Tgt protein-protein and protein-RNA interaction. J. Mol. Biol. 2009, 393, 833-847.
  33. Tarassov, K.; Messier, V.; Landry, C. R.; Radinovic, S.; Serna Molina, M. M.; Shames, I.; Malitskaya, Y.; Vogel, J.; Bussey, H. and Michnick, S. W. An in vivo map of the yeast protein interactome. Science 2008, 320, 1465-1470.
  34. Diskin, R.; Engelberg, D. and Livnah, O. A novel lipid binding site formed by the MAP kinase insert in p38α. J. Mol. Biol. 2008, 375, 70-79.
  35. An, J.; Lee, D. C. W.; Law, A. H. Y.; Yang, C. L. H.; Poon, L. L. M.; Lau, A. S. Y. and Jones, S. J. M. A novel small-molecule inhibitor of the avian influenza H5N1 virus determined through computational screening against the neuraminidase. J. Med. Chem. 2009, 52, 2667-2672.
  36. Pruden, A.; Pei, R.; Storteboom, H. and Carlson, K. H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado †.
  37. Zhang, X.-X.; Zhang, T. and Fang, H. H. P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397-414.
  38. D'Costa, V. M.; King, C. E.; Kalan, L.; Morar, M.; Sung, W. W. L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Gol- ding, G. B.; Poinar, H. N. and Wright, G. D. Antibiotic resistance is ancient. Nature 2011, 477, 457-461.
  39. Tauxe, R. V.; Puhr, N. D.; Wells, J. G.; Hargrett-Bean, N. and Blake, P. A. Antimicrobial resistance of Shigella isolates in the USA: The importance of international travelers. J. Infect. Dis. 1990, 162, 1107-1111.
  40. Agnelli, G.; Haas, S.; Ginsberg, J. S.; Krueger, K. A.; Dmitrienko, A. and Brandt, J. T. A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. J. Thromb. Haemost. 2007, 5, 746-753.
  41. Greer, J.; Erickson, J. W.; Baldwin, J. J. and Varney, M. D. Application of the Three-Dimensional Structures of Protein Target Molecules in Structure-Based Drug Design. J. Med. Chem. 1994, 37, 1035-1054.
  42. Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discovery 2015, 14, 95-110.
  43. Gohlke, H. and Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. Engl. 2002, 41, 2644-2676.
  44. Weiser, J.; Shenkin, P. S. and Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217-230.
  45. Invernizzi, C. F.; Xie, B.; Frankel, F. A.; Feldhammer, M.; Roy, B. B.; Richard, S. and Wainberg, M. A. Arginine methylation of the HIV-1 nucleo- capsid protein results in its diminished function. AIDS 2007, 21, 795-805.
  46. Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe, G. and Brooks, C. L. Assessing scoring functions for protein-ligand interactions. J. Med. Chem. 2004, 47, 3032-3047.
  47. London, N. and Schueler-Furman, O. Assessing the energy landscape of CAPRI targets by FunHunt. Proteins 2007, 69, 809-815.
  48. Méndez, R.; Leplae, R.; Lensink, M. F. and Wodak, S. J. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005, 60, 150-169.
  49. Chung, S. Y. and Subbiah, S. A structural explanation for the twilight zone of protein sequence homology. Structure 1996, 4, 1123-1127.
  50. McQuade, T.; Tomasselli, A.; Liu, L.; Karacostas, V.; Moss, B.; Sawyer, T.; Heinrikson, R. and Tarpley, W. A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science 1990, 247, 454-456.
  51. Heller, D. Auffinden von Inhibitoren der tRNA-Guanin-Transglykosylase (TGT) und der Insulin-like Growth Factor 1Receptor Tyrosine Kinase (IGF-1-RTK) aus Pflanzenextrakten durch Ligandenfischen sowie deren Isolierung und Identifizierung. Habilitationsschrift, Philipps-Universität Marburg -Fachbereich Pharmazie, 2005.
  52. Meng, E. C.; Shoichet, B. K. and Kuntz, I. D. Automated docking with grid-based energy evaluation. J. Comput. Chem 1992, 13, 505-524.
  53. Heinemann, J. A. and Sprague, G. F. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 1989, 340, 205-209.
  54. Chaudhury, S.; Berrondo, M.; Weitzner, B. D.; Muthu, P.; Bergman, H. and Gray, J. J. Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS ONE 2011, 6, e22477.
  55. Lagarde, N.; Zagury, J.-F. and Montes, M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. J. Chem. Inf. Model. 2015, 55, 1297-1307.
  56. Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H. I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z. and Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288.
  57. Gabel, J.; Desaphy, J. and Rognan, D. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model. 2014, 54, 2807-2815.
  58. Jain, A. N. Bias, reporting, and sharing: Computational evaluations of docking methods. J. Comput.-Aided Mol. Des. 2008, 22, 201-212.
  59. Palma, P. N.; Krippahl, L.; Wampler, J. E. and Moura, J. J. BiGGER: A new (soft) docking algorithm for predicting protein interactions. Proteins 2000, 39, 372-384.
  60. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 Dec 13, 414, 813-820.
  61. Meyer, E. A.; Donati, N.; Guillot, M.; Schweizer, W. B.; Stengl, B.; Brenk, R.; Reuter, K.; Diederich, F. and Klebe, G. Synthesis, Biolo- gical Evaluation, and Crystallographic Studies of Extended Guanine-Based (lin- Benzoguanine) Inhibitors for tRNA-Guanine Transglycosylase (TGT). Helv. Chim. Acta 2006, 89, 573-597.
  62. Björk, G. R. Biosynthesis and function of modified nucleosides. In tRNA, D. Söll and U. RajBhandary, Eds. ASM Press, Washington, D.C., 1995, pp. 165-205.
  63. Phillips, G.; Yacoubi, B. E.; Lyons, B.; Alvarez, S.; Iwata-Reuyl, D. and de Crécy-Lagard, V. Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I. J. Bacteriol. 2008, 190, 7876-7884.
  64. Rodríguez-Paredes, M. and Esteller, M. Cancer epigenetics reaches main- stream oncology. Nat. Med. 2011, 17, 330-339.
  65. Plewczynski, D.; Lazniewski, M.; Augustyniak, R. and Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem 2011, 32, 742-755.
  66. Janin, J.; Henrick, K.; Moult, J.; Eyck, L. T.; Sternberg, M. J. E.; Vajda, S.; Vakser, I. and Wodak, S. J. CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 2003, 52, 2-9.
  67. Elakoum, R.; Gauchotte, G.; Oussalah, A.; Wissler, M.-P.; Clément- Duchêne, C.; Vignaud, J.-M.; Guéant, J.-L. and Namour, F. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie 2014, 97, 210-218.
  68. Frietze, S.; Lupien, M.; Silver, P. A. and Brown, M. CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 2008, 68, 301-306.
  69. Orengo, C. A.; Michie, A. D.; Jones, S.; Jones, D. T.; Swindells, M. B. and Thornton, J. M. CATH -a hierarchic classification of protein domain structures. Structure 1997, 5, 1093-1109.
  70. Dawson, N. L.; Lewis, T. E.; Das, S.; Lees, J. G.; Lee, D.; Ashford, P.; Orengo, C. A. and Sillitoe, I. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 2017, 45, D289-D295.
  71. Sillitoe, I.; Lewis, T. E.; Cuff, A.; Das, S.; Ashford, P.; Dawson, N. L.; Furnham, N.; Laskowski, R. A.; Lee, D.; Lees, J. G.; Lehtinen, S.; Studer, R. A.; Thornton, J. and Orengo, C. A. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2015, 43, D376-D381.
  72. Johnson, G. T.; Autin, L.; Al-Alusi, M.; Goodsell, D. S.; Sanner, M. F. and Olson, A. J. cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat. Methods 2015, 12, 85-91.
  73. Sali, A. and Kuriyan, J. Challenges at the frontiers of structural biology. Trends Cell Biol. 1999, 9, M20-M24.
  74. Njoroge, F. G.; Chen, K. X.; Shih, N.-Y. and Piwinski, J. J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res. 2008, 41, 50-59.
  75. Joseph-McCarthy, D. Challenges of fragment screening. J. Comput.-Aided Mol. Des. 2009, 23, 449-451.
  76. Chen, Y.-C.; Kelly, V. P.; Stachura, S. V. and Garcia, G. A. Characteriza- tion of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA 2010, 16, 958-968.
  77. Ruvinsky, A. M. and Vakser, I. A. Chasing funnels on protein-protein energy landscapes at different resolutions. Biophys. J. 2008, 95, 2150-2159.
  78. Xie, W.; Liu, X. and Huang, R. H. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol. 2003, 10, 781-788.
  79. Walsh, T. R. and Wu, Y. China bans colistin as a feed additive for animals. Lancet Infect. Dis. 2016, 16, 1102-1103.
  80. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu. Rev. Biochem. 2006, 75, 243-269.
  81. Liu, J. and Wang, R. Classification of current scoring functions. J. Chem. Inf. Model. 2015, 55, 475-482.
  82. Vacca, J. P. and Condra, J. H. Clinically effective HIV-1 protease inhibitors. Drug Discov. Today 1997, 2, 261-272.
  83. Paterson, D. L. and Harris, P. N. A. Colistin resistance: A major breach in our last line of defence. Lancet Infect. Dis. 2016, 16, 132-133.
  84. Falagas, M. E. and Kasiakou, S. K. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333-1341.
  85. Lin, J.; Lee, I. S.; Frey, J.; Slonczewski, J. L. and Foster, J. W. Compa- rative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 1995, 177, 4097-4104.
  86. Cheng, T.; Li, X.; Li, Y.; Liu, Z. and Wang, R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 2009, 49, 1079-1093.
  87. Šali, A. and Blundell, T. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779-815.
  88. Bursulaya, B. D.; Totrov, M.; Abagyan, R. and Brooks, C. L. Compara- tive study of several algorithms for flexible ligand docking. J. Comput.-Aided Mol. Des. 2003, 17, 755-763.
  89. Cole, J. C.; Murray, C. W.; Nissink, J. W. M.; Taylor, R. D. and Taylor, R. Comparing protein-ligand docking programs is difficult. Proteins: Struct., Funct., Bioinf. 2005, 60, 325-332.
  90. Xu, W.; Lucke, A. J. and Fairlie, D. P. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J. Mol. Graph. Model. 2015, 57, 76-88.
  91. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A. and Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Funct., Bioinf. 2006, 65, 712-725.
  92. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W. and Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
  93. Grünberg, R.; Leckner, J. and Nilges, M. Complementarity of structure ensembles in protein-protein binding. Structure 2004, 12, 2125-2136.
  94. Vasaikar, S.; Bhatia, P.; Bhatia, P. G. and Chu Yaiw, K. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets. 2016, 4,.
  95. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S. and Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys 2016, 18, 12964-12975.
  96. Baig, M. H.; Ahmad, K.; Roy, S.; Ashraf, J. M.; Adil, M.; Siddiqui, M. H.; Khan, S.; Kamal, M. A.; Provazník, I. and Choi, I. Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 2016, 22, 572-581.
  97. van Drie, J. H. Computer-aided drug design: the next 20 years. J. Comput.-Aided Mol. Des. 2007, 21, 591-601.
  98. Wodak, S. J. and Janin, J. Computer analysis of protein-protein interaction. J. Mol. Biol. 1978, 124, 323-342.
  99. Gonzalez, T.; Diaz-Herrera, J. and Tucker, A. Computing Handbook, Third Edition: Computer Science and Software Engineering. CRC Press, 2014.
  100. Changeux, J.-P. and Edelstein, S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol. Rep. 2011, 3, 19.
  101. Charifson, P. S.; Corkery, J. J.; Murcko, M. A. and Walters, W. P. Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. J. Med. Chem. 1999, 42, 5100-5109.
  102. Martin, S. F. and Clements, J. H. Correlating Structure and Energetics in Protein-Ligand Interactions: Paradigms and Paradoxes. Annu. Rev. Biochem. 2013, 82, 267-293.
  103. Brenk, R.; Meyer, E. A.; Reuter, K.; Stubbs, M. T.; Garcia, G. A.; Diederich, F. and Klebe, G. Crystallographic study of inhibitors of tRNA- guanine transglycosylase suggests a new structure-based pharmacophore for virtual screening. J. Mol. Biol. 2004, 338, 55-75.
  104. Ritschel, T.; Hoertner, S.; Heine, A.; Diederich, F. and Klebe, G. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT. ChemBioChem 2009, 10, 716-727.
  105. Luger, K.; Mader, A. W.; Richmond, R. K.; Sargent, D. F. and Rich- mond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389, 251-260.
  106. Romier, C.; Reuter, K.; Suck, D. and Ficner, R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 1996, 15, 2850-2857.
  107. Avorn, J. Cultural and Economic Factors That (Mis)Shape Antibiotic Use: The Nonpharmacologic Basis of Therapeutics. Ann. Intern. Med. 2000, 133, 128.
  108. Sander, C. and Schneider, R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins: Struct., Funct., Genet. 1991, 9, 56-68.
  109. Andreeva, A.; Howorth, D.; Chandonia, J.-M.; Brenner, S. E.; Hubbard, T. J. P.; Chothia, C. and Murzin, A. G. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 2008, 36, D419-D425.
  110. Verkhivker, G. M.; Bouzida, D.; Gehlhaar, D. K.; Rejto, P. A.; Arthurs, S.; Colson, A. B.; Freer, S. T.; Larson, V.; Luty, B. A.; Marrone, T. and Rose, P. W. Deciphering common failures in molecular docking of ligand-protein complexes. J. Comput.-Aided Mol. Des. 2000, 14, 731-751.
  111. Kimura, S. R.; Hu, H. P.; Ruvinsky, A. M.; Sherman, W. and Favia, A. D. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics. J. Chem. Inf. Model. 2017, 57, 1388-1401.
  112. Bardhan, P.; Faruque, A. S.; Naheed, A. and Sack, D. A. Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerging Infect. Dis. 2010, 16, 1718-1723.
  113. Erickson, J.; Neidhart, D. J.; VanDrie, J.; Kempf, D. J.; Wang, X. C.; Norbeck, D. W.; Plattner, J. J.; Rittenhouse, J. W.; Turon, M. and Wideburg, N. Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science 1990, 249, 527-533.
  114. Cushman, D. W.; Cheung, H. S.; Sabo, E. F. and Ondetti, M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 2002, 16, 5484-5491.
  115. Ondetti, M.; Rubin, B. and Cushman, D. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 1977, 196, 441-444.
  116. Stahl, M. and Rarey, M. Detailed analysis of scoring functions for virtual screening. J. Med. Chem. 2001, 44, 1035-1042.
  117. Schwartz, T.; Kohnen, W.; Jansen, B. and Obst, U. Detection of antibiotic- resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 2003, 43, 325-335.
  118. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A. and Case, D. A. Development and testing of a general amber force field. J. Comput. Chem 2004, 25, 1157-1174.
  119. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R. and Taylor, R. De- velopment and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727-748.
  120. Zhang, S.; Golbraikh, A. and Tropsha, A. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J. Med. Chem. 2006, 49, 2713-2724.
  121. Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253-287.
  122. Adam, T. Die Invasion von Epithelzellen durch E. coli Shigella. Habilitationsschrift, , Medizinische Fakultät der Charité -Universitätsmedizin Berlin, 2003.
  123. Croft, J. A.; Bridger, J. M.; Boyle, S.; Perry, P.; Teague, P. and Bickmore, W. A. Differences in the Localization and Morphology of Chromosomes in the Human Nucleus. J. Cell. Biol. 1999, 145, 1119-1131.
  124. Schames, J. R.; Henchman, R. H.; Siegel, J. S.; Sotriffer, C. A.; Ni, H. and McCammon, J. A. Discovery of a novel binding trench in HIV integrase. J. Med. Chem. 2004, 47, 1879-1881.
  125. Kozakov, D.; Schueler-Furman, O. and Vajda, S. Discrimination of near- native structures in protein-protein docking by testing the stability of local minima. Proteins 2008, 72, 993-1004.
  126. Hartshorn, M. J.; Verdonk, M. L.; Chessari, G.; Brewerton, S. C.; Mooij, W. T. M.; Mortenson, P. N. and Murray, C. W. Diverse, high- quality test set for the validation of protein-ligand docking performance. J. Med. Chem. 2007, 50, 726-741.
  127. Lensink, M. F.; Méndez, R. and Wodak, S. J. Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins 2007, 69, 704-718.
  128. Lensink, M. F. and Wodak, S. J. Docking and scoring protein interactions: CAPRI 2009. Proteins 2010, 78, 3073-3084.
  129. Lensink, M. F. and Wodak, S. J. Docking, scoring, and affinity prediction in CAPRI. Proteins 2013, 81, 2082-2095.
  130. Ballester, P. J.; Schreyer, A. and Blundell, T. L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model. 2014, 54, 944-955.
  131. Jonas, O.; Berthe, F.; Le Gall, F.; Marquez, P. V.; Plante, C.; Shreiber, D. and Schneidman, M. Drug-Resistant Infections -A Threat to Our Economic Future (Discussion Draft). International Bank for Reconstruction and Development / The World Bank 2016,.
  132. Velec, H. F. G.; Gohlke, H. and Klebe, G. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem. 2005, 48, 6296-6303.
  133. Pfeffer, P. and Gohlke, H. DrugScoreRNA -knowledge-based scoring function to predict RNA-ligand interactions. J. Chem. Inf. Model. 2007, 47, 1868-1876.
  134. Payne, D. J.; Gwynn, M. N.; Holmes, D. J. and Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discovery 2007, 6, 29-40.
  135. Neudert, G. and Klebe, G. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 2011, 51, 2731-2745.
  136. Kornev, A. P. and Taylor, S. S. Dynamics-Driven Allostery in Protein Kinases. Trends Biochem. Sci. 2015, 40, 628-647.
  137. Yoshimatsu, M.; Toyokawa, G.; Hayami, S.; Unoki, M.; Tsunoda, T.; Field, H. I.; Kelly, J. D.; Neal, D. E.; Maehara, Y.; Ponder, B. A. J.; Nakamura, Y. and Hamamoto, R. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int. J. Cancer 2011, 128, 562-573.
  138. Shen, Z.; Wang, Y.; Shen, Y.; Shen, J. and Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis. 2016, 16, 293.
  139. Zsoldos, Z.; Reid, D.; Simon, A.; Sadjad, S. B. and Johnson, A. P. eHiTS: a new fast, exhaustive flexible ligand docking system. J. Mol. Graph. Model. 2007, 26, 198-212.
  140. Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Deut. Med. Wochenschr. 1935, 61, 250-253.
  141. Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 1894, 27, 2985-2993.
  142. Perutz, M. Electrostatic effects in proteins. Science 1978, 201, 1187-1191.
  143. Calabrò, G.; Woods, C. J.; Powlesland, F.; Mey, A. S. J. S.; Mulhol- land, A. J. and Michel, J. Elucidation of Nonadditive Effects in Protein-Ligand Binding Energies: Thrombin as a Case Study. J. Phys. Chem. B 2016, 120, 5340- 5350.
  144. Wagner, J. R.; Lee, C. T.; Durrant, J. D.; Malmstrom, R. D.; Feher, V. A. and Amaro, R. E. Emerging Computational Methods for the Rational Discovery of Allosteric Drugs. Chem. Rev. 2016, 116, 6370-6390.
  145. Mee, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput.-Aided Mol. Des. 1997, 11, 425-445.
  146. Hallberg, Z. F.; Su, Y.; Kitto, R. Z. and Hammond, M. C. Engineering and In Vivo Applications of Riboswitches. Annu. Rev. Biochem. 2017, 86, 515-539.
  147. Ross, A. G. P.; Olds, G. R.; Cripps, A. W.; Farrar, J. J. and McManus, D. P. Enteropathogens and chronic illness in returning travelers. N. Engl. J. Med. 2013, 368, 1817-1825.
  148. Bowman, G. R. and Geissler, P. L. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl. Acad. Sci. USA 2012, 109, 11681-11686.
  149. European Centre for Disease Prevention and Control. Annual Epidemiological Report 2016 -Shigellosis. Stockholm: ECDC. Internet 2016,.
  150. Li, X.; Li, Y.; Cheng, T.; Liu, Z. and Wang, R. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J. Comput. Chem 2010, 31, 2109-2125.
  151. Katze, J. R.; Gunduz, U.; Smith, D. L.; Cheng, C. S. and McCloskey, J. A. Evidence that the nucleic acid base queuine is incorporated intact into tRNA by animal cells. Biochemistry 1984, 23, 1171-1176.
  152. Wang, Y.-C. and Li, C. Evolutionarily conserved protein arginine methyltrans- ferases in non-mammalian animal systems. FEBS J. 2012, 279, 932-945.
  153. Onufriev, A.; Bashford, D. and Case, D. A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004, 55, 383-394.
  154. Xiang, Z. and Honig, B. Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 2001, 311, 421-430.
  155. Jakalian, A.; Jack, D. B. and Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation.
  156. Jakalian, A.; Bush, B. L.; Jack, D. B. and Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem 2000, 21, 132-146.
  157. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J. D. and Higgins, D. G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539.
  158. Yuan, Q.-B.; Guo, M.-T. and Yang, J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. PLoS ONE 2015, 10, e0119403.
  159. Bohari, M. H. and Sastry, G. N. FDA approved drugs complexed to their targets: Evaluating pose prediction accuracy of docking protocols. J. Mol. Model. 2012, 18, 4263-4274.
  160. Mullard, A. 2016 FDA drug approvals. Nat. Rev. Drug Discovery 2017, 16, 73-76.
  161. Emsley, P.; Lohkamp, B.; Scott, W. G. and Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect D: Biol. Crystallogr. 2010, 66, 486-501.
  162. Chen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Puah, C. M.; Chen, K. and Jiang, H. Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score.
  163. Tsai, C. J.; Ma, B. and Nussinov, R. Folding and binding cascades: Shifts in energy landscapes. Proc. Natl. Acad. Sci. USA 1999 Aug 31, 96, 9970-9972.
  164. Ma, B.; Kumar, S.; Tsai, C. J. and Nussinov, R. Folding funnels and binding mechanisms. Protein Eng. 1999, 12, 713-720.
  165. Sippl, M. J. Fold space unlimited. Curr. Opin. Struct. Biol. 2009, 19, 312-320.
  166. Scallan, E.; Griffin, P. M.; Angulo, F. J.; Tauxe, R. V. and Hoekstra, R. M. Foodborne Illness Acquired in the United States-Unspecified Agents. Emerging Infect. Dis. 2011, 17, 16-22.
  167. Neudert, G. and Klebe, G. fconv: Format conversion, manipulation and feature computation of molecular data. Bioinformatics 2011, 27, 1021-1022.
  168. Weisel, M.; Proschak, E.; Kriegl, J. M. and Schneider, G. Form follows function: shape analysis of protein cavities for receptor-based drug design. 2009, 9, 451-459.
  169. Brenke, R.; Kozakov, D.; Chuang, G.-Y.; Beglov, D.; Hall, D.; Landon, M. R.; Mattos, C. and Vajda, S. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. 2009, 25, 621-627.
  170. Troffer-Charlier, N.; Cura, V.; Hassenboehler, P.; Moras, D. and Cavarelli, J. Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J. 2007, 26, 4391-4401.
  171. Wang, R.; Lai, L. and Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput.-Aided Mol. Des. 2002, 16, 11-26.
  172. Lam, S. D.; Dawson, N. L.; Das, S.; Sillitoe, I.; Ashford, P.; Lee, D.; Lehtinen, S.; Orengo, C. A. and Lees, J. G. Gene3D: expanding the utility of domain assignments. Nucleic Acids Res. 2016, 44, D404-D409.
  173. Slany, R. K. and Kersten, H. Genes, enzymes and coenzymes of queuosine biosynthesis in procaryotes. Biochimie 1994, 76, 1178-1182.
  174. Gaur, R. and Varshney, U. Genetic analysis identifies a function for the queC (ybaX) gene product at an initial step in the queuosine biosynthetic pathway in Escherichia coli. J. Bacteriol. 2005, 187, 6893-6901.
  175. Drews, J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol. 1996, 14, 1516-1518.
  176. Kotloff, K. L.; Winickoff, J. P.; Ivanoff, B.; Clemens, J. D.; Swerdlow, D. L.; Sansonetti, P. J.; Adak, G. K. and Levine, M. M. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 1999, 77, 651-666.
  177. Shishkova, E.; Zeng, H.; Liu, F.; Kwiecien, N. W.; Hebert, A. S.; Coon, J. J. and Xu, W. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat. Commun. 2017, 8, 15571.
  178. Lott, K.; Li, J.; Fisk, J. C.; Wang, H.; Aletta, J. M.; Qu, J. and Read, L. K. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. J. Proteomics 2013, 91, 210-225.
  179. Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M. and Vollset, S. E. Global, regional, and national age-sex specific all-cause and cause- specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117-171.
  180. Martin, Y. C. Hansch analysis 50 years on. WIREs Comput. Mol. Sci. 2012, 2, 435-442.
  181. Gajiwala, K. S. and Burley, S. K. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 2000, 295, 605-612.
  182. Kohler, P. C.; Ritschel, T.; Schweizer, W. B.; Klebe, G. and Diederich, F. High-affinity inhibitors of tRNA-guanine transglycosylase replacing the function of a structural water cluster. Chem. Eur. J. 2009, 15, 10809-10817.
  183. Sivapalasingam, S.; Nelson, J. M.; Joyce, K.; Hoekstra, M.; Angulo, F. J. and Mintz, E. D. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrob. Agents Chemother. 2006, 50, 49-54.
  184. Terwesten, Felix; Buckel, Wolfgang; Reuter, Klaus. High resolution crystal structure of Clostridium propionicum β-alanyl-CoA:ammonia lyase, a new member of the "hot dog fold" protein superfamily. Proteins 2014, 82 (9) 2041 -2053.
  185. Dove, A. High-throughput screening goes to school. Nat. Methods 2007, 4, 523-532.
  186. Fox, S.; Farr-Jones, S.; Sopchak, L.; Boggs, A.; Nicely, H. W.; Khoury, R. and Biros, M. High-throughput screening: update on practices and success. J. Biomol. Screen. 2006, 11, 864-869.
  187. Emekli, U.; Schneidman-Duhovny, D.; Wolfson, H. J.; Nussinov, R. and Haliloglu, T. HingeProt: automated prediction of hinges in protein structures. Proteins 2008, 70, 1219-1227.
  188. Di Lorenzo, A. and Bedford, M. T. Histone arginine methylation. FEBS Lett. 2011, 585, 2024-2031.
  189. Tovchigrechko, A. and Vakser, I. A. How common is the funnel-like energy landscape in protein-protein interactions? Protein Sci. 2001, 10, 1572-1583.
  190. Seelmeier, S.; Schmidt, H.; Turk, V. and von der Helm, K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc. Natl. Acad. Sci. USA 1988, 85, 6612-6616.
  191. Palumbi, S. R. Humans as the world's greatest evolutionary force. Science 2001, 293, 1786-1790.
  192. Cao, D.; Fan, S. T. and Chung, S. S. M. Identification and Characterization of a Novel Human Aldose Reductase-like Gene. J. Biol. Chem. 1998, 273, 11429-11435.
  193. Philipsen, Sjaak; Kolb, Peter; Bauer, Uta-Maria. Identification and in silico structural analysis of Gallus gallus protein arginine methyltransferase 4 (PRMT4). FEBS Open Bio 2017, 1337.
  194. Parés, Xavier; Podjarny, Alberto. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallogr. Sect D: Biol. Crystallogr. 2014, 70 (3) 889 -903.
  195. Goodsell, D. S. Illustrating the machinery of life: viruses. Biochem. Mol. Biol. Educ. 2012, 40, 291-296.
  196. Li, H.; Leung, K.-S.; Wong, M.-H. and Ballester, P. J. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol. Inform. 2015, 34, 115-126.
  197. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E. and Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696-3713.
  198. Riddle, M. S.; Sanders, J. W.; Putnam, S. D. and Tribble, D. R. Incidence, etiology, and impact of diarrhea among long-term travelers (US military and similar populations): a systematic review. Am. J. Trop. Med. Hyg. 2006, 74, 891-900.
  199. Yue, W. W.; Hassler, M.; Roe, S. M.; Thompson-Vale, V. and Pearl, L. H. Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J. 2007, 26, 4402-4412.
  200. Rechlin, C. Insights into Protein-Ligand Molecular Recognition: Thermodynamic, Kinetic and Structural Characterization of Inhibitor Binding to Aldose Reductase and Carbonic Anhydrase II. Dissertation, Philipps-Universität Marburg -Fachbereich Pharmazie, 2015.
  201. Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discovery 2002, 1, 882-894.
  202. Vidal, M.; Cusick, M. E. and Barabási, A.-L. Interactome networks and human disease. 2011, 144, 986-998.
  203. Biela, I.; Tidten-Luksch, N.; Immekus, F.; Glinca, S.; Nguyen, T. X. P.; Gerber, H.-D.; Heine, A.; Klebe, G. and Reuter, K. Investigation of Speci- ficity Determinants in Bacterial tRNA-Guanine Transglycosylase Reveals Queuine, the Substrate of Its Eucaryotic Counterpart, as Inhibitor. PLoS ONE 2013, 8, 1-19.
  204. Okada, N. and Nishimura, S. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J. Biol. Chem. 1979, 254, 3061-3066.
  205. Vacca, J. P.; Guare, J. P.; DeSolms, S. J.; Sanders, W. M.; Giuliani, E. A.; Young, S. D.; Darke, P. L.; Sigal, I. S. and Schleif, W. A. L- 687,908, a potent hydroxyethylene containing HIV protease inhibitor. J. Med. Chem. 1991, 34, 1225-1228.
  206. Izaguirre, J. A.; Catarello, D. P.; Wozniak, J. M. and Skeel, R. D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001, 114, 2090-2098.
  207. Sanchez, R. and Sali, A. Large-scale protein structure modeling of the Saccha- romyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 1998, 95, 13597-13602.
  208. Yuriev, E. and Ramsland, P. A. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recogn. 2013, 26, 215-239.
  209. Golebiowski, A.; Klopfenstein, S. R. and Portlock, D. E. Lead compounds discovered from libraries. Curr. Opin. Chem. Biol. 2001, 5, 273-284.
  210. Andreeva, A. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Biochem. Soc. Trans. 2016, 44, 937-943.
  211. Shoichet, B. K.; Leach, A. R. and Kuntz, I. D. Ligand solvation in molecular docking. Proteins: Struct., Funct., Genet. 1999, 34, 4-16.
  212. M. T. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci. Rep. 2013, 3, 1311.
  213. Ain, Q. U.; Aleksandrova, A.; Roessler, F. D. and Ballester, P. J. Machine-learning scoring functions to improve structure-based binding affinity pre- diction and virtual screening. WIREs Comput. Mol. Sci. 2015, 5, 405-424.
  214. Ivetac, A. and McCammon, J. A. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem. Biol. Drug Des. 2010, 76, 201-217.
  215. Shoichet, B. K. and Kuntz, I. D. Matching chemistry and shape in molecular docking. Protein Eng. 1993, 6, 723-732.
  216. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90-95.
  217. Krotzky, T. Methods for the Efficient Comparison of Protein Binding Sites and for the Protein Binding Sites and for the Assessment of Protein-Ligand Complexes. Dissertation, Philipps-Universität Marburg -Fachbereich Pharmazie, 2015.
  218. Bauer, U.-M.; Daujat, S.; Nielsen, S. J.; Nightingale, K. and Kouzarides, T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO rep. 2002, 3, 39-44.
  219. Lensink, M. F.; Velankar, S. and Wodak, S. J. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 2017, 85, 359-377.
  220. Vásquez, M. Modeling side-chain conformation. Curr. Opin. Struct. Biol. 1996, 6, 217-221.
  221. Šali, A. Modelling mutations and homologous proteins. Curr. Opin. Biotechnol. 1995, 6, 437-451.
  222. Weng, J.; Cao, Y.; Moss, N. and Zhou, M. Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J. Biol. Chem. 2006, 281, 15194-15200.
  223. Lee, M. R.; Tsai, J.; Baker, D. and Kollman, P. A. Molecular dynamics in the endgame of protein structure prediction. J. Mol. Biol. 2001, 313, 417-430.
  224. Durrant, J. D. and McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011, 9, 71.
  225. Jones, G.; Willett, P. and Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 43-53.
  226. Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A. A.; Aflalo, C. and Vakser, I. A. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 1992, 89, 2195-2199.
  227. Pupo, G. M.; Lan, R. and Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics.
  228. Summa, C. M. and Levitt, M. Near-native structure refinement using in vacuo energy minimization. Proc. Natl. Acad. Sci. USA 2007, 104, 3177-3182.
  229. Frey, B.; McCloskey, J.; Kersten, W. and Kersten, H. New function of vitamin B12: Cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1988, 170, 2078-2082.
  230. He, Y.; Chen, Y.; Alexander, P.; Bryan, P. N. and Orban, J. NMR structures of two designed proteins with high sequence identity but different fold and function. Proc. Natl. Acad. Sci. USA 2008, 105, 14412-14417.
  231. Hartman, G. D.; Egbertson, M. S.; Halczenko, W.; Laswell, W. L.; Duggan, M. E.; Smith, R. L.; Naylor, A. M.; Manno, P. D. and Lynch, R. J. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem. 1992, 35, 4640-4642.
  232. Morgan, D. J.; Okeke, I. N.; Laxminarayan, R.; Perencevich, E. N. and Weisenberg, S. Non-prescription antimicrobial use worldwide: A systematic review. Lancet Infect. Dis. 2011, 11, 692-701.
  233. Xing, Y. Nonrandom gene organization: Structural arrangements of specific pre- mRNA transcription and splicing with SC-35 domains. J. Cell. Biol. 1995, 131, 1635-1647.
  234. Krohn, A.; Redshaw, S.; Ritchie, J. C.; Graves, B. J. and Hatada, M. H. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J. Med. Chem. 1991, 34, 3340-3342.
  235. Ryckaert, J.-P.; Ciccotti, G. and Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
  236. Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X. and Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. 2015, 119, 1379-1385.
  237. Eisenstein, M. and Katchalski-Katzir, E. On proteins, grids, correlations, and docking. C. R. Biol. 2004, 409-420.
  238. Spyrakis, F. and Cavasotto, C. N. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch. Biochem. Biophys. 2015, 583, 105-119.
  239. Gront, D.; Kmiecik, S.; Blaszczyk, M.; Ekonomiuk, D. and Koliński, A. Optimization of protein models. WIREs Comput. Mol. Sci. 2012, 2, 479-493.
  240. Nathan, C. and Goldberg, F. M. Outlook: the profit problem in antibiotic R&D. Nat. Rev. Drug Discovery 2005, 4, 887-891.
  241. Goossens, H.; Ferech, M.; Vander Stichele, R. and Elseviers, M. Out- patient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 2005, 365, 579-587.
  242. Waszkowycz, B.; Clark, D. E. and Gancia, E. Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs Comput. Mol. Sci. 2011, 1, 229-259.
  243. Quinn, A. M.; Harvey, R. G. and Penning, T. M. Oxidation of PAH trans- dihydrodiols by human aldo-keto reductase AKR1B10. Chem. Res. Toxicol. 2008, 21, 2207-2215.
  244. Darden, T.; York, D. and Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.
  245. Levine, M. M.; DuPont, H. L.; Formal, S. B.; Hornick, R. B.; Takeuchi, A.; Gangarosa, E. J.; Snyder, M. J. and Libonati, J. P. Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J. Infect. Dis. 1973, 127, 261-270.
  246. Fleming, A. Penicillin: Nobel Lecture, December 11, 1945.
  247. Kokh, D. B.; Czodrowski, P.; Rippmann, F. and Wade, R. C. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets. J. Chem. Theory Comput. 2016, 12, 4100-4113.
  248. Huang, N.; Kalyanaraman, C.; Irwin, J. J. and Jacobson, M. P. Physics- based scoring of protein-ligand complexes: enrichment of known inhibitors in large- scale virtual screening. J. Chem. Inf. Model. 2006, 46, 243-253.
  249. Harrison, E. and Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012, 20, 262-267.
  250. Springer, C.; Adalsteinsson, H.; Young, M. M.; Kegelmeyer, P. W. and Roe, D. C. PostDOCK: a structural, empirical approach to scoring protein ligand complexes. J. Med. Chem. 2005, 48, 6821-6831.
  251. Dodd, M. C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment.
  252. Durrant, J. D.; Votapka, L.; Sørensen, J. and Amaro, R. E. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics.
  253. Durrant, J. D.; de Oliveira, C. A. F. and McCammon, J. A. POVME: An algorithm for measuring binding-pocket volumes. J. Mol. Graph. Model. 2011, 29, 773-776.
  254. Gohlke, H.; Hendlich, M. and Klebe, G. Predicting binding modes, binding affinities and "hot spots" for protein-ligand complexes using a knowledge-based scoring function. Perspect. Drug Discov. Des. 2000, 20, 115-144.
  255. Deng, W.; Breneman, C. and Embrechts, M. J. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods.
  256. Böhm, H.-J. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput.-Aided Mol. Des. 1998, 12, 309-323.
  257. Leach, A. R.; Shoichet, B. K. and Peishoff, C. E. Prediction of protein- ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 2006, 49, 5851-5855.
  258. Wodak, S. J. and Méndez, R. Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol. 2004, 14, 242-249.
  259. Bower, M. J.; Cohen, F. E. and Dunbrack, R. L. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J. Mol. Biol. 1997, 267, 1268-1282.
  260. Pang, Y. P. and Kozikowski, A. P. Prediction of the binding site of 1-benzyl- 4-(5,6-dimethoxy-1-indanon-2-yl)methylpiperidine in acetylcholinesterase by docking studies with the SYSDOC program. J. Comput.-Aided Mol. Des. 1994, 8, 683-693.
  261. Wulsdorf, Tobias; Pol, Ewa; Fridh, Veronica; Toth, Philipp; Diederich, Wibke E.; Heine, Andreas; Klebe, Gerhard. Price for Opening the Transient Specificity Pocket in Human Aldose Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and Computational Analysis. ACS Chem.
  262. Vu, L. P.; Perna, F.; Wang, L.; Voza, F.; Figueroa, M. E.; Tempst, P.; Erdjument-Bromage, H.; Gao, R.; Chen, S.; Paietta, E.; Deblasio, T.; Melnick, A.; Liu, Y.; Zhao, X. and Nimer, S. D. PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Rep. 2013, 5, 1625-1638.
  263. Streubel, G.; Bouchard, C.; Berberich, H.; Zeller, M. S.; Teichmann, S.; Adamkiewicz, J.; Muller, R.; Klempnauer, K.-H. and Bauer, U.-M. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLOS Genet. 2013, 9, e1003343.
  264. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S. and Thornton, J. M. PROCHECK -A program to check the stereochemical quality of protein structures.
  265. Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B. and Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53-62.
  266. Tzeng, S.-R. and Kalodimos, C. G. Protein activity regulation by conformatio- nal entropy. Nature 2012, 488, 236-240.
  267. Fuhrmann, J. and Thompson, P. R. Protein Arginine Methylation and Citrulli- nation in Epigenetic Regulation. ACS Chem. Biol. 2016, 11, 654-668.
  268. McBride, A. E.; Zurita-Lopez, C.; Regis, A.; Blum, E.; Conboy, A.; Elf, S. and Clarke, S. Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryot. Cell 2007, 6, 1119-1129.
  269. Bedford, M. T. and Clarke, S. G. Protein Arginine Methylation in Mammals: Who, What, and Why. Mol. Cell 2009, 33, 1-13.
  270. Wei, H.; Mundade, R.; Lange, K. C. and Lu, T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell cycle 2014, 13, 32-41.
  271. Jain, K.; Warmack, R. A.; Debler, E. W.; Hadjikyriacou, A.; Stavro- poulos, P. and Clarke, S. G. Protein Arginine Methyltransferase Product Specificity Is Mediated by Distinct Active-site Architectures. J. Biol. Chem. 2016, 291, 18299-18308.
  272. Yang, Y. and Bedford, M. T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 2013, 13, 37-50.
  273. Stank, A.; Kokh, D. B.; Fuller, J. C. and Wade, R. C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809-815.
  274. Laskowski, R. A.; Luscombe, N. M.; Swindells, M. B. and Thornton, J. M. Protein clefts in molecular recognition and function. Protein Sci. 1996, 5, 2438-2452.
  275. James, P. Protein identification in the post-genome era: The rapid rise of proteomics. Q. Rev. Biophys. 1997, 30, 279-331.
  276. Yan, Y.; Wang, W.; Sun, Z.; Zhang, J. Z. H. and Ji, C. Protein-Ligand Empirical Interaction Components for Virtual Screening. J. Chem. Inf. Model. 2017, 57, 1793-1806.
  277. Verdonk, M. L.; Ludlow, R. F.; Giangreco, I. and Rathi, P. C. Protein- Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions. J. Med. Chem. 2016, 59, 6891-6902.
  278. Saladin, A. and Prevost, C. Protein-Protein Docking. In Protein-protein complexes, M. Zacharias, Ed. Imperial College Press and Distributed by World Scientific Pub. Co, London and Singapore and Hackensack, NJ, 2010, pp. 147-181.
  279. Janin, J. Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol. Biosyst. 2010, 6, 2351-2362.
  280. Bonetta, L. Protein-protein interactions: Interactome under construction. Nature 2010, 468, 851-854.
  281. Baker, D. and Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93-96.
  282. Anderson, N. L. and Anderson, N. G. Proteome and proteomics: new techno- logies, new concepts, and new words. 1998, 19, 1853-1861.
  283. Blackstock, W. P. and Weir, M. P. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999, 17, 121-127.
  284. Czodrowski, P.; Sotriffer, C. A. and Klebe, G. Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pK(a) calculations and ITC experiments. J. Mol. Biol. 2007, 367, 1347-1356.
  285. Miller, Bill R., III; Jr. Dwight McGee, T.; Swails, J. M.; Homeyer, N.; Gohlke, H. and Roitberg, A. E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314-3321.
  286. Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegård, B.; Söderström, H. and Larsson, D. G. J. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6, e17038.
  287. Boland, C.; Hayes, P.; Santa-Maria, I.; Nishimura, S. and Kelly, V. P. Queuosine Formation in Eukaryotic tRNA Occurs via a Mitochondria-localized Heteromeric Transglycosylase. J. Biol. Chem. 2009, 284, 18218-18227.
  288. R Core Team. R: A Language and Environment for Statistical Computing, 2013.
  289. Jackson, R. M.; Gabb, H. A.; Sternberg, M. J. E. and Modelling, B. Rapid Refinement of Protein Interfaces Incorporating Solvation: Application to the Docking Problem. J. Mol. Biol. 1998, 276, 265-285.
  290. Roberts, N. A.; Martin, J. A.; Kinchington, D.; Broadhurst, A. V.; Craig, J. C.; Duncan, I. B.; Galpin, S. A.; Handa, B. K.; Kay, J. and Krohn, A. Rational design of peptide-based HIV proteinase inhibitors. Science 1990, 248, 358-361.
  291. Wells, J. A. and McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 2007, 450, 1001-1009.
  292. Klebe, G. Recent developments in structure-based drug design. J. Mol. Med. 2000, 78, 269-281.
  293. Kokh, D. B.; Wade, R. C. and Wenzel, W. Receptor flexibility in small- molecule docking calculations. WIREs Comput. Mol. Sci. 2011, 1, 298-314.
  294. Guedes, I. A.; de Magalhães, C. S. and Dardenne, L. E. Receptor-ligand molecular docking. Biophys. Rev. 2014, 6, 75-87.
  295. Jain, A. N. and Nicholls, A. Recommendations for evaluation of computational methods. J. Comput.-Aided Mol. Des. 2008, 22, 133-139.
  296. Paul, N.; Kellenberger, E.; Bret, G.; Müller, P. and Rognan, D. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins: Struct., Funct., Bioinf. 2004, 54, 671-680.
  297. Holmberg, N.; Ryde, U. and Bulow, L. Redesign of the coenzyme specificity in L-Lactate dehydrogenase from Bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng. Des. Sel. 1999, 12, 851-856.
  298. Fan, H. and Mark, A. E. Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci. 2004, 13, 211-220.
  299. Perutz, M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu. Rev. Biochem. 1979, 48, 327-386.
  300. Chen, D.; Ma, H.; Hong, H.; Koh, S. S.; Huang, S.-M.; Schurter, B. T.; Aswad, D. W. and Stallcup, M. R. Regulation of Transcription by a Protein Methyltransferase. Science 1999, 284, 2174-2177.
  301. Zhou, C.-Y.; Jiang, F. and Wu, Y.-D. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. J. Phys. Chem. B 2015, 119, 1035-1047.
  302. Mittermayer, H. Resistenzentwicklung bei Enterobakteriazeen und Pseudomonas in Österreich. 2005, 21, online source.
  303. Singer, A. C.; Shaw, H.; Rhodes, V. and Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728.
  304. Grimm, C. Röntgenkristallographische Studien an Nukleotidkofaktorbindenden Enzymen. Dissertation, Philipps-Universität Marburg -Fachbereich Pharmazie, 2001.
  305. Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S. and Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542- 1555.
  306. Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S. and Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878-3888.
  307. Sansonetti, P. J. Rupture, invasion and inflammatory destruction of the intes- tinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol. Rev. 2001, 25, 3-14.
  308. Andreeva, A.; Howorth, D.; Chothia, C.; Kulesha, E. and Murzin, A. G. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res. 2014, 42, D310-D314.
  309. Murzin, A. G.; Brenner, S. E.; Hubbard, T. and Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 1995, 247, 536-540.
  310. Lo Conte, L.; Brenner, S. E.; Hubbard, T. J. P.; Chothia, C. and Murzin, A. G. SCOP database in 2002: refinements accommodate structural genomics. Nucleic Acids Res. 2002, 30, 264-267.
  311. Andreeva, A.; Howorth, D.; Brenner, S. E.; Hubbard, T. J. P.; Chothia, C. and Murzin, A. G. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 2004, 32, D226-D229.
  312. Huang, S.-Y.; Grinter, S. Z. and Zou, X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys 2010, 12, 12899-12908.
  313. Jain, A. N. Scoring noncovalent protein-ligand interactions: A continuous diffe- rentiable function tuned to compute binding affinities. J. Comput.-Aided Mol. Des. 1996, 10, 427-440.
  314. Johnson, D. K. and Karanicolas, J. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations. PLOS Comput. Biol. 2015, 11, e1004081.
  315. Hyndman, D. J. and Flynn, T. Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family. Biochim. Biophys. Acta 1998, 1399, 198-202.
  316. Kosloff, M. and Kolodny, R. Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 2008, 71, 891-902.
  317. Sotriffer, C. A.; Sanschagrin, P.; Matter, H. and Klebe, G. SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins 2008, 73, 395-419.
  318. Connolly, M. L. Shape complementarity at the hemoglobin α 1 β 1 subunit interface. Biopolymers 1986, 25, 1229-1247.
  319. Rolland, K.; Lambert-Zechovsky, N.; Picard, B. and Denamur, E. Shi- gella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli. Microbiology 1998, 144 ( Pt 9), 2667-2672.
  320. Jennison, A. V. and Verma, N. K. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol. Rev. 2004, 28, 43-58.
  321. Xu, M. and Lill, M. A. Significant enhancement of docking sensitivity using implicit ligand sampling. J. Chem. Inf. Model. 2011, 51, 693-706.
  322. Xun, S.; Jiang, F. and Wu, Y.-D. Significant Refinement of Protein Structure Models Using a Residue-Specific Force Field. J. Chem. Theory Comput. 2015, 11, 1949-1956.
  323. Roe, D. R. and Cheatham, III, T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084-3095.
  324. Editorial. So much more to know. Science 2005, 309, 78-102.
  325. Le Grand, S.; Götz, A. W. and Walker, R. C. SPFP: Speed without compromise-A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374-380.
  326. Fan, H.; Schneidman-Duhovny, D.; Irwin, J. J.; Dong, G.; Shoichet, B. K. and Sali, A. Statistical potential for modeling and ranking of protein-ligand interactions. J. Chem. Inf. Model. 2011, 51, 3078-3092.
  327. Perutz, M. F. Stereochemistry of Cooperative Effects in Haemoglobin: Haem-Haem Interaction and the Problem of Allostery. Nature 1970, 228, 726-734.
  328. Oates, P. Aldose Reductase, Still a Compelling Target for Diabetic Neuropathy. Curr. Drug Targets 2008, 9, 14-36.
  329. Tidten, N. Structural and mutational characterisation of Shigella Pathogenicity Factors. Dissertation, Philipps-Universität Marburg -Fachbereich Pharmazie, 2007.
  330. Wu, H.; Zheng, W.; Eram, M. S.; Vhuiyan, M.; Dong, A.; Zeng, H.; He, H.; Brown, P.; Frankel, A.; Vedadi, M.; Luo, M. and Min, J. Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem. J. 2016, 473, 3049-3063.
  331. Romier, C.; Ficner, R. and Suck, D. Structural Basis of Base Exchange by tRNA-Guanine Transglycosylases. In Modification and editing of RNA, H. Grosjean and R. Benne, Eds. ASM Press, Washington, D.C, 1998, pp. 169-182 .
  332. Schapira, M. and Ferreira de Freitas, R. Structural biology and chemistry of protein arginine methyltransferases. Med. Chem. Commun. 2014, 5, 1779-1788.
  333. Boriack-Sjodin, P. A.; Jin, L.; Jacques, S. L.; Drew, A.; Sneeringer, C.; Scott, M. P.; Moyer, M. P.; Ribich, S.; Moradei, O. and Copeland, R. A. Structural Insights into Ternary Complex Formation of Human CARM1 with Various Substrates. ACS Chem. Biol. 2016, 11, 763-771.
  334. Baldwin, J. M. Structure and function of haemoglobin. Progress in biophysics et molecular biology 1975, 29, 225-320.
  335. Reuter, K.; Slany, R. K.; Ullrich, F. and Kersten, H. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. J. Bacteriol. 1991, 173, 2256- 2264.
  336. Agarwal, A. K. and Fishwick, C. W. G. Structure-based design of anti- infectives. Ann. N.Y. Acad. Sci. 2010, 1213, 20-45.
  337. Simmons, K. J.; Chopra, I. and Fishwick, C. W. G. Structure-based discovery of antibacterial drugs. Nat. Rev. Microbiol 2010, 8, 501-510.
  338. Cohen, N. C. Structure-based drug design and the discovery of aliskiren (Tekturna): perseverance and creativity to overcome a R&D pipeline challenge. Chem. Biol. Drug Des. 2007, 70, 557-565.
  339. Andricopulo, A. D.; Salum, L. B. and Abraham, D. J. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem. 2009, 9, 771-790.
  340. Zhang, Q. C.; Petrey, D.; Deng, L.; Qiang, L.; Shi, Y.; Thu, C. A.; Bisik- irska, B.; Lefebvre, C.; Accili, D.; Hunter, T.; Maniatis, T.; Califano, A. and Honig, B. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 2012, 490, 556-560.
  341. Nishimura, S. Structure, biosynthesis, and function of queuosine in transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 1983, 28, 49-73.
  342. Hara, M.; Özkan, E.; Sun, H.; Yu, H. and Luo, X. Structure of an intermediate conformer of the spindle checkpoint protein Mad2. Proc. Natl. Acad. Sci. USA 2015, 112, 11252-11257.
  343. Gulbis, J. M.; Mann, S. and MacKinnon, R. Structure of a Voltage-Dependent K+ Channel β Subunit. 1999, 97, 943-952.
  344. Perutz, M. F.; Rossmann, M. G.; Cullis, A. F. N. N.; Muirhead, H.; Will, G. and North, A. C. T. Structure of Haemoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature 1960, 185, 416-422.
  345. Huber, R.; Kukla, D.; Bode, W.; Schwager, P.; Bartels, K.; Deisenho- fer, J. and Steigemann, W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. J. Mol. Biol. 1974, 89, 73-101.
  346. Ehrmann, F. R. Strukturbasierte Entwicklung und Charakterisierung von Inhi- bitoren der TGT, ein mögliches Ziel zur Therapie der Bakterienruhr. Dissertation, Philipps-Universität Marburg -Fachbereich Pharmazie, 2017.
  347. Terwesten, F. Studien zur fragmentbasierten Leitstrukturidentifizierung eines TGT-Interface-Inhibitors. Diplomarbeit, Philipps-Universität Marburg, Marburg, 2011.
  348. Gray, M. D.; Leonard, S. R.; Lacher, D. W.; Lampel, K. A.; Alam, M. T.; Morris, J. G.; Ali, A.; LaBreck, P. T. and Maurelli, A. T. Stx-Producing Shigella Species From Patients in Haiti: An Emerging Pathogen With the Potential for Global Spread. Open Forum Infect. Dis. 2015, 2, ofv134.
  349. Talele, T.; Khedkar, S. and Rigby, A. Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic. Curr. Top. Med. Chem. 2010, 10, 127-141.
  350. Pang, Y. P.; Xu, K.; Yazal, J. E. and Prendergas, F. G. Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Protein Sci. 2000, 9, 1857-1865.
  351. Pang, Y.-P. Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 2001, 45, 183-189.
  352. Kroon, J.; Cole, J. C.; Smith, B. and Verdonk, M. L. SuperStar: Comparison of CSD and PDB-based interaction fields as a basis for the prediction of protein-ligand interactions. J. Mol. Biol. 2001, 312, 275-287.
  353. de La Fuente, J. A.; Manzanaro, S.; Martín, M. J.; de Quesada, T. G.; Reymundo, I.; Luengo, S. M. and Gago, F. Synthesis, activity, and molecular modeling studies of novel human aldose reductase inhibitors based on a marine natural product. J. Med. Chem. 2003, 46, 5208-5221.
  354. Sugimoto, H.; Iimura, Y.; Yamanishi, Y. and Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(5,6- dimethoxy-1-oxoindan-2-yl)methylpiperidine hydrochloride and related compounds.
  355. Clatworthy, A. E.; Pierson, E. and Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 2007, 3, 541-548.
  356. Yang, Y.; Lu, Y.; Espejo, A.; Wu, J.; Xu, W.; Liang, S. and Bedford, M. T. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 2010, 40, 1016-1023.
  357. Tobe, T.; Nagai, S.; Okada, N.; Adler, B.; Yoshikawa, M. and Sasa- kawa, C. Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol. Microbiol. 1991, 5, 887-893.
  358. Avorn, J. The 2.6 Billion Pill -Methodologic and Policy Considerations. N. Engl. J. Med. 2015, 372, 1877-1879.
  359. Jez, J. M. and Penning, T. M. The aldo-keto reductase (AKR) superfamily: An update. Chem. Biol. Interact. 2001, 130-132, 499-525.
  360. Barski, O. A.; Tipparaju, S. M. and Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008, 40, 553-624.
  361. Hyndman, D.; Bauman, D. R.; Heredia, V. V. and Penning, T. M. The aldo-keto reductase superfamily homepage. Chem. Biol. Interact. 2003, 143-144, 621-631.
  362. Case, D. A.; Cheatham, III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B. and Woods, R. J. The Amber biomolecular simulation programs. J. Comput. Chem 2005, 26, 1668-1688. Publikationen 5. Berberich, Hannah; Terwesten, Felix; Rakow, Sinja;
  363. Sgarra, R.; Lee, J.; Tessari, M. A.; Altamura, S.; Spolaore, B.; Giancot- ti, V.; Bedford, M. T. and Manfioletti, G. The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J. Biol. Chem. 2006, 281, 3764-3772.
  364. Slabinski, L.; Jaroszewski, L.; Rodrigues, A. P. C.; Rychlewski, L.; Wilson, I. A.; Lesley, S. A. and Godzik, A. The challenge of protein structure determination-lessons from structural genomics. Protein Sci. 2007, 16, 2472-2482.
  365. DiMasi, J. A.; Grabowski, H. G. and Hansen, R. W. The Cost of Drug Development. N. Engl. J. Med. 2015, 372, 1972.
  366. Kozma, E.; Brown, E.; Ellis, E. M. and Lapthorn, A. J. The crystal struc- ture of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily.
  367. Alexander, P. A.; He, Y.; Chen, Y.; Orban, J. and Bryan, P. N. The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc. Natl. Acad. Sci. USA 2007, 104, 11963-11968.
  368. Dorsey, B. D.; Levin, R. B.; McDaniel, S. L.; Vacca, J. P.; Guare, J. P.; Darke, P. L.; Zugay, J. A.; Emini, E. A. and Schleif, W. A. L-735,524: The Design of a Potent and Orally Bioavailable HIV Protease Inhibitor. J. Med. Chem. 1994, 37, 3443-3451.
  369. Teague, S. J.; Davis, A. M.; Leeson, P. D. and Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew. Chem. Int. Ed. Engl. 1999, 38, 3743-3748.
  370. Böhm, H.-J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure.
  371. Caskey, C. T. The drug development crisis: efficiency and safety. Annu. Rev. Med. 2007, 58, 1-16.
  372. Bourne, P. E.; Beran, B.; Bi, C.; Bluhm, W. F.; Dimitropoulos, D.; Feng, Z.; Goodsell, D. S.; Prlić, A.; Quinn, G. B.; Rose, P. W.; Westbrook, J.; Yukich, B.; Young, J.; Zardecki, C. and Berman, H. M. The evolution of the RCSB Protein Data Bank website. WIREs Comput. Mol. Sci. 2011, 1, 782-789.
  373. Feynman, R. P.; Leighton, R. B.; Sands, M. L. and Gottlieb, M., Eds. The Feynman lectures on physics: Volume I ; mainly mechanics, radiation, and heat, new millenium ed. ed. Calif. Inst. of Techn, Pasadena, Calif., 2013.
  374. Hall, A. R.; Iles, J. C. and MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. 2011, 187, 817-822.
  375. Strahl, B. D. and Allis, C. D. The language of covalent histone modifications. Nature 2000, 403, 41-45.
  376. Goodsell, D. S. The Machinery of Life, 2nd ed. ed. Springer Science + Business Media, New York, N.Y, 2010.
  377. Mapelli, M.; Massimiliano, L.; Santaguida, S. and Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. 2007, 131, 730-743.
  378. Allis, C. D. and Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487-500.
  379. Frankel, A.; Yadav, N.; Lee, J.; Branscombe, T. L.; Clarke, S. and Bedford, M. T. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 2002, 277, 3537-3543.
  380. DiMasi, J. A.; Hansen, R. W. and Grabowski, H. G. The price of innovation: New estimates of drug development costs. J. Health Econ. 2003, 22, 151-185.
  381. Wolf, S. S. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell. Mol. Life Sci. 2009, 66, 2109-2121.
  382. Kleinschmidt, M. A.; Streubel, G.; Samans, B.; Krause, M. and Bauer, U.-M. The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic Acids Res. 2008, 36, 3202-3213.
  383. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N. and Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235-242.
  384. Schrödinger, L. L. The PyMOL Molecular Graphics System, Version 1.7.x.
  385. Harvey, A. L.; Edrada-Ebel, R. and Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discovery 2015, 14, 111-129.
  386. Chothia, C. and Lesk, A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986, 5, 823-826.
  387. Petukh, M.; Stefl, S. and Alexov, E. The role of protonation states in ligand-receptor recognition and binding. Curr. Pharm. Des. 2013, 19, 4182-4190.
  388. Lyskov, S. and Gray, J. J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 2008, 36, W233-W238.
  389. Moal, I. H.; Torchala, M.; Bates, P. A. and Fernández-Recio, J. The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 2013, 14, 286.
  390. Hunjan, J.; Tovchigrechko, A.; Gao, Y. and Vakser, I. A. The size of the intermolecular energy funnel in protein-protein interactions. Proteins 2008, 72, 344-352.
  391. Peng, C. and Wong, C. C. The story of protein arginine methylation: characte- rization, regulation, and function. Expert. Rev. Proteomics 2017, 14, 157-170.
  392. Kavanagh, K. L.; Klimacek, M.; Nidetzky, B. and Wilson, D. K. The Struc- ture of Apo and Holo Forms of Xylose Reductase, a Dimeric Aldo-Keto Reductase from Candida tenuis. Biochemistry 2002, 41, 8785-8795.
  393. Stroud, R. M.; Kay, L. M. and Dickerson, R. E. The structure of bovine trypsin: Electron density maps of the inhibited enzyme at 5 Å and at 2•7 Å resolution. J. Mol. Biol. 1974, 83, 185-208.
  394. Sullivan, L. H. The Tall Office Building Artistically Considered. 1896, 403-409.
  395. Janin, J. The targets of CAPRI rounds 20-27. Proteins 2013, 81, 2075-2081.
  396. Janin, J. The targets of CAPRI rounds 3-5. Proteins 2005, 60, 170-175.
  397. Janin, J. The targets of CAPRI rounds 6-12. Proteins 2007, 69, 699-703.
  398. Olsson, T. S. G.; Williams, M. A.; Pitt, W. R. and Ladbury, J. E. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
  399. Graves, B. J.; Hatada, M. H.; Miller, J. K.; Graves, M. C.; Roy, S.; Cook, C. M.; Kröhn, A.; Martin, J. A. and Roberts, N. A. The three-dimensional x-ray crystal structure of HIV-1 protease complexed with a hydroxyethylene inhibitor.
  400. The UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014, 42, D191-D198.
  401. Suzek, B. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 2006, 34, D187-91.
  402. Baldwin, J. J.; Ponticello, G. S.; Anderson, P. S.; Christy, M. E.; Murcko, M. A.; Randall, W. C.; Schwam, H.; Sugrue, M. F. and Gauthe- ron, P. Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem. 1989, 32, 2510-2513.
  403. Perutz, M. F.; Muirhead, H.; Cox, J. M.; Goaman, L. C. G.; Mathews, F. S.; McGandy, E. L. and Webb, L. E. Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution: (I) X-ray Analysis. Nature 1968, 219, 29-32.
  404. Perutz, M. F.; Muirhead, H.; Cox, J. M. and Goaman, L. C. G. Three- dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution: The Atomic Model. Nature 1968, 219, 131-139.
  405. Bolzer, A.; Kreth, G.; Solovei, I.; Koehler, D.; Saracoglu, K.; Fauth, C.; Müller, S.; Eils, R.; Cremer, C.; Speicher, M. R. and Cremer, T. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biol. 2005, 3, e157.
  406. Collins, S. R.; Kemmeren, P.; Zhao, X.-C.; Greenblatt, J. F.; Spencer, F.; Holstege, F. C. P.; Weissman, J. S. and Krogan, N. J. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell Proteomics 2007, 6, 439-450.
  407. Sadjad, B. S. and Zsoldos, Z. Toward a robust search method for the protein- drug docking problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1120-1133.
  408. Sellers, B. D.; Zhu, K.; Zhao, S.; Friesner, R. A. and Jacobson, M. P. Toward better refinement of comparative models: predicting loops in inexact envi- ronments. Proteins 2008, 72, 959-971.
  409. Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J. and Corbeil, C. R. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 2008, 153 Suppl 1, S7-26.
  410. Durand, J. M. B.; Dagberg, B.; Uhlin, B. E. and Björk, G. R. Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Mol. Microbiol. 2000, 35, 924-935.
  411. Rask-Andersen, M.; Almén, M. S. and Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discovery 2011, 10, 579-590.
  412. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 1998, 62, 379-433.
  413. Oleinikovas, V.; Saladino, G.; Cossins, B. P. and Gervasio, F. L. Un- derstanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations. J. Am. Chem. Soc. 2016, 138, 14257-14263.
  414. United States. Centers for Disease Control and Prevention.
  415. Michael, I.; Rizzo, L.; McArdell, C. S.; Manaia, C. M.; Merlin, C.; Schwartz, T.; Dagot, C. and Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 2013, 47, 957-995.
  416. Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green, S. M. and Marshall, G. R. VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc. 1996, 118, 3959-3969.
  417. Le Muzic, M.; Mindek, P.; Sorger, J.; Autin, L.; Goodsell, D. and Viola, I. Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models. 2016, 35, 161-170.
  418. Janin, J. Welcome to CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 2002, 47, 257.
  419. Schuller, S. , Wellcome Images, 2005.
  420. Vriend, G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 1990, 8, 52-56.
  421. Conly, J. and Johnston, B. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. 2005, 16, 159-160.
  422. Frantz, S. T. Why are clinical costs so high? Nat. Rev. Drug Discovery 2003, 2, 851.
  423. Pierce, B. G.; Wiehe, K.; Hwang, H.; Kim, B.-H.; Vreven, T. and Weng, Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771-1773.
  424. Sterling, T. and Irwin, J. J. ZINC 15 -Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324-2337.
  425. Irwin, J. J. and Shoichet, B. K. ZINC -a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177-182.
  426. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S. and Coleman, R. G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757-1768.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten