Publikationsserver der Universitätsbibliothek Marburg

Titel:Hybrid Gold Nanoparticles for Nanomedical Applications
Autor:Hühn, Jonas
Weitere Beteiligte: Parak, Wolfgang (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0778
URN: urn:nbn:de:hebis:04-z2017-07787
DOI: https://doi.org/10.17192/z2017.0778
DDC: Physik
Titel (trans.):Hybride Goldnanopartikel für nanomedizinische Anwendungen
Publikationsdatum:2017-12-19
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Nanopartikel, Nanomedizin

Summary:
The present dissertation focuses on the synthesis of different sized gold nanoparticles (Au NPs), their phase transfer to aqueous solution, their characterization and functionalization for applications in modern nanomedicine. As this is a cumulative written dissertation the presented achievements were already published or are about to be published. However, the attempt is to describe the main goals and experimental emphases contributed during the time of this dissertation. The synthesis of Au NPs is described via two different reduction methods leading to different sized nanocrystals. For smaller NPs of about 4 nm core diameter, Au3+ ions are reduced by the addition of sodium borohydride. Bigger NPs with about 18.5 nm core diameter are produced by Au3+ reduction using citric acid. In both cases molecules need to be present that confer colloidal stability and lead to increased interparticle repulsion. Such stabilizing ligands may need to be replaced during a phase transfer to ensure water soluble NPs. They also serve in many cases as anchor point for functional modifications of the NP's surface and therefore have to be selected critically with regard to their intended application. After synthesis the Au NP's intrinsic stability needs to be verified against ionic strength, to ensure the NPs are suitable for additional functionalization reactions and also stable within physiological media. After thoroughly examination and analysis a promising hybrid NP system out of Au NPs and an amphiphilic polymer coating did not full fill the demanding criteria needed for functionalization and in vitro investigations. Amendments towards 17.8 nm Au NPs with polyethylene glycol (PEG) as polymer layer allowed water solubility of NPs, adequate colloidal stabilization and feasible targeted functionalization. The functionalization basically is to implement In3+ ions as label onto the polymer shell around the NP. Additionally a protein corona composed of bovine serum albumin (BSA) is adsorbed to the NPs surface that undergoes a prelabeling procedure using iodine. With the Au NP itself and the labeled polymer shell and protein corona, a triple labeled system is created that can be analyzed for its degradation within mammalian cell lines using inductively coupled plasma mass spectrometry (ICP-MS). Summarized a triple labeled system of Au NP, polymer shell and protein corona was synthesized for in vitro degradation testing that can be equipped with radio nuclide tracers that allow more complex degradation experiments on animals in future.

Bibliographie / References

  1. Please cite this article as: Feliu, N., et al., Quantitative uptake of colloidal particles by cell cultures, Sci Total Environ (2016), http://dx.doi.org/ 10.1016/j.scitotenv.2016.05.213 [A8]-3
  2. Gamal, M., Soliman, M., Pelaz, B., Parak, W. J. & Pino, P. Phase Transfer and Polymer Coating Methods towards Improving Stability of Metallic Nanoparticles for Biological Applications. (2015). doi:10.1021/cm5043167
  3. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol- derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun. 801-802 (1994). doi:10.1039/C39940000801
  4. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297. doi:10.3389/fimmu.2012.00297.
  5. Po, H. N.; Senozan, N. M. The Henderson-Hasselbalch Equation: Its History and Limitations. J. Chem. Educ. 2001, 78 (11), 1499. (162) de Levie, R. The Henderson Approximation and the Mass Action Law of Guldberg and Waage. Chem. Educ. 2002, 7 (3), 132− 135.
  6. Jung, S.Y., et al., 2009. A biologically active sequence of the laminin alpha 2 large globular 1 domain promotes cell adhesion through syndecan-1 by inducing phosphorylation and membrane localization of protein kinase C delta. J. Biol. Chem. 284 (46), 31764-31775.
  7. Absolute Luminescence Yield of Cresyl Violet -Standard for the Red.
  8. Salic A, Mitchison TJ: A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences 2008, 105:2415- 2420.
  9. Dominguez-Medina, S., et al., 2013. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain. Chem. Eng. 1 (7), 833-842.
  10. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N: Advanced methods of microscope control using µManager software. 2014 2014.
  11. Biswas, A. et al. Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2-27 (2012).
  12. Torrano, A.A., et al., 2013. A fast analysis method to quantify nanoparticle uptake on a sin- gle cell level. Nanomedicine 8 (11), 1815-1828.
  13. Watson, D. A. et al. A flow cytometer for the measurement of raman spectra. Cytom. Part A 73, 119-128 (2008).
  14. Serrano-Montes, A. B.; Jimenez de Aberasturi, D.; Langer, J.; Giner-Casares, J. J.; Scarabelli, L.; Herrero, A.; Liz-Marzan, L. M. A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers. Langmuir 2015, 31 (33),
  15. Geidel, C.; Schmachtel, S.; Riedinger, A.; Pfeiffer, C.; Mullen, K.; Klapper, M.; Parak, W. J. A General Synthetic Approach for Obtaining Cationic and Anionic Inorganic Nanoparticles via Encapsulation in Amphiphilic Copolymers. Small 2011, 7 (20), 2929−2934.
  16. Geidel, C., et al., 2011. A general synthetic approach for obtaining cationic and anionic inorganic nanoparticles via encapsulation in amphiphilic copolymers. Small 7 (20), 2929-2934.
  17. Jobin Yvon Horiba. A Guide to Recording Fluorescence Quantum Yields; Jobin Yvon Horiba: Stanmore, 2016.
  18. Haes, A. J. & Duyne, R. P. Van. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. 10596-10604 (2002).
  19. Markwell, M. A. K. A new solid-state reagent to iodinate proteins. Anal. Biochem. 125, 427-432 (1982).
  20. Ghinea, N., Simionescu, N., 1985. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies. J. Cell Biol. 100, 606-612.
  21. Li, N.; Zhao, P.; Astruc, D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angew. Chem., Int. Ed. 2014, 53 (7), 1756−1789.
  22. J. Nanobiotechnol. 10 (1), 28. Semmling, M., et al., 2008. A novel flow-cytometry-based assay for cellular uptake studies of polyelectrolyte microcapsules. Small 4 (10), 1763-1768.
  23. Canoa, P., et al., 2015. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance. Biosens. Bioelectron. 74, 376-383.
  24. Rocker, C.; Poẗzl, M.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. A Quantitative Fluorescence Study of Protein Monolayer Formation on Colloidal Nanoparticles. Nat. Nanotechnol. 2009, 4 (9), 577−580.
  25. Röcker, C., et al., 2009. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4 (9), 577-580.
  26. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL. A quantitative, randomized study evaluating three methods of mes- enchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27:1114-22.
  27. Takeuchi, H., Omogo, B., Heyes, C.D., 2013. Are bidentate ligands really better than monodentate ligands for nanoparticles? Nano Lett.
  28. Meng, H., et al., 2011. Aspect ratio determines the quantity of mesoporous silica nanopar- ticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5 (6), 4434-4447.
  29. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal golde. Discuss. Faraday Soc. 1951, 11, 55−75.
  30. Stern, S.T., Adiseshaiah, P.P., Crist, R.M., 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9.
  31. Tay, C. Y.; Setyawati, M. I.; Xie, J.; Parak, W. J.; Leong, D. T. Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 2014, 24, 5936−5955.
  32. Tay, C.Y., et al., 2014. Back to basics: exploiting the innate physico-chemical characteristics of nanomaterials for biomedical applications. Adv. Funct. Mater. 24, 5936-5955.
  33. Stern, O., Volmer, M., 1919. Über die Abklingungszeit der Fluoreszenz. Phys. Z. 20, 183-188.
  34. Sartori, R., Sepulveda, L., Quina, F., Lissi, E. & Abuin, E. Binding of electrolytes to poly(ethylene oxide) in aqueous solutions. Macromolecules 23, 3878-3881 (1990).
  35. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647-71.
  36. Lipka M, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injec- tion. Biomaterials. 2010;31:6574-81.
  37. Lipka, M.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G. Biodistribution of PEG-modified gold nanoparticles following intra- tracheal instillation and intravenous injection. Biomaterials 2010, 31 (25), 6574−6581.
  38. Sperling, R. A., Rivera Gil, P., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896-1908 (2008).
  39. Lai, P.Y., et al., 2015. Biomimetic stem cell membrane-camouflaged iron oxide nanoparti- cles for theranostic applications. RSC Adv. 5 (119), 98222-98230.
  40. Rizzo, A.; Li, Y. Q.; Kudera, S.; Della Sala, F.; Zanella, M.; Parak, W. J.; Cingolani, R.; Manna, L.; Gigli, G. Blue light emitting diodes based on fluorescent CdSe/ZnS nanocrystals. Appl. Phys. Lett. 2007, 90 (5), 051106.
  41. Fadeel, B., et al., 2013. Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdiscipl. Rev.: Nanomed. Nanobiotechnol. 5 (2), 111-129.
  42. Fadeel, B., et al., 2013. Bridge over troubled waters: understanding the synthetic and bio- logical identities of engineered nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5 (2), 111-129.
  43. Russ, K.A., et al., 2016. C-60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale 8 (7), 4134-4144.
  44. Uchibori R, Tsukahara T, Ohmine K, Ozawa K. Cancer gene therapy using mesenchymal stem cells. Int J Hematol. 2014;99:377-82.
  45. Fedeli, C., et al., 2013. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Nanomedicine 8 (7), 1101-1126.
  46. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 1997, 101 (46), 9463−9475.
  47. CdSe/ZnS quantum dots in Forster resonant energy transfer assemblies. J. Appl. Phys. 2015, 117, 024701.
  48. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem. 1994, 98, 7665.
  49. CdS/ZnS quantum dots. Nanotechnology 2016, 27, 055101.
  50. Maijenburg MW, Noort WA, Kleijer M, Kompier CJA, Weijer K, Van Buul JD, Der Schoot V, Ellen C, Voermans C. Cell cycle and tissue of origin contrib- ute to the migratory behaviour of human fetal and adult mesenchymal stromal cells. Br J Haematol. 2010;148:428-40.
  51. Shi, X., et al., 2011. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 6, 714-719.
  52. Lin, J.Q., Alexander-Katz, A., 2013. Cell membranes open "doors" for cationic nanoparti- cles/biomolecules: insights into uptake kinetics. ACS Nano 7 (12), 10799-10808.
  53. Parak WJ, Boudreau R, Gros ML, Gerion D, Zanchet D, Micheel CM, Wil- liams SC, Alivisatos AP, Larabell CA. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater. 2002;14:882-5.
  54. Parak, W.J., et al., 2002. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14 (12), 882-885.
  55. Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, Guertin D, Chang J, Lindquist R, Moffat J, et al: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 2006, 7:R100.
  56. Carpenter, A.; Jones, T.; Lamprecht, M.; Clarke, C.; Kang, I.; Friman, O.; Guertin, D.; Chang, J.; Lindquist, R.; Moffat, J.; Golland, P.; Sabatini, D. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 2006, 7 (10), R100.
  57. Nystedt J, Anderson H, Tikkanen J, Pietilä M, Hirvonen T, Takalo R, Heis- kanen A, Satomaa T, Natunen S, Lehtonen S. Cell surface structures influ- ence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells. 2013;31:317-26.
  58. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur Radiol. 2008;18:2021-32.
  59. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 2009, 5 (6), 701−8.
  60. Wang, T., et al., 2012. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6 (2), 1251-1259.
  61. Pyell, U., et al., 2015a. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation. J. Colloid Interface Sci. 450, 288-300.
  62. Pyell, U., et al., 2015b. Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: determination of the hydrodynamic radius distribution -comparison with asymmetric flow field-flow fractionation. J. Colloid Interface Sci. 457, 131-140.
  63. Murdock, R. C.; Braydich-Stolle, L.; Schrand, A. M.; Schlager, J. J.; Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101 (2), 239−53.
  64. Maffre, P., et al., 2011. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J. Nanotechnol. 2, 374-383.
  65. Abdelmonem AM, Pelaz B, Kantner K, Bigall NC, Del Pino P, Parak WJ. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J Inorg Biochem. 2015;153:334-8.
  66. Abdelmonem, A. M.; Pelaz, B.; Kantner, K.; Bigall, N. C.; Del Pino, P.; Parak, W. J. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J. Inorg. Biochem. 2015, 153, 334−338.
  67. Prange, A. & Pröfrock, D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J. Anal. At. Spectrom. 23, 432-459 (2008).
  68. Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5:19.
  69. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2015;25(5):829-48.
  70. Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437 (7059), 664.
  71. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664-670 (2005).
  72. colloidal nanoparticles depend on the number of attached antibodies. Nature Communications 2016, 7:13818. [A2]-29
  73. Johnston, B. D. et al. Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Adv. Funct. Mater. 1701956, 1-9 (2017).
  74. Muñoz Javier, A., et al., 2006. Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. Small 2 (3), 394-400.
  75. Boldt, K., et al., 2006. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J. Phys. Chem. B 110 (5), 1959-1963.
  76. Marisca, O. T.; Kantner, K.; Pfeiffer, h.; Zhang, Q.; Pelaz, B.; Leopold, N.; Parak, W. J.; Rejman, J. Comparison of the in Vitro Uptake and Toxicity of Collagen-and Synthetic Polymer-Coated Gold Nanoparticles. Nanomaterials 2015, 5, 1418−1430.
  77. Liu, S., Pietryka, J., Ellars, C. E. & Edwards, D. S. Comparison of Yttrium and Indium Complexes of DOTA-BA and DOTA-MBA: Models for 90Y-and 111In-Labeled DOTA−Biomolecule Conjugates. Bioconjug. Chem. 13, 902-913 (2002).
  78. Winzen, S., et al., 2015. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7 (7), 2992-3001.
  79. Zyuzin, M. V et al. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug. Chem. 28, 556-564 (2017).
  80. Bhogale, A., et al., 2014. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids Surf. B: Biointerfaces 113, 276-284.
  81. Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 1908, 21 (2), 173−179.
  82. Parak, W. J.; Pellegrino, T.; Micheel, C. M.; Gerion, D.; Williams, S. C.; Alivisatos, A. P. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett. 2003, 3 (1), 33−36.
  83. Parak, W.J., et al., 2003. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nanoletters 3 (1), 33-36.
  84. Cooper, M. S., Sabbah, E. & Mather, S. J. Conjugation of chelating agents to proteins and radiolabeling with trivalent metallic isotopes. Nat. Protoc. 1, 314-317 (2006).
  85. Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. Conjugation of DNA to silanized colloidal semiconductor nanocrystaline quantum dots.
  86. Parak, W.J., et al., 2002. Conjugation of DNA to silanized colloidal semiconductor nanocrystaline quantum dots. Chem. Mater. 14 (5), 2113-2119.
  87. Tan, G. et al. Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies- Synthesis and Characterization. Nanomaterials 5, 1297-1316 (2015).
  88. Chakraborty, S., et al., 2011. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27 (12), 7722-7731.
  89. Fuente, J. M.; Nabiev, I.; Greiner, A.; Parak, W. J. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Delivery Rev. 2013, 65, 677−688.
  90. Montenegro, J.-M. et al. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev. 65, 677-688 (2013).
  91. Frens, G. Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Solutions. Nature, Phys. Sci. 1973, 241 (105), 20− 22.
  92. FRENS, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 241, 20-22 (1973).
  93. Sun, Y. Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42 (7), 2497−2511.
  94. Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q. A.; Zhu, Y. M.; Xia, Y. N. Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc. 2010, 132 (25), 8552.
  95. CPS Instruments, Inc., CPS Disc Centrifuge Operating Manual; 2005; pp. 1-78.
  96. Wurth, C.; Geissler, D.; Behnke, T.; Kaiser, M.; Resch-Genger, U. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal. Bioanal. Chem. 2015, 407, 59−78.
  97. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, et al. Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano. 2012;6:5767-83.
  98. Soenen, S. J.; Manshian, B.; Montenegro, J. M.; Amin, F.; Meermann, B.; Thiron, T.; Cornelissen, M.; Vanhaecke, F.; Doak, S.; Parak, W. J.; De Smedt, S.; Braeckmans, K. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 2012, 6 (7), 5767−5783.
  99. Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Munõz Javier, A.; Gaub, H. E.; Stolzle, S.; Fertig, N.; Parak, W. J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett. 2005, 5 (2),
  100. Delehanty, J.B., et al., 2010. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integr. Biol. 2 (5-6), 265-277.
  101. Lin CAJ, Sperling RA, Li JK, Yang TY, Li PY, Zanella M, Chang WH, Parak WJ. Design of an amphiphilic polymer for nanoparticle coating and function- alization. Small. 2008;4:334-41.
  102. Lin C-AJ, Sperling RA, Li JK, Yang T-Y, Li P-Y, Zanella M, Chang WH, Parak WJ: Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small 2008, 4:334-341.
  103. Lin, C.-A. J.; Sperling, R. A.; Li, J. K.; Yang, T.-Y.; Li, P.-Y.; Zanella, M.; Chang, W. H.; Parak, W. J. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small 2008, 4 (3), 334−341.
  104. Lin, C.-A.J., et al., 2008. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4 (3), 334-341.
  105. Lin, C.-A. J. et al. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4, 334-41 (2008).
  106. Lin, C.-A. J. et al. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small 4, 334-341 (2008).
  107. Carrillo-Carrion, C.; Parak, W. J. Design of pyridyl-modified amphiphilic polymeric ligands: Towards better passivation of water- soluble colloidal quantum dots for improved optical performance. J. Colloid Interface Sci. 2016, 478, 88−96.
  108. Fedosyuk, A.; Radchanka, A.; Antanovich, A.; Prudnikau, A.; Kvach, M. V.; Shmanai, V.; Artemyev, M. Determination of Concentration of Amphiphilic Polymer Molecules on the Surface of Encapsulated Semiconductor Nanocrystals. Langmuir 2016, 32 (8), 1955−1961.
  109. Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grubel, G.; Weller, H. Determination of Nanocrystal Sizes: A Comparison of TEM, SAXS, and XRD Studies of Highly Monodisperse CoPt 3 Particles. Langmuir 2005, 21 (5), 1931−1936.
  110. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007, 79 (11), 4215−4221.
  111. Segets, D.; Lucas, J. M.; Taylor, R. N. K.; Scheele, M.; Zheng, H.; Alivisatos, A. P.; Peukert, W. Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements. ACS Nano 2012, 6 (10), 9021−9032.
  112. Menendez-Miranda, M.; Costa-Fernandez, J. M.; Encinar, J. R.; Parak, W. J.; Carrillo-Carrion, C. Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst 2016, 141 (4), 1266−1272.
  113. Chithrani, B.D., Ghazan, A.A., Chan, C.W., 2006. Determining the size and the shape depen- dence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6 (4), 662-668.
  114. Korn, M., et al., 2011. Development of stable isotope dilution assays for ochratoxin A in blood samples. Anal. Biochem. 419, 88-94.
  115. Hasselbalch, K. A. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensaüre desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem. Z. 1917, 78, 112−144.
  116. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M, Marini FC. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 2009;27:2614-23.
  117. Ashby, J., et al., 2013. Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal. Chem. 85 (15), 7494-7501.
  118. Huehn, J. et al. Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. Int. J. Biochem. Cell Biol. 75, 148-161 (2016).
  119. Yu, X.; Lei, D. Y.; Amin, F.; Hartmann, R.; Acuna, G. P.; Guerrero-Martínez, A.; Maier, S. A.; Tinnefeld, P.; Carregal-Romero, S.; Parak, W. J. Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 2013, 8 (5), 480− 493.
  120. Yu, X. et al. Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8, 480-493 (2013).
  121. Pelaz, B. et al. Diverse Applications of Nanomedicine. ACS Nano 11, 2313-2381 (2017).
  122. Bhattacharjee, S. DLS and zeta potential − What they are and what they are not? J. Controlled Release 2016, 235, 337.
  123. Del Monte U. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle. 2009;8:505-6.
  124. Thiede C, Lutterbeck K, Oelschlagel U, Mohr B, Brendel C, Platzbecker U, Neubauer A, Ehninger G, Bornhauser M. Early detection of immi- nent relapse using quantitative chimerism analysis in peripheral blood CD34 + cells. Bone Marrow Transplant. 2001;27:S28-9.
  125. Van Hoecke, K.; De Schamphelaere, K. A. C.; Ali, Z.; Zhang, F.; Elsaesser, A.; Rivera Gil, P.; Parak, W. J.; Smagghe, G.; Janssen, C. R.; Howard, C. V. Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 2013, 7 (1), 37−47.
  126. Van Hoecke, K. et al. Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7, 37-47 (2013).
  127. Vroman, L. Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids. Nature 196, 476-477 (1962).
  128. Ansar, S. M.; Mohammed, F. S.; von White, G., II; Budi, M.; Powell, K. C.; Mefford, O. T.; Kitchens, C. L. Effect of Postsynthesis Purifications on Gold and Silver Nanoparticle Ligand Coverage. J. Phys. Chem. C 2016, 120, 6842−6850.
  129. He, C., et al., 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31 (13), 3657-3666.
  130. Huang, R.X., et al., 2014. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 8 (6), 5402-5412.
  131. Maffre, P., et al., 2014. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles -a fluorescence correlation spectroscopy study. Beilstein J. Nanotechnol. 5, 2036-2047.
  132. Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Williams, S. C.; Alivisatos, A. P. Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings. J. Phys. Chem. B 2002, 106 (45), 11758−11763.
  133. Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups. Adv. Funct. Mater. 2006, 16 (7), 943−948.
  134. Sperling, R. A. R. A., Pellegrino, T., Li, J. K. J. K., Chang, W. H. W. H. W. H. & Parak, W. J. W. J. Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups. Adv. Funct. Mater. 16, 943-948 (2006).
  135. Sperling, R.A., et al., 2006. Electrophoretic separation of nanoparticles with a discrete number of functional groups. Adv. Funct. Mater. 16 (7), 943-948.
  136. Vroman, L., Lukosevicius, A., 1964. Ellipsometer recordings of changes in optical thickness of adsorbed films associated with surface activation of blood clotting. Nature 204 (495), 701.
  137. Vroman, L. & Lukosevicius, A. N. N. Ellipsometer Recordings of Changes in Optical Thickness of Adsorbed Films associated with Surface Activation of Blood Clotting. Nature 204, 701-703 (1964).
  138. Jimenez de Aberasturi, D.; Serrano-Montes, A. B.; Langer, J.; Henriksen-Lacey, M.; Parak, W. J.; Liz-Marzań, L. M. Encoded Gold Nanostars for Multiplexed SERS Cell Differentiation. Chem. Mater. 2016, 28, 6779−6790.
  139. Yoo, J.W., Doshi, N., Mitragotri, S., 2010. Endocytosis and intracellular distribution of plga particles in endothelial cells: effect of particle geometry. Macromol. Rapid Commun. 31 (2), 142-148.
  140. Iversen, T.G., Skotland, T., Sandvig, K., 2011. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6 (2), 176-185.
  141. Canton, I., Battaglia, G., 2012. Endocytosis at the nanoscale. Chem. Soc. Rev. 41 (7), 2718-2739.
  142. Sahay, G., Alakhova, D.Y., Kabanov, A.V., 2010. Endocytosis of nanomedicines. J. Control. Release 145 (3), 182-195.
  143. Braun GB, Friman T, Pang HB, Pallaoro A, de Mendoza TH, Willmore AMA, Kotamraju VR, Mann AP, She ZG, Sugahara KN, et al. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater. 2014;13:904-11.
  144. Braun, G.B., et al., 2014. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat. Mater. 13 (9), 904-911.
  145. Manshian, B. B.; Abdelmonem, A. M.; Kantner, K.; Pelaz, B.; Klapper, M.; Tirroni, C. N.; Parak, W. J.; Himmelreich, U.; Soenen, S. J. Evaluation of quantum dot cytotoxicity: interpretation of nano- particle concentrations versus intracellular nanoparticle numbers. Nanotoxicology 2016, 10, 1318−1328.
  146. MacLaughlin, C. M., Parker, E. P. K., Walker, G. C. & Wang, C. Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry. Nanomedicine Nanotechnology, Biol. Med. 9, 55-64 (2013).
  147. Niebling, T.; Zhang, F.; Ali, Z.; Parak, W. J.; Heimbrodt, W. Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: The role of reabsorption. J. Appl. Phys. 2009, 106, 104701.
  148. Lavallard, P. Excitons in nanocrystals. J. Cryst. Growth 1998, 185, 352−359.
  149. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15 (14), 2854−2860.
  150. Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B. Biointerfaces 58, 3-7 (2007).
  151. Wolff, J. & Covelli, I. Factors in the Iodination of Histidine in Proteins. Eur. J. Biochem. 9, 371-377 (1969).
  152. Giddings, J.C., 1993. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260, 1456-1465.
  153. Vroman, L., 1962. Effect of adsorbed proteins on wettability of hydrophilic and hydrophobic solids. Nature 196 (4853), 476. Vroman, L., Adams, A.L., 1969. Findings with recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf. Sci. 16, 438.
  154. Vroman, L. & Adams, A. L. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf. Sci. 16, 438-446 (1969).
  155. Nirmal, M.; Murray, C. B.; Bawendi, M. G. Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50 (4), 2293−2300.
  156. Dulkeith, E. et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 89, 203002 (2002).
  157. Lehmann, A.D., et al., 2010. Fluorescent-magnetic hybrid nanoparticles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 6 (6), 753-762.
  158. Liedl, T.; Keller, S.; Simmel, F. C.; Radler, J. O.; Parak, W. J. Fluorescent Nanocrystals as Colloidal Probes in Complex Fluids Measured by Fluorescence Correlation Spectroscopy. Small 2005, 1 (10), 997−1003.
  159. Liedl, T., et al., 2005. Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy. Small 1 (10), 997-1003.
  160. Moerz, S.T., et al., 2015. Formation mechanism for stable hybrid clusters of proteins and nanoparticles. ACS Nano 9 (7), 6696-6705.
  161. Yu, W. W.; Peng, X. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem., Int. Ed. 2002, 41 (13), 2368−2371.
  162. Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001, 123 (1), 183−184.
  163. Erathodiyil, N. & Ying, J. Y. Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc. Chem. Res. 44, 925-935 (2011).
  164. Yuan, H.; Fales, A.; Vo-Dinh, T. TAT Peptide-Functionalized Gold Nanostars: Enhanced Intracellular Delivery and Efficient NIR Photothermal Therapy Using Ultralow Irradiance. J. Am. Chem. Soc. 2012, 134 (28), 11358−11361.
  165. Ricles LM, Nam SY, Sokolov K, Emelianov SY, Suggs LJ. Function of mesen- chymal stem cells following loading of gold nanotracers. Int J Nanomed. 2011;6:407-16.
  166. Pellegrino T, Sperling RA, Alivisatos AP, Parak WJ: Gelelectrophoresis of Gold- DNA Nanoconjugates. J Biomed Biotechnol 2007, Article ID 26796:1-9.
  167. Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J. Gelelectrophoresis of Gold-DNA Nanoconjugates. J. Biomed. Bio- technol. 2007, 2007, 26796.
  168. Pellegrino, T., et al., 2007. Gel electrophoresis of gold-DNA nanoconjugates. J. Biomed. Biotechnol., 1-9, AN: 26796.
  169. Hagel, L. Gel Filtration. In Protein Purification. Principles, High Resolution Methods and Applications, 2nd ed.; Janson, J.-C.; Ryden, L., Eds.; John Wiley & Sons: New York, 1998; pp 79−143.
  170. Amersham_Pharmacia_Biotech. Gel filtration -Principles and Methods, 8th ed.; Amersham Pharmacia Biotech: 2001.
  171. Berners-Price SJ, Filipovska A. Gold compounds as therapeutic agents for human diseases. Metallomics. 2011;3:863-73.
  172. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248-53.
  173. Huefner, A., et al., 2014. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes. Methods 68 (2), 354-363.
  174. Bhattacharya R, Patra CR, Verma R, Kumar S, Greipp PR, Mukherjee P. Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater. 2007;19:711-6.
  175. Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Munõz Javier, A.; Parak, W. J. Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Lett. 2005, 5 (4),
  176. Dulkeith, E., et al., 2005. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nanoletters 5 (4), 585-589.
  177. Dulkeith, E. et al. Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Lett. 5, 585-589 (2005).
  178. Cai, H.A.X., Yao, P., 2014. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf. B: Biointerfaces 123, 900-906.
  179. Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J.; Alkilany, A. M.; Sisco, P. N. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 2011, 16 (2),
  180. Nold P, Brendel C, Neubauer A, Bein G, Hackstein H. Good manufactur- ing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based biore- actor. Biochem Biophys Res Commun. 2013;430:325-30.
  181. Viswanatha, R.; Santra, P. K.; Dasgupta, C.; Sarma, D. D. Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 2007, 98 (25), 255501.
  182. Brüstle I, Simmet T, Nienhaus GU, Landfester K, Mailänder V. Hematopoi- etic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation. Beilstein J Nanotechnol. 2015;6:383-95.
  183. Au, K.M., Armes, S.P., 2012. Heterocoagulation as a facile route to prepare stable serum albumin-nanoparticle conjugates for biomedical applications: synthetic protocols and mechanistic insights. ACS Nano 6 (9), 8261-8279.
  184. Sandro, M.G., et al., 2005. High-affinity approach for the synthesis of fluorophore appended protein nanoparticle assemblies. Chem. Commun., 2832-2834.
  185. Manshian, B. B.; Pfeiffer, C.; Pelaz, B.; Heimerl, T.; Gallego, M.; Moller, M.; del Pino, P.; Himmelreich, U.; Parak, W. J.; Soenen, S. J. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. ACS Nano 2015, 9, 10431−10444.
  186. Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, Kotov NA. High-content screening as a universal tool for fingerprinting of cytotoxic- ity of nanoparticles. ACS Nano. 2008;2:928-38.
  187. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nano- crystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide- Trioctylphospine Mixture. Nano Lett. 2001, 1 (4), 207−211.
  188. Song, K.-K.; Lee, S. Highly luminescent (ZnSe)ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Curr. Appl. Phys. 2001, 1 (2−3), 169−173.
  189. Sebba, D. S., Watson, D. A. & Nolan, J. P. High Throughput Single Nanoparticle Spectroscopy. ACS Nano 3, 1477-1484 (2009).
  190. Mari, A.; Imperatori, P.; Marchegiani, G.; Pilloni, L.; Mezzi, A.; Kaciulis, S.; Cannas, C.; Meneghini, C.; Mobilio, S.; Suber, L. High yield synthesis of pure alkanethiolate-capped silver nanoparticles. Langmuir 2010, 26 (19), 15561−15566.
  191. Bastús, N. G. et al. Homogeneous Conjugation of Peptides onto Gold Nanoparticles Enhances Macrophage Response. ACS Nano 3, 1335-1344 (2009).
  192. Schrittwieser, S.; Pelaz, B.; Parak, W. J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Altantzis, T.; Bals, S.; Schotter, J. Homogeneous Protein Analysis by Magnetic Core−Shell Nanorod Probes. ACS Appl. Mater. Interfaces 2016, 8, 8893−8899.
  193. Abbasi, A. Z.; Amin, F.; Niebling, T.; Friede, S.; Ochs, M.; Carregal-Romero, S.; Montenegro, J. M.; Rivera Gil, P.; Heimbrodt, W.; Parak, W. J. How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. ACS Nano 2011, 5, 21−25.
  194. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals. Nano Lett. 2004, 4 (4), 703−707.
  195. Pellegrino, T. et al. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals. Nano Lett. 4, 703-707 (2004).
  196. Zhang, F.; Ali, Z.; Amin, F.; Feltz, A.; Oheim, M.; Parak, W. J. IIon and pH Sensing with Colloidal Nanoparticles: Influence of Surface Charge on Sensing and Colloidal Properties. ChemPhysChem 2010, 11, 730−735.
  197. Wu, M. X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2002, 21, 41−46.
  198. Nold P, Hackstein H, Riedlinger T, Kasper C, Neumann A, Mernberger M, Fölsch C, Schmitt J, Fuchs-Winkelmann S, Barckhausen C, et al. Immuno- suppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cyto- therapy. 2015;17:152-62.
  199. Treuel, L., et al., 2014. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano 8 (1), 503-513.
  200. Brom, M., Joosten, L., Oyen, W. J. G., Gotthardt, M. & Boerman, O. C. Improved labelling of DTPA-and DOTA-conjugated peptides and antibodies with (111)In in HEPES and MES buffer. EJNMMI Res. 2, 4 (2012).
  201. Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; Murray, C. B. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6 (3), 2804− 2817.
  202. Wang, J.H., et al., 2015. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis. Electrophoresis 36 (14), 1523-1528.
  203. Zyuzin, M. V.; Honold, T.; Carregal-Romero, S.; Kantner, K.; Karg, M.; Parak, W. J. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media. Small 2016, 13, 1723−1731.
  204. Yameen, B., et al., 2014. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190, 485-499.
  205. Dominguez-Medina, S., et al., 2012. In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28 (24), 9131-9139.
  206. Amin, F.; Yushchenko, D. A.; Montenegro, J. M.; Parak, W. J. Integration of Organic Fluorophores in the Surface of Polymer-Coated Colloidal Nanoparticles for Sensing the Local Polarity of the Environment. ChemPhysChem 2012, 13 (4), 1030−1035.
  207. Zhang, H., et al., 2015b. Interaction of gamma-Fe2O3 nanoparticles with fibrinogen. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 151, 40-47.
  208. Lacerda, S.H., et al., 2010. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4 (1), 365-379.
  209. Efros, A. L.; Efros, A. L. Interband Absorption of Light in a Semiconductor Sphere. Sov. Phys. Semicond.-USSR 1982, 16 (7), 772− 775.
  210. Chen, H., Zou, P., Connarn, J., Paholak, H. & Sun, D. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 5, 815-825 (2012).
  211. Rivera_Gil, P., et al., 2009. Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. Nano Lett. 9 (12), 4398-4402.
  212. Soenen, S.J., et al., 2015. (Intra)cellular stability of inorganic nanoparticles: effects on cy- totoxicity, particle functionality, and biomedical applications. Chem. Rev. 115 (5), 2109-2135.
  213. O'Brien J, Wilson I, Orton T, Pognan FO. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cyto- toxicity. Eur J Biochem. 2000;267:5421-6.
  214. O'Brien J, Wilson I, Ortaon T, Pognan F. Investigation of the Alamar blue (Resazurin) fluorescent dye for the assessment of mammalian cell cyto- toxicity. Toxicology. 2001;164:132.
  215. Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Ruthishauser B, Clift MJD, Zellner R, et al. In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J Nanotechnol. 2014;5:1477-90.
  216. Nazarenus, M., et al., 2014. In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J. Nanotechnol. 5, 1477-1490.
  217. Feliu, N., et al., 2016a. In vivo degradation and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440-2457.
  218. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, et al. In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol. 2015;10:619-23.
  219. Kreyling, W. G. et al. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619-623 (2015).
  220. Kreyling, W.G., et al., 2015. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10 (7), 619-623.
  221. Kim SM, Jeong CH, Woo JS, Ryu CH, Lee JH, Jeun SS. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. Int J Nanomed. 2016;11:13-23.
  222. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004;110:3378-83.
  223. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface- enhanced Raman nanoparticle tags. Nat Biotech 26, 83-90 (2008).
  224. Zhang, F. et al. Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. Chemphyschem 11, 730-735 (2010).
  225. Hühn, J.; Beqa, L.; Ruiz de Larramendi, I.; Pinedo, R.; Rojo, T.; Montenegro, J.-M.; Carregal-Romero, S.; Geidel, C.; Dommershausen, F. . & Schütte, J.; Klapper, M.; Koert, U.; Müllen, K.; Parak, W. J. Ion Selective Ligands -How Colloidal Nano-and Microparticles Introduce New Functionality. To be Submitt.
  226. IV) References
  227. Bastus, N. G.; Comenge, J.; Puntes, V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27 (17), 11098−11105.
  228. Bastús, N. G., Comenge, J. & Puntes, V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 27, 11098-11105 (2011).
  229. Jakubowski, N. et al. Labelling of proteins by use of iodination and detection by ICP- MS. J. Anal. At. Spectrom. 23, 1487 (2008).
  230. Indrasekara, A.; Wadams, R.; Fabris, L. Ligand Exchange on Gold Nanorods: Going Back to the Future. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2014, 31 (8), 819−838.
  231. Schulz, F.; Homolka, T.; Bastus, N. G.; Puntes, V.; Weller, H.; Vossmeyer, T. Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles. Langmuir 2014, 30 (35), 10779− 10784.
  232. Klapper, Y., et al., 2015. Low affinity binding of plasma proteins to lipid-coated quantum dots as observed by in situ fluorescence correlation spectroscopy. Nanoscale 7 (22), 9980-9984.
  233. Sepulveda, B.; Angelome, P. C.; Lechuga, L. M.; Liz-Marzan, L. M. LSPR-based nanobiosensors. Nano Today 2009, 4 (3), 244−251.
  234. Susha, A.S., et al., 2006. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids Surf. A: Physicochem. Eng. Asp. 281, 40-43.
  235. Mani, T., et al., 2015. Microplastics profile along the Rhine River. Sci. Rep. 5, 17988. Mattoussi, H., Palui, G., Na, H.B., 2012. Luminescent quantum dots as platforms for prob- ing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 64 (2), 138-166.
  236. Gazeau F, Wilhelm C. Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Med Chem. 2010;2:397-408.
  237. Casula, M. F.; Floris, P.; Innocenti, C.; Lascialfari, A.; Marinone, M.; Corti, M.; Sperling, R. A.; Parak, W. J.; Sangregorio, C. Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids. Chem. Mater. 2010, 22 (5), 1739− 1748.
  238. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advance- ment of clinical regenerative medicine. Chem Rev. 2011;111:253-80.
  239. Banda, N.K., et al., 2014. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Part. Fibre Toxicol. 11.
  240. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114 (15), 7610−7630.
  241. Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 114, 7610-7630 (2014).
  242. Zhang, L.W., Monteiro-Riviere, N.A., 2009. Mechanisms of quantum dot nanoparticle cel- lular uptake. Toxicol. Sci. 110, 138-155.
  243. Kang S, Bhang SH, Hwang S, Yoon J-K, Song J, Jang H-K, Kim S, Kim B-S. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano. 2015;9:9678.
  244. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier FDR, Mathieu E, Trompier FO. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5:1028-38.
  245. Hainfeld JF, O'Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smi- lowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2011;84:526-33.
  246. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Soci- ety for cellular therapy position statement. Cytotherapy. 2006;8:315-7.
  247. Zhang, Q.; Castellanos-Rubio, I.; Munshi, R.; Orue, I.; Pelaz, B.; Gries, K. I.; Parak, W. J.; del Pino, P.; Pralle, A. Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core- Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chem. Mater. 2015, 27, 7380−7387.
  248. Zhang, Q., et al., 2015a. Model driven optimization of magnetic anisotropy of exchange-coupled core-shell ferrite nanoparticles for maximal hysteretic loss. J. Mater. Chem.
  249. Deng, J., et al., 2013. Molecular interactions of different size AuNP-COOH nanoparticles with human fibrinogen. Nanoscale 5 (17), 8130-8137.
  250. Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D. J.; Alivisatos, A. P. Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of colloidal CdSe Nanocrystals. J. Phys. Chem. B 2002, 106 (21), 5500−5505.
  251. Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high- performance Li-ion battery anodes. J. Am. Chem. Soc. 2013, 135 (11),
  252. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nano- crystal Superlattices. Science 2000, 287, 1989−1992.
  253. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126 (1), 273−279.
  254. Liong, M. et al. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2, 889-896 (2008).
  255. Ali, Z.; Abbasi, A. Z.; Zhang, F.; Arosio, P.; Lascialfari, A.; Casula, M. F.; Wenk, A.; Kreyling, W.; Plapper, R.; Seidel, M.; Niessner, R.; Knoll, J.; Seubert, A.; Parak, W. J. Multifunctional Nanoparticles for Dual Imaging. Anal. Chem. 2011, 83 (8), 2877− 2882.
  256. Ali, Z. et al. Multifunctional nanoparticles for dual imaging. Anal. Chem. 83, 2877- 2882 (2011).
  257. Kastl, L., et al., 2013. Multiple internalization pathways of polyelectrolyte multilayer cap- sules into mammalian cells. ACS Nano 7 (8), 6605-6618.
  258. Li, J., et al., 2008. Multiplexed affinity-based protein complex purification. Anal. Chem. 80, 7068-7074.
  259. Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl. Phys. Lett. 2014, 104, 041901−041904.
  260. Kaiser, U. et al. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl. Phys. Lett. 104, 41901 (2014).
  261. Welsher, K., Yang, H., 2014. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat. Nanotechnol. 9 (3), 198-203.
  262. Maiolo, D., et al., 2015. Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine 10, 3231-3247.
  263. Feliu, N., et al., 2016b. Nanoparticle dosage-a nontrivial task of utmost importance for quantitative nanosafety research. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  264. Deng, Z.J., et al., 2011. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6 (1), 39-44.
  265. Dalal, C., Saha, A., Jana, N.R., 2016. Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C 120 (12), 6778-6786.
  266. Boulos, S.P., et al., 2013. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 29 (48), 14984-14996.
  267. Nanoparticles in MC3T3-E1 Osteoblast Cells. J. Nanosci. Nanotechnol. 2009, 9 (4), 2758−2762.
  268. Shang, L., et al., 2014. Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Adv. Mater. Interfaces 1 (2).
  269. Lundqvist, M., et al., 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14265-14270.
  270. Lundqvist, M., et al., 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105 (38), 14265-14270.
  271. Krug, H.F., 2014. Nanosafety research-are we on the right track? Angew. Chem. Int. Ed. 53 (46), 12304-12319.
  272. Oberdörster, G., Oberdörster, E., Oberdörster, J., 2005. Nanotoxicology: an emerging disci- pline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7), 823-839.
  273. Sharma, V.K., et al., 2015. Natural inorganic nanoparticles-formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44 (23), 8410-8423.
  274. Harris, J. R. Negative Staining of Thinly Spread Biological Particulates. In Electron Microscopy Methods and Protocols; Humana Press: 1999; Vol. 117.
  275. Mooney R, Roma L, Zhao DH, Van Haute D, Garcia E, Kim SU, Annala AJ, Aboody KS, Berlin JM. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8:12450-60.
  276. Jacques V, Desreux JF. New classes of MRI contrast agents. Top Curr Chem. 2002;221:123-64.
  277. Knorr, R., Trzeciak, A., Bannwarth, W. & Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 30, 1927-1930 (1989).
  278. Uchibori R, Tsukahara T, Mizuguchi H, Saga Y, Urabe M, Mizukami H, Kume A, Ozawa K. NF-κB activity regulates mesenchymal stem cell accumula- tion at tumor sites. Cancer Res. 2012;73:364-72.
  279. Docter, D., et al., 2015b. No king without a crown -impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine 10 (3), 503-519.
  280. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clini- cally occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491-9.
  281. Kim, G.-M.; Wutzler, A.; Radusch, H.-J.; Michler, G. H.; Simon, P.; Sperling, R. A.; Parak, W. J. One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning. Chem. Mater. 2005, 17, 4949−4957.
  282. Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications. Small 2005, 1 (1), 48−63.
  283. Pellegrino, T. et al. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 1, 48-63 (2005).
  284. Bedard, M.F., et al., 2009. On the mechanical stability of polymeric microcontainers func- tionalized with nanoparticles. Soft Matter 5 (1), 148-155.
  285. Charron, G.; Huḧn, D.; Perrier, A.; Cordier, L.; Pickett, C. J.; Nann, T.; Parak, W. J. On the Use of pH Titration to Quantitatively Characterize Colloidal Nanoparticles. Langmuir 2012, 28 (43), 15141−15149.
  286. Nolan, J. P., Duggan, E. & Condello, D. Optimization of SERS Tag Intensity, Binding Footprint, and Emittance. Bioconjug. Chem. 25, 1233-1242 (2014).
  287. Nold, P. et al. Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs. J. Nanobiotechnology 15, 24 (2017).
  288. Kantner, K. et al. Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium -What Are the Experimental Pitfalls? Small 11, 896-904 (2015).
  289. Mayor, S., Pagano, R.E., 2007. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603-612.
  290. Soliman MG, B BP, Parak WJ, Pino Pd: Phase transfer and polymer coating methods toward improving the stability of metallic nanoparticles for biological applications. Chemistry of Materials 2015, 27:990-997.
  291. Soliman, M. G.; Pelaz, B.; Parak, W. J.; del Pino, P. Phase transfer and polymer coating methods toward improving the stability of metallic nanoparticles for biological applications. Chem. Mater. 2015, 27, 990−997.
  292. Lista, M.; Liu, D. Z.; Mulvaney, P. Phase Transfer of Noble Metal Nanoparticles to Organic Solvents. Langmuir 2014, 30 (8), 1932−1938.
  293. Henglein, A. Photo-Degradation And Fluorescence Of Colloidal-Cadmium Sulfide In Aqueous-Solution. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 1982, 86 (4),
  294. Goy-Lopez, S., et al., 2012. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28 (24), 9113-9126.
  295. Goy-López, S. et al. Physicochemical Characteristics of Protein-NP Bioconjugates: The Role of Particle Curvature and Solution Conditions on Human Serum Albumin Conformation and Fibrillogenesis Inhibition. Langmuir 28, 9113-9126 (2012).
  296. Chanana, M., et al., 2013. Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion. Angew. Chem. Int. Ed. 52 (15), 4179-4183.
  297. Chanana, M., et al., 2013. Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion. Angew. Chem. Int. Ed. 52 (15), 4179-4183.
  298. Physicochemical Properties of Protein-Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. Angew. Chemie Int. Ed. 52, 4179- 4183 (2013).
  299. Fischer, K.; Schmidt, M. Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 2016, 98, 79− 91.
  300. Vial, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir 2007, 23 (8), 4606−4611.
  301. Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, Mulvaney P, Parak WJ. Poly- mer-coated nanoparticles: a universal tool for biolabelling experiments. Small. 2011;7:3113-27.
  302. Zhang F, Lees E, Amin F, Rivera_Gil P, Yang F, Mulvaney P, Parak WJ: Polymer- Coated Nanoparticles: A Universal Tool for Biolabelling Experiments. Small 2011, 7:3113-3127.
  303. Zhang, F.; Lees, E.; Amin, F.; RiveraGil, P.; Yang, F.; Mulvaney, P.; Parak, W. J. Polymer-Coated Nanoparticles: A Universal Tool for Biolabelling Experiments. Small 2011, 7, 3113−3127.
  304. Zhang, F. et al. Polymer-Coated Nanoparticles: A Universal Tool for Biolabelling Experiments. Small 7, 3113-3127 (2011).
  305. Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, Rivera Gil P, Montenegro J-M, Braeckmans K, Müllen K, et al: Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano 2013, 7:3253-3263.
  306. Hühn, D. et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 7, 3253-3263 (2013).
  307. Hühn, D., et al., 2013. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7 (4), 3253-3263.
  308. Hühn, D., et al., 2013. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7 (4), 3253-3263.
  309. Lerch, S., et al., 2013. Polymeric nanoparticles of different sizes overcome the cell mem- brane barrier. Eur. J. Pharm. Biopharm. 84 (2), 265-274.
  310. Kreft, O., et al., 2007. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem. 17, 4471-4476.
  311. Forte, M., et al., 2016. Polystyrene nanoparticles internalization in human gastric adeno- carcinoma cells. Toxicol. in Vitro 31, 126-136.
  312. Hindie, M., et al., 2011. Pre-osteoblasts on poly(l-lactic acid) and silicon oxide: influence of fibronectin and albumin adsorption. Acta Biomater. 7 (1), 387-394.
  313. Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15 (10), 1957−1962.
  314. Weidner, A., et al., 2015. Preparation of core-shell hybrid materials by producing a protein corona around magnetic nanoparticles. Nanoscale Res. Lett. 10, 1-11.
  315. Sondi, I.; Goia, D. V.; Matijevic, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 2003, 260 (1), 75−81.
  316. Li, N., et al., 2010. Probing nanoparticle-protein interaction by capillary electrophoresis. Anal. Chem. 82 (17), 7460-7466.
  317. Tavano, R., et al., 2010. Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. Nanomedicine 5 (6), 881-896.
  318. Casals, E., et al., 2014. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10 (14), 2801-2808.
  319. Segat, D., et al., 2011. Proinflammatory effects of bare and PEGylated ORMOSIL-PLGA-and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine 6 (6), 1027-1046.
  320. Zeng, S., et al., 2014. Protein binding for detection of small changes on a nanoparticle surface. Analyst 139 (6), 1364-1371.
  321. del Pino, P., et al., 2014. Protein corona formation around nanoparticles-from the past to the future. Mater. Horiz. 1, 301-313.
  322. Pino, P. del et al. Protein corona formation around nanoparticles -from the past to the future. Mater. Horizons 1, 301-313 (2014).
  323. Cheng, X.J., et al., 2015. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl. Mater. In- terfaces 7 (37), 20568-20575.
  324. Huang, R., et al., 2013. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 5 (15), 6928-6935.
  325. Colombo, M.; Mazzucchelli, S.; Montenegro, J. M.; Galbiati, E.; Corsi, F.; Parak, W. J.; Prosperi, D. Protein Oriented Ligation on Nanoparticles Exploiting O6-Alkylguanine-DNA Transferase (SNAP) Genetically Encoded Fusion. Small 2012, 8 (10), 1492−1497.
  326. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS. Pulmonary passage is a major obstacle for intrave- nous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18:683-92.
  327. Rothen-Rutishauser B, Kuhn DA, Ali Z, Gasser M, Amin F, Parak WJ, Van- hecke D, Fink A, Gehr P, Brandenberger C. Quantification of gold nano- particle cell uptake under controlled biological conditions and adequate resolution. Nanomedicine. 2014;9:607-21.
  328. Rothen-Rutishauser, B.; Kuhn, D. A.; Ali, Z.; Gasser, M.; Amin, F.; Parak, W. J.; Vanhecke, D.; Fink, A.; Gehr, P.; Brandenberger, C. Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution. Nanomedicine 2014, 9 (5), 607−621.
  329. Schweiger, C.; Hartmann, R.; Zhang, F.; Parak, W. J.; Kissel, T.; Rivera Gil, P. Quantification of the Internalization Patterns of Superparamagnetic Iron Oxide Nanoparticles with Opposite Charge. J. Nanobiotechnol. 2012, 10 (1), 28.
  330. Schweiger, C., et al., 2012. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge.
  331. Jiang, X., et al., 2010. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin Binding. J. R. Soc. Interface 7, S5-S13.
  332. Hou S, Sikora KN, Tang R, Liu YC, Lee YW, Kim ST, Jiang ZW, Vachet RW, Rotello VM. Quantitative differentiation of cell surface-bound and inter- nalized cationic gold nanoparticles using mass spectrometry. ACS Nano. 2016;10:6731-6.
  333. Brandenberger, C.; Muḧlfeld, C.; Ali, Z.; Lenz, A.-G.; Schmid, O.; Parak, W. J.; Gehr, P.; Rothen-Rutishauser, B. Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles. Small 2010, 6, 1669−1678.
  334. Feliu, N. et al. Quantitative uptake of colloidal particles by cell cultures. Sci. Total Environ. 568, 819-828 (2016).
  335. Medintz, I.L., et al., 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4 (6), 435-446.
  336. Chan, W. C. W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281, 2016−2018.
  337. Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1993, 88, 947−50.
  338. Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum Size Effects in the Redox Potentials, Resonance Raman-Spectra, and Electronic- Spectra of Cds Crystallites in Aqueous-Solution. J. Chem. Phys. 1983, 79 (2), 1086−1088.
  339. Monodisperse, Quasi-spherical, Citrate-Stabilized Silver Nanocrystals in Water. Langmuir 2013, 29 (16), 5074−5079.
  340. Stockhofe, K., Postema, J. M., Schieferstein, H. & Ross, T. L. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 7, 392-418 (2014).
  341. Tenzer, S., et al., 2013. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8 (10), 772-U1000.
  342. Aaronson, J. G. et al. Rapid HATU-Mediated Solution Phase siRNA Conjugation. Bioconjug. Chem. 22, 1723-1728 (2011).
  343. Riedinger, A. et al. Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. Small 6, 2590-7 (2010).
  344. Riedinger, A.; Zhang, F.; Dommershausen, F.; Rocker, C.; Brandholt, S.; Nienhaus, G. U.; Koert, U.; Parak, W. J. Ratiometric Optical Sensing of Chloride Ions with Organic Fluorophore -Gold Nanoparticle Hybrids: A Systematic Study of Distance Dependency and the Influence of Surface Charge. Small 2010, 6 (22), 2590−2597.
  345. Taylor, U., et al., 2014. Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine 9 (13), 1971-1989.
  346. Bastus, N.G., et al., 2008. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2 (3), 99-112.
  347. Conner, S.D., Schmid, S.L., 2003. Regulated portals of entry into the cell. Nature 422 (6927), 37-44.
  348. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative Fluorescence Quantum Yields Using a Computer-controlled Lumi- nescence Spectrometer. Analyst (Cambridge, U. K.) 1983, 108 (1290), 1067−1071.
  349. Lehmann, A. D.; Parak, W. J.; Zhang, F.; Ali, Z.; Rocker, C.; Nienhaus, G. U.; Gehr, P.; Rothen-Rutishauser, B. Fluorescent- Magnetic Hybrid Nanoparticles Induce a Dose-Dependent Increase in Proinflammatory Response in Lung Cells in vitro Correlated with Intracellular Localization. Small 2010, 6 (6), 753−762.
  350. Fleischer, C.C., Payne, C.K., 2014. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B 118 (49), 14017-14026.
  351. Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, Chakraborty I, Zhu L, Gallego M, Zhao Y, et al. Selected standard pro- tocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater. 2017;29:399-461.
  352. Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, Chakraborty I, Zhu L, Gallego M, Zhao Y, et al: Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials 2017, 29:399−461.
  353. Huehn, J. et al. Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chem. Mater. 29, 399-461 (2016).
  354. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors. Nat. Mater. 2003, 2, 630−638.
  355. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Self-Organization of Nanosized Gold Particles. Chem. Mater. 1998, 10 (3), 922−926.
  356. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933−937.
  357. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281 (5385), 2013−2016.
  358. Lesniak, A., et al., 2010. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31 (36), 9511-9518.
  359. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404 (6773), 59−61.
  360. Shimoni, O., et al., 2013. Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 7 (1), 522-530.
  361. Pujals, S. et al. Shuttling Gold Nanoparticles into Tumoral Cells with an Amphipathic Proline-Rich Peptide. ChemBioChem 10, 1025-1031 (2009).
  362. Li, H. S.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Simple Synthesis of
  363. Nolan, J. P. et al. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57, 272-279 (2012).
  364. Qian, X.-M. & Nie, S. M. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912-920 (2008).
  365. Jana, N. R.; Peng, X. Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocryst- als. J. Am. Chem. Soc. 2003, 125 (47), 14280−14281.
  366. Piella, J.; Bastus, N. G.; Puntes, V. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016, 28 (4), 1066−1075.
  367. Sperling, R. A.; Liedl, T.; Duhr, S.; Kudera, S.; Zanella, M.; Lin, C.-A. J.; Chang, W. H.; Braun, D.; Parak, W. J. Size Determination of (Bio-) Conjugated Water-Soluble Colloidal Nanoparticles: A Comparison of Different Techniques. J. Phys. Chem. C 2007, 111 (31), 11552−11559.
  368. Size-distribution of the nanoparticles measured by atomic force microscopy [A1]-18
  369. Jiang, X., et al., 2010. Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Biomacromolecules 11 (3), 748-753.
  370. Huber, A.; Behnke, T.; Wurth, C.; Jaeger, C.; Resch-Genger, U. Spectroscopic Characterization of Coumarin-Stained Beads: Quanti- fication of the Number of Fluorophores Per Particle with Solid-State 19F-NMR and Measurement of Absolute Fluorescence Quantum Yields. Anal. Chem. 2012, 84 (8), 3654.
  371. Feliu, N., et al., 2012. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 33 (7), 1970-1981.
  372. Laaksonen, T., Ahonen, P., Johans, C. & Kontturi, K. Stability and Electrostatics of Mercaptoundecanoic Acid-Capped Gold Nanoparticles with Varying Counterion Size. ChemPhysChem 7, 2143-2149 (2006).
  373. Fu Y, Kraitchman DL. Stem cell labeling for noninvasive delivery and track- ing in cardiovascular regenerative therapy. Expert Rev Cardiovasc Ther. 2010;8:1149.
  374. Hartmann, R., et al., 2015. Stiffness-dependent in vitro uptake and lysosomal acidification of colloidal particles. Angew. Chem. Int. Ed. 54 (4), 1365-1368.
  375. Banerjee, S.; Loza, K.; Meyer-Zaika, W.; Prymak, O.; Epple, M. Structural Evolution of Silver Nanoparticles during Wet-Chemical Synthesis. Chem. Mater. 2014, 26 (2), 951−957.
  376. Nienhaus, G.U., Maffre, P., Nienhaus, K., 2013. Studying the protein corona on nanoparticles by FCS. Methods Enzymol. 519, 115-137.
  377. Mariam, J., Dongre, P.M., Kothari, D.C., 2011. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 21 (6), 2193-2199.
  378. Ji, N., et al., 2015. Study on the interaction between bovine serum albumin and starchnanoparticles prepared by isoamylolysis and recrystallization. Colloids Surf. B: Biointerfaces 128, 594-599.
  379. Domke, J., et al., 2000. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf. B 19 (4), 367-379.
  380. Mutsaers, S., Papadimitriou, J., 1988. Surface charge of macrophages and their interaction with charged particles. J. Leukoc. Biol. 44 (1), 17-20.
  381. Keselowsky, B.G., Collard, D.M., Garcia, A.J., 2003. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. Part A 66A (2), 247-259.
  382. MacLaughlin, C. M. et al. Surface-enhanced raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 29, 1908-1919 (2013).
  383. Jimenez de Aberasturi, D. et al. Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chem. Mater. 28, 6779-6790 (2016).
  384. Harmsen, S. et al. Surface-Enhanced Resonance Raman Scattering Nanostars for High Precision Cancer Imaging. Sci. Transl. Med. 7, 271ra7-271ra7 (2015).
  385. Pelaz, B.; Del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernandez, S.; de la Fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9 (7), 6996−7008.
  386. Pelaz, B., et al., 2015. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9 (7), 6996-7008.
  387. Sperling, R. A.; Parak, W. J. Surface modification, functionaliza- tion and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc., A 2010, 368 (1915), 1333−1383.
  388. Sperling, R. A. & Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1333 LP-1383 (2010).
  389. Cheon, J. & Lee, J.-H. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Acc. Chem. Res. 41, 1630-1640 (2008).
  390. Huang, S.; Pfeiffer, C.; Hollmann, J.; Friede, S.; Chen, J. J.-C.; Beyer, A.; Volz, K.; Heimbrodt, W.; Montenegro Martos, J. M.; Chang, W.; Parak, W. J.; Haas, B. Synthesis and Characterization of Colloidal Fluorescent Silver Nanoclusters. Langmuir 2012, 28, 8915−8919.
  391. Xie, R.; Kolb, U.; Li, J.; Basche, T.; Mews, A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/ Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc. 2005, 127 (20), 7480−7488.
  392. Fernández-Argüelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Medel AS, Mallet J-M, Brochon J-C, Feltz A, Oheim M, Parak WJ. Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett. 2007;7:2613-7.
  393. Fernández-Argüelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Medel AS, Mallet J-M, Brochon J-C, Feltz A, Oheim M, Parak WJ: Synthesis and Characterization of Polymer-Coated Quantum Dots with Integrated Acceptor Dyes as FRET-based Nanoprobes. Nano Letters 2007, 7:2613-2617.
  394. Fernańdez-Arguëlles, M. T.; Yakovlev, A.; Sperling, R. A.; Luccardini, C.; Gaillard, S.; Medel, A. S.; Mallet, J.-M.; Brochon, J.-C.; Feltz, A.; Oheim, M.; Parak, W. J. Synthesis and Characterization of Polymer-Coated Quantum Dots with Integrated Acceptor Dyes as FRET-based Nanoprobes. Nano Lett. 2007, 7 (9), 2613−2617.
  395. Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applica- tions. ACS Nano 2009, 3 (2), 395−401.
  396. Bastus, N. G.; Merkoci, F.; Piella, J.; Puntes, V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26 (9), 2836−2846.
  397. Bastús, N. G., Merkoçi, F., Piella, J. & Puntes, V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 26, 2836-2846 (2014).
  398. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R: Synthesis of Thiol- Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J Chem Soc, Chem Commun 1994, 1:801-802.
  399. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 1994, No. 7, 801−802.
  400. Dubois, L. H.; Nuzzo, R. G. Synthesis, Structure, and Properties of Model Organic-Surfaces. Annu. Rev. Phys. Chem. 1992, 43, 437−463.
  401. Bhogale, A., et al., 2013. Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloids Surf. B: Biointerfaces 102, 257-264.
  402. Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22 (1), 32−41.
  403. Barrow M, Taylor A, Nieves DJ, Bogart LK, Mandal P, Collins CM, Moore LR, Chalmers JJ, Levy R, Williams SR, et al. Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomater Sci. 2015;3:608-16.
  404. Cesbron, Y., et al., 2015. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation. PLoS One 10 (4).
  405. Mahmoudi, M., et al., 2013. Temperature: the "ignored" factor at the NanoBio interface. ACS Nano 7 (8), 6555-6562.
  406. Mahmoudi, M., et al., 2013. Temperature: the "ignored" factor at the nanobio interface. ACS Nano 7 (8), 6555-6562.
  407. Mahmoudi, M. et al. Temperature: The 'Ignored' Factor at the NanoBio Interface. ACS Nano 7, 6555-6562 (2013).
  408. Welch, M. J., Hawker, C. J. & Wooley, K. L. The Advantages of Nanoparticles for PET. J. Nucl. Med. 50, 1743-1746 (2009).
  409. Westmeier, D., et al., 2016a. The bio-corona and its impact on nanomaterial toxicity. Eur. J. Nanomedicine 7, 153-168.
  410. Wang, F.J., et al., 2013. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until de- graded in the lysosomes. Nanomed. Nanotechnol. Biol. Med. 9 (8), 1159-1168.
  411. Soenen, S. J. et al. The Cellular Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and Cytotoxicity. Part. Part. Syst. Charact. 31, 794-800 (2014).
  412. Rivera Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, Zhao Y, de la Fuente J, Ruiz de Larramendi I, Rojo T, Liang X-J, Parak WJ: The Challenge to Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research 2013, 46:743-749.
  413. Rivera Gil, P.; Jimenez de Aberasturi, D.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; de la Fuente, J.; Ruiz de Larramendi, I.; Rojo, T.; Liang, X.-J.; Parak, W. J. The Challenge to Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Acc. Chem. Res. 2013, 46 (3), 743−749.
  414. Rivera Gil, P., et al., 2013. The challenge to relate the physicochemical properties of colloi- dal nanoparticles to their cytotoxicity. Acc. Chem. Res. 46 (3), 743-749.
  415. Rivera-Gil, P. et al. The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Acc. Chem. Res. 46, 743-749 (2013).
  416. Pensa, E.; Corteś, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C. The Chemistry of the Sulfur−Gold Interface: In Search of a Unified Model.
  417. Westmeier, D., Stauber, R.H., Docter, D., 2016b. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Toxicol. Appl. Pharmacol. 299, 53-57.
  418. References Bargheer, D., et al., 2015a. The distribution and degradation of radiolabelled SPIOs and quantum dots in mice. Beilstein J. Nanotechnol. 6, 111-123.
  419. Harakeh, S.; Abdel-Massih, R. M.; Rivera Gil, P.; Sperling, R. A.; Meinhardt, A.; Niedwiecki, A.; Rath, M.; Parak, W. J.; Baydoun, E. The effect of PEG-coated gold nanoparticles on the anti-proliferative potential of Specific Nutrient Synergy. Nanotoxicology 2010, 4, 177− 185.
  420. Harakeh, S. et al. The effect of PEG-coated gold nanoparticles on the anti-proliferative potential of Specific Nutrient Synergy. Nanotoxicology 4, 177-185 (2010).
  421. Bargheer, D., et al., 2015b. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J. Nanotechnol. 6, 36-46.
  422. Fedeli, C., et al., 2015. The functional dissection of the plasma corona of SiO2-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticles capture by macrophages. Nanoscale 7 (42), 17710-17728.
  423. Hakkinen, H. The gold−sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443−455.
  424. de Levie, R. The Henderson-Hasselbalch Equation: Its History and Limitations. J. Chem. Educ. 2003, 80 (2), 146.
  425. Joris, F.; Valdeperez, D.; Pelaz, B.; Soenen, S.; Manshian, B.; Parak, W.; De Smedt, S.; Raemdonck, K. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J. Nanobiotechnol. 2016, 14, 69.
  426. Parakhonskiy, B., et al., 2015. The influence of the size and aspect ratio of anisotropic, po- rous CaCO3 particles on their uptake by cells. J. Nanobiotechnol. 13 (1), 53.
  427. Naveenraj, S., et al., 2010. The interaction of sonochemically synthesized gold nanoparticles with serum albumins. J. Pharm. Biomed. Anal. 53 (3), 804-810.
  428. Freestone, I. The Lycurgus Cup -A Roman Nanotechnology. Gold Bull. 40, 270-277 (2007).
  429. Docter, D., et al., 2015a. The nanoparticle biomolecule corona: lessons learned - challenge accepted? Chem. Soc. Rev. 44, 6094-6121.
  430. Kolosnjaj-Tabi, J., et al., 2015. The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9 (8), 7925-7939.
  431. Hill, A. V., Brown, T. G. & Roaf, H. E. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, i-vii (1910).
  432. Hill, A.V., Brown, T.G., Roaf, H.E., 1910. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J. Physiol. 40 (Suppl.), i-vii.
  433. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum mechanics of large semiconductor clusters (″quantum dots″). Annu. Rev. Phys. Chem. 1990, 41, 477−496.
  434. Moon, A.Y., Poland, D.C., Scheraga, H.A., 1965. Thermodynamic data from fluorescence spectra. I. The system phenol-acetate. J. Phys. Chem. 69, 2960-2966.
  435. Sun, H.L., et al., 2015. The role of capsule stiffness on cellular processing. Chem. Sci. 6 (6), 3505-3514.
  436. Caballero-Díaz, E. et al. The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry. Part. Part. Syst. Charact. 30, 1079-1085 (2013).
  437. Caballero-Díaz, E.; Pfeiffer, C.; Kastl, L.; Rivera-Gil, P.; Simonet, B.; Valcaŕcel, M.; Jimeńez-Lamana, J.; Laborda, F.; Parak, W. J. The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry. Particle and Particle Systems Characterization 2013, 30 (12), 1079−1085.
  438. Alivisatos, P. The use of nanocrystals in biological detection. Nat Biotech 22, 47-52 (2004).
  439. Jung, S.-Y., et al., 2003. The Vroman effect: a molecular level description of fibrinogen displacement. J. Am. Chem. Soc. 125 (42), 12782-12786.
  440. Jung, S.-Y. et al. The Vroman Effect: A Molecular Level Description of Fibrinogen Displacement. J. Am. Chem. Soc. 125, 12782-12786 (2003).
  441. Casals, E., et al., 2010. Time evolution of the nanoparticle protein corona. ACS Nano 4 (7), 3623-3632.
  442. Casals, E., et al., 2010. Time evolution of the nanoparticle protein corona. ACS Nano 4 (7), 3623-3632.
  443. Scarabelli, L.; Sańchez-Iglesias, A.; Peŕez-Juste, J.; Liz-Marzań, L. M. A "Tips and Tricks" Practical Guide to the Synthesis of Gold Nanorods. J. Phys. Chem. Lett. 2015, 6 (21), 4270−4279.
  444. Min, S.K., et al., 2013. Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed. Res. Int. 2013, article ID 638348.
  445. Amendola, V. et al. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J. Mater. Chem. 21, 3803-3813 (2011).
  446. Alkilany, A.; Murphy, C. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 2010, 12 (7), 2313−2333.
  447. Kim, B., et al., 2010. Tuning payload delivery in tumour cylindroids using gold nanoparti- cles. Nat. Nanotechnol. 5 (6), 465-472.
  448. Barbosa, S.; Agrawal, A.; Rodriguez-Lorenzo, L.; Pastoriza- Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz- Marzan, L. M. Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir 2010, 26 (18), 14943−14950.
  449. Shang, L., et al., 2012. Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res. 5 (8), 531-542.
  450. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543-557 (2009).
  451. Beddoes, C.M., Case, C.P., Briscoe, W.H., 2015. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv. Colloid Interf. Sci. 218, 48-68.
  452. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104, 2050-2055 (2007).
  453. Cedervall, T., et al., 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.
  454. Cedervall, T., et al., 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104 (7), 2050-2055.
  455. Muñoz_Javier, A., et al., 2008. Uptake of colloidal polyelectrolyte coated particles and polyelectrolyte multilayer capsules by living cells. Adv. Mater. 20 (22), 4281-4287.
  456. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B. Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Lett. 2013, 13 (2), 765−771.
  457. Noh, H., Vogler, E.A., 2007. Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials 28 (3), 405-422.
  458. Noh, H. & Vogler, E. A. Volumetric interpretation of protein adsorption: Competition from mixtures and the Vroman effect. Biomaterials 28, 405-422 (2007).
  459. Wilhelm, S.; Kaiser, M.; Wuerth, C.; Heiland, J.; Carrillo- Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7 (4), 1403−1410.
  460. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 2001, 105 (18), 4065−4067.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten