Publikationsserver der Universitätsbibliothek Marburg

Titel:Quantitative Evaluation of the Interfaces in III/V Semiconductors with Scanning Transmission Electron Microscopy
Autor:Han, Han
Weitere Beteiligte: Volz, Kerstin (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0776
URN: urn:nbn:de:hebis:04-z2017-07763
DOI: https://doi.org/10.17192/z2017.0776
DDC: Physik
Titel (trans.):Quantitative Evaluation der Schnittstellen in III/V Halbleitern mit Rasterdurchstrahlungselektronenmikroskopie
Publikationsdatum:2017-12-19
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Kontrastsimulation, Auswertungsmethode

Summary:
In order to understand the principles of HAADF imaging and also to implement the contrast simulations efficiently and effectively, simulations about HAADF imaging are carried out. The results clearly show that TDS can significantly influence the collected intensity at the detector. In order to include TDS during the simulation in this study, frozen phonon approach can be applied. Frozen phonon considers TDS through averaging HAADF images calculated from different atom configurations. To save computing time and resources, the influences of the number of phonon configurations on simulated image intensities are investigated. It is proven that 15 phonon configurations is enough to pro- vide a robust result for the multi slice simulation within a reasonable computing time. In addition, intensities of group III and group V atomic columns together with back- ground positions for GaAa, GaP, (Ga0.5In0.5)P are calculated to investigate the origin of background intensity and its influences on individual sublattice intensities. Two quantitative evaluation methods, namely Q-method and BIMS, are introduced in this study. They have been successfully applied to characterize material systems with both the non-chemically sensitive background and the chemically sensitive background, respectively. With respect to the (GaIn)As/GaAs material systems with non-chemically sensitive backgrounds, Q-method is applied. To obtain trustable results, a 2-dimensional thickness gradient correction is performed, and the influences of factors (such as cross talk, strain relaxation, projection effect), which can significantly affect the characterization, are also discussed. To make fair comparisons between different samples, two criteria to determine the interface abruptness, namely 90/10 evaluation approach and error function fitting approach, are given and applied for all the samples investigated in the current study. In addition, the chemical homogeneity of the QW is also introduced as a characteristic for evaluation. Followed by the introduction of these fundamental properties, the influences of growth conditions, like growth temperature, growth interruption temperature and time, on the chemical composition and on the interface abruptness are investigated. For samples with the same growth and growth interruption temperature, it can be stated that the growth temperature of (GaIn)As can strikingly influence the indium dis- tribution at both the QW and the interface. Growth at 625 ◦C leads to an inhomogeneous indium distribution at the QW as well as an intermixed interface. Meanwhile, the ap- plication of growth interruptions can significantly homogenize the indium distribution at both the QW and the interface. Through the comparison with simulations, the bottom interfaces of (GaIn)As grown on GaAs are shown to be abrupt. Therefore, for samples with different growth and growth interruption temperatures, only the top interfaces of (GaIn)As are investigated. Besides the above mentioned results, it can be concluded that an abrupt interface, generated at low temperature (525 ◦C), can be easily degenerated into an intermixing interface with a high interruption temperature of 625 ◦C. Similarly, an intermixed interface, formed at 625 ◦C, can also be improved by growth interruption at 525 ◦C. With respect to the (GaIn)P/GaAs material systems with chemically sensitive back- grounds, the above mentioned method can not be applied any more. As a result, BIMS, based on Q-method, is developed. The image background intensity and its influences on quantitative evaluation of the chemical composition are presented. It is found that the chemical composition characterization across the interface is impossible, if the image background intensity is not subtracted from the original image. With this method, the atomic resolution after background intensity subtraction can be kept for further evalua- tion. As expected, composition depth profiles and interface morphology strongly depend on the growth conditions. A reduction of the growth temperature from 625 ◦C to 525 ◦C can lead to a more abrupt heterointerface. The introduction of a GaP interlayer can improve the interface morphology. Nonetheless, this interlayer also results in an increased separation between the constituent QW and the barrier. With this method, the existence of an island-like structure at the interface can be shown and analyzed quantitatively. In the current study, the determination of the chemical composition map is based on a linear assumption between the collected intensity of the atomic column and its chemical concentration. Although the quantitative evaluation of the interface morphology and chemical homogeneity of the QW is hardly influenced by the assumption, it is still of great importance to derive the exact chemical composition of each atomic column, especially at the interface, in order to better control the lattice constant and the band gap. To aid these processes, a massive number of simulations of (GaIn)As super cells with different indium compositions needs to be carried out. Then a five-dimensional database can be created, which is composed of x, y, z space dimensions, one compositional dimension as well as one dimension of the collection angle covering both high and low angle ranges. Based on the database, the relationship between the sublattice intensity and the corresponding chemical composition can be derived and applied for the calculation of the chemical composition of individual atomic columns with great accuracy. In this study, only electron signals from high angles are made use of to carry out the quantitative evaluation. With the database, electrons scattered at low angles can also be used for the analysis. It is found that the image background intensity can significantly influence the quanti- tative evaluation of chemical composition maps. In fact, the image background intensity can also be used to determine the local sample thickness and the chemical composition of corresponding atomic columns, since it depends on both the thickness and the average atomic number of the crystal. Therefore, the calculated background intensity map in this study can be converted into a thickness map or a chemical composition map. To fulfill the purpose, background intensities of experimental images needs to be compared with those of the five-dimensional database. Then, a thickness map or a chemical composition map can be derived.

Bibliographie / References

  1. X. Wang, Z. Niu, S. Feng, and Z. Miao, '1.35m photoluminescence from in0.5ga0.5as/gaas islands grown by molecular beam epitaxy via cycled (inas)1/(gaas)1 monolayer de- position', Journal of Crystal Growth, vol. 220, no. 1, pp. 16 -22, 2000. References
  2. G. Tatlock, 'Aberration-Corrected Analytical Transmission Electron Microscopy', in, R. Brydson, Ed. Wiley, 2011, ch. 2 -Introduction to Electron optics, pp. 21-38.
  3. A. Bleloch and Q. Ramasse, 'Aberration-Corrected Analytical Transmission Elec- tron Microscopy', in, R. Brydson, Ed. Wiley, 2011, ch. 4 -Lens Aberrations: Di- agnosis and Correction, pp. 55-89.
  4. A. Graven, 'Aberration-Corrected Analytical Transmission Electron Microscopy', in, R. Brydson, Ed. Wiley, 2011, ch. 6 -Details of STEM, pp. 111-162.
  5. C. Hutchinson, R. Hackenberg, and G. Shiflet, 'A comparison of eds microanalysis in fib-prepared and electropolished tem thin foils', Ultramicroscopy, vol. 94, no. 1, pp. 37 -48, 2003.
  6. E. J. Kirkland, Advanced Computing in Electron Microscopy. Springer, 2010.
  7. K. Yamaguchi, T. Okada, and F. Hiwatashi, 'Analysis of indium surface segregation in molecular beam epitaxy of InGaAs / GaAs quantum wells', vol. 18, pp. 700-704, 1997.
  8. K. Ishizuka and N. Uyeda, 'A new theoretical and practical approach to the mul- tislice method', Acta Cryst., vol. A33, pp. 740-749, 1977.
  9. D. He and Z. Li, 'A practical approach to quantify the adf detector in stem', J. Phys.: Conf. Ser., vol. 522, p. 012 017, 2014.
  10. O. Schuler, O. Dehaese, X. Wallart, and F. Mollot, 'A study of gainp/gaas in- terfaces: Metallurgical coupling of successive quantum wells', Superlattices and Microstructures, vol. 23, no. 2, 1998.
  11. R. Glaisher, A. Spargo, and D. Smith, 'A systematic analysis of hrem imaging of elemental semiconductors', Ultramicroscopy, vol. 27, pp. 35-52, 1989.
  12. J. T. Armstrong, P. Mcswiggen, and C. Nielsen, 'A thermal field-emission electron probe microanalyzer for improved analytical spatial resolution', vol. 3, no. 17, pp. 17-20, 2013.
  13. P. Springer, S. Gies, P. Hens, C. Fuchs, H. Han, J. Hader, J.V. Moloney, W. Stolz, K. Volz, S.W. koch, W. Heimbrodt, Charge transfer luminescence in (GaIn)As/GaAs/Ga(NAs) double quantum well, Journal of Luminescence 175, 255-259.
  14. K. Werner, 'Chemical vapor deposition and physical characterization of gallium and carbon-related structures on si (001) and gap/si templates for the growth of graphene layers', PhD thesis, Philipps-Universität Marburg, 2015.
  15. P. D. Robb and A. J. Craven, 'Column ratio mapping : A processing technique for atomic resolution high-angle annular dark-field ( HAADF ) images', Ultrami- croscopy, vol. 109, pp. 61-69, 2008.
  16. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, and S. Lutgen, 'Composition mapping in ingan by scanning transmission electron microscopy.', Ultramicroscopy, vol. 111, pp. 1316-1327, 2011.
  17. P. Hartel, H. Rose, and C. Dinges, 'Conditions and reasons for incoherent imaging in stem', Ultramicroscopy, 1996.
  18. D. O. Klenov and S. Stemmer, 'Contributions to the contrast in experimental high- angle annular dark-field images', Ultramicroscopy, vol. 106, pp. 889-901, 2006.
  19. Koyama, and K Iga, 'Critical layer thickness of 1.2-m highly strained gainas/gaas quantum wells', Journal of Crystal Growth, vol. 221, no. 1, pp. 503 -508, 2000, Proc Tenth Int Conf Metalorganic Vapor Phase Epitaxy.
  20. D. Muller, B. Edwards, E. Kirkland, and J. Silcox, 'Detailed calculations of thermal diffuse scattering', Microsc. Microanal., vol. 3, pp. 1153-1154, 1997.
  21. T. Grieb, K. Müller, R. Fritz, M. Schowalter, N. Neugebohrn, N. Knaub, K. Volz, and A. Rosenauer, 'Determination of the chemical composition of ganas using stem haadf imaging and stem strain state analysis.', Ultramicroscopy, vol. 117, pp. 15- 23, 2012.
  22. L. Vegard, 'Die konstitution der mischkristalle und die raumfüllung der atome', Zeitschrift für Physik, vol. 5, pp. 17-26, 1921.
  23. J. Belz, A. Beyer, T. Torunski, W. Stolz, and K. Volz, 'Direct investigation of (sub-) surface preparation artifacts in gaas based materials by fib sectioning', Ul- tramicroscopy, vol. 163, pp. 19 -30, 2016, issn: 0304-3991.
  24. R. Peizel, L. Zepeda-Ruiz, W. Weinberg, and D. Maroudas, 'Effects of buffer layer thickness and film compositional grading on strain relaxation kinetics in inas/gaas(111)a heteroepitaxy', vol. 463, pp. 634-640, 2000.
  25. S. Maccagnano-Zacher, K. Mkhoyan, E. Kirkland, and J. Silcox, 'Effects of tilt on high-resolution adf-stem imaging', Ultramicroscopy, vol. 108, no. 8, pp. 718 -726, 2008.
  26. L. Wilson, D. Mowbray, M. Skolnick, D. Peggs, G. Rees, J. David, R. Grey, G. Hill, and M. Pate, 'Electrical and optical bistability in [111] gainasgaas piezo-electric quantum wells', Superlattices and Microstructures, vol. 21, no. 1, pp. 113 -118, 1997.
  27. R. Egerton, 'Electron energy-loss spectroscopy in the TEM', vol. 72, 2009.
  28. P. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron microscopy of thin crystals. Krieger Publishing Co, New York, 1977.
  29. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, and K. Ishizuka, 'Element- selective imaging of atomic columns in a crystal using stem and eels', Nature, vol. 450, pp. 702-704, 2007.
  30. P. D. Robb, M. Finnie, P. Longo, and A. J. Craven, 'Experimental evaluation of interfaces using atomic-resolution high angle annular dark field ( HAADF ) imaging', Ultramicroscopy, vol. 114, pp. 11-19, 2012.
  31. J. Spence, Experimental High-Resolution Electron Microscopy. OUP, New York, 1988.
  32. S. Adachi, 'Gaas, alas, and alxga1xas: Material parameters for use in research and device applications', Journal of Applied Physics, vol. 58, 1985.
  33. A. Moto, S. Tanaka, T. Tanabe, and S. Takagishi, 'Gainp/gaas and mechanically stacked gainas solar cells grown by mocvd using tbas and tbp as v-precursors', Solar Energy Materials and Solar Cells, vol. 66, pp. 585 -592, 2001.
  34. P. Ludewig, 'Growth and characterization of dilute bismide gaas based alloys for high efficiency infra red laser diodes', PhD thesis, Philipps-Universität Marburg, 2014.
  35. N Nishiyama, M Arai, S Shinada, T Miyamoto, F Koyama, and K Iga, 'Growth and optical properties of highly strained gainas/gaas quantum wells on (311)b gaas by mocvd', Journal of Crystal Growth, vol. 221, no. 1, pp. 530 -534, 2000, Proc Tenth Int Conf Metalorganic Vapor Phase Epitaxy.
  36. S. J. Pennycook and D. Jesson, 'High-resolution incoherent imaging of crystals', Phys. Rev. Lett., vol. 64, no. 938, 1990.
  37. P. Galindo, J. Pizarro, S. Molinal, and K. Ishizuka, 'High resolution peak mea- surement and strain mapping using peak pairs analysis', Microscopy and Analysis, pp. 23-25, 2009.
  38. J. Spence, High-Resolution Transmission Electron Microscopy, third ed. Oxford University Press, 2003.
  39. S. Pennycook and D. Jesson, 'High-resolution z-contrast imaging of crystals', Ul- tramicroscopy, vol. 37, no. 1-4, pp. 14-38, Aug. 1991.
  40. S. Mokkapati and C. Jagadish, 'III-V compound SC for optoelectronic devices', Materials Today, vol. 12, no. 4, pp. 22-32, 2009.
  41. J. Cowley, 'Image contrast in a transmission scanning electron microscope', Appl. Phys. Lett, vol. 15, pp. 58-59, 1969.
  42. P. Voyles, J. Grazul, and D. Muller, 'Imaging individual atoms inside crystals with adf-stem', Ultramicroscopy, vol. 96, no. 34, pp. 251 -273, 2003, Proceedings of the International Workshop on Strategies and Advances in Atomic Level Spectroscopy and Analysis.
  43. C. Fanidis, D. V. Dyck, and J. V. Landuyt, 'Inelastic scattering of high-energy electrons in a crystal in thermal equilibrium with the environment, ii. solution of the equations and applicatioins to concrete cases', Ultramicroscoopy, vol. 48, pp. 133-164, 1993.
  44. C. Fanidis, D. V. Dyck, and J. V. Landuyt, 'Inelastic scattering of high-energy electrons in a crystal in thermal equilibrium with the environment, i. theoretical framework', Ultramicroscoopy, vol. 41, pp. 55-64, 1992.
  45. A. Beyer, L. Duschek, J. Belz, J. O. Oelerich, K. Jandieri, and K. Volz, 'Influ- ence of surface relaxation of strained layers on atomic resolution adf imaging', Ultramicroscopy, vol. 181, pp. 8-16, 2017, issn: 0304-3991.
  46. R. F. Ã. Egerton, 'Limits to the spatial , energy and momentum resolution of electron energy-loss spectroscopy', vol. 107, pp. 575-586, 2007.
  47. A. beyer, R. Straubinger, J. Belz, and K. Volz, 'Local sample thickness determi- nation via scanning transmission electron microscopy defocus series', Journal of Microscopy, vol. 262, no. 2, pp. 171-177, 2016.
  48. M. di Forte-Poisson, S. Bernard, L. Teisseire, C. Brylinski, S. Cassette, and J. di Persio, 'Low tensile strain gainas:uid/gaas:c superlattice heterostructures grown by lp mocvd: Application to gainp/gaas heterojunction bipolar transistor base layer', Journal of Crystal Growth, vol. 221, pp. 717 -721, 2000.
  49. T. Wegele, 'Microstructural characterization of dilute n-containing semiconductor alloys and heterostructures by scanning transmission electron microscopy', PhD thesis, Philipps-Universität Marburg, 2016.
  50. J. Kilby, Miniaturized electronic circuits, US 3138743, (filed Feb 1959), 1964.
  51. S. Thoma and H. Cerva, 'New methods for qualitative and quantitative analysis of the gaas/algaas interface by high-resolution electron microscopy', Ultramicroscopy, vol. 38, pp. 265-289, 1991.
  52. P. Goodman and A. Moodie, 'Numerical evaluation of n-beam wave functions in electron scattering by the multislice method', Acta Cryst., vol. A30, pp. 280-290, 1974.
  53. L. Rayleigh, 'On the theory of optical images with special reference to the micro- scope', Phil. Mag., vol. 42, pp. 167-195, 1896.
  54. T. Kitatani, Y. Yazawa, S. Watahiki, K. Tamura, J. Minemura, and T. Warabisako, 'Optimal growth procedure of gainp/gaas heterostructure for high-efficiency solar cells', Solar Energy Materials and Solar Cells, vol. 50, pp. 221-227, 1998.
  55. L. Dieterle, B. Butz, and E. Müller, 'Optimized ar+ -ion milling procedure for tem cross-section sample preparation', Ultramicroscopy, vol. 111, pp. 1636-1644, 2011.
  56. G. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice. Aca- demic Press, 2 edition, 1998.
  57. S. H. Simon, Oxford Solid State Basics, 114. Oxford, 2013.
  58. G. Gottstein, Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg GmbH, 2004.
  59. S. Müller, J. Weyher, R. Dian, and W. Jantz, 'Progress in the layer thickness deter- mination of algaas/gaas heterostructures using selective etching and afm imaging of the (110) cleavage planes', Materials Science and Engineering: B, vol. 44, no. 1, pp. 96 -100, 1997.
  60. Han Han, Andreas Beyer, Jürgen Belz, Alexander König, Wolf- gang Stolz, Kerstin Volz, Quantitative atomic resolution at interfaces: Subtraction of the background in STEM images with the example of (Ga,In)P/GaAs structures, Journal of Applied Physics 121, 025301.
  61. H. Han, A. Beyer, K. Jandieri, K.I. Gries, L. Duschek, W. Stolz, K. Volz, Quantitative characterization of the interface roughness of (GaIn)As quantum wells by high relution STEM, Micron 79, 1-7. Posters
  62. H. Han, A. Beyer, K. Jandieri, K. Gries, L. Duschek, W. Stolz, and K. Volz, 'Quantitative characterization of the interface roughness of ( GaIn ) As quantum wells by high resolution STEM', Micron, vol. 79, pp. 1-7, 2015.
  63. T. Grieb, K. Müller, R. Fritz, V. Grillo, M. Schowalter, K. Volz, and A. Rosenauer, 'Quantitative chemical evaluation of dilute ganas using adf stem: Avoiding surface strain induced artifacts', Ultramicroscopy, vol. 129, pp. 1 -9, 2013.
  64. G. Martinez, A. Rosenauer, A. D. Backer, J. Verbeeck, and S. V. Aert, 'Quantita- tive composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy', Ultramicroscopy, vol. 137, pp. 12-19, 2014. 113
  65. G. Kothleitner, M. Neish, N. Lugg, S. Findlay, W. Grogger, F. Hofer, and L. Allen, 'Quantitative elemental mapping at atomic resolution using x-ray spectroscopy', Phys. Rev. Lett., vol. 112, no. 085501, 2014.
  66. M. Scully and M. Zubairy, Quantum Optics. University Press, Cambridge, 1997.
  67. H. Kroemer, 'Quasi-electric fields and band offsets: Teaching electrons new tricks', Nobel Lecture, 2000.
  68. Runan No.1 High school, China. Publications and Posters Publications
  69. R. Noyce, Semiconductor device-and-lead structure, US 2981877, (filed Jul 1959), 1961.
  70. L. Jones, H. Yang, T. J. Pennycook, M. S. J. Marshall, S. Van Aert, N. D. Browning, M. Castell, and P. D. Nellist, 'Smart Aligna new tool for robust non-rigid regis- tration of scanning microscope data', Advanced Structural and Chemical Imaging, vol. 1, p. 1, 2015.
  71. P. Hofmann, Solid State Physics: An Introduction. WILEY-VCH, 2002.
  72. H. Ibach and H. Lüth, Solid State Physics: An Introduction to Principles of Ma- terials Science. Springer, 2009.
  73. A. Rosenauer and M. Schowalter, 'Stemsim-a new software tool for simulation of stem haadf z-contrast imaging, in: Microscopy of semiconducting materials 2007', Springer, 2007.
  74. D. Dunstan, 'Strain and strain relaxation in semiconductors', J. Mat. Sci.: Mate- rials in Electronics, vol. 8, pp. 337-375, 1997.
  75. F. Lelarge, C. Priester, C. Constantin, A. Rudra, K. Leifer, and E. Kapon, 'Strain mapping of v-groove ingaas/gaas strained quantum wires using cross-sectional atomic force microscopy', Appl. Surf. Sci., vol. 166, pp. 290-294, 2000.
  76. F. Lelarge, O. Dehaese, E. Kapon, and C. Priester, 'Strain relaxation at cleaved surfaces studied by atomic force microscopy', Appl. Phys. A Mater. Sci. Process., vol. 69, pp. 347-351, 1999.
  77. N. Knaub, 'Structural analysis of dilute bismide alloys by means of high resolution scanning transmission electron microscopy', PhD thesis, 2016.
  78. A. Ott, 'Structural characterization of antimonide-based metamorphic buffer layers on (001) silicon substrate', PhD thesis, Philipps-Universität Marburg, 2016.
  79. S Martini, J. E. Manzoli, and A. A. Quivy, 'Study of the influence of indium segregation on the optical properties of InGaAs/GaAs quantum wells via split- operator method', pp. 277-283, 2010.
  80. S. V. Aert, J. Verbeeck, R. Erni, S. Bals, M. Luysberg, D. V. Dyck, and G. V. Ten- deloo, 'Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.', Ultramicroscopy, vol. 109, pp. 1236- 1244, 2009.
  81. S. Wu, Z. Huang, Y. Liu, Q. Huang, W. Guo, and Y. Cao, 'The effects of indium segregation on the valence band structure and optical gain of gainas/gaas quantum wells', Physica E: Low-dimensional Systems and Nanostructures, vol. 41, no. 9, pp. 1656 -1660, 2009.
  82. Z. Wang, 'The frozen lattice a roach for incoherent phonon excitations in electron scattering, how accurate is it?', Acta Crystallogr., vol. 54, pp. 468-480, 1998.
  83. The Nobel Prize in physics 2014', Nobel Media AB 2014. Web.19, 2016.
  84. K. Leifer, P. Buffat, P. Stadelmann, and E. Kapon, 'Theoretical and experimental limits of the analysis of iii/v semiconductors using eels', Micro, vol. 31, pp. 411- 427, 2000.
  85. P. D. Nellist, The Principles and Interpretation of Annular Dark-Field Z-Contrast Imaging. 2008, vol. 113, pp. 147-203, isbn: 0120147556.
  86. P. Nellist, 'The Principles of STEM Imaging', no. i, pp. 91-116, 2011.
  87. Z. L. Wang, 'Thermal diffuse scattering in sub-angstrom quantitative electron mi- croscopyphenomenon, effects and approaches', Micron, vol. 34, no. 3, pp. 141 -155, 2003, Zeitler Festschrift.
  88. R. Loane, P. Xu, and J. Silcox, 'Thermal vibratioins in convergent-beam electron diffraction', Acta Crystallogr., vol. 47, pp. 267-278, 1991.
  89. E. Rutherford, 'The scattering of and particles by matter and the structure of the atom', Phil. Mag., vol. 21, pp. 669-688, 1911.
  90. J. Cowley and A. Moodie, 'The scattering of electrons by atoms and crystals. i, a new theoretical approach.', Acta Cryst., vol. 10, pp. 609-619, 1957.
  91. F. Aurenhammer, ACM Comput. Surv, vol. 23, p. 345, 1991. Education 09/2013-11/2017 Philipps-Universität Marburg, Germany, Ph.D. in Physics, Title: Quantitative evaluation of the interfaces in III-V semiconductors with scanning transmission electron microscopy.
  92. D. Williams and C. Carter, Transmission Electron Microscopy, 2st. Springer, 2009.
  93. J. O. Oelerich, L. Duschek, J. Belz, A. Beyer, S. D. Baranovskii, and K. Volz, 'Ultramicroscopy STEMsalabim : A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin spec- imens', Ultramicroscopy, vol. 177, pp. 91-96, 2017.
  94. Han Han, Andreas Beyer, Jürgen Belz, Alexander König, Wolf- gang Stolz, Kerstin Volz, Correlation of interface morphology and composition in GaInP/GaAs with growth conditions, The 16 th European Microscopy congress, Lyon, France.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten