Publikationsserver der Universitätsbibliothek Marburg

Titel:Der Einfluss von N6-Methyladenosin auf die Replikation von Influenzaviren
Autor:Laukemper, Viktoria
Weitere Beteiligte: Bauer, Stefan (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0752
URN: urn:nbn:de:hebis:04-z2017-07529
DOI: https://doi.org/10.17192/z2017.0752
DDC:610 Medizin
Titel (trans.):The influence of N6-methyladenosine on the replication of influenza viruses
Publikationsdatum:2017-12-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:

Zusammenfassung:
RNA-Moleküle verschiedenster Organismen enthalten zahlreiche chemisch modifizierte Nukleoside, deren Funktionen bisher nur zum Teil verstanden sind. In eukaryotischer mRNA ist N6-Methyladenosin (m6A) die am häufigsten vorkommende Modifikation und entsteht durch die Methylierung der Aminogruppe an Position 6 des Ringsystems. Diese wird durch einen Enzymkomplex aus METTL3, METTL14 und WTAP innerhalb der Konsensussequenz [G/A/T][G>A]m6AC[T>A>C] vermittelt. Die Sequenzabfolge GGACT ist dabei das am häufigsten methylierte Motiv. Verschiedene Studien deuten darauf hin, dass m6A verschiedene Schritte des RNA-Metabolismus beeinflusst und damit zahlreiche zelluläre Prozesse regulieren kann. Hierbei wird insbesondere ein Einfluss von m6A auf die Translation, das Spleißen und die Stabilität von RNA diskutiert. Die Effekte von m6A werden in der Zelle durch Bindung verschiedener reader-Proteine aus der hnRNP- und YTH-Proteinfamilie vermittelt. Interessanterweise enthält auch die mRNA verschiedener Viren m6A, aber die Funktion dieser Modifikation für die Virusreplikation und Pathogenese sind noch zu einem großen Teil unverstanden. Ältere Studien deuten darauf hin, dass auch die mRNA von Influenzaviren m6A enthält, wobei die genauen Positionen der Methylierungen nicht bekannt sind. In dieser Arbeit wurde der Einfluss von m6A auf die Replikation des Influenzastammes A/Puerto Rico/8/1934 H1N1 untersucht. Dafür wurden rekombinanten Viren hergestellt, die Mutationen in den m6A-Konsensusmotiven GGACT der viralen NS-, NA- oder HA-mRNA enthielten, sodass an diesen Positionen keine Methylierung mehr stattfinden konnte, gleichzeitig jedoch keine Veränderung der Aminosäuresequenz induziert wurde. Durch Replikationsversuche und Untersuchung der Protein- sowie mRNA-Expression in humanen Zelllinien wurden die Viren charakterisiert und mit Wildtyp(wt)-Viren verglichen. Dabei zeigte sich, dass die Viren mit den mutierten GGACT-Motiven in der HA-mRNA deutlich schlechter replizierten als die wt-Viren und zudem eine reduzierte Expression der HA-mRNA- sowie des HA-Proteins zeigten. Die Mutationen in den GGACT-Motiven der NS- und NA-mRNA hatten hingegen keinen Einfluss auf die Virusreplikation. Um die Beobachtungen aus den Replikationsversuchen auf den Methylierungsstatus der Viren zurückführen zu können, wurden die m6A-Positionen in der mRNA des wt-Virus und des Virus mit den Mutationen in der HA-mRNA mithilfe der Methode des methylated RNA immunoprecipitation with next generation sequencing (MeRIP-Seq) identifiziert. So konnte gezeigt werden, dass die GGACT-Motive der NS- und NA-mRNA des wt-Virus nicht methyliert vorlagen, was die normale Replikationsfähigkeit der entsprechenden Virusmutanten erklärte. Von den GGACT-Motiven in der HA-mRNA des wt-Virus enthielt nur ein einziges eine m6A-Modifikation. Hierbei handelte es sich um das 2. GGACT-Motiv in der HA-mRNA. Diese Methylierung konnte in der mRNA des Virus, bei dem die GGACT-Motive in der HA-mRNA durch Mutationen verändert wurden, nicht mehr identifiziert werden. Replikationsversuche mit Viren, bei denen die GGACT-Motive der HA-mRNA nicht gleichzeitig, sondern einzeln mutiert vorlagen, konnten zeigen, dass die Mutation des 2. GGACT-Motivs zu einer reduzierten Replikationsfähigkeit und zu einer verringerten Expression der HA-mRNA- sowie des HA-Proteins führte. Die reduzierte Replikationsfähigkeit des Virus, welches Mutationen an allen GGACT-Motiven in der HA-mRNA aufwies, konnte damit allein auf die Mutation des 2. GGACT-Motivs und dem damit einhergehenden Verlust der m6A-Modifikation an dieser Position zurückgeführt werden. Durch das MeRIP-Seq konnten weitere m6A-Modifikationen in den mRNAs des NS-, M-, NA-, NP- und HA-Segments nachgewiesen werden, insbesondere in den 5‘- und 3‘-Regionen, deren Funktionen in weiteren Versuchen untersucht werden muss. Der Nachweis einer Influenza-vermittelten Regulation der m6A-assoziierten Proteine sollte Hinweise liefern, durch welche Mechanismen m6A die virale RNA- und Proteinexpression während einer Infektion beeinflusst. Eine Influenza-vermittelte Veränderung der mRNA-Expression von Demethylasen, Methyltransferasen und reader-Proteinen konnte in den verwendeten Zelllinien jedoch nicht gezeigt werden. Aufgrund bisheriger Studien, die auf eine YTHDF2-vermittelte Verstärkung der Proteintranslation von methylierter mRNA hindeuten, wurde auch die Proteinexpression von YTHDF2 in humanen Zellen während einer Influenzainfektion untersucht. Auch hier zeigte sich jedoch keine Veränderung in der Expression. Weitere Versuche werden daher klären müssen, durch welche Mechanismen m6A in der Influenza-mRNA die Proteinexpression und Replikation beeinflusst. Zusammenfassend konnte damit in dieser Arbeit gezeigt werden, dass der Verlust einer m6A-Modifikation in der viralen mRNA zu einer reduzierten Replikationsfähigkeit der Influenzaviren führte. Diese Daten deuten darauf hin, dass die Hemmung der m6A-Modifikation in der Zelle die Replikation der Influenzaviren einschränken könnte und damit das Potential für einen neuen Therapieansatz gegen die Influenzagrippe bietet.

Bibliographie / References

  1. Daffis, S., Szretter, K.J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T.Y., Schneller, S., Zust, R., Dong, H., et al. (2010). 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452-456.
  2. Robbins, M., Judge, A., Liang, L., McClintock, K., Yaworski, E., and MacLachlan, I. (2007). 2'-O-methyl-modified RNAs act as TLR7 antagonists. Molecular therapy : the journal of the American Society of Gene Therapy 15, 1663-1669.
  3. Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.B., and Jaffrey, S.R. (2015). 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 999-1010.
  4. Nallagatla, S.R., Toroney, R., and Bevilacqua, P.C. (2008). A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA biology 5, 140-144.
  5. Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S., Lango, H., Rayner, N.W., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889-894.
  6. Wise, H.M., Foeglein, A., Sun, J., Dalton, R.M., Patel, S., Howard, W., Anderson, E.C., Barclay, W.S., and Digard, P. (2009). A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021-8031.
  7. McAuley, J.L., Tate, M.D., MacKenzie-Kludas, C.J., Pinar, A., Zeng, W., Stutz, A., Latz, E., Brown, L.E., and Mansell, A. (2013). Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS pathogens 9, e1003392.
  8. Selman, M., Dankar, S.K., Forbes, N.E., Jia, J.J., and Brown, E.G. (2012). Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging microbes & infections 1, e42.
  9. Imhof, B.A., and Aurrand-Lions, M. (2004). Adhesion mechanisms regulating the migration of monocytes. Nature Reviews Immunology 4, 432-444.
  10. Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., et al. (2012). A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109, 4269-4274.
  11. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., and Webster, R.G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids.
  12. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.
  13. Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518.
  14. Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vagbo, C.B., Shi, Y., Wang, W.L., Song, S.H., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18-29.
  15. Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6- adenosine methylation. Nat Chem Biol 10, 93-95.
  16. Sandbulte, M.R., Boon, A.C., Webby, R.J., and Riberdy, J.M. (2008). Analysis of cytokine secretion from human plasmacytoid dendritic cells infected with H5N1 or low- pathogenicity influenza viruses. Virology 381, 22-28.
  17. Manicassamy, B., Manicassamy, S., Belicha-Villanueva, A., Pisanelli, G., Pulendran, B., and Garcia-Sastre, A. (2010). Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107, 11531- 11536.
  18. Illumina (2016). An Introduction to Next-Generation Sequencing Technology [online].
  19. Chen, W., Calvo, P.A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., et al. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature medicine 7, 1306-1312.
  20. Jagger, B.W., Wise, H.M., Kash, J.C., Walters, K.A., Wills, N.M., Xiao, Y.L., Dunfee, R.L., Schwartzman, L.M., Ozinsky, A., Bell, G.L., et al. (2012). An overlapping protein- coding region in influenza A virus segment 3 modulates the host response. Science 337, 199-204.
  21. Webster, R.G., Air, G.M., Metzger, D.W., Colman, P.M., Varghese, J.N., Baker, A.T., and Laver, W.G. (1987). Antigenic structure and variation in an influenza virus N9 neuraminidase. J Virol 61, 2910-2916.
  22. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
  23. La Gruta, N.L., Kedzierska, K., Stambas, J., and Doherty, P.C. (2007). A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 85, 85-92.
  24. Amorim, M.J., Bruce, E.A., Read, E.K., Foeglein, A., Mahen, R., Stuart, A.D., and Digard, P. (2011). A Rab11-and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. J Virol 85, 4143-4156.
  25. Czudai-Matwich, V., Schnare, M., and Pinkenburg, O. (2013). A simple and fast system for cloning influenza A virus gene segments into pHW2000-and pCAGGS-based vectors. Arch Virol 158, 2049-2058.
  26. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
  27. Plotch, S.J., Bouloy, M., Ulmanen, I., and Krug, R.M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847-858.
  28. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401.
  29. Li, S., Min, J.Y., Krug, R.M., and Sen, G.C. (2006). Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double- stranded RNA. Virology 349, 13-21.
  30. Cell death regulation during influenza A virus infection by matrix (M1) protein: a model of viral control over the cellular survival pathway. Cell death & disease 2, e197.
  31. Yi, C., and Pan, T. (2011). Cellular dynamics of RNA modification. Accounts of chemical research 44, 1380-1388.
  32. Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P., and Rottman, F. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269, 17697-17704.
  33. Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., and Osterhaus, A.D. (2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814-2822.
  34. Palese, P., Tobita, K., Ueda, M., and Compans, R.W. (1974). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397-410.
  35. Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y., and Ikemura, T. (2001). Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 53, 290-298.
  36. Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646.
  37. Onomoto, K., Jogi, M., Yoo, J.S., Narita, R., Morimoto, S., Takemura, A., Sambhara, S., Kawaguchi, A., Osari, S., Nagata, K., et al. (2012). Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PloS one 7, e43031.
  38. Rao, P., Yuan, W., and Krug, R.M. (2003). Crucial role of CA cleavage sites in the cap- snatching mechanism for initiating viral mRNA synthesis. EMBO J 22, 1188-1198.
  39. Bianchi, M.E. (2007). DAMPs, PAMPs and alarmins: all we need to know about danger.
  40. Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006). Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS pathogens 2, e53.
  41. Deng, T., Vreede, F.T., and Brownlee, G.G. (2006). Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol 80, 2337-2348.
  42. Guarda, G., Zenger, M., Yazdi, A.S., Schroder, K., Ferrero, I., Menu, P., Tardivel, A., Mattmann, C., and Tschopp, J. (2011). Differential expression of NLRP3 among hematopoietic cells. Journal of immunology (Baltimore, Md : 1950) 186, 2529-2534.
  43. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105.
  44. Rogers, G.N., Pritchett, T.J., Lane, J.L., and Paulson, J.C. (1983b). Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131, 394-408.
  45. Poon, L.L., Pritlove, D.C., Fodor, E., and Brownlee, G.G. (1999). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 73, 3473-3476.
  46. Schlee, M., and Hartmann, G. (2016). Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 16, 566-580.
  47. Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S.R., and Qian, S.B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526, 591-594.
  48. Lichinchi, G., Zhao, B.S., Wu, Y., Lu, Z., Qin, Y., He, C., and Rana, T.M. (2016b). Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell host & microbe 20, 666-673.
  49. Lichinchi, G., Gao, S., Saletore, Y., Gonzalez, G.M., Bansal, V., Wang, Y., Mason, C.E., and Rana, T.M. (2016a). Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nature microbiology 1, 16011.
  50. Cardenas, W.B., Loo, Y.M., Gale, M., Jr., Hartman, A.L., Kimberlin, C.R., Martinez- Sobrido, L., Saphire, E.O., and Basler, C.F. (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80, 5168-5178.
  51. Courtney, D.G., Kennedy, E.M., Dumm, R.E., Bogerd, H.P., Tsai, K., Heaton, N.S., and Cullen, B.R. (2017). Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell host & microbe 22, 377-386 e375.
  52. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. Journal of immunology (Baltimore, Md : 1950) 178, 2448-2457.
  53. Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., and Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-179.
  54. Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell research 24, 1403- 1419.
  55. Yanguez, E., Castello, A., Welnowska, E., Carrasco, L., Goodfellow, I., and Nieto, A. (2011). Functional impairment of eIF4A and eIF4G factors correlates with inhibition of influenza virus mRNA translation. Virology 413, 93-102.
  56. Klenk, H.D., Rott, R., and Orlich, M. (1977). Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin. J Gen Virol 36, 151-161.
  57. Heckman, K.L., and Pease, L.R. (2007). Gene splicing and mutagenesis by PCR- driven overlap extension. Nature Protocols 2, 924-932.
  58. Hafner, M., Lianoglou, S., Tuschl, T., and Betel, D. (2012). Genome-wide identification of miRNA targets by PAR-CLIP. Methods 58, 94-105.
  59. Kash, J.C., Tumpey, T.M., Proll, S.C., Carter, V., Perwitasari, O., Thomas, M.J., Basler, C.F., Palese, P., Taubenberger, J.K., Garcia-Sastre, A., et al. (2006). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578-581.
  60. Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology 7, 678-689.
  61. Perrone, L.A., Plowden, J.K., Garcia-Sastre, A., Katz, J.M., and Tumpey, T.M. (2008). H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS pathogens 4, e1000115.
  62. Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, G.Z., Liu, N., Han, D., Dominissini, D., Dai, Q., Pan, T., et al. (2014). High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angewandte Chemie (International ed in English) 54, 1587-1590.
  63. McAuley, J.L., Kedzierska, K., Brown, L.E., and Shanks, G.D. (2015). Host Immunological Factors Enhancing Mortality of Young Adults during the 1918 Influenza Pandemic. Frontiers in immunology 6, 419.
  64. Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell host & microbe 3, 352-363.
  65. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., and Klenk, H.D. (2004b). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101, 4620-4624.
  66. Means, T.K., Latz, E., Hayashi, F., Murali, M.R., Golenbock, D.T., and Luster, A.D. (2005). Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. The Journal of clinical investigation 115, 407-417.
  67. Lamblin, G., Aubert, J.P., Perini, J.M., Klein, A., Porchet, N., Degand, P., and Roussel, P. (1992). Human respiratory mucins. Eur Respir J 5, 247-256.
  68. Bauer, S., Kirschning, C.J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., and Lipford, G.B. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98, 9237-9242.
  69. Wise, H.M., Hutchinson, E.C., Jagger, B.W., Stuart, A.D., Kang, Z.H., Robb, N., Schwartzman, L.M., Kash, J.C., Fodor, E., Firth, A.E., et al. (2012). Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS pathogens 8, e1002998.
  70. Nemeroff, M.E., Utans, U., Kramer, A., and Krug, R.M. (1992). Identification of cis- acting intron and exon regions in influenza virus NS1 mRNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Molecular and cellular biology 12, 962-970.
  71. Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 71, 3971-3975.
  72. Gehrig, S., Eberle, M.E., Botschen, F., Rimbach, K., Eberle, F., Eigenbrod, T., Kaiser, S., Holmes, W.M., Erdmann, V.A., Sprinzl, M., et al. (2012). Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. The Journal of experimental medicine 209, 225-233.
  73. Identification of novel influenza A virus proteins translated from PA mRNA. J Virol 87, 2455-2462.
  74. Moss, W.N., Priore, S.F., and Turner, D.H. (2011). Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA (New York, NY) 17, 991-1011.
  75. Davey, J., Dimmock, N.J., and Colman, A. (1985). Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes. Cell 40, 667-675.
  76. Pichlmair, A., Lassnig, C., Eberle, C.A., Gorna, M.W., Baumann, C.L., Burkard, T.R., Burckstummer, T., Stefanovic, A., Krieger, S., Bennett, K.L., et al. (2011). IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nature immunology 12, 624-630.
  77. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annual review of immunology 18, 767-811.
  78. Weber, M., Gawanbacht, A., Habjan, M., Rang, A., Borner, C., Schmidt, A.M., Veitinger, S., Jacob, R., Devignot, S., Kochs, G., et al. (2013). Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13, 336-346.
  79. Cheung, C.Y., Poon, L.L., Lau, A.S., Luk, W., Lau, Y.L., Shortridge, K.F., Gordon, S., Guan, Y., and Peiris, J.S. (2002). Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet (London, England) 360, 1831-1837.
  80. Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression. J Virol 88, 8375-8385.
  81. Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., and Garcia-Sastre, A. (2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell host & microbe 5, 439-449.
  82. Liu, G., Park, H.S., Pyo, H.M., Liu, Q., and Zhou, Y. (2015a). Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction. J Virol 89, 6067-6079.
  83. Iwai, A., Shiozaki, T., Kawai, T., Akira, S., Kawaoka, Y., Takada, A., Kida, H., and Miyazaki, T. (2010). Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1. J Biol Chem 285, 32064-32074.
  84. Gu, W., Gallagher, G.R., Dai, W., Liu, P., Li, R., Trombly, M.I., Gammon, D.B., Mello, C.C., Wang, J.P., and Finberg, R.W. (2015). Influenza A virus preferentially snatches noncoding RNA caps. RNA (New York, NY) 21, 2067-2075.
  85. WHO (2014). Influenza (Seasonal) Fact sheet N°211 (World Health Organisation [online]).
  86. Krug, R.M., Morgan, M.A., and Shatkin, A.J. (1976). Influenza viral mRNA contains internal N6-methyladenosine and 5'-terminal 7-methylguanosine in cap structures. J Virol 20, 45-53.
  87. Ichinohe, T., Pang, I.K., and Iwasaki, A. (2010). Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature immunology 11, 404-410.
  88. Weber, M., Sediri, H., Felgenhauer, U., Binzen, I., Banfer, S., Jacob, R., Brunotte, L., Garcia-Sastre, A., Schmid-Burgk, J.L., Schmidt, T., et al. (2015). Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell host & microbe 17, 309-319.
  89. Stieneke-Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., and Garten, W. (1992). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. Embo j 11, 2407-2414.
  90. Yanguez, E., Rodriguez, P., Goodfellow, I., and Nieto, A. (2012). Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation. Virology 422, 297-307.
  91. Couceiro, J.N., Paulson, J.C., and Baum, L.G. (1993). Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29, 155- 165.
  92. Staeheli, P., Grob, R., Meier, E., Sutcliffe, J.G., and Haller, O. (1988). Influenza virus- susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Molecular and cellular biology 8, 4518-4523.
  93. Mibayashi, M., Martínez-Sobrido, L., Loo, Y.-M., Cárdenas, W.B., Jr., M.G., and García-Sastre, A. (2007). Inhibition of Retinoic Acid-Inducible Gene I-Mediated Induction of Beta Interferon by the NS1 Protein of Influenza A Virus.
  94. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531.
  95. Brubaker, S.W., Bonham, K.S., Zanoni, I., and Kagan, J.C. (2015). Innate immune pattern recognition: a cell biological perspective. Annual review of immunology 33, 257- 290.
  96. Hoffmann, J., and Akira, S. (2013). Innate immunity. Current opinion in immunology 25, 1-3.
  97. Iwasaki, A., and Pillai, P.S. (2014). Innate immunity to influenza virus infection. Nat Rev Immunol 14, 315-328.
  98. Barton, G.M., Kagan, J.C., and Medzhitov, R. (2006). Intracellular localization of Toll- like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7, 49-56.
  99. Benitez, A.A., Panis, M., Xue, J., Varble, A., Shim, J.V., Frick, A.L., Lopez, C.B., Sachs, D., and tenOever, B.R. (2015). In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell reports 11, 1714-1726.
  100. Guillot, L., Le Goffic, R., Bloch, S., Escriou, N., Akira, S., Chignard, M., and Si-Tahar, M. (2005). Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280, 5571-5580.
  101. Pestal, K., Funk, C.C., Snyder, J.M., Price, N.D., Treuting, P.M., and Stetson, D.B. (2015). Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity 43, 933- 944.
  102. Murphy, K. (2012). Janeway's Immunobiology, 7th edn (New York: Garland Science).
  103. Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. (2010). LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107, 1512-1517.
  104. Head, S.R., Komori, H.K., LaMere, S.A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D.R., and Ordoukhanian, P. (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56, 61-64, 66, 68, passim.
  105. Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and Barber, G.N. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. Journal of immunology (Baltimore, Md : 1950) 178, 6444- 6455.
  106. Chen, T., Hao, Y.J., Zhang, Y., Li, M.M., Wang, M., Han, W., Wu, Y., Lv, Y., Hao, J., Wang, L., et al. (2015). m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell stem cell 16, 289-301.
  107. Antanaviciute, A., Baquero-Perez, B., Watson, C.M., Harrison, S.M., Lascelles, C., Crinnion, L., Markham, A.F., Bonthron, D.T., Whitehouse, A., and Carr, I.M. (2017). m6aViewer: software for the detection, analysis and visualization of N6-methyl- adenosine peaks from m6A-seq/ME-RIP sequencing data. RNA (New York, NY).
  108. Gonzales-van Horn, S.R., and Sarnow, P. (2017). Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell host & microbe 21, 661- 669.
  109. Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell research 24, 177-189.
  110. McCartney, S.A., Thackray, L.B., Gitlin, L., Gilfillan, S., Virgin, H.W., and Colonna, M. (2008). MDA-5 recognition of a murine norovirus. PLoS pathogens 4, e1000108.
  111. Lavi, S., and Shatkin, A.J. (1975). Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc Natl Acad Sci U S A 72, 2012-2016.
  112. Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular cell 62, 335-345.
  113. Beutler, B. (2009). Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunological reviews 227, 248-263.
  114. Vreede, F.T., Jung, T.E., and Brownlee, G.G. (2004). Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78, 9568-9572.
  115. Machnicka, M.A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K.M., et al. (2013). MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res 41, D262-267.
  116. Ito, T., Couceiro, J.N., Kelm, S., Baum, L.G., Krauss, S., Castrucci, M.R., Donatelli, I., Kida, H., Paulson, J.C., Webster, R.G., et al. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72, 7367-7373.
  117. Theler, D., and Allain, F.H. (2015). Molecular biology: RNA modification does a regulatory two-step. Nature 518, 492-493.
  118. Modrow, S., Falke, D., Truyen, U., and Schätzl, H. (2010). Molekulare Virologie, 3. Auflage edn (Heidelberg: Spektrum Akademischer Verlag).
  119. Kariko, K., Ni, H., Capodici, J., Lamphier, M., and Weissman, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279, 12542-12550.
  120. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
  121. Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., and Kuroda, Y. (2001). Mutation of DNASE1 in people with systemic lupus erythematosus. Nature genetics 28, 313-314.
  122. Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2013). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117-120.
  123. Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2014b). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117-120.
  124. Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015b). N(6)- methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560-564.
  125. Liu, N., and Pan, T. (2016). N6-methyladenosine-encoded epitranscriptomics. Nature structural & molecular biology 23, 98-102.
  126. Gokhale, N.S., McIntyre, A.B., McFadden, M.J., Roder, A.E., Kennedy, E.M., Gandara, J.A., Hopcraft, S.E., Quicke, K.M., Vazquez, C., Willer, J., et al. (2016). N6- Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell host & microbe 20, 654-665.
  127. Nichols, J.L. (1979). N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci Lett 15, 357-367.
  128. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature chemical biology 7, 885-887.
  129. Wang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014c). N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature cell biology 16, 191-198.
  130. Pan, T. (2013). N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends in biochemical sciences 38, 204-209.
  131. Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 1388-1399.
  132. Wei, C., Gershowitz, A., and Moss, B. (1975). N6, O2'-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature 257, 251-253.
  133. Neuraminidase Is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium.
  134. Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Chen, X., Recuenco, S., Gomez, J., et al. (2013). New world bats harbor diverse influenza A viruses. PLoS pathogens 9, e1003657.
  135. Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Molecular cell 29, 428-440.
  136. Martin, K., and Helenius, A. (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117-130.
  137. Scholtissek, C., Rohde, W., Von Hoyningen, V., and Rott, R. (1978). On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13-20.
  138. Smith, G.J., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G., Ma, S.K., Cheung, C.L., Raghwani, J., Bhatt, S., et al. (2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122-1125.
  139. Lamb, R.A., and Krug, R.M. (2001). Orthomyxoviridae: the viruses and their replication. In Fields Virology, H.P. Knipe DM, Fields BN, ed. (Philadelphia, USA: Lippincott, Williams & Wilkins), pp. 1487-1532.
  140. Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z., and He, C. (2008). Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS letters 582, 3313-3319.
  141. Schwarz, K.B. (1996). Oxidative stress during viral infection: a review. Free radical biology & medicine 21, 641-649.
  142. Motz, C., Schuhmann, K.M., Kirchhofer, A., Moldt, M., Witte, G., Conzelmann, K.K., and Hopfner, K.P. (2013). Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Science 339, 690-693.
  143. Schwartz, S., Mumbach, M.R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G.G., Mertins, P., Ter-Ovanesyan, D., Habib, N., Cacchiarelli, D., et al. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell reports 8, 284-296.
  144. Kaminski, M.M., Ohnemus, A., Cornitescu, M., and Staeheli, P. (2012). Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus. J Gen Virol 93, 555-559.
  145. Wolf, A.I., Buehler, D., Hensley, S.E., Cavanagh, L.L., Wherry, E.J., Kastner, P., Chan, S., and Weninger, W. (2009). Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. Journal of immunology (Baltimore, Md : 1950) 182, 871-879.
  146. Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8, 594-606.
  147. Robertson, J.S., Schubert, M., and Lazzarini, R.A. (1981). Polyadenylation sites for influenza virus mRNA. J Virol 38, 157-163.
  148. Zhao, B.S., Roundtree, I.A., and He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. In Nature reviews Molecular cell biology (England), pp. 31-42.
  149. Kennedy, E.M., Bogerd, H.P., Kornepati, A.V., Kang, D., Ghoshal, D., Marshall, J.B., Poling, B.C., Tsai, K., Gokhale, N.S., Horner, S.M., et al. (2016). Posttranscriptional m(6)A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell host & microbe 19, 675-685.
  150. Kane, S.E., and Beemon, K. (1985). Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 5, 2298-2306.
  151. Baum, A., Sachidanandam, R., and Garcia-Sastre, A. (2010). Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107, 16303-16308.
  152. Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., and Pan, T. (2013). Probing N6- methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA (New York, NY) 19, 1848-1856.
  153. Flick, R., Neumann, G., Hoffmann, E., Neumeier, E., and Hobom, G. (1996). Promoter elements in the influenza vRNA terminal structure. RNA (New York, NY) 2, 1046-1057.
  154. Böttcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., and Matrosovich, M. (2006). Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80, 9896-9898.
  155. Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F.M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6- adenosine)-methyltransferase. RNA (New York, NY) 3, 1233-1247.
  156. Karupiah, G., Chen, J.H., Mahalingam, S., Nathan, C.F., and MacMicking, J.D. (1998). Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. The Journal of experimental medicine 188, 1541-1546.
  157. Drake, J.W. (1993). Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90, 4171-4175.
  158. Schlee, M., Roth, A., Hornung, V., Hagmann, C.A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G., et al. (2009). Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34.
  159. Koblansky, A.A., Jankovic, D., Oh, H., Hieny, S., Sungnak, W., Mathur, R., Hayden, M.S., Akira, S., Sher, A., and Ghosh, S. (2013). Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity 38, 119- 130.
  160. Lund, J.M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N.W., Iwasaki, A., and Flavell, R.A. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101, 5598-5603.
  161. Levin, D., and London, I.M. (1978). Regulation of protein synthesis: Activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2.
  162. Ivashkiv, L.B., and Donlin, L.T. (2013). Regulation of type I interferon responses. Nature Reviews Immunology 14, 36-49.
  163. Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A.V., Patil, D.P., Linder, B., Pickering, B.F., Vasseur, J.J., Chen, Q., et al. (2016). Reversible methylation of m6Am in the 5' cap controls mRNA stability. Nature 541, 371-375.
  164. Rehwinkel, J., Tan, C.P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., et al. (2010). RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397-408.
  165. Liddicoat, B.J., Piskol, R., Chalk, A.M., Ramaswami, G., Higuchi, M., Hartner, J.C., Li, J.B., Seeburg, P.H., and Walkley, C.R. (2015). RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115-1120.
  166. Dalpke, A., and Helm, M. (2012). RNA mediated Toll-like receptor stimulation in health and disease. RNA biology 9, 828-842.
  167. Fustin, J.M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M.S., Kakeya, H., Manabe, I., et al. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793-806.
  168. Ohuchi, M., Asaoka, N., Sakai, T., and Ohuchi, R. (2006). Roles of neuraminidase in the initial stage of influenza virus infection. Microbes and infection 8, 1287-1293.
  169. Subbarao, K., and Joseph, T. (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol 7, 267-278.
  170. Csepany, T., Lin, A., Baldick, C.J., Jr., and Beemon, K. (1990). Sequence specificity of mRNA N6-adenosine methyltransferase. J Biol Chem 265, 20117-20122.
  171. Harper, J.E., Miceli, S.M., Roberts, R.J., and Manley, J.L. (1990). Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18, 5735- 5741.
  172. Lee, M.S., and Kim, Y.J. (2007). Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annual review of biochemistry 76, 447-480.
  173. Rogers, G.N., Paulson, J.C., Daniels, R.S., Skehel, J.J., Wilson, I.A., and Wiley, D.C. (1983a). Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76-78.
  174. Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry 162, 156-159.
  175. Malathi, K., Dong, B., Gale, M., Jr., and Silverman, R.H. (2007). Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816-819.
  176. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529.
  177. Zhou, Y., Zeng, P., Li, Y.H., Zhang, Z., and Cui, Q. (2016). SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic acids research 44, e91.
  178. Weber-Gerlach, M., and Weber, F. (2016). Standing on three legs: antiviral activities of RIG-I against influenza viruses. Curr Opin Immunol 42, 71-75.
  179. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon- Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002-1006.
  180. Zinzula, L., and Tramontano, E. (2013). Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral research 100, 615-635.
  181. Song, W., Wang, J., Han, Z., Zhang, Y., Zhang, H., Wang, W., Chang, J., Xia, B., Fan, S., Zhang, D., et al. (2015). Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nature structural & molecular biology 22, 782-787.
  182. Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., and Cusack, S. (2011). Structural basis for the activation of innate immune pattern- recognition receptor RIG-I by viral RNA. Cell 147, 423-435.
  183. Herrler, G., and Klenk, H.D. (1991). Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40, 213-234.
  184. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 137, 2107-2115.
  185. Li, F., Zhao, D., Wu, J., and Shi, Y. (2014). Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. In Cell research (England), pp. 1490-1492.
  186. Jin, M.S., and Lee, J.O. (2008). Structures of the toll-like receptor family and its ligand complexes. Immunity 29, 182-191.
  187. Kariko, K., Buckstein, M., Ni, H., and Weissman, D. (2005). Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165-175.
  188. Hofmann, P., Sprenger, H., Kaufmann, A., Bender, A., Hasse, C., Nain, M., and Gemsa, D. (1997). Susceptibility of mononuclear phagocytes to influenza A virus infection and possible role in the antiviral response. Journal of leukocyte biology 61, 408-414.
  189. Jöckel, S., Nees, G., Sommer, R., Zhao, Y., Cherkasov, D., Hori, H., Ehm, G., Schnare, M., Nain, M., Kaufmann, A., et al. (2012). The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. The Journal of experimental medicine 209, 235-241.
  190. Desselberger, U., Racaniello, V.R., Zazra, J.J., and Palese, P. (1980). The 3' and 5'- terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8, 315-328.
  191. Davis, W.G., Bowzard, J.B., Sharma, S.D., Wiens, M.E., Ranjan, P., Gangappa, S., Stuchlik, O., Pohl, J., Donis, R.O., Katz, J.M., et al. (2012). The 3' untranslated regions of influenza genomic sequences are 5'PPP-independent ligands for RIG-I. PloS one 7, e32661.
  192. Wisskirchen, C., Ludersdorfer, T.H., Muller, D.A., Moritz, E., and Pavlovic, J. (2011). The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J Virol 85, 8646-8655.
  193. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983.
  194. Meyer, K.D., and Jaffrey, S.R. (2014). The dynamic epitranscriptome: N6- methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15, 313-326.
  195. Böttcher-Friebertshäuser, E., Garten, W., Matrosovich, M., and Klenk, H.D. (2014). The hemagglutinin: a determinant of pathogenicity. Current topics in microbiology and immunology 385, 3-34.
  196. O'Neill, R.E., Talon, J., and Palese, P. (1998). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17, 288-296.
  197. Dudek, S.E., Wixler, L., Nordhoff, C., Nordmann, A., Anhlan, D., Wixler, V., and Ludwig, S. (2011). The influenza virus PB1-F2 protein has interferon antagonistic activity. Biological chemistry 392, 1135-1144.
  198. Perry, R.P., Kelley, D.E., Friderici, K., and Rottman, F. (1975). The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5' terminus. Cell 4, 387-394.
  199. Sommer, S., Salditt-Georgieff, M., Bachenheimer, S., Darnell, J.E., Furuichi, Y., Morgan, M., and Shatkin, A.J. (1976). The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic acids research 3, 749-765.
  200. Dubin, D.T., and Taylor, R.H. (1975). The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic acids research 2, 1653-1668.
  201. Swiecki, M., and Colonna, M. (2015). The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15, 471-485.
  202. Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., and Liu, Y.J. (1999). The nature of the principal type 1 interferon- producing cells in human blood. Science 284, 1835-1837.
  203. Gerken, T., Girard, C.A., Tung, Y.C., Webby, C.J., Saudek, V., Hewitson, K.S., Yeo, G.S., McDonough, M.A., Cunliffe, S., McNeill, L.A., et al. (2007). The obesity- associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469-1472.
  204. Taubenberger, J.K., and Morens, D.M. (2008). The pathology of influenza virus infections. Annu Rev Pathol 3, 499-522.
  205. Graef, K.M., Vreede, F.T., Lau, Y.F., McCall, A.W., Carr, S.M., Subbarao, K., and Fodor, E. (2010). The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J Virol 84, 8433-8445.
  206. Min, J.Y., and Krug, R.M. (2006). The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci U S A 103, 7100-7105.
  207. Bosch, F.X., Orlich, M., Klenk, H.D., and Rott, R. (1979). The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95, 197-207.
  208. Kierzek, E., and Kierzek, R. (2003). The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic acids research 31, 4472-4480.
  209. Zhang, Z., Theler, D., Kaminska, K.H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., Heinrich, B., Bujnicki, J.M., Allain, F.H., et al. (2010). The YTH domain is a novel RNA binding domain. J Biol Chem 285, 14701-14710.
  210. TLR7 recognition is dispensable for influenza virus A infection but important for the induction of hemagglutinin-specific antibodies in response to the 2009 pandemic split vaccine in mice. J Virol 86, 10988-10998.
  211. Creagh, E.M., and O'Neill, L.A. (2006). TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends in immunology 27, 352-357.
  212. Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A. (2003). Toll-like receptor 9- mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. The Journal of experimental medicine 198, 513-520.
  213. Kawai, T., and Akira, S. (2008). Toll-like receptor and RIG-I-like receptor signaling. Annals of the New York Academy of Sciences 1143, 1-20.
  214. Kumar, H., Kawai, T., and Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical and biophysical research communications 388, 621-625.
  215. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206.
  216. Li, M.M., MacDonald, M.R., and Rice, C.M. (2015). To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25, 320-329.
  217. Holcik, M., and Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature reviews Molecular cell biology 6, 318-327.
  218. Hutchinson, E.C., and Fodor, E. (2013). Transport of the influenza virus genome from nucleus to nucleus. Viruses 5, 2424-2446.
  219. Greenspan, D., Palese, P., and Krystal, M. (1988). Two nuclear location signals in the influenza virus NS1 nonstructural protein. J Virol 62, 3020-3026.
  220. Pothlichet, J., Meunier, I., Davis, B.K., Ting, J.P., Skamene, E., von Messling, V., and Vidal, S.M. (2013). Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS pathogens 9, e1003256.
  221. McNab, F., Mayer-Barber, K., Sher, A., Wack, A., and O'Garra, A. (2015). Type I interferons in infectious disease. Nat Rev Immunol 15, 87-103.
  222. Pifer, R., Benson, A., Sturge, C.R., and Yarovinsky, F. (2011). UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii. J Biol Chem 286, 3307-3314.
  223. Narayan, P., Ayers, D.F., Rottman, F.M., Maroney, P.A., and Nilsen, T.W. (1987). Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Molecular and cellular biology 7, 1572-1575.
  224. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., and Perez, D.R. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275-2289.
  225. Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., Carlsson, L.M., Kiess, W., Vatin, V., Lecoeur, C., et al. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nature genetics 39, 724-726.
  226. Silverman, R.H. (2007). Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Responseâ–¿. In J Virol, pp. 12720-12729.
  227. Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern- recognition receptor signalling. Nat Rev Immunol 8, 911-922.
  228. Barchet, W., Cella, M., Odermatt, B., Asselin-Paturel, C., Colonna, M., and Kalinke, U. (2002). Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. The Journal of experimental medicine 195, 507- 516.
  229. Deng, X., Chen, K., Luo, G.Z., Weng, X., Ji, Q., Zhou, T., and He, C. (2015). Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic acids research 43, 6557-6567.
  230. Bodi, Z., Button, J.D., Grierson, D., and Fray, R.G. (2010). Yeast targets for mRNA methylation. Nucleic acids research 38, 5327-5335.
  231. Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., Liu, C., and He, C. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell research 27, 315-328.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten