Publikationsserver der Universitätsbibliothek Marburg

Titel:Behavioral and Neural Indices of Perceiving Multisensory Action Outcomes
Autor:Arikan Seefeldt, Belkis Ezgi
Weitere Beteiligte: Kircher, Tilo (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0748
DOI: https://doi.org/10.17192/z2017.0748
URN: urn:nbn:de:hebis:04-z2017-07480
DDC:610 Medizin
Titel (trans.):Verhaltensindizes und neurale Indizes in der Wahrnehmung multisensorischer Handlungskonsequenzen
Publikationsdatum:2017-12-14
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:

Summary:
Distinct perception for voluntary vs. externally-generated action outcomes has been demonstrated in timing and intensity domains. First, time interval between an action and its outcome is perceived shorter. Second, sensory stimuli triggered by one’s own action is judged as less intense than similar stimuli triggered externally. The differential perception of voluntary action outcomes has been attributed to efference copy-related predictive mechanisms, and has been studied extensively using behavioral and imaging methods. However, although voluntary movements in the real world produce feedback in multiple modalities, previous experiments mostly investigated unimodal action outcomes. Therefore, the perception of multisensory inputs associated with our own actions remains to be explored. The aim of this dissertation was to fill this gap by investigating the behavioral and neural correlates of multisensory action outcomes. In Study 1, synchrony perception for multisensory outcomes triggered by voluntary vs. externally-generated movements was assessed. Study 1.1 showed increased perception of simultaneity for audiovisual stimulus pairs around the time of action. Study 1.2 revealed a similar effect also when the movement was externally-generated, underlining the importance of causal relations between events in shaping time perception. Interestingly, the slopes of the psychometric functions in the voluntary condition were significantly steeper than the slopes in the externally-generated condition, suggesting a role of action-related predictive mechanisms in making synchrony perception more precise. Study 2 investigated the neural correlates of perceiving unimodal vs. bimodal inputs triggered by voluntary button presses compared with passive viewing of identical stimuli. Results showed BOLD suppression for voluntary action outcomes in comparison to passive viewing of the same stimuli. This BOLD suppression effect was independent of the to-be-attended modality and the number of modalities presented. The cerebellum was found to be recruited more during bimodal trials and when a delay was detected. These findings support action-related predictive processing of voluntary action outcomes, demonstrating it also for multisensory action outcomes. The findings also indicate the cerebellum’s role in error-related action outcome processing, and the influence of the additional sensory modality on error-related activity in the cerebellum. Study 3 investigated neural correlates of perceiving unimodal vs. bimodal action outcomes by focusing on efference copy-related predictive processing in a naturalistic experimental set- up. Results extend findings of Study 2 regarding the predictive processing of multisensory action outcomes to a naturalistic context, and support the role of the cerebellum in error- related action outcome processing. Importantly, activity in the cerebellum was modulated by the additional modality, highlighting the role of multisensory processing in shaping motor- sensory interactions. Together, findings of these studies strengthen existing evidence on the distinctive perception for voluntary action outcomes, extending it to multisensory action outcomes, and to a realistic context. Implications of this line of research extend to revealing mechanisms behind agency deficits frequently observed in schizophrenia, as well as to the development of intervention techniques targeting the rehabilitation of patients with spinal cord injury or stroke.

Bibliographie / References

  1. Calvert, G. a, Campbell, R., Brammer, M.J., 2000. Evidence from functional magnetic REFERENCES resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10, 649-657. doi:S0960-9822(00)00513-3 [pii]
  2. Assal, F., Schwartz, S., Vuilleumier, P., 2007. Moving with or without will: functional neural correlates of alien hand syndrome. Ann. Neurol. 62, 301-306. doi:10.1002/ana.21173
  3. Stevens, M.C., Kiehl, K.A., Pearlson, G., Calhoun, V.D., 2007. Functional neural circuits for mental timekeeping. Hum. Brain Mapp. 28, 394-408. doi:10.1002/hbm.20285
  4. Simões-Franklin, C., Whitaker, T.A., Newell, F.N., 2011. Active and passive touch differentially activate somatosensory cortex in texture perception. Hum. Brain Mapp. 32, 1067-1080. doi:10.1002/hbm.21091
  5. Ivry, R.B., Richardson, T.C., 2002. Temporal Control and Coordination : The Multiple Timer Model 132, 117-132. doi:10.1006/brcg.2001.1308
  6. Weiller, C., Jüptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., Müller, S., Diener, H.C., Thilmann, A.F., 1996. Brain Representation of Active and Passive Movements. Neuroimage 4, 105-110. doi:10.1006/nimg.1996.0034
  7. Lee, K.-M., Chang, K.-H., Roh, J.-K., 1999. Subregions within the Supplementary Motor Area Activated at Different Stages of Movement Preparation and Execution. Neuroimage 9, 117-123. doi:10.1006/nimg.1998.0393
  8. Blakemore, S.-J., Wolpert, D.M., Frith, C.D., 1999. The Cerebellum Contributes to Somatosensory Cortical Activity during Self-Produced Tactile Stimulation. Neuroimage 10, 448-459. doi:10.1006/nimg.1999.0478
  9. Cunnington, R., Windischberger, C., Deecke, L., Moser, E., 2002. The Preparation and Execution of Self-Initiated and Externally-Triggered Movement: A Study of Event- Related fMRI. Neuroimage 15, 373-385. doi:10.1006/nimg.2001.0976
  10. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 15, 273-289. doi:10.1006/nimg.2001.0978
  11. Elsner, B., Hommel, B., Mentschel, C., Drzezga, A., Prinz, W., Conrad, B., Siebner, H., 2002. Linking Actions and Their Perceivable Consequences in the Human Brain. Neuroimage 17, 364-372. doi:10.1006/nimg.2002.1162
  12. Kok, P., de Lange, F.P., 2015. Predictive Coding in Sensory Cortex, in: An Introduction to Model-Based Cognitive Neuroscience. Springer New York, New York, NY, pp. 221- 244. doi:10.1007/978-1-4939-2236-9_11
  13. Tsakiris, M., Haggard, P., 2003. Awareness of somatic events associated with a voluntary action. Exp. brain Res. 149, 439-46. doi:10.1007/s00221-003-1386-8
  14. Zampini, M., Shore, D.I., Spence, C., 2003. Audiovisual temporal order judgments. Exp. brain Res. 152, 198-210. doi:10.1007/s00221-003-1536-z
  15. Blakemore, S.J., Sirigu, A., 2003. Action prediction in the cerebellum and in the parietal lobe. Exp. Brain Res. 153, 239-245. doi:10.1007/s00221-003-1597-z
  16. Wallace, M.T., Roberson, G.E., Hairston, W.D., Stein, B.E., Vaughan, J.W., Schirillo, J.A., 2004. Unifying multisensory signals across time and space. Exp. Brain Res. 158, 252-8. doi:10.1007/s00221-004-1899-9
  17. Bresciani, J.-P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., Kheddar, A., 2005. Feeling what you hear: auditory signals can modulate tactile tap perception. Exp. Brain Res. 162, 172-180. doi:10.1007/s00221-004-2128-2
  18. Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D.A., Prinz, W., 2005. Intention-based and stimulus-based mechanisms in action selection. Exp. Brain Res. 162, 346-356. doi:10.1007/s00221-004-2183-8
  19. Ciccarelli, O., Toosy, A.T., Marsden, J.F., Wheeler-Kingshott, C.M., Sahyoun, C., Matthews, P.M., Miller, D.H., Thompson, A.J., 2005. Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp. Brain Res. 166, 31- REFERENCES 42. doi:10.1007/s00221-005-2335-5
  20. Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. Lo, Caltagirone, C., 2007. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp. Brain Res. 179, 291-299. doi:10.1007/s00221-006-0791-1
  21. Wenke, D., Haggard, P., 2009. How voluntary actions modulate time perception. Exp. Brain Res. 196, 311-318. doi:10.1007/s00221-009-1848-8
  22. Boenke, L.T., Deliano, M., Ohl, F.W., 2009. Stimulus duration influences perceived simultaneity in audiovisual temporal-order judgment. Exp. Brain Res. 198, 233-244. doi:10.1007/s00221-009-1917-z REFERENCES
  23. Cravo, A.M., Claessens, P.M.E., Baldo, M.V.C., 2009. Voluntary action and causality in temporal binding. Exp. Brain Res. 199, 95-99. doi:10.1007/s00221-009-1969-0
  24. Humphreys, G.R., Buehner, M.J., 2010. Temporal binding of action and effect in interval reproduction. Exp. Brain Res. 203, 465-470. doi:10.1007/s00221-010-2199-1
  25. Kuling, I.A., van Eijk, R.L.J., Juola, J.F., Kohlrausch, A., 2012. Effects of stimulus duration on audio-visual synchrony perception. Exp. brain Res. 221, 403-12. doi:10.1007/s00221-012-3182-9
  26. Metcalfe, J., Eich, T.S., Miele, D.B., 2013. Metacognition of agency: proximal action and distal outcome. Exp. Brain Res. 229, 485-496. doi:10.1007/s00221-012-3371-6
  27. Desantis, A., Mamassian, P., Lisi, M., Waszak, F., 2014. The prediction of visual stimuli influences auditory loudness discrimination. Exp. Brain Res. 232, 3317-3324. doi:10.1007/s00221-014-4001-2
  28. Van der Burg, E., Orchard-Mills, E., Alais, D., 2015. Rapid temporal recalibration is unique to audiovisual stimuli. Exp. Brain Res. 233, 53-59. doi:10.1007/s00221-014-4085-8
  29. Corveleyn, X., Lopez-Moliner, J., Coello, Y., 2015. Temporal and spatial constraints of action effect on sensory binding. Exp. Brain Res. 233, 3379-3392. doi:10.1007/s00221-015-4402-x
  30. Elsner, B., Hommel, B., 2004. Contiguity and contingency in action-effect learning. Psychol. Res. 68, 138-154. doi:10.1007/s00426-003-0151-8
  31. Stock, A., Stock, C., 2004. A short history of ideo-motor action. Psychol. Res. 68, 176- 188. doi:10.1007/s00426-003-0154-5
  32. van Kemenade, B.M., Arikan, B.E., Kircher, T., Straube, B., 2017. The angular gyrus is a supramodal comparator area in action--outcome monitoring. Brain Struct. Funct. 1- 13. doi:10.1007/s00429-017-1428-9
  33. Wang, W.Y., Hu, L., Valentini, E., Xie, X.B., Cui, H.Y., Hu, Y., 2012. Dynamic characteristics of multisensory facilitation and inhibition. Cogn. Neurodyn. 6, 409-19. doi:10.1007/s11571-012-9197-x
  34. Ingram, J.N., Wolpert, D.M., 2011. Naturalistic approaches to sensorimotor control. Prog. Brain Res. 191, 3-29. doi:10.1016/B978-0-444-53752-2.00016-3
  35. Zampini, M., Brown, T., Shore, D.I., Maravita, A., Röder, B., Spence, C., 2005a. Audiotactile temporal order judgments. Acta Psychol. (Amst). 118, 277-91. doi:10.1016/j.actpsy.2004.10.017
  36. Vatakis, A., Spence, C., 2008. Evaluating the influence of the "unity assumption" on the temporal perception of realistic audiovisual stimuli. Acta Psychol. (Amst). 127, 12-23. REFERENCES doi:10.1016/j.actpsy.2006.12.002
  37. Sinnett, S., Soto-Faraco, S., Spence, C., 2008. The co-occurrence of multisensory competition and facilitation. Acta Psychol. (Amst). 128, 153-161. doi:10.1016/j.actpsy.2007.12.002
  38. Chen, K.-M., Yeh, S.-L., 2009. Asymmetric cross-modal effects in time perception. Acta Psychol. (Amst). 130, 225-234. doi:10.1016/j.actpsy.2008.12.008
  39. Cravo, A.M., Claessens, P.M.E., Baldo, M.V.C., 2011. The relation between action, predictability and temporal contiguity in temporal binding. Acta Psychol. (Amst). 136, 157-166. doi:10.1016/j.actpsy.2010.11.005
  40. Rohde, M., Greiner, L., Ernst, M.O., 2014. Asymmetries in visuomotor recalibration of time perception: Does causal binding distort the window of integration? Acta Psychol. (Amst). 147, 127-135. doi:10.1016/j.actpsy.2013.07.011
  41. Vatakis, A., Spence, C., 2006. Audiovisual synchrony perception for music, speech, and object actions. Brain Res. 1111, 134-142. doi:10.1016/j.brainres.2006.05.078
  42. Doehrmann, O., Naumer, M.J., 2008. Semantics and the multisensory brain: How meaning modulates processes of audio-visual integration. Brain Res. 1242, 136-150. doi:10.1016/j.brainres.2008.03.071
  43. Harvey, C., Van der Burg, E., Alais, D., 2014. Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally. Brain Res. 1585, 120-30. doi:10.1016/j.brainres.2014.08.028
  44. Bresciani, J.-P., Dammeier, F., Ernst, M.O., 2008. Tri-modal integration of visual, tactile and auditory signals for the perception of sequences of events. Brain Res. Bull. 75, 753-60. doi:10.1016/j.brainresbull.2008.01.009
  45. Haggard, P., Whitford, B., 2004. Supplementary motor area provides an efferent signal for sensory suppression. Cogn. Brain Res. 19, 52-58. doi:10.1016/j.cogbrainres.2003.10.018
  46. Matell, M.S., Meck, W.H., 2004. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn. Brain Res. 21, 139-170. doi:10.1016/j.cogbrainres.2004.06.012
  47. Vroomen, J., Keetels, M., De Gelder, B., Bertelson, P., 2004. Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn. Brain Res. 22, 32- 35. doi:10.1016/j.cogbrainres.2004.07.003
  48. Tsakiris, M., Haggard, P., Franck, N., Mainy, N., Sirigu, A., 2005. A specific role for efferent information in self-recognition. Cognition 96, 215-231. doi:10.1016/j.cognition.2004.08.002
  49. Obhi, S.S., Planetta, P.J., Scantlebury, J., 2009. On the signals underlying conscious awareness of action. Cognition 110, 65-73. doi:10.1016/j.cognition.2008.10.009
  50. Desantis, A., Haggard, P., 2016b. Action-outcome learning and prediction shape the window of simultaneity of audiovisual outcomes. Cognition 153, 33-42. doi:10.1016/j.cognition.2016.03.009
  51. Jackson, P., 2004. Motor cognition: a new paradigm to study self-other interactions. Curr. Opin. Neurobiol. 14, 259-263. doi:10.1016/j.conb.2004.01.020
  52. Blakemore, S.J., 2003. Deluding the motor system. Conscious. Cogn. 12, 647-655. doi:10.1016/j.concog.2003.07.001
  53. Haggard, P., Cole, J., 2007. Intention, attention and the temporal experience of action. Conscious. Cogn. 16, 211-220. doi:10.1016/j.concog.2006.07.002
  54. Moore, J., Haggard, P., 2008. Awareness of action: Inference and prediction. Conscious. Cogn. 17, 136-44. doi:10.1016/j.concog.2006.12.004
  55. Sato, A., 2008. Action observation modulates auditory perception of the consequence of others' actions. Conscious. Cogn. 17, 1219-1227. doi:10.1016/j.concog.2008.01.003
  56. Frith, C., 2012. Explaining delusions of control: the comparator model 20 years on. Conscious. Cogn. 21, 52-4. doi:10.1016/j.concog.2011.06.010
  57. Yarrow, K., Jahn, N., Durant, S., Arnold, D.H., 2011. Shifts of criteria or neural timing? The assumptions underlying timing perception studies. Conscious. Cogn. 20, 1518- 31. doi:10.1016/j.concog.2011.07.003
  58. Moore, J.W., Obhi, S.S., 2012. Intentional binding and the sense of agency: a review. Conscious. Cogn. 21, 546-61. doi:10.1016/j.concog.2011.12.002
  59. Farrer, C., Valentin, G., Hup, J.M., 2013. The time windows of the sense of agency. Conscious. Cogn. 22, 1431-1441. doi:10.1016/j.concog.2013.09.010
  60. Knolle, F., Schröger, E., Kotz, S.A., 2013. Cerebellar contribution to the prediction of self- initiated sounds. Cortex 49, 2449-2461. doi:10.1016/j.cortex.2012.12.012
  61. Bays, P.M., Wolpert, D.M., Flanagan, J.R., 2005. Perception of the consequences of self- action is temporally tuned and event driven. Curr. Biol. 15, 1125-1128. doi:10.1016/j.cub.2005.05.023
  62. Synofzik, M., Lindner, A., Thier, P., 2008. The Cerebellum Updates Predictions about the Visual Consequences of One's Behavior. Curr. Biol. 18, 814-818. doi:10.1016/j.cub.2008.04.071
  63. Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., Blomert, L., 2009. Reduced Neural Integration of Letters and Speech Sounds Links Phonological and Reading Deficits in Adult Dyslexia. Curr. Biol. 19, 503-508. doi:10.1016/j.cub.2009.01.065
  64. Cunnington, R., Windischberger, C., Moser, E., 2005. Premovement activity of the pre- supplementary motor area and the readiness for action: Studies of time-resolved event-related functional MRI. Hum. Mov. Sci. 24, 644-656. doi:10.1016/j.humov.2005.10.001
  65. Wolpert, D.M., 2007. Probabilistic models in human sensorimotor control. Hum. Mov. Sci. 26, 511-24. doi:10.1016/j.humov.2007.05.005
  66. Ford, J.M., Mathalon, D.H., 2005. Corollary discharge dysfunction in schizophrenia: can it explain auditory hallucinations? Int. J. Psychophysiol. 58, 179-89. doi:10.1016/j.ijpsycho.2005.01.014
  67. Baess, P., Jacobsen, T., Schröger, E., 2008. Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: Evidence for internal forward models with dynamic stimulation. Int. J. Psychophysiol. 70, 137-143. doi:10.1016/j.ijpsycho.2008.06.005
  68. Waszak, F., Cardoso-Leite, P., Hughes, G., 2012. Action effect anticipation: Neurophysiological basis and functional consequences. Neurosci. Biobehav. Rev. 36, 943-959. doi:10.1016/j.neubiorev.2011.11.004
  69. Wiese, H., Stude, P., Nebel, K., de Greiff, A., Forsting, M., Diener, H.C., Keidel, M., 2004. REFERENCES Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci. Lett. 371, 220-5. doi:10.1016/j.neulet.2004.08.078
  70. Lau, H.., Rogers, R.., Ramnani, N., Passingham, R.., 2004. Willed action and attention to the selection of action. Neuroimage 21, 1407-1415. doi:10.1016/j.neuroimage.2003.10.034
  71. Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208-S219. doi:10.1016/j.neuroimage.2004.07.051
  72. Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K., 2005. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325-1335. doi:10.1016/j.neuroimage.2004.12.034
  73. Balslev, D., Nielsen, F.Å., Lund, T.E., Law, I., Paulson, O.B., 2006. Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony. Neuroimage 31, 308- 312. doi:10.1016/j.neuroimage.2005.11.037
  74. David, N., Cohen, M.X., Newen, A., Bewernick, B.H., Shah, N.J., Fink, G.R., Vogeley, K., 2007. The extrastriate cortex distinguishes between the consequences of one's own and others' behavior. Neuroimage 36, 1004-1014. doi:10.1016/j.neuroimage.2007.03.030
  75. Mueller, V.A., Brass, M., Waszak, F., Prinz, W., 2007. The role of the preSMA and the REFERENCES rostral cingulate zone in internally selected actions. Neuroimage 37, 1354-1361. doi:10.1016/j.neuroimage.2007.06.018
  76. Melcher, T., Weidema, M., Eenshuistra, R.M., Hommel, B., Gruber, O., 2008. The neural substrate of the ideomotor principle: An event-related fMRI analysis. Neuroimage 39, 1274-1288. doi:10.1016/j.neuroimage.2007.09.049
  77. Hughes, G., Waszak, F., 2011. ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neuroimage 56, 1632-1640. doi:10.1016/j.neuroimage.2011.02.057
  78. Szameitat, A.J., Shen, S., Conforto, A., Sterr, A., 2012. Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. Neuroimage 62, 266-280. doi:10.1016/j.neuroimage.2012.05.009
  79. Shergill, S.S., White, T.P., Joyce, D.W., Bays, P.M., Wolpert, D.M., Frith, C.D., 2013. Modulation of somatosensory processing by action. Neuroimage 70, 356-62. doi:10.1016/j.neuroimage.2012.12.043
  80. Gau, R., Noppeney, U., 2016. How prior expectations shape multisensory perception. Neuroimage 124, 876-886. doi:10.1016/j.neuroimage.2015.09.045
  81. Stetson, C., Cui, X., Montague, P.R., Eagleman, D.M., 2006. Motor-Sensory Recalibration Leads to an Illusory Reversal of Action and Sensation. Neuron 51, 651-659. doi:10.1016/j.neuron.2006.08.006
  82. Driver, J., Noesselt, T., 2008. Multisensory interplay reveals crossmodal influences on "sensory-specific" brain regions, neural responses, and judgments. Neuron 57, 11- 23. doi:10.1016/j.neuron.2007.12.013
  83. Fried, I., Mukamel, R., Kreiman, G., 2011. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69, 548-62. doi:10.1016/j.neuron.2010.11.045
  84. Franklin, D.W., Wolpert, D.M., 2011. Computational mechanisms of sensorimotor control. Neuron 72, 425-442. doi:10.1016/j.neuron.2011.10.006
  85. Kok, P., Jehee, J.F.M., de Lange, F.P., 2012. Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex. Neuron 75, 265-270. doi:10.1016/j.neuron.2012.04.034
  86. van Atteveldt, N., Murray, M.M., Thut, G., Schroeder, C.E., 2014. Multisensory Integration: Flexible Use of General Operations. Neuron 81, 1240-1253. doi:10.1016/j.neuron.2014.02.044
  87. van Wassenhove, V., Grant, K.W., Poeppel, D., 2007. Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45, 598-607. doi:10.1016/j.neuropsychologia.2006.01.001
  88. Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C.S., Woldorff, M.G., 2007. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45, 561-571. doi:10.1016/j.neuropsychologia.2006.01.013
  89. Voss, M., Bays, P.M., Rothwell, J.C., Wolpert, D.M., 2007. An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. Neuropsychologia 45, 2712-2717. doi:10.1016/j.neuropsychologia.2007.04.008
  90. Kammers, M.P.M., de Vignemont, F., Verhagen, L., Dijkerman, H.C., 2009. The rubber hand illusion in action. Neuropsychologia 47, 204-211. doi:10.1016/j.neuropsychologia.2008.07.028
  91. Tsakiris, M., Longo, M.R., Haggard, P., 2010. Having a body versus moving your body: Neural signatures of agency and body-ownership. Neuropsychologia 48, 2740-2749. REFERENCES doi:10.1016/j.neuropsychologia.2010.05.021
  92. Krieghoff, V., Waszak, F., Prinz, W., Brass, M., 2011. Neural and behavioral correlates of intentional actions. Neuropsychologia 49, 767-776. doi:10.1016/j.neuropsychologia.2011.01.025
  93. Block, H.J., Bastian, A.J., 2012. Cerebellar involvement in motor but not sensory adaptation. Neuropsychologia 50, 1766-1775. doi:10.1016/j.neuropsychologia.2012.03.034
  94. Roussel, C., Hughes, G., Waszak, F., 2013. A preactivation account of sensory attenuation. Neuropsychologia 51, 922-929. doi:10.1016/j.neuropsychologia.2013.02.005
  95. Backasch, B., Sommer, J., Klöhn-Saghatolislam, F., Müller, M.J., Kircher, T.T.J., Leube, D.T., 2014. Dysconnectivity of the inferior frontal gyrus: Implications for an impaired self-other distinction in patients with schizophrenia. Psychiatry Res. -Neuroimaging 223, 202-209. doi:10.1016/j.pscychresns.2014.05.007
  96. Ernst, M.O., Bülthoff, H.H., 2004. Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162-169. doi:10.1016/j.tics.2004.02.002
  97. Haggard, P., 2005. Conscious intention and motor cognition. Trends Cogn. Sci. 9, 290- 295. doi:10.1016/j.tics.2005.04.012
  98. Desmurget, M., Sirigu, A., 2009. A parietal-premotor network for movement intention and REFERENCES motor awareness. Trends Cogn. Sci. 13, 411-419. doi:10.1016/j.tics.2009.08.001
  99. Shams, L., Beierholm, U.R., 2010. Causal inference in perception. Trends Cogn. Sci. 14, 425-432. doi:10.1016/j.tics.2010.07.001
  100. Senkowski, D., Schneider, T.R., Foxe, J.J., Engel, A.K., 2008. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 31, 401-409. doi:10.1016/j.tins.2008.05.002
  101. Pynn, L.K., DeSouza, J.F.X., 2013. The function of efference copy signals: Implications for symptoms of schizophrenia. Vision Res. doi:10.1016/j.visres.2012.10.019
  102. Blakemore, S., Rees, G., Frith, C.D., 1998. How do we predict the consequences of our actions? a functional imaging study. Neuropsychologia 36, 521-529. doi:10.1016/S0028-3932(97)00145-0
  103. Miall, R.C., Wolpert, D.M., 1996. Forward Models for Physiological Motor Control. Neural Networks 9, 1265-1279. doi:10.1016/S0893-6080(96)00035-4
  104. Foxe, J.J., Morocz, I.A., Murray, M.M., Higgins, B.A., Javitt, D.C., Schroeder, C.E., 2000. Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Cogn. Brain Res. 10, 77-83. doi:10.1016/S0926-6410(00)00024-0
  105. Driver, J., Spence, C., 2000. Multisensory perception: Beyond modularity and convergence. Curr. Biol. 10, R731-R735. doi:10.1016/S0960-9822(00)00740-5
  106. Rizzolatti, G., Sinigaglia, C., Wolpert, D.M., Flanagan, J.R., 2010. Motor prediction. Nat. Rev. Neurosci. 11, 264-274. doi:10.1016/S0960-9822(01)00432-8
  107. Spence, C., Squire, S., 2003. Multisensory integration: Maintaining the perception of synchrony. Curr. Biol. 13, 519-521. doi:10.1016/S0960-9822(03)00445-7
  108. Leube, D.T., Knoblich, G., Erb, M., Kircher, T.T.J., 2003b. Observing one's hand become anarchic: an fMRI study of action identification. Conscious. Cogn. 12, 597-608. doi:10.1016/S1053-8100(03)00079-5
  109. Desmurget, M., Grafton, S., 2000. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423-431. doi:10.1016/S1364- 6613(00)01537-0
  110. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R., 2001. Perspectives and problems in motor learning. Trends Cogn. Sci. 5, 487-494. doi:10.1016/S1364-6613(00)01773-3
  111. Eagleman, D.M., Holcombe, A.O., 2002. Causality and the perception of time. Trends Cogn. Sci. 6, 323-325. doi:10.1016/S1364-6613(02)01945-9
  112. Wolpert, D.M., 1997. Computational approaches to motor control. Trends Cogn. Sci. 1, 209-216. doi:10.1016/S1364-6613(97)01070-X
  113. Wolpert, D.M., Miall, R.C., Kawato, M., 1998. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338-347. doi:10.1016/S1364-6613(98)01221-2
  114. Wagman, J.B., 2008. Perception-action as reciprocal, continuous, and prospective. Behav. Brain Sci. 31, 219-220. doi:10.1017/S0140525X08004032
  115. Holroyd, C.B., Coles, M.G.H., 2002. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679-709. doi:10.1037/0033-295X.109.4.679
  116. Vroomen, J., Gelder, B. De, 2004. Temporal Ventriloquism : Sound Modulates the Flash- Lag Effect 30, 513-518. doi:10.1037/0096-1523.30.3.513
  117. Engbert, K., Wohlschläger, A., Thomas, R., Haggard, P., 2007. Agency, subjective time, and other minds. J. Exp. Psychol. Hum. Percept. Perform. 33, 1261-1268. doi:10.1037/0096-1523.33.6.1261
  118. Shin, Y.K., Proctor, R.W., Capaldi, E.J., 2010. A review of contemporary ideomotor theory. Psychol. Bull. 136, 943-974. doi:10.1037/a0020541
  119. Stevenson, R.A., Zemtsov, R.K., Wallace, M.T., 2012. Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J. Exp. Psychol. Hum. Percept. Perform. 38, 1517-29. doi:10.1037/a0027339
  120. Hughes, G., Desantis, A., Waszak, F., 2012. Mechanisms of Intentional Binding and Sensory Attenuation: The Role of Temporal Prediction, Temporal Control, Identity Prediction, and Motor Prediction. Psychol. Bull. 139, 133-151. doi:10.1037/a0028566
  121. Yarrow, K., Sverdrup-Stueland, I., Roseboom, W., Arnold, D.H., 2013. Sensorimotor temporal recalibration within and across limbs. J. Exp. Psychol. Hum. Percept. Perform. 39, 1678-89. doi:10.1037/a0032534
  122. Yon, D., Press, C., 2017. Predicted action consequences are perceptually facilitated before cancellation. J. Exp. Psychol. Hum. Percept. Perform. 43, 1073-1083. doi:10.1037/xhp0000385
  123. Blakemore, S.J., Wolpert, D.M., Frith, C.D., 1998. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635-640. doi:10.1038/2870
  124. McDonald, J.J., Teder-Sälejärvi, W.A., Hillyard, S.A., 2000. Involuntary orienting to sound improves visual perception. Nature 407, 906-908. doi:10.1038/35038085
  125. Shams, L., Kamitani, Y., Shimojo, S., 2000. Illusions: What you see is what you hear. Nature 408, 788-788. doi:10.1038/35048669
  126. Yarrow, K., Haggard, P., Heal, R., Brown, P., Rothwell, J.C., 2001. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414, 302-305. doi:10.1038/35104551
  127. Botvinick, M., Cohen, J., 1998. Rubber hands "feel" touch that eyes see. Nature 391, 756- 756. doi:10.1038/35784
  128. Wolpert, D.M., Ghahramani, Z., 2000. Computational principles of movement neuroscience. Nat. Neurosci. 3, 1212-1217. doi:10.1038/81497
  129. Körding, K.P., Wolpert, D.M., 2004. Bayesian integration in sensorimotor learning. Nature 427, 244-247. doi:10.1038/nature02169
  130. Summerfield, C., Trittschuh, E.H., Monti, J.M., Mesulam, M.M., Egner, T., 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 11, 1004-6. doi:10.1038/nn.2163
  131. Fujisaki, W., Shimojo, S., Kashino, M., Nishida, S., 2004. Recalibration of audiovisual simultaneity. Nat. Neurosci. 7, 773-778. doi:10.1038/nn1268
  132. Morrone, M.C., Ross, J., Burr, D., 2005. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950-954. doi:10.1038/nn1488
  133. Christensen, M., Lundbye-Jensen, J., Geertsen, S., Petersen, T., Paulson, O., Nielsen, J., 2007a. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat. Neurosci. 10, 417-9. doi:10.1038/nn1873
  134. Matsumoto, M., Matsumoto, K., Abe, H., Tanaka, K., 2007. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10, 647-656. doi:10.1038/nn1890
  135. Haggard, P., Clark, S., Kalogeras, J., 2002. Voluntary action and conscious awareness. Nat. Neurosci. 5, 382-385. doi:10.1038/nn827
  136. Alimardani, M., Nishio, S., Ishiguro, H., 2013. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators. Sci. Rep. 3, 2396. doi:10.1038/srep02396
  137. Wohlschläger, A., Haggard, P., Gesierich, B., Prinz, W., 2003. The perceived onset time of self-and other-generated actions. Psychol. Sci. 14, 586-591. doi:10.1046/j.0956- 7976.2003.psci
  138. Levitin, D.J., MacLean, K., Mathews, M., Chu, L., Jensen, E., 2000. The perception of cross-modal simultaneity (or "the Greenwich Observatory Problem" revisited), in: AIP Conference Proceedings. AIP, pp. 323-329. doi:10.1063/1.1291270
  139. Linares, D., Holcombe, A.O., 2014. Differences in perceptual latency estimated from judgments of temporal order, simultaneity and duration are inconsistent. Iperception. 5, 559-71. doi:10.1068/i0675
  140. Dixon, N.F., Spitz, L., 1980. The detection of auditory visual desynchrony. Perception 9, 719-721. doi:10.1068/p090719
  141. Moseley, G.L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., Spence, C., 2008. Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc. Natl. Acad. Sci. U. S. A. 105, 13169-73. doi:10.1073/pnas.0803768105
  142. Murray, S.O., Kersten, D., Olshausen, B.A., Schrater, P., Woods, D.L., 2002. Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. 99, 15164-15169. doi:10.1073/pnas.192579399
  143. Miall, R.C., Weir, D.J., Wolpert, D.M., Stein, J.F., 1993. Is the Cerebellum a Smith Predictor? J. Mot. Behav. 25, 203-216. doi:10.1080/00222895.1993.9942050
  144. Herwig, A., Prinz, W., Waszak, F., 2007. Two modes of sensorimotor integration in intention-based and stimulus-based actions. Q. J. Exp. Psychol. 60, 1540-1554. doi:10.1080/17470210601119134
  145. Prinz, W., 1997. Perception and Action Planning. Eur. J. Cogn. Psychol. 9, 129-154. doi:10.1080/713752551
  146. Davidson, P.R., Wolpert, D.M., 2005. Widespread access to predictive models in the motor system: a short review. J. Neural Eng. 2, S313-S319. doi:10.1088/1741- 2560/2/3/S11
  147. Sirigu, A., Daprati, E., Pradat-Diehl, P., Franck, N., Jeannerod, M., 1999. Perception of self-generated movement following left parietal lesion. Brain 122, 1867-1874. doi:10.1093/brain/122.10.1867
  148. Ehrsson, H.H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., Lundborg, G., 2008. Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131, 3443-52. doi:10.1093/brain/awn297
  149. Synofzik, M., Thier, P., Leube, D.T., Schlotterbeck, P., Lindner, A., 2010. Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one's actions. Brain 133, 262-271. doi:10.1093/brain/awp291
  150. Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J.B., Gaymard, B., Marsault, C., Agid, Y., Le Bihan, D., 2000. Partially overlapping neural networks for real and imagined hand movements. Cereb. Cortex 10, 1093-1104. doi:10.1093/cercor/10.11.1093
  151. Christensen, M., Lundbye-Jensen, J., Petersen, N., Geertsen, S., Paulson, O., Nielsen, J., 2007b. Watching Your Foot Move--An fMRI Study of Visuomotor Interactions during Foot Movement. Cereb. Cortex 17, 1906-1917. doi:10.1093/cercor/bhl101
  152. Farrer, C., Frey, S.H., Van Horn, J.D., Tunik, E., Turk, D., Inati, S., Grafton, S.T., 2008. The Angular Gyrus Computes Action Awareness Representations. Cereb. Cortex 18, 254-261. doi:10.1093/cercor/bhm050
  153. Blakemore, S.-J., Frith, C.D., Wolpert, D.M., 2001. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12, 1879-1884. REFERENCES doi:10.1097/00001756-200107030-00023
  154. Van der Burg, E., Goodbourn, P.T., 2015. Rapid, generalized adaptation to asynchronous audiovisual speech. Proc. R. Soc. B Biol. Sci. 282, 20143083-20143083. doi:10.1098/rspb.2014.3083
  155. Frith, C.D., Blakemore, S.J., Wolpert, D.M., 2000. Abnormalities in the awareness and control of action. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 1771-88. doi:10.1098/rstb.2000.0734
  156. Beckmann, C.F., Smith, S.M., 2004. Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Trans. Med. Imaging 23, 137-152. doi:10.1109/TMI.2003.822821
  157. Hughes, G., Desantis, A., Waszak, F., 2013. Attenuation of auditory N1 results from identity-specific action-effect prediction. Eur. J. Neurosci. 37, 1152-1158. doi:10.1111/ejn.12120
  158. Arabzadeh, E., Clifford, C.W.G., Harris, J.A., 2008. Vision Merges With Touch in a Purely Tactile Discrimination. Psychol. Sci. 19, 635-641. doi:10.1111/j.1467- 9280.2008.02134.x
  159. Buehner, M.J., Humphreys, G.R., 2009a. Causal binding of actions to their effects. Psychol. Sci. 20, 1221-8. doi:10.1111/j.1467-9280.2009.02435.x
  160. Lange, K., 2011. The reduced N1 to self-generated tones : An effect of temporal REFERENCES predictability ? 48, 1088-1095. doi:10.1111/j.1469-8986.2010.01174.x
  161. Baess, P., Horváth, J., Jacobsen, T., Schröger, E., 2011. Selective suppression of self- initiated sounds in an auditory stream: An ERP study. Psychophysiology 48, 1276- 1283. doi:10.1111/j.1469-8986.2011.01196.x
  162. Mifsud, N.G., Oestreich, L.K.L., Jack, B.N., Ford, J.M., Roach, B.J., Mathalon, D.H., Whitford, T.J., 2016. Self-initiated actions result in suppressed auditory but amplified visual evoked components in healthy participants. Psychophysiology 53, 723-732. doi:10.1111/psyp.12605
  163. Walsh, L.D., Moseley, G.L., Taylor, J.L., Gandevia, S.C., 2011. Proprioceptive signals contribute to the sense of body ownership. J. Physiol. 589, 3009-3021. doi:10.1113/jphysiol.2011.204941
  164. Lau, H.C., Rogers, R.D., Haggard, P., Passingham, R.E., 2004. Attention to Intention. Science (80-. ). 303, 1208-1210. doi:10.1126/science.1090973
  165. Ehrsson, H.H., Spence, C., Passingham, R.E., 2004. That's My Hand! Activity in Premotor Cortex Reflects Feeling of Ownership of a Limb. Science (80-. ). 305, 875-877. doi:10.1126/science.1097011
  166. Botvinick, M., 2004. Probing the neural basis of body ownership. Science 305, 782-3. doi:10.1126/science.1101836
  167. Haggard, P., 2009. The Sources of Human Volition. Science (80-. ). 324, 731-733. doi:10.1126/science.1173827
  168. Andersen, R.A., Buneo, C.A., 2002. Intentional Maps in Posterior Parietal Cortex. Annu. Rev. Neurosci. 25, 189-220. doi:10.1146/annurev.neuro.25.112701.142922
  169. Gold, J.I., Shadlen, M.N., 2007. The Neural Basis of Decision Making. Annu. Rev. Neurosci. 30, 535-574. doi:10.1146/annurev.neuro.29.051605.113038
  170. Benazet, M., Thénault, F., Whittingstall, K., Bernier, P.-M., 2016. Attenuation of visual reafferent signals in the parietal cortex during voluntary movement. J. Neurophysiol. 116, 1831-1839. doi:10.1152/jn.00231.2016
  171. Laurienti, P.J., Burdette, J.H., Wallace, M.T., Yen, Y.-F., Field, A.S., Stein, B.E., 2002. Deactivation of Sensory-Specific Cortex by Cross-Modal Stimuli. J. Cogn. Neurosci. 14, 420-429. doi:10.1162/089892902317361930
  172. Teder-Sälejärvi, W.A., Di Russo, F., McDonald, J.J., Hillyard, S.A., 2005. Effects of spatial congruity on audio-visual multimodal integration. J. Cogn. Neurosci. 17, 1396-409. doi:10.1162/0898929054985383
  173. Ivry, R.B., Keele, S.W., 1989. Timing Functions of The Cerebellum. J. Cogn. Neurosci. 1, 136-152. doi:10.1162/jocn.1989.1.2.136
  174. Stein, B.E., London, N., Wilkinson, L.K., Price, D.D., 1996. Enhancement of Perceived Visual Intensity by Auditory Stimuli: A Psychophysical Analysis. J. Cogn. Neurosci. 8, 497-506. doi:10.1162/jocn.1996.8.6.497
  175. Aliu, S.O., Houde, J.F., Nagarajan, S.S., 2009. Motor-induced Suppression of the Auditory Cortex. J. Cogn. Neurosci. 21, 791-802. doi:10.1162/jocn.2009.21055
  176. Kühn, S., Keizer, A.W., Rombouts, S.A.R.B., Hommel, B., 2011. The Functional and Neural Mechanism of Action Preparation: Roles of EBA and FFA in Voluntary Action Control. J. Cogn. Neurosci. 23, 214-220. doi:10.1162/jocn.2010.21418
  177. Knolle, F., Schröger, E., Baess, P., Kotz, S.A., 2012. The Cerebellum Generates Motor-to- Auditory Predictions: ERP Lesion Evidence. J. Cogn. Neurosci. 24, 698-706. REFERENCES doi:10.1162/jocn_a_00167
  178. Timm, J., SanMiguel, I., Keil, J., Schröger, E., Schönwiesner, M., 2014. Motor Intention Determines Sensory Attenuation of Brain Responses to Self-initiated Sounds. J. Cogn. Neurosci. 26, 1481-1489. doi:10.1162/jocn_a_00552
  179. Alais, D., Newell, F., Mamassian, P., 2010. Multisensory Processing in Review: from Physiology to Behaviour. Seeing Perceiving 23, 3-38. doi:10.1163/187847510X488603
  180. Fründ, I., Haenel, N.V., Wichmann, F.A., 2011. Inference for psychometric functions in the presence of nonstationary behavior. J. Vis. 11, 16-16. doi:10.1167/11.6.16
  181. Noel, J.-P., Lukowska, M., Wallace, M., Serino, A., 2016. Multisensory simultaneity judgment and proximity to the body. J. Vis. 16, 21. doi:10.1167/16.3.21
  182. Shergill, S.S., Samson, G., Bays, P.M., Frith, C.D., Wolpert, D.M., 2005. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384-2386. doi:10.1176/appi.ajp.162.12.2384
  183. Cardoso-Leite, P., Mamassian, P., Schutz-Bosbach, S., Waszak, F., 2010. A New Look at Sensory Attenuation: Action-Effect Anticipation Affects Sensitivity, Not Response Bias. Psychol. Sci. 21, 1740-1745. doi:10.1177/0956797610389187
  184. Buehner, M.J., 2012. Understanding the past, predicting the future: causation, not intentional action, is the root of temporal binding. Psychol. Sci. 23, 1490-7. doi:10.1177/0956797612444612
  185. Macaluso, E., 2006. Multisensory Processing in Sensory-Specific Cortical Areas. Neurosci. 12, 327-338. doi:10.1177/1073858406287908
  186. Arikan, B.E., van Kemenade, B.M., Harris, L.R., Straube, B., Kircher, T. (2017). Voluntary and involuntary movements widen the window of subjective simultaneity. Iperception 8(4), doi:10.1177/2041669517719297.
  187. Kingstone, A., Smilek, D., Eastwood, J.D., 2008. Cognitive Ethology: A new approach for studying human cognition. Br. J. Psychol. 99, 317-340. doi:10.1348/000712607X251243
  188. Haggard, P., Newman, C., Magno, E., 1999. On the perceived time of voluntary actions. Br. J. Psychol. 90, 291-303. doi:10.1348/000712699161413
  189. Bays, P.M., Flanagan, J.R., Wolpert, D.M., 2006. Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biol. 4, 281-284. doi:10.1371/journal.pbio.0040028
  190. Miall, R.C., Christensen, L.O.D., Cain, O., Stanley, J., 2007. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 5, 2733-2744. doi:10.1371/journal.pbio.0050316
  191. Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., Ghazanfar, A.A., 2009. The Natural Statistics of Audiovisual Speech. PLoS Comput. Biol. 5, e1000436. doi:10.1371/journal.pcbi.1000436
  192. Voss, M., Ingram, J.N., Wolpert, D.M., Haggard, P., 2008. Mere expectation to move causes attenuation of sensory signals. PLoS One 3, 2-6. doi:10.1371/journal.pone.0002866
  193. Desantis, A., Weiss, C., Sch??tz-Bosbach, S., Waszak, F., 2012. Believing and perceiving: Authorship belief modulates sensory attenuation. PLoS One 7, 3-7. doi:10.1371/journal.pone.0037959
  194. Reznik, D., Henkin, Y., Levy, O., Mukamel, R., 2015. Perceived loudness of self- generated sounds is differentially modified by expected sound intensity. PLoS One 10, 4-9. doi:10.1371/journal.pone.0127651
  195. David, N., Skoruppa, S., Gulberti, A., Schultz, J., Engel, A.K., 2016. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality. PLoS One 11, e0161156. doi:10.1371/journal.pone.0161156
  196. Straube, B., van Kemenade, B.M., Arikan, B.E., Fiehler, K., Leube, D.T., Harris, L.R., Kircher, T., 2017. Predicting the Multisensory Consequences of One's Own Action: BOLD Suppression in Auditory and Visual Cortices. PLoS One 12, e0169131. REFERENCES doi:10.1371/journal.pone.0169131
  197. Brozzoli, C., Gentile, G., Petkova, V.I., Ehrsson, H.H., 2011. fMRI Adaptation Reveals a Cortical Mechanism for the Coding of Space Near the Hand. J. Neurosci. 31, 9023- 9031. doi:10.1523/JNEUROSCI.1172-11.2011
  198. Van der Burg, E., Alais, D., Cass, J., 2013. Rapid Recalibration to Audiovisual Asynchrony. J. Neurosci. 33, 14633-14637. doi:10.1523/JNEUROSCI.1182-13.2013
  199. Brozzoli, C., Gentile, G., Ehrsson, H.H., 2012. That's Near My Hand! Parietal and Premotor Coding of Hand-Centered Space Contributes to Localization and Self- Attribution of the Hand. J. Neurosci. 32, 14573-14582. doi:10.1523/JNEUROSCI.2660-12.2012
  200. Christensen, A., Giese, M.A., Sultan, F., Mueller, O.M., Goericke, S.L., Ilg, W., Timmann, D., 2014. An Intact Action-Perception Coupling Depends on the Integrity of the Cerebellum. J. Neurosci. 34, 6707-6716. doi:10.1523/JNEUROSCI.3276-13.2014
  201. Alink, A., Schwiedrzik, C.M., Kohler, A., Singer, W., Muckli, L., 2010. Stimulus Predictability Reduces Responses in Primary Visual Cortex. J. Neurosci. 30, 2960- 2966. doi:10.1523/JNEUROSCI.3730-10.2010
  202. den Ouden, H.E.M., Daunizeau, J., Roiser, J., Friston, K.J., Stephan, K.E., 2010. Striatal prediction error modulates cortical coupling. J. Neurosci. 30, 3210-9. doi:10.1523/JNEUROSCI.4458-09.2010
  203. Blakemore, S.J., Wolpert, D., Frith, C., 2000. Why can't you tickle yourself? Neuroreport 11, 11-16. doi:10.1586/14737175.7.10.1337
  204. Huynh, H., Feldt, L.S., 1976. Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split-Plot Designs. J. Educ. Behav. Stat. 1, 69-82. doi:10.3102/10769986001001069
  205. Ackerley, R., Hassan, E., Curran, A., Wessberg, J., Olausson, H., McGlone, F., 2012. An fMRI study on cortical responses during active self-touch and passive touch from others. Front. Behav. Neurosci. 6, 51. doi:10.3389/fnbeh.2012.00051
  206. Kalckert, A., Ehrsson, H.H., 2012. Moving a Rubber Hand that Feels Like Your Own: A Dissociation of Ownership and Agency. Front. Hum. Neurosci. 6, 40. doi:10.3389/fnhum.2012.00040
  207. Johansson, B.B., 2012. Multisensory Stimulation in Stroke Rehabilitation. Front. Hum. Neurosci. 6, 60. doi:10.3389/fnhum.2012.00060
  208. Roussel, C., Hughes, G., Waszak, F., 2014. Action prediction modulates both neurophysiological and psychophysical indices of sensory attenuation. Front. Hum. Neurosci. 8, 115. doi:10.3389/fnhum.2014.00115
  209. Zwosta, K., Ruge, H., Wolfensteller, U., 2015. Neural mechanisms of goal-directed behavior: outcome-based response selection is associated with increased functional coupling of the angular gyrus. Front. Hum. Neurosci. 9, 180. doi:10.3389/fnhum.2015.00180
  210. Romei, V., De Haas, B., Mok, R.M., Driver, J., 2011. Auditory Stimulus Timing Influences Perceived duration of Co-Occurring Visual Stimuli. Front. Psychol. 2, 215. doi:10.3389/fpsyg.2011.00215
  211. Walter, A.M., Rieger, M., 2012. Similar Mechanisms of Movement Control in Target-and Effect-Directed Actions toward Spatial Goals? Front. Psychol. 3, 539. doi:10.3389/fpsyg.2012.00539
  212. Rohde, M., Ernst, M.O., 2013. To lead and to lag-forward and backward recalibration of perceived visuo-motor simultaneity. Front. Psychol. 3, 1-8. doi:10.3389/fpsyg.2012.00599
  213. Moore, J.W., 2016. What is the sense of agency and why does it matter. Front. Psychol. 0. doi:10.3389/fpsyg.2016.01272
  214. Krieghoff, V., Brass, M., Prinz, W., Waszak, F., 2009. Dissociating what and when of intentional actions. Front. Hum. Neurosci. 3, 3. doi:10.3389/neuro.09.003.2009
  215. Diederich, A., Colonius, H., 2004. Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept. Psychophys. 66, 1388-1404. doi:10.3758/BF03195006
  216. Colavita, F.B., 1974. Human sensory dominance. Percept. Psychophys. 16, 409-412. doi:10.3758/BF03203962
  217. Klink, P.C., Montijn, J.S., van Wezel, R.J.A., 2011. Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock rates. Atten. Percept. Psychophys. 73, 219-36. doi:10.3758/s13414-010-0010-9
  218. Ortega, L., Guzman-Martinez, E., Grabowecky, M., Suzuki, S., 2014. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability. Attention, Perception, Psychophys. 76, 1485-1502. doi:10.3758/s13414-014-0663-x
  219. Chambon, V., Haggard, P., 2013. Premotor or Ideomotor: How Does the Experience of Action Come About?, in: Action Science. The MIT Press, pp. 358-380. doi:10.7551/mitpress/9780262018555.003.0014
  220. Noë , A., 2004. Action in perception. MIT Press.
  221. Horváth, J., Maess, B., Baess, P., Tóth, A., 2012. Action-Sound Coincidences Suppress Evoked Responses of the Human Auditory Cortex in EEG and MEG. J. Cogn.
  222. Zeki, S., Watson, J.D., Lueck, C.J., Friston, K.J., Kennard, C., Frackowiak, R.S., 1991. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641-9.
  223. Hume, D., 1748. An Enquiry Concerning Human Understanding, The Clarendon Edition of the Works of David Hume. P.F. Collier & Son.
  224. Wolpert, D.M., Ghahramani, Z., Jordan, M.I., 1995. An internal model for sensorimotor integration. Science 269, 1880-2.
  225. Lovelace, C.T., Stein, B.E., Wallace, M.T., 2003. A n irrelevant light enhances auditory detection in humans : a psychophysical analysis of multisensory integration in stimulus detection 17, 447-453.
  226. Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., Cohen, J.D., 1998. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747-9.
  227. Zampini, M., Guest, S., Shore, D.I., Spence, C., 2005b. Audio-visual simultaneity judgments. Percept. Psychophys. 67, 531-44.
  228. Morein-Zamir, S., Soto-Faraco, S., Kingstone, A., 2003. Auditory capture of vision: examining temporal ventriloquism. Brain Res. Cogn. Brain Res. 17, 154-63.
  229. Repp, B.H., Penel, A., 2002. Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J. Exp.
  230. Giard, M.H., Peronnet, F., 1999. Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J. Cogn. REFERENCES Neurosci. 11, 473-90.
  231. Buehner, M.J., Humphreys, G.R., 2009b. Causal Binding of Actions to Their Effects 20, 1221-1228.
  232. Yarrow, K. (Submitted). Collecting and interpreting judgments about perceived REFERENCES simultaneity: A modelfitting tutorial. In Vatakis, A., Balci, F., Correa, A., & Di Luca, M. (eds.). Timing and time perception: Procedures, measures, and applications. Brill: Leiden, The Netherlands.
  233. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., Cohen, J.D., 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624-52.
  234. Vatakis, A., Spence, C., 2007. Crossmodal binding: evaluating the "unity assumption" using audiovisual speech stimuli. Percept. Psychophys. 69, 744- 56.
  235. Laurienti, P.J., Burdette, J.H., Wallace, M.T., Yen, Y., Field, A.S., Stein, B.E., 2000. Deactivation of Sensory-Specific Cortex by Cross-Modal Stimuli 420-429.
  236. Stekelenburg, J.J., Maes, J.P., Van Gool, A.R., Sitskoorn, M., Vroomen, J., 2013. Deficient multisensory integration in schizophrenia: An event-related potential study.
  237. Meredith, M.A., Nemitz, J.W., Stein, B.E., 1987. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J. Neurosci. 7, 3215-29.
  238. Slotnick, S.D., Moo, L.R., Segal, J.B., Hart, J., 2003. Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Brain Res.
  239. Elsner, B., Hommel, B., 2001. Effect anticipation and action control. J. Exp. Psychol. Hum. Percept. Perform. 27, 229-40.
  240. Grèzes, J., Decety, J., 2001. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12, 1-19.
  241. Desantis, A., Haggard, P., 2016a. How actions shape perception: learning action-outcome relations and predicting sensory outcomes promote audio-visual temporal binding 6, 39086.
  242. Graziano, M., Botvinick, M., 2002. How the brain represents the body: insights from neurophysiology and psychology., in: Prinz, W., Hommel, B. (Eds.), Common Mechanisms in Perception and Action: Attention and Performance. pp. 136-157.
  243. Prinz, W., 1987. Ideomotor action, in: Heuer, H., Sanders, A.F. (Eds.), Perspectives on Perception and Action. Erlbaum, pp. 47-76.
  244. Welch, R.B., Warren, D.H., 1980. Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88, 638-67.
  245. Grondin, S., Rousseau, R., 1991. Judging the relative duration of multimodal short empty time intervals. Percept. Psychophys. 49, 245-56.
  246. Fourneret, P., Paillard, J., Lamarre, Y., Cole, J., Jeannerod, M., 2002. Lack of conscious recognition of one's own actions in a haptically deafferented patient. Neuroreport 13, 541-7.
  247. Reznik, D., Henkin, Y., Schadel, N., Mukamel, R., 2014. Lateralized enhancement of auditory cortex activity and increased sensitivity to self-generated sounds. Nat.
  248. Deiber, M.P., Honda, M., Ibañez, V., Sadato, N., Hallett, M., 1999. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J. Neurophysiol. 81, 3065-77.
  249. Macaluso, E., Frith, C.D., Driver, J., 2000. Modulation of human visual cortex by crossmodal spatial attention. Science 289, 1206-8.
  250. Picard, N., Strick, P.L., 1996. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342-53.
  251. Wolpert, D.M., Flanagan, J.R., 2001. Motor prediction. Curr. Biol. 11, R729-32.
  252. Parsons, B.D., Novich, S.D., Eagleman, D.M., 2013. Motor-sensory recalibration modulates perceived simultaneity of cross-modal events at different distances. Front.
  253. Cunnington, R., Iansek, R., Bradshaw, J.L., Phillips, J.G., 1996. Movement-related potentials associated with movement preparation and motor imagery. Exp. brain Res. 111, 429-36.
  254. Wolpert, D.M., Kawato, M., 1998. Multiple Paried Forward and Inverse Models for Motor Control. Neural Networks 11, 1317-1329.
  255. Sperry, R.W., 1950. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482-9.
  256. Meredith, M.A., 2002. On the neuronal basis for multisensory convergence: a brief overview. Brain Res. Cogn. Brain Res. 14, 31-40.
  257. Haggard, P., Eimer, M., 1999. On the relation between brain potentials and the awareness of voluntary movements. Exp. brain Res. 126, 128-33.
  258. Collins, K.L., Guterstam, A., Cronin, J., Olson, J.D., Ehrsson, H.H., Ojemann, J.G., 2017. Ownership of an artificial limb induced by electrical brain stimulation. Proc. Natl.
  259. Graziano, M.S.A., Cooke, D.F., 2006. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44, 2621-35.
  260. Sirigu, A., Daprati, E., Pradat-Diehl, P., Franck, N., Jeannerod, M., 1999. Perception of self-generated movement following left parietal lesion. Brain 1867-74.
  261. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R., 2001. Perspectives and problems in motor learning. Trends Cogn. Sci. 5, 487-494.
  262. Kawashima, R., O'Sullivan, B.T., Roland, P.E., 1995. Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the "mind's eye". Proc. Natl. Acad. Sci. U. S. A. 92, 5969-72.
  263. van Kemenade, B.M., Arikan, B.E., Kircher, T., Straube, B., 2016. Predicting the sensory consequences of one's own action: First evidence for multisensory facilitation.
  264. Imamizu, H., 2010. Prediction of sensorimotor feedback from the efference copy of motor commands: A review of behavioral and functional neuroimaging studies. Jpn.
  265. Weiskrantz, L., Elliott, J., Darlington, C., 1971. Preliminary observations on tickling oneself. Nature 230, 598-9.
  266. Libet, B., Wright, E.W., Gleason, C.A., 1983b. Preparation-or intention-to-act, in relation to pre-event potentials recorded at the vertex. Electroencephalogr. Clin. Neurophysiol. 56, 367-72.
  267. Murray, M.M., Michel, C.M., Grave de Peralta, R., Ortigue, S., Brunet, D., Gonzalez Andino, S., Schnider, A., 2004. Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 21, 125-35.
  268. Von Holst, E., 1950. Relations Between the Central Nervous and the Peripheral Organs* System.
  269. Kunde, W., 2001. Response-effect compatibility in manual choice reaction tasks. J. Exp. Psychol. Hum. Percept. Perform. 27, 387-94.
  270. Blakemore, S.J., Frith, C., 2003. Self-awareness and action. Curr. Opin. Neurobiol. 13, 219-24.
  271. Jenkins, I.H., Jahanshahi, M., Jueptner, M., Passingham, R.E., Brooks, D.J., 2000a. Self- initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123 ( Pt 6, 1216-28.
  272. Jenkins, I.H., Jahanshahi, M., Jueptner, M., Passingham, R.E., Brooks, D.J., 2000b. Self- initiated versus externally triggered movements. II. The effect of movement REFERENCES predictability on regional cerebral blood flow. Brain 123 ( Pt 6), 1216-28.
  273. Schafer, E.W., Marcus, M.M., 1973. Self-stimulation alters human sensory brain responses. Science 181, 175-7.
  274. Greenwald, A.G., 1970. Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol. Rev. 77, 73-99.
  275. Shimojo, S., Shams, L., 2001. Sensory modalities are not separate modalities: plasticity and interactions. Curr. Opin. Neurobiol. 11, 505-9.
  276. Fain, G.L., 2003. Sensory transduction. Sinauer Associates.
  277. Wildgruber, D., Erb, M., Klose, U., Grodd, W., 1997. Sequential activation of supplementary motor area and primary motor cortex during self-paced finger movement in human evaluated by functional MRI. Neurosci. Lett. 227, 161-4.
  278. Vroomen, J., de Gelder, B., 2000. Sound enhances visual perception: cross-modal effects of auditory organization on vision. J. Exp. Psychol. Hum. Percept. Perform. 26, 1583-90.
  279. Harrington, L.K., Peck, C.K., 1998. Spatial disparity affects visual-auditory interactions in human sensorimotor processing. Exp. brain Res. 122, 247-52.
  280. Blakemore, S.J., Frith, C.D., Wolpert, D.M., 1999. Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11, 551-9.
  281. Rorden, C., Brett, M., 2000. Stereotaxic display of brain lesions. Behav. Neurol. 12, 191- 200.
  282. Yarrow, K., Obhi, S.S., 2014. Temporal perception in the context of action, in: V. Arstila & D. Lloyd (Ed.), Subjective Time; The Philosophy, Psychology, and Neuroscience of Temporality. The MIT Press, pp. 455-476.
  283. Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97-113.
  284. Ivry, R.B., Spencer, R.M., Zelaznik, H.N., Diedrichsen, J., 2002. The cerebellum and event timing. Ann. N. Y. Acad. Sci. 978, 302-17.
  285. Kalckert, A., Ehrsson, H.H., 2014. The moving rubber hand illusion revisited: Comparing movements and visuotactile stimulation to induce illusory ownership. Conscious.
  286. Leube, D.T., Knoblich, G., Erb, M., Grodd, W., Bartels, M., Kircher, T.T.J., 2003a. The neural correlates of perceiving one's own movements. Neuroimage 20, 2084-90.
  287. Stein, B.E., 2012. The new handbook of multisensory processes.
  288. James, W., 1950. The principles of psychology. Dover Publications, [New York].
  289. Brainard, D.H., 1997. The Psychophysics Toolbox. Spat. Vis. 10, 433-6.
  290. Ivry, R.B., 1996. The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol. 6, 851-7.
  291. MacDonald, P.A., Paus, T., 2003. The role of parietal cortex in awareness of self- generated movements: a transcranial magnetic stimulation study. Cereb. Cortex 13, 962-7.
  292. Dreher, J.-C., Grafman, J., 2002. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur. J. Neurosci. 16, 1609-19.
  293. Kawabe, T., Roseboom, W., Nishida, S., 2013. The sense of agency is action-effect causality perception based on cross-modal grouping. Proc. R. Soc. London B Biol. Sci. 280.
  294. Rizzolatti, G., Fadiga, L., Fogassi, L., Gallese, V., 1997. The space around us. Science 277, 190-1.
  295. Duhamel, J.R., Colby, C.L., Goldberg, M.E., 1992. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90-2.
  296. Ulrich, R., 1987. Threshold models of temporal-order judgments evaluated by a ternary response task. Percept. Psychophys. 42, 224-39.
  297. Libet, B., Gleason, C.A., Wright, E.W., Pearl, D.K., 1983a. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106 (Pt 3), 623-42.
  298. Weilke, F., Spiegel, S., Boecker, H., von Einsiedel, H.G., Conrad, B., Schwaiger, M., Erhard, P., 2001. Time-resolved fMRI of activation patterns in M1 and SMA during complex voluntary movement. J. Neurophysiol. 85, 1858-63.
  299. Doya, K., 1999. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 12, 961-974.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten