Publikationsserver der Universitätsbibliothek Marburg

Titel:Adsorption Dynamics and Bonding Analysis of Organic Molecules on Silicon(001) Surfaces
Autor:Pecher, Lisa
Weitere Beteiligte: Tonner, Ralf (PD Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0718
URN: urn:nbn:de:hebis:04-z2017-07184
DOI: https://doi.org/10.17192/z2017.0718
DDC: Chemie
Titel (trans.):Adsorptionsdynamik und Bindungsanalyse organischer Moleküle auf Silizium(001)-Oberflächen
Publikationsdatum:2017-12-07
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
S, adsorption, chemical bond, Silicium, reaction dynamics, Chemische Bindung, Alkene, Adsorptionsdynamik, Adsorption, Halbleiter, quantum chemistry, Reaktionsdynamik, bonding analysis, Halbleiter, Dichtefunktionalformalismus, semiconducto, Alkine, adsorption dynamics, Ether, Reaktionsdynamik, Quantenchemie, Adsorption, Quantenchemie, Dichtefunktionalformalismus, Bindungsanalyse, Chemische Bindung, density functional theory

Summary:
In this thesis, the adsorption of ethylene, tetrahydrofuran (THF), cyclooctyne and 5-Ethoxymethyl-5-methylcyclooctyne (EMC) on Si(001) surfaces is studied using computational methods. While ethylene and THF act as model systems that allow to understand how unsaturated carbon-carbon bonds and ether groups interact with these surfaces, cyclooctyne and EMC are potential candidates for the formation of organic/semiconductor interfaces and therefore more application-oriented. The thesis is focusing on two aspects of adsorption: Bonding analysis and adsorption dynamics. In bonding analysis, periodic Energy Decomposition Analysis (pEDA), which allows to understand the formation of chemical bonds betwen molecule and surface, was applied. The reaction dynamics was simulated using two approaches: Statistical thermodynamics, which can be applied if thermodynamic equilibrium is achieved, and explicitly calculating the evolution of the system over time using ab initio molecular dynamics (AIMD). For ethylene, the results show that a dative bond between the carbon-carbon double bond and an empty orbital at a surface atom forms in the weakly bound intermediate state. In contrast to physisorbed intermediates on metal surfaces, this state is not mobile. Additionally, the influence of surface pre-coverage by atoms and molecules on the reactivity of ethylene is investigated in a second study. The study of THF reveals that the adsorption mirrors the acid-catalyzed cleavage of ethers in solution and that the mechanism is equivalent to a concerted nucleophilic substitution. For cyclooctyne, it is explained why the formation of two molecule-surface bonds stabilizes the system far more than the formation of four such bonds. Ring strain and enhanced dispersion interactions due to the size of the molecule lead to additional stabilization in comparison to linear alkynes like acetylene. In contrast to alkenes, cyclooctyne can adsorb either directly into the final state or via a short lived transient state. However, the lifetime of this transient state is so low that isolation at usual experimental conditions is not possible. The conclusive study of EMC shows that the molecule bonds selectively via the strained triple bond and therefore confirms its suitability as a building block for organic/semiconductor interfaces. The ether group does not affect the reactivity and adsorption dynamics of the triple bond and cyclooctyne results can be transferred to this part of the molecule. The reactivity of the ether group is influenced by the sterically demanding residue, however, adsorption of this group is highly unlikely. Overall, the studies in this thesis show that the application of chemical concepts and methods can bring in valuable contributions to the field of surface science. The pEDA in particular allows to describe the bonding between molecule and surface both qualitatively and quantitatively, and therefore enables an understanding of the relative energies between different adsorption structures. Furthermore, the investigation of the dynamics allows to predict how the system evolves on different time scales and which structures form preferably. The approaches presented in this thesis can most likely be transferred to other systems as well (e.g. adsorption on metal surfaces) and allow to deliver new insight into different fields of research in surface science and material science.

Bibliographie / References

  1. Ed. Russell D. JohnsonIII, NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101 Release 17b, 2015,http://cccbdb.nist.gov (accessed:3 0.09.2016).
  2. Si(001) surface by NO gas: Reactive molecular dynamics simulation study. J. Appl. Phys. 2016, 119, 125305.
  3. Angew.C hem. 2008, 120,3 578;d )M.B owker, J. Phys. Condens. Matter 2010, 22,263002.
  4. R. F. W. Bader, Chem. Rev. 1991, 91, 893; b) A. Otero-de-la-Roza, E. R. Johnson, V. Luaña, Comput. Phys. Commun. 2014, 185, 1007; c) J.- H. Lee, N. C. Bristowe, P. D. Bristowe, A. K. Cheetham, Chem. Commun. 2015, 51, 6434.
  5. M. Kohout, Int. J. Quantum Chem. 2004, 97, 651; b) A. I. Baranov, M. Kohout, J. Comput. Chem. 2011, 32, 2064; c) F. R. Wagner, A. I. Baranov, Y. Grin, M. Kohout, Z. Anorg. Allg. Chem. 2013, 639, 2025.
  6. Tuckerman, M. E. Ab initio molecular dynamics: Basic concepts, current trends and novel applications. J. Phys.: Condens. Matter 2002, 14, R1297.
  7. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558.
  8. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal- amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251.
  9. Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236.
  10. Accepted Article published:January 24, 2017
  11. W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional The- ory, Wiley-VCH, Weinheim, 2001.
  12. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image Nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901.
  13. Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chem. Biol. 2006, 1, 644.
  14. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637.
  15. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J.
  16. Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010.
  17. Cho, J.-H.; Kleinman, L. Adsorption kinetics of acetylene and ethylene on Si(001). Phys. Rev. B 2004, 69, 75303.
  18. Árnadóttir, L.; Stuve, E. M.; Jónsson, H. Adsorption of water monomer and clusters on platinum(111) terrace and related steps and kinks: II. Surface diffusion. Surf. Sci. 2012, 606, 233.
  19. A mechanism via a radical intermediate, which can also occur in ether cleavage reactions, could be ruled out due to the high energy of the accepting orbital (see Supporting Information).
  20. Janke, S. M.; Auerbach, D. J.; Wodtke, A. M.; Kandratsenka, A. An accurate full- dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. J. Chem. Phys. 2015, 143, 124708.
  21. Lisa Pecher, Sebastian Schmidt, and Ralf Tonner* Faculty of Chemistry and Material Sciences Center, Philipps-Universität Marburg, Hans- Meerwein-Straße 4, 35032 Marburg, Germany
  22. H.-J. Freund, Angew.C hem.I nt. Ed. Engl. 1997, 36,4 52;
  23. K. Huang, I. R. McNab, J. C. Polanyi, J. Yang, Angew.C hem.I nt. Ed. 2012, 51,9 061;
  24. b) R. A. Wolkow, Annu.R ev.P hys. Chem. 1999, 50,4 13;c )S.F .B ent, Surf. Sci. 2002, 500,879.
  25. Raupach, M.; Tonner, R. A periodic Energy Decomposition Analysis (pEDA) method for the Investigation of Chemical Bonding in Extended Systems. J. Chem. Phys. 2015, 142, 194105.
  26. P. Atkins, J. de Paula, Atkins' Physical Chemistry, 9th Ed., Oxford, New York, 2010.
  27. Augmented Multiscale Atomistic Simulations on Parallel Supercomputers. Int. J. Quantum Chem. 2015, 115, 1129.
  28. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J.
  29. Ghiringhelli, L. M.; Vybiral, J.; Levchenko, S. V.; Draxl, C.; Scheffler, M. Big Data of Materials Science: Critical Role of the Descriptor. Phys. Rev. Lett. 2015, 114, 105503.
  30. Brønsted acids are common reagents for activation as well.
  31. Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Challenges for Density Functional Theory.
  32. Gaberle, J.; Gao, D. Z.; Watkins, M. B.; Shluger, A. L. Characterizing the Entropy Loss on Adsorption of Organic Molecules at Insulating Surfaces. J. Phys. Chem. C 2016, 120, 3913.
  33. Rettner, C. T.; Auerbach, D. J.; Tully, J. C.; Kleyn, A. W. Chemical Dynamics at the
  34. Pecher, J.; Schober, C.; Tonner, R. Chemisorption of a Strained but Flexible Molecule: Cyclooctyne on Si(001). Chem. Eur. J. 2017, 23, 5459.
  35. Münster, N.; Nikodemiak, P.; Koert, U. Chemoselective layer-by-layer approach utilizing click reactions with ethynylcyclooctynes and diazides. Org. Lett. 2016, 18, 4296.
  36. Chemoselective Reactivity of Bifunctional Cyclooctynes on Si(001). J. Phys. Chem. C 2016, 120, 26284.
  37. Verlet, L. Computer "Experiments" on Classical Fluids: I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98.
  38. Cho, J.-H.; Kleinman, L. Contrasting structural and bonding properties of trimethylamine and dimethylamine adsorbed on Si(001). Phys. Rev. B 2003, 68, 245314.
  39. Kim, S. W.; Lee, J. H.; Kim, H. J.; Cho, J. H. Contribution of van der Waals interactions to the adsorption energy of C2H2, C2H4, and C6H6 on Si(100). Chem. Phys. Lett. 2013, 557, 159.
  40. associative desorption from Ni(111): Could subsurface hydrogen play an important role? J.
  41. Hovis, J.S.; Liu, H.; Hamers, R.J. Cycloaddition chemistry and formation of ordered organic monolayers on silicon(001) surfaces. Surf. Sci. 1998, 402-404, 1.
  42. Deformation density D1 2 ,with DE 2 = À88 kJ mol À1 ,representsb ack don- ation from s(SiÀSi)b onds at the surface into the p * orbitalo ft he mole- cule.
  43. Ruiz, V. G.; Liu, W.; Zojer, E.; Scheffler, M.; Tkatchenko, A. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems.
  44. Psofogiannakis, G.; van Duin, A. C. T. Development of a ReaxFF reactive force field for
  45. Cho, J.-H.; Kleinman, L. Dissociative adsorption of vinyl bromide on Si(001): A first- principles study. Phys. Rev. B 2005, 71, 125330.
  46. Nørskov, J. K.; Lang, N. D. Effective-medium theory of chemical binding. Phys. Rev. B 1980, 21, 2131.
  47. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456.
  48. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 1996, 6, 15.
  49. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
  50. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules,V an Nostrand, New York, 1966.
  51. Bylander, D. M.; Kleinman, L. Energy fluctuations induced by the Nosé thermostat. Phys. Rev. B 1992, 46, 13756.
  52. Perdew, J. P.; Burke, K.; Enzerhof, M. Erratum: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396.
  53. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
  54. Gas−Surface Interface. J. Phys. Chem. 1996, 100, 13021.
  55. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
  56. Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401.
  57. Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations
  58. Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465.
  59. Si/Ge/H systems and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces. Surf. Sci. 2016, 646, 253.
  60. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978.
  61. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.
  62. Boyd, D. R. J. Infrared Spectrum of Trideuterosilane and the Structure of the Silane Molecule. J. Chem. Phys. 1955, 23, 922.
  63. In surface science, adsorption energy E ads is commonly defined with in- verse sign convention (E ads = ÀE bond ).
  64. F. Jensen, Introduction to Computational Chemistry, 2nd Ed., Wiley-VCH, Weinheim, 2007.
  65. F. Jensen, Introduction to Computational Chemistry,W iley,N ew York, 2006.
  66. C. Kittel, Introduction to Solid State Physics, 8th Ed., Wiley, Hoboken, 2005.
  67. Ghiringhelli, L. M.; Vybiral, J.; Ahmetcik, E.; Ouyang, R.; Levchenko, S. V.; Draxl, C.; Scheffler, M. Learning physical descriptors for materials science by compressed sensing. New J.
  68. Hestenes, M. R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J.
  69. Sun, Y.; Liu, Y.; Chen, X.; Zhai, Z.; Xu, F.; Liu, Y. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study. Appl. Surf. Sci. 2017, 406, 178.
  70. Liu, W.; Tkatchenko, A.; Scheffler, M. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces. Acc. Chem. Res. 2014, 47, 3369.
  71. Li, Z.; Kermode, J. R.; De Vita, A. Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces. Phys. Rev. Lett. 2015, 114, 96405.
  72. Tonner, R.; Rosenow, P.; Jakob, P. Molecular structure and vibrations of NTCDA monolayers on Ag(111). Phys. Chem. Chem. Phys. 2016, 18, 6316.
  73. Behler, J. Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys. Chem. Chem. Phys. 2011, 13, 17930.
  74. Shenvi, N.; Roy, S.; Tully, J. C. Nonadiabatic dynamics at metal surfaces: Independent- electron surface hopping. J. Chem. Phys. 2009, 130, 174107.
  75. Krüger, B. C.; Bartels, N.; Bartels, C.; Kandratsenka, A.; Tully, J. C.; Wodtke, A. M.; Schäfer, T. NO Vibrational Energy Transfer on a Metal Surface: Still a Challenge to First- Principles Theory. J. Phys. Chem. C 2015, 119, 3268.
  76. Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations;
  77. J. Nocedal, S. J. Wright, Numerical Optimization, Springer, New York, 2013.
  78. pEDA analysis of the acetylene/Si(001) 'on-top' structure has also been published in Ref. [14].T he minorn umerical differences can be attribut- ed to the different computational setup (e.g. smaller cell size).
  79. Ma, Z.; Zaera, F. Organic chemistry on solid surfaces. Surf. Sci. Rep. 2006, 61, 229.
  80. Bent, S. F. Organic functionalization of group IV semiconductor surfaces: Principles, examples, applications, and prospects. Surf. Sci. 2002, 500, 879.
  81. Yoshinobu, J. Physical properties and chemical reactivity of the buckled dimer on Si(100).
  82. F. C. Pigge, Curr. Org. Chem. 2016, 20, 1902. Scheme1.Potential energy profile for a) surface adsorption model adapted from Ref. [1a] and b) for the adsorption of an organic molecule (ethylene) on ac ovalent semiconductor (Si(001))s urface.
  83. Nagao, M.; Umeyama, H.; Mukai, K.; Yamashita, Y.; Yoshinobu, J. Precursor Mediated Cycloaddition Reaction of Ethylene to the Si(100)c(4×2) Surface. J. Am. Chem. Soc. 2004, 126, 9922.
  84. Pecher, J.; Tonner, R. Precursor States of Organic Adsorbates on Semiconductor Surfaces are Chemisorbed and Immobile. ChemPhysChem 2017, 18, 34.
  85. Blöchl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
  86. Pamungkas, M. A.; Kim, B.-H.; Lee, K.-R. Reactive molecular dynamic simulations of early stage of wet oxidation of Si(001) surface. J. Appl. Phys. 2013, 114, 73506.
  87. Pamungkas, M. A.; Joe, M.; Kim, B. H.; Lee, K. R. Reactive molecular dynamics simulation of early stage of dry oxidation of Si(100) surface. J. Appl. Phys. 2011, 110, 53513.
  88. Mette, G.; Dürr, M.; Bartholomäus, R.; Koert, U.; Höfer, U. Real-space adsorption studies of cyclooctyne on Si(001). Chem. Phys. Lett. 2013, 556, 70.
  89. Lorenz, S.; Groß, A.; Scheffler, M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 2004, 395, 210.
  90. Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry. J. Am. Chem. Soc. 2008, 130, 11486.
  91. Bukas, V. J.; Meyer, J.; Alducin, M.; Reuter, K. Ready, Set and no Action: A Static Perspective on Potential Energy Surfaces commonly used in Gas-Surface Dynamics. Z. Phys.
  92. Cao, X.; Hamers, R. J. Silicon surfaces as electron acceptors: Dative bonding of amines with Si(001) and Si(111) surfaces. J. Am. Chem. Soc. 2001, 123, 10988.
  93. Pecher, J.; Mette, G.; Dürr, M.; Tonner, R. Site-Specific Reactivity of Ethylene at Distorted Dangling-Bond Configurations on Si(001). ChemPhysChem 2017, 18, 357.
  94. Kroes, G.-J. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Cu(100). Prog. Surf. Sci. 1999, 60, 1.
  95. Sun, Y.; Ma, X.; Cheng, K.; Wu, B.; Duan, J.; Chen, H.; Bu, L.; Zhang, R.; Hu, X.; Deng, Z. et al. Strained Cyclooctyne as a Molecular Platform for Construction of Multimodal Imaging Probes. Angew. Chem. Int. Ed. 2015, 54, 5981.
  96. Zhang, Q. J.; Fan, X. L.; Lau, W. M.; Liu, Z. F. Sublayer Si atoms as reactive centers in the chemisorption on Si(100): Adsorption of C2H2 and C2H4. Phys. Rev. B 2009, 79, 195303.
  97. The accuracy of the PBE functional was checked by repeating the calculations using the HSE06 hybrid functional, which showed no qualitative difference. More information can be found in the Supporting Information.
  98. G. Frenking, S. Shaik (Eds.) The Chemical Bond: Bonding Across the Periodic Table, Wiley-VCH, Weinheim, 2014.
  99. The Chemical Bond: Fundamental Aspects of Chemical Bonding, Eds.: G. Frenking, S. Shaik, Wiley-VCH, Weinheim, 2014.
  100. Akagi, K.; Yoshinobu, J. The chemistry of simple alkene molecules on Si(100)c(4x2): The mechanism of cycloaddition and their selectivities. Surf. Sci. 2016, 652, 304.
  101. The crystal orbital and its eigenvalue are given at the G point in k space.
  102. The deformation density also includes polarization at the O-Si bond.
  103. Nielsen, U.; Halstead, D.; Holloway, S.; Nørskov, J. K. The dissociative adsorption of hydrogen: Two-, three-, and four-dimensional quantum simulations. J. Chem. Phys. 1990, 93, 2879.
  104. G. te Velde, E. J. Baerends, Phys. Rev.B1991, 44,7 888;b )BAND2016, SCM, Theoretical Chemistry,V rije Universiteit, Amsterdam, The Nether- lands,h ttp://www.scm.com (accessed:30.09.2016).
  105. K. Akagi, S. Ts uneyuki, Y. Yamashita, K. Hamaguchi, J. Yoshinobu, The Ninth InternationalC onference on the Formation of Semiconductor Inter- faces 2004, 234,162 -167.
  106. Jónsson, H. Theoretical Studies of Atomic-Scale Processes Relevant to Crystal Growth.
  107. Groß, A. Theoretical Surface Science; Springer: Berlin Heidelberg, 2003.
  108. S. Elliott, The Physics and Chemistry of Solids, Wiley, West Sussex, 1998.
  109. Nagao, M.; Mukai, K.; Yamashita, Y.; Yoshinobu, J. The Precursor Mediated Chemisorption of Vinyl Bromide on Si(100)c(4×2). J. Phys. Chem. B 2004, 108, 5703.
  110. The remaining 15% can be attributed to back donation from the surface and polarization.
  111. Choyke, J. T. Yates, Jr., Thin Solid Films 1993, 225,1 96;e )C.H uang, W. Widdra,W .H.W einberg, Surf. Sci. 1994, 315,L 953;f)H.L iu, R. J. Hamers, J. Am. Chem. Soc. 1997, 119,7593 -7594;g)F .Matsui, H. W. Yeom, A. Im- anishi, K. Isawa, I. Matsuda, T. Ohta, Surf. Sci. 1998, 401,L 413;h )F .
  112. Kosloff, R. Time-Dependent Quantum-Mechanical Methods for Molecular Dynamics. J. Phys. Chem. 1988, 92, 2087.
  113. Naitabdi, A.; Bournel, F.; Gallet, J. J.; Markovits, A.; Rochet, F.; Borensztein, Y.; Silly, M. G.; Sirotti, F. Triethylamine on Si(001)-(2×1) at 300 K: Molecular adsorption and site configurations leading to dissociation. J. Phys. Chem. C 2012, 116, 16473.
  114. TURBOMOLE V6.3.1, ad evelopment of University of Karlsruhea nd For- schungszentrum KarlsruheG mbH, 1989 -2007,T URBOMOLEG mbH, since 2007;a vailable from http://www.turbomole.com, 2010.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten