Publikationsserver der Universitätsbibliothek Marburg

Titel:Correlating Structural and Optical Properties in Aromatic Semiconductor Crystals and Heterostructures
Autor:Rinn, Andre
Weitere Beteiligte: Chatterjee, Sangam (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0676
URN: urn:nbn:de:hebis:04-z2017-06766
DOI: https://doi.org/10.17192/z2017.0676
DDC: Physik
Titel (trans.):Der Zusammenhang zwischen strukturellen und optischen Eigenschaften in aromatischen Halbleiterkristallen und Heterostrukturen
Publikationsdatum:2017-11-01
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Aromaten, Organischer Halbleiter, Ladungstransfer Exzitonen, Charge-Transfer Excitons, Grenzflächen, Aromatic Molecules, Interfaces, Festkörperphysik,Spektroskopie

Summary:
Perylene microcrystals have been grown by continuous resublimation of a perylene layer originally grown by organic molecular beam deposition. Under the correct growth condition, virtually defect free single-crystalline platelets of both the Alpha-and Beta-phase with molecular smooth surfaces were achievable. Both polymorphs are easily distinguishable by their characteristic rhombic and rectangular shape and their distinct emission spectra, appearing orange and green to the eye for the Alpha-and Beta-phase, respectively. Their diameter of up to 100 µm allows for high-resolution polarizationresolved optical spectroscopy, directly linking the crystalline axis to the anisotropic optical response of each crystalline phase. To this end, we addressed the in plane crystalline b and c-axis of both species in absorption spectroscopy at cryogenic temperature. We obtained information on the excitonic system with unprecedented accuracy. This enables a comprehensive comparison of the experimental spectra and state of the art ab initio calculations. Indications for a polaritonic stopband where found by analyzing the differences between both spectra. The calculated electronic bandstructure and excitonic wavefunction could be correlated to the measured emission lifetimes of both perylene polymorphs: Strong dispersion and spatial delocalization translate to shorter PL lifetimes. The more localized wavefunction of the a-phase could be linked to the strong intermolecular interaction of the perylene dimers that make up the crystal. PEN-PFP heterostructures with different molecular alignment at the heterointerface where grown exploiting templating effects mediated by the substrat and the previously deposited layer: one intermixed 1:1 molecular blend and two layered heterostructures with edge-on and face-on molecular alignment at the interface. Comparing the optical properties of those samples with the corresponding unitary films revealed the interface specific response of the system. We could show that the interface does not influence the emission spectra and dynamics of the constituent layers not directly at the interface. However, completely new interface related emission signal where observed at lower energies, displaying long lifetimes when compared to the free excitonic emission observed from the unitary materials. We assign those emission lines to CT-excitons. They form with great efficiency in the intermixed heterostructure, completely replacing any signal of the unitary molecules at low temperatures. In the heterostacks, a strong increase of CT-emission was observable for face-on stacking on the interface, which is linked to an increase in intermolecular interaction across the interafce due to p-p stacking between PEN and PFP molecules. Previous studies, especially on the frontier orbitals of the constituting molecules at the interface, reveals significant deviation from the commonly discussed discription of CT-excitons. To gain additional insight into the formation pathways of those CT-states, PLE spectra of the heterostructures where compared with their respective absorption spectra. The differences observed in both spectra reveal absorption channels which do not relax into the CT-subsystem. While all excitons excited in the PEN layer and directly into the CTstate contribute to CT-emission, any excitation into the PFP layer does not. This further raises questions about the exact nature of the CT state, as a simple relaxation scheme based on the frontier orbitals of all involved states does not hold up to the experiments.

Bibliographie / References

  1. V. Bulović, P.E. Burrows, S.R. Forrest, J.A. Cronin, and M.E. Thompson. Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) I. Spectroscopic properties of thin films and solutions. Chemical Physics, 210(1-2):1-12, 1996.
  2. C. Joblin, F. Salama, and L. Allamandola. Absorption and emission spectroscopy of perylene (C20H12) isolated in Ne, Ar, and N2 matrices. The Journal of Chemical Physics, 110(15):7287-7297, 1999.
  3. Ming L. Tang, Anna D. Reichardt, Nobuyuki Miyaki, Randall M. Stoltenberg, and Zhenan Bao. Ambipolar, High Performance, Acene-Based Organic Thin Film Transistors. Journal of the American Chemical Society, 130(19):6064- 6065, 2008.
  4. John Kerr. A new relation between electricity and light: Dielectrified media birefringent. Philosophical Magazine Series 4, 50(333):337-348, 1875.
  5. Chandrasekhara V. Raman and Kariamanickam S. Krishnan. A New Type of Secondary Radiation. Nature, 121(3048):501-502, 1928.
  6. M.I. Alonso, M. Garriga, N. Karl, J.O. Ossó, and F. Schreiber. Anisotropic optical properties of single crystalline PTCDA studied by spectroscopic ellipsometry. Organic Electronics, 3(1):23-31, 2002.
  7. Yuze Lin, Yifan Wang, Jiayu Wang, Jianhui Hou, Yongfang Li, Daoben Zhu, and Xiaowei Zhan. A star-shaped perylene diimide electron acceptor for high- performance organic solar cells. Advanced Materials, 26(30):5137-5142, 2014.
  8. Marianus Czerny. Über eine neue Form der Rubenssehen Reststrahlenmethode. Zeitschrift für Physik, 16(1):321-331, 1923.
  9. Xiaofeng Tan and Farid Salama. Cavity ring-down spectroscopy and theoretical calculations of the S1(B3u1)✘S0(Ag1) transition of jet-cooled perylene. The Journal of Chemical Physics, 122(8):084318, 2005.
  10. Feng Gao and Olle Inganäs. Charge generation in polymer-fullerene bulk- heterojunction solar cells. Phys. Chem. Chem. Phys., 16(38):20291-20304, 2014.
  11. D. Beljonne, H. Yamagata, J. L. Brédas, F C Spano, and Y Olivier. Charge- Transfer Excitations Steer the Davydov Splitting and Mediate Singlet Exciton Fission in Pentacene. Physical Review Letters, 110(22):226402, 2013.
  12. Sang-Il Choi, Joshua Jortner, Stuart A. Rice, and Robert Silbey. Charge-Transfer Exciton States in Aromatic Molecular Crystals. The Journal of Chemical Physics, 41(11):3294-3306, 1964.
  13. Steffen Duhm, Ingo Salzmann, Georg Heimel, Martin Oehzelt, Anja Haase, Robert L Johnson, Jürgen P. Rabe, and Norbert Koch. Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds. Applied Physics Letters, 94(3):033304, 2009.
  14. Tobias Breuer and Gregor Witte. Controlling nanostructures by Templated templates: Inheriting molecular orientation in binary heterostructures. ACS Applied Materials and Interfaces, 7(36):20485-20492, 2015.
  15. Linus Gisslén and Reinhard Scholz. Crystallochromy of perylene pigments: Interference between Frenkel excitons and charge-transfer states. Physical Review B, 80(11):115309, 2009.
  16. William Shockley and Hans J. Queisser. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32(3):510-519, 1961.
  17. Marco Olguin, Rajendra R. Zope, and Tunna Baruah. Effect of geometrical orientation on the charge-transfer energetics of supramolecular (tetraphenyl)- porphyrin/C60 dyads. Journal of Chemical Physics, 138(7):074306, 2013.
  18. Charles Kittel. Einführung in die Festkörperphysik. Oldenbourg Wis- senschaftsverlag, München, 14 edition, 2006.
  19. Atsushi Watanabe, Masashi Tanaka, and Jiro Tanaka. Electrical and Optical Properties of a Stable Synthetic Metallic Polymer: Polypyrrole. Bulletin of the Chemical Society of Japan, 54(8):2278-2281, 1981.
  20. Mark S. Hybertsen and Steven G. Louie. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B, 34(8):5390-5413, 1986.
  21. Michael Rohlfing and Steven G. Louie. Electron-hole excitations and optical spectra from first principles. Physical Review B, 62(8):4927-4944, 2000.
  22. Giovanni Onida, Lucia Reining, and Angel Rubio. Electronic excitations: Density-functional versus many-body Green's-function approaches. Reviews of Modern Physics, 74(2):601-659, 2002.
  23. Sean M. Ryno, Stephen R. Lee, John S. Sears, Chad Risko, and Jean-Luc Brédas. Electronic Polarization Effects upon Charge Injection in Oligoacene Molecular Crystals: Description via a Polarizable Force Field. The Journal of Physical Chemistry C, 117(27):13853-13860, 2013.
  24. Xiaoyang Zhu and Antoine Kahn. Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces. MRS Bulletin, 35(06):443-448, 2010.
  25. C. R. Fincher, M. Ozaki, M. Tanaka, D. Peebles, L. Lauchlan, A. J. Heeger, and A. G. MacDiarmid. Electronic structure of polyacetylene: Optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x. Physical Review B, 20(4):1589-1602, 1979.
  26. Y. Kolic, R. Gauthier, M.A.Garcia Perez, A. Sibai, J.C. Dupuy, P. Pinard, R. M'Ghaieth, and H. Maaref. Electron powder ribbon polycrystalline silicon plates used for porous layer fabrication. Thin Solid Films, 255(1-2):159-162, 1995.
  27. Slawomir Braun, William R. Salaneck, and Mats Fahlman. Energy-Level Align- ment at Organic/Metal and Organic/Organic Interfaces. Advanced Materials, 21(14-15):1450-1472, 2009.
  28. Slawomir Braun, William R Salaneck, and Mats Fahlman. Energy-Level Align- ment at Organic/Metal and Organic/Organic Interfaces. Advanced Materials, 21(14-15):1450-1472, 2009.
  29. Theo Siegrist, Christian Kloc, Jan H. Schön, Bertram Batlogg, Robert C. Haddon, Steffen Berg, and Gordon A. Thomas. Enhanced Physical Properties in a Pentacene Polymorph. Angewandte Chemie International Edition, 40(9):1732- 1736, 2001.
  30. Tobias Breuer and Gregor Witte. Epitaxial growth of perfluoropentacene films with predefined molecular orientation: A route for single-crystal optical studies. Physical Review B, 83(15):155428, 2011.
  31. Johannes Frisch, Peter Puschnig, Claudia Draxl, Gregor Witte, Klaus Müllen, and Norbert Koch. Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene- Coated Quartz. ACS Nano, 6(12):10874-10883, 2012.
  32. J. B. Birks and A. A. Kazzaz. Excimer Fluorescence. XII. The Pyrene Crystal Excimer Interaction Potential. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 304(1478):291-301, 1968.
  33. M. Knupfer. Exciton binding energies in organic semiconductors. Applied Physics A, 77(5):623-626, 2003.
  34. Pierluigi Cudazzo, Francesco Sottile, Angel Rubio, and Matteo Gatti. Exci- ton dispersion in molecular solids. Journal of Physics: Condensed Matter, 27(11):113204, 2015.
  35. T. Aoki-Matsumoto, K. Furata, T. Yamada, H. Moriya, K. Mizuno, and A. H. Matsui. Excitonic Photoluminescence in Pentacene Single Crystal. International Journal of Modern Physics B, 15(28n30):3753-3756, 2001.
  36. Rui He, X. Chi, Aron Pinczuk, D. V. Lang, and A. P. Ramirez. Extrinsic optical recombination in pentacene single crystals: Evidence of gap states. Applied Physics Letters, 87(21):211117, 2005.
  37. NKT Photonics. FemtoWHITE 800 Supercontinuum Device Datasheet.
  38. Aj J Read, Rj J Needs, Kj J Nash, L T Canham, P D J Calcott, and A Qteish. First-principles calculations of the electronic properties of silicon quantum wires. Physical Review Letters, 69(8):1232-1235, 1992.
  39. Mark S. Hybertsen and Steven G. Louie. First-Principles Theory of Quasipar- ticles: Calculation of Band Gaps in Semiconductors and Insulators. Physical Review Letters, 55(13):1418-1421, 1985.
  40. F. Wudl. From organic metals to superconductors: managing conduction electrons in organic solids. Accounts of Chemical Research, 17(6):227-232, 1984.
  41. Jan Götzen, Daniel Käfer, Christof Wöll, and Gregor Witte. Growth and structure of pentacene films on graphite: Weak adhesion as a key for epitaxial film growth. Physical Review B, 81(8):085440, 2010.
  42. J. Burgos, M Pope, Ch. E. Swenberg, and R. R. Alfano. Heterofission in pentacene-doped tetracene single crystals. Physica Status Solidi (b), 83(1):249- 256, 1977.
  43. Highschool Diploma at the 'Herderschule Gießen'.
  44. Koen Vandewal. Interfacial Charge Transfer States in Condensed Phase Systems. Annu. Rev. Phys. Chem, 67:113-133, 2016.
  45. S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider. Laser Generation of Excitons and Fluorescence in Anthracene Crystals. The Journal of Chemical Physics, 42(1):330-342, 1965.
  46. N.G. Basov, V.A. Danilychev, Yu.M Popov, and D.D. Khodkevich. Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam. JETP Lett., 12:329-331, 1970.
  47. EPIA. Global Market Outlook for Solar Power / 2016 -2020. Technical report, EPIA, 2016.
  48. Michael Graetzel, René A. J. Janssen, David B. Mitzi, and Edward H. Sargent. Materials interface engineering for solution-processed photovoltaics. Nature, 488(7411):304-312, 2012.
  49. Linjun Wang, Yoann Olivier, Oleg V. Prezhdo, and David Beljonne. Maximizing singlet fission by intermolecular packing. Journal of Physical Chemistry Letters, 5(19):3345-3353, 2014.
  50. J.S. Kilby. Miniaturized electronic circuits, 1964.
  51. Kolja Kolata, Tobias Breuer, Gregor Witte, and Sangam Chatterjee. Molecular packing determines singlet exciton fission in organic semiconductors. ACS Nano, 8(7):7377-7383, 2014.
  52. Jean-Luc Brédas, Joseph E Norton, Jérôme Cornil, and Veaceslav Coropceanu. Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42(11):1691-1699, 2009.
  53. M. Wewer and F. Stienkemeier. Molecular versus excitonic transitions in PTCDA dimers and oligomers studied by helium nanodroplet isolation spectroscopy. Physical Review B, 67(12):125201, 2003.
  54. Hermann Haken and Hans Christoph Wolf. Molekülphysik und Quantenchemie. Springer, New York, 5 edition, 2006.
  55. I. P M Bouchoms, W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk. Mor- phology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates. Synthetic Metals, 104(3):175-178, 1999.
  56. Lars Hedin. New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem. Physical Review, 139(3A):A796- A823, 1965.
  57. Alexey V Akimov and Oleg V Prezhdo. Nonadiabatic Dynamics of Charge Transfer and Singlet Fission at the Pentacene / C 60 Interface. Journal of the American Chemical Society, 136:1599-1608, 2014.
  58. G. G. Stokes. On the Change of Refrangibility of Light. Philosophical Transactions of the Royal Society of London, 142:463-562, 1852.
  59. J. Frenkel. On the Transformation of light into Heat in Solids. I. Physical Review, 37(1):17-44, 1931.
  60. J. Frenkel. On the Transformation of Light into Heat in Solids. II. Physical Review, 37(10):1276-1294, 1931.
  61. Roman Forker, Marco Gruenewald, and Torsten Fritz. Optical differential reflectance spectroscopy on thin molecular films. Annual Reports Section "C" (Physical Chemistry), 108:34, 2012.
  62. K Broch, U Heinemeyer, A Hinderhofer, F Anger, R Scholz, A Gerlach, and F Schreiber. Optical evidence for intermolecular coupling in mixed films of pentacene and perfluoropentacene. Physical Review B -Condensed Matter and Materials Physics, 83(24):245307, 2011.
  63. Alexander Hinderhofer, Ute Heinemeyer, Alexander Gerlach, Stefan Kowarik, Robert M J Jacobs, Youichi Sakamoto, Toshiyasu Suzuki, and Frank Schreiber. Optical properties of pentacene and perfluoropentacene thin films. The Journal of Chemical Physics, 127(19):194705, 2007.
  64. M R Philpott. Optical Reflection Spectroscopy of Organic Solids. Annual Review of Physical Chemistry, 31(1):97-129, 1980.
  65. Youichi Sakamoto, Toshiyasu Suzuki, Masafumi Kobayashi, Yuan Gao, Yasushi Fukai, Youji Inoue, Fumio Sato, and Shizuo Tokito. Perfluoropentacene: High- Performance p-n Junctions and Complementary Circuits with Pentacene. Journal of the American Chemical Society, 126:8138-8140, 2004.
  66. 01/2014-06/2017 PhD student and scientist at the 'Philipps-Universität Marburg' in the group of Prof. Dr. Sangam Chatterjee.
  67. F Anger, J. O. Oss, U Heinemeyer, K Broch, R Scholz, A Gerlach, and F. Schreiber. Photoluminescence spectroscopy of pure pentacene, perfluoropen- tacene, and mixed thin films. Journal of Chemical Physics, 136(5):054701, 2012.
  68. Wolfgang Brütting and Chihaya Adachi. Physics of Organic Semiconductors. John Wiley & Sons, New York, 2 edition, 2012.
  69. Alexey Kavokin. Polaritons: The rise of the bosonic laser. Nature Photonics, 7(8):591-592, 2013.
  70. André Pick, Michael Klues, Andre Rinn, Klaus Harms, Sangam Chatterjee, and Gregor Witte. Polymorph-Selective Preparation and Structural Characterization of Perylene Single Crystals. Crystal Growth & Design, 15(11):5495-5504, 2015.
  71. Hartmut Haug and Stephan W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing, Singapore, 1 edition, 2004.
  72. R.R. Pennelly and C.J. Eckhardt. Quasi-metallic reflection spectra of TCNQ single crystals. Chemical Physics, 12(1):89-105, 1976.
  73. B. STEVENS and E. HUTTON. Radiative Life-time of the Pyrene Dimer and the Possible Role of Excited Dimers in Energy Transfer Processes. Nature, 186(4730):1045-1046, 1960.
  74. Millicent B Smith and Josef Michl. Recent Advances in Singlet Fission. Annual Review of Physical Chemistry, 64(1):361-386, 2013.
  75. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A):A1133-A1138, 1965.
  76. Claus Klingshirn. Semiconductor Optics. Springer, 3 edition, 2007.
  77. Robin M. Hochstrasser. Spectral Effects of Strong Exciton Coupling in the Lowest Electronic Transition of Perylene. The Journal of Chemical Physics, 40(9):2559, 1964.
  78. Stefan Kowarik, Alexander Gerlach, Alexander Hinderhofer, Silvia Milita, Francesco Borgatti, Federico Zontone, Toshiyasu Suzuki, Fabio Biscarini, and Frank Schreiber. Structure, morphology, and growth dynamics of perfluoro- pentacene thin films. physica status solidi (RRL) -Rapid Research Letters, 2(3):120-122, 2008.
  79. 10/2008-12/2013 Student at the 'Philipps-Universität Marburg' in physics. 08/2011 Bachelor Degree under Prof. Dr. Macillo Kira. Title of the thesis: Excitonic effects in Microcavities.
  80. B. Hönerlage, R. Lévy, J.B. Grun, C. Klingshirn, and K. Bohnert. The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Physics Reports, 124(3):161-253, 1985.
  81. H. Auweter, D. Ramer, B. Kunze, and H.C. Wolf. The dynamics of excimer formation in perylene crystals. Chemical Physics Letters, 85(3):325-329, 1982.
  82. Myeong H. Lee, Eitan Geva, and Barry D. Dunietz. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System. Journal of Physical Chemistry A, 120(19):2970-2975, 2016.
  83. M Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi. The exciton model in molecular spectroscopy. Pure and Applied Chemistry, 11(3-4):371-392, 1965.
  84. Xiuhui Zhang, Qian-Shu Li, Yaoming Xie, and Henry F. Schaefer. The lowest triplet electronic states of polyacenes and perfluoropolyacenes. Molecular Physics, 105(19-22):2743-2752, 2007.
  85. F. Grein and S. D. Peyerimhoff. Theoretical studies on excited states of Ne 2 . II. Potential curves for states dissociating to Ne+Ne*(3 s ) with semiempirical spin-orbit interaction, and comparison with spectroscopic results. The Journal of Chemical Physics, 87(8):4684-4692, 1987.
  86. Michael R. Philpott. Theory of Molecular Polaritons. Application to the Reflec- tion Spectra of Anthracene, 1,5-Bis(dimethylamino)pentamethinium Perchlorate, and Some Other Cationic Dye Crystals. The Journal of Chemical Physics, 54(5):2120-2129, 1971.
  87. Kiyokazu Fuke, Koji Kaya, Takashi Kajiwara, and Saburo Nagakura. The polarized reflection and absorption spectra of perylene crystals in monomeric and dimeric forms. Journal of Molecular Spectroscopy, 63(1):98-107, 1976.
  88. Tobias Breuer and Gregor Witte. Thermally activated intermixture in pentacene- perfluoropentacene heterostructures. Journal of Chemical Physics, 138:114901, 2013.
  89. R. T. Williams and K. S. Song. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 51(7):679-716, 1990.
  90. A. S. Davydov. The Theory of Molecular Excitons. Soviet Physics Uspekhi, 7(2):145-178, 1964.
  91. B. Walker, H. Port, and H.C. Wolf. The two-step excimer formation in perylene crystals. Chemical Physics, 92(2-3):177-185, 1985.
  92. Alexey Chernikov. Time-Resolved Photoluminescence Spectroscopy of Semicon- ductors for Optical Applications Beyond the Visible Spectral Range. Phd thesis, Philipss Universität Marburg, 2011.
  93. Mark Botoshansky, Frank H. Herbstein, and Moshe Kapon. Towards a Complete Description of a Polymorphic Crystal: The Example of Perylene. Helvetica Chimica Acta, 86(4):1113-1128, 2003.
  94. Yan-Ju Luo, Zhi-Yun Lu, and Yan Huang. Triplet fusion delayed fluorescence materials for OLEDs. Chinese Chemical Letters, 27(8):1223-1230, 2016.
  95. Spectra Physics. Tsunami-Mode Locked Ti:sapphire Laser Manual, 2002.
  96. Ingo Salzmann, Steffen Duhm, Georg Heimel, Martin Oehzelt, Rolf Kniprath, Robert L Johnson, Jürgen P. Rabe, and Norbert Koch. Tuning the Ionization Energy of Organic Semiconductor Films: The Role of Intramolecular Polar Bonds. Journal of the American Chemical Society, 130(39):12870-12871, 2008.
  97. Chien Jung Chiang, Alpay Kimyonok, Marc K Etherington, Gareth C. Griffiths, Vygintas Jankus, Figen Turksoy, and Andy P Monkman. Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: The key role of triplet fusion. Advanced Functional Materials, 23(6):739-746, 2013.
  98. GfK. Umsatz mit Smartphones weltweit in den Jahren 2013 bis 2016 (in Milliarden US-Dollar). Technical report, GfK, 2017.
  99. Thomas J. Kosic, Claire L. Schosser, and Dana D. Dlott. Vibrational spectroscopy of solid state molecular dimers. Chemical Physics Letters, 96(1):57-64, 1983.
  100. M.H. Hennessy, Z.G. Soos, R.A. Pascal, and A. Girlando. Vibronic structure of PTCDA stacks: the exciton-phonon-charge-transfer dimer. Chemical Physics, 245(1-3):199-212, 1999.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten