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SUMMARY 

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders characterized 

by persistent deficits in social communication and interaction across multiple contexts, and 

restricted, repetitive patterns of behavior; frequently comorbid with intellectual disability (ID). 

Several studies highlight immense contribution of genetic factors to disease etiology. 

Particularly, the SHANK family of postsynaptic proteins has emerged as promising candidates, 

considering that mutations in SHANK1, SHANK2, and SHANK3 genes have repeatedly been 

reported in individuals with ASD. Animal models provide excellent translational tools to 

discover disease pathogenesis underlying behavioral and neurobiological abnormalities. This 

dissertation aimed at understanding these mechanisms by using the Shank1 knockout mouse 

model for ASD, with an in-depth and longitudinal focus on each diagnostic symptom. 

Specifically, ASD-like phenotypes were investigated throughout development and across 

different social contexts. While social behavior was only moderately affected in mice lacking 

SHANK1 (Study I), evidence for communication deficits and repetitive behavior throughout 

development and/or across different social contexts were demonstrated in these animals (Study 

II&III). In conjunction with ASD – ID comorbidity, deletion of Shank1 resulted in severe 

cognitive impairments (Study I). Highlighting the pivotal role of the hippocampus in this 

mechanism, elevated levels of learning-associated brain-derived neurotrophic factor were found 

in the hippocampi of Shank1 mutants. This increase in protein expression was paralleled by 

alterations in epigenetic regulation (Study I). Overall, results of the studies presented here 

indicate that SHANK1 is involved in ASD-relevant deficits across species. These findings further 

extend the knowledge on social communication and interaction, repetitive behaviors, and 

cognitive phenotypes displayed by the Shank1 mouse model for ASD in an age- and sex-

dependent manner, underscoring the importance of social context in ASD research.  
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ZUSAMMENFASSUNG 
*

Autismus-Spektrum- Störungen (ASS) gehören zu einer Gruppe von Entwicklungsstörungen 

des Nervensystems. Diese Störungen zeichnen sich durch anhaltende Abweichungen der sozialen 

Kommunikation und Interaktion in verschiedenen Kontexten und durch eingeschränkte, repetitive 

Verhaltensmustern aus. Häufig tritt eine Komorbidität mit mentalen Retardierungen auf. Viele 

Studien konnten eine genetische Ursache für die Entstehung dieser Krankheit verantwortlich 

machen. Besonders Mutationen einer Familie postsynaptischer Proteine, den SHANKs, haben 

sich dabei als wahrscheinliche Grundlage dieser genetischen Ursache herausgestellt, da 

verschiedene SHANK-Mutationen gehäuft in ASS-Patienten auftreten. Tiermodelle bieten eine 

effektive Möglichkeit, die genetischen Ursachen, die der Entstehung dieser Krankheit zugrunde 

liegen mit Verhaltensauffälligkeiten zu korrelieren. In dieser Dissertation wurde die Rolle von 

SHANK1 in der Entstehung von ASS-assoziierten Symptomen in unterschiedlichen sozialen 

Kontexten während der Entwicklung in einem Shank1 knockout Mausmodell untersucht. 

Während ein Shank1 knockout auf das murine Sozialverhalten nur einen mäßigen Einfluss hat 

(Studie I), entwickelten diese Mutanten in verschiedenen sozialen Kontexten 

Kommunikationsdefizite und repetitives Verhalten (Studie II&III). Darüber hinaus deutet Studie I 

darauf hin, dass SHANK1 eine Rolle bei der Komorbidität von ASS und der mentalen 

Retardierung spielt, da ein Shank1 Knockout zu kognitiven Beeinträchtigungen führte. Diese 

kognitive Beeinträchtigung korrelierte mit einer erhöhten Expression von mit Lernen 

assoziiertem BDNF im Hippocampus, was die herausragende Rolle des Hippocampus in diesem 

Zusammenhang unterstreicht. Die erhöhte BDNF Expression ging weiterhin mit epigenetischen 

Veränderungen einher (Studie I). Zusammengefasst deuten diese Resultate auf eine Beteiligung 

einer Shank1 Mutation bei der Entstehung ASS-assoziierter Defizite in der Maus hin. Diese 

Ergebnisse tragen zum Verständnis der Rolle von SHANK1 bei der alters- und 

geschlechtsabhängigen Entstehung von Abweichungen der sozialen Kommunikation und 

Interaktion, repetitivem Verhalten, und kognitiven Defiziten bei und unterstreichen dadurch die 

Bedeutung des sozialen Kontexts bei der Erforschung von ASS.  

*
My sincerest gratitude goes to Philipp Gobrecht for his extensive help in this translation.
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1 INTRODUCTION 

 

1.1 Autism Spectrum Disorder 

 

In 1911, the Swiss psychiatrist Eugen Bleuler was first to introduce the term “autism” (from 

the Greek word autós, meaning “self”), to describe one of the symptoms of schizophrenia, 

saying: 

“The most severe schizophrenics […] live in a world of their own. […] they limit contact with 

the outside world as much as possible. This detachment from reality with the relative and 

absolute predominance of the inner life, we term autism." (Bleuler, 1911)
†
 

Bleuler’s introduction to the concept of autism was later redefined by two pioneers; child 

psychiatrist Leo Kanner (1943), and pediatrician Hans Asperger (1944), which opened the doors 

to the research of autism today. In his very first report on several children “whose condition 

differs so markedly and uniquely from anything reported so far”, Kanner observed, albeit with 

certain individual variations, a number of common characteristics shared by these children who 

had been prospectively examined by him. Among these characteristics, he defined some as 

inability to relate themselves, extreme autistic aloneness, some acquiring ability to speak at a 

later age, with monotonously repetitious behavior and anxiously obsessive desire for the 

maintenance of sameness (Kanner, 1943). Similarly, Asperger described “particularly interesting 

and highly recognizable” type of children in his report. Despite wide individual differences, the 

common characteristics he observed also included difficulties of social integration and in 

learning simple practical skills, however sometimes high level of original thought and 

experience and ability to express themselves in a linguistically original form (Asperger, 1944; 

Asperger and Frith (Trans), 1991)
 ‡

. Although both reports have the common denominator on the 

behavioral phenotype and a neuropathological origin reasoned by the early onset, Asperger was 

                                                 
†
 Translated from the original quote by Eugen Bleuler (1911): „Die schwerste Schizophrenen […] leben in einer 

Welt für sich; […] sie beschränken den Kontakt mit der Außenwelt so weit als möglich. Diese Loslösung von der 

Wirklichkeit zusammen mit dem relativen und absoluten Überwiegen des Binnenlebens nennen wir Autismus.“ 
 
‡
 Translation by Uta Frith (1991) summarizes Hans Asperger’s description of symptoms and omits the discursive 

introduction and discussion of then current typologies. 
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the first to speak about a “genetic factor” possibly involved in the etiology of autism (Asperger, 

1944; Sala and Verpelli, 2016).  

Since the first seminal reports, the diagnostic criteria for autism have been reformulated 

several times. Our understanding of autism relies on the research in the past 70 years, which 

evolved exponentially since the mid-1990s (Lai et al., 2014). Today, autism is defined as a broad 

spectrum of neurodevelopmental conditions possessing a complex phenotype, namely Autism 

Spectrum Disorder (ASD). The revised diagnostic criteria for ASD in the fifth edition of 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) are:  

A.  Persistent deficits in social communication and social interaction across multiple contexts 

B.  Restricted, repetitive patterns of behavior, interests or activities 

C.  Symptoms must be present in the early developmental period (but may not become fully 

manifest until social demands exceed limited capacities, or may be masked by learned 

strategies in later life). 

D.  Symptoms cause clinically significant impairment in social, occupational or other important 

areas of current functioning. 

E.  These disturbances are not better explained by intellectual disability (intellectual 

developmental disorder), or global developmental delay. 

The latest revision joins individuals who were previously – based on DSM-IV – diagnosed 

with autistic disorder, Asperger’s disorder, or pervasive developmental disorder not otherwise 

specified, under the diagnosis of ASD (American Psychiatric Association, 2013). The new 

criteria thereby cover a wider range of individuals carrying the key symptoms, emphasizing the 

broad nature of ASD (Lai et al., 2014).  

Already in the first publications by Kanner (1943) and Asperger (1944), there was a clear sex 

bias evident in children carrying autistic features. Current statistics as well indicate that ASD is 

strongly biased towards males, with a ratio of 4:1 (Gillberg et al., 2006; Werling and Geschwind, 

2013), however the explanation for higher male prevalence remains unknown (Baron-Cohen et 

al., 2009, 2011). Presence of a female protective effect has been speculated, such that a 

component of female sex can protect girls from ASD, requiring a greater inherited genetic load 

for them to display autistic behavioral impairments (Robinson et al., 2013). This hypothesis was 

tested by Jacquemont et al. (2014), showing that clinical manifestations of neurodevelopmental 
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disorders, including ASD, require a higher mutational burden for females, supporting the 

protective effect in females. Furthermore, ASD in females, especially those with high-functioning 

ASD, might be under-diagnosed, or diagnosed at a later age, leading to a diagnostic bias. X- and 

Y-chromosome theories and fetal testosterone model, amongst others, are theories that may 

possibly lead to a gender bias, which however need further empirical support (Baron-Cohen et 

al., 2011).  

Recent epidemiological research on ASD points out a prevalence of 0.76% to 2.6% (Lai et al., 

2017), a ratio which has been increasing since the first epidemiological report (Lotter, 1966). 

Although growing risk factors cannot be ruled out, the increased incidence might partially be due 

to many other factors, such as “diagnostic switching” allowing decreased age of diagnosis, as 

well as availability of screening services and improved public awareness (Fombonne, 2009). One 

aspect which is affected by the changes in diagnostic criteria is the growing evidence that, the 

increase in prevalence rates can also be partially accounted by the comorbidity of intellectual 

disability (ID) and ASD. Hence, children initially diagnosed only with ID, could now be falling 

into ASD categories (Matson and Shoemaker, 2009). On the contrary, there is also the 

speculation that due to specific exclusionary criteria in DSM-5, individuals with ID, including 

those with specific genetic etiologies, may be underrepresented in ASD research (Dykens and 

Lense, 2011). Comorbidity of ID and ASD is consistently observed in many studies (Matson and 

Shoemaker, 2009; Matson and Cervantes, 2013). Although earlier statistics (DSM-IV-TR) notes 

a co-occurrence rate of up to 75%, this estimate might no longer be true due to reasons mentioned 

above (Dykens and Lense, 2011). Nevertheless, the current DSM indicates that about 70% of 

individuals with ASD may have one comorbid mental disorder, and 40% may have two or more 

(American Psychiatric Association, 2013). Epilepsy, attention-deficit hyperactivity disorder 

(ADHD), and anxiety, among other psychiatric and medical conditions, are reported to coexist 

with ASD (Amiet et al., 2008; Gillberg, 2010; Mannion and Leader, 2014). Along with the 

aforementioned comorbidity, Rett syndrome, fragile X syndrome (FXS), and tuberous sclerosis 

(TSC) are conditions that are associated with or carry symptoms of ASD (Folstein and Rosen-

Sheidley, 2001; Hagerman et al., 2011; Neul, 2011).  

Environmental exposures have been under exclusive focus as causative, and as contributory 

to increased incidence in ASD. Relationship between advanced parental age and ASD have been 

reported in numerous studies (Reichenberg et al., 2006; Croen et al., 2007; Durkin et al., 2008). 
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A genome-wide sequencing study has shown that fathers transmit a much higher number of 

mutations to their offspring than the mothers, being the dominant factor in determining the 

number of de novo mutations in the child. These mutations transmitted increase at a rate of about 

two mutations per year, implicating the importance of father’s age as a risk factor in diseases, 

such as schizophrenia and ASD (Kong et al., 2012). Prenatal or perinatal infections due to 

exposure to viral or bacterial agents have also been associated with ASD (Yamashita et al., 2003; 

Atladóttir et al., 2010) reflecting the importance of immune involvement (Patterson, 2009, 2011; 

Brown, 2012). Furthermore, prenatal exposure to valproic acid (VPA), a clinically used agent in 

epilepsy and as a mood stabilizer in bipolar disorder treatment, is one other environmental factor 

that contributes to ASD incidence (Christianson et al., 1994; Rasalam et al., 2005; Christensen et 

al., 2013).  

While environmental factors are widely associated with ASD etiology, there is now growing 

evidence that ASD also has a genetic basis (Abrahams and Geschwind, 2008). In fact, most of the 

aforementioned environmental risk factors as well exert their effect on ASD genesis via 

molecular or epigenetic modifications (Grabrucker, 2013; Carbonetto, 2014).  

 

1.1.1 Genetics of ASD 

 

The exact neurobiological causes of ASD remain largely undiscovered; however, several data 

have consistently shown a high genetic contribution to disease etiology. The first and utmost 

evidence came from studies indicating the high concordance rate for ASD in monozygotic twins 

(Folstein and Rutter, 1977; Bailey et al., 1995). In addition, the concordance rates for ASD are 

reported to be higher among monozygotic twins in comparison to dizygotic twins (Bailey et al., 

1995; Lichtenstein et al., 2010). Further epidemiological studies focusing on concordance rates in 

twins and in families provided crucial information about the heritability of ASD, however these 

do not disclose the underlying genetic factors. Whole-genome analyses, as well as research on 

candidate genes performed in the last decade provide us with the relevant information for a better 

understanding of the pathophysiology underlying ASD (Huguet et al., 2016).  
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Human genome is highly diverse, i.e. there is an immense genetic variation among 

individuals and between populations (Cann, 1998). Recent consortium on the Human Genome 

Project, having reconstructed the genomes of 2,504 individuals from 26 populations, reports that 

an individual carries 4.1 million to 5 million genetic variants that differ from the reference human 

genome. These variants are mainly single-nucleotide polymorphisms (/variants) (SNP/SNV), 

short insertions/deletions (indels), and structural variants such as copy-number variants (CNV) 

(Bourgeron, 2015; Auton et al., 2015). These CNV may exert their effect on gene expression 

directly by disrupting genes and altering dosage or indirectly through a position effect or 

unmasking of recessive mutations or functional variants on the remaining allele in the case of a 

deletion (Lamb, 2011). Sebat et al. (2007) tested the hypothesis that de novo CNV are associated 

with ASD. Using comparative genomic hybridization, a method that allows detection of 

variations in DNA copy number of test samples relative to reference samples (Pinkel and 

Albertson, 2005), de novo CNV were shown to be significantly associated with ASD, affecting 

10% of the patients with sporadic (simplex) ASD and 3% of familial (multiplex) cases. This as 

well highlights the higher risk to have a child with ASD in families in which a sibling is affected 

(Jorde et al., 1991; Sandin et al., 2014). One further remark of the study is the difference between 

frequency of de novo variants between simplex and multiplex cases, pointing out the possibility 

that distinct mechanisms may be involved in each (Sebat et al., 2007; Abrahams and Geschwind, 

2008). In the largest and most comprehensive genomic analysis of ASD conducted to date, de 

novo CNV from 2,591 families were analyzed. Overall a strong evidence for association of de 

novo mutations with ASD apart from the risk for ID was found, replicating prior findings on a 

larger scale (Sanders et al., 2015). Other numerous studies published in the past decade (e.g. 

Neale et al., 2012; O’Roak et al., 2012) highlight the importance of de novo mutations in ASD, 

while at the same time underscoring the complexity of the disorder (McClellan and King, 2010).  

One major challenge ASD faces regarding genetic research is the heterogeneity of the 

disease. ASD has a complex genetic architecture in which variants in over hundred genes may 

contribute to its etiology, in contrast to Mendelian disorders, in which a small number of genes 

lead to a phenotype (Sanders, 2015). While in some patients ASD can be caused by a single fully 

penetrant mutation, in another it might be by the accumulation of many low-risk alleles (Huguet 

et al., 2013; Bourgeron, 2015). Large CNV, for example, were found likely to contain multiple 

modest-effect risk genes (Sanders et al., 2015). Furthermore, not all individuals with these 

variants have ASD (incomplete penetrance), where the severity of ASD may vary in those who 
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do (variable expressivity) (Sanders, 2015). Moreover, several risk loci identified are related to 

more than one psychiatric or neurocognitive phenotype, so called pleiotropy (Cook Jr and 

Scherer, 2008).  

Whereas tremendous research on genetics has been made in the field of ASD, epigenetic 

mechanisms are yet to be unveiled. Epigenetics by definition refer to the changes in any process 

that alters gene activity in the absence of a change in DNA sequence, leading to modifications in 

gene expression that are heritable. Several epigenetic modifications have been identified, which 

include methylation, acetylation, phosphorylation, ubiquitylation, and sumolyation. DNA 

methylation, which switches off gene transcription, and histone acetylation leading to 

transcriptional activation fall into most common examples. Epigenetic modifications are naturally 

essential for many organism functions, however can have adverse effects if they occur 

improperly (Weinhold, 2006). A wide variety of diseases are linked to epigenetic processes, 

including neurodevelopmental disorders. For example, involvement of regulatory epigenetic 

mechanisms in developing ASD-like symptoms is profoundly evident in Rett syndrome and FXS 

pathogenesis. Rett syndrome is an X-linked disorder caused by mutations in the gene encoding 

the methyl CpG-binding protein 2 (MeCP2), a protein that is essential for postnatal brain 

development. MeCP2 selectively binds to methylated CpG (cytosine-phosphate-guanine) 

residues and mediates transcriptional repression of methylated constructs. The mutations leading 

to a malfunction of the MeCP2, hence to disease pathogenesis, point out the crucial role of 

epigenetic regulation (Amir et al., 1999). FXS likewise is associated with defects in epigenetic 

control mechanisms. FXS is caused by loss-of-function mutations in FMR1 gene, which leads to 

an anomaly rendering the CGG repeat of the FMR1 gene susceptible to epigenetic modifications 

and silencing (Schanen, 2006; Tabolacci and Chiurazzi, 2013). Further evidence, pointing 

epigenetic factors as causative and linked to ASD are the hotspots subject to imprinting – the 

condition where either of the maternal or the paternal allele is silenced by an epigenetic process. 

Prader Willi syndrome and Angelman syndrome are well-known examples of one such 

mechanism (Schanen, 2006).  

Overall, ASD can be attributed to genetic alterations in 10-15% of the identified cases, with 

the larger fraction of cases still awaiting a causal link (Spooren et al., 2012). The challenge in the 

genetic research lies in making sense of the large number, and diverse nature of the genes 

associated with ASD, such as identifying the convergent molecular pathways (Ebert and 
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Greenberg, 2013). Recent studies have shown that many of the susceptibility genes converge in 

pathways that control synaptic functions (Ebert and Greenberg, 2013; Bourgeron, 2015). The 

research on the molecular basis of ASD is therefore immensely focused on disturbances of 

synaptic homeostasis in recent years. 

 

1.1.2 Synaptic Pathways and ASD 

 

Synapse, the site at which two neurons communicate and allow information transmission 

throughout the brain, is the key component of neurons. This continuous flux of information is 

organized into perception, learning and memory, and appropriate behavioral responses (Kandel, 

2000). Therefore, a proper synaptic communication is crucial for the physiological processes to 

occur in the brain, and perturbations in this circuitry can lead to a variety of psychiatric disorders 

(Lepeta et al., 2016). The chemical synapses are highly specialized neuronal structures, 

comprising presynaptic and postsynaptic compartments, coming into contact through the synaptic 

cleft. Presynaptic bouton consists of neurotransmitter-filled synaptic vesicles, and the active 

zone, i.e. where the neurotransmitter release takes place. Postsynaptic compartment harbors the 

neurotransmitter reception and transduction of the received signal into electrical and biochemical 

changes through the finely tuned machineries. Presynaptic and postsynaptic sites are physically 

held together via the cell adhesion molecules (CAMs). CAMs linked to cytoskeleton not only 

generate stable synapse connection, but also, by conferring a flexible structure, enable plasticity 

in synapse shape and size (Benson and Huntley, 2012). Perhaps the best-characterized CAMs are 

the postsynaptic neuroligins (NLGNs) and their presynaptic binding partners; neurexins 

(NRXNs). Their interaction is likely to affect synaptic transmission, and their dysfunction can 

impair the properties of synapses and disrupt neural networks (Südhof, 2008). 

The signal transduction in the chemical synapse is either excitatory or inhibitory, based on the 

specialization of the receptors either for glutamate or -aminobutyric acid (GABA), respectively. 

In mammalians, excitatory synapses mostly occur on the dendritic spines, and at the tip of the 

dendritic spines lies the morphologically and functionally specialized membrane called the 

postsynaptic density (PSD) (Sheng and Kim, 2011). PSD is highly complex containing hundreds 
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of proteins assembled from cytoskeletal and associated elements, membrane proteins (such as 

receptors, ion channels, and CAMs), signaling enzymes, as well as scaffold, anchoring, and 

adaptor proteins (Ryan and Grant, 2009; Sheng and Kim, 2011). Synapthopathy (or as some 

favor synapsopathy) is a term that has been increasingly used in the recent years, referring to 

disruptions in the synaptic structure and function (Brose et al., 2010). There is now emerging 

evidence that dysregulation of the synaptic activity may be a key component of the molecular 

basis of ASD. The fact that most of the ASD symptoms are observed within the first years of 

development – a period that coincides with the maturation/elimination of excitatory synapses and 

development of inhibitory synapses – points to the hypothesis that ASD might be a result of 

imbalance between excitation and inhibition in the developing brain (Ebert and Greenberg, 

2013).  

Glutamate, excitatory synaptic transmitter in the brain, can bind to ionotropic and 

metabotropic receptors. Three major ionotropic glutamate receptors are AMPA, NMDA, and 

kainate receptors, each of which named after the agonists that activate them, i.e. -amino-3-

hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, and kainate, respectively. 

Ionotropic receptors mediate Na
+
 and K

+ 
flux, leading to membrane depolarization. While AMPA 

receptors are involved in fast excitatory neurotransmission, NMDA receptors, aided by the 

cofactor glycine, conduct signals only if both postsynaptic membrane depolarization and the 

binding of glutamate to the receptor occur, leading to coincidence detection and synaptic 

plasticity. One further exceptional property of the NMDA receptor is that, it controls a channel 

that allows Ca
2+ 

influx in addition to Na
+
 and K

+
. NMDA receptors thereby are able to induce 

further cascades in the postsynapse that are related to calcium-dependent signaling, such as the 

calcium-dependent kinase (CaMK) and Ras–mitogen-activated protein kinase (MAPK) pathways. 

Binding of glutamate to the metabotropic glutamate receptors (mGluR) triggers protein-

synthesis-dependent forms of signaling cascades via activation of secondary messengers (Kandel 

and Siegelbaum, 2000; Ebert and Greenberg, 2013). Glutamate receptors are connected to 

downstream signaling by directly binding the PSD-95 (postsynaptic density protein of 95 kD 

molecular weight, also known as SAP90) family of scaffolding proteins (Kandel and Siegelbaum, 

2000; Sheng and Kim, 2011). PSD-95, along with several other PSD proteins, contains a PDZ 

domain (named after the first three proteins sharing the domain, i.e. PSD-95, disc large tumor 

suppressor (Dlg1) in Drosophila, and zonula occludens (ZO)-1), which allows interaction with 
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other proteins. Direct binding of PDZ domains to NMDA receptors allows PSD-95 to stabilize 

these receptors at the cell surface, and facilitates the NMDA receptor-associated downstream 

signaling cascades. Furthermore, by binding to accessory subunits of AMPA receptors, PSD-95 

recruits AMPA receptors to the synapses, appearing to determine the size and strength of 

excitatory synapses (Kim and Sheng, 2004; Sheng and Kim, 2011).  

The PSD contains several other scaffolding proteins, with SHANK (or ProSAP), SAPAP (or 

GKAP), and HOMER constituting the fundamental members of the scaffold complex. Primarily, 

SHANK interacts with (i) SAPAP via its PDZ domain, which in turn binds to PSD-95, hence 

indirectly to AMPA and NMDA receptors; (ii) HOMER, the protein that interacts with mGluR, 

(iii) NLGN, that holds the pre- and postsynaptic connection through interaction with NRXN, and 

(iv) actin filaments, that are crucial determinants of the excitatory synapse morphology. SHANK 

proteins therefore lie in the “epicenter” of the PSD, having the crucial role of holding and 

crosslinking various receptors and cytoskeletal elements (Naisbitt et al., 1999; Monteiro and 

Feng, 2017). Remarkably, several studies have shown that mutations in genes expressing PSD 

proteins, such as SHANK (Durand et al., 2007; Berkel et al., 2010; Sato et al., 2012) and NLGN 

(Jamain et al., 2003) confer a risk for developing ASD.  

 

1.2 SHANK Family of Proteins 

 

SHANK proteins are the “master” scaffolding proteins of the PSD, connecting 

neurotransmitter receptors and other membrane proteins with downstream signaling cascade and 

actin cytoskeleton. The name is derived from the SH3 (Src homology 3) domain and the multiple 

ankyrin repeats (ANK) they contain, in addition to the other domains that are essential for various 

protein-protein interaction, i.e. PDZ domain, proline-rich region (PRO), and sterile alpha motif 

(SAM) domain (Naisbitt et al., 1999). The N-terminal ANK domain of SHANK probably allows 

interaction with the cytoskeleton through binding to another PSD protein SHARPIN. The PDZ 

domain interacts with SAPAP and the AMPA receptors, while SAPAP can bind to PSD-95 which 

in turn interacts with NMDA receptors. PRO domain of SHANK binds to mGluR-interacting 

HOMER, as well as cortactin proteins, which interact with actin. SAM domain on the other hand 
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is required for the localization at the PSD. Together, this dense scaffold serves as an interface 

between the membrane-bound receptors, CAMs, and actin cytoskeleton (Boeckers, 2006). The 

significant role of SHANK proteins is therefore to tether and organize intermediate scaffolding 

proteins, hence they are crucial for proper synaptic development and transmission (Monteiro and 

Feng, 2017).  

SHANK protein family has three known members: SHANK1, SHANK2, and SHANK3. The 

genes encoding these proteins have previously been cloned under different guises and were 

therefore also known under different names/abbreviations, including Synamon, SSTRIP, and 

ProSAP (Sheng and Kim, 2000). SHANK proteins are strongly expressed in the central nervous 

system, with individual isoforms being expressed at lower levels in the periphery including 

kidney, heart, spleen, liver (Lim et al., 1999), and cochlea (Braude et al., 2015). Alternative 

splicing mechanisms due to presence of alternative promoters and exons give rise to different 

isoforms in each SHANK gene (Lim et al., 1999). SHANK1 gene in humans is located on 

chromosome 19q13.33 spanning 55.1 kb. It contains 23 exons and two alternative promoters 

leading to two isoforms, i.e. SHANK1A and SHANK1B. The long isoform SHANK1A contains all 

ANK, SH3, PDZ, PRO, and SAM domains, whereas SHANK1B, the shorter isoform, only 

consists of PDZ and SAM domains. SHANK2 gene, located on chromosome 11q13.3 spanning 

621.8 kb, contains 25 exons, with three alternative promoters and one alternative stop codon 

which give rise to four isoforms. SHANK3 gene is located on chromosome 22q13.3, spans 55.1 

kb, and contains 24 exons and one alternative stop codon leading to three isoforms (Leblond et 

al., 2014; Guilmatre et al., 2014).  

Much of the information on SHANK expression pattern comes from the studies in rodents. In 

the mouse, Shank genes encoding the SHANK proteins also have alternative promoter regions 

subject to alternative splicing mechanisms, giving rise to several different isoforms (Lim et al., 

1999; Sheng and Kim, 2000). For Shank1, Shank2, and Shank3 the number of different 

transcripts identified to date, that are produced by intragenic promoters or alternative splicing 

exons, count to 2, 3, and 10, respectively (Monteiro and Feng, 2017). In the central nervous 

system, the three genes’ mRNAs are differentially expressed. Shank1 mRNA is highly enriched 

in the cortex, thalamus, amygdala, CA1 and CA3 regions of the hippocampus, dentate gyrus, and 

Purkinje cell layers of the cerebellum. Shank2 mRNA is enriched in the cortex, CA1 and CA3 

regions of the hippocampus, and Purkinje cell layers of the cerebellum. Shank3 mRNA is widely 
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enriched in the striatum, thalamus, CA3 region of the hippocampus, and granule cells of the 

cerebellum (Böckers et al., 2004; Peça et al., 2011). Although all Shank transcripts were detected 

in the neuropil layer of the CA1 region, Shank1 mRNA was found to have the highest dendritic 

expression among three homologues (Epstein et al., 2014). This enrichment in the neuropil, as 

compared to somata, is viewed as evidence for local translation to be an essential source of 

SHANK protein at the synapse during activity-dependent plasticity (Sala et al., 2015). Böckers et 

al. (2004) further showed that Shank1 and Shank2 mRNAs are highly expressed early in postnatal 

brain, whereas Shank3 mRNA expression increases during postnatal brain development.  

 

1.2.1 Shankopathies in ASD 

 

Shankopathies were first demonstrated in neurodevelopmental disorders by studies of Phelan-

McDermid syndrome (PMS) or also known as 22q13.3 deletion syndrome. As implied by the 

name, this syndrome results from the loss of the distal long arm of chromosome 22, the locus 

encoding SHANK3 gene (Wilson et al., 2003). The deletion results in neurological deficits, 

including developmental delay, absent or delayed speech, and moderate to severe intellectual 

impairment. Remarkably, more than 50% of the patients exhibit ASD-like phenotype, hence the 

syndrome can be classified as a syndromic form of ASD (Phelan and McDermid, 2012). This 

finding was the first hint pointing the dysfunction of SHANK at the expense of developing ASD-

like symptoms, and led to a further focus on the family to elucidate the pathogenesis. A meta-

analysis study showed that mutations or disruptions in the SHANK gene family account for ~1% 

of ASD cases (Leblond et al., 2014).  

Apart from the syndromic PMS form of ASD, many further SHANK3 mutations/deletions 

have been identified in patients with ASD since the first description by Durand et al. (2007). 

These mutations/deletions encompassing various regions of the SHANK3 gene were either de 

novo, inherited from an affected or unaffected mother or father, or of unknown origin in some 

cases. Common characteristics of the patients included severe ID, absent or delayed verbal 

speech, impaired social interaction, as well as motor stereotypies, repetitive behaviors and narrow 

interests (Moessner et al., 2007; Gauthier et al., 2009; Boccuto et al., 2012; Leblond et al., 2014), 
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or a schizophrenia phenotype (Gauthier et al., 2010). Mutations in SHANK2 have been linked to 

ASD in a study screening several individuals with ASD, mental retardation, and unaffected 

healthy controls. The study identified de novo CNV in SHANK2 gene in individuals with ASD 

and mental retardation, highlighting the common genes and a clinical overlap between the two 

disorders (Berkel et al., 2010). In parallel Pinto et al. (2010) also implicated mutations in 

SHANK2, along with other genes in patients with ASD, identifying novel pathways to ASD risk.  

The first report on SHANK1 mutations came to light in a study by Sato et al. (2012) assessing 

genetic screening data from 1,158 Canadian and 456 unrelated European individuals with ASD. 

A hemizygous deletion in SHANK1 was identified in a four-generation family, in which male 

carriers but not female carriers were affected by the deletion. The males in the family were 

diagnosed with ASD with higher functioning, whereas the females carrying the deletion 

displayed no ASD-like symptoms but were rather diagnosed with anxiety disorder. In addition, a 

de novo deletion was also detected in an unrelated male individual with ASD with higher 

functioning. Surprisingly, there is relatively little variability among the affected individuals. 

Nonetheless, compelling evidence for a sex bias among the individuals carrying the SHANK1 

deletion was present (Sato et al., 2012). Sato et al. (2012) had postulated that SHANK1 mutations 

might as well be linked to other brain disorders given that SHANK2 and SHANK3 mutations were 

observed also in ID and schizophrenia. In fact, in addition to ASD, mutations in SHANK1 were 

linked to schizophrenia, and to ID in an individual with ASD. In a study screening almost 200 

schizophrenia patients, the T-allele of the promoter variant rs3810280 of SHANK1 gene was 

found to be significantly related to reduced auditory working memory capacity in schizophrenia 

patients and subjects clinically at risk for developing a psychosis (Lennertz et al., 2012). Pointing 

deficits in the synaptic networks, loss-of-function mutations in SHANK1 were consistently found 

in another study screening individuals with schizophrenia or schizoaffective disorder (Fromer et 

al., 2014). Very recently, among a cohort screening over 1000 individuals with ASD, a de novo 

mutation in SHANK1 was identified in a female presented with ID in addition to ASD (Wang et 

al., 2016a).  
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1.3 Animal Models of ASD 

 

The complex and heterogeneous architecture of ASD is a challenging factor in uncovering the 

exact biological mechanisms underlying the autistic behaviors. The immense contribution of 

genetic factors and lack of reliable biomarkers make it tempting to develop animal models of 

ASD for a deeper understanding of the disease pathogenesis. Animal models of neuropsychiatric 

disorders are usually designed with regard to three criteria as proposed by Willner (1984), i.e. (i) 

face validity, (ii) construct validity, and (iii) predictive validity. Face validity refers to the 

resemblance of the model to the symptoms observed in humans. In case of ASD, for example, 

this expects the model to manifest the core symptoms used in diagnostics. Construct validity, on 

the other hand, involves the similarity of the mechanism underlying the disease, e.g. an animal 

carrying the mutation in the same gene as in the humans. Finally, predictive validity tests the 

ability of the model to respond to the treatments that are effective in humans (Willner, 1984; 

Crawley, 2004). In the recent years, there has been further propositions for refining the standards, 

including homological (strain and species basis), pathogenic (ontopathogenic and triggering-

factor resemblance), and mechanistic (identical cognitive and biological mechanisms) validity as 

additional criteria (Belzung and Lemoine, 2011).  

 

1.3.1 Testing ASD in Animal Models 

 

Today, the diagnostic criteria for ASD are still purely behaviorally defined (American 

Psychiatric Association, 2013), and an in-depth genetic screening is a challenging factor due to 

heterogeneity of the disorder. Developing a mouse model that meets the validity criteria plays a 

crucial role to advance our understanding, thus behavioral phenotyping of the mouse model is a 

key component of the current translational approach. There is growing need for sensitive mouse 

behavioral test paradigms with high relevance to each diagnostic symptom category, namely 

deficits in social communication and interaction across multiple contexts, and repetitive patterns 

of behavior (Crawley, 2004). Given the merge in diagnostic symptoms of ASD regarding 

qualitative impairment in social interaction and qualitative impairments in communication, 
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current methods consider assessing these aspects simultaneously (Ricceri et al., 2016). In the 

hope of discovering the deficits and therapeutic targets, several assays have been developed that 

recapitulate the core symptoms and that constitute state-of-the-art behavioral phenotyping today 

(Crawley, 2004, 2007; Silverman et al., 2010; Wöhr and Scattoni, 2013; Pasciuto et al., 2015; 

Ricceri et al., 2016).  

 

Social interaction 

Mice are highly social species and live in group territories. Their intricate nature of social 

organization can therefore be tested observing their social behavior, such as social exploration, 

reciprocal social interaction, and social preference skills, as well as their territorial, parental, and 

sexual behavior. Using assays that can measure disturbances in this complex set of behaviors 

may be analogous to those of individuals with ASD, which corresponds to the diagnostic 

criterion of ASD (American Psychiatric Association, 2013). Several behavioral assays have been 

developed for qualitative assessment of the social behavior that can reveal ASD-like social 

abnormalities in mice (Crawley, 2004; Silverman et al., 2010).  

Reciprocal social interaction can be assessed in specific environments, typically in a standard 

cage, in order to assess the social behavior of two unfamiliar mice, such as by means of sniffing 

(facial/anogenital), following each other, and allogrooming (Terranova and Laviola, 2005). 

Reduced interest in the partner and/or a delay to engage in the first contact can speak for a deficit 

in the task as seen in several ASD models (Panksepp et al., 2007; McFarlane et al., 2008; Peça et 

al., 2011). Dyadic interactions can also be tested by means of social approach test. The three-

chambered box social approach test is the most sensitive test developed so far to assess levels of 

sociability in mice (Moy et al., 2004; Yang et al., 2011). In this task, a subject mouse, while 

freely exploring the apparatus, has the choice between spending time with a social stimulus, i.e. a 

stranger mouse that is constrained in one chamber, or with a non-social stimulus i.e. an object 

located in the other chamber. As mice are social animals, they would normally show interest in a 

stranger and explore the chamber where it is located. Spending equal or more time with the object 

indicates reduced sociability in the subject mouse, which resembles the social deficits in 

individuals with ASD – such as lacking interest in playing with other children, but engaging in 
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non-social activities instead. Same apparatus can also be used for studying social recognition by 

presenting a familiar stimulus mouse used during the social approach task and an unfamiliar 

novel mouse. Typically, mice prefer exploring the novel mouse (Crawley, 2004; Silverman et al., 

2010; Wöhr and Scattoni, 2013). One drawback of the three-chambered social 

approach/recognition task is that it allows measuring the social activity initiated by the subject 

mouse only, thus fewer details of reciprocal interactions are captured. Nonetheless, it is a 

standardized tool for analysis of social behavior, which was able to assess reduced sociability in 

several ASD models of interest (Tabuchi et al., 2007; Peça et al., 2011; Won et al., 2012). Social 

transmission of food preference is another assay with potential face validity to the symptoms of 

ASD (Crawley, 2004; Ryan et al., 2008), that was initially developed as a memory task (Galef 

and Wigmore, 1983). In this paradigm, a subject mouse interacts with a demonstrator cagemate to 

form a food preference based on cues transferred from the demonstrator. The task therefore 

requires a successful social communication between the two mice, which appears to fail in 

models of ASD (McFarlane et al., 2008). 

Communication 

Delayed or absent verbal speech would be a hint depicting communication deficits in humans 

with ASD. However, unlike in humans, testing communication deficits in mice is a challenging 

task, as means of communication in this species is different than that of humans. Mice, instead, 

communicate using olfactory social signals (Arakawa et al., 2008) and emitting ultrasonic 

vocalizations (USV) in a variety of situations (Branchi et al., 1998, 2001; Wöhr and Schwarting, 

2010). Measuring USV is therefore a useful tool to bring about the communication deficits in 

mouse models. In fact, alterations in ultrasonic communication has been reported in several 

mouse models of neurodevelopmental disorders (e.g. Scattoni et al., 2008, 2009; Jamain et al., 

2008; Wöhr et al., 2011).  

Perhaps the most extensively studied branch of mouse USV is the neonatal USV as an 

indicator of the early communicative capability. These USV emitted by the pups were first 

discovered by Zippelius & Schleidt (1956), in a situation where the pups were separated from 

their mothers and littermates. Under this condition, mice were observed to emit calls with 
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frequencies up to 80 kHz. Isolation-induced USV serve a communicative function, such that the 

mothers leave the nest, search and retrieve the pups which were scattered outside the nest. This 

retrieval behavior of the mothers appears to be specific to vocalizing pups, as no such behavior 

was present in response to anesthetized or sacrificed pups. Moreover, by means of playback 

experiments Sewell (1970) showed that mothers respond solely to USV emitted by the pups, but 

not to background noise or artificial pulses of 45 kHz frequency, indicating the significance of 

this type of communication.  

Pup USV typically follow an ontogenic profile, i.e. they peak at around eighth day after birth 

and decrease to zero levels at around 2 weeks of age, following an inverted U-shaped pattern 

(Noirot, 1966; Elwood and Keeling, 1982). They occur at frequencies between 30 kHz and 90 

kHz; commonly named “60-kHz USV” (Wöhr and Schwarting, 2010). Based on their internal 

pitch changes, lengths, and shapes, these USV were classified into distinct categories (Scattoni et 

al., 2008). Albeit the restricted knowledge about the function of such different waveform 

patterns, it was shown that mothers are able to distinguish between different pup USV categories 

based on call features. They prefer certain call characteristics over others, indicating that acoustic 

parameters, such as call duration, peak amplitude, and peak frequency, affect the functional value 

of isolation-induced USV(Sewell, 1970; Smith, 1976; Ehret and Haack, 1982; Wöhr et al., 2008).  

Juvenile mice as well emit USV, during social investigation of a conspecific – so called 

“interaction-induced USV” or “70-kHz USV” (Panksepp et al., 2007; Wöhr and Schwarting, 

2010). These USV appear to be specific to the social interaction per se, as the USV production 

was found to be significantly correlated with the investigation responses of the mice (Panksepp et 

al., 2007). In adulthood, USV production can occur during female-female interactions, or during 

male-female interactions such as in mating behavior (Sewell, 1967). These USV, possibly 

inducing receptive behavior in females, are emitted by the male during mating, as well as if the 

male is exposed to female urine. Hence, they were classified as “female-induced USV”, which 

also appear at 70 kHz range. The main difference between juveniles’ interaction-induced USV 

and adult males’ female-induced USV is the lack of whistle-like character in the latter. Instead, 

they appear rather rough and noisy (Wöhr and Schwarting, 2010). 

In mouse models of ASD, it is predicted that pups with ASD-like behavior will emit fewer 

USV, and/or USV with aberrant call characteristics (e.g. duration, frequency, amplitude, 

classification). From the maternal side, on the other hand, mouse models of ASD may fail to 
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respond to USV of the pups, which can be measured by deficits in retrieving the pups. Likewise, 

deficits in USV emission at later phases of development, which can be measured quantitatively, 

may as well yield insights into ASD-relevant communicative dysfunctions (Crawley, 2004; 

Wöhr, 2014).  

 

Repetitive behaviors 

Certain behavioral assays have been developed to study restricted, repetitive patterns of 

behavior and stereotypies. Stereotypy is defined as behaviors that are apparently purposeless and 

persist for unusually extended periods, such as hand flapping and head rolling. Mice as well can 

exhibit spontaneous motor stereotypies, including jumping, backflips, circling, digging, and 

excessive self-grooming (Lewis et al., 2007), with the notion that housing conditions of the 

laboratory animals per se can as well drive some of the stereotyped behavior (Garner and Mason, 

2002). Lewis et al. (2007) have conceptualized mouse repetitive behaviors in two clusters: one 

being the “lower order” motoric actions with stereotyped movements and/or self-injury, while the 

“higher order” cluster being characterized by more complex behaviors that have a cognitive 

component, such as compulsions, repeated rituals, and insistence on sameness. In mice, repetitive 

behavior can be typically tested by placing a mouse in a cage without bedding to score the time 

spent self-grooming (McFarlane et al., 2008; Moy et al., 2008). Marble burying test could also 

reveal repetitive behavior by means of scoring marbles buried and time spent digging, not 

correlated with anxiety-related behaviors (Thomas et al., 2009). In rodents, burying can occur as 

a defensive action in response to aversive stimuli in rodents, which can be scorpions or insects in 

the wild, and air-puffs or shock electrodes in the laboratory conditions (Pinel and Treit, 1978; 

Thomas et al., 2009). However, objects that are not aversive or dangerous can also elicit burying 

response, such as food-pellets or glass marbles (Broekkamp et al., 1986; Thomas et al., 2009). 

There are a number of mouse models that exhibit intensive self-grooming, and/or elevated 

digging and abnormal marble burying behaviors which can be translated into ASD-like behavior 

in humans (McFarlane et al., 2008; Ryan et al., 2008; Peça et al., 2011). In addition to marble 

burying test, exploratory hole-board task, during which deficits in hole selectivity can reflect 

persistent, repetitive behaviors, has also been suggested as a strategy to model ASD-like 

phenotype in mice (Moy et al., 2008).  
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1.3.2 Shank1 Mouse Model for ASD 

 

Creating Shank mouse models for ASD hold great promise for comprehending the underlying 

biological mechanisms in vivo, given that mutations in all SHANK variants were repeatedly 

reported in individuals with ASD (Moessner et al., 2007; Durand et al., 2007; Gauthier et al., 

2009; Berkel et al., 2010; Pinto et al., 2010; Leblond et al., 2012; Sato et al., 2012). The first 

Shank model, i.e. Shank1 mouse model for ASD, was introduced by Hung et al. (2008), which 

was followed by generation of Shank2 (Schmeisser et al., 2012; Won et al., 2012) and Shank3 

mouse models for ASD (Bozdagi et al., 2010; Peça et al., 2011; Wang et al., 2011, 2016b; 

Schmeisser et al., 2012; Kouser et al., 2013; Lee et al., 2015; Speed et al., 2015; Zhou et al., 

2016; Mei et al., 2016; Jaramillo et al., 2016).  

Shank1 mouse model was generated via disruption of the Shank1 gene through deletion of 

exons 14 and 15 (the region encoding PDZ domain), leading to a complete knockout of all 

SHANK1 proteins. The first phenotyping of the model revealed that Shank1
-/-

 null mutants are 

grossly indistinguishable from their Shank1
+/+ 

wildtype littermates. They showed similar survival 

rates as the littermates. In general, Shank1
-/-

 mice were poor breeders, giving birth only rarely. 

Furthermore, the Shank1
-/-

 mothers did not nurture their pups, possibly causing the litters to 

generally die before weaning. Therefore, all studies in Shank1
-/-

 mice were performed on 

offspring of Shank1
+/- 

heterozygous crosses. Another advantage of heterozygous crossing is that, 

the breeding is expected to yield offspring that represents all three genotypes. The expected 

Mendelian ratio in the litters’ genotypes was present after Shank1
+/-

 breeding (Hung et al., 2008). 

No obvious physical differences were detectable between the genotypes (Silverman et al., 2011). 

At the neuroanatomical level, no gross abnormalities in the size or histological structure of the 

brain were detected. However, synapse morphology was found to be altered in the hippocampus 

of Shank1
-/-

 mice. Specifically, smaller dendritic spines and decreased number of synapses, 

resulting in a weakening of excitatory synaptic transmission was observed in Shank1
-/-

 mice 

(Hung et al., 2008). PSD protein composition was also altered in Shank1
-/-

 mice, with reduced 

levels of SAPAP (GKAP) and HOMER, which are binding partners of SHANK1 protein (Hung 

et al., 2008).  
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Behavioral characterization revealed that Shank1
-/-

 mice show increased anxiety-related 

behavior. Furthermore, they manifest impaired contextual but normal fear memory, with 

enhanced acquisition but impaired retention of spatial learning, possibly resembling the aberrant 

cognitive phenotype present in some ASD cases (Hung et al., 2008; Silverman et al., 2011). 

While social interaction and repetitive behavior was reported to be unchanged (Silverman et al., 

2011), evidence for lifelong communication deficits was provided (Wöhr et al., 2011). 

Specifically, Wöhr et al., (2011) found reduced isolation-induced USV in pups, together with 

early developmental deficits. They further observed a lack of social modulation of adult male 

USV in response to female urine and reduced scent marking behavior in Shank1
-/-

 mice, 

indicating a failure to learn from social experiences. 
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2 OBJECTIVES AND HYPOTHESES 

 

Previous studies on the Shank1 mouse model for ASD provide basic insights into behavioral 

phenotype of the model. In this dissertation, the main objective is to investigate ASD-related 

deficits in Shank1 knockout mice by dissociating between social and non-social components 

throughout development, considering (i) neurodevelopmental nature of the disorder and (ii) this 

occurring through multiple contexts in humans with ASD.  

In previous studies, incongruous results on social behavior and a mixed cognitive phenotype 

were reported in Shank1 mutants (Hung et al., 2008; Silverman et al., 2011). Therefore, socio-

cognitive processes and potential underlying mechanisms remain to be investigated 

systematically in Shank1 mutant mice. For this purpose, in Study I, ASD-related phenotypes with 

particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to 

wildtype and heterozygous littermate controls were assessed across development. At the 

neurobiological level, expression of learning-associated hippocampal brain-derived neurotrophic 

factor (BDNF) and its epigenetic regulation were analyzed to find out whether alterations in 

BDNF potentially contribute to ASD-relevant phenotypes in Shank1 mutants. As for socio-

cognitive aspect, deficits in social behavior and cognitive impairments are expected in Shank1 

mutants, reflected by altered BDNF levels at the neurobiological level.  

Communication deficits were previously reported in Shank1 knockout mice by means of 

reduced isolation-induced USV in pups (Wöhr et al., 2011). However, it is not known whether 

these deficits are due to general impairment or delay in development. Furthermore, effects of 

social context on communication have not been reported yet. To answer these questions, Study II 

has focused on effects of development and social context on communication deficits, assessed by 

isolation-induced pup USV. Mice carrying Shank1 deletion are expected to display a shift in 

USV emission pattern, and prominent differences under social context, in comparison to wildtype 

and heterozygous littermate controls. 

Shank1 mutants, however also wildtype and heterozygous controls, were previously reported 

to engage in elevated levels of self-grooming, indicating the necessity for a further assessment of 

the repetitive behavior in Shank1 mutants. Therefore, in Study III ASD-like repetitive behaviors 
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were assessed. By establishing a test paradigm that allows assessing the effects of social context, 

occurrence of repetitive behaviors were evaluated in a genotype-dependent manner. In that 

aspect, Shank1 mutants, in comparison to their wildtype and heterozygous controls, are expected 

to manifest elevated levels of repetitive behaviors, especially when tested in a social context.  
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3 SUMMARY OF PUBLICATIONS 

 

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with a strong 

genetic component. Today, ASD is characterized by persistent deficits in social communication 

and interaction across multiple contexts, with restricted, repetitive patterns of behavior. 

Mutations in genes encoding SHANK postsynaptic family of proteins, namely SHANK1, 

SHANK2, and SHANK3 genes have been repeatedly reported in individuals with ASD. As the 

current diagnostic tools for ASD depend purely on behavioral phenotyping due to lack of reliable 

biomarkers, there is a growing need for use of animal models to discover the mechanisms 

underlying the behavioral deficits. The aim of the studies presented here was to understand these 

mechanisms throughout development and under different social contexts, by using Shank1 mouse 

model for ASD, with a focus on each diagnostic symptom, namely deficits in social behavior 

(Study I), communication (Study II), and repetitive behavior (Study III), as well as cognitive 

deficits (Study I). Applying state-of-the-art behavioral phenotyping approaches, these studies 

aimed to reveal any possible deficit in Shank1 knockout mouse model that might be analogous to 

humans.  

 

Study I: Aberrant cognitive phenotypes and altered hippocampal BDNF 

expression related to epigenetic modifications in mice lacking the post-synaptic 

scaffolding protein SHANK1: Implications for autism spectrum disorder 

Sungur AÖ, Jochner MCE, Harb H, Kılıç A, Garn H, Schwarting RKW, Wöhr M. in press. 

Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to 

epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: 

Implications for autism spectrum disorder. Hippocampus. 

Summary 

Behavioral studies employing Shank1
-/- 

null mutant mice reported increased anxiety-related 

behavior, impaired contextual fear memory, and enhanced acquisition but impaired retention of 

spatial learning, possibly resembling the aberrant cognitive phenotype present in some ASD 
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cases. Although previous reports led to the interpretation that they do not demonstrate ASD-

relevant social interaction deficits, further validation of this test is demanded. In this study, ASD-

related phenotypes, with particular emphasis on social behavior and cognition, were assessed in 

Shank1
-/- 

mice in comparison to heterozygous and wildtype littermate controls across 

development in both sexes. To assess social approach, social recognition, and object recognition 

in Shank1
-/- 

mice, the three-chambered box assay was used. While social approach behavior was 

evident in all experimental conditions and social recognition was only mildly affected by 

genotype, Shank1
-/- 

mice were severely impaired in object recognition memory. This effect was 

particularly prominent in juveniles, not due to impairments in object discrimination, and 

replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits 

were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the 

hippocampus of Shank1
-/-

 mice; yet BDNF levels did not differ under baseline conditions. 

Therefore epigenetic regulation of hippocampal BDNF expression was further investigated, and 

enrichment of histone H3 acetylation was detected at the Bdnf promoter1 in Shank1
-/-

 mice. As 

increased acetylation of a gene refers to transcriptional activation, this result appears to be 

consistent with increased learning-associated BDNF. Together, these findings indicate that 

Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in 

object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic 

modifications. This result supports the link between ASD and intellectual disability, and suggests 

epigenetic regulation as a potential therapeutic target. 

 

Study II: Early communication deficits in the Shank1 knockout mouse model 

for autism spectrum disorder: Developmental aspects and effects of social 

context  

Sungur AÖ, Schwarting RKW, Wöhr M. 2016. Early communication deficits in the Shank1 

knockout mouse model for autism spectrum disorder: Developmental aspects and effects of 

social context. Autism Research 9:696–709. 

Summary 

SHANK1 deletion was recently found in individuals with ASD. Remarkably, SHANK1 

deletion leads to a relatively little variable expressivity, with affected males manifesting similar 
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communicative dysfunctions at the early stage of development. In this study, communication 

deficits were investigated by means of isolation-induced pup ultrasonic vocalizations (USV) in 

the Shank1 mouse model for ASD. For that purpose, Shank1
-/-

 null mutant, Shank1
+/-

 

heterozygous, and Shank1
+/+

 wildtype littermate controls were compared. The first aim of the 

study was to evaluate the effects of Shank1 deletions on developmental aspects of communication 

in order to see whether ASD-related communication deficits are due to general impairment or 

delay in development. Here it could be shown that Shank1
-/-

 pups vocalized less and displayed a 

delay in the typical inverted U-shaped developmental USV emission pattern with USV rates 

peaking on a later postnatal day as compared to Shank1
+/-

 and Shank1
+/+

 littermate controls, 

resulting in a prominent genotype difference. Furthermore, USV emitted by Shank1
-/-

 pups had 

lower amplitudes, as compared to Shank1
+/+

 controls, possibly leading to Shank1
-/-

 pups being 

less efficient in attracting mothers and inducing maternal care. In a second experiment, effects of 

social context on USV production were sought. When the pups were tested under social context, 

genotype-dependent deficits seen in first experiment were even more prominent, regardless of the 

familiarity of the social odor. As communication by definition serves a social function, 

introducing a social component to the typically nonsocial test environment could help revealing 

communication deficits in mouse models for ASD. Together, results of this study indicate that 

SHANK1 is involved in acoustic communication across species, with genetic alterations in 

SHANK1 resulting in social communication/interaction deficits. 

 

Study III: Repetitive behaviors in the Shank1 knockout mouse model for 

autism spectrum disorder: developmental aspects and effects of social context  

Sungur AÖ, Vörckel KJ, Schwarting RKW, Wöhr M. 2014. Repetitive behaviors in the Shank1 

knockout mouse model for autism spectrum disorder: developmental aspects and effects of 

social context. Journal of Neuroscience Methods 234:92–100. 

Summary 

Restricted, repetitive patterns of behavior, interests or activities constitute the second 

diagnostic criteria of Autism Spectrum Disorder (ASD). Mice as well can show stereotypies, 

which can be evaluated using sensitive behavioral paradigms. Typically, repetitive behavior in 

mouse models for ASD is assessed by measuring self-grooming and/or digging behavior. In this 
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study, repetitive behaviors in Shank1
−/−

 null mutant mice were assessed at juvenile and adult age, 

by comparing Shank1
+/−

 heterozygous, and Shank1
+/+

 wildtype littermate control mice by means 

of a comprehensive and sensitive approach, including the assessment of self-grooming, digging 

behavior, and marble burying. In order to establish a test paradigm that allows assessing the 

effects of social context on the occurrence of repetitive behaviors in a genotype-dependent 

manner, repetitive behaviors were repeatedly tested on three consecutive days under distinct 

social contexts, achieved through presence or absence of social odors. Our analyses showed that 

Shank1
+/−

 and to a lesser extent Shank1
-/-

 displayed slightly elevated levels of self-grooming 

behavior as adults, but not as juveniles, with genotype differences being most prominent under 

social context. Furthermore, marble burying was strongly reduced in adult Shank1
+/−

 and  

Shank1
-/−

 mice across social contexts, as compared to adult Shank1
+/+

 littermate controls. These 

results support the notion that, effects of Shank1 deletion on repetitive behaviors are influenced 

by development and social context, and further in line with a number of studies with other 

genetic Shank models. 
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4 GENERAL DISCUSSION 

 

Since the first mutation described in humans (Durand et al., 2007), SHANK gene family 

became one of the most promising candidate set of genes for ASD (Persico and Bourgeron, 2006; 

Abrahams and Geschwind, 2008; Leblond et al., 2014; Guilmatre et al., 2014), and several Shank 

mouse models were generated in order to investigate the contribution of SHANK genes to ASD. 

Findings from these models, each of which to a certain extent reflect the symptoms observed in 

affected individuals, have shed a light on understanding the fundamental pathology (Yoo et al., 

2014; Wöhr, 2014). Through three studies, this dissertation aimed at investigating ASD-like 

behavioral phenotypes and cognitive functions of Shank1 knockout mouse model, along with a 

comprehensive focus on each category of ASD diagnostic symptom throughout development and 

under different social contexts to establish a translational link across species. To this end, in the 

following sections I will firstly discuss effects of development and social context on core ASD 

deficits in Shank1 knockout mouse model for ASD. Next, I will focus on the most common 

comorbid condition in ASD, namely ID, and expand this in terms of cognitive deficits observed 

in Shank1 knockout mice. To provide insights into ASD pathogenesis, I will then give an 

overview on neurobiological findings, and approach the model from a translational perspective to 

conclude on a reasonable analogy. 

 

4.1 Shank1 Deletion Leads to ASD-Like Behavioral Phenotypes throughout 

Development 

 

Deficits in social communication and interaction, and restricted, repetitive patterns of 

behavior constitute the clinical diagnostic criteria of ASD. In studies I-III, these core symptoms 

were investigated in Shank1 mouse model for ASD throughout development – from neonatal to 

juvenile phase and in adulthood – in order to evaluate persistence of deficits. Evidence for strong 

effects of development on key diagnostic components was found in Shank1 knockout mice. First 

of all, social behavior assessment by means of social approach and social recognition paradigms 

revealed major genotype differences in an age-dependent manner. Specifically, results from 
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Study I indicate that, while Shank1 mutants showed normal social approach behavior at all 

developmental phases, i.e. interacting with a conspecific instead of exploring an object when 

given the choice, social memory was impaired during adulthood but not at juvenile age. In 

addition to social behavior, communication deficits stand out as another core symptom to be 

affected by development. In Study II, developmental aspects of ultrasonic communication in the 

Shank1 mouse model were sought by means of isolation-induced pup USV, and interaction-

induced USV during social approach. Notably, Shank1
-/-

 mutant mice emitted fewer USV when 

isolated from the mother and littermates, depicting a general communication deficit, as 

previously reported (Wöhr et al., 2011). In addition, this general communication deficit was 

clearly reflected by a delay in development, as Shank1
-/-

 mutant pups displayed a shift in their 

call pattern with USV rates peaking later than Shank1
+/-

 heterozygous and Shank1
+/+

 wildtype 

littermates. At juvenile age, however, no deficits in USV emission were observed, with mice of 

all genotypes vocalizing in the chamber where a social stimulus is present. Finally, effects of 

development on restricted, repetitive patterns of behavior were investigated in Study III. While 

self-grooming behavior was not different between genotypes in juvenile mice, this pattern was 

towards an increased repetitive behavior assessed by self-grooming in adult Shank1
-/-

 mutant 

mice. Therefore, through deletion of Shank1, deficits in social behavior, communication, and 

repetitive behavior appear to progress with development, reflecting the neurodevelopmental 

nature of ASD.  

Previous information on social behavior of juvenile and adult Shank1 mice relies on the 

studies by Silverman et al. (2011) and Wöhr et al. (2011). Silverman et al. (2011) assessed social 

behavior by means of reciprocal social interaction in juvenile mice, and social approach task in 

three-chambered box assay during adulthood. While this study indicated normal social behavior 

at both developmental phases, Wöhr et al. (2011) reported deficits in social behavior, where adult 

Shank1
-/-

 male mice failed to learn from social experiences. Likewise, in Study I, strong deficits 

in social recognition were revealed both in adult females and males, despite lack of social novelty 

in Shank1
+/+

 control males. The ability of all Shank1 genotypes to smell, i.e. 

habituate/dishabituate to olfactory stimuli including social odors, also discloses any perturbances 

in this mechanism leading to impairments in social memory (Silverman et al., 2011). Social 

behavior has been assessed also in Shank2 and Shank3 mouse models. While moderate 

abnormalities in social interaction were found in Shank2 mutants (Schmeisser et al., 2012; Won 
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et al., 2012), a stronger phenotype was evident in most of the Shank3 models (Peça et al., 2011; 

Wang et al., 2011; Kouser et al., 2013; Mei et al., 2016; Zhou et al., 2016).  

Social behavior has a complex structure in mice. The ability to learn from social experiences 

and to recognize the conspecifics is a critical factor in maintaining social groups (Barnard et al., 

1991; Berry and Bronson, 1992). Mice have a social memory that can last up to several days even 

after a single encounter with a conspecific. In addition to amygdala, hippocampus appears to be a 

crucial structure for social memory, integrating complex stimuli required for recognition 

processes. Long-term social memory further depends on protein synthesis and signaling cascades 

to be activated (Kogan et al., 2000). Furthermore, in the hippocampus, oxytocin and vasopressin 

seem to be important regulators of social memory (van Wimersma Greidanus and Maigret, 1996), 

and mice lacking oxytocin and vasopressin receptor were shown to manifest social memory 

deficits (Ferguson et al., 2000; Stevenson and Caldwell, 2012). Interestingly, lack of oxytocin 

was found to massively increase neural activation in hippocampus, suggesting an alternative and 

compensatory pathway in the hippocampus for the deficits in amygdalar system in the absence of 

oxytocin (Ferguson et al., 2001). Moreover, in a recent study, oxytocin was shown to boost 

SHANK1 expression levels in vitro, conceivably indicating neuropeptide signaling to influence 

regulation of scaffolding proteins (Zatkova et al., 2017). Given the abundant expression of 

SHANK1 protein in hippocampus, SHANK1 deficiency specifically in this structure may be 

linked to the impairments in social recognition in Study I. However, it remains to be investigated 

(i) how development plays a role, as juvenile mice with Shank1 deletion seem to have an intact 

social memory, and (ii) whether neuropeptide signaling is further involved in this process. As a 

first step in understanding the role of development, in a preliminary study sociability of adult 

Shank1
-/-

 females was tested by means of the resident-intruder test, where the subject mouse 

interacts with/habituated to an unfamiliar mouse for four trials, and then subjected to a novel 

conspecific which allows dishabituation. Increased level of interaction with the novel conspecific 

implies an intact social recognition, which is impaired in some mouse models (Ferguson et al., 

2000). Shank1
-/-

 females demonstrated normal sociability, increasing their interaction time when 

confronted with the novel conspecific. Only significant differences were observed in the first 

trial, when Shank1
+/- 

and Shank1
-/-

 mice were interacting with an unfamiliar mouse for the first 

time, displaying lower levels of social interaction but increasing with repeated trials (unpublished 

data). Overall, sociability seems to be unaffected when assessed by means of resident-intruder 

test. However, test duration in this task, which is undoubtedly lasting shorter than that of social 
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recognition paradigm in three-chambered box assay, might be rather linked to a short-term 

memory; therefore the processes involved might differ between the two tests, leading to 

incongruities. 

As for communication, findings from Study II are in line with previous reports focusing on 

Shank1 model. In the study by Wöhr et al. (2011), communication deficits were evident in mice 

carrying Shank1 deletion, not only as pups, but also as adults, shown by reduced scent-marking 

behavior and inability to adjust USV by males in response to female urine (Wöhr et al., 2011). 

Concluding the findings from Wöhr et al. (2011) and Study II, it appears that Shank1 deletion in 

mice leads to lifelong communication deficits. In terms of comparison to other Shank models, 

however, there are certain discrepancies, but also very similar patterns. For instance, Ey et al. 

(2013) as well tested Shank2
-/-

 mice on a developmental scale and reported altered USV, together 

with a shift in call emission pattern Shank2
-/-

 mice resembling the developmental phenotype in 

Shank1
-/-

 mice. On the other hand, Schmeisser et al. (2012) analyzed USV emission also on a 

developmental scale, and found that only in the female test group, Shank2
-/- 

pups emit more USV 

than Shank2
+/+ 

mice on certain PNDs, with no obvious shift in call rate development. Studies 

employing Shank3 mouse models reported controversial results in terms of ultrasonic 

communication. Owing to various mutations found in individuals with ASD, as well as 

availability of several isoforms of the murine gene, studying SHANK3 mutations in mice has 

been under extensive focus, hence several Shank3 mouse models were created, some of which 

mimic the mutations in humans granting a higher construct validity (Monteiro and Feng, 2017). 

In pups, Jaramillo et al. (2016) reported increased number of USV on PND4 and PND6 in one 

Shank3 knockout model. In another Shank3 model, Wang et al. (2016) showed only altered 

spectral properties of USV on PND4. As of ultrasonic communication in adults, analysis by 

Bozdagi et al. (2010) revealed fewer USV emitted by Shank3 mutant males during interaction 

with females, whereas Wang et al. (2011) on the contrary reported increased number of USV in 

the presence of females assessed in a different Shank3 mouse model. Overall, USV emission 

appears to be mildly affected, and rather controversial if at all, in Shank3 models for ASD, 

depicting a complex behavioral phenotype assessed by ultrasonic communication. However, it is 

worth mentioning that all these models differ in terms of the gene domain and the background 

mouse strain the mutation was targeted at, which might explain the discrepancies in different 

studies.  
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In terms of repetitive behavior, findings from Study III oppose the knowledge on repetitive 

behaviors, where no changes in self-grooming behavior between genotypes were previously 

reported in Shank1 knockout mice (Silverman et al., 2011). Similar results to Study III were 

however evident in Shank3 mouse model, with levels of self-grooming being elevated while 

fewer marbles were buried by Shank3 mutants (Kouser et al., 2013). In line with these results, 

elevated levels of self-grooming were also assessed in Shank2 models (Schmeisser et al., 2012; 

Won et al., 2012). Nonetheless, a developmental approach in terms of repetitive behavior remains 

to be further applied in Shank2 and Shank3 mouse models for ASD.  

 

4.2 Social Context Plays a Crucial Role in Eliciting ASD-Like Behavioral 

Phenotype in Shank1 Knockout Mice  

 

Deficits in ASD are observed across multiple contexts (American Psychiatric Association, 

2013). Given the reports that individuals with ASD face difficulties in communicating effectively 

and appropriately in varying everyday social situations (Landry and Loveland, 1989; Helen et al., 

2011), a multidisciplinary behavioral investigation across different contexts is suggested in 

diagnostic assessment of ASD (Lai et al., 2014). In Study II and III, effects of social context on 

communication and repetitive behavior in Shank1
-/-

 mice were investigated by experimentally 

manipulating the social context. First, in Study II differences in USV production were assessed 

by adding a social component to the test environment, i.e. odor from the home-cage or a stranger 

male. Focusing on a single test day where there were no differences in USV emission in the 

absence of social context, communication deficits in Shank1
-/-

 pups became prominent when a 

social odor was present, regardless of the familiarity of this odor.  

The effects of social context on ASD-like behavioral phenotype were further investigated in 

Study III. With the aim of assessing repetitive behaviors, Shank1 mice were tested on three 

consecutive days by means of marble burying test in distinct social contexts, namely in presence 

or absence of social odors. Evidence for significant differences in self-grooming behavior was 

obtained between adult Shank1
−/−

, Shank1
+/−

, and Shank1
+/+

 mice. Interestingly, genotype 

differences were once again most prominent in the social context. Digging behavior was not 

affected by genotype or social context, whereas marble burying was strongly reduced in adult 
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Shank1
−/−

 and Shank1
+/− 

mice, as compared to Shank1
+/+

 controls. Regardless of the social 

context, Shank1
−/−

 and Shank1
+/−

 mice buried fewer marbles. Together, findings from the two 

studies indicate that ASD-related phenotype might be prominently revealed when mice are tested 

in social contexts. Collectively, these results demonstrate for the first time the critical role of test 

environment in eliciting ASD-like phenotype in a Shank mouse model for ASD. 

 

4.3 Cognitive Deficits in Shank1 Knockout Mice  

 

ID is the most frequently observed comorbid condition in ASD (Matson and Shoemaker, 

2009). Shank1
-/-

 mice were previously shown to have an aberrant cognitive phenotype, with 

better performance in some tasks, but impairments in others (Hung et al., 2008). For instance, 

when Shank1
-/-

 mice were tested in the radial maze task as a measure of reference memory 

performance, they learned faster and more effectively. However, when the long-term stability of 

spatial memory was assessed after 4 weeks, Shank1
-/-

 mice showed a deterioration in their 

performance and were not able to retain the previous enhancement over Shank1
+/+

 mice. The re-

learning ability of Shank1
-/-

 mice was also better than that of Shank1
+/+

 mice, meanwhile when 

using a more intensive test protocol, both genotypes performed similarly. Besides, after 4 week 

break from training, Shank1
-/-

 mice made more reference memory errors compared to Shank1
+/+

 

mice. Moreover, contextual fear learning was impaired in Shank1
-/-

 mice, while cued fear 

conditioning was not affected (Hung et al., 2008). Overall, Shank1
-/-

 mice seem to display a 

mixed cognitive phenotype, hence additional evaluation of their cognitive abilities can help 

unmasking the discrepancies between different tasks. Furthermore, effects of development on 

cognitive phenotype remain to be assessed.  

In Study I, cognitive abilities of juvenile and adult Shank1
-/-

 mice were tested by means of 

novel object recognition task. As juveniles, Shank1
-/-

 mice displayed strong impairments in novel 

object recognition. Object recognition deficits were also evident in adult Shank1
-/-

 males, but not 

in females. Unlike in social recognition paradigm, the auditory cues are missing and olfactory 

cues are rather limited in the novel object recognition task. Thus, a proper object recognition 

relies on visual and tactile cues of the stimuli, and inadequate object exploration might lead to 
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observation of deficits in the object recognition task. However, in a separate experiment in Study 

I, Shank1
-/- 

mice were able to discriminate objects, assessed by object discrimination task. 

Therefore, the impairments in the novel object recognition task are likely due to general object 

memory deficits.  

Novel object recognition task, together with underlying neuronal processes and brain 

structures involved, has been extensively studied in rodents, and emerged as a useful tool to 

assess short-term, intermediate-term, and long-term memory. A network of structures, including 

hippocampus, as well as perirhinal cortex, having direct and indirect connections to 

hippocampus, are viewed as fundamental regulatory structures of a proper memory formation 

(Baxter, 2010). In the hippocampus, specifically in the CA1 region, NMDA receptor activity has 

been implicated as a critical component for nonspatial memory, including novel object 

recognition (Rampon et al., 2000). Furthermore, AMPA receptors play a significant role in 

encoding, retrieval, and consolidation of object memory (Winters and Bussey, 2005). Based on 

findings from in vitro studies, Hung et al. (2008) had postulated that Shank1 deletion might 

perturb hippocampus-dependent memory mechanisms due to changes in spine morphology in 

Shank1
-/- 

mice, given the proposal that small spines are rather dynamic and are preferentially 

involved in acquisition of memory, whereas larger spines are stable and hence constitute the basis 

of long-term memory storage (Kasai et al., 2003). Without changes in the proportion of AMPA 

and NMDA receptors, reduced AMPA receptor-mediated synaptic transmission was also 

demonstrated in Shank1
-/- 

mice (Hung et al., 2008). Therefore, deficits in novel object recognition 

might consequently be originating from altered spine morphology and reduced synaptic 

transmission in Shank1
-/- 

mice.  

 

4.4 Neurobiological Alterations in Shank1 Knockout Mice 

 

In the search for further hints on Shank1-hippocampus-memory link, hippocampal brain-

derived neurotrophic factor (BDNF) protein expression was assessed after novel object 

recognition in Study I. BDNF, being abundantly expressed in the hippocampus, cortex, and 

cerebellum, is involved in modulation of hippocampal long-term potentiation (Korte et al., 1995) 
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and in processes that require synaptic changes, such as learning and memory (Cowansage et al., 

2010). Over the years, several lines of studies suggested that ASD is associated with increased 

levels of BDNF (Nelson et al., 2001; Miyazaki et al., 2004; Connolly et al., 2006; Correia et al., 

2010), in line with the idea that disturbances in activity-dependent signaling pathways are linked 

to etiology of ASD (Ebert and Greenberg, 2013). Results from Study I showed that hippocampal 

BDNF protein expression is higher in Shank1
-/-

 mice, as compared to Shank1
+/+

 littermate 

controls after novel object recognition paradigm, without changes in basal levels. For a deeper 

understanding of the expression mechanism, epigenetic regulation of Bdnf promoter was further 

measured; enrichment of H3 acetylation at the Bdnf promoter1 was detected. While various 

studies have previously investigated BDNF levels in mouse models for ASD (Louhivuori et al., 

2011; Scattoni et al., 2013; Almeida et al., 2014), and object recognition memory was assessed in 

Shank2 (Schmeisser et al., 2012) and Shank3 mutants (Wang et al., 2011; Yang et al., 2012), 

findings from Study I are the first linking BDNF expression and its epigenetic regulation with 

memory deficits in a Shank mouse model for ASD. While the direct interaction mechanism 

between SHANK1 and BDNF is not clearly known, there is evidence for BDNF and postsynaptic 

scaffold crosstalk. For instance, Catarino et al. (2013) showed that in cultured rat hippocampal 

neurons, BDNF promotes acetylation of cortactin, suggesting that BDNF may regulate excitatory 

synapses and PSD-95 dendritic clustering, with cortactin and PSD-95 being direct binding 

partners of SHANK1 (Naisbitt et al., 1999). It is therefore tempting to speculate that BDNF and 

SHANK1 might as well regulate each other in the excitatory synapses, with detailed mechanisms 

demanding further investigation. Catarino et al. (2013) further sought role of epigenetic 

modifications, and demonstrated that hippocampal neurons treated with trichostatin A, a histone 

deacetylase inhibitor promoting acetylation, increases SHANK1 and PSD-95 levels. Therefore, 

this data, together with findings from Study I, adds to the growing evidence that epigenetic 

modifications are critical in the complex Shank-ASD network (Uchino and Waga, 2013; Jiang 

and Ehlers, 2013). 

Primarily focusing on hippocampus, a number of studies have previously provided insights 

into neurobiological mechanisms in Shank1 knockout model for ASD (Hung et al., 2008; Mao et 

al., 2015; Filice et al., 2016). At first glance, Hung et al. (2008) observed a reduction of ~40% in 

pan-SHANK levels in crude membrane extracts and PSD preparations from Shank1
-/-

 mutants, 

presumably not compensated by SHANK2 or SHANK3. However, protein analysis specific for 

SHANK2 and/or SHANK3 levels to conclude on a compensatory mechanism has not been 
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studied in detail yet. In PSDs purified from Shank1
-/- 

brains, protein levels of SAPAP (GKAP) 

and HOMER, two scaffolding proteins that directly bind to SHANK, were found to be reduced. 

In line with these biochemical results, SAPAP puncta density was reduced and HOMER puncta 

was more diffused in SHANK1-deficient hippocampal neurons (Hung et al., 2008), supporting 

the notion that SHANK1 is important for recruiting/stabilizing SAPAP and HOMER at the 

postsynapse (Tu et al., 1999; Sala et al., 2001). Lack of SHANK1 also altered spine morphology, 

where mean spine density showed a decrease in the apical dendrites of CA1 pyramidal neurons of 

hippocampus. SHANK1 deficiency further led to decreased basal synaptic transmission, without 

affecting synaptic plasticity at Schaffer collateral/CA1 synapses, and the number of AMPA and 

NMDA receptors. The decreased basal synaptic transmission is presumably caused by the 

reduced number of functional synapses. These results suggested for the first time in vivo that 

SHANK1 is an important determinant of synaptic strength and morphology at the excitatory 

synapses (Hung et al., 2008).  

Role of SHANK1 has further been investigated in GABAergic, inhibitory, interneurons by 

focusing on Parvalbumin (PV)-expressing (PV+) fast spiking interneurons in Shank1
-/-

 mutants 

(Mao et al., 2015; Filice et al., 2016). Maintaining excitation/inhibition balance during critical 

periods of neurodevelopment is crucial, with abnormalities in this circuit being suggested as a 

pathophysiological hallmark of ASD (Ebert and Greenberg, 2013). PV, acting as a Ca
2+

 buffer, is 

involved in maintaining the excitation/inhibition balance in the brain. Reductions in PV were 

previously associated not only with enhanced inhibition at the neuronal level, but also with 

cognitive deficits including reversal learning impairments in the Morris water maze and T-maze 

tasks (Wöhr et al., 2015). Mao et al. (2015) showed that, in the hippocampus, SHANK1 is highly 

expressed in PV+ inhibitory interneurons, and its lack in hippocampal CA1 PV+ interneurons 

leads to reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. 

Further, Mao et al. (2015) addressed the question whether abnormal PV-mediated inhibitory 

output in Shank1
-/-

 mice results in an excitation/inhibition imbalance, and found that, in Shank1
-/-

 

mice, excitation/inhibition ratio is higher as compared to Shank1
+/+

 controls. Given the previous 

report on reduced excitatory transmission in Shank1
-/-

 hippocampal CA1 pyramidal neurons 

(Hung et al., 2008), the higher excitation/inhibition ratio found by Mao et al. (2015) is thought to 

be originating from an even more severe decrease in inhibitory transmission in Shank1
-/-

 mutants. 

While reduction of PV was reported in various ASD models (Gogolla et al., 2009) it is important 

to unveil whether this reduction results from a general neuron loss or PV downregulation. To this 
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end, Filice et al. (2016) addressed this open question in Shank1 mouse model for ASD, by 

focusing on regions expressing high levels of SHANK1. Consequently, they found that the 

reduction observed in PV+ neurons is due to a reduction in PV mRNA and PV protein levels per 

se, but not due to neuronal cell decrease or loss of PV+ neurons. In contrast, in the striatum, 

where SHANK1 expression levels are lower, no such differences were observed between Shank1
-

/-
 mice and Shank1

+/+
 controls. Overall, findings from these studies indicate that SHANK1 is an 

important determinant of synaptic strength and morphology at the excitatory synapses, involved 

in maintaining the excitation/inhibition balance, and interconnected with Ca
2+

 homeostosome 

controlling synaptic output (Hung et al., 2008; Mao et al., 2015; Filice et al., 2016).  

 

4.5 Phenotype of Shank1 Knockout Mice - Summary 

 

Concluding the findings from the previous reports and the studies presented here, it appears 

clear that deletion of Shank1 gives rise to a mosaic ASD phenotype in mice in relation to 

diagnostic criteria. In brief, social behavior in Shank1 knockout mice is moderately affected. 

Particularly at the early stage of development, communication deficits are evident; with these 

becoming more prominent when switched to a social context. Likewise, repetitive behaviors are 

elevated with the presence of a social odor in the test environment. Cognitive performance is 

impaired throughout development, evidenced by multiple learning experiments. At the 

neurobiological level, various proteins and mechanisms are affected via deletion of Shank1 at the 

synaptic network, in agreement with the idea that ASD pathogenesis extend to epigenetic levels. 

Remarkably, ASD-like phenotype in Shank1 mutants appear in both sexes, not following the 

common male bias.  

 

4.6 Shank1 Mouse Model for ASD: A Translational Perspective 

 

Clinical diagnosis of ASD relies on standardized diagnostic tools which can detect 

impairments in behavior. In that aspect, behavioral phenotyping of mouse models for ASD can 
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tell us a lot about the basis of the ASD-relevant deficits. Through three studies, this dissertation 

aimed to provide a bridge between the two species, carefully considering the relation to human 

symptoms. Based on findings from these studies, certain analogous deficits could be observed in 

terms of social interaction, communication, and repetitive behavior, as well as comorbid ID.  

In humans, microdeletions in SHANK1 were reported by Sato et al. (2012), where 

impairments were evident not only in social communication, but also in repetitive behavior and 

restricted interests at the early developmental stage in the affected males. For instance, one of the 

carriers, proband III-5, was engaged in repetitive play and speech when he was 12-24 months old, 

as reported by his parents. He started speaking in single words at 24 months of age and used 

phrases by 36 months of age. He has persistently lacked social smiling, facial affect, joint 

attention, and empathy and his eye contact has always been poor. Another carrier in the family 

was proband IV-1, who also had signs of ASD phenotype at an early stage of development. His 

parents detected developmental differences when he was 3 years old, as he lacked interest in 

other children, but rather was preoccupied with objects, and had an encyclopedic knowledge of 

cars. He exhibited social deficits, such as having difficulties in eye contact and understanding 

social cues and rules. He would become upset with changes in routines. Similarly, proband IV-3 

showed signs of delayed language acquisition, developing first single words by 24 months of age 

and mainly communicating led by his parents by the hand. The unrelated male carrier from 

Sweden also displayed a delay in language acquisition as he started to talk at 2.5 years of age. His 

speech was formal and pedantic, with an abnormal prosody. He lacked interest in other children, 

and displayed stereotypic movements when upset.  

While in the study by Sato et al. (2012) the affected carriers of the microdeletion were males, 

females also seem to be affected to a weaker extent. Clinical details on the two females carrying 

the microdeletion reveal an anxious and shy phenotype in one, and social anxiety disorder in the 

other. However, they were never diagnosed with ASD or related disorders according to previous 

diagnostic criteria (e.g. Asperger syndrome). Nonetheless, based on the clinical assessment of 

individuals with ASD, anxiety disorders are known to co-occur in 42-56% of individuals, of 

which social anxiety disorder is the most common condition (13-29%), with high-functioning 

individuals being more susceptible (Lai et al., 2014). Further conclusion from Sato et al. (2012) is 

the notion that SHANK1 deletions are associated with higher functioning in males, with no 

effects on IQ levels. As opposed to these findings, however, Wang et al. (2016a) recently 
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reported a de novo mutation in a female diagnosed with ASD, also presented with ID. In line with 

this report, reductions in auditory working memory capacity were also linked to promoter variant 

rs3810280 of SHANK1 gene (Lennertz et al., 2012). Together, two studies support the findings in 

Shank1 knockout mice in terms of cognitive functions, with these not being restricted to males. It 

further brings up the question whether mutations in both species linked to ID could depend on the 

task used to evaluate the cognitive capability, hence could not necessarily be elicited by 

conventional intelligence measurements. In conclusion, despite moderate social, communication, 

and repetitive abnormalities, but stronger phenotype on cognitive deficits, murine Shank1 

deletion appears to be strongly comparable to SHANK1 mutations in humans. 

 

4.7 Future Perspectives 

 

Extending the scope of previous reports, findings from three studies presented here support 

compelling evidence for ASD-like traits in Shank1 mouse model for ASD. Although an in-depth 

and longitudinal behavioral characterization enables a broad understanding of the phenotype and 

can serve as markers for a valid model, identifying neurobiological mechanisms underlying the 

behavioral deficits, as well as developing potential therapeutical approaches remain a major goal 

in the future of research on Shank1 model. Priority can be given to rescuing the deficits 

corresponding to diagnostic symptoms, as well as comorbid cognitive impairments. This 

approach has been successfully applied in Shank2 and Shank3 mouse models for ASD, through 

targeting glutamatergic pathways at the synapses, and thereby improving the behavioral deficits 

(Won et al., 2012; Vicidomini et al., 2016). Hung et al. (2008) has shown that via deletion of 

Shank1, expression of HOMER protein is reduced, which presumably disrupts the link of 

SHANK1 to mGluR. Therefore, restoring glutamatergic receptor function through agonists, such 

as NMDA receptor partial agonist d-cycloserine or the mGluR5-positive allosteric modulator 

CDPPB, is an appealing approach in the hope for rescuing the deficits in Shank1 mutants. 

Furthermore, enrichment has emerged as another successful strategy to rescue memory deficits, 

such as object recognition, in CA1-specific NMDA receptor knockout mice (Rampon et al., 

2000). However, effects of enrichment on linking glutamatergic function with cognitive 

impairments have not yet been studied in Shank mouse models for ASD.  
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In addition to glutamatergic alterations, lack of Shank1 was also associated with reductions in 

PV (Filice et al., 2016), and excitation/inhibition imbalance in hippocampal CA1 PV+ 

interneurons (Mao et al., 2015). Although further investigation is required to understand how 

mutations in Shank1 contributes to PV pathology, reestablishing GABAergic interneuron 

function through restoring PV levels appear as an alternative clinical approach to treatment 

(Rapanelli et al., 2017).  

As hippocampus prevails as a fundamental structure, possibly leading to memory deficits 

with altered protein expression and epigenetic modifications in Shank1 mutants, it is of great 

interest to primarily investigate and target this structure. Restoring SHANK expression or 

developing gene therapies for Shankopathies, for example within a narrow developmental 

window and only in those circuits underlying the deficits, arise as promising goals to be tackled 

by the neuroscience community (Carbonetto, 2014). Site- and time-specific gene targeting, such 

as by means of inducible Cre/lox system, could be a useful strategy in the future. 

 

4.8 Concluding Remarks 

 

“The biology of mind bridges the sciences - concerned with the natural world - and 

the humanities - concerned with the meaning of human experience. Insights that come 

from this new synthesis will not only improve our understanding of psychiatric and 

neurological disorders, but will also lead to a deeper understanding of ourselves.” 

 Eric R. Kandel - Speech at the Nobel Banquet, December 10, 2000
§
 

 

Behavioral neuroscience is a fascinating tool that helps us understand consequences of 

complex genetic background and environmental factors. While ASD remains a puzzle to be 

solved, this dissertation aimed to take part in elaborating the single pieces, by focusing on the 

postsynaptic protein SHANK1. Understanding the function and contribution of a single protein 

among the profound set of ASD-related proteins remains a challenging task. The efforts put into 

                                                 
§
 "Eric R. Kandel - Banquet Speech". Nobelprize.org. Nobel Media AB 2014. Web. 1 May 2017. 

<http://www.nobelprize.org/nobel_prizes/medicine/laureates/2000/kandel-speech.html> 
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multiple experiments, however, provide clues to intricate architecture of ASD, with a vast 

majority of the neurobiological mechanisms seeking answers to the disease pathology. Mice with 

Shank1 deletions provide a unique model of the behavioral symptoms characterizing the broad 

nature of ASD. Overall, findings presented in this dissertation offer the feasibility of an in-depth 

behavioral phenotyping throughout development and social context in ASD research. 

Abnormalities in this model that can serve as markers, despite various limitations and challenges, 

hope to grant basis for future research on mouse models for neurodevelopmental disorders, with 

the ultimate goal being the treatment of these.  
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Abstract

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by per-

sistent deficits in social communication/interaction, together with restricted/repetitive patterns of

behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evi-

dence points to a complex set of genetic factors, the SHANK gene family has emerged as one of

the most promising candidates. Here, we assessed ASD-related phenotypes with particular empha-

sis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and

wildtype littermate controls across development in both sexes. While social approach behavior

was evident in all experimental conditions and social recognition was only mildly affected by geno-

type, Shank12/2 null mutant mice were severely impaired in object recognition memory. This

effect was particularly prominent in juveniles, not due to impairments in object discrimination, and

replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits

were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the

hippocampus of Shank12/2 mice; yet BDNF levels did not differ under baseline conditions. We

therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and

detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank12/2 mice, con-

sistent with increased learning-associated BDNF. Together, our findings indicate that Shank1

deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object

recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifica-

tions. This result supports the link between ASD and intellectual disability, and suggests epigenetic

regulation as a potential therapeutic target.

K E YWORD S

social approach, social recognition, novel object recognition, hippocampus, acetylation

1 | INTRODUCTION

In recent years, deletions, duplications, and coding mutations in the

three SH3 and multiple ankyrin repeat domains (SHANK) genes

(SHANK1, SHANK2, and SHANK3) have been identified in individuals

with autism spectrum disorder (ASD; Bourgeron, 2015; de la

Torre-Ubieta, Won, Stein, and Geschwind, 2016; Guilmatre, Huguet,

Delorme, and Bourgeron, 2014). First, Durand et al. (2007) described

mutations in SHANK3, and since then several studies reported mutations

in SHANK1 (Sato et al., 2012), SHANK2 (Berkel et al., 2010; Leblond et al.,

2012; Pinto et al., 2010), and SHANK3 (Gauthier et al., 2009; Moessner

et al., 2007) in ASD and schizophrenia patients with ASD traits. Impor-

tantly, SHANK mutations were detected in the whole ASD spectrum,

with a gradient of severity in intellectual disability (Leblond et al., 2014).

The three SHANK genes code for several mRNA splice variants

and generate multiple protein isoforms, which assemble into large
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molecular platforms at the postsynaptic density (PSD) of excitatory glu-

tamatergic synapses. As master scaffolding proteins, linking glutamate

receptors to the actin cytoskeleton and postsynaptic signaling path-

ways, SHANKs are strongly involved in several synaptic functions,

including spine morphogenesis, synapse formation, glutamate receptor

trafficking, and activity-dependent neuronal signaling (Sala, Vicidomini,

Bigi, Mossa, & Verpelli, 2015; Ting, Peça, & Feng, 2012). In mice,

Shank1 and Shank2 mRNA expression is particularly high in cortex, hip-

pocampus, and cerebellar Purkinje cells, whereas Shank3 is most promi-

nently expressed in thalamus, striatum, and granule cells in the

cerebellum (Peça et al., 2011). On a subcellular level, SHANK1 proteins

are distributed in the body of spines under basal conditions, while

SHANK2 and SHANK3 proteins are mostly concentrated in the PSD.

In response to depolarization, however, there is a prominent increase

in SHANK1 on the tip of the spines, suggesting that SHANK1 is pri-

marily involved in regulating activity-dependent plastic changes of

spines (Jiang & Ehlers, 2013; Santini & Klann, 2014; Schmeisser &

Verpelli, 2016; Yoo, Bakes, Bradley, Collingridge, & Kaang, 2013).

Hung et al. (2008) generated the first Shank mouse model for ASD

via disruption of the Shank1 gene through deletion of exons 14 and 15,

leading to a complete knockout of all SHANK1 protein isoforms.

Behavioral studies employing Shank1 mutants provided evidence for an

ASD-related phenotype characterized by social communication deficits,

alterations in repetitive patterns of behavior, and impairments in cogni-

tive functioning. Specifically, Shank1 mutants display reduced psycho-

motor activation and elevated anxiety levels, together with impaired

contextual but intact cued fear memory, and enhanced acquisition but

impaired retention of spatial memory, with the latter possibly resem-

bling the aberrant cognitive phenotype present in some ASD cases

(Hung et al., 2008; Silverman et al., 2011). Consistent with an ASD-

relevant behavioral phenotype, Shank1 mutants further show vocal

communication deficts and elevated self-grooming behavior, particu-

larly in social contexts (Sungur, V€orckel, Schwarting, & W€ohr, 2014;

2016; W€ohr, 2014; W€ohr, Roullet, Hung, Sheng, and Crawley, 2011).

Finally, W€ohr et al. (2011) observed reduced scent-marking behavior

and lack of social modulation of ultrasonic vocalizations in response to

female urine in adult male Shank1 mutants, likely reflecting a failure to

learn from social experiences. However, socio-cognitive processes and

potential underlying mechanisms have not yet been assessed system-

atically in Shank1 mutant mice.

The aims of the current study were therefore twofold. Firstly, at

the behavioral level, we aimed to assess ASD-related phenotypes with

particular emphasis on social behavior and cognition in Shank1 mouse

mutants in comparison to heterozygous and wildtype littermate con-

trols across development in both sexes. To this aim, juvenile and adult

subject mice were tested in two social behavior assays, one for assess-

ing social motivation deficits, i.e. Social Approach, and one for assessing

social cognition deficits, i.e. Social Recognition. In addition, a non-social

memory task, i.e. Novel Object Recognition, was conducted. Secondly,

at the neurobiological level, we analyzed protein expression levels of

the brain-derived neurotrophic factor (BDNF), together with its epige-

netic regulation, in order to test whether alterations in BDNF expres-

sion may contribute to ASD-related behavioral phenotypes displayed

by Shank1 mutants. Dysregulation of activity-dependent signaling path-

ways in neurons was suggested to play a key role in ASD etiology

(Ebert & Greenberg, 2013) and several lines of evidence indicate that

ASD is associated with increased BDNF expression (Bourgeron, 2015;

Nickl-Jockschat & Michel, 2011). BDNF is a small dimeric protein

whose expression is abundant in the hippocampus, cortex, and cerebel-

lum. It plays a diverse role in regulating neuronal structure and function

during development and in the adult nervous system, modulating syn-

aptic plasticity and thus learning and memory (Cowansage, LeDoux, &

Monfils, 2010; Park & Poo, 2013).

2 | MATERIALS AND METHODS

2.1 | Animals and housing

Juvenile and adult Shank12/2 null mutant mice with a targeted replace-

ment of exons 14 and 15 encoding almost the entire PDZ domain

were compared to Shank11/2 heterozygous and Shank11/1 wildtype

littermate control mice. Mice were obtained from mutant lines origi-

nally generated by Hung et al. (2008) through injection of targeted

embryonic stem cell clones into C57BL/6J blastocysts and backcross-

ing of Shank11/2 offspring into C57BL/6J and 129SvJae strains. As

high mortality rates were seen in the C57BL/6J background strain and

very low locomotion in the 129SvJae background strain (Hung et al.,

2008; Silverman et al., 2011), the two lines were crossed for at least

three generations to produce a mixed C57BL/6J/129SvJae background

for the Shank1 mutation. This mixed background was maintained and

used in the present study, consistent with other studies focusing on

this Shank1 mutant (Hung et al., 2008; Silverman et al., 2011; Sungur

et al., 2014, 2016; W€ohr, 2014; W€ohr et al., 2011). Using a heterozy-

gous breeding protocol, Shank11/2 males and females were bred in a

conventional vivarium at the Biomedical Research Center of the

Philipps-University of Marburg, Germany. Approximately 2 weeks after

pairing for breeding, females were individually housed and inspected

daily for pregnancy and delivery. The day of birth was considered as

postnatal day (PND) 0. After weaning on PND21, mice were socially

housed in groups of 2–6 with same-sex partners in polycarbonate

Makrolon type III IVC cages (LxWxH: 420 3 265 3 180 mm, 825 cm2;

Ehret, Emmendingen, Germany). Bedding and a wooden board were

provided in each cage. Standard rodent chow and water were available

ad libitum. The colony room was maintained on a 12:12 light/dark

cycle (lights on: 06:00 h) at approximately 228C and 40–50% humidity.

Pups were identified by paw tattoo, using non-toxic animal tattoo ink

(Ketchum permanent Tattoo Inks green paste, Ketchum Manufacturing

Inc., Brockville, ON, Canada). The ink was inserted subcutaneously

through a 30 gauge hypodermic needle tip into the center of the paw.

For genotyping, mouse tail snips were collected by dissecting !0.3 cm

of tail between PND3–12. Genotyping was performed as described

previously (Sungur et al., 2014). All procedures were approved by the

ethical committee of the local government (Regierungspräsidium

Gießen, Germany).
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2.2 | Behavioral procedures – overview

For detecting ASD-related behavioral phenotypes, subject mice of the

first cohort were tested in two social behavior assays, one for assessing

social motivation deficits, i.e. Social Approach, and one for assessing

social cognition deficits, i.e. Social Recognition. In addition, a non-social

memory task, i.e. Novel Object Recognition, was conducted. All three

behavioral assays were performed in a three-chambered box. Subject

mice of both sexes were tested as juveniles between 3 and 6 weeks of

age and again as adults between 17 and 21 weeks of age. At both

developmental stages, behavioral testing was conducted on three con-

secutive days. On the first day, subject mice were individually kept for

30 min in a Makrolon type III IVC cage and were then allowed to

explore the empty three-chambered box for 30 min in order to habitu-

ate to the apparatus. On the second and third day, subject mice were

again first individually kept for 30 min. Immediately after the 30 min

isolation period, social behavior assays and the non-social memory task

were performed in a balanced order, with Social Approach and Social

Recognition being performed on one day and Novel Object Recogni-

tion the other day. Body weight was measured after behavioral testing.

A second independent cohort of juvenile mice was tested in Object

Discrimination in order to differentiate between object recognition ver-

sus discrimination deficits. Finally, a third cohort of juvenile mice was

subjected only to Novel Object Recognition for the assessment of

learning-associated BDNF expression levels. Behavioral testing was

performed under dim red light during the light phase of the 12:12

light/dark cycle. Prior to each test, behavioral equipment was thor-

oughly cleaned using a 0.1% acetic acid solution followed by drying.

Experimenters were blind to genotypes during data acquisition and

analysis.

2.3 | Three-chambered box

Novel Object Recognition, Social Approach and Social Recognition,

were conducted in a three-chambered box. The box was made of black

polycarbonate material and consisted of two side chambers (230 3

345 3 350 mm) connected through a smaller chamber (145 3 70 3

350 mm) located centrally between the two side chambers. This middle

chamber had two retractable doors to control access to the side cham-

bers. Lack of side preference was confirmed during the 30 min habitua-

tion on the first day. The three-chambered box was equipped with two

UltraSoundGate Condenser Microphones CM16 sensitive to frequen-

cies of 15–180 kHz (flat frequency response between 25 and 140 kHz;

66 dB; Avisoft Bioacoustics, Berlin, Germany), one in each side cham-

ber. They were connected via an UltraSoundGate 416 USGH audio

device (Avisoft Bioacoustics) to a personal computer, where acoustic

data were recorded with a sampling rate of 250,000 Hz (16 bit) by Avi-

soft RECORDER (version 2.97).

2.4 | Novel object recognition

After being individually kept for 30 min in a Makrolon type III IVC cage,

subject mice were tested for Novel Object Recognition, using a modi-

fied protocol previously established (Bevins & Besheer, 2006; Valluy

et al., 2015). This test consisted of three phases, i.e. object acquisition

trial (10 min), inter-trial interval (30 min), and object recognition trial

(10 min). In the object acquisition trial, each subject mouse was allowed

to freely explore for 10 min the three-chambered box containing two

identical sample objects, with one sample object being centrally placed

in each of the two side chambers. After the object acquisition trial, the

subject mouse was individually kept for 30 min in the previously used

Makrolon type III IVC cage, the inter-trial interval. During that time,

one of the objects from the object acquisition trial (familiar object) was

replaced with a novel object of similar size but different in color, shape,

and material (novel object) to test object recognition memory. Specifi-

cally, one clean familiar object and one clean novel object were placed

into the three-chambered box, where the two identical objects had

been located during the object acquisition trial. After the 30 min delay,

each subject mouse was returned to the three-chambered box for a 10

min object recognition trial and allowed to freely explore the familiar

and the novel object. As objects, two glass cylinders (60 mm in diame-

ter, 80 mm high) and two red metal cubes (50 3 50 3 88 mm) were

used. Location and type of objects presented were counter-balanced

between subject mice. Genotypes did not show a preference for either

of the alike objects during the object acquisition trial (all p-values

>0.050).

2.5 | Object discrimination

Object Discrimination was performed to control for the ability of the

subject mice to distinguish between the objects used for Novel Object

Recognition. To this aim, mice were presented with three identical

objects and one unique object of similar size, but different in color,

shape, and material, in the four square parcels of an open field (40 3

40 cm). Type and position of the unique object was balanced between

subjects. Each mouse was placed into the open field for 10 min and

allowed to freely explore it.

2.6 | Social approach and social recognition

After being individually kept for 30 min in a Makrolon type III IVC cage,

subject mice were tested for Social Approach and Social Recognition,

using a modified protocol previously established (W€ohr et al., 2013). As

in the Novel Object Recognition test, testing consisted of three phases,

i.e. social approach trial (10 min), inter-trial interval (30 min), and social

recognition trial (10 min). In the social approach trial, each subject

mouse was allowed to freely explore for 10 min the three-chambered

box containing an empty wired-cage (object) on one side and a stimulus

mouse constrained in an identical wired-cage (animal) on the other

side. After the social approach trial, the subject mouse was individually

kept for 30 min in the previously used Makrolon type III IVC cage, the

inter-trial interval. Then, following the 30 min delay, each subject

mouse was returned to the three-chambered box for a 10 min social

recognition trial. During the social recognition trial, subject mice were

given the choice between the stimulus mouse from the previous social

approach trial (familiar mouse) on the side where it was presented

before and a novel stimulus mouse replacing the empty wired-cage
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(novel mouse) on the other side. As stimulus mice, age- and sex-

matched C57BL/6J mice (Charles River Laboratories, NC, USA) were

used. Stimulus mice were group-housed under similar conditions as

subject mice and habituated to the wired-cages for 30 min prior test-

ing. Location and stimulus mice presented were counter-balanced

between subject mice.

2.7 | Behavior analysis

For Novel Object Recognition, Social Approach and Social Recognition,

number of entries into the chambers, the time spent therein, and object

investigation were scored from videos using Noldus Observer XT soft-

ware (Noldus Information Technology, Wageningen, The Netherlands)

on a personal computer by a trained observer blind to genotypes.

Object investigation was defined as time spent sniffing the social stim-

ulus/object when the nose was oriented towards it, with the nose-

object distance being 3 cm or less. Novel Object Recognition and Social

Recognition were defined as spending significantly more time sniffing

the novel than the familiar object or mouse, respectively.

2.8 | Ultrasonic vocalization analysis

For Social Approach and Social Recognition in juveniles, ultrasonic

vocalizations were analyzed with Avisoft-SASLab Pro software (Version

5.2.05; Avisoft Bioacoustics). A fast Fourier transform was conducted

(512 FFT length, frame size: 100%, Hamming Window and 75% time-

window overlap), producing spectrograms at 488 Hz frequency resolu-

tion and 0.512 ms temporal resolution. Ultrasonic vocalizations were

marked and counted by a trained observer blind to genotypes. As ultra-

sonic vocalizations were recorded in both side chambers, they were

analyzed separately. Afterwards each call was matched to the side it

was recorded at with higher peak amplitude. Total call number was

then calculated for each side.

2.9 | Protein analysis

Learning-associated BDNF protein expression in the hippocampus was

quantified using enzyme-linked immunosorbent assay (ELISA), with half

of the mice being subjected to Novel Object Recognition whereas the

other half not being exposed to this learning experience, i.e. home cage

controls. Mice were sacrificed directly after Novel Object Recognition

and their left and right hippocampi were removed, snap-frozen on dry

ice, and stored at 2808C until processed. BDNF protein levels were

measured using the Quantikine ELISA Kit (R&D Systems, Wiesbaden,

Germany) and total protein levels were measured using Pierce BCA

Assay (Thermo Fisher Scientific, Waltham, MA, USA) according to the

manufacturers’ instructions. BDNF protein concentrations in the hippo-

campi were compared between genotypes in relation to total protein

levels, with missing concentrations being imputed where necessary.

2.10 | Epigenetic analysis

Epigenetic regulation of hippocampal BDNF expression through histone

acetylation was assessed by means of chromatin immunoprecipitation

(ChIP; Tessarz & Kouzarides, 2014). Hippocampi were placed in 450 ml

RPMI medium (Sigma-Aldrich, Taufkirchen, Germany) plus 50 ml trypsin

solution (Capricorn, Ebsdorfergrund, Germany) and incubated for 20 min

at 378C. Afterwards, 500 ml DNase solution (Sigma-Aldrich) was added

and incubated for another 5 min at room temperature. The medium was

carefully aspirated and tissues were washed twice with PBS (Sigma-

Aldrich). Hippocampi were then resuspended in 500 ml RPMI medium,

placed in 100 mm bacteriological grade petri dishes and gently dissoci-

ated by 8–10 times repeated aspiration through a Pasteur pipette result-

ing in homogenous cell suspensions which were subsequently washed

once with 1 ml RPMI medium. DNA-protein interactions in isolated cells

were cross-linked in 1% formaldehyde for 10 min at room temperature.

Subsequently, ChIP was performed, as described recently (Harb et al.

2015), using antibodies against acetylated histone H3 (H3ac; Merck

Millipore, Darmstadt, Germany) and acetylated histone H4 (H4ac; Merck

Millipore). Immunoprecipitated and eluted DNA was purified with QIA-

quick columns (Qiagen, Hilden, Germany) and amplified by means of

quantitative PCR using primers specific for the murine promoters of

Bdnf (promoter1; Bdnf forward: 50-TTGGTCACGTAACTGGCT-30; Bdnf

reverse: 50-TGGGGAACTTGTTGCTTT-30), interleukin (Il)2 (Il2 forward:

50-TAAATAAGGCCATAGAATGG-30; Il2 reverse: 50- GTTACATTAGCC-

CACACTTA-30), Il6 (Il6 forward: 50-GACATGCCAAAGTGCTGAGTCACT-

30; Il6 reverse: 50-AGACTCATGGGAAAATCCCACATT-30), tumor necrosis

factor (Tnf)-a promoter (Tnf-a forward: 50-TGGGTTTCAGTTCTCAGGGT-

30; Tnf-a reverse: 50-GGGTTTGGAAAGTTGGGGAC-30) and the house-

keeping gene Rpl32 promoter (Rpl32 forward: 50-

TCATTTCTCAGGCACATCTT-30; Rpl32 reverse: 50-ACTCACCGTAAAA-

CAGATGG-30), respectively. All amplifications were performed in dupli-

cate by using 1 ll of DNA per reaction. For analysis, the percent

enrichment of the negative control (IgG) was subtracted from percent

enrichment in H3 or H4 ChIP and normalized to the housekeeping gene

Rpl32 results.

2.11 | Statistical analysis

Body weight was analyzed using a univariate ANOVA with the

between-subject factor genotype. Novel Object Recognition, Social

Approach, and Social Recognition were analyzed using ANOVAs for

repeated measurements with the between-subject factor genotype and

the within-subject factor social stimulus/object. When appropriate,

ANOVAs were followed by Bonferroni post-hoc tests for comparing

genotypes or paired t-tests for comparing objects within genotypes. As

no sex differences were expected in juveniles, males and females were

pooled; whereas in adulthood, males and females were analyzed sepa-

rately. For Novel Object Recognition and Social Recognition, behavior

recorded in the first 5 min of each trial was included in the statistical

analysis, since habituation to novel stimuli is likely to occur in testing

periods exceeding 5 min (Bevins & Besheer, 2006). BDNF protein lev-

els were analyzed using ANOVAs for repeated measurements with the

between-subject factor genotype and the within-subject factor brain

hemisphere. Pearson’s correlation coefficients were calculated in order

to test whether BDNF concentrations from left and right hemispheres

covaried, whenever values were available for both hemispheres.
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Epigenetic regulation, i.e. H3 and H4 acetylation levels, were compared

between genotypes by means of a multivariate ANOVA. Data are pre-

sented as means6 standard errors of the mean (SEM).

3 | RESULTS

3.1 | Body weights

In juveniles, genotype-dependent differences in body weight were

detected (F2,7553.832, p50.026). Juvenile Shank12/2 mice (11.4236

0.589 g) weighed less than Shank11/1 littermate controls (13.9866

0.681 g; p50.025). Such genotype-dependent differences were even

more prominent in adulthood and evident in males (F2,3258.120,

p50.002) and females (F2,42511.355, p<0.001), with Shank12/2

mice weighing less than Shank11/1 littermate controls, both in males

(28.08060.504 g vs. 34.11861.250 g; p50.001) and females

(21.13160.770 g vs. 27.59161.420 g; p50.001). Across develop-

ment, Shank11/2 mice displayed an intermediate phenotype (not

shown in detail). The body weight data are consistent with previous

studies (Sungur, Schwarting, & W€ohr, 2016; W€ohr et al., 2011).

3.2 | Novel object recognition

3.2.1 | Juvenile mice

Evidence for genotype-dependent differences in object recognitionmem-

ory was obtained in juvenile mice (genotype: F2,6656.083, p50.004;

object: F1,66514.885, p<0.001; genotype x object: F2,6652.446,

p50.094). Juvenile Shank11/1 and Shank11/2mice preferred to sniff the

novel over the familiar object after a 30 min delay (T1652.375, p50.030

and T2553.295, p50.003; respectively), reflecting intact object recogni-

tion memory. Juvenile Shank12/2 mice, however, showed no preference

for sniffing the novel over the familiar object (T2550.693, p50.495;

Figure 1), indicating object recognition deficits. Of note, genotypes also

differed in exploring objects during the object acquisition trial (genotype:

F2,6658.334, p50.001; object: F1,6651.431, p50.236; object x geno-

type: F2,6650.312, p50.733). Juvenile Shank12/2 mice spent less time

sniffing objects than Shank11/1 littermate controls (p<0.001) and object

recognition deficits displayed by Shank12/2 mice might thus appear to be

due to insufficient object exploration. However, this appears unlikely for

two reasons: (1) Juvenile Shank12/2 mice spent a similar amount of time

sniffing objects during the object acquisition trial as Shank11/2 littermate

controls (p50.103), with the latter not displaying object recognition defi-

cits. (2) When focusing on the upper quartile of Shank12/2 mice, which

spent a similar amount of time exploring the objects during the object

acquisition trial as Shank11/1 littermate controls (T2251.299, p50.207),

still no evidence for intact object recognition memory was obtained

(T651.153, p50.293), indicating persistence of object recognition defi-

cits despite adequate object exploration.

3.2.2 | Adult mice – males

Genotype-dependent differences in object recognition memory were

further observed in adult males (genotype: F2,2750.347, p50.710;

object: F1,2757.774, p50.010; genotype x object: F2,2753.762,

p50.036), consistent with the data obtained in juvenile mice. Adult

Shank11/1 males displayed intact object recognition memory, as

reflected in more time spent sniffing the novel over the familiar object

(T752.702, p50.031). No such preference was seen in adult Shank11/2

(T1150.733, p50.479) and Shank12/2 (T950.338, p50.743) males,

with both genotypes spending a similar amount of time sniffing novel

and familiar objects (Figure 2a), indicating object recognition deficits.

Genotypes did not differ in exploring objects during the object acquisi-

tion trial (genotype: F2,2750.044, p50.957; object: F1,2750.930,

p50.343; genotype x object: F2,2751.799, p50.185).

3.2.3 | Adult mice – females

Similar to adult males, evidence for genotype-dependent differences in

object recognition memory was obtained in adult females (genotype:

F2,3655.555, p50.008; object: F1,36539.318, p<0.001; genotype x

object: F2,3652.306, p50.114). Yet, effects were weaker, with adult

females of all genotypes displaying intact object recognition memory

(Shank11/1: T753.432, p50.011; Shank11/2: T1453.694, p50.002;

Shank12/2: T1553.231, p50.006), although the preference for the novel

over the familiar object was clearly less prominent in adult Shank12/2

females (Figure 2b). Genotypes also differed in exploring objects during

the object acquisition trial (genotype: F2,3654.328, p50.021; object:

F1,3655.716, p50.022; object x genotype: F2,3650.065, p50.937). Dur-

ing acquisition, Shank12/2 females spent less time exploring objects than

Shank11/1 (p50.020) but not Shank11/2 (p50.280).

3.3 | Social approach and social recognition

3.3.1 | Juvenile mice

No evidence for genotype differences in social approach behavior was

obtained in juvenile mice (genotype: F2,6750.150, p50.861; stimulus:

FIGURE 1 Novel Object Recognition in juvenile Shank1 mice.

Novel Object Recognition is depicted by time spent sniffing

(seconds per minute) the novel object (black bar) over the familiar

object (striped bar). Shank11/1 and Shank11/2 mice displayed

significantly more time sniffing the novel than the familiar object. In

contrast, Shank12/2 mice displayed no preference for sniffing the

novel over the familiar object, indicating object memory deficits.

Data are presented as means1 standard errors of the mean (SEM).

*p<0.050 preference vs. novel object
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F1,67595.898, p<0.001; genotype x stimulus: F2,6750.258,

p50.774). All genotypes spent significantly more time sniffing the

animal over the object, reflecting intact social motivation. Specifically,

significant preferences for the animal were seen in juvenile Shank11/1

(T1654.893, p<0.001), Shank11/2 (T2656.772, p<0.001) and

Shank12/2 (T2555.869, p<0.001) mice (Figure 3a). Concomitant

recordings of ultrasonic vocalizations revealed that mice vocalized

more in proximity to the animal than the object, irrespective of geno-

type (genotype: F2,6750.077, p50.926; stimulus: F1,67512.898,

p50.001; genotype x stimulus: F2,6750.252, p50.778; not shown in

detail), mirroring the behavioral findings. Likewise, no evidence

for genotype differences in social recognition memory was obtained

(genotype: F2,6750.566, p50.571; stimulus: F1,67546.093, p<0.001;

genotype x stimulus: F2,6750.71, p50.932). All genotypes spent sig-

nificantly more time sniffing the novel over the familiar stimulus

mouse, indicating that all genotypes were able to discriminate

between the novel and the familiar stimulus mouse after a delay of 30

min and thus reflecting intact social cognition. Specifically, significant

preferences for the novel stimulus mouse were seen in juvenile

Shank11/1 (T1653.132, p50.006), Shank11/2 (T2655.101, p<0.001)

and Shank12/2 (T2553.809, p50.001) mice (Figure 3b). Social recog-

nition was not reflected in ultrasonic vocalizations, with emission

rates not differing between the novel and the familiar stimulus mouse,

irrespective of genotype (genotype: F2,6750.760, p50.472; stimulus:

F1,6750.322, p50.572; genotype x stimulus: F2,6751.534, p50.223;

not shown in detail).

FIGURE 2 Novel Object Recognition in adult Shank1 mice. Novel Object Recognition is depicted by time spent sniffing (seconds per

minute) the novel object (black bar) over the familiar object (striped bar). (a) Male Shank11/1 mice displayed significantly more time sniffing

the novel than the familiar object. In contrast, male Shank11/2 and Shank12/2 displayed no preference for sniffing the novel over the

familiar object, indicating object memory deficits. (b) All of the female Shank1 genotypes displayed significantly more time sniffing the novel

than the familiar object. Data are presented as means1 SEM. *p<0.050 preference vs. novel object

FIGURE 3 Social Approach and Social Recognition in juvenile Shank1 mice. (a) Social Approach is depicted by time spent sniffing (seconds

per minute) the animal (black bar) over the object (striped bar). All of the Shank1 genotypes displayed normal social approach behavior,

spending significantly more time sniffing the animal than the object. (b) Social Recognition is depicted by time spent sniffing (seconds per

minute) the novel animal (black bar) over the familiar animal (striped bar). All of the Shank1 genotypes displayed normal social recognition

behavior, spending significantly more time sniffing the novel than the familiar animal. Data are presented as means1 SEM. *p<0.050

preference vs. animal and novel animal, respectively
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3.3.2 | Adult mice – males

Consistent with the data obtained in juvenile mice, no evidence for

genotype differences in social approach behavior was obtained, with all

genotypes spending significantly more time sniffing the animal over the

object (stimulus: F1,26573.926, p<0.001; genotype: F2,2650.196,

p50.824; genotype x stimulus: F2,2650.057, p50.945), reflecting

intact social motivation in adult males. Specifically, significant preferen-

ces for the animal were seen in male Shank11/1 (T853.664, p50.006),

Shank11/2 (T1055.488, p<0.001), Shank12/2 (T858.722, p<0.001)

mice (Figure 4a). Furthermore, as in juvenile mice, no evidence for

genotype differences in social recognition memory was obtained (stim-

ulus: F1,2657.569, p50.011; genotype: F2,2650.554, p50.581; geno-

type x stimulus: F2,2650.042, p50.959). However, effects were much

weaker than in juveniles and thus no significant preferences for the

novel stimulus mouse were seen at the level of individual genotypes

(Shank11/1: T851.318, p50.224; Shank11/2: T1051.867, p50.091;

Shank12/2: T851.896, p50.095; Figure 4b).

3.3.3 | Adult mice – females

As in adult males, no evidence for genotype differences in social

approach behavior was obtained, with all genotypes spending signifi-

cantly more time sniffing the animal over the object (genotype:

F2,3651.309, p50.283; stimulus: F1,365104.667, p<0.001; stimulus x

genotype: F2,3652.141, p50.132), reflecting intact social motivation in

adult females. Specifically, significant preferences for the animal were

seen in female Shank11/1 (T954.851, p50.001), Shank11/2

(T1455.513, p<0.001), and Shank12/2 (T1357.571, p<0.001) mice

(Figure 4c). In contrast to adult males, however, social recognition

memory in adult females was affected by genotype (stimulus:

F1,36519.158, p<0.001; genotype: F2,3652.916, p50.067; genotype

FIGURE 4 Social Approach and Social Recognition in adult Shank1 mice. (a) Social Approach is depicted by time spent sniffing (seconds

per minute) the animal (black bar) over the object (striped bar). All of the male Shank1 genotypes displayed normal social approach behavior,

spending significantly more time sniffing the animal than the object. (b) Social Recognition is depicted by time spent sniffing (seconds per

minute) the novel animal (black bar) over the familiar animal (striped bar). None of the male Shank1 genotypes displayed a preference for

sniffing the novel over the familiar animal, indicating social recognition deficits. (c) All of the female Shank1 genotypes displayed normal

social approach behavior, spending significantly more time sniffing the animal than the object. (d) Female Shank11/1 and Shank11/2

displayed significantly more time sniffing the novel than the familiar animal. In contrast, female Shank12/2 mice displayed no preference for

sniffing the novel over the familiar animal, indicating social recognition deficits. Data are presented as means1 SEM. *p<0.050 preference

vs. animal and novel animal, respectively
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x stimulus: F2,3653.215, p50.052). While adult Shank11/1 and

Shank11/2 females spent more time sniffing the novel than the familiar

stimulus mouse (T952.819, p50.020 and T1452.665, p50.019;

respectively), adult Shank12/2 females did not discriminate the novel

stimulus mouse from the familiar one (T1351.394, p50.187; Figure

4d), indicating social recognition deficits in Shank12/2 females.

3.4 | Learning-associated hippocampal BDNF protein

expression and epigenetic regulation

Object recognition deficits in Shank12/2 mice were not due to impair-

ments in discriminatory abilities. Specifically, when exposing an inde-

pendent cohort of mice to three identical and one unique object at the

same time, juvenile Shank11/1 and Shank12/2 mice both displayed a

preference for the unique object (T2052.111, p50.048 and

T1852.845, p50.011; respectively; Figure 5a). Moreover, object rec-

ognition deficits in Shank12/2 mice were replicated in a separate

cohort of juvenile animals. While juvenile Shank11/1 mice preferred to

sniff the novel over the familiar object after a 30 min delay as expected

(T852.548, p50.034), juvenile Shank12/2 mice again showed no pref-

erence for sniffing the novel over the familiar object (T1150.577,

p50.576; Figure 5b). In the same cohort, alterations in hippocampal

BDNF protein levels were determined and genotype-dependent differ-

ences detected. Specifically, hippocampal BDNF protein expression

was found to be higher in Shank12/2 mice, compared to Shank11/1 lit-

termate controls (genotype: F1,1955.237, p50.034; hemisphere:

FIGURE 5 Object Discrimination, Novel Object Recognition, and hippocampal brain-derived neurotrophic factor (BDNF) protein and his-

tone acetylation levels in juvenile Shank1 mice. (a) Object Discrimination is depicted by time spent sniffing (seconds per minute) a unique

object (black bar) over three alike objects (average; striped bar). Both Shank11/1 and Shank12/2 mice were able to discriminate the unique

object, spending significantly more time sniffing the unique object than the alike objects. (b) Novel object recognition is depicted by time

spent sniffing (seconds per minute) the novel object (black bar) over the familiar object (striped bar). In a separate cohort of mice dedicated

to hippocampal BDNF measurements, Shank11/1 mice displayed significantly more time sniffing the novel than the familiar object. In con-

trast, Shank12/2 mice displayed no preference for sniffing the novel over the familiar object, again indicating object memory deficits.

(c) Significantly elevated BDNF protein levels were evident in the hippocampi of Shank12/2 mice (white bar) in comparison to Shank11/1

mice (black bar). (d) Correlation between BDNF protein levels of the left and right hippocampus in Shank1 mice. BDNF protein

concentrations were significantly correlated with one another in Shank11/1 mice (black circles) but not in Shank12/2 mice (white circles). (e)

Histone 3 (H3) and 4 (H4) acetylation levels are depicted by enrichment levels (relative to housekeeping gene; HKG). Significantly elevated

H3 but not H4 acetylation levels were revealed in the hippocampi of the Shank12/2 mice (white bar) in comparison to Shank11/1 mice

(black bar). Data are presented as means1 SEM. *p<0.050 preference vs. unique object, novel object, and Shank11/1 mice, respectively
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F1,19567.055, p<0.001; genotype x hemisphere: F1,1952.344,

p50.142; Figure 5c). No such difference in BDNF protein expression

was seen under baseline conditions in an independent cohort of mice

not exposed to Novel Object Recognition (Shank11/1: 0.22160.030

pg/mg protein; Shank12/2: 0.23060.011 pg/mg protein; genotype:

F1,1550.115, p50.739; hemisphere: F1,155114.977, p<0.001; geno-

type x hemisphere: F1,1550.519, p50.482). While in both genotypes

BDNF protein expression was higher in the left than in the right hemi-

sphere, Pearson’s correlation analysis further revealed that BDNF pro-

tein concentrations from the left and right hemispheres were

significantly correlated with one another in Shank11/1 mice (r50.753,

p50.008) but not in Shank12/2 mice (r50.113, p50.678; Figure 5d).

Finally, epigenetic regulation of BDNF expression in the hippocampus

was found to be affected by genotype. While H4 acetylation did not

differ between genotypes (F1,2650.218, p50.645), H3 acetylation was

clearly higher in Shank12/2 mice, compared to Shank11/1 littermate

controls (F1,2655.325, p50.029; Figure 5e), in line with the observed

increase in hippocampal BDNF protein levels detected in Shank12/2

mice. Altered epigenetic regulation was specifically observed for Bdnf

but not the other genes evaluated, i.e. Il2, Il6 and Tnf-a (H3 acetylation:

F1,2652.937, p50.098; F1,2650.010, p50.920; and F1,2650.111,

p50.742; respectively; H4 acetylation: F1,2651.868, p50.183;

F1,2651.782, p50.194; and F1,2651.470, p50.236; respectively; Sup-

porting Information Figure 1).

4 | DISCUSSION

ASD is among the most heritable neuropsychiatric conditions, and

while available evidence points to a complex set of genetic factors, the

SHANK gene family has emerged as one of the most promising candi-

dates (Bourgeron, 2015; de la Torre-Ubieta et al., 2016; Guilmatre

et al., 2014). Genetic Shank mouse models display behavioral pheno-

types with relevance to all diagnostic criteria of ASD, that is, persistent

deficits in social communication/interaction, together with restricted/

repetitive patterns of behavior (American Psychiatric Association,

2013). Recent examples demonstrate that this genetic approach helps

to explore underlying neurobiological mechanisms and is thus guiding

the identification of novel targets for treatment (Jiang & Ehlers, 2013;

Santini & Klann, 2014; Schmeisser & Verpelli, 2016; Yoo et al., 2013).

In this study, we focused on deficits in socio-cognitive processes and

potential underlying mechanisms in the Shank1 knockout mouse model

for ASD (Hung et al., 2008; Silverman et al., 2011; Sungur et al., 2014,

2016; W€ohr, 2014; W€ohr et al., 2011).

Social approach behavior was evident in all experimental condi-

tions. As juveniles and adults, all genotypes showed intact social moti-

vation as they preferred to sniff the animal over the object. Our results

are at variance with those of Silverman et al. (2011), who employed

the same Shank1 knockout mouse model for ASD in a very similar para-

digm and reported impaired social approach behavior, yet lack of soci-

ability was evident in all genotypes, including wildtype littermate

controls. It is worth noting that in this study mixed C57BL/6J/

129SvJae background mice, the genetic background on which the

Shank1 mutation was bred, displayed intact social approach behavior,

indicating that the deficits observed were not dependent on back-

ground strain. In the same study, Silverman et al. (2011) did not obtain

evidence for genotype effects on direct reciprocal social interaction

behavior, consistent with our present findings.

In the Social Recognition paradigm, juvenile mice were able to dis-

criminate the novel over the familiar stimulus mouse irrespective of

genotype, whereas in adults sex-dependent genotype effects were evi-

dent. Specifically, in adult males, no evidence for genotype differences

in social recognition memory was obtained. However, effects were

much weaker than in juveniles and thus no significant preferences for

the novel stimulus mouse were seen at the level of individual geno-

types, possibly due to a general lack of interest or stress caused by the

presence of two unrelated males. In females, in contrast, genotype-

dependent differences were evident. Shank11/1 and Shank11/2

females showed preference for the novel stimulus mouse, whereas in

Shank12/2 mice the difference in time spent sniffing the novel over the

familiar stimulus mouse did not reach a statistical significance, indicat-

ing a deficit in social recognition memory caused by Shank1 deletion.

The latter is consistent with a failure to learn from social experiences in

adult male Shank12/2 mice reported before. W€ohr et al. (2011) found

that adult male Shank12/2 mice do not adjust the emission of ultra-

sonic vocalizations in response to female urine depending on their prior

experience with females.

While social recognition was only mildly affected by genotype, our

data indicate that juvenile Shank12/2 mice are severely impaired in the

Novel Object Recognition paradigm, in stark contrast to Shank11/1

and Shank11/2 littermate controls. This was reflected by a complete

lack of preference for the novel over the familiar object; an effect repli-

cated in independent mouse cohorts. Importantly, these deficits were

not due to impairments in discriminatory abilities, since juvenile

Shank12/2 mice displayed a clear preference for the unique object

when exposed to three identical and one unique object at the same

time. Consistent with the data obtained in juvenile mice, object recog-

nition memory was dependent on the availability of SHANK1 in adult

male mice and severely impaired in adult Shank11/2 and Shank12/2

males. In adult females, however, evidence for intact object recognition

memory was obtained irrespective of genotype, yet the preference for

the novel object was clearly lower in Shank12/2 females. The weaker

genotype effect in females is consistent with human data suggesting

reduced penetrance in females. In fact, Sato et al. (2012) provided evi-

dence that SHANK1 deletions cause ASD in males but not females -

the first example of autosomal sex-limited expression in ASD. Females

who are carriers of a SHANK1 deletion might be protected by a yet

unidentified mechanism, possibly related to sex chromosomes, hormo-

nal changes, or other sex-specific factors (Robinson, Lichtenstein,

Anckarsäter, Happ"e, & Ronald, 2013; but see: Wang et al., 2016).

Our findings thus extend the knowledge on cognitive phenotypes

displayed by the Shank1 mouse model for ASD in an age- and sex-

dependent manner. Previous studies applying cognitive tasks focused

on adult male Shank12/2 mice only and reported an aberrant cognitive

phenotype characterized by impaired contextual but intact cued fear-
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conditioning. Moreover, in the radial-arm-maze task to assess spatial

memory, male Shank12/2 mice, compared to Shank11/1 controls,

showed steeper learning curves and reached better performance levels

with fewer reference memory errors and virtually absent working

memory errors. Enhanced learning capabilities were seen not only dur-

ing initial training but also reversal learning. However, Shank12/2 mice

were unable to retain the learning enhancement in the long-term,

regressing to reference memory performance levels of Shank11/1 con-

trols following a 28 days retention interval (Hung et al., 2008).

While the integration of the present findings into this complex set

of results is challenging, our results are consistent with the vast major-

ity of object recognition memory studies in Shank2 and Shank3 mouse

models for ASD (Berkel et al., 2012; Schmeisser et al., 2012; Wang

et al., 2011; Won et al., 2012; Yang et al., 2012). For instance,

Schmeisser et al. (2012) assessed object recognition memory in Shank2

mutants. While all genotypes displayed a preference for the novel

object, this preference was clearly less pronounced in Shank22/2 mice.

The reduction in preference is remarkable since a relatively low-

demanding version of the test was applied, with a short delay of a cou-

ple of seconds between object acquisition and recognition trials. It is

thus tempting to speculate that no preference would have been

detected in Shank22/2 mice with longer delays. By using an approach

very similar to ours, Yang et al. (2012) observed a complete lack of

object recognition memory in Shank3e4–9 mutants, with Shank32/2

mice exploring novel and familiar objects about the same amount of

time after a 30 min delay.

The hippocampus is a key brain structure involved in learning and

memory, including object recognition memory (Antunes & Biala, 2012;

Dere, Huston, & De Souza Silva, 2007) and social recognition memory

(Hitti & Siegelbaum, 2014; Piskorowski et al., 2016). It is strongly impli-

cated in ASD (Li et al., 2016; Radwan, Dvorak, & Fenton, 2016). Inter-

estingly, Shank1 mRNA levels are particularly high in the hippocampus

(Peça et al., 2011). Specifically, by means of in situ hybridization, strong

Shank1 mRNA expression was detected in the molecular layer

(Boeckers et al. 2004; Zitzer, Honck, Bachner, Richter, & Kreienkamp,

1999) and all three Shank mRNAs were found to be expressed in the

neuropil layer of the CA1 region, yet Shank1 mRNA had the highest

dendritic expression (Epstein et al. 2014). This enrichment in the neuro-

pil, compared to soma, is viewed as evidence for local translation being

an essential source of SHANK1 protein at the synapse during activity-

dependent plasticity (Sala et al., 2015). Interestingly, Studtmann et al.

(2014) identified a non-canonical initiation site necessary for efficient

translation of dendritically localized Shank1 mRNA. In Shank12/2 mice,

Hung et al. (2008) described altered PSD protein composition, with

reduced levels of SHANK, Homer, and GKAP/SAPAP, together with

smaller dendritic spines and synapses in the hippocampus, resulting in

a weakening of excitatory synaptic transmission. Filice, V€orckel, Sungur,

W€ohr, and Schwaller (2016) further found the calcium buffer parvalbu-

min being strongly decreased in Shank12/2 mice, particularly in brain

regions with high SHANK1 expression under wildtype conditions.

Parvalbumin is involved in maintaining the excitation/inhibition balance

in the brain, with reductions being associated, at the neuronal level,

with enhanced inhibition, and, at the behavioral level, with cognitive

deficits, including reversal learning impairments (W€ohr et al., 2015).

Here, we show that, after Novel Object Recognition, hippocampal

BDNF protein expression is higher in Shank12/2 mice, compared to

Shank11/1 littermates. No such difference in BDNF levels was seen in

mice not exposed to Novel Object Recognition. Interestingly, BDNF

concentrations from left and right hemispheres were significantly cor-

related with one another in Shank11/1 but not Shank12/2 mice; possi-

bly related to alterations in brain development typically seen in ASD

mouse models (Ellegood et al., 2015) and human ASD (Amaral, Schu-

mann, & Nordahl, 2008). BDNF regulates neuronal structure and func-

tion (Barde, Edgar, & Thoenen, 1982; Leibrock et al., 1989). It

modulates hippocampal long-term potentiation (Korte et al., 1995) and

thus learning and memory, including fear-conditioning (Endres & Less-

mann, 2012). Consistent with the present findings, BDNF expression in

the hippocampus was found to be negatively correlated with object

recognition memory (Mu~noz et al., 2010) and BDNF blockade had no

detrimental effect on task performance when short delays of several

minutes between object acquisition trial and object recognition trial

were applied (Callaghan & Kelly, 2013).

In line with the idea that dysregulation of activity-dependent sig-

naling pathways in neurons plays a prominent role in ASD etiology

(Ebert & Greenberg, 2013), BDNF was suggested to be involved

(Nickl-Jockschat & Michel, 2011), and its overexpression has emerged

as potential factor in ASD pathophysiology (Abdallah et al., 2013;

Connolly et al., 2006; Correia et al., 2010; Miyazaki et al., 2004; Nelson

et al., 2001). However, despite a possible link between SHANK and

BDNF (Bourgeron, 2015; Koh, Lim, Byun, & Yoo, 2014), BDNF levels

have not been investigated in any of the available Shank models so far,

in contrast to other ASD mouse models. For example, in the valproic-

acid (VPA) model, a transient increase in Bdnf mRNA and protein levels

was observed in the fetal brain after exposure to VPA, a widely used

anti-epileptic drug also acting as histone deacetylase (HDAC) inhibitor

(Almeida, Roby, & Krueger, 2014). Similarly, in the Fmr1 knockout

model for fragile X syndrome, BDNF protein levels were decreased in

the cortex but increased in the hippocampus (Louhivuori et al., 2011).

Besides, BDNF-overexpressing mice were reported to display memory

deficits (Papaleo et al., 2011), consistent with the object recognition

impairments seen in BDNF-overexpressing Shank12/2 mice.

It is of great interest to unveil how BDNF expression is upregu-

lated in Shank12/2 mice. In addition to protein levels, we therefore

investigated changes in the epigenetic regulation of hippocampal

BDNF expression. The structure of the Bdnf gene is complex as it con-

sists of eight 50-noncoding promoter exons which are spliced to one

common 3’ exon coding for the BDNF preprotein amino acid sequence

and results in different Bdnf transcripts. These different Bdnf promoters

are used to achieve precise temporal and spatial control of BDNF pro-

duction (Timmusk et al., 1993). Transcription from these promoters is

tightly regulated by DNA methylation as well as histone modifications.

While CpG methylation of Bdnf promoters is linked to silencing of the

gene, acetylation of the histones H3 and H4 mediates transcriptional

activation (Boulle et al., 2012; Tessarz & Kouzarides, 2014). Consistent
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with the observed increase in hippocampal BDNF protein levels, we

detected an enrichment of H3 but not H4 acetylation at the Bdnf

promoter1 in Shank12/2 mice, compared to Shank11/1 littermates. Of

note, this alteration in epigenetic regulation was specifically observed

for Bdnf but not for Il2, Il6, or Tnf-a, which are also implicated in cogni-

tive functioning (Balschun et al., 2004; del Rey, Balschun, Wetzel, Ran-

dolf, & Besedovsky, 2013; Petitto, McNamara, Gendreau, Huang, &

Jackson, 1999) and, particularly Il6, linked to ASD (Masi et al., 2015),

indicating that differences in the epigenetic regulation of BDNF

between Shank12/2 mice and Shank11/1 littermates are not due to a

general effect. These findings go in line with previous reports showing

varying histone signatures at Bdnf promoters, yet linking H3 acetylation

of promoter1 with increased Bdnf mRNA expression (Boulle et al.,

2012; Bredy et al., 2007). Active demethylation within the regulatory

region of the Bdnf gene after depolarization of neurons has been

described to induce BDNF production (Martinowich et al., 2003).

Whether this mechanism acts in support of the detected permissive

histone marks needs to be further evaluated. While our data adds to

growing evidence linking SHANK and ASD through epigenetic modifi-

cations (Uchino & Waga, 2013), suggesting epigenetic regulation as a

potential therapeutic target, e.g. with HDACs being a primary target or

by administration of the methyl donor S-adenosylmethionine (Szyf,

2015), alternate pathways might be involved, including compensatory

mechanisms via the synaptic zinc-metalloproteinase-BDNF axis (Koh

et al., 2014; but see: Grabrucker, 2014).

In humans, cognitive impairment is common in ASD, and !70% of

individuals with ASD suffer from mental retardation (Fombonne, 1999).

Interestingly, mutations of SHANK genes were detected in the whole

spectrum, with a gradient of severity in intellectual disability (Leblond

et al., 2014). Specifically, SHANK3 mutations were mainly found in indi-

viduals with ASD combined with moderate to severe mental retarda-

tion, SHANK2 mutations in cases with ASD and mild intellectual

disability, and SHANK1 mutations mostly in individuals with ASD and

normal IQ. Despite normal IQ-values in most individuals with ASD car-

rying a SHANK1 deletion, cognitive processes might still be affected

due to immature neuronal networks with reduced numbers of large

spine heads (Sala et al., 2015), consistent with in-vitro studies demon-

strating that overexpression of Shank1 leads to increased spine size

(Sala et al., 2001). In fact, evidence for a role of SHANK1 in learning

and memory was first provided by a study on SHANK1 promoter var-

iants showing that the rs3810280 T-allele variant is associated with

reduced auditory working memory capacity (Lennertz et al., 2012).

Moreover, very recently Wang et al. (2016) reported a SHANK1 muta-

tion in an individual with ASD and intellectual disability, strongly sup-

porting a link between SHANK1 and cognitive functioning, and in line

with our mouse findings.

5 | CONCLUSIONS

Together, our findings indicate that Shank1 deletions lead to an aber-

rant cognitive phenotype characterized by severe impairments in

object recognition memory and increased hippocampal BDNF levels,

possibly due to epigenetic modifications. This result supports the link

between ASD and intellectual disability, and suggests epigenetic regu-

lation as a potential therapeutic target.

ACKNOWLEDGMENTS

This work was supported by a grant from the Deutsche Forschungs-

gemeinschaft to M.W. (DFG; WO 1732/1–1) and a young investiga-

tor grant from the Faculty of Psychology, Philipps-University of

Marburg, to M.W. (PUM; WO 2012/1). The authors wish to thank

Jacqueline Crawley, University of California Davis School of Medi-

cine, and the Howard Hughes Medical Institute investigators Albert

Hung and Morgan Sheng for providing the Shank1 mouse line. The

authors also wish to thank Elena Andres and Tobias Redecker for

their help in this project.

REFERENCES

Abdallah, M. W., Mortensen, E. L., Greaves-Lord, K., Larsen, N., Bone-

feld-Jørgensen, E. C., Nørgaard-Pedersen, B., . . . Grove, J. (2013).

Neonatal levels of neurotrophic factors and risk of autism spectrum

disorders. Acta Psychiatrica Scandinavica, 128, 61–69.

Almeida, L. E. F., Roby, C. D., & Krueger, B. K. (2014). Increased BDNF

expression in fetal brain in the valproic acid model of autism. Molecu-

lar Cell Neuroscience, 59, 57–62.

Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy

of autism. Trends in Neuroscience, 31, 137–145.

American Psychiatric Association; APA. (2013). Diagnostic and Statistical

Manual of Mental Disorders (5th ed.): DSM-5.

Antunes, M., & Biala, G. (2012). The novel object recognition memory:

Neurobiology, test procedure, and its modifications. Cognitive Proc-

essing, 13, 93–110.

Balschun, D., Wetzel, W., Del Rey, A., Pitossi, F., Schneider, H., Zuschrat-

ter, W., & Besedovsky, H. O. (2004). Interleukin-6: A cytokine to for-

get. FASEB Journal, 18, 1788–1790.

Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neu-

rotrophic factor from mammalian brain. EMBO Journal, 1, 549–553.

Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., . . .

Rappold, G. A. (2010). Mutations in the SHANK2 synaptic scaffolding

gene in autism spectrum disorder and mental retardation. Nature

Genetics, 42, 489–491.

Berkel, S., Tang, W., Trevi~no, M., Vogt, M., Obenhaus, H. A., Gass, P., . . .

Rappold, G. A. (2012). Inherited and de novo SHANK2 variants asso-

ciated with autism spectrum disorder impair neuronal morphogenesis

and physiology. Human Molecular Genetics, 21, 344–357.

Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice:

A one-trial non-matching-to-sample learning task to study ‘recogni-

tion memory’. Nature Protocol, 1, 1306–1311.

Boeckers, T. M., Segger-Junius, M., Iglauer, P., Bockmann, J., Gundelfin-

ger, E. D., Kreutz, M. R., . . . Kreienkamp, H. J. (2004). Differential

expression and dendritic transcript localization of Shank family mem-

bers: Identification of a dendritic targeting element in the 30 untrans-

lated region of Shank1 mRNA. Molecular Cell Neuroscience, 26, 182–

190.

Boulle, F., van den Hove, D. L., Jakob, S. B., Rutten, B. P., Hamon, M.,

van Os, J., . . . Kenis, G. (2012). Epigenetic regulation of the BDNF

gene: Implications for psychiatric disorders. Molecular Psychiatry, 17,

584–596.

€OZGE SUNGUR ET AL. | 11

- 53 -

Publications – Study I 

 

 

  



Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity

in autism spectrum disorder. Nature Review Neuroscience, 16, 551–

563.

Bredy, T. W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y. E., & Barad, M.

(2007). Histone modifications around individual BDNF gene pro-

moters in prefrontal cortex are associated with extinction of condi-

tioned fear. Learning and Memory, 14, 268–276.

Callaghan, C. K., & Kelly, A. M. (2013). Neurotrophins play differential

roles in short and long-term recognition memory. Neurobiology Learn-

ing and Memory, 2013 104, 39–48.

Connolly, A. M., Chez, M., Streif, E. M., Keeling, R. M., Golumbek, P. T.,

Kwon, J. M., . . . Deuel, R. M. (2006). Brain-derived neurotrophic fac-

tor and autoantibodies to neural antigens in sera of children with

autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy.

Biology and Psychiatry, 59, 354–363.

Correia, C. T., Coutinho, A. M., Sequeira, A. F., Sousa, I. G., Lourenço

Venda, L., Almeida, J. P., . . . Vicente, A. M. (2010). Increased BDNF

levels and NTRK2 gene association suggest a disruption of BDNF/

TrkB signaling in autism. Genes, Brain and Behavior, 9, 841–848.

Cowansage, K. K., LeDoux, J. E., & Monfils, M. H. (2010). Brain-derived

neurotrophic factor: A dynamic gatekeeper of neural plasticity. Cur-

rent Molecular Pharmacology, 3, 12–29.

de la Torre-Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H. (2016).

Advancing the understanding of autism disease mechanisms through

genetics. Nature Medicine, 22, 345–361.

del Rey, A., Balschun, D., Wetzel, W., Randolf, A., & Besedovsky, H. O.

(2013). A cytokine network involving brain-borne IL-1b, IL-1ra, IL-18,

IL-6, and TNFa operates during long-term potentiation and learning.

Brain Behavior and Immunity, 33, 15–23.

Dere, E., Huston, J. P., & De Souza Silva, M. A. (2007). The pharmacol-

ogy, neuroanatomy and neurogenetics of one-trial object recognition

in rodents. Neuroscience and Biobehavioral Reviews, 31, 673–704.

Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P.,

Fauchereau, F., . . . Burglen, L. (2007). Mutations in the gene encod-

ing the synaptic scaffolding protein SHANK3 are associated with

autism spectrum disorders. Nature Genetics, 39, 25–27.

Ebert, D. H., & Greenberg, M. E. (2013). Activity-dependent neuronal sig-

nalling and autism spectrum disorder. Nature, 493, 327–337.

Ellegood, J., Anagnostou, E., Babineau, B. A., Crawley, J. N., Lin, L., Gen-

estine, M., . . . Xuan, Z. (2015). Clustering autism: Using neuroana-

tomical differences in 26 mouse models to gain insight into the

heterogeneity. Molecular Psychiatry, 20, 118–125.

Endres, T., & Lessmann, V. (2012). Age-dependent deficits in fear learn-

ing in heterozygous BDNF knock-out mice. Learning and Memory, 19,

561–570.

Epstein, I., Tushev, G., Will, T. J., Vlatkovic, I., Cajigas, I. J., & Schuman, E.

M. (2014). Alternative polyadenylation and differential expression of

Shank mRNAs in the synaptic neuropil. Philosophical Transactions of

the Royal Society of London. Series B: Biological Sciences, 369,

e20130137.

Filice, F., V€orckel, K. J., Sungur, A. €O., W€ohr, M., & Schwaller, B. (2016).

Reduction in parvalbumin expression not loss of the parvalbumin-

expressing GABA interneuron subpopulation in genetic parvalbumin

and shank mouse models of autism. Molecular Brain, 9, e10.

Fombonne, E. (1999). The epidemiology of autism: A review. Psychologi-

cal Medicine, 29, 769–786.

Gauthier, J., Spiegelman, D., Piton, A., Lafrenière, R. G., Laurent, S., St-

Onge, J., . . . Rouleau, G. A. (2009). Novel de novo SHANK3 mutation

in autistic patients. American Journal of Medical Genetics Part B: Neu-

ropsychiatric Genetics, 150B, 421–424.

Grabrucker, A. M. (2014). A role for synaptic zinc in ProSAP/Shank PSD

scaffold malformation in autism spectrum disorders. Developmental

Neurobiology, 74, 136–146.

Guilmatre, A., Huguet, G., Delorme, R., & Bourgeron, T. (2014). The

emerging role of SHANK genes in neuropsychiatric disorders. Devel-

opmental Neurobiology, 74, 113–122.

Harb, H., Amarasekera, M., Ashley, S., Tulic, M. K., Pfefferle, P. I., Potac-

zek, D. P., . . . Renz, H. (2015). Epigenetic regulation in early child-

hood: A miniaturized and validated method to assess histone

acetylation. International Archives of Allergy and Immunology, 168,

173–181.

Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is

essential for social memory. Nature, 508, 88–92.

Hung, A. Y., Futai, K., Sala, C., Valtschanoff, J. G., Ryu, J., Woodworth,

M. A., . . . Sheng, M. (2008). Smaller dendritic spines, weaker synaptic

transmission, but enhanced spatial learning in mice lacking Shank1.

Journal of Neuroscience, 28, 1697–1708.

Jiang, Y., & Ehlers, M. D. (2013). Modeling autism by SHANK gene muta-

tions in mice. Neuron, 78, 8–27.

Koh, J.-Y., Lim, J., Byun, H.-R., & Yoo, M.-H. (2014). Abnormalities in the

zinc-metalloprotease-BDNF axis may contribute to megalencephaly

and cortical hyperconnectivity in young autism spectrum disorder

patients. Molecular Brain, 7, e64.

Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., & Bonhoeffer, T.

(1995). Hippocampal long-term potentiation is impaired in mice lack-

ing brain-derived neurotrophic factor. Proceedings of the National

Academy of Sciences of the United States of America, 92, 8856–8860.

Leblond, C. S., Heinrich, J., Delorme, R., Proepper, C., Betancur, C.,

Huguet, G., . . . Skuse, D. (2012). Genetic and functional analyses of

SHANK2 mutations suggest a multiple hit model of autism spectrum

disorders. PLoS Genetics, 8, e1002521.

Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S.,

. . . Amsellem, F. (2014). Meta-analysis of SHANK mutations in autism

spectrum disorders: A gradient of severity in cognitive impairments.

PLoS Genetics, 10, e1004580.

Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakow-

ski, P., . . . Barde, Y. A. (1989). Molecular cloning and expression of

brain-derived neurotrophic factor. Nature, 341, 149–152.

Lennertz, L., Wagner, M., W€olwer, W., Schuhmacher, A., Frommann, I.,

Berning, J., . . . M€ossner, R. (2012). A promoter variant of SHANK1

affects auditory working memory in schizophrenia patients and in

subjects clinically at risk for psychosis. European Archives of Psychiatry

and Clinical Neuroscience, 262, 117–124.

Li, J., Wilkinson, B., Clementel, V. A., Hou, J., O’dell, T. J., & Coba, M. P.

(2016). Long-term potentiation modulates synaptic phosphorylation

networks and reshapes the structure of the postsynaptic interac-

tome. Science Signal, 9, e8.

Louhivuori, V., Vicario, A., Uutela, M., Rantamäki, T., Louhivuori, L. M.,

Castr"en, E., . . . Castr"en, M. L. (2011). BDNF and TrkB in neuronal dif-

ferentiation of Fmr1-knockout mouse. Neurobiology of Disease, 41,

469–480.

Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., . . . Sun, Y.

E. (2003). DNA methylation-related chromatin remodeling in activity-

dependent BDNF gene regulation. Science, 302, 890–893.

Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., &

Guastella, A. J. (2015). Cytokine aberrations in autism spectrum dis-

order: A systematic review and meta-analysis. Molecular Psychiatry,

20, 440–446.

Miyazaki, K., Narita, N., Sakuta, R., Miyahara, T., Naruse, H., Okado, N.,

& Narita, M. (2004). Serum neurotrophin concentrations in autism

12 | €OZGE SUNGUR ET AL.

- 54 -

Publications – Study I 

 

 

  



and mental retardation: A pilot study. Brain and Development, 26,

292–295.

Moessner, R., Marshall, C. R., Sutcliffe, J. S., Skaug, J., Pinto, D., Vincent,

J., . . . Scherer, S. W. (2007). Contribution of SHANK3 mutations to

autism spectrum disorder. American Journal of Human Genetics, 81,

1289–1297.

Mu~noz, P. C., Asp"e, M. A., Contreras, L. S., & Palacios, A. G. (2010). Cor-

relations of recognition memory performance with expression and

methylation of brain-derived neurotrophic factor in rats. Biological

Research, 43, 251–258.

Nelson, K. B., Grether, J. K., Croen, L. A., Dambrosia, J. M., Dickens, B.

F., Jelliffe, L. L., . . . Phillips, T. M. (2001). Neuropeptides and neuro-

trophins in neonatal blood of children with autism or mental retarda-

tion. Annals of Neurology, 49, 597–606.

Nickl-Jockschat, T., & Michel, T. M. (2011). The role of neurotrophic fac-

tors in autism. Molecular Psychiatry, 16, 478–490.

Papaleo, F., Silverman, J. L., Aney, J., Tian, Q., Barkan, C. L., Chadman, K.

K., & Crawley, J. N. (2011). Working memory deficits, increased

anxiety-like traits, and seizure susceptibility in BDNF overexpressing

mice. Learning and Memory, 18, 534–544.

Park, H., & Poo, M. M. (2013). Neurotrophin regulation of neural circuit

development and function. Nature Review Neuroscience, 14, 7–23.

Peça, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman,

T. N., . . . Feng, G. (2011). Shank3 mutant mice display autistic-like

behaviours and striatal dysfunction. Nature, 472, 437–442.

Petitto, J. M., McNamara, R. K., Gendreau, P. L., Huang, Z., & Jackson, A.

J. (1999). Impaired learning and memory and altered hippocampal

neurodevelopment resulting from interleukin-2 gene deletion. Journal

of Neuroscience Research, 56, 441–446.

Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., . . .

Bolton, P. F. (2010). Functional impact of global rare copy number

variation in autism spectrum disorders. Nature, 466, 368–372.

Piskorowski, R. A., Nasrallah, K., Diamantopoulou, A., Mukai, J., Hassan,

S. I., Siegelbaum, S. A., . . . Chevaleyre, V. (2016). Age-dependent spe-

cific changes in area CA2 of the hippocampus and social memory

deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron,

89, 163–176.

Radwan, B., Dvorak, D., & Fenton, A. A. (2016). Impaired cognitive dis-

crimination and discoordination of coupled theta-gamma oscillations

in Fmr1 knockout mice. Neurobiology of Disease, 88, 125–138.

Robinson, E. B., Lichtenstein, P., Anckarsäter, H., Happ"e, F., & Ronald, A.

(2013). Examining and interpreting the female protective effect

against autistic behavior. Proceedings of the National Academy of Sci-

ences of the United States of America, 110, 5258–5262.

Sala, C., Pi€ech, V., Wilson, N. R., Passafaro, M., Liu, G., & Sheng, M.

(2001). Regulation of dendritic spine morphology and synaptic func-

tion by Shank and Homer. Neuron, 31, 115–130.

Sala, C., Vicidomini, C., Bigi, I., Mossa, A., & Verpelli, C. (2015). Shank

synaptic scaffold proteins: Keys to understanding the pathogenesis

of autism and other synaptic disorders. Journal of Neurochemistry,

135, 849–858.

Santini, E., & Klann, E. (2014). Reciprocal signaling between translational

control pathways and synaptic proteins in autism spectrum disorders.

Science Signal, 7, e10.

Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., . . .

Stavropoulos, D. J. (2012). SHANK1 deletions in males with autism

spectrum disorder. American Journal of Human Genetics, 90, 879–887.

Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V.,

Kuebler, A., . . . Toro, R. (2012). Autistic-like behaviours and hyperac-

tivity in mice lacking ProSAP1/Shank2. Nature, 486, 256–260.

Schmeisser, M. J., & Verpelli, C. (2016). SHANK mutations in intellectual

disability and autism spectrum disorder. Neuronal and Synaptic Dys-

function in Autism Spectrum Disorder and Intellectual Disability, 1,

151–160.

Silverman, J. L., Turner, S. M., Barkan, C. L., Tolu, S. S., Saxena, R., Hung,

A. Y., . . . Crawley, J. N. (2011). Sociability and motor functions in

Shank1 mutant mice. Brain Research, 1380, 120–137.

Studtmann, K., Olschläger-Sch€utt, J., Buck, F., Richter, D., Sala, C., Bock-

mann, J., . . . Kreienkamp, H. J. (2014). A noncanonical initiation site

is required for efficient translation of the dendritically localized

Shank1 mRNA. PLoS One, 9, e88518.

Sungur, A. €O., Schwarting, R. K. W., & W€ohr, M. (2016). Early communi-

cation deficits in the Shank1 knockout mouse model for autism spec-

trum disorder: Developmental aspects and effects of social context.

Autism Research, 9, 696–709.

Sungur, A. €O., V€orckel, K. J., Schwarting, R. K. W., & W€ohr, M. (2014).

Repetitive behaviors in the Shank1 knockout mouse model for

autism spectrum disorder: Developmental aspects and effects of

social context. Journal of Neurosci. Methods, 234, 92–100.

Szyf, M. (2015). Prospects for the development of epigenetic drugs for

CNS conditions. Nature Review of Drug Discovery, 14, 461–474.

Tessarz, P., & Kouzarides, T. (2014). Histone core modifications regulat-

ing nucleosome structure and dynamics. Nature Review of Molecular

Cell Biology, 15, 703–708.

Timmusk, T., Palm, K., Metsis, M., Reintam, T., Paalme, V., Saarma, M., &

Persson, H. (1993). Multiple promoters direct tissue-specific expres-

sion of the rat BDNF gene. Neuron, 10, 475–489.

Ting, J. T., Peça, J., & Feng, G. (2012). Functional consequences of muta-

tions in postsynaptic scaffolding proteins and relevance to psychiatric

disorders. Annual Review of Neuroscience, 35, 49–71.

Uchino, S., & Waga, C. (2013). SHANK3 as an autism spectrum disorder-

associated gene. Brain Development, 35, 106–110.

Valluy, J., Bicker, S., Aksoy-Aksel, A., Lackinger, M., Sumer, S., Fiore, R.,

. . . Schratt, G. (2015). A coding-independent function of an alterna-

tive Ube3a transcript during neuronal development. Nature Neuro-

science, 18, 666–673.

Wang, T., Guo, H., Xiong, B., Stessman, H. A., Wu, H., Coe, B. P., . . .

Eichler, E. E. (2016). De novo genic mutations among a Chinese

autism spectrum disorder cohort. Nature Communication, 7, e13316.

Wang, X., McCoy, P. A., Rodriguiz, R. M., Pan, Y., Je, H. S., Roberts, A.

C., . . . Jiang, Y. H. (2011). Synaptic dysfunction and abnormal behav-

iors in mice lacking major isoforms of Shank3. Human Molecular

Genetics, 20, 3093–3108.

W€ohr, M. (2014). Ultrasonic vocalizations in Shank mouse models for

autism spectrum disorders: Detailed spectrographic analyses and

developmental profiles. Neuroscience Biobehavioral Review, 43,

199–212.

W€ohr, M., Orduz, D., Gregory, P., Moreno, H., Khan, U., V€orckel, K. J., . . .

Schwaller, B. (2015). Lack of parvalbumin in mice leads to behavioral

deficits relevant to all human autism core symptoms and related neural

morphofunctional abnormalities. Translational Psychiatry, 5, e525.

W€ohr, M., Roullet, F. I., Hung, A. Y., Sheng, M., & Crawley, J. N. (2011).

Communication impairments in mice lacking Shank1: Reduced levels

of ultrasonic vocalizations and scent marking behavior. PLoS One, 6,

e20631.

W€ohr, M., Silverman, J. L., Scattoni, M. L., Turner, S. M., Harris, M. J.,

Saxena, R., & Crawley, J. N. (2013). Developmental delays and

reduced pup ultrasonic vocalizations but normal sociability in mice

lacking the postsynaptic cell adhesion protein neuroligin2. Behavioral

Brain Research, 251, 50–64.

€OZGE SUNGUR ET AL. | 13

- 55 -

Publications – Study I 

 

 

  



Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., . . . Kim, E.

(2012). Autistic-like social behaviour in Shank2-mutant mice improved

by restoring NMDA receptor function. Nature, 486, 261–265.

Yang, M., Bozdagi, O., Scattoni, M. L., W€ohr, M., Roullet, F. I., Katz, A.

M., . . . Crawley, J. N. (2012). Reduced excitatory neurotransmission

and mild autism-relevant phenotypes in adolescent Shank3 null

mutant mice. Journal of Neuroscience, 32, 6525–6541.

Yoo, J., Bakes, J., Bradley, C., Collingridge, G. L., & Kaang, B. K. (2013). Shank

mutant mice as an animal model of autism. Philosophical Transactions of

the Royal Society of London. Series B: Biological Sciences, 369, 20130143.

Zitzer, H., Honck, H. H., Bachner, D., Richter, D., & Kreienkamp, H. J.

(1999). Somatostatin receptor interacting protein defines a novel

family of multidomain proteins present in human and rodent brain.

Journal of Biological Chemistry, 274, 32997–33001.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Sungur A. €Ozge, Jochner MCE, Harb H,

et al. Aberrant cognitive phenotypes and altered hippocampal

BDNF expression related to epigenetic modifications in mice

lacking the post-synaptic scaffolding protein SHANK1: Implica-

tions for autism spectrum disorder. Hippocampus.

2017;00:1–14. https://doi.org/10.1002/hipo.22741

14 | €OZGE SUNGUR ET AL.

- 56 -

Publications – Study I 

 

 

  



Publications – Study I 

- 57 - 

 

SUPPLEMENTARY MATERIAL 

 

SUPPLEMENTARY FIGURES 

Supplementary Figure 1: 

 

 

SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Interleukin 2 (Il2), interleukin 6 (Il6) and tumor necrosis factor-

alpha (Tnf-) histone acetylation levels in juvenile Shank1 mice. Histone 3 (H3) and 4 (H4) 

acetylation levels are depicted by enrichment levels (relative to housekeeping gene; HKG). There 

were no differences in acetylation levels for (A) Il2, (B) Il6, and  (C) Tnf- in the hippocampi of 

the Shank1
-/-

 mice (white bar) in comparison to Shank1
+/+

 mice (black bar). Data are presented as 

means+SEM. 
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RESEARCH ARTICLE

Early Communication Deficits in the Shank1 Knockout Mouse Model
for Autism Spectrum Disorder: Developmental Aspects and Effects of
Social Context

A. €Ozge Sungur, Rainer K.W. Schwarting, and Markus W€ohr

Alterations in SHANK genes were repeatedly reported in autism spectrum disorder (ASD). ASD is a group of neurode-

velopmental disorders diagnosed by persistent deficits in social communication/interaction across multiple contexts,

with restricted/repetitive patterns of behavior. To date, diagnostic criteria for ASD are purely behaviorally defined and

reliable biomarkers have still not been identified. The validity of mouse models for ASD therefore strongly relies on

their behavioral phenotype. Here, we studied communication by means of isolation-induced pup ultrasonic vocaliza-

tions (USV) in the Shank1 mouse model for ASD by comparing Shank12/2 null mutant, Shank11/2 heterozygous, and

Shank11/1 wildtype littermate controls. The first aim of the present study was to evaluate the effects of Shank1 dele-

tions on developmental aspects of communication in order to see whether ASD-related communication deficits are

due to general impairment or delay in development. Second, we focused on social context effects on USV production.

We show that Shank12/2 pups vocalized less and displayed a delay in the typical inverted U-shaped developmental

USV emission pattern with USV rates peaking on postnatal day (PND) 9, resulting in a prominent genotype difference

on PND6. Moreover, testing under social conditions revealed even more prominently genotype-dependent deficits

regardless of the familiarity of the social context. As communication by definition serves a social function, introduc-

ing a social component to the typically nonsocial test environment could therefore help to reveal communication

deficits in mouse models for ASD. Together, these results indicate that SHANK1 is involved in acoustic communica-

tion across species, with genetic alterations in SHANK1 resulting in social communication/interaction deficits.

Autism Res 2016, 9: 696–709. VC 2015 International Society for Autism Research, Wiley Periodicals, Inc.

Keywords: animal model; postsynaptic density; neurodevelopmental disorders; autism; communication; ultrasonic

vocalization; social context

Introduction

Autism Spectrum Disorder (ASD) is a group of neurode-

velopmental disorders with a strong genetic compo-

nent. ASD is diagnosed by persistent deficits in social

communication/interaction across multiple contexts,

with restricted/repetitive patterns of behavior [Ameri-

can Psychiatric Association, 2013]. While the exact

causes of ASD remain unknown, there is evidence for

alterations in various molecular pathways involved in

glutamatergic neurotransmission, particularly synapse

formation and functioning, likely resulting in an imbal-

ance between inhibitory and excitatory synaptic cur-

rents [Bourgeron, 2009; Peça & Feng, 2012; Tang et al.,

2014]. Expression of SHANK genes is a key component

of these ASD-associated pathways as the protein prod-

ucts are enriched in the postsynaptic density (PSD) of

glutamatergic neurons. The unique and highly con-

served domains grant specificity for protein–protein

interactions, suggesting an important organizational

role at the PSD [Ting, Peça, & Feng, 2012], with the

three SHANK family members, SHANK1, SHANK2, and

SHANK3, serving as master scaffolding proteins by link-

ing to the actin cytoskeleton and interacting with

AMPAR, NMDAR, mGluR, and neuroligins through

GKAP/SAPAP and Homer [Kim & Sheng, 2004; Naisbitt

et al., 1999].

Alterations in SHANK genes, such as deletions, dupli-

cations, and coding mutations, were repeatedly

reported in ASD [Guilmatre, Huguet, Delorme, & Bour-

geron, 2014; Leblond et al., 2014]. Specifically, Durand

et al. [2007] first described mutations in SHANK3, with

subsequent studies reporting mutations in SHANK1

[Sato et al., 2012], SHANK2 [Berkel et al., 2010; Leblond

et al., 2012; Pinto et al., 2010], and SHANK3 [Gauthier

et al., 2009; Moessner et al., 2007] in cases of ASD and
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schizophrenia patients with ASD traits. Moreover,

SHANK3 haploinsufficiency has been found in patients

affected by the Phelan-McDermid 22q13 deletion syn-

drome, a form of mental retardation often paralleled by

ASD features, such as impaired language acquisition

[Bonaglia et al., 2001; Manning et al., 2004; Phelan

et al., 2001; Wilson et al., 2003]. Up to now, more than

900 patients with genetic alterations in SHANK genes

were identified, with the SHANK gene family being the

primary gene family implicated in ASD [Leblond et al.,

2014]. Furthermore, valproate treatment, probably the

best established environmental risk factor for ASD

[Moore et al., 2000] and being associated with speech

delay [Dean et al., 2002], was shown to reduce Shank

mRNA levels in cortical brain areas in mice [De Bartolo-

meis, Tomasetti, Cicale, Yuan, & Manji, 2012]. Conse-

quently, various genetic Shank models were generated,

including Shank1 [Hung et al., 2008], Shank2

[Schmeisser et al., 2012; Won et al., 2012], and Shank3

null mutant mice [Kouser et al., 2013, Peça et al., 2011;

Wang et al., 2011; Yang et al., 2012] that allow to study

neurobiological factors underlying ASD and to test

novel pharmacological treatments for their efficacy in

reversing ASD-related behavioral phenotypes.

To date, the diagnostic criteria for ASD are purely

behaviorally defined and reliable biomarkers have still

not been identified. The validity of genetic mouse mod-

els for ASD therefore strongly relies on their behavioral

phenotype. For this reason, deep and longitudinal

behavioral phenotyping constitutes the principle com-

ponent for current translational research, which

strongly depends on sensitive behavioral test paradigms

with relevance to each symptom category [Silverman,

Yang, Lord, & Crawley, 2010]. Within the last decade, a

comprehensive set of behavioral assays for detecting

deficits in mouse social and communication behavior

across multiple contexts was developed [Bishop &

Lahvis, 2011; Silverman et al., 2010; W€ohr & Scattoni,

2013]. Typically, ultrasonic vocalizations (USV) are used

for assessing communication deficits in mouse models

for ASD [Scattoni, Crawley, & Ricceri, 2009; W€ohr,

2014]. Mice emit distinct types of USV depending on

developmental stage and social context: isolation-

induced USV in pups, and interaction-induced USV in

juveniles and adults. USV emitted by pups are mainly

driven by separation from mother and littermates [Zip-

pelius & Schleidt, 1956]. Such isolation-induced USV

often increase during the first week of life and decrease

thereafter, giving rise to an inverted U-shaped pattern

of call emission. In mouse models for ASD, this

inverted U-shaped developmental call emission pattern

is commonly delayed and/or distorted [Chadman et al.,

2008; Ey et al., 2013; Mosienko, Beis, Alenina, & W€ohr,

2015; Schmeisser et al., 2012]. Besides developmental

factors, social odors play an important role in modulat-

ing pup USV emission [Branchi, Santucci, Vitale, &

Alleva, 1998]. This is particularly relevant for mouse

models for ASD, as it is believed that ASD is character-

ized by deficits in the processing of social context infor-

mation [American Psychiatric Association, 2013]. For

instance, it has been repeatedly shown that mouse pups

emit fewer USV when exposed to nest odor than to

clean bedding [D’Amato & Cabib, 1987; Moles, Kieffer,

& D’Amato, 2004; W€ohr, 2015]. Emphasizing the rele-

vance of such a calming response for ASD mouse mod-

els, no such effect was seen in the l-opioid knockout

mouse model for ASD [Moles et al., 2004], which dis-

plays a variety of ASD-related behavioral deficits,

including communication deficits [Oddi, Crusio,

D’Amato, & Pietropaolo, 2013]. Furthermore, also the

well-established BTBR T1tf/J mouse model for ASD

[Blanchard et al., 2012; Meyza et al., 2013] showed a

limited ability and/or reduced motivation to adjust to

different social contexts [W€ohr, 2015].

The first Shank mouse model for ASD was generated

by Hung et al. [2008] via disruption of the Shank1 gene

through deletion of exons 14 and 15, leading to a com-

plete knockout of all SHANK1 proteins. Behavioral stud-

ies revealed that Shank1 null mutants manifest

increased anxiety-related behavior, impaired contextual

fear memory, and enhanced acquisition but impaired

retention of spatial learning, possibly resembling the

aberrant cognitive phenotype present in some ASD

cases [Hung et al., 2008; Silverman et al., 2011]. While

social interaction behavior was reported to be

unchanged [Silverman et al., 2011], evidence for life-

long communication deficits was provided [W€ohr, Roul-

let, Hung, Sheng, & Crawley, 2011]. Specifically, W€ohr

et al. [2011] found reduced isolation-induced USV in

pups, together with early developmental deficits. They

further observed a lack of social modulation of adult

male USV in response to female urine and reduced

scent marking behavior in Shank1 null mutants, indi-

cating a failure to learn from social experiences. Shank1

null mutants also displayed strong alterations in repeti-

tive behavior, with elevated self-grooming behavior,

particularly when tested in a social context [Sungur,

V€orckel, Schwarting, & W€ohr, 2014].

Currently, little is known about the mechanisms

underlying the ultrasonic communication deficits dis-

played by Shank1 null mutant pups and whether such

deficits persist across multiple social contexts has not

been tested yet. The first aim of the present study was

therefore to evaluate the effects of Shank1 deletions on

developmental aspects of communication to see

whether ASD-related communication deficits are due to

general impairment or delay in development. Second,

we focused on the effects of social context on USV pro-

duction, by comparing clean bedding, home cage bed-

ding, and male cage bedding conditions.
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Materials and Methods
Animals and Housing

Isolation-induced USV were assessed in Shank12/2 null

mutant mouse pups with a targeted replacement of

exons 14 and 15 encoding almost the entire PDZ

domain and were compared to Shank11/2 heterozygous

and Shank11/1 wildtype littermate control mice. Mice

were obtained from mutant lines originally generated

by Hung et al. [2008] on two independent background

strains: C57BL/6J and 129SvJae. The two lines were

crossed for at least three generations to produce a

mixed C57BL/6J/129SvJae background for the Shank1

mutation, consistent with other studies focusing on

this Shank1 mutant [Hung et al., 2008; Silverman et al.,

2011; Sungur et al., 2014; W€ohr et al., 2011]. Using a

heterozygous breeding protocol, Shank11/2 males and

females were bred in a conventional vivarium at the

Biomedical Research Center of the Philipps-University

of Marburg, Germany. Approximately 2 weeks after

pairing for breeding, females were individually housed

and inspected daily for pregnancy and delivery. The

day of birth was considered as postnatal day (PND) 0.

Bedding and a wooden board were provided in each

cage. Standard rodent chow and water were available ad

libitum. The colony room was maintained on a 12:12

light/dark cycle (lights on: 06:00 hr) at �228C (40–50%

humidity). All procedures were approved by the ethical

committee of the local government (Regierungspr€asi-

dium, Gießen, Germany).

General Overview

Two experiments on isolation-induced USV were con-

ducted, focusing on developmental aspects (Experiment I)

and the effects of social context (Experiment II). In both

experiments, Shank12/2 null mutant, Shank11/2 heterozy-

gous, and Shank11/1 wildtype littermate control mice

were compared. Testing was conducted during the light

phase of the 12:12 hr light/dark cycle. Pups were tested

only once to avoid carry-over effects. They were identified

by paw tattoo and tail samples for genotyping were taken

after completion of behavioral experiments [for details:

Sungur et al., 2014]. Experimenters were blind to geno-

types during data acquisition and analysis.

Independent Variables

Experiment I: developmental aspects. In Experi-

ment I, a design with three independent factors was

used, namely genotype, sex, and development, in order

to study developmental aspects of isolation-induced

USV in a genotype- and sex-dependent manner. To this

aim, mouse pups from different litters were tested on

PND3, PND6, PND9, or PND12, using clean bedding.

Experiment II: effects of social context. In Experi-

ment II, a design with three independent factors was

used, namely genotype, sex, and social context, in

order to study the effects of social context on isolation-

induced USV in a genotype- and sex-dependent man-

ner. To this aim, mouse pups from different litters were

tested on PND9, using clean bedding, home cage bed-

ding, or male cage bedding obtained from a cage with

unfamiliar adult C57BL6/J males. Home cages and male

cages used to obtain soiled bedding material were not

cleaned for two days prior testing in order to expose

mouse pups to sufficiently distinct odor stimuli. Soiled

bedding contained feces. Pups were tested on PND9

since in Experiment I no genotype differences on that

PND were detected under clean bedding conditions.

Dependent Variables

Isolation-induced USV—Recording. For inducing

isolation-induced USV, pups were isolated from their

mother and littermates for 10 min under room tem-

perature (20–238C). Pups were removed individually

from the nest at random and gently placed into a

glass isolation container (10 3 8 3 6 cm; open sur-

face), containing clean or soiled bedding material

depending on the experiment (Experiment I: clean

bedding material was used throughout; Experiment II:

clean bedding, home cage bedding, and male cage

bedding were compared). The isolation container was

surrounded by a sound attenuating box (21 3 21 3

21 cm) made of Styrofoam (thickness of walls: 6 cm).

USV emission was monitored by an UltraSoundGate

Condenser Microphone CM16 sensitive to frequencies

of 15–180 kHz (flat frequency response between 25

and 140 kHz; 66 dB; Avisoft Bioacoustics, Berlin, Ger-

many) placed in the roof of the sound attenuating

box, 22 cm above the floor. It was connected via an

UltraSoundGate 416 USGH audio device (Avisoft Bioa-

coustics) to a personal computer, where acoustic data

were recorded with a sampling rate of 250,000 Hz (16

bit) by Avisoft RECORDER (version 2.97). Prior to each

test, behavioral equipment was cleaned using 0.1%

acetic acid solution.

Isolation-induced USV—Analysis. For acoustical

analysis, recordings were transferred to Avisoft SASLab

Pro (version 5.20) and a fast Fourier transform was con-

ducted (512 FFT length, 100% frame, Hamming win-

dow, and 75% time window overlap), resulting in

spectrograms with 488 Hz of frequency and 0.512 ms of

time resolution. Call detection was provided by an

automatic threshold-based algorithm (amplitude thresh-

old: 240 dB; hold time: 10 ms; high-pass filter: 30 kHz).

Accuracy of call detection was verified by an experi-

enced user. When necessary, missed calls were marked

698 Sungur et al/Communication deficits in mice lacking Shank1 INSAR

- 61 -

Publications – Study II 

 

 

  



manually to be included in the automatic parameter

analysis. In Experiments I and II, total numbers of USV

were calculated for the entire session and, in Experi-

ment II, in 60 sec time bins to visualize the time course

of the USV response. In Experiment I, additional

parameters included latency to start calling, call dura-

tion, peak frequency, peak amplitude, and frequency

modulation. Finally, the temporal organization of

isolation-induced USV emission was assessed through

sequential analyses and call subtypes were determined

by means of density plots (for details: Supporting

Information).

Body temperature and weight. After the 10 min

isolation period, body temperature and weight were

determined in pups from Experiment I. For body tem-

perature determination, a Testo 110 thermometer with

surface sensor (Testo AG, Lenzkirch, Germany) was

used. Body weight was measured using a palmscale

(PS6-250; MyWeigh Europe, H€uckelhoven, Germany).

Finally, somatosensory reflexes were determined (for

details: Supporting Information).

Statistical Analysis

For analysis of isolation-induced USV, body tempera-

ture, and weight measured in Experiment I, ANOVAs

with the between-subjects factors genotype, sex, and

PND were calculated to assess genotype differences

between Shank12/2 null mutant, Shank11/2 heterozy-

gous, and Shank11/1 wildtype littermate control mice.

In Experiment II, ANOVAs with the between-subject

factors genotype and sex were applied for each of the

three different social contexts. In addition, ANOVAs for

repeated measures with the between-subject factors

genotype and sex and the within-subject factor minute

were used to analyze the time course of isolation-

induced USV emission. Approximately half of the

Shank11/2 mice were randomly excluded from both

experiments to obtain similar numbers of mice per

genotype. ANOVAs were followed by LSD post hoc

analysis when appropriate. A P-value of <0.050 was

considered statistically significant.

RESULTS
Experiment I: Developmental Aspects

Isolation-induced USV—Development. Emission ra-

tes of isolation-induced USV changed with develop-

ment (F3,131520.614, P<0.001). Specifically, an

inverted U-shaped pattern was detected, with call emis-

sion rates peaking on PND6. High rates were also

detected on PND9, while lower call numbers were found

on PND3 and PND12 (Fig. 1A0). An inverse pattern was

found for latency to start calling (F3,131511.182,

P<0.001), with latencies being lowest on PND6, i.e. the

day with the highest call rate. Call duration gradually

decreased with development (F3,13159.970, P<0.001;

Fig. 2A0). In addition, call peak amplitude (F3,13155.212,

P50.002; Fig. 2B0), peak frequency (F3,13159.408,

P<0.001; Fig. 2C0), and frequency modulation

(F3,13156.473, P<0.001) changed with age. While peak

frequency was characterized by a U-shaped developmen-

tal pattern, an inverted U-shaped pattern was evident in

case of peak amplitude and frequency modulation.

Isolation-induced USV—Genotype. Isolation-in-

duced USV emission rates differed between genotypes

(F2,13153.295, P50.040; genotype 3 development:

F6,13151.555, P50.165). Overall, Shank12/2 null

mutant mouse pups emitted fewer isolation-induced

USV than Shank11/2 heterozygous (P50.003) and

Shank11/1 wildtype littermate controls (P50.006), with

the latter not differing (P50.799; Fig. 1A). When com-

paring genotypes on individual PNDs, no genotype dif-

ferences were obtained on PND3, PND9, and PND12

(all P-values >0.050). However, a strong genotype effect

was found on PND6 (genotype: F2,3654.625, P50.016;

Fig. 1A0). While in Shank11/2 and Shank11/1 controls

call rate was highest on PND6 (Fig. 1A0, solid curve),

call rate was low in Shank12/2 pups on PND6, as com-

pared to Shank11/2 (P50.007) and Shank11/1 controls

(P50.028), which did not differ (P50.562; Fig. 1A0). In

Shank12/2 pups, call emission peaked on PND9 not

PND6, possibly reflecting a delay in early development

(Fig. 1A0, dotted curve). Besides call number, peak

amplitude was affected by genotype (F2,13154.661,

P50.011; genotype 3 development: F6,13151.288,

P50.267). Overall, Shank12/2 pups emitted isolation-

induced USV with lower peak amplitudes than Shank11/

2 (P50.018) and Shank11/1 controls (P50.002), with

the latter not differing (P50.455; Fig. 2B). When com-

paring genotypes on individual PNDs, no genotype dif-

ferences were observed on PND3 and PND6 (all P-values

>0.050), while prominent genotype effects were

detected on PND9 and PND12 (F2,3255.188, P50.011

and F2,3054.965, P50.014; respectively). On PND9,

isolation-induced USV emitted by Shank12/2 pups were

lower in amplitude than the ones emitted by Shank11/2

(P50.017) and Shank11/1 controls (P50.002), with the

latter not differing (P50.375). On PND12, isolation-

induced USV emitted by Shank12/2 pups were again

lower in amplitude than the ones emitted by Shank11/1

controls (P50.017), yet the difference between

Shank12/2 and Shank11/2 pups was not statistically sig-

nificant anymore (P50.310). Also, Shank11/2 and

Shank11/1 pups did not differ (P50.122; Fig. 2B0). No

evidence for genotype differences was obtained for the

other call parameters, including call duration (Fig. 2A
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and A0) and peak frequency (Fig. 2C and C0; all P-values

>0.050; genotype x development: all P-values >0.050).

Isolation-induced USV—Sex. USV numbers differed

between males and females in an age-dependent man-

ner (F1,13153.075, P50.082; sex 3 development:

F3,13152.907, P50.037). While no sex differences

were obtained on PND3, PND6, and PND12 (all P-val-

ues >0.050), a sex effect was found on PND9

(F1,3255.695, P50.023), with females emitting more

isolation-induced USV than males. Besides call num-

ber, call duration was affected by sex in an age-

dependent manner (F1,13150.126, P50.723; sex 3

development: F3,13152.837, P50.041). No sex differ-

ences were obtained on PND3, PND9, and PND12 (all

P-values >0.050), but on PND6 (F1,3657.692,

P50.009), with females emitting longer isolation-

induced USV than males. For the other call parame-

ters, no evidence for sex effects or interactions

between sex and genotype was obtained (all P-values

>0.050; not shown).

Isolation-induced USV—Detailed subtype and

temporal analyses. In a subsequent detailed subtype

analysis based on 1,000-8,000 calls emitted by Shank12/2

pups per PND and 5,000–15,000 calls per PND from

Shank11/1 controls, clusters of isolation-induced USV

were revealed by density plots (Fig. 3). On PND3, one

cluster was identified with most USV being character-

ized by peak frequencies between 50 and 80 kHz in

both genotypes. From PND6 on, two clusters were evi-

dent. Similar to PND3, most USV were still character-

ized by peak frequencies between 50 and 80 kHz, yet

average peak frequency in this cluster successively

decreased with development. This decrease was paral-

leled by the segregation and formation of a new second

cluster of USV with peak frequencies between 80 and

100 kHz, which gradually became more prominent with

development. Interestingly, it was consistently more

pronounced in Shank12/2 than in Shank11/1 pups, and

on PND12 this cluster was even more prominent than

the first cluster between 50 and 80 kHz, which was not

the case in Shank11/1 controls. An additional detailed

temporal analysis by means of sequential correlational

analyses of the durations of subsequent isolation-

induced USV further indicated that the call emission

pattern is not random in Shank11/1 controls, since the

durations of given USV could be predicted by the dura-

tions of the previous ones (N-1) and to a lesser extent

also by the ones two (N-2) and three (N-3) before

(Fig. 4). Remarkably, such a nonrandom pattern was

already seen on PND3, with temporal organization

gradually decreasing with development. A very similar

development of temporal organization was seen in

Shank12/2 pups.

Figure 1. Experiment I: Number of ultrasonic vocalizations (USV) [n] in isolated Shank1 pups. (A) Total number of USV [n] emitted

on average over all four postnatal days [PND]. (A0) Developmental course for the total number of USV emitted on PND3, PND6, PND9,

and PND12. Black bar: Shank11/1 wildtype littermate control mice; striped bar: Shank11/2 heterozygous mice; white bar: Shank12/2

null mutant mice. Solid curve: Developmental pattern of USV emitted by Shank11/1 mice; dotted curve: developmental pattern of USV

emitted by Shank12/2 mice. For the sake of clarity, no curve depicting the developmental pattern of USV emitted by Shank11/2 mice

was included in the developmental course graph. Group sizes (for individual PNDs): Shank11/1 mice: NPND35 12, NPND6515, NPND9514,

NPND125 12; Shank11/2 mice: NPND35 13, NPND65 15, NPND95 13, NPND125 13; Shank12/2 mice: NPND35 14, NPND65 12, NPND95 11,

NPND125 11. Data are presented as means1 standard errors of the mean. *P< 0.050 vs. Shank11/1; # P< 0.050 vs. Shank11/2.
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Figure 2. Experiment I: Acoustic characteristics of ultrasonic vocalizations (USV) in isolated Shank1 pups. (A) Duration (in milli-

seconds [ms]), (B) peak amplitude (in decibel [dB]), and (C) peak frequency (in kilohertz [kHz]) of USV emitted on average over all

four postnatal days [PND]. Developmental course for the (A0) duration, (B0) peak amplitude, and (C0) peak frequency of calls emitted

on PND3, PND6, PND9, and PND12. Black bar: Shank11/1 wildtype littermate control mice; striped bar: Shank11/2 heterozygous

mice; white bar: Shank12/2 null mutant mice. Group sizes (for individual PNDs): Shank11/1 mice: NPND35 12, NPND65 15,

NPND95 14, NPND125 12; Shank11/2 mice: NPND35 13, NPND65 15, NPND95 13, NPND125 13; Shank12/2 mice: NPND35 14, NPND65 12,

NPND95 11, NPND125 11. Data are presented as means1 standard errors of the mean. *P< 0.050 vs. Shank11/1; # P< 0.050 vs.

Shank11/2.

INSAR Sungur et al/Communication deficits in mice lacking Shank1 701

- 64 -

Publications – Study II 

 

 

  



Body temperature and weight. As expected, body

temperature (F3,131580.178, P<0.001) and weight

(F3,1315382.203, P<0.001) varied with age. In addition,

body temperature differed between genotypes

(F2,13155.061, P50.008; genotype x development:

F6,13151.230, P50.295). Overall, Shank12/2 pups had

lower body temperatures than Shank11/2 (P50.001) and

Shank11/1 controls (P50.018), with the latter not differ-

ing (P50.291). However, on individual PNDs no geno-

type differences were detected (all P-values >0.050;

Fig. 5A). Also, body weight differed between genotypes

(F2,131511.699, P<0.001; genotype 3 development:

F6,13151.983, P50.072). Overall, Shank12/2 pups had

lower body weights than Shank11/2 (P<0.001) and

Figure 3. Experiment I: Distribution of individual ultrasonic vocalizations (USV) in isolated Shank1 pups. Density plots depicting the

distribution of individual calls depending on peak frequency (in kilohertz [kHz]) and peak amplitude (in decibel [dB]) in Shank11/1

wildtype littermate control mice on individual postnatal days [PND], namely (A) PND3, (B) PND6, (C) PND9, and (D) PND12, and in

Shank12/2 null mutant mice on (E) PND3, (F) PND6, (G) PND9, and (H) PND12. Color coding reflects frequencies as percentages.

Figure 4. Experiment I: Temporal analysis of the correlations between durations of subsequent ultrasonic vocalizations (USV) in

isolated Shank1 pups. Point plots depicting the sequential organization of USV by means of correlations (correlation coefficient [r])

between durations of isolation-induced USV with those of (A) the previous ones (N-1), (B) the ones two before (N-2) and (C) the

ones three before (N-3) on individual postnatal days [PND], namely PND3, PND6, PND9, and PND12. Black circles: Shank11/1 wild-

type littermate control mice; white circle: Shank12/2 null mutant mice. Step-wise patterns of the sequential organization of mean

correlation coefficients are depicted by step plots. Solid line: mean correlation coefficients in Shank11/1 mice; dotted line: mean

correlation coefficients in Shank12/2 mice.
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Shank11/1 controls (P<0.001), with Shank11/2 pups also

having lower body weights than Shank11/1 controls

(P50.025). Genotype differences in body weight emerged

over time, with no differences on PND3, PND6, and PND9

(all P-values >0.050), but on PND12 (F2,3056.903,

P50.003). On PND12, Shank12/2 pups had lower body

weights than Shank11/2 pups (P50.001) and tended to

have lower body weights than Shank11/1 controls

(P50.050), with the latter also tending to differ

(P50.089; Fig. 5B). Finally, body temperature also differed

between sexes (F1,1315 4.036, P50.047; sex 3 develop-

ment: F3,13150.291, P50.832), with females constantly

having higher body temperatures than males (genotype 3

sex: F2,13150.333, P50.718; genotype 3 sex 3 develop-

ment: F6,13150.753, P50.608). Sex had no effect on body

weight (all P-values >0.050; not shown). No evidence for

genotype or sex effects was obtained for somatosensory

reflexes (for details: Supporting Information).

Experiment II: Effects of Social Context

Clean bedding. As observed in Experiment I on PND9,

where pups were also tested on clean bedding, numbers of

isolation-induced USV emitted by pups did not differ

between genotypes (F2,3050.456, P50.638; Fig. 6A). Dur-

ing isolation, mouse pups slightly increased their emission

rates over time irrespective of genotype (Fig. 6A0).

Home cage bedding. Under the home cage bedding

condition, however, USV emission rates differed

between genotypes (F2,1855.181, P50.017). The num-

bers of USV emitted by Shank12/2 pups were reduced as

compared to Shank11/2 (P50.046) and Shank11/1 con-

trols (P50.003), whereas the latter did not differ

(P50.184; Fig. 6B). Mouse pups again slightly increased

their emission rates over time, with USV emission being

inhibited especially during the first half of testing in

Shank12/2 pups (Fig. 6B0).

Male cage bedding. When pups were tested for

isolation-induced USV on bedding from a male cage,

numbers of USV emitted were affected by genotype

(F2,2753.759, P50.036). Shank12/2 pups emitted fewer

USV than Shank11/2 (P50.044) and Shank11/1 controls

(P50.014; Fig. 6C). Mouse pups again slightly increased

their emission rates over time, with USV emission being

overall reduced in Shank12/2 pups (Fig. 6C0).

Sex effects. Sex had no effect on isolation-induced

USV emission irrespective of social context (all P-values

>0.050; genotype 3 sex: all P-values >0.050).

Discussion

SHANK gene family members are among the most

promising candidate genes for ASD [Guilmatre et al.,

2014; Leblond et al., 2014] and several mouse models

were created in order to investigate the contribution of

SHANK genes to ASD, each of which reflects symptoms

observed in autistic individuals to a certain extent

[Jiang & Ehlers, 2013; Yoo, Bakes, Bradley, Collingridge,

& Kaang, 2014]. As communication deficits are one of

the major criteria for diagnosing ASD [American Psychi-

atric Association, 2013], yet still little is known about

communication deficits in Shank mouse models for ASD

[W€ohr, 2014], we focused on developmental and social

aspects of ultrasonic communication in the Shank1

mouse model by comparing Shank12/2 null mutant,

Figure 5. Experiment I: Body temperature and weight in iso-

lated Shank1 pups. (A) Body temperature (in Celsius degrees [8C])

and (B) body weight gain (in grams [g]) in pups tested for

isolation-induced USV on individual postnatal days [PND], namely

PND3, PND6, PND9, and PND12. Black bar: Shank11/1 wildtype

littermate control mice; striped bar: Shank11/2 heterozygous

mice; white bar: Shank12/2 null mutant mice. Group sizes (for

individual PNDs): Shank11/1 mice: NPND35 12, NPND65 15,

NPND95 14, NPND125 12; Shank11/2 mice: NPND35 13, NPND65 15,

NPND95 13, NPND125 13; Shank12/2 mice: NPND35 14, NPND65 12,

NPND95 11, NPND125 11. Data are presented as means1 standard

errors of the mean. *P< 0.050 vs. Shank11/1.
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Figure 6. Experiment II: Effects of social odor context on ultrasonic vocalizations (USV) in isolated Shank1 pups. Total number of USV [n]

on postnatal day [PND] 9 under (A) clean bedding, (B) home cage bedding, and (C) male cage bedding conditions. Black bar: Shank11/1

wildtype littermate control mice; striped bar: Shank11/2 heterozygous mice; white bar: Shank12/2 null mutant mice. Time course: Number

of isolation-induced USV [n] in pups tested under (A0) clean, (B0) home cage bedding, and (C0) male cage bedding conditions per minute

[min]. Black circles: Shank11/1 wildtype littermate control mice; grey circles: Shank11/2 heterozygous mice; white circles: Shank12/2 null

mutant mice. Data are presented as means1 standard errors of the mean. *P< 0.050 vs. Shank11/1; # P< 0.050 vs. Shank11/2.
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Shank11/2 heterozygous, and Shank11/1 wildtype litter-

mate controls. The first experiment, where we evaluated

the emission of isolation-induced USV on a develop-

mental scale, revealed that Shank12/2 pups uttered

fewer USV when isolated from mother and littermates,

depicting a general communication deficit as previously

reported [W€ohr et al., 2011]. Moreover, and in exten-

sion of W€ohr et al. [2011], who employed pups at a sin-

gle stage of development (PND8), we compared

genotypes across four different PNDs. Our analysis

shows that the reduction in the number of USV emitted

by Shank12/2 pups is further due to a delay in develop-

ment. Call emission in Shank11/1 pups followed an

inverted U-shaped pattern across test days, with num-

ber of USV peaking around PND6. While rate of calling

appeared to have a similar pattern for USV emission in

Shank12/2 pups, they displayed a shift with USV peak-

ing around PND9. In turn, we observed genotype differ-

ences in call rate on PND6, where Shank12/2 pups

emitted fewer USV than Shank11/2 and Shank11/1 litter-

mates. Besides call rate, peak amplitude was among the

other call parameters affected by genotype, with USV

emitted by Shank12/2 pups being characterized by lower

peak amplitudes than the ones emitted by Shank11/2

and Shank11/1 littermates, consistent with W€ohr et al.

[2011]. Additional genotype differences were revealed

by comparing Shank12/2 pups and Shank11/1 controls

in a detailed subtype analysis through density plots,

whereas the temporal organization of isolation-induced

USV emission was not affected by genotype. Specifi-

cally, while in both genotypes one call cluster with

isolation-induced USV characterized by peak frequen-

cies between 50 and 80 kHz was identified on PND3,

the segregation and formation of a new second cluster

from PND6 on with peak frequencies between 80 and

100 kHz was more prominent in Shank12/2 pups. This

is in line with the previous study focusing on PND8

only and showing that the reduced USV number

observed in Shank12/2 pups on that day is mainly due

to a reduction in the first call cluster [W€ohr, 2014], fur-

ther supporting the notion that Shank1 deletion affects

communication on a developmental scale. Notably,

observed genotype differences were independent from

sex. While USV numbers differed between sexes in an

age-dependent manner in Experiment I, our findings

indicate an increased call rate in females only on PND9

and interactions between sex and genotype were not

detected. Furthermore, no evidence for sex effects on

USV emission were detected in Experiment II, with

independent cohorts tested in three different social

contexts. Together, our findings suggest that the effects

of Shank1 deletions on isolation-induced USV are not

strongly affected by sex, with a slight tendency for

more prominent genotype effects in females, as

reported before [W€ohr et al., 2011].

The observed communication deficits in Shank12/2

pups are in line with alterations in ultrasonic communi-

cation in other Shank models. For instance, Schmeisser

et al. [2012] analyzed USV emission between PND2 and

PND12 and found that Shank22/2 females, but not males,

called more than Shank21/1 females on PND4 and

PND10. Similar to our results, in a follow-up study, Ey

et al. [2013] reported that call rate was affected by geno-

type on PND6. Interestingly, the development of the call

pattern very much resembles the picture in our study,

with Shank22/2 mice displaying a shift in call rate peak.

They also observed intact temporal organization in

Shank22/2 mice [Ey et al., 2013]. Unlike Shank12/2 and

Shank22/2 pups, however, no evidence for altered USV

emission rates in mouse pups carrying a deletion of

Shank3 was obtained, with the typical inverted U-shaped

developmental USV pattern being present in all geno-

types [Yang et al., 2012]. It has to be emphasized, how-

ever, that the Shank3 model tested in the study by Yang

et al. [2012] displays only minor ASD-related behavioral

phenotypes - in contrast to other Shank3 models, in

which isolation-induced USV were not assessed yet

[Kouser et al., 2013, Peça et al., 2011; Wang et al., 2011].

One could argue that via deletion of Shank1 an audi-

tory deficit might be causing the Shank12/2 pups utter-

ing fewer USV, since Braude et al. [2015] found

evidence for expression of Shank1, but not Shank2 and

Shank3, in the cochlea. However, they did not detect

any differences in auditory brainstem responses. More-

over, there is evidence that auditory input is not a pre-

requisite for the development of USV, as occurrence

and structure of USV recorded from deaf otoferlin-

knockout and hearing wildtype mice do not differ

[Hammerschmidt et al., 2012]. One could further argue

that genotype differences in body temperature might be

causing the changes in USV emission. Overall, Shank12/2

pups had lower body temperatures than Shank11/2 and

Shank11/1 controls, yet this was not detectable on indi-

vidual PNDs. It therefore appears unlikely that the

delay in the USV development observed in Shank12/2

pups could be due to alterations in body temperature.

Furthermore, body weight was also affected by geno-

type. With Shank12/2 pups having lower body weights

as compared to Shank11/2 and Shank11/1, it is possible

to attribute the reduced number of USV to decreased

body size, as it has been speculated that body weight

might play a role in USV features through increased

thoracic size and/or lung capacity [Scattoni, Gandhy,

Ricceri, & Crawley, 2008]. However, we could not

detect any differences in body weight on PND6 where

communication deficits were most prominent. Further-

more, on PND12, when genotype differences in body

weight reached statistical significance the first time, no

differences in isolation-induced USV were detected.

Because of this double dissociation, it appears unlikely
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that differences in USV emission are simply due to

altered developmental profiles in body weight gain. In

fact, the opposite might be true, as our developmental

study shows that reduced emission rates of isolation-

induced USV are followed but not preceded by slower

body weight gain. It is well known that isolation-

induced USV serve an important communicative func-

tion in regulating mother-offspring interactions, with

such USV inducing maternal care behaviors, including

search and retrieval behavior [Ehret & Haack, 1982;

Sewell, 1970; Smith, 1976]. Moreover, it was shown

that mothers are able to distinguish between different

USV types and that they prefer certain types over

others, indicating that acoustic parameters, such as call

duration, peak amplitude, and peak frequency, affect

the signal value of isolation-induced USV [Ehret &

Haack 1982; Sewell, 1970; Smith, 1976; W€ohr et al.,

2008]. Because Shank12/2 pups emit not just fewer

isolation-induced USV, but also USV that are character-

ized by lower amplitudes it appears possible that

Shank12/2 pups are less efficient in attracting mothers

and inducing maternal care. Impaired ultrasonic com-

munication in Shank12/2 pups might therefore explain

slower body weight gain; a phenotype that emerges in

the first two weeks of life when isolation-induced USV

emission rates are typically highest. This might also

explain to some extent the delay in motor development

evident in Shank12/2 mice [W€ohr et al., 2011]. In this

context, it has to be highlighted that heterozygous

breeding pairs were used to obtain littermate controls

and it is possible that subtle changes in maternal care

behavior displayed by heterozygous mothers might

have had an impact on the obtained result pattern.

Currently, no detailed analysis of maternal care behav-

ior in the Shank1 mouse model for ASD is available.

Besides developmental factors, social odors play an

important role in modulating pup USV emission [Bran-

chi et al., 1998]. This is particularly relevant for mouse

models for ASD, as social odor-induced modulation of

pup USV could allow to assess ASD-relevant deficits in

processing of social context information. In our second

experiment, we focused therefore on the effects of social

context on genotype differences in USV production by

comparing clean bedding, home cage bedding, and male

cage bedding. Our results show that, as in Experiment I,

in the absence of any social component, Shank12/2 pups

do not differ from their Shank11/2 and Shank11/1 litter-

mates on PND9. Strikingly, however, communication

deficits in Shank12/2 pups became evident when a social

odor was present, regardless of the familiarity of this

odor. Shank12/2 pups emitted almost no USV within the

first minutes of exposure to the social context and

started vocalizing later. These results are the first to dem-

onstrate that the test environment plays a critical role in

the production of isolation-induced USV in Shank mouse

models for ASD. As communication by definition serves

a social function, introducing social components could

indeed bring about deficits in communication which

might not be detectable in a nonsocial test environment.

In future studies, it would therefore be interesting to

assess isolation-induced USV in Shank22/2 and Shank32/2

mouse pups under social conditions.

One possible explanation for the more prominent

genotype differences under social conditions could be

that changing the social environment induces anxiety-

related behavior, particularly the exposure to phero-

mones of an adult male. In fact, Shank11/1 littermates

vocalized more when exposed to male cage bedding

than during exposure to the other two contexts, which

is in line with pharmacological, selective breeding, and

behavioral studies linking anxiety-related behavior to

increased isolation-induced USV [Kessler, Bosch, Bunck,

Landgraf, & Neumann, 2011; Miczek, Weerts, Vivian, &

Barros, 1995; W€ohr & Schwarting, 2008]. However,

Shank12/2 pups displayed reduced and not increased lev-

els of USV emission, as one might have expected based

on earlier studies reporting higher anxiety levels in

Shank12/2 mice [Hung et al., 2008; Silverman et al.,

2011]. Another possible explanation is that changing the

social environment affects the communication function

of USV. Very early studies focusing on the effect of odors

on pup USV hypothesized that cues associated with

predators or a stranger male would inhibit ultrasonic

calling as a possible strategy to avoid being detected

[Conely & Bell, 1978; Lyons & Banks, 1982]. However, a

later study by Elwood, Kennedy, and Blakely [1990] con-

tradicted these findings and interpreted increased USV

emission in response to male odor as a strategy for

attracting the attention of the mother. In fact, remain-

ing silent in the presence of a male odor might not nec-

essarily increase the chances of survival, since in an

environment where a pup can smell the potential danger

it certainly can be vice versa [Santucci, Masterson, &

Elwood, 1994]. In our study, Shank12/2 pups do not

meet these criteria, as they remained rather silent in a

potentially dangerous environment as compared to their

Shank11/2 and Shank11/1 littermates. However, it is

unclear why such deficits persist in a non-dangerous

environment, namely home cage bedding. A simple

interpretation would be that Shank12/2 pups are not

able to differentiate the two odors and therefore remain

silent regardless of the source of the odor. The ability of

adult Shank12/2 mice to habituate and dishabituate to

social odors, however, argues against this explanation

[Silverman et al., 2011]. Of note, very little is known

whether mouse models for ASD display deficits in their

ability to identify nest odor from other social odors,

such as a conspecific adult males [Moles et al., 2004].

While various species, including mice, developed a

rather sophisticated acoustic communication system,
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human language is profoundly different from the com-

munication systems seen in other animals and consti-

tutes a uniquely human trait. However, human

language must have evolved, similarly to other complex

abilities, through qualitative and quantitative modifica-

tions of morphological traits and neuronal networks

already present in our ancestors and thus being the

object of natural selection [Fitch, Huber, & Bugnyar,

2010; Scharff & Petri, 2011]. Although acoustic commu-

nication in mice is largely innate and auditory input is

not required [Hammerschmidt et al., 2012, 2015; W€ohr

et al., 2008; but see: Arriaga & Jarvis, 2013], which lim-

its its suitability for studying genetic and neurobiologi-

cal mechanisms underlying mental abilities required for

human language and language deficits [Fischer & Ham-

merschmidt, 2011], mouse models may still provide

novel insights through the identification of relevant

ancestral mechanisms. Experimental evidence provided

in the present study by means of the Shank1 mouse

model for ASD displaying alterations in the develop-

ment of ultrasonic communication during early life

might suggest that SHANK1 is part of such an ancestral

mechanism recruited and adapted to human language

during evolution. In humans, SHANK1 deletions were

reported in males with a mild form of ASD with higher

functioning not characterized by intellectual impair-

ments and language deficits, at least when assessed at a

later developmental stage with more than 5 years of

age [Sato et al., 2012]. At an early developmental stage,

however, impairments in language acquisition were

seen in all males carrying a SHANK1 deletion. Impor-

tantly, a role of SHANK1 in language acquisition was

further supported by a study showing that the T-allele

of the SHANK1 promotor variant rs3810280 is associ-

ated with reduced auditory working memory capacity

in schizophrenia patients and subjects clinically at risk

for developing a psychosis, but not healthy controls

[Lennertz et al., 2012], consistent with the fact that

SHANK1 mutations were also linked to schizophrenia

[Fromer et al., 2014]. Together, these results indicate

that SHANK1 is involved in acoustic communication

across species, with genetic alterations in SHANK1

resulting in social communication/interaction deficits.
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 SUPPLEMENTARY MATERIAL 

 

MATERIALS AND METHODS 

Isolation-induced USV - Analysis: Peak frequency and peak amplitude were derived from the 

average spectrum of the entire call. Peak amplitude was defined as the point with the highest 

energy within the spectrum. Peak frequency was defined as the frequency at the location of the 

peak amplitude within the spectrum. The extent of frequency modulation was defined as the 

difference between the lowest and the highest peak frequency within each call. In addition, call 

subtypes were determined by means of density plots depicting peak frequency versus peak 

amplitude. Finally, to assess the temporal organization of isolation-induced USV emission, 

sequential analyses were performed by correlating the durations of given isolation-induced USV 

with the durations of the previous one (N-1), the ones two before (N-2), and the ones three before 

(N-3). 

Somatosensory Reflexes: After the 10 min isolation period, surface righting and vertical screen 

holding were determined in pups from Experiment I. For surface righting, the pup was gently 

held on its back and released. Latency to flip over onto the abdomen with four paws touching the 

surface was measured with a stopwatch, with a maximum latency of 30 s. For vertical screen 

holding, the pup was placed on a square grid (8 x 11 cm) at 90° angle. Length of time the pup 

was able to stay on the grid was measured with a stopwatch, with a maximum latency of 30 s. 

 

RESULTS 

Experiment I: Developmental Aspects 

Somatosensory Reflexes - Development: As expected, surface righting (F3,131=61.279, p<0.001) 

and vertical screen holding (F3,131=127.129, p<0.001) varied with age. 

Somatosensory Reflexes - Genotype: Surface righting differed between genotypes in an age-

dependent manner (F2,131=0.380, p=0.684; genotype x development: F6,131=2.232, p=0.044). 

When comparing genotypes on individual PNDs, no genotype differences were obtained on 

PND3, PND6, and PND12 (F2,33=3.123, p=0.057; F2,36=0.422, p=0.659 and F2,30=1.277, p=0.293; 

respectively). However, a genotype effect was obtained on PND9 (F2,32=4.777, p=0.015), yet 

individual comparisons between genotypes did not reach statistical significance (WT – HET: 

p=0.050, WT-KO: p=0.407; HET-KO: p=0.284). Finally, vertical screen holding was not affected 

by genotype (F2,131=2.101, p=0.126; genotype x development: F6,131=0.576, p=0.749). 
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Somatosensory Reflexes - Sex: Sex had no effect on surface righting and vertical screen holding 

(all p-values >0.100; genotype x sex: all p-values >0.100; genotype x sex x development: all p-

values >0.100), with the exception of two trends for sex x development interactions (surface 

righting and vertical screen holding: F3,131=2.220, p=0.089 and F3,131=2.225, p=0.088, 

respectively). 
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h  i g h l  i  g  h t s

• Autism  spectrum disorder (ASD) is characterized by repetitive patterns of  behavior.
• Members of  the SHANK  gene family are promising candidate genes  for ASD.
• Repetitive behavior in  mouse  models for ASD is typically assessed by selfgrooming.
• The  Shank1  knockout  mouse model for ASD displays  changes in  repetitive behavior.
• Most  prominent genotype differences are detected in  the social context.
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a  b  s  t  r a c t

Background: Autism spectrum disorder (ASD) is characterized by persistent deficits in  social behavior
and communication, together  with restricted and  repetitive patterns of  behavior. Several  ASD candidate
genes have been  identified, including the SHANK gene family with  its  three  family members SHANK1,
SHANK2, and SHANK3.
Methods:  Typically, repetitive behavior in mouse  models for ASD  is assessed by measuring selfgrooming
behavior.  The  first  aim of  the current study was  to assess repetitive behaviors  in Shank1−/− null  mutant,
Shank1+/− heterozygous, and Shank1+/+ wildtype littermate control mice by means of a comprehensive
approach,  including the  assessment of  selfgrooming, digging behavior,  and marble burying. The second
aim  was to establish a  test paradigm that  allows for assessing the  effects of social context on the occur
rence  of repetitive behaviors in  a genotypedependent manner.  To this  aim,  repetitive behaviors  were
repeatedly tested on three  consecutive days in distinct  social contexts, namely  in presence or absence of
social odors.
Results: Shank1+/− heterozygous and to a lesser extent Shank1−/− null mutant mice displayed slightly
elevated levels of  selfgrooming behavior  as adults, but not as  juveniles, with genotype differences  being
most  prominent in the social context. In  contrast to elevated selfgrooming behavior, marble  burying was
strongly reduced in adult Shank1+/− heterozygous and Shank1−/− null mutant mice across social contexts,
as  compared to adult  Shank1+/+ wildtype littermate controls.
Conclusion: The opposite effects of the Shank1  deletion on the  two types of  repetitive behaviors are  in
line  with a  number of  studies on repetitive behaviors in  other  genetic  Shank  models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Autism spectrum disorder (ASD) is a group of  neurodevel
opmental disorders that are characterized by persistent deficits
in social behavior and communication across multiple contexts

∗ Corresponding  author.  Tel.:  +49  6421 28  23612;  fax:  +49  6421 28 23610.
Email  address:  markus.woehr@staff.unimarburg.de  (M.  Wöhr).

(American Psychiatric Association, 2013). In addition to social com
munication deficits, restricted and repetitive patterns of behavior,
interests, or  activities occur (American Psychiatric Association,
2013).  Typically, they manifest as stereotyped or repetitive motor
movements, use of objects, or  speech, as well as  insistence on same
ness, inflexible adherence to routines, and ritualized patterns of
behavior. Highly restricted and fixated interests, including unusual
interests in sensory aspects of the environment, such as exces
sive smelling of  objects, are also often prominent. Impairments

http://dx.doi.org/10.1016/j.jneumeth.2014.05.003
01650270/©  2014 Elsevier  B.V.  All rights  reserved.
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in adjusting behavior to suit  different social contexts are common
(American Psychiatric Association, 2013).

While tremendous progress has  been made in recognizing and
diagnosing ASD  in recent years (Jones and Lord, 2013), the causes of
ASD are still largely unknown. However, the high concordance rate
between monozygotic twins (Folstein and Rutter, 1977; Posthuma
and Polderman, 2013) supports a strong genetic component and
several ASD  candidate genes have been identified (Abrahams and
Geschwind, 2008; State, 2010), including the SHANK gene fam
ily  with its three family members SHANK1, SHANK2 (ProSAP1),
and SHANK3 (ProSAP2) (Grabrucker et  al.,  2011; Guilmatre et al.,
2014; Jiang and Ehlers, 2013; Ting et  al., 2012; Yoo  et al., 2013).
Since Durand et al.  (2007) first described mutations in  SHANK3 in
patients with  ASD, mutations in SHANK1 (Sato et  al., 2012), SHANK2
(Berkel et al., 2010; Leblond et al., 2012; Pinto et  al., 2010), and
SHANK3 (Boccuto et  al.,  2013; Dhar et  al.,  2010; Gauthier et  al.,
2009, 2010; Gong et al., 2012; Marshall et  al., 2008; Moessner et al.,
2007; Pinto et  al., 2010; Schaaf et  al., 2011; Waga et  al.,  2011)
have been repeatedly reported in cases of ASD and schizophrenia
patients with ASD traits. In addition, SHANK3 maps to the 22q13.3
PhelanMcDermid deletion syndrome region (Wilson et al., 2003), a
neurodevelopmental disorder typically characterized by deficits in
language acquisition and other ASD features (Phelan, 2008). SHANK
genes encode for  a family of multidomain “master scaffolding pro
teins”, which are localized in the postsynaptic density of  excitatory
glutamatergic synapses (Grabrucker et al.,  2011; Kim and Sheng,
2004; Kreienkamp, 2008; Sheng and Kim,  2000). At  the functional
level, mutations in SHANK genes are therefore thought to  ultimately
translate into changes in the excitation/inhibition balance (Ebert
and Greenberg, 2013; Toro et  al.,  2010).

As  a consequence, SHANK gene family members  are amongst
the  most important candidates for  modeling ASD in  rodents, with
the main aim of gaining a better understanding of the roles of
individual SHANK genes in the  etiology of  ASD by revealing the
neurobiological mechanisms underlying ASDrelevant behavioral
phenotypes, and thus paving the  way for developing novel effi
cient  treatments (Ecker  et al., 2013; Murphy and Spooren, 2012).
In fact,  various genetic Shank models were generated within the
last few years, including Shank1−/− (Hung et al., 2008), Shank2−/−

(Schmeisser et al., 2012; Won et al., 2012), and Shank3−/− null
mutant mice (Kouser et al., 2013; Peç a et al., 2011; Schmeisser
et  al., 2012; Wang et  al.,  2011; Yang et al., 2012).  Since the diag
nostic criteria for ASD are defined purely behaviorally (American
Psychiatric Association, 2013) and since reliable biomarkers have
not  been identified yet, the validity of  genetic mouse  models for
ASD strongly depends on their behavioral phenotype. Therefore,
indepth longitudinal behavioral phenotyping is a key feature of
the current translational research strategy; a  strategy that requires
sensitive behavioral test paradigms with high  relevance to each cat
egory of diagnostic symptoms (Silverman et  al., 2010). Within the
last decade, a comprehensive set of  behavioral assays  for detecting
deficits in mouse social  and communication behavior across  multi
ple contexts was developed, along with  behavioral test paradigms
that allow the reliable assessment of  restrictive and repetitive
patterns of behavior, interests, or  activities (Bishop and Lahvis,
2011; Silverman et al., 2010; Wöhr and Scattoni, 2013). Typi
cally, repetitive behavior in mouse models for  ASD, as  in genetic
Shank models, is assessed by measuring selfgrooming behav
ior (Drapeau et  al., 2014; Kouser et al., 2013; Peç a et al., 2011;
Schmeisser et al., 2012; Silverman et  al., 2011; Wang et al., 2011;
Won et  al., 2012; Yang et  al., 2012), while repetitive digging and
marble burying are comparatively rarely assessed (Kouser et  al.,
2013; Schmeisser et  al., 2012; Won et al.,  2012), although well
established paradigms exist (Thomas et al., 2009). Very little is
known about the impact of  the social context on repetitive behav
iors since it is not systematically determined in the  vast majority

of  studies, with only few exceptions (Moy et  al., 2014; Ryan et al.,
2010).

Up to now, four studies on the behavioral effects of  a deletion
on  Shank1 in mice were  conducted (Hung et al.,  2008; Silverman
et  al.,  2011; Wöhr, 2014; Wöhr et  al.,  2011). Hung et  al. (2008)
observed a reduction in  locomotor activity, deficient motor learn
ing  in the rotarod task,  and elevated anxietyrelated behavior
in  the open field and the lightdark box. They further reported
impaired contextual fear learning, but normal cued fear learn
ing  (Hung et  al., 2008). In a spatial learning task using  a radial
arm maze, Hung et  al. (2008) found enhanced acquisition, but
impaired retention of spatial memory. Wöhr et al. (2011) focused
on communication deficits and found reduced isolationinduced
ultrasonic calling in pups, often accompanied by a reduction in  the
temporal organization of  call sequences, as revealed by  a subse
quent more detailed analysis (Wöhr, 2014). In  adult mice, a lack of
social modulation of male ultrasonic calling in  response to female
urine was obtained (Wöhr et  al., 2011). Scent marking behavior, a
measure of  olfactory communication (Arakawa et  al., 2008), was
also reduced (Wöhr et al., 2011). Finally, Silverman et al. (2011)
replicated the motor and anxiety phenotype reported by Hung
et  al. (2008) and reported normal social behaviors during recip
rocal social interactions in juveniles and in the  three chamber
social  approach task  as adults, contrasting with the communica
tion  deficits observed by Wöhr et  al. (2011).  Olfactory information
processing of  social and nonsocial odors appeared to  be  intact and
no evidence for excessive selfgrooming behavior was obtained
(Silverman et al., 2011). The latter is in  contrast to  most of  the
other genetic Shank models (for a detailed comparative overview
on the  behavioral phenotypes displayed by  genetic Shank models
see: Jiang and Ehlers, 2013; Yoo et  al., 2013). However, it has to
be noted that the selfgrooming experiment by  Silverman et  al.
(2011) is difficult to interpret as Shank1+/+ wildtype littermate con
trol mice engaged in comparatively high  levels of selfgrooming.
Other measures of repetitive behavior were  not determined and
social context was not manipulated. Thus, the  first aim of  the  cur
rent study was to assess repetitive behaviors in Shank1−/− null
mutant, Shank1+/− heterozygous, and Shank1+/+ wildtype littermate
control mice  by  means of a comprehensive approach, including the
assessment of  selfgrooming, digging behavior, and marble bury
ing. The second aim was to  establish a test paradigm that allows
for assessing the  effects of  social context on the occurrence of
repetitive behaviors in a genotypedependent manner. To this aim,
repetitive behaviors were repeatedly tested on three consecutive
days in  distinct social contexts, namely in presence or absence of
social odors. Besides social context, developmental aspects were
studied.

2.  Materials and methods

2.1. Animals and  housing

Repetitive behaviors in  Shank1−/− null mutant mice with a
targeted replacement of exons  14 and 15 encoding almost the
entire PDZ domain were compared to Shank1+/− heterozygous and
Shank1+/+ wildtype littermate control mice. Mice  were obtained
from mutant lines originally generated by Hung et al. (2008)
on two independent background strains: C57BL/6J and 129SvJae.
As  high mortality rates were obtained in the  C57BL/6J back
ground strain and very low locomotion in the 129SvJae background
strain (Hung et al., 2008; Silverman et  al.,  2011), the two lines
were crossed for  at least three generations to produce a mixed
C57BL/6J × 129SvJae background for  the Shank1 mutation, consis
tent with the other studies focusing on this Shank1 mutant (Hung
et  al., 2008; Silverman et al.,  2011; Wöhr, 2014; Wöhr et  al.,
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2011). Using a  heterozygous breeding protocol, Shank1+/− males
and females were bred in a conventional vivarium at the Biomedical
Research Center of the  PhilippsUniversity of  Marburg, Germany.
Approximately 2 weeks after pairing for breeding, females were
individually housed and inspected daily  for  pregnancy and deliv
ery. The day of  birth was considered as postnatal day (PND) 0. After
weaning on PND  21, mice were socially housed in  groups of  2–6
with samesex partners in  polycarbonate Makrolon type III IVC
cages (265 mm × 150 mm × 420 mm, 825 cm2; Ehret, Emmendin
gen, Germany). Bedding and a wooden board were provided in each
cage. Standard rodent chow and water were available ad libitum.
The colony room was maintained on a 12:12 light/dark cycle with
lights on at 06:00 h, at approximately 22 ◦C and 40–50%  humid
ity. All mice used to assess repetitive behaviors were tested  for
isolationinduced ultrasonic vocalizations between PND 3 and 12
using a  similar protocol  as Wöhr et  al. (2011). Pups were identi
fied  by paw tattoo,  using nontoxic animal tattoo ink  (Ketchum
permanent Tattoo Inks green paste,  Ketchum Manufacturing Inc.,
Brockville, Canada). The ink  was inserted subcutaneously through
a 30 gauge hypodermic needle tip  into the center of  the paw. All
procedures were  conducted in  strict compliance with  the National
Institutes of  Health Guidelines for the  Care  and Use  of  Labora
tory Animals and the legal requirements of Germany. Procedures
were approved by the  ethical committee of  the local government
(Regierungspräsidium, Gießen, Germany).

2.2. Genotyping

Mouse tail  snips were collected by dissecting ∼0.3 cm  of  tail
between PND 3 and 12. Tails were digested, genomic DNA was
isolated and  purified using the  Qiagen DNAeasy Blood & Tis
sue Kit according to the manufacturer’s instructions (Hilden,
Germany). After the extraction, 2.0 ml of  DNA in buffer containing
∼250–400 mg of DNA was amplified by PCR using the  GE Health
care IllustraTM PuReTaq RTG PCR Bead Kit  (Little Chalfont, UK).
The following primers were used: CAA ACC  CCC ATC GAG GAA
TTC (wildtype forward), CCA GGA  CTG ACT GGG CTA GC  (wild
type reverse); GCT TGG GTG GAG AGG CTA TTC (neo forward); CAA
GGT GAG ATG ACA GGA  GAT C (neo reverse), with the  wildtype
primers recognizing sequences from the deleted segment and the
neo primers amplifying a portion of  the neo cassette introduced
in the targeting vector. Denaturing, annealing, and extension steps
were performed by means of a thermocycler (MyCycler, BioRad,
Hercules, CA, USA), using the following protocol: 1  cycle at 95 ◦C
for 120 s,  30 cycles of  95 ◦C for 30  s, 60 ◦C for  60 s, 72 ◦C for 60  s,
and 1 cycle of 72 ◦C for 300 s.  For electrophoresis, the SubCell GT
system (BioRad, Hercules, CA, USA) and a 1.5% agarose gel stained
with GelRedTM 3X  (Biotium, Hayward, CA, USA) was used. The Gel
DocTM imaging system with  a UV tray  (BioRad, Hercules, CA, USA)
was applied for automated gel documentation.

2.3. Repetitive behavior

Repetitive behaviors were assessed in two  independent exper
iments. Both experiments were performed between 08:00 and
18:00 h under dim  red light in a quiet behavioral test room. In
Experiment I, juvenile Shank1−/− null mutant, Shank1+/− heterozy
gous, and Shank1+/+ wildtype littermate control mice were tested
on PND 42. In this experiment, each mouse was placed individually
into  a  clean polycarbonate Makrolon type III IVC cage with a plas
tic  top (265 mm  ×  150 mm ×  420 mm,  825  cm2) once  for  15 min.
The cage contained a layer  of  fresh bedding material. A digital
camera (Sony Digital Camcorder 8;  Minato, Japan) was placed
approximately 60  cm in front of  the cage  with a  slightly elevated
view  to  record the sessions. A trained observer uninformed of  the

genotypes scored the videos with a  stopwatch for the  cumu
lative time spent grooming all body regions and the duration
of  digging behavior. Also, locomotor activity  and rearing  were
quantified. For locomotor activity, the  cage was divided into two
virtual halves, and the numbers of line crosses between these
two  halves were counted. Rearing behavior was quantified as the
number of  times the subject mouse reared on its hind legs. In
Experiment II,  adult Shank1−/− null mutant, Shank1+/− heterozy
gous,  and Shank1+/+ wildtype littermate control mice were tested
between PND 155 and 174.  As in  Experiment I,  each mouse  was
placed individually into clean polycarbonate Makrolon type III  IVC
cage  with a  plastic top (265 mm ×  150  mm × 420 mm,  825 cm2).
In Experiment II, however, 20 glass marbles (diameter: 15 mm)
were added equidistant in  a 4 × 5 arrangement on top of  a  4.5 cm
layer of  bedding material, following the protocol developed by
Thomas et al. (2009). Mice were tested for 30  min. A  30  min test
duration was used because the numbers of  marbles buried fol
lowing a 20 min test duration was found to be relatively low in
a pilot study using Shank1+/+ wildtype mice (completely buried:
1.88 ± 1.20; completely and half buried: 7.50 ± 2.02). Clearly higher
numbers of marbles buried were found following a 30  min expo
sure (completely buried: 6.00 ±  1.51; completely and half buried:
13.85 ±  1.55). Marbles were thoroughly cleaned with acetic acid
solution (0.1%)  between individual subject mice. Testing was per
formed on three consecutive days and the social context was
manipulated by  the  presence or absence of social odors. On  the
first day, fresh bedding was used. On  the  second day, soiled bedding
from an unfamiliar cage housing mice of  the  same  sex as the  sub
ject mouse was added on top of the layer of  fresh bedding. Finally,
on the third day,  fresh bedding was used again. To record the  ses
sions, a top mounted digital camera (Sony Digital Camcorder 8;
Minato, Japan) was placed approximately 60  cm  above the cage. A
trained observer uninformed of  the genotypes scored the  videos
with the behavioral analysis software The Observer XT10 (Noldus
Information Technology, Wageningen, The Netherlands) for the
cumulative time spent grooming all  body regions and the  duration
of digging behavior. The numbers of  selfgrooming events and their
duration were determined as well. In addition, locomotor activity
and rearing were quantified, as described above. Finally, the num
bers of  completely buried marbles and the  numbers of completely
and half buried marbles were counted immediately following test
ing.

2.4. Statistical analysis

In Experiment I,  ANOVAs with  the  betweensubject factor
genotype were used to  compare selfgrooming, digging behav
ior,  locomotor activity,  and rearing behavior between juvenile
Shank1−/− null mutant, Shank1+/− heterozygous, and Shank1+/+

wildtype littermate control mice. In Experiment II, ANOVAs for
Repeated Measurements with  the betweensubject factor geno
type  and the withinsubject factor test day were applied to
assess genotype differences between adult Shank1−/− null mutant,
Shank1+/− heterozygous, and Shank1+/+ wildtype littermate con
trol mice across test days (first day: fresh bedding; second day:
soiled bedding; third  day: fresh bedding). When analyzing indi
vidual  test days separately, ANOVAs with the betweensubject
factor genotype were used. For assessing changes across test days
within individual genotypes, ANOVAs for Repeated Measurements
with the withinsubject factor test day were calculated. ANOVAs
were followed  by paired ttests or LSD post hoc analysis when
appropriate. Male and female data were combined, since sex dif
ferences were not observed (all pvalues >0.050). A pvalue of
<0.050 was considered statistically significant. Corrected values
were used in  case Levene’s test for  equality of  variances was
significant.
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3. Results

3.1.  Experiment I

Juvenile Shank1−/− null mutant, Shank1+/− heterozygous, and
Shank1+/+ wildtype littermate control mice did not differ in
selfgrooming and digging behavior (F2,34 = 1.804; p  =  0.180 and
F2,34 = 1.985; p = 0.153; respectively; Fig. 1A and B), while  locomo
tor activity, as  assessed by means of  line crossings, as  well as  rearing
behavior differed significantly between genotypes (F2,34 = 3.975;
p =  0.028 and F2,34 = 12.470; p < 0.001; respectively; Fig. 1C  and
D). Shank1−/− null  mutant and Shank1+/− heterozygous mice dis
played fewer line  crossings than Shank1+/+ wildtype littermate
controls (p = 0.010 and p = 0.045; respectively), with the  former
two not differing from  each other (p =  0.363). Rearing behavior dif
fered between genotypes in  a  dosedependent manner. Shank1−/−

null mutant mice reared significantly less often than Shank1+/−

heterozygous mice (p = 0.017) and Shank1+/+ wildtype littermate
controls (p < 0.001), with  the latter two  also differing from each
other (p = 0.005).

3.2. Experiment II

Adult  Shank1−/− null  mutant, Shank1+/− heterozygous, and
Shank1+/+ wildtype littermate control mice differed significantly
in selfgrooming and selfgrooming changed across test days,
indicating an effect of social context on repetitive behaviors
(genotype: F2,42 = 3.302; p =  0.047; test day: F2,84 = 9.657; p  <  0.001;
genotype × test day interaction: F4,84 = 2.131; p = 0.084; Fig. 2A).
Genotype differences in selfgrooming were mainly due to an
increase of  the durations of  individual selfgrooming events (not
shown), since the numbers of selfgrooming events did not differ
between genotypes (not shown). When analyzing individual test
days separately, genotype differences were obtained for the  first
test day when mice were exposed to fresh bedding (F2,42 = 4.054;
p  =  0.025) as  well  as  for the  second test day when mice were
exposed to  soiled  bedding (F2,42 = 3.991; p =  0.026), but not  during
the third test day when reexposed to fresh bedding (F2,42 = 0.968;
p  =  0.388). On the first and the second test day, Shank1+/− heterozy
gous mice displayed more selfgrooming than Shank1+/+ wildtype
littermate controls (p  =  0.010 and p =  0.007; respectively). Shank1+/−

heterozygous mice also tended to display more selfgrooming than
Shank1−/− null  mutant mice on the first  test day during fresh bed
ding exposure (p  =  0.052), with the latter being similar to Shank1+/+

wildtype littermate controls (p = 0.449). When exposed to soiled
bedding on the  second test day, however, Shank1−/− null mutant
mice displayed similar selfgrooming levels as Shank1+/− heterozy
gous mice (p = 0.305) and tended to differ from Shank1+/+ wildtype
littermate controls (p  =  0.085). The  observed genotype differences
are at least partly due to the fact that selfgrooming in Shank1+/+

wildtype littermate controls was affected by  social context and dif
fered between test days (F2,24 =  13.699; p <  0.001), which was not
the case in Shank1−/− null mutant and Shank1+/− heterozygous mice
(F2,28 =  1.104; p =  0.345 and F2,32 = 1.078; p =  0.352; respectively). In
Shank1+/+ wildtype littermate controls, selfgrooming was lower
on the second test day  when mice were exposed to soiled bed
ding as  compared to the  first and third  test day when fresh bedding
was used (t12 = 2.186,  p = 0.049 and t12 = −5.291, p < 0.001; respec
tively). Selfgrooming was further found to be  strongly elevated on
the third test day in  comparison with the first one (t12 = −2.840,
p  =  0.015). In contrast, digging behavior was not affected by geno
type and did not differ between test days (F2,42 = 0.685; p  =  0.510;
test day: F2,84 = 0.608; p =  0.547; genotype × test day interaction:
F4,84 =  0.800; p = 0.529; Fig. 2B).

The numbers of  completely buried marbles differed significantly
between genotypes and changed across test days, again indicating

an effect of social context on repetitive behaviors (genotype:
F2,42 =  9.112; p = 0.001; test day: F2,84 = 1.989; p =  0.143; geno
type  × test day interaction: F4,84 = 2.733; p =  0.034; Fig. 3A).  When
analyzing individual test days separately, genotype differences
were obtained for all three test days (first test day: F2,42 = 7.237;
p  =  0.002; second test day: F2,42 = 10.698; p <  0.001; third  test day:
F2,42 = 4.233; p = 0.021). On all  three test days and thus irrespective
of  social context, Shank1−/− null mutant and Shank1+/− heterozy
gous mice buried fewer marbles than Shank1+/+ wildtype littermate
controls (first test day: p =  0.001 and p  =  0.003; respectively; sec
ond  test day: p <  0.001 and p = 0.003; respectively; third test day:
p  =  0.020  and p  =  0.010; respectively). Shank1−/− null  mutant and
Shank1+/− heterozygous mice did not differ from each other (first
test day: p =  0.662; second test day: p =  0.109; third  test day:
p =  0.835). Very similar results were obtained using a less conser
vative method to quantify the numbers of marbles buried, namely
when including not only completely but also half buried marbles
(genotype: F2,42 = 5.663; p =  0.007; test day: F2,84 = 4.388; p =  0.015;
genotype ×  test day interaction: F4,84 = 1.425; p = 0.233; Fig. 3B).
Again, genotype differences were obtained on all  three test days,
irrespective of social context (first day: F2,42 = 3.498; p =  0.039; sec
ond day: F2,42 = 6.123; p =  0.005; third  day:  F2,42 = 3.565; p =  0.037;
not shown in detail).

Besides measures of  repetitive behaviors, locomotor activity, as
assessed by means of  line crossings, and rearing behavior were
also determined. Locomotor activity  differed significantly between
genotypes and changed across test days, indicating an effect of
social context on exploratory behavior (genotype: F2,42 = 3.439;
p  =  0.041; test day: F2,84 = 28.748; p  <  0.001; genotype × test day
interaction: F4,84 = 1.673; p =  0.164;  Fig. 4A). When analyzing indi
vidual test days separately, genotype differences were obtained for
the first test day (F2,42 = 5.696; p = 0.006), but not the second or
third test day  (F2,42 =  1.814; p  =  0.175 and F2,42 = 2.456; p = 0.098;
respectively). On  the first test day, Shank1−/− null mutant and
Shank1+/− heterozygous mice displayed fewer line crossings than
Shank1+/+ wildtype littermate controls (p =  0.002 and p =  0.014;
respectively), while not differing from  each other (p  =  0.436). Com
parisons across test days further indicate an effect of  social context
on locomotor activity in  Shank1−/− null  mutant mice  (F2,28 = 12.631;
p <  0.001), Shank1+/− heterozygous mice (F2,32 = 31.235; p < 0.001),
and Shank1+/+ wildtype littermate controls (F2,24 = 5.170;  p  =  0.014).
In Shank1+/+ wildtype littermate controls, locomotor activity  was
equally high during the first test day when exposed to fresh bedding
and during the  second test day  with soiled  bedding (t12 =  −0.046,
p  =  0.964), but markedly dropped during the third test day, again
with fresh bedding, as compared to the  first and second one
(t12 =  3.537, p = 0.004 and t12 = 2.753, p = 0.018; respectively). A sim
ilar temporal pattern was obtained in Shank1+/− heterozygous mice,
with no change from the  first to  the second test day (t16 = −0.494,
p  =  0.494), but a marked reduction in locomotor activity during the
third test day, as compared to the first and second one (t16 = 7.298,
p  <  0.001  and t16 = −7.256, p < 0.001). However, a very different tem
poral pattern was obtained in Shank1−/− null mutant mice. Their
locomotor activity increased from the first test day with fresh
bedding to the second test day with soiled bedding (t14 =  −3.317,
p  =  0.005). On  the third test day, locomotor activity was found to
be strongly decreased, with locomotor activity levels being clearly
lower  than  on the second test day  (t14 = 4.393, p =  0.001) and slightly
lower than on the first test day (p  =  0.078).

Similar to locomotor activity, rearing behavior differed signif
icantly between genotypes and changed across test days, again
indicating an effect of  social context on exploratory behavior (geno
type: F2,42 = 6.829; p = 0.003; test day: F2,84 =  22.740; p <  0.001;
genotype ×  test day interaction: F4,84 = 3.640; p = 0.009; Fig. 4B).
When analyzing individual test days separately, genotype differ
ences were obtained for the  first and third  test day (F2,42 = 8.749;
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Fig.  1.  Selfgrooming  (A),  digging  behavior  (B), line  crossings  (C),  and  rearing  behavior  (D) in juvenile Shank1  mice once  exposed  to  fresh  bedding.  Black  bar:  Shank1+/+

wildtype  littermate  control  mice;  striped  bar:  Shank1+/− heterozygous  mice; white bar:  Shank1−/− null mutant mice.  Data  are  presented  as means ± standard errors of the
mean.  *p  <  0.050  vs. Shank1+/+ .

Fig.  2. Selfgrooming  (A)  and  digging  behavior (B) in adult  Shank1  mice  first  exposed  to  fresh  bedding (first test  day, left), then  soiled  bedding  (second  test  day, center),  and
finally  fresh  bedding  again  (third  test  day,  right). Black  bar:  Shank1+/+ wildtype  littermate  control  mice; striped  bar:  Shank1+/− heterozygous  mice;  white  bar:  Shank1−/−

null  mutant  mice.  Data  are  presented  as means  ± standard  errors  of  the mean.  *p < 0.050  vs.  Shank1+/+; #p  < 0.050  vs.  first test  day.  Trends  are  shown in parentheses.

Fig.  3. Marbles  completely  buried (A) and  marbles  half or  completely  buried  (B) in  adult  Shank1  mice  first exposed  to  fresh  bedding (first test day, left), then soiled  bedding
(second  test  day,  center), and finally  fresh bedding  again (third  test day,  right).  Black  bar:  Shank1+/+ wildtype  littermate  control  mice; striped bar:  Shank1+/− heterozygous
mice;  white  bar: Shank1−/− null mutant mice.  Data  are  presented as means  ±  standard  errors of  the  mean. *p  < 0.050  vs.  Shank1+/+; #p  <  0.050  vs.  first  test  day. Trends  are
shown  in  parentheses.
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Fig.  4. Line crossings  (A) and rearing  behavior  (B) in  adult  Shank1  mice  first exposed  to  fresh  bedding  (first  test  day,  left),  then  soiled  bedding  (second  test  day,  center),  and
finally  fresh  bedding  again (third  test  day, right).  Black bar:  Shank1+/+ wildtype littermate  control  mice; striped  bar:  Shank1+/− heterozygous  mice;  white bar: Shank1−/−

null  mutant mice.  Data  are  presented as means  ± standard  errors  of the mean.  *p <  0.050  vs.  Shank1+/+; #p  < 0.050  vs.  first test  day.  Trends  are  shown  in parentheses.

Fig.  5. Representative  ethograms  of  adult  Shank1  mice  first exposed  to  fresh bedding  (first  test day, left), then  soiled  bedding  (second  test  day, center),  and finally  fresh
bedding  again  (third  test  day,  right).  +/+:  Shank1+/+ wildtype  littermate  control  mice;  +/−:  Shank1+/− heterozygous  mice;  −/−:  Shank1−/− null  mutant mice.

p = 0.001 and F2,42 = 5.161; p =  0.010; respectively), both with fresh
bedding, but not on the  second test day when soiled bed
ding was used (F2,42 =  2.259; p = 0.117). On both test days with
fresh bedding, Shank1−/− null mutant and Shank1+/− heterozy
gous mice displayed less rearing  behavior than Shank1+/+ wildtype
littermate controls (first test day: p <  0.001 and p = 0.004; respec
tively; third test day: p = 0.006 and p =  0.009; respectively), while
not differing from each other (p  = 0.244 and p = 0.436; respec
tively). As for locomotor activity, comparisons across test days
further indicate genotypedependent effects of  social context
on rearing behavior, with  prominent but distinct temporal pat
terns in  Shank1−/− null mutant (F2,28 =  9.025;  p =  0.001), Shank1+/−

heterozygous (F2,32 = 13.762; p <  0.001), and Shank1+/+ wildtype lit
termate control mice (F2,24 =  8.014; p =  0.002). In Shank1+/+ wildtype
littermate controls, rearing behavior decreased from the first to the
second test day (t12 =  2.566, p =  0.025), remaining at about the  same
level during the third  test day (t12 =  1.562, p =  0.144), still being
lower as on the  first test day  (t12 =  3.390, p =  0.005). A similar, but
less pronounced temporal pattern was obtained in  Shank1+/− het
erozygous mice, with a  trend for a  reduction from the first to the
second test  day (t16 = 1.992, p =  0.073). In contrast to Shank1+/+ wild
type littermate controls, the most prominent decrease in Shank1+/−

heterozygous mice occurred from  the second to third test day
(t16 =  3.204, p = 0.006), with levels of  rearing behavior being clearly
lower than on the  first test day  (t16 = 5.348, p  <  0.001). Finally, a
very different temporal pattern was seen in  Shank1−/− null  mutant
mice. Their rearing behavior did not decrease from the  first to the

second test day (t14 =  −1.738, p = 0.104). In fact, their rearing behav
ior  even  slightly increased, resulting in the highest rearing activity
on the second test day when exposed to soiled bedding, as seen for
locomotor activity. Then, from the second to the third test day, rear
ing behavior strongly decreased (t14 = 4.723, p <  0.001), with rearing
activity levels being lower than on the  first test day (t14 =  2.302,
p =  0.037). Representative ethograms are shown in Fig. 5.

4.  Discussion

While no evidence for  genotype effects on  repetitive behav
iors was obtained in juvenile mice,  adult Shank1−/− null mutant,
Shank1+/− heterozygous, and Shank1+/+ wildtype littermate con
trol mice  differed significantly in selfgrooming behavior, with
genotype differences being most prominent in the  social context.
Specifically, particularly high levels of  selfgrooming behavior were
observed in  Shank1+/− heterozygous mice,  with selfgrooming rates
being elevated irrespective of  social context on the first and second,
but  not third test day. In Shank1−/− null mutant mice, however,
selfgrooming behavior was comparatively high on the  second test
day when mice were exposed to soiled bedding only,  with self
grooming levels being similar to the ones observed in  Shank1+/+

wildtype littermate controls on the first and third test day when
fresh bedding was used. Together, this  indicates that the detection
of  ASDrelated genotype effects on selfgrooming behavior might
be facilitated when mice are tested in  social contexts.
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Elevated levels selfgrooming behavior were mainly due to an
increase of the durations of  individual selfgrooming events, since
the numbers of selfgrooming events did not differ between geno
types. The genotype effect on  selfgrooming behavior might be due
to a reduction of  GKAP/SAPAP in  Shank1−/− null mutant mice,  as
compared to Shank1+/+ wildtype littermate controls (Hung et al.,
2008). GKAP/SAPAP interacts with PSD95 and Shank  (Kreienkamp,
2008) and Sapap3−/− null mutant mice display extremely high
levels of repetitive selfgrooming behavior leading to facial hair
loss and skin lesions (Welch et  al., 2007). Moreover, variation
within the human SAPAP3 gene  was found to  be associated
with  obsessive–compulsive disorder and/or grooming disorders,
including pathologic nail biting, pathologic skin picking, and/or
trichotillomania (Bienvenu et al.,  2009). In line with this, Sato
et al. (2012) reported various repetitive behaviors, including hand
flapping and  stereotypic body movements, in male children with
SHANK1 deletions. However, it has  to be highlighted that no
data on GKAP/SAPAP levels in Shank1+/− heterozygous are avail
able (Hung et  al., 2008), in  which the most prominent increases
in selfgrooming behavior were detected. The current findings
are in contrast to the  ones obtained by Silverman et  al.  (2011),
who reported no change in selfgrooming behavior in Shank1−/−

null mutant and Shank1+/− heterozygous mice when comparing
with Shank1+/+ wildtype littermate controls and the mixed back
ground strain C57BL/6J ×  129SvJae. However, it has to be  noted
that the selfgrooming experiment by  Silverman et  al. (2011) is
difficult to  interpret since Shank1+/+ wildtype littermate controls
and C57BL/6J × 129SvJae mice engaged in comparatively high lev
els of selfgrooming. Overall, however, the  genotype effects on
selfgrooming behavior are  comparatively weak.

In contrast to selfgrooming, digging behavior was not affected
by genotype and the numbers of  marbles buried were strongly
reduced in adult Shank1−/− null mutant and Shank1+/− heterozy
gous mice, as compared to Shank1+/+ wildtype littermate controls.
On all three test days, Shank1−/− null mutant and Shank1+/−

heterozygous mice  buried clearly fewer marbles than Shank1+/+

wildtype littermate controls. The  opposite effects of  the Shank1
deletion on the two types of repetitive behaviors in  mice appear
to be unexpected, but are in  line  with a number of studies on
repetitive behaviors in other genetic Shank models (Fig.  6). For
instance, Schmeisser et  al. (2012) reported increased selfgrooming
behavior in  adult female Shank2−/− null mutant mice, while dig
ging behavior was strongly decreased. In adult male Shank2−/− null
mutant mice, selfgrooming was unchanged, but digging behavior
was again strongly decreased (Schmeisser et al., 2012). Similar find
ings were obtained by  Won et  al. (2012) in  another Shank2 model.
While repetitive jumping behavior was increased in  Shank2−/− null
mutant mice of  both sexes, digging behavior was  strongly reduced,
irrespective of sex. Selfgrooming was not markedly affected by
genotype (Won et  al., 2012). Finally, in the only study in  which both,
selfgrooming and digging behavior, were examined in  a Shank3
model, a  similar pattern was reported. Selfgrooming was elevated,
at least in  older mice, but marble burying was strongly reduced
(Kouser et  al., 2013). Together this shows that selfgrooming
and/or jumping behavior is unchanged or  elevated in Shank1−/−,
Shank2−/−, and Shank3−/− null mutant mice, while digging behav
ior and/or marble burying were consistently reduced in all model
systems tested so far. This indicates that  the  reduced numbers of
marbles buried are not  simply due to the  fact that Shank1−/− null
mutant and Shank1+/− heterozygous mice displayed a reduced level
of locomotor activity, since some of  the  findings were obtained in
Shank models with a similar  reduction in  locomotor activity (Kouser
et al., 2013), but most the findings were obtained in  Shank models
characterized by hyperactivity (Schmeisser et  al.,  2012; Won et  al.,
2012).  In fact, the numbers of marbles buried were found to be
decreased in Shank1−/− null mutant and Shank1+/− heterozygous

mice on all  three test days in  the current study, while genotype dif
ferences in locomotor activity were observed on the  first test day
only. The fact that the  numbers of marbles buried differed between
genotypes while digging behavior was similar in  all  three geno
types possibly indicates less efficient marble burying in Shank1−/−

null mutant and Shank1+/− heterozygous mice  than in Shank1+/+

wildtype littermate controls.
In the current study, the observed genotype effects on repetitive

behaviors appear to be more prominent in older mice.  In  juve
nile mice, no evidence for genotype differences in selfgrooming
and digging behavior was obtained. This  lack of  genotype effects
is probably not due  to  unexpected changes in the  juvenile sample,
since genotype effects on locomotor activity and rearing behavior
were observed in the  expected direction, consistent with previous
studies in pups (Wöhr et  al., 2011)  and adult mice (Hung et  al.,
2008; Silverman et  al., 2011; Wöhr et  al., 2011). It  is known that
the level of  selfgrooming behavior changes throughout develop
ment. In C57BL/6J mice, selfgrooming behavior peaks around 4–5
weeks of age, making it comparatively difficult to detect differ
ences between mouse models for  ASD, such as the inbred mouse
strains BTBR T+tf/J and C58/J, and controls (McFarlane et  al., 2008;
Muehlmann et  al., 2012; Ryan et al., 2010). In fact, Kouser et al.
(2013) reported no genotype effect on selfgrooming behavior in
young adult Shank3−/− null mutant mice, but old mice with  about
one year of age, as compared to Shank3+/+ wildtype  littermate con
trols.

Besides developmental stage,  test context affects the occur
rence of repetitive behaviors. For instance, Thomas et  al. (2009)
showed that mice bury more marbles when tested in a novel cage
with fresh bedding than in the home cage. Very little, however,
is known about potential effects of  the social context. Ryan et  al.
(2010; but see Muehlmann et  al., 2012) reported abnormal high
levels of  repetitive behaviors in  the  C58/J mouse model for  ASD,
irrespective of  whether they were tested in social or  nonsocial test
paradigms, yet  Ryan et  al. (2010)  did not systematically manipu
late this factor in  their  study. In a  subsequent study, Moy et  al.
(2014) found that male C58/J mice  display reduced marble burying
behavior  with rates being comparable in contexts with fresh bed
ding, with sweet cereals buried under the fresh bedding, and with
a layer of  soiled bedding from females under the fresh bedding. In
the current study, selfgrooming, but not digging behavior, changed
across test days. The observed changes in selfgrooming behavior
were dependent on  the presence or  absence of  social odors and
not simply due  to an  overall habituation effect. In fact, a habitu
ation effect characterized by a  gradual decrease in  selfgrooming
can be ruled out since levels of selfgrooming behavior on the third
test day were similar to those on the  first  test day  or even higher.
Hence, observed changes in  selfgrooming behavior across test days
reflect  the  effect of social context. Importantly, this  effect of  social
context on selfgrooming behavior was found to be genotype
dependent. Most prominent genotype differences were detected in
the social context on the  second day, with Shank1−/− null mutant
and Shank1+/− heterozygous mice displaying comparatively high
levels of  selfgrooming behavior. In Shank1+/+ wildtype littermate
controls, selfgrooming behavior was lower on the  second test
day when mice were exposed to  soiled bedding as  compared to
the first and third test day when  fresh bedding was used. In  con
trast, levels of  selfgrooming behavior were unchanged and thus
comparatively high in the  social context in Shank1−/− null  mutant
and Shank1+/− heterozygous mice. This parallels recent findings by
Wöhr et  al. (2011) showing that the emission of ultrasonic vocali
zations induced by  female urine does not change in male Shank1−/−

null mutant mice dependent on social factors, namely previous
interactions with  females. Previous female contact is well known in
modulating the emission of  ultrasonic vocalizations in adult male
mice (Dizinno et  al., 1978; Guo and Holy, 2007; Maggio et al., 1983;
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Fig.  6. Mosaic  overview depicting  findings  obtained  in studies  on  repetitive  behaviors  in Shank mouse  models  for autism  spectrum disorder  (ASD).  Color  coding reflects  the
strength  of  behavioral alterations  with relevance  to ASD.  The  summary  score  “strong  phenotype  with  relevance  to  psychiatric disorders”  was obtained  as follows:  For ASD,
deficits  in each  of  the three behavioral  domains affected,  social  behavior,  communication,  and  repetitive  and  stereotyped  patterns  of  behavior,  were  rated  as  present (+1),
absent  (0),  or  opposite  to  expected  ASD phenotype  (−1),  with  a total  score  of >1  being  a “strong  phenotype  with relevance  to autism”,  a  total  score of  >0 being a  “moderate
phenotype  with  relevance  to autism”,  a  total  score  of  0  being  “no phenotype  with  relevance  for  autism”,  a  total  score  of  <0 being  a  “moderate  phenotype  opposite  to  autism”,
and  a total score  of  <1  being  a  “strong  phenotype  opposite  to  autism”.  Values  were averaged  across  sexes and  studies (Han  et al.,  2013).  (For  interpretation  of the  references
to  color  in this  figure  legend,  the  reader  is  referred to  the  web version of  the  article.)

Nyby et  al., 1983; Roullet et  al., 2011; Sipos et al., 1992, 1995),
which serve a  prosocial communicative function as social con
tact calls and attract female mice (Hammerschmidt et al., 2009;
Pomerantz et al., 1983). Such  impairments in adjusting behavior
to suit different social contexts are common in  ASD (American
Psychiatric Association, 2013). While in  healthy human subjects
the occurrence of repetitive patterns of  behavior is reduced in social
contexts (Asendorpf, 1980), it was suggested that levels  of  repet
itive behaviors are unchanged or even increased in children with
ASD exposed to a social context (BaronCohen, 1989; Carruthers,
1996). It is believed that repetitive patterns of  behavior help to
reduce elevated anxiety levels that result from a  primary deficit
in the ability to  understand social situations (BaronCohen, 1989;
Carruthers, 1996). This  view is  supported by some autobiographical
reports by  individuals with ASD (for an  overview on the  autobio
graphical reports and the herewith often inconsistent empirical
findings see: Turner, 1999). The present results are in  line  with this
view.

While selfgrooming behavior was clearly affected by social con
text in a  genotypedependent manner, the  most prominent effect
on marble burying was a main effect of genotype, with Shank1−/−

null mutant and Shank1+/− heterozygous mice burying fewer mar
bles than Shank1+/+ wildtype littermate controls on all  three test
days. However, the overall lack of strong effects of  social  context
on selfgrooming and marble burying does not  mean that Shank1−/−

null mutant and Shank1+/− heterozygous mice were  not affected by
social context. For instance, despite an often strongly reduced level
of  locomotor activity and rearing  behavior in  line with the litera
ture (Hung et  al., 2008; Silverman et al.,  2011; Wöhr et al., 2011),
Shank1−/− null mutant mice displayed a clear increase in locomotor
activity and slightly elevated levels  of rearing behavior on the  sec
ond test day when exposed to soiled bedding, as compared to the
first test day with fresh bedding. This  is in contrast with the tem
poral pattern obtained in Shank1+/+ wildtype littermate controls,
in which locomotor activity and rearing behavior were unchanged
or reduced across test days, in line with the expected habituation.
The observed increase in  locomotor activity and rearing behavior
in Shank1−/− null mutant mice, with a similar, but less pronounced
response pattern in  Shank1+/− heterozygous mice, clearly shows
that the lack of social  modulation of  selfgrooming behavior in
Shank1−/− null mutant and Shank1+/− heterozygous mice  is not due
to olfactory deficits. They were clearly able  to detect  the change
in social context. Intact olfactory abilities in  the social domain

in  Shank1−/− null mutant and Shank1+/− heterozygous mice were
recently reported by Silverman et  al. (2011).

In  summary, Shank1+/− heterozygous and to a lesser extent
Shank1−/− null  mutant mice displayed slightly elevated levels of
selfgrooming behavior as  adults, but not as juveniles, with geno
type  differences being most prominent in  the social context. In
contrast to elevated selfgrooming behavior, marble burying was
strongly reduced in adult Shank1+/− heterozygous and Shank1−/−

null mutant mice across social contexts, as  compared to adult
Shank1+/+ wildtype littermate controls. The opposite effects of  the
Shank1  deletion on the two  types of  repetitive behaviors are in line
with a  number of studies on repetitive behaviors in other genetic
Shank models.
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6 APPENDIX 

 

6.1 SHANK1 – Gene and Protein Nomenclature 

 

SHANK1 Gene symbol in human  

Shank1 Gene symbol in mouse 

Shank1
+/+ Mouse carrying a full copy of Shank1 gene on both alleles (Wild-type) 

Shank1
+/- Mouse with a deletion of Shank1 gene on one allele (Heterozygous) 

Shank1
-/- Mouse with a complete deletion of Shank1 gene on both alleles (Knockout) 

SHANK1 Protein symbol in human and mouse 

 

6.2 Abbreviations 

 

ADHD Attention-deficit hyperactivity disorder 

AMPA -amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

ANK Ankyrin repeats 

ASD Autism spectrum disorder 

BDNF Brain-derived neurotrophic factor 

bp Base pairs 

Ca
2+

 Calcium ion, with a positive charge of 2 

CAM Cell adhesion molecules 

CaMK Calcium-dependent kinase  

CNV Copy number variants 

DNA Deoxyribonucleic acid 

DSM Diagnostic and Statistical Manual of Mental Disorders  

FXS Fragile X syndrome 

GABA -aminobutyric acid 

ID Intellectual disability 

K
+
 Potassium ion, with a positive charge of 1 

kb Kilobase 

kD Kilodalton 
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MAPK Ras-mitogen-activated protein kinase 

MeCP2 Methyl CpG-binding protein 2 

mGluR Metabotropic glutamate receptor 

mRNA messenger ribonucleic acid 

Na
+
 Sodium ion, with a positive charge of 1 

NLGN Neuroligin 

NMDA N-methyl-D-aspartate 

NRXN Neurexin 

PDZ Protein-protein interaction domain, named after: PSD-95, Dlg1, and ZO-1 

PND Postnatal day 

PRO Proline-rich domain 

PSD Postsynaptic density 

PSD-95 Postsynaptic density protein of 95 kilodalton molecular weight 

PV Parvalbumin 

SAM Sterile alpha motif domain 

SH3 Src homology 3 domain  

SHANK Src homology 3 and ankyrin repeat domains  

SNP/SNV Single nucleotide polymorphism/single nucleotide variant 

TSC Tuberous sclerosis complex 

USV Ultrasonic vocalizations 
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