Publikationsserver der Universitätsbibliothek Marburg

Titel: Structural Characterization of 17β-Hydroxysteroid Dehydrogenase Type 14 and Inhibitor Optimization Using Crystallography and Computational Techniques
Autor: Bertoletti, Nicole
Weitere Beteiligte: Klebe, Gerhard (Prof. Dr.)
Veröffentlicht: 2017
URI: https://archiv.ub.uni-marburg.de/diss/z2017/0671
URN: urn:nbn:de:hebis:04-z2017-06718
DOI: https://doi.org/10.17192/z2017.0671
DDC: Biowissenschaften, Biologie
Publikationsdatum: 2018-05-07
Lizenz: https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Drug design, 17b-HSD14, Fragment Screening, Inhibitoren im Komplex mit dem Protein, Inhibitor-Protein complex, crystallography,, Strukturbestimmung, Kristallstrukturen

Summary:
17β-Hydroxysteroid dehydrogenase type 14 (17β-HSD14) is the latest identified subtype of 17β HSDs. In vivo this enzyme oxidizes the hydroxyl group at position 17 of estradiol (E2) and 5 androstenediol (5-diol) in the presence of NAD+ as cofactor. Two isoforms of this cytosolic protein exist that differ only in sequence position 205: S205 and T205. So far, the protein has not been thoroughly investigated in detail and its physiological role remains unknown. Prior to this thesis, the 17β-HSD14 apoenzyme (S205) had already been crystallized. The determined structure revealed a very broad and open active site and the conserved catalytic triad and the Rossmann fold motif. However, all C-terminal tails and for some chains also amino acids in the flexible loop (189-212) were not defined in the electron density. Moreover, it is impossible to derive information regarding a potential substrate from this apo structure. Therefore, the renewed structural determination of the 17β-HSD14 apo protein as well as in complex with its cofactor and substrate was of utmost importance. After successful establishment of the expression and purification protocols for 17β HSD14 protein, the two enzyme isoforms (S205 and T205) were characterized biochemically. The structures of the S205 apoenzyme and the binary complexes with NAD+ of both isoforms were determined. In these complex structures the flexible loop adopts a unique closed conformation differing from the apo structure. Binding of the cofactor is accompanied by a shift of the flexible loop and of the C-terminal Tyr253’ of the adjacent monomer, thereby reducing the size of the active site. The ternary complex of the enzyme with estrone (E1) and NAD+ was also determined. E1 binds to the active site in an atypical fashion, in so far as its A-ring and not the enzymatically modified position 17 close to the nicotinamide moiety of NAD+. Enzyme inhibitors are useful tools to study the consequences of enzyme inhibition in vivo. This allows to clarify whether this enzyme may be interesting as a new drug target for a certain disease. In addition, potent and selective 17β HSD14 inhibitors may help understand the selectivity issue with other 17β HSDs. As no 17β HSD14 inhibitor was known prior to this study, the goal was to identify and optimize nonsteroidal 17β-HSD14 inhibitors. To that, a library of 17β-HSD1 and 17β HSD2 inhibitors was screened against 17β-HSD14. The most promising hit was taken as the starting point for further chemical modification applying a ligand based approach. Newly designed compounds were synthesized and subsequently tested for their 17β HSD14 inhibitory activity. Prior to this thesis, no human 17β HSD structure in complex with a nonsteroidal ligand was published. The crystal structures confirmed that the inhibitors bind to the substrate binding site and allowed to rationalize the strong affinity of these inhibitors. Subsequently, two different structure-based strategies were pursued for inhibitor design. The first structure based modifications of the initial pyridine-based scaffold led to a ten-fold more potent inhibitor. The goal of the second structure based optimization strategy was to extend the central pyridine core to interact with the empty binding pocket adjacent to the steroid A and B-ring. The predicted binding mode was verified by co-crystal structures and the low nanomolar potency was confirmed by biophysical characterization. The new crystal structures revealed how small changes of the inhibitors affect the adopted binding mode. The characterization of the most promising 17β HSD14 inhibitors against 17β HSD1, 17β-HSD2, and 17β HSD10 revealed varying degrees of selectivity. In addition, some of these inhibitors showed very low cytotoxicity and did not interact with the multi-drug resistance protein Pgp, indicating these compounds might not be effluxed from the brain and that the risk of potential side effects is reduced. This suggests these inhibitors as tool compounds for further investigation in vivo. To explain the selectivity profiles of the ligands towards 17β HSD14 and other 17β HSDs we conducted a structural comparison. The typical V-like shape of the binding pocket of 17β HSD14 is determined by His93 and Gln148, which are not present in 17β HSD1, 17β HSD8 and 17β HSD10. In addition, the latter three enzymes have a rather flat binding pocket. This suggests that matching the characteristic three-dimensional requirements of 17β-HSD14 and optionally addressing His93 and/or Gln148 will increase the selectivity toward this target. Such inhibitors were predicted by docking a library of about 400 17β-HSD1 and 17β-HSD2 inhibitors with GOLD followed by in vitro screening of docking hits and related compounds. Remarkably, predicted binding modes were in poor agreement with the subsequently determined crystal structures due to the adaptability of the binding pocket caused by the flexible loop. Finally, a large fragment screening campaign by X-ray crystallography with the aim to discover new inhibitor scaffolds bound to 17β HSD14 was performed. This resulted in two fragments that could be clearly identified in the electron density. However, these fragments did not significantly inhibit 17β HSD14. In order to enhance affinity, fragment growing and fragment linking strategies were applied, resulting in two new inhibitors with better affinity than the starting fragments. In summary, both isoforms of 17β-HSD14, S205 and T205, were characterized biochemically and structurally resulting in four new crystal structures. The first two classes of inhibitor for this enzyme were discovered and the ligands were thoroughly profiled. In addition, the structures of 12 nonsteroidal inhibitors in complex with the protein were elucidated for the first time for this protein family. The fragment screening by determining 96 fragment-soaked structures, resulted in two fragment hits that were successfully optimize culminating in two inhibitors more active than their precursor fragments.

Zusammenfassung:
Die 17β-Hydroxysteroid Dehydrogenase Typ 14 (17β-HSD14) ist des zuletzt identifizierte Subtyp der 17β-HSDs. In vivo oxidiert dieses Enzym die Hydroxyl-Gruppe von Estradiol (E2) und 5 Androstendiol (5-Diol) an Position 17 in Gegenwart des Kofaktors NAD+. Es existieren zwei Isoformen dieses zytosolischen Proteins, die sich ausschließlich in der Sequenzposition 205 unterscheiden: S205 und T205. Bis her wurde das Protein noch nicht gründlich und im Detail untersucht und seine physiologische Rolle ist noch unbekannt. Vor der Durchführung dieser Doktorarbeit war das 17β-HSD14 Apoenzym (S205) bereits kristallisiert worden. Die gelöste Struktur zeigt ein sehr weites und offenes aktives Zentrum sowie die konservierte katalytische Triade zusammen mit dem Rossmann-Faltungsmotiv. Jedoch waren alle C-terminalen Enden und bei einigen Ketten auch Aminosäuren der flexiblen Schleife (189-212) in dem funktionalen Tetramer nicht in der Elektronendichte definiert. Darüber hinaus ist es unmöglich, Informationen hinsichtlich eines potentiellen Substrats von dieser Apostruktur abzuleiten. Deshalb war die erneute Strukturbestimmung des 17β-HSD14 Apoproteins sowie seiner Komplexe mit Kofaktor und Substrat von größter Wichtigkeit. Nach erfolgreicher Etablierung der Expressions- und Aufreinigungsprotokolle für 17β-HSD14 wurden die beiden Isoformen (S205 und T205) biochemisch charakterisiert. Die Strukturen des S205 Apoenzyms und der binären Komplexe beider Isoformen mit NAD+ wurden aufgeklärt. In diesen Strukturen nimmt die flexible Schleife eine einzigartige geschlossene Konformation ein, die sich von der Apostruktur unterscheidet. Die Bindung des Kofaktors geht einher mit einer Verschiebung der flexiblen Schleife und des C-terminalen Tyr253’ des benachbarten Monomers, wodurch die Größe des aktiven Zentrums vermindert wird. Der ternäre Komplex des Enzyms mit Estron (E1) und NAD+ wurde ebenfalls aufgeklärt. E1 bindet auf untypische Weise in das aktive Zentrum, so dass sein A-Ring und nicht die enzymatisch modifizierte Position 17 nahe dem Nikotinamid-Baustein des NAD+ zu liegen kommt. Enzyminhibitoren sind nützliche Werkzeuge, um die Konsequenzen einer Enzymhemmung in vivo zu studieren. Dies erlaubt zu klären, ob dieses Enzym als neues Arzneistofftarget für bestimmte Krankheiten interessant sein könnte. Außerdem könnten potente und selektive 17β HSD14 Inhibitoren auch helfen, die Selektivitätsproblematik anderen 17β-HSDs zu verstehen. Da vor dieser Studie kein 17β-HSD14 Inhibitor bekannt war, war das Ziel die Identifizierung und Optimierung nicht-steroidaler 17β-HSD14 Inhibitoren. Dafür wurden 17β-HSD1 und 17β-HSD2 Inhibitorbibliotheken gegen 17β-HSD14 durdgemustert. Der vielversprechendste Treffer wurde als Startpunkt für weitere chemische Modifizierung unter Anwendung eines ligandbasierten Ansatzes verwendet. Neu entworfene Verbindungen wurden synthetisiert und anschließend auf ihre inhibitorische Aktivität gegen 17β HSD14 getestet. Vor dieser Doktorarbeit waren keine Strukturen einer humanen 17β-HSD im Komplex mit einem nicht-steroidalen Liganden veröffentlicht. Die Kristallstrukturen bestätigten, dass die Inhibitoren an die Substratbindestelle binden und ermöglichten die hohe Affinität dieser Inhibitoren zu erklären. Anschließen wurden zwei unterschiedliche Strategien zum Inhibitordesign verfolgt. Die ersten strukturbasierten Modifikationen des ursprünglichen Pyridin-Grundgerüstes führten zu 10 fach potenteren Inhibitoren. Das Ziel der zweiten strukturbasierten Optimierungsstrategie war die Erweiterung des zentralen Pyridin Kerns, um eine Interaktion mit der unbesetzten Tasche neben den Steroid-Ringen A und B zu gewährleisten. Der vorhergesagte Bindungsmodus wurde durch Kokristallstrukturen verifiziert und die niedrig-nanomolare Affinität durch biophysikalische Charakterisierung bestätigt. Die neuen Kristallstrukturen offenbarten, wie kleine Änderungen der Inhibitoren den eingenommenen Bindungsmodus beeinflussen. Die Charakterisierung der vielversprechendsten 17β HSD14 Inhibitoren bezüglich 17β HSD1, 17β-HSD2 und 17β HSD10 offenbarte unterschiedliches Ausmaß an Selektivität. Zusätzlich zeigten einige dieser Inhibitoren eine sehr niedrige Zytotoxizität und keine Wechselwirkung mit dem Multidrug-Resistance-Protein Pgp, was darauf hindeutet, dass diese Verbindungen nicht aus dem Gehirn ausgeschleust werden, was das Risiko möglicher Nebenwirkungen erniedrigt. Dies legt die Verwendung dieser Inhibitoren als Werkzeuge für weitere in vivo Untersuchungen nahe. Um die Selektivitätsprofile dieser Liganden hinsichtlich 17β HSD14 und anderen 17β HSDs zu erklären, führten wir einen strukturellen Vergleich durch. Die typische V-ähnliche Form der Bindetasche von 17β HSD14 wird durch His93 und Gln148 bestimmt; Aminosäuren, die in 17β HSD1, 17β HSD8 and 17β HSD10 fehlen. Zusätzlich haben diese drei Enzyme eine eher flache Bindetasche. Dies legt nahe, dass eine Anpassung an die charakteristischen dreidimensionalen Anforderungen von 17β-HSD14 und wahlweise die Adressierung von His93 und/oder Gln148 die Selektivität für diese Zielstruktur erhöhen werden. Solche Inhibitoren wurden durch Docking einer Bibliothek von 400 17β-HSD1 und 17β-HSD2 Inhibitoren mit GOLD vorhergesagt, gefolgt von einem in vitro Screening der Docking Hits und verwandter Verbindungen. Bemerkenswerterweise waren die vorhergesagten Bindemoden kaum Übereinstimmung mit den später ermittelten Kristallstrukturen, was auf die Anpassungsfähigkeit der Bindetasche durch die flexible Schleife zuruck zu führen ist. Schließlich wurde eine großangelegte röntgenkristallographische Fragment-Screening Kampagne durchgeführt, mit dem Ziel neue Inhibitor-Grundgerüste, die an 17β HSD14 binden, zu entdecken. Dies führte zu zwei Fragmenten die deutlich in der Elektronendichte zu identifizieren waren. Jedoch zeigten diese Fragmente keine signifikante Inhibition von 17β HSD14. Um ihre Affinität zu erhöhen, wurden Strategien zum Fragment-Wachstum und zur Fragment-Kopplung (growing und linking) aufgegriffen, was zu zwei neuen Inhibitoren mit gegenüber den Start-Fragmenten erhöhter Affinität führte. Zusammengefasst wurden beide Isoformen von 17β-HSD14, S205 und T205, biochemisch und strukturell charakterisiert, was zu vier neuen Kristallstrukturen führte. Die ersten beiden Klassen von Inhibitoren dieser Enzyme wurden entdeckt und gründlich charakterisiert. Zusätzlich wurden zum ersten Mal für diese Familie, die Strukturen von 12 nicht-steroidalen Inhibitoren im Komplex mit dem Protein ermittelt. Das Fragment-Screening durch die Bestimmung der Struktur von 96 mit Fragmenten getränkten Kristallen führte zu zwei Fragment Treffern, die erfolgreich optimiert und zu zwei Inhibitoren mit gegenüber den Vorgänger-Fragmenten erhöhter Aktivität entwickelt werden konnten.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten