Publikationsserver der Universitätsbibliothek Marburg

Titel: Synthese und Charakterisierung substratanaloger Inhibitoren der Serinproteasen Matriptase und Kallikrein 7
Autor: Maiwald, Alexander
Weitere Beteiligte: Steinmetzer, Torsten (Prof. Dr.)
Veröffentlicht: 2017
URI: https://archiv.ub.uni-marburg.de/diss/z2017/0531
DOI: https://doi.org/10.17192/z2017.0531
URN: urn:nbn:de:hebis:04-z2017-05316
DDC: Chemie
Titel(trans.): Synthesis and characterization of substrate-analogous inhibitors of the serine proteases Matriptase and Kallikrein 7
Publikationsdatum: 2017-08-10
Lizenz: https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Organische Chemie, Enzymkinetik, Matriptase, Chemie, Kallikrein7, KLK7, Hemmstoffe, Matriptase, Kallikrein7, KLK7, Inhibitors

Zusammenfassung:
Die Serinproteasen Matriptase und Kallikrein 7 sind in einer Vielzahl physiologischer Prozesse involviert. Eine gestörte Aktivität dieser Proteasen ist für eine Reihe von Erkrankungen verantwortlich. Daher ist es von therapeutischem Interesse, die Aktivität der Proteasen regulieren zu können. Zu diesem zwecke wurde im Rahmen der vorliegenden Arbeit eine Reihe von substratanalogen Hemmstoffen für Matriptase und Kallikrein 7 entwickelt und auf ihre Hemmwirkung hin untersucht. Für beide Protease konnten wirksame und selektive Inhibitoren dargestellt werden.

Summary:
The serine proteases matriptase and kallikrein 7 are involved in a variety of physiological processes. A disturbed activity of these proteases is responsible for a number of diseases. Therefore, it is of therapeutic interest to be able to regulate the activity of these proteases. For this purpose, a series of substrate-analogue inhibitors for matriptase and kallikrein 7 have been developed and investigated for their inhibitory potency. Potent and selective inhibitors were developed for both proteases.

Bibliographie / References

  1. 85. Egelrud, T.; Lundstrom, A., A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res 1991, 283 (2), 108-12.
  2. 19. Lee, S. L.; Dickson, R. B.; Lin, C. Y., Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000, 275 (47), 36720-5.
  3. 48. Boileau, C.; Amiable, N.; Martel-Pelletier, J.; Fahmi, H.; Duval, N.; Pelletier, J. P., Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007, 9 (6), R121.
  4. 63. Häussler, D.; Schulz-Fincke, A. C.; Beckmann, A. M.; Keils, A.; Gilberg, E.; Mangold, M.; Bajorath, J.; Stirnberg, M.; Steinmetzer, T.; Gütschow, M., A Fluorescent-Labeled Phosphono Bisbenzguanidine As an Activity-Based Probe for Matriptase. Chemistry 2017.
  5. 70. Stürzebecher, J.; Vieweg, H.; Steinmetzer, T.; Schweinitz, A.; Stubbs, M. T.; Renatus, M.; Wikström, P., 3-Amidinophenylalanine-based inhibitors of urokinase. Bioorg Med Chem Lett 1999, 9 (21), 3147-52.
  6. 139. Termini, L.; Maciag, P. C.; Soares, F. A.; Nonogaki, S.; Pereira, S. M.; Alves, V. A.; Longatto-Filho, A.; Villa, L. L., Analysis of human kallikrein 7 expression as a potential biomarker in cervical neoplasia. Int J Cancer 2010, 127 (2), 485-90.
  7. 101. Ohler, A.; Debela, M.; Wagner, S.; Magdolen, V.; Becker-Pauly, C., Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol Chem 2010, 391 (4), 455-60.
  8. 67. Gustafsson, D.; Bylund, R.; Antonsson, T.; Nilsson, I.; Nystrom, J. E.; Eriksson, U.; Bredberg, U.; Teger-Nilsson, A. C., A new oral anticoagulant: the 50-year challenge. Nat Rev Drug Discov 2004, 3 (8), 649-59.
  9. 199. Kloek, J. A.; Leschinsky, K. L., An improved synthesis of sulfamoyl chlorides. The Journal of Organic Chemistry 1976, 41 (25), 4028-4029.
  10. 89. Brattsand, M.; Stefansson, K.; Lundh, C.; Haasum, Y.; Egelrud, T., A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 2005, 124 (1), 198-203.
  11. 121. Kabesch, M.; Carr, D.; Weiland, S. K.; von Mutius, E., Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin Exp Allergy 2004, 34 (3), 340-5.
  12. 12. Friedrich, R.; Fuentes-Prior, P.; Ong, E.; Coombs, G.; Hunter, M.; Oehler, R.; Pierson, D.; Gonzalez, R.; Huber, R.; Bode, W.; Madison, E. L., Catalytic domain structures of MTSP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 2002, 277 (3), 2160-8.
  13. 17. Takeuchi, T.; Harris, J. L.; Huang, W.; Yan, K. W.; Coughlin, S. R.; Craik, C. S., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000, 275 (34), 26333-42.
  14. 35. Lin, C. Y.; Wang, J. K.; Torri, J.; Dou, L.; Sang, Q. A.; Dickson, R. B., Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem 1997, 272 (14), 9147-52.
  15. 94. Debela, M.; Hess, P.; Magdolen, V.; Schechter, N. M.; Steiner, T.; Huber, R.; Bode, W.; Goettig, P., Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci U S A 2007, 104 (41), 16086-91.
  16. 198. Paul E. Fleming, Z. S., Brendan S. Chen, Jane F. Schmidt, John C. Reader, Neal D. Hone, Jefrey P. Ciavarri 2-(amino-substituted)-4-aryl pyramidines and related compounds useful for treating inflammatory diseases. PCT/US2005/000663, 2005.
  17. 81. Böttcher-Friebertshäuser, E.; Freuer, C.; Sielaff, F.; Schmidt, S.; Eickmann, M.; Uhlendorff, J.; Steinmetzer, T.; Klenk, H. D.; Garten, W., Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol 2010, 84 (11), 5605-14.
  18. 137. Talieri, M.; Mathioudaki, K.; Prezas, P.; Alexopoulou, D. K.; Diamandis, E. P.; Xynopoulos, D.; Ardavanis, A.; Arnogiannaki, N.; Scorilas, A., Clinical significance of kallikreinrelated peptidase 7 (KLK7) in colorectal cancer. Thromb Haemost 2009, 101 (4), 741-7.
  19. 32. List, K.; Hobson, J. P.; Molinolo, A.; Bugge, T. H., Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol 2007, 213 (1), 237-45.
  20. 119. Beljan, G.; Traupe, H.; Metze, D.; Sunderkotter, C., [Comel-Netherton syndrome with bacterial superinfection]. Hautarzt 2003, 54 (12), 1198-202.
  21. 126. Choi, S. J.; Song, M. G.; Sung, W. T.; Lee, D. Y.; Lee, J. H.; Lee, E. S.; Yang, J. M., Comparison of transepidermal water loss, capacitance and pH values in the skin between intrinsic and extrinsic atopic dermatitis patients. J Korean Med Sci 2003, 18 (1), 93-6.
  22. 140. Zhao, H.; Dong, Y.; Quan, J.; Smith, R.; Lam, A.; Weinstein, S.; Clements, J.; Johnson, N. W.; Gao, J., Correlation of the expression of human kallikrein-related peptidases 4 and 7 with the prognosis in oral squamous cell carcinoma. Head & neck 2011, 33 (4), 566-72.
  23. 93. Fernandez, I. S.; Standker, L.; Magert, H. J.; Forssmann, W. G.; Gimenez-Gallego, G.; Romero, A., Crystal structure of human epidermal kallikrein 7 (hK7) synthesized directly in its native state in E. coli: insights into the atomic basis of its inhibition by LEKTI domain 6 (LD6). J Mol Biol 2008, 377 (5), 1488-97.
  24. 99. Debela, M.; Magdolen, V.; Grimminger, V.; Sommerhoff, C.; Messerschmidt, A.; Huber, R.; Friedrich, R.; Bode, W.; Goettig, P., Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J Mol Biol 2006, 362 (5), 1094-107.
  25. 64. Galkin, A. V.; Mullen, L.; Fox, W. D.; Brown, J.; Duncan, D.; Moreno, O.; Madison, E. L.; Agus, D. B., CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 2004, 61 (3), 228-35.
  26. 6. List, K.; Szabo, R.; Molinolo, A.; Nielsen, B. S.; Bugge, T. H., Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 2006, 168 (5), 1513-25.
  27. 57. Li, P.; Jiang, S.; Lee, S. L.; Lin, C. Y.; Johnson, M. D.; Dickson, R. B.; Michejda, C. J.; Roller, P. P., Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J Med Chem 2007, 50 (24), 5976-83.
  28. 11. Colombo, E.; Desilets, A.; Duchene, D.; Chagnon, F.; Najmanovich, R.; Leduc, R.; Marsault, E., Design and synthesis of potent, selective inhibitors of matriptase. ACS Med Chem Lett 2012, 3 (7), 530-4.
  29. 56. Jiang, S.; Li, P.; Lee, S. L.; Lin, C. Y.; Long, Y. Q.; Johnson, M. D.; Dickson, R. B.; Roller, P. P., Design and synthesis of redox stable analogues of sunflower trypsin inhibitors (SFTI-1) on solid support, potent inhibitors of matriptase. Org Lett 2007, 9 (1), 9-12.
  30. 23. Schweinitz, A.; Steinmetzer, T.; Banke, I. J.; Arlt, M. J.; Stürzebecher, A.; Schuster, O.; Geissler, A.; Giersiefen, H.; Zeslawska, E.; Jacob, U.; Krüger, A.; Stürzebecher, J., Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. J Biol Chem 2004, 279 (32), 33613-22.
  31. 133. Ramani, V. C.; Hennings, L.; Haun, R. S., Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 2008, 8, 373.
  32. 103. Egelrud, T., Desquamation in the stratum corneum. Acta Derm Venereol Suppl (Stockholm) 2000, 208, 44-5.
  33. 83. Hammami, M., Dissertation Maya Hammami "Development of new inhibitors for the type II transmembrane serine protease matriptase". 2012.
  34. 79. Sielaff, F.; Böttcher-Friebertshäuser, E.; Meyer, D.; Saupe, S. M.; Volk, I. M.; Garten, W.; Steinmetzer, T., Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorg Med Chem Lett 2011, 21 (16), 4860-4.
  35. 15. Goswami, R.; Wohlfahrt, G.; Mukherjee, S.; Ghadiyaram, C.; Nagaraj, J.; Satyam, L. K.; Subbarao, K.; Gopinath, S.; Krishnamurthy, N. R.; Subramanya, H. S.; Ramachandra, M., Discovery of O-(3-carbamimidoylphenyl)-l-serine amides as matriptase inhibitors using a fragment-linking approach. Bioorg Med Chem Lett 2015, 25 (3), 616-20.
  36. 86. Shaw, J. L.; Diamandis, E. P., Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem 2007, 53 (8), 1423-32.
  37. 150. Engh, R. A.; Huber, R.; Bode, W.; Schulze, A. J., Divining the serpin inhibition mechanism: a suicide substrate 'springe'? Trends Biotechnol 1995, 13 (12), 503-10. 160. Tan, X.; Furio, L.; Reboud-Ravaux, M.; Villoutreix, B. O.; Hovnanian, A.; El Amri, C., 1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg Med Chem Lett 2013, 23 (16), 4547-51.
  38. 66. Wiley, M. R.; Chirgadze, N. Y.; Clawson, D. K.; Craft, T. J.; GiffordMoore, D. S.; Jones, N. D.; Olkowski, J. L.; Weir, L. C.; Smith, G. F., D-phe-pro-p-amidinobenzylamine: A potent and highly selective thrombin inhibitor. Bioorg Med Chem Lett 1996, 6 (20), 2387-2392.
  39. 45. Milner, J. M.; Patel, A.; Rowan, A. D., Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis Rheum 2008, 58 (12), 3644-56.
  40. 16. Katz, B. A.; Sprengeler, P. A.; Luong, C.; Verner, E.; Elrod, K.; Kirtley, M.; Janc, J.; Spencer, J. R.; Breitenbucher, J. G.; Hui, H.; McGee, D.; Allen, D.; Martelli, A.; Mackman, R. L., Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem Biol 2001, 8 (11), 1107-21.
  41. 113. Cork, M. J.; Danby, S. G.; Vasilopoulos, Y.; Hadgraft, J.; Lane, M. E.; Moustafa, M.; Guy, R. H.; Macgowan, A. L.; Tazi-Ahnini, R.; Ward, S. J., Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009, 129 (8), 1892-908.
  42. 33. Netzel-Arnett, S.; Currie, B. M.; Szabo, R.; Lin, C. Y.; Chen, L. M.; Chai, K. X.; Antalis, T. M.; Bugge, T. H.; List, K., Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 2006, 281 (44), 32941-5.
  43. 39. Cheng, M. F.; Tzao, C.; Tsai, W. C.; Lee, W. H.; Chen, A.; Chiang, H.; Sheu, L. F.; Jin, J. S., Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: correlation with clinicopathological parameters. Dis Esophagus 2006, 19 (6), 482-6. 41. Zeng, L.; Cao, J.; Zhang, X., Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol 2005, 11 (39), 6202-7.
  44. 47. Xiang, Y.; Masuko-Hongo, K.; Sekine, T.; Nakamura, H.; Yudoh, K.; Nishioka, K.; Kato, T., Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta. Osteoarthritis and cartilage 2006, 14 (11), 1163-73.
  45. 142. Xuan, Q.; Yang, X.; Mo, L.; Huang, F.; Pang, Y.; Qin, M.; Chen, Z.; He, M.; Wang, Q.; Mo, Z. N., Expression of the serine protease kallikrein 7 and its inhibitor antileukoprotease is decreased in prostate cancer. Arch Pathol Lab Med 2008, 132 (11), 1796-801.
  46. 69. Shiraishi, T.; Kadono, S.; Haramura, M.; Kodama, H.; Ono, Y.; Iikura, H.; Esaki, T.; Koga, T.; Hattori, K.; Watanabe, Y.; Sakamoto, A.; Yoshihashi, K.; Kitazawa, T.; Esaki, K.; Ohta, M.; Sato, H.; Kozono, T., Factor VIIa inhibitors: target hopping in the serine protease family using X-ray structure determination. Bioorg Med Chem Lett 2008, 18 (16), 4533-7.
  47. 92. Harel, M.; Su, C. T.; Frolow, F.; Silman, I.; Sussman, J. L., Gamma-chymotrypsin is a complex of alpha-chymotrypsin with its own autolysis products. Biochemistry 1991, 30 (21), 5217-25.
  48. 141. Martins, W. K.; Esteves, G. H.; Almeida, O. M.; Rezze, G. G.; Landman, G.; Marques, S. M.; Carvalho, A. F.; LF, L. R.; Duprat, J. P.; Stolf, B. S., Gene network analyses point to the importance of human tissue kallikreins in melanoma progression. BMC medical genomics 2011, 4, 76.
  49. 120. Walley, A. J.; Chavanas, S.; Moffatt, M. F.; Esnouf, R. M.; Ubhi, B.; Lawrence, R.; Wong, K.; Abecasis, G. R.; Jones, E. Y.; Harper, J. I.; Hovnanian, A.; Cookson, W. O., Gene polymorphism in Netherton and common atopic disease. Nat Genet 2001, 29 (2), 175-8.
  50. 68. Stürzebecher, A.; Dönnecke, D.; Schweinitz, A.; Schuster, O.; Steinmetzer, P.; Stürzebecher, U.; Kotthaus, J.; Clement, B.; Stürzebecher, J.; Steinmetzer, T., Highly potent and selective substrate analogue factor Xa inhibitors containing D-homophenylalanine analogues as P3 residue: part 2. ChemMedChem 2007, 2 (7), 1043-53.
  51. 54. Luckett, S.; Garcia, R. S.; Barker, J. J.; Konarev, A. V.; Shewry, P. R.; Clarke, A. R.; Brady, R. L., High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 1999, 290 (2), 525-33.
  52. 115. Egelrud, T.; Brattsand, M.; Kreutzmann, P.; Walden, M.; Vitzithum, K.; Marx, U. C.; Forssmann, W. G.; Magert, H. J., hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 2005, 153 (6), 1200-3.
  53. 102. Emami, N.; Diamandis, E. P., Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin. J Biol Chem 2008, 283 (6), 3031-41.
  54. 118. Komatsu, N.; Saijoh, K.; Kuk, C.; Liu, A. C.; Khan, S.; Shirasaki, F.; Takehara, K.; Diamandis, E. P., Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 2007, 16 (6), 513-9.
  55. 3. Shi, Y. E.; Torri, J.; Yieh, L.; Wellstein, A.; Lippman, M. E.; Dickson, R. B., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 1993, 53 (6), 1409-15.
  56. 36. Riddick, A. C.; Shukla, C. J.; Pennington, C. J.; Bass, R.; Nuttall, R. K.; Hogan, A.; Sethia, K. K.; Ellis, V.; Collins, A. T.; Maitland, N. J.; Ball, R. Y.; Edwards, D. R., Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 2005, 92 (12), 2171-80.
  57. 78. Sisay, M. T.; Steinmetzer, T.; Stirnberg, M.; Maurer, E.; Hammami, M.; Bajorath, J.; Gütschow, M., Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem 2010, 53 (15), 5523-35.
  58. 37. Jin, J. S.; Hsieh, D. S.; Loh, S. H.; Chen, A.; Yao, C. W.; Yen, C. Y., Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Mod Pathol 2006, 19 (3), 447-52.
  59. 114. Schechter, N. M.; Choi, E. J.; Wang, Z. M.; Hanakawa, Y.; Stanley, J. R.; Kang, Y.; Clayman, G. L.; Jayakumar, A., Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 2005, 386 (11), 1173-84.
  60. 26. Comoglio, P. M.; Trusolino, L., Invasive growth: from development to metastasis. J Clin Invest 2002, 109 (7), 857-62.
  61. 61. Sienczyk, M.; Oleksyszyn, J., Irreversible inhibition of serine proteases - design and in vivo activity of diaryl alpha-aminophosphonate derivatives. Curr Med Chem 2009, 16 (13), 1673-87.
  62. 60. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E., Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002, 102 (12), 4639-750.
  63. 162. Oliveira, J. P.; Freitas, R. F.; Melo, L. S.; Barros, T. G.; Santos, J. A.; Juliano, M. A.; Pinheiro, S.; Blaber, M.; Juliano, L.; Muri, E. M.; Puzer, L., Isomannide-based peptidomimetics as inhibitors for human tissue kallikreins 5 and 7. ACS Med Chem Lett 2014, 5 (2), 128-32.
  64. 107. Johnson, S. K.; Ramani, V. C.; Hennings, L.; Haun, R. S., Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 2007, 109 (9), 1811-20.
  65. 111. Yamasaki, K.; Schauber, J.; Coda, A.; Lin, H.; Dorschner, R. A.; Schechter, N. M.; Bonnart, C.; Descargues, P.; Hovnanian, A.; Gallo, R. L., Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. Faseb j 2006, 20 (12), 2068-80.
  66. 143. Planque, C.; de Monte, M.; Guyetant, S.; Rollin, J.; Desmazes, C.; Panel, V.; Lemarie, E.; Courty, Y., KLK5 and KLK7, two members of the human tissue kallikrein family, are differentially expressed in lung cancer. Biochem Biophys Res Commun 2005, 329 (4), 1260-6.
  67. 116. Deraison, C.; Bonnart, C.; Lopez, F.; Besson, C.; Robinson, R.; Jayakumar, A.; Wagberg, F.; Brattsand, M.; Hachem, J. P.; Leonardsson, G.; Hovnanian, A., LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 2007, 18 (9), 3607-19.
  68. 74. Ettmayer, P.; Amidon, G. L.; Clement, B.; Testa, B., Lessons learned from marketed and investigational prodrugs. J Med Chem 2004, 47 (10), 2393-404.
  69. 80. Biela, A.; Sielaff, F.; Terwesten, F.; Heine, A.; Steinmetzer, T.; Klebe, G., Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect. J Med Chem 2012, 55 (13), 6094-110.
  70. 53. McGrath, M. E.; Erpel, T.; Bystroff, C.; Fletterick, R. J., Macromolecular chelation as an improved mechanism of protease inhibition: structure of the ecotin-trypsin complex. EMBO J 1994, 13 (7), 1502-7.
  71. 21. Jin, X.; Yagi, M.; Akiyama, N.; Hirosaki, T.; Higashi, S.; Lin, C. Y.; Dickson, R. B.; Kitamura, H.; Miyazaki, K., Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 2006, 97 (12), 1327-34.
  72. 24. Uhland, K., Matriptase and its putative role in cancer. Cell Mol Life Sci 2006, 63 (24), 2968-78.
  73. 46. Wilkinson, D. J.; Habgood, A.; Lamb, H. K.; Thompson, P.; Hawkins, A. R.; Desilets, A.; Leduc, R.; Steinmetzer, T.; Hammami, M.; Lee, M. S.; Craik, C. S.; Watson, S.; Lin, H.; Milner, J. M.; Rowan, A. D., Matriptase induces metalloproteinase-dependent aggrecanolysis in vitro and in vivo: multiple mechanisms promote cartilage damage in osteoarthritis. Arthritis & rheumatology 2017.
  74. 34. Sales, K. U.; Masedunskas, A.; Bey, A. L.; Rasmussen, A. L.; Weigert, R.; List, K.; Szabo, R.; Overbeek, P. A.; Bugge, T. H., Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 2010, 42 (8), 676- 83.
  75. 7. List, K.; Bugge, T. H.; Szabo, R., Matriptase: potent proteolysis on the cell surface. Mol Med 2006, 12 (1-3), 1-7.
  76. 2. Antalis, T. M.; Bugge, T. H.; Wu, Q., Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci 2011, 99, 1-50.
  77. 20. Seitz, I.; Hess, S.; Schulz, H.; Eckl, R.; Busch, G.; Montens, H. P.; Brandl, R.; Seidl, S.; Schomig, A.; Ott, I., Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol 2007, 27 (4), 769-75.
  78. 72. Steinmetzer, T.; Dönnecke, D.; Korsonewski, M.; Neuwirth, C.; Steinmetzer, P.; Schulze, A.; Saupe, S. M.; Schweinitz, A., Modification of the N-terminal sulfonyl residue in 3- amidinophenylalanine-based matriptase inhibitors. Bioorg Med Chem Lett 2009, 19 (1), 67- 73.
  79. 145. Goettig, P.; Magdolen, V.; Brandstetter, H., Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010, 92 (11), 1546-67.
  80. 112. Hovnanian, A., Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 2013, 351 (2), 289-300.
  81. 29. Cao, B.; Su, Y.; Oskarsson, M.; Zhao, P.; Kort, E. J.; Fisher, R. J.; Wang, L. M.; Vande Woude, G. F., Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci USA 2001, 98 (13), 7443-8.
  82. 76. Hammami, M.; Rühmann, E.; Maurer, E.; Heine, A.; Gütschow, M.; Klebe, G.; Steinmetzer, T., New 3-amidinophenylalanine-derived inhibitors of matriptase. MedChemComm 2012, 3 (7), 807-813.
  83. 82. Schweinitz, A.; Stürzebecher, A.; Stürzebecher, U.; Schuster, O.; Stürzebecher, J.; Steinmetzer, T., New substrate analogue inhibitors of factor Xa containing 4-amidinobenzylamide as P1 residue: part 1. Med Chem 2006, 2 (4), 349-61.
  84. 28. Matsumoto, K.; Nakamura, T., NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci 2003, 94 (4), 321-7.
  85. 5. Tanimoto, H.; Underwood, L. J.; Wang, Y.; Shigemasa, K.; Parmley, T. H.; O'Brien, T. J., Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 2001, 22 (2), 104-14.
  86. 62. Brown, C. M.; Ray, M.; Eroy-Reveles, A. A.; Egea, P.; Tajon, C.; Craik, C. S., Peptide length and leaving-group sterics influence potency of peptide phosphonate protease inhibitors. Chem Biol 2011, 18 (1), 48-57.
  87. 1. Cal, S.; Quesada, V.; Garabaya, C.; Lopez-Otin, C., Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product. Proc Natl Acad Sci USA 2003, 100 (16), 9185-90.
  88. 58. Sun, J.; Pons, J.; Craik, C. S., Potent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies. Biochemistry 2003, 42 (4), 892-900.
  89. 65. Duncan, D. F.; Alfaro-Lopez, J. L.; Komandla, M.; Levy, O. E.; Moreno, O.; Semple, J. E.; Tamiz, A. P. Preparation of matriptase inhibitors for the treatment of cancer. 2004/058688. 2004.
  90. 90. Skytt, A.; Stromqvist, M.; Egelrud, T., Primary substrate specificity of recombinant human stratum corneum chymotryptic enzyme. Biochem Biophys Res Commun 1995, 211 (2), 586-9.
  91. 18. Beliveau, F.; Desilets, A.; Leduc, R., Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J 2009, 276 (8), 2213-26.
  92. 75. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Jarvinen, T.; Savolainen, J., Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008, 7 (3), 255-70.
  93. 31. Shi, X.; Gangadharan, B.; Brass, L. F.; Ruf, W.; Mueller, B. M., Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2004, 2 (7), 395-402.
  94. 30. O'Brien, P. J.; Molino, M.; Kahn, M.; Brass, L. F., Protease activated receptors: theme and variations. Oncogene 2001, 20 (13), 1570-81.
  95. 44. Ihara, S.; Miyoshi, E.; Taniguchi, N., [Protease modified by sugar chain: beta 1-6 branching and matriptase]. Tanpakushitsu Kakusan Koso 2003, 48 (8 Suppl), 980-3.
  96. 10. Lin, C. Y.; Anders, J.; Johnson, M.; Dickson, R. B., Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 1999, 274 (26), 18237-42.
  97. 127. Arama, D. P.; Soualmia, F.; Lisowski, V.; Longevial, J. F.; Bosc, E.; Maillard, L. T.; Martinez, J.; Masurier, N.; El Amri, C., Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur J Med Chem 2015, 93, 202-13.
  98. 122. Meyer-Hoffert, U., Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz) 2009, 57 (5), 345- 54.
  99. 4. Takeuchi, T.; Shuman, M. A.; Craik, C. S., Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 1999, 96 (20), 11054-61.
  100. 25. Trusolino, L.; Comoglio, P. M., Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002, 2 (4), 289-300.
  101. 13. Steinmetzer, T.; Schweinitz, A.; Stürzebecher, A.; Dönnecke, D.; Uhland, K.; Schuster, O.; Steinmetzer, P.; Müller, F.; Friedrich, R.; Than, M. E.; Bode, W.; Stürzebecher, J., Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase. J Med Chem 2006, 49 (14), 4116-26.
  102. 125. Roedl, D.; Traidl-Hoffmann, C.; Ring, J.; Behrendt, H.; Braun-Falco, M., Serine protease inhibitor lymphoepithelial Kazal type-related inhibitor tends to be decreased in atopic dermatitis. J Eur Acad Dermatol Venereol 2009, 23 (11), 1263-6.
  103. 132. Li, W.; Zhao, Y.; Ren, L.; Wu, X., Serum human kallikrein 7 represents a new marker for cervical cancer. Med Oncol 2014, 31 (10), 208.
  104. 27. Davies, G.; Mason, M. D.; Martin, T. A.; Parr, C.; Watkins, G.; Lane, J.; Matsumoto, K.; Nakamura, T.; Jiang, W. G., The HGF/SF antagonist NK4 reverses fibroblast- and HGF-induced prostate tumor growth and angiogenesis in vivo. Int J Cancer 2003, 106 (3), 348-54.
  105. 123. Tanaka, R. J.; Ono, M.; Harrington, H. A., Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity. PLoS One 2011, 6 (5), e19895.
  106. 91. Debela, M.; Magdolen, V.; Schechter, N.; Valachova, M.; Lottspeich, F.; Craik, C. S.; Choe, Y.; Bode, W.; Goettig, P., Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J Biol Chem 2006, 281 (35), 25678-88.
  107. 59. Enyedy, I. J.; Lee, S. L.; Kuo, A. H.; Dickson, R. B.; Lin, C. Y.; Wang, S., Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. J Med Chem 2001, 44 (9), 1349-55.
  108. 73. Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J. M.; Wienen, W., Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem 2002, 45 (9), 1757-66.
  109. 14. Yuan, C.; Chen, L.; Meehan, E. J.; Daly, N.; Craik, D. J.; Huang, M.; Ngo, J. C., Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1. BMC Struct Biol 2011, 11, 30.
  110. 146. Angelo, P. F.; Lima, A. R.; Alves, F. M.; Blaber, S. I.; Scarisbrick, I. A.; Blaber, M.; Juliano, L.; Juliano, M. A., Substrate specificity of human kallikrein 6: salt and glycosaminoglycan activation effects. J Biol Chem 2006, 281 (6), 3116-26.
  111. 71. Setyono-Han, B.; Stürzebecher, J.; Schmalix, W. A.; Muehlenweg, B.; Sieuwerts, A. M.; Timmermans, M.; Magdolen, V.; Schmitt, M.; Klijn, J. G.; Foekens, J. A., Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost 2005, 93 (4), 779-86.
  112. 55. Long, Y. Q.; Lee, S. L.; Lin, C. Y.; Enyedy, I. J.; Wang, S.; Li, P.; Dickson, R. B.; Roller, P. P., Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorg Med Chem Lett 2001, 11 (18), 2515-9.
  113. 9. Oberst, M. D.; Williams, C. A.; Dickson, R. B.; Johnson, M. D.; Lin, C. Y., The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 2003, 278 (29), 26773-9.
  114. 50. Ascenzi, P.; Bocedi, A.; Bolognesi, M.; Spallarossa, A.; Coletta, M.; De Cristofaro, R.; Menegatti, E., The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 2003, 4 (3), 231-51. 52. Chung, C. H.; Ives, H. E.; Almeda, S.; Goldberg, A. L., Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J Biol Chem 1983, 258 (18), 11032-8.
  115. 88. Ovaere, P.; Lippens, S.; Vandenabeele, P.; Declercq, W., The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 2009, 34 (9), 453-63.
  116. 87. Yousef, G. M.; Scorilas, A.; Magklara, A.; Soosaipillai, A.; Diamandis, E. P., The KLK7 (PRSS6) gene, encoding for the stratum corneum chymotryptic enzyme is a new member of the human kallikrein gene family - genomic characterization, mapping, tissue expression and hormonal regulation. Gene 2000, 254 (1-2), 119-28.
  117. 38. Santin, A. D.; Cane, S.; Bellone, S.; Bignotti, E.; Palmieri, M.; De Las Casas, L. E.; Anfossi, S.; Roman, J. J.; O'Brien, T.; Pecorelli, S., The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer 2003, 98 (9), 1898-904.
  118. 49. Kelso, E. B.; Lockhart, J. C.; Hembrough, T.; Dunning, L.; Plevin, R.; Hollenberg, M. D.; Sommerhoff, C. P.; McLean, J. S.; Ferrell, W. R., Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 2006, 316 (3), 1017-24.
  119. 149. Potempa, J.; Korzus, E.; Travis, J., The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 1994, 269 (23), 15957-60.
  120. 124. Callard, R. E.; Harper, J. I., The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol 2007, 28 (7), 294-8.
  121. 22. Duffy, M. J.; Duggan, C., The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem 2004, 37 (7), 541-8.
  122. 138. Talieri, M.; Li, L.; Zheng, Y.; Alexopoulou, D. K.; Soosaipillai, A.; Scorilas, A.; Xynopoulos, D.; Diamandis, E. P., The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br J Cancer 2009, 100 (10), 1659-65.
  123. 43. Kang, J. Y.; Dolled-Filhart, M.; Ocal, I. T.; Singh, B.; Lin, C. Y.; Dickson, R. B.; Rimm, D. L.; Camp, R. L., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003, 63 (5), 1101- 5.
  124. 84. Tan, X.; Soualmia, F.; Furio, L.; Renard, J. F.; Kempen, I.; Qin, L.; Pagano, M.; Pirotte, B.; El Amri, C.; Hovnanian, A.; Reboud-Ravaux, M., Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem 2015, 58 (2), 598-612.
  125. 100. Prassas, I.; Eissa, A.; Poda, G.; Diamandis, E. P., Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015, 14 (3), 183-202.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten