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Zusammenfassung

Die  Arbeit  untersucht  Aspekte,  die  vor  einer  klinischen  Implementierung  einer 

Partikelstrahlentherapie mit einem gescannten Strahl zur Behandlung von Lungentumoren 

berücksichtigt werden müssen. 

Im ersten Teil der Arbeit wurde die Reproduzierbarkeit der berechneten Dosisverteilung mit 

einem  gescannten  Partikelstrahl  zur  Behandlung  nicht-kleinzelliger  Lungentumore 

(NSCLC)  im  Stadium  I  in  einem  klinischen  Szenario  untersucht.  Die  Berechnungen 

basieren  auf  einem  Datensatz  von  Patienten,  die  unter  High-Frequency-Jet-Ventilation 

(HFJV) zur Tumorfixation mittels einer Einzeitbestrahlung mit Photonen behandelt wurden. 

Bestrahlungspläne  für  eine  Bestrahlung  mit  Protonen  oder  Kohlenstoffionen  wurden 

berechnet  und  bzgl.  klinischer  Planungsparameter  optimiert,  um  die  bestmögliche 

Dosisabdeckung im Zielgebiet zu erreichen. Inter-fraktionelle anatomische Veränderungen 

innerhalb  einer  kurzen  Zeitspanne  wurden  simuliert  durch  Berücksichtigung  der 

anatomischen  Veränderungen  zwischen  dem  Bestrahlungsplanungs-CT  und  dem 

Lokalisations-CT  vor  der  Einzeitbestrahlung.  Die  dosimetrischen  Auswirkungen  dieser 

anatomischen Veränderungen (u.a. durch Änderung der Tumorposition und Lagevarianz des 

Patienten)  wurden  berechnet.  Diese  anatomischen  Veränderungen  wurden  mittels 

Berechnung  der  water  equivalent  path  length  (WEPL)  im  Eintrittskanal  des  Strahls 

quantifiziert und mit der Dosisabdeckung im Zielgebiets korreliert. Zudem wurden Strahl- 

und  Planungsparameter  identifiziert,  die  die  dosimetrischen  Auswirkungen  solcher 

anatomischer  Veränderungen  reduzierten,  z.B.  die  Einstrahlrichtung,  die  Anzahl  der 

Einstrahlrichtungen  und  die  Spotgröße  des  gescannten  Strahls.  Wir  konnten  eine 

reproduzierbare Tumorfixation durch die HFJV nachweisen. Die Technik garantierte bei 

den  meisten  Patienten  eine  exzellente  Dosisabdeckung  des  Zielgebiets  bei  einer 

Einzeitbestrahlung  mit  Protonen.  Bei  einer  geringen  Anzahl  von  Patienten  wurden 

allerdings  nicht  akzeptable  Abweichungen  der  Dosisverteilung  zum  berechneten 

Bestrahlungsplan beobachten,  was die Notwendigkeit  einer Kontrolle der Tumorposition 

und der Patientenlagerung vor jeder Bestrahlungsfraktion mittels Bildgebung verdeutlicht. 

Hierbei  sollten  dezidierte  Protokolle  für  die  Bildführung  einschließlich 

Interventionsschwellen  entwickelt  werden,  die  die  Auswirkung  anatomischer 

Veränderungen auf die Dosisverteilung berücksichtigen. Die HFJV scheint Interplayeffekte 

zuverlässig  zu  vermeiden.  Neuere  Beatmungstechniken,  die  keine  Narkose  erfordern, 

können auch bei einer fraktionierten Behandlung eingesetzt werden. 
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Die biologische Bestrahlungsplanung für die Behandlung mit Kohlenstoffionen erfordert 

ein biophysikalisches Modell strahlenbiologischer Effekte einer Strahlqualität mit hohem 

linearen Energietransfer (LET). Ein Modell, das momentan klinisch Anwendung findet, ist 

das  local  effect  model  (LEM).  Das  Modell  beschreibt  die  Strahlensensitivität  und  den 

biologischen  Effekt  der  Ionenbestrahlung  im  Vergleich  zu  einer  fraktionierten 

Photonenbestrahlung im Tumor- und Normalgewebe. Das Modell benötigt Inputparameter, 

u.a. das α/β Verhältnis, das momentan fast ausschließlich aus in vitro Studien bekannt ist. 

Es besteht daher die Notwendigkeit, tumorspezifische und klinisch realistische Werte für 

das α/β Verhältnis zu erforschen. Solche tumorspezifische und klinisch realistische Werte 

für das α/β Verhältnis sind aber auch für eine hypofraktionierte Photonestrahlentherapie 

hoch relevant. Für solche Dosierungskonzepte wird zudem seit langem diskutiert, ob das 

Linear-quadratische  Modell  (LQ)  oder  das  Linear-quadratisch-lineare  Modell  (LQ-L) 

solche Dosiseffekte am besten beschreibt und welches α/β Verhältnis für NSCLC adäquat 

ist, um Fraktionierungseffekte vorherzusagen. 

Für  den  zweiten  Teil  dieser  Arbeit  wurde  daher  ein  Review  publizierter  lokaler 

Kontrollraten von NSCLC im Stadium I nach einer Strahlentherapie erstellt. Die lokalen 

Kontrollraten  nach  Radiatio  mit  unterschiedlichen  Fraktionierungskonzepten  wurden 

mathematisch  modelliert,  wobei  Berechnungen  mit  dem  LQ  und  dem  LQ-L  Modell 

durchgeführt wurden. Mit beiden Modellen ließen sich klinische Kontrollraten nach normo-

und  hypokraktionierter  Bestrahlung  vorhersagen.  Das  LQ-L  Modell  ergab  einen 

signifikanten Wert  für  Dt  von 11.0 Gy bei  Berechnung der  biologisch effektiven Dosis 

(BED) im Isozentrum bei einem α/β Wert von 10 Gy bei hypofraktionierter Bestrahlung. 

Das Modell sagte eine ähnliche Tumorkontrollwahrscheinlichkeit voraus (TCP), wie das 

LQ-Modell.  Es  bestand  eine  klare  Dosis-Effekt-Beziehung,  die  in  der  Hochdosisregion 

allerdings  etwas  schwächer  ausgeprägt  war,  da  hier  die  Daten  stärker  streuten.  Für  die 

Applikation einer biologisch effektiven Dosis (α/β=10 Gy) von 100-150Gy in 3 oder mehr 

Fraktionen waren die Unterschiede bzgl. der Isoeffektvorhersage mit beiden Modellen zu 

vernachlässigen.  Die  Ergebnisse  zeigen  somit  keine  Verbesserung  der  Vorhersage  der 

lokalen Tumorkontrolle nach einer hypofraktionierten Bestrahlung durch das LQ-L Modell 

im  Vergleich  zum  LQ  Modell.  Eine  Analyse,  um  das  optimale  α/β  Verhältnis  bei 

Berechnungen mit dem LQ Modell über den gesamten Fraktionierungsbereich zu finden, 

ergab keine signifikanten Wert, allerdings einen Trend zu einem α/β Verhältnis unter 10Gy.
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Summary

This work presents a contribution in two different aspects required for the implementation 

of scanned-beam particle therapy for lung tumors. 

The first part of this work investigates the reproducibility of the calculated particle therapy 

dose distribution for early stage non-small cell lung cancer (NSCLC) tumors in a clinical 

scenario. These calculations were carried out based  on data sets of patients  treated with 

single  dose  photon  stereotactic  body  radiotherapy  (SBRT) under  high  frequency  jet 

ventilation (HFJV) in order to achieve near-total tumor fixation. A dosimetric evaluation of 

calculated proton and carbon ion plans was performed, to fulfill clinical plan acceptance 

criteria  with emphasis  on target  coverage.  By simulating the inter-fractional  anatomical 

changes in a short time scale between planning and delivery-time anatomies as imaged by 

the  planning  and  localization  computed  tomography (CT) data  sets,  we carried  out  an 

investigation of the deterioration in target coverage. The anatomical changes (e.g. tumor 

position,  patient  setup)  were  quantified  through  water  equivalent  path  length  (WEPL) 

calculations within the beam entrance channels and correlated with the loss in  dosimetric 

coverage. In addition, we identified beam and planning settings, which also help to reduce 

dosimetric deterioration, such as best choice of beam angle, higher number of beams, larger 

spot  sizes  and  larger  allowances  for  beam  spots  outside  the  target.  We  demonstrated 

reproducible  tumor  fixations  through  HFJV.  Such  technique  warranted  excellent  target 

coverage in proton SBRT in the majority of the investigated patients. However, for a minor 

number of cases, unacceptable dosimetric deviations were observed, illustrating the need 

for  imaging  prior  to  each  dose  delivery  with  dedicated  protocols,  together  with  the 

development of intervention thresholds in case of anatomical discrepancies based on their 

potential  impact  on  the  dose  distribution.  HFJV seems  a  suitable  technique  to  reduce 

interplay  effects.  Newer  assisted  ventilation  techniques  which  do  not  require  use  of 

anesthesia might be more suitable for fractionated radiotherapy.

Biological  treatment  planning  for  carbon  ion  therapy  requires  a  model  of  the 

radiobiological effects of high linear energy transfer (LET) radiation. One approach in the 

context of scanned beam ion therapy is built upon the local effect model (LEM). Within this 

approach, the description of the radiosensitivity and the behavior versus fractionated photon 

radiotherapy of both tumor and normal tissue requires input of α/β ratios, usually obtained 

from in vitro studies.  Obtaining tumor-specific,  realistic,  clinical  α/β values  is  urgently 

required. This topic is also relevant in hypofractionated photon radiotherapy, where there is 
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an  ongoing  discussion,  if  the  linear-quadratic  (LQ) model  represents  adequately  dose 

responses at high doses per fraction or if the  linear-quadratic-linear (LQ-L) correction is 

necessary, and which α/β ratio describes better the fractionation effect for NSCLC tumors. 

The second part of this work presents a review of local control data of early stage NSCLC 

and models of these dose response data using the LQ and LQ-L approaches. Both, the LQ 

and LQ-L models can be fitted to clinical normo- and hypofractionated NSCLC outcome 

data. The LQ-L model yielded a significant value for the Dt of 11.0 Gy for the model based 

on biologically effective dose (BED) at the isocenter with α/β equal to 10 Gy for the full 

hypofractionation range; it produced a comparable  tumor control probability (TCP) fit to 

the LQ model. We found a clear dose-effect relationship, which in the high BED region was 

weaker due to considerable dispersion in the data. For the application of BED (α/β=10 Gy) 

in  the  range  of  100–150  Gy  in  three  fractions  or  more,  the  differences  in  isoeffects 

predicted  by both  models  can  be neglected.  Our  findings  therefore  do not  allow us  to 

suggest use of the LQ-L model for an improved fitting compared to the LQ model of local  

control data in case of hypofractionation. A tentative analysis to establish the optimal  α/β 

ratio  in  the  frame  of  the  LQ  model  for  the  full  fractionation  range  did  not  produce 

significant estimates, although it showed a trend for α/β values lower than 10 Gy.
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1 Introduction

1.1 Current approaches for radiotherapy of lung cancer

According to the World Health Organization, 8.2 million people die each year of cancer, 

representing 13% of all deaths worldwide [WHO 2016(a)]. From among all cancers, lung 

cancer is the most common disease worldwide, contributing with 1.2 million new cases per 

year and being responsible for 17.8% of all cancer deaths [WHO 2016(b)]. Non-small cell 

lung cancer (NSCLC) accounts for about 85% of all lung tumors [Molina 2008]. The first 

therapy option for early,  non-metastatic lung tumors is surgery.  In patients who are not 

eligible for surgery due to impaired lung function or secondary diagnoses, studies have 

shown high local tumor control after high-dose photon radiotherapy for stage I disease. 

Radiotherapy, together with surgery and chemotherapy, is an essential tool in a multimodal 

treatment  approach for  advanced NSCLC. In  these advanced  cases,  radiochemotherapy 

reaches  however  a  2-year  survival  rate  of  only  50%  [Bradley  2015].  In  addition, 

radiotherapy  has  proven  great  value  in  providing  many  non-curative  patients  with 

palliation.  Altogether,  the optimal radiotherapy utilization rate for lung cancer has been 

estimated as high as 76% [Delaney 2012].

Ionizing radiation causes cell death mainly as a result of damage to the DNA. The ultimate 

goal of radiation therapy is to achieve cure without complications by destroying all tumor 

clonogenic cells with the lowest rates of side effects possible [Joiner 2007]. Radiotherapy 

advances  aim at  a  broadening of  the  therapeutic  window,  which  can  be achieved with 

technical  improvements such  as  the  refinement  of  dose  delivery,  optimized  dose 

distributions  such  as  with  intensity  modulated  radiation  therapy  (IMRT),  or  enhanced 

precision  by  incorporation  of  daily  imaging  into  the  clinical  workflow.  Advances  can 

additionally  be  delivered  by  core  radiobiology  research,  such  as  innovative  irradiation 

protocols modifying the timely dose distribution or a combination with drugs.

Modern external beam radiotherapy is mostly delivered with high energy photons provided 

by linear accelerators (linacs).  Conformal techniques aim at an excellent sparing of the 

normal tissue while increasing the dose in the tumor volume. In conventional radiotherapy 

this is usually achieved with an increased number of overlapping radiation fields, as for 

example  in  stereotactic  body  radiotherapy  (SBRT)  and  IMRT  techniques,  in  order  to 

redistribute the  dose given to  the surrounding normal  tissue.  SBRT is  a  high  precision 

technique characterized by steep dose gradients, which enable the prescription of ablative 

doses with excellent sparing of neighboring normal tissue structures [Guckenberger 2014]. 
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Specifics of the radiotherapy approaches of both early and advanced stages of NSCLC are 

defined by their different goals and technical challenges. In the case of early stage NSCLC, 

radiation  treatments  were  firstly  imparted  by  means  of  3D-conformal  fractionated 

techniques. In recent years, hypofractionated photon SBRT in one to five fractions is has 

been established as the standard choice in the irradiation of medically inoperable early stage 

cases  [Palma  2011,  Vansteenskiste  2014].  For  such  small  tumors,  a  trend  towards 

hypofractionation has become standard on one hand due to better outcomes of schedules 

with a shorter treatment time, and on the other, due to better cost-effectiveness of these 

treatments  and  greater  patient  convenience.  In  inoperable  advanced  NSCLC  stages, 

multimodal approaches are required which include radiotherapy as an essential  tool.  To 

achieve loco-regional control with limited treatment associated morbidity remains to be the 

major challenge. For local tumor control, doses above 100 Gy biologically equivalent dose 

(BED)  to  the  macroscopic  tumor  are  required,  and  this  is  not  always  possible  with 

conventional approaches due to critical structures located nearby the tumor. For this reason, 

various strategies for local treatment intensification with equal or even reduced toxicity are 

being investigated [Chang 2014, Chi 2014, Kim 2014, Eberhardt 2015, Rodrigues 2015].

1.2 Particle therapy with protons and carbon ions: origins and development

Particle therapy was first proposed in 1946 by Wilson [Wilson 1946], was started in the 

1970s  with  a  pioneering  ion-therapy  program  at  the  Lawrence  Berkeley  National 

Laboratory (LBNL) in Berkeley,  California  [Blakely 1980, Castro 1993] and continued 

with  pilot  carbon  ion  programs  at  GSI  Helmholtz  Centre  for  Heavy  Ion  Research  in 

Darmstadt, Germany, and at National Institute of Radiological Sciences (NIRS) in Chiba, 

Japan  [Schardt  2010]  and  continued  with  numerous  proton  centers  today.  In  the  first 

experimental experiences at Berkeley, most patients had tumors of the pituitary gland and 

were treated with helium or neon beams [Castro1993].  Current  clinical  particle therapy 

centers are based on protons and/or carbon ions. A worldwide expansion of the number of 

proton therapy centers  is  taking place,  whereas  carbon ion  facilities  increase  slowly in 

numbers, partly due to their higher size and costs [Peeters 2010]. At the end of 2014, almost 

16.000 patients had been treated with carbon ions and more than 118.000 with protons 

[PTCOG 2016(a)]. As of July 2016, 65 particle therapy centers are operating worldwide, 

from which five centers are carbon ion therapy facilities and five centers count with both 

carbon ion and proton beams [PTCOG 2016(b)].
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1.3 Physical advantages of particle beams

The inverse dose deposition profile of particles can potentially allow for highly conformal 

radiation. In contrast to photons, whose dose depth profile shows a maximum close to the 

surface and an exponential decrease with depth, the dose delivered with particles increases 

with penetration depth and presents a flat dose profile at the entrance plateau, a maximum 

of deposited dose at the so-called Bragg peak (BP) and a sharp distal fall-off at the end of 

the finite particle range [Wilkens 2008, Weber 2009, Suit 2010]. This profile is a result of 

the Coulomb interaction of charged particles with the electrons present in the tissue, and it 

allows a good sparing of the adjacent organs at risk (OAR), especially of those located 

behind the tumor.

In order to irradiate uniformly a finite volume, the BP needs to be enlarged to a spread out 

Bragg  peak  (SOBP).  Two  technical  solutions  are  deployed:  passive  and  active  beam 

shaping. Passive scattering techniques need first to produce both lateral and in-depth beam 

spreading. The modulation depth remains constant through the whole volume which results 

in a high dose area upstream of the target. Active scanning beam delivery techniques rely 

on a pencil beam which is deflected with magnets in horizontal and vertical directions to 

scan the whole irradiation field and with in-depth modulation of the beam by means of 

beam energy switches. This way excellent dose conformity is achieved, also in the proximal 

edge of the tumor. However, active beam shaping systems are considered to be more prone 

than  passive  systems  to  dosimetric  deterioration  resulting  from  organ  movement 

[Bert 2011, Knopf 2011].

Range straggling is the widening of the BP of a monoenergetic ion beam due to stochastic 

fluctuations in the energy loss and therefore in the range. This effect is larger for lighter 

ions and the BP width is therefore larger for protons than for carbon ions. These differences 

are smaller in the case of an extended SOBP in comparison to a single BP [Weber 2009].

Lighter carbon ion fragments at the same speed as the original carbon ion projectiles fly 

larger distances, and therefore, carbon ion beams present a so-called fragmentation tail with 

a non-negligible contribution to dose deposition, which is not present in the case of protons 

[Suit 2010]. Some of these projectile fragments are radioactive isotopes and can be used for 

PET imaging for ion range monitoring [Enghardt 1999]. Still, the fragmentation of carbon 

ion projectiles is lower than for other heavier ion species and can be handled with adequate 

treatment planning [Castro 1993, Suit 2010]. Other species such as helium or oxygen are 

under examination for future clinical use [Krämer 2016, Tommasino 2016].
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Concerning the lateral profiles, scanned ion beams are continuously enlarged by multiple 

Coulomb scattering when traveling through the final elements of the beam line (vacuum 

window,  monitor  chambers,  passive  energy  modulators)  as  well  as  inside  the  patient 

[Schardt 2010]. This effect is 3.5 times more pronounced for protons than for carbon ions 

and therefore more critical  for proton treatments [Weber 2009]. By bringing the patient 

closer to the nozzle the beam widening in the air gap between the nozzle and the patient 

stemming from the scattering in the beam line can be reduced [Weber 1999, Jelen 2013].

1.4 Potential biological advantages of carbon ion beams

Protons do not present, in a first approach, an enhanced relative biological effectiveness 

(RBE) [Paganetti 2002], unlike heavier ions. The biological effects of ionizing radiation 

result mainly from damage to the DNA, the most critical being DNA double strand breaks. 

DNA radiation damage can be direct or indirect. Direct DNA damage takes place when the 

atoms  within  the  DNA molecule  are  ionized  or  excited  by  incident  charged  particles. 

Indirect damage occurs when the radiation interacts with other chemical species present in 

the tissue to produce free radicals. The oxygenation status of the tissue at the moment of 

irradiation  enhances  the  severity  of  the  indirect  damage  [Gray 1953,  Hall  2006].  In 

addition, cellular radiosensitivity is modulated also by the cell cycle phase and the repair 

capability of the cell. A certain absorbed dose imparted either with photons or electrons 

with energies within the clinical MV-range will yield similar amounts of cell damage. In 

contrast,  charged  particles  may  produce  a  greater  biological  effect  per  dose  unit  as 

compared to photons. This is due to their different energy deposition patterns in the tissue, 

[Scholz 1997, IAEA 2008, Wambersie 2015]. The ionization events of charged particles are 

tightly concentrated along the particle trajectory, leading to clustered DNA damage, which 

is more difficult to repair and therefore more prone to cause cell death. Cell response is thus 

driven  by  direct  damage  and  as  a  result,  there  is  a  reduced  dependency  of  the 

radiosensitivity on other factors [Hall 2006, Kraft 2000, Joiner 2007].

The linear energy transfer (LET) was defined to describe these different ionization patterns 

as the energy transferred by an ionizing particle and secondary electrons to the material per 

track length unit of the incident particle, and it is usually measured in keV/μm. Radiation 

types are classified in sparsely and densely ionizing with low and high LET, respectively. 

The RBE was introduced to quantify the different biological effects of different radiation 

types, and it is defined as the quotient between the dose of the reference radiation (usually 
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60Co sources, or 250 kVp X-rays), and the dose of the radiation under study required to 

produce the same biological effect on a certain biological system [IAEA 2008].

1.5 Planning for particle therapy: modeling of the RBE

The RBE is a complex quantity to model due to its many dependencies: LET, particle type 

and  energy,  dose  per  fraction,  dose  rate,  degree  of  oxygenation,  cell  or  tissue  type, 

biological endpoint under study, etc. [Weyrather 1999, Friedrich 2013(a)]. In the case of 

irradiation of a target with a SOBP, it is also a function of the particle and energy spectra at  

every point in the tissue. The RBE of protons also varies along the proton track inside the 

tissue, although to a much lower extent than the carbon ion RBE. The current consensus is 

to  apply a fixed value  for the RBE of 1.1 to  the whole proton Bragg curve,  based on 

reviewed experimental and clinical data [ICRU 2007, Carabe 2012, Paganetti 2014]. For 

carbon ions, this simplification is not possible since great LET variations occur within the 

SOBP. Experimental RBE values may vary between 1.5 in the entrance channel and 3 just 

before the end of the particle range. As a consequence of this, biological plan optimization 

aiming at achieving a uniform biological effect and not a homogeneous physical dose is 

required. RBE estimations have to be carefully performed and included in all steps of the 

carbon ion treatment planning [Schardt 2010]. The biological effect is thus commonly taken 

into account with the distribution of the absorbed dose in Gray [J/kg] weighted with the 

estimated RBE values at each point [IAEA 2008, Kraft 2000, Wambersie 2011, Krämer 

2004, Jäkel 2007]. Currently many different RBE models exist [IAEA 2008, Schardt 2010, 

Giovannini 2016] to achieve this.

The local effect model (LEM) was first developed to obtain RBE estimations for carbon ion 

radiotherapy at GSI, the first facility using active energy variation and raster scanning. It 

has been implemented in the TPS used clinically for carbon ion therapy in Europe.  This 

model  requires  the attribution of radiobiological properties to both tumor and normal 

tissues. The main assumption of the LEM is that the biological damage arising in a small  

subvolume of the cell nucleus is independent of the specific radiation type which deposited 

that  energy and  the  biological  damage  is  solely  determined  by the  size  of  the  energy 

deposition  taking place  in  that  specific  subvolume.  This  way,  it  is  possible  to  use  the 

existing cell survival data, i.e. the  LQ coefficients  α and β, obtained  from in vitro X-ray 

irradiation experiments (survival curves) to characterize the radiosensitivity of the tumor 

[Krämer  2000].  For  the  calculation  of  RBE  values  for  normal  tissue  side  effects, 
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estimations of the α/β ratio of the endpoint under study derived from clinical data are used 

[Scholz 1996, Jäkel 2007]. The LEM also requires the input of further parameters, namely, 

an estimation of the size of the critical target in the cell (i.e. the cell nucleus), the ion track 

structure for the calculation of the distribution of local physical doses and the so called dose 

threshold, Dt, which takes into account the transition from linear-quadratic to linear cell 

killing beyond a threshold at  high local  doses  [Scholz 1996,  Scholz 1997, Kraft  2000, 

Kramer 2004, Weyrather 2004]. The influence of these parameters on the output of the 

model, as well as the influence of α and β alone, is lower than that of the α/β ratio [Jäkel 

2007]. Verification  of  the  LEM  predictions  for  in  vitro  cell  survival  prior  to  clinical 

application [Weyrather 2004] and in vitro and in vivo tests of the different LEM versions 

[Elsässer 2008] have been carried out, as well as the calculation of expected local tumor 

control based on patient data [Scholz 2006]. Several sensitivity analyses to uncertainties in 

the input  parameters  of  the  LEM have also been carried  out  in  selected  tumor entities 

[Böhlen 2012, Friedrich 2012, Chanrion 2014]. The capability of the LEM for prediction of 

normal  tissue  complication  was  tested  in  a  low  number  of  in  vivo  experiments 

[Zacharias 1997].  The  LEM  is  implemented in several  commercial  treatment planning 

systems  (TPS)  for  particle  therapy  planning,  including  all  TPS  used  for  carbon  ion 

radiotherapy in Europe [GSI 2016].

As  described above,  the  modulation  of  biological  effects  of  particle  irradiation  is  very 

complex  and  experimental  RBE  studies  and  radiobiological  modeling  are  of  great 

importance in  particle  therapy to understand their  effects  relative to  photons.  Currently 

some important questions remain open. Most of the present RBE data are based on in vitro 

studies. In vitro experiments have been used for the development and check of the models 

and  for  clinical  quality  assurance.  However,  in  vivo  RBE values  for  both  local  tumor 

control  and normal  tissue toxicities are  still  scarce [Kummermehr 2002,  Peschke 2011, 

Sørensen 2015].  Well-designed and systematic  large scale  research,  both  in  appropriate 

preclinical and clinical models would be required to improve the RBE estimations obtained 

in  vitro,  and  if  possible,  RBE estimations  from clinical  data  should  also  be  obtained 

[Schardt 2000 and Suit 2010]. In addition to all mentioned parameters with impact on the 

RBE, clinical factors such as the patient physiology or tumor biology may influence the 

clinical RBE [Schardt 2000]. Moreover, the employed input parameters for the LEM in 

clinical planning are so far identical for all tumors, not taking into account the existence of 

intertumoral  differences  and  differences  in  normal  tissue  sensitivity,  which  probably 

decreases the accuracy of the RBE estimations [Jäkel 2007].
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1.6 Relevance of modeling of tumor outcome for radiotherapy

For the MV photon energies used in external beam photon radiotherapy, the RBE values are 

known to be nearly 1. For this reason, prescriptions and planning objectives for both tumor 

and OAR in photon radiotherapy are based on the physical dose. Still, there is a dependency 

of the radiation effects on other factors such as tumor microenvironment (e.g. oxygenation 

status) and tumor and patient characteristics, among others. Moreover, in the case of the 

OAR, so called organ volume effects exist and therefore biological optimization has been 

proposed also for photon therapy [Allen Li 2012]. In current clinical practice, however, the 

biological effects of a certain dose distribution are in the majority of cases still estimated a 

posteriori, usually in research contexts. Thus, the main task requiring modeling in clinical 

practice is the comparison of different fractionation schemes. The LQ approach upon which 

the LEM is built was firstly developed to describe experimental survival curves of normal 

and tumor cells after irradiation.  In  the  LQ  approach,  cell surviving fractions  after 

irradiation are fitted with a second-order polynomial on the dose per fraction. The ratio 

between the two  coefficients, α and β,  describes the repair capacity of the cells and their 

sensitivity to fractionation for  tumors  as  well  as  for  normal  tissues  [Barendsen  1982, 

Joiner 2007].

The LQ formalism is accepted to describe the fractionation effects at fraction doses below 

8-10 Gy per fraction [Herrmann 2006], however, it loses accuracy for both very low and 

very high doses. It enables isoeffect calculations in current clinical practice, describing the 

relationship between the biological effect after irradiation and treatment parameters such as 

dose per fraction, total number of fractions, and total  treatment time,  within  the  BED 

formalism.

The  current  expansion  of  HF  treatments  gives  relevance  to  the  question,  whether  the 

description of the radiobiological effects provided by the LQ formalism is adequate for this 

type of schedules [Fowler 2006, Kirkpatrick 2010, Brown 2014]. Estimations of the clinical 

α/β values are required to assess the benefit of a HF irradiation scheme [Thames 1990], 

when it is suspected that the  α/β value is lower than 10 Gy. Such schemes would reduce 

tumor cell recovery between fractions, thus increasing the therapeutic ratio, as it is thought 

to be the case e.g. in prostate carcinoma. Some recent studies review and model the dose 

response relationship of NSCLC [van Baardwijk 2008, Stuschke 2010, Zhang 2011, Mehta 

2012, Chi 2013]. However, in the case of NSCLC, studies attempting to estimate the α/β 

ratio are scarce [Stuschke 2010, Chi2013, Guerrero2008]. It is currently under debate if the 
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improved outcomes of hypofractionated SBRT are a consequence of an α/β ratio lower than 

10 Gy, or even lower than the α/β value of the surrounding normal tissue, or alternatively, 

of a reduced repopulation in a shorter overall treatment time. The first case would add up to 

existing radiobiological rationale of the use of hypofractionation. For fraction doses larger 

than 10 Gy, a linear dependance of the cell killing has been observed with dose instead of 

linear-quadratic. A correction has been proposed, which consists of a dose threshold Dt, and 

is commonly called the linear-quadratic-linear (LQ-L) model [Astrahan2008].

1.7 Indications for particles: tumor resistance and improved dose distribution

Radiotherapy with protons or carbon ions has the potential for improved treatments of both 

early and  advanced  stage  tumors,  based  on the  physical  properties  of  charged  particle 

beams, radiobiological considerations, and clinical criteria.  However, benefits of particle 

therapy  over  photon  therapy  have  only  been  demonstrated  for  a  small  number  of 

indications. These are rare, often inoperable tumors, for which traditional approaches show 

limited efficacy or would be associated with high morbidity. Especially tumors with clear 

margins without infiltration into healthy surrounding tissue which can be sharply delineated 

benefit, as they match the good spatial definition of particle irradiation [Wambersie 2004, 

Schulz-Ertner  2007,  Combs  2013(a),  De  Ruysscher  2012].  Examples  are  choroidal 

melanoma and deep-seated tumors that grow in or in close contact with sensitive normal 

structures, such as chordoma and chondrosarcoma of the skull base. Such tumors present a 

poor outcome from conventional radiation treatments and in these cases, more conformal 

particle dose distributions may offer an advantage by helping to spare normal tissue while 

delivering curative doses to the tumor. In order to maximize the benefit in terms of overall 

survival, selected tumors must display local failure, but late metastases.

Adding to the rationale for carbon ion therapy is  tumor  radioresistance through various 

mechanisms  such  as  hypoxia,  slow  proliferation  or  specific  repair  characteristics. 

Traditionally, a potential high LET advantage of tumor versus the surrounding tissue has 

been considered as an additional criterion for carbon ion therapy, since only tumors which 

exhibit a higher RBE than the normal tissue surrounding them will benefit from carbon ion 

therapy (e.g. tumors with an observed slow growth pattern) [Wambersie 2004]. Concerning 

choices between both particle therapy modalities, proton therapy may be preferred instead 

of carbon ions or IMRT in pediatric cases to minimize side effects to normal tissue and 

hypothetical higher risk of secondary malignancies [Patel 2014].
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At present, the list of indications for particle therapy is under development [Allen 2012, De 

Ruysscher 2012, Combs 2013(a), Muren 2013]. Established indications for particle therapy 

are rare, and the rapidly increasing number of particle therapy centers entering operation 

will require efforts to determine for which frequent cancer diseases particle therapy might 

bring  a  significant  advantage  over  current  photon  treatments.  Furthermore,  optimal 

treatment concepts need to be conceived to exploit this advantage. It is to expect that the 

rapid expansion in this field will require clinical evidence, but at the same it will allow to 

generate  enough  proof  to  answer  these  questions  in  the  coming  years,  based  on  data 

collected from large patient numbers treated in the frame of clinical trials [Combs 2013(b)].

1.8 Role of particle therapy in the treatment of NSCLC

Particle therapy with its accurate dose deposition could decrease the dose to the lung and 

other OAR and potentially reduce the risk of treatment-related lung morbidity [Wink 2014]. 

For  early stage  NSCLC,  SBRT has  shown excellent  results.  For  these  cases,  the  dose 

coverage of photon delivered dose might be superior to that of particles, since the risk of 

dose  deterioration  in  moving  targets  is  higher  for  the  latter  [De  Ruysscher  2013, 

Knopf 2011]. The comparison of both radiation modalities needs to consider this fact as 

well  as the existing range uncertainties which inherently affect  both passive and active 

beam shaping [Seco 2012]. However, after appropriate management of these risks, particle 

therapy could potentially further reduce the probability of radiation side effects, and the 

decreased integral dose would also reduce the risk of second cancers. Several cohorts of 

patients treated with both protons and carbon ions have been reported and generally show 

good outcomes,  although most  of these were treated with passive scattering techniques 

[Wink 2014, Berman 2015].

Radiochemotherapy  shows  limited  efficacy  for  advanced  lung  cancer  stages.  A dose-

response relationship has been demonstrated for NSCLC, with higher tumor doses affecting 

not only local control but also reducing the occurrence of metastases [Kong 2014]. This 

would  motivate  dose  escalation  as  a  mean  to  improve  both  local  control  and  overall 

survival, however, radiation-related morbidity might be currently masking the benefits of 

dose escalation, even when high-end photon techniques are used [Wink 2014]. Considering 

this  hypothesis,  proton or carbon ion irradiation might  be indicated for some advanced 

stage tumors. Novel treatment concepts are being explored since the dosimetric advantage 

of  particle  irradiation  might  allow  dose  escalation  to  increase  local  tumor  control 
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[Demizu 2014,  Wink 2014,  Berman  2015]  and  other  more  aggressive  treatments 

[Berman 2015]. Additionally, in scenarios where the therapeutic window is narrow such as 

re-irradiations  and  post-operative  irradiations,  particle  therapy  and  specifically  proton 

beams can be of interest [Berman 2015].

It is important to note that almost all irradiation of lung cancer have been performed with 

more forgiving passive field forming techniques  so far  [Wink 2014, Knopf  2016] with 

respect to dosimetric degradation in presence of tumor motion, which on the other hand 

offer  a  lower  conformity than  scanning beam techniques.  Scanned beam could  lead  to 

improved outcomes over passive scattering techniques, provided that the interplay effects 

are handled adequately [Bert 2011, Wink 2014, Knopf 2016]. All in all, more evidence is 

required to determine the value of particle therapy for lung cancer [De Ruysscher 2012, 

Wink 2014].

1.9 Technical challenges of particle therapy of lung tumors

Their  well-defined range  makes  particles  more  sensitive  to  changes  in  the  radiological 

depth  in  the  beam  entrance  channels.  These  changes  may  originate  from  residual 

positioning errors, inter-fractional tumor movement and other anatomical changes which 

take place within a larger time scale during the radiotherapy course such as tumor shrinkage 

or  tumor  baseline  shift,  fluctuations  in  patient  weight,  or  filling/emptying  of  cavities 

[Britton 2009, Kwint 2014]. Such events can translate into clinically relevant alterations in 

the particle dose distribution, more critically than for the case of photons [Bert 2011].

The  management  of  anatomic  changes  requires  frequently  repeated  CT  imaging  and 

eventually  replanning.  For  this  reason,  investigations  on  optimal  image-guidance  and 

adaptive strategies are ongoing. Current strategies for image guidance in particle therapy 

have  been  historically  derived  from photon  techniques  and usually  rely  on  anatomical 

landmarks or fiducial markers. In a particle therapy scenario however, relevant dosimetric 

deviations  may  occur  even  if  the  repositioning  of  the  tumor  is  geometrically  correct, 

making dedicated methods necessary [Bert 2011, Koay 2012, Seco 2015, Knopf 2016].

1.10 Lung motion consequences for particle therapy

Periodical movement of lung tumors with respiration represents the main challenge to the 

application of particle therapy in the lung [Bert  2011, Knopf 2016]. Other intra-fractional 
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movements such as heartbeat and swallowing may influence irradiations in the thoracic 

region although to a lower extent [Langen 2001].

Four-dimensional (4D) imaging techniques such as 4D-CT, 4D-CBCT, and 4D-MRI can 

provide information about the tumor movement. Tumor motion patterns are not perfectly 

periodic, precise motion features are patient-dependent, and for the same patient respiration 

patterns  can  differ  between  fractions  [Bert  2011,  Knopf  2016].  Motion  prediction  and 

development  of  motion  surrogates  are  complex  tasks,  and  therefore  intra-fractional 

verification of the tumor movement is required [Knopf 2016]. Due to the absence of exit 

dose, projection imaging is not feasible for particle beams, and since extensive use of X-

ray-based  imaging  significantly  increases  the  integral  patient  dose,  optimized  intra-

fractional imaging solutions not based on ionizing radiation are needed whenever possible 

[Knopf 2016]. 4D-CT can currently provide useful motion information which is entered in 

the target  definition through various  strategies,  but so far,  no 4D treatment  planning is 

performed on a clinical basis.

In scattered beam particle therapy, target coverage is typically ensured by extended lateral 

as  well  as  distal  and  proximal  margins  through  compensator  smearing  [Moyers  2001, 

Seco 2012]  to  secure  target  coverage  against  uncertainties  in  treatment  variables 

[Flampouri 2014]. In a similar manner for scanned beam therapy, specific  internal target 

volumes (ITV) concepts [Bert 2011] and beam specific approaches for the planning target 

volume (PTV) have been proposed [Albertini  2011,  Knopf 2011,  Park 2012],  and also 

robust  planning  [Pflugfelder  2008].  Both  approaches  require  precise  tumor  motion 

characterization not yet available in commercial treatment planning systems . In absence of 

dedicated solutions,  the target  volumes used for  scanned ion  beam therapy are  defined 

according to the recommendations of the ICRU, developed for photon radiotherapy [Knopf 

2016]. Specific studies exist in which intra-fractional changes in the radiological depth are 

quantified  based on 4D-CT [Mori  2011].  These  type  of  anatomical  changes  have  been 

related  to  dosimetric  fluctuations  inside  the  ITV with  scanned protons  [Casares-Magaz 

2015].

1.11 Interplay effects

In passive scattered facilities, the main effect of target movement is dose blurring and larger 

margins can be applied to cope with  it. In scanned beam particle therapy, additionally to 

anatomy  changes,  the  interplay  between  target  motion  and  beam  scanning  adds  extra 
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complexity to the irradiation of lung tumors [Bert 2011]. Severe mis-dosage can occur in 

form of cold and hot spots in both the target and the surrounding structures. Therefore, a 

margin-based approach might not be sufficient to assure both the planned target coverage 

and homogeneity, especially in the case of intensity modulated particle therapy (IMPT). For 

single-field  uniform  dose  (SFUD),  however,  margins  could  still  be  employed  in  lung 

tumors  which  present  a  reduced  movement  with  respiration  below  5  mm  [De 

Ruysscher 2013, Wink 2014].

The  dosimetric  severity  of  the  interplay  effects  depends  on  tumor  movement  and  on 

properties of the beam system. A careful selection of plan parameters can help to reduce 

dose deterioration such as larger spot sizes and smaller grids, more fields, optimized beam 

angles and changed fractionation schemes. Specific means  to counteract motion interplay 

effects have been developed, and their clinical applicability is currently under investigation, 

such as tracking, rescanning, gating, as well as combinations of these [Knopf 2016].

In addition, tumor fixation approaches are being investigated [Bert 2011]. Target fixation 

techniques in particle therapy of the lung have two main potential clinical advantages: to 

obtain a reduction in the motion and deformation of the target volume while managing the 

sensitivity of particle range to tissue density changes in the beam entrance channels. The 

advantage of these methods is that they do not require hardware modifications nor full-

fledged 4D treatment planning, and can be implemented with existing devices after careful 

check  of  feasibility  and  development  of  implementation  workflow.  Examples  of  such 

techniques are breath hold, apnea, and high frequency jet ventilation (HFJV) [Bert 2011, 

Boda-Heggemann 2016, Dueck 2016, Josipovic 2016]. HFJV is a modality of mechanical 

ventilatory support, which prevents any movement of the tumor with respiration. It is well 

known in lung surgery but of novel use in radiotherapy for target fixation [Fritz 2010]. 

Newer ventilation techniques are being tested in the context of radiotherapy, which do not 

require use of anesthesia [Péguret 2016].
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2 Summary of the results

2.1 Dosimetric Study

Rational exists for the treatment of lung tumors with particle therapy, especially with the 

more conformal scanning beam techniques. However, important technical issues need to be 

addressed before clinical application.  The main concern is  tumor movement originating 

from respiratory motion. One potential solution to handle this problem is to apply HFJV in 

order to create reproducible tumor fixation. Through a cooperation, data from early stage 

NSCLC patients  treated with single-fraction SBRT under  HFJV were available  for  this 

work. CT scans done at both planning and delivery time, were collected for a cohort of 11 

patients bearing 12 tumors. For each patient, both clinical datasets were co-registered, and 

the target and OAR were contoured. The Marburger Ionenstrahl-Therapiezentrum (MIT) in 

Marburg, Germany has capabilities to irradiate with both scanned protons and carbon ions, 

therefore plans  with both particle  types  were made with the treatment  planning system 

TRiP98 [Krämer 2000, Krämer 2004]. The  RBE for protons was assumed to be 1.1. All 

carbon ion planning optimization was calculated based on the physical dose as a surrogate 

of the biologically optimized dose, under the hypothesis that their respective dosimetric 

behavior in presence of anatomical changes is similar.

2.1.1 Dosimetric quality of the presented plans

Three different beam setups where considered in this study: setup 2FA (compatible with a 

fixed nozzle facility with lateral and oblique beams at 0° and 45°), setup 2FB (beams at 0° 

and 90°), setup 2FC (beams at 0° and -45°), MultiF1 (3-4 beams), and MultiF2 (5-7 beams,  

same directions as for the clinically applied SBRT plans). The main criterion was to reach a 

PTV V95% (i.e., a percentage of the PTV receiving a dose of at least 95% of the prescribed 

dose) of at least 98%. Only plans for both proton and carbon ion irradiation which fulfilled 

this criterion were included in the study.

For the proton plans, only one set of planning parameters was used: a nominal spot size of 

8 mm full width at half maximum (FWHM), a grid size of 3x3 mm2 and an energy step size 

of 2 mm. The spot sizes were found to be considerably larger than for the carbon ion plans. 

For  instance,  for  the  plans  with  beam setup 2FA the  spot  sizes  ranged between 6 and 

18 mm. The lateral contour extension (lateral allowance to place beam spots outside the 

target) was set to 1.5 for all proton plans, expressed in units of the FWHM at the isocenter. 

The larger value for the contour extension of 1.8 (FWHM) was considered excessive with 
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regard to the compromise between nominal plan coverage and conformity, and the smaller 

contour extensions of 0.9 and 1.2 (FWHM) did not yield satisfactory PTV coverage. For 

this reason, we applied the previously mentioned standard settings to the 2-field proton 

plans with different beam angles and to the multifield plans. Plans with an energy step of 

3 mm were also created, however, they only yielded an acceptable coverage for 6 out of the 

12  tumors  cases  in  the  plans  with  beam setup  2FA and  therefore  these  settings  were 

discarded. Target coverage values for the proton plans are presented in  (table 1 paper 1), 

and (table 1 paper 2).  For  the  chosen planning settings,  the  planning objective  of  PTV 

V95% > 98% was reached for all 12 tumor cases with all field setups.

The proton plans with beam settings 2FA, MultiF1 and MultiF2 presented in paper 1 were 

additionally evaluated in detail in terms of dose limits to relevant OAR for lung irradiation. 

Representative dose-volume histogram parameters were summarized in (table1 paper 1). In 

this table it can be seen that all planning constraints for single-fraction SBRT treatment 

according to [Timmerman 2011] could be reached, except dose constraints to the chest wall 

for some patients. As an example, median V22Gy for the ribs for the whole cohort was 2 cm³ 

for the 2FA plans, above the recommended 1 cm³. The median V22Gy value sank to zero for 

the multifield plans. For some patients, part of the thorax wall was encompassed by the 

PTV and for this reason the maximum values remained high (for example, 15.9 cm³ for the 

2FA setup).

For the carbon ion plans, plans with the beam setups 2FB, and 2FC were calculated for one 

set of planning and raster scan settings, as well as several plan versions for the beam setup 

2FA with different planning and raster scan settings. Summaries of the PTV V95% values are 

listed in  (table 2 paper 2). Plans with excess contour extension regarding PTV coverage 

were excluded from the analysis. The plans C12v4 and C12v10, with contour extension 0.9 

(FWHM), presented a coverage slightly below the objective (V95% > 98%) in only 2/12 and 

1/12 patients, respectively, which was considered clinically acceptable. PTV V95% for the 

clinically  accepted  plan  versions  with  different  raster  scan  settings  are  presented  in 

(figure 1 paper 2).

The early stage, peripheral tumors presented in this study have no critical normal tissue 

structures in the vicinity of the tumor, except for some patients for which a portion of the 

thorax wall and the ribs encompassed by the PTV. Therefore, the conformity indexes had a 

lower priority than a satisfactory PTV coverage. Homogeneity and conformity values for all 

proton  and  carbon  ion  plans  are  listed  in (supplement paper 2).  Changes  of  the  field 
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configuration alone resulted in small changes in these two indexes. Use of a larger number 

of  fields  improved  both  conformity and  homogeneity.  Lower  values  of  the  conformity 

indexes CI95% and CI98% were seen for larger values of the lateral virtual contour extension, 

since more dose is placed outside the PTV. However, these values also resulted in increased 

V95% values,  indicating that there is  a trade-off between both quantities.  Larger contour 

extensions also improved homogeneity as did smaller energy steps. The contour extension 

was the parameter with the largest influence on homogeneity, whereas it did only influence 

the conformity to a minor degree.

2.1.2 Reproducibility of dosimetric target coverage

Target coverage reproducibility was studied for all clinically accepted plans, based on the 

GTV V98% and V95% indexes. For proton planning, values for the beam setups 2FA, MultiF1 

and MultiF2 are summarized in (table 1 paper 1) and (supplement paper 1), and for the rest 

of  the  beam setups  and planning settings  in  (table  1  paper 2).  For  convenience  of  the 

reader, these values are also summarized in the table below:

Table R1:  Summary of the coverage loss for the proton plans presented in  paper 1 and 

paper 2, all with the same settings of 8 mm (FWHM), grid 3x3 mm2, energy pitch 2 mm, 

and contour extension 1.2 (FWHM).

Beam Setup GTV ΔV95%

(# Patients with ΔGTV ≥ 3pp)

GTV ΔV98%

(# Patients with ΔGTV ≥ 5pp)

2FA 0.1 (-0.1 – 8.9) (2/12) 3.9 (-0.6-14.1) (5/12)

2FB 0.0 (-0.3-3.5) (1/12) 1 (-0.8-13.2) (2/12)

2FC 0.0 (-0.6-0.3) (0/12) 1.1 (-0.7-2.8) (0/12)

MultiF1 0.0 (0.1–6.9) (1/12) 0.6 (1.7–12.9) (2/12)

MultiF2 0.0 (0.0–2.9) (0/12) 0.1 (-0.6 – 6.5) (2/12)

As can be seen in the table, all median values of the GTV ΔV95% for all plan versions are 

close to zero, showing that the maxima are originated by a few outliers, indicating good 

reproducibility in general among the cohort. For beam setup 2FA, the coverage loss ΔGTV 

V95% reached a maximum of 8.9 percentual points (pp) and remained smaller or equal to 

3 pp for all patients except two. For beam setups 2FB and 2FC, the same index reached 

lower maximum values of 3.5 and 0.3 pp, respectively, falling below 98% only for 1/12 or 
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0/12 patients respectively. For the multiple field plans, the maximum values were 6.9 and 

2.9 pp,  demonstrating  that  the  coverage  loss  did  not  depend strictly on the  number  of 

beams.  For  the  setup  MultiF1  there  were  some large  anatomical  variations  among  the 

employed  beam  directions  for  some  patients  and  the  coverage  loss  was  therefore 

comparable to that of the 2-field plans even though three to four fields were used. The 

magnitude of the coverage loss was strongly patient related.

2.1.3 Variations in the ΔWEPL with beam angle

For  some  patients,  some  anatomic  qualitative  changes  were  observed  in  the  entrance 

channels.  Very frequently this  was linked to the reproducibility of the arm position see 

(figure 1(b) paper 1).  In paper 2 a method was developed to quantify changes in tissue 

density  and  thickness  in  the  beam  entrance  channels  between  the  planning  and  the 

irradiation  time.  For  this,  a  software  tool  was  created  to  calculate  variations  in  water 

equivalent path length (WEPL) along different coplanar beam angles. We correlated the 

measure for ΔWEPL described in detail in paper 2 with the dose deterioration to find beam 

directions which could minimize such changes.

The  mean  WEPL values  measured  within  the  PTV in  this  patient  cohort  ranged,  for 

instance, from 25 mm to 88 mm in the lateral direction and from 22 mm to 100 mm at -45°. 

Concerning the variability among patients, the lowest ΔWEPL averaged among all angles 

corresponds to patient 1 with 1.5 ± 0.6 mm (mean with standard deviation), in contrast  to 

patient 10A, which shows a maximum averaged ΔWEPL of 3.6 ± 3.9 mm. For six patients 

the ΔWEPL reached values larger than 5 mm in specific beam directions. These high values 

concentrated for three patients at angles around the ventrolateral direction (-45°). Two of 

these specific patients presented considerable anatomical changes between the repeated CT 

scans in the beam entrance path, and therefore the ΔWEPL reaches extreme values of up to 

10 mm and 19 mm, see (figure 3 paper 2).

2.1.4 Influence of raster scan settings on robustness to anatomical changes

Eighteen carbon ion  plan  versions  were  made and from these,  eleven were  considered 

clinically acceptable regarding PTV coverage. For these plans an analysis was performed of 

the influence of the different raster scan settings on the preservation of the target coverage. 

A qualitative comparison suggested that a larger spot overlap contributed to preserve the 

target coverage, and also provided better PTV V95%. The smaller energy steps led to better 

coverage  preservation  in  presence  of  anatomic  discrepancies.  Similarly,  a  visual 
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comparison  of  plans  with  identical  planning  settings  up  to  the  value  of  the  contour 

extension,  which  was  varied  between  0.9  and  1.2,  evidences  a  large  improvement  in 

coverage for larger values of this parameter. Results can be visualized in (figure 1 paper 2,  

(a)  and  (b)),  where  the  trends  of the  different planning  settings  can  be  seen.  It  is 

furthermore observed that the coverage loss was again patient-dependent, since the datasets 

for the specific patients presented marked anatomical differences between the planning and 

the delivery anatomy. A summary can be found for all beam setups and beam settings used 

in this study in (table 2 paper 2).

In  order  to  quantify  the  influences  of  the  different  carbon  ion  plan  settings  and  the 

calculated ΔWEPL as described in paper 2 on the coverage loss, a multivariate analysis of 

the subset of clinically acceptable carbon ion plans was carried out. The linear model which 

explained best the fluctuations in the GTV ΔV95% was given by ΔWEPL, the PTV volume 

and the contour extension (Rsquared of 0.58, p<0.05), with ΔWEPL being the strongest 

predictor (R-square of 0.40, p<0.05, in a univariate analysis).

2.1.5 Effect of the number of fields

In  paper  1,  plans  with  3-4  and  5-7  fields  (MultiF1  and  MultiF2)  were  additionally 

calculated and compared with the 2-field plans with beam setup 2FA. As mentioned, the 

MultiF2 plans were created using the same beam directions as for the SBRT with which the 

patients were originally treated. It was observed that a higher number of beams helped in 

coverage conservation (table 1 paper 1) and (supplement paper 1). The plans with a larger 

number of beams displayed a higher conformity (figure 2 paper 1) but as a tradeoff, they 

also presented an enlarged low dose region. No significant correlation existed between the 

global mean ΔWEPL and the coverage loss for the plans using more than two beams. The 

maximum loss in GTV V95% of the proton plans with more than two fields remained in all 

cases below 3%. However, for some patients, adding more fields did not always maintain 

nor improve the dosimetric reproducibility of the 2-field plans. For three patients the GTV 

ΔV95% for the MultiF2 setup worsened with respect to the MultiF1 plans. For patient 3, the 

GTV  ΔV95% increased from 0.1 to 2.7 pp with the use of seven fields with respect to the 2-

field plan. For this patient, the ΔWEPL value increased from 2.3 mm on average in the PTV 

to 2.5 mm for the field directions in MultiF1 and MultiF2. This particular case shows that 

an  increased  number  of  fields  alone  does  not  always  lead  to  improved  coverage 

preservation, but, in addition, it is important to carefully select the beam directions.
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2.1.6 Influence of the different beam directions

Total ΔWEPL values for each plan were calculated as the averaged ΔWEPL for each beam 

direction and this was correlated with the coverage loss in the GTV. For the plans with field 

setup 2FA, the median decrease in the GTV V95% between the plan and the recomputation 

was  0.1  pp,  ranging  from  0  pp  to  8.9  pp.  Two  patients  in  the  series  presented  an 

unacceptably  high  decrease,  patient  7  with  4.5  pp  and  patient  10A with  8.9  pp,  both 

representing  the  largest differences  in  the  mean  absolute  value  of  the  WEPL at  the 

combined beam directions 0° and -45° of 4.7 and 4.5 mm, respectively. The Spearman's 

correlation for the  ΔV95% and the ΔWEPL was 0.701 (p=0.02), and after removing the 

afore-mentioned two worst cases, the correlation decreased to 0.670 (p=0.034).

Assuming a  fixed  beamline  from the  vertical  direction,  new 2-field  proton plans  were 

prepared with the beam setups 2FB and 2FC. For 2FB, the GTV ΔV95% values were reduced 

to 1.3 and 0.0 pp in the problematic cases, reflected also in lower WEPL differences of 3.3 

mm and 1.5 mm,  respectively.  The median (range)  GTV ΔV95% was  0.0 (-0.3-3.5).  The 

correlation between ΔV95% and ΔWEPL was not significant. The 2FC plans also showed 

generally low ΔWEPL values for all patients with a median (range) ΔV95% of 0 (-0.6-0.3). 

Again, no significant correlation was found between ΔV95% and ΔWEPL. The same trends 

were seen for the carbon ion plans.

2.1.7 Effects of CT calibration uncertainties

For two representative patients with the deepest and shallowest  PTV in the cohort,  the 

proton plans presented in  paper 1 were additionally recalculated introducing 3.5% over- 

and underrange estimations in the CT calibration table in order to assess the dosimetric 

consequences  of possible  errors  in the proton range calculation of  a realistic  size on a 

modified  anatomy  [Moyers  2001].  The  interest  of  this  check  lies  in  estimating  the 

performance of  the  5 mm isotropic  margins  that  were used in  this  study,  versus  range 

uncertainties. CT calibration uncertainties of ±3.5% led to moderate GTV V98% reductions 

below 1.5 pp in most plans with field setups 2FA, MultiF1, and MultiF2. Beam undershoot 

leads to larger coverage reductions than the overshoot of up to 3 pp for the 2FA plans.

2.2 Modeling of the dose response relationship of NSCLC

In paper 3, the dose response relationship of early stage NSCLC tumors was studied based 

on published outcome reports after fractionated treatment, modeled both with the LQ and 
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the LQ-L approaches. We selected reports on 3-year local control (LC) of cohorts treated 

with curative radiotherapy as single treatment. Details of the reviewed studies can be found 

in (table 1, table 2, table 3, and  suppl 1  from paper 3). The main characteristics of the 

cohorts included in this study have been summarized in the table below for convenience of 

the reader, in two groups, namely, patients treated with conventionally fractionated (CF) 

and hypofractionated (HF) treatments (dose per fraction < or ≥ 6 Gy per fraction):

Table R2: Summary of the patient characteristics.

CF treatments HF treatments

Patient 
features

8 studies, 344 patients

treated between 1976 - 2010

no routine PET-CT staging

86.3% inoperable

 median age 72 [range: 35-90] years

23 studies, 1975 patients

treated between 1996 - 2012

PET-CT staging routine

55.2% inoperable

 median age 75 [range: 29-94] years

Treatment 
features

Margins 1.0-1.5 cm around the GTV

dose at isocenter in 5/8 series

median BED10 @iso:

82 [67.2-93.5] Gy

fraction dose < 6 Gy

GTV-to-CTV margins in 5/23 series

ITV concepts in 13/23 series

9/23 report dose to isocenter

11/23 to PTV edge, usually 80% isoline

median BED10 @iso:

 89.9 [56.8-211.2] Gy

fraction dose ≥ 6 Gy

Reported 
outcomes

3-y LC: 63 [50-91]

median follow up: 28.5 months

3-y LC: 86 [55-100]

median follow up: 27 months

Based on this data collection we fitted a logistic dose response relationship with nonlinear 

least squares of the 3-year LC versus BED, both for doses at the isocenter and at the PTV 

edge. The logistic model was coupled with BED definitions given by the LQ and the LQ-L 

approaches. These two models include three and four parameters, respectively:  TCD50,  k, 

α/β, and additionally  Dt in the case of the LQ-L model.  TCD50 is the dose necessary to 

obtain a local tumor control of 50%,  k is a parameter related to the slope of the sigmoid 

curve, and  Dt is an additional parameter describing the dose per fraction from which the 

effect from a certain fraction dose is not linear-quadratic but purely linear with dose. We 

compared the LQ- and LQ-L-based fits with the maximum likelihood ratio since they are 

nested models. A summary of all the models is presented in (table 5 paper 3). Our first case 
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was to assume the commonly accepted value of 10 Gy for the α/β ratio. We fitted either the 

whole data set or the subsets of CF and HF data under this  α/β assumption. The models 

based on dose at the isocenter and the PTV edge showed a similar behavior but with the 

models based on dose at the isocenter showing consistently higher  TCD50 values than the 

models based on the dose at the PTV edge. Thus, here only the models based on the values 

at the isocenter will be commented. For the fits based on the CF data, both the steepness of 

the curve and the  TCD50 values are closer to the values that might be expected clinically, 

whereas for the data sets including HF data the  TCD50 is displaced towards lower values 

and the steepness is consistently lower. The values of the parameters were only significant 

(p < 0.05) in the case of the full dataset. For the LQ-L fit a significant value of Dt (standard 

error) was found of 11.0 ± 5.2 Gy. Similar values for Dt, in the range between 9.8 Gy and 

12.4 Gy, were also consistently found for the subset of HF data alone and for the models 

based on doses at the PTV edge as well, with both the full and the HF datasets (see table 5  

paper  3).  None of the  Dt values estimated under any of the different assumptions were 

statistically significant. The LQ and LQ-L fits did not differ significantly, neither according 

to  the  maximum likelihood  ratio  test  nor  visually  (see  figure  1a  and 1b  in paper  3). 

Differences in isoeffect prediction with the LQ and LQ-L models are small beyond 3 or 

more fractions. For instance, for a BED of 100 Gy according to the LQ-L or LQ with α/β 

equal to 10 Gy and Dt of 11.0 Gy the BED differences remain equal to or below 3.3 Gy, as 

presented in (figure 4 paper 3).

For an estimation of the α/β ratio, two logistic fits were made based on the BED description 

of the LQ model both based on the full and the CF datasets with the  α/β ratio as a fit 

parameter as well. The value obtained from the direct LQ fit for the complete fractionation 

range was 3.9 [68% CI: 2.2–9.0] Gy (p > 0.05) for the doses at the isocenter  (figure 3a 

paper  3). The value from the fit based on the CF dataset only was 3.8 Gy (no 68% CI 

calculation was possible in this case). These values were not statistically significant, and 

neither were the equivalent values considering doses at the PTV edge. Nevertheless, the 

values found for the fits with a free α/β ratio were consistently lower than 10 Gy.
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3 Aim and Contribution

Particle therapy is still an evolving technique which can potentially offer improved lung 

cancer  treatments.  Prior  to  clinical  use  for  this  location,  tumor  motion  needs  to  be 

addressed, in particular for scanned beam delivery. One straightforward solution is tumor 

fixation,  for  instance  through  HFJV.  The  present  work  aims,  firstly,  at  performing  a 

dosimetric comparison of the target coverage with both proton and carbon ion planning 

between  planned  versus  recalculated  dose  on  the  anatomy  at  delivery  time  and  to 

investigate  the  influence  of  various  treatment  parameters  on  the  dosimetric  coverage. 

Secondly, the dose response relationship according to the LQ approach and an estimation of 

the α/β value for early stage NSCLC were obtained based on LC reviewed data using state 

of the art modeling methods.

Publication 1

Reproducibility of  target coverage in stereotactic spot scanning proton lung irradiation  

under high frequency jet ventilation

This publication estimates the reproducibility of the dosimetric target coverage between the 

planning and the application of the proton radiation treatment under assumption of target 

fixation through HFJV. The study was designed by me and U. Jelen with advice from 

A. Wittig and P. Fritz. I performed the treatment planning, extracted and analyzed the data. 

P. Fritz and W. Mühnickel provided the patient datasets for the study. A. Wittig carried out 

the patient contouring and the image co-registration and I prepared extra contours for the 

dosimetric  analysis  and  exported  and  processed  all  the  DICOM  data.  U. Jelen  and  F. 

Ammazzalorso supported all questions related to the treatment planning with TRiP98 and 

the  DICOM  handling,  and  contributed  to  the  drafting  of  the  manuscript.  U.  Jelen 

contributed  to  the  interpretation  of  the  results.  R.  Engenhart-Cabillic  contributed  with 

corrections to the manuscript. All authors read and approved the manuscript.

Publication 2

Changes  in  the  radiological  depth  correlate  with  dosimetric  deterioration  in  particle  

therapy for stage I NSCLC patients under high frequency jet ventilation

This work broadens the previous study to include carbon ion and further proton planning, 

quantifies the anatomical changes between planning and irradiation, correlates them with 

the dose deterioration, and assesses the influence of various planning parameters on the 
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dosimetric reproducibility. I conceived the study, developed the tools for the analysis of the 

radiological depth, analyzed and interpreted the results and drafted the manuscript. P. Fritz 

and W. Mühnickel provided patient datasets. A. Wittig helped with the case selection, did 

the contouring and the image co-registration. A. Wittig and R. Engenhart-Cabillic revised 

the manuscript and contributed to the result interpretation. All authors read, corrected, and 

approved the final manuscript.

Publication 3

Challenges in radiobiological modeling: can we decide between LQ and LQ-L models  

based on reviewed clinical NSCLC treatment outcome data?

This work investigated  the dose-response of NSCLC tumor control data from 

conventionally fractionated and hypofractionated radiotherapy treatments, based on a 

review of published outcome results,  evaluating the validity of the LQ and LQ-L models 

for both conventional and SBRT treatments, and obtaining an estimation of the clinical α/β 

ratio of NSCLC. A. Wittig, S. Barczyk, U. Jelen and R. Rita Engenhart-Cabillic conceived 

the study. I designed the search strategy, collected and assembled the data, analyzed and 

interpreted the results and drafted the manuscript. A. Wittig and S. Barczyk contributed to 

design the search strategy and supported the data collection. U. Jelen also contributed to the 

search  strategy.  A.  Wittig  and  U.  Jelen  revised  the  manuscript  and  contributed  to  the 

interpretation of the results. All authors read and approved the final manuscript.

Hiermit bestätige ich die Richtigkeit der gemachten Angaben bezüglich des Eigenanteiles 

von Alina Santiago García an den aufgeführten Publikationen.

Marburg, 13. October 2016

Alina Santiago García (Autorin)

Prof. Dr. Andrea Wittig (Betreuerin)
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4. Discussion
 

A strong rationale exists for treatment of lung tumors with particle therapy, as potentially 

the  risk of  normal  tissue  damage can  be reduced with equal  or  improved LC rates  as 

compared to photon radiotherapy. Recent meta-analyses suggest that the optimal total dose 

for  advanced stage  NSCLC has  yet  to  be  reached,  however,  investigation  into  modern 

treatment  methods  is  required  in  order  to  reduce  the  high  toxicity  of  chemoradiation 

[Kong 2014,  Ramroth  2016].  A  recent  phase  III  trial  on  dose-escalation  in 

chemoradiotherapy for advanced stage NSCLC found that higher total radiation dose, PTV 

volume, grade of esophagitis, and heart V5 and V30 were negative predictors for overall 

survival in a multivariate analysis [Bradley 2015] showing the potential of optimizing the 

target volume definition and OAR sparing through advanced delivery techniques. Carbon 

ion radiotherapy may offer clear clinical advantages through optimized dose distribution 

and a higher biological effectiveness in the BP [Karube 2015, Takahashi 2015].

4.1 Potential strategies for decreased tumor movement in particle therapy

To date, clinical data are sparse and mainly limited to facilities using the passive scattering 

technique, which is due to the still small number of facilities available worldwide but also 

due  to  technical  and  dosimetric  challenges  related  to  the  scanned  beam technique.  In 

addition, especially for heavy ion therapy, uncertainties in the biological effect complicate 

the use of the technique within clinical trials. Until now, the majority of lung tumors treated 

with particle therapy have been irradiated with passive scattering. In absence of interplay, 

different approaches for ITV construction coexist and are commonly used, combined with 

gating  and  breath  hold  to  reduce  the  ITV size  and reduce  anatomical  variation  in  the 

entrance  channels.  Field  specific  safety  margins  achieved  normally  through  hardware 

design help to compensate range uncertainties and range variations produced by anatomical 

changes  and  setup  errors  [Knopf  2016].  Few  clinical  experiences  with  scanned  beam 

particle therapy for lung tumors have been published so far. However, this situation might 

change rapidly in the coming years since many of the upcoming particle therapy centers are 

utilizing  this  technique  [Knopf  2016].  Active  scanning  leads  to  more  conformal  dose 

distributions and does not require the fabrication of patient specific hardware. Concerning 

dosimetric reproducibility, tumor motion in the lung represents the main difficulty as this 

may cause target miss as well as shifts in the BP positions. This is partly caused by density 

changes  in  the lung and the  surrounding anatomy.  Dose deterioration  caused by tumor 
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motion is even more pronounced in actively scanned beam particle therapy than in passive 

scattering  due  to  interplay  effects.  HFJV  is  a  known  method  for  tumor  fixation  in 

radiotherapy, which has successfully been implemented for ITV reduction in photon SBRT. 

Active beam delivery together with motion mitigation techniques such as gating, breath 

hold or rescanning, alone or combined, seems to be the preferred option for treatment of 

moving targets. So far, there are however no guidelines for crucial questions such as the 

optimal  motion mitigation approach,  for  margin definition,  for evaluation of  dosimetric 

motion consequences, for motion monitoring, and for quality assurance of moving targets 

[Knopf 2016, Chang 2016]. Research aiming at an optimal implementation of solutions for 

active beam scanning particle therapy for moving targets is thus warranted.

Gating has been successfully implemented in photon radiotherapy of moving tumors, often 

in combination with other methods aiming at reduction of tumor motion such as breath hold 

techniques. Breath hold is mature for use in conventional radiotherapy [Boda-Heggemann 

2016] and it is under current investigation for use in particle therapy treatments in the lung 

[Stuschke 2012, Dueck 2016, Knopf 2016].

HFJV has proven to have some clear advantages for use in radiotherapy. It is a ready-to-use 

solution, which allows for an immediate clinical translation without the need of specific 

hardware development. It is also appropriate even for patients with poor lung function who 

cannot comply with breath hold. The main limitation of this technique is that it requires to 

be applied under anesthesia. Therefore, it is only suitable for oligofractionated treatments. A 

new  variant  of  the  jet  ventilation  technique,  the  so  called  high  frequency  percussion 

ventilation  (HFPV) does  not  require  anesthesia  and therefore  it  might  allow a  broader 

spectrum of fractionated treatments. It is currently undergoing test for application in photon 

radiotherapy,  where  it  showed  average  apnea-like  breath  hold  times  for  the  first  three 

treated mixed-indication patients of 7.6 minutes, with no beam-off time as in conventional 

breath hold approaches [Péguret et al 2016]. Another non-invasive mechanical ventilation 

technique  for  assisted  breath  hold  has  proven  breath  holds  of  more  than  5  minutes  in 

average to be possible [Parkes 2016(a)]. These techniques might be regarded with interest 

in the future for integration in the conventional radiotherapy work flow, and even more in a 

scanned  beam  particle  therapy  context  due  to  the  higher  needs  for  tumor  motion 

management  solutions  [Baumann  2016].  In  the  coming  years  multiple  approaches  for 

motion management will likely coexist, and the particle therapy centers will have to choose 
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the best option, based upon their technical characteristics, their mix of indications, their 

clinical approach, etc.

4.2 Dosimetric reproducibility of planned target coverage

Paper 1 and  paper 2 present the first investigations on target coverage reproducibility in 

repeated applications of HFJV for tumor fixation in the novel context of scanned beam 

particle irradiation. In the datasets used for this study, lung tumors were proven to be static, 

and thus effects of intrafractional motion such as interplay effects could be ignored. The 

results  show that this  procedure is  reproducible  and that  satisfactory tumor coverage is 

achieved in most cases. As expected, larger anatomical differences correlate significantly 

with decrease in the coverage indexes. Anatomical variations e.g. due to patient positioning, 

which may have no significant  impact  on high-precision photon dose distributions,  can 

cause  large  mis-dosages  in  a  particle  therapy treatment.  Selected  patients  in  this  study 

would have necessitated actions to correct for such anatomical deviations before particle 

irradiation.  Mis-dosage is more pronounced in the case of small PTVs since dosimetric 

deviations in a static tumor as made possible by HFJV take place preferentially at the target 

borders. The influence of the target size observed in this study is in agreement with results 

of similar investigations on proton lung irradiation under breath hold [Dueck 2016].

Treatment planning settings can help to compensate for anatomical deviations, such as the 

use of an increased number of beams and carefully selected beam directions as shown in 

paper  2.  In  general,  larger  anatomical  differences  were  observed  in  the  ventrolateral 

direction caused by the arm mobility, and for this reason special care has to be taken when 

choosing this direction for irradiation of the chest. This is especially important in facilities 

with fixed oblique beam lines with reduced beam angle options such as MIT. Certain raster 

scan  settings  can  also  contribute  to  confer  the  plan  dosimetric  robustness  and  in 

(figure 1 paper  2) an  observation  was  made indicating  a  preserved  target  coverage  for 

carbon ions when larger spot sizes and decreased grid sizes and energy steps were used, 

which is in line with the findings of other studies [Richter 2014, Brevet 2015]. In contrast, 

none of the previous plan settings were included in the best multivariate linear model, but 

the choice made on the contour extension, a planning parameter which is rarely specified in 

published planning studies for scanned beam particle therapy of the kind of the present 

study, was found to have a significant role in plan conformity and homogeneity, as well as 

in  dosimetric  reproducibility.  This  result  suggests  that  this  parameter  (when  available) 
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should also be reported when performing dosimetric studies similar to the one at hand. A 

check for the effect of range uncertainties showed acceptable changes of the delivered GTV 

coverage in most patients. This suggests that 5 mm isotropic margins might be adequate for 

the irradiation scenario assumed here, based on tumor fixation.

4.3 Need of intrafractional imaging

One limitation of the present work is that no intrafractional nor post-treatment imaging was 

available  for  the  patient  cohort.  Therefore,  no  information  was  available  on  possible 

intrafractional tumor baseline shift,  caused for instance by muscle relaxation during the 

treatment. Data exist which show that settlement movements occur in the chest during the 

first seconds of both assisted and unassisted breath hold as well as chest deflation causing 

tumor  movement  [Parkes 2016].  Under  use  of  percussion  ventilation  techniques,  tumor 

movement has been estimated in the range of 2-4 mm or larger from the beginning of the 

fraction  until the end [Péguret 2016]. Research is thus required to determine the size of 

these effects before determination of the optimal technique-specific PTV margins.

Image guidance is necessary to fully exploit the dosimetric advantages of particle therapy in 

lung tumors, even more than in high precision photon therapy. However, extensive use of x-

ray imaging of moving targets before and during treatment increases the overall patient 

dose. Low-dose protocols and protocol optimization can reduce the imaging dose to the 

patient substantially. The total dose received by radiotherapy patients should be assessed, 

and  strategies should be worked out to reduce it if necessary.  Little is known about the 

status of imaging dose in particle therapy centers. Measurements were performed at MIT 

(Alina Santiago, Urszula Jelen) for a study aiming at determination of the total imaging 

dose  for  a  patient  under  employ of  different  image  guidance  solutions  for  photon  and 

particle  beam therapy  [Steiner  2013].  For  the  final  dose  calculation,  realistic  imaging 

protocols were assumed, adapted to single fraction or three-fraction treatment under use of 

HFJV. It was found that OAR doses depended on imaging modality and OAR position and, 

as an example, that comparison of the imaging dose for hypothetical 3-fraction treatment 

protocols at the participating centers shows a large span of values with doses to the anterior 

skin at the isocenter ranging from 323 to 27 mGy, with doses at MIT being 53 mGy.
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4.4 Irradiation time reduction through use of new design ripple filters

Gating,  breath  hold  or  a  combination  of  these  lead  to  longer  irradiation  times  as  does 

rescanning, alone or in combination with gating. At synchrotron-based facilities the change 

between isoenergy slices is the most time-consuming part of the pure irradiation and by 

reducing  the  number  of  isoenergy  slices  required  to  homogeneously  cover  a  target,  a 

significantly shorter irradiation time can be achieved. A method for this applied in carbon 

ion therapy treatments at centers like HIT  and MIT is the ripple filter  [Weber 1999]. A 

thicker  optimized  filter  design,  which  can  lower  the  irradiation  time  even  further,  is 

currently  under  investigation  [Ringbæk  2016] and  could  potentially  be  used  in  proton 

therapy as well. A thicker filter is of particular benefit in the case of moving targets such as 

in the lung.  The NSCLC cases presented in paper 1 and paper 2 were among a cohort of 

patients selected for planning comparisons between ripple filter  designs and thicknesses 

[Ringbæk 2016] and was specially chosen for testing the limits of the performance of the 

ripple filters  for superficially located,  small  targets as well  as for lung tumors.  Thicker 

ripple  filters  were  found  to  yield  comparable  results  in  terms  of  coverage,  dose 

homogeneity  and  OAR sparing  when  compared  with  the  clinically  established  thinner 

ripple filter, with a slightly worse conformity.

4.5 Dose-response relationship based on clinical NSCLC data

In  this  work  a  question  was  addressed  which  is  relevant  for  two  different  topics  in 

radiotherapy: design and optimization of hypofractionated photon treatments and biological 

treatment  planning for  ion  therapy.  The need  of  reliable  models to  estimate biological 

effects has  been  pointed  out  independently  in  both  fields,  to  describe  accurately  the 

treatment  outcome  under  specific  fractionation  schedules.  State-of-the-art  modeling 

procedures  for  analysis  of  clinical  data  were used to  compare  the  fits  provided by the 

generally accepted LQ model and the LQ-L correction for high dose fractions, and to obtain 

an estimation of the clinical α/β values for NSCLC. Ideally, pooled individual outcome data 

allow  precise  metaanalyses  [Guckenberger  2013].  Alternatively,  review  of  published 

clinical data allows collecting long term information from a large number of patients. Such 

analyses present a series of challenges. These data collections are highly heterogeneous in 

relation  to  target  volume  definition,  dose  prescription,  planning  concepts  and  delivery 

techniques among other aspects, as explained in detail in the discussion section of paper 3. 

We  tried  to  apply  strict  inclusion  criteria  to  the  reviewed  cohorts  to  reduce  this 
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heterogeneity. In  paper 3 we present the full raw data to allow independent check of our 

calculations, or to answer further research questions.

The collected  dose  response  data  set  cover  the  full  range  of  fractionation  schemes,  as 

required for the intended task. As mentioned, the outcome data was fitted to both applied 

dose at the PTV edge and at the isocenter. That the Spearman's correlations between LC 

and BED for different α/β values are consistently lower for the doses at the PTV edge may 

suggest that the isocenter doses are more robust for retrospective modeling of the dose 

response relationship. Possible reasons for this could be the different margins employed by 

different institutions and the uncertainties in the dose calculation methods, which in the 

case of outdated, less accurate dose calculation algorithms for the lung would produce large 

dose mis-estimation at the PTV edge.

The dose response curves based on conventional fractionation data and with  α/β fixed to 

10 Gy reproduce well the steepness of the curve around the  TCD50 value. We obtained a 

similar  curve  to  the  one  in  [Martel  1999],  based  on  advanced  NSCLC data,  although 

displaying a lower TCD50 value since early stage tumors require lower curative doses. For 

the curve fits including the HF data the TCD50 values become smaller, and the steepness of 

the curve lower,  similarly to what was observed in a study based on pooled individual 

outcome data after SBRT treatment [Guckenberger 2013]. The local control at high BED 

values does not approach 100% and the observed dose-effect for local control in NSCLC is 

weaker at high BED values due to data dispersion. This might reflect that other factors 

dominate the dose response relationship at high doses such as target delineation errors or 

geographic miss.

For the dose response fits based on the LQ-L relationship, we obtained Dt values between 

9.8 and 12.4 Gy under the different assumptions: all data sets, only HF data, and for both 

doses at the isocenter and the PTV edge. Only the value obtained for doses at the isocenter 

for the full data set was statistically significant, 11 Gy (68%CI: 8.4-16.7). Both LQ and LQ-

L fits  can  model  local  tumor  control  after  conventionally  and  HF irradiation,  and  for 

BED 10 values of 100–150 Gy in ≥3 fractions, the differences in isoeffects predicted by 

both models are small and can be neglected. Our findings did not allow us to suggest use of 

the LQ-L model for an improved fitting compared to the LQ model of local control data in 

case of hypofractionation. A tentative analysis to establish the optimal α/β ratio in the frame 

of  the LQ model  for  the  full  fractionation  range did not  produce significant  estimates, 

although it showed a trend for α/β values lower than 10 Gy.
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Modeling of radiobiological  effects  is  a  complex but crucial  task for ion beam therapy 

treatment planning. The LEM requires the input of LQ parameters, namely α and β separate 

values, although their influence on the RBE is small compared to the α/β ratio [Jäkel 2007]. 

This fact allows potentially to incorporate α/β values from clinical data, for both tumor and 

normal tissue reactions [Schardt 2010]. As mentioned in section 1.5,  realistic clinical  α/β 

values are necessary for particle therapy planning. A fixed α/β value of 2 Gy derived from 

normal brain tissue has been used for different tumor entities undergoing treatment with 

carbon ions at one of the three scanned ion beam facilities in Europe using LEM-based TPS 

[Krämer 2000]. Certain lung tumors are planned to be treated within a clinical trial at HIT 

but  so  far  no  α/β values  have  been  specified  for  biological  treatment  planning 

[Hauswald 2015].

4.6 Outlook

In-house tools such as for the quantification of the changes in radiological depth can be 

helpful  in  treatment  planning,  for  instance  to  determine  anatomically  stable  irradiation 

directions. Some functions that are not available in commercial TPS may be desirable for 

checking  the  need  of  adaptive  strategies  and  for  patient  related  quality  assurance in  a 

context of particle radiotherapy treatment of moving targets. Together with specific plan 

optimization approaches, calculation of dedicated margins are the two strategies to achieve 

plan robustness [Flampouri 2014, Knopf 2016]. Based on the present work, a tool for the 

calculation of beam specific PTV has been developed to explore the performance of novel 

margin definitions aiming at improved dosimetric plan robustness towards setup and range 

uncertainties,  under  use  of  HFJV.  Small  changes  in  the  radiological  depth  caused  by 

anatomical changes, mispositioning, or uncertainties in the range estimation are enlarged by 

the low density of lung tissue surrounding the tumor.  A follow up project will evaluate 

different margin concepts for scanned beam particle therapy, applied to the exploration of 

concepts for dose escalation and reduced side effects for advanced stage NSCLC.

Only one recent publication offers an  α/β ratio of 6 Gy for treatment planning for lung 

tumors  in  a  research  context  [Wölfelschneider  2015],  estimated  after  comparison  with 

treatment results and biological doses from passive scattering carbon ion experiences in 

Japan. For the moment, it is not possible to contribute with a good estimate of α/β purely 

derived from clinical  outcomes.  A new value  should  only be  used  clinically  under  the 

certainty that the description of the biological effects of carbon ions will be more accurate.  
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However, in silico studies on the consequences of different assumptions made on α/β for 

plan optimization can be useful for hypothesis generation, for instance, for design of new 

treatment schedules.
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a b s t r a c t

Purpose: To investigate scanned-beam proton dose distribution reproducibility in the lung under high
frequency jet ventilation (HFJV).
Materials and methods: For 11 patients (12 lesions), treated with single-fraction photon stereotactic radi-
osurgery under HFJV, scanned-beam proton plans were prepared with the TRiP98 treatment planning
system using 2, 3–4 and 5–7 beams. The planning objective was to deliver at least 95% of the prescription
of 33 Gy (RBE) to 98% of the PTV. Plans were subsequently recomputed on localization CT scans. Addition-
ally, for selected cases, the effects of range uncertainties were investigated.
Results: Median GTV V98% was 98.7% in the original 2-field plans and 93.7% in their recomputation
(p = 0.039). The respective values were 99.0% and 98.0% (p = 0.039) for the 3–4-field plans and 100.0%
and 99.6% (p = 0.125) for the 5–7-field plans. CT calibration uncertainties of ±3.5% led to a GTV V98% reduc-
tion below 1.5 percentual points in most cases and reaching 3 percentual points for 2-field plans with
beam undershoot.
Conclusions: Through jet ventilation, reproducible tumor fixation for proton radiotherapy of lung lesions
is achievable, ensuring excellent target coverage in most cases. In few cases, non-optimal patient setup
reproducibility induced density changes across beam entrance channels, leading to dosimetric deteriora-
tion between planning and delivery.

� 2013 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 109 (2013) 45–50

Stereotactic body radiotherapy (SBRT) is an established alterna-
tive to surgery for medically inoperable early stage (T1–2) non
small cell lung cancer (NSCLC) and lung metastases, yielding high
5-year local control rates of 70–90% and low toxicity rates with
usually less than 5–8% severe toxicity (grade III) [1–2]. SBRT in-
volves highly conformal, single-fraction or hypofractionated treat-
ments using (non-coplanar) multiple-field techniques that aim at
delivering an ablative dose to the tumor, while sharp dose gradi-
ents enable sparing of surrounding normal structures. Inherent to
the technique is high precision of dose delivery even in moving
targets.

Application of proton beam therapy, with its accurate dose
localization, has the potential to minimize dose to the lungs and
organs at risk as demonstrated in numerous dosimetric compari-
son studies [3–5], even if compared to very advanced photon tech-
niques [6]. Hence, it is expected to reduce side effects, posing as
alternative to SBRT, for early but also more advanced inoperable
NSCLC cases, where tolerances of normal structures may limit

application of a curative photon dose [7]. Recent retrospective
series have shown, that high-dose hypofractionated proton
therapy for peripherally and centrally located NSCLC achieves
excellent outcomes in terms of local tumor control and safety
profile [8]. A phase I trial including also advanced disease has
recently proven hypofractionated proton radiotherapy to be well
tolerated [9].

However, efficacy and tolerability of proton therapy in compar-
ison to current standards is not yet proven in clinical trials [7,10–
12]. This is partly due to the limited number of clinical particle
therapy facilities, but also due to challenges in the technical imple-
mentation of particle therapy in lung tumors, especially manage-
ment of tumor motion. The risk of target miss due to organ
motion and deformation is expected to be greater in particle ther-
apy than in photon therapy due to the finite particle range, which
is typically addressed by extended distal and proximal margins.
Additionally, the interplay of target motion and beam scanning
renders extra complexity to the irradiation of lung tumors [13].
For this reason, a margin-based approach through the definition
of an internal target volume (ITV), encompassing the tumor posi-
tion in all phases of the respiratory cycle, might not be sufficient
to ensure adequate and homogeneous target coverage.
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Various solutions to counteract motion interplay effects have
been proposed, for instance gating, tracking, and re-scanning, and
their clinical applicability is under active investigation. In contrary,
other approaches, like apnea and high frequency jet ventilation
(HFJV), aim at target fixation [13]. HFJV is a modality of mechanical
ventilatory support, which utilizes a respiratory rate greater than
the normal value (>150 breaths per minute) and very small tidal
volumes, thus preventing any movement of the tumor with respi-
ration [14–17]. The interest of target fixation techniques in particle
therapy of the lung lies not only in the expected target volume
reduction, but also in managing the sensitivity of particle range
to density changes in the beam entrance channels. However, if
HFJV is to allow a margin-based planning approach for particle
irradiation in the lung, it must be reproducible, since this proce-
dure has to be repeated at least twice, i.e., for the planning com-
puted tomography (CT) acquisition and later for the actual
irradiation(s).

The goal of the present work was to investigate the reproduc-
ibility of the delivered proton dose distribution under HFJV by
means of a planning study based on delivery-time localization CT
scans from patients who were treated with photon SBRT under
HFJV.

Materials and methods

Patient data

Datasets of 11 patients with 12 lesions were selected. All pa-
tients were treated for peripheral stage I NSCLC (9 patients) or
metastases (2 patients), within an experimental protocol, with sin-
gle-fraction stereotactic radiosurgery, to up to 33 Gy isocenter
dose, under HFJV at the St. Marien-Krankenhaus [15–16]. Accord-
ing to the institutional protocol, patients qualify to receive treat-
ment under HFJV, if the target motion amplitude exceeds 1 cm
[15–16]. The HFJV is performed with pulse frequency of 300–400
times a minute, inducing virtually complete standstill of the lung
[15–17] (see movie in electronic Supplementary material).

All patients received two CT scans, both under HFJV and immo-
bilized in a vacuum mattress combined with a stereotactic body
frame: one as planning CT and the second for target localization
verification on the day of irradiation. Localization CT datasets were
restricted longitudinally to the slices encompassing the tumor
region.

Delineation of relevant structures was performed with the Pin-
nacle3 (version 8.0; Philips Radiation Oncology Systems, Best, The
Netherlands) treatment planning system on both planning and
localization CT. The planning target volume (PTV) was defined by
isotropic 3D expansion of the gross tumor volume (GTV) by
5 mm. Median (range) GTV and PTV volumes were 6.7 (1.0–22.9)
cm3 and 24.6 (7.2–71.5) cm3, respectively. Subsequent to contour-
ing, for each lesion, rigid coregistration of both CT datasets was
performed with focus on the tumor region.

Treatment planning

Using the original planning CTs, scanned-beam proton treat-
ment plans were prepared with the TRiP98 treatment planning
system (GSI, Darmstadt, Germany) [18]. The total prescription dose
was 33 Gy (RBE) and the planning objective was the delivery of at
least 95% of such prescription to 98% of the PTV, while, owing to
the peripheral localization of all lesions, no normal tissue optimi-
zation constraints were deemed necessary. For each patient, three
treatment plans were prepared: (a) a plan using two coplanar
fields entering the patient ipsilaterally at 0� and 45� in compliance
with the fixed nozzles (horizontal and oblique) installed at the
Marburg Ion Therapy center (MIT), (b) a plan using 3–4 fields

(similarly to [19]) and (c) a plan using 5–7 fields (similarly to
[6]), the latter two representing increasing degrees of freedom of-
fered by additional fixed beam lines, patient positioning solutions
or a rotating gantry.

Non-coplanar beam setups were excluded because of the lim-
ited longitudinal extent of the localization CTs. Plans were opti-
mized for a nozzle-to-treatment-isocenter distance of 60 cm, as
available at the MIT center to reduce excess spot size enlargement
stemming from the proton beam divergence [20]. Single-field-uni-
form-dose optimization was used, for its expected lower sensitivity
to delivery-time uncertainties in comparison to intensity modula-
tion (IMPT) [21].

The irradiation raster pitch was set to 3 mm, while available
spot sizes, at the energies required by the cases under investiga-
tion, ranged from 6 to 18 mm full-width-half-maximum (FWHM).
Further optimization parameters, expressed in beam’s eye view
coordinates, were an in-depth spot positioning step of 2 mm and
a lateral allowance in placing spots outside the PTV of 1.5 times
the spot size.

Successive delivery of the optimized proton plans was simu-
lated by forward-recomputing them on the coregistered localiza-
tion CT scans.

Additionally, in order to investigate delivery stability in pres-
ence of range uncertainties, for the two patients with the least
and most deeply seated tumors in the cohort, all plans were
recomputed introducing systematic CT calibration errors of ±3.5%
[5,22].

Evaluation

The original and recomputed treatment plans were compared in
terms of dose distributions and dose–volume histograms (DVH).
For a quantitative assessment, different dosimetric parameters
were employed: the percentage of the PTV receiving at least 95%
of the prescription dose (V95%), and similarly V95% and V98% of the
GTV. For statistical comparisons a two-sided sign test was per-
formed with a significance level of 0.05 (with Bonferroni correc-
tion) using the R statistical environment [23].

Results

Dosimetric quality of the optimized plans

The PTV V95% was >98% for all patients in all plans, without sta-
tistically significant differences between planning techniques, and
normal tissue dose–volume indexes were below recommended
reference values [24] (Table 1). Exceptionally, recommended limits
were exceeded for the chest wall in individual cases because of
inclusion in the PTV, independently of the planning approach,
while its median population value could be reduced through use
of more than 2 fields. This in turn resulted in significantly in-
creased involvement of the ipsilateral lung. As only patients with
peripheral tumors were included, organs like liver, spine, esopha-
gus and trachea received very low doses (Table 1, structures with
median Dnear-max = 0 not shown), independently of the planning
technique.

Qualitative reproducibility assessment

Concerning anatomical reproducibility in the localization CTs,
even if patient setup was performed with stereotactic precision,
in few patients changes due to repositioning were observed e.g.,
arm mispositioning or slight body rotations. Tumor position repro-
ducibility was in general very good.

Fig. 1 shows an example of registration results for two patients
(a and b), as well as Hounsfield unit (HU) profiles along the central
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axis (averaged across a 3 � 3-voxel perpendicular neighborhood)
of each beam used in the 2-field plans. In the upper half, a typical
case is shown in which the tumor position as well as the whole
anatomy were well reproduced, yielding an excellent conservation
of the planned dose distribution on the localization CT dataset
(Fig. 2a). In the lower half, a case is shown in which target coverage
in the recomputation was compromised. The discrepancies in the
anatomy between the planning and the localization images are
well visible in the HU profiles, in particular for the oblique beam.
The registration visualization of the latter case (Fig. 1b) shows that,
although the tumor position was well reproduced between the two
CT sets, the anatomy at the entrance of the oblique beam presents
differences, including a noticeable thickening of the soft tissue re-
gion in the localization image (indicated with a red arrow) that re-
sulted in an underdosage in the distal section of the PTV (Fig. 2b).

These two examples illustrate the general observation of this
study, that, through use of jet ventilation, in most of the cases only
small changes in conformality and target coverage were observed
between planning and simulated delivery, while, in the few cases
affected by significant target coverage decrease, this could be cor-
related with anatomical variations in the beam entrance channels.

This is reflected in the dose–volume histograms, presented in
Fig. 3.

Target coverage reproducibility

Using a 2-field planning approach, after recomputation, the GTV
V95% remained above 98% in 10 of 12 cases. One of these worst
cases is presented in Fig. 1 and commented above in the text.
The other was instead one of the two metastatic patients, present-
ing the smallest tumor volume in the series (PTV volume 7.2 cm3)
adjacent to the thorax wall.

With 2-field plans, the GTV V98% remained above 95% in 4 of 12
cases, above 90% in 9 and in only 3 cases it reached lower values,
down to 84.0%. With 3–4-field plans, the GTV V98% after recompu-
tation was >95% in 7 of 12 cases, >90% in 11 and in only one case
87.1%. Further improvement was observed with 5–7-field plans,
which in 9 of 12 cases maintained, after recomputation, a GTV
V98% > 98% and in only 3 cases exhibited lower values of 95.0%,
94.0% and 92.8%. Selected target dosimetric indexes for all plans
and individual patients are reported in the Supplementary mate-
rial, Table S1.

Table 1
Median (range) dosimetric indexes of PTV and normal tissue for all optimized plans.

Index [%] 2-field plan 3-4-field plan 5-7-field plan

PTV V95% [%] 99.6 (98.4–99.9) 99.8 (98.5–100.0) 99.9 (98.5–100.0)
Lung ipsilateral (excl. PTV) V5% [cm3] 568.4 (230.8–775.5) 767.4 (231.5–1044.0)a 908.6 (436.4–1205.0)a,b

Lung ipsilateral (excl. PTV) V7 Gy [cm3] 286.2 (91.5–409.8) 359.6 (83.0–527.7) 403.4 (124.4–544.3)a

Lung ipsilateral (excl. PTV) V20 Gy [cm3] 120.7 (28.7–226.6) 120.0 (24.9–242.4)a 116.9 (33.7–231.2)a,b

Lung ipsilateral (excl. PTV) V95% [cm3] 23.7 (3.8–64.2) 17.8 (2.5–61.8)a 15.0 (2.5–48.0)a

Lung ipsilateral (excl. PTV) Dmean [Gy] 3.0 (0.7–4.5) 3.2 (0.7–5.3) 3.7 (1.0–5.8)a,b

Heart Dnear-max [Gy] 0.0 (0.0–14.7) 0.0 (0.0–7.9) 0.0 (0.0–6.5)
Main bronchus ipsilateral Dnear-max [Gy] 2.8 (0.0–29.9) 4.8 (0.0–30.3) 2.6 (0.0–26.3)
Thorax wall Dnear-max [Gy] 22.3 (13.2–32.7) 15.8 (9.0–32.7)a 12.8 (8.7–32.6)a,b

Thorax wall V30 Gy [cm3] 0.4 (0.0–23.2) 0.0 (0.0–23.6) 0.0 (0.0–16.8)a

Ribs V22 Gy [cm3] 2.0 (0.1–15.9) 0.1 (0.0–16.7)a 0.0 (0.0–11.8)a

Skin Dnear-max [Gy] 5.9 (1.8–12.0) 4.2 (2.7–12.9) 2.8 (2.4–6.8)b

Abbreviations: PTV, planning target volume; Vx%, volume receiving x% of the prescribed dose, Dmean, mean dose, Dnear-max, maximum dose delivered to 1% of the volume.
a Statistically significant differences (p < 0.05 with Bonferroni correction) with respect to the 2-field technique.
b Statistically significant differences (p < 0.05 with Bonferroni correction) with respect to the 3-4-field technique.

Fig. 1. Examples of coregistered CT data sets of two patients (a and b); green: planning CT, purple: localization CT; and corresponding HU profiles at the central axis of the
horizontal and oblique beams (tumor region in yellow).
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After recomputation, median GTV V95% was >99.5% for all three
plan types, with a statistically significant difference only for the 2-
field plans (p = 0.039). Larger dosimetric variability between plan-
ning approaches could instead be observed through the GTV V98%,
with median values of 98.7% in the original 2-field plans and

93.7% in their recomputation (p = 0.039) and, respectively, 99.0%
and 98.0% (p = 0.039) for the 3–4-field plans and 100.0% and
99.6% (p = 0.125) for the 5–7-field plans.

The median (range) reduction in GTV V95% and V98% between
optimized and recomputed plans and the results of statistical com-

Fig. 2. Central slice of the dose distributions of two patients (a and b), for the optimized plans with 2, 3–4 and 5–7 fields (upper row, left to right) and their recomputation on
the localization CTs (lower row).

(a) (b) (c)

Fig. 3. Dose–volume histograms of the GTV for 2-field plans (a), 3–4 field plans (b), and 5–7 field plans (c). Shaded areas represent the patient cohort and lines the two
patients presented in Fig. 2 (green: planning CT, purple: localization CT).
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parison are reported in Table 2. Notably, the predominance of cases
where coverage was preserved can be evinced from the proximity
of the medians to the lower range ends, with the higher range ends
representing the isolated worst-coverage cases discussed above.

Effects of CT calibration uncertainties

For the patient with the shallowest tumor localization (patient
8), with all beam setups the GTV V95% remained within 0.5 pp (per-
centual point) agreement with the results obtained with the nom-
inal CT calibration (Supplementary material, Table S1). With a 3.5%
overshoot the GTV V95% was 99.4–100.0% for the planning CT and
99.7–100.0% for the localization CT, while with a 3.5% undershoot
it was 99.3–100.0% and 99.0–100.0%, respectively. The correspond-
ing changes in GTV V98% were below 1.5 pp.

For the patient with the most deeply seated target (patient 2),
the GTV V95% in presence of beam overshoot was 100.0% for all
beam configurations, on both the planning and localization CT. In
the case of simulated beam undershoot the V95% was 99.6–100.0%
on the planning CT and 99.9–100.0% on the localization CT, i.e.,
within 0.5 pp agreement with the values obtained with the nomi-
nal CT calibration (Supplementary material, Table S1). The corre-
sponding changes in GTV V98% were below 1.5 pp for all beam
setups, except for the case of 2-field plans recomputed with beam
undershoot, where V98% was reduced by up to 3 pp (both in the
planning and localization).

Discussion

The present work is the first planning study attempting at
quantifying target coverage reproducibility in repeated applica-
tions of HFJV for tumor fixation in scanned-beam proton irradia-
tion. The results demonstrate adequate tumor fixation and
anatomical reproducibility, ensuring excellent target coverage in
most of the cases.

To date, most clinical applications of lung particle therapy are
based on passive scattering techniques, in which the complete tar-
get volume is irradiated nearly simultaneously and interplay ef-
fects with tumor motion do not occur [e.g., 8]. Consequently,
tumor motion can be targeted by ITV-based approaches, possibly
in combination with gating or breath-hold to reduce the ITV span
and/or with field-specific safety margins designed to compensate
the range uncertainties inherent to anatomical changes. Recently,
a considerable effort has been invested by several groups into en-
abling treatment of moving targets, like lung tumors, also with
scanned beams [13], exploiting their advantages (e.g., improved
conformity, lack of patient-specific hardware etc.), also in consid-
eration of centers that are not equipped with passive beam deliv-
ery systems. Most treatment delivery strategies to deal with
tumor motion are still in the preclinical phase [13] and their imple-
mentation is often technically challenging.

So far, only one center has reported on the use of apnea for tu-
mor fixation during irradiation with scanned-beam protons, with a
reproducibility of <2 mm [25]. To our best knowledge, no data on
the actual target coverage have been published.

HFJV can prevent any movement of thoracic structures with
respiration and has thus been used for surgical procedures on the
respiratory tract [14], hepatic and renal radiofrequency ablation
[26] as well as stereotactic photon radiosurgery of lung and liver
lesions [15,27–28]. The technique is thought to reduce ventila-
tor-associated lung injury [29] and is feasible in patients with im-
paired lung function, who are unable to cooperate in procedures
like coached gating or breath-hold techniques [16]. Due to reliable
tumor fixation [16], without prolongation of the irradiation time,
HFJV offers unique advantages for irradiation of lung lesions with
scanned particle beams. The technique is however invasive and
the procedure therefore restricted to single-fraction or oligofrac-
tionated treatments.

Our study demonstrates good reproducibility of the anatomical
and geometrical tumor position between repeated HFJV proce-
dures, enabling excellent GTV coverage in the great majority of
cases, with V95% above 98%, even for plans employing two fields
only. However, in the remaining cases, although the original tumor
position could be reproduced in the repeated jet ventilation proce-
dure, changes in the patient setup occurred (repositioning errors).
Such errors, small enough to be acceptable for photon radiosur-
gery, significantly affected the resulting dose distributions for
scanned proton treatments. It should be emphasized, that setup er-
rors are inherent to patient positioning and independent of the
method used for motion management, however their conse-
quences on proton treatments underline the need for case-by-case
verification prior to each fraction, to ensure strict anatomical cor-
respondence of the planned beam channels at treatment time
(Fig. 1). Additionally, our results demonstrate that the averaging
effect of multiple beams reduces the negative dosimetric effects
of range uncertainties, introduced e.g., by anatomical variations
(Fig. 2, Table 2), although this may come at the cost of a larger lung
volume receiving low doses (Table 1).

With respect to the clinical planning and evaluation approach,
the good reproducibility of the tumor position supports a mar-
gin-based concept for PTV definition, which should however be de-
tailed with further studies aiming at establishing optimal planning
parameters and clinical decision guidelines, specific to application
of jet ventilation in particle therapy. For a safe implementation of
high frequency jet ventilation in particle therapy, application of ro-
bust planning strategies is warranted [30].

Conclusions

Jet ventilation appears to be a feasible and reliable technique for
tumor fixation in scanned proton irradiation of lung lesions, with
the presented results demonstrating general anatomical and geo-
metrical tumor position reproducibility, sufficient to ensure excel-
lent target coverage at delivery. Small changes in patient setup can
lead to dose deterioration, independently of the motion manage-
ment technique employed, thus confirming the requirement of
accurate case-by-case verification prior to irradiation with high-
precision particle therapy, to ensure strict anatomical correspon-
dence of the planned beam channels at treatment time.

Table 2
Median (range) GTV coverage reduction for all optimized and recomputed plans. Reductions with p < 0.05 are statistically significant.

Index [%] 2-field plan 3-4-field plan 5-7-field plan

D [pp] p-Value D [pp] p-Value D [pp] p-Value

GTV V95% 0.1 (�0.1–8.9) 0.039 0.0 (�0.1–6.9) 0.219 0.0 (0.0–2.9) 0.125
GTV V98% 3.9 (�0.6–14.1) 0.039 0.6 (�1.7–12.9) 0.039 0.1 (�0.6–6.5) 0.125

Abbreviations: GTV, gross tumor volume, Vx%, volume receiving x% of the prescribed dose, D, casewise difference between optimized and recomputed plan, pp, percentual
point.
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Supplementary Material, Table S1. Individual GTV coverage indexes for all optimized and 
recomputed plans.

Index /
CT dataset

Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5 Pat. 6 Pat. 7 Pat. 8 Pat. 9
Pat. 
10a

Pat. 
10b

Pat. 
11

Nx%

2 beam plans

GTV V95% [%]

Plan 100.0 100.0 99.9 99.9 100.0 100.0 100.0 99.3 100.0 100.0 100.0 100.0 12

Localization 99.3 100.0 99.8 100.0 100.0 99.1 95.5 99.2 100.0 91.1 98.5 99.9 10

GTV V98% [%]

Plan 100.0 98.9 97.0 97.9 98.4 99.1 99.7 88.1 99.7 98.1 99.7 96.0 11

Localization 94.2 99.5 94.0 98.5 97.1 90.7 87.8 88.0 97.7 84.0 93.4 91.2 4

3-4 beam plans

GTV V95% [%]

Plan 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 12

Localization 99.9 100.0 99.4 100.0 100.0 99.0 100.0 100.0 100.0 93.1 99.1 99.9 11

GTV V98% [%]

Plan 98.6 100.0 96.0 99.1 99.9 98.9 100.0 94.3 99.9 100.0 95.2 97.7 11

Localization 98.1 99.8 94.2 99.5 99.5 90.7 99.4 94.2 97.8 87.1 90.8 99.4 7

5-7 beam plans

GTV V95% [%]

Plan 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 12

Localization 100.0 100.0 97.3 100.0 100.0 98.0 100.0 100.0 100.0 100.0 97.1 99.9 10

GTV V98% [%]

Plan 100.0 100.0 99.3 99.7 100.0 99.5 100.0 100.0 100.0 100.0 99.3 98.9 12

Localization 99.6 100.0 95.0 99.6 100.0 94.0 98.3 100.0 100.0 100.0 92.8 99.5 10

Abbreviations: GTV – gross tumor volume, Vx%  –  volume receiving x% of the prescribed dose,  Nx% – 
number of plans that reached a value of the respective dosimetric index: V98%

  
≥ 95% and V95% ≥ 98%.
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 Changes in the radiological depth correlate with dosimetric 
deterioration in particle therapy for stage I NSCLC patients under 
high frequency jet ventilation        
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   1 Philipps-University Marburg and University Hospital Giessen and Marburg, Department of Radiotherapy and 
Radiation Oncology, Marburg, Germany and  2  St Marien-Krankenhaus, Department of Radiotherapy, Siegen, 
Germany                             

  ABSTRACT 

  Background.  Particle dose distributions are highly sensitive to anatomy changes in the beam path, which may lead to 
substantial dosimetric deviations. Robust planning and dedicated image guidance together with strategies for online 
decision making to counteract dosimetric deterioration are thus mandatory. We aimed to develop methods to quantify 
anatomical discrepancies as depicted by repeated computed tomography (CT) imaging and to test whether they can 
predict deviations in target coverage. 
  Material and methods.  Dedicated software tools allowed for voxel-based calculations of changes in the water equiv-
alent path length (WEPL) in beam directions. We prepared proton and carbon ion plans with different coplanar beam 
angle settings on a series of lung cancer patients, for which planning and localization CT scans under high frequency 
jet ventilation (HFJV) for tumor fi xation were performed. We investigated the reproducibility of target coverage between 
the optimized and recalculated treatment plans. We then studied how different raster scan and planning settings infl uence 
the robustness. Finally, we carried out a systematic analysis of the variations in the WEPL along different coplanar beam 
angles to fi nd beam directions, which could minimize such variations. 
  Results.  The Spearman ’ s correlations for the GTV  Δ V 95  and  Δ V 98  with the  Δ WEPL for the proton plans with a 
0 °  and  � 45 °  two-fi eld confi guration were 0.701 (p    �    0.02) and 0.719 (p    �    0.08), respectively. For beam confi gurations 
0 °  and  � 90 ° , or 0 °  and  �    45 ° , with lower  Δ WEPL, the correlations were no signifi cant. The same trends were observed 
for the carbon ion plans. Increased beam spot overlap reduced dosimetric deterioration in case of large  Δ WEPL. 
  Conclusion.  Software tools for fast online analysis of WEPL changes might help supporting clinical decision making 
of image guidance. Raster scan and treatment planning settings can help to compensate for anatomical deviations.   

 Proton and carbon ion therapy, due to the localized 
dose deposition of charged particles, can decrease the 
dose to organs at risk as demonstrated in planning 
comparison studies [1 – 3]. However, their fi nite range 
renders particles more sensitive to changes in the 
radiological depth in the beam entrance channels. 
These changes originate from interfractional tumor 
movement and other anatomical deviations, such as 
residual positioning errors, tumor shrinkage during 
the radiotherapy course or fl uctuations in patient 
weight [4]. Such effects can cause clinically relevant 
alterations in the particle dose distribution [5 – 8]. 

 Respiratory movement poses a challenge to the 
application of particle therapy in the lung. Anatomi-
cal changes caused by respiration have been related 
to dosimetric fl uctuations inside the target [8,9]. In 
scattered beam particle therapy, target coverage is 
typically ensured by extended lateral as well as distal 
and proximal margins [10] and dedicated internal 
target volume (ITV) concepts [5]. In scanned beam 
particle therapy, additional interplay between target 
motion and beam scanning exists. Therefore, a 
margin-based approach might not be suffi cient to 
assure both planned target coverage and homogeneity. 
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Specifi c means to counteract motion interplay effects 
have been developed such as gating, tracking, and 
re-scanning [5]. Clinical applicability of such meth-
ods is currently under investigation. Alternatively, 
tumor fi xation approaches might have a role in par-
ticle therapy for reduction of target motion as well 
as tissue density changes in the beam path [5]. High 
frequency jet ventilation (HFJV) is a modality of 
mechanical ventilatory support, which utilizes a high 
respiratory rate and very small tidal volumes, pre-
venting any movement of the tumor with respiration 
[11]. Due to its invasive nature the method is limited 
to few dose applications. 

 In previous work we have investigated the repro-
ducibility of the delivered proton dose for early stage 
non-small cell lung cancer (NSCLC) patients treated 
with photon radiosurgery under HFJV [12]. We have 
proven reproducible tumor fi xation through HFJV, 
warranting excellent target coverage in the majority 
of investigated cases. However, for few tumors unac-
ceptable dosimetric deviations were observed, illus-
trating the need for imaging prior to each dose 
delivery with dedicated protocols, together with the 
development of intervention thresholds based on 
the potential impact of anatomical discrepancies on 
the dose distribution [12]. 

 Current strategies for image guidance in particle 
therapy have been derived from photon techniques and 
usually rely on anatomical landmarks or fi ducial mark-
ers to achieve geometrical tumor repositioning. The 
purpose of this study was therefore, to develop meth-
ods to quantify changes in tissue density and thickness 
in the beam entrance channels between planning and 
irradiation time. We analyzed such changes and checked 
their correlation with loss of target coverage in proton 
and carbon ion treatment plans. We aimed to investi-
gate, how beam angles and different raster scan and 
planning settings infl uence plan robustness. A systematic 
study of the variations in water equivalent path length 
(WEPL) along different coplanar beam angles aimed to 
fi nd beam directions which minimize such variations.  

 Material and methods  

 Patient data 

 We used datasets of a previously published cohort 
including 12 lung lesions [11,12]. Patients received 
one planning and one localization three-dimensional 
(3D) computed tomography (CT) scans, both per-
formed under HFJV. Target volumes and organs at 
risk were delineated with the Pinnacle 3  treatment 
planning system (TPS, version 8.0; Philips Radiation 
Oncology Systems, Best, The Netherlands) on both 
CT datasets for each patient. The planning target vol-
ume (PTV) was defi ned as the 5-mm isotropic expan-
sion of the gross tumor volume (GTV). Automatic 

rigid coregistration of both CT datasets with three 
degrees of freedom was also performed with the 
Pinnacle 3  system with a cross-correlation method.   

 Treatment planning 

 Scanned-beam proton and carbon ion treatment 
plans, optimized on the planning CT datasets, were 
prepared for each patient with the TRiP98 TPS (GSI 
Helmholzzentrum f ü r Schwerionenforschung, Darm-
stadt, Germany) [13 – 15]. Total prescribed dose was 
33 Gy (absorbed dose). No optimization constraints 
were considered necessary due to the peripheral 
localization of all lesions. The angle convention in 
TRiP98 was used, in which the horizontal direction 
is represented by 0 ° , and the ventral and dorsal direc-
tions by -90 °  and 90 ° , respectively. 

 Proton plans had been previously calculated with 
two ipsilateral fi elds at 0 °  and  �  45 °  (fi eld confi gura-
tion 2FA) [12]. Additional two-fi eld proton plans 
with different raster scan settings and with beam 
setups 0 °  plus  �  90 °  (2FB), and 0 °  plus   45 °  (2FC) 
were calculated for this study. We applied the follow-
ing standard settings for the proton plans with beam 
setups 2FB and 2FC: 3 mm grid spacing, 2 mm 
energy step, and 1.5 planning contour extension, 
relative to the beam spot full width at half maximum 
(FWHM). Carbon ion plans were prepared with 
each of the three two-fi eld coplanar setups and, for 
the setup 2FA, with different raster scan settings. 

 Spot grid spacing was set to 3 mm for the proton 
plans and 2 mm for the carbon ion plans. Energy 
steps of 2 and 3 mm were tested. For carbon ions, a 
3 mm ripple fi lter was used to spread the pristine 
Bragg peak to an in-depth width of 3 mm [16]. A 
freedom was given to the TPS for placing spots later-
ally outside the PTV, the so-called virtual contour 
extension, in order to account for the dose fall-off at 
the lateral edges of the target. This parameter is 
implemented in TRiP98 in order to avoid dose hot 
spots on the PTV edges. Contour extension values 
were fi xed to 0.9, 1.2, 1.5, or 1.8, relative to FWHM. 
A summary of the raster scan and planning settings 
used for the proton and carbon ion plans are 
presented in Tables I and II, respectively. 

 Single-fi eld uniform dose (SFUD) optimization 
was used with a plain gradient optimization algo-
rithm. For the proton planning we used realistic 
baseline data for a synchrotron-based facility with a 
reduced nozzle-to-isocenter distance to counteract 
spot size enlargement caused by the proton beam 
divergence [17]. Actual plan delivery was simulated 
through plan recalculations on the coregistered 
localization CT scans. The behavior of the coverage 
preservation was analyzed for all created plans based 
on recomputations on the localization CT.   
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analysis and graphing were done with the software 
package R, version 2.15.0 [20] and Python 2.7.3 [21].   

 Plan evaluation 

 Optimized plans were considered clinically accept-
able if the percentage of the PTV receiving at least 
95% of the prescribed dose (V 95 ) was 98% or more. 
The original and recomputed treatment plans were 
compared using dose distributions and dose-volume 
histograms (DVH). Coverage was evaluated with the 
V 95  for the PTV in the optimized plans, as well as 
with the V 95  and V 98  for the GTV in both plans and 
recomputations. The conformity index (CI) 
at the 95% isodose level as defi ned by Paddick 
et   al. [22] was calculated for the PTV. The homo-
geneity index (HI) calculated as (D2% – D98%) 
was assessed for both the PTV and the GTV in the 
optimized plans as well as for the GTV in the 
recomputations.    

 Image analysis (WEPL) 

 Hounsfi eld units (HU) of the planning and localiza-
tion CT scans were converted to relative stopping 
power in water according to the default look-up table 
in TRiP98. The voxel-based differences in the WEPL 
along each beam path were calculated on the co-
registered datasets. Statistical measures inside the 
PTV contour of the planning CT were calculated, 
namely, the average value of the WEPL and the mean 
absolute value of the local differences in the WEPL, 
referred to as  Δ WEPL. More details of the WEPL 
calculation can be found in the Supplementary 
Materials (available online at http://informahealth
care.com/doi/abs/10.3109/0284186X.2015.1067716). 
The program dcm2trip was used to convert all patient 
DICOM datasets to the TRiP98 format [18]. DVH 
and selected dosimetric indexes were extracted with 
the tool trip2png [19]. Image analysis (coregistration 
and range calculations), data manipulation, statistical 

  Table I. Summary of planning settings, median (range) dosimetric indexes for the proton plans, and median (range) values of the calculated 
 ∆ WEPL plan in mm.  

Plan no. Plan settings V 95  PTV (%)
PTV V 95 
      �    98%

 ∆ V 95  GTV
  (%)

 ∆ V 98  GTV
  (%)

 ∆ WEPLplan
  (mm)

Hv5 2FA, 8, 3 – 3, 2, 0.9 91.9 (89.2 – 93.5) 0/12 3.8 ( � 0.7 – 20.7) 7.6 ( � 1.4 – 29) 2FA: 2.6 (1.1 – 4.6)
Hv4 2FA, 8, 3 – 3, 2, 1.2 97.9 (96.4 – 99.1) 6/12 1.6 ( � 0.7 – 12.9) 5.4 ( � 0.6 – 21) 2FA
Hv7 2FA, 8, 3 – 3, 2, 1.8 99.9 (99.1 – 100) 12/12 0.1 (0 – 6.6) 1.4 ( � 0.3 – 10.3) 2FA
Hv6 2FA, 8, 3 – 3, 3, 1.5 97.1 (85.4 – 99.6) 6/12 0.9 ( � 0.3 – 9.7) 3.8 ( � 1.3 – 23.2) 2FA
Hv2 2FB, 8, 3 – 3, 2, 1.5 99.3 (98.2 – 99.9) 12/12 0 ( � 0.3 – 3.5) 1 ( � 0.8 – 13.2) 2FB: 2.2 (1.4 – 4.7)
Hv3 2FC, 8, 3 – 3, 2, 1.5 99.5 (98.6 – 99.9) 12/12 0 ( � 0.6 – 0.3) 1.1 ( � 0.7 – 2.8) 2FC: 2.1 (1.4 – 3.1)

   Plan settings include in this order: number of fi elds and angles: 2FA, 0 °  and  � 45 ° ; 2FB, 0 °  and  � 90 ° ; 2FC, 0 °  and 45 ° ; beam spot size 
at FWHM at the isocenter (mm); spot spacing in x-y directions (mm); energy spacing (mm), planning contour extension in relative units 
to the beam spot FWHM.   

  Table II. Summary of planning settings and median (range) dosimetric indexes for the carbon ion plans.  

Plan no. Plan settings V 95  PTV (%)
PTV V 95 
      �    98%

 ∆ V 95  GTV
  (%)

 ∆ V 98   GTV
  (%)

C12v16 2FA, 5, 2 – 2, 2, 1.2 99.9 (98.9 – 100) 0/12 0.3 (0.0 – 7.4) 1.5 (0 – 12)
C12v7 2FA, 5, 2 – 2, 3, 0.9 98.4 (95.9 – 99.4) 9/12 2.9 (0 – 14.6) 9.0 (0 – 27.2)
C12v8 2FA, 5, 2 – 2, 3, 1.2 99.6 (97.8 – 99.9) 11/12 0.6 (0 – 8.4) 2.8 (0 – 16)
C12v9 2FA, 5, 2 – 2, 3, 1.5 99.8 (98.2 – 99.9) 12/12 0.4 (0 – 6.5) 1.0 (0 – 14.1)
C12v4 2FA, 6, 2 – 2, 2, 0.9 99.3 (97.6 – 99.8) 10/12 1.8 (0 – 10.6) 6.4 (0 – 21.4)
C12v5 2FA, 6, 2 – 2, 2, 1.2 99.8 (98.9 – 100) 12/12 0.3 (0 – 5.9) 1.0 (0 – 9.9)
C12v6 2FA, 6, 2 – 2, 2, 1.5 99.9 (99.2 – 100) 12/12 0.1 (0 – 6.3) 0.4 (0 – 5.9)
C12v0 2FA, 6, 2 – 2, 3, 0.6 89.9 (84.8 – 95.6) 0/12 9.0 (0 – 30.3) 12.6 (0.1 – 39.7)
C12v1 2FA, 6, 2 – 2, 3, 0.9 98.2 (95.5 – 99.4) 7/12 2.8 (0 – 11.8) 7.6 ( � 0.2 – 22.3)
C12v2 2FA, 6, 2 – 2, 3, 1.2 99.7 (98.1 – 99.9) 12/12 0.5 (0 – 7.2) 2.0 (0 – 15.7)
C12v3 2FA, 6, 2 – 2, 3, 1.5 99.9 (98.4 – 100) 12/12 0.2 (0 – 5.7) 0.7 (0 – 11.6)
C12v13 2FA, 8, 2 – 2, 2, 0.9 99.7 (98.6 – 99.9) 12/12 1.3 (0 – 9.6) 5.9 (0 – 19.5)
C12v14 2FA, 8, 2 – 2, 2, 1.2 99.9 (99.1 – 100) 12/12 0.2 (0 – 6.6) 0.5 (0 – 7)
C12v15 2FA, 8, 2 – 2, 2, 1.5 99.9 (99.3 – 100) 12/12 0 (0 – 6) 0.4 (0 – 5.6)
C12v10 2FA, 8, 2 – 2, 3, 0.9 99.1 (97.5 – 99.7) 11/12 1.6 (0 – 10.6) 7.2 (0 – 23.4)
C12v11 2FA, 8, 2 – 2, 3, 1.2 99.8 (98.4 – 99.9) 12/12 0.3 (0 – 5.8) 1.4 (0 – 14.4)
C12v17 2FB, 8, 2 – 2, 2, 1.2 99.9 (99.1 – 100) 12/12 0.0 (0.0 – 1.9) 0.0 (0.0 – 5.9)
C12v18 2FC, 8, 2 – 2, 2, 1.2 99.9 (99.2 – 100) 12/12 0.0 (0.0 – 0.6) 0.2 (0.0 – 2.19)

   Plan settings include in this order: number of fi elds and angles: 2FA, 0 °  and  � 45 ° ; 2FB, 0 °  and  � 90 ° ; 
2FC, 0 °  and 45 ° ; beam spot size at FWHM (mm); spot spacing (mm); energy spacing (mm), planning 
contour extension in relative units to the beam spot FWHM.   
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 Results  

 Dosimetric quality of the optimized plans 

 Proton plan versions with energy step of 2 mm and 
planning contour extension of at least 1.5, i.e. Hv2, 
Hv3, and Hv7, fulfi lled the PTV coverage objective 
(i.e. PTV V 95  of at least 98%) in all cases (Table I). 
However, Hv7 was considered to have an excess con-
tour extension of 1.8 and these plans were excluded 
from the analysis. For the plan versions with contour 
extensions of 0.9 and 1.2 (Hv5 and Hv4), or 1.5 
with an energy step of 3 mm (Hv6), the PTV V 95  
remained below the acceptance objective for 12/12, 
6/12 and 6/12 cases, respectively, and therefore these 
versions were also discarded. The analysis was 
restricted to proton plans with 8 mm spot nominal 
FWHM, 3 mm grid size and energy step of 2 mm, 
differing only in the beam confi guration: Hv2, and 
Hv3. Changes in the fi eld confi guration alone resulted 
in small changes in conformity (Supplementary 
Table I, available online at http://informahealthcare.
com/doi/abs/10.3109/0284186X.2015.1067716). 

 From 18 carbon ion plan versions with different 
raster scan and planning settings, 11 fulfi lled the 
clinical acceptance criteria and were included in the 
analysis. Excess contour extensions of 1.5 were 
discarded. PTV V 95  values for the 11 of 18 clinically 
accepted plan versions are displayed in Figure 1. 
Versions C12v4 and C12v10, with the smallest tested 
contour extension of 0.9 (FWHM) provided a PTV 
V 95   �    98% and  � 97.5% in 2/12 and 1/12 patients, 

respectively, which was considered clinically accept-
able. Tables I and II present a summary of the 
dosimetric coverage indexes for proton and carbon 
ion plans, respectively. All values of the homogeneity 
and conformity indexes for the proton as well as the 
carbon ion plans are listed in the Supplementary 
Tables I and II (available online at http://informa
healthcare.com/doi/abs/10.3109/0284186X.2015.
1067716).   

 Infl uence of different raster scan settings for carbon 
ion plans 

 Qualitative comparison of all clinically approved car-
bon ion plan versions indicated that a larger contour 
extension led to better coverage preservation in pres-
ence of anatomical differences (Figure 1). Attending 
at the raster scan settings, an enhanced beam spot 
overlap contributed as well to this effect: use of larger 
spot sizes (8 and 6 mm), as well as the lower values 
of grid size (2 mm) and energy step (2 mm) led to 
improved GTV  Δ V 95 . 

 A multivariate analysis of the infl uences of the 
different parameters on the dosimetric coverage loss 
for the subset of approved carbon ion plans showed 
that the best linear model explaining the fl uctuations 
in the CTV  Δ V 95  was given by  Δ WEPL, the PTV 
volume and the contour extension (R 2  of 0.58, 
p    �    0.05).  Δ WEPL was the strongest predictor in this 
model (this parameter yielded R 2  of 0.40, p    �    0.05, 
in a univariate analysis). More details on the models 
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  Figure 1.     PTV V 95  and CI 95  for all prepared carbon ion plans (upper row), and GTV  Δ V 95  for each patient and each plan version with 
different planning and raster scan settings, as well as boxplots (median, 1st and 3rd quartiles, and range) for each plan version (lower row).  
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can be found in the Supplementary Table IV (avail-
able online at http://informahealthcare.com/doi/abs/
10.3109/0284186X.2015.1067716). 

 There are large differences in the behavior of 
GTV  Δ V 95  depending on the specifi c patient. An 
analysis done for the subset of plans with identical 
beam directions (2FA) showed a signifi cant correla-
tion of the maximum GTV  Δ V 95  value across 
approved plan versions with the  Δ WEPL, with Spear-
man ’ s r of 0.66, p    �    0.02, (see Figure 1, bottom left).   

 Variations in the  Δ WEPL with beam angle 

 Due to the short extent of the localization CT in 
craniocaudal direction, this study was restricted to 
coplanar beam directions without couch rotation. 
The mean  Δ WEPL values of the PTV in this patient 
cohort ranged from 25 to 88 mm in the lateral direc-
tion, and from 22 to 100 mm at  � 45 ° . Concerning 
the variability among patients, the lowest  Δ WEPL 
averaged among all angles corresponds to Patient 1 
with 1.5    �    0.6 mm (mean with standard deviation), 
in opposition to Patient 10a, who shows a maximum 
averaged  Δ WEPL of 3.6    �    3.9 mm. For six patients 
the  Δ WEPL reached values larger than 5 mm in spe-
cifi c beam directions. These high values concentrated 
for three patients at angles around the ventrolateral 
direction ( � 45 ° ). Two of these specifi c patients pre-
sented considerable anatomical changes between the 
planning and localization CT in the beam entrance 
path. Therefore, the  Δ WEPL reached extreme values 
of up to 10 and 19 mm. These changes were visually 
detectable in the CT co-registration. In the context 
of a particle therapy treatment, the necessity of set 
up corrections would have been evident without 
need of further image analysis. Nevertheless, we did 
not exclude these cases from the study as they helped 
us to test the WEPL calculation method. Examples 
of  Δ WEPL values along selected beam directions 
are shown for two cases in Figure 2. The results of 

systematic calculations of  Δ WEPL for each patient 
for beam directions entering the patient ipsilaterally 
between dorsal and ventral in 3 ° -steps are displayed 
in Figure 3.   

 Infl uence of the different beam angles in dose deterioration 

 Total  Δ WEPL values for each plan were calculated 
as the averaged  Δ WEPL for each beam direction. 
The Spearman ’ s correlations for the  Δ V 95  and  Δ V 98  
with the  Δ WEPL for the proton plans with 2FA 
beam confi guration were 0.701 (p    �    0.02), and 0.719, 
(p    �    0.08), respectively. Two patients presented 
extremely high GTV  Δ V 95  values motivated by WEPL 
discrepancies in the PTV of up to 4.6 mm. In these 
two cases, the beam setup 2FB reduced the GTV 
 Δ V 95 % values to 1.3 and 0.0 pp, respectively. Better 
anatomical correspondence between planning and 
localization CT scans for the 2FB setup was also 
refl ected in lower averaged  Δ WEPL differences of 
3.3 and 1.5 mm, respectively. The GTV  Δ V 95  and 
 Δ V 98  in median (range) was 0.0 ( � 0.3 – 3.5), and 1.0 
( � 0.8 – 13.2), respectively. The correlation between 

  Figure 2.      Δ WEPL values in the isocenter PTV slice of two selected patient cases for four different fi eld directions.  

  Figure 3.      Δ WEPL values for each case of the cohort as a function 
of changing ipsilateral fi eld directions between dorsal (90 ° ) and 
ventral ( �  90 ° ).  



1636 A. Santiago et al.

 Δ V 95  and  Δ WEPL was not signifi cant. New two-fi eld 
plans were created with beam setup 2FC, i.e. with 0 °  
and 45 °  beam directions. This beam setup showed 
generally low  Δ WEPL values for all patients. This set 
of plans yielded median (range)  Δ V 95  and  Δ V 98  of 0 
( � 0.6 – 0.3) and 1.1 ( � 0.7 – 2.8) pp, respectively. 
Again, no signifi cant correlation was found between 
 Δ V 95  nor  Δ V 98  and  Δ WEPL (see Figure 4). The same 
trends were seen for the carbon ion plans, i.e. sig-
nifi cant Spearman ’ s correlations between  Δ V 95  and 
 Δ V 98  and average plan  Δ WEPL for the 2FA beam 
setup of 0.85 and 0.81, respectively, and no signifi -
cant correlation for the 2FB and 2FC beam confi gu-
rations.    

 Discussion 

 We implemented a method to quantify differences in 
the water equivalent path length (WEPL). A similar 
method based on calculation of WEPL changes 
have been used before by Mori et   al. to quantify both 
intra- and interfractional range variations in the chest 
wall thickness [8]. Casares et   al. carried out an inves-
tigation to identify robust angles which minimize 
scanned-proton therapy dosimetric changes in the 
ITV within the breathing cycle, based on 4DCT 
images and under the hypothesis that no motion 
management strategy is applied [9]. We tested our 
WEPL calculation method on a cohort of patients 
with lung lesions which were strictly immobilized 
using HFJV, and therefore effects of intrafractional 
motion (especially respiration) could be ignored. 
Treatment delivered in only one fraction also ruled 

out anatomical changes which typically occur during 
the course of fractionated irradiation treatments, 
such as weight loss. This enabled quantifying 
anatomical reproducibility in a static situation. 

 Even under such conditions, this study proved that 
large anatomical differences can occur. Large varia-
tions in the radiological depth signifi cantly correlated 
with decrease in the coverage indexes. The selected 
patient cohort was treated with photon radiosurgery. 
Anatomical variations with little impact on photon 
dose distributions can cause large mis-dosages in a 
particle therapy scenario. In at least two patients, 
actions would have been required to correct for 
anatomical deviations in case of particle irradiation. 

 In the case of patient 2, good coverage was 
observed in the recomputations for all fi eld confi gu-
rations, although the corresponding  Δ WEPL values 
were as large as 4.7 mm for a beam from the ventral 
direction. A visual comparison of the two CT images 
suggested that for this patient, the WEPL differences 
might arise from small-scale tissue differences within 
the PTV. These tissue differences could have com-
pensated each other, resulting in good PTV coverage. 
Possibly, more sophisticated image analysis tools are 
required to quantify these effects. 

 In general in the ventrolateral direction larger 
anatomical differences can occur due to the arm 
mobility, and for this reason special care has to be 
taken when choosing this direction for irradiations of 
the chest. This needs to be taken into account in 
facilities with fi xed oblique beamlines and conse-
quently, reduced beam angle options. Planning set-
tings such as contour extension and raster scan 
settings, such as beam spot and grid size and energy 
step, can affect dosimetric robustness, and increased 
beam spot overlap was found to help preserve target 
coverage. These results are consistent with previous 
results from Richter et   al. which showed better plan 
robustness to residual motion if larger spot sizes are 
used, for the case of liver irradiation [23]. 

 The multivariate analysis showed that  Δ WEPL 
alone can only explain a small fraction of the cover-
age loss. The PTV size plays a role since dosimetric 
deviations in a static tumor situation as is the case of 
our study, take place preferentially at the target 
borders. The contour extension is a planning param-
eter, which is seldom mentioned or specifi ed in the 
published planning studies for particles, and in the 
present study it was found to have a signifi cant role 
in plan conformity and homogeneity, as well as in 
dosimetric reproducibility. 

 The goal of a tool for automatic analysis, how-
ever, is not to detect clinically evident misalignments 
or anatomical changes, but subtler changes undetect-
able with visual inspection. This study showed that 
analysis of WEPL changes alone is possibly not 
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enough to detect such changes, as other factors 
infl uence the dose distribution and therefore, more 
complex models would be required to support clinical 
decision making, which could include WEPL and 
planning information, and possibly other factors 
including geometrical tumor position. A pragmatic 
approach would be to correct fi rst for the geometric 
tumor position and in a second step check if the 
anatomical changes in the beam paths are below a 
certain threshold, which would depend, for example 
on the planning technique, or the PTV margins in 
case of treatment under HFJV.                
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Challenges in radiobiological modeling: can
we decide between LQ and LQ-L models
based on reviewed clinical NSCLC
treatment outcome data?
Alina Santiago1*, Steffen Barczyk1,2, Urszula Jelen1,3, Rita Engenhart-Cabillic1 and Andrea Wittig1

Abstract

Aim: To study the dose-response of stage I non-small-cell lung cancer (NSCLC) in terms of long-term local tumor
control (LC) after conventional and hypofractionated photon radiotherapy, modeled with the linear-quadratic (LQ)
and linear-quadratic-linear (LQ-L) approaches and to estimate the clinical α/β ratio within the LQ frame.

Material and methods: We identified studies of curative radiotherapy as single treatment through MedLine search
reporting 3-year LC as primary outcome of interest. Logistic models coupled with the biologically effective dose
(BED) at isocenter and PTV edge according to both the LQ and LQ-L models with α/β = 10 Gy were fitted.
Additionally, α/β was estimated from direct LQ fits.

Results: Thirty one studies were included reporting outcome of 2319 patients. The LQ-L fit yielded a significant
value of 11.0 ± 5.2 Gy for the dose threshold (Dt) for BED10 at the isocenter. The LQ and LQ-L fits did not differ
substantially. Concerning the estimation of α/β, the value obtained from the direct LQ fit for the complete
fractionation range was 3.9 [68 % CI: 2.2–9.0] Gy (p > 0.05).

Conclusion: Both LQ and LQ-L fits can model local tumor control after conventionally and hypofractionated
irradiation and are robust methods for predicting clinical effects. The observed dose-effect for local control in
NSCLC is weaker at high doses due to data dispersion. For BED10 values of 100–150 Gy in ≥3 fractions, the
differences in isoeffects predicted by both models can be neglected.

Keywords: Non-small cell lung cancer, Dose-response modeling, Biologically effective dose, Linear-quadratic model,
Alpha-beta ratio

Introduction
The linear-quadratic (LQ) model was developed to
describe experimental survival curves of both normal
and tumor cells after irradiation. The LQ model fits
the cell surviving fraction through a second-order
polynomial on the dose per fraction, with coefficients
α and β. The ratio between both coefficients describes
the repair capacity of the cells and thus sensitivity to
fractionation [1, 2].

The LQ model provides an accurate description of
fractionation effects at doses between 1 and 8–10 Gy
per fraction [3]. Essentially, this formalism enables iso-
effect calculations in current clinical practice, defining
the relationships between the biological irradiation effect
and key parameters such as dose per fraction, total num-
ber of fractions and treatment time. Advancements in
this model led to the two most extended, complemen-
tary approaches for isoeffect calculation: the biologically
effective dose (BED) and the equivalent dose in 2 Gy per
fraction (EQD2) [4].
Current treatment of choice for stage I non-small cell

lung cancer (NSCLC) is surgical tumor extraction. Since
it became technically feasible, radiotherapy has been
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used as an alternative treatment method in inoperable
cases. Early approaches used 3D-conformal convention-
ally fractionated techniques, whereas today, stereotactic
body radiotherapy (SBRT) allows for highly precise
delivery of radiation, thus enabling hypofractionation to
deliver ablative radiation doses in 1–5 fractions [5].
Therefore, SBRT evolved to be the current treatment of
choice for early-stage NSCLC in medically inoperable
patients and in patients who do not consent to surgery.
The high precision of dose delivery facilitates normal tis-
sue sparing, even allowing for dose escalation to poten-
tially improve local control. Despite a growing pool of
clinical outcome data, the optimal total dose and frac-
tionation scheme to reach the intended biological effects
in terms of both local tumor control and side effects are
still under debate [6].
Hypofractionation requires reliable isoeffect calcula-

tions. Thus, the relevance of the question has been
renewed, whether the description of radiobiological ef-
fects based on the LQ formalism is appropriate for
hypofractionated treatments [7–9].
If no α/β ratio estimation is available for a specific

tumor entity, a generic value of 10 Gy is used for BED
calculations, although the precision achievable with such
a standard α/β ratio is assumed to be lower. Numerous
attempts to calculate clinical α/β values have been made,
using available clinical outcome data [10]. Such estima-
tions are specially needed if the α/β of a specific tumor
entity is suspected to be lower than 10 Gy. In this case a
modified fractionation scheme, which reduces tumor cell
recovery between fractions, could increase the thera-
peutic ratio as is the case e.g. in prostate carcinoma or
breast cancer.
Many recent studies aim at outcome review and

modeling of the dose response relationship of NSCLC
[11–15]. However, studies attempting to estimate the α/
β ratio for NSCLC are scarce [11, 15, 16]. It is subject of
current debate if the improved outcomes of hypofractio-
nated SBRT are a consequence of an α/β ratio lower
than 10 Gy, or even lower than the α/β value of the
surrounding normal tissue, which could add a radiobio-
logical rationale to the use of hypofractionation. Alterna-
tively, the improvement could be caused by a reduced
repopulation in a shorter overall treatment time.
In addition, in particle radiotherapy, a currently emer-

ging field in radiation oncology, radiobiological consider-
ations are of importance. For proton radiotherapy
hypofractionated concepts are aimed for partially as
motion management strategy [17–20], so that isoeffect
calculations are essential. Apart from isoeffect calcula-
tions current treatment planning strategies for light ion
therapy also require the attribution of radiobiological
properties to both tumor and normal tissues. Specific-
ally, in scanned-beam carbon ion therapy, radiosensitivity

is characterized through α/β values obtained from photon
irradiation experiments in vitro [21] in one of the math-
ematical models describing the enhanced biological effect
in the Bragg peak, the so called local effect model (LEM),
which is implemented in commercial treatment planning
systems.
In such situation, clinical long time follow up data is

the most valid source of data for modeling approaches,
which is however inherently limited by inhomogeneity
of treatment parameters and treatment techniques
evolving over time. We focused our analysis on the com-
parison of the LQ-L versus the LQ model, since most of
the mathematical model corrections to the LQ model
proposed need additional input parameters [16, 22–24],
which are not available for the specific clinical situation.
Therefore, this work aims at:

1) investigating the dose-response of NSCLC tumor
control data from conventionally fractionated (CF)
and stereotactic, hypofractionated radiotherapy
treatments (HF), based on a review of published
long-term outcome results,

2) evaluating the validity of the LQ and LQ-L models
for both conventional and SBRT treatments,

3) and obtaining an estimation of the clinical α/β ratio
of NSCLC.

Materials and methods
Study design
We identified inclusion criteria, search strategy, outcome
measures of interest and indispensable treatment param-
eters for the study. The analysis keeps standards of the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statements [25].

Selection criteria
PubMed was searched (July 2015) without restrictions
on the publication date. Abstracts of conference pro-
ceedings were excluded and language was restricted to
English. Repeated publications based on the same cohort
were excluded as were outcome reviews in order to
avoid duplicity of cohorts. The selection of studies based
on the following criteria was made by two independent
researchers.
Study cohorts were eligible only if the following cri-

teria were fulfilled:

1) Patients with stage I NSCLC (cT1/2, cN0, cM0)
with either central or peripheral tumor location.

2) Treatment with photon radiotherapy with curative
intent either 2D or 3D-conformal radiotherapy or
SBRT as single modality treatment. Treatment could
be delivered with CyberKnife, GammaKnife or linac-
based without restrictions on fractionation schemes
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(e.g. normofractionated, accelerated, hyper- or hypo-
fractionated schedules, single fraction irradiation),
provided complete information on number of frac-
tions, dose per fraction, total absorbed dose and
overall treatment time was available.

3) Reported outcome of interest (actuarial 3-year local
control estimations according to Kaplan-Meier or
other methods, in which death was a censored
event) with a median follow-up time in each cohort
≥17 months.

4) From an original study (i.a. prospective randomized
controlled trial or prospective or retrospective
observational study or case series).

5) The reported cohorts must include at least 25
patients.

6) Patients could be judged to be either operable or
inoperable if the clinical decision was made in favor
of radiotherapy.

7) A small amount of heterogeneity in reported dose
and patient parameters for a given outcome data
point was accepted (e.g. a marginal group of patients
treated with a deviating radiation scheme, or a small
proportion of tumors included in the report of a
stage I population with clinical staging other than I).

Data extraction
The main endpoint of this review was local tumor
control (LC) at 3 years. If this value was not explicitly
provided in the text, it was extracted from the Kaplan-
Meier diagrams.
The fractionation concept (dose per fraction, number

of fractions and total treatment time), and the planning
technique were extracted together with further treat-
ment- and patient-related parameters. The range of
variation in reported cohort parameters for each local
tumor control data point was qualitatively assessed and
highly heterogeneous cohorts were excluded. Reported
mean or preferably median dose values were used to de-
scribe the outcome of each specific patient cohort. All
prescription doses were translated to doses at the iso-
center and at PTV edge, calculated according to the
information provided in each publication (more details
in the Additional file 1). Mathematical modeling was
performed with both, doses at the isocenter and at the
PTV edge. The treatments were classified to be hypo-
fractionated (HF) if 1–10 fractions were delivered
with doses per fraction at the isocenter above 6 Gy.
Treatments were classified as conventionally fraction-
ated (CF) with a broader definition than in the
clinical convention, based on the validity limits of the
LQ model according to our current knowledge,
namely treatment delivered in more than 10 fractions
with fraction doses at isocenter ranging between 1.2
and 6 Gy.

Data analysis and mathematical models
Model parameters were fitted with nonlinear least
square optimization methods and confidence intervals
were calculated with likelihood profiling. A logistic rela-
tionship between tumor control probability (TCP) and
the biological effective dose (BED) was assumed, accord-
ing to the parameterization described in Okunieff et al.
[26] and Bentzen et al. [27]. BED was based on the LQ
model, calculated from the number of fractions and the
dose at the isocenter, taking into account neither re-
population nor hypoxia, according to Eq. 1:

TCP ¼ exp BEDLQ−TCD50
� �

=k
� �

1þ exp BEDLQ−TCD50
� �

=k
� � ;withBEDLQ

¼ nd 1þ d
α=β

� �

ð1Þ

where TCD50 is the dose necessary to obtain a local
tumor control of 50 % and k is a parameter with dose
units that is used to calculate the normalized slope, γ50.
This parameter quantifies the change in the expected
TCP when a 1 % change in dose occurs, evaluated at the
dose level of the TCD50, and represents the maximal
slope of the dose-response relationship. It can be calcu-
lated from k and TCD50 with the expression [27, 28]:

γ50¼
4k

TCD50
ð2Þ

The same logistic model was implemented with an
alternative BED definition, including a transition from
linear-quadratic dependence for the cell survival to
purely linear beyond a certain dose level, the dose
threshold Dt, as described in [22]:

BEDLQ−L ¼
nd 1þ d

α=β

� �
f or d < Dt ;

nDt 1þ Dt

α=β

� �
þ n

αþ 2βDt

α

� �
d−Dtð Þ f or d≥Dt ;

8>><
>>:

9>>=
>>;

ð3Þ

where n is the number of irradiation fractions, d is the
fraction dose, and Dt is the threshold for the fraction
dose.
The LQ and LQ-L models were fitted to the joint

dataset, and to the CF and HF subsets separately, for
BED doses calculated both at the isocenter and the
PTV edge. First, the linear-quadratic (LQ) model was
applied with α/β fixed to 10 Gy, as it is universally
accepted for conventional fractionation. The alterna-
tive BED definition derived from the LQ-L model was
also applied with α/β equal to 10 Gy, to test if the
inclusion of a dose threshold Dt would improve the
previous fit. Additionally, a study to tentatively
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estimate the α/β ratio from these clinical data was
carried out.
In summary, the following fits were calculated:

1) LQ model with α/β ratio fixed to 10 Gy on the full
dataset, and on the HF and CF datasets separately.

2) LQ-L model with α/β ratio fixed to 10 Gy on the
full and on the HF datasets.

3) LQ model with free γ50, TCD50 and α/β ratio on the
full and the CF datasets.

Finally, in order to compare with the results of the re-
cent analysis of Chi et al. [15] the Spearman’s correlation
between 3-year LC and BED calculated with different
fixed α/β ratios was also investigated on the full and on
the HF datasets.
The quality of the fits was assessed with checks of

the residuals for normality. Models were ranked
according to the Akaike Information Criterion (AIC),
and for the LQ and LQ-L, being nested models, max-
imum likelihood ratio tests were made. All fitted and
calculated values are reported together with their 68
% confidence intervals (CI), whenever possible. Statis-
tical significance was assumed for p values < 0.05.
Data handling, statistical analysis, model fitting and
graphing were done with the software package R,
version 2.15.0 [29].

Results
Selected patient cohorts and description of the studies
In total, 31 studies were identified, which fulfilled the
selection criteria, Of those, 8 studies report outcomes after
conventionally fractionated treatments of a total of 344
patients [30–37] and 23 studies including 1975 patients

reporting on hypofractionated irradiations [38–60]. A total
of 34 local control - schedule data points, with doses per
fraction ranging from 30 to 1.2 Gy, applied in 1–58 frac-
tions, were collected (see Tables 1 and 2, and Additional
file 1 for details of the publication search).
Of all reported tumors, 63.6 % were confirmed to be

stage T1, 36.4 % T2 (Table 3). A total of 68.1 % of
tumors were histologically confirmed: 45.8 % adenocar-
cinomas, 34.1 % squamous cell carcinomas, 6.2 % other
histologies and 13.9 % carcinoma not otherwise specified
(NOS). Of the patients treated with conventional frac-
tionation 86.3% were confirmed medically inoperable,
versus 55.2 % of all patients treated with hypofractio-
nated schedules. Median of the reported median ages
[age range] was comparable between both groups,
namely 72 [range: 35–90] and 75 [range: 29–94] years in
the CF and HF groups respectively. Patients, who re-
ceived conventionally fractionated RT were treated in
the time period from 1976 to 2010, whereas patients
treated with hypofractionated regimes were irradiated in
the time period from 1996 to 2012. In the CF cohort
only in one study PET-CT was performed for staging in
6 out of 31 patients (Bogart et al. [36]), whereas for
many of the HF cohorts PET was a routine procedure;
for many of the most recent studies PET-staging was
even an inclusion criterion in the retrospective series.
In the 8 series of the CF group, generally a margin of

1–1.5 cm was added around the gross tumor volume
(GTV), which was in some cases estimated from port
films if no planning computer tomography (CT) scan
was available. In the HF series, most frequently no
GTV-to-CTV (clinical target volume) margins were
added, except in 5 out of 23 series. Internal target vol-
ume (ITV) concepts were applied in 13/23 studies, based

Table 1 Characteristics of included studies with conventionally fractionated treatment regimes. Studies published between 1993
and 2015

No. Reference No.
pats.

No. of pats.
with stage
T1 - T2

Fractionation regime BED10@
isoc
[Gy]

BED10@
PTV edge
[Gy]

Dose
calculation
algorithm

3y-
LC [%]

Follow-up
Median (range) [m]

D [Gy] d [Gy] T [d]

1 Kaskowitz 1993 [30] 53 20–33 63 (40–80) conventional ns 74.3 69.6 ns 51 ns

2 Jeremic 1997 [31] 49 25–24 69.6 1.2 (2× day) 40 78.0 70.8 ns 55 ns

3 Hayakawa 1999 [32] 36 7–29 60–81 2 48 80.4 75.7 no dens corr 72 (36–216)

4 Cheung 2002 [33] 33 18–15 48 4 21 67.2 62.9 dens corr 63 23

5 Langendijk 2002 [34] 46 26–20 70 2 49 84.0 79.1 dens corr 50 36

6 Bradley 2003 [35] 56 31–25 60–84 1.8–2 42–56 83.7 78.6 no dens corr 63 20 (6–72)

7 Bogart 2005 31 19–12 70 2.3–3.7 39 87.5 83.3 ns 83 29

8 Zehentmayr 2015 [36] 40 19 (Ia)–21 (Ib) 79.2
(73.8–90)

1.8 (2× day) 30–42 93.5 87.5 ns 91 28.5 (2–108)

Median 43 69.8 2.0 44 82.0 77.2 63 28.5 (2–216)

BED10 biologically effective dose with α/β = 10 Gy, PTV planning target volume, D total dose, d dose per fraction, T total treatment time, LC local control, ns
not specified
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Table 2 Characteristics of included studies with hypofractionated treatment regimes. Studies published between 2003 and 2015

No. Reference No.
pats.

No. of pats.
with stage
T1 - T2

Fractionation
regime

BED10

@isoc [Gy]
BED10

@PTV edge [Gy]
Dose calculation
algorithm

3y-LC
[%]

Follow-up
median (range) [m]

D
[Gy]

d [Gy] T [d]

9 Onimaru
2003 [38]

25 17–8 48/60 6/7.5 14 76.8 56.8 dens inhom corr 55 18 (2–44)

10 Xia 2006 [39] 25 ns 50 5 14 200 75 GammaKnife, ns 96 27 (24–54)

11 Fritz 2008 [40] 40 22–18 30 30 1 120 81.6 modified Batho 81 20 (6–62)

12 Onimaru
2008 [41]

41 13–28 40/48 10/12 5 105.6 75.3 ns 57 27 (9–62)

13 Baumann
2009 [42]

57 40–17 45 15 5
(4–15)

211.2 112.5 PB, dens inhom corr 92 35 (4–47)

14 Brown 2009 [43] 31 20–11 60–
67.5

3–5 5 347.5 180.0 ns 86 28 (24–53)

15 Fakiris 2009 [44] 70 34–36 60/66 20/22 5 309.4 211.2 no dens inhom corr 88 50 (1–65)

16 Kopek 2009 [45] 88 51–36 45/
67.5

15/22.5 5–8 112.5 60.9 Helax-TMS/ Eclipse,
ns

89 44 (2–97)

17 Stephans
2009 [46]

56 42–14 50 10 11
(8–14)

168 100.0 dens inhom corr 97 20 (2–48)

18 Baba 2010 [47] 124 87–37 48/52 12/13 11 105.6/
119.6

75.3/84.9 PB convol with Batho 80 26 (7–66)
(living pats)

19 Crabtree
2010 [48]

76 57–19 54 18 8–14 219.4 151.2 Trilogy, ns 89 19

20 Timmerman 2010
[49]

55 44–11 54 18 14 286.4 151.2 dens inhom corr 98 34 (5–50)

21 Videtic
2010 [50]

26 22–6 50 10 5 112.3 100 dens inhom corr 94 31 (10–51)

22 Andratschke
2011 [51]

92 31–61 24/45 3/5 5–12 192.2 84.4 dens inhom corr 83 21 (3–87)

23 Hamamoto
2012 [52]

128 101–27 48/60 9.2–14 4–10 105.6 89.9 PB, no dens inhom
corr

85 18 (1–60)

24 Lagerwaard
2012 [53]

177 106–71 60 12 20
7.5

14 187.5 132.0 Brainlab, ns 93 32

Shibamoto
2012 [54]

75.3 PB convo, Batho 83 36

25a Shibamoto, d2 124 124 T1 48 12 9–21 105.6 75.3 86

25b Shibamoto, d3 52 52 T2 52 13 9–21 119.6 84.9 73

Shirata 2012 [55] 63–18 89.9 PB convolution Batho 89 30 (0.3–79)

26a Shirata, d1 45 48 12 105.6 89.9 100

26b Shirata, d2 29 60 7.5 105 91.4 82

Takeda 2012 [56] XiO/CMS, CS

27a Takeda, d1 27 10–17 40 8 5 100 72.0 72 21 (6–64)

27b Takeda, d2 138 91–47 50 10 5 140.6 100.0 87 21 (6–64)

28 Inoue 2013 [57] 109 79–30 45/48 15/12 4–7 105.6 75.3 dens inhom corr 81 25 (4–72)

29 Takeda 2013 [58] 109 67–42 40/50 8/10 5 140.6 100 convolution-
superposition

84.4 24 (3–65)

30 Hamaji 2015 [59] 104 75–29 48 12 5 105.6 75.3 PB convol, Batho 76.7 43 (6–115)

31 Rwigema [60] 46 - 54 18 5 234.5 151.2 MC 95.5 16.8 (0.6–38.9)

Median 57 56.0 12.5 7 119.8 89.9 86 27.0 (0.3–115)

BED10 biologically effective dose with α/β = 10 Gy, PTV planning target volume, D total dose, d dose per fraction, T total treatment time, LC local control, ns not
specified, dens inhom corr density inhomogeneity correction, PB convol pencil beam convolution, CS convolution superposition
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either on addition of GTV from 3D-CT scans in expir-
ation/inspiration and free breathing in 4 cases, on slow
CT scans in 5 cases, and on 4D-CT scans in 4 cases.
Nine out of 23 studies did not apply any ITV concept.
The most frequently used CTV-to-PTV (planning target
volume) margins were 0.5 cm in axial and 1 cm in
cranio-caudal directions. A minimal margin of 0.2 cm
was added in one patient cohort treated with the Cyber-
Knife where tumor tracking was used to correct for
intrafractional target motion. In 2 out of 23 series the
PTV margin definition was patient-specific.
Different dose reporting concepts were found through-

out the selected references. Only 5 CF reports out of 8
explicitly mentioned that the dose was prescribed to the
isocenter. When not specified, prescription to the iso-
center was assumed. In the case of the hypofractionated
SBRT data, 9 references reported the prescribed dose to
isocenter and 11 to the isodose line encompassing the
PTV, which ranged from the 50 to the 100 % isodose,
most frequently to the 80 % isodose line. Only one of
the SBRT cohorts was treated with IMRT, and in this
case the dose was prescribed to the 95 % isodose line en-
closing the PTV. More information can be found in the
Additional file 1.
Median [min - max] applied BED at the isocenter, cal-

culated with an α/β ratio of 10 Gy (BED10), was 82.0
[67.2–93.5] and 119.8 [76.8–347.5] Gy for the CF and
HF groups, respectively. At the PTV edge, values of 77.2
[62.9–87.5] and 89.9 [56.8–211.2] Gy were applied in the
CF and HF groups.
Median value of the documented median follow-up

times were 28.5 and 27 months for the CF and HF
groups, respectively. Very few of these publications
state explicitly the number of patients at risk at each
follow-up time point (four cohorts). In only 5 of the
selected studies an estimation of the 95 % CI of the
calculated actuarial local control rates was reported
and one publication presents the standard error.
Therefore, no information could be collected about
the precision of the estimated actuarial local control
rates, apart from the cohort size and the median
follow-up time.

3- and 5- year clinical outcomes for stage I NSCLC
The median value [range] for the 3-year LC was 86
[range: 55–100] % for the HF, and 63 [range: 50–91] %,
for the CF series, respectively. Twenty-two out of 26 HF
3-year LC data points lie above the 80 % level, while all
except two of the CF datasets lie below. All except one
HF treatments delivered a BED10 of 100 Gy or higher at
the isocenter but none of the CF treatments reached a
BED10 of 100 Gy.
Spearman’s correlation coefficients between dosimetric

parameters (total absorbed dose and BED10) and the dif-
ferent clinical outcomes were calculated. For the
complete dataset and the total BED10 at the isocenter, a
significant Spearman’s correlation of 0.716 for the local
control with BED10 was found. For the BED10 evaluated
at the PTV edge, a significant correlation of 0.638 was
found between LC and BED10. The total absorbed dose
at either dose point however did not correlate with LC.

Modeling local control versus BED
Linear-quadratic (LQ) model with α/β ratios fixed to 10 Gy
(two-parameter fit)
All 3-year LC data points for both the HF and CF treat-
ments were fitted to a logistic model coupled with
BED10 at both isocenter and PTV edge. For the isocen-
ter, the TCD50 [68% CI] was 48.3 [23.8–62.4] Gy, k was
44.7 [32.1–64.8] Gy, and the calculated γ50 (std error)
was 0.27 ± 0.1. A logistic fit under the same assumptions,
based on the CF subset alone was made, and resulted in
the values: TCD50 of 68.9 [50.7–74.4] Gy, k was 20.5
[13.1–50.0] Gy and γ50 was 0.84 ± 0.5. The same ap-
proach applied to the HF dataset showed a TCD50 of
−60.2 [−189–3.2] Gy, k of 113.3 [73.4–190.1] Gy, and
γ50 of −0.13 ± 0.17. These three logistic models are rep-
resented in Fig. 1a, and all fit parameter values are sum-
marized in Table 5. The p value was found to be < 0.05
for both TCD50 and k simultaneously only for the model
based on the full dataset.
The model for the complete dataset based on BED10 at

PTV edge yielded a TCD50 of 28.0 [−0.7–43.1] Gy, and k
was equal to 39.7 [28.1–60.5] Gy. These values were
64.2 [48.6–69.3] and 19.5 [12.5–44.6] Gy respectively for

Table 3 Summary of cohort characteristics and clinical follow up for conventionally fractionated and hypofractionated datasets

Dataset Total
No.
pats.

% T1 Histology %
histology
unknown

% inoperable Median
age
(range) [y]

Median
follow-up
(range) [m]

Median BED10

@isoc (range) [Gy]
Median No.
Pats (range)

% Adeno % SCC % NOS % Other

CF 344 48.0 % 26.3 47.0 15.5 11.2 11.6 86.3 72 (35–90) 28.5 (2–216) 82.0 (67.2-93.5) 43 (31–56)

HF 1975 66.3 % 50.4 31.1 13.5 5.0 35.9 55.2 75 (29–94) 27 (0.3–115) 119.6 (76.8–347.5) 57 (25–177)

Total 2319 63.6 % 45.8 34.1 13.9 6.2 31.9 59.8 74 (29–94) 27 (0.3–216) 105.6 (67.2–347.5) 53 (25–177)

Adeno adenocarcinoma, SCC squamous cell carcinoma, NOS carcinoma not otherwise specified, HF hypofractionated treatment regime, CF conventionally
fractionated treatment schedule
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the CF, and −19.9 [−93.5–14.5] and 64.4 [42.9–108.1] Gy
for the HF group alone. Only the parameter values for
the CF dataset yielded significant p values simultan-
eously. Model summaries and calculated γ50 values
together with their standard errors obtained with propa-
gation of uncertainties are also presented in Tables 5.
These models are represented in Fig. 2a.

Linear-quadratic-linear (LQ-L) model with α/β fixed to 10 Gy
(three-parameter fit)
The alternative BED definition including a linear portion
in the dose-effect beyond a certain fraction dose was
tested, according to Eq. 3, with an α/β ratio fixed to 10
Gy. Fits were performed either based on the full dataset
or on the HF subset alone.
For the models based on BED10 at the isocenter, the fit

based on the full dataset generated a Dt value of 11.0
[8.4–16.7] Gy, together with a TCD50 value of 44.7
[24.2–58.2] Gy, and k equal to 46.7 [35.1–63.2] Gy. The
calculated γ50 value was 0.24 ± 0.11. All of the parameter
estimates yielded significant p values. 13 out of 34 data
points represented a dose per fraction below the
estimated Dt. This fit is shown in Fig. 1b, together with
the LQ fit for comparison, and their respective BEDLQ

and BEDLQ-L data points.
For the fit based on the HF dataset alone, Dt was equal

to 9.8 [5.2–15.0] Gy, TCD50 was 1.0 [na-23.8] Gy, and k
equal to 71.4 [54.2–79.6] Gy. Only two data points were
found to be below this Dt, which was too few to obtain a
reliable estimate. Thus, the fit parameters did not produce

significant p values. This fit is shown in Fig. 2b, together
with the LQ fit for comparison.
When BED10 doses at PTV edge were used, similar Dt

values were found, namely, 12.4 Gy for the complete
dataset, and 9.9 Gy for the HF dataset (this fit is shown
in Fig. 2b). Likelihood ratio tests showed no difference
between LQ-L and LQ fits, independently of which
BED10 doses were used, at isocenter or PTV edge (see
Table 5).

Correlation of local control with BED
To complete the modeling study, the correlation of
the 3-year LC with BED under different assumptions
for α/β equal to 5, 8.6, 10, 15 and 20 Gy was investi-
gated (see Table 4). For the complete dataset and
BED10 values at isocenter, a Spearman’s correlation of
0.716 (p < 0.0001) with BED10 was found. For all other
α/β ratios, correlation values increased marginally
from BED5 (r = 0.706) to a maximum at BED10 and
decreased again for BED20 (r = 0.706), in all cases
being significant. The Spearman’s correlations based
on the BED values at the PTV edge decreased with
growing α/β values for the complete dataset, from
0.680 to 0.510, all of them being significant and
consistently lower than the respective values for the
BED10 at the isocenter (see Table 4).
In contrast, for the HF subset, the correlation of the

LC with the same series of BEDα/β at isocenter increased
minimally from 0.575 to 0.618, and also the values for
BEDα/β at PTV edge, from 0.531 to 0.601, all of them
being statistically significant.
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LQ    HF:                  TCD50 =  −60.2  Gy, k =  113.3  Gy
Guckenberger LQL: TCD50=       −2     Gy, k =    80     Gy, Dt =  22     Gy

Fig. 1 a Clinical 3-year LC data points for the conventionally fracionated and hypofractionated datasets versus BED10 at isocenter with corresponding
logistic regression fits of the joint CF + HF dataset, and the CF and HF subsets. Previously published related models are included for comparison: Martel
et al. [28] and Guckenberger et al. [61]. b Comparison between the BED10 (isocenter) data points obtained with the LQ and LQ-L fits for the complete
dataset and for the hypofractionated subset. The range of experimental data of every model is shown with a continuous line and the extrapolation
regions with dashed lines. The levels 80 % TCP and 100 Gy BED10 are also shown for reference

Santiago et al. Radiation Oncology  (2016) 11:67 Page 7 of 13



LQ model with three-parameter logistic fit
Additionally, we attempted to estimate the α/β ratio
for NSCLC from the complete data set, fitting all
three model parameters simultaneously: TCD50, k and
α/β. We obtained for the BED doses at isocenter an
α/β value of 3.9 [2.2–9.0] Gy, TCD50 of 17.8 [na-56.4]
Gy, and k of 130.9 [50.1-na] Gy, with only TCD50

yielding a p value < 0.05. For the CF dataset alone we
found a similar α/β of 3.8; however, it was not pos-
sible to determine confidence intervals. These fits are
represented in Fig. 3b. In order to check plausibility
of the fit results and to compare our results with
published values we calculated γ50 and found a value
of 0.0 ± 0.15. For the models based on BED10 at PTV
edge we found values for alpha/beta of 1.7 [1.3–4.1]

Gy for the complete dataset and 4.1 [na] Gy for the
CF dataset with no significant p values (Table 5).

Differences in the prediction of isoeffects
In order to translate the impact of the different BED
model assumptions on clinical treatment schedules we
calculated as an example the doses per fraction which
would be necessary to reach selected BED10 levels at the
isocenter (Fig. 4). Under the assumptions of the LQ
model with α/β values of 8, 10, or 15 Gy and the LQ-L
model at the isocenter with α/β equal to 10 Gy and a Dt

of 11.0 Gy, in order to reach 100 Gy (BED), the max-
imum differences among models for one and two frac-
tions are 10.5 and 4.5 Gy, respectively. Maximal
differences remain below 3.3 Gy for treatments delivered
in 3 or more fractions. For 200 Gy (BED), discrepancies
between models in fraction size increase to 30.1 and
10.5 Gy for one and two fractions, respectively and
remain below 5.6 Gy for 3 fractions and more.

Discussion
Review of clinical outcome data after radiotherapy treat-
ment represents the only possibility to gather long-term
information from large numbers of patients, which could
serve as basis for statistical analysis for radiobiological
modeling. However, this task presents a number of chal-
lenges since these datasets are intrinsically heteroge-
neous. Variability among radiotherapy centers applies to
aspects such as target volume definition, dose prescrip-
tion, planning concepts and delivery techniques with
different precision levels. Additional effects hindering
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Fig. 2 a Clinical 3-year LC data points for the CF and HF datasets versus BED10 at PTV edge, with corresponding logistic regression fits of the joint
conventionally and hypofractionated dataset, and the conventionally fractionated and hypofractionated subsets. A previously published related model
is included for comparison, Guckenberger et al. [61]. b Comparison between the BED10 (PTV edge) data points obtained with the LQ and LQ-L fits for
the complete dataset and for the hypofractionated subset. The range of experimental data of every model is shown with a continuous line and the
extrapolation regions with dashed lines. The levels 80% TCP and 100 Gy BED10 are also shown for reference

Table 4 Spearman’s correlations of the local control with the
biologically effective dose at the isocenter and the planning
target volume edge, calculated with different α/β values, for the
complete dataset and exclusively for the hypofractionated
dataset (all of them significant, p > 0.05)

Spearman’s r vs BED @ Isocenter vs BED @ PTV edge

α/β [Gy] All datasets HF All datasets HF

5 0.706 0.575 0.680 0.531

8.6 0.716 0.587 0.680 0.560

10 0.716 0.587 0.638 0.542

15 0.749 0.601 0.572 0.606

20 0.706 0.618 0.510 0.601

BED biologically effective dose, PTV planning target volume
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precise dose-effect modeling are: the use of multiple and
sometimes less appropriate dose calculation algorithms
especially in the case of lung tumors (e.g. with limited
heterogeneity correction), which may lead to mis-
estimation of the absorbed dose. Additionally, outcome
of different tumor stages, dose levels and fractionation
schemes are frequently reported together. Furthermore,
including historical cohorts implies dealing with changes
over time in the standard diagnostic and therapeutic
procedures, e.g. for staging, recurrence assessment and
radiotherapy image guidance.
To counteract this variability, we applied strict inclu-

sion criteria to the selected publications. The analysis is
based on 3-year local control in order to depict the
dose-response in mature outcome data, while maintain-
ing a sufficient number of data points. To our know-
ledge this is one of the largest, most homogeneous
patient collectives among similar studies. Through the
combination of conventionally fractionated and hypo-
fractionated data, a broad range of doses and fraction-
ation schemes is covered, which is a further requirement
in order to achieve conclusive modeling results.
Dosimetric heterogeneity in the PTV can be very

pronounced in dose distributions for stereotactic
treatments, reaching dose differences between isocenter
and PTV edge of up to 50 %. It is not possible to know
a priori, which reported dosimetric parameter will
describe best the dose-effect relationship: the dose at the
PTV edge or the dose at isocenter. Therefore, we calcu-
lated models based on both, isocenter and minimum
target doses. The TCD50 doses estimated for the isocen-
ter doses were in general higher than the ones from the
models at PTV edge.

Variability in the estimated doses at PTV edge could
arise for instance, from variations in the CTV and PTV
margin definitions among institutions, or uncertainties
in the dose calculation methods, which in the case of
outdated, less accurate dose calculation algorithms for
the lung, would produce large dose mis-estimation and
underdosage at the PTV edge.
We calculated the Spearman’s correlations between

outcome parameters and the BED10 evaluated at both
dose specification points and observed that the correla-
tions with BED10 at the PTV edge were without excep-
tion lower than the corresponding correlations based on
BED10 at the isocenter. This could be interpreted as an
indication of the isocenter doses being more robust than
the doses at the PTV edge for retrospective modeling
studies, in agreement with previous studies [61].
The BED10 fits based on the CF data and the complete

dataset differ in both the TCD50 and k values. This can
be explained by the fact that the information required
defining the slope of the dose-response curve and the
TCD50, which together shape the sigmoid region of the
logistic function, is provided by the CF data, where
generally a lower BED was applied. This explains why
TCD50 and k are not consistently determined across
models, which use different input data: CF + HF, or HF/
CF alone. We represented the range of the model input
data and the extrapolation regions in all figures, to stress
that special care must be taken predicting doses in the
extrapolation region.
For comparison, Fig. 1 includes the previously pub-

lished dose-response models of Martel et al. [28] and
Guckenberger et al. [61]. Martel et al. found a TCD50,
which is higher as compared to our findings as they
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Fig. 3 Logistic fits for LC versus BEDα/β at isocenter, with constraint to approach the sigmoidal curves to the coordinate origin, a with α/β fixed
to 10 Gy for the CF and HF datasets separately, and b with three free parameters: α/β, TCD50 and k, for the combined dataset with conventionally
fractionated and hypofractionated treatments. Logistic fits without constraint are provided for comparison
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compiled stage I/II data whereas our dataset included
stage I tumors only. The values for the slope γ50 that we
obtained for the complete dataset and the CF subset are
lower than the value in Martel et al. [28] and further
values in the literature. For instance, Stuschke et al. [11]
reported a value of 1.5, and Okunieff et al. [26] found a
value of 1.6 on average.
Our fit based on the HF data alone shows a shallower

curve than the fits including CF data, since the out-
comes after hypofractionation are well above the inflec-
tion point of the sigmoidal curve. Our HF fit results for
both BED10(isocenter) and BED10(PTV edge) are graph-
ically similar to the findings by Guckenberger et al. [61],
which were based on a multicentric compilation of
individual patient SBRT data.
The LQ-L model was proposed to account for the

experimental observation that curves of the (log cell
survival) versus radiation dose often show a more

straightened portion at doses beyond 10 Gy than pre-
dicted by the LQ model. This effect is in the majority of
cases due to heterogeneity of the radiosensitivity distri-
bution of the cells. This is partly due to differences in
the stage of cells in the proliferation cycle, but can also
be due to partially hypoxic conditions. Resistant cells
tend to survive even at larger doses, which causes the
survival curve to become less steep than predicted by
the LQ model. This explanation implies that the
straightening in the curve is not caused by a fundamen-
tal mechanism but by a simple to explain heterogeneity
in the distribution of sensitivity. Both models converge
at dose of less than about 6 Gy.
Applying state-of-the-art fitting methods to compare

the performance of the LQ versus the LQ-L models for
different fractionation schemes, we did not find signifi-
cant differences. Therefore, it was not possible to decide,
which model better predicts clinical NSCLC outcome

Table 5 Summary of the models for both BED doses calculated at isocenter and PTV edge; all fit parameter values are provided
with standard errors (and 68 % CI). This table includes the maximum likelihood ratio tests for comparison between the
corresponding LQ and LQ-L models with α/β = 10 Gy

Model concept
and dataset

α/β (std
error) [Gy]

Dt (std
error) [Gy]

TCD50

CI 68 % [Gy]
k CI
68 % [Gy]

γ50
(std error) [%/%]

AIC Likelihood ratio test LQ vs LQL:
Dataset, Df, LogLik, Df, Chisq, Pr (>Chisq)

ISOCENTER

LQ fixed α/β CF
+ HF

α/β = 10 - 48.3
(23.8–62.4)*

44.7
(32.1–64.8)*

0.27 (0.1) −4438.1 Isocenter, all data 4, 2223.8, 1, 3.42,
0.064

CF α/β = 10 - 68.9
(50.7–74.4)*

20.5
(13.1–50.0)

0.84 (0.5) −186.4 -

HF α/β = 10 - −60.2
(−189–3.2)

113.3
(73.4–190.1)*

−0.13 (−0.17) −2625.2 Isocenter, HF 4, 1316.4, 1, 1.68, 0.195

LQ-L fixed α/β CF
+ HF

α/β = 10 11
(8.4–16.7)*

44.7
(24.2–58.2)*

46.7
(35.1–63.2)*

0.24 (0.11) −4439.6

HF α/β = 10 9.8
(5.2–15.0)

1.0
(na–23.8)

71.4
(54.2–79.6)

0.0 (0.15) −2624.8

LQ: free α/β,
TCD50 and k

CF+
HF

3.9
(2.2–9.0)

- 17.8
(na–56.4)

130.9
(50.1–na)

0.0 (0.15) −4441.6

CF 3.8 (na) - 90.7 (na)* 19.7 (na) 1.15 (0.64) −186.6

PTV EDGE

LQ fixed α/β CF
+ HF

α/β = 10 - 28.0
(−0.7–43.1)

39.7
(28.1–60.5)*

0.18 (0.13) −4430.1 PTV Edge, all data 4, 2218.3, 1, 0.614,
0.433

CF α/β = 10 - 64.2
(48.6–69.3)*

19.5
(12.5–44.6)*

0.82 (0.47) −186.6

HF α/β = 10 - −19.9
(−93.5–14.5)

64.4
(42.9–108.1)*

−0.08 (−0.16) −2625.9 PTV Edge, HF 4, 1315.9, 1, 0.009, 0.925

LQ-L fixed α/β CF
+ HF

α/β = 10 12.4
(8.3–na)

26.1 (na) 40.8
(na–60.2)

0.16 (0.13) −4428.7

HF α/β = 10 9.9 (5.5-na) 1 (na–18.0) 50.9
(40.0–55.3)

0 (0.15) −2623.9

LQ: free α/β,
TCD50 and k

CF+
HF

1.7 (1.3–4.1) - 29.8
(na–68.2)

161.1
(60.4–na)

0.0 (0.13) −4443.5

CF 4.1 (na) - 81 (na) 20.4 (na) 0.99 (na) −186

Dt dose threshold, TCD50 tumor control dose 50 %, AIC Akaike information criterion, Df degrees of freedom, LogLik log-likelihood, Chisq chi-square, PTV planning
target volume
*p value < 0.05
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data. For BED corresponding to doses per fraction below
11.0 Gy, the BED points for both concepts overlap,
whereas above Dt there is a contraction in the BEDLQ-L

values, which has no consequence in the fit itself, since
it takes place in the region where the TCP approaches
100 %. Clinical consequences of using one model or an-
other are only relevant for highly hypofractionated sched-
ules aiming at delivering BED values well above 100 Gy.
The LQ-L model was also fitted to the HF datasets

alone, although we could not obtain a 68 % CI for
the TCD50, and the p values of all three parameters
were > 0.05. Fig. 2b clearly demonstrates the similarity
of our LQ-L fit for the HF data subset to the LQ fit
previously presented, therefore TCP predictions will
be similar with either model. Although our LQ-L fit
based on HF data did not yield significant estimates,
the results suggest a Dt estimate in the same range of
magnitude of 10 Gy. This fit was tested previously
also on hypofractionated data alone by Guckenberger
et al. [61]. Their dataset had a median dose per frac-
tion at isocenter of 20.8 Gy with range [6–41] Gy.
This group found a Dt value of 22 Gy with a broad
68 % confidence interval, [14–42] Gy, whose addition
to the model did not improve the prediction power.
Estimation of the α/β ratio by fitting three parameters

simultaneously on a clinical dataset presenting high
dispersion - as is the case of the current work - is
challenging. Our LQ model with free α/β did not yield
significant values for α/β, nor for TCD50 and the slope k,
which appears to be too shallow after visual inspection.
We concluded that there is no indication for larger α/β
values than 10 Gy if the complete range of fractionations
is considered. The opposite trend (α/β > 10 Gy) was
found for the HF dataset as was also the case in Chi et
al. [15], although no significant p values could be ob-
tained in this case, neither.
There are few works aiming to the estimation of a

clinical α/β for radiotherapy of NSCLC [10, 11, 15].
Thames et al. [10] published an extremely high α/β value
for lung tumors but these authors did not obtain a reli-
able confidence interval and so, their calculations must
be regarded with caution. A similar work was also car-
ried out by Stuschke et al. [11], who found an α/β value
of 8.2 Gy. They used a fit similar to ours, but set a con-
straint to force the model to approach the axes origin by
adding a point with low BED and null TCP, with a high
fit weight. We also tested this approach (full model in-
formation in the Additional file 1), adding a data point
at 0 Gy (BEDα/β) and 0 % TCP. We observed that this
constraint influenced the TCD50 value to a small extent
only, but could have a strong effect on the slope of the
curve, and also on the α/β value, for instance, 3.9 [2.2–
9.0] versus 12.6 [10.5–15.0] Gy for the complete dataset
and BED10(isocenter). The LQ-based fits with α/β of 10

Gy for the CF data alone did not vary much with and
without constraint. In contrast, if the fit was based on
the HF dataset alone, adding this constraint on the ori-
ginal fit had a pronounced effect on the steepness and
TCD50 of the curve, which in the constrained fits
approached the curves based on CF data (Fig. 4a). For
this reason, we think it is preferable not to set a con-
straint to the model, which largely influences the esti-
mates for k and α/β, and also their standard errors. It
seems reasonable to accept that fits done on the HF
dataset alone will not reproduce a realistic fall-off in LC
at low doses nor a plausible, clinical TCD50, since the in-
put dose-response data are well above that region in this
specific case.
The dispersion in the collected data points was high.

Due to this fact, in the hypofractionation range the dose-
effect relationship appears to be weaker than in other re-
ports [13, 61]. Specifically, for the fraction of HF data
above 100 Gy (BED10), the Spearman’s correlation be-
tween LC and BED10 is low. It can be speculated that in
the region of high tumor control probability and highly
hypofractionated treatments the relative contribution of
non-radiobiological factors to the treatment effect is lar-
ger. Such factors are, for instance, subjectivity in target de-
lineation and geographical miss, among others.
The logistic fit was applied also in the study at high

dose regions since it is widely used for dose-effect de-
scription. However, other functional dependencies of LC
with BED might be also appropriate in the high BED
range. Concerning the BED concept, it seems likely that
more than one approach can fit equivalently well on an
inherently noisy dataset like this, for instance the LQ ap-
plying a higher α/β ratio, or the LQ-L model with α/β of
10 Gy, even if these models have contrasting radiobio-
logical implications.

Fraction size at isocenter for BED of 100 / 200 Gy

No. of fractions

D
os

e 
pe

r 
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tio

n 
[G

y]

1 2 3 4 5

10

20

30

40

50

60

11.0 Gy

BED
100 Gy
max diff:
10.5 Gy

4.5 Gy
3.3 Gy

2.6 Gy
2.1 Gy

LQ; α β:   8 Gy
LQ; α β: 10 Gy
LQ; α β: 15 Gy
LQ; α β: 10 Gy, Dt: 11.0 Gy

200 Gy BED
max diff:
30.1 Gy

10.5 Gy

5.6 Gy
4.5 Gy

3.8 Gy

Fig. 4 Fraction dose necessary to deliver a BED equal to 100 and
200 Gy under the assumptions of the LQ model with α/β of 8, 10,
and 15 Gy and LQ-L model with α/β equal to 10 Gy and a Dt value
of 11.0 Gy, estimated for doses at the isocenter
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Conclusion
We found a dose-effect relationship in the studied data-
set, which in the high BED region was weaker due to
considerable dispersion in the data. Both, the LQ and
LQ-L models can be fitted to clinical normo- and hypo-
fractionated NSCLC outcome data. The LQ-L model
yielded a significant value for the Dt of 11.0 Gy for the
model based on BED10(isocenter); however, it produced
a comparable TCP fit to the LQ model. For the applica-
tion of BED10 in the range of 100–150 Gy in three frac-
tions or more, the differences in isoeffects predicted by
both models can be neglected. Our findings therefore do
not allow us to suggest use of the LQ-L model for an
improved fitting compared to the LQ model of local
control data in case of hypofractionation. A tentative
analysis to establish the optimal α/β ratio in the frame of
the LQ model for the full fractionation range did not
produce significant estimates, although, it showed a
trend for α/β values lower than 10 Gy.
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Details     of     the     search     made     in     PubMed     (July     2015):  

(early stage[Title] OR early-stage[Title] OR stage I[Title] OR stage II[Title]) AND (non-small cell lung cancer[Title] OR non-small-cell lung 
cancer[Title] OR non-small cell lung cancer[Title] OR NSCLC[Title] OR lung cancer[Title] OR lung tumors[Title] OR lung tumor[Title] OR lung 
carcinoma[Title]) AND (radiother*[Title] OR SBRT[Title] OR stereotactic[Title] OR irradiation[Title] OR radiation[Title])

Number of records identified through database searching: 441
Number of records after duplicates removed: 441
Number of records screened: 441
Number of records excluded: 441-192=249
Number of full-text articles assessed for eligibility: 192
Number of full-text articles excluded, with reasons: 192-31=161 did not fulfill the selection criteria
Number of additional records identified through other sources: Four files found: Hamamoto12 , Onimaru03 , Takeda12 , Takeda13.
Number of studies included in this quantitative analysis: 31 studies, 8 3DCRT + 23 SBRT.



Table 1: Detailed characteristics of included studies with conventionally fractionated treatment schedules

Reference
Tumor 
Stage

No.
Pats

Histology
Loca
tion

Schedule, Total Treatment Time
Prescription

Total 
Dose at

isocenter 
[Gy]

Volume Definition
LC
[%]

CSS
[%]

OS
[%]

FU median 
(range) [m]

Kaskowitz
stage IA/IB

20 T1 - 33 T2, 
N0

53
11 ade, 32 scc,

4 lc, 6 nos
ns

median 63 (40 - 80) Gy, conv. 
fractionation, dose point not specified

63$ target: tumor + 1.5 cm (estimated from port films), 
elective nodal RT 

3y: 51
3y: 33
5y: 13

3y: 19
5y: 6

ns

Jeremic
stage IA/IB

25 T1 - 24 T2, 
N0

49
18 ade, 23 scc,

7 lc, 1 nos
25 p 
24 c

69.6 Gy in 1.2 Gy/f (twice a day),
40 days, to isocenter

70 PTV: tumor + ipsilateral hilus + 2 cm
3y: 55
5y: 55

3y: 47
5y: 30

ns

Hayakawa
stage IA/IB

7 T1 – 29 T2, 
N0

36
16 ade, 19 scc,

1 lc
p

60 - 81 Gy in 2 Gy/f, 48 days,
to isocenter

67§ target not specified, 
28 % patients elective nodal RT to 38 - 50 Gy

3y: 72
5y: 72

3y: 56
5y: 39

3y: 42
5y: 23

(36 - 216)

Cheung
stage IA/IB

18 T1 - 15 T2, 
N0

33
10 ade, 13 scc,

5 lc, 5 nos
27 p
6 c

48 Gy in 4 Gy/f, maximum 3 weeks,
to isocenter

48
target: GTV + 1 - 1.5 cm,

no elective nodal RT
3y: 63

3y: 36 3y: 32
23&

Langendijk
stage IA/IB

26 T1 - 20 T2, 
N0

46
2 ade, 23 scc,
10 undiff, 11 

unknown

37 p
9 c

70 Gy in 2 Gy/f, 7 weeks
to isocenter, Dmin(PTV)= 90 %

70
CTV: GTV + 1.5 cm; PTV46Gy: CTV + 0.5 cm, 

PTV70Gy: GTV + 1 cm; elective nodal RT 
3y: 50

3y: 22 36&

Bradley
stage IA/IB

31 T1 - 25 T2, 
N0

56
14 ade, 25 scc,

6 lc, 11 nos
p

60 - 84 Gy in 1.8 - 2 Gy/f, 6 - 8 weeks
to isocenter

70$ PTV: GTV + 1 cm (increased if tumor moved) 39 % 
patients elective nodal RT

3y: 63 3y: 51 3y: 34
20

(6 - 72)

Bogart
stage IA/IB

19 T1 - 12 T2, 
N0

31
9 ade, 8 scc,
1 lc, 13 nos

ns
median 70 Gy in 2.25 - 3.7 Gy/f,

5.5 weeks, 95 % dose covering PTV
70$ PTV: GTV + 1 - 1.5 cm (increased if tumor moved), 

no elective nodal RT
3y: 83
5y: 83

3y: 64
5y: 19

29&
 

Zehentmayr stage I

40
+14 
stage 

II

16 ade, 33 scc, 7 
nos* 14 stage II 

reported 
together, but not 

in LC

36 p
2 c

Median 79.2 (73.8-90.4) Gy in 1.8 Gy/f 
twice daily in 2-3 weeks, dose point not 

specified
79 Slow CT, PTV: GTV + 7mm 3y: 91 28.5 (2-108)

Median 43 70
3y: 63
5y: 72

3y: 43.5
3y: 34
5y: 21

28.5
(2 - 216)

FU: follow-up, §: mean value, $: median value, ade: adenocarcinoma, scc: squamous cell carcinoma, ba: bronchio-alveolar, lc: large cell carcinoma, nos: not otherwise specified, undiff: 
undifferenciated, non-scc: non-squamous cell carcinoma, ns: not specified, &: pats alive at the end of follow up, p: peripheral, c: central.
Kaskowitz: 54% of total patients received total doses between 60 and 70 Gy, with a median difference in total treatment time of 5 days, the maximal difference was 28 days. Hayakawa: Standard 
deviation of 7 Gy in the total dose and 8 days in total treatment time.
Cheung: included 4 patients with N1. Bradley: A majority of patients (42%) were receiving between 70 and 83 Gy. Bogart: Total doses range from 60 to 80 Gy, “most frequently 70 Gy” (sic).



Table 2: Detailed summary of hypofractionated data.

Reference
Tumor 
Stage

No 
Pats

Histology
Loca 
tion

Schedule, Total Treatment Time
Prescription

Total Dose 
at

isocenter 
[Gy]

Volume definition
LC
[%]

CSS
[%]

OS
[%]

FU median 
(range) [m]

Onimaru '03 stage IA/IB
17 T1 - 8 T2, N0

25
14 ade, 8 scc,

3 nos 
p

48 Gy in 6 Gy/f or 60 Gy in 7.5/f, 2 
weeks, to isocenter, Dmin(PTV) = 80 %

48$ CTV = GTV, ITV: CTV in free breathing, exhale, 
and inhale, PTV: ITV+ 0.5 cm

3y: 55 2y: 60 2y: 47
18

(2-44)# 

Xia
stage IA/IB

25 (T1 +  T2), 
N0

25
all with 

pathological 
confirmation

p, c
50 Gy in 5 Gy/f in 2 weeks
50 % isodose to PTV edge

100
CTV = GTV

PTV: GTV + 1 cm
3y: 96 3y: 91

27
(24 - 54)

Fritz
stage IA/IB

22 T1 - 18 T2, 
N0

40
ade 17, scc 8, 

lc 13, nos 2
p

30 Gy in 1 single fraction, to isocenter, 
to cover 80 % of PTV, 90 % of GTV

30
CTV: GTV, ITV: CTV, mid-cycle, inhale, exhale, 
PTV: ITV + 1 cm axial, 1.5 cm  cc

3y: 81 3y: 57 3y: 66
20

(6 - 62)

Onimaru '08
stage IA/IB

13 T1 - 28 T2, 
N0

41
30 ade, 10 scc,

1 lc
p

40 Gy in 10 Gy/f or 48 Gy in 12Gy/f, 1 
week, to isocenter, Dmin(PTV) = 80 %

48$ CTV = GTV (CT end exhale)+6-8 mm, 
PTV: CTV+ 0.5 cm

3y: 57 3y: 53 3y: 47
27&

(9 - 62)

Baumann
stage IA/IB

40 T1 - 17 T2, 
N0

57
19 ade, 8 scc, 1 
lc, 10 nos, 19 ns

ns
45 Gy in 15 Gy/f, in median 5 (4-15) 

days to 67 % isodose to PTV edge
66

CTV: GTV +2mm
PTV: CTV + 0.5-1.0cm axial, 1 cm cc

3y: 92 3y: 88 3y: 60
35

(4 - 47)

Brown
stage IA/IB

20 T1 - 11 T2, 
N0

31
8 ade, 1 scc,
1 ba, 21 nos

p
60 - 67.5 Gy in  3 or 5 fractions, 

prescribed to the 60-80% isodose line
88$ CTV: GTV + 0.6 cm, PTV: CTV + 0.2 cm, tumor 

tracking mit CyberKnife
3y: 86 3y: 84

28
(24 - 53)

Fakiris
stage IA/IB

34 T1 - 36 T2, 
N0

70 ns
22 c 
48 p

60 Gy in 20 Gy/f or 66 Gy in 22Gy/f,
to 80 % isodose at PTV edge

83$ CTV = GTV
PTV: CTV +  0.5-1 cm axial, 1 cm cc

3y: 88
3y: 82
5y: 70

3y: 43
5y: 17

50
(1 - 65)

Kopek
stage IA/IB

51 T1 - 36 T2, 
N0

88
30 ade, 34 scc,

24 nos
62 p 
26 c

45 Gy in 15 Gy/f or 67.5 Gy in 22.5 
Gy/f to isocenter in 5-8 days, 

minD(PTV)=67%
45$ CTV = GTV

PTV: CTV + 0.5 cm axial and 1 cm cc
3y: 89 3y: 70 3y: 37

44
(2 - 97)

Stephans
stage IA/IB

42 T1 - 14 T2, 
N0

56
9 ade, 20 scc, 7 
undiff/other, 20 

ns
p, c

50 Gy in 10 Gy/f in 11 (8 - 14) days,
97 - 100 % isodose to PTV egde

70
ITV: GTV in free breathing, inhale, ex-hale, PTV: 

ITV + 0.5 cm axial + 1 cm cc
3y: 97 3y: 50

20
(2 - 48)

Baba T1 87, T2 37 124
66 ade, 35 scc, 

13 nos, 10 
unproven

nn
48/52 Gy in 12/13 Gy/f in 11 (8 – 14) 

days, to isocenter,
Dmin(95% PTV) =80%

48$ CTV = GTV,  ITV: CTV in 3 breathing phases, 
PTV: ITV + 0.5 cm axial, 1 cm cc

3y: 80 26 (7 - 66)

Crabtree
stage IA/IB

57 T1 - 19 T2, 
N0

76 ns ns
54 Gy in 18 Gy/f, in 8 to 14 days, to the 

80 % to 85 % isodose line
68 ns 3y: 89 3y: 67 3y: 32 19

Timmerman
stage IA/IB

44 T1 - 11 T2, 
N0

55
19 ade, 17 scc, 

16 nos, 3 lc 
undiff

p
54 Gy in 18 Gy/f in maximum 2 weeks 

100 % isodose to PTV edge
79

CTV = GTV
PTV: CTV + 0.5 cm axial, 1 cm cc

3y: 98 3y: 55 3y: 48
34

(5 - 50)

Videtic
stage IA/IB

22 T1 - 6 T2, N0
26

13 ade, 4 scc,
3 nos, 8 ns

25 p 
3 c

50 Gy in 10 Gy/f, 5 days, PTV enclosed 
by 95 % isodose line, IMRT planning 

54
ITV: GTV in free breathing, exhale, and inhale, 

PTV: ITV(=CTV) + 0.3-0.5 cm
3y: 94 3y: 52

31
(10 - 51)

Andratschke stage IA/IB
31 T1 - 61 T2, 

92 35 ade, 49 scc,
2 ba, 6 nos

24 c 
68 p

24-45 Gy in 3-5 fractions in 5-12 days, 
to 60 % isodose to PTV edge

62$ CTV = GTV,  ITV: CTV in slow CT
PTV: ITV + 0.5 cm axial and 1 cm cc

3y: 83
5y: 83

3y: 64
5y: 48

3y: 38
5y: 17

21
(3 - 87)



N0

Hamamoto
stage IA/IB

101 T1 - 27 T2, 
N0

128 ns ns
48 or 60 Gy in 9.2-14 Gy/f ,in 4 to 10 
days, to isocenter, Dmin(PTV) = 90 %

48$ ITV: GTV with slow CT,
PTV: ITV + 0.5 cm

3y: 85
18

(1 - 60)

Lagerwaard
stage IA/IB

106 T1 - 71 T2, 
N0

177
20 ade, 16 scc,
24 nos, 117 ns

p, c
5 × 12 Gy, 3 × 20 Gy, or 8 × 7.5 Gy in 2 

weeks, to 80 % isodose at PTV edge
75$ CTV = GTV, ITV: GTV from 10 resp. phases, PTV: 

ITV + 3mm
3y: 93
5y: 93

3y: 85
5y: 51

32

Shibamoto T1 - T2
104 ade, 60 scc,

16 nos
35 c 

145 p
dosage depended on size, 

T1: 48 Gy, T2: 52 Gy
CTV = GTV, ITV: CTV in 3 resp. phases

PTV: ITV + 0.5 cm axial + 1 cm cc
3y: 83
5y: 83

3y: 83
5y: 69

3y: 69
5y: 52

36 (42&)

Shibamoto 
d2

124 T1, N0 124
48 Gy in 12 Gy/f, in 9 to 21 days, 95 % 

of the ITV > 94 % of presc. dose
48 3y: 86

Shibamoto 
d3

52 T2, N0 52
52 Gy in 13 Gy/f, in 9 to 21 days, 95 % 
of the ITV > 94 % of prescribed dose

52 3y: 73

Shirata
stage IA/IB

63 T1 - 18 T2, 
N0

80
33 ade, 22 scc,

5 lc, 20 nos
prescription  to isocenter,

Dmin(PTV) = 90 %
CTV: GTV + 0-0.5 cm, PTV: CTV + 0.5-1 cm, 

individualized margins
3y: 89 3y: 97 3y: 90

30
(0.3 - 79)

Shirata, d1 45 48 Gy in 12 Gy/f 48 3y: 100

Shirata, d2 29 60 Gy in 7.5 Gy/f 60 3y: 82

Takeda
ade 64, scc 38, 
nos 13, ns 58

p, c
 in one week, to 80 % isodose at PTV 

edge
ITV: GTV in slow CT (6-8 s/slice)

PTV: ITV + 0.6-0.8 cm (indiv. margins)

Takeda, d1 27 (10 T1 + 17 
T2)~

27 40 Gy in 8 Gy/f 50 3y: 72
21

(6 - 64) 

Takeda, d2 138 (91 T1 + 47 
T2)~

138 50 Gy in 10 Gy/f 63 3y: 87
21

(6 - 64)

Inoue
stage IA/IB

79 T1 - 30 T2, 
N0

109
65 ade, 29 scc,
1 lc, 8 nos, 6 ns

ns
45 Gy in 15 Gy/f or 48 Gy in 12 Gy/f in 

4 to 7 days, to isocenter
48$ CTV: GTV + 5 – 8mm

PTV: CTV + 5mm
3y: 81
5y: 78

3y: 69
5y: 64

25
(4 - 72)

Takeda
stage IA/IB

67 T1 - 42 T2, 
N0

109
41 ade, 13 scc,

8 nos, 47 ns
34 c 
75 p

40 or 50 Gy in 8 or 10 Gy/f, in 5  days,
to 80 % isodose at PTV  edge

63$ ITV: GTV in slow CT
PTV: ITV + 0.6-0.9 cm

3y: 84.4 3y: 71 3y: 54
24

(3 - 65) 

Hamaji 75 T1, 29 T2 104

ade: 54, scc: 34, 
large cell ca 4, 

others 0, nos 12
nn 48 Gy in 12 Gy/f in 5 days, to isocenter 48 ITV= GTV w/ slow CT/4DCT, PTV= ITV + 5mm 3y: 76.7 43 (6 - 115)

Rwigema 40 Ia, 6 Ib 46

ade 35, scc 4, 
adenosquamous 

2, nos: 5
41 p
5 c

54 Gy in 18 Gy/f in 5 days, to PTV 
edge

70
4DCT, ITV-MIP 8 phases, PTV=ITV+3mm 

transv+6mm in long direction
3y: 95.5

16.8
(0.6 – 38.9)

Median
57

57.0
3y: 85.9
5y: 83

3y: 70
5y: 69

3y: 54
5y: 51

27
(0.3 - 115)

FU: follow-up, §: mean value, $: median value, ade: adenocarcinoma, scc: squamous cell carcinoma, ba: bronchialveolar, lc: large cell carcinoma, nos: not otherwise specified, undiff: 
undifferenciated, non-scc: non-squamous cell carcinoma, ns: not specified, #: includes the patients with metastases, &: patients alive at the end of follow-up, p: peripheral, c: central.
Onimaru03: local control for the NSCLC group only,  12 Gy difference in total dose among patients, 17 patients got 48 Gy versus 8 patients who got 60 Gy in total with the same number of 



fractions.
Onimaru08: 8 Gy difference in total dose among patients, 13 patients received 40 Gy and 28 patients 48 Gy both with four fractions.
Baba: 8 Gy difference in total dose among patients. All 30 stage IA lesions were treated with 48 Gy, and 12 stage IB lesions were treated with 52 Gy, all in 4 fractions.
Xia: stage I pats 25/43.
Brown: 26 out of 31 patients received 60 Gy, most frequently in 3 fractions (24/31).
Kopek: plus one patient T3 N0. Total dose to isocenter was 45 Gy for 62/88 patients, or 67.5 Gy for 26/88 patients who beared peripheral lesions, all delivered in three fractions.
Andratschke: large cohort with most tumors receiving total doses of 24 - 45 Gy in 3 - 5 fractions.
Hamamoto: large cohort of 128 NSCLC patients, the majority received 48 Gy in 4 fractions.
Lagerwaard: 177 patients in total, 82/177 (46%) got 12 Gy per fraction. Maximal difference in the number of fractions is 5.
Takeda: proportion T1-T2 tumors, via personal communication with the authors.



Table 3: Summary of the models for biologically effective doses calculated at isocenter and PTV edge with a constraint to make the logistic curves 
approach the coordinate origin; all fit parameter values are provided with standard errors (and 68% CI).

Model concept and 
dataset

α/β
(std error) 

[Gy]

Dt

(std error)
[Gy]

TCD50

CI 68%
[Gy]

k
CI 68%

[Gy]

γ50

(std error)
[%/%]

AIC

ISOCENTER

LQ with 
constraint at 

(0,0)
CF + HF α/β = 10 - 72.6 (68.2-74.9)*

22.8 (20.1-
25.5)*

0.79(0.11) -4773.8

CF α/β = 10 - 71.2 (67-74.9)*
16.4 (12.0-

20.8)*
1.08(0.36) -267.1

HF α/β = 10 - 75.9 (71.0-81.0)*
21.5 (17.9-

24.8)*
0.88(0.17) -2875.8

LQ: free α/β 
with 

constraint at 
(0,0)

CF + HF
12.6(10.5-

15.0)*
- 67.1(62.4-71.7)* 19.3(15.7-23.0)* 0.87(0.17) -4780.1

CF 3.9(2.4-6.6) - 90.8(77.4-110.0)* 18.3(12.7-27.0) 1.24(0.59) -270.1

PTV EDGE

LQ with 
constraint at 

(0,0)
CF + HF α/β = 10 - 54.6 (51.5-57.6)*

18.3 (16.1-
20.6)*

0.74(0.12) -4761.9

CF α/β = 10 - 66.5 (62.7-69.9)*
15.5 (11.6-

19.5)*
1.07(0.33) -266.8

HF α/β = 10 - 51.5 (48.3-54.7)*
17.2 (15.1-

17.2)*
0.75(0.12) -5294.6

LQ: free α/β 
with 

constraint at 
(0,0)

CF + HF 5.8(4.7-7.1)* - 69.7(63.1-77.0)* 23.2(19.6-27.5) 0.75(0.16) -4764.7

CF 4.2(2.4-8.0) - 81.3(68.8-99.4) 17.7(12.5-25.5) 1.15(0.62) -267.8

* p value < 0.05



Table 4: Doses per fraction at isocenter and PTV edge, calculated according to the information provided in the references (prescription in bold 
characters).

Reference d @ 
Isocen

ter

d @ 
PTV 
edge

Comment

Conventionally fractionated treatment schedules

Kaskowitz 1993 1.8 1.7 If no minimal dose to the PTV was explicitly reported, it was assumed to be 95% dose, according to ICRU recommendations. This was done for all the 
conventional treatments. Ratios deviate from 0.95 because of rounding error.

Jeremic 1997 1.2 1.1

Hayakawa 1999 2 1.9

Cheung 2002 4 3.8

Langendijk 2002 2 1.9

Bradley 2003 1.9 1.8

Bogart 2005 2.5 2.4

Zehentmayr 2015 1.8 1.7

Hypofractionated treatment schedules

Onimaru 2003 6 4.8      The dose was prescribed at the isocenter, with the 80% line encompassing the PTV

Xia 2006 10 5 The 50% isodose line covered 100% PTV, therefore it was assumed that dose at isocenter was twice the prescription

Fritz 2008 30 24 The dose prescribed to the isocenter was 30 Gy. Of the prescribed isocenter dose, at least 90% covered the gross tumor volume (GTV = CTV) and at 
least 80%  the PTV.

Onimaru 2008 12 9.6 The dose was prescribed at the center of the PTV, aim was the inclusion of the PTV in the 80% isodose

Baumann 2009 22 15 The patients were treated with a dose of 15 Gy times three at about the 67% isodose to the periphery of the PTV, resulting in a central dose of about 22 
Gy ϫ 3. More specifically the mean of the maximum dose/fraction to PTV was 22.8 Gy (SD, 3.1 Gy) and the average value of the mean dose/fraction to 

CTV was 21.6 Gy (SD, 3.0 Gy).

Brown 2009 29.4 20 A 60-67.5 Gy dose was prescribed to the 60-80% isodose line (median 65%) and given in three to five fractions

Fakiris 2009 27.5 22          The treatment dose was prescribed to the 80% isodose volume

Kopek 2009 15 10.1 The prescription dose (45 Gy or 67.5 Gy in three fractions) was delivered to the isocenter. The CTV was encompassed by the 95% isodose surface while 
the PTV was completely covered by the 67% isodose surface. This corresponds to a minimum dose to the PTV of 30 Gy or 45 Gy in three fractions, 

depending on the central prescribed dose.

Stephans 2009 14 10 Patients treated to 60 Gy were typically planned using three or more dynamic arcs without heterogeneity corrections prescribed to the 81 to 90% isodose 
line (as allowed by RTOG 0236).

Baba 2010 12 9.6 The dose was prescribed at the isocenter; 95% of the PTV was ensured to be covered with at least 80% of the prescribed isocenter dose.

Crabtree 2010 22.5 18 The dose is typically prescribed to the 80% to 85% isodose line, meaning that the center of the tumor received a dose that is 15% to 20% higher than the 
prescription.

Timmerman 2010 26.3 18 Edge of the PTV, 95% of PTV received 100% of prescribed dose; from Xiao and Papiez related publication: isocenter dose ranges from 71.3 Gy to 88.9 
Gy (mean 78.8 Gy, SE 1.1 Gy, ie 26.3 Gy per fraction). This was a s study based on a subset of 20 patients of the RTOG 0236 trial.



Videtic 2010 10.8 10 Prescription:  minimum dose in median to the PTV was 9.9Gy (~10Gy), and max dose in median was 10.8Gy. It was assumed that the dose at the 
isocenter was similar to the maximum dose inside the PTV (stage I, small tumor volumes).

Andratschke 2011 20.8 12.5 Doses were prescribed to the 60% isodose covering the planning target volume (PTV)

Hamamoto 2012 12 10.8  Leaf margins were arranged so that the 90–95 % isodose line covered the PTV. The dose calculation algorithm was the pencil beam method; this 
algorithm did not use heterogeneity correction. In SBRT, 48–60 Gy in 4–5 fractions was delivered to the isocenter

Lagerwaard 2012 15 12 All fractionation schemes used were prescribed to the encompassing 80% isodose

Shibamoto d2 12 9.6 The prescribed dose represented the dose delivered to the isocenter. It was recommended to cover 95% of the PTV with at least 90% of the isocenter 
dose; in all patients, 95% of the PTV received at least 80% of the prescribed dose. Consequently, 95% of the ITV was covered with !94% of the 

prescribed dose in all but 1 patient.

Shibamoto d3 13 10.4

Shirata 2012 d1 12 10.8 The target reference point was defined as the center of the PTV, and the dose was prescribed for its point. PTV was encompassed by the minimum 90% 
dose line of the reference point dose as possible.

Shirata 2012 d2 7.5 6.8

Takeda 2012 d1 10 8 The prescribed dose was defined as 80% of the maximal dose and its isodose line encompassed the PTV surface. Then the median D95 was consistent 
with the prescribed dose. For peripheral tumors, a total of 50 Gy/5 fractions/ 5 days was prescribed. For tumors adjacent to critical organs such as 

trachea, main bronchus, pulmonary artery and esophagus, the total dose was decreased to 40 Gy/5 fractions/ 5 days.

Takeda 2012 d2 12.5 10

Inoue 2013 12 9.6 Using a superposition algorithm, they administered 48 Gy in 4 fractions at the isocenter in 2005–2006 (n = 30) and 40 Gy in 4 fractions to the 95% volume 
of PTV in 2007–2010 (n = 79) with a treatment period of 4 to 7 days. Isocenter dose of 40 Gy in 4 fractions to the 95% volume of PTV was approximately 

ranged from 45 to 50 Gy. Therefore it was used 12 Gy at isocenter and 9.6 Gy (80%) at edge. Good approximation (min dose 38.4 Gy)

Takeda 2013 12.5 10 80% isodose of the maximum dose at PTV periphery

Hamaji 2015 12 9.6 Prescription to the isocenter, it was not specified which isodose line surrounds the PTV. It was assumed the 80%.

Rwigema 2015 23.4 18 To PTV edge, coverage at 95% of PTV normalized to prescription dose. Heterogeneity in PTV of 15-40%



Figure 1: Local control of the conventionally fractionated dataset (blue) and hypofractionated dataset (black) versus BED10
 
calculated at the 

isocenter, with reference numbers.
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