Publikationsserver der Universitätsbibliothek Marburg

Titel: Optimization of high precision stereotactic body radiotherapy with photons and ions for non-small-cell-lung cancer
Autor: Santiago García, Alina
Weitere Beteiligte: Wittig, Andrea (Prof.)
Veröffentlicht: 2016
URI: https://archiv.ub.uni-marburg.de/diss/z2017/0393
DOI: https://doi.org/10.17192/z2017.0393
URN: urn:nbn:de:hebis:04-z2017-03937
DDC: Medizin, Gesundheit
Titel(trans.): Optimierung von Hochpräzisions-Stereotaktischer Strahlentherapie mit Photonen und Ionen für nicht-kleinzellige Lungentumore
Publikationsdatum: 2017-07-11
Lizenz: https://rightsstatements.org/vocab/NoC-OKLR/1.0/

Dokument

Schlagwörter:
Kohlenstoffionentherapie, Nicht-kleinzelliges Bronchialkarzinom, Partikeltherapie, Bestrahlungsplan, Medizinphysik, proton therapy, carbon ion therapy, medical physics, Protonentherapie, Strahlentherapie, particle therapy, Modellierung

Summary:
This work presents a contribution in two different aspects required for the implementation of scanned-beam particle therapy for lung tumors. The first part of this work investigates the reproducibility of the calculated particle therapy dose distribution for early stage non-small cell lung cancer (NSCLC) tumors in a clinical scenario. These calculations were carried out based on data sets of patients treated with single dose photon stereotactic body radiotherapy (SBRT) under high frequency jet ventilation (HFJV) in order to achieve near-total tumor fixation. A dosimetric evaluation of calculated proton and carbon ion plans was performed, to fulfill clinical plan acceptance criteria with emphasis on target coverage. By simulating the inter-fractional anatomical changes in a short time scale between planning and delivery-time anatomies as imaged by the planning and localization computed tomography (CT) data sets, we carried out an investigation of the deterioration in target coverage. The anatomical changes (e.g. tumor position, patient setup) were quantified through water equivalent path length (WEPL) calculations within the beam entrance channels and correlated with the loss in dosimetric coverage. In addition, we identified beam and planning settings, which also help to reduce dosimetric deterioration, such as best choice of beam angle, higher number of beams, larger spot sizes and larger allowances for beam spots outside the target. We demonstrated reproducible tumor fixations through HFJV. Such technique warranted excellent target coverage in proton SBRT in the majority of the investigated patients. However, for a minor number of cases, unacceptable dosimetric deviations were observed, illustrating the need for imaging prior to each dose delivery with dedicated protocols, together with the development of intervention thresholds in case of anatomical discrepancies based on their potential impact on the dose distribution. HFJV seems a suitable technique to reduce interplay effects. Newer assisted ventilation techniques which do not require use of anesthesia might be more suitable for fractionated radiotherapy. Biological treatment planning for carbon ion therapy requires a model of the radiobiological effects of high linear energy transfer (LET) radiation. One approach in the context of scanned beam ion therapy is built upon the local effect model (LEM). Within this approach, the description of the radiosensitivity and the behavior versus fractionated photon radiotherapy of both tumor and normal tissue requires input of α/β ratios, usually obtained from in vitro studies. Obtaining tumor-specific, realistic, clinical α/β values is urgently required. This topic is also relevant in hypofractionated photon radiotherapy, where there is an ongoing discussion, if the linear-quadratic (LQ) model represents adequately dose responses at high doses per fraction or if the linear-quadratic-linear (LQ-L) correction is necessary, and which α/β ratio describes better the fractionation effect for NSCLC tumors. The second part of this work presents a review of local control data of early stage NSCLC and models of these dose response data using the LQ and LQ-L approaches. Both, the LQ and LQ-L models can be fitted to clinical normo- and hypofractionated NSCLC outcome data. The LQ-L model yielded a significant value for the Dt of 11.0 Gy for the model based on biologically effective dose (BED) at the isocenter with α/β equal to 10 Gy for the full hypofractionation range; it produced a comparable tumor control probability (TCP) fit to the LQ model. We found a clear dose-effect relationship, which in the high BED region was weaker due to considerable dispersion in the data. For the application of BED (α/β=10 Gy) in the range of 100–150 Gy in three fractions or more, the differences in isoeffects predicted by both models can be neglected. Our findings therefore do not allow us to suggest use of the LQ-L model for an improved fitting compared to the LQ model of local control data in case of hypofractionation. A tentative analysis to establish the optimal α/β ratio in the frame of the LQ model for the full fractionation range did not produce significant estimates, although it showed a trend for α/β values lower than 10 Gy.

Zusammenfassung:
Die Arbeit untersucht Aspekte, die vor einer klinischen Implementierung einer Partikelstrahlentherapie mit einem gescannten Strahl zur Behandlung von Lungentumoren berücksichtigt werden müssen. Im ersten Teil der Arbeit wurde die Reproduzierbarkeit der berechneten Dosisverteilung mit einem gescannten Partikelstrahl zur Behandlung nicht-kleinzelliger Lungentumore (NSCLC) im Stadium I in einem klinischen Szenario untersucht. Die Berechnungen basieren auf einem Datensatz von Patienten, die unter High-Frequency-Jet-Ventilation (HFJV) zur Tumorfixation mittels einer Einzeitbestrahlung mit Photonen behandelt wurden. Bestrahlungspläne für eine Bestrahlung mit Protonen oder Kohlenstoffionen wurden berechnet und bzgl. klinischer Planungsparameter optimiert, um die bestmögliche Dosisabdeckung im Zielgebiet zu erreichen. Inter-fraktionelle anatomische Veränderungen innerhalb einer kurzen Zeitspanne wurden simuliert durch Berücksichtigung der anatomischen Veränderungen zwischen dem Bestrahlungsplanungs-CT und dem Lokalisations-CT vor der Einzeitbestrahlung. Die dosimetrischen Auswirkungen dieser anatomischen Veränderungen (u.a. durch Änderung der Tumorposition und Lagevarianz des Patienten) wurden berechnet. Diese anatomischen Veränderungen wurden mittels Berechnung der water equivalent path length (WEPL) im Eintrittskanal des Strahls quantifiziert und mit der Dosisabdeckung im Zielgebiets korreliert. Zudem wurden Strahl- und Planungsparameter identifiziert, die die dosimetrischen Auswirkungen solcher anatomischer Veränderungen reduzierten, z.B. die Einstrahlrichtung, die Anzahl der Einstrahlrichtungen und die Spotgröße des gescannten Strahls. Wir konnten eine reproduzierbare Tumorfixation durch die HFJV nachweisen. Die Technik garantierte bei den meisten Patienten eine exzellente Dosisabdeckung des Zielgebiets bei einer Einzeitbestrahlung mit Protonen. Bei einer geringen Anzahl von Patienten wurden allerdings nicht akzeptable Abweichungen der Dosisverteilung zum berechneten Bestrahlungsplan beobachten, was die Notwendigkeit einer Kontrolle der Tumorposition und der Patientenlagerung vor jeder Bestrahlungsfraktion mittels Bildgebung verdeutlicht. Hierbei sollten dezidierte Protokolle für die Bildführung einschließlich Interventionsschwellen entwickelt werden, die die Auswirkung anatomischer Veränderungen auf die Dosisverteilung berücksichtigen. Die HFJV scheint Interplayeffekte zuverlässig zu vermeiden. Die biologische Bestrahlungsplanung für die Behandlung mit Kohlenstoffionen erfordert ein biophysikalisches Modell strahlenbiologischer Effekte einer Strahlqualität mit hohem linearen Energietransfer (LET). Ein Modell, das momentan klinisch Anwendung findet, ist das local effect model (LEM). Das Modell beschreibt die Strahlensensitivität und den biologischen Effekt der Ionenbestrahlung im Vergleich zu einer fraktionierten Photonenbestrahlung im Tumor- und Normalgewebe. Das Modell benötigt Inputparameter, u.a. das α/β Verhältnis, das momentan fast ausschließlich aus in vitro Studien bekannt ist. Es besteht daher die Notwendigkeit, tumorspezifische und klinisch realistische Werte für das α/β Verhältnis zu erforschen. Solche tumorspezifische und klinisch realistische Werte für das α/β Verhältnis sind aber auch für eine hypofraktionierte Photonestrahlentherapie hoch relevant. Für solche Dosierungskonzepte wird zudem seit langem diskutiert, ob das Linear-quadratische Modell (LQ) oder das Linear-quadratisch-lineare Modell (LQ-L) solche Dosiseffekte am besten beschreibt und welches α/β Verhältnis für NSCLC adäquat ist, um Fraktionierungseffekte vorherzusagen. Für den zweiten Teil dieser Arbeit wurde daher ein Review publizierter lokaler Kontrollraten von NSCLC im Stadium I nach einer Strahlentherapie erstellt. Die lokalen Kontrollraten nach Radiatio mit unterschiedlichen Fraktionierungskonzepten wurden mathematisch modelliert, wobei Berechnungen mit dem LQ und dem LQ-L Modell durchgeführt wurden. Mit beiden Modellen ließen sich klinische Kontrollraten nach normo und hypofraktionierter Bestrahlung vorhersagen. Das LQ-L Modell ergab einen signifikanten Wert für Dt von 11.0 Gy bei Berechnung der biologisch effektiven Dosis (BED) im Isozentrum bei einem α/β Wert von 10 Gy bei hypofraktionierter Bestrahlung. Dieses Modell sagte eine ähnliche Tumorkontrollwahrscheinlichkeit voraus (TCP), wie das LQ-Modell. Es bestand eine klare Dosis-Effekt-Beziehung, die in der Hochdosisregion allerdings etwas schwächer ausgeprägt war, da hier die Daten stärker streuten. Die Ergebnisse zeigen keine Verbesserung der Vorhersage der lokalen Tumorkontrolle nach einer hypofraktionierten Bestrahlung durch das LQ-L Modell im Vergleich zum LQ Modell. Eine Analyse, um das optimale α/β Verhältnis bei Berechnungen mit dem LQ Modell zu finden, ergab keine signifikanten Wert, allerdings einen Trend zu einem α/β Verhältnis unter 10Gy.

Bibliographie / References

  1. 33. Cheung PCF, Yeung LTF, Basrur V, Ung YC, Balogh J, Danjoux CE. Accelerated hypofractionation for early-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;54:1014-23.
  2. 46. Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Mason D, et al. A comparison of two stereotactic body radiation fractionation schedules for medically inoperable stage I non-small cell lung cancer: the Cleveland clinic experience. J Thorac Oncol. 2009;4:976-82.
  3. 24. Wang JZ, Huang Z, Lo SS, Yuh WTC, Mayr NA. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2:39-48.
  4. 11. Stuschke M, Pottgen C. Altered fractionation schemes in radiotherapy. Front Radiat Ther Oncol. 2010;42:150-6.
  5. 43. Brown WT, Wu X, Fayad F, Fowler JF, García S, Monterroso MI, et al. Application of robotic stereotactic radiotherapy to peripheral stage I non-small cell lung cancer with curative intent. Clin Oncol (R Coll Radiol). 2009;21:623-31.
  6. 2. Joiner MC, van der Kogel AJ. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009.
  7. 4. Bentzen SM, Dörr W, Gahbauer R, Howell RW, Joiner MC, Jones B, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology - terminology, quantities and units. Radiother Oncol. 2012;105:266-8.
  8. 47. Baba F, Shibamoto Y, Ogino H, Murata R, Sugie C, Iwata H, et al. Clinical outcomes of stereotactic body radiotherapy for stage I non-small cell lung cancer using different doses depending on tumor size. Radiat Oncol. 2010;5:81.
  9. 45. Kopek N, Paludan M, Petersen J, Hansen AT, Grau C, Hoyer M. Co-morbidity index predicts for mortality after stereotactic body radiotherapy for medically inoperable early-stage non-small cell lung cancer. Radiother Oncol. 2009;93:402-7.
  10. 37. Zehentmayr F, Wurstbauer K, Deutschmann H, Fussl C, Kopp P, Dagn K, et al. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily: high local control in early stage (I/II) non-small-cell lung cancer. Strahlenther Onkol. 2015;191:256-63.
  11. 5. Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, et al. Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol. 2014;190:26-33.
  12. 7. Fowler JF. Development of radiobiology for oncology - a personal view. Phys Med Biol. 2006;51:R263-86.
  13. 1. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8:1981-97.
  14. 36. Bogart JA, Alpert TE, Kilpatrick MC, Keshler BL, Pohar SS, Shah H, et al. Dose-intensive thoracic radiation therapy for patients at high risk with early-stage non-small-cell lung cancer. Clin Lung Cancer. 2005;6:350-4.
  15. 35. Bradley JD, Wahab S, Lockett MA, Perez CA, Purdy JA. Elective nodal failures are uncommon in medically inoperable patients with stage I non-small-cell lung carcinoma treated with limited radiotherapy fields. Int J Radiat Oncol Biol Phys. 2003;56:342-7.
  16. 28. Martel MK, Ten Haken RK, Hazuka MB, Kessler ML, Strawderman M, Turrisi AT, et al. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer. 1999;24:31-7.
  17. 16. Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49:4825-35.
  18. 52. Hamamoto Y, Kataoka M, Yamashita M, Nogami N, Sugawara Y, Kozuki T, et al. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors. Jpn J Radiol. 2012;30:430-4.
  19. 18. Bush DA, Cheek G, Zaheer S, Wallen J, Mirshahidi H, Katerelos A, et al. High-dose hypofractionated proton beam radiation therapy is safe and effective for central and peripheral early-stage non-small cell lung cancer: results of a 12-year experience at Loma Linda University Medical Center. Int J Radiat Oncol Biol Phys. 2013;86:964-8.
  20. 19. Nihei K, Ogino T, Ishikura S, Nishimura H. High-dose proton beam therapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65: 107-11.
  21. 31. Jeremic B, Shibamoto Y, Acimovic L, Milisavljevic S. Hyperfractionated radiotherapy alone for clinical stage I nonsmall cell lung cancer. Int J Radiat Oncol Biol Phys. 1997;38:521-5.
  22. 20. Hata M, Tokuuye K, Kagei K, Sugahara S, Nakayama H, Fukumitsu N, et al. Hypofractionated high-dose proton beam therapy for stage I non-small-cell lung cancer: preliminary results of a phase I/II clinical study. Int J Radiat Oncol Biol Phys. 2007;68:786-93.
  23. 60. Rwigema JC, Chen AM, Wang PC, Lee JM, Garon E, Lee P. Incidental mediastinal dose does not explain low mediastinal node recurrence rates in patients with early-stage NSCLC treated with stereotactic body radiotherapy. Clin Lung Cancer. 2014;15:287-93.
  24. 50. Videtic GMM, Stephans K, Reddy C, Gajdos S, Kolar M, Clouser E, et al. Intensity-modulated radiotherapy-based stereotactic body radiotherapy for medically inoperable early-stage lung cancer: excellent local control. Int J Radiat Oncol Biol Phys. 2010;77:344-9.
  25. 3. Herrmann T, Baumann M, Dörr W. Klinische Strahlenbiologie - kurz und bündig. 4th ed. Munich: Elsevier; 2006.
  26. 32. Hayakawa K, Mitsuhashi N, Saito Y, Nakayama Y, Furuta M, Sakurai H, et al. Limited field irradiation for medically inoperable patients with peripheral stage I non-small cell lung cancer. Lung Cancer. 1999;26:137-42.
  27. 42. Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol. 2009;27:3290-6.
  28. 53. Lagerwaard FJ, Verstegen NE, Haasbeek CJA, Slotman BJ, Paul MA, Smit EF, et al. Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:348-53.
  29. 8. Kirkpatrick JP, Brenner DJ, Orton CG. Point/counterpoint. the linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys. 2009;36:3381-4.
  30. 25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339:b2535.
  31. 55. Shirata Y, Jingu K, Koto M, Kubozono M, Takeda K, Sugawara T, et al. Prognostic factors for local control of stage I non-small cell lung cancer in stereotactic radiotherapy: a retrospective analysis. Radiat Oncol. 2012;7:182.
  32. 39. Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;66:117-25.
  33. 34. Langendijk JA, Aaronson NK, de Jong JMA, ten Velde GPM, Muller MJ, Slotman BJ, et al. Quality of life after curative radiotherapy in stage I nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;53:847-53.
  34. 27. Bentzen SM, Tucker SL. Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol. 1997;71:531-42.
  35. 14. van Baardwijk A, Bosmans G, Bentzen SM, Boersma L, Dekker A, Wanders R, et al. Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial. Int J Radiat Oncol Biol Phys. 2008;71:1103-10.
  36. 26. Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32:1227-37.
  37. 30. Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C. Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 1993;27:517-23.
  38. 29. R version 2.15.0, 2012-03-30, Copyright (C) 2012, The R Foundation for Statistical Computing, ISBN 3-900051-07-0.
  39. 6. Guckenberger M, Allgauer M, Appold S, Dieckmann K, Ernst I, Ganswindt U, et al. Safety and efficacy of stereotactic body radiotherapy for stage I nonsmall-cell lung cancer in routine clinical practice: a patterns-of-care and outcome analysis. J Thorac Oncol. 2013;8:1050-8.
  40. 22. Astrahan M. Some implications of linear-quadratic-linear radiation doseresponse with regard to hypofractionation. Med Phys. 2008;35:4161-72.
  41. 41. Onimaru R, Fujino M, Yamazaki K, Onodera Y, Taguchi H, Katoh N, et al. Steep dose-response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:374-81.
  42. 58. Takeda A, Sanuki N, Eriguchi T, Kaneko T, Morita S, Handa H, et al. Stereotactic ablative body radiation therapy for octogenarians with nonsmall cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:257-63.
  43. 13. Mehta N, King CR, Agazaryan N, Steinberg M, Hua A, Lee P. Stereotactic body radiation therapy and 3-dimensional conformal radiotherapy for stage I non-small cell lung cancer: a pooled analysis of biological equivalent dose and local control. Pract Radiat Oncol. 2012;2:288-95.
  44. 44. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75:677-82.
  45. 49. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070-6.
  46. 48. Crabtree TD, Denlinger CE, Meyers BF, El Naqa I, Zoole J, Krupnick AS, et al. Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2010;140:377-86.
  47. 56. Takeda A, Kunieda E, Sanuki N, Aoki Y, Oku Y, Handa H. Stereotactic body radiotherapy (SBRT) for solitary pulmonary nodules clinically diagnosed as lung cancer with no pathological confirmation: comparison with non-smallcell lung cancer. Lung Cancer. 2012;77:77-82.
  48. 54. Shibamoto Y, Hashizume C, Baba F, Ayakawa S, Manabe Y, Nagai A, et al. Stereotactic body radiotherapy using a radiobiology-based regimen for stage I non-small cell lung cancer: a multicenter study. Cancer. 2012;118:2078-84.
  49. 57. Inoue T, Katoh N, Onimaru R, Shimizu S, Tsuchiya K, Suzuki R, et al. Stereotactic body radiotherapy using gated radiotherapy with real-time tumor-tracking for stage I non-small cell lung cancer. Radiat Oncol. 2013;8:69.
  50. 40. Fritz P, Kraus HJ, Blaschke T, MAhlnickel W, Strauch K, Engel-Riedel W, et al. Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer. 2008;60:193-9.
  51. 51. Andratschke N, Zimmermann F, Boehm E, Schill S, Schoenknecht C, Thamm R, et al. Stereotactic radiotherapy of histologically proven inoperable stage I non-small cell lung cancer: patterns of failure. Radiother Oncol. 2011;101:245-9.
  52. 17. Laine AM, Pompos A, Timmerman R, Jiang S, Story MD, Pistenmaa D, Choy H. The role of hypofractionated radiation therapy with photons, protons, and heavy ions for treating extracranial lesions. Front Oncol. 2016;5:302.
  53. 9. Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88:254- 62.
  54. 10. Thames HD, Bentzen SM, Turesson I, Overgaard M, Van den Bogaert W. Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol. 1990;19:219-35.
  55. 38. Onimaru R, Shirato H, Shimizu S, Kitamura K, Xu B, Fukumoto S, et al. Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys. 2003;56:126-35.
  56. 21. Krämer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol. 2000;45:3319-30.
  57. 23. Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847-52.
  58. 59. Hamaji M, Chen F, Matsuo Y, Kawaguchi A, Morita S, Ueki N, et al. Video-assisted thoracoscopic lobectomy versus stereotactic radiotherapy for stage I lung cancer. Ann Thorac Surg. 2015;99:1122-9.
  59. 15. Chi A, Wen S, Liao Z, Fowler J, Xu J, Nguyen NP, et al. What would be the most appropriate alpha/beta ratio in the setting of stereotactic body radiation therapy for early stage non-small cell lung cancer. Biomed Res Int. 2013;2013:391021.
  60. 12. Zhang J, Yang F, Li B, Li H, Liu J, Huang W, et al. Which is the optimal biologically effective dose of stereotactic body radiotherapy for stage I nonsmall-cell lung cancer? a meta-analysis. Int J Radiat Oncol Biol Phys. 2011;81: e305-16.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten