Publikationsserver der Universitätsbibliothek Marburg

Titel:Gut microbiota mediates clearance of C. rodentium by phagocytes
Autor:Zarzycka, Agnieszka Ewa
Weitere Beteiligte: Steinhoff, Ulrich (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2017-02935
DDC: Medizin, Gesundheit
Titel(trans.):Die Darmmikrobiota induziert die Eliminierung von C. rodentium durch Phagozyten


Phagozytose, C. rodentium, phagocytosis, C. rodentium, C. rodentium, Neutrophil, Neutrophil, neutrophil, Phagozytose

Infections with enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli (E. coli) are a major cause of diarrhoea in the developing world. Asymptomatic EPEC-carriers are thought to be an important reservoir for these pathogens since they excrete pathogens unknowingly and thereby infect other people and spread disease. With C. rodentium we were able to mimic long-termcarrier situations in mice without gut microbiota. This enabled us to investigate how commensal bacteria initiate clearance of enteropathogens. During this work, we could show that a healthy gut microbiota influences the expression of inflammatory factors like IL-17A and consequently CXCL2 and ICAM- 1, thus mediating migration of neutrophils into the colon. Furthermore, we found that commensal bacteria enhance the phagocytic activity of neutrophils and in parallel elevate colonic IgG levels, subsequently leading to an efficient uptake and killing of C. rodentium. However, our findings demonstrate that in absence of gut microbiota these immune responses are impaired. As a consequence, this leads to a lifelong persistence of C. rodentium, which adapt a commensal-like phenotype at late time points of infection. Importantly, we here show that impaired immune responses can be restored by the transfer of gut microbiota, thus enabling clearance of the enteropathogen. Although many prior investigations have focused on infection with C. rodentium, it was not understood how gut microbiota induces clearance of the enteropathogen. The findings from this work might provide information for microbiota mediated preventive and therapeutic treatments of asymptomatic EPEC-carriers.

Infektiöse Durchfallerkrankungen, wie die durch enterohämorrhagische (EHEC) und enteropathogene (EPEC) E. coli verursachten, stellen besonders in Entwicklungsländern ein großes medizinisches Problem dar. Symptomlose Langzeitträger werden als gefährliches Reservoir angesehen, weil sie die Infektion unwissentlich verbreiten. Mit C. rodentium, einem Modelkeim für EHEC/EPEC Infektionen in der Maus, konnten wir in keimfreien Mäusen eine Langzeitinfektion etablieren, um den Einfluss kommensaler Bakterien für die Abwehr von enteropathogenen Keimen zu erforschen. Es konnte gezeigt werden, dass die normale, intestinale Mikrobiota die Expression inflammatorischer Faktoren wie IL-17A, CXCL2 und ICAM-1 beeinflusst, die an der Migration von Neutrophilen in das Colon beteiligt sind. Zusätzlich konnten wir zeigen, dass kommensale Keime die phagozytische Aktivität von Neutrophilen und die Konzentration an IgG im Colon erhöhen und somit eine effiziente Aufnahme und Abtötung von C. rodentium ermöglichen. Wir konnten weiterhin zeigen, dass diese Immunreaktionen in Abwesenheit von Darmbakterien stark beeinträchtigt sind, sodass C. rodentium lebenslang in keimfreien Mäusen persistiert und sich vom pathogenen in ein kommensales Bakterium verwandelt. Von enormer Bedeutung ist der Befund, dass die antibakterielle Abwehr durch den Transfer von Darmbakterien wiederhergestellt werden kann und es zu einer Eliminierung der enteropathogenen Keime kommt. Obwohl Infektionen mit C. rodentium im Fokus vieler früherer Forschungsarbeiten standen, war bisher noch unverstanden, wie Darmbakterien eine Eliminierung der enteropathogenen Bakterien induzieren. Die aus dieser Arbeit gewonnen Erkenntnisse können für die präventive und therapeutische Behandlung asymptomatischer EPEC- Langzeitträger von Bedeutung sein.

Bibliographie / References

  1. Ehrengruber, M. U., Geiser, T., Deranleau, D. A. (1994) Activation of human neutrophils by C3a and C5a. Comparison of the effects on shape changes, chemotacis, secretion, and respiratory burst. FEBS Lett. 346: 181-184.
  2. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. and Kaper, J. B. (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci 92: 1664-1668.
  3. Jerse, A. E., Yu, J., Tall, B. D., and Kaper J. B. (1990) A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci 87: 7839-7843.
  4. Van Rooijen, N., Sanders, A. and van den Berg, T. K. (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193(1): 93-99.
  5. Giron, J. A., Ho, A. S.Y., Schoolnik G. K. (1991) An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254: 710-713.
  6. (1998) A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17: 2166- 2176.
  7. Rosenshine, I., Ruschkowski, S., Stein, M., Reinscheid, D. J., Millis, S. D., and Finlay B. B. (1996) A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15(11): 2613-2624.
  8. Stevenson, J.S. (1950) Bact. Coli D433 in cases of diarrhoea in adults. Br Med J 2: 195-196.
  9. Gerard, C., and Gerard, N. P. (1994) C5A anaphylatoxin and ist seven transmembrane-segment receptor. Annu Rev Immunol 12: 775-808.
  10. Suzuki, M. M., Satoh, N., and Nonaka, M. (2002) C6-like and C3-like molecules from the cephalochordate, amphioux suggest a cytolytic complement system in invertebrates, J Mol Evol 54: 671-679.
  11. Stroud, R. M., Austen, K. F., and Mayer, M. M. (1965) Catalysis of C2 fixation by C1a: Reaction kinetics, competitive inhibition by TAMe, and transferase hypothesis of the enzymatic action of C1a on C2, one of ist natural substrates. Immunochemistry 2: 219-234.
  12. Kretzschmar, T., Jeromin, A., Gietz, C., Bautsch, W., Klos, A., Köhl, J., Rechkammer, G., Bitter, and Suermann, D. (1993) Chronic myelogenous leukemia-derived basophilic granulocytes express a functional active receptor for the anaphylatoxin C3a. Eur J Immunol 23: 558-561.
  13. Collons, J.W:, Keeney, K.M., Crepin, V.F., Rathinam, V.A.K., Fitzgerald, K.A., Finlay, B.B. and Frankel, G. (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat rev Microbio 12: 612-623.
  14. Klapproth, J. M., Sasaki, M., Sherman, M., Babbin, B., Donnenberg, M. S., and Fernandes, P. J. (2005) Citrobacter rodentium lifA/efa1 is essential for colonic colonization and crypt cell hyperplasia in vivo. Infect Immun 73: 1441-1451.
  15. Mundy, R., MacDonald, T. T., Dougan, G., Frankel, and G., Wiles, S. (2005) Citrobacter rodentium of mice and man. Ce. Microbiol 7: 1697-1706 Murray, P. J. and Wynn, T. A. (2011) Protective and pathogenic functions of macrophage subsets. Nature reviews Immunol 11: 723-737.
  16. and Kokesova, A. (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Let 93: 97- 108.
  17. Kanther, M., Tomkovich, S., Sun, X., Grosser, M. R., Koo, J., Flynn, E. J., Jobin, C., and Rawls, J. F. (2014) Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A. Cell Microbiol 16(7): 1053-1067.
  18. Morland, B., Smievoll, A. and Midtvedt, T. (1979) Comparison of peritoneal macrophages from germfree and conventional mice. Infect Immun 26: 1129-1136.
  19. Dunkelberger, J. R., Song, W. C. (2010) Complement and ist role in innate and adaptive immune responses. Cell Research 20: 34-50.
  20. Donnenberg, M. S., and Kaper, J. B. (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect and Immunity 59(12): 4310-4317.
  21. Lacy, P. and Eitzen, G. (2008) Control of granule exocytosis in neutrophils. Front Biosci 13: 5559-55570.
  22. Jin, M. S., SE, Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H., and Lee, J. O. (2007) Crystal structure of the TLR1-TLR22 heterodimer induced by binding of a tri-acetylated lipopeptide. Cell 130(6): 1071-1082.
  23. Spehlmann, M. E., Dann, S. M., Hruz, P., Hanson, E., McCole, D. F. and Eckmann, L. (2009) CXCR2-Dependent Mucosal Neutrophil Influx Protects against Colitis-Associated Diarrhea Caused by an Attaching/Effacing Lesion-Forming Bacterial Pathogen. J Immunol 183(5): 3332-3343.
  24. Nataro, J. P., and Kaper, J. B. (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142-201.
  25. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. (2005) Diversity of the Human Intestinal Microbial Flora. Science 308: 1635-1638.
  26. Donnenberg, M. S., and Kaper, J. B. (1992) Enteropathogenic Escherichia coli.
  27. Jarvis, K. G., Giron, J. A., Jerse, A. E., McDaniel, T. K., Donnenberg, M. S., andKaper, J. B. (1995) Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci 92: 7996-8000.
  28. Thomson, S., Watkins, A. G., Gray, O. P. (1956) Escherichia coli gastroeneritis.
  29. Kaiserlian, D., Rigal, D., Abello, J. and Revillard, J. P. (1991) Expression, functiona and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Eur J Immunol 21(10): 2415-2421.
  30. Nimmerjahn, F., and Ravetch, J. V. (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8: 37-47.
  31. Nimmerjahn, F., and Ravetch, J. V. (2006) Fcgamma receptors: old friends and new family members. Immunity 24: 19-28.
  32. Masuda, A., Yoshida, M., Shiomi, H., Ikezawa, S., Takagawa, T., Tanaka, H., Chinzei, R., Ishida, T., Morita, Y., Hiromu, K., Inokuchi, H., Wang, S., Kobayashi, K., Mizuno, S., Nakamura, A., Takai, Toshiyuki, T., Blumberg, R. S., and Azuma, T. (2008) Fcγ Receptor Regulation of Citrobacter rodentium Infection. Infect and Immun 76(4): 1728-1737.
  33. Stevenson, J. S. (1952) Further observations on the occurence of Bact. Coli D433 in adult faeces. Br Med J 2: 123-124.
  34. Semerad, C. L., Liu, F., Gregory, A. D., Stumpf, K., Link and D. C. (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17(4): 2791-2808.
  35. Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A., Waller, A., Mende, D. R., Kultima, J. R., Martin, J., Kota, K., Sunyaev, S. r., Weinstock, G. M. and Bork, P. (2012) Genomic variation landscape of the human gut microbiome. Nature 493(7430): 45-50.
  36. Sheshachalam, A., Srivestava, N., Mitchell, T., Lacy, P. and Eitzen, G. (2014) Granule protein processing and regulated secretion in neutrophils. Frontiers in Immunol 5(448): 1-11.
  37. Shin, H. S., Pickering, R. J., Mayer, M. M., and Cook, C. T. (1968) Guinea pig C5. J of Immunol 101: 813.
  38. Kamada, N., Sakamoto, K., Seo, S. U., Zeng, M. Y., Kim, Y. G., Cascalho, M., Vallance, B. A., Puente, J. L. and Nunez, G. (2015) Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host Microbe 17(5): 617-627.
  39. Kawaguchi, M., Adachi, M., Oda, N, Nokubu, F. and Huang SK (2004) IL-17 cytokine family. J Allergy Clin Immunol 114(6): 1265-1273.
  40. Song, C., Luo, L., Lei, Z., Li, B., Liang, Z., Liu, G., Li, D., Zhang, G. and Huang, B. (2008) IL-17-Producing Alveolar Macrophages Mediate Allergic Lung Inflammation Related to Asthma. J Immunol 181(9): 6117-6124.
  41. Ferreira, P.C.D., da Silva, J.B., Piazza, R.M.F., Eckmann, L., Ho, P.L. and Oliveira, M.L.S. (2011) Immunization of Mice with Lactobacillus casei Expressing a Beta-Intimin Fragment Reduces Intestinal Colonization by Citrobacter rodentium. Clin Vacc Immunol 18(11): 1823-1833.
  42. Shimizu, A. and Honjo, T. (1984) Immunoglobulin Class Switching. Cell 36: 801- 803.
  43. Rojas, R. and Apodaca, G. (2002) Immunoglobulin transport across polarized epithelial cells. Nature Rev 3: 944-956.
  44. Kugadas, A., Christiansen, S. H., Sankaranarayanan, S., Kurana, N. K., Gauguet, S., Kunz, R., Fichorova, R., Vorup-Jensen and T., Gadjeva, M. (2016) Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis.
  45. Jungi, T. W. and McGregor, D. D. (1978) Impaired chemotactic responsiveness of macrophages from gnotobiotic rats. Infect Immun 19(2): 553-561.
  46. Ohkubo, T., Tsuda, M., Tamura, M. and Yamamura, M. (1990) Impaired superoxide production in peripheral blood neutrophils of germ-free rats. Scand. J. Immunol. 32: 727-729.
  47. Dijstelbloem, H. M., van de Winkel, J. G., and Kallenberg, C. G. (2001) Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 22: 510-516.
  48. Janeway Jr., C. A., Medzhitov, R. (2002) Innate immune recognition. Ann Rev Immunol 20: 197-216.
  49. Sonnenberg, G. F. and Artis, D. (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21: 698-708.
  50. Donnenberg, M. S., Kaper, J. B., and Finlay, B. B. (1997) Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol 5: 109-114.
  51. Onishi, R. M. and Gaffen, S. L. (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunol. 129(3): 311-321.
  52. Kolls, J.K. and Linden, A. (2004) Interleukin-17 family members and inflammation. Immunity 21(4): 467-76.
  53. Schreiber, H. A., Loschko, J., Karssemeijer, R. A., Escolano, A., Meredith, M. M., Mucida, D., Guermonprez, P. and Nussenzweig, M. C. (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210(10): 2025-2039.
  54. Lam, K. P., Kuhn, R. and Rajewsky, K. (1997) In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90: 1073-1083.
  55. Muzio, M., Ni, J., Feng, P., and Dixit, V. M. (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343): 1612-1615.
  56. Sawa, S., Cherrier, M., Lochner, M., Satoh-Takayama, N., Fehling, H., J., Langa, F., Di Santo, J. P. and Eberl, G. (2010) Lineage Relationship Analysis of RORᵞt+ Innate Lymphoid Cells. Science 330(6004): 665-669.
  57. Kondo, M. (2010) Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol rev 238(1): 37-46.
  58. Ohno, Y., Lee, J., Fusunyan, R.D., MacDermott, R.P. and Sanderson I.R. (1997) Macrophage inflammatory protein-2: chromosomal regulation in rat small intestinal epithelial cells. Proc Natl Acad Sci 94(19): 10279-10284.
  59. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999) MD-2. A molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777-1782.
  60. Satoh-Takayama, N., Vosshenrich, C. A., Lesjean-Pottier, S., Sawa, S., Lochner, M., Rattis, F., Mention, J. J., Thiam, K., Cerf-Bensussan, N., Mandelboim, O., Eberl, G. and Di Santo, J. P. (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29(6): 958-970.
  61. Karmarkar, D. and Rock, K. L. (2013) Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology 140(4): 483-492.
  62. Ohtsuka, Y., Lee, J., Stamm, D. S. and Sanderson, I. R. (2001) MIP-2 secreted by epithelial cells increases neutrophil and lymphocyte recruitment in the mouse intestine. Gut 49: 526-533.
  63. Klein, P. G and Wellensiek, H. J. (1965) Multiple nature of the third component of guineapig complement. I. Seperation and characterization of three factors, a, b, and c essential for hemolysis. Immunology 8: 590-603.
  64. Foxman, E. F., Campbell, J. J. and Butcher, E. C. (1997) Multistep navigation and the combinatorial control of leukocyte chemotaxis. J Cell Biol 139: 1349- 1360.
  65. Gibson, D. L., Ma, C., Bergstrom, K. S. B., Huang, J. T., Man, C., and Vallance, B. A. (2008) MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell Microbiol 10(3): 618-631.
  66. Schwab, L., Goroncy, L., Palaniyandi, S., Gautam, S., Triantafyllopoulou, A., Mocsai, A., Reichardt, W., Karlsson, F. J., Radhakrishnan, S. V., Hanke, K., Schmitt-Graeff, A., Freudenberg, M., von Loewenich, F. D., Wolf, P., Leonhardt, F., Baxan, N., Pfeifer, D., Schmah, O., Schönle, A., Martin, S. F., Mertelsmann, R., Duyster, J., Finke, J., Prinz, M. and Henneke, P (2014) Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versushost disease via tissue damage. Nature medicine 20: 648-654.
  67. Colgan S. P., Parcos, C. A., Delp C., Arnout, M. A. and Madara, J. L. (1993) Neutrophil migration across cultures epithelial monolayers is modulated by epithelial exposure to IFN-gamma in a highly polarized fashion. J Cell Biol 120: 785- 798.
  68. Kolaczkowska, E and Kubes, P. (2013) Neutrophil recruitment and function in health and inflammation. Nature rev. 160(13): 159-175.
  69. Mantovani, A., Cassatella, M. A., Costantini, C. and Jaillon, S. (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11: 519-531.
  70. Wachleche, V.S., Goulet, J.P., Gosselin, A., Monteiro, P., Soudeyns, H., Fromentin, R., Jenabian, M.A., Vartanian, S., Deeks, S.G., Chomont, N., Routy, J.P. and Ancuta, P. (2016) New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology 13: 1-25.
  71. Klasse, P. J. and Sattentau, Q. J. (2002) Occupancy and mechanism in antibodymediated neutralization of animal viruses. J Gen Virol 83(9): 2091-2108.
  72. Stark, M. A., Huo, Y., Burcin, T. L., Morris, M. A., Olsen, T. S. and Ley, K. (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL17. Immunity 22: 285-294.
  73. Fujita, T., Endo, J., Nonaka, M. (2004) Primitive complement system-recognition and activation. Mol Immunol 41: 103-111.
  74. Kang, J. Y., Nan, X., Jin, M. S., Youn, S. J., Ryu, Y. H., Mah, S., Han, S. H., Lee, H. Paik, S. G., Lee, J. O. (2009) Recognition of lipopeptide pattern by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6): 873-884.
  75. (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2): 228-231.
  76. Killing, M., Glatzer, T. and Romagnani, C. (2014) Recognition strategies of group 3 innate lymphoid cells. Frontiers in Immunol. 5(142): 1-8.
  77. and Nunez, G. (2012) Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota. Science 336: 1325-1329.
  78. Van Buuhl, J. D., Allingham, M. J., Samson, T., Meller, J., Boulter, E., GarciaMata, R. and Burridge, K. (2007) RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 178: 1279-1293.
  79. Kamada, N., Seo, S., Chen, G. Y. and Nunez, G. (2013) Role of the gut microbiota in immunity and inflammatory disease. Nature Rev Immunol 13: 321-335.
  80. Vinolo, M. A., Ferguson, G. J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, M., Stephens, L., Hawkins, P. T., Curi, R. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS one 6(6): e21205.
  81. Miyata, R., Iwabuchi, K., Watanabe, S., Sato, N. and Nagaoka, I. (1999) Short exposure of intestinal epithelial cells to TNF-alpha and histamine induces Mac-Imediated neutrophil aadhesion independent of protein synthesis. J Leukoc Biol 66: 437-446.
  82. Muthupalani, S., Z, G., Y, F., Rickman, B., Mobley, M., McCabe, A., Van Rooijen, N. and Fox, J.G. (2012) Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/- mouse model of inflammatory bowel disease. Infect Immun 80(12): 4388-4397.
  83. Von Andrian, U. and Mackay, C. (2000) T-cell function and migration: two sides of the same coin. N Engl J med 343: 1020-1034.
  84. Lyadova, V. and Panteleev, A. V. (2015) Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators of Inflamm 2015: 1-13.
  85. Smith, K. M., Pottage, L., Thomas, E. R., Leishman, A. J., Doig, T. N., Xu, D., Liew, F. Y. and Garside, P. (2000) Th1 and Th2 CD4+ T Cells Provide Help for B Cell Clonal Expansion and Antibody Synthesis in a Similar Manner in Vivo. J of Immunol 165: 3136-3144.
  86. Flannagan, R. S:, Jaumouille, V. and Grinstein, S. (2012) The Cell Biology of Phagocytosis. Annu Rev Pathol Mech Dis 7: 61-98.
  87. C., McNamara, B. P., Donnenberg, M. S., and Kaper, J. B. (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28: 1-4.
  88. Marrack, P., Lo, D., Brinster, R., Palmiter, R., Burkly, L., Flavell, R. H. and Kappler, J. (1988) The Effect of Thymus Environment on T Cell Development and Tolerance. Cell 53: 627-634.
  89. Naff, G. B., and Ratnoff, O. D. (1968) The enzymatic nature of C1r. Conversion of C1s to C1 esterase and digestion of amino acid esters by C1t. J of Exp Med 128: 571-593.
  90. Steegmaier, M., Borges, W., Berger, J., Schwarz, H. and Vestweber, D. (1997) The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell sufrace. J Cell Sci 110: 687-694.
  91. Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood., L. E. and Aderem, A. (2005) The evolution of vertebrate Toll-like receptors. PNAS 102(27): 9577-9582.
  92. Kim, Y, Kamada, N., Shaw, M. H., Warner, N., Chen, G. Y., Franchi, L. and Nunez, G. (2011) The intracellular sensor Nod2 Promotes Intestinal Pathogen Eradiction via the chemokine CCL2-Dependent Recruitment of Inflammatory Monocytes. Immunity 34(5): 769-780.
  93. Deshmukh, H. S., Liu, Y., Menkiti, O. R., Mei, J., Dai, N., O'Leary, C. E., Oliver, P. M., Kolls, J. K., Weiser, J. N. and Worthen, G. S. (2014) The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature medicine 20(5): 524-532.
  94. Markiewski, M. M. and Lambris, J. D. (2007) The Role of Complement in Inflammatory Diseases From Behind the Scenes into the Spotlight. Am J Pathol 171(3): 715-727.
  95. Malzer, C., Liu, Q., Carroll, M. C., and Bry, L. (2011) The role of specific IgG and complement in combating a primary mucosal infection in the gut epithelium. Eur J of Microbiol and Immunol 4: 311-318.
  96. Tillack, K., Breiden, P., Martin, R. and Sospedra, M. (2012) T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol 188: 3150-3159.
  97. Gibson, D. L., Ma, C., Rosenberger, C. M., Bergstrom, K. S. B., Valdez, Y., Hunag, J. T., Khan, M. A., and Vallance, B. A. (2008) Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 10(2): 388-403.
  98. (2002) Transcriptional mechanism underlying lymphocyte tolerance. Cell 109(6): 719-731.
  99. Visekruna, A., Linnerz, T., Martinic, V., Vachharajani, N., Hartmann, S., Harb, H., Joeris, T., Pfefferle, P. I., Hofer, M. J. and Steinhoff, U. Transcription factor c-Rel plays a crucial role in driving anti-CD40-mediated innate colitis. Mucosal Immunol 8(2): 307-315.
  100. Mangan, P. R., Harrington, L. E., OQinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R., Weaver, C. T. (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 11(441): 231-234.
  101. Sumagin, R., Robin, A. Z., Nusrat, A., Parkos, C. A. (2014) Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol 7(4): 905-915.
  102. (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten