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Summary 

Actin filaments are a fundamental component of the cytoskeleton. In eukaryotes, 

dynamic actin rearrangement plays a crucial part in cellular processes such as 

morphogenesis, adhesion, cell motility, cytokinesis and intracellular vesicle transport. 

Numerous aspects of actin dynamics in the cytoplasm of eukaryotic cells have been 

studied intensely over the past decades. Those studies revealed a very detailed 

knowledge about the structure and function of actin filaments as well as about the 

underlying mechanisms of F-actin formation.  

Though actin and proteins involved in actin assembly or disassembly have also been 

detected in the nuclei of many different eukaryotic cells lines, the detailed regulation 

and function of actin in the nuclear compartment is poorly defined. Monomeric 

nuclear actin was identified to participate in specific events such as transcriptional 

regulation or chromatin remodeling. Nevertheless, the existence and role of 

filamentous actin inside the nucleus has been controversially debated for years.  

Quite recently, specific actin probes have been described which enabled credible 

visualization of nuclear F-actin structures and provided a first insight into the 

regulation and function of actin polymerization in the nucleus. For example, a role for 

nuclear F-actin in response to DNA damage and efficient DNA repair as well as in the 

regulation of the SRF coactivator MRTF-A has been reported. Both events were shown 

to involve the assembly of nuclear actin filaments mediated by members of the formin 

family of actin nucleators.  

In this work, we provide evidence of a nuclear function of the disease associated 

formin INF2. We identified that activation of endogenous INF2 in the nucleus by means 

of INF2-DID-NLS or INF2-DAD-NLS expression mediated release of autoinhibition 

promotes the assembly of a nuclear F-actin network. We further observed that INF2 

mediated nuclear actin rearrangement efficiently regulates the translocation and 

activity of MRTF-A. Moreover, by deletion of INF2 using the CRISPR/Cas9 system as 

well as by siRNA mediated INF2 knockdown we could show that INF2-DAD-NLS driven 
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nuclear F-actin formation is primarily dependent on the presence of endogenous INF2. 

However, our data suggest concomitant modulation of nuclear mDia activity upon the 

release of INF2 autoinhibition in the nucleus.  

This study provides evidence for a role of the formin INF2 in the promotion and the 

formation of a nuclear actin network and thereby regulating the subcellular 

localization of MRTF-A and subsequent alteration of MRTF/SRF transcriptional activity.  
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Zusammenfassung 

Aktinfilamente sind ein wesentlicher Bestandteil des eukaryotischen Zellskeletts. Durch 

einen dynamischen Auf- und Abbau dieser Filamente werden zelluläre Vorgänge, wie 

etwa Morphogenese, Mobilität, Zellteilung oder der intrazelluläre Vesikeltransport, 

beeinflusst. Verschiedenste Faktoren, die bei dem dynamischen Umbau von 

Aktinfilamenten im Zytoplasma eine Rolle spielen, wurden in den letzten Jahren und 

Jahrzehnten ausgiebig studiert. Dank dieser Studien haben wir heute ein durchaus 

detailliertes, aber bei weitem nicht vollständiges Bild der genauen Struktur und 

Funktion von Aktinfilamenten, sowie der zugrundeliegenden Mechanismen, welche bei 

der Ausbildung eben dieser Filamente eine Rolle spielen. 

Interessanterweise wurden sowohl Aktin als auch einige weitere Proteine, welche 

üblicherweise am Auf- und Abbau von zytoplasmatischen Aktinfilamenten beteiligt 

sind, auch im Zellkern verschiedenster eukaryotischer Zelltypen nachgewiesen. Über 

die Regulierung und die Funktion von Aktin im Nukleus ist momentan allerdings nur 

sehr wenig bekannt. Beispielsweise wurde gezeigt, dass monomeres Aktin im Zellkern 

an der Umgestaltung von Chromatin beteiligt ist und die Gen-Transkription beeinflusst. 

Die Existenz und die Funktion von kernständigen Aktinfilamenten wurden jedoch von 

zahlreichen Forschergruppen über viele Jahre hinweg kontrovers diskutiert.  

Erst kürzlich konnten mithilfe spezifischer Aktin-bindender Sonden Aktinfilamente im 

Zellkern zuverlässig und überzeugend visualisiert werden. Dadurch wurden erstmals 

auch Details über ihre Regulierung und ihre Funktion im Nukleus bekannt. Zum Beispiel 

wurde gezeigt, dass kernständige Aktinfilamente eine wichtige Rolle bei der zellulären 

Antwort auf DNA-Schäden und der darauffolgenden DNA-Reparatur spielen. Zusätzlich 

sind sie in die Regulierung des MRTF/SRF-Signaltransduktionsweges involviert. Bei 

beiden genannten Prozessen wird die Bildung von kernständigen Aktinfilamenten 

durch Proteine aus der Familie der Formine begünstigt. 

Die vorliegende Doktorarbeit zeigt, dass auch das Formin INF2 zu Aktin-bezogenen 

Effekten im Nukleus führt. Beispielsweise löst die Expression einer isolierten, 
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kernständigen INF2-DID oder einer isolierten, kernständigen INF2-DAD eine spezifische 

Aktivierung von endogenem INF2 im Zellkern aus. Dadurch kommt es dort zur 

Aufhebung der Autoinhibierung von INF2, was wiederum zur Bildung von 

Aktinfilamenten im Nukleus führt. Außerdem haben wir beobachtet, dass der INF2-

gesteuerte Aufbau von kernständigen Aktinfilamenten eine Anreicherung des SRF-

Kofaktors MRTF-A im Zellkern bewirkt. Nach einer Reduktion oder einer vollständigen 

Deletion von INF2 in der Zelle kamen wir zu der Erkenntnis, dass die kernständigen 

Filamente, welche nach der Expression der INF2-DAD im Zellkern gebildet werden, 

primär vom Vorhandensein von endogenem INF2 abhängig sind. Unsere Daten weisen 

allerdings auch darauf hin, dass mittels dieser Methode zur INF2-Aktivierung neben 

kernständigem INF2 zusätzlich mDia-Formine im Nukleus koreguliert werden. 

Zusammengefasst beschreibt diese Arbeit, dass das Formin INF2 auch im Zellkern an 

der Bildung von Aktinfilamenten beteiligt ist und dass die Lokalisierung von MRTF-A 

sowie, in weiterer Folge, die transkriptionelle Aktivität des MRTF/SRF Signalwegs 

dadurch beeinflusst werden können.  
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1. Introduction 

The existence of a cytoskeleton was revealed in all three domains of life (prokaryotic, 

eukaryotic and archaea) where it forms an intracellular filamentous scaffold 

(Wickstead and Gull, 2011). It is in charge of a wide variety of fundamental features 

such as providing mechanical resistance to deformation, defining the cellular shape 

and mechanics during processes like migration and cytokinesis, linking the cell 

physically and biochemically to the extracellular matrix, organizing the contents of the 

cells or intracellular cargo transport. Three main classes of cytoskeletal structures have 

been described in eukaryotes: actin filaments, microtubules and the heterogeneous 

group of intermediate filaments. In general, cytoskeletal structures are dynamically 

and adaptively modulated by the assembly or disassembly of monomeric subunits into 

polymers and vice versa, mediated by numerous regulatory and structural proteins 

(Fletcher and Mullins, 2010).  

In the last decades, studies addressing components of the cytoskeleton revealed 

numerous details and information concerning their structures, functions as well as 

their mechanisms of formation. In contrast, there is only a minor knowledge about the 

rather vaguely defined ‘nucleoskeleton’ (Simon and Wilson, 2011). The general 

concept of the term nucleoskeleton includes the composition and function of the 

nuclear architecture involved in processes such as maintaining the nuclear shape, gene 

expression, chromatin remodeling, DNA processing, cell signaling and of course the 

dynamic reorganization, for instance during mitosis. The nucleoskeleton is mainly 

composed of lamin filaments, actin, multisubunit proteins and the genome (Dahl and 

Kalinowski, 2011). It is connected to the cytoskeleton through the LINC complex which 

transmits mechanical stimuli and signaling cues from the cytoplasm to the nucleus and 

vice versa (Ostlund et al., 2009).  

Actin was shown to be a key component in both nucleo- and cytoskeleton, although it 

might be differentially organized and regulated and might fulfill differing functions in 

the nucleus and the cytoplasm. Many previous studies proposed the existence of actin 
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in the nucleus solely in a monomeric or short oligomeric state, rather executing 

regulatory or accessory functions than structural or mechanical tasks (Pederson, 2008; 

Pederson and Aebi, 2002). However, quite recently, long nuclear actin filaments could 

be visualized within somatic cell nuclei, together with first insights into nuclear F-actin 

regulation and function (Baarlink et al., 2013; Belin et al., 2013; Plessner et al., 2015). 

Nevertheless, further exploration of nuclear actin and nuclear actin binding proteins is 

needed to fill the gaps in our current understanding of the regulatory mechanistic and 

functions of F-actin in the nucleus. 

 

1.1 The actin cytoskeleton 

Among the three types of cytoskeletal filamentous structures, actin filaments form the 

thinnest with a diameter of 5 – 9 nm (Holmes et al., 1990). Multiple F-actin cross-

linking proteins can organize actin filaments into bundles or network like structures 

(Dubreuil, 1991; Tseng et al., 2005; Tseng et al., 2002). These higher-order actin 

structures can shape into multiple varying intracellular structures such as stress fibers 

or cortical actin, as well as into cellular extensions as microvilli (DeRosier and Tilney, 

2000), podosomes (Gimona et al., 2008), filopodia (Mattila and Lappalainen, 2008), 

lamellipodia (Small et al., 2002) or membrane blebs (Fackler and Grosse, 2008). Due to 

their diversity, various actin structures can fulfill a wide variety of cellular functions, 

such as cytokinesis, cell adhesion, cell contraction, cell migration, intracellular 

transport as well as the regulation of cell-cell contacts, cell polarity and cell shape 

(Dominguez and Holmes, 2011; Glotzer, 2001; Olson and Sahai, 2009; Pollard and 

Cooper, 2009). Furthermore, a function of actin in the regulation of gene transcription 

has been described (Bunnell et al., 2011; Louvet and Percipalle, 2009; Olson and 

Nordheim, 2010).  
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1.1.1 Actin assembly and disassembly 

The highly conserved cytoskeletal component actin is one of the most abundant 

proteins in eukaryotic cells (Dominguez and Holmes, 2011). Mammalians express six 

different actin isoforms. Each isoform is encoded by a separate gene and carries out 

unique cellular functions. Two of those six isoforms, namely β-cyto-actin and γ-cyto-

actin, are ubiquitously expressed, whereas the remaining four isoforms, α-skeletal-

actin, α-cardiac-actin, α-smooth-actin and γ-smooth-actin, are expressed primarily in 

skeletal, cardiac or smooth muscle cells (Perrin and Ervasti, 2010).  

Actin exists in two different forms inside cells, either as globular monomer (G-actin) or 

as polymerized filamentous structure (F-actin), forming a twisted double helix (Holmes 

et al., 1990). The 42 kDa large actin monomers are composed of four subdomains with 

an ATP/ADP binding cleft (Otterbein et al., 2001). During F-actin assembly, ATP-bound 

G-actin gets incorporated into the polymeric F-actin structure at the so called barbed 

end (plus end), with its ATP/ADP binding cleft directed to the pointed end (minus end), 

thus leading to structural polarity of F-actin (Begg et al., 1978; Dominguez and Holmes, 

2011; Wegner and Isenberg, 1983). As actin also possesses an ATPase function, ATP 

gets hydrolyzed upon incorporation of the actin monomer into the growing filament. 

Thus, the actin filament contains just ADP after some time at the pointed end. As F-

actin which binds ADP is less stable than that binding ATP, the filament gets 

depolymerized at the pointed end (Dominguez and Holmes, 2011). This constant 

process of dissociation of actin monomers from the pointed end and simultaneous 

incorporation of G-actin at the barbed end is called actin treadmilling (Bugyi and 

Carlier, 2010).  

To maintain an equilibrium between assembly and disassembly of actin filaments at 

steady state conditions or to modulate F-actin formation or depolymerization upon 

diverse cell signaling events multiple additional proteins were described to interact 

with actin structures (Figure 1). For example, several capping proteins, such as F-actin 

capping protein or gelsolin, were discovered that bind to the barbed end of F-actin and 

thus prevent elongation of the filament (Kim et al., 2010; Sun et al., 1999). To 
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modulate disassembly of actin filaments, capping proteins such as tropomodulin can 

also bind to the filament’s pointed end (Pollard et al., 2000; Weber et al., 1994). 

Proteins as profilin for instance were shown to form a complex with ATP bound G-actin 

and bind to the barbed end, thereby enhancing the elongation of F-actin (Pollard et al., 

2000; Pring et al., 1992). Contrariwise, severing proteins, such as members of the actin 

depolymerizing factor (ADF)/cofilin family, promote depolymerization of actin 

filaments at the pointed end (Theriot, 1997).  

 

Figure 1: Regulation of actin turnover 

The twisted double-helical actin filament is assembled by adding ATP-bound G-actin to the barbed end. 

Upon hydrolysis of ATP to ADP the filament is destabilized and facilitates the binding of severing 

proteins such as ADF. This results in depolymerization of F-actin at the pointed end and free ADP-bound 

G-actin. ADP-actin monomers can then be recycled through nucleotide exchange. Profilin then either 

binds directly to ATP-actin monomers or, with a lesser affinity, to ADP-G-actin, thereby promoting 

nucleotide exchange. Subsequently, profilin directs ATP-bound actin monomers to free barbed ends. 

Capping proteins prevent binding of G-actin to the barbed end and thus inhibit the filament from being 

elongated. The image was adapted from (Le Clainche and Carlier, 2008).  
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1.2 Regulation of actin nucleation and elongation 

The initial assembly of actin filaments from G-actin requires the formation of a trimeric 

actin complex. This process is called actin nucleation. Although it was shown in vitro 

that purified G-actin can self-assemble into F-actin, spontaneous nucleation is 

kinetically unfavorable and is the rate-limiting step in actin polymerization 

(Campellone and Welch, 2010; Sept and McCammon, 2001).  

Until now, three main classes of proteins, so called actin nucleating factors, have been 

identified that overcome the need for spontaneous actin nucleation and drive the 

rapid initiation of de novo actin filament assembly: (1) the Arp2/3 (actin-related 

protein 2/3) complex together with nucleation-promoting factors (NPFs) (Goley and 

Welch, 2006; Stradal and Scita, 2006), (2) tandem-monomer-binding nucleators (Ahuja 

et al., 2007; Quinlan et al., 2005) and (3) formins (Pruyne et al., 2002) (Figure 2). The 

multiple classes of actin nucleators give the cell the flexibility to assemble distinct 

populations of actin filaments in response to specific signals in different cellular 

locations.  

The highly conserved nucleating factor Arp2/3 is a complex composed of seven 

subunits, namely Arp2, Arp3 and ARPC1 – ARPC5 (Machesky et al., 1994; Robinson et 

al., 2001). Arp2/3 binds laterally of an already existing actin filament and initiates the 

formation of a new branched filament at a 70° angle (Blanchoin et al., 2000; Mullins et 

al., 1998). Thereby, Arp2 and Arp3 act as the first two subunits of the newly formed 

filament (Volkmann et al., 2001). However, the Arp2/3 complex itself is not able to 

nucleate actin efficiently. Thus, the Arp2/3 complex requires additional regulatory 

proteins, NPFs, to initiate formation of a branched actin filament. At the C-terminus, 

NPFs usually contain three motifs: a verprolin-homology domain, also known as WASP-

homology 2 (WH2) domain, a connector region and an acidic motif. This region is 

therefore termed VCA-domain and binds to actin via its V motif, as well as to the 

Arp2/3 complex via C and A (Welch and Mullins, 2002). NPFs also contain an N-

terminal GTPase-binding domain (GBD) which interact with the C motif and thus 

autoinhibits the protein. Upon activation by Rho-GTPases, for example CDC42 and 
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Rac1, together with phosphatidylinositol-4,5-bisphosphate (PIP2), autoinhibition is 

released, the free VCA domain can bind to Arp2/3 and actin and start actin 

polymerization subsequently (Bi and Zigmond, 1999; Prehoda et al., 2000). The family 

of NPFs include proteins such as WASP, N-WASP (a neuronally expressed form of 

WASP), WAVE/SCAR, WASH or WHAMM (Rotty et al., 2013).  

 

Figure 2: Three classes of actin nucleating factors promote F-actin assembly 

A) The initiation of F-actin assembly requires the formation of a trimeric actin nucleus. The actin dimer 

and trimer intermediate is very unstable, therefore spontaneous nucleation is kinetically unfavorable 

and requires actin nucleating factors. B) The ARP2/3 complex, in the presence of NPFs, promotes actin 

nucleation after binding to a pre-existing actin filament and generates branched actin filaments at a 70° 

angle. Members of the family of tandem-monomer-binding nucleators recruit actin monomers and 
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assemble and stabilize actin nucleation seeds. This cartoon illustrates cordon bleu which nucleates a 

filament by assembling and stabilizing an actin trimer. It might remain associated with the pointed end 

of F-actin during elongation. W: WH2 domain, L: linker region. Formins drive the nucleation of long, 

unbranched filaments. During elongation, they remain associated and move along the barbed end and 

deliver profilin-bound G-actin. The image was adapted from (Weston et al., 2012).  

The second class of actin nucleating factors termed tandem-monomer-binding 

nucleators was recently identified and includes for example the proteins spire, cordon-

bleu (cobl) and leiomodin (lmod) (Ahuja et al., 2007; Chereau et al., 2008; Quinlan et 

al., 2005). These proteins possess one (lmod) or more (cobl: 3, Spire: 4) WH2 domains 

separated by short linker sequences or, as lmod, additional actin binding domains, 

thereby recruiting actin monomers and forming actin polymerization seeds (Chesarone 

and Goode, 2009).  

 

1.3 Formins 

The multidomain protein family of formins, which are present in almost all eukaryotes, 

represents the third class of actin nucleating factors. They promote the nucleation and 

elongation of unbranched actin filaments (Pruyne et al., 2002). Phylogenetic analysis of 

the highly conserved formin homology 2 (FH2) domain revealed that Metazoan 

formins can be segregated into seven groups: Dia (diaphanous), Daam (dishevelled-

associated activator of morphogenesis), FMNL (formin-like protein) or FRL (formin-

related gene in leukocytes), FHOD (formin homology domain-containing protein), INF 

(inverted formin), FMN (formin) and Delphilin. Most groups contain multiple members, 

for example mammals have 15 identified formin genes in total (Table 1) and therefore 

formins represent the largest group of actin nucleators (Breitsprecher and Goode, 

2013; Higgs, 2005).  
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Table 1: Mammalian formin members 

Subfamily Members 

Dia mDia1  (DIAPH1) 

mDia2  (DIAPH3) 

mDia3   (DIAPH2) 

Daam Daam1 

Daam2 

FMNL FMNL1  (FRL1) 

FMNL2  (FRL3, FHOD2) 

FMNL3  (FRL2) 

FHOD FHOD1 

FHOD2  (FMNL2) 

FHOD3 

INF INF1 

INF2 

FMN FMN1 

FMN2 

Delphilin Delphilin 

 

Formins are mainly defined by two regions: the formin homology 2 (FH2) domain and 

the formin homology 1 (FH1) domain. The catalytic FH2 domain is required for 

association with the barbed end of growing actin filaments and promotes processive 

actin assembly (Higashida et al., 2004; Pring et al., 2003; Pruyne et al., 2002) . The 

proline-rich FH1 domain precedes the FH2 domain and binds profilin-actin to 

accelerate actin filament elongation (Kovar and Pollard, 2004; Paul et al., 2008).  

The most intensely investigated formins belong to the domain-based classification 

group of Diaphanous-related formins (DRFs), which share a highly conserved domain 

architecture among diverse model organisms (Breitsprecher and Goode, 2013). Briefly, 

prototypic DRFs (including Dia, Daam and FMNL) feature an N-terminal regulatory 

region and a C-terminal activity region. The N-terminal FH3 subdomain diaphanous 

inhibitory domain (DID), consisting of five armadillo repeats, and the C-terminal 

diaphanous autoregulatory domain (DAD) interact in an autoinhibitory manner (Figure 

4A). Activated Rho-GTPases can relieve this intramolecular inhibition by interacting 

with the N-terminal GBD (Li and Higgs, 2005; Otomo et al., 2005a; Rose et al., 2005). 

Upon activation, the FH2 domain forms an antiparallel dimer and subsequently 
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promotes incorporation of monomeric actin into the growing barbed end of filament 

(Xu et al., 2004). 

Besides DRFs, formins differ strikingly in their domain organization (Figure 3) 

(Campellone and Welch, 2010). For example, FMN1 and FMN2 possess a formin-spire 

interaction domain (FSI) (Vizcarra et al., 2011) and delphilin contains a PDZ domain 

(Miyagi et al., 2002).  

 

Figure 3: Representative formins of each metazoan subgroup show distinct domain organization 

The cartoon illustrates similarities and differences in the domain organization of representative 

members from each metazoan formin group. All formins share a conserved FH1 and FH2 domain. CC: 

coiled coil; DAD: diaphanous-autoinhibitory-domain; DD: dimerization domain; FSI: formin–Spire 

interaction domain; PDZ: Postsynaptic density protein, Discs large, Zona occludens 1 domain. The image 

was adapted from (Campellone and Welch, 2010; Goode and Eck, 2007). 

 

1.3.1 Formin induced actin assembly 

Although detailed information about mechanism, regulation and function of diverse 

formins became available within the last decade, the precise actin nucleation 

procedure still has to be determined. It was initially suggested that spontaneously 

formed actin dimers and trimers are captured and stabilized by the FH2 domain and 

filaments are assembled subsequently (Pring et al., 2003).  However, in vivo, the pool 
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of G-actin is predominantly bound to profilin, which inhibits spontaneous formation of 

an actin nucleus and thus would make formin-mediated F-actin formation a rather rare 

event (Chesarone and Goode, 2009). More recently, studies suggested that C-terminal 

of the FH2 domain located sequences play a role in – either direct or indirect – 

recruiting actin monomers and promoting actin nucleation (Chhabra and Higgs, 2006; 

Gould et al., 2011; Heimsath and Higgs, 2012; Thompson et al., 2013).  

Upon actin nucleation, the dimeric FH2 domain processively associates with the 

barbed end of F-actin and permanently incorporates new actin subunits before it 

dissociates (Otomo et al., 2005b). Additionally, it prevents termination of F-actin 

elongation by inhibiting the binding of other capping proteins to the barbed end 

(Zigmond et al., 2003). The processive movement along the barbed end of F-actin was 

suggested to involve transient, alternating interaction of the two dimerized FH2 

domains with the two terminal F-actin subunits. Thereby, the FH2 dimer was 

suggested to switch between a closed conformation where both FH2 domains are 

bound to actin subunits, preventing addition of new actin monomers and an open 

conformation allowing filament elongation (Otomo et al., 2005b; Paul and Pollard, 

2009).  

In contrast to the slow elongation rate at free barbed ends, the rate at the FH2 bound 

barbed end is enhanced massively due to the interaction of the FH2 adjacent FH1 

domain with profilin bound G-actin (Kovar, 2006; Paul et al., 2008; Romero et al., 

2004). The proline rich FH1 domain is thought to recruit multiple profilin-actin 

complexes, thereby increasing the local concentration of G-actin at the barbed end 

with subsequent incorporation into the growing filament (Vavylonis et al., 2006). 

However, the exact mechanism how actin subunits are delivered from the FH1 to the 

FH2 domain still has to be elucidated. It might be dependent on direct interactions 

between profilin-actin as well as the FH1 and FH2 domain (Neidt et al., 2009). 

In vitro, formins remain attached to the barbed end for minutes without dissociating, 

thereby assembling actin filaments much longer than they could ever be detected in 

living cells (Kovar et al., 2006; Neidt et al., 2008). Thus, in vivo regulatory mechanisms 
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are needed to displace formins from the barbed end and stop formin mediated 

filament elongation. Such mechanisms have been identified for S. cerevisiae. For 

example, Bud14 catalyzes the rapid displacement of the yeast formin Bnr1 (Chesarone 

et al., 2009) and Smy1 interferes with elongation of F-actin by binding to the FH2 

domain of Bnr1 (Chesarone-Cataldo et al., 2011). Additionally, it has been shown that 

the Arp2/3 complex and WAVE can directly inhibit mDia2 mediated filopodia formation 

(Beli et al., 2008).  

 

Figure 4: A model of formin-mediated actin polymerization 

A) Crystal structure of the dimeric FH2 domain of FMNL3 bound to two subunits of actin. The image was 

taken and adapted from the RSCB Protein Data Bank (PDB ID: 4EAH), originally published by (Thompson 

et al., 2013). B) A model for formin-mediated actin assembly. (1) The FH2 dimer processively associates 

with the barbed end of F-actin. In an initial closed conformation, both FH1 domains recruit profilin 

bound G-actin. (2) Upon delivery of profilin-actin to the barbed end by FH1, the adjacent FH2 domain 

moves along the barbed end. (3) The process is repeated by the second FH2 domain. (4) Back in a closed 
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conformation, the filament is prevented by binding of other factors. The image was adapted from 

(Campellone and Welch, 2010). 

 

1.3.2 Regulation of formin proteins 

Autoinhibition of DRFs is mediated by binding of the N-terminal DID with the C-

terminal DAD (Alberts, 2001; Li and Higgs, 2005). Two main motifs in the DAD play an 

important role in the autoinhibition mechanism: an amphipathic helix followed by a 

sequence rich in basic residues. Co-crystallization of mDia1-DID together with mDia1-

DAD revealed binding of the entire DAD polypeptide to the DID, more precisely to the 

central B helices of the five armadillo repeats at the concave surface, through 

numerous mainly hydrophobic contacts (Alberts, 2001; Nezami et al., 2006) (Figure 

5A). Interaction of the DID and DAD was shown to prevent F-actin elongation mediated 

by the activity of the FH2 domain through a proposed steric contact inhibition of FH2 

and actin (Nezami et al., 2010; Otomo et al., 2010). Noteworthy, it has also been 

hypothesized for DRFs that autoinhibition does not occur intramolecular but rather in 

dimeric or higher order configurations (Copeland et al., 2007).  

Beside the modulation of DRFs by its DID/DAD mediated autoinhibition, other 

regulatory mechanisms have been described which interfere with the catalytic activity 

of the FH2 domain. One example is dia-interacting protein (DIP) which was shown to 

interact with the FH1 and FH2 domains of mDia2 and modulates cortical actin 

assembly (Eisenmann et al., 2007).  

In general, Rho-GTPases, which belong to the Ras family of small GTPases, have been 

shown to play crucial roles in the regulation of actin remodeling. For example, they are 

involved in actin stress fiber formation (Rho) as well as in the formation of lamellipodia 

(Rac) or filopodia (Cdc42) (Jaffe and Hall, 2005). Briefly, Rho-GTPases function as 

molecular switches. They cycle between a GTP-bound active and a GDP-bound inactive 

state. This cycling activity is modulated by guanine nucleotide exchange factors (GEFs), 

which promote Rho activation through the exchange of GDP to GTP, as well as by 
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GTPase-activating proteins (GAPs), which mediate inactivation of Rho by stimulating its 

intrinsic GTPase activity. In an active state, Rho-GTPases fulfill their regulatory 

functions through interaction with effector proteins (Jaffe and Hall, 2005).  

The impact of Rho-GTPases on actin rearrangement is partially mediated through 

formins, which constitute the largest protein family of Rho effectors. Upon stimulation 

by extracellular signals, for example serum or lysophosphatidic acid (LPA), G-protein-

coupled receptors (GPCRs) get activated (Young and Copeland, 2010). Subsequently, 

they stimulate RhoGEFs, such as LARG for example which in turn promotes RhoA 

activation to release autoinhibition of mDia1 (Fukuhara et al., 2000; Goulimari et al., 

2008).  

Binding of activated members from the Rho-GTPase family to the GBD releases the 

autoinhibition of DRFs (Figure 5B) (Lammers et al., 2005). In the case of mDia1, 

activated RhoA binds to the GBD-DID fragment. A model suggests that RhoA sterically 

interferes via Arg68 with the DAD binding to the DID. Additionally, RhoA binding also 

stabilizes the position of the GBD relative to the DID and thus a six residue segment of 

the GBD directly occludes the DAD binding site (Nezami et al., 2006) (Figure 5C).  
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Figure 5: Regulation of DRF autoinhibition 

A) This ribbon model illustrates the overall structure of the mDia1-DID/DAD complex in an mDia1-

autoinhibited state. The DID is shown in blue, the DAD is shown in yellow. The N and C termini of the 

DAD domain are indicated and the B helices of the armadillo repeats are labeled from left to right. The 

image was taken from (Nezami et al., 2006). B) DRFs (here: mDia1) are autoinhibited by an 

intramolecular interaction between DID and DAD. Upon stimulation by binding of Rho-GTPases, the 

autoinhibition is released and formins get activated. The image was adapted from (Goode and Eck, 

2007) C) This close-up ribbon model demonstrates the steric masking of the mDia1 DAD binding site by 

the Rho complex (shown in green). GBD (red) residues 92-97 and Rho residue R68 impact binding of the 

N-terminus of the DAD (superimposed in yellow) to the DID (purple). Thus, binding of Rho, together with 

the restructured GBD excludes simultaneous binding of the DAD and drives activation of the formin. The 

image was taken from (Nezami et al., 2006). 

The activation of formins to mediate diverse biological functions requires distinct Rho-

GTPases. For example, mDia2 is activated by the Rho-GTPase Rif to induce filopodia 

(Pellegrin and Mellor, 2005), whereas during endosomal trafficking it is activated by 

RhoB (Wallar et al., 2007). Moreover, Rac1 has also be reported to be able to regulate 

mDia2 (Ji et al., 2008). In turn, each Rho-GTPase can act on different formins to carry 

out diverse biological functions. This is also dependent on the cellular context as well 

as on the intracellular localization. As an example, Cdc42 activates mDia2 at the 

leading edge of the cell (Peng et al., 2003), whereas it modulates FMNL1 (also referred 

to as Frlα) during formation of phagocytic cups (Seth et al., 2006).  

However, the process of formin activation is a quite complex interplay between 

different proteins and therefore is yet not fully understood. For example it was shown 

that the FH2 domain of mDia1 binds to LARG and thus is able to activate RhoA in a 

positive feedback loop (Kitzing et al., 2007). It was also shown that other factors than 

Rho-GTPases are involved in the activation of formins. Autoinhibition of Daam1 for 

instance was shown to be regulated by interaction with a PDZ domain of Dishevelled, a 

member of the noncanonical Wnt signaling pathway. This interaction for full activation 

of Daam1 either occurs independently or together with Rho (Liu et al., 2008).  

Additionally, the release of formin autoinhibition as well as their intracellular 

localization can be mediated by post-translational modifications such as 
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phosphorylation. For example, Protein kinase Cα (PKCα) phosphorylates FMNL2 within 

the DAD domain, thereby regulating its localization and activity (Wang et al., 2015). 

Furthermore, the autoinhibition of FHOD1 can be disrupted by Rho associated coiled 

coil containing protein kinase (ROCK) mediated phosphorylation at three conserved 

residues in the polybasic region C-terminal of the DAD, resulting in the formation of 

stress fibers (Takeya et al., 2008). ROCK was additionally shown to phosphorylate 

residues in the C-terminus of a muscle specific FHOD3 isoform, leading to activation 

and subsequent increased F-actin assembly in cardiomyocytes (Iskratsch et al., 2013). 

In turn, casein kinase 2 (CK2) phosphorylates a site in the FH2 domain of this muscle 

specific FHOD3 splice variant which targets the formin to the myofibrils in 

cardiomyocytes (Iskratsch et al., 2010). Moreover, Aurora B kinase phosphorylates 

residues in FHOD1, thereby regulating actin cables after cell division (Floyd et al., 

2013). Aurora B kinase also phosphorylates the FH2-domain of mDia3, which inhibits 

its ability to stabilize microtubules (Cheng et al., 2011). Furthermore, formins were 

shown to be post-translationally modified through the attachment of lipid molecules. 

For example, the formin subfamily of FMNL proteins is N-terminally myristoylated, 

which regulates its membrane trafficking (Han et al., 2009). Moreover, binding of 

phospholipids to the N-terminus of mDia1 was suggested to anchor formins at the 

plasma membrane whereas an interaction with phospholipids in the mDia1 C-terminus 

might provide a switch for transient inactivation (Ramalingam et al., 2010).  

 

1.3.3 Cellular function of formins 

Formins have been described intensely over the last decade (Baarlink et al., 2010; 

Goode and Eck, 2007; Wallar and Alberts, 2003). They play an essential role in diverse 

cellular processes such as cell and tissue morphogenesis. For example Daam1 was 

shown to be essential for Wnt/Frizzled mediated RhoA activation during Xenopus 

gastrulation (Habas et al., 2001). Furthermore, formins can drive cell motility as it was 

shown during amoeboid cell migration, where FMNL2 modulates invasiveness of cells 

(Kitzing et al., 2010). FMNL2 is also involved in the trafficking of β1-integrin, thus 
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modulating invasion (Wang et al., 2015). Formins additionally participate in the 

formation of cell-to-cell contacts. For instance, FMNL2 was shown to modulate 

junctional actin assembly and turnover (Grikscheit et al., 2015). Additionally, formins 

were shown to be essential during cytokinesis, where mDia2 drives F-actin formation 

to assemble a scaffold for the contractile ring and stabilizes its position during 

cytokinesis (Watanabe et al., 2008). Moreover, it was described in Drosophila that 

mutations in the formin diaphanous lead to a failure in cell division during 

spermatogenesis and multinucleated spermatids (Castrillon and Wasserman, 1994). 

Studies in Drosophila revealed further critical functions of formins, such as the 

maintenance of cell polarity and regulation of embryonic development. For example, 

the Drosophila formin cappuccino is required for the polarity of fly eggs and embryos 

(Emmons et al., 1995). Furthermore, in the Drosophila respiratory system, Daam 

regulates the tracheal cuticle pattern through arranging the actin cytoskeleton 

(Matusek et al., 2006). Moreover, vesicular transport was also shown to be dependent 

on the function of formins, such as the human isoform hDia2C, which regulate 

endosomal dynamics (Gasman et al., 2003).  

Besides their role in rearrangement of actin structures, formins possess also an impact 

on microtubule networks. For example it was described that loss of FMN2 in mouse 

oocytes results in failed meiotic spindle alignment and fertility (Leader et al., 2002). 

Furthermore, mDia3 is s required for microtubule attachment to the kinetochore and 

proper chromosome segregation (Yasuda et al., 2004), whereas mDia1 plays a role in 

the orientation and coordination of microtubules (Goulimari et al., 2008; Ishizaki et al., 

2001).  

Another relevant function of formins is their impact on serum response factor (SRF) 

dependent transcriptional regulation, modulated through formin mediated actin 

rearrangement (Copeland and Treisman, 2002; Copeland et al., 2007; Grosse et al., 

2003).  
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1.4 Regulation of the MRTF/SRF transcriptional pathway 

The transcription factor SRF is abundantly expressed in many different cell types 

among diverse species, from yeast to human (Norman et al., 1988; Olson and 

Nordheim, 2010; Shore and Sharrocks, 1995). SRF binds as a homodimer with high 

affinity to a palindromic CArG-box DNA sequence, also named serum response 

element (SRE) and promotes transcription of numerous target genes (Treisman, 1986). 

SRF activity is competitively modulated through binding of two different types of 

cofactors, the ternary complex factors (TCFs) (Buchwalter et al., 2004) as well as the 

MRTF family of co-activators (myocardin and myocardin-related transcription factors - 

MRTFs) (Pipes et al., 2006; Wang et al., 2001; Wang et al., 2002). Both cofactors are 

differentially signal regulated and enable SRF to drive transcription of different sets of 

target genes in a competitive manner (Gualdrini et al., 2016). While TCFs respond to 

signals of the mitogen-activated protein kinase (MAPK) pathway, MRTF mediated 

transcription is dependent on the rearrangement of the actin cytoskeleton (Gineitis 

and Treisman, 2001; Zaromytidou et al., 2006). SRF was shown to be essential for 

numerous biological processes including development of the heart and the 

cardiovascular system, liver development, activity of T-cells and B-cells, gastrulation, 

brain development and many more (Olson and Nordheim, 2010). Most of those 

developmental defects can be explained at least in part by functional defects of actin 

cytoskeleton dynamics (Schratt et al., 2002).  

The MRTF family includes the transcriptional co-activators myocardin which is 

expressed specifically in the cardiovascular system, as well as the more widely 

expressed MRTF-A (also known as MAL, MKL1 and BSAC) and MRTF-B (also known as 

MKL2 and MAL16) (Wang et al., 2001; Wang et al., 2002). MRTFs interact with SRF 

through a basic region and an adjacent localized Glutamic-acid-rich domain (Olson and 

Nordheim, 2010). At the N-terminus, MRTF-A and MRTF-B possess three so called RPEL 

domains (Arg-Pro-X-X-X-Glu-Leu), which form a stable complex with G-actin. In 

contrast, the RPEL of myocardin differs from that of MRTF-A and MRTF-B and does not 
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bind monomeric actin efficiently (Guettler et al., 2008; Miralles et al., 2003; Pipes et 

al., 2006).  

In cells featuring low actin polymerization states the pool of G-actin is relatively high 

compared to F-actin. Thus, MRTF proteins form a reversible complex with G-actin and 

therefore exist in an inactive state sequestered in the cytoplasm (Posern et al., 2002). 

However, initiation of F-actin assembly, for example by formins (Copeland and 

Treisman, 2002), reduces the availability of G-actin through its incorporation into 

newly formed filaments. G-actin then dissociates from MRTFs, which promotes release 

of an nuclear localization sequence (NLS) within the RPEL motif (Pawłowski et al., 

2010) and allows subsequent nuclear import of MRTFs followed by activation of SRF 

dependent gene transcription (Miralles et al., 2003). Additionally, MRTF activity is also 

regulated by G-actin inside the nucleus. It was shown that nuclear export of MRTF is 

driven by nuclear actin monomers. Furthermore, the nuclear G-actin pool prevents 

MRTF to activate SRF (Vartiainen et al., 2007). 

Studies have revealed more than 200 target genes which are directly regulated by SRF 

(Cooper et al., 2007). Thereby, TCF and MRTF mediated co-activation differs in terms 

of SRF target gene expression. TCF modulated target genes encoding proteins with so 

called immediate-early functions, for example proteins involved in cell cycle 

progression. MRTF-regulated target genes for instance play a role in muscle-specific 

contractile functions or actin rearrangement and therefore in processes such as 

proliferation and cell motility (Buchwalter et al., 2004; Medjkane et al., 2009; Olson 

and Nordheim, 2010). Interestingly, actin itself was also shown to be a target gene of 

MRTF/SRF regulated gene expression (Olson and Nordheim, 2010). Thus, 

nucleocytoplasmic shuttling of MRTF is additionally regulated by a negative feedback 

loop, as ongoing synthesis of actin results in increased levels of cytoplasmic and 

nuclear G-actin and subsequent impairment of SRF activity.  

 

 



 

28 

 

1.5 Actin and actin binding proteins in the nucleus 

The localization of actin in the nuclear compartment as well as its underlying 

nucleocytoplasmic shuttling mechanism was previously reported. G-actin is imported 

as a complex with cofilin in an importin 9-dependent manner (Dopie et al., 2012) and 

gets exported together with profilin by the export receptor exportin 6 (Stüven et al., 

2003; Wada et al., 1998).  

The appearance and diverse functions of monomeric and short oligomeric actin in the 

nucleus was already widely accepted and described. For example, as already 

mentioned, actin in the nucleus is implicated in specific regulation of the MRTF/SRF 

transcriptional pathway (Vartiainen et al., 2007). Moreover, multiple studies revealed a 

role for actin in the regulation of general eukaryotic gene transcription as well as 

chromatin remodeling (de Lanerolle and Serebryannyy, 2011). For instance, nuclear 

actin was reported to interact with all three RNA polymerases, Pol I (Philimonenko et 

al., 2004), Pol II (Hofmann et al., 2004) and Pol III (Hu et al., 2004), and thus may affect 

their transcriptional function. Actin was also shown to interact in the nucleus with the 

BAF chromatin-remodeling complex (Zhao et al., 1998). Moreover, it regulates the 

remodeling activity of the yeast INO80 chromatin remodeling complex in its 

monomeric form (Kapoor et al., 2013).  

Furthermore, actin-binding proteins were reported to play a role in general regulation 

of gene transcription. For example, the Arp2/3 complex in association with N-WASP 

has been implicated in transcriptional regulation of RNA polymerase II (Wu et al., 2006; 

Yoo et al., 2007). Moreover, nuclear myosin I (NM1) has been described to affect 

transcription mediated by RNA polymerase I and II (Hofmann et al., 2006; 

Philimonenko et al., 2004; Ye et al., 2008). Also several actin-related proteins, sharing 

the basal actin-structure but possess functions different from actin, were detected to 

be functional components of the transcription complex as well as chromatin 

remodeling complexes (Fenn et al., 2011; Harata et al., 2002; Lee et al., 2007; Szerlong 

et al., 2008; Zhao et al., 1998).  
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Interestingly, actin was mostly shown to act in a monomeric or short oligomeric state 

on nuclear complexes (Grosse and Vartiainen, 2013; Percipalle, 2013). However, 

photobleaching experiments suggested the existence of at least three different actin 

pools in the nucleoplasm which may correspond to a monomeric and a polymeric actin 

state as well as actin bound to functional complexes (McDonald et al., 2006). 

Furthermore, drug mediated prevention of actin polymerization and utilization of a 

polymerization deficient actin-mutant reduced RNA polymerase I mediated 

transcription in vitro and in vivo (Ye et al., 2008), thus arguing for the requirement of 

polymerized actin for gene transcription. Nevertheless, the question whether the 

localization and identified functions of actin in the nucleus goes along with the 

assembly of polymeric nuclear actin filaments, comparable to those in the cytoplasm, 

was in dispute (Pederson and Aebi, 2002). This was mainly due to the fact that nuclear 

actin structures were hardly detectable because of its general low nuclear abundance 

compared to its cytosolic fraction (Baarlink et al., 2013). Moreover, dynamic actin 

filaments could not be easily visualized in the nuclei of living somatic cells, as many 

actin detection methods such as genetically encoded fluorescently labeled actin or 

actin-binding proteins in general negatively influence functionality and kinetics (Belin 

et al., 2014; Spracklen et al., 2014).  

On the other hand, numerous actin-binding proteins, playing essential roles in 

cytoplasmic actin rearrangement, have been recently detected in the nucleus. Among 

the reported nuclear localized actin-binding proteins are for example the already 

before mentioned ARP2/3 complex (Yoo et al., 2007), its NPF N-WASP (Suetsugu and 

Takenawa, 2003; Wu et al., 2006) and myosins (de Lanerolle and Serebryannyy, 2011), 

as well as the p53-cofactor JMY (Shikama et al., 1999; Zuchero et al., 2012; Zuchero et 

al., 2009), profilin (Lederer et al., 2005; Söderberg et al., 2012) and the actin severing 

and disassembly regulators cofilin (Dopie et al., 2012; Obrdlik and Percipalle, 2011) or 

gelsolin (Archer et al., 2005).  

Furthermore, during apoptosis a caspase-3 mediated C-terminal FHOD1 cleavage 

product has been reported to translocate to the nucleus (Ménard et al., 2006). 
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Overexpression of this cleavage product resulted in RNA polymerase I inhibition in 

HeLa cells. All in all, the nuclear localization of proteins generally involved in assembly 

and disassembly of F-actin implies the presence of dynamic nuclear F-actin structures. 

Moreover, the human formin Diaphanous 1 (hDia1) was co-purified from HeLa cells in 

a complex with exportin 6 together with profilin-bound actin and other actin-binding 

proteins, thus suggesting nucleocytoplasmic shuttling of hDia1 (Stüven et al., 2003). 

Additionally, it was discovered that mDia2, but not mDia1 and mDia3, accumulates in 

the nucleus upon treatment with the CRM1-dependent nuclear export blocking drug 

Leptomycin B (LMB) (Miki et al., 2009). Functional analysis of the mDia2 amino acid 

sequence revealed at least one functional NLS and NES in this particular formin. Based 

on these studies it was suggested that mDia2 continuously shuttles between the 

nuclear and the cytoplasmic compartment using a specific transport machinery 

composed of importin-α/β and CRM1 (Miki et al., 2009).  

Worth mentioning, it is still under investigation if the activity-state of mDia affects its 

nuclear import. It has to be determined if there is a specialized nuclear mechanism of 

mDia activation or if formin activity is passively transduced towards the nucleus. 

Principally, mDia activation can occur prior to nuclear import in the cytoplasm or inside 

the nucleus upon entering the nuclear compartment. Generally, the majority of mDia 

resides in an autoinhibited state under unstimulated conditions. This suggests nuclear 

import of autoinhibited mDia, as CRM1 treatment leads to a rapid nuclear 

accumulation of mDia2 even without further stimulation. However, it remains unclear 

if mDia2 in its active open conformation is prevented from its nuclear import (Baarlink 

and Grosse, 2014; Plessner and Grosse, 2015). 

Recently, the first tools for detailed and reliable visualization of endogenous nuclear 

actin structures in living somatic cells became available (Baarlink et al., 2013; Belin et 

al., 2013; Melak et al., 2017; Plessner et al., 2015). For example, a role for polymerized 

nuclear actin in the context of integrin-based cellular adhesion and 

mechanotransduction through the LINC complex was described using a nuclear 
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targeted cameloid nanobody fused to TagGFP2, called nuclear Actin-Chromobody 

(Plessner et al., 2015).  

Although the occurrence of formins in the nucleus was reported previously (Miki et al., 

2009; Ménard et al., 2006; Stüven et al., 2003), their detailed functions remained 

unknown for years. However, quite recently, functions of formins in the assembly of 

nuclear F-actin were detected (Baarlink et al., 2013; Belin et al., 2015). For instance, a 

role for nuclear formin activity was suggested in DNA repair. It was shown that DNA 

damage leads to formation of nuclear actin filaments. Those filaments were assembled 

by nuclear localized Formin-2 together with the actin nucleators Spire-1 and Spire-2 

and promote clearance of double-strand DNA breaks (Belin et al., 2015).  

 

1.5.1 Formin regulated nuclear actin network formation and MRTF/SRF 

transcriptional activity  

Another recent study revealed nuclear mDia mediated signal induced regulation of 

actin filaments in the nucleus combined with alterations in MRTF-SRF transcriptional 

activity in mammalian cells (Baarlink et al., 2013). Using a nuclear targeted version of 

the actin probe LifeAct (Riedl et al., 2008), the dynamic assembly of a nuclear mDia 

dependent intranuclear actin network could be visualized upon stimulation with serum 

or LPA in living cells (Baarlink et al., 2013).  

The regulation of MRTF-A is a complex interplay between cytosolic and nuclear actin 

rearrangement. Binding of nuclear G-actin to MRTF-A promotes its export into the 

cytoplasm. In turn, an excessive amount of G-actin in the cytosol impairs its nuclear 

import (Figure 6). Therefore, MRTF-A activity was suggested to be dependent on the 

formation and disruption of G-actin-MRTF-A complexes in both compartments, 

indirectly mediated by polymerization-induced depletion of the overall G-actin pool 

(Mouilleron et al., 2011; Pawłowski et al., 2010; Vartiainen et al., 2007). Recent studies 

furthermore suggested that MRTF-A activation also requires active polymerization of 

nuclear F-actin, rather than just equilibration of the nuclear and cytoplasmic actin 
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pools. Additionally, mDia promoted nuclear F-actin formation appears to be sufficient 

to drive MRTF-A/SRF dependent gene expression, although it was suggested to be an 

integral part of a global cellular actin polymerization response that controls MRTF-

A/SRF activity (Baarlink et al., 2013).  

 

Figure 6: Nuclear F-actin formation by mDia regulates MRTF-A localization and activity 

Signaling mediated dynamic assembly and disassembly of nuclear actin filaments is directly linked to 

MRTF-A activity. MRTF-A continuously shuttles between the nucleus and the cytoplasm in an actin 

polymerization and depolymerization dependent manner. The binding of nuclear actin monomer to 

MRTF-A drives its nuclear export to the cytoplasm. In turn, binding of cytoplasmic G-actin inhibits access 

to the NLS of MRTF-A and thus impairs its nuclear import. Increased intranuclear F-actin formation, for 

example mediated by mDia, which actively shuttles between the cytoplasmic and the nuclear 
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compartment, depletes the amount of available nuclear G-actin for binding to MRTF-A and prevents 

MRTF-A from being exported from the nucleus. In the cytoplasm, assembly of F-actin promotes release 

of G-actin from MRTF-A and mediates MRTF-A shuttling to the nucleus. Subsequently, MRTF-A co-

activates SRF driven gene transcription. Upon nuclear F-actin disassembly, free G-actin binds again to 

MRTF-A and initiates its translocation to the cytoplasm, leading to inactivation of MRTF-A/SRF activity. 

Activation of nuclear mDia is sufficient to induce the assembly of nuclear F-actin structures and 

subsequent activation of MRTF-A/SRF activity. The image was adapted from (Baarlink and Grosse, 2014; 

Grosse and Vartiainen, 2013; Plessner and Grosse, 2015). 

 

1.6 The formin INF2 

Based on the results of previous publications it seems very likely that other formins, 

presumably members of the DRF family, might also perform a role in nuclear actin 

filament formation. One of the possible candidates to act in nuclear F-actin assembly 

was inverted formin 2 (INF2). Indeed, in a preliminary subcellular fractionation 

experiment, INF2 was also detected in the nucleus (H. Wang, unpublished data).  

The domain architecture of INF2 (Figure 7A) features multiple similarities with formins 

of the DRF subfamily. The mainly regulatory N-terminus contains a DID and a 

dimerization domain, whereas the C-terminus comprises an FH1, FH2 and a DAD. 

Interestingly, the DAD resembles a highly conserved monomeric actin binding WH2 

domain (Chhabra and Higgs, 2006).  

INF2 is capable of conducting two quite opposite functions regarding actin dynamics: 

besides promoting the formation and elongation of actin filaments, INF2 is also able to 

mediate actin filament severing and to accelerate depolymerization. The F-actin 

severing and depolymerization activity was shown to require ATP hydrolysis and 

subsequent phosphate release from the filament (Chhabra and Higgs, 2006). It was 

suggested that both, FH2 binding and phosphate release result in local F-actin 

deformation which in turn allows the DAD/WH2 domain to bind adjacent actin 

protomers followed by severing and depolymerization of the filament (Figure 7B) 

(Gurel et al., 2014). This combination of barbed end elongation, filament severing and 
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DAD/WH2 mediated depolymerization leads to formation of short and rather transient 

F-actin structures under nearby steady-state conditions. The activity of profilin thereby 

helps to overcome the rate-limiting step of nucleotide exchange (ADP-actin to ATP-

actin) upon release of G-actin from INF2, thus shifting the equilibrium toward 

polymerization and resulting in elongation of filaments (Gurel et al., 2015).  

 

Figure 7: INF2 mediated severing and depolymerization of actin filaments  

A) The cartoon illustrates the domain organization of INF2. B) A model for the INF2 mediated F-actin 

severing and depolymerization mechanism suggests that the partially dissociated INF2 dimer encircles 
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the filament either in a closed ring conformation or as an open dimer, arranged as a daisy chain. All 

severing and depolymerization steps in this model are displayed in the closed ring conformation, but 

could also be executed in an open dimer arrangement. Binding of the INF2 dimer leads to structural 

changes in the actin filament. Upon phosphate release, INF2 further deforms the filament close to its 

binding site, resulting in exposure of the DAD binding site of adjacent actin protomers. INF2-DAD/WH2 

subsequently keys in and destabilizes F-actin. This leads to severing of the filament with INF2 remaining 

bound to the newly formed barbed end (b). The DAD/WH2-bound ADP-actin subunits are released 

subsequently. The image was adapted from (Gurel et al., 2014). 

INF2 was shown to be autoinhibited by DID and DAD interaction. Remarkably, free 

actin monomers can compete with this interaction, thereby regulating actin 

polymerization as well as severing and depolymerization of actin filaments 

(Ramabhadran et al., 2013). Previous studies also implied binding of Cdc42 to INF2, 

thereby modulating its activity (Andrés-Delgado et al., 2010; Madrid et al., 2010). 

However, a direct interaction between INF2 and Cdc42 was rebutted and Cdc42 and 

INF2 were suggested to interact through additional proteins which serve as stabilizing 

factors for the DID and DAD interaction (Ramabhadran et al., 2013).  

Mammalian INF2 exists as two splice variants, differing in cellular localization and 

functions due to their distinct C-terminus: INF2 and INF2-CAAX (Chhabra et al., 2009; 

Ramabhadran et al., 2011). Generally, the C-terminal CAAX box is defined by a cysteine 

residue followed by two aliphatic residues (AA) and any amino acid depending on its 

localization or substrate specificity. CAAX proteins usually undergo a posttranslational 

prenylation process by either adding a farnesyl or a geranylgeranyl residue to the 

cysteine for anchoring the proteins to membranes (Gao et al., 2009).  INF2-CAAX is 

tightly bound to the endoplasmic reticulum (ER) (Chhabra et al., 2009) and modulates 

for example an actin dependent step during mitochondrial fission (Korobova et al., 

2013). INF2 lacking the CAAX box on the other hand mainly localizes to the cytoplasm 

and mediates for instance organization of the Golgi (Ramabhadran et al., 2011).  

A set of further INF2 functions has been described recently. In T-lymphocytes, INF2 

regulates the transport of the src-family kinase lymphocyte-specific protein tyrosine 

kinase (Lck) to the plasma membrane. Thereby, Cdc42 was proposed as factor to bind 
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and activate INF2 (Andrés-Delgado et al., 2010). Additionally, basolateral-to-apical 

transcytosis and lumen formation in hepatocytes was suggested to be Cdc42 and INF2 

dependent (Madrid et al., 2010). Furthermore, INF2 was linked to remodeling of the 

extracellular matrix in fibroblasts by promoting the formation of dorsal stress fibers 

and fibrillar focal adhesions (Skau et al., 2015). INF2 also modulates Ca2+-dependent 

mechanosensing by mediation of a rapid and transient perinuclear actin 

polymerization upon mechanical stimulation. This perinuclear actin remodeling is 

necessary for a rapid intracellular response to external force (Shao et al., 2015). Last 

but not least, INF2 has recently been identified as key regulator for a process termed 

Calcium-mediated Actin Reset (CaAR), which includes a rapid and transient actin 

rearrangement in response to increased intracellular calcium levels. CaAR affects 

processes such as cell spreading, wound healing, organelle immobilization and 

alterations in SRF-mediated gene transcription (Wales et al., 2016).  

Besides the direct regulation of actin polymerization and depolymerization, INF2 was 

also shown to antagonize Rho activated mDia signaling by heterodimeric interaction of 

INF2-DID and mDia-DAD (Sun et al., 2011). It has been demonstrated in cultured 

podocytes as well as in in vivo experiments that INF2 is an important modulator of 

Rho/mDia mediated actin dynamics, related to processes as lamellipodia formation 

and peripheral membrane trafficking (Sun et al., 2014; Sun et al., 2013). Additionally, a 

novel mechanism of serial formin activation was suggested, where mDia1 activates 

INF2 via interaction of mDia-DAD and INF2-DID and thereby regulates stable 

microtubules in migrating cells (Bartolini et al., 2016).  

Several missense mutations in INF2 have been associated to the occurrence of the 

demyelinating neuropathy Charcot–Marie–Tooth (CMT). CMT often comes along with 

the renal disease Focal and segmental glomerulosclerosis (FSGS), which frequently 

leads to overt kidney failure in adolescence or adulthood (Barua et al., 2013; Boyer et 

al., 2011; Brown et al., 2010; Gbadegesin et al., 2012). All so far identified INF2 

mutations are located in the DID. Some of these mutations, for instance E184K and 

R218Q, were described to inhibit the binding of INF2-DID to INF2-DAD and result in an 
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increased association with G-actin, the F-actin capping protein CapZ α-1 as well as 

profilin 2 (Rollason et al., 2016). Moreover, the mutations E184K and R218Q perturb 

the interaction of INF2-DID with mDia-DAD (Sun et al., 2011), leading to an impaired 

regulatory function of INF2 in terms of antagonizing Rho/mDia signaling (Sun et al., 

2014; Sun et al., 2013). Generally, the previous findings suggest that the emergence of 

FSGS and CMT is at least partially linked to aberrant fine regulation of actin dynamics. 

Furthermore, E184K and R218Q also prevent the formation of stabilized detyrosinated 

microtubules. Hence, mutated INF2 mediated lack of microtubule stability may also be 

disease relevant (Bartolini et al., 2016). However, the precise contribution of mutated 

INF2 to the etiology of FSGS and CMT is still unknown. 
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2. Aim of this study 

The appearance of monomeric actin in the nucleus of mammalian somatic cells, 

implicated in chromatin remodeling and the regulation of general eukaryotic gene 

transcription, was already widely accepted (de Lanerolle and Serebryannyy, 2011). In 

contrast, mainly due to limitations in detection, the existence of nuclear actin 

polymers remained elusive and was controversially discussed. Recently, specific 

nuclear actin probes have been described which enabled detailed visualization of F-

actin structures in the nuclei of fixed and living cells (Baarlink et al., 2013; Belin et al., 

2013; Melak et al., 2017; Plessner et al., 2015). Moreover, the discovery of several 

nuclear localized actin filament assembly proteins such as formins provided a first 

insight into regulation and function of actin polymerization in the nucleus (Baarlink et 

al., 2013; Belin et al., 2015).  

However, many details about nuclear F-actin assembly and the contributing actin 

nucleation factors as well as detailed insight into the potential roles of nuclear actin 

filaments are still unknown. Thus, further progress in elucidating the exact 

mechanisms on the formation of nuclear actin filaments and resulting cellular 

functions is highly demanded.  

The major aim of my thesis was to identify additional proteins which in terms of their 

intracellular localization and known actin-binding or actin-modulating properties are 

presumably involved in nuclear F-actin rearrangement. 

Overexpression of an isolated mDia-DAD in cells sterically interfered with the DID-DAD 

binding and resulted in a release of the autoinhibited state and activation of mDia. This 

was followed by F-actin assembly and subsequent increase in MRTF/SRF activity 

(Alberts, 2001; Baarlink et al., 2013). The initial question was if overexpression of an 

isolated DID is also capable to interfere with the DID-DAD binding to promote release 

of formin autoinhibition. Indeed, overexpression of different DIDs and the 

investigation of the capability to activate their corresponding formin revealed that 

mDia-DID and INF2-DID perform comparably in terms of formin activation and 
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induction of SRF activity. Moreover, activation of INF2 could also be obtained by 

overexpression of the isolated INF2-DAD. Thus, we generated a powerful tool to 

control autoinhibition of endogenous INF2, allowing us to analyze the cellular impact 

of regulated INF2 activity.  

Active mDia has been shown to mediate actin filament formation not only in the 

cytoplasm, but also inside the mammalian nucleus (Baarlink et al., 2013). Upon 

detection of endogenous INF2 in the nuclear extract by conducting subcellular 

fractionation experiments, we hypothesized that INF2 might also play a role in nuclear 

actin regulation. 

The following questions were addressed and investigated, mainly by the use of 

fluorescence confocal microscopy in fixed or living cells as well as by biochemical 

approaches: 

What are the nuclear import and export sequences enabling INF2 translocation to the 

nucleus and transport out of the nuclear compartment? 

Does nuclear targeted INF2 activation induce the formation of F-actin structures in the 

nucleus? 

Does nuclear INF2 activity affect subcellular localization of MRTF-A and subsequent 

MRTF/SRF transcriptional regulation? 

Are the effects upon activation of INF2 by overexpression of its DAD specific for INF2 

or due to involvement of other proteins, such as mDia formins? 

Taken together, this study should extend our knowledge of factors involved in actin 

polymerization in the somatic cell nucleus.  
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3. Materials and Methods 

3.1 Materials 

Table 2: Reagents used in this study 

Name Supplier 

2-Mercaptoethanol Sigma-Aldrich 

Acetic Acid Roth 

Agarose NEEO Ultra Roth 

Ammonium persulfate (APS) Merck 

Ampicillin Roth 

BES Sigma 

Bovine serum albumin (BSA) Roth 

Bromophenol blue Roth 

Calcium chloride (CaCl2) Roth 

Chloroform Roth 

Coomassie brilliant blue G250 Roth 

DAPI Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) Roth 

Dithiothreitol (DTT) Roth 

DMEM (HPSTA) Capricorn Scientific 

DNA ladder 1kb plus Thermo Fisher Scientific 

DNA loading dye 6x Thermo Fisher Scientific 

dNTPs Promega 

EGTA Sigma-Aldrich 

Enzymes for cloning Thermo Fisher Scientific 

Ethanol Roth 

Ethidium bromide Roth 

Ethylendiamintetraacetat (EDTA) Roth 

Fetal calf serum (FCS) Thermo Fisher Scientific 

FLAG (M2) conjugated agarose beads Sigma-Aldrich 

Fluorescent mounting medium DAKO 

Formaldehyde solution 37% Roth 

Fugene HD Promega 

GeneRuler 1kb plus DNA ladder Thermo Fisher Scientific 

Glucose Roth 

Glutaraldehyde Sigma-Aldrich 

Glycerol Roth 

H2O2 Sigma-Aldrich 

HEPES Roth 

iQ SYBR-Green® Supermix Bio-Rad 

Isopropanol Roth 
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Kanamycin Roth 

Lipofectamine LTX/Plus Thermo Fisher Scientific 

Lipofectamine RNAiMAX Thermo Fisher Scientific 

Magnesium chloride (MgCl2) Roth 

Methanol Roth 

Milk powder (fat free) Roth 

Myc conjugated agarose beads Sigma-Aldrich 

NP-40 Merck 

OptiMEM Thermo Fisher Scientific 

PageRuler Plus Prestained Protein Ladder Thermo Fisher Scientific 

Paraformaldehyde Roth 

Passive lysis buffer 5x Promega 

PCR primer Sigma-Aldrich 

Penicillin Streptomycin PAA 

Phalloidine (conjugated) Thermo Fisher Scientific 

Phosphate-buffered saline (PBS) PAA 

Phusion Hot Start II High-Fidelity DNA Polymerase Thermo Fisher Scientific 

Ponceau S solution Sigma-Aldrich 

Potassium chloride (KCl) Roth 

Protease inhibitor cocktail (COMPLETE) Roche 

Random hexamers Thermo Fisher Scientific 

RevertAid Reverse Transcriptase Thermo Fisher Scientific 

RiboLock RNase Inhibitor Thermo Fisher Scientific 

RotiPhorese® Gel 30 (Acrylamide-Bisacrylamide solution) Roth 

Saponine Sigma-Aldrich 

siRNA FlexiTube QIAGEN 

Sodium azide Sigma-Aldrich 

Sodium borohydride (NaBH4) Sigma-Aldrich 

Sodium chloride (NaCl) Roth 

Sodium deoxycholate Sigma-Aldrich 

Sodium dihydrogenphosphate (Na2H2PO4 .H2O) Roth 

Sodium dodecyl sulphate (SDS) Roth 

Sodium hydroxide (NaOH) Sigma-Aldrich 

T4 DNA ligase Thermo Fisher Scientific 

Tetramethylethylenediamine (TEMED) Roth 

TRIS Roth 

Triton X-100 (TX-100) Sigma-Aldrich 

TRIzol® Thermo Fisher Scientific 

Trypsin-EDTA 0.05% Capricorn Scientific 

Tryptone Roth 

Tween-20 Roth 

Yeast extract Roth 

2-(N-Morpholino)ethansulfonsäure (MES) Sigma 
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Table 3: Standard solutions, buffers and bacterial growth medium 

Solution Composition 

BES-buffered saline (BBS) 2x BES   50 mM 

NaCl   280 mM 

Na2HPO4  1.5 mM 

pH 6.95 

Blocking buffer for immunoblotting Milk powder  5% (w/v) 

in TBST 

Coomassie destaining solution Acetic acid  10% (v/v) 

Methanol  20% (v/v) 

Coomassie staining solution Coomassie G250 0.1% (w/v) 

Acetic acid  10% (v/v) 

Methanol  40% (v/v) 

Cytoskeleton buffer MES   10 mM  

NaCL   150 mM  

EGTA   5 mM  

Glucose  5 mM  

MgCl2   5 mM  

pH 6.1 

Laemmli buffer 4x Glycerol     28% (v/v) 

EDTA      10 mM  

SDS       5.7% (v/v) 

2-mercaptoethanol   4.7 mg/ml 

Bromophenol blue   3.5 mg/ml 

Tris-HCl     286 mM 

pH 6.8 

LB agar NaCl   1% (w/v) 

Yeast extract  0.5% (w/v) 

Tryptone  1% (w/v) 

Agar   1.5% (w/v) 

LB medium NaCl       1% (w/v) 

Yeast extract    0.5% (w/v) 

Tryptone     1% (w/v) 

PBS Na2HPO4     8 mM  

KH2PO4     1.5 mM  

NaCl       137 mM  

KCl       2.7 mM 

pH 7.4 

PBST Tween 20  1% (w/v) 

in PBS 

Ponceau S staining solution Ponceau S solution 0.5% (v/v) 

Acetic acid  3% (v/v) 
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RIPA buffer Tris-HCl  50 mM 

NaCl   150 mM 

NP-40   1% (v/v) 

EDTA   2 mM 

SDS   0.1% (w/v) 

Na-Deoxycholate 0.5% (w/v) 

pH 8.0 

SDS-PAGE running buffer 1x Glycine     192 mM  

SDS       0.1% (w/v) 

Tris-HCl     25 mM 

pH 8.3 

SDS-PAGE separating gel RotiPhorese® Gel 30 8–15% 

(v/v) 

TEMED     9.5 µM  

SDS       0.1% (w/v) 

Tris-HCl     0.36 M  

APS      0.1% (w/v) 

pH 8.8 

SDS-PAGE stacking gel RotiPhorese® Gel 30 19% (v/v) 

TEMED     14.5 µM  

SDS       0.1% (w/v) 

Tris-HCl     0.12 M  

APS   0.15% 

(w/v) 

pH 6.8 

Subcellular fractionation – cell lysis buffer HEPES   10 mM 

KCl   10 mM 

EGTA   0.1 mM 

DTT   1 mM 

NP-40   0.5% (v/v) 

COMPLETE  1:20 

pH 7.9 

Subcellular fractionation – nuclear extraction 

buffer 

HEPES   20 mM 

NaCl   400 mM 

EDTA   1 mM 

DTT   1 mM 

COMPLETE   1:20 

pH 7.5 

TBST buffer NaCl    500 mM 

Tris-HCl   20 mM 

Tween-20   1% (v/v) 

pH 7.5 
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Transfer buffer for immunoblotting Glycine     192 mM  

Tris-HCl     25 mM  

Methanol     20% (v/v) 

pH 8.5  

Tris-Acetat-EDTA (TAE) buffer EDTA      2 mM  

Tris-HCl  40 mM 

Acetic acid     20 mM 

pH 8.0 

 

Table 4: Antibodies and fluorescent dyes used in this work 

Antibody Supplier Dilution (in blocking 

buffer) 

Alexa Fluor conjugated 2nd AB Thermo Fisher Scientific IF 1:400 

SNAP-Cell 647 SiR New England BioLabs IF 1:200 

α-c-Myc, TRITC conjugated Santa Cruz IF 1:200 

α-FLAG, HRP conjugated Sigma-Aldrich WB 1:3000 

α-GFP Santa Cruz IF 1:400 

α-HDAC2 Abcam WB 1:5000 

α-INF2 Proteintech WB 1:1000, IF 1:100 

α-Lamin A/C Cell Signaling IF 1:100 

α-mDia1 BD WB 1:1000, IF 1:100 

α-mDia2 M. Innocenti Lab, NL WB 1:1000 

α-Mouse IgG, HRP conjugated GE Healthcare WB 1:5000 

α-Myc, HRP conjugated Sigma-Aldrich WB 1:2500 

α-Rabbit IgG, HRP conjugated Bio-Rad WB 1:5000 

α-Tubulin Cell Signaling WB 1:5000 

α−H3K4Me1 Abcam IF 1:200 

α-β Actin Sigma-Aldrich WB 1:3000 

 

Table 5: Biochemical Kits used in this work 

Name Supplier 

Dual-Luciferase® Reporter Assay System Promega 

NucleoSpin® gel and PCR clean-up Marcherey-Nagel 

NucleoSpin® Plasmid Marcherey-Nagel 

Pierce® ECL Western Blotting Substrate Thermo Fisher Scientific 

PureLinkTM HiPure Plasmid Filter Maxiprep Kit Thermo Fisher Scientific 

 

Table 6: Special equipment, devices and working materials used in this study 

Name Supplier 

Blue LED illumination device In-house made 
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Centrifuge 5415R Eppendorf 

Forma Series II 3110 Water-Jacketed CO2 Incubators Thermo Fisher Scientific 

Glass bottom dishes 3.5 cm MatTek 

LSM 700 confocal microscope, 63x, 1.4 NA oil objective Zeiss 

LuminoskanTM Ascent Microplate Luminometer Thermo Fisher Scientific 

Mini-Trans-Blot System Bio-Rad 

NanoDrop 1000 Peqlab 

Nikon Eclipse Ti microscope Nikon 

PowerPack 300 Bio-Rad 

Protran Nitrocellulose Transfermembran 0.45 µm Whatman 

INFINITY gel documentation Peqlab 

T3 Thermocycler Biometra 

Thermomixer compact Eppendorf 

X-Ray film processor Medical Index GmbH 

X-Ray films Kodak 

 

Table 7: Software used for this study 

Name Supplier 

AscentTM Software Thermo Fisher Scientific 

Illustrator CS5 Adobe 

ImageJ / Fiji Open Source 

MS Office 2010 Microsoft 

Photoshop CS5 Adobe 

Prism 6 Graph Pad Software 

Serial Cloner 2.6.1 Serial Basics 

Zen 2009 light edition Zeiss 

Zen 2012  Zeiss 

Imaris 8.3.1 Bitplane 

 

 

3.2 Cell Culture 

3.2.1 General cell culture 

HEK293, NIH3T3, HeLa, HT29 and LOX cells were maintained in DMEM (HPSTA – high 

glucose, stable glutamine and sodium pyruvate, Capricorn Scientific) supplemented 

with 10% fetal bovine serum (FCS) under standard conditions at 37°C in a 5% CO2 

environment.  
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Table 8: Cell lines used in this study 

Name Type 

HEK293 Human embryonic kidney cells 

HeLa Human cervical carcinoma cells 

HT29 human colorectal adenocarcinoma cells 

LOX Human melanoma cells 

NIH3T3 Mouse embryonic fibroblast cells 

 

3.2.2 Transfection of DNA 

In HEK293 cells, plasmids were transfected using the calcium phosphate method. 

Briefly, cells were pre-seeded in cell culture dishes 24 h before transfection. For a 3.5 

cm dish, the DNA was diluted and mixed in 112.5 µl ultrapure bidest H2O. 125 µl 2x 

BBS was added after mixing, followed by 12.5 µl CaCl2. After gentle vortexting, the 

transfection mixture was incubated for 15 min at RT before adding it dropwise to the 

subconfluent cells. After around three hours upon transfection, the transfection 

medium was replaced with fresh 10% DMEM and cells were incubated overnight (o/n) 

at 37°C in a 5% CO2 environment before further application. 

HeLa cells were transfected using Fugene HD (Promega) according to the 

manufacturer’s instructions. The DNA was mixed in 100 µl serum free DMEM or 100 µl 

OptiMEM. 4 µL of Fugene HD was added and mixed. After 15 min of incubation at RT, 

the transfection mixture was added dropwise to the subconfluent cells, which were 

seeded in a 3.5 cm tissue culture dish the day before. Cells were incubated o/n at 37°C, 

5% CO2 before carrying out further experiments.  

The other cell lines used in this study (NIH3T3, LOX and HT29) were transfected using 

Lipofectamine LTX/Plus (Thermo Fisher Scientific) according to the manufacturer’s 

protocol. The plasmids were mixed in 100 µl serum free DMEM or 100 µl OptiMEM 

and 2 µl Plus-reagent was added. Upon mixing, the solution was incubated for 5 min at 

RT. Subsequently, 4 µL LTX-reagent were added. The transfection mixture was then 

incubated for further 15 min and added to subconfluent pre-seeded cells in a 3.5 cm 

cell culture dish. Before carrying out further experiments, cells were incubated o/n 

(37°C, 5% CO2).  
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3.2.3 Transfection of siRNA 

All siRNAs were purchased from Qiagen. The targeting sequences of siRNAs used in this 

work are indicated in table 9. siRNAs were transfected using Lipofectamine RNAiMAX 

(Thermo Fisher Scientific) following the manufacturer’s instructions. For siRNA 

treatment of cells seeded in a 3.5 cm cell culture dish, 5 µL of the transfection reagent 

were diluted and mixed in 250 µL OptiMEM. In a separate tube, 2.5 µl siRNA of a 20 

µM siRNA solution, corresponding to a final concentration of 10 nM, were diluted and 

mixed with 250 µL OptiMEM. Both solutions were then mixed together and incubated 

for 20 min at RT. Afterwards, the transfection mix was added to the subconfluent cells 

and incubated for 48 h at 37°C in a 5% CO2 environment before further application. If 

it was necessary, cells were split 24 h after siRNA transfection.  

Table 9: siRNA targeting sequences (FlexiTube siRNA, QIAGEN) 

Name Sequence 5’ to 3’ 

Mm_2610204M08Rik_1 (siINF2 #1) CCGGAAGGAACAGATGGCAAA 

Mm_2610204M08Rik_2 (siINF2 #2) CTGGCAGAAGCTGCCATCCAA 

Mm_2610204M08Rik_3 (siINF2 #3) AAGCATGAGATTGAGAACCTA 

Mm_2610204M08Rik_4 (siINF2 #4) TAGGCTCTAGGGAACAAATAA 

Mm_mDia1 #1_5 CAGGAACAGTATAACAAACTA 

Mm_mDia2 #3_2 AAGGAGCTTAATTATAAATCTA 

 

3.2.4 Photoactivation of LOV-INF2-DAD 

Optogenetic activation of LOV-INF2-DAD derivatives was obtained by the incubation of 

cells at 37°C in a 5% CO2 atmosphere under constant illumination by blue LED for 3 

hours. Upon illumination, cells were analyzed with a LSM 700 confocal microscope 

(Zeiss), equipped with a 63X, 1.4 NA oil objective and the ZEN 2012 software (Zeiss).  
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3.3 Molecular biological methods 

3.3.1 DNA cloning and constructs 

Expression vectors were generated by using standard cloning procedures. DNA 

fragments were obtained by PCR reactions using Phusion Hot Start II High-Fidelity DNA 

Polymerase in HF or CG buffer (Thermo Fisher Scientific) according to the 

manufacturer’s instructions. Additionally, the PCR reaction contained 100 ng DNA 

template, 100 nM of each primer (forward and reverse), 2 – 3 µl DMSO (optional), and 

was filled with bidest H2O to a total volume of 50 µl. The primers used in this study are 

summarized in Table 11. The DNA template was either cDNA from pre-existing 

plasmids or cDNA obtained by reverse transcription from the total mRNA amount of 

cells derived from mouse or human. The PCR reaction was conducted using a T3 

Thermocycler (Biometra) with the following conditions: 

denaturation 98°C 30 sec    

  

denaturation 98°C 10 sec 

annealing X°C 30 sec X: 55°C – 72°C 30 cycles total 

extension 72°C X sec X: 30 sec – 3 min   

  

final extension 72°C 5 min 

storage 4°C 

The PCR products were separated on an agarose gel containing ethidium bromide and 

were visualized under UV light. The DNA fragment was then extracted from the 

agarose gel and digested together with the respective cloning vector using appropriate 

DNA restriction endonucleases. The respective restriction sites of the generated 

constructs can be seen in Table 11. All restriction enzymes were purchased from 

Thermo Fisher Scientific and the DNA digestion reactions were conducted according to 

the manufacturer’s instructions. Upon digestion, the DNA was separated again on an 

agarose gel and extracted. Afterwards, the digested vector backbone and the DNA 

insert were combined at a ratio of around 1:3 or 1:4 and ligated using T4 ligase 

(Thermo Fisher Scientific) in accordance to the manufacturer’s protocol. 6 µl of the 

ligation reaction were transformed into DH5α bacterial cells. Cells were then plated on 
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LB agar (containing either ampicillin or kanamycin) and incubated at 37°C o/n. Grown 

bacterial colonies were picked and incubated o/n in 3 ml liquid antibiotics containing 

LB medium. Plasmids were then extracted from bacterial cells by using the 

NucleoSpin® Plasmid Miniprep Kit (Marcherey-Nagel). The extracted plasmids were 

finally sent for DNA sequencing, conducted by Macrogen, Amsterdam, NLD.  

Plasmids were expressed under the control of the EF-1α promotor as derivatives of 

pEF-pLink2 carrying N-terminal FLAG, FLAG- GFP, MYC, MYC-mCherry or MYC-TagBFP2 

epitope tags.  hINF2-DID (aa 32-266), hINF2-DAD-core (aa 941-1015) and hINF2-DAD 

(aa 965-1240) were amplified from human cDNA, based on the sequence of human 

INF2 (NCBI Reference Sequence: NP_001026884.3). hINF2-DAD-CAAX (aa 965-1249) 

was based on the human cDNA sequence of human INF2-CAAX (NP_071934.3). mINF2-

DID (aa 32-267) was based on mouse INF2 (NP_940803.2). Other DID constructs 

comprise the following amino acids according to their respective mouse or human 

cDNA sequence: mDia1-DID (aa 129-369), mDia2-DID (aa 149-397), mDia3-DID (aa 163 

– 399), hFMNL2-DID (aa 75-399), hFMNL2-DID (aa 71-391), hFMNL3-DID (aa 74-395), 

hFHOD1-DID (aa 115-341), hFHOD3-DID (aa 103-332). The SV40 large T antigen NLS 

(PPKKKRKV) was C-terminally fused with one linking glycine to restrict constructs to the 

nucleus. To enable nuclear export, known NES sequences of HIV-Rev (LPPLERLTL) and 

Stat3 (SLAAEFRHLQLK) were used. GFP-INF2 and GFP-INF2-CAAX (both in pEGFP-C1 

vector backbone) were a gift from the Higgs-Lab. GFP-INF2-A149D and GFP-INF2-

A149D-CAAX were generated by site-directed mutagenesis with a subsequent Dpn1 

digestion step (2h at 37°C).  

Table 10: Expression vectors and pre-existing constructs used in this study 

Name Comments 

Actin-Chromobody-GFP-NLS cloned by C. Baarlink, R. Grosse Lab, Marburg, D 

Actin-Chromobody-SNAP cloned by C. Baarlink, R. Grosse Lab, Marburg, D 

Lamin-Chromobody-SNAP cloned by C. Baarlink, R. Grosse Lab, Marburg, D 

pEF-FLAG-mDia2-DAD-L1168G-

NLS 

cloned by C. Baarlink, R. Grosse Lab, Marburg, D 

pAC-TagGFP Chromotek 

pLC-TagRFP Chromotek 

pEGFP-C1 Clontech 
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pEGFP-C1-hINF2 Gift from H. Higgs Lab, Hanover, USA 

pEGFP-C1-hINF2-CAAX Gift from H. Higgs Lab, Hanover, USA 

LifeAct-GFP Gift from M. Sixt Lab, Klosterneuburg, AUT 

pRL-TK Promega 

MRTF-A-GFP R. Treisman Lab, London, UK 

pEF-pLINK2 R. Treisman Lab, London, UK 

pGL3D.AFOS R. Treisman Lab, London, UK 

 

Table 11: Primers for cloning used in this study 

Oligo name Sequence 5’ to 3’ 

mDia1DID fw GCGCGCGCATGGACGAGCTGTACAAGGGCCAGAAAGAGAGC

TCTAGGTCTGC 

mDia2DID fw GCGCGCGCATGGACGAGCTGTACAAGGGCAGTAGCCGACAG

ATCTCACCTC 

mDia1DID NLS SpeI rev GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGGCCT

CCCTTCAGATCAAAGAAATC 

mDia2DID NLS SpeI rev GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGGCCA

GATGCTTCATCAAGTTCAGC 

mDia1DID NLS SpeI rev GCGCGCACTAGTCTATCCCTTCAGATCAAAGAAATC 

mDia2DID NLS SpeI rev GCGCGCACTAGTCTAAGATGCTTCATCAAGTTCAGC 

EcoRI mCherry fw GCGCGCGAATTCATGGTGAGCAAGGGCGAGGAGG 

FHOD1 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGCTCTCCGTGA

GGGTCAATGC 

FHOD1 m rev DID GCGCGCACTAGTCTAAGCCTCTTCCATATCTCCATC 

FHOD1 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGCTCTCTGTGA

GGGTCAACG 

FHOD1 h rev DID GCGCGCACTAGTCTAGATGTCTCCATCCTCCAATTTCAG 

FHOD3 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGCTGTCTGTG

AGGGTCCATG 

FHOD3 m rev DID GCGCGCACTAGTCTACTCAGCTGTCTCATCACCATC 

FHOD3 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGCTGTCTGTG

AGGGTCCATG 

FHOD3 h rev DID GCGCGCACTAGTCTACTCCGTGGTCTCATCGCCATC 

FMNL1 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAAGTCAAGAAT

CCCCCTGC 

FMNL1 m rev DID GCGCGCACTAGTCTACAACACTGCATTCTTCGTCTC 

FMNL1 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAAGTCAAGAAT

CCCCCCGCAG 

FMNL1 h rev DID GCGCGCACTAGTCTACAGCACAGCGTTCTTGGTCTC 

FMNL2 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGGTGAAGAAC

CCTCCCCATAC 

FMNL2 m rev DID GCGCGCACTAGTCTACAAGGCAGCATTCTTGGTTTCTG 
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FMNL2 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGGTGAAGAAT

CCTCCCCATAC 

FMNL2 h rev DID GCGCGCACTAGTCTACAAGGCAGCATTCTTAGTTTCAG 

FMNL3 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAAGTAAAGAAT

CCTCCCCACAC 

FMNL3 m rev DID GCGCGCACTAGTCTACAGGGCTACATTCTTGGTTTCTG 

FMNL3 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCCAGGTGAAGAAT

CCTCCCCAC 

FMNL3 h rev DID GCGCGCACTAGTCTACAGGGCTACATTCTTGGTCTC 

INF2 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCAGCGCCGAGCCT

GAGCTGTGC 

INF2 m rev DID GCGCGCACTAGTCTACCCATCGCTAATTCGCTGAAG 

INF2 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCAGCGCGGACCCC

GAGCTGTGC 

INF2 h rev DID GCGCGCACTAGTCTAGACCCCGCCAGAGACTCGCAG 

mDia3 m fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCACCCTTTCTTCAC

AAGAATATG 

mDia3 m rev DID GCGCGCACTAGTCTAATTGAGACGGTGGGATAATTCAC 

Diaph2 h fw DID GCGCGCGCATGGACGAGCTGTACAAGGGCACCCTGTCTTCAC

AAGAATATG 

Diaph2 h rev DID GCGCGCACTAGTCTAATTGAGACGGTGTGATAATTCAG 

BamH1 mCherry fw  GCGCGCGGATCCATGGTGAGCAAGGGCGAGGAGG 

TagBFP2 EcoRI fw GCGCGCAGGAATTCGATGAGCGAGCTGATTAAGGAGAAC 

TagBFP2 XbaI rev GCGCGCTCTAGACTAATTAAGCTTGTGCCCCAGTTTGC 

mCh INF2 DAD short f GCGCGCGCATGGACGAGCTGTACAAGGGCGGGAAGCAGGA

GGAGGTGTG 

hINF2DAD short SpeI r GCGCGCACTAGTCTAGCTGCCCCCGTCGGTGTCC 

hINF2DAD short NLS 

SpeI r 

GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGCCCG

CTGCCCCCGTCGGTGTCC 

INF2 m rev BcuI NLSDID GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGCCCC

CCATCGCTAATTCGCTGAAG 

INF2 h rev BcuI NLSDID GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGCCCG

ACCCCGCCAGAGACTCGCAG 

hINF2 DAD fw GCGCGCGCATGGACGAGCTGTACAAGGGCAAGCAGCAGCTG

GCGGAGGAGG 

hINF2 DAD BcuI rev GCGCGCACTAGTCTACACAGGCTCTGTGGCTCTTGG 

hINF2 DAD BcuI NLS rev GCGCGCACTAGTCTACACCTTCCGCTTTTTCTTAGGCGGCCCC

ACAGGCTCTGTGGCTCTTGG 

MluI BFP PWPXL fw GCGCGCACGCGTCCTAGCGCTACCGGTCGCCACCATGGTGTC

TAAGGGCGAAGAGCTGATTAAGGAGAACATGCAC 

EcoRI BFP PWPXL rev GCGCGCGAATTCCTATCGAGATCTGAGTCCGGAATTAAGCTT

GTGCCCCAGTTTGC 

PmeI MAL fw GCGCGCGTTTAAACTAATGCTGCCCCCTTCCGTCATTGCTG 
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3xRPEL BFP fw GCGCGCGTAAATTACCCAAAGGTAGCAGACAGTGGGATGGT

GTCTAAGGGCGAAGAGCTG 

BFP MluI rev GCGCGCACGCGTATTAAGCTTGTGCCCCAGTTTGC 

hINF2 EcoRI f GCGCGCGAATTCATGTCGGTGAAGGAGGGCGCAC 

LOV hINF2DAD 1 GCAGAAGAGATTGATGAGGCGGCAGGAGAGGACGGGAAGC

CTGTCAG 

LOV hINF2DAD 2 GCAGAAGAGATTGATGAGGCGGCAGAGGACGGGAAGCCTGT

CAGGAAG 

LOV hINF2DAD 3 GCAGAAGAGATTGATGAGGCGGCAGACGGGAAGCCTGTCAG

GAAG 

LOV hINF2DAD 4 GCAGAAGAGATTGATGAGGCGGCAGGGAAGCCTGTCAGGAA

GG 

LOV hINF2DAD 5 GCAGAAGAGATTGATGAGGCGGCAAAGGGGCCCGGGAAGC

AGGAG 

LOV hINF2DAD 6 GCAGAAGAGATTGATGAGGCGGCAGGGCCCGGGAAGCAGG

AGGAG 

LOV hINF2DAD 7 GCAGAAGAGATTGATGAGGCGGCACCCGGGAAGCAGGAGG

AGGTG 

LOV hINF2DAD 8 GCAGAAGAGATTGATGAGGCGGCAGGGAAGCAGGAGGAGG

TGTGTG 

LOV hINF2DAD 9 GCAGAAGAGATTGATGAGGCGGCAAAGCAGGAGGAGGTGT

GTGTCATC 

LOV hINF2DAD 10 GCAGAAGAGATTGATGAGGCGGCACAGGAGGAGGTGTGTGT

CATC 

LOV hINF2DAD 11 GCAGAAGAGATTGATGAGGCGGCAGAGGAGGTGTGTGTCAT

CGATG 

LOV hINF2DAD 12 GCAGAAGAGATTGATGAGGCGGCAGAGGTGTGTGTCATCGA

TGC 

LOV hINF2DAD 13 GCAGAAGAGATTGATGAGGCGGCAGTGTGTGTCATCGATGC

CCTGCTG 

LOV hINF2DAD 14 GCAGAAGAGATTGATGAGGCGGCATGTGTCATCGATGCCCTG

CTG 

LOV hINF2DAD 15 GCAGAAGAGATTGATGAGGCGGCAGTCATCGATGCCCTGCTG

GCTG 

LOV hINF2DAD I539E 1 GCAGAAGAGGAAGATGAGGCGGCAGGAGAGGACGGGAAGC

CTGTCAG 

LOV hINF2DAD I539E 2 GCAGAAGAGGAAGATGAGGCGGCAGAGGACGGGAAGCCTG

TCAGGAAG 

LOV hINF2DAD I539E 3 GCAGAAGAGGAAGATGAGGCGGCAGACGGGAAGCCTGTCA

GGAAG 

LOV hINF2DAD I539E 4 GCAGAAGAGGAAGATGAGGCGGCAGGGAAGCCTGTCAGGA

AGG 

LOV hINF2DAD I539E 5 GCAGAAGAGGAAGATGAGGCGGCAAAGGGGCCCGGGAAGC

AGGAG 
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LOV hINF2DAD I539E 6 GCAGAAGAGGAAGATGAGGCGGCAGGGCCCGGGAAGCAGG

AGGAG 

LOV hINF2DAD I539E 7 GCAGAAGAGGAAGATGAGGCGGCACCCGGGAAGCAGGAGG

AGGTG 

LOV hINF2DAD I539E 8 GCAGAAGAGGAAGATGAGGCGGCAGGGAAGCAGGAGGAG

GTGTGTG 

LOV hINF2DAD I539E 9 GCAGAAGAGGAAGATGAGGCGGCAAAGCAGGAGGAGGTGT

GTGTCATC 

LOV hINF2DAD I539E 

10 

GCAGAAGAGGAAGATGAGGCGGCACAGGAGGAGGTGTGTG

TCATC 

LOV hINF2DAD I539E 

11 

GCAGAAGAGGAAGATGAGGCGGCAGAGGAGGTGTGTGTCA

TCGATG 

LOV hINF2DAD I539E 

12 

GCAGAAGAGGAAGATGAGGCGGCAGAGGTGTGTGTCATCGA

TGC 

LOV hINF2DAD I539E 

13 

GCAGAAGAGGAAGATGAGGCGGCAGTGTGTGTCATCGATGC

CCTGCTG 

LOV hINF2DAD I539E 

14 

GCAGAAGAGGAAGATGAGGCGGCATGTGTCATCGATGCCCT

GCTG 

LOV hINF2DAD I539E 

15 

GCAGAAGAGGAAGATGAGGCGGCAGTCATCGATGCCCTGCT

GGCTG 

EcoRI LOV fw GCGCGCGAATTCGGCTTGGCTACTACACTTGAACG 

mCh LOV fw GCGCGCGCATGGACGAGCTGTACAAGGGCTTGGCTACTACAC

TTGAACG 

EcoRI mDia1DID fw GCGCGCGAATTCATGCAGAAAGAGAGCTCTAGGTCTGC 

EcoRI mDia2 DID fw GCGCGCGAATTCATGAGTAGCCGACAGATCTCACCTC 

EcoRI hINF2 DAD fw GCGCGCGAATTCATGAAGCAGCAGCTGGCGGAGGAGG 

EcoRI hINF2 DADWH2 GCGCGCGAATTCATGGGGAAGCAGGAGGAGGTGTG 

EcoRI hINF2 DID GCGCGCGAATTCATGAGCGCGGACCCCGAGCTGTGC 

BamHI mINF2 DID GCGCGCGGATCCATGAGCGCCGAGCCTGAGCTGTGC 

hINF2 DAD 3xLtoA GAGGTGTGTGTCATCGATGCCGCTGCTGCTGACATCAGGAAG

GGCTTCCAGGCTCGGAAGACAGCCCGGGGCCGCGGGGAC 

hINF2 DID A149D GAAGCAGGTGTTTGAGCTACTGGCTGACCTGTGCATCTACTCT

CCCGAGGGCCAC 

hINF2 FH2 I643A CAAGAAGAGCCTGAACCTCAACGCATTCCTGAAGCAATTTAA

GTGCTCCAACGAG 

hINF2 FH2 K792A GATCAGCACATTGCTGAAGCTCACGGAGACCGCATCCCAGCA

GAACCGCGTGACGCTGCTGCAC 

hINF2 +CAAX SpeI rev GCGCGCACTAGTCTATCACTTGGCCTTGGGCCTGGGCCTGTTT

GTTTTATTATCATC 

hINF2 –CAAX SpeI rev GCGCGCACTAGTCTATCACTTGGCCTTGGGCCTGGGCCTG 

hINF2 DID E184K fw CTTCAGCATTGTCATGAACAAGCTCTCCGGCAGCGACAAC 

hINF2 DID E184K rev GTTGTCGCTGCCGGAGAGCTTGTTCATGACAATGCTGAAG 

hINF2 DID R218Q fw CTGCGCGCGCGCACCCAGCTGCAAAACGAGTTTATCGGGCTG 

hINF2 DID R218Q rev CAGCCCGATAAACTCGTTTTGCAGCTGGGTGCGCGCGCGCAG 
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I2 A149D SDM fw GTGTTTGAGCTACTGGCTGACCTGTGCATCTACTCTCC 

I2 A149D SDM rev GGAGAGTAGATGCACAGGTCAGCCAGTAGCTCAAACAC 

EcoRI BFP fw GCGCGCGAATTCATGGTGTCTAAGGGCGAAGAGCTG 

BFP LOV fw GCGCGCGCAAACTGGGGCACAAGCTTAATGGCTTGGCTACTA

CACTTGAACG 

LOV GS hI2DAD 969 GCAGAAGAGATTGATGAGGCGGCAGGCGGTAGCGGAGGTTC

TGAGGTGTGTGTCATCGATGC 

LOV GS hI2DAD 970 GCAGAAGAGATTGATGAGGCGGCAGGCGGTAGCGGAGGTTC

TGTGTGTGTCATCGATGCCCTGCTG 

LOV GS hI2DAD 971 GCAGAAGAGATTGATGAGGCGGCAGGCGGTAGCGGAGGTTC

TTGTGTCATCGATGCCCTGCTG 

LOV GSGS hI2DAD 971 GCAGAAGAGATTGATGAGGCGGCAGGCAGCGGATCTTGTGT

CATCGATGCCCTGCTG 

LOV GS hI2DAD 971 GCAGAAGAGATTGATGAGGCGGCAGGTTCTTGTGTCATCGAT

GCCCTGCTG 

LOV GGS hI2DAD 971 GCAGAAGAGATTGATGAGGCGGCAGGCGGTAGCTGTGTCAT

CGATGCCCTGCTG 

hINF2 NLS1 fw GCGCGCGAATTCCGGGCCAGGAAGGAGCCCAAG 

hINF2 NLS1 rev GCGCGCACTAGTCTAGCACTTAAATTGCTTCAGGAAG 

hINF2 NLS2 fw GCGCGCGAATTCTTCAGCACCATGAAGGCTTTC 

hINF2 NLS2 rev GCGCGCACTAGTCTACTTCCTCCTCTCTGCCTTCG 

hINF2 NLS3 fw GCGCGCGAATTCCGGGCCTCAAAGGGGACCGGGAAG 

hINF2 NLS3 rev GCGCGCACTAGTCTAGATCACACACAGTTTCTTTG 

EcoRI hINF2 fw 2 ATATATGAATTCATGTCGGTGAAGGAGGGC 

EcoRI hINF2 fw 3 ATATATGAATTCATGTCGGTGAAGGAGGGCGCACAG 

hINF2 NLS1 mut fw GCGCGCGAATTCCGGGCCGCTGCAGAGCCCAAGGAGATCACT

TTC 

hINF2 NLS2 mut rev GCGCGCACTAGTCTAAGCTGCAGCCTCTGCCTTCGCCGCCTGC

TCCTTC 

hINF2 NLS3 mut fw GCGCGCGAATTCCGGGCCTCAAAGGGGACCGGGGCTGCAGC

TGCAGCTGCACCCTCCAGGAGCCAGGAAGAGGTTC 

hINF2_2 NLS3 mut rev GCGCGCACTAGTCTACTTGGCCTTGGGCCTGGGCCTGAG 

hINF2 FH2 I643R CGATGCCAAGAAGAGCCTGAACCTCAACAGATTCCTGAAGCA

ATTTAAGTGCTCCAACGAGGAGGTC 

hINF2 FH2 K792A GATCAGCACATTGCTGAAGCTCACGGAGACCGCATCCCAGCA

GAACCGCGTGACGCTGCTGCAC 

hINF2 NES1 fw GCGCGCGAATTCCTGCTGGAGGCGCTGGCGCGGCTGTCGGG

CCGCGGC 

hINF2 NES1 rev GCGCGCACTAGTCTAGCCGCGGCCCGACAGCCGCGCCAGCGC

CTCCAGCAG 

hINF2 NES2 fw GCGCGCGAATTCCTGGCTCGCCTGCGAGACCTGGAG 

hINF2 NES2 rev GCGCGCACTAGTCTAAGCCTCCAGCTGGATCAGCAGGTC 

hINF2 NES3 fw GCGCGCGAATTCCTCCTTAAGCTCCTTCCCGAGAAGCACGAG

ATT 
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hINF2 NES3 rev GCGCGCACTAGTCTAAATCTCGTGCTTCTCGGGAAGGAGCTT

AAGGAG 

hINF2 NES4 fw GCGCGCGAATTCATGAAGGCTTTCCGGGACCTTTTCCTCCGCG

CCCTG 

hINF2 NES4 rev GCGCGCACTAGTCTACAGGGCGCGGAGGAAAAGGTCCCGGA

AAGCCTTCAT 

hINF2 NES4 mut fw GCGCGCGAATTCATGAAGGCTTTCCGGGACCTTTTCGGACGC

GCCCTG 

hINF2 NES4 mut rev GCGCGCACTAGTCTACAGGGCGCGTCCGAAAAGGTCCCGGA

AAGCCTTCAT 

hINF2 DAD 3LA long CAGGAGGAGGTGTGTGTCATCGATGCCGCTGCTGCTGACATC

AGGAAGGGCTTCCAGGCTCGGAAGACAGCCCGGGGCCGCGG

GGACACCGAC 

hINF2 DID E184K rev 

long 

GTAGGGCACGTTGTCGCTGCCGGAGAGCTTGTTCATGACAAT

GCTGAAGCGGTACTG 

hINF2 DID R218Q rev 

long 

CAGCAGCTGCAGCCCGATAAACTCGTTTTGCAGCTGGGTGCG

CGCGCGCAGGTCCTC 

hINF2 +CAAX EcoRI rev GCGCGCGAATTCCTATTACTGGATCACACACAGTTTC 

hINF2 –CAAX EcoRI rev GCGCGCGAATTCCTATCACTTGGCCTTGGGCCTGGGCCTG 

 

3.3.2 Agarose gel electrophoresis 

The DNA samples (PCR fragments, digested vectors, etc.) were mixed with DNA loading 

dye and loaded onto 0.8% - 2% agarose gels (depending on the size of the DNA 

fragments) in 1x TAE buffer containing 10 µg/µl ethidium bromide. The DNA fragments 

were separated electrophoretically under constant voltage using a DNA 

electrophoresis chamber (BioRad). The separated DNA fragments were detected under 

UV light using an INFINITY gel documentation system (peQlab). Seperated DNA bands 

were cut from the gel and extracted by the NucleoSpin® gel and PCR clean-up kit 

(Marcherey-Nagel). 

3.3.3 RNA isolation from cells 

Target cells were washed with ice cold PBS and lysed by addition of 1 ml TRIzol reagent 

(Thermo Fisher Scientific) directly to the 3.5 cm cell culture dish. Cells were then 

collected in a tube and vortexed thoroughly. Afterwards, 200 µl Chloroform were 

added to the cell lysate, followed by 15 sec of rigorous vortexing and incubation for 2 

min at 4°C. Samples were then centrifuged at 12,000 g for 15 min at 4°C to obtain 



 

56 

 

phase separation. The RNA, residing in the upper aqueous phase, was carefully 

transferred to a fresh tube and mixed with 500 µl isopropanol for RNA precipitation. 

After incubation for 30 min on ice, RNA was pelleted by centrifugation at 12,000g for 

15 min at 4°C. The RNA pellet was washed carefully with 75% Ethanol and pelleted 

again at 12,000g for 5 min at 4°C. The pellet was then dried at RT and dissolved in 15 – 

45 µl RNAse-free H2O.  

3.3.4 CRISPR/Cas9 mediated deletion of INF2 

To delete both isoforms of the INF2 gene in NIH3T3 cells by using an all-in-one 

CRISPR/Cas9 vector system (Sakuma et al., 2014), cells were transfected with the 

pX330A-1x2 vector  encoding for two different guide RNAs (gRNAs) directed towards 

the INF2 coding region. The vector additionally contains a 2A-eGFP fragment from 

pSpCas9(BB)-2A-GFP (Ran et al., 2013). The following oligonucleotides were taken into 

account: #1: CCCGAGTAGTTGACCACCGAGGG, #2: GCCCGAGTAGTTGACCACCGAGG, 

#14: CGCCTGGAGAGCAGCGATGGCGG, #15: TGGAGAGCAGCGATGGCGGCTGG. All 

sequences are localized in exon2.  The particular gRNA combinations were used to 

obtain an all-in-one vector harboring double gRNA cassettes: #1 & #14 (Clone 2), #2 & 

#14 (Clone 3) and #2 & #15 (Clone 4). The empty vector was used to generate control 

cells. The successful INF2 gene deletion was validated by immunoblotting against 

endogenous INF2. The whole process of generating INF2-depleted NIH3T3 cells was 

planned and conducted by Eva-Maria Kleinschnitz with the aid of Andrea Wüstenhagen 

and Marga Losekam (all AG Grosse).  

 

3.4 Immunofluorescence and microscopy 

3.4.1 Immunofluorescence microscopy sample preparation and staining 

Cells grown on glass coverslips were fixed with 3.7% formaldehyde in PBS for 10 min at 

room temperature (RT). Upon washing the coverslips three times with PBS, cells were 

permeabilized with 0.2% Triton X-100 in PBS (PBST) for 5 min at RT or, when 
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specifically indicated, with 0.05% Saponine in PBS for 5 min at RT. Afterwards, cells 

were blocked in 5% FCS/PBST (or 5% FCS/PBS, if permeabilized with Saponine) for 20 

min at RT and subsequently incubated with the particular antibodies (antibodies used 

in this study see Table 4). Primary antibody incubations were performed in 5% 

FCS/PBS(T) for 60 min at RT, followed by three washing steps with PBS(T). If necessary, 

cells were incubated then with Alexa Fluor-labeled secondary antibodies in 5% 

FCS/PBS(T) for 60 min at RT, followed by an optional incubation step for 10 min with 

DAPI (50x in PBS(T)). After three final washing steps with PBS(T), the coverslips were 

mounted on glass slides with fluorescent mounting medium (DAKO).  

3.4.2 Visualization of nuclear F-actin in fixed cells with phalloidin 

Visualization of nuclear actin filaments using phalloidin was performed as described 

previously (Baarlink et al., 2013). Briefly, NIH3T3 cells were grown at low density on 

glass coverslips. Cells were washed once with PBS and initially fixed with 0.5% TX-100 

and 0.25% Glutaraldehyde in cytoskeleton buffer for 1 min. A second fixation step was 

performed subsequently for 15 min with 2% Glutaraldehyde in cytoskeleton buffer. 

Upon washing the coverslips three times with cytoskeleton buffer, autofluorescence 

was quenched by treatment with 1 mg/ml freshly prepared NaBH4  for 5 min at RT. 

Afterwards, cells were washed again three times with cytoskeleton buffer and 

incubated with Alexa Fluor 488 conjugated phalloidin (1:400 in cytoskeleton buffer) for 

30 min. The coverslips were finally washed three times with cytoskeleton buffer and 

three times with ultrapure bidest H2O, followed by mounting on a glass slide with 

fluorescent mounting medium.  

3.4.3 Microscopy and image analysis 

All images were collected with an LSM 700 confocal microscope (Zeiss), equipped with 

a 63X, 1.4 NA oil objective and the ZEN 2012 software (Zeiss). The images were later 

processed for contrast enhancement and background noise reduction with ZEN 2012 

(Zeiss) or ImageJ/Fiji (National Institutes of Health).  
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To analyze the nucleocytoplasmic ratio of putative INF2-NES or INF2-NLS sequences, 

confocal Z-stacks of single cells were imaged and the maximum intensity projections 

were calculated with ZEN 2009 (Zeiss). The quantification of the nucleocytoplasmic 

ratio was performed by using ImageJ (National Institutes of Health), applying the 

IntensityRatioNucleiCytoplasm-Macro (http://dev.mri.cnrs.fr/projects/imagej-macros/ 

wiki/Intensity_Ratio_Nuclei_Cytoplasm_Tool). 

Nuclear fluorescence intensity measurements were conducted by analyzing confocal Z-

stacks of α-INF2 and DAPI stained NIH3T3 cells (Control vs. INF2-deleted cells) with the 

Imaris 8.3.1 software (Bitplane). All images were taken with the same microscope 

settings. Quantitative analysis of the confocal images was done by Matthias Plessner 

(AG Grosse). 

3.4.4 Live cell imaging 

For live cell imaging, cells were grown and transfected in 3.5 cm glass bottom dishes 

(MatTek). Live cell imaging was performed at 37 °C in a CO2 (5%) humidified chamber 

using an LSM700 confocal microscope with a 63×/1.4 oil objective in combination with 

the ZEN 2012 software (Zeiss).  

SNAP-Cell 647 SiR labeling was performed according to the manufacturer’s protocol 

(New England Biolabs). Briefly, cells were pre-seeded on glass bottom dishes and 

transfected with the appropriate plasmids the day before analysis. Prior visualization 

under the confocal microscope, SNAP-Cell 647 SiR loading dye was applied 1:400 and 

cells were incubated for 30 min at 37 °C in 5% CO2.  
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3.5 Biochemical methods 

3.5.1 SDS- polyacrylamide gel electrophoresis (SDS-PAGE) and protein 

immunoblotting (Western blot) 

Proteins were denatured by adding 2x Laemmli buffer either directly to cells in cell 

culture plates or to already prepared samples from co-immunoprecipitation or 

fractionation experiments. The samples were then collected in a tube and boiled for 10 

min at 95°C. Afterwards, the lysate was cleared by centrifugation at 16,000g for 10 

min. The samples were then either immediately subjected to SDS-PAGE or stored at -

20°C.  

The denatured proteins were separated by SDS-PAGE using a Mini-PROTEAN III Cell gel 

system (Bio-rad). Therefore, the samples were loaded to a polyacrylamide gel, which 

had to be casted before. The separating gels were casted in concentrations of 8%, 10% 

or 13%, depending on the sizes of the proteins to be separated. The proteins were 

then electrophoretically separated by applying a constant voltage to the gel (80 V for 

proteins inside the stacking gel and 120 V upon entering the separating gel).  

The separated proteins on the polyacrylamide gel were then transferred to a 0.45 µm 

nitrocellulose membrane (Whatman) by applying constant 350 mA for 1 h to 1.5 h 

using a Mini Trans-Blot® Electrophoretic Transfer Cell system (Bio-Rad). After 

successful protein transfer to the nitrocellulose membrane, checked by Ponceau S 

staining, membranes were incubated in blocking buffer (5% Milk in TBST) for 1 h at RT. 

The membrane was then incubated in blocking buffer containing the proper diluted 

primary antibody (see Table 4) either at 4°C o/n or for 1 h at RT. After washing the 

membrane three times for 10 min with TBST, it was incubated for 1 h at RT with 

secondary horseradish peroxidase (HRP)-conjugated antibodies diluted in blocking 

buffer. Membranes were then washed again three times for 10 min with TBST before 

analysis. Antibody labeled protein bands were detected by applying ECL reagent to the 

nitrocellulose membrane and exposing X-Ray films to the membrane inside a dark 
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room. Finally, the films were developed with an X-Ray film processor (Medical Index 

GmbH).  

3.5.2 Co-immunoprecipitation  

HEK293 or NIH3T3 cells were grown in 10 cm dishes and transfected with 2.5 µg of 

DNA. Upon a single wash with ice-cold PBS, cells were lysed in RIPA buffer 

supplemented with COMPLETE protease inhibitors. The lysate was incubated for 10 

min on ice and centrifuged for 10 min at 12,000g at 4°C. The supernatant, containing 

the debris-cleared lysate, was incubated afterwards with α-FLAG pre-coupled agarose 

beads (Sigma-Aldrich) or α-MYC pre-coupled agarose beads (Sigma-Aldrich) for 1.5 h at 

4°C. The beads were then washed three times with RIPA buffer and finally lysed in 2x 

Laemmli buffer. Prior boiling the samples for 5 min, they were subjected to SDS-PAGE 

and immunoblotting using HRP-conjugated α-FLAG or α-MYC antibodies.  

3.5.3 Subcellular fractionation 

The preparation of subcellular fractionations was adapted from (Kosugi et al., 2009). 

NIH3T3 cells were grown and transfected in a 10 cm cell culture plate. Prior lysis, cells 

were washed once with ice-cold PBS, dislodged and pelleted for 5 min at 800g. The cell 

pellet was resuspended in cell lysis buffer and allowed to swell on ice for 15-20 min 

with intermittent gentle vortexing. Finally, a 10 s vortexing step was conducted to 

disrupt all cell membranes. The supernatant, containing the cytoplasmic extract, was 

collected upon centrifugation of the total cell lysate for 10 min at 4°C at 12,000g. The 

pelleted nuclei were then washed once in cell lysis buffer before resuspension in 

nuclear lysis buffer, followed by incubation for 30 min on ice. The supernatant, now 

containing the nuclear extract, was collected after sedimentation of the remaining 

insoluble debris for 15 min at 4°C at 12,000g. 2x Laemmli sample buffer was then 

added to aliquots of the cytoplasmic and nuclear extracts. The samples were then 

subjected to SDS-PAGE with subsequent immunoblotting using appropriate primary 

antibodies and HRP-conjugated secondary antibodies. The purity of obtained extracts 
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was controlled by immunoblotting for α-tubulin or α-HDAC2 as cytoplasmic or nuclear 

markers, respectively.  

3.5.4 MRTF/SRF luciferase reporter assay 

MRTF/SRF luciferase reporter assays were performed as described before (Brandt et 

al., 2009) using pGL3D.AFOS and pRL-TK reporter plasmids. MRTF/SRF activity 

experiments were generally conducted in HEK cells, unless stated otherwise. Briefly, 4 

to 5 h after transfection of pre-seeded cells with pGL3D.AFOS and pRL-TK, together 

with plasmids carrying the genes of interest, cells were starved in DMEM containing 

0.25 % FCS for 16 to 24 hours before analysis. If alterations in MRTF/SRF 

transcriptional activity upon serum stimulation were measured, cells were stimulated 

prior analysis with 20% FCS for 6 hours.  

For sample preparation, cells were washed once with PBS and lysed by the addition of 

200 µl ice-cold passive lysis buffer (Promega) per 3.5 cm dish. Afterwards, cells were 

scraped and transferred to a tube, followed by incubation on ice for 20 min and 

centrifugation at 20,000 g for 10 min at 4°C. Dependent on the transfection efficiency, 

5 to 20 µl of the debris cleared cell lysate were used for measurements. The reporter 

assays were performed using the Dual-Luciferase® Reporter Assay System Kit 

according to the manufacturer’s protocol. The firefly and renilla luciferase signals were 

measured sequentially by a LuminoskanTM Ascent Microplate Luminometer (Thermo 

Scientific) using the AscentTM Software (Thermo Scientific). Afterwards, the firefly 

signal was normalized to the renilla signal in each sample.  

 

3.6 Statistics 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software). Data 

is displayed as mean (± SD). The statistical significance was evaluated using the 

unpaired Student t test. Statistical significance is defined at P ≤ 0.05.   
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4. Results 

Formin proteins represent the largest group within different classes of actin 

nucleators. Up to date, 15 formin members have been discovered in vertebrates which 

can further be divided into several subgroups. Among those subgroups, Diaphanous-

related formins (DRFs) form the largest subset (Breitsprecher and Goode, 2013). 

Typically, DRFs exist in an autoinhibited state within cells, mediated by an interaction 

of the N-terminal diaphanous inhibitory domain (DID) and the C-terminal diaphanous 

autoregulatory domain (DAD) (Baarlink et al., 2010). Relieve of this intramolecular 

inhibition results in activation of formins and subsequent nucleation and elongation of 

unbranched actin filaments (Pruyne et al., 2002).  

Recently, a role of formins in the formation of F-actin structures in mammalian somatic 

cell nuclei was described (Baarlink et al., 2013; Belin et al., 2015). However, the 

appearance of additional formins in the nucleus as well as their putative participation 

in the assembly of nuclear actin filaments remained elusive.  

 

4.1 A novel approach to activate endogenous mDia formins  

Previously, it was revealed that the overexpression of an isolated mDia-DAD competes 

with the intramolecular inhibitory interaction of DID and DAD of endogenous mDia 

formins, leading to the release of mDia autoinhibition and subsequent actin 

rearrangement (Alberts, 2001). Based on the finding that essential DAD-binding amino 

acids are mostly located on the concave surface of the Armadillo Repeat Region (ARR) 

(Otomo et al., 2005a), we wanted to analyze if expression of an isolated ARR (here 

referred to as DID) also inhibits mDia formins to revert to their intramolecular 

autoinhibited state (working model see Figure 8). This approach would expand the 

tools available for endogenous formin activation in trans. Thus, we generated 

constructs genetically encoding the DIDs of either mDia1 (aa 149-397), mDia2 (aa 129-

369) or mDia3 (aa 163-399) and tested their functionality.  
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Figure 8: Release of formin autoinhibition by expression of DAD or DID 

Cartoon illustrating the activation of endogenous mDia2 by overexpression of mDia2-DAD (Alberts, 

2001) (light green) or mDia2-DID (light blue, amino acids 32 – 266, comprising the armadillo repeat 

region of mDia2). Overexpressed mDia2-DAD or -DID interferes with DID/DAD interaction in 

autoinhibited mDia2, thereby releasing its autoinhibition and promoting actin assembly.   

 

4.1.1 Expression of the DID of mDia formins drives MRTF/SRF transcriptional activity 

Activation of mDia caused by overexpression of its DAD mediates actin remodeling and 

subsequent MRTF/SRF transcriptional activity (Alberts, 2001). To analyze successful 

DID mediated activation of mDia formins, we investigated the effects of mDia-DID 

expression on actin dynamics by performing a luciferase reporter gene assay to 

examine SRF activity (SRF reporter gene assays were performed in serum starved HEK 

cells, unless stated otherwise). Indeed, expression of mDia1-DID, mDia2-DID or mDia3-

DID led to a remarkable increase in SRF transcriptional activity, although the increase 

was not as striking as upon expression of mDia2-DAD (Figure 9A).  

Furthermore, actin polymerization promotes the release of G-actin from MRTF-A, 

resulting in nuclear accumulation of MRTF-A (Vartiainen et al., 2007).  Thus, we 

expected that overexpression of mDia-DID also mediates MRTF-A-shuttling to the 

nucleus. Indeed, the accumulation of MRTF-A-GFP in the nucleus of serum starved 

NIH3T3 cells could be visualized upon expression of mDia2-DID (Figure 9C, upper 
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panel). The DIDs of mDia1 and mDia3 have not been analyzed in terms of MRTF-A-

shuttling. 

 

4.1.2 The expression of mDia2-DID in the nucleus is capable of assembling a nuclear 

actin network 

The dynamic regulation of MRTF/SRF transcriptional activity is dependent on actin 

inside the nucleus (Vartiainen et al., 2007). Recently, a role of nuclear mDia formins in 

the regulation of MRTF/SRF activity was described (Baarlink et al., 2013). Spatial 

activation of mDia2 mediated by expression of the nuclear targeted mDia2-DAD was 

shown to induce the assembly of a nuclear actin network followed by MRTF-A 

accumulation in the nucleus and subsequent increase in MRTF/SRF transcriptional 

activity (Baarlink et al., 2013). 

Thus, we generated a nuclear targeted version of mDia2-DID (mDia2-DID-NLS) and 

analyzed the ability of the DID to activate endogenous mDia2 in the nucleus. Indeed, 

increased SRF activity (Figure 9B) and accumulation of MRTF-A-GFP in serum starved 

NIH3T3 cells (Figure 9C, lower panel) could be obtained upon expression of mDia2-DID-

NLS. The effect in MRTF/SRF transcriptional regulation was not as prominent as upon 

activation of mDia2 by mDia2-DID (cf. Figure 9A). However, this more moderate effect 

comparing mDia2-DID-NLS to mDia2-DID mediated SRF-activity was expected as 

nuclear mDia activation by mDia2-DAD-L1168G-NLS also resulted in a marginal 

increase in SRF activity compared to mDia2 activation by mDia2-DAD (Figure 9B and 

(Baarlink et al., 2013), cf. Figure 9A). Furthermore, by using the nuclear actin probe 

Actin-Chromobody-TagGFP2-NLS (referred to as nuclear-Actin-Chromobody-GFP or 

short as nAC-GFP) (Plessner et al., 2015) we could obtain clearly visible nuclear actin 

filaments upon activation of mDia2 in the nucleus by mDia2-DID-NLS (Figure 9D).  

Interestingly, co-expression of mDia2-DAD together with mDia2-DID prevented 

alterations in SRF activity (Figure 9E, left panel). The same effect could be obtained 

using nuclear targeted versions of mDia2-DAD and mDia2-DID (Figure 9E, right panel). 
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This suggests that both overexpressed constructs interact with each other within cells, 

thereby inhibiting their ability to release autoinhibition of endogenous mDia.  

Taken together, these results strongly suggest that the expression of the isolated DID 

of mDia formins provides an additional tool to activate endogenous mDia by 

interacting with the DAD of the endogenous formin and thereby interfering with the 

intramolecular mDia autoinhibition.  

 

Figure 9: mDia-DID mediated regulation of actin dynamics and MRTF/SRF transcriptional activity  

A) HEK cells were transfected with mDia1-DID, mDia2-DID or mDia3-DID together with the MRTF/SRF 

reporter 3DA.luc to analyze effects on SRF activity. mDia2-DAD was used as a positive control (and for 
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comparison). Transfected cells were grown under serum starved conditions (DMEM with 0.25 % FCS) 

before conducting the SRF reporter gene assay. Results are means ± SD (n=3). B) SRF activity in HEK cells 

expressing mDia2-DAD-L1168G-NLS (used as positive control) or mDia2-DID-NLS. Results are means ± SD 

(n=3). C) NIH3T3 cells were transfected with MRTF-A-GFP together with either mCherry-mDia2-DID or 

mCherry-mDia2-DID-NLS and imaged under serum starved conditions. Scale bar, 10 µm. D) 

Representative images show NIH3T3 cells expressing mCherry-mDia2-DID-NLS together with Actin-

Chromobody-TagGFP2-NLS (= nuclear-Actin-Chromobody [nAC-GFP]). Scale bar, 10 µm. E) mDia2-DID 

inhibits mDia2-DAD driven SRF activity. HEK cells were transfected with 500 ng of either mDia2-DAD (left 

panel) or mDia2-DAD-L1168G-NLS (right panel). mDia2-DAD expressing cells were co-transfected with 

increasing amounts of  mDia2-DID, whereas mDia2-DAD-L1168G-NLS expressing cells were transfected 

with mDia2-DID-NLS (+: 250 ng, ++: 500 ng). The transfected amount of DNA was filled to a total of 2 µg 

with empty vector. Results are means ± SD (n=3). 

 

4.2 INF2 participates in actin dynamics and MRTF/SRF transcriptional 

activity 

Next, we examined if the release of formin autoinhibition upon expression of the 

isolated DID is not restricted to mDia but rather if this elegant way of modulating 

endogenous formin activity ccould also be implemented in other DRFs.  

 

4.2.1 INF2-DID and INF2-DAD expression results in increased SRF activity and MRTF-A 

accumulation to the nucleus 

We conducted a MRTF/SRF reporter gene assay screen upon expression of DIDs of 

other DRFs (hFMNL1: aa 75-399, hFMNL2: aa 71-391, hFMNL3: aa 74-395, hFHOD1: aa 

115-341, hFHOD3: aa 103-332 and hINF2: aa 32-266) to analyze if they behave in an 

mDia-DID comparable manner. A striking upregulation of SRF activity could be seen in 

serum starved HEK cells expressing hINF2-DID, whereas expression of the respective 

other DIDs showed no impact on MRTF/SRF regulation (Figure 10A). The DID of the 

mouse INF2 homologue, featuring 95% sequence homology to hINF2-DID, activated 

MRTF/SRF transcription similar to hINF2-DID (data not shown).  
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Furthermore, we wanted to analyze if INF2 autoinhibition could also be released by 

overexpression of its DAD. Thus, we generated three different versions of the INF2-

DAD: INF2-DAD-core (containing the DAD/WH2 domain flanked by additional amino 

acids: aa 941-1015), hINF2-DAD (containing the full C-terminus of hINF2 starting N-

terminal of the DAD/WH2: aa 965-1240) and hINF2-DAD-CAAX (containing the full C-

terminus of hINF2-CAAX, aa 965-1249) (Figure 10B). Expression of either one of the 

INF2-DAD versions in HEK cells resulted in a striking upregulation of MRTF/SRF 

transcriptional activity (Figure 10C). However, expression of full length hINF2 or hINF2-

CAAX alone displayed only moderate SRF activity, leading to the assumption that 

overexpressed full length INF2 mainly exists in an autoinhibited state in unstimulated 

cells. Co-expression of full length hINF2 or hINF2-CAAX together with the DAD of the 

respective isoform raised MRTF/SRF transcriptional activity almost to levels which 

were obtained by expression of constitutively active hINF2-A149D or hINF2-A149D-

CAAX (Korobova et al., 2013; Ramabhadran et al., 2013) (Figure 10D). The INF2-DAD-

core mediated increase in MRTF/SRF transcriptional activity could be suppressed by 

co-expression of hINF2-DID (Figure 10E). 
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Figure 10: INF2-DID or INF2-DAD expression modulates SRF activity  

A) SRF activity was compared upon transfection of HEK cells with the DID domain of distinct formins. 

Note that only the DID of INF2 (amino acids 32 – 266) shows a striking increase in MRTF/SRF dependent 

gene regulation. Results are means ± SD (n=3). B) The cartoon shows an illustration of the C-terminus of 

hINF2, comprising the DAD/WH2 domain (shown in red). Residues in purple indicate highly conserved 

amino acids among WH2 domains of other proteins (Chhabra and Higgs, 2006). Different variants of 

hINF2-DAD were used in this study: INF2-DAD-core (amino acids 941 – 1015), as well as the full C-

termini of both hINF2 isoforms: hINF2-DAD (amino acids 965 – 1240) and hINF2-DAD-CAAX (amino acids 

965 – 1249). C) HEK cells were transfected with INF2-DAD-core, hINF2-DAD or hINF2-DAD-CAAX and SRF 

activity was analyzed. Results are means ± SD (n=3). D) To analyze the efficiency of DAD mediated INF2 

activation, SRF activity was measured in HEK cells expressing the respective isoforms of hINF2, hINF2 

together with hINF2-DAD or constitutive active hINF2-A149D. 500 ng of each construct were 

transfected. Results are means ± SD (n=3). E) hINF2-DID inhibits INF2-DAD-core driven SRF activity. SRF 
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mediated transcription was measured in HEK cells transfected either with INF2-DAD-core or hINF2-DID 

alone or co-transfected with INF2-DAD-core together with equal amounts of hINF2-DID. Results are 

means ± SD (n=3).  

Activation of hINF2 by its DID or DAD expression also resulted in translocation of 

MRTF-A-GFP to the nucleus in serum starved NIH3T3 cells (Figure 11A). For 

comparison, similar outcomes could be obtained upon expression of hINF2-A149D or 

hINF2-A149D-CAAX (Figure 11B) by observing nuclear accumulation of a truncated 

form of MRTF-A containing only the RPEL domain (Guettler et al., 2008) which controls 

the nucleocytoplasmic shuttling of MRTF-A.  

Noteworthy, successful INF2-DAD mediated activation of endogenous INF2 was 

reported recently (Bartolini et al., 2016). Thereby a role of INF2 in the formation of 

stabilized detyrosinated microtubules was suggested.  

 



 

70 

 

Figure 11: INF2-DID or INF2-DAD expression regulates translocation of MRTF-A to the nucleus 

A) Serum starved NIH3T3 cells show MRTF-A-GFP localized to the nucleus upon expression of mCherry-

hINF2-DID, mCherry-INF2-DAD-core as well as mCherry-hINF2-DAD or mCherry-hINF2-DAD-CAAX. The 

right panel shows the localization of MRTF-A-GFP in serum starved NIH3T3 cells (without INF2 

activation). Scale bar, 10 µm. B) 3xRPEL 2xBFP was used as indicator for MAL shuttling in serum starved 

NIH3T3 cells with constitutive active INF2 (GFP-hINF2-A149D or GFP-hINF2-A149D-CAAX). The right 

panel shows the localization of 3xRPEL-2xBFP in serum starved NIH3T3 cells (without INF2 activation). 

Scale bar, 10 µm.  

 

4.2.2 Distinct versions of INF2-DAD lead to selective activation of hINF2 isoforms 

Selective activation of the respective hINF2 isoforms upon expression of hINF2-DAD or 

hINF2-DAD-CAAX could be shown by analyzing the effects on the reorganization of the 

actin cytoskeleton. Using LifeAct-GFP as actin detection probe, we observed that 

hINF2-DAD expression led to a distinct cytosolic actin pattern while hINF2-DAD-CAAX 

resulted in actin structures localizing to the ER surface (Figure 12A). The differential 

actin pattern could also be visualized in fixed NIH3T3 cells by phalloidin staining (Figure 

12B). These differences are consistent with the previously reported distinct actin 

rearrangement upon expression of constitutively active INF2 isoforms ((Ramabhadran 

et al., 2013) and Figure 12C). Interestingly, hINF2-DAD-CAAX did not mediate actin 

rearrangement to the ER in HELA cells (data not shown) where the INF2-CAAX isoform 

could only be detected in very low amounts (Ramabhadran et al., 2011).  
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Figure 12: Differential isoform specific INF2-DAD derivatives selectively activate particular hINF2 

isoforms 

A) NIH3T3 cells expressing either mCherry-hINF2-DAD or mCherry-hINF2-DAD-CAAX together with 

LifeAct-GFP resemble a characteristic and distinct actin pattern (blue arrowhead: perinuclear actin ring 

upon activation of hINF2-CAAX). The right panel shows the actin pattern visualized by LifeAct-GFP in 

untransfected NIH3T3 cells. Scale bar, 10 µm. B) The distinct actin pattern upon expression of either 

INF2-DAD or INF2-DAD-CAAX can also be detected in fixed NIH3T3 cells. F-actin was labeled by Alexa 

Fluor 488 conjugated Phalloidin (Phalloidin AF488). The yellow arrowhead indicates the INF2-DAD-CAAX 

mediated characteristic perinuclear actin structure. Scale bar, 10 µm. C) Images show GFP-hINF2-A149D 

or GFP-hINF2-CAAX-A149D expressing NIH3T3 cells. LifeAct mCherry was co-transfected as a marker for 

Actin. Note the characteristic INF2-CAAX (pink arrowhead) and Actin (yellow arrowhead) pattern in the 

perinuclear region. Scale bar, 10 µm. 
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4.2.3 INF2-DID or INF2-DAD mediated effects on actin rearrangement and MRTF/SRF 

regulation are dependent on endogenous INF2 

The above described INF2-DID or INF2-DAD mediated effects on cellular properties had 

to be characterized in terms of their specificity. Initially, point mutations were 

introduced in either the DID (A149D (Ramabhadran et al., 2013), E184K or R218Q 

(Brown et al., 2010)) or the DAD (L1008A, L1009A, L1018A [= 3LtoA] (Chhabra and 

Higgs, 2006)) which were suggested to disrupt INF2-DID/DAD binding and subsequent 

INF2 autoinhibition (Rollason et al., 2016). All mutations were shown to compensate 

for the increase in MRTF/SRF transcriptional activity induced by INF2-DID or INF2-DAD 

(Figure 13A). This functional deficits seems to be due to the loss of binding ability of 

mutated DID or DAD to their particular counterpart, as detected by Co-

Immunoprecipitation (Figure 13B). hINF2-DID/DAD binding studies by Co-

Immunoprecipitation were already conducted elsewhere (Rollason et al., 2016). 

However the length of the hINF2-DID construct in our study is remarkably shorter in 

length (aa 32-266, containing solely the ARR) than the construct used in (Rollason et 

al., 2016) (aa 14-343), therefore we decided to specify the binding abilities of the INF2-

DID as well as DAD constructs used in this study.  

 

Figure 13: Mutations interfering with INF2-DID/DAD binding inhibit regulation of SRF activity 

A) HEK cells were transfected with either hINF2-DID (wt, or with the mutations A149D, E184K or R218Q) 

or hINF2-DAD ‘core’ (wt or L1008A, L1009A, L1018A [= 3LtoA]). Measurements of SRF activity were 

conducted in serum starved cells. Results are means ± SD (n=3). B) Co-Immunoprecipitations from cells 
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expressing hINF2-DID (or derivatives) or INF2-DAD-core (or derivatives) were immunoblotted as 

indicated.  

Furthermore, it had to be determined if the rearrangement of the actin structures 

upon overexpression of INF2-DAD or INF2-DAD-CAAX (cf. Figure 12A) were mediated 

by activation of the respective endogenous INF2 isoform or rather by the expression of 

the DAD itself or even by a putative influence of the DAD on other proteins. Thus, we 

tested if hINF2-DAD-CAAX overexpression affects the actin pattern in siRNA mediated 

INF2 knockdown cells compared to control cells (knockdown efficiency see Figure 14A). 

In siControl cells, the majority of hINF2-DAD-CAAX transfected cells showed 

characteristic active INF2-CAAX actin structures, whereas upon INF2 depletion, the 

amount of INF2-DAD-CAAX transfected cells featuring an ER localized actin pattern 

decreased strikingly (Figure 14B).  

Moreover, we used the CRISPR/Cas9 system to obtain a complete deletion of INF2 in 

NIH3T3 cells. Efficient knockout of endogenous INF2 in different NIH3T3 clones was 

finally proven by immunoblotting (Figure 14C) as well as in selected clones by confocal 

microscopy using α-INF2-immunolabeling (Figure 14D). Interestingly, INF2 knockout 

led only to a decreased but not completely abolished INF2-DAD-core driven MRTF/SRF 

transcriptional activity (Figure 14E). Co-expression of INF2-DAD-core together with full 

length hINF2 could rescue the effect on SRF activity. Noteworthy, this co-expression in 

INF2-knockout cells resulted in lower SRF activity than in control cells. The difference 

might reflect the effect of activated endogenous INF2 in control cells which is depleted 

in INF2 knockout cells. The reduction of MRTF/SRF transcriptional activity upon INF2-

DAD expression in INF2 depleted cells goes along with reduced MRTF-A-GFP 

accumulation in the nucleus (Figure 14F). Again, the reduced MRTF-A shuttling could 

be partially rescued upon co-expression of hINF2-DAD together with full length hINF2.  

Noteworthy, INF2 depletion remarkably interfered with serum-induced SRF activity 

(Figure 14G). Thus, INF2 seems to be required to efficiently activate general SRF 

transcriptional activity by serum.  
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Figure 14: INF2-DID or INF2-DAD promoted effects on actin dynamics and MRTF/SRF regulation 

depend on endogenous INF2 

A) Efficient siRNA mediated depletion of mINF2 in NIH3T3 cells was proven by immunoblotting against 

INF2 upon treatment with four different siRNA sequences. All four sequences are capable to silence 

both isoforms of INF2 simultaneously. α-Tubulin detection was used as loading control. B) INF2 silenced 

NIH3T3 cells were quantified for showing formation of characteristic hINF2-DAD-CAAX mediated F-actin 

structures, compared to siControl cells. Only cells expressing mCherry hINF2-DAD-CAAX were 

considered for quantification. Around 25 to 40 cells were analyzed for each condition in two 
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independent experiments. C) Efficient CRISPR/Cas9 mediated depletion of both isoforms of INF2 in 

NIH3T3 cells was proven by immunoblotting against INF2 in different clones (bold: clones used for 

further experiments). α-Tubulin detection was used as loading control. D) Representative confocal 

images (single z-stack section) illustrate α-INF2 immunolabeling of selected NIH3T3 INF2 knockout 

clones. White dashed lines delineate nuclear borders (cells were counterstained with DAPI – Data not 

shown). Scale bar, 10 µm.  E) INF2 depleted NIH3T3 cells (control vs. clone 2/2 or 4/5) were transfected 

with either hINF2 alone, hINF2-DAD-core or hINF2-DAD-core together with hINF2. SRF activity was 

analyzed under serum starved conditions. Results are means ± SD (n=3). F) INF2 depleted NIH3T3 cells 

(control, clone 2/2 and clone 4/5) were transfected with either MRTF-A-GFP alone, MRTF-A-GFP 

together with mCherry-hINF2-DAD or MRTF-A-GFP together with mCherry-hINF2-DAD and MYC-hINF2 

and imaged under serum starved conditions. Localization of MRTF-A-GFP was analyzed in around 55 to 

100 cells for each condition in two independent experiments. G) NIH3T3 cells lacking INF2 were grown 

under serum starved conditions. Cells were stimulated with 20 % FCS 6 h before conducting the SRF 

reporter gene assay. Results are means ± SD (n=3).  

 

4.3 INF2 localizes to the nucleus 

Previous work revealed localization of mDia formins in the nucleus (Baarlink et al., 

2013; Miki et al., 2009). We examined by subcellular fractionation if the formin INF2 

also localizes to the nucleus. Indeed, immunoblotting revealed presence of 

endogenous INF2 in nuclear fractions of NIH3T3 cells (Figure 15A). Moreover, 

endogenous nuclear INF2 could also be detected by confocal microscopy. The nuclear 

INF2 fluorescence intensity was strikingly reduced in INF2 deleted cells compared to 

control cells (Figure 15B). 
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Figure 15: INF2 localizes to the nuclear compartment 

A) Subcellular fractions of NIH3T3 cells were immunoblotted for endogenous INF2. α-Tubulin and α-

HDAC blotting was used as control for successful fractionation. B) The relative nuclear fluorescence 

intensity upon α-INF2 immunolabeling was quantified from NIH3T3 control cells and INF2 deleted 

NIH3T3 cells. Additional staining of control cells without α-INF2 antibody served as control for unspecific 

2nd antibody binding. The nucleus was highlighted with DAPI. Around 40 to 50 nuclei were analyzed for 

each condition in two independent experiments. Sample images are shown in Figure 14D. Results are 

means ± SD.  

 

4.3.1 INF2 contains functional NLS and NES motifs 

To gain details about the nuclear localization of INF2 we used the bioinformatics tool 

cNLS-Mapper (Kosugi et al., 2009) to detect putative nuclear localization sequences 

(NLS) in hINF2. Three putative NLS regions could be identified named NLS1 (aa 622 – 

651), NLS2 (aa 910 – 941) and NLS3 (aa 1213-1240 in the isoform lacking the CAAX 

motif and aa 1213 – 1248 present in INF2-CAAX) (Figure 16A). Subsequently, we 

generated constructs expressing the isolated aa sequence of the identified NLS fused 

to a GFP fluorophore. To determine if these putative NLS are functional, we expressed 

the diverse GFP-NLS constructs in NIH3T3 cells and quantified the ratio between the 

nuclear and cytoplasmic GFP signal (Figure 16B, C). NLS1-GFP and NLS2-GFP did not 

show an increase in the nucleocytoplasmic GFP-signal ratio compared to the signal of 

GFP alone. However, the majority of the signal of GFP-NLS3 (in both isoforms) could be 

detected in the nuclear compartment. Mutations in the sequence of both NLS3 at six 

positively charged key residues (K1220A, R1221A, R1222A, K1223A, K1224A, and 

R1225A) efficiently inhibited nuclear accumulation of GFP-NLS3.  
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Figure 16: INF2 contains putative NLS-like sequences  

A) Cartoon of distinct domains of hINF2 including three different putative nuclear localization sequences 

(NLS). Putative NLS were identified using cNLS mapper (Kosugi et al., 2009). Critical amino acids are 

highlighted in bold. Note the differences between the two isoforms in the sequence of NLS3. B) The 

ratio of the nuclear vs. the cytoplasmic GFP signal fused to each putative NLS as well as to the mutated 

NLS3 (K1220A, R1221A, R1222A, K1223A, K1224A, and R1225A). The average of 8 to 10 analyzed cells is 

shown. C) Left panel: Images of representative NIH3T3 cells show localization of GFP alone or GFP fused 

to the putative NLS3 (both isoforms). Right panel: Images display the localization of the K1220A, 

R1221A, R1222A, K1223A, K1224A, and R1225A mutant of NLS3 (of both INF2 isoforms) fused to GFP in 

NIH3T3 cells. mCherry-H2B was used as nuclear marker. Scale bar, 10 µm.  

Furthermore, bioinformatic analysis using NetNES 1.1 Server (la Cour et al., 2004) of 

the hINF2 amino acid sequence revealed multiple putative nuclear export signals (NES) 

named NES1 (aa 77-88), NES2 (aa 230-247), NES3 (aa 675-685) and NES4 (aa 913-924) 

(Figure 17A). Constructs encoding the isolated NES-like sequence fused to GFP were 

generated and expressed in NIH3T3 cells. Analysis of their nucleocytoplasmic GFP-

signal distribution revealed at least NES4 to be functional (Figure 17B, C). Interestingly, 

the amino acid sequence of NES4 in hINF2 shows some sequence homology to a well 

described NES-like sequence in the C-terminal mDia2 region containing the critical 
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residue L1168 (Miki et al., 2009) as well as to a putative NES sequence in FHOD1 

(Ménard et al., 2006). In hINF2 the corresponding amino acid is L921. Mutation of L921 

to Glycine blocks the export function of NES4.  

 

Figure 17: INF2 shows putative NES-like sequences 

A) Cartoon showing the protein domain structure of hINF2. Putative NES-like sequences (shown in pink) 

were identified using NetNES 1.1 Server (la Cour et al., 2004). A putative critical amino acid in NES4 is 

shown in bold. B) The ratio of nuclear vs. cytoplasmic GFP signal fused to each putative NES as well as to 

mutated NES4 (L921G). The average of 8 to 10 analyzed cells is shown. C) Representative images of 

NIH3T3 cells show the localization of GFP alone and GFP fused to NES4 or mutated NES4 (L921G). 

mCherry H2B was used as nuclear marker. Scale bar, 10 µm. 

These results suggest that INF2 contains functional NLS and NES motifs for putative 

nucleo-cytoplasmic shuttling. Previously, mDia2 was shown to continuously shuttle 

between the nucleus and the cytoplasm through a specific nuclear transport 

mechanism composed of importin-α/β and CRM1 (Miki et al., 2009). Notably, although 

isolated GFP-NES4 was enriched in the nucleus upon blocking CRM1 mediated nuclear 

export by leptomycin B (Figure 18A, B), neither endogenous hINF2 (Figure 18C) nor 

different full length hINF2 derivatives (Figure 18D) accumulated in the nucleus upon 
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LMB treatment. Thus we conclude that if INF2 continuously shuttles between the 

nucleus and the cytoplasm, it uses a nuclear transport machinery distinct from mDia2.  

 

Figure 18: INF2 does not accumulate in the nucleus upon LMB treatment  

A) Nucleocytoplasmic ratio of GFP-NES4 and GFP-NES4-L921G upon LMB treatment (25 nM, 1h). B) 

Representative images show the effect of LMB (25 nM, 1 h) on the localization of GFP fused to NES4 or 

the NES4-L921G mutant. Scale bar, 10 µm. C-D) Representative images show fixed NIH3T3 cells before 

or after treatment with 25 nM LMB for 3 hours. Cells were either immunostained for endogenous INF2 

(C) or tagged versions of both hINF2 isoforms (GFP: left panel, MYC: right panel) were expressed and 

visualized (D). Scale bar, 10 µm. 
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4.4 Nuclear INF2 regulates actin network assembly and MRTF/SRF 

activity 

Activated nuclear mDia promotes the formation of a nuclear actin network and 

subsequent regulation of SRF dependent gene expression (Baarlink et al., 2013). As we 

could detect INF2 also in the nucleus, we thus analyzed if spatially restricted activation 

of INF2 affects nuclear actin polymerization.  

 

4.4.1 Activation of INF2 within the nucleus leads to nuclear actin network assembly  

To activate endogenous INF2 in the nucleus, we generated NLS tagged versions of 

hINF2-DID or INF2-DAD-core to release INF2 autoinhibition. Phalloidin staining 

revealed nuclear actin structures upon expression of either hINF2-DID-NLS or INF2-

DAD-core-NLS in NIH3T3 cells (Figure 19A). Nuclear actin structures could also be 

obtained in living NIH3T3 cells by using the actin marker nAC-GFP upon expression of 

hINF2-DID-NLS or INF2-DAD-core-NLS (Figure 19B). Noteworthy, whereas a vast 

majority of INF2-DAD-core-NLS transfected cells displayed nuclear F-actin, fewer cells 

showed those structures upon hINF2-DID-NLS transfection. Expression of the DID 

binding deficient mutant INF2-DAD-core-3LtoA-NLS did not result in nuclear actin 

filament formation (Figure 19C), further underscoring the specificity of the approach. 

The formation of nuclear actin filaments upon INF2-DAD-core-NLS mediated activation 

of INF2 did not exclusively occur in NIH3T3 cells but could also be detected using nAC-

GFP in diverse other cell lines such as HELA, LOX or HT29 (Figure 19D). 

To refute the possibility that hINF2-DID-NLS or INF2-DAD-core-NLS overexpression is 

followed by an enrichment of actin monomers in the nucleus and thus leading to 

filament formation, subcellular fractionation experiments were conducted. However, 

no significant alterations in the abundance of endogenous actin in the nucleus could 

be obtained upon expression of neither nuclear hINF2-DID nor INF2-DAD-core (Figure 

19E).  
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Figure 19: Activation of nuclear INF2 mediates formation of an actin network in the nucleus 

A) Images show actin filaments visualized by Phalloidin-AF488 staining in fixed NIH3T3 cells expressing 

mCherry-hINF2-DID-NLS or mCherry-INF2-DAD-core-NLS. Note the distinctive nuclear actin structures 

visualized by Phalloidin-AF488. Scale bar, 10 µm. B) Nuclear actin structures upon expression of mCherry 

hINF2-DID-NLS or mCherry-INF2 DAD-core-NLS could also be visualized in living cells using nAC-GFP. 

Scale bar, 10 µm. C) NIH3T3 cells transfected with INF2-DAD-core-3LtoA-NLS do not show F-actin in the 

nucleus. Scale bar, 10 µm. D) Images show samples of nuclear actin structures visualized by nAC GFP in 

HELA, HT29 and LOX cells expressing mCherry-INF2-DAD-core-NLS. Note the differential actin pattern 



 

82 

 

comparing non-transfected to INF-2-DAD-core-NLS expressing (yellow arrowheads) cells.  Scale bar, 10 

µm. E) Immunoblotting for endogenous β-Actin upon subcellular fractionation does not reveal an 

accumulation of actin in the nucleus upon expression of either mCherry-hINF2-DID-NLS or mCherry-

INF2-DAD-core-NLS compared to mCherry-NLS alone.  

Noteworthy, a majority of INF2-DAD-core-NLS transfected cells exhibit a remarkable 

actin ring-like structure. However, in contrast to the INF2-CAAX mediated perinuclear 

actin ring (Ramabhadran et al., 2013), the INF2-DAD-core-NLS mediated actin ring-like 

structure at the nucleocytoplasmic border partially colocalizes with the nuclear lamina 

facing the nuclear interior (Figure 20A-C).  

Furthermore, we confirmed the intranuclear localization of the actin ring by using 

Saponine permeabilization, which removes cholesterol from membranes while leaving 

the nuclear membrane, which does not contain cholesterol intact (Adam et al., 1990). 

Upon Saponine permeabilization, INF2-DAD-core-NLS mediated actin structures could 

not be detected in the nucleus of GFP-Actin-NLS expressing NIH3T3 cells by 

immunostaining against GFP, as antibodies are incapable of entering the nuclear 

interior under these conditions (Figure 20D). Contrariwise, nuclear actin structures 

could be visualized by α-GFP immunostaining when cells were permeabilized with TX-

100. However, characteristic hINF2-DAD-CAAX mediated perinuclear actin structures 

could be detected in the cytoplasm in both permeabilization methods (data not 

shown).  
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Figure 20: INF2-DAD-core-NLS expression promotes formation of a prominent sublaminar actin ring-

like structure  

A) NIH3T3 cells expressing nAC-GFP were transfected with Lamin-Chromobody-BFP and mCherry-INF2-

DAD-core-NLS. White rectangles mark areas of higher magnification. The merged panel shows the 

localization of nAC GFP (white arrowhead) together with the Lamin-Chromobody-BFP signal (yellow 

arrowhead). Scale bar, 10 µm. B) NIH3T3 cells were transfected with mCherry-INF2-DAD-core-NLS 
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together with nAC-GFP and Lamin-Chromobody-SNAP (labeled with 647-SiR dye). An area of higher 

magnification (marked by white rectangles) is shown in the merged panel (white arrowhead: nAC GFP 

signal, yellow arrowhead: 647-SiR signal). Scale bar, 10 µm. C) Fixed NIH3T3 cells transiently expressing 

BFP-INF2-DAD-core-NLS were stained with Phalloidin-AF488 and for Lamin-A/C. The zoomed merged 

panel (correlating to white rectangles) displays nuclear actin structures (white arrowhead) and the 

nuclear lamina (yellow arrowhead). Scale bar, 10 µm. D) Fixed NIH3T3 cells expressing GFP-Actin-NLS 

and mCherry-INF2-DAD-core-NLS were permeabilized and stained as indicated. The yellow arrowheads 

point to remarkable INF2-DAD-core-NLS mediated ring-like nuclear actin structures detected by imaging 

the intramolecular GFP signal. Note that the ring-like structures could only be visualized by α-GFP 

immunolabelling upon cell permeabilization with 0.2 % TX-100 (orange arrowhead) but not upon 0.05 % 

Saponine treatment (blue arrowhead). Scale bar, 10 µm.  

 

4.4.2 Nuclear INF2 activation affects MRTF/SRF transcriptional activity 

Induction of INF2 mediated nuclear actin filaments also resulted in an increase in 

MRTF/SRF transcriptional activity (Figure 21A). Thereby, INF2-DAD-core-NLS 

expression upregulated SRF activity more effectively than hINF2-DID-NLS. Interestingly, 

the ability of translocation of MRTF-A to the nucleus was more effective upon DID 

mediated INF2 activation compared to DAD mediated activation (Figure 21B). 

 

Figure 21: Active nuclear INF2 mediates MRTF translocation and affects SRF activity  

A) HEK cells were transfected with INF2-DAD-core-NLS or hINF2-DID-NLS and SRF activity was measured. 

Results are means ± SD (n=3). ***: P<0.001, ****: P<0.0001, Student’s t-test. B) NIH3T3 cells were 
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transfected with MRTF-A-GFP and either mCherry-INF2-DAD-core-NLS or mCherry-hINF2-DID-NLS. Cells 

were analyzed then for the localization of MRTF-A-GFP. Scale bar, 10 µm. 

 

4.4.3 INF2-DAD mediated nuclear actin network assembly is INF2 dependent 

Measurements of MRTF/SRF transcriptional regulation in HEK cells expressing equal 

amounts of hINF2-DID-NLS or INF2-DAD-core-NLS together revealed compensation of 

the effects on SRF activity mediated by expression of hINF2-DID-NLS or INF2-DAD-core-

NLS alone (Figure 22A). Additionally, INF2-DAD-core-NLS expressing NIH3T3 cells were 

co-transfected together with hINF2-DID-NLS and analyzed for nuclear actin filament 

formation by fluorescence microscopy (Figure 22B). The percentage of NIH3T3 cells 

displaying nuclear actin structures mediated by INF2-DAD-core-NLS was reduced 

dramatically upon co-expression with hINF2-DID-NLS. However, this reduction could 

not be obtained upon transfection with the impaired DAD binding mutant hINF2-DID-

A149D-NLS.  

Furthermore, INF2 knockdown by siRNA in NIH3T3 cells led to a significant decrease of 

cells showing nuclear actin structures after transfection with INF2-DAD-core-NLS 

(Figure 22C). However, actin filaments in the nucleus could still be detected in a 

remarkable amount of cells. This could be explained by inhomogeneous siRNA 

mediated INF2 depletion within all analyzed cell. Thus, nuclear F-actin assembly upon 

INF2-DAD-core-NLS expression was analyzed in CRISPR/Cas9 mediated INF2 deleted 

NIH3T3 cells. Interestingly, even a complete knockout of INF2 did not entirely inhibit 

INF2-DAD-core-NLS driven formation of nuclear actin structures (Figure 22D). The 

results were rather comparable to the siINF2 knockdown cells.  

Worth mentioning, mutations of highly conserved INF2-FH2 residues (I643A and/or 

K792A) (Andrés-Delgado et al., 2010; Ramabhadran et al., 2012), which were shown to 

be essential for barbed end binding and actin polymerization in other formins 

(Shimada et al., 2004; Xu et al., 2004), did not abolish INF2-DAD-core-NLS mediated 
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nuclear actin filament formation but rather led to the formation of thick nucleus 

spanning actin bundles (Data not shown).  

 

Figure 22: Nuclear actin network assembly mediated by INF2-DAD depends on endogenous INF2 

A) SRF mediated transcription was measured in HEK cells transfected with either INF2-core-NLS or 

hINF2-DID-NLS alone or co-transfected with INF2-DAD-core-NLS together with equal amounts of hINF2-

DID-NLS. Results are means ± SD (n=3). **: P<0.01, ***: P<0.001, Student’s t-test. B) NIH3T3 cells 

expressing nAC-GFP together with BFP-INF2-DAD-core-NLS and either mCherry-NLS (as control), 

mCherry-hINF2-DID-NLS or hINF2-DID-A149D-NLS were analyzed and quantified in terms of nuclear 

actin filament formation. Only cells expressing both BFP-INF2-DAD-core-NLS and the hINF2-DID derivate 

were considered for quantification. Around 110 to 190 cells were analyzed for each condition in two 

independent experiments. *: P<0.05, **: P<0.01, Student’s t-test. C) INF2 silenced NIH3T3 cells were 

quantified for showing formation of INF2-DAD-core-NLS mediated nuclear actin filaments (visualized by 

co-transfection with nAC-GFP), compared to siControl cells. Only cells expressing mCherry-hINF2-DAD-
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core-NLS were considered for quantification. Around 90 to 120 cells were analyzed for each condition in 

two independent experiments. *: P<0.05, Student’s t-test. D) INF2 deleted NIH3T3 cells showing INF2-

DAD-core-NLS-mediated nuclear actin filaments were quantified and compared to NIH3T3 CRISPR 

control cells. Around 60 to 140 cells were analyzed for each condition in two independent experiments. 

*: P<0.05, Student’s t-test.  

 

4.4.4 Activation of endogenous INF2 partially modulates the activity of mDia1/2 

formins 

Depletion of INF2 did not fully inhibit INF2-DAD-core mediated effects, leading to the 

assumption that some of the effects might be, at least partially, unspecific, e. g. due to 

interaction or activation of other actin nucleators such as other formins. For example, 

INF2-DID has been shown to directly interact with the DAD of mDia proteins  and 

thereby plays a role in modulation of mDia mediated Rho signaling and SRF activity 

(Sun et al., 2014; Sun et al., 2011) as well as in the regulation of stable microtubules 

(Bartolini et al., 2016).  

Double-knockdown of mDia1 and mDia2 diminished the formation of nuclear actin 

filaments upon transfection with INF2-DAD-core-NLS (Figure 23A), although the effect 

was very minor compared to knockdown of INF2. Interestingly, triple-knockdown of 

INF2, together with mDia1 and mDia2 did not significantly further reduce INF2-DAD-

core-NLS mediated formation of nuclear F-actin when compared to INF2 alone (Figure 

23A, compare to Figure 22C). Double- and triple-knockdown efficiency was proven by 

immunoblotting (Figure 23A, upper panel). 

Also a complete CRISPR/Cas9 mediated INF2 deletion in NIH3T3 cells did not 

completely inhibit INF2-DAD-core-NLS driven formation of nuclear actin structures 

(Figure 23B). Furthermore, double-knockdown of mDia1 and mDia2 in CRISPR/Cas9 

control cells showed a moderate reduction in nuclei containing F-actin structures 

compared to siControl cells. INF2-depleted clones treated with simDia1 and simDia2 

did not display significant reduction of cells showing nuclear actin filaments as 

detected upon INF2-depletion alone (Figure 23B).  
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Figure 23: Active INF2 mediated nuclear F-actin assembly is partially modulated through mDia 

A) Upper panel:  Immunoblots for INF2, mDia1 and mDia2 from siRNA treated cells. Lower panel: 

simDia1/simDia2 or siINF2/simDia1/simDia2 treated NIH3T3 cells were transfected with INF2-DAD-core-

NLS and quantified in terms of nuclear actin filament formation. Around 100 to 170 cells were analyzed 

for each condition in two independent experiments. *: P<0.05, Student’s t-test. B) Upper panel: 

Immunoblots for INF2, mDia1 and mDia2 from siRNA treated INF2 depleted cells. Lower panel: INF2 

depleted NIH3T3 cells were treated with siRNA against mDia1 and mDia2. Cells expressing INF2-DAD-

core-NLS were quantified concerning the formation of F-actin in the nucleus. Around 130 to 230 cells 

were analyzed for each condition in two independent experiments. ns: P>0.05, *: P<0.05, Student’s t-

test.  

Additionally, we examined if the proposed INF2–mDia interaction (Sun et al., 2011) 

also influences hINF2-DID or INF2-DAD mediated effects on SRF activity. An increase in 

SRF activity upon expression of either mDia2-DAD or hINF2-DID alone could be 

compromised upon expression of both constructs together. In contrast, mDia2-DID and 

hiNF2-DAD co-expression showed an additive upregulation in MRTF/SRF 

transcriptional activity (Figure 24A). Similar tendencies in alterations of SRF activity 

were obtained using nuclear localized DID/DAD derivatives (Figure 24B).  
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INF2-DAD-core-NLS mediated nuclear F-actin formation was dramatically reduced 

upon co-expression with hINF2-DID-NLS (Figure 22B). In contrast, co-expression of 

INF2-DAD-core-NLS with either mDia1-DID-NLS or mDia2-DID-NLS resulted only in a 

minor reduction of cells displaying an INF2-DAD-core-NLS induced nuclear actin 

network compared to control cells (Figure 24C). According to the assumption that 

INF2-DAD induced effects on actin filament formation are partially caused by 

interaction with mDia proteins, expressing a dominant negative (dn) form of mDia, 

which is deficient in binding of the FH2 domain to actin, should reduce the number of 

cells showing INF2-DAD driven rearrangement of the actin cytoskeleton. Therefore, 

nuclear mDia1-I845R (Shimada et al., 2004) or mDia2-I704A (Harris et al., 2006) was 

expressed together with INF2-DAD-core-NLS in NIH3T3 cells and the number of 

transfected cells with visible nuclear actin filaments was determined. However, neither 

dn-mDia1-NLS nor dn-mDia2-NLS expression significantly depleted the percentage of 

cells displaying a nuclear actin network compared to control cells (Figure 24C). 
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Figure 24: mDia2-DAD interferes with INF2-DID mediated SRF modulation 

A) MRTF/SRF transcriptional activity was measured in HEK cells transfected with either mDia2-DAD or 

mINF2-DID alone or co-transfected with mDia2-DAD together with equal amounts of mINF2-DID. A 

similar experiment was conducted in HEK cells expressing mDia2-DID or INF2-DAD-core or both 

constructs together. Results are means ± SD (n=3). **: P<0.01, ****: P<0.0001, Student’s t-test. B) As 

(A), but cells were transfected with the respective NLS tagged DID or DAD versions. Results are means ± 

SD (n=3). *: P<0.05, ***: P<0.001, Student’s t-test. C) NIH3T3 cells expressing nAC-GFP together with 

BFP-INF2-DAD-core-NLS and either mCherry-NLS, mCherry-mDia1-DID-NLS, mCherry-mDia2-DID-NLS, 

RFP-mDia1-I845R-NLS or RFP-mDia2-I704A-NLS were analyzed and quantified in terms of nuclear actin 

filament formation. Only cells expressing all constructs were considered for quantification. Around 100 

to 170 cells were analyzed for each condition in two independent experiments. ns: P>0.05, *: P<0.05, 

Student’s t-test.  

Taken together, these results suggest that active endogenous INF2, besides its direct 

impact on actin rearrangement, also partially modulates the activity of mDia1/2 

formins. This modulation also occurs in the nuclear compartment.  

 

4.4.5 Spatiotemporal activation of endogenous INF2 by a photoactivatable LOV-INF2-

DAD/WH2 fusion protein mediates nuclear accumulation of MRTF-A and induces 

nuclear actin filament formation 

The sustained presence of a formin induced nuclear actin network, for instance 

mediated INF2-DAD-core-NLS expression, might lead to unexpected and unwanted 

functional and morphological impacts on cells. Thus, an optogenetic tool, was 

introduced to activate endogenous INF2 in a spatially and temporally regulated 

manner to avoid potential unwanted effects in further experiments. The main idea, 

based on previous approaches to generate photoactivatable DADs of mDia1 or mDia2 

(Baarlink et al., 2013; Rao et al., 2013), was that the photoactivatable LOV (light, 

oxygen, voltage) Jα-domain (aa 403-543) of Avena sativa phototropin-1 (AsLOV2) 

(Harper et al., 2003) was fused to the DAD of INF2, thereby inhibiting its binding 

properties of INF2-DAD to endogenous INF2 when the LOV domain is in its closed 
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conformation. Upon illumination with blue light, unwinding of the Jα-helix would 

subsequently release inhibition of the DAD, leading to activation of INF2.  

To achieve this, the LOV domain was fused to INF2-DAD/WH2, a region within INF2-

DAD-core, possessing similar features as INF2-DAD-core in terms of influencing SRF 

activity or driving nuclear actin filament formation when targeted to the nucleus.  

Initially a series of derivatives was generated containing successive truncations at the 

N-terminus of INF2-DAD/WH2 (Figure 25A). To validate successful caching of INF2 

DAD/WH2 activity, these INF2-DAD/WH2 derivatives were fused to a light-insensitive 

‘dark-state’ version of AsLOV2, containing the point mutation C450A (Harper et al., 

2003), and SRF activity was measured upon transfection of cells with the respective 

construct. The expression of the constructs starting with aa 967, 968, 969, 970 and 971 

caused only a minor activation of MRTF-SRF transcription, hence arguing for successful 

INF2-DAD/WH2 caging (Figure 25B). The selected ‘dark-state’ LOV-INF2-DAD/WH2 

constructs (967, 968, 969, 970 and 971) were then compared to their ‘lit-state’ 

counterparts, mimicking the permanently unfolded state of the LOV domain. The ‘lit-

state’ of AsLOV2 is characterized by the point mutation I539E in the Jα helix (Harper et 

al., 2004). INF2-DAD/WH2 derivatives 969, 970 and 971 thereby demonstrated the 

most significant variance in the extent of MRTF-SRF transcriptional regulation 

comparing ‘dark state’ vs. ‘lit state’ (Figure 25C). Alterations in SRF activity were 

accompanied by accumulation of MRTF-A in the nucleus upon photoactivation of LOV-

INF2-DAD/WH2 by illumination of cells with blue LED for 3h (Figure 25D). 
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Figure 25: Screening for a photoactivatable LOV-INF2-DAD/WH2 fusion protein  

A) Cartoon illustrating the suggested ability of LOV2 fused to INF2-DAD/WH2 to activate endogenous 

INF2 by light irradiation. The LOV2 domain of phototropin1 consists of a Per-ARNT-Sim (PAS) domain 

and a C-terminal Jα-helix. Upon illumination with blue light, which leads to unfolding of the Jα-helix, the 

INF2-DAD/WH2 domain is subsequently uncaged. The magnification shows a scheme of different LOV-

INF2-DAD/WH2 constructs, which were generated by fusion of the LOV2 domain to successive N-

terminal truncations of the INF2-DAD/WH2 domain (shown in red). Numbers indicate the positions of 

amino acid residues in hINF2. Numbers in bold represent the truncations which showed the most 

promising differences in SRF activity when comparing the respective ‘lit state’ construct (LOV2 mutation 

I539E) compared to its ‘dark state’ counterpart (LOV2 mutation C450A) (cf. Figure 25C). B) HEK cells 

expressing ‘dark state’ mutants of different LOV-INF2-DAD/WH2 fusion proteins were analyzed for their 
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ability to stimulate SRF transcriptional activity to define a subset of constructs showing successful 

caching of the DAD/WH2 domain. The expression of INF2-DAD/WH2 serves as negative control. Results 

are means ± SD (n=3). C) MRTF/SRF activity was analyzed in HEK cells transfected with selected ‘lit state’ 

LOV-INF2-DAD/WH2 constructs compared to their ‘dark state’ counterparts. Results are means ± SD 

(n=3). D) Images show NIH3T3 cells expressing mCherry-LOV-INF2-DAD/WH2-971 together with MRTF-

A-GFP. Images were taken before and after 3 hours of blue LED illumination. Scale bar, 10 µm. 

Photoactivatable release of INF2 autoinhibition restricted to the nucleus was obtained 

by fusing an NLS to LOV-GS-INF2-DAD/WH2-971 (containing an additional GS-linker 

sequence between the LOV-domain and INF2-DAD/WH2 starting with aa 971) (Figure 

26A). A remarkable increase in the number of LOV-GS-INF2-DAD/WH2-971-NLS 

transfected cells containing nuclear F-actin structures could be visualized upon 

illumination of cells for 3 hours with blue LED (Figure 26B).  

 

Figure 26: Spatiotemporal release of INF2 autoinhibition by using an optogenetic tool induces nuclear 

actin filament formation  

A) Model illustrating a nuclear photoactivatable INF2-DAD/WH2 construct. An additional GS linker 

sequence between the LOV2 domain and INF2-DAD/WH2-NLS was inserted. B) nAC-GFP and mCherry-
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LOV-GS-INF2-DAD/WH2-971-NLS co-transfected NIH3T3 cells were quantified in terms of showing 

nuclear actin filaments (right panel). Images were taken before and after illumination for 3 hours with 

blue LED. Around 60 to 110 cells were analyzed for each condition in two independent experiments. Left 

panel: Images display representative cells before and after illumination. Scale bar, 10 µm.  

 

4.4.6 The dynamics of INF2-DAD mediated nuclear actin network formation 

The formation of a prominent nuclear F-actin network mediated by photoactivatable 

nuclear mDia2-DAD was initiated already within a few minutes upon intervallic 

irradiation with 488 nm using confocal microscopy (Baarlink et al., 2013). However, 

investigating the dynamics of nuclear actin filament formation by utilization of LOV-GS-

INF2-DAD/WH2-971-NLS did not reveal visible nuclear F-actin within this short range of 

time. In contrast, nuclear actin rearrangement did not occur before around one hour 

of constant illumination with blue LED. Thus, it was impossible to visualize nuclear 

actin rearrangement live by confocal microscope, as upon this rather long period of 

continuous illumination cycles the fluorescent signal of nAC-GFP was already bleached.  

Generally, active INF2 in the cytoplasm did not result in nuclear actin network 

assembly (Figure 27A, B). To analyze the dynamics of INF2-DAD-core-NLS mediated 

release of INF2 autoinhibition in the nucleus and subsequent nuclear actin filament 

formation, two NES and one NLS was fused to obtain NES-mCherry-NES-INF2-DAD-

core-NES-NLS (Figure 27C). This construct was supposed to continuously shuttle 

between the cytoplasm and the nucleus in a CRM1 dependent manner, displaying the 

majority of the protein localized to the cytoplasm under steady state conditions. 

Indeed, treatment of cells with 25 nM LMB resulted in a rapid accumulation of NES-

mCherry-NES-INF2-DAD-core-NES-NLS in the nuclear compartment within a few 

minutes. However, de novo generation of nuclear actin filaments could be detected 

around 15 to 30 minutes upon LMB treatment. Around 1 hour after addition of LMB, 

nuclei finally showed the INF2-DAD-core-NLS mediated characteristic actin pattern 

(Figure 27D). In contrast, nuclear F-actin formation occurred already within a few 
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minutes upon LMB mediated nuclear translocation of mDia2-DAD (Baarlink et al., 

2013).  

 

Figure 27: The dynamics of nuclear F-actin assembly mediated by INF2-DAD 

A-B) Images show NIH3T3 cells with active INF2 (either achieved (A) by expression of constitutive active 

hINF2 or hINF2-CAAX or (B) by expression of the respective hINF2-DAD isoform) were co-transfected 

with nAC as marker for nuclear actin and analyzed for the formation of nuclear actin filaments. Scale 

bar, 10 µm. C) Model of a nucleocytoplasmic shuttling INF2-DAD-core construct. Different NES (NES*: 

NES of STAT3 - SLAAEFRHLQLK, NES**: NES of HIV-Rev - LPPLERLTL) and the NLS from the SV40 large T 

antigen (PPKKKRKV) were added to obtain NES-mCherry-NES-INF2-DAD-core-NES-NLS. D) NIH3T3 cells 

expressing NES-mCherry-NES-INF2-DAD-core-NES-NLS together with nAC-GFP were treated with 25 nM 

LMB and monitored over time. Representative video stills display dynamic nuclear accumulation of NES-
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mCherry-NES-INF2-DAD-core-NES-NLS upon LMB treatment and subsequent spatiotemporal nuclear F-

actin assembly. Scale bar, 10 µm. 

However, LMB treatment leads to accumulation of a wide variety of different proteins 

in the nucleus. Thus, to exclude the possibility that nuclear actin filament formation is 

mediated by other factors than INF2-DAD, a nucleocytoplasmic shuttling version of the 

DID binding deficient mutant INF2-DAD-core-3LtoA was generated. Interestingly, no 

nuclear actin network could be detected in most cells upon LMB mediated nuclear 

translocation of NES-mCherry-NES-INF2-DAD-core-3LtoA-NES-NLS to the nucleus 

(Figure 28A, B). 

 

Figure 28: Actin filament formation in the nucleus upon LMB treatment depends on INF2-DAD 

expression  

A) The images show representative NES-mCherry-NES-INF2-DAD-core-NES-NLS and nAC-GFP expressing 

cells after 1.5 h after addition of 25 nM LMB. B) NIH3T3 cells expressing NES-mCherry-NES-INF2-DAD-

core-NES-NLS were quantified in terms of visible nuclear actin structures before and upon treatment 

with 25 nM LMB. nAC-GFP was used as marker for nuclear actin. Around 60 to 120 cells were analyzed 

for each condition.  
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5. Discussion 

While the appearance of monomeric or short oligomeric actin in the nucleus and its 

role in processes like general transcriptional regulation or chromatin remodeling has 

been described previously (de Lanerolle and Serebryannyy, 2011; Gieni and Hendzel, 

2009; Percipalle, 2013), the existence and functions of F-actin in somatic cell nuclei 

remained widely enigmatic (Pederson, 2008; Pederson and Aebi, 2002). However, 

recent work has provided visual evidence for endogenous polymeric and filamentous 

actin structures in the nucleus in both, fixed and living mammalian cells (Baarlink et al., 

2013; Belin et al., 2013; Plessner et al., 2015). Additionally, several regulatory proteins 

involved in actin polymerization, such as the ARP2/3 complex (Yoo et al., 2007), N-

WASP (Suetsugu and Takenawa, 2003) or members of the formin family (Belin et al., 

2015; Miki et al., 2009; Ménard et al., 2006; Stüven et al., 2003) have been detected 

inside the nucleus and some of their nuclear functions have already been described. 

For example, our group has shown in a previous study that nuclear mDia activity 

regulates the SRF coactivator MRTF-A (Baarlink et al., 2013), an integral transcriptional 

cofactor, which is directly controlled by actin dynamics (Olson and Nordheim, 2010).  

In general, to analyze formin mediated actin dynamics a directed regulation of formin 

autoinhibition and resultant formin activity is crucial. Former studies achieved spatially 

and/or temporally regulated activity of mDia formins by expression of the isolated DAD 

peptide which was shown to interfere with the intramolecular DID/DAD binding and 

consequently with the autoinhibited state of the formin (Alberts, 2001; Baarlink et al., 

2013; Rao et al., 2013). The major advantage of this system is the exclusive modulation 

of the endogenous formin as there is no use to overexpress the full length protein or 

even a constitutively active version. In contrast, a putative disadvantage could be that 

the DID and DAD regions among certain formin families show highly conserved 

elements. Thus, cross-activation of related formins cannot be excluded and has not 

been intensely tested so far. In this study we expand the toolbox to activate 

endogenous mDia by demonstrating a successful autoinhibition release upon the 

expression of a peptide composed of the isolated five armadillo repeats of the DID 
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motif. Furthermore, a modification in the activity status of formins by expression of 

isolated DAD or DID peptides was not restricted to mDia formins but could also be 

implemented in at least INF2.  

It was shown recently, that INF2 modulates MRTF/SRF transcriptional activity in a Ca2+ 

dependent manner, distinct from Rho, ROCK and mDia mediated SRF activation (Wales 

et al., 2016). In this work, the ability to regulate INF2 in a controlled manner led 

further to the discovery that actin rearrangement driven by INF2-DID or INF2-DAD 

expression results in a potent modulation of MRTF/SRF transcriptional activity. 

Additionally, we adduce evidence that INF2 plays an essential role in the physiological 

serum response in cells, as a depletion of INF2 strikingly impeded SRF activity induced 

by serum. Moreover, we provide additional layers of complexity concerning the 

assembly of nuclear F-actin structures and resultant MRTF-A/SRF regulation. In 

particular, a small but distinct amount of INF2 could be biochemically identified in 

nuclear fractions. The nuclear localization of endogenous INF2 was additionally 

confirmed by confocal microscopy. Concomitantly, the activation of endogenous INF2 

restricted to the nuclear compartment results in nuclear actin filament formation. INF2 

mediated F-actin assembly in the nucleus was followed by nuclear accumulation of 

MRTF-A and subsequent regulation of MRTF/SRF transcriptional activity. Hence, it can 

be hypothesized that in general the cellular actin response to serum and other stimuli 

depends on a tightly regulated signaling network. It involves a complex interplay of 

numerous factors, including the formin INF2, spanning from receptors at the cell 

surface which transmit extracellular cues up to transcription factors regulating gene 

expression in the nuclear compartment. 

Previous studies have indicated DID/DAD interactions between closely related formins 

with the ability to regulate their activity in trans (Copeland et al., 2007; Sun et al., 

2011; Vaillant et al., 2008). Thus, another important part of this study was to reveal if 

the effects on actin rearrangement and SRF activity mediated by the expression of 

INF2-DID or INF2-DAD are the result of direct interference with the autoinhibition of 

endogenous INF2 or rather due to an impact on other actin nucleation factors. 
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Addressing this question, multiple aspects in terms of specific modulation of 

endogenous INF2 autoinhibition were investigated.  

The two INF2 isoforms in mammalian cells were shown to differ in their far C-terminus, 

which is dependent for its cellular localization (Chhabra et al., 2009; Ramabhadran et 

al., 2011). Here, we could show that the expression of the isoform specific INF2 C-

terminus (including the DAD) promotes the assembly of differential actin patterns 

which resemble the identical phenotype as achieved upon expression of the respective 

full length constitutive active INF2 isoform (Ramabhadran et al., 2013). Thus, we 

suggest that INF2-DAD interferes with DID/DAD binding of INF2 and subsequently 

activates endogenous INF2. INF2 activation can be obtained in an isoform- and thus 

site-specific manner, leading to the formation of distinct F-actin phenotypes.  

Worth mentioning, the DAD of INF2 resembles a WH2 motif and was reported to 

sequester actin monomers. However, polymerization activity has not been reported 

for the isolated C-terminus of INF2, which includes the DAD/WH2 domain (Chhabra 

and Higgs, 2006). Thus, and because of the fact that INF2 contains only a single G-actin 

binding WH2 motif, we propose that the re-organization of cytoplasmic and nuclear F-

actin upon INF2-DAD expression is mediated rather by activation of the endogenous 

formin than by a hypothetic intrinsic actin nucleation activity of the WH2 domain upon 

binding to G-actin. Theoretically, it could also be hypothesized that visible actin 

structures are simply the result of site-specific accumulation of actin monomers bound 

to the WH2 domain of INF2. In our study we refute this assumption as hINF2-DAD or 

especially hINF2-DAD-CAAX promoted cytoplasmic F-actin structures as well as INF2-

DAD-core-NLS driven nuclear actin filaments can clearly be visualized in fixed cells by 

phalloidin staining. Phalloidin was shown to exclusively bind F-actin and not G-actin 

with high affinity (Vandekerckhove et al., 1985; Wulf et al., 1979). Furthermore, the 

pattern of nuclear INF2-DAD mediated F-actin does not resemble the pattern of the 

expressed INF2-DAD-core-NLS, which is diffusely distributed within the nuclear 

compartment.  
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In contrast to wild type INF2-DAD-core, the expression of INF2-DAD-core featuring a 

triple Leucine to Alanine mutation (3LtoA) (Chhabra and Higgs, 2006) did not drive 

MRTF/SRF transcriptional activity. These mutations, all residing in the INF2-DAD/WH2 

domain, were characterized to abrogate binding of the WH2 motif to actin monomers 

and inhibit actin severing and depolymerization activity of INF2 (Chhabra and Higgs, 

2006; Ramabhadran et al., 2012). Moreover, they prevent DID-DAD binding, thus 

blocking the autoinhibitory interaction of INF2 (Chhabra et al., 2009). Worth 

mentioning, a recent study showed a competitive G-actin binding between the RPEL 

motifs of MRTF-A and different WH2 domains isolated from N-WASP, WAVE2, Spire2 

or Cobl, resulting in activation of MRTF-A/SRF transcriptional activity. This WH2 

domain mediated alteration of SRF activity was shown to occur independently of their 

role in actin filament formation (Weissbach et al., 2016). Thus, we cannot completely 

rule out an at least partial impact of the isolated INF2-DAD or more precisely of its 

intrinsic WH2 domain on the modulation of MRTF-A/SRF activity by competitive 

binding to G-actin. However, we detected a striking impairment of MRTF-A 

translocation to the nucleus and reduced SRF activity in cells lacking INF2 upon 

expressing the DAD of INF2. Noteworthy, the impairment could at least partially be 

rescued by re-introducing full length INF2 into cells. This argues for a major 

contribution of endogenous INF2 to facilitate INF2-DAD driven effects on MRTF/SRF 

transcriptional activity rather than MRTF-A regulation by competitive binding of G-

actin to the INF2-DAD inhering WH2 motif.  

Additionally, we could also show that SRF activity driven by the expression of the 

isolated hINF2-DID gets diminished upon the introduction of diverse single point 

mutations to the DID construct (A149D, E184K or R218Q). These point mutations were 

shown to interfere with DID/DAD binding of INF2 (Brown et al., 2010; Ramabhadran et 

al., 2013; Rollason et al., 2016). Thus, we suggest that the mutated DID constructs are 

incapable of releasing INF2 autoinhibition. Interestingly, the point mutations E184K 

and R218Q were also described in cases of the renal disease FSGS (Brown et al., 2010).  
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Furthermore, we introduced the 3LtoA mutation in the nuclear targeted version of 

INF2-DAD-core. Thereby we revealed that the formation of a nuclear F-actin network 

cannot be detected upon expression of INF2-DAD-core-3LtoA-NLS. In contrast, the 

expression of unmodified INF2-DAD-core-NLS resulted in the assembly of nuclear actin 

filaments in the majority of transfected cells. Interestingly, INF2-DAD-core-NLS driven 

filament formation was frequently accompanied by the assembly of a very prominent 

actin ring-like structure partially colocalizing with the interior side of the nuclear 

lamina. We could determine that this actin ring is different from the INF2-CAAX 

mediated perinuclear actin ring. 

The fraction of cells displaying nuclear actin filaments upon INF2-DAD-core-NLS 

expression could be strikingly reduced upon co-expression with hINF2-DID-NLS but not 

with the DAD binding deficient mutant hINF2-DID-A149D-NLS. Thus we conclude that 

expression of the isolated DID peptide in part sterically interferes with binding of the 

expressed DAD (and vice versa) to the endogenous formin and thereby restricts 

release of formin autoinhibition. In accordance, co-expression of INF2-DID together 

with INF2-DAD-core also compensates for the effect on SRF activity compared to single 

expression of the respective proteins. 

Consistent with the assumption that expression of INF2-DAD-CAAX specifically affects 

the activity status of endogenous INF2-CAAX, a decreased amount of INF2 depleted 

cells showed formation of an active INF2-CAAX typical actin pattern after expression of 

hINF2-DAD-CAAX when compared to wild type cells. Additionally, the percentage of 

cells displaying INF2-DAD-core-NLS mediated nuclear actin filament formation was 

significantly reduced upon INF2 knockdown by siRNA. However, a distinct amount of 

siRNA mediated INF2 knockdown cells expressing INF2-DAD-core-NLS still showed 

nuclear actin filaments. The most plausible general explanation therefore would be 

that not all cells got affected by siRNA treatment. These cells would still express INF2 

and thus they are unimpededly able to form INF2 mediated F-actin in the nucleus. In 

turn, we also analyzed INF2-DAD-core-NLS mediated nuclear F-actin formation in cells 

completely lacking INF2 mediated by the CRISPR/CAS system. However, although 
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immunoblotting revealed a complete loss of INF2, a certain amount of INF2 knockout 

cells also still displayed nuclear actin structures in response to INF2-DAD expression. 

Taken together, this suggests that cells can either partially compensate for the loss of 

INF2 or that the INF2-DAD may functionally interact with other actin nucleation 

factors, probably with other related formins, at least in the nucleus.  

Noteworthy, a heterodimerization between closely related formins has been described 

in previous studies. For example, it was shown that heterodimerization of full-length 

mDia1 and mDia2 occurs by DID/DAD interaction but not by their dimerization motif 

and FH2 domain. This DID/DAD interaction is able to act in trans to inhibit formin 

activity (Copeland et al., 2007). In turn, in addition to a described DID/DAD interaction, 

also the FH2 and the dimerization domain of the formins FRL2 and FRL3 (also known as 

FMNL3 and FMNL2) are able to form hetero-oligomers (Vaillant et al., 2008).  

A recent study revealed that also the only partially related formins INF2 and mDia can 

form heterodimers via INF2-DID and mDia-DAD (Sun et al., 2011), Thus, we analyzed if 

co-expression of the DID and the DAD of either INF2 or mDia2 show additive or 

antagonistic effects in terms of their ability to activate MRTF/SRF mediated gene 

transcription. We revealed that co-expression of mDia2-DAD and mINF2-DID 

remarkably reduced SRF activity. This suggests mainly two possible scenarios: either 1) 

a direct interaction occurs between the overexpressed proteins and thereby 

preventing them to release autoinhibition of the respective endogenous formins, or 2) 

INF2-DID interferes with the autoinhibition of endogenous INF2 (or mDia), whereas 

mDia-DAD activates endogenous mDia (or INF2) but both active formins subsequently 

negatively regulate each other’s impact on actin rearrangement and SRF activity. The 

latter option has been described for mDia and INF2. It was discovered that INF2 

antagonizes Rho activated actin polymerization activity of mDia signaling by an 

interaction of INF2-DID with the DAD sequence of mDia1, mDia2 or mDia3 (Sun et al., 

2011). Furthermore, experiments in cultured podocytes as well as in vivo experiments 

revealed that active INF2 is an important antagonist of mDia1 and mDia2 mediated 
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actin dynamics, related to processes as the formation of lamellipodia and peripheral 

membrane trafficking (Sun et al., 2014; Sun et al., 2013).  

Contrariwise, co-expression of mDia2-DID together with INF2-DAD-core showed a 

synergistic effect in terms of SRF activation. Hence, we suggest, in contrast to mDia-

DAD and INF2-DID, that INF2-DAD does not directly interact with mDia-DID. Thus, they 

do not prevent each other from interfering with the autoinhibition of endogenous INF2 

of mDia. Moreover, endogenous active INF2 cannot antagonize mDia activity in this 

situation, as the intramolecular INF2-DID and mDia-DAD are occupied by the 

overexpressed INF2-DAD and mDia-DID, respectively.  

Furthermore, we investigated if the number of cells displaying a nuclear F-actin 

network upon expression of INF2-DAD-core-NLS gets reduced when cells co-express 

mDia1-DID or mDia2-DID. Indeed, the number of cells with visible nuclear actin 

structures was diminished, although to a much more moderate extent than upon co-

expression of INF2-DAD-core-NLS together with hINF2-DID. This suggests that 

expression of mDia1-DID or mDia2-DID interferes with INF2-DAD mediated activation 

of endogenous INF2. However, as a direct interaction between the DID of mDia 

formins and the DAD of INF2 was not reported (Sun et al., 2011), we hypothesize that 

both expressed constructs act independently from each other, thereby negatively 

modulating the formation of nuclear actin filaments. Hence, simultaneous nuclear 

activation of endogenous INF2 and endogenous mDia by INF2-DAD-core and mDia2-

DID might prevent each other from the formation of visible F-actin structures in the 

nucleus, although they do not counteract in terms of MRTF/SRF regulation.  

Moreover, co-expression of INF2-DAD-core-NLS together with nuclear targeted, 

dominant negative derivatives of mDia, mDia1-I845R (Shimada et al., 2004) or mDia2-

I704A (Harris et al., 2006) did neither alter the number of cells displaying INF2-DAD-

core-NLS mediated nuclear F-actin nor the actin pattern itself (data not shown). This 

result additionally underscores the hypothesis that INF2-DAD does not directly affect 

mDia mediated actin rearrangement. In turn we also analyzed the impact on nuclear 

full length INF2 derivatives possessing mutated FH2 residues (I643A and/or K792A) 
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(Andrés-Delgado et al., 2010; Ramabhadran et al., 2012). In other formins, the 

respective mutations were described to be essential for actin binding and 

polymerization (Shimada et al., 2004; Xu et al., 2004). Interestingly, nuclear expression 

of INF2-I643A, INF2-K792A or INF2-I643A/K792A in combination with INF2-DAD-core-

NLS did not abolish the formation of nuclear F-actin structures, but rather resulted in 

the formation of thick and elongated actin bundles (data not shown). This rather 

unforeseen phenotype can be explained by the multiple diverging effects described for 

these mutations in the FH2 domain of INF2.  A recent study has shown that INF2-I643A 

does not show decreased barbed end binding but that it rather causes tight capping of 

a subset of filaments. Furthermore, the I643A mutation possesses a minor inhibitory 

effect on actin polymerization activity but it causes almost a complete abolishment of 

severing and depolymerization activity. Also the INF2-K792A mutant affects both 

polymerization and severing/depolymerization activity, although to a much smaller 

degree than INF2-I643A. Moreover, INF2-K792A has similar barbed end affinity as wild 

type INF2, but it was shown to decelerate the rate of processive elongation 

(Ramabhadran et al., 2012). Therefore, we conclude that the formation of nuclear 

actin filaments mediated by INF2 activity is dependent on both, its polymerization as 

well as its depolymerization/severing capabilities.  

Furthermore, we analyzed if siRNA mediated depletion of mDia1 and mDia2 also 

affects the assembly of nuclear F-actin upon expression of INF2-DAD-core-NLS. Indeed, 

simultaneous suppression of both, mDia1 and mDia2, negatively influenced nuclear 

actin filaments triggered by expression of INF2-DAD, although to a much more 

moderate extent than INF2 knockdown and INF2 depletion does. Interestingly, 

simultaneous depletion of INF2 together with mDia1 and mDia2 also did not 

completely abolish INF2-DAD-core-NLS mediated nuclear F-actin formation but led to a 

similar result as INF2 depletion alone. These experiments provide evidence that by and 

large the effects of INF2-DAD seem to be specific for INF2 and are unlikely to occur 

mainly due to crosstalk with other formins. Thereby, we suggest that INF2-DAD 

interferes specifically with INF2 autoinhibition, whereas activated INF2 additionally 

seems to execute regulatory effects on nuclear F-actin formation through interaction 
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with mDia formins. Noteworthy, synergistic effects between INF2 and mDia have not 

been described so far, although they cannot be entirely ruled out. Moreover, our 

results also point towards a potential role for additional so far unidentified factors in 

INF2-mediated nuclear actin filament formation.  

In a nutshell, we discover here that the formin INF2 is an actin nucleation factor with 

the ability to form a nuclear actin network upon spatially restricted release of 

autoinhibition inside the nucleus. One direct consequence of nuclear INF2 activation is 

the translocation of the SRF cofactor MRTF-A to the nucleus followed by modulation of 

MRTF/SRF mediated gene transcription. Moreover, this work suggests a putative 

crosstalk between the formins INF2 and mDia as well as other unknown proteins inside 

the nuclear compartment. Thus, INF2 may play an important cellular role for fine-

tuning or adjusting the multiple and complex levels of signal regulations of MRTF-A 

(Panayiotou et al., 2016; Vartiainen et al., 2007). However, conducting follow-up 

studies on INF2 driven actin dynamics, it has to be generally kept in mind that INF2 

also possess a potent actin severing and depolymerization activity, thus massively 

broadening the scope for interpretations. Therefore, further studies have to be 

implemented addressing the exact cellular functions of nuclear INF2 together with the 

precise cross-regulation of other proteins.  

INF2 mediated regulation of actin turnover was suggested to be involved in diseases 

affecting the peripheral nervous system (CMT) and the kidney glomerulus (FSGS) 

(Boyer et al., 2011; Brown et al., 2010; Subramanian et al., 2016). All so far identified 

disease-causing point mutations reside in the DID of INF2. Some of them were shown 

to result in dysfunctional INF2 autoinhibition (Rollason et al., 2016) and in impaired 

INF2-DID/mDia-DAD interaction (Sun et al., 2014; Sun et al., 2013). Both effects were 

suggested to lead to imbalanced actin dynamics and disruption of actin based 

processes. Based on our findings that INF2 plays an essential role in the physiological 

serum response and that INF2 mediated nuclear F-actin formation is sufficient to drive 

MRTF/SRF transcriptional activity, a disease-relevant role for mutated INF2 in the 

nuclear compartment is hypothetically possible. For example, perturbed nuclear actin 
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rearrangement caused by mutated INF2 might alter the localization and activity of 

MRTF-A and thus leading to a deregulated transcription of SRF target genes. This 

deregulated MRTF/SRF transcriptional activity might theoretically contribute to the 

onset of FSGS or CMT.  

Another aspect which remains to be elucidated is the detailed transport mechanism 

which is in charge of regulating the hypothesized nuclear localization of INF2. Although 

formins such as mDia (Copeland et al., 2007; Miki et al., 2009) or FMN2 (Belin et al., 

2015), but also INF2, as we now revealed by subcellular fractionation experiments, can 

be detected in the nuclear compartment, they usually reside predominantly in the 

cytoplasm under steady-state conditions. Thus, we suggest that INF2 continuously 

undergoes nucleocytoplasmic shuttling, which occurs through either direct interaction 

of INF2 with the nuclear import or export machinery or through co-import and co-

export in a complex with other proteins.  

Continuous shuttling between the nuclear compartment and the cytoplasm has been 

recently shown for mDia1 and mDia2. To accomplish nuclear entry, full-length mDia2 

was suggested to bind directly to importin-α via an N-terminal bipartite NLS and gets 

imported into the nucleus by an importin-α/β complex (Miki et al., 2009). In turn, the 

nuclear import mechanism of mDia1 has not been fully characterized, although the 

protein was detected in nuclear fractions (Baarlink et al., 2013). A putative C-terminal 

NLS was reported for mDia1 (Copeland et al., 2007). However, whether this NLS is 

functional in full-length mDia1 remains to be tested. Moreover, mDia2, but not mDia1, 

was shown to be exported from the nucleus in a CRM1 dependent manner. It rapidly 

accumulates in the nucleus within minutes upon blocking CRM1-dependent nuclear 

export by using LMB (Miki et al., 2009). In contrast, mDia1 was speculated to become 

constantly co-exported with profilin and actin via an exportin 6 dependent pathway, as 

they appeared together in a purified nuclear exportin 6 complex (Stüven et al., 2003).  

Despite the detection of nuclear INF2 localization, we currently do not know by which 

mechanism INF2 is translocated to and from nucleus. Bioinformatic analysis of the 

hINF2 amino acid sequence revealed several putative NLS and NES sequences. At least 
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one of the detected putative NLS (termed NLS3) and NES (termed NES4) sequences 

was shown to be functional when the peptide was isolated and fused to GFP. 

Interestingly, expression of GFP-NES4 furthermore revealed nuclear enrichment upon 

treatment with LMB, thus its export is at least partially dependent on CRM1. However, 

it still has to be determined if NLS3 and NES4 are also functional in a full length 

context. We could already reveal that CRM1 mediated nuclear export does not seem 

to play a role in the shuttling of endogenous INF2 as treatment of cells with LMB did 

not result in nuclear accumulation of the full-length protein. Thus, we suggest that 

INF2 contains functional NLS and NES motifs to undergo continuous nucleocytoplasmic 

shuttling by using a so far unidentified nuclear transport machinery. It remains a future 

challenge to identify the detailed transport mechanisms which are in charge of 

regulating the nuclear entry and export of INF2.  

 

  



 

108 

 

6. References 

Adam, S.A., R.S. Marr, and L. Gerace. 1990. Nuclear protein import in permeabilized 

mammalian cells requires soluble cytoplasmic factors. J Cell Biol. 111:807-816. 

Ahuja, R., R. Pinyol, N. Reichenbach, L. Custer, J. Klingensmith, M.M. Kessels, and B. 

Qualmann. 2007. Cordon-bleu is an actin nucleation factor and controls 

neuronal morphology. Cell. 131:337-350. 

Alberts, A.S. 2001. Identification of a carboxyl-terminal diaphanous-related formin 

homology protein autoregulatory domain. J Biol Chem. 276:2824-2830. 

Andrés-Delgado, L., O.M. Antón, R. Madrid, J.A. Byrne, and M.A. Alonso. 2010. Formin 

INF2 regulates MAL-mediated transport of Lck to the plasma membrane of 

human T lymphocytes. Blood. 116:5919-5929. 

Archer, S.K., C. Claudianos, and H.D. Campbell. 2005. Evolution of the gelsolin family of 

actin-binding proteins as novel transcriptional coactivators. Bioessays. 27:388-

396. 

Baarlink, C., D. Brandt, and R. Grosse. 2010. SnapShot: Formins. Cell. 142:172, 

172.e171. 

Baarlink, C., and R. Grosse. 2014. Formin' actin in the nucleus. Nucleus. 5:15-20. 

Baarlink, C., H. Wang, and R. Grosse. 2013. Nuclear actin network assembly by formins 

regulates the SRF coactivator MAL. Science. 340:864-867. 

Bartolini, F., L. Andres-Delgado, X. Qu, S. Nik, N. Ramalingam, L. Kremer, M.A. Alonso, 

and G.G. Gundersen. 2016. An mDia1-INF2 formin activation cascade facilitated 

by IQGAP1 regulates stable microtubules in migrating cells. Mol Biol Cell. 

Barua, M., E.J. Brown, V.T. Charoonratana, G. Genovese, H. Sun, and M.R. Pollak. 2013. 

Mutations in the INF2 gene account for a significant proportion of familial but 

not sporadic focal and segmental glomerulosclerosis. Kidney Int. 83:316-322. 

Begg, D.A., R. Rodewald, and L.I. Rebhun. 1978. The visualization of actin filament 

polarity in thin sections. Evidence for the uniform polarity of membrane-

associated filaments. J Cell Biol. 79:846-852. 



 

109 

 

Beli, P., D. Mascheroni, D. Xu, and M. Innocenti. 2008. WAVE and Arp2/3 jointly inhibit 

filopodium formation by entering into a complex with mDia2. Nat Cell Biol. 

10:849-857. 

Belin, B.J., B.A. Cimini, E.H. Blackburn, and R.D. Mullins. 2013. Visualization of actin 

filaments and monomers in somatic cell nuclei. Mol Biol Cell. 24:982-994. 

Belin, B.J., L.M. Goins, and R.D. Mullins. 2014. Comparative analysis of tools for live cell 

imaging of actin network architecture. Bioarchitecture. 4:189-202. 

Belin, B.J., T. Lee, and R.D. Mullins. 2015. Correction: DNA damage induces nuclear 

actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA 

repair. Elife. 4. 

Bi, E., and S.H. Zigmond. 1999. Actin polymerization: Where the WASP stings. Curr Biol. 

9:R160-163. 

Blanchoin, L., K.J. Amann, H.N. Higgs, J.B. Marchand, D.A. Kaiser, and T.D. Pollard. 

2000. Direct observation of dendritic actin filament networks nucleated by 

Arp2/3 complex and WASP/Scar proteins. Nature. 404:1007-1011. 

Boyer, O., F. Nevo, E. Plaisier, B. Funalot, O. Gribouval, G. Benoit, E. Huynh Cong, C. 

Arrondel, M.J. Tête, R. Montjean, L. Richard, A. Karras, C. Pouteil-Noble, L. 

Balafrej, A. Bonnardeaux, G. Canaud, C. Charasse, J. Dantal, G. Deschenes, P. 

Deteix, O. Dubourg, P. Petiot, D. Pouthier, E. Leguern, A. Guiochon-Mantel, I. 

Broutin, M.C. Gubler, S. Saunier, P. Ronco, J.M. Vallat, M.A. Alonso, C. Antignac, 

and G. Mollet. 2011. INF2 mutations in Charcot-Marie-Tooth disease with 

glomerulopathy. N Engl J Med. 365:2377-2388. 

Brandt, D.T., C. Baarlink, T.M. Kitzing, E. Kremmer, J. Ivaska, P. Nollau, and R. Grosse. 

2009. SCAI acts as a suppressor of cancer cell invasion through the 

transcriptional control of beta1-integrin. Nat Cell Biol. 11:557-568. 

Breitsprecher, D., and B.L. Goode. 2013. Formins at a glance. J Cell Sci. 126:1-7. 

Brown, E.J., J.S. Schlöndorff, D.J. Becker, H. Tsukaguchi, S.J. Tonna, A.L. Uscinski, H.N. 

Higgs, J.M. Henderson, and M.R. Pollak. 2010. Mutations in the formin gene 

INF2 cause focal segmental glomerulosclerosis. Nat Genet. 42:72-76. 



 

110 

 

Buchwalter, G., C. Gross, and B. Wasylyk. 2004. Ets ternary complex transcription 

factors. Gene. 324:1-14. 

Bugyi, B., and M.F. Carlier. 2010. Control of actin filament treadmilling in cell motility. 

Annu Rev Biophys. 39:449-470. 

Bunnell, T.M., B.J. Burbach, Y. Shimizu, and J.M. Ervasti. 2011. β-Actin specifically 

controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 22:4047-

4058. 

Campellone, K.G., and M.D. Welch. 2010. A nucleator arms race: cellular control of 

actin assembly. Nat Rev Mol Cell Biol. 11:237-251. 

Castrillon, D.H., and S.A. Wasserman. 1994. Diaphanous is required for cytokinesis in 

Drosophila and shares domains of similarity with the products of the limb 

deformity gene. Development. 120:3367-3377. 

Cheng, L., J. Zhang, S. Ahmad, L. Rozier, H. Yu, H. Deng, and Y. Mao. 2011. Aurora B 

regulates formin mDia3 in achieving metaphase chromosome alignment. Dev 

Cell. 20:342-352. 

Chereau, D., M. Boczkowska, A. Skwarek-Maruszewska, I. Fujiwara, D.B. Hayes, G. 

Rebowski, P. Lappalainen, T.D. Pollard, and R. Dominguez. 2008. Leiomodin is 

an actin filament nucleator in muscle cells. Science. 320:239-243. 

Chesarone, M., C.J. Gould, J.B. Moseley, and B.L. Goode. 2009. Displacement of 

formins from growing barbed ends by bud14 is critical for actin cable 

architecture and function. Dev Cell. 16:292-302. 

Chesarone, M.A., and B.L. Goode. 2009. Actin nucleation and elongation factors: 

mechanisms and interplay. Curr Opin Cell Biol. 21:28-37. 

Chesarone-Cataldo, M., C. Guérin, J.H. Yu, R. Wedlich-Soldner, L. Blanchoin, and B.L. 

Goode. 2011. The myosin passenger protein Smy1 controls actin cable 

structure and dynamics by acting as a formin damper. Dev Cell. 21:217-230. 

Chhabra, E.S., and H.N. Higgs. 2006. INF2 Is a WASP homology 2 motif-containing 

formin that severs actin filaments and accelerates both polymerization and 

depolymerization. J Biol Chem. 281:26754-26767. 



 

111 

 

Chhabra, E.S., V. Ramabhadran, S.A. Gerber, and H.N. Higgs. 2009. INF2 is an 

endoplasmic reticulum-associated formin protein. J Cell Sci. 122:1430-1440. 

Cooper, S.J., N.D. Trinklein, L. Nguyen, and R.M. Myers. 2007. Serum response factor 

binding sites differ in three human cell types. Genome Res. 17:136-144. 

Copeland, J.W., and R. Treisman. 2002. The diaphanous-related formin mDia1 controls 

serum response factor activity through its effects on actin polymerization. Mol 

Biol Cell. 13:4088-4099. 

Copeland, S.J., B.J. Green, S. Burchat, G.A. Papalia, D. Banner, and J.W. Copeland. 2007. 

The diaphanous inhibitory domain/diaphanous autoregulatory domain 

interaction is able to mediate heterodimerization between mDia1 and mDia2. J 

Biol Chem. 282:30120-30130. 

Dahl, K.N., and A. Kalinowski. 2011. Nucleoskeleton mechanics at a glance. J Cell Sci. 

124:675-678. 

de Lanerolle, P., and L. Serebryannyy. 2011. Nuclear actin and myosins: life without 

filaments. Nat Cell Biol. 13:1282-1288. 

DeRosier, D.J., and L.G. Tilney. 2000. F-actin bundles are derivatives of microvilli: What 

does this tell us about how bundles might form? J Cell Biol. 148:1-6. 

Dominguez, R., and K.C. Holmes. 2011. Actin structure and function. Annu Rev Biophys. 

40:169-186. 

Dopie, J., K.P. Skarp, E.K. Rajakylä, K. Tanhuanpää, and M.K. Vartiainen. 2012. Active 

maintenance of nuclear actin by importin 9 supports transcription. Proc Natl 

Acad Sci U S A. 109:E544-552. 

Dubreuil, R.R. 1991. Structure and evolution of the actin crosslinking proteins. 

Bioessays. 13:219-226. 

Eisenmann, K.M., E.S. Harris, S.M. Kitchen, H.A. Holman, H.N. Higgs, and A.S. Alberts. 

2007. Dia-interacting protein modulates formin-mediated actin assembly at the 

cell cortex. Curr Biol. 17:579-591. 

Emmons, S., H. Phan, J. Calley, W. Chen, B. James, and L. Manseau. 1995. Cappuccino, 

a Drosophila maternal effect gene required for polarity of the egg and embryo, 

is related to the vertebrate limb deformity locus. Genes Dev. 9:2482-2494. 



 

112 

 

Fackler, O.T., and R. Grosse. 2008. Cell motility through plasma membrane blebbing. J 

Cell Biol. 181:879-884. 

Fenn, S., D. Breitsprecher, C.B. Gerhold, G. Witte, J. Faix, and K.P. Hopfner. 2011. 

Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their 

interaction with actin. EMBO J. 30:2153-2166. 

Fletcher, D.A., and R.D. Mullins. 2010. Cell mechanics and the cytoskeleton. Nature. 

463:485-492. 

Floyd, S., N. Whiffin, M.P. Gavilan, S. Kutscheidt, M. De Luca, C. Marcozzi, M. Min, J. 

Watkins, K. Chung, O.T. Fackler, and C. Lindon. 2013. Spatiotemporal 

organization of Aurora-B by APC/CCdh1 after mitosis coordinates cell spreading 

through FHOD1. J Cell Sci. 126:2845-2856. 

Fukuhara, S., H. Chikumi, and J.S. Gutkind. 2000. Leukemia-associated Rho guanine 

nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) 

family to Rho. FEBS Lett. 485:183-188. 

Gao, J., J. Liao, and G.Y. Yang. 2009. CAAX-box protein, prenylation process and 

carcinogenesis. Am J Transl Res. 1:312-325. 

Gasman, S., Y. Kalaidzidis, and M. Zerial. 2003. RhoD regulates endosome dynamics 

through Diaphanous-related Formin and Src tyrosine kinase. Nat Cell Biol. 

5:195-204. 

Gbadegesin, R.A., P.J. Lavin, G. Hall, B. Bartkowiak, A. Homstad, R. Jiang, G. Wu, A. 

Byrd, K. Lynn, N. Wolfish, C. Ottati, P. Stevens, D. Howell, P. Conlon, and M.P. 

Winn. 2012. Inverted formin 2 mutations with variable expression in patients 

with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney 

Int. 81:94-99. 

Gieni, R.S., and M.J. Hendzel. 2009. Actin dynamics and functions in the interphase 

nucleus: moving toward an understanding of nuclear polymeric actin. Biochem 

Cell Biol. 87:283-306. 

Gimona, M., R. Buccione, S.A. Courtneidge, and S. Linder. 2008. Assembly and 

biological role of podosomes and invadopodia. Curr Opin Cell Biol. 20:235-241. 



 

113 

 

Gineitis, D., and R. Treisman. 2001. Differential usage of signal transduction pathways 

defines two types of serum response factor target gene. J Biol Chem. 

276:24531-24539. 

Glotzer, M. 2001. Animal cell cytokinesis. Annu Rev Cell Dev Biol. 17:351-386. 

Goley, E.D., and M.D. Welch. 2006. The ARP2/3 complex: an actin nucleator comes of 

age. Nat Rev Mol Cell Biol. 7:713-726. 

Goode, B.L., and M.J. Eck. 2007. Mechanism and function of formins in the control of 

actin assembly. Annu Rev Biochem. 76:593-627. 

Gould, C.J., S. Maiti, A. Michelot, B.R. Graziano, L. Blanchoin, and B.L. Goode. 2011. The 

formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr 

Biol. 21:384-390. 

Goulimari, P., H. Knieling, U. Engel, and R. Grosse. 2008. LARG and mDia1 link 

Galpha12/13 to cell polarity and microtubule dynamics. Mol Biol Cell. 19:30-40. 

Grikscheit, K., T. Frank, Y. Wang, and R. Grosse. 2015. Junctional actin assembly is 

mediated by Formin-like 2 downstream of Rac1. J Cell Biol. 209:367-376. 

Grosse, R., J.W. Copeland, T.P. Newsome, M. Way, and R. Treisman. 2003. A role for 

VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity. EMBO J. 

22:3050-3061. 

Grosse, R., and M.K. Vartiainen. 2013. To be or not to be assembled: progressing into 

nuclear actin filaments. Nat Rev Mol Cell Biol. 14:693-697. 

Gualdrini, F., C. Esnault, S. Horswell, A. Stewart, N. Matthews, and R. Treisman. 2016. 

SRF Co-factors Control the Balance between Cell Proliferation and Contractility. 

Mol Cell. 

Guettler, S., M.K. Vartiainen, F. Miralles, B. Larijani, and R. Treisman. 2008. RPEL motifs 

link the serum response factor cofactor MAL but not myocardin to Rho 

signaling via actin binding. Mol Cell Biol. 28:732-742. 

Gurel, P.S., M. A, B. Guo, R. Shu, D.F. Mierke, and H.N. Higgs. 2015. Assembly and 

turnover of short actin filaments by the formin INF2 and profilin. J Biol Chem. 

290:22494-22506. 



 

114 

 

Gurel, P.S., P. Ge, E.E. Grintsevich, R. Shu, L. Blanchoin, Z.H. Zhou, E. Reisler, and H.N. 

Higgs. 2014. INF2-mediated severing through actin filament encirclement and 

disruption. Curr Biol. 24:156-164. 

Habas, R., Y. Kato, and X. He. 2001. Wnt/Frizzled activation of Rho regulates vertebrate 

gastrulation and requires a novel Formin homology protein Daam1. Cell. 

107:843-854. 

Han, Y., E. Eppinger, I.G. Schuster, L.U. Weigand, X. Liang, E. Kremmer, C. Peschel, and 

A.M. Krackhardt. 2009. Formin-like 1 (FMNL1) is regulated by N-terminal 

myristoylation and induces polarized membrane blebbing. J Biol Chem. 

284:33409-33417. 

Harata, M., Y. Zhang, D.J. Stillman, D. Matsui, Y. Oma, K. Nishimori, and R. Mochizuki. 

2002. Correlation between chromatin association and transcriptional regulation 

for the Act3p/Arp4 nuclear actin-related protein of Saccharomyces cerevisiae. 

Nucleic Acids Res. 30:1743-1750. 

Harper, S.M., J.M. Christie, and K.H. Gardner. 2004. Disruption of the LOV-Jalpha helix 

interaction activates phototropin kinase activity. Biochemistry. 43:16184-

16192. 

Harper, S.M., L.C. Neil, and K.H. Gardner. 2003. Structural basis of a phototropin light 

switch. Science. 301:1541-1544. 

Harris, E.S., I. Rouiller, D. Hanein, and H.N. Higgs. 2006. Mechanistic differences in actin 

bundling activity of two mammalian formins, FRL1 and mDia2. J Biol Chem. 

281:14383-14392. 

Heimsath, E.G., and H.N. Higgs. 2012. The C terminus of formin FMNL3 accelerates 

actin polymerization and contains a WH2 domain-like sequence that binds both 

monomers and filament barbed ends. J Biol Chem. 287:3087-3098. 

Higashida, C., T. Miyoshi, A. Fujita, F. Oceguera-Yanez, J. Monypenny, Y. Andou, S. 

Narumiya, and N. Watanabe. 2004. Actin polymerization-driven molecular 

movement of mDia1 in living cells. Science. 303:2007-2010. 

Higgs, H.N. 2005. Formin proteins: a domain-based approach. Trends Biochem Sci. 

30:342-353. 



 

115 

 

Hofmann, W.A., L. Stojiljkovic, B. Fuchsova, G.M. Vargas, E. Mavrommatis, V. 

Philimonenko, K. Kysela, J.A. Goodrich, J.L. Lessard, T.J. Hope, P. Hozak, and P. 

de Lanerolle. 2004. Actin is part of pre-initiation complexes and is necessary for 

transcription by RNA polymerase II. Nat Cell Biol. 6:1094-1101. 

Hofmann, W.A., G.M. Vargas, R. Ramchandran, L. Stojiljkovic, J.A. Goodrich, and P. de 

Lanerolle. 2006. Nuclear myosin I is necessary for the formation of the first 

phosphodiester bond during transcription initiation by RNA polymerase II. J Cell 

Biochem. 99:1001-1009. 

Holmes, K.C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Atomic model of the actin 

filament. Nature. 347:44-49. 

Hu, P., S. Wu, and N. Hernandez. 2004. A role for beta-actin in RNA polymerase III 

transcription. Genes Dev. 18:3010-3015. 

Ishizaki, T., Y. Morishima, M. Okamoto, T. Furuyashiki, T. Kato, and S. Narumiya. 2001. 

Coordination of microtubules and the actin cytoskeleton by the Rho effector 

mDia1. Nat Cell Biol. 3:8-14. 

Iskratsch, T., S. Lange, J. Dwyer, A.L. Kho, C. dos Remedios, and E. Ehler. 2010. Formin 

follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 

phosphorylation and promotes myofibril maintenance. J Cell Biol. 191:1159-

1172. 

Iskratsch, T., S. Reijntjes, J. Dwyer, P. Toselli, I.R. Dégano, I. Dominguez, and E. Ehler. 

2013. Two distinct phosphorylation events govern the function of muscle 

FHOD3. Cell Mol Life Sci. 70:893-908. 

Jaffe, A.B., and A. Hall. 2005. Rho GTPases: biochemistry and biology. Annu Rev Cell 

Dev Biol. 21:247-269. 

Ji, P., S.R. Jayapal, and H.F. Lodish. 2008. Enucleation of cultured mouse fetal 

erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol. 10:314-321. 

Kapoor, P., M. Chen, D.D. Winkler, K. Luger, and X. Shen. 2013. Evidence for 

monomeric actin function in INO80 chromatin remodeling. Nat Struct Mol Biol. 

20:426-432. 



 

116 

 

Kim, T., J.A. Cooper, and D. Sept. 2010. The interaction of capping protein with the 

barbed end of the actin filament. J Mol Biol. 404:794-802. 

Kitzing, T.M., A.S. Sahadevan, D.T. Brandt, H. Knieling, S. Hannemann, O.T. Fackler, J. 

Grosshans, and R. Grosse. 2007. Positive feedback between Dia1, LARG, and 

RhoA regulates cell morphology and invasion. Genes Dev. 21:1478-1483. 

Kitzing, T.M., Y. Wang, O. Pertz, J.W. Copeland, and R. Grosse. 2010. Formin-like 2 

drives amoeboid invasive cell motility downstream of RhoC. Oncogene. 

29:2441-2448. 

Korobova, F., V. Ramabhadran, and H.N. Higgs. 2013. An actin-dependent step in 

mitochondrial fission mediated by the ER-associated formin INF2. Science. 

339:464-467. 

Kosugi, S., M. Hasebe, M. Tomita, and H. Yanagawa. 2009. Systematic identification of 

cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction 

of composite motifs. Proc Natl Acad Sci U S A. 106:10171-10176. 

Kovar, D.R. 2006. Molecular details of formin-mediated actin assembly. Curr Opin Cell 

Biol. 18:11-17. 

Kovar, D.R., E.S. Harris, R. Mahaffy, H.N. Higgs, and T.D. Pollard. 2006. Control of the 

assembly of ATP- and ADP-actin by formins and profilin. Cell. 124:423-435. 

Kovar, D.R., and T.D. Pollard. 2004. Insertional assembly of actin filament barbed ends 

in association with formins produces piconewton forces. Proc Natl Acad Sci U S 

A. 101:14725-14730. 

la Cour, T., L. Kiemer, A. Mølgaard, R. Gupta, K. Skriver, and S. Brunak. 2004. Analysis 

and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel. 

17:527-536. 

Lammers, M., R. Rose, A. Scrima, and A. Wittinghofer. 2005. The regulation of mDia1 

by autoinhibition and its release by Rho*GTP. EMBO J. 24:4176-4187. 

Le Clainche, C., and M.F. Carlier. 2008. Regulation of actin assembly associated with 

protrusion and adhesion in cell migration. Physiol Rev. 88:489-513. 



 

117 

 

Leader, B., H. Lim, M.J. Carabatsos, A. Harrington, J. Ecsedy, D. Pellman, R. Maas, and 

P. Leder. 2002. Formin-2, polyploidy, hypofertility and positioning of the 

meiotic spindle in mouse oocytes. Nat Cell Biol. 4:921-928. 

Lederer, M., B.M. Jockusch, and M. Rothkegel. 2005. Profilin regulates the activity of 

p42POP, a novel Myb-related transcription factor. J Cell Sci. 118:331-341. 

Lee, K., M.J. Kang, S.J. Kwon, Y.K. Kwon, K.W. Kim, J.H. Lim, and H. Kwon. 2007. 

Expansion of chromosome territories with chromatin decompaction in BAF53-

depleted interphase cells. Mol Biol Cell. 18:4013-4023. 

Li, F., and H.N. Higgs. 2005. Dissecting requirements for auto-inhibition of actin 

nucleation by the formin, mDia1. J Biol Chem. 280:6986-6992. 

Liu, W., A. Sato, D. Khadka, R. Bharti, H. Diaz, L.W. Runnels, and R. Habas. 2008. 

Mechanism of activation of the Formin protein Daam1. Proc Natl Acad Sci U S 

A. 105:210-215. 

Louvet, E., and P. Percipalle. 2009. Transcriptional control of gene expression by actin 

and myosin. Int Rev Cell Mol Biol. 272:107-147. 

Machesky, L.M., S.J. Atkinson, C. Ampe, J. Vandekerckhove, and T.D. Pollard. 1994. 

Purification of a cortical complex containing two unconventional actins from 

Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol. 

127:107-115. 

Madrid, R., J.F. Aranda, A.E. Rodríguez-Fraticelli, L. Ventimiglia, L. Andrés-Delgado, M. 

Shehata, S. Fanayan, H. Shahheydari, S. Gómez, A. Jiménez, F. Martín-

Belmonte, J.A. Byrne, and M.A. Alonso. 2010. The formin INF2 regulates 

basolateral-to-apical transcytosis and lumen formation in association with 

Cdc42 and MAL2. Dev Cell. 18:814-827. 

Mattila, P.K., and P. Lappalainen. 2008. Filopodia: molecular architecture and cellular 

functions. Nat Rev Mol Cell Biol. 9:446-454. 

Matusek, T., A. Djiane, F. Jankovics, D. Brunner, M. Mlodzik, and J. Mihály. 2006. The 

Drosophila formin DAAM regulates the tracheal cuticle pattern through 

organizing the actin cytoskeleton. Development. 133:957-966. 



 

118 

 

McDonald, D., G. Carrero, C. Andrin, G. de Vries, and M.J. Hendzel. 2006. 

Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility 

polymeric species and rapidly diffusing populations. J Cell Biol. 172:541-552. 

Medjkane, S., C. Perez-Sanchez, C. Gaggioli, E. Sahai, and R. Treisman. 2009. 

Myocardin-related transcription factors and SRF are required for cytoskeletal 

dynamics and experimental metastasis. Nat Cell Biol. 11:257-268. 

Melak, M., M. Plessner, and R. Grosse. 2017. Actin visualization at a glance. J Cell Sci. 

Miki, T., K. Okawa, T. Sekimoto, Y. Yoneda, S. Watanabe, T. Ishizaki, and S. Narumiya. 

2009. mDia2 shuttles between the nucleus and the cytoplasm through the 

importin-{alpha}/{beta}- and CRM1-mediated nuclear transport mechanism. J 

Biol Chem. 284:5753-5762. 

Miralles, F., G. Posern, A.I. Zaromytidou, and R. Treisman. 2003. Actin dynamics control 

SRF activity by regulation of its coactivator MAL. Cell. 113:329-342. 

Miyagi, Y., T. Yamashita, M. Fukaya, T. Sonoda, T. Okuno, K. Yamada, M. Watanabe, Y. 

Nagashima, I. Aoki, K. Okuda, M. Mishina, and S. Kawamoto. 2002. Delphilin: a 

novel PDZ and formin homology domain-containing protein that synaptically 

colocalizes and interacts with glutamate receptor delta 2 subunit. J Neurosci. 

22:803-814. 

Mouilleron, S., C.A. Langer, S. Guettler, N.Q. McDonald, and R. Treisman. 2011. 

Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin 

controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci Signal. 

4:ra40. 

Mullins, R.D., J.A. Heuser, and T.D. Pollard. 1998. The interaction of Arp2/3 complex 

with actin: nucleation, high affinity pointed end capping, and formation of 

branching networks of filaments. Proc Natl Acad Sci U S A. 95:6181-6186. 

Ménard, I., F.G. Gervais, D.W. Nicholson, and S. Roy. 2006. Caspase-3 cleaves the 

formin-homology-domain-containing protein FHOD1 during apoptosis to 

generate a C-terminal fragment that is targeted to the nucleolus. Apoptosis. 

11:1863-1876. 



 

119 

 

Neidt, E.M., B.J. Scott, and D.R. Kovar. 2009. Formin differentially utilizes profilin 

isoforms to rapidly assemble actin filaments. J Biol Chem. 284:673-684. 

Neidt, E.M., C.T. Skau, and D.R. Kovar. 2008. The cytokinesis formins from the 

nematode worm and fission yeast differentially mediate actin filament 

assembly. J Biol Chem. 283:23872-23883. 

Nezami, A., F. Poy, A. Toms, W. Zheng, and M.J. Eck. 2010. Crystal structure of a 

complex between amino and carboxy terminal fragments of mDia1: insights 

into autoinhibition of diaphanous-related formins. PLoS One. 5. 

Nezami, A.G., F. Poy, and M.J. Eck. 2006. Structure of the autoinhibitory switch in 

formin mDia1. Structure. 14:257-263. 

Norman, C., M. Runswick, R. Pollock, and R. Treisman. 1988. Isolation and properties of 

cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum 

response element. Cell. 55:989-1003. 

Obrdlik, A., and P. Percipalle. 2011. The F-actin severing protein cofilin-1 is required for 

RNA polymerase II transcription elongation. Nucleus. 2:72-79. 

Olson, E.N., and A. Nordheim. 2010. Linking actin dynamics and gene transcription to 

drive cellular motile functions. Nat Rev Mol Cell Biol. 11:353-365. 

Olson, M.F., and E. Sahai. 2009. The actin cytoskeleton in cancer cell motility. Clin Exp 

Metastasis. 26:273-287. 

Ostlund, C., E.S. Folker, J.C. Choi, E.R. Gomes, G.G. Gundersen, and H.J. Worman. 2009. 

Dynamics and molecular interactions of linker of nucleoskeleton and 

cytoskeleton (LINC) complex proteins. J Cell Sci. 122:4099-4108. 

Otomo, T., C. Otomo, D.R. Tomchick, M. Machius, and M.K. Rosen. 2005a. Structural 

basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell. 18:273-

281. 

Otomo, T., D.R. Tomchick, C. Otomo, M. Machius, and M.K. Rosen. 2010. Crystal 

structure of the Formin mDia1 in autoinhibited conformation. PLoS One. 5. 

Otomo, T., D.R. Tomchick, C. Otomo, S.C. Panchal, M. Machius, and M.K. Rosen. 2005b. 

Structural basis of actin filament nucleation and processive capping by a formin 

homology 2 domain. Nature. 433:488-494. 



 

120 

 

Otterbein, L.R., P. Graceffa, and R. Dominguez. 2001. The crystal structure of 

uncomplexed actin in the ADP state. Science. 293:708-711. 

Panayiotou, R., F. Miralles, R. Pawlowski, J. Diring, H.R. Flynn, M. Skehel, and R. 

Treisman. 2016. Phosphorylation acts positively and negatively to regulate 

MRTF-A subcellular localisation and activity. Elife. 5. 

Paul, A.S., A. Paul, T.D. Pollard, and T. Pollard. 2008. The role of the FH1 domain and 

profilin in formin-mediated actin-filament elongation and nucleation. Curr Biol. 

18:9-19. 

Paul, A.S., and T.D. Pollard. 2009. Review of the mechanism of processive actin 

filament elongation by formins. Cell Motil Cytoskeleton. 66:606-617. 

Pawłowski, R., E.K. Rajakylä, M.K. Vartiainen, and R. Treisman. 2010. An actin-

regulated importin α/β-dependent extended bipartite NLS directs nuclear 

import of MRTF-A. EMBO J. 29:3448-3458. 

Pederson, T. 2008. As functional nuclear actin comes into view, is it globular, 

filamentous, or both? J Cell Biol. 180:1061-1064. 

Pederson, T., and U. Aebi. 2002. Actin in the nucleus: what form and what for? J Struct 

Biol. 140:3-9. 

Pellegrin, S., and H. Mellor. 2005. The Rho family GTPase Rif induces filopodia through 

mDia2. Curr Biol. 15:129-133. 

Peng, J., B.J. Wallar, A. Flanders, P.J. Swiatek, and A.S. Alberts. 2003. Disruption of the 

Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as 

an effector for Cdc42. Curr Biol. 13:534-545. 

Percipalle, P. 2013. Co-transcriptional nuclear actin dynamics. Nucleus. 4:43-52. 

Perrin, B.J., and J.M. Ervasti. 2010. The actin gene family: function follows isoform. 

Cytoskeleton (Hoboken). 67:630-634. 

Philimonenko, V.V., J. Zhao, S. Iben, H. Dingová, K. Kyselá, M. Kahle, H. Zentgraf, W.A. 

Hofmann, P. de Lanerolle, P. Hozák, and I. Grummt. 2004. Nuclear actin and 

myosin I are required for RNA polymerase I transcription. Nat Cell Biol. 6:1165-

1172. 



 

121 

 

Pipes, G.C., E.E. Creemers, and E.N. Olson. 2006. The myocardin family of 

transcriptional coactivators: versatile regulators of cell growth, migration, and 

myogenesis. Genes Dev. 20:1545-1556. 

Plessner, M., and R. Grosse. 2015. Extracellular signaling cues for nuclear actin 

polymerization. Eur J Cell Biol. 94:359-362. 

Plessner, M., M. Melak, P. Chinchilla, C. Baarlink, and R. Grosse. 2015. Nuclear F-actin 

formation and reorganization upon cell spreading. J Biol Chem. 290:11209-

11216. 

Pollard, T.D., L. Blanchoin, and R.D. Mullins. 2000. Molecular mechanisms controlling 

actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 

29:545-576. 

Pollard, T.D., and J.A. Cooper. 2009. Actin, a central player in cell shape and 

movement. Science. 326:1208-1212. 

Posern, G., A. Sotiropoulos, and R. Treisman. 2002. Mutant actins demonstrate a role 

for unpolymerized actin in control of transcription by serum response factor. 

Mol Biol Cell. 13:4167-4178. 

Prehoda, K.E., J.A. Scott, R.D. Mullins, and W.A. Lim. 2000. Integration of multiple 

signals through cooperative regulation of the N-WASP-Arp2/3 complex. 

Science. 290:801-806. 

Pring, M., M. Evangelista, C. Boone, C. Yang, and S.H. Zigmond. 2003. Mechanism of 

formin-induced nucleation of actin filaments. Biochemistry. 42:486-496. 

Pring, M., A. Weber, and M.R. Bubb. 1992. Profilin-actin complexes directly elongate 

actin filaments at the barbed end. Biochemistry. 31:1827-1836. 

Pruyne, D., M. Evangelista, C. Yang, E. Bi, S. Zigmond, A. Bretscher, and C. Boone. 2002. 

Role of formins in actin assembly: nucleation and barbed-end association. 

Science. 297:612-615. 

Quinlan, M.E., J.E. Heuser, E. Kerkhoff, and R.D. Mullins. 2005. Drosophila Spire is an 

actin nucleation factor. Nature. 433:382-388. 



 

122 

 

Ramabhadran, V., P.S. Gurel, and H.N. Higgs. 2012. Mutations to the formin homology 

2 domain of INF2 protein have unexpected effects on actin polymerization and 

severing. J Biol Chem. 287:34234-34245. 

Ramabhadran, V., A.L. Hatch, and H.N. Higgs. 2013. Actin monomers activate inverted 

formin 2 by competing with its autoinhibitory interaction. J Biol Chem. 

288:26847-26855. 

Ramabhadran, V., F. Korobova, G.J. Rahme, and H.N. Higgs. 2011. Splice variant-

specific cellular function of the formin INF2 in maintenance of Golgi 

architecture. Mol Biol Cell. 22:4822-4833. 

Ramalingam, N., H. Zhao, D. Breitsprecher, P. Lappalainen, J. Faix, and M. Schleicher. 

2010. Phospholipids regulate localization and activity of mDia1 formin. Eur J 

Cell Biol. 89:723-732. 

Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome 

engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281-2308. 

Rao, M.V., P.H. Chu, K.M. Hahn, and R. Zaidel-Bar. 2013. An optogenetic tool for the 

activation of endogenous diaphanous-related formins induces thickening of 

stress fibers without an increase in contractility. Cytoskeleton (Hoboken). 

70:394-407. 

Riedl, J., A.H. Crevenna, K. Kessenbrock, J.H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. 

Jenne, T.A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner. 2008. Lifeact: a 

versatile marker to visualize F-actin. Nat Methods. 5:605-607. 

Robinson, R.C., K. Turbedsky, D.A. Kaiser, J.B. Marchand, H.N. Higgs, S. Choe, and T.D. 

Pollard. 2001. Crystal structure of Arp2/3 complex. Science. 294:1679-1684. 

Rollason, R., M. Wherlock, J.A. Heath, K.J. Heesom, M.A. Saleem, and G.I. Welsh. 2016. 

Disease causing mutations in inverted formin 2 regulate its binding to G-actin, 

F-actin capping protein (CapZ α-1) and profilin 2. Biosci Rep. 36:e00302. 

Romero, S., C. Le Clainche, D. Didry, C. Egile, D. Pantaloni, and M.F. Carlier. 2004. 

Formin is a processive motor that requires profilin to accelerate actin assembly 

and associated ATP hydrolysis. Cell. 119:419-429. 



 

123 

 

Rose, R., M. Weyand, M. Lammers, T. Ishizaki, M.R. Ahmadian, and A. Wittinghofer. 

2005. Structural and mechanistic insights into the interaction between Rho and 

mammalian Dia. Nature. 435:513-518. 

Rotty, J.D., C. Wu, and J.E. Bear. 2013. New insights into the regulation and cellular 

functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 14:7-12. 

Sakuma, T., A. Nishikawa, S. Kume, K. Chayama, and T. Yamamoto. 2014. Multiplex 

genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. 

Sci Rep. 4:5400. 

Schratt, G., U. Philippar, J. Berger, H. Schwarz, O. Heidenreich, and A. Nordheim. 2002. 

Serum response factor is crucial for actin cytoskeletal organization and focal 

adhesion assembly in embryonic stem cells. J Cell Biol. 156:737-750. 

Sept, D., and J.A. McCammon. 2001. Thermodynamics and kinetics of actin filament 

nucleation. Biophys J. 81:667-674. 

Seth, A., C. Otomo, and M.K. Rosen. 2006. Autoinhibition regulates cellular localization 

and actin assembly activity of the diaphanous-related formins FRLalpha and 

mDia1. J Cell Biol. 174:701-713. 

Shao, X., Q. Li, A. Mogilner, A.D. Bershadsky, and G.V. Shivashankar. 2015. Mechanical 

stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc 

Natl Acad Sci U S A. 112:E2595-2601. 

Shikama, N., C.W. Lee, S. France, L. Delavaine, J. Lyon, M. Krstic-Demonacos, and N.B. 

La Thangue. 1999. A novel cofactor for p300 that regulates the p53 response. 

Mol Cell. 4:365-376. 

Shimada, A., M. Nyitrai, I.R. Vetter, D. Kühlmann, B. Bugyi, S. Narumiya, M.A. Geeves, 

and A. Wittinghofer. 2004. The core FH2 domain of diaphanous-related formins 

is an elongated actin binding protein that inhibits polymerization. Mol Cell. 

13:511-522. 

Shore, P., and A.D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur J 

Biochem. 229:1-13. 

Simon, D.N., and K.L. Wilson. 2011. The nucleoskeleton as a genome-associated 

dynamic 'network of networks'. Nat Rev Mol Cell Biol. 12:695-708. 



 

124 

 

Skau, C.T., S.V. Plotnikov, A.D. Doyle, and C.M. Waterman. 2015. Inverted formin 2 in 

focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to 

drive extracellular matrix assembly. Proc Natl Acad Sci U S A. 112:E2447-2456. 

Small, J.V., T. Stradal, E. Vignal, and K. Rottner. 2002. The lamellipodium: where 

motility begins. Trends Cell Biol. 12:112-120. 

Spracklen, A.J., T.N. Fagan, K.E. Lovander, and T.L. Tootle. 2014. The pros and cons of 

common actin labeling tools for visualizing actin dynamics during Drosophila 

oogenesis. Dev Biol. 393:209-226. 

Stradal, T.E., and G. Scita. 2006. Protein complexes regulating Arp2/3-mediated actin 

assembly. Curr Opin Cell Biol. 18:4-10. 

Stüven, T., E. Hartmann, and D. Görlich. 2003. Exportin 6: a novel nuclear export 

receptor that is specific for profilin.actin complexes. EMBO J. 22:5928-5940. 

Subramanian, B., H. Sun, P. Yan, V.T. Charoonratana, H.N. Higgs, F. Wang, K.M. Lai, 

D.M. Valenzuela, E.J. Brown, J.S. Schlöndorff, and M.R. Pollak. 2016. Mice with 

mutant Inf2 show impaired podocyte and slit diaphragm integrity in response 

to protamine-induced kidney injury. Kidney Int. 90:363-372. 

Suetsugu, S., and T. Takenawa. 2003. Translocation of N-WASP by nuclear localization 

and export signals into the nucleus modulates expression of HSP90. J Biol 

Chem. 278:42515-42523. 

Sun, H., K.I. Al-Romaih, C.A. MacRae, and M.R. Pollak. 2014. Human Kidney Disease-

causing INF2 Mutations Perturb Rho/Dia Signaling in the Glomerulus. 

EBioMedicine. 1:107-115. 

Sun, H., J. Schlondorff, H.N. Higgs, and M.R. Pollak. 2013. Inverted formin 2 regulates 

actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J Am 

Soc Nephrol. 24:917-929. 

Sun, H., J.S. Schlondorff, E.J. Brown, H.N. Higgs, and M.R. Pollak. 2011. Rho activation 

of mDia formins is modulated by an interaction with inverted formin 2 (INF2). 

Proc Natl Acad Sci U S A. 108:2933-2938. 

Sun, H.Q., M. Yamamoto, M. Mejillano, and H.L. Yin. 1999. Gelsolin, a multifunctional 

actin regulatory protein. J Biol Chem. 274:33179-33182. 



 

125 

 

Szerlong, H., K. Hinata, R. Viswanathan, H. Erdjument-Bromage, P. Tempst, and B.R. 

Cairns. 2008. The HSA domain binds nuclear actin-related proteins to regulate 

chromatin-remodeling ATPases. Nat Struct Mol Biol. 15:469-476. 

Söderberg, E., V. Hessle, A. von Euler, and N. Visa. 2012. Profilin is associated with 

transcriptionally active genes. Nucleus. 3:290-299. 

Takeya, R., K. Taniguchi, S. Narumiya, and H. Sumimoto. 2008. The mammalian formin 

FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-

induced stress fibre formation in endothelial cells. EMBO J. 27:618-628. 

Theriot, J.A. 1997. Accelerating on a treadmill: ADF/cofilin promotes rapid actin 

filament turnover in the dynamic cytoskeleton. J Cell Biol. 136:1165-1168. 

Thompson, M.E., E.G. Heimsath, T.J. Gauvin, H.N. Higgs, and F.J. Kull. 2013. FMNL3 

FH2-actin structure gives insight into formin-mediated actin nucleation and 

elongation. Nat Struct Mol Biol. 20:111-118. 

Treisman, R. 1986. Identification of a protein-binding site that mediates transcriptional 

response of the c-fos gene to serum factors. Cell. 46:567-574. 

Tseng, Y., T.P. Kole, J.S. Lee, E. Fedorov, S.C. Almo, B.W. Schafer, and D. Wirtz. 2005. 

How actin crosslinking and bundling proteins cooperate to generate an 

enhanced cell mechanical response. Biochem Biophys Res Commun. 334:183-

192. 

Tseng, Y., B.W. Schafer, S.C. Almo, and D. Wirtz. 2002. Functional synergy of actin 

filament cross-linking proteins. J Biol Chem. 277:25609-25616. 

Vaillant, D.C., S.J. Copeland, C. Davis, S.F. Thurston, N. Abdennur, and J.W. Copeland. 

2008. Interaction of the N- and C-terminal autoregulatory domains of FRL2 

does not inhibit FRL2 activity. J Biol Chem. 283:33750-33762. 

Vandekerckhove, J., A. Deboben, M. Nassal, and T. Wieland. 1985. The phalloidin 

binding site of F-actin. EMBO J. 4:2815-2818. 

Vartiainen, M.K., S. Guettler, B. Larijani, and R. Treisman. 2007. Nuclear actin regulates 

dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 

316:1749-1752. 



 

126 

 

Vavylonis, D., D.R. Kovar, B. O'Shaughnessy, and T.D. Pollard. 2006. Model of formin-

associated actin filament elongation. Mol Cell. 21:455-466. 

Vizcarra, C.L., B. Kreutz, A.A. Rodal, A.V. Toms, J. Lu, W. Zheng, M.E. Quinlan, and M.J. 

Eck. 2011. Structure and function of the interacting domains of Spire and Fmn-

family formins. Proc Natl Acad Sci U S A. 108:11884-11889. 

Volkmann, N., K.J. Amann, S. Stoilova-McPhie, C. Egile, D.C. Winter, L. Hazelwood, J.E. 

Heuser, R. Li, T.D. Pollard, and D. Hanein. 2001. Structure of Arp2/3 complex in 

its activated state and in actin filament branch junctions. Science. 293:2456-

2459. 

Wada, A., M. Fukuda, M. Mishima, and E. Nishida. 1998. Nuclear export of actin: a 

novel mechanism regulating the subcellular localization of a major cytoskeletal 

protein. EMBO J. 17:1635-1641. 

Wales, P., C.E. Schuberth, R. Aufschnaiter, J. Fels, I. García-Aguilar, A. Janning, C.P. 

Dlugos, M. Schäfer-Herte, C. Klingner, M. Wälte, J. Kuhlmann, E. Menis, L. 

Hockaday Kang, K.C. Maier, W. Hou, A. Russo, H.N. Higgs, H. Pavenstädt, T. 

Vogl, J. Roth, B. Qualmann, M.M. Kessels, D.E. Martin, B. Mulder, and R. 

Wedlich-Söldner. 2016. Calcium-mediated actin reset (CaAR) mediates acute 

cell adaptations. Elife. 5. 

Wallar, B.J., and A.S. Alberts. 2003. The formins: active scaffolds that remodel the 

cytoskeleton. Trends Cell Biol. 13:435-446. 

Wallar, B.J., A.D. Deward, J.H. Resau, and A.S. Alberts. 2007. RhoB and the mammalian 

Diaphanous-related formin mDia2 in endosome trafficking. Exp Cell Res. 

313:560-571. 

Wang, D., P.S. Chang, Z. Wang, L. Sutherland, J.A. Richardson, E. Small, P.A. Krieg, and 

E.N. Olson. 2001. Activation of cardiac gene expression by myocardin, a 

transcriptional cofactor for serum response factor. Cell. 105:851-862. 

Wang, D.Z., S. Li, D. Hockemeyer, L. Sutherland, Z. Wang, G. Schratt, J.A. Richardson, A. 

Nordheim, and E.N. Olson. 2002. Potentiation of serum response factor activity 

by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A. 

99:14855-14860. 



 

127 

 

Wang, Y., A. Arjonen, J. Pouwels, H. Ta, P. Pausch, G. Bange, U. Engel, X. Pan, O.T. 

Fackler, J. Ivaska, and R. Grosse. 2015. Formin-like 2 Promotes β1-Integrin 

Trafficking and Invasive Motility Downstream of PKCα. Dev Cell. 34:475-483. 

Watanabe, S., Y. Ando, S. Yasuda, H. Hosoya, N. Watanabe, T. Ishizaki, and S. 

Narumiya. 2008. mDia2 induces the actin scaffold for the contractile ring and 

stabilizes its position during cytokinesis in NIH 3T3 cells. Mol Biol Cell. 19:2328-

2338. 

Weber, A., C.R. Pennise, G.G. Babcock, and V.M. Fowler. 1994. Tropomodulin caps the 

pointed ends of actin filaments. J Cell Biol. 127:1627-1635. 

Wegner, A., and G. Isenberg. 1983. 12-fold difference between the critical monomer 

concentrations of the two ends of actin filaments in physiological salt 

conditions. Proc Natl Acad Sci U S A. 80:4922-4925. 

Weissbach, J., F. Schikora, A. Weber, M. Kessels, and G. Posern. 2016. Myocardin-

Related Transcription Factor A Activation by Competition with WH2 Domain 

Proteins for Actin Binding. Mol Cell Biol. 36:1526-1539. 

Welch, M.D., and R.D. Mullins. 2002. Cellular control of actin nucleation. Annu Rev Cell 

Dev Biol. 18:247-288. 

Weston, L., A.S. Coutts, and N.B. La Thangue. 2012. Actin nucleators in the nucleus: an 

emerging theme. J Cell Sci. 125:3519-3527. 

Wickstead, B., and K. Gull. 2011. The evolution of the cytoskeleton. J Cell Biol. 194:513-

525. 

Wu, X., Y. Yoo, N.N. Okuhama, P.W. Tucker, G. Liu, and J.L. Guan. 2006. Regulation of 

RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding 

partners. Nat Cell Biol. 8:756-763. 

Wulf, E., A. Deboben, F.A. Bautz, H. Faulstich, and T. Wieland. 1979. Fluorescent 

phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S 

A. 76:4498-4502. 

Xu, Y., J.B. Moseley, I. Sagot, F. Poy, D. Pellman, B.L. Goode, and M.J. Eck. 2004. Crystal 

structures of a Formin Homology-2 domain reveal a tethered dimer 

architecture. Cell. 116:711-723. 



 

128 

 

Yasuda, S., F. Oceguera-Yanez, T. Kato, M. Okamoto, S. Yonemura, Y. Terada, T. 

Ishizaki, and S. Narumiya. 2004. Cdc42 and mDia3 regulate microtubule 

attachment to kinetochores. Nature. 428:767-771. 

Ye, J., J. Zhao, U. Hoffmann-Rohrer, and I. Grummt. 2008. Nuclear myosin I acts in 

concert with polymeric actin to drive RNA polymerase I transcription. Genes 

Dev. 22:322-330. 

Yoo, Y., X. Wu, and J.L. Guan. 2007. A novel role of the actin-nucleating Arp2/3 

complex in the regulation of RNA polymerase II-dependent transcription. J Biol 

Chem. 282:7616-7623. 

Young, K.G., and J.W. Copeland. 2010. Formins in cell signaling. Biochim Biophys Acta. 

1803:183-190. 

Zaromytidou, A.I., F. Miralles, and R. Treisman. 2006. MAL and ternary complex factor 

use different mechanisms to contact a common surface on the serum response 

factor DNA-binding domain. Mol Cell Biol. 26:4134-4148. 

Zhao, K., W. Wang, O.J. Rando, Y. Xue, K. Swiderek, A. Kuo, and G.R. Crabtree. 1998. 

Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF 

complex to chromatin after T lymphocyte receptor signaling. Cell. 95:625-636. 

Zigmond, S.H., M. Evangelista, C. Boone, C. Yang, A.C. Dar, F. Sicheri, J. Forkey, and M. 

Pring. 2003. Formin leaky cap allows elongation in the presence of tight capping 

proteins. Curr Biol. 13:1820-1823. 

Zuchero, J.B., B. Belin, and R.D. Mullins. 2012. Actin binding to WH2 domains regulates 

nuclear import of the multifunctional actin regulator JMY. Mol Biol Cell. 23:853-

863. 

Zuchero, J.B., A.S. Coutts, M.E. Quinlan, N.B. Thangue, and R.D. Mullins. 2009. p53-

cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol. 11:451-

459. 

 

  



 

129 

 

Appendix 

 

List of academic teachers 

My academic teachers at the University of Vienna were Prof. Dr. Manuela Baccarini, 

Prof. Dr. Friedrich Barth, Prof. Dr. Johannes Berger, Prof. Dr. Udo Bläsi, Prof. Dr. 

Thomas Decker, Prof. Dr. Roland Foisner, Prof. Dr. Urs Peter Fringeli, Prof. Dr. Friedrich 

Hammerschmidt, Prof. Dr. Andreas Hartig, Prof. Dr. Erwin Heberle-Bors, Prof. Dr. Ernst 

Kenndler, Prof. Dr. Franz Klein, Prof. Dr. Robert Konrat, Prof. Dr. Pavel Kovarik, Prof. Dr. 

Andrea Leodolter-Barta, Prof. Dr. Johannes Nimpf, Prof. Dr. Josef Penninger, Prof. Dr. 

Marianne Popp, Prof. Dr. Friedrich Probst, Prof. Dr. Andreas Rizzi, Prof. Dr. Renée 

Schroeder, Prof. Dr. Peter Schuster, Prof. Dr. Dieter Schweizer, Prof. Dr. Rudolf 

Schweyen, Prof. Dr. Horst Seidler, Prof. Dr. Gerhard Sontag, Prof. Dr. Graham Warren, 

Prof. Dr. Gerhard Wiche, Prof. Dr. Erhard Wintersberger, Prof. Dr. Ulrike 

Wintersberger, Prof. Dr. Angela Witte.  

 

  



 

130 

 

Acknowledgment 

First of all, I would like to thank my supervisor Prof. Dr. Robert Grosse for making it 

possible to work in his lab on such an interesting project and for guiding me through 

my PhD work as well as for his support and scientific discussions.  

I also would like to thank all current and former colleagues for sharing their scientific 

knowledge and experience, excellent advice, the inspiring working atmosphere and of 

course for common activities outside the lab (BBQ, football, climbing, etc.). My special 

thanks go to Marga Losekam, Andrea Wüstenhagen and Christiane Kleber for their 

technical support as well as to Tanja Pfeffer-Eckel for her help with administrative 

questions. 

Thanks a lot to Prof. Dr. Henry N. Higgs from Dartmouth Medical School, Hanover, US 

for sharing the hINF2 Plasmids.  

I would like to thank particularly my entire family in Austria for their unconditional 

support and for providing enjoyable stays in my home country.  

Last but not least, I would like to take the opportunity to express my deep gratitude to 

my beloved wife Thea for always being there for me and for encouraging and 

supporting me during tough and stressful times. And thanks to you, Kilian, Atreo and 

Jaron for sharing with me the most beautiful moments of my life. 

 

 


