Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Myoblastenfusion zur Entstehung der glatten Testismuskulatur ist abhängig von Duf und Rst wobei die embryonale Myogenese unabhängig von Argininkinase abläuft
Autor:Kuckwa, Jessica
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0224
DOI: https://doi.org/10.17192/z2017.0224
URN: urn:nbn:de:hebis:04-z2017-02248
DDC: Biowissenschaften, Biologie
Titel(trans.):Myoblast fusion during development of smooth testis muscles is depending on Duf and Rst whereas embryonic myogenesis proceeds independent from arginine kinase
Publikationsdatum:2017-05-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Drosophila melanogaster, muscle, Drosophila melanogaster, Rst, Drosophila melanogaster, Rst, Duf, Duf, Myogenesis, Organogenese, Myogenese, Organogenese, Muskel, Muskel, Duf, Organogenesis, Rst, Myogenese

Zusammenfassung:
Die larvale Muskulatur von Drosophila entsteht durch die heterotypische Fusion von Myoblasten im Embryo. Durch die Adhäsion der fusionierenden Zellen wird eine Signal-kaskade aktiviert, die Aktin-Reorganisationsprozesse anstößt und in der Auflösung der Membranen resultiert. Für diesen Prozess muss in kurzer Zeit viel Energie bereitgestellt werden. Es wurde vermutet, dass Argininkinase (Argk) die Energieversorgung der Myoblas-tenfusion unterstützt. Im Rahmen dieser Arbeit wurde gezeigt, dass Argk in der embryonalen Muskulatur während der Myoblastenfusion exprimiert wird und zum Teil mit Mitochondrien kolokalisiert. Analysen von Deletions-Linien, ektopisch exprimierten Argk-Varianten sowie Lokalisationsstudien weisen darauf hin, dass Argk keine essentielle Funktion bei der embryonalen Myoblastenfusion übernimmt. Auch während der Metamorphose finden Myogenese-Prozesse statt. Die larvale Muskulatur wird dabei durch adulte Muskeln wie z.B. Bein- und Flugmuskeln ersetzt. Die Muskulatur der weiblichen und männlichen Reproduktionsorgane wird neugebildet. Im Rahmen dieser Arbeit wurde die Muskulatur des männlichen Reproduktionstraktes insbesondere im Hinblick auf die Entstehung der Testismuskulatur untersucht. Die inneren Organe des männlichen Reprodukti-onstraktes sind von Muskelschichten umgeben, die unterschiedlich gestaltet sind. Die Muskelschicht der Testes unterscheidet sich von allen anderen in Drosophila beschriebenen Muskeln: eine Schicht aus glatten, mehrkernigen Muskelfasern umhüllt das Organ vollständig. Es wurde gezeigt, dass sich die Testis-Myoblasten zu Beginn der Metamorphose auf der Genitalscheibe befinden, dort amplifizieren und fusionieren, bevor sie mehrkernig als naszierende Myotuben auf die Testes migrieren. An der Fusion der Testis-Myoblasten sind die Adhäsionsmoleküle Dumbfounded (Duf) und Roughest (Rst) beteiligt, die während der embryonalen Myogenese die Adhäsion der Myoblasten gewährleisten. Bei einem Knock-down von duf, rst und duf + rst gemeinsam durch RNA-Interferenz entstehen Testismuskeln, die über weniger Zellkerne als der Wildtyp verfügen. Dabei sind die Filamentanordnung und die Migration der naszierenden Myotuben von der Genitalscheibe auf die Testes unverändert, so dass die adulten männlichen Reproduktionstrakte trotz verminderter Fusionseffizienz vom Wildtyp nicht zu unterscheiden sind. Daher wird postuliert, dass eine verminderte Fusionsrate spezifisch in den Testismuskeln kompensieren wird.

Summary:
The larval musculature of Drosophila arises by heterotypic fusion of myoblasts. A signaling cascade is activated by adhesion of fusing cells and leads to actin rearrangements as well as membrane break down. For this process, an extensive amount of energy must be provided in a short time. It was assumed that arginine kinase (Argk) supports the energy supply of myoblast fusion. It was demonstrated in the course of this thesis that Argk is expressed in embryonic musculature during myoblast fusion and colocalizes partially with mitochondria. Yet, analyses of deletion lines, ectopically expressed protein variants as well as localization studies indicate that Argk does not fulfill an essential function in embryonic myoblast fusion. During metamorphosis, further processes of myogenesis occur. The larval musculature is replaced by adult muscles e.g. leg and flight muscles. The musculature of the female and male reproductive tract is newly formed. In the course of this thesis, the musculature of the male reproductive tract was analyzed particularly with regard to the development of the testis musculature. The inner organs of the male reproductive tract are encircled by muscle sheaths with different properties. The muscle sheaths of the testes differ from all other muscles previously described in Drosophila: smooth, multinuclear muscle fibers enclose the organ entirely. It was demonstrated that the testis myoblasts are located on the genital disc at the beginning of metamorphosis, amplify and fuse before migrating as multinuclear nascent myotubes onto the testes. The adhesion molecules Dumbfounded (Duf) and Roughest (Rst), assuring adhesion of myoblasts in embryonic myogenesis, are involved in fusion of the testis myoblasts as well. In a knock-down of duf, rst and duf + rst together mediated by RNA interference, testis muscles with fewer nuclei than the wild type are developing. Filament arrangement and migration of the nascent myotubes from genital disc onto the testes are not affected. Despite reduced fusion efficiency, the adult male reproductive tracts do not differ from the wild type. Therefore, it is postulated that reduced fusion rates are compensated specifically in the testis muscles.

Bibliographie / References

  1. Sandmann, T., C. Girardot, M. Brehme, W. Tongprasit, V. Stolc, and E. E. Furlong, 2007, A core transcriptional network for early mesoderm development in Drosophila melanogaster: Genes Dev, v. 21, p. 436-49.
  2. Shilagardi, K., S. Li, F. Luo, F. Marikar, R. Duan, P. Jin, J. H. Kim, K. Murnen, and E. H. Chen, 2013, Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion: Science, v. 340, p. 359-63.
  3. Segal, D., N. Dhanyasi, E. D. Schejter, and B. Z. Shilo, 2016, Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia: Dev Cell, v. 38, p. 291-304.
  4. Martin, B. S., M. Ruiz-Gomez, M. Landgraf, and M. Bate, 2001, A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo: Development, v. 128, p. 3331-8.
  5. Sens, K. L., S. Zhang, P. Jin, R. Duan, G. Zhang, F. Luo, L. Parachini, and E. H. Chen, 2010, An invasive podosome-like structure promotes fusion pore formation during myoblast fusion: J Cell Biol, v. 191, p. 1013-27.
  6. Menon, S. D., Z. Osman, K. Chenchill, and W. Chia, 2005, A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila: J Cell Biol, v. 169, p. 909-20.
  7. Morin, X., R. Daneman, M. Zavortink, and W. Chia, 2001, A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila: Proc Natl Acad Sci U S A, v. 98, p. 15050-5.
  8. Ranganayakulu, G., B. Zhao, A. Dokidis, J. D. Molkentin, E. N. Olson, and R. A. Schulz, 1995, A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila: Dev Biol, v. 171, p. 169-81.
  9. Leiss, D., U. Hinz, A. Gasch, R. Mertz, and R. Renkawitz-Pohl, 1988, Beta 3 tubulin expression characterizes the differentiating mesodermal germ layer during Drosophila embryogenesis.: Development, v. 104, p. 525-31.
  10. Schröter, R., D. Buttgereit, L. Beck, A. Holz, and R. Renkawitz-Pohl, 2006, Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila.: Differentiation, v. 74, p. 608-21.
  11. Schneider, I., 1972, Cell lines derived from late embryonic stages of Drosophila melanogaster: J Embryol Exp Morphol, v. 27, p. 353-65.
  12. Riechmann, V., U. Irion, R. Wilson, R. Grosskortenhaus, and M. Leptin, 1997, Control of cell fates and segmentation in the Drosophila mesoderm: Development, v. 124, p. 2915-22.
  13. Soler, C., M. Daczewska, J. P. Da Ponte, B. Dastugue, and K. Jagla, 2004, Coordinated development of muscles and tendons of the Drosophila leg: Development, v. 131, p. 6041- 51.
  14. Wyss, M., and R. Kaddurah-Daouk, 2000, Creatine and creatinine metabolism: Physiol Rev, v. 80, p. 1107-213.
  15. Mahajan, V. B., K. S. Pai, A. Lau, and D. D. Cunningham, 2000, Creatine kinase, an ATPgenerating enzyme, is required for thrombin receptor signaling to the cytoskeleton: Proc Natl Acad Sci U S A, v. 97, p. 12062-7.
  16. Kuiper, J. W., H. Pluk, F. Oerlemans, F. N. van Leeuwen, F. de Lange, J. Fransen, and B. Wieringa, 2008, Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis: PLoS Biol, v. 6, p. e51.
  17. Lacroix, B., and A. S. Maddox, 2012, Cytokinesis, ploidy and aneuploidy: J Pathol, v. 226, p. 338-51.
  18. Palombi, F., D. Farini, M. Salanova, S. de Grossi, and M. Stefanini, 1992, Development and cytodifferentiation of peritubular myoid cells in the rat testis: Anat Rec, v. 233, p. 32-40.
  19. Kuckwa, J., 2010, Die adulte abdominale Muskulatur als neues System der Myogenese sowie die Analyse von Ribokinase33E als mögliche neue Komponente der embryonalen Myoblastenfusion, Philipps-Universität Marburg.
  20. Rudolf, A., D. Buttgereit, M. Jacobs, G. Wolfstetter, D. Kesper, M. Putz, S. Berger, R. Renkawitz-Pohl, A. Holz, and S. F. Onel, 2014, Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion: BMC Cell Biol, v. 15, p. 27.
  21. Luo, L., Y. J. Liao, L. Y. Jan, and Y. N. Jan, 1994, Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion: Genes Dev, v. 8, p. 1787-802.
  22. Tixier, V., L. Bataille, and K. Jagla, 2010, Diversification of muscle types: recent insights from Drosophila: Exp Cell Res, v. 316, p. 3019-27.
  23. Nguyen, H. T., R. Bodmer, S. M. Abmayr, J. C. McDermott, and N. A. Spoerel, 1994, Dmef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis: Proc Natl Acad Sci U S A, v. 91, p. 7520-4.
  24. Lilly, B., S. Galewsky, A. B. Firulli, R. A. Schulz, and E. N. Olson, 1994, D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis: Proc Natl Acad Sci U S A, v. 91, p. 5662-6.
  25. Staehling-Hampton, K., F. M. Hoffmann, M. K. Baylies, E. Rushton, and M. Bate, 1994, dpp induces mesodermal gene expression in Drosophila: Nature, v. 372, p. 783-6.
  26. Ruiz-Gómez, M., N. Coutts, A. Price, M. Taylor, and M. Bate, 2000, Drosophila dumbfounded: a myoblast attractant essential for fusion.: Cell, v. 102, p. 189-98.
  27. Taylor, M. V., K. E. Beatty, H. K. Hunter, and M. K. Baylies, 1995, Drosophila MEF2 is regulated by twist and is expressed in both the primordia and differentiated cells of the embryonic somatic, visceral and heart musculature: Mech Dev, v. 50, p. 29-41.
  28. Menon, S. D., and W. Chia, 2001, Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded: Dev Cell, v. 1, p. 691-703.
  29. Kozopas, K. M., C. H. Samos, and R. Nusse, 1998, DWnt-2, a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate: Genes Dev, v. 12, p. 1155-65.
  30. Stute, C., D. Kesper, A. Holz, D. Buttgereit, and R. Renkawitz-Pohl, 2006, Establishment of cell type specific Gal4-driver lines for the mesoderm of Drosophila.: Dros Inf Serf, v. 89, p. 111-5.
  31. Uda, K., N. Fujimoto, Y. Akiyama, K. Mizuta, K. Tanaka, W. R. Ellington, and T. Suzuki, 2006, Evolution of the arginine kinase gene family: Comp Biochem Physiol Part D Genomics Proteomics, v. 1, p. 209-18.
  32. Quinones-Coello, A. T., L. N. Petrella, K. Ayers, A. Melillo, S. Mazzalupo, A. M. Hudson, S. Wang, C. Castiblanco, M. Buszczak, R. A. Hoskins, and L. Cooley, 2007, Exploring strategies for protein trapping in Drosophila: Genetics, v. 175, p. 1089-104.
  33. Lecuyer, E., N. Parthasarathy, and H. M. Krause, 2008, Fluorescent in situ hybridization protocols in Drosophila embryos and tissues: Methods Mol Biol, v. 420, p. 289-302.
  34. Önel, S.-F., and R. Renkawitz-Pohl, 2009, FuRMAS: triggering myoblast fusion in Drosophila.: Dev Dyn, v. 238, p. 1513-25.
  35. Maqbool, T., and K. Jagla, 2007, Genetic control of muscle development: learning from Drosophila: J Muscle Res Cell Motil, v. 28, p. 397-407.
  36. Roy, S., and K. VijayRaghavan, 1997, Homeotic genes and the regulation of myoblast migration, fusion, and fibre-specific gene expression during adult myogenesis in Drosophila: Development, v. 124, p. 3333-41.
  37. Mayerhofer, A., 2013, Human testicular peritubular cells: more than meets the eye: Reproduction, v. 145, p. R107-16.
  38. Richardson et al., 2007; Schröter et al., 2004). In den FCMs kann Arp2/3 zusätzlich durch den Verprolin 1 genannt) aktiviert werden (Berger et al., 2008; Massarwa et al., 2007; Schäfer et al., 2007). Dies wird durch die kompetitive Bindung von Blown fuse (Blow) an D-Wip reguliert (Doberstein et al., 1997; Jin et al., 2011), wovon wiederum gezeigt werden konnte, dass es genetisch mit Kette interagiert (Schröter et al., 2004). Im Gegensatz zu Rols kann das Kozopas, K. M., and R. Nusse, 2002, Direct flight muscles in Drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning: Dev Biol, v. 243, p. 312-25.
  39. Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger, 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis: Biochem J, v. 281 ( Pt 1), p. 21-40.
  40. Taniguchi, K., A. Kokuryo, T. Imano, R. Minami, H. Nakagoshi, and T. Adachi-Yamada, 2014, Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells: BMC Dev Biol, v. 14, p. 46.
  41. Strong, S. J., and W. R. Ellington, 1995, Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues: Biochim Biophys Acta, v. 1246, p. 197-200.
  42. Powell, G. T., and G. J. Wright, 2011, Jamb and jamc are essential for vertebrate myocyte fusion, PLoS Biol, v. 9: United States, p. e1001216.
  43. Schröter, R., S. Lier, A. Holz, S. Bogdan, C. Klämbt, L. Beck, and R. Renkawitz-Pohl, 2004, kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila.: Development, v. 131, p. 4501-9.
  44. Riedl, J., A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, 2008, Lifeact: a versatile marker to visualize F-actin: Nat Methods, v. 5, p. 605-7.
  45. Metzger, T., V. Gache, M. Xu, B. Cadot, E. S. Folker, B. E. Richardson, E. R. Gomes, and M. K. Baylies, 2012, MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function: Nature, v. 484, p. 120-4.
  46. Martens, S., and H. T. McMahon, 2008, Mechanisms of membrane fusion: disparate players and common principles: Nat Rev Mol Cell Biol, v. 9, p. 543-56.
  47. Park, M., L. E. Yaich, and R. Bodmer, 1998, Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, Notch, and sanpodo: Mech Dev, v. 75, p. 117- 26.
  48. Schlattner, U., M. Tokarska-Schlattner, and T. Wallimann, 2006, Mitochondrial creatine kinase in human health and disease: Biochim Biophys Acta, v. 1762, p. 164-80.
  49. White-Cooper, H., 2010, Molecular mechanisms of gene regulation during Drosophila spermatogenesis: Reproduction, v. 139, p. 11-21.
  50. Schulman, V. K., K. C. Dobi, and M. K. Baylies, 2015, Morphogenesis of the somatic musculature in Drosophila melanogaster: Wiley Interdiscip Rev Dev Biol, v. 4, p. 313-34.
  51. Susic-Jung, L., C. Hornbruch-Freitag, J. Kuckwa, K. H. Rexer, U. Lammel, and R. Renkawitz-Pohl, 2012, Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster: Dev Biol, v. 370, p. 86-97.
  52. Roy, S., and K. VijayRaghavan, 1999, Muscle pattern diversification in Drosophila: the story of imaginal myogenesis: Bioessays, v. 21, p. 486-98.
  53. Rushton, E., R. Drysdale, S. M. Abmayr, A. M. Michelson, and M. Bate, 1995, Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development: Development, v. 121, p. 1979-88.
  54. Nolan, K. M., K. Barrett, Y. Lu, K. Q. Hu, S. Vincent, and J. Settleman, 1998, Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes: Genes Dev, v. 12, p. 3337-42.
  55. Richardson, B. E., S. J. Nowak, and M. K. Baylies, 2008, Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives: Traffic, v. 9, p. 1050-9.
  56. Rochlin, K., S. Yu, S. Roy, and M. Baylies, 2010, Myoblast fusion: when it takes more to make one.: Dev Biol, v. 341, p. 66-83.
  57. Ruiz-Gomez, M., N. Coutts, M. L. Suster, M. Landgraf, and M. Bate, 2002, myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila: Development, v. 129, p. 133-41.
  58. Middleton, C. A., U. Nongthomba, K. Parry, S. T. Sweeney, J. C. Sparrow, and C. J. Elliott, 2006, Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary: BMC Biol, v. 4, p. 17.
  59. Welter, H., C. Kampfer, S. Lauf, R. Feil, J. U. Schwarzer, F. M. Kohn, and A. Mayerhofer, 2013, Partial loss of contractile marker proteins in human testicular peritubular cells in infertility patients: Andrology, v. 1, p. 318-24.
  60. O'Connor, R. S., C. M. Steeds, R. W. Wiseman, and G. K. Pavlath, 2008, Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion: J Physiol, v. 586, p. 2841-53.
  61. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase: Science, v. 239, p. 487-91.
  62. Li, F., X. Wang, J. M. Capasso, and A. M. Gerdes, 1996, Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development: J Mol Cell Cardiol, v. 28, p. 1737-46.
  63. Nose, A., T. Isshiki, and M. Takeichi, 1998, Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene: Development, v. 125, p. 215-23.
  64. Liu, Z., S. Yue, X. Chen, T. Kubin, and T. Braun, 2010, Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1: Circ Res, v. 106, p. 1498-506.
  65. Reiter, C., T. Schimansky, Z. Nie, and K. F. Fischbach, 1996, Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: the role of the IrreC-rst protein: Development, v. 122, p. 1931-40.
  66. Önel, S.-F., C. Dottermusch, A. Sickmann, D. Buttgereit, and R. Renkawitz-Pohl, 2011, Role of the Actin Cytoskeleton Within FuRMAS During Drosophila Myoblast Fusion and First Functionally Conserved Factors in Vertebrates, in I. Larsson, ed., Cell Fusions: Regulation and Control., Springer.
  67. Rau, A., D. Buttgereit, A. Holz, R. Fetter, S. Doberstein, A. Paululat, N. Staudt, J. Skeath, A. Michelson, and R. Renkawitz-Pohl, 2001, rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion.: Development, v. 128, p. 5061- 73.
  68. Kuckwa, J., K. Fritzen, D. Buttgereit, S. Rothenbusch-Fender, and R. Renkawitz-Pohl, 2016, A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion: Development, v. 143, p. 329-38.
  69. Strünkelnberg, M., B. Bonengel, L. Moda, A. Hertenstein, H. de Couet, R. Ramos, and K. Fischbach, 2001, rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila.: Development, v. 128, p. 4229-39.
  70. Zallen, J. A., Y. Cohen, A. M. Hudson, L. Cooley, E. Wieschaus, and E. D. Schejter, 2002, SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila: J Cell Biol, v. 156, p. 689-701.
  71. Ruiz Gomez, M., and M. Bate, 1997, Segregation of myogenic lineages in Drosophila requires numb: Development, v. 124, p. 4857-66.
  72. Wolfner, M. F., 2007, "S.P.E.R.M." (seminal proteins (are) essential reproductive modulators): the view from Drosophila: Soc Reprod Fertil Suppl, v. 65, p. 183-99.
  73. Muhlebach, S. M., M. Gross, T. Wirz, T. Wallimann, J. C. Perriard, and M. Wyss, 1994, Sequence homology and structure predictions of the creatine kinase isoenzymes: Mol Cell Biochem, v. 133-134, p. 245-62.
  74. Maqbool, T., C. Soler, T. Jagla, M. Daczewska, N. Lodha, S. Palliyil, K. VijayRaghavan, and K. Jagla, 2006, Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis: PLoS One, v. 1, p. e122.
  75. Nanda, S., T. J. DeFalco, S. H. Loh, N. Phochanukul, N. Camara, M. Van Doren, and S. Russell, 2009, Sox100B, a Drosophila group E Sox-domain gene, is required for somatic testis differentiation: Sex Dev, v. 3, p. 26-37.
  76. McGuire, S. E., Z. Mao, and R. L. Davis, 2004, Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila: Sci STKE, v. 2004, p. pl6.
  77. Schulman, V. K., E. S. Folker, J. N. Rosen, and M. K. Baylies, 2014, Syd/JIP3 and JNK signaling are required for myonuclear positioning and muscle function: PLoS Genet, v. 10, p. e1004880.
  78. Matsumoto, T., and K. Nagayama, 2012, Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics: J Biomech, v. 45, p. 745-55.
  79. Önel, S.-F., M. B. Rust, R. Jacob, and R. Renkawitz-Pohl, 2014, Tethering membrane fusion: common and different players in myoblasts and at the synapse: J Neurogenet, v. 28, p. 302- 15.
  80. Mukherjee, P., B. Gildor, B. Z. Shilo, K. VijayRaghavan, and E. D. Schejter, 2011, The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis: Development, v. 138, p. 2347-57.
  81. Saks, V., T. Kaambre, R. Guzun, T. Anmann, P. Sikk, U. Schlattner, T. Wallimann, M. Aliev, and M. Vendelin, 2007, The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches: Subcell Biochem, v. 46, p. 27-65.
  82. Ross, M. H., 1967, The fine structure and development of the peritubular contractile cell component in the seminiferous tubules of the mouse: Am J Anat, v. 121, p. 523-57.
  83. Stern, C., 1941a, The growth of testes in Drosophila. I. The relation between vas deferens and testis within various species: Journal of Experimental Zoology, v. 87, p. 113-158.
  84. Stern, C., 1941b, The growth of the testes in Drosophila. II. The nature of interspecific differences.: Journal of Experimental Zoology, v. 87, p. 159-180.
  85. Shelton, C., K. Kocherlakota, S. Zhuang, and S. Abmayr, 2009, The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts.: Development, v. 136, p. 1159-68.
  86. Weavers, H., S. Prieto-Sanchez, F. Grawe, A. Garcia-Lopez, R. Artero, M. WilschBrauninger, M. Ruiz-Gomez, H. Skaer, and B. Denholm, 2009, The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm: Nature, v. 457, p. 322-6.
  87. Ramos, R. G., G. L. Igloi, B. Lichte, U. Baumann, D. Maier, T. Schneider, J. H. Brandstatter, A. Frohlich, and K. F. Fischbach, 1993, The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein: Genes Dev, v. 7, p. 2533-47.
  88. Linnemannstöns, K., C. Ripp, M. Honemann-Capito, K. Brechtel-Curth, M. Hedderich, and A. Wodarz, 2014, The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility: PLoS Genet, v. 10, p. e1004443.
  89. Stern, C., and E. Hadorn, 1939, The Relation between the Color of Testes and Vasa Efferentia in Drosophila: Genetics, v. 24, p. 162-79.
  90. Rudolf, A., D. Buttgereit, K. H. Rexer, and R. Renkawitz-Pohl, 2012, The syncytial visceral and somatic musculature develops independently of β3-Tubulin during Drosophila embryogenesis, while maternally supplied β1-Tubulin is stable until the early steps of myoblast fusion: Eur J Cell Biol, v. 91, p. 192-203.
  91. Reim, I., H.-H. Lee, and M. Frasch, 2003, The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp.
  92. Thisse, B., M. el Messal, and F. Perrin-Schmitt, 1987, The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern: Nucleic Acids Res, v. 15, p. 3439-53.
  93. Schäfer, G., S. Weber, A. Holz, S. Bogdan, S. Schumacher, A. Müller, R. Renkawitz-Pohl, and S. Onel, 2007, The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila.: Dev Biol, v. 304, p. 664-74.
  94. Leptin, M., 1991, twist and snail as positive and negative regulators during Drosophila mesoderm development: Genes Dev, v. 5, p. 1568-76.
  95. Richardson, B. E., K. Beckett, S. J. Nowak, and M. K. Baylies, 2007, SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion: Development, v. 134, p. 4357-67.
  96. Takenawa, T., and S. Suetsugu, 2007, The WASP-WAVE protein network: connecting the membrane to the cytoskeleton: Nat Rev Mol Cell Biol, v. 8, p. 37-48.
  97. Zeitlinger, J., R. P. Zinzen, A. Stark, M. Kellis, H. Zhang, R. A. Young, and M. Levine, 2007, Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo: Genes Dev, v. 21, p. 385-90.
  98. Massarwa, R., S. Carmon, B. Shilo, and E. Schejter, 2007, WIP/WASp-based actinpolymerization machinery is essential for myoblast fusion in Drosophila.: Dev Cell, v. 12, p. 557-69.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten