Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierung der Lokalisation von Prestin (SLC26A5) in Membran-Mikrodomänen
Autor:Feuer, Anja
Weitere Beteiligte: Oliver, Dominik (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0144
URN: urn:nbn:de:hebis:04-z2017-01448
DOI: https://doi.org/10.17192/z2017.0144
DDC:570 Biowissenschaften, Biologie
Titel(trans.):Characterisation of localisation of Prestin (SLC26A5) in membran microdomains
Publikationsdatum:2017-02-23
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Prestin, Caveolin, Microdomains, Caveolin, Outer Haircells, Mikrodomänen, Prestin, Zytoskelett, Cytoskeleton, Äußere Haarzellen, Prestin

Zusammenfassung:
Prestin (SLC26A5; Pres) nimmt eine Schlüsselstellung für die Funktion des SäugetierInnenohres ein. Es ist das Motorprotein der ÄHZ (Zheng et al. 2000), welches in Antwort auf Änderungen des Membranpotenzials ultraschnelle Längenänderungen der ÄHZ generiert (Brownell et al. 1985). Es wird angenommen, dass dieser als Elektromotilität bezeichnete Vorgang die Grundlage des elektro-mechanischen Verstärkerprozesses der ÄHZ darstellt und für die außerordentliche Sensitivität des Gehörs sorgt (Liberman et al. 2002). Der Verlust des Verstärkermechanismus der ÄHZ ist die häufigste Ursache von Schwerhörigkeit beim Menschen. Immunolokalisationen von nativem Pres zeigen eine subzelluläre Lokalisation in der lateralen Plasmamembran der ÄHZ (Winter et al. 2006). Die vorliegende Arbeit charakterisiert mittels verschiedener hoch auflösender FluoreszenzMikroskopie-Techniken die spezifische subzelluläre Lokalisation der Pres-Orthologen aus Wanderratte (Rattus norvegicus; rPres), Zebrafisch (Danio rerio; zPres) und Huhn (Gallus gallus; cPres) im heterologen Expressionssystem. Alle Pres-Orthologen offenbarten eine plasmamembran-ständige Lokalisation, jedoch Unterschiede in der Membran-Verteilung. Pres-Proteine aus Huhn wiesen eine homogene Verteilung auf. Die Orthologen aus Zebrafisch und Wanderratte hingegen lokalisierten als mikroskopisch sichtbare, fokale Cluster. Als eine molekulare Determinante dieser differenziellen Lokalisation wurde die TransmembranDomäne (TMD) von Pres identifiziert, d.h., die intrinsischen Eigenschaften der TMD sind für das Verteilungsverhalten von Pres ursächlich. Weiterhin wurde herausgefunden, dass die biophysikalischen Bedingungen der Plasmamembran das Clustering ebenfalls beeinflussen: So wurde gezeigt, dass die Verteilung von Pres vom Cholesterol-Gehalt der Zellen und der Temperatur abhängig ist. Darüber hinaus wird die Verteilung von Pres durch Proteine mitbestimmt. Das mikrodomänenassoziierte Cav-1 ko-lokalisierte mit Pres und induzierte einerseits das Clustering von cPres, war andererseits aber für die Lokalisation als Cluster nicht essentiell. Das Pres-Clustering war eng mit dem Zytoskelett assoziiert. So ko-lokalisierten Aktin- wie auch Map1S-Punkte mit den Pres-Clustern. Eine Depolymerisation des Aktin-Zytoskeletts löste die Cluster partiell auf. Heterolog exprimiertes Map1S verhinderte diese Auflösung. Biochemisch wurde abschließend gezeigt, dass Aktin und Cav-1 mit Pres cholesterol-abhängig interagieren. Zusammenfassend liegt Pres bei heterologer Expression in cholesterol-reichen und zytoskelettabhängigen lipid-raft-artigen Membran-Domänen als Protein-Komplex mit Cav-1, Aktin und Map1S vor. Die vorliegende Arbeit ermöglichte es, molekularen Eigenschaften der Pres-Membran-Domäne zu identifizieren und zeigt Kandidaten auf, die das Motorprotein der ÄHZ in der lateralen Membran organisieren könnten. Diese Kandidaten können an der Regulation der Elektromotilität beteiligt sein.

Summary:
Prestin (SLC26A5; Pres) takes a key position for the function of the mammalian inner ear. It is the motor protein of the outer hair cells (Zheng et al. 2000) which generates as an answer to changes in membrane potential ultrafast changes in length of the overall OHC (Brownell et al. 1985). It is supposed that this as electromotility designated process is the base for the electromechanical amplification performed from OHC and that this mechanism is accountable for the remarkable sensitivity of hearing (Liberman et al. 2002). Loss of the OHC amplification is the most frequent reason for hearing loss in humans. Immunolocalisation of native Pres presents a subcellular localisation in the lateral plasma membrane of the OHC (Winter et al. 2006). The present study characterises the distinctive membrane localisation of the three different Pres orthologs from rat (Rattus norvegicus, rPres), zebrafish (Danio rerio, zPres) and chicken (Gallus gallus, cPres) in heterologous expression systems using high-resolution fluorescence microscopy techniques. All analysed Pres orthologs showed a membrane staining, but differences in their distribution within the membrane. Pres proteins from cPres displayed a homogenous distribution. Orthologs from rat and zebrafish expressed in a demonstrative manner, they localised as punctuated clusters. The internal transmembrane domain (TMD) has been identified to act as a molecular determinant for the cluster formation. For this reason the distribution of Pres was accountable to intrinsic features of the TMD portion. Moreover, biophysical properties of the plasma membrane influenced the clustering: The distribution of Pres depended on cellular cholesterol content and temperature. Additionally, specific proteins co-determined the distribution of Pres. Microdomain-associated Cav-1 co-localised with Pres and induced cPres clustering, but was not essential for localisation as clusters. Pres clustering was strongly cytoskeleton associated as Actin and Map1S spots co-localised with Pres clusters. Depolymerisation of Actin cytoskeleton partially dissolved the Pres clusters, but heterologously expressed Map1S prevented the dissolution. Finally, it has been shown biochemically that Actin and Cav-1 interact with Pres in a cholesterol-dependent manner. In conclusion, Pres localises in cholesterol- and cytoskeleton-dependent lipid raft-like membrane domains as a protein complex with Cav-1, Actin and Map1S. This study identified molecular characteristics of Pres membran domains and reveals candidates that could organise the motor protein of the OHC along the lateral membrane. These candidates could be involved in regulating the electromotility.

Bibliographie / References

  1. Brandt, A., Striessnig, J. & Moser, T., 2003. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(34), pp.10832-40.
  2. Zhang, Z. et al., 2007. Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell motility and the cytoskeleton, 64(5), pp.360-376.
  3. Lamas, V. et al., 2014. Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics. Frontiers in systems neuroscience, 8, p.253.
  4. Drenckhahn, D., Schafer, T. & Prinz, M., 1985. Actin, myosin and associated proteins in the vertebrate auditory and vestibular organs: immunocytochemical and biochemical studies. Auditory biochemistry, pp.317-335.
  5. Ricci, A.J., Crawford, A.C. & Fettiplace, R., 2000. Active Hair Bundle Motion Linked to Fast Transducer Adaptation in Auditory Hair Cells. J. Neurosci., 20(19), pp.7131-7142.
  6. Martin, P. & Hudspeth, A.J., 1999. Active hair-bundle movements can amplifya hair cell'sresponsetooscillatory mechanical stimuli. Proceedings of the National Academy of Sciences, 96(25), pp.14306-14311.
  7. Fettiplace, R., 2006. Active hair bundle movements in auditory hair cells. The Journal of physiology, 576(Pt 1), pp.29-36.
  8. Chernova, M.N. et al., 2003. Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. The Journal of physiology, 549(Pt 1), pp.3-19.
  9. Holley, M.C. & Ashmore, J.F., 1988. A cytoskeletal spring in cochlear outer hair cells. Nature, 335(6191), pp.635-7.
  10. Foster, L.J. et al., 2000. A Functional Role for VAP-33 in Insulin-Stimulated GLUT4 Traffic. Traffic, 1(6), pp.512- 521.
  11. Elgoyhen, A.B. et al., 2001. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proceedings of the National Academy of Sciences of the United States of America, 98(6), pp.3501-6.
  12. Legendre, K. et al., 2008. alphaII-betaV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. Journal of cell science, 121(Pt 20), pp.3347-56.
  13. Nilius, B. & Droogmans, G., 2003. Amazing chloride channels: an overview. Acta physiologica Scandinavica, 177(2), pp.119-47.
  14. Kalinec, F. et al., 1992. A membrane-based force generation mechanism in auditory sensory cells. Proceedings of the National Academy of Sciences of the United States of America, 89(18), p.8671.
  15. Ko, S.B.H. et al., 2002. A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis. The EMBO journal, 21(21), pp.5662-72.
  16. Elgoyhen, A.B. et al., 1994. α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell, 79(4), pp.705-715.
  17. Zheng, J. et al., 2006. Analysis of the Oligomeric Structure of the Motor Protein Prestin. Journal of Biological Chemistry, 281(29), pp.19916-19924.
  18. Felix, H., 2002. Anatomical differences in the peripheral auditory system of mammals and man. A mini review. Advances in oto-rhino-laryngology, 59, pp.1-10.
  19. Schiebler, T., Winckler, J. & Kaufmann, P., 2005. Anatomie: Histologie, Entwicklungsgeschichte, makroskopische und mikroskopische Anatomie, Topographie 9. Auflage. T. H. Schiebler, ed., Springer-Verlag.
  20. Song, L. & Santos-Sacchi, J., 2015. An electrical inspection of the subsurface cisternae of the outer hair cell. Biophysical journal, 108(3), pp.568-77.
  21. Saito, T., Sato, K. & Saito, H., 1986. An experimental study of auditory dysfunction associated with hyperlipoproteinemia. Arch Otorhinolaryngol, 243(4), pp.242-245.
  22. Bernatchez, P. et al., 2011. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. The Journal of clinical investigation, 121(9), pp.3747-55.
  23. Sridhar, T.S. et al., 1995. A Novel Cholinergic Cochlear Potentials. The Journal of neuroscience, 15(May), pp.3667- 3678.
  24. Organ, L.E. & Raphael, R.M., 2007. Application of fluorescence recovery after photobleaching to study prestin lateral mobility in the human embryonic kidney cell. Journal of biomedical optics, 12(2), p.021003.
  25. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), pp.248-254.
  26. Greeson, J.N. et al., 2006. Assessment of prestin self-association using fluorescence resonance energy transfer. Brain research, 1091(1), pp.140-50.
  27. Suzuki, T. et al., 2011. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. Journal of neurochemistry, 119(1), pp.64-77.
  28. Syka, J. et al., 2007. Atorvastatin slows down the deterioration of inner ear function with age in mice. Neuroscience letters, 411(2), pp.112-6.
  29. Iwasa, K.H., 2001. A two-state piezoelectric model for outer hair cell motility. Biophysical journal, 81(5), pp.2495- 506.
  30. Song, J. & Waugh, R.E., 1993. Bending rigidity of SOPC membranes containing cholesterol. Biophysical journal, 64(6), pp.1967-70.
  31. Berg, J.M., Stryer, L. & Tymoczko, J.L., 2013. Biochemie-Stryer 7. Auflage., Springer-Verlag Berlin Heidelberg: Springer Spektrum.
  32. Chan, D.K. & Hudspeth, A.J., 2005. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nature neuroscience, 8(2), pp.149-55.
  33. Denk, W. et al., 1995. Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links. Neuron, 15(6), pp.1311-1321.
  34. Marcucci, R. et al., 2005. Cardiovascular and thrombophilic risk factors for idiopathic sudden sensorineural hearing loss. Journal of Thrombosis and Haemostasis, 3(5), pp.929-934.
  35. Deurs, B. van et al., 2003. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13(2), pp.92-100.
  36. Echarri, A. & Del Pozo, M.A., 2015. Caveolae - mechanosensitive membrane invaginations linked to actin filaments. Journal of cell science, 128(15), pp.2747-58.
  37. Cheng, J.P.X. & Nichols, B.J., 2015. Caveolae: One Function or Many? Trends in cell biology.
  38. Shatz, M. & Liscovitch, M., 2008. Caveolin-1: a tumor-promoting role in human cancer. International journal of radiation biology, 84(3), pp.177-189.
  39. Wang, L. et al., 2003. Caveolin-1 does not affect SR-BI-mediated cholesterol efflux or selective uptake of cholesteryl ester in two cell lines. Journal of lipid research, 44(4), pp.807-15.
  40. Kogo, H. & Fujimoto, T., 2000. Caveolin-1 isoforms are encoded by distinct mRNAs. FEBS Letters, 465(2-3), pp.119-123.
  41. Lim, J.S. et al., 2014. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. The Journal of infectious diseases, 210(5), pp.793-802.
  42. Rothberg, K.G. et al., 1992. Caveolin, a protein component of caveolae membrane coats. Cell, 68(4), pp.673-682.
  43. Scherer, P.E. et al., 1995. Caveolin Isoforms Differ in Their N-terminal Protein Sequence and Subcellular Distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. Journal of Biological Chemistry, 270(27), pp.16395-16401.
  44. Fielding, C.J., Bist, A. & Fielding, P.E., 1997. Caveolin mRNA levels are up-regulated by free cholesterol and downregulated by oxysterols in fibroblast monolayers. Proceedings of the National Academy of Sciences of the United States of America, 94(8), pp.3753-8.
  45. Neilson, L.I. et al., 1999. cDNA cloning and characterization of a human sperm antigen (SPAG6) with homology to the product of the Chlamydomonas PF16 locus. Genomics, 60(3), pp.272-80.
  46. He, D.Z.Z. et al., 2010. Changes in plasma membrane structure and electromotile properties in prestin de ficient outer hair cells. Cytoskeleton (Hoboken, N.J.), 67(1), pp.43-55.
  47. Lisanti, M.P. et al., 1994. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. The Journal of Cell Biology, 126, pp.111-126.
  48. Pollice, P.A. & Brownell, W.E., 1993. Characterization of the outer hair cell's lateral wall membranes. Hearing Research, 70(2), pp.187-196.
  49. He, D.Z.Z. et al., 2003. Chick hair cells do not exhibit voltage-dependent somatic motility. The Journal of physiology, 546(Pt 2), pp.511-20.
  50. Simpson, J.E. et al., 2005. Chloride conductance of CFTR facilitates basal Cl-/HCO3- exchange in the villous epithelium of intact murine duodenum. American journal of physiology. Gastrointestinal and liver physiology, 288(6), pp.G1241-51.
  51. Barenholz, Y., 2002. Cholesterol and other membrane active sterols: from membrane evolution to € oerafts. Progress in Lipid Research, 41(1), pp.1-5.
  52. Thiele, C. et al., 2000. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature cell biology, 2(1), pp.42-49.
  53. Ohvo-Rekilä, H., 2002. Cholesterol interactions with phospholipids in membranes. Progress in Lipid Research, 41(1), pp.66-97.
  54. Davidson, C.D. et al., 2009. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PloS one, 4(9), p.e6951.
  55. Dallos, P., 2008. Cochlear amplification, outer hair cells and prestin. Current opinion in neurobiology, 18(4), pp.370- 6.
  56. Cheatham, M.A. et al., 2004. Cochlear function in Prestin knockout mice. The Journal of physiology, 560(Pt 3), pp.821-30.
  57. Ashmore, J., 2008. Cochlear outer hair cell motility. Physiological reviews, 88(1), pp.173-210.
  58. Kozlov, A.S., Risler, T. & Hudspeth, A.J., 2007. Coherent motion of stereocilia assures the concerted gating of hair - cell transduction channels. Nature neuroscience, 10(1), pp.87-92.
  59. Roberts, W.M., Jacobs, R. a & Hudspeth, a J., 1990. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 10(11), pp.3664-3684.
  60. Goudenege, S. et al., 2007. Comparative proteomic analysis of myotube caveolae after milli -calpain deregulation. Proteomics, 7(18), pp.3289-3298.
  61. Gliko, O., Saggau, P. & Brownell, W.E., 2009. Compartmentalization of the outer hair cell demonstrated by slow diffusion in the extracisternal space. Biophysical journal, 97(4), pp.1215-24.
  62. Dieler, R., Shehata-Dieler, W.E. & Brownell, W.E., 1991. Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. Journal of neurocytology, 20(8), pp.637-653.
  63. Platzer, J. et al., 2000. Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels. Cell, 102(1), pp.89-97.
  64. Nguyen, T.N. & Brownell, W.E., 1998. Contribution of membrane cholesterol to outer hair cell lateral wall stiffnessFirst Place-Resident Clinical Science Award 1997. Otolaryngology - Head and Neck Surgery, 119(1), pp.14-20.
  65. Pickles, J.O., Comis, S.D. & Osborne, M.P., 1984. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Research, 15(2), pp.103-112.
  66. Liu, B. et al., 2010. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. Journal of lipid research, 51(5), pp.933-44.
  67. Yu, P. et al., 2004. D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells. Kidney international, 66(6), pp.2167-80.
  68. Lumpkin, E.A. & Hudspeth, A.J., 1995. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proceedings of the National Academy of Sciences of the United States of America, 92(22), pp.10297-10301.
  69. He, D.Z.Z. & Dallos, P., 1999. Development of Acetylcholine-Induced Responses in Neonatal Gerbil Outer Hair Cells. Journal of Neurophysiology, 81(3), pp.1162-1170.
  70. Holzmann, D., Ott, P.M. & Felix, H., 2000. Diagnostic approach to primary ciliary dyskinesia: a review. European journal of pediatrics, 159(1-2), pp.95-98.
  71. Physikalisch-Technische Bundesanstalt Braunschweig, 2015. Die gesetzlichen Einheiten in Deutschland. Available at: \\Netapp1\Groups\18Larissa\Online Papers\Die gesetzlichen Einheiten in Deutschland.pdf.
  72. Sikora, M. a et al., 2015. Diet-induced hyperlipidemia and auditory dysfunction. Acta oto-laryngologica, 102(5-6), pp.372-381.
  73. Cokakli, M. et al., 2009. Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer, 9, p.65.
  74. Shotwell, S.L., Jacobs, R. & Hudspeth, A.J., 1981. Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Annals of the New York Academy of Sciences, 374(1 Vestibular an), pp.1-10.
  75. Freberg, L., 2015. Discovering Behavioral Neuroscience: An Introduction to Biological Psychology, Wadsworth Inc Fulfillment; Auflage: Revised. Cengage Learning.
  76. Song, L. & Santos-Sacchi, J., 2013. Disparities in voltage-sensor charge and electromotility imply slow chloridedriven state transitions in the solute carrier SLC26a5. Proceedings of the National Academy of Sciences of the United States of America, 110(10), pp.3883-8.
  77. Wharton, J. et al., 2005. Dissociation of insulin receptor expression and signaling from caveolin-1 expression. The Journal of biological chemistry, 280(14), pp.13483-6.
  78. Sowa, G., Pypaert, M. & Sessa, W.C., 2001. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proceedings of the National Academy of Sciences of the United States of America, 98(24), pp.14072-7.
  79. Mutai, H. et al., 2013. Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet journal of rare diseases, 8, p.172.
  80. Mundy, D.I. et al., 2002. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. Journal of Cell Science, 115, pp.4327-4339.
  81. Ikeda, K., Sunose, H. & Takasaka, T., 1993. Effects of free radicals on the intracellular calcium concentration in the isolated outer hair cell of the guinea pig cochlea. Acta oto-laryngologica, 113(1-2), pp.137-141.
  82. Kawano, M. et al., 2006. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. The Journal of biological chemistry, 281(40), pp.30279-88.
  83. Needham, D. & Nunn, R.S., 1990. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophysical journal, 58(4), pp.997-1009.
  84. Brownell, W.E. & Popel, A.S., 1998. Electrical and mechanical anatomy of the outer hair cell. In A. R. Palmer et al., eds. Psychophysical and Physiological Advances in Hearing. pp. 98-96.
  85. Homma, K. & Dallos, P., 2011. Evidence that prestin has at least two voltage-dependent steps. The Journal of biological chemistry, 286(3), pp.2297-307.
  86. Brownell, W.E. et al., 1985. Evoked mechanical responses of isolated cochlear outer hair cells. Science (New York, N.Y.), 227(4683), pp.194-196.
  87. Belyantseva, I.A. et al., 2000. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(24), p.RC116.
  88. Oliver, D. & Fakler, B., 1999. Expression density and functional characteristics of the outer hair cell motor protein are regulated during postnatal development in rat. The Journal of physiology, 519 Pt 3, pp.791-800.
  89. Kros, C.J., Ruppersberg, J.P. & Rüsch, A., 1998. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature, 394(6690), pp.281-4.
  90. Wang, J. et al., 2015. Expression of prestin in OHCs is reduced in Spag6 gene knockout mice. Neuroscience letters, 592, pp.42-7.
  91. Kong, W.-J. et al., 2006. Fast cholinergic efferent inhibition in guinea pig outer hair cells. Brain research, 1102(1), pp.103-8.
  92. Schnitzer, J.E., 1994. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. The Journal of Cell Biology, 127(5), pp.1217- 1232.
  93. Palade, G.E., 1953. Fine structure of blood capillaries. J. Appl. Phys., 24, p.p. 1424.
  94. Saito, K., 1983. Fine structure of the sensory epithelium of guinea-pig organ of Corti: Subsurface cisternae and lamellar bodies in the outer hair cells. Cell and Tissue Research, 229(3).
  95. Oghalai, J.S. et al., 1998. Fluorescence-Imaged Microdeformation of the Outer Hair Cell Lateral Wall. J. Neurosci., 18(1), pp.48-58.
  96. Fölling, J. et al., 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. , 5(11), pp.943-945.
  97. Chernova, M.N. et al., 2005. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. The Journal of biological chemistry, 280(9), pp.8564-80.
  98. Sturm, A.K. et al., 2007. Functional expression and microdomain localization of prestin in cultured cells. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery, 136(3), pp.434-9.
  99. Simons, K. & Ikonen, E., 1997. Functional rafts in cell membranes. Nature, 387, pp.569-572.
  100. Keller, J.P. et al., 2014. Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(4), pp.1325-32.
  101. Oliver, D. et al., 2000. Gating of Ca2+-Activated K+ Channels Controls Fast Inhibitory Synaptic Transmission at Auditory Outer Hair Cells. Neuron, 26(3), pp.595-601.
  102. Ko, S.B.H. et al., 2004. Gating of CFTR by the STAS domain of SLC26 transporters. Nature cell biology, 6(4), pp.343-50.
  103. Cimerman, J. et al., 2013. Generation of somatic electromechanical force by outer hair cells may be influenced by prestin-CASK interaction at the basal junction with the Deiter's cell. Histochemistry and Cell Biology, 140(2), pp.119-135.
  104. Zheng, J. et al., 2003. Genomic characterization and expression of mouse prestin, the motor protein of outer hair cells. Mammalian genome : official journal of the International Mammalian Genome Society, 14(2), pp.87-96.
  105. Rajagopalan, L. et al., 2010. Glycosylation Regulates Prestin Cellular Activity. Journal of the Association for Research in Otolaryngology JARO, 11, pp.39-51.
  106. Glowatzki, E., Grant, L. & Fuchs, P., 2008. Hair cell afferent synapses. Current opinion in neurobiology, 18(4), pp.389-95.
  107. Breneman, K.D., Brownell, W.E. & Rabbitt, R.D., 2009. Hair cell bundles: flexoelectric motors of the inner ear. PloS one, 4(4), p.e5201.
  108. Crumling, M. a. et al., 2012. Hearing Loss and Hair Cell Death in Mice Given the Cholesterol-Chelating Agent Hydroxypropyl-β-Cyclodextrin S. Barnes, ed. PLoS ONE, 7(12), pp.1-8.
  109. Wu, X. et al., 2004. Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. Brain research. Molecular brain research, 126(1), pp.30-7.
  110. Katz, E. et al., 2000. High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor. Hearing Research, 141(1), pp.117-128.
  111. Reuter, G. et al., 1992. High frequency radial movements of the reticular lamina induced by outer hair cell motility. Hearing research, 60(2), pp.236-246.
  112. Kachar, B. et al., 2000. High-resolution structure of hair-cell tip links. Proceedings of the National Academy of Sciences of the United States of America, 97(24), pp.13336-41.
  113. Guinan, J.J., 2012. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hearing research, 292(1-2), pp.35-50.
  114. Simons, K., 2000. How Cells Handle Cholesterol. Science, 290(5497), pp.1721-1726.
  115. Bezanilla, F., 2008. How membrane proteins sense voltage. Nature reviews. Molecular cell biology, 9(4), pp.323- 332.
  116. Hudspeth,A.J.,1989.Howtheear'sworkswork. Nature, 341(6241), pp.397-404.
  117. Cohen, A.R. et al., 1998. Human CASK/LIN-2 Binds Syndecan-2 and Protein 4.1and Localizes to the Basolateral Membrane of Epithelial Cells. The Journal of Cell Biology, 142(1), pp.129-138.
  118. Rask-Andersen, H. et al., 2012. Human cochlea: Anatomical characteristics and their relevance for cochlear implantation. Anatomical Record, 295(11), pp.1791-1811.
  119. Morizono, T. & Paparella, M.M., 1978. Hypercholesterolemia and Auditory Dysfunction: Experimental Studies. Annals of Otology, Rhinology & Laryngology, 87(6), pp.804-814.
  120. Santi, P., Mancini, P. & Barnes, C., 1994. Identification and localization of the GM1 ganglioside in the cochlea using thin-layer chromatography and cholera toxin. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 42(6), pp.705-716.
  121. Stahlhut, M. & van Deurs, B., 2000. Identification of Filamin as a Novel Ligand for Caveolin-1: Evidence for the Organization of Caveolin-1-associated Membrane Domains by the Actin Cytoskeleton. Molecular Biology of the Cell, 11(1), pp.325-337.
  122. Marfatia, S.M. et al., 1995. Identification of the Protein 4.1 Binding Interface on Glycophorin C and p55, a Homologue of the Drosophila discs-large Tumor Suppressor Protein. Journal of Biological Chemistry, 270(2), pp.715-719.
  123. Ishitsuka, R., Sato, S.B. & Kobayashi, T., 2005. Imaging lipid rafts. Journal of biochemistry, 137(3), pp.249-54.
  124. Slepecky, N. & Chamberlain, S.C., 1985. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells. Hearing research, 20(3), pp.245- 260.
  125. Schulte, B., 1993. Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear Res., 65(1-2), pp.262-73.
  126. Homma, K. et al., 2010. Interaction between CFTR and prestin (SLC26A5). Biochimica et biophysica acta, 1798(6), pp.1029-40.
  127. Sengupta, S. et al., 2010. Interaction between the motor protein prestin and the transporter protein VAPA. Biochimica et biophysica acta, 1803(7), pp.796-804.
  128. Head, B.P., Patel, H.H. & Insel, P.A., 2014. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochimica et biophysica acta, 1838(2), pp.532-45.
  129. Oliver, D. et al., 2001. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science (New York, N.Y.), 292(5525), pp.2340-2343.
  130. Housley, G.D. & Ashmore, J.F., 1992. Ionic currents of outer hair cells isolated from the guinea-pig cochlea. The Journal of physiology, 448, pp.73-98.
  131. Fujimoto, T. et al., 2000. Isoforms of caveolin-1 and caveolar structure. Journal of Cell Science, 113 Pt 19, pp.3509- 3517.
  132. Kharkovets, T. et al., 2000. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proceedings of the National Academy of Sciences of the United States of America, 97(8), pp.4333-8.
  133. Kubisch, C. et al., 1999. KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness. Cell, 96(3), pp.437-446.
  134. Jensen-Smith, H. & Hallworth, R., 2007. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset. Cell motility and the cytoskeleton, 64(9), pp.705-17.
  135. Pape, H.-C. et al., 2010. Lehrbuch der Physiologie 6., vollst. R. Klinke et al., eds., Georg Thieme Verlag Stuttgart · New York.
  136. Frank, G., Hemmert, W. & Gummer, a W., 1999. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 96(8), pp.4420-4425.
  137. Patel, H.H. & Insel, P. a, 2009. Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxidants & redox signaling, 11(6), pp.1357-1372.
  138. Pike, L.J., 2003. Lipid rafts: bringing order to chaos. Journal of lipid research, 44(4), pp.655-67.
  139. Pike, L.J., 2004. Lipid rafts: heterogeneity on the high seas. The Biochemical journal, 378, pp.281-292.
  140. Lucero, H.A. & Robbins, P.W., 2004. Lipid rafts-protein association and the regulation of protein activity. Archives of biochemistry and biophysics, 426(2), pp.208-24.
  141. van Meer, G., 1998. Lipids of the Golgi membrane. Trends in Cell Biology, 8924(97), pp.29-33.
  142. Sapiro, R. et al., 2002. Male Infertility, Impaired Sperm Motility, and Hydrocephalus in Mice Deficient in SpermAssociated Antigen 6. Molecular and Cellular Biology, 22(17), pp.6298-6305.
  143. Santos-Sacchi, J., Huang, G.J. & Wu, M., 1997. Mapping the distribution of outer hair cell voltage-dependent conductances by electrical amputation. Biophysical journal, 73(3), pp.1424-9.
  144. Flock, Å., Flock, B. & Ulfendahl, M., 1986. Mechanisms of movement in outer hair cells and a possible structural basis. Archives of oto-rhino-laryngology, 243(2), pp.83-90.
  145. Jia, S., Dallos, P. & He, D.Z.Z., 2007. Mechanoelectric transduction of adult inner hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(5), pp.1006-14.
  146. Gillespie, P.G. & Müller, U., 2009. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell, 139(1), pp.33-44.
  147. Brownell, W.E. et al., 2011. Membrane cholesterol modulates cochlear electromechanics. Pflügers Archiv : European journal of physiology, 461(6), pp.677-86.
  148. Kamar, R.I., Organ-Darling, L.E. & Raphael, R.M., 2012. Membrane cholesterol strongly influences confined diffusion of prestin. Biophysical journal, 103(8), pp.1627-36.
  149. Sfondouris, J. et al., 2008. Membrane composition modulates prestin-associated charge movement. The Journal of biological chemistry, 283(33), pp.22473-81.
  150. Aloia, R.C. & Boggs, J.M. eds., 1985. Membrane fluidity in biology - Cellular aspects Volume 4., Orlando, Florida: Academic press.
  151. Whitehead, S.N. et al., 2012. Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons. BioScience Trends, 6(4), pp.183-191.
  152. Kitani, R., Park, C. & Kalinec, F., 2013. Microdomains shift and rotate in the lateral wall of cochlear outer hair cells. Biophysical journal, 104(1), pp.8-18.
  153. Orbán-Németh, Z. et al., 2005. Microtubule-associated protein 1S, a short and ubiquitously expressed member of the microtubule-associated protein 1 family. The Journal of Biological Chemistry, 280, pp.2257-2265.
  154. Mohan, R. & John, A., 2015. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life, 67(6), pp.395-403.
  155. Head, B.P. et al., 2006. Microtubules and Actin Microfilaments Regulate Lipid Raft/Caveolae Localization of Adenylyl Cyclase Signaling Components. Journal of Biological Chemistry, 281(36), pp.26391-26399.
  156. Gorbunov, D. et al., 2014. Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nature communications, 5(Vimm), p.3622.
  157. Nishimura, Y. et al., 1999. Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Biochemical and biophysical research communications, 254(1), pp.21-6.
  158. Skehel, P.A., Fabian-Fine, R. & Kandel, E.R., 2000. Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proceedings of the National Academy of Sciences of the United States of America, 97(3), pp.1101-6.
  159. Goswami, D. et al., 2008. Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity. Cell, 135(6), pp.1085-1097.
  160. Dallos, P., Evans, B.N. & Hallworth, R., 1991. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature, 350(6314), pp.155-7.
  161. Matsuda, K. et al., 2004. N-linked glycosylation sites of the motor protein prestin: effects on membrane targeting and electrophysiological function. Journal of neurochemistry, 89(4), pp.928-38.
  162. Han, Y. et al., 2015. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling. Journal of Neurochemistry, 133(5), pp.617-628.
  163. Schaechinger, T.J. & Oliver, D., 2007. Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proceedings of the National Academy of Sciences of the United States of America, 104(18), pp.7693-8.
  164. Yamashita, T. et al., 2012. Normal hearing sensitivity at low-to-middle frequencies with 34% prestin-charge density. PloS one, 7(9), p.e45453.
  165. Navaratnam, D. et al., 2005. N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein. Biophysical journal, 89(5), pp.3345-52.
  166. Santos-Sacchi, J. et al., 2006. On the temperature and tension dependence of the outer hair cell lateral membrane conductance GmetL and its relation to prestin. Pflügers Archiv : European journal of physiology, 452(3), pp.283- 289.
  167. Matsubara, A. et al., 1996. Organization of AMPA Receptor Subunits at a Glutamate Synapse: A Quantitative Immunogold Analysis of Hair Cell Synapses in the Rat Organ of Corti. J. Neurosci., 16(14), pp.4457-4467.
  168. Brownell, W.E., 1990. Outer hair cell electromotility and otoacoustic emissions. Ear Hear, 11, pp.82-92.
  169. Yamashita, T. et al., 2015. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins. PLoS genetics, 11(9), p.e1005500.
  170. Li, S., Seitz, R. & Lisanti, M.P., 1996. Phosphorylation of Caveolin by Src Tyrosine Kinases. Journal of Biological Chemistry, 271(7), pp.3863-3868.
  171. Matsumoto, N. et al., 2010. Pivotal role of actin depolymerization in the regulation of cochlear outer hair cell motility. Biophysical Journal, 99, pp.2067-2076.
  172. Liu, X.Z., 2003. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Human Molecular Genetics, 12(10), pp.1155-1162.
  173. Dallos, P. & Fakler, B., 2002. Prestin, a new type of motor protein. Nature reviews. Molecular cell biology, 3(2), pp.104-111.
  174. Gao, J. et al., 2007. Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier. Proceedings of the National Academy of Sciences of the United States of America, 104(30), pp.12542-7.
  175. Dallos, P. et al., 2008. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron, 58(3), pp.333-9.
  176. Wang, X. et al., 2010. Prestin forms oligomer with four mechanically independent subunits. Brain research, 1333, pp.28-35.
  177. Hallworth, R. & Nichols, M.G., 2012. Prestin in HEK cells is an obligate tetramer. Journal of Neurophysiology, 107(1), pp.5-11.
  178. Liberman, M.C. et al., 2002. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 419(6904), pp.300-4.
  179. Zheng, J. et al., 2000. Prestin is the motor protein of cochlear outer hair cells. Nature, 405(6783), pp.149-55.
  180. Bai, J.-P. et al., 2010. Prestin surface expression and activity are augmented by interaction with MAP1S, a microtubule-associated protein. The Journal of Biological Chemistry, 285(27), pp.20834-20843.
  181. Zheng, J. et al., 2001. Prestin topology: localization of protein epitopes in relation to the plasma membrane. Neuroreport, 12(9), pp.1929-1935.
  182. Ren, T. & Gillespie, P.G., 2012. Probing the cochlear amplifier by immobilizing molecular motors of sensory hair cells. Neuron, 76(5), pp.868-70.
  183. Nagy, I. et al., 2005. Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein. Hearing research, 204(1-2), pp.216-22.
  184. He, D.Z. & Dallos, P., 2000. Properties of voltage-dependent somatic stiffness of cochlear outer hair cells. Journal of the Association for Research in Otolaryngology : JARO, 1(1), pp.64-81.
  185. Hudspeth, A.J. et al., 2000. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences of the United States of America, 97(22), pp.11765-72.
  186. Benser, M.E., Marquis, R.E. & Hudspeth, A.J., 1996. Rapid, Active Hair Bundle Movements in Hair Cells from the Bullfrog'sSacculus. J. Neurosci., 16(18), pp.5629-5643.
  187. Ludwig, J. et al., 2001. Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 98(7), pp.4178-83.
  188. Gulley, R.L. & Reese, T.S., 1977. Regional specialization of the hair cell plasmalemma in the organ of corti. The Anatomical record, 189(1), pp.109-23.
  189. Parton, R.G., Joggerst, B. & Simons, K., 1994. Regulated internalization of caveolae. The Journal of cell biology, 127(5), pp.1199-215.
  190. Hailstones, D. et al., 1998. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res., 39(2), pp.369-379.
  191. Frolenkov, G.I., 2006. Regulation of electromotility in the cochlear outer hair cell. The Journal of physiology, 576(Pt 1), pp.43-8.
  192. Mammo, F. & Ashmore, J.F., 1993. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature, 363(6449), pp.838-41.
  193. Santos-Sacchi, J., 1991. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J. Neurosci., 11(10), pp.3096-3110.
  194. Schwander, M., Kachar, B. & Müller, U., 2010. Review series: The cell biology of hearing. The Journal of cell biology, 190(1), pp.9-20.
  195. Simons, K. & Gerl, M.J., 2010. Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), pp.688-699.
  196. Kalinec, F. et al., 2000. Rho GTPases mediate the regulation of cochlear outer hair cell motility by acetylcholine. Journal of Biological Chemistry, 275(36), pp.28000-28005.
  197. Zhang, M. et al., 2003. ROCK-dependent and ROCK-independent control of cochlear outer hair cell electromotility. The Journal of biological chemistry, 278(37), pp.35644-50.
  198. Cohen, A.W. et al., 2004. Role of caveolae and caveolins in health and disease. Physiological reviews, 84(4), pp.1341-79.
  199. Sharma, D.K. et al., 2004. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Molecular biology of the cell, 15(7), pp.3114-22.
  200. Cooper, N.P. & Guinan, J.J., 2003. Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. The Journal of physiology, 548(Pt 1), pp.307-12.
  201. Neher, E. & Sakmann, B., 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), pp.799-802.
  202. He, D.Z. & Dallos, P., 1999. Somatic stiffness of cochlear outer hair cells is voltage-dependent. Proceedings of the National Academy of Sciences of the United States of America, 96(14), pp.8223-8.
  203. Holley, M.C. & Ashmore, J.F., 1990. Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. Journal of cell science, 96 ( Pt 2), pp.283-291.
  204. Martin, P. et al., 2003. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(11), pp.4533-48.
  205. Li, S., Couet, J. & Lisanti, M.P., 1996. Src Tyrosine Kinases , G ␣ Subunits , and H-Ras Share a Common Membrane-anchored Scaffolding Protein , Caveolin. The Journal of biological chemistry, 271(46), pp.29182- 29190.
  206. Frank, P.G. et al., 2002. Stabilization of Caveolin-1 by Cellular Cholesterol and Scavenger Receptor Class B Type I †. Biochemistry, 41(39), pp.11931-11940.
  207. Mukaka, M.M., 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal : the journal of Medical Association of Malawi, 24(3), pp.69-71.
  208. Powers, R.J. et al., 2012. Stereocilia Membrane Deformation: Implications for the Gating Spring and Mechanotransduction Channel. Biophysical Journal, 102(2), pp.201-210.
  209. Forge, A., 1991. Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell and Tissue Research, 265(3), pp.473-483.
  210. Zhang, M. & Kalinec, F., 2002. Structural microdomains in the lateral plasma membrane of cochlear outer hair cells. Journal of the Association for Research in Otolaryngology : JARO, 3(3), pp.289-301.
  211. Geertsma, E.R. et al., 2015. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nature structural & molecular biology, 22(10), pp.803-8.
  212. Holley, M.C., Kalinec, F. & Kachar, B., 1992. Structure of the cortical cytoskeleton in mammalian outer hair cells. Journal of cell science, 102 ( Pt 3), pp.569-580.
  213. Flock, Å., Flock, B. & Murray, E., 1977. Studies on the Sensory Hairs of Receptor Cells in the Inner Ear. Acta Otolaryngologica, 83(1-6), pp.85-91.
  214. Singla, A. et al., 2014. Surgical Anatomy of the Basal Turn of the Human Cochlea as Pertaining to Cochlear Implantation. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, pp.1-6.
  215. Santos-Sacchi, J. & Huang, G., 1998. Temperature dependence of outer hair cell nonlinear capacitance. Hearing Research, 116(1-2), pp.99-106.
  216. Viola, A. & Gupta, N., 2007. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Reviews Immunology, 7(11), pp.889-896.
  217. Dallos, P., 1992. The active cochlea. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(12), pp.4575-4585.
  218. Graf, G.A. et al., 1999. The Class B, Type I Scavenger Receptor Promotes the Selective Uptake of High Density Lipoprotein Cholesterol Ethers into Caveolae. Journal of Biological Chemistry, 274(17), pp.12043-12048.
  219. Oghalai, J.S., 2004. The cochlear amplifier: augmentation of the traveling wave within the inner ear. Current opinion in otolaryngology & head and neck surgery, 12(5), pp.431-8.
  220. Yi, L. & He, D.Z., 2014. The Cochlear Amplifier: Is It Hair Bundle Motion of Outer Hair Cells? Journal of Otology, 9(2), pp.64-72.
  221. Kujawa, J. et al., 2014. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers in medical science, 29(5), pp.1663-8.
  222. Crawford, A.C. & Fettiplace, R., 1985. The mechanical properties of ciliary bundles of turtle cochlear hair cells. The Journal of Physiology, 364(1), pp.359-379.
  223. Parton, R.G. & Simons, K., 2007. The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 8(3), pp.185-94.
  224. Fettiplace, R. & Kim, K.X., 2014. The Physiology of Mechanoelectrical Transduction Channels in Hearing. Physiological reviews, 94(3), pp.951-986.
  225. Fettiplace, R. & Hackney, C.M., 2006. The sensory and motor roles of auditory hair cells. Nature reviews. Neuroscience, 7(1), pp.19-29.
  226. Mount, D.B. & Romero, M.F., 2004. The SLC26 gene family of multifunctional anion exchangers. Pflugers Archiv European Journal of Physiology, 447(5), pp.710-721.
  227. Dorwart et al., 2008. The Solute Carrier 26 Family of Proteins in Epithelial Ion Transport. Physiology (Bethesda, Md.), 23, pp.104-14.
  228. Fisher, J.A.N. et al., 2012. The spatial pattern of cochlear amplification. Neuron, 76(5), pp.989-97.
  229. Furness, D.N. & Hackney, C.M., 2006. The structure and composition of the stereociliary bundle of vertebrate hair cells A. P. edited by RA Eatock, RR Fay, ed., New York: Springer.
  230. Engstrom, H. & Sjostrand, F., 1954. The structure and innervation of the cochlear hair cells. Acta Otolaryngol., 44(5- 6), pp.490-501.
  231. Fuchs, P., 2002. The synaptic physiology of cochlear hair cells. Audiology & neuro-otology, 7(1), pp.40-4.
  232. Saier, M.H. et al., 2009. The Transporter Classification Database: recent advances. Nucleic acids research, 37(Database issue), pp.D274-8.
  233. Winter, H. et al., 2006. Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. Journal of cell science, 119(June), pp.2975-2984.
  234. Fujimoto, T., Miyawaki, A. & Mikoshiba, K., 1995. Inositol 1, 4, 5-trisphosphate receptor-like protein in plasmalemmal caveolae is linked to actin filaments. Journal of cell science, 15, pp.7-15.
  235. Rajagopalan, L. et al., 2007. Tuning of the Outer Hair Cell Motor by Membrane Cholesterol. Journal of Biological Chemistry, 282(50), pp.36659-36670.
  236. Bist, A., Fielding, P.E. & Fielding, C.J., 1997. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 94(20), pp.10693-8.
  237. Mahendrasingam, S., Furness, D.. & Hackney, C.., 1998. Ultrastructural localisation of spectrin in sensory and supporting cells of guinea-pig organ of Corti. Hearing Research, 126(1-2), pp.151-160.
  238. Sridhar, T.S., Brown, M.C. & Sewell, W.F., 1997. Unique Postsynaptic Signaling at the Hair Cell Efferent Synapse Permits Calcium to Evoke Changes on Two Time Scales. J. Neurosci., 17(1), pp.428-437.
  239. Wyles, J.P., McMaster, C.R. & Ridgway, N.D., 2002. Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. The Journal of biological chemistry, 277(33), pp.29908-18.
  240. Nowotny, M. & Gummer, A.W., 2011. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. The Journal of the Acoustical Society of America, 130(6), pp.3852-72.
  241. Murata, M. et al., 1995. VIP21 / caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A, 92(October), pp.10339-10343.
  242. Albert, J.T. et al., 2007. Voltage-sensitive prestin orthologue expressed in zebrafish hair cells. The Journal of physiology, 580(Pt. 2), pp.451-61.
  243. Eska, G., 2013. Schall & Klang: Wie und was wir hören, Springer-Verlag.
  244. Yu, N. & Zhao, H.B., 2008. Cytoskeleton Mediates Outer Hair Cell Electromotility and Memory Function. In ARO. Available at: http://www.aro.org/archives/2008/2008_875_a78083e0.html.
  245. Duncan, R.K., Benson, J., Liu, L.Q., Dolan, D.F., Altschuler, R.A., 2009. No Title. In Background Strain Influences the Hearing Loss Associated with Caveolin-1 Knockout Mouse. Available at: http://www.aro.org/archives/2009/2009_1161_3324bea3.html.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten